Mixed finite element simulations in two-dimensional groundwater flow problems
International Nuclear Information System (INIS)
Kimura, Hideo
1989-01-01
A computer code of groundwater flow in two-dimensional porous media based on the mixed finite element method was developed for accurate approximations of Darcy velocities in safety evaluation of radioactive waste disposal. The mixed finite element procedure solves for both the Darcy velocities and pressure heads simultaneously in the Darcy equation and continuity equation. Numerical results of a single well pumping at a constant rate in a uniform flow field showed that the mixed finite element method gives more accurate Darcy velocities nearly 50 % on average error than standard finite element method. (author)
Finite element solution of two dimensional time dependent heat equation
International Nuclear Information System (INIS)
Maaz
1999-01-01
A Microsoft Windows based computer code, named FHEAT, has been developed for solving two dimensional heat problems in Cartesian and Cylindrical geometries. The programming language is Microsoft Visual Basic 3.0. The code makes use of Finite element formulation for spatial domain and Finite difference formulation for time domain. Presently the code is capable of solving two dimensional steady state and transient problems in xy- and rz-geometries. The code is capable excepting both triangular and rectangular elements. Validation and benchmarking was done against hand calculations and published results. (author)
Multisymplectic Structure-Preserving in Simple Finite Element Method in High Dimensional Case
Institute of Scientific and Technical Information of China (English)
BAI Yong-Qiang; LIU Zhen; PEI Ming; ZHENG Zhu-Jun
2003-01-01
In this paper, we study a finite element scheme of some semi-linear elliptic boundary value problems inhigh-dimensional space. With uniform mesh, we find that, the numerical scheme derived from finite element method cankeep a preserved multisymplectic structure.
A three-dimensional cell-based smoothed finite element method for elasto-plasticity
International Nuclear Information System (INIS)
Lee, Kye Hyung; Im, Se Yong; Lim, Jae Hyuk; Sohn, Dong Woo
2015-01-01
This work is concerned with a three-dimensional cell-based smoothed finite element method for application to elastic-plastic analysis. The formulation of smoothed finite elements is extended to cover elastic-plastic deformations beyond the classical linear theory of elasticity, which has been the major application domain of smoothed finite elements. The finite strain deformations are treated with the aid of the formulation based on the hyperelastic constitutive equation. The volumetric locking originating from the nearly incompressible behavior of elastic-plastic deformations is remedied by relaxing the volumetric strain through the mean value. The comparison with the conventional finite elements demonstrates the effectiveness and accuracy of the present approach.
A three-dimensional cell-based smoothed finite element method for elasto-plasticity
Energy Technology Data Exchange (ETDEWEB)
Lee, Kye Hyung; Im, Se Yong [KAIST, Daejeon (Korea, Republic of); Lim, Jae Hyuk [KARI, Daejeon (Korea, Republic of); Sohn, Dong Woo [Korea Maritime and Ocean University, Busan (Korea, Republic of)
2015-02-15
This work is concerned with a three-dimensional cell-based smoothed finite element method for application to elastic-plastic analysis. The formulation of smoothed finite elements is extended to cover elastic-plastic deformations beyond the classical linear theory of elasticity, which has been the major application domain of smoothed finite elements. The finite strain deformations are treated with the aid of the formulation based on the hyperelastic constitutive equation. The volumetric locking originating from the nearly incompressible behavior of elastic-plastic deformations is remedied by relaxing the volumetric strain through the mean value. The comparison with the conventional finite elements demonstrates the effectiveness and accuracy of the present approach.
Non-Linear Three Dimensional Finite Elements for Composite Concrete Structures
Directory of Open Access Journals (Sweden)
O. Kohnehpooshi
Full Text Available Abstract The current investigation focused on the development of effective and suitable modelling of reinforced concrete component with and without strengthening. The modelling includes physical and constitutive models. New interface elements have been developed, while modified constitutive law have been applied and new computational algorithm is utilised. The new elements are the Truss-link element to model the interaction between concrete and reinforcement bars, the interface element between two plate bending elements and the interface element to represent the interfacial behaviour between FRP, steel plates and concrete. Nonlinear finite-element (FE codes were developed with pre-processing. The programme was written using FORTRAN language. The accuracy and efficiency of the finite element programme were achieved by analyzing several examples from the literature. The application of the 3D FE code was further enhanced by carrying out the numerical analysis of the three dimensional finite element analysis of FRP strengthened RC beams, as well as the 3D non-linear finite element analysis of girder bridge. Acceptable distributions of slip, deflection, stresses in the concrete and FRP plate have also been found. These results show that the new elements are effective and appropriate to be used for structural component modelling.
Three dimensional finite element linear analysis of reinforced concrete structures
International Nuclear Information System (INIS)
Inbasakaran, M.; Pandarinathan, V.G.; Krishnamoorthy, C.S.
1979-01-01
A twenty noded isoparametric reinforced concrete solid element for the three dimensional linear elastic stress analysis of reinforced concrete structures is presented. The reinforcement is directly included as an integral part of the element thus facilitating discretization of the structure independent of the orientation of reinforcement. Concrete stiffness is evaluated by taking 3 x 3 x 3 Gauss integration rule and steel stiffness is evaluated numerically by considering three Gaussian points along the length of reinforcement. The numerical integration for steel stiffness necessiates the conversion of global coordiantes of the Gaussian points to nondimensional local coordinates and this is done by Newton Raphson iterative method. Subroutines for the above formulation have been developed and added to SAP and STAP routines for solving the examples. The validity of the reinforced concrete element is verified by comparison of results from finite element analysis and analytical results. It is concluded that this finite element model provides a valuable analytical tool for the three dimensional elastic stress analysis of concrete structures like beams curved in plan and nuclear containment vessels. (orig.)
Finite element method for radiation heat transfer in multi-dimensional graded index medium
International Nuclear Information System (INIS)
Liu, L.H.; Zhang, L.; Tan, H.P.
2006-01-01
In graded index medium, ray goes along a curved path determined by Fermat principle, and curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectories, a finite element method based on discrete ordinate equation is developed to solve the radiative transfer problem in a multi-dimensional semitransparent graded index medium. Two particular test problems of radiative transfer are taken as examples to verify this finite element method. The predicted dimensionless net radiative heat fluxes are determined by the proposed method and compared with the results obtained by finite volume method. The results show that the finite element method presented in this paper has a good accuracy in solving the multi-dimensional radiative transfer problem in semitransparent graded index medium
International Nuclear Information System (INIS)
Choi, S. N.; Kim, H. N.; Jang, K. S.; Kim, H. J.
2000-01-01
The purpose of this paper is to determine a two dimensional axisymmetric model through a comparative study between a three dimensional and an axisymmetric finite element analysis of the reactor coolant piping nozzle subject to internal pressure. The finite element analysis results show that the stress adopting the axisymmetric model with the radius of equivalent spherical vessel are well agree with that adopting the three dimensional model. The radii of equivalent spherical vessel are 3.5 times and 7.3 times of the radius of the reactor coolant piping for the safety injection nozzle and for the residual heat removal nozzle, respectively
Numerical solution of multi group-Two dimensional- Adjoint equation with finite element method
International Nuclear Information System (INIS)
Poursalehi, N.; Khalafi, H.; Shahriari, M.; Minoochehr
2008-01-01
Adjoint equation is used for perturbation theory in nuclear reactor design. For numerical solution of adjoint equation, usually two methods are applied. These are Finite Element and Finite Difference procedures. Usually Finite Element Procedure is chosen for solving of adjoint equation, because it is more use able in variety of geometries. In this article, Galerkin Finite Element method is discussed. This method is applied for numerical solving multi group, multi region and two dimensional (X, Y) adjoint equation. Typical reactor geometry is partitioned with triangular meshes and boundary condition for adjoint flux is considered zero. Finally, for a case of defined parameters, Finite Element Code was applied and results were compared with Citation Code
Deng, Yongbo; Korvink, Jan G
2016-05-01
This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable.
One-Dimensional Finite Elements An Introduction to the FE Method
Öchsner, Andreas
2013-01-01
This textbook presents finite element methods using exclusively one-dimensional elements. The aim is to present the complex methodology in an easily understandable but mathematically correct fashion. The approach of one-dimensional elements enables the reader to focus on the understanding of the principles of basic and advanced mechanical problems. The reader easily understands the assumptions and limitations of mechanical modeling as well as the underlying physics without struggling with complex mathematics. But although the description is easy it remains scientifically correct. The approach using only one-dimensional elements covers not only standard problems but allows also for advanced topics like plasticity or the mechanics of composite materials. Many examples illustrate the concepts and problems at the end of every chapter help to familiarize with the topics.
Wang, Q; Yang, Y; Fei, Q; Li, D; Li, J J; Meng, H; Su, N; Fan, Z H; Wang, B Q
2017-06-06
Objective: To build a three-dimensional finite element models of a modified posterior cervical single open-door laminoplasty with short-segmental lateral mass screws fusion. Methods: The C(2)-C(7) segmental data were obtained from computed tomography (CT) scans of a male patient with cervical spondylotic myelopathy and spinal stenosis.Three-dimensional finite element models of a modified cervical single open-door laminoplasty (before and after surgery) were constructed by the combination of software package MIMICS, Geomagic and ABAQUS.The models were composed of bony vertebrae, articulating facets, intervertebral disc and associated ligaments.The loads of moments 1.5Nm at different directions (flexion, extension, lateral bending and axial rotation)were applied at preoperative model to calculate intersegmental ranges of motion.The results were compared with the previous studies to verify the validation of the models. Results: Three-dimensional finite element models of the modified cervical single open- door laminoplasty had 102258 elements (preoperative model) and 161 892 elements (postoperative model) respectively, including C(2-7) six bony vertebraes, C(2-3)-C(6-7) five intervertebral disc, main ligaments and lateral mass screws.The intersegmental responses at the preoperative model under the loads of moments 1.5 Nm at different directions were similar to the previous published data. Conclusion: Three-dimensional finite element models of the modified cervical single open- door laminoplasty were successfully established and had a good biological fidelity, which can be used for further study.
International Nuclear Information System (INIS)
Ishiguro, Misako; Higuchi, Kenji
1983-01-01
The finite element method is applied in Galerkin-type approximation to three-dimensional neutron diffusion equations of fast reactors. A hexagonal element scheme is adopted for treating the hexagonal lattice which is typical for fast reactors. The validity of the scheme is verified by applying the scheme as well as alternative schemes to the neutron diffusion calculation of a gas-cooled fast reactor of actual scale. The computed results are compared with corresponding values obtained using the currently applied triangular-element and also with conventional finite difference schemes. The hexagonal finite element scheme is found to yield a reasonable solution to the problem taken up here, with some merit in terms of saving in computing time, but the resulting multiplication factor differs by 1% and the flux by 9% compared with the triangular mesh finite difference scheme. The finite element method, even in triangular element scheme, would appear to incur error in inadmissible amount and which could not be easily eliminated by refining the nodes. (author)
Finite element analysis of three dimensional crack growth by the use of a boundary element sub model
DEFF Research Database (Denmark)
Lucht, Tore
2009-01-01
A new automated method to model non-planar three dimensional crack growth is proposed which combines the advantages of both the boundary element method and the finite element method. The proposed method links the two methods by a submodelling strategy in which the solution of a global finite...... element model containing an approximation of the crack is interpolated to a much smaller boundary element model containing a fine discretization of the real crack. The method is validated through several numerical comparisons and by comparison to crack growth measured in a test specimen for an engineering...
Calculation of two-dimensional thermal transients by the finite element method
International Nuclear Information System (INIS)
Fontoura Rodrigues, J.L.A. da; Barcellos, C.S. de
1981-01-01
The linear heat conduction through anisotropic and/or heterogeneous matter, in either two-dimensional fields with any kind of geometry or three-dimensional fields with axial symmetry is analysed. It only accepts time-independent boundary conditions and it is possible to have internal heat generation. The solution is obtained by modal analysis employing the finite element method under Galerkin formulation. (Author) [pt
Three-dimensional linear fracture mechanics analysis by a displacement-hybrid finite-element model
International Nuclear Information System (INIS)
Atluri, S.N.; Kathiresan, K.; Kobayashi, A.S.
1975-01-01
This paper deals with a finite-element procedures for the calculation of modes I, II and III stress intensity factors, which vary, along an arbitrarily curved three-dimensional crack front in a structural component. The finite-element model is based on a modified variational principle of potential energy with relaxed continuity requirements for displacements at the inter-element boundary. The variational principle is a three-field principle, with the arbitrary interior displacements for the element, interelement boundary displacements, and element boundary tractions as variables. The unknowns in the final algebraic system of equations, in the present displacement hybrid finite element model, are the nodal displacements and the three elastic stress intensity factors. Special elements, which contain proper square root and inverse square root crack front variations in displacements and stresses, respectively, are used in a fixed region near the crack front. Interelement displacement compatibility is satisfied by assuming an independent interelement boundary displacement field, and using a Lagrange multiplier technique to enforce such interelement compatibility. These Lagrangean multipliers, which are physically the boundary tractions, are assumed from an equilibrated stress field derived from three-dimensional Beltrami (or Maxwell-Morera) stress functions that are complete. However, considerable care should be exercised in the use of these stress functions such that the stresses produced by any of these stress function components are not linearly dependent
Application of finite-element method to three-dimensional nuclear reactor analysis
International Nuclear Information System (INIS)
Cheung, K.Y.
1985-01-01
The application of the finite element method to solve a realistic one-or-two energy group, multiregion, three-dimensional static neutron diffusion problem is studied. Linear, quadratic, and cubic serendipity box-shape elements are used. The resulting sets of simultaneous algebraic equations with thousands of unknowns are solved by the conjugate gradient method, without forming the large coefficient matrix explicitly. This avoids the complicated data management schemes to store such a large coefficient matrix. Three finite-element computer programs: FEM-LINEAR, FEM-QUADRATIC and FEM-CUBIC were developed, using the linear, quadratic, and cubic box-shape elements respectively. They are self-contained, using simple nodal labeling schemes, without the need for separate finite element mesh generating routines. The efficiency and accuracy of these computer programs are then compared among themselves, and with other computer codes. The cubic element model is not recommended for practical usage because it gives almost identical results as the quadratic model, but it requires considerably longer computation time. The linear model is less accurate than the quadratic model, but it requires much shorter computation time. For a large 3-D problem, the linear model is to be preferred since it gives acceptable accuracy. The quadratic model may be used if improved accuracy is desired
Three-dimensional finite element impact analysis of a nuclear waste truck cask
International Nuclear Information System (INIS)
Miller, J.D.
1985-01-01
This paper presents a three-dimensional finite element impact analysis of a hypothetical accident event for the preliminary design of a shipping cask which is used to transport radioactive waste by standard tractor-semitrailer truck. The nonlinear dynamic structural analysis code DYNA3D run on Sandia's Cray-1 computer was used to calculate the effects of the cask's closure-end impacting a rigid frictionless surface on an edge of its external impact limiter after a 30-foot fall. The center of gravity of the cask (made of 304 stainless steel and depleted uranium) was assumed to be directly above the impact point. An elastic-plastic material constitutive model was used to calculate the nonlinear response of the cask components to the transient loading. Interactive color graphics (PATRAN and MOVIE BYU) were used throughout the analysis, proving to be extremely helpful for generation and verification of the geometry and boundary conditions of the finite element model and for interpretation of the analysis results. Results from the calculations show the cask sustained large localized deformations. However, these were almost entirely confined to the impact limiters built into the cask. The closure sections were determined to remain intact, and leakage would not be expected after the event. As an example of a large three-dimensional finite element dynamic impact calculation, this analysis can serve as an excellent benchmark for computer aided design procedures
Three-dimensional finite element analysis of implant-assisted removable partial dentures.
Eom, Ju-Won; Lim, Young-Jun; Kim, Myung-Joo; Kwon, Ho-Beom
2017-06-01
Whether the implant abutment in implant-assisted removable partial dentures (IARPDs) functions as a natural removable partial denture (RPD) tooth abutment is unknown. The purpose of this 3-dimensional finite element study was to analyze the biomechanical behavior of implant crown, bone, RPD, and IARPD. Finite element models of the partial maxilla, teeth, and prostheses were generated on the basis of a patient's computed tomographic data. The teeth, surveyed crowns, and RPDs were created in the model. With the generated components, four 3-dimensional finite element models of the partial maxilla were constructed: tooth-supported RPD (TB), implant-supported RPD (IB), tooth-tissue-supported RPD (TT), and implant-tissue-supported RPD (IT) models. Oblique loading of 300 N was applied on the crowns and denture teeth. The von Mises stress and displacement of the denture abutment tooth and implant system were identified. The highest von Mises stress values of both IARPDs occurred on the implants, while those of both natural tooth RPDs occurred on the frameworks of the RPDs. The highest von Mises stress of model IT was about twice that of model IB, while the value of model TT was similar to that of model TB. The maximum displacement was greater in models TB and TT than in models IB and IT. Among the 4 models, the highest maximum displacement value was observed in the model TT and the lowest value was in the model IB. Finite element analysis revealed that the stress distribution pattern of the IARPDs was different from that of the natural tooth RPDs and the stress distribution of implant-supported RPD was different from that of implant-tissue-supported RPD. When implants are used for RPD abutments, more consideration concerning the RPD design and the number or location of the implant is necessary. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Finite element computational fluid mechanics
International Nuclear Information System (INIS)
Baker, A.J.
1983-01-01
This book analyzes finite element theory as applied to computational fluid mechanics. It includes a chapter on using the heat conduction equation to expose the essence of finite element theory, including higher-order accuracy and convergence in a common knowledge framework. Another chapter generalizes the algorithm to extend application to the nonlinearity of the Navier-Stokes equations. Other chapters are concerned with the analysis of a specific fluids mechanics problem class, including theory and applications. Some of the topics covered include finite element theory for linear mechanics; potential flow; weighted residuals/galerkin finite element theory; inviscid and convection dominated flows; boundary layers; parabolic three-dimensional flows; and viscous and rotational flows
Simulation of three-dimensional, time-dependent, incompressible flows by a finite element method
International Nuclear Information System (INIS)
Chan, S.T.; Gresho, P.M.; Lee, R.L.; Upson, C.D.
1981-01-01
A finite element model has been developed for simulating the dynamics of problems encountered in atmospheric pollution and safety assessment studies. The model is based on solving the set of three-dimensional, time-dependent, conservation equations governing incompressible flows. Spatial discretization is performed via a modified Galerkin finite element method, and time integration is carried out via the forward Euler method (pressure is computed implicitly, however). Several cost-effective techniques (including subcycling, mass lumping, and reduced Gauss-Legendre quadrature) which have been implemented are discussed. Numerical results are presented to demonstrate the applicability of the model
A finite element method for calculating the 3-dimensional magnetic fields of cyclotron
International Nuclear Information System (INIS)
Zhao Xiaofeng
1986-01-01
A series of formula of the finite element method (scalar potential) for calculating the three-dimensional magnetic field of the main magnet of a sector focused cyclotron, and the realization method of the periodic boundary conditions in the code are given
Element-topology-independent preconditioners for parallel finite element computations
Park, K. C.; Alexander, Scott
1992-01-01
A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.
International Nuclear Information System (INIS)
Czarnecki, J.B.; Faunt, C.C.; Gable, C.W.; Zyvoloski, G.A.
1996-01-01
Development of a preliminary three-dimensional model of the saturated zone at Yucca Mountain, the potential location for a high-level nuclear waste repository, is presented. The development of the model advances the technology of interfacing: (1)complex three-dimensional hydrogeologic framework modeling; (2) fully three-dimensional, unstructured, finite-element mesh generation; and (3) groundwater flow, heat, and transport simulation. The three-dimensional hydrogeologic framework model is developed using maps, cross sections, and well data. The framework model data are used to feed an automated mesh generator, designed to discretize irregular three-dimensional solids,a nd to assign materials properties from the hydrogeologic framework model to the tetrahedral elements. The mesh generator facilitated the addition of nodes to the finite-element mesh which correspond to the exact three-dimensional position of the potentiometric surface based on water-levels from wells. A ground water flow and heat simulator is run with the resulting finite- element mesh, within a parameter-estimation program. The application of the parameter-estimation program is designed to provide optimal values of permeability and specified fluxes over the model domain to minimize the residual between observed and simulated water levels
Calculation of two-dimensional thermal transients by the method of finite elements
International Nuclear Information System (INIS)
Fontoura Rodrigues, J.L.A. da.
1980-08-01
The unsteady linear heat conduction analysis throught anisotropic and/or heterogeneous matter, in either two-dimensional fields with any kind of geometry or three-dimensional fields with axial symmetry is presented. The boundary conditions and the internal heat generation are supposed time - independent. The solution is obtained by modal analysis employing the finite element method under Galerkin formulation. Optionally, it can be used with a reduced resolution method called Stoker Economizing Method wich allows a decrease on the program processing costs. (Author) [pt
Electrical machine analysis using finite elements
Bianchi, Nicola
2005-01-01
OUTLINE OF ELECTROMAGNETIC FIELDSVector AnalysisElectromagnetic FieldsFundamental Equations SummaryReferencesBASIC PRINCIPLES OF FINITE ELEMENT METHODSIntroductionField Problems with Boundary ConditionsClassical Method for the Field Problem SolutionThe Classical Residual Method (Galerkin's Method)The Classical Variational Method (Rayleigh-Ritz's Method)The Finite Element MethodReferencesAPPLICATIONS OF THE FINITE ELEMENT METHOD TO TWO-DIMENSIONAL FIELDSIntroductionLinear Interpolation of the Function fApplication of the Variational MethodSimple Descriptions of Electromagnetic FieldsAppendix: I
Simple one-dimensional finite element algorithm with multi-dimensional capabilities
International Nuclear Information System (INIS)
Pepper, D.W.; Baker, A.J.
1978-01-01
The application of the finite element procedure for the solution of partial differential equations is gaining widespread acceptance. The ability of the finite element procedure to solve problems which are arbitrarily shaped as well as the alleviation of boundary condition problems is well known. By using local interpolation functionals over each subdomain, or element, a set of linearized algebraic equations are obtained which can be solved using any direct, iterative, or inverse numerical technique. Subsequent use of an explicit or implicit integration procedure permits closure of the solution over the global domain
Finite element method for one-dimensional rill erosion simulation on a curved slope
Directory of Open Access Journals (Sweden)
Lijuan Yan
2015-03-01
Full Text Available Rill erosion models are important to hillslope soil erosion prediction and to land use planning. The development of rill erosion models and their use has become increasingly of great concern. The purpose of this research was to develop mathematic models with computer simulation procedures to simulate and predict rill erosion. The finite element method is known as an efficient tool in many other applications than in rill soil erosion. In this study, the hydrodynamic and sediment continuity model equations for a rill erosion system were solved by the Galerkin finite element method and Visual C++ procedures. The simulated results are compared with the data for spatially and temporally measured processes for rill erosion under different conditions. The results indicate that the one-dimensional linear finite element method produced excellent predictions of rill erosion processes. Therefore, this study supplies a tool for further development of a dynamic soil erosion prediction model.
Finite-Element Software for Conceptual Design
DEFF Research Database (Denmark)
Lindemann, J.; Sandberg, G.; Damkilde, Lars
2010-01-01
and research. Forcepad is an effort to provide a conceptual design and teaching tool in a finite-element software package. Forcepad is a two-dimensional finite-element application based on the same conceptual model as image editing applications such as Adobe Photoshop or Microsoft Paint. Instead of using...
Development of three-dimensional transport code by the double finite element method
International Nuclear Information System (INIS)
Fujimura, Toichiro
1985-01-01
Development of a three-dimensional neutron transport code by the double finite element method is described. Both of the Galerkin and variational methods are adopted to solve the problem, and then the characteristics of them are compared. Computational results of the collocation method, developed as a technique for the vaviational one, are illustrated in comparison with those of an Ssub(n) code. (author)
Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures
Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.
2012-01-01
A research program has been developed to quantify the effects of the microstructure of a woven ceramic matrix composite and its variability on the effective properties and response of the material. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, chemical vapor infiltrated (CVI) SiC/SiC composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents, from which two dimensional finite element models were generated which approximated the actual specimen section geometry. A simplified elastic-plastic model, wherein all stress above yield is redistributed to lower stress regions, is used to approximate the progressive damage behavior for each of the composite constituents. Finite element analyses under in-plane tensile loading were performed to examine how the variability in the local microstructure affected the macroscopic stress-strain response of the material as well as the local initiation and progression of damage. The macroscopic stress-strain response appeared to be minimally affected by the variation in local microstructure, but the locations where damage initiated and propagated appeared to be linked to specific aspects of the local microstructure.
FEAST: a two-dimensional non-linear finite element code for calculating stresses
International Nuclear Information System (INIS)
Tayal, M.
1986-06-01
The computer code FEAST calculates stresses, strains, and displacements. The code is two-dimensional. That is, either plane or axisymmetric calculations can be done. The code models elastic, plastic, creep, and thermal strains and stresses. Cracking can also be simulated. The finite element method is used to solve equations describing the following fundamental laws of mechanics: equilibrium; compatibility; constitutive relations; yield criterion; and flow rule. FEAST combines several unique features that permit large time-steps in even severely non-linear situations. The features include a special formulation for permitting many finite elements to simultaneously cross the boundary from elastic to plastic behaviour; accomodation of large drops in yield-strength due to changes in local temperature and a three-step predictor-corrector method for plastic analyses. These features reduce computing costs. Comparisons against twenty analytical solutions and against experimental measurements show that predictions of FEAST are generally accurate to ± 5%
Two-dimensional finite element neutron diffusion analysis using hierarchic shape functions
International Nuclear Information System (INIS)
Carpenter, D.C.
1997-01-01
Recent advances have been made in the use of p-type finite element method (FEM) for structural and fluid dynamics problems that hold promise for reactor physics problems. These advances include using hierarchic shape functions, element-by-element iterative solvers and more powerful mapping techniques. Use of the hierarchic shape functions allows greater flexibility and efficiency in implementing energy-dependent flux expansions and incorporating localized refinement of the solution space. The irregular matrices generated by the p-type FEM can be solved efficiently using element-by-element conjugate gradient iterative solvers. These solvers do not require storage of either the global or local stiffness matrices and can be highly vectorized. Mapping techniques based on blending function interpolation allow exact representation of curved boundaries using coarse element grids. These features were implemented in a developmental two-dimensional neutron diffusion program based on the use of hierarchic shape functions (FEM2DH). Several aspects in the effective use of p-type analysis were explored. Two choices of elemental preconditioning were examined--the proper selection of the polynomial shape functions and the proper number of functions to use. Of the five shape function polynomials tested, the integral Legendre functions were the most effective. The serendipity set of functions is preferable over the full tensor product set. Two global preconditioners were also examined--simple diagonal and incomplete Cholesky. The full effectiveness of the finite element methodology was demonstrated on a two-region, two-group cylindrical problem but solved in the x-y coordinate space, using a non-structured element grid. The exact, analytic eigenvalue solution was achieved with FEM2DH using various combinations of element grids and flux expansions
Two-dimensional finite element heat transfer model of softwood. Part II, Macrostructural effects
Hongmei Gu; John F. Hunt
2006-01-01
A two-dimensional finite element model was used to study the effects of structural features on transient heat transfer in softwood lumber with various orientations. Transient core temperature was modeled for lumber samples âcutâ from various locations within a simulated log. The effects of ring orientation, earlywood to latewood (E/L) ratio, and ring density were...
Linear finite element method for one-dimensional diffusion problems
Energy Technology Data Exchange (ETDEWEB)
Brandao, Michele A.; Dominguez, Dany S.; Iglesias, Susana M., E-mail: micheleabrandao@gmail.com, E-mail: dany@labbi.uesc.br, E-mail: smiglesias@uesc.br [Universidade Estadual de Santa Cruz (LCC/DCET/UESC), Ilheus, BA (Brazil). Departamento de Ciencias Exatas e Tecnologicas. Laboratorio de Computacao Cientifica
2011-07-01
We describe in this paper the fundamentals of Linear Finite Element Method (LFEM) applied to one-speed diffusion problems in slab geometry. We present the mathematical formulation to solve eigenvalue and fixed source problems. First, we discretized a calculus domain using a finite set of elements. At this point, we obtain the spatial balance equations for zero order and first order spatial moments inside each element. Then, we introduce the linear auxiliary equations to approximate neutron flux and current inside the element and architect a numerical scheme to obtain the solution. We offer numerical results for fixed source typical model problems to illustrate the method's accuracy for coarse-mesh calculations in homogeneous and heterogeneous domains. Also, we compare the accuracy and computational performance of LFEM formulation with conventional Finite Difference Method (FDM). (author)
A set of pathological tests to validate new finite elements
Indian Academy of Sciences (India)
M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22
The finite element method entails several approximations. Hence it ... researchers have designed several pathological tests to validate any new finite element. The .... Three dimensional thick shell elements using a hybrid/mixed formu- lation.
International Nuclear Information System (INIS)
Muto, K.; Motosaka, M.; Kamata, M.; Masuda, K.; Urao, K.; Mameda, T.
1985-01-01
In order to investigate the 3-dimensional earthquake response characteristics of an embedded structure with consideration for soil-structure interaction, the authors have developed an analytical method using 3-dimensional hybrid model of boundary elements (BEM) and finite elements (FEM) and have conducted a dynamic analysis of an actual nuclear reactor building. This paper describes a comparative study between two different embedment depths in soil as elastic half-space. As the results, it was found that the earthquake response intensity decreases with the increase of the embedment depth and that this method was confirmed to be effective for investigating the 3-D response characteristics of embedded structures such as deflection pattern of each floor level, floor response spectra in high frequency range. (orig.)
International Nuclear Information System (INIS)
Franke, H.P.
1976-05-01
The finite element method is applied to the solution of the stationary 3D group diffusion equations. For this, a programme system with the name of FEM3D is established which also includes a module for semi-automatic mesh generation. Tetrahedral finite elements are used. The neutron fluxes are described by complete first- or second-order Lagrangian polynomials. General homogeneous boundary conditions are allowed. The studies show that realistic three-dimensional problems can be solved at less expense by iterative methods, in particular so when especially adapted matrix handling and storage schemes are used efficiently. (orig./RW) [de
A Note on Symplectic, Multisymplectic Scheme in Finite Element Method
Institute of Scientific and Technical Information of China (English)
GUO Han-Ying; JI Xiao-Mei; LI Yu-Qi; WU Ke
2001-01-01
We find that with uniform mesh, the numerical schemes derived from finite element method can keep a preserved symplectic structure in one-dimensional case and a preserved multisymplectic structure in two-dimensional case respectively. These results are in fact the intrinsic reason why the numerical experiments show that such finite element algorithms are accurate in practice.``
The finite element method its basis and fundamentals
Zienkiewicz, Olek C; Zhu, JZ
2013-01-01
The Finite Element Method: Its Basis and Fundamentals offers a complete introduction to the basis of the finite element method, covering fundamental theory and worked examples in the detail required for readers to apply the knowledge to their own engineering problems and understand more advanced applications. This edition sees a significant rearrangement of the book's content to enable clearer development of the finite element method, with major new chapters and sections added to cover: Weak forms Variational forms Multi-dimensional field prob
On higher order pyramidal finite elements
Czech Academy of Sciences Publication Activity Database
Liu, L.; Davies, K.B.; Křížek, Michal; Guan, L.
2011-01-01
Roč. 3, č. 2 (2011), s. 131-140 ISSN 2070-0733 R&D Projects: GA AV ČR(CZ) IAA100190803 Institutional research plan: CEZ:AV0Z10190503 Keywords : pyramidal polynomial basis functions * finite element method * composite elements * three-dimensional mortar elements Subject RIV: BA - General Mathematics Impact factor: 0.750, year: 2011
Efficient Finite Element Models for Calculation of the No-load losses of the Transformer
Directory of Open Access Journals (Sweden)
Kamran Dawood
2017-10-01
Full Text Available Different transformer models are examined for the calculation of the no-load losses using finite element analysis. Two-dimensional and three-dimensional finite element analyses are used for the simulation of the transformer. Results of the finite element method are also compared with the experimental results. The Result shows that 3-dimensional provide high accuracy as compared to the 2 dimensional full and half model. However, the 2-dimensional half model is the less time-consuming method as compared to the 3 and 2-dimensional full model. Simulation time duration taken by the different models of the transformer is also compared. The difference between the 3-dimensional finite element method and experimental results are less than 3%. These numerical methods can help transformer designers to minimize the development of the prototype transformers.
A three-dimensional finite element model for biomechanical analysis of the hip.
Chen, Guang-Xing; Yang, Liu; Li, Kai; He, Rui; Yang, Bin; Zhan, Yan; Wang, Zhi-Jun; Yu, Bing-Nin; Jian, Zhe
2013-11-01
The objective of this study was to construct a three-dimensional (3D) finite element model of the hip. The images of the hip were obtained from Chinese visible human dataset. The hip model includes acetabular bone, cartilage, labrum, and bone. The cartilage of femoral head was constructed using the AutoCAD and Solidworks software. The hip model was imported into ABAQUS analysis system. The contact surface of the hip joint was meshed. To verify the model, the single leg peak force was loaded, and contact area of the cartilage and labrum of the hip and pressure distribution in these structures were observed. The constructed 3D hip model reflected the real hip anatomy. Further, this model reflected biomechanical behavior similar to previous studies. In conclusion, this 3D finite element hip model avoids the disadvantages of other construction methods, such as imprecision of cartilage construction and the absence of labrum. Further, it provides basic data critical for accurately modeling normal and abnormal loads, and the effects of abnormal loads on the hip.
hree-Dimensional Finite Element Simulation of the Buried Pipe Problem in Geogrid Reinforced Soil
Directory of Open Access Journals (Sweden)
Mohammed Yousif Fattah
2016-05-01
Full Text Available Buried pipeline systems are commonly used to transport water, sewage, natural oil/gas and other materials. The beneficial of using geogrid reinforcement is to increase the bearing capacity of the soil and decrease the load transfer to the underground structures. This paper deals with simulation of the buried pipe problem numerically by finite elements method using the newest version of PLAXIS-3D software. Rajkumar and Ilamaruthi's study, 2008 has been selected to be reanalyzed as 3D problem because it is containing all the properties needed by the program such as the modulus of elasticity, Poisson's ratio, angle of internal friction. It was found that the results of vertical crown deflection for the model without geogrid obtained from PLAXIS-3D are higher than those obtained by two-dimensional plane strain by about 21.4% while this percent becomes 12.1 for the model with geogrid, but in general, both have the same trend. The two dimensional finite elements analysis predictions of pipe-soil system behavior indicate an almost linear displacement of pipe deflection with applied pressure while 3-D analysis exhibited non-linear behavior especially at higher loads.
Finite-element analysis of dynamic fracture
Aberson, J. A.; Anderson, J. M.; King, W. W.
1976-01-01
Applications of the finite element method to the two dimensional elastodynamics of cracked structures are presented. Stress intensity factors are computed for two problems involving stationary cracks. The first serves as a vehicle for discussing lumped-mass and consistent-mass characterizations of inertia. In the second problem, the behavior of a photoelastic dynamic tear test specimen is determined for the time prior to crack propagation. Some results of a finite element simulation of rapid crack propagation in an infinite body are discussed.
Fourier analysis of finite element preconditioned collocation schemes
Deville, Michel O.; Mund, Ernest H.
1990-01-01
The spectrum of the iteration operator of some finite element preconditioned Fourier collocation schemes is investigated. The first part of the paper analyses one-dimensional elliptic and hyperbolic model problems and the advection-diffusion equation. Analytical expressions of the eigenvalues are obtained with use of symbolic computation. The second part of the paper considers the set of one-dimensional differential equations resulting from Fourier analysis (in the tranverse direction) of the 2-D Stokes problem. All results agree with previous conclusions on the numerical efficiency of finite element preconditioning schemes.
International Nuclear Information System (INIS)
Fujimura, Toichiro
1996-01-01
A three-dimensional neutron transport code DFEM has been developed by the double finite element method to analyze reactor cores with complex geometry as large fast reactors. Solution algorithm is based on the double finite element method in which the space and angle finite elements are employed. A reactor core system can be divided into some triangular and/or quadrangular prism elements, and the spatial distribution of neutron flux in each element is approximated with linear basis functions. As for the angular variables, various basis functions are applied, and their characteristics were clarified by comparison. In order to enhance the accuracy, a general method is derived to remedy the truncation errors at reflective boundaries, which are inherent in the conventional FEM. An adaptive acceleration method and the source extrapolation method were applied to accelerate the convergence of the iterations. The code structure is outlined and explanations are given on how to prepare input data. A sample input list is shown for reference. The eigenvalue and flux distribution for real scale fast reactors and the NEA benchmark problems were presented and discussed in comparison with the results of other transport codes. (author)
ZONE: a finite element mesh generator
International Nuclear Information System (INIS)
Burger, M.J.
1976-05-01
The ZONE computer program is a finite-element mesh generator which produces the nodes and element description of any two-dimensional geometry. The geometry is subdivided into a mesh of quadrilateral and triangular zones arranged sequentially in an ordered march through the geometry. The order of march can be chosen so that the minimum bandwidth is obtained. The node points are defined in terms of the x and y coordinates in a global rectangular coordinate system. The zones generated are quadrilaterals or triangles defined by four node points in a counterclockwise sequence. Node points defining the outside boundary are generated to describe pressure boundary conditions. The mesh that is generated can be used as input to any two-dimensional as well as any axisymmetrical structure program. The output from ZONE is essentially the input file to NAOS, HONDO, and other axisymmetric finite element programs. 14 figures
Finite elements methods in mechanics
Eslami, M Reza
2014-01-01
This book covers all basic areas of mechanical engineering, such as fluid mechanics, heat conduction, beams, and elasticity with detailed derivations for the mass, stiffness, and force matrices. It is especially designed to give physical feeling to the reader for finite element approximation by the introduction of finite elements to the elevation of elastic membrane. A detailed treatment of computer methods with numerical examples are provided. In the fluid mechanics chapter, the conventional and vorticity transport formulations for viscous incompressible fluid flow with discussion on the method of solution are presented. The variational and Galerkin formulations of the heat conduction, beams, and elasticity problems are also discussed in detail. Three computer codes are provided to solve the elastic membrane problem. One of them solves the Poisson’s equation. The second computer program handles the two dimensional elasticity problems, and the third one presents the three dimensional transient heat conducti...
Three-dimensional finite element modelling of the uniaxial tension test
DEFF Research Database (Denmark)
Østergaard, Lennart; Stang, Henrik
2002-01-01
. One of the most direct methods for determination of the σ-w relationship is the uniaxial tension test, where a notched specimen is pulled apart while the tensile load and the crack opening displacement is observed. This method is appealing since the interpretation is straightforward. The method......Experimental determination of the stress-crack opening relationship (σ-w) for concrete as defined in the fictitious crack model has proven to be difficult. This is due to the problems that may arise from application of the inverse analysis method necessary for the derivation of the relationship...... is examined in this paper through three dimensional finite element analyses. It is concluded that the interpretation of the uniaxial tension test is indeed straightforward, if the testing machine stiffness is sufficiently high....
Energy Technology Data Exchange (ETDEWEB)
Stone, C.M.
1997-07-01
SANTOS is a finite element program designed to compute the quasistatic, large deformation, inelastic response of two-dimensional planar or axisymmetric solids. The code is derived from the transient dynamic code PRONTO 2D. The solution strategy used to compute the equilibrium states is based on a self-adaptive dynamic relaxation solution scheme, which is based on explicit central difference pseudo-time integration and artificial mass proportional damping. The element used in SANTOS is a uniform strain 4-node quadrilateral element with an hourglass control scheme to control the spurious deformation modes. Finite strain constitutive models for many common engineering materials are included. A robust master-slave contact algorithm for modeling sliding contact is implemented. An interface for coupling to an external code is also provided. 43 refs., 22 figs.
Three-dimensional analysis of eddy current with the finite element method
International Nuclear Information System (INIS)
Takano, Ichiro; Suzuki, Yasuo
1977-05-01
The finite element method is applied to three-dimensional analysis of eddy current induced in a large Tokamak device (JT-60). Two techniques to study the eddy current are presented: those of ordinary vector potential and modified vector potential. The latter is originally developed for decreasing dimension of the global matrix. Theoretical treatment of these two is given. The skin effect for alternate current flowing in the circular loop of rectangular cross section is examined as an example of the modified vector potential technique, and the result is compared with analytical one. This technique is useful in analysis of the eddy current problem. (auth.)
Czech Academy of Sciences Publication Activity Database
Král, Radomil; Náprstek, Jiří
2017-01-01
Roč. 113, November (2017), s. 54-75 ISSN 0965-9978 R&D Projects: GA ČR(CZ) GP14-34467P; GA ČR(CZ) GA15-01035S Institutional support: RVO:68378297 Keywords : Fokker-Planck equation * finite element method * simplex element * multi-dimensional problem * non-symmetric operator Subject RIV: JM - Building Engineering OBOR OECD: Mechanical engineering Impact factor: 3.000, year: 2016 https://www.sciencedirect.com/science/ article /pii/S0965997817301904
Finite element formulation for a digital image correlation method
International Nuclear Information System (INIS)
Sun Yaofeng; Pang, John H. L.; Wong, Chee Khuen; Su Fei
2005-01-01
A finite element formulation for a digital image correlation method is presented that will determine directly the complete, two-dimensional displacement field during the image correlation process on digital images. The entire interested image area is discretized into finite elements that are involved in the common image correlation process by use of our algorithms. This image correlation method with finite element formulation has an advantage over subset-based image correlation methods because it satisfies the requirements of displacement continuity and derivative continuity among elements on images. Numerical studies and a real experiment are used to verify the proposed formulation. Results have shown that the image correlation with the finite element formulation is computationally efficient, accurate, and robust
International Nuclear Information System (INIS)
Ahmed, H.; Ma, D.
1979-01-01
A simplified three dimensional finite element model of a pool type LMFBR in conjunction with the computer program ANSYS is developed and scoping results of seismic analysis are produced. Through this study various structural attachments of a pool type LMFBR like the reactor vessel skirt support, the pump support and reactor shell-support structure interfaces are studied. This study also provides some useful results on equivalent viscous damping approach and some improvements to the treatment of equivalent viscous damping are recommended. This study also sets forth pertinent guidelines for detailed three dimensional finite element seismic analysis of pool type LMFBR
A non conforming finite element method for computing eigenmodes of resonant cavities
International Nuclear Information System (INIS)
Touze, F.; Le Meur, G.
1990-06-01
We present here a non conforming finite element in R 3 . This finite element, built on tetrahedrons, is particularly suited for computing eigenmodes. The main advantage of this element is that it preserves some structural properties of the space in which the solutions of the Maxwell's equations are to be found. Numerical results are presented for both two-dimensional and three-dimensional cases
FINITE ELEMENT ANALYSIS OF ELEMENT ANALYSIS OF A FREE ...
African Journals Online (AJOL)
eobe
the stairs and to compare the finite element ana ... tual three dimensional behavior of the stair slab system. ..... due to its close relation of output with the propo .... flights. It is best not to consider any open well when .... thermodynamics of solids.
A finite element primer for beginners the basics
Zohdi, Tarek I
2014-01-01
The purpose of this primer is to provide the basics of the Finite Element Method, primarily illustrated through a classical model problem, linearized elasticity. The topics covered are:(1) Weighted residual methods and Galerkin approximations,(2) A model problem for one-dimensional?linear elastostatics,(3) Weak formulations in one dimension,(4) Minimum principles in one dimension,(5) Error estimation in one dimension,(5) Construction of Finite Element basis functions in one dimension,(6) Gaussian Quadrature,(7) Iterative solvers and element by element data structures,(8) A model problem for th
International Nuclear Information System (INIS)
Tao Ganqiang; Yu Qing; Xiao Xiao
2011-01-01
Viscous and incompressible fluid flow is important for numerous engineering mechanics problems. Because of high non linear and incompressibility for Navier-Stokes equation, it is very difficult to solve Navier-Stokes equation by numerical method. According to its characters of Navier-Stokes equation, quartic derivation controlling equation of the two dimensional incompressible Navier-Stokes equation is set up firstly. The method solves the problem for dealing with vorticity boundary and automatically meets incompressibility condition. Then Finite Element equation for Navier-Stokes equation is proposed by using quadratic quadrilateral unit with 8 nodes in which the unit function is quadratic and non linear.-Based on it, the Finite Element program of quadratic quadrilateral unit with 8 nodes is developed. Lastly, numerical experiment proves the accuracy and dependability of the method and also shows the method has good application prospect in computational fluid mechanics. (authors)
Energy Technology Data Exchange (ETDEWEB)
Weitzman, Morley
1992-07-15
A three-dimensional finite-element code was developed and used to simulate the flow of groundwater towards an excavation in a saturated porous medium, allowing for seepage faces. An iterative procedure was used to predict the movement of the water table and the seepage flux. The numerical solution agreed well with experimental results from a sandbox experiment. (auth)
International Nuclear Information System (INIS)
Kulak, R.F.; Belytschko, T.B.
1975-09-01
The formulation of a finite-element procedure for the implicit transient and static analysis of plate/shell type structures in three-dimensional space is described. The triangular plate/shell element can sustain both membrane and bending stresses. Both geometric and material nonlinearities can be treated, and an elastic-plastic material law has been incorporated. The formulation permits the element to undergo arbitrarily large rotations and translations; but, in its present form it is restricted to small strains. The discretized equations of motion are obtained by a stiffness method. An implicit integration algorithm based on trapezoidal integration formulas is used to integrate the discretized equations of motion in time. To ensure numerical stability, an iterative solution procedure with equilibrium checks is used
Directory of Open Access Journals (Sweden)
Jiang-Jun Zhou
2017-01-01
Full Text Available In this study, we developed and validated a refined three-dimensional finite element model of middle femoral comminuted fracture to compare the biomechanical stability after two kinds of plate fixation: a newly designed assembly locking compression plate (NALCP and a locking compression plate (LCP. CT data of a male volunteer was converted to middle femoral comminuted fracture finite element analysis model. The fracture was fixated by NALCP and LCP. Stress distributions were observed. Under slow walking load and torsion load, the stress distribution tendency of the two plates was roughly uniform. The anterolateral femur was the tension stress area, and the bone block shifted toward the anterolateral femur. Maximum stress was found on the lateral border of the number 5 countersink of the plate. Under a slow walking load, the NALCP maximum stress was 2.160e+03 MPa and the LCP was 8.561e+02 MPa. Under torsion load, the NALCP maximum stress was 2.260e+03 MPa and the LCP was 6.813e+02 MPa. Based on those results of finite element analysis, the NALCP can provide adequate mechanical stability for comminuted fractures, which would help fixate the bone block and promote bone healing.
Chen, Yung-Chuan; Tu, Yuan-Kun; Zhuang, Jun-Yan; Tsai, Yi-Jung; Yen, Cheng-Yo; Hsiao, Chih-Kun
2017-11-01
A three-dimensional dynamic elastoplastic finite element model was constructed and experimentally validated and was used to investigate the parameters which influence bone temperature during drilling, including the drill speed, feeding force, drill bit diameter, and bone density. Results showed the proposed three-dimensional dynamic elastoplastic finite element model can effectively simulate the temperature elevation during bone drilling. The bone temperature rise decreased with an increase in feeding force and drill speed, however, increased with the diameter of drill bit or bone density. The temperature distribution is significantly affected by the drilling duration; a lower drilling speed reduced the exposure duration, decreases the region of the thermally affected zone. The constructed model could be applied for analyzing the influence parameters during bone drilling to reduce the risk of thermal necrosis. It may provide important information for the design of drill bits and surgical drilling powers.
Lee, Chia-Fone; Chen, Peir-Rong; Lee, Wen-Jeng; Chen, Jyh-Horng; Liu, Tien-Chen
2006-05-01
To present a systematic and practical approach that uses high-resolution computed tomography to derive models of the middle ear for finite element analysis. This prospective study included 31 subjects with normal hearing and no previous otologic disorders. Temporal bone images obtained from 15 right ears and 16 left ears were used for evaluation and reconstruction. High-resolution computed tomography of temporal bone was performed using simultaneous acquisition of 16 sections with a collimated slice thickness of 0.625 mm. All images were transferred to an Amira visualization system for three-dimensional reconstruction. The created three-dimensional model was translated into two commercial modeling packages, Patran and ANSYS, for finite element analysis. The characteristic dimensions of the model were measured and compared with previously published histologic section data. This result confirms that the geometric model created by the proposed method is accurate except that the tympanic membrane is thicker than when measured by the histologic section method. No obvious difference in the geometrical dimension between right and left ossicles was found (P > .05). The three-dimensional model created by finite element method and predicted umbo and stapes displacements are close to the bounds of the experimental curves of Nishihara's, Huber's, Gan's, and Sun's data across the frequency range of 100 to 8000 Hz. The model includes a description of the geometry of the middle ear components and dynamic equations of vibration. The proposed method is quick, practical, low-cost, and, most importantly, noninvasive as compared with histologic section methods.
Multigrid Finite Element Method in Calculation of 3D Homogeneous and Composite Solids
Directory of Open Access Journals (Sweden)
A.D. Matveev
2016-12-01
Full Text Available In the present paper, a method of multigrid finite elements to calculate elastic three-dimensional homogeneous and composite solids under static loading has been suggested. The method has been developed based on the finite element method algorithms using homogeneous and composite three-dimensional multigrid finite elements (MFE. The procedures for construction of MFE of both rectangular parallelepiped and complex shapes have been shown. The advantages of MFE are that they take into account, following the rules of the microapproach, heterogeneous and microhomogeneous structures of the bodies, describe the three-dimensional stress-strain state (without any simplifying hypotheses in homogeneous and composite solids, as well as generate small dimensional discrete models and numerical solutions with a high accuracy.
The finite element response matrix method
International Nuclear Information System (INIS)
Nakata, H.; Martin, W.R.
1983-02-01
A new technique is developed with an alternative formulation of the response matrix method implemented with the finite element scheme. Two types of response matrices are generated from the Galerkin solution to the weak form of the diffusion equation subject to an arbitrary current and source. The piecewise polynomials are defined in two levels, the first for the local (assembly) calculations and the second for the global (core) response matrix calculations. This finite element response matrix technique was tested in two 2-dimensional test problems, 2D-IAEA benchmark problem and Biblis benchmark problem, with satisfatory results. The computational time, whereas the current code is not extensively optimized, is of the same order of the well estabilished coarse mesh codes. Furthermore, the application of the finite element technique in an alternative formulation of response matrix method permits the method to easily incorporate additional capabilities such as treatment of spatially dependent cross-sections, arbitrary geometrical configurations, and high heterogeneous assemblies. (Author) [pt
Multisymplectic Structure－Preserving in Simple Finite Element Method in High Dimensional Case
Institute of Scientific and Technical Information of China (English)
BAIYong-Qiang; LIUZhen; PEIMing; ZHENGZhu-Jun
2003-01-01
In this paper, we study a finite element scheme of some semi-linear elliptic boundary value problems in high-dhnensjonal space. With uniform mesh, we find that, the numerical scheme derived from finite element method can keep a preserved multisymplectic structure.
Three-dimensional modeling with finite element codes
Energy Technology Data Exchange (ETDEWEB)
Druce, R.L.
1986-01-17
This paper describes work done to model magnetostatic field problems in three dimensions. Finite element codes, available at LLNL, and pre- and post-processors were used in the solution of the mathematical model, the output from which agreed well with the experimentally obtained data. The geometry used in this work was a cylinder with ports in the periphery and no current sources in the space modeled. 6 refs., 8 figs.
International Nuclear Information System (INIS)
Yao, Kai; Shen, Kai; Wang, Zheng-Dao; Wang, Yue-Sheng
2014-01-01
In this study, 3D finite element analysis is presented by calculating the residual magnetic field signals of ferromagnets under the plastic deformation. The contour maps of tangential and normal RMF gradients are given, and the 3D effect is discussed. The results show that the tangential peak–peak amplitude and normal peak–vale amplitude are remarkably different in 2D and 3D simulations, but the tangential peak–peak width and normal peak–vale width are similar. Moreover, some key points are capable of capturing the plastic-zone shape, especially when the lift-off is small enough. The present study suggests an effective defect identification method with Metal magnetic memory (MMM) technique. - Highlights: • Three-dimensional (3D) finite element analysis is presented by calculating the residual magnetic field signals of ferromagnets under the plastic deformation. • The contour maps of gradients of the tangential and normal residual magnetic fields are given, and the 3D effect is discussed. • The present study suggests an effective defect identification method with metal magnetic memory technique
El-Zein, Abbas; Carter, John P.; Airey, David W.
2006-06-01
A three-dimensional finite-element model of contaminant migration in fissured clays or contaminated sand which includes multiple sources of non-equilibrium processes is proposed. The conceptual framework can accommodate a regular network of fissures in 1D, 2D or 3D and immobile solutions in the macro-pores of aggregated topsoils, as well as non-equilibrium sorption. A Galerkin weighted-residual statement for the three-dimensional form of the equations in the Laplace domain is formulated. Equations are discretized using linear and quadratic prism elements. The system of algebraic equations is solved in the Laplace domain and solution is inverted to the time domain numerically. The model is validated and its scope is illustrated through the analysis of three problems: a waste repository deeply buried in fissured clay, a storage tank leaking into sand and a sanitary landfill leaching into fissured clay over a sand aquifer.
A finite element conjugate gradient FFT method for scattering
Collins, Jeffery D.; Ross, Dan; Jin, J.-M.; Chatterjee, A.; Volakis, John L.
1991-01-01
Validated results are presented for the new 3D body of revolution finite element boundary integral code. A Fourier series expansion of the vector electric and mangnetic fields is employed to reduce the dimensionality of the system, and the exact boundary condition is employed to terminate the finite element mesh. The mesh termination boundary is chosen such that is leads to convolutional boundary operatores of low O(n) memory demand. Improvements of this code are discussed along with the proposed formulation for a full 3D implementation of the finite element boundary integral method in conjunction with a conjugate gradiant fast Fourier transformation (CGFFT) solution.
Two-dimensional isostatic meshes in the finite element method
Martínez Marín, Rubén; Samartín, Avelino
2002-01-01
In a Finite Element (FE) analysis of elastic solids several items are usually considered, namely, type and shape of the elements, number of nodes per element, node positions, FE mesh, total number of degrees of freedom (dot) among others. In this paper a method to improve a given FE mesh used for a particular analysis is described. For the improvement criterion different objective functions have been chosen (Total potential energy and Average quadratic error) and the number of nodes and dof's...
Finite element elastic-plastic analysis of LMFBR components
International Nuclear Information System (INIS)
Levy, A.; Pifko, A.; Armen, H. Jr.
1978-01-01
The present effort involves the development of computationally efficient finite element methods for accurately predicting the isothermal elastic-plastic three-dimensional response of thick and thin shell structures subjected to mechanical and thermal loads. This work will be used as the basis for further development of analytical tools to be used to verify the structural integrity of liquid metal fast breeder reactor (LMFBR) components. The methods presented here have been implemented into the three-dimensional solid element module (HEX) of the Grumman PLANS finite element program. These methods include the use of optimal stress points as well as a variable number of stress points within an element. This allows monitoring the stress history at many points within an element and hence provides an accurate representation of the elastic-plastic boundary using a minimum number of degrees of freedom. Also included is an improved thermal stress analysis capability in which the temperature variation and corresponding thermal strain variation are represented by the same functional form as the displacement variation. Various problems are used to demonstrate these improved capabilities. (Auth.)
Hano, Mitsuo; Hotta, Masashi
A new multigrid method based on high-order vector finite elements is proposed in this paper. Low level discretizations in this method are obtained by using low-order vector finite elements for the same mesh. Gauss-Seidel method is used as a smoother, and a linear equation of lowest level is solved by ICCG method. But it is often found that multigrid solutions do not converge into ICCG solutions. An elimination algolithm of constant term using a null space of the coefficient matrix is also described. In three dimensional magnetostatic field analysis, convergence time and number of iteration of this multigrid method are discussed with the convectional ICCG method.
Application of three dimensional finite element modeling for the simulation of machining processes
International Nuclear Information System (INIS)
Fischer, C.E.; Wu, W.T.; Chigurupati, P.; Jinn, J.T.
2004-01-01
For many years, metal cutting simulations have been performed using two dimensional approximations of the actual process. Factors such as chip morphology, cutting force, temperature, and tool wear can all be predicted on the computer. However, two dimensional simulation is limited to processes which are orthogonal, or which can be closely approximated as orthogonal.Advances in finite element technology, coupled with continuing improvement in the availability of low cost, high performance computer hardware, have made the three dimensional simulation of a large variety of metal cutting processes practical. Specific improvements include efficient FEM solvers, and robust adaptive remeshing. As researchers continue to gain an improved understanding of wear, material representation, tool coatings, fracture, and other such phenomena, the machining simulation system also must adapt to incorporate these evolving models.To demonstrate the capabilities of the 3D simulation system, a variety of drilling, milling, and turning processes have been simulated and will be presented in this paper. Issues related to computation time and simulation accuracy will also be addressed
Shen, Wei; Li, Dongsheng; Zhang, Shuaifang; Ou, Jinping
2017-07-01
This paper presents a hybrid method that combines the B-spline wavelet on the interval (BSWI) finite element method and spectral analysis based on fast Fourier transform (FFT) to study wave propagation in One-Dimensional (1D) structures. BSWI scaling functions are utilized to approximate the theoretical wave solution in the spatial domain and construct a high-accuracy dynamic stiffness matrix. Dynamic reduction on element level is applied to eliminate the interior degrees of freedom of BSWI elements and substantially reduce the size of the system matrix. The dynamic equations of the system are then transformed and solved in the frequency domain through FFT-based spectral analysis which is especially suitable for parallel computation. A comparative analysis of four different finite element methods is conducted to demonstrate the validity and efficiency of the proposed method when utilized in high-frequency wave problems. Other numerical examples are utilized to simulate the influence of crack and delamination on wave propagation in 1D rods and beams. Finally, the errors caused by FFT and their corresponding solutions are presented.
Stochastic Finite Element Analysis of Non-Linear Structures Modelled by Plasticity Theory
DEFF Research Database (Denmark)
Frier, Christian; Sørensen, John Dalsgaard
2003-01-01
A Finite Element Reliability Method (FERM) is introduced to perform reliability analyses on two-dimensional structures in plane stress, modeled by non-linear plasticity theory. FERM is a coupling between the First Order Reliability Method (FORM) and the Finite Element Method (FEM). FERM can be us...
International Nuclear Information System (INIS)
Fujimura, T.; Nakahara, Y.; Matsumura, M.
1983-01-01
A double finite element method (DFEM), in which both the space-and-angle finite elements are employed, has been formulated and computer codes have been developed to solve the static multigroup neutron transport problems in the three-dimensional geometry. Two methods, Galerkin's weighted residual and variational are used to apply the DFEM to the transport equation. The variational principle requires complicated formulation than the Galerkin method, but the boundary conditions can be automatically incorporated and each plane equation becomes symmetric. The system equations are solved over the planar layers which we call plane iteration. The coarse mesh rebalancing technique is used for the inner iteration and the outer iteration is accelerated by extra-polation. Numerical studies of these two DFEM algorithms have been done in comparison between them and also with THe CITATION and TWOTRAN-II results. It has been confirmed that in the case of variational formulation an adaptive acceleration method of the SSOR iteration works effectively and the ray effects are mitigated in both DFEM algorithms. (author)
Three dimensional mathematical model of tooth for finite element analysis
Directory of Open Access Journals (Sweden)
Puškar Tatjana
2010-01-01
Full Text Available Introduction. The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects in programmes for solid modeling. Objective. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. Methods. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analyzing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body into simple geometric bodies (cylinder, cone, pyramid,.... Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Results. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Conclusion Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.
Finite elements for partial differential equations: An introductory survey
International Nuclear Information System (INIS)
Succi, S.
1988-03-01
After presentation of the basic ideas behind the theory of the Finite Element Method, the application of the method to three equations of particular interest in Physics and Engineering is discussed in some detail, namely, a one-dimensional Sturm-Liouville problem, a two-dimensional linear Fokker-Planck equation and a two-dimensional nonlinear Navier-Stokes equation. 6 refs, 8 figs
Numerical solution of recirculating flow by a simple finite element recursion relation
Energy Technology Data Exchange (ETDEWEB)
Pepper, D W; Cooper, R E
1980-01-01
A time-split finite element recursion relation, based on linear basis functions, is used to solve the two-dimensional equations of motion. Recirculating flow in a rectangular cavity and free convective flow in an enclosed container are analyzed. The relation has the advantage of finite element accuracy and finite difference speed and simplicity. Incorporating dissipation parameters in the functionals decreases numerical dispersion and improves phase lag.
Numerical simulation of potato slices drying using a two-dimensional finite element model
Directory of Open Access Journals (Sweden)
Beigi Mohsen
2017-01-01
Full Text Available An experimental and numerical study was conducted to investigate the process of potato slices drying. For simulating the moisture transfer in the samples and predict the dehydration curves, a two-dimensional finite element model was developed and programmed in Compaq Visual Fortran, version 6.5. The model solved the Fick’s second law for slab in a shrinkage system to calculate the unsteady two-dimensional moisture transmission in rectangular coordinates (x,y. Moisture diffusivity and moisture transfer coefficient were determined by minimizing the sum squares of residuals between experimental and numerical predicted data. Shrinkage kinetics of the potato slices during dehydration was determined experimentally and found to be a linear function of removed moisture. The determined parameters were used in the mathematical model. The predicted moisture content values were compared to the experimental data and the validation results demonstrated that the dynamic drying curves were predicted by the methodology very well.
Finite Element Analysis of Three-Dimensional (3D Auxetic Textile Composite under Compression
Directory of Open Access Journals (Sweden)
Jifang Zeng
2018-03-01
Full Text Available This paper reports a finite element (FE analysis of three-dimensional (3D auxetic textile composite by using commercial software ANSYS 15 under compression. The two-dimensional (2D FE model was first developed and validated by experiment. Then, the validated model was used to evaluate effects of structural parameters and constituent material properties. For the comparison, 3D non-auxetic composite that was made with the same constituent materials and structural parameters, but with different yarn arrangement in the textile structure was also analyzed at the same time. The analysis results showed that the auxetic and non-auxetic composites have different compression behaviors and the auxetic composite has better the energy absorption capacity than the non-auxetic composite under the same compression stress. The study has provided us a guidance to design and fabricate auxetic composites with the required mechanical behavior by appropriately selecting structural parameters and constituent materials.
Flow Applications of the Least Squares Finite Element Method
Jiang, Bo-Nan
1998-01-01
The main thrust of the effort has been towards the development, analysis and implementation of the least-squares finite element method (LSFEM) for fluid dynamics and electromagnetics applications. In the past year, there were four major accomplishments: 1) special treatments in computational fluid dynamics and computational electromagnetics, such as upwinding, numerical dissipation, staggered grid, non-equal order elements, operator splitting and preconditioning, edge elements, and vector potential are unnecessary; 2) the analysis of the LSFEM for most partial differential equations can be based on the bounded inverse theorem; 3) the finite difference and finite volume algorithms solve only two Maxwell equations and ignore the divergence equations; and 4) the first numerical simulation of three-dimensional Marangoni-Benard convection was performed using the LSFEM.
Finite elements for non-linear analysis of pipelines
International Nuclear Information System (INIS)
Benjamim, A.C.; Ebecken, N.F.F.
1982-01-01
The application of a three-dimensional lagrangian formulation for the great dislocations analysis and great rotation of pipelines systems is studied. This formulation is derived from the soil mechanics and take into account the shear stress effects. Two finite element models are implemented. The first, of right axis, uses as interpolation functions the conventional gantry functions, defined in relation to mobile coordinates. The second, of curve axis and variable cross sections, is obtained from the degeneration of the three-dimensional isoparametric element, and uses as interpolation functions third degree polynomials. (E.G.) [pt
Thermo-mechanical finite element analyses of bolted cask lid structures
International Nuclear Information System (INIS)
Wieser, G.; Qiao Linan; Eberle, A.; Voelzke, H.
2004-01-01
The analysis of complex bolted cask lid structures under mechanical or thermal accident conditions is important for the evaluation of cask integrity and leak-tightness in package design assessment according to the Transport Regulations or in aircraft crash scenarios. In this context BAM is developing methods based on Finite Elements to calculate the effects of mechanical impacts onto the bolted lid structures as well as effects caused by severe fire scenarios. I n case of fire it might be not enough to perform only a thermal heat transfer analysis. The complex cask design in connection with a severe hypothetical time-temperature-curve representing an accident fire scenario will create a strong transient heating up of the cask body and its lid system. This causes relative displacements between the seals and its counterparts that can be analyzed by a so-called thermo-mechanical calculation. Although it is currently not possible to correlate leakage rates with results from deformation analyses directly an appropriate Finite Element model of the considered type of metallic lid seal has been developed. For the present it is possible to estimate the behaviour of the seal based on the calculated relative displacements at its seating and the behaviour of the lid bolts under the impact load or the temperature field respectively. Except of the lid bolts the geometry of the cask and the mechanical loading is axial-symmetric which simplifies the analysis considerably and a two-dimensional Finite Element model with substitute lid bolts may be used. The substitute bolts are modelled as one-dimensional truss or beam elements. An advanced two-dimensional bolt submodel represents the bolts with plane stress continuum elements. This paper discusses the influence of different bolt modelling on the relative displacements at the seating of the seals. Besides this, the influence of bolt modelling, thermal properties and detail in geometry of the two-dimensional Finite Element models on
Finite element computation of plasma equilibria
International Nuclear Information System (INIS)
Rivier, M.
1977-01-01
The applicability of the finite element method is investigated for the numerical solution of the nonlinear Grad-Shafranov equation with free boundary for the flux function of a plasma at equilibrium. This method is based on the case of variational principles and finite dimensional subspaces whose elements are piecewise polynomial functions obtained by a Lagrange type interpolation procedure over a triangulation of the domain. Two cases of plasma pressure (exponential and quadratic including a vacuum region) were examined. In both cases the nonuniqueness of the solutions was shown in exhibiting a deeper solution in the case of exponential pressure function, and a non-constant solution for a quadratic pressure function. In order to get this ''other'' solution, two linearization methods were tested with two different constraints. Different cross sections are investigated
Investigation of Shear Stud Performance in Flat Plate Using Finite Element Analysis
Directory of Open Access Journals (Sweden)
T.S. Viswanathan
2014-09-01
Full Text Available Three types of shear stud arrangement, respectively featuring an orthogonal, a radial and a critical perimeter pattern, were evaluated numerically. A numerical investigation was conducted using the finite element software ABAQUS to evaluate their ability to resist punching shear in a flat plate. The finite element analysis here is an application of the nonlinear analysis of reinforced concrete structures using three-dimensional solid finite elements. The nonlinear characteristics of concrete were achieved by employing the concrete damaged plasticity model in the finite element program. Transverse shear stress was evaluated using finite element analysis in terms of shear stress distribution for flat plate with and without shear stud reinforcement. The model predicted that shear studs placed along the critical perimeter are more effective compared to orthogonal and radial patterns.
Three-dimensional Finite Elements Method simulation of Total Ionizing Dose in 22 nm bulk nFinFETs
Energy Technology Data Exchange (ETDEWEB)
Chatzikyriakou, Eleni, E-mail: ec3g12@soton.ac.uk; Potter, Kenneth; Redman-White, William; De Groot, C.H.
2017-02-15
Highlights: • Simulation of Total Ionizing Dose using the Finite Elements Method. • Carrier generation, transport and trapping in the oxide. • Application in three-dimensional bulk FinFET model of 22 nm node. • Examination of trapped charge in the Shallow Trench Isolation. • Trapped charge dependency of parasitic transistor current. - Abstract: Finite Elements Method simulation of Total Ionizing Dose effects on 22 nm bulk Fin Field Effect Transistor (FinFET) devices using the commercial software Synopsys Sentaurus TCAD is presented. The simulation parameters are extracted by calibrating the charge trapping model to experimental results on 400 nm SiO{sub 2} capacitors irradiated under zero bias. The FinFET device characteristics are calibrated to the Intel 22 nm bulk technology. Irradiation simulations of the transistor performed with all terminals unbiased reveal increased hardness up to a total dose of 1 MRad(SiO{sub 2}).
Energy Technology Data Exchange (ETDEWEB)
Dobrev, Veselin A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kolev, Tzanio V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rieben, Robert N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2012-09-20
The numerical approximation of the Euler equations of gas dynamics in a movingLagrangian frame is at the heart of many multiphysics simulation algorithms. Here, we present a general framework for high-order Lagrangian discretization of these compressible shock hydrodynamics equations using curvilinear finite elements. This method is an extension of the approach outlined in [Dobrev et al., Internat. J. Numer. Methods Fluids, 65 (2010), pp. 1295--1310] and can be formulated for any finite dimensional approximation of the kinematic and thermodynamic fields, including generic finite elements on two- and three-dimensional meshes with triangular, quadrilateral, tetrahedral, or hexahedral zones. We discretize the kinematic variables of position and velocity using a continuous high-order basis function expansion of arbitrary polynomial degree which is obtained via a corresponding high-order parametric mapping from a standard reference element. This enables the use of curvilinear zone geometry, higher-order approximations for fields within a zone, and a pointwise definition of mass conservation which we refer to as strong mass conservation. Moreover, we discretize the internal energy using a piecewise discontinuous high-order basis function expansion which is also of arbitrary polynomial degree. This facilitates multimaterial hydrodynamics by treating material properties, such as equations of state and constitutive models, as piecewise discontinuous functions which vary within a zone. To satisfy the Rankine--Hugoniot jump conditions at a shock boundary and generate the appropriate entropy, we introduce a general tensor artificial viscosity which takes advantage of the high-order kinematic and thermodynamic information available in each zone. Finally, we apply a generic high-order time discretization process to the semidiscrete equations to develop the fully discrete numerical algorithm. Our method can be viewed as the high-order generalization of the so-called staggered
Energy Technology Data Exchange (ETDEWEB)
Bailey, T S; Adams, M L [Texas A M Univ., Dept. of Nuclear Engineering, College Station, TX (United States); Yang, B; Zika, M R [Lawrence Livermore National Lab., Livermore, CA (United States)
2005-07-01
We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses piecewise linear weight and basis functions in the finite element approximation, and it can be applied on arbitrary polygonal (2-dimensional) or polyhedral (3-dimensional) grids. We show that this new PWL method gives solutions comparable to those from Palmer's finite-volume method. However, since the PWL method produces a symmetric positive definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids. (authors)
International Nuclear Information System (INIS)
Lee, Byeong Hae
1992-02-01
This book gives descriptions of basic finite element method, which includes basic finite element method and data, black box, writing of data, definition of VECTOR, definition of matrix, matrix and multiplication of matrix, addition of matrix, and unit matrix, conception of hardness matrix like spring power and displacement, governed equation of an elastic body, finite element method, Fortran method and programming such as composition of computer, order of programming and data card and Fortran card, finite element program and application of nonelastic problem.
INGEN: a general-purpose mesh generator for finite element codes
International Nuclear Information System (INIS)
Cook, W.A.
1979-05-01
INGEN is a general-purpose mesh generator for two- and three-dimensional finite element codes. The basic parts of the code are surface and three-dimensional region generators that use linear-blending interpolation formulas. These generators are based on an i, j, k index scheme that is used to number nodal points, construct elements, and develop displacement and traction boundary conditions. This code can generate truss elements (2 modal points); plane stress, plane strain, and axisymmetry two-dimensional continuum elements (4 to 8 nodal points); plate elements (4 to 8 nodal points); and three-dimensional continuum elements (8 to 21 nodal points). The traction loads generated are consistent with the element generated. The expansion--contraction option is of special interest. This option makes it possible to change an existing mesh such that some regions are refined and others are made coarser than the original mesh. 9 figures
International Nuclear Information System (INIS)
Mordant, Maurice.
1981-04-01
To solve a multigroup stationary neutron transport equation in two-dimensional geometries (X-Y), (R-O) or (R-Z) generally on uses discrete ordinates and rectangular meshes. The way to do it is then well known, well documented and somewhat obvious. If one needs to treat awkward geometries or distorted meshes, things are not so easy and the way to do it is no longer straightforward. We have studied this problem at Limeil Nuclear Center and as an alternative to Monte Carlo methods and code we have implemented in ZEPHYR code at least two efficient finite element solutions for Lagrangian meshes involving any kind of triangles and quadrilaterals
Vankan, W J; Huyghe, J M; Slaaf, D W; van Donkelaar, C C; Drost, M R; Janssen, J D; Huson, A
1997-09-01
Mechanical interaction between tissue stress and blood perfusion in skeletal muscles plays an important role in blood flow impediment during sustained contraction. The exact mechanism of this interaction is not clear, and experimental investigation of this mechanism is difficult. We developed a finite-element model of the mechanical behavior of blood-perfused muscle tissue, which accounts for mechanical blood-tissue interaction in maximally vasodilated vasculature. Verification of the model was performed by comparing finite-element results of blood pressure and flow with experimental measurements in a muscle that is subject to well-controlled mechanical loading conditions. In addition, we performed simulations of blood perfusion during tetanic, isometric contraction and maximal vasodilation in a simplified, two-dimensional finite-element model of a rat calf muscle. A vascular waterfall in the venous compartment was identified as the main cause for blood flow impediment both in the experiment and in the finite-element simulations. The validated finite-element model offers possibilities for detailed analysis of blood perfusion in three-dimensional muscle models under complicated loading conditions.
Finite element simulation of moisture movement and solute transport in a large caisson
International Nuclear Information System (INIS)
Huyakorn, P.S.; Jones, B.G.; Parker, J.C.; Wadsworth, T.D.; White, H.O. Jr.
1987-01-01
The results of the solute transport experiments performed on compacted, crushed Bandelier Tuff in caisson B of the experimental cluster described by DePoorter (1981) are simulated. Both one- and three-dimensional simulations of solute transport have been performed using two selected finite element codes. Results of bromide and iodide tracer experiments conducted during near-steady flow conditions have been analyzed for pulse additions made on December 6, 1984, and followed over a period of up to 60 days. In addition, a pulse addition of nonconservative strontium tracer on September 28, 1984, during questionably steady flow conditions has been analyzed over a period of 240 days. One-dimensional finite element flow and transport simulations were carried out assuming the porous medium to be homogeneous and the injection source uniformly distributed. To evaluate effects of the nonuniform source distribution and also to investigate effects of inhomogeneous porous medium properties, three dimensional finite element analyses of transport were carried out. Implications of the three-dimensional effects for the design and analysis of future tracer studies are discussed
Energy Technology Data Exchange (ETDEWEB)
Bailey, T.S.; Adams, M.L. [Texas A M Univ., Dept. of Nuclear Engineering, College Station, TX (United States); Yang, B.; Zika, M.R. [Lawrence Livermore National Lab., Livermore, CA (United States)
2005-07-01
We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses piecewise linear weight and basis functions in the finite element approximation, and it can be applied on arbitrary polygonal (2-dimensional) or polyhedral (3-dimensional) grids. We show that this new PWL method gives solutions comparable to those from Palmer's finite-volume method. However, since the PWL method produces a symmetric positive definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids. (authors)
Adaptive mixed finite element methods for Darcy flow in fractured porous media
Chen, Huangxin; Salama, Amgad; Sun, Shuyu
2016-01-01
In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.
Adaptive mixed finite element methods for Darcy flow in fractured porous media
Chen, Huangxin
2016-09-21
In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.
Finite element formulation for fluid-structure interaction in three-dimensional space
International Nuclear Information System (INIS)
Kulak, R.F.
1979-01-01
A development is presented for a three-dimension hexahedral hydrodynamic finite-element. Using trilinear shape functions and assuming a constant pressure field in each element, simple relations were obtained for internal nodal forces. Because the formulation was based upon a rate approach it was applicable to problems involving large displacements. This element was incorporated into an existing plate-shell finite element code. Diagonal mass matrices were used and the resulting discrete equations of motion were solved using explicit temporal integrator. Results for several problems were presented which compare numerical predictions to closed form analytical solutions. In addition, the fluid-structure interaction problem of a fluid-filled, cylindrical vessel containing internal cylinders was studied. The internal cylinders were cantilever supported from the top cover of the vessel and were periodically located circumferentially at a fixed radius. A pressurized cylindrical cavity located at the bottom of the vessel at its centerline provided the loading
Directory of Open Access Journals (Sweden)
Avinash Kumar
2017-01-01
Full Text Available Objectives: To analyze three-dimensional effects of stress distribution and displacement on the craniofacial structures, following the application of forces from Nitanium Palatal Expander 2 (NPE2 and Hyrax appliance in early mixed dentition period using finite element analysis. Materials and Methods: Three-dimensional finite element models of the young dried human skull, NPE2 and Hyrax were constructed, and the initial activation of the expanders was simulated to carry out the analysis and to evaluate the von misses stresses and displacement on the craniofacial structures. Results: Both the models demonstrated the highest stresses at the mid-palatal suture, with maximum posterior dislocation. The inferior nasal floor showed highest downward displacement and point A showed outward, backward, and upward displacement in both the models. The pattern of stress distribution was almost similar in both the groups, but NPE2 revealed lower magnitude stresses than Hyrax. The cusp of the erupting canine and the mesiobuccal cusp of the second molar showed outward, backward, and downward displacement signifying eruption pattern following maxillary expansion. Conclusions: Nickel titanium palatal expander-2 and Hyrax produced similar stress pattern in early mixed dentition period finite element model. We conclude from this finite element method study that NPE2 is equally effective as Hyrax when used in early mixed dentition period as it exhibits orthopedic nature of expansion with minimal residual stresses in the craniofacial structures.
International Nuclear Information System (INIS)
Hrehor, M.
1979-01-01
The paper deals with an application of the finite element method to the heat transfer study in seven-pin models of LMFBR fuel subassembly. The developed code NCEL solves two-dimensional steady state heat conduction equation in the whole subassembly model cross-section and enebles to perform the analysis of thermal behaviour in both normal and accidental operational conditions as eccentricity of the central rod or full or partial (porous) blockage of some part of the cross-flow area. The heat removal is simulated by heat sinks in coolant under conditions of subchannels slug flow approximation
Directory of Open Access Journals (Sweden)
Pavel A. Akimov
2017-12-01
Full Text Available As is well known, the formulation of a multipoint boundary problem involves three main components: a description of the domain occupied by the structure and the corresponding subdomains; description of the conditions inside the domain and inside the corresponding subdomains, the description of the conditions on the boundary of the domain, conditions on the boundaries between subdomains. This paper is a continuation of another work published earlier, in which the formulation and general principles of the approximation of the multipoint boundary problem of a static analysis of deep beam on the basis of the joint application of the finite element method and the discrete-continual finite element method were considered. It should be noted that the approximation within the fragments of a domain that have regular physical-geometric parameters along one of the directions is expedient to be carried out on the basis of the discrete-continual finite element method (DCFEM, and for the approximation of all other fragments it is necessary to use the standard finite element method (FEM. In the present publication, the formulas for the computing of displacements partial derivatives of displacements, strains and stresses within the finite element model (both within the finite element and the corresponding nodal values (with the use of averaging are presented. Boundary conditions between subdomains (respectively, discrete models and discrete-continual models and typical conditions such as “hinged support”, “free edge”, “perfect contact” (twelve basic (basic variants are available are under consideration as well. Governing formulas for computing of elements of the corresponding matrices of coefficients and vectors of the right-hand sides are given for each variant. All formulas are fully adapted for algorithmic implementation.
International Nuclear Information System (INIS)
Yoo, K.J.
1982-01-01
The albedo boundary conditions are incorporated into the finite element method using bicubic Hermite element functions in order to reduce the computer memory and computation time in two-group diffusion calculations by excluding the reflector regions in computation space. The basis functions at the core-reflector interfaces are newly established to satisfy the albedo boundary conditions, and then the ''weak'' form of two-group diffusion equations is discretized using the principle of the weighted residual method in combination with the Galerkin approximation. The discretized two-group diffusion equation is then solved by the Gaussian elimination method with the scaled column pivoting algorithm in one-dimensional problem and Gauss-Seidel method in two-dimensional problem. Prior to the application of the method to two-group diffusion problems, the same method is applied to the one-speed neutron transport equation in a bare slab reactor with the vacuum boundary condition to confirm its usefulness in the diffusion calculations. To investigate the applicability of our diffusion method, several numerical calculations are performed: two-dimensional IAEA benchmark problem and two-dimensional ZION problem. The results are compared with the available results from the conventional finite difference and other finite element methods. If the albedo values are appropriately adjusted, our results of the two-dimensional IAEA benchmark problem are agreed within 0.002% of ksub(eff) with the fine mesh PDQ results. Comparing with CITATION results, one-eighth of core memory and one-fifteenth of computing time are required to obtain the same accuracy even though no acceleration technique is used in the present case. Also, it is found that the results are comparable with the other finite element results. However, no significant saving is obtained in computation time comparing with the other finite element results, where the reflector regions are explicity included. This mainly comes from
Finite element analysis of the neutron transport equation in spherical geometry
International Nuclear Information System (INIS)
Kim, Yong Ill; Kim, Jong Kyung; Suk, Soo Dong
1992-01-01
The Galerkin formulation of the finite element method is applied to the integral law of the first-order form of the one-group neutron transport equation in one-dimensional spherical geometry. Piecewise linear or quadratic Lagrange polynomials are utilized in the integral law for the angular flux to establish a set of linear algebraic equations. Numerical analyses are performed for the scalar flux distribution in a heterogeneous sphere as well as for the criticality problem in a uniform sphere. For the criticality problems in the uniform sphere, the results of the finite element method, with the use of continuous finite elements in space and angle, are compared with the exact solutions. In the heterogeneous problem, the scalar flux distribution obtained by using discontinuous angular and spatical finite elements is in good agreement with that from the ANISN code calculation. (Author)
International Nuclear Information System (INIS)
Wachspress, E.
2009-01-01
Triangles and rectangles are the ubiquitous elements in finite element studies. Only these elements admit polynomial basis functions. Rational functions provide a basis for elements having any number of straight and curved sides. Numerical complexities initially associated with rational bases precluded extensive use. Recent analysis has reduced these difficulties and programs have been written to illustrate effectiveness. Although incorporation in major finite element software requires considerable effort, there are advantages in some applications which warrant implementation. An outline of the basic theory and of recent innovations is presented here. (authors)
International Nuclear Information System (INIS)
Gupta, S.K.; Cole, C.R.; Bond, F.W.
1979-12-01
The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is developing and applying the methodology for assessing the far-field, long-term post-closure safety of deep geologic nuclear waste repositories. AEGIS is being performed by Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (OWNI) for the Department of Energy (DOE). One task within AEGIS is the development of methodology for analysis of the consequences (water pathway) from loss of repository containment as defined by various release scenarios. Analysis of the long-term, far-field consequences of release scenarios requires the application of numerical codes which simulate the hydrologic systems, model the transport of released radionuclides through the hydrologic systems to the biosphere, and, where applicable, assess the radiological dose to humans. Hydrologic and transport models are available at several levels of complexity or sophistication. Model selection and use are determined by the quantity and quality of input data. Model development under AEGIS and related programs provides three levels of hydrologic models, two levels of transport models, and one level of dose models (with several separate models). This document consists of the description of the FE3DGW (Finite Element, Three-Dimensional Groundwater) Hydrologic model third level (high complexity) three-dimensional, finite element approach (Galerkin formulation) for saturated groundwater flow
International Nuclear Information System (INIS)
Feinsilver, Philip; Schott, Rene
2009-01-01
We discuss topics related to finite-dimensional calculus in the context of finite-dimensional quantum mechanics. The truncated Heisenberg-Weyl algebra is called a TAA algebra after Tekin, Aydin and Arik who formulated it in terms of orthofermions. It is shown how to use a matrix approach to implement analytic representations of the Heisenberg-Weyl algebra in univariate and multivariate settings. We provide examples for the univariate case. Krawtchouk polynomials are presented in detail, including a review of Krawtchouk polynomials that illustrates some curious properties of the Heisenberg-Weyl algebra, as well as presenting an approach to computing Krawtchouk expansions. From a mathematical perspective, we are providing indications as to how to implement infinite terms Rota's 'finite operator calculus'.
Finite element investigation of the prestressed jointed concrete ...
African Journals Online (AJOL)
Precast prestressed concrete pavement (PCP) technology is of recent origin, and the information on PCP performance is not available in literature. This research presents a finite-element analysis of the potential benefits of prestressing on the jointed concrete pavements (JCP). With using a 3-dimensional (3D) ...
Yihaa Roodhiyah, Lisa’; Tjong, Tiffany; Nurhasan; Sutarno, D.
2018-04-01
The late research, linear matrices of vector finite element in two dimensional(2-D) magnetotelluric (MT) responses modeling was solved by non-sparse direct solver in TE mode. Nevertheless, there is some weakness which have to be improved especially accuracy in the low frequency (10-3 Hz-10-5 Hz) which is not achieved yet and high cost computation in dense mesh. In this work, the solver which is used is sparse direct solver instead of non-sparse direct solverto overcome the weaknesses of solving linear matrices of vector finite element metod using non-sparse direct solver. Sparse direct solver will be advantageous in solving linear matrices of vector finite element method because of the matrix properties which is symmetrical and sparse. The validation of sparse direct solver in solving linear matrices of vector finite element has been done for a homogen half-space model and vertical contact model by analytical solution. Thevalidation result of sparse direct solver in solving linear matrices of vector finite element shows that sparse direct solver is more stable than non-sparse direct solver in computing linear problem of vector finite element method especially in low frequency. In the end, the accuracy of 2D MT responses modelling in low frequency (10-3 Hz-10-5 Hz) has been reached out under the efficient allocation memory of array and less computational time consuming.
International Nuclear Information System (INIS)
Park, Jai Hak
2009-01-01
SGBEM(Symmetric Galerkin Boundary Element Method)-FEM alternating method has been proposed by Nikishkov, Park and Atluri. In the proposed method, arbitrarily shaped three-dimensional crack problems can be solved by alternating between the crack solution in an infinite body and the finite element solution without a crack. In the previous study, the SGBEM-FEM alternating method was extended further in order to solve elastic-plastic crack problems and to obtain elastic-plastic stress fields. For the elastic-plastic analysis the algorithm developed by Nikishkov et al. is used after modification. In the algorithm, the initial stress method is used to obtain elastic-plastic stress and strain fields. In this paper, elastic-plastic J integrals for three-dimensional cracks are obtained using the method. For that purpose, accurate values of displacement gradients and stresses are necessary on an integration path. In order to improve the accuracy of stress near crack surfaces, coordinate transformation and partitioning of integration domain are used. The coordinate transformation produces a transformation Jacobian, which cancels the singularity of the integrand. Using the developed program, simple three-dimensional crack problems are solved and elastic and elastic-plastic J integrals are obtained. The obtained J integrals are compared with the values obtained using a handbook solution. It is noted that J integrals obtained from the alternating method are close to the values from the handbook
The finite element response Matrix method
International Nuclear Information System (INIS)
Nakata, H.; Martin, W.R.
1983-01-01
A new method for global reactor core calculations is described. This method is based on a unique formulation of the response matrix method, implemented with a higher order finite element method. The unique aspects of this approach are twofold. First, there are two levels to the overall calculational scheme: the local or assembly level and the global or core level. Second, the response matrix scheme, which is formulated at both levels, consists of two separate response matrices rather than one response matrix as is generally the case. These separate response matrices are seen to be quite beneficial for the criticality eigenvalue calculation, because they are independent of k /SUB eff/. The response matrices are generated from a Galerkin finite element solution to the weak form of the diffusion equation, subject to an arbitrary incoming current and an arbitrary distributed source. Calculational results are reported for two test problems, the two-dimensional International Atomic Energy Agency benchmark problem and a two-dimensional pressurized water reactor test problem (Biblis reactor), and they compare well with standard coarse mesh methods with respect to accuracy and efficiency. Moreover, the accuracy (and capability) is comparable to fine mesh for a fraction of the computational cost. Extension of the method to treat heterogeneous assemblies and spatial depletion effects is discussed
Finite element reliability analysis of fatigue life
International Nuclear Information System (INIS)
Harkness, H.H.; Belytschko, T.; Liu, W.K.
1992-01-01
Fatigue reliability is addressed by the first-order reliability method combined with a finite element method. Two-dimensional finite element models of components with cracks in mode I are considered with crack growth treated by the Paris law. Probability density functions of the variables affecting fatigue are proposed to reflect a setting where nondestructive evaluation is used, and the Rosenblatt transformation is employed to treat non-Gaussian random variables. Comparisons of the first-order reliability results and Monte Carlo simulations suggest that the accuracy of the first-order reliability method is quite good in this setting. Results show that the upper portion of the initial crack length probability density function is crucial to reliability, which suggests that if nondestructive evaluation is used, the probability of detection curve plays a key role in reliability. (orig.)
Probabilistic finite elements for transient analysis in nonlinear continua
Liu, W. K.; Belytschko, T.; Mani, A.
1985-01-01
The probabilistic finite element method (PFEM), which is a combination of finite element methods and second-moment analysis, is formulated for linear and nonlinear continua with inhomogeneous random fields. Analogous to the discretization of the displacement field in finite element methods, the random field is also discretized. The formulation is simplified by transforming the correlated variables to a set of uncorrelated variables through an eigenvalue orthogonalization. Furthermore, it is shown that a reduced set of the uncorrelated variables is sufficient for the second-moment analysis. Based on the linear formulation of the PFEM, the method is then extended to transient analysis in nonlinear continua. The accuracy and efficiency of the method is demonstrated by application to a one-dimensional, elastic/plastic wave propagation problem. The moments calculated compare favorably with those obtained by Monte Carlo simulation. Also, the procedure is amenable to implementation in deterministic FEM based computer programs.
Nonlinear Legendre Spectral Finite Elements for Wind Turbine Blade Dynamics: Preprint
Energy Technology Data Exchange (ETDEWEB)
Wang, Q.; Sprague, M. A.; Jonkman, J.; Johnson, N.
2014-01-01
This paper presents a numerical implementation and examination of new wind turbine blade finite element model based on Geometrically Exact Beam Theory (GEBT) and a high-order spectral finite element method. The displacement-based GEBT is presented, which includes the coupling effects that exist in composite structures and geometric nonlinearity. Legendre spectral finite elements (LSFEs) are high-order finite elements with nodes located at the Gauss-Legendre-Lobatto points. LSFEs can be an order of magnitude more efficient that low-order finite elements for a given accuracy level. Interpolation of the three-dimensional rotation, a major technical barrier in large-deformation simulation, is discussed in the context of LSFEs. It is shown, by numerical example, that the high-order LSFEs, where weak forms are evaluated with nodal quadrature, do not suffer from a drawback that exists in low-order finite elements where the tangent-stiffness matrix is calculated at the Gauss points. Finally, the new LSFE code is implemented in the new FAST Modularization Framework for dynamic simulation of highly flexible composite-material wind turbine blades. The framework allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples showing validation and LSFE performance will be provided in the final paper.
International Nuclear Information System (INIS)
Fernandes, A.
1991-01-01
A method to solve three dimensional neutron transport equation and it is based on the original work suggested by J.K. Fletcher (42, 43). The angular dependence of the flux is approximated by associated Legendre functions and the finite element method is applied to the space components is presented. When the angular flux, the scattering cross section and the neutrons source are expanded in associated Legendre functions, the first order neutron transport equation is reduced to a coupled set of second order diffusion like equations. These equations are solved in an iterative way by the finite element method to the moments. (author)
Finite Macro-Element Mesh Deformation in a Structured Multi-Block Navier-Stokes Code
Bartels, Robert E.
2005-01-01
A mesh deformation scheme is developed for a structured multi-block Navier-Stokes code consisting of two steps. The first step is a finite element solution of either user defined or automatically generated macro-elements. Macro-elements are hexagonal finite elements created from a subset of points from the full mesh. When assembled, the finite element system spans the complete flow domain. Macro-element moduli vary according to the distance to the nearest surface, resulting in extremely stiff elements near a moving surface and very pliable elements away from boundaries. Solution of the finite element system for the imposed boundary deflections generally produces smoothly varying nodal deflections. The manner in which distance to the nearest surface has been found to critically influence the quality of the element deformation. The second step is a transfinite interpolation which distributes the macro-element nodal deflections to the remaining fluid mesh points. The scheme is demonstrated for several two-dimensional applications.
International Nuclear Information System (INIS)
Kulak, R.F.; Kennedy, J.M.; Belytschko, T.B.; Schoeberle, D.F.
1977-01-01
This paper describes finite-element formulations for the thermal stress analysis of LMFBR structures. The first formulation is applicable to large displacement rotation problems in which the strains are small. For this formulation, a general temperature-dependent constituent relationship is derived from a Gibbs potential function and a temperature dependent yield surface. The temperature dependency of the yield surface is based upon a temperature-dependent, material-hardening model. The model uses a temperature-equivalent stress-plastic strain diagram which is generated from isothermal uniaxial stress-strain data. A second formulation is presented for problems characterized by both large displacement-rotations and large strains. Here a set of large strain hypoelastic-plastic relationships are developed to linearly relate the rate of stress to the rate of deformation. The temperature field is described through time-dependent values at mesh node points; the temperature fields in each element are then obtained by interpolation formulas. Hence, problems with both spatial and temporal dependent temperature fields can easily be treated. The above developments were incorporated into two ANL developed finite-element computer codes: the implicit version of STRAW and the 3D Implicit Structural Analysis Code. STRAW is a two-dimensional code with a plane stress/plane strain beam element. The 3D Implicit code has a triangular flat plate element which is capable of sustaining both membrane and bending loads. To insure numerical stability both codes are based on an iterative-incremental solution procedure with equilibrium checks based on an error in energy
Numerical analysis of creep brittle rupture by the finite element method
International Nuclear Information System (INIS)
Goncalves, O.J.A.; Owen, D.R.J.
1983-01-01
In this work an implicit algorithm is proposed for the numerical analysis of creep brittle rupture problems by the finite element method. This kind of structural failure, typical in components operating at high temperatures for long periods of time, is modelled using either a three dimensional generalization of the Kachanov-Rabotnov equations due to Leckie and Hayhurst or the Monkman-Grant fracture criterion together with the Linear Life Fraction Rule. The finite element equations are derived by the displacement method and isoparametric elements are used for the spatial discretization. Geometric nonlinear effects (large displacements) are accounted for by an updated Lagrangian formulation. Attention is also focussed on the solution of the highly stiff differential equations that govern damage growth. Finally the numerical results of a three-dimensional analysis of a pressurized thin cylinder containing oxidised pits in its external wall are discussed. (orig.)
Directory of Open Access Journals (Sweden)
Arunachalam Sangeetha
2012-01-01
Full Text Available Context: To understand the effect of masticatory and parafunctional forces on the integrity of the prosthesis and the underlying cement layer. Aims: The purpose of this study was to evaluate the stress pattern in the cement layer and the fixed prosthesis, on subjecting a three-dimensional finite element model to simulated occlusal loading. Materials and Methods: Three-dimensional finite element model was simulated to replace missing mandibular first molar with second premolar and second molar as abutments. The model was subjected to a range of occlusal loads (20, 30, 40 MPa in two different directions - vertical and 30° to the vertical. The cements (zinc phosphate, polycarboxylate, glass ionomer, and composite were modeled with two cement thicknesses - 25 and 100 μm. Stresses were determined in certain reference points in fixed prosthesis and the cement layer. Statistical Analysis Used: The stress values are mathematic calculations without variance; hence, statistical analysis is not routinely required. Results: Stress levels were calculated according to Von Mises criteria for each node. Maximum stresses were recorded at the occlusal surface, axio-gingival corners, followed by axial wall. The stresses were greater with lateral load and with 100-μm cement thickness. Results revealed higher stresses for zinc phosphate cement, followed by composites. Conclusions: The thinner cement interfaces favor the success of the prosthesis. The stresses in the prosthesis suggest rounding of axio-gingival corners and a well-established finish line as important factors in maintaining the integrity of the prosthesis.
Finite element analysis of multilayer coextrusion.
Energy Technology Data Exchange (ETDEWEB)
Hopkins, Matthew Morgan; Schunk, Peter Randall; Baer, Thomas A. (Proctor & Gamble Company, West Chester, OH); Mrozek, Randy A. (Army Research Laboratory, Adelphi, MD); Lenhart, Joseph Ludlow (Army Research Laboratory, Adelphi, MD); Rao, Rekha Ranjana; Collins, Robert (Oak Ridge National Laboratory); Mondy, Lisa Ann
2011-09-01
Multilayer coextrusion has become a popular commercial process for producing complex polymeric products from soda bottles to reflective coatings. A numerical model of a multilayer coextrusion process is developed based on a finite element discretization and two different free-surface methods, an arbitrary-Lagrangian-Eulerian (ALE) moving mesh implementation and an Eulerian level set method, to understand the moving boundary problem associated with the polymer-polymer interface. The goal of this work is to have a numerical capability suitable for optimizing and troubleshooting the coextrusion process, circumventing flow instabilities such as ribbing and barring, and reducing variability in layer thickness. Though these instabilities can be both viscous and elastic in nature, for this work a generalized Newtonian description of the fluid is used. Models of varying degrees of complexity are investigated including stability analysis and direct three-dimensional finite element free surface approaches. The results of this work show how critical modeling can be to reduce build test cycles, improve material choices, and guide mold design.
Synthesis of hydrocode and finite element technology for large deformation Lagrangian computation
International Nuclear Information System (INIS)
Goudreau, G.L.; Hallquist, J.O.
1979-08-01
Large deformation engineering analysis at Lawrence Livermore Laboratory has benefited from a synthesis of computational technology from the finite difference hydrocodes of the scientific weapons community and the structural finite element methodology of engineering. Two- and three-dimensional explicit and implicit Lagrangian continuum codes have been developed exploiting the strengths of each. The explicit methodology primarily exploits the primitive constant stress (or one point integration) brick element. Similarity and differences with the integral finite difference method are discussed. Choice of stress and finite strain measures, and selection of hour glass viscosity are also considered. The implicit codes also employ a Cauchy formulation, with Newton iteration and a symmetric tangent matrix. A library of finite strain material routines includes hypoelastic/plastic, hyperelastic, viscoelastic, as well as hydrodynamic behavior. Arbitrary finite element topology and a general slide-line treatment significantly extends Lagrangian hydrocode application. Computational experience spans weapons and non-weapons applications
International Nuclear Information System (INIS)
Sung, Jin Il; Yoo, Jeong Hoon
2002-01-01
In this paper, we investigate the effect and the importance of the accuracy of finite element analysis in the shape optimization based on the finite element method and improve the existing finite element which has inaccuracy in some cases. And then, the shape optimization is performed by using the improved finite element. One of the main stream to improve finite element is the prevention of locking phenomenon. In case of bending dominant problems, finite element solutions cannot be reliable because of shear locking phenomenon. In the process of shape optimization, the mesh distortion is large due to the change of the structure outline. So, we have to raise the accuracy of finite element analysis for the large mesh distortion. We cannot guarantee the accurate result unless the finite element itself is accurate or the finite elements are remeshed. So, we approach to more accurate shape optimization to diminish these inaccuracies by improving the existing finite element. The shape optimization using the modified finite element is applied to a two and three dimensional simple beam. Results show that the modified finite element has improved the optimization results
Peng, Kuan; He, Ling; Zhu, Ziqiang; Tang, Jingtian; Xiao, Jiaying
2013-12-01
Compared with commonly used analytical reconstruction methods, the frequency-domain finite element method (FEM) based approach has proven to be an accurate and flexible algorithm for photoacoustic tomography. However, the FEM-based algorithm is computationally demanding, especially for three-dimensional cases. To enhance the algorithm's efficiency, in this work a parallel computational strategy is implemented in the framework of the FEM-based reconstruction algorithm using a graphic-processing-unit parallel frame named the "compute unified device architecture." A series of simulation experiments is carried out to test the accuracy and accelerating effect of the improved method. The results obtained indicate that the parallel calculation does not change the accuracy of the reconstruction algorithm, while its computational cost is significantly reduced by a factor of 38.9 with a GTX 580 graphics card using the improved method.
International Nuclear Information System (INIS)
Nissen, K.L.
1988-06-01
Two computer codes for the analysis of fuel rod behavior have been developed. Fuel rod mechanics is treated by a two-dimensional, axisymmetric finite element method. The program KONTAKT is used for detailed examinations on fuel rod sections, whereas the second program METHOD2D allows instationary calculations of whole fuel rods. The mechanical contact of fuel and cladding during heating of the fuel rod is very important for it's integrity. Both computer codes use a Newton-Raphson iteration for the solution of the nonlinear solid body contact problem. A constitutive equation is applied for the dependency of contact pressure on normal approach of the surfaces which are assumed to be rough. If friction is present on the contacting surfaces, Coulomb's friction law is used. Code validation is done by comparison with known analytical solutions for special problems. Results of the contact algorithm for an elastic ball pressing against a rigid surface are confronted with Hertzian theory. Influences of fuel-pellet geometry as well as influences of discretisation of displacements and stresses of a single fuel pellet are studied. Contact of fuel and cladding is calculated for a fuel rod section with two fuel pellets. The influence of friction forces between fuel and cladding on their axial expansion is demonstrated. By calculation of deformations and temperatures during an instationary fuel rod experiment of the CABRI-series the feasibility of two-dimensional finite element analysis of whole fuel rods is shown. (orig.) [de
Directory of Open Access Journals (Sweden)
Vishal Shrishail Kudagi
2017-01-01
Full Text Available Background and Objectives: Connecting the contralateral upper molars by means of a transpalatal arch (TPA is thought to decrease the tendency of the molars to move mesially in response to orthodontic force (i.e., provide orthodontic anchorage. This study was hence conducted to investigate the effects of the TPA on the displacement of the molars and stresses generated in the periodontium during orthodontic tooth movement using the finite element method (FEM. Materials and Methods: A three-dimensional (3D model was generated using medical modeling software (Mimics using the computed tomography slice images of the skull which were obtained at a slice thickness of 1 mm. From this, the finite element model was built using HyperMesh and analysis was performed using PATRAN software (MSC Software Corporation, 4675 MacArthur Court, Newport Beach, California 92660. The 3D finite element models were fabricated in two versions such as maxillary first molars including their associated periodontal ligament and alveolar bone one with TPA and another without TPA. Both were subjected to orthodontic forces, and the resultant stress patterns and displacements between the models with and without TPA were determined. Results: The stress and displacement plots in this study failed to show any significant differences in stress and displacement within the periodontium of molars, between the two models – one with TPA and the other without, in response to the orthodontic force. Interpretation and Conclusion: The results of the current finite element analysis, therefore, suggest that the presence of a TPA brings about no change in the initial dental and periodontal stress distribution and displacement.
Atluri, S. N.; Nakagaki, M.; Kathiresan, K.
1980-01-01
In this paper, efficient numerical methods for the analysis of crack-closure effects on fatigue-crack-growth-rates, in plane stress situations, and for the solution of stress-intensity factors for arbitrary shaped surface flaws in pressure vessels, are presented. For the former problem, an elastic-plastic finite element procedure valid for the case of finite deformation gradients is developed and crack growth is simulated by the translation of near-crack-tip elements with embedded plastic singularities. For the latter problem, an embedded-elastic-singularity hybrid finite element method, which leads to a direct evaluation of K-factors, is employed.
Massively Parallel Finite Element Programming
Heister, Timo; Kronbichler, Martin; Bangerth, Wolfgang
2010-01-01
Today's large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.
Massively Parallel Finite Element Programming
Heister, Timo
2010-01-01
Today\\'s large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.
GRIZ: Visualization of finite element analysis results on unstructured grids
International Nuclear Information System (INIS)
Dovey, D.; Loomis, M.D.
1994-01-01
GRIZ is a general-purpose post-processing application that supports interactive visualization of finite element analysis results on three-dimensional unstructured grids. GRIZ includes direct-to-videodisc animation capabilities and is being used as a production tool for creating engineering animations
On the application of finite element method in the solution of steady state diffusion equation
International Nuclear Information System (INIS)
Ono, S.
1982-01-01
The solution of the steady state neutron diffusion equation is obtained by using the finite element method. Specifically the variational approach is used for one dimensional problems and the weighted residual method (Galerkin) for one and two dimensional problems. The spatial domain is divided into retangular elements and the neutron flux is approximated by linear (one dimensional case), and bilinear (two-dimensional case) functions. Numerical results are obtained with a FORTRAN IV computer program and compared with those obtained by the finite difference CITATION code. The results show that linear or bilinear functions, do not satisfactorily describe the differential parameters in highly heterogeneous reactor cases, but provide good results for integral parameters such as multiplication factor. (Author) [pt
Dislocation dynamics in non-convex domains using finite elements with embedded discontinuities
Romero, Ignacio; Segurado, Javier; LLorca, Javier
2008-04-01
The standard strategy developed by Van der Giessen and Needleman (1995 Modelling Simul. Mater. Sci. Eng. 3 689) to simulate dislocation dynamics in two-dimensional finite domains was modified to account for the effect of dislocations leaving the crystal through a free surface in the case of arbitrary non-convex domains. The new approach incorporates the displacement jumps across the slip segments of the dislocations that have exited the crystal within the finite element analysis carried out to compute the image stresses on the dislocations due to the finite boundaries. This is done in a simple computationally efficient way by embedding the discontinuities in the finite element solution, a strategy often used in the numerical simulation of crack propagation in solids. Two academic examples are presented to validate and demonstrate the extended model and its implementation within a finite element program is detailed in the appendix.
Dislocation dynamics in non-convex domains using finite elements with embedded discontinuities
International Nuclear Information System (INIS)
Romero, Ignacio; Segurado, Javier; LLorca, Javier
2008-01-01
The standard strategy developed by Van der Giessen and Needleman (1995 Modelling Simul. Mater. Sci. Eng. 3 689) to simulate dislocation dynamics in two-dimensional finite domains was modified to account for the effect of dislocations leaving the crystal through a free surface in the case of arbitrary non-convex domains. The new approach incorporates the displacement jumps across the slip segments of the dislocations that have exited the crystal within the finite element analysis carried out to compute the image stresses on the dislocations due to the finite boundaries. This is done in a simple computationally efficient way by embedding the discontinuities in the finite element solution, a strategy often used in the numerical simulation of crack propagation in solids. Two academic examples are presented to validate and demonstrate the extended model and its implementation within a finite element program is detailed in the appendix
Energy Technology Data Exchange (ETDEWEB)
Gozin, Mohammad-Hosein; Aghaie-Khafri, Mehrdad [K. N. Toosi University of Technology, Tehran (Korea, Republic of)
2014-06-15
Shape evolution of a quarter-elliptical crack emanating from a hole is studied. Three dimensional elastic-plastic finite element analysis of the fatigue crack closure was considered and the stress intensity factor was calculated based on the duplicated elastic model at each crack tip node. The crack front node was advanced proportional to the imposed effective stress intensity factor. Remeshing was applied at each step of the crack growth and solution mapping algorithm was considered. Crack growth retardation at free surfaces was successfully observed. A MATLAB-ABAQUS interference code was developed for the first time to perform crack growth on the basis of crack closure. Simulation results indicated that crack shape is sensitive to the remeshing strategy. Predictions based on the proposed models were in good agreement with Carlson's experiments results.
Finite elements volumes methods: applications to the Navier-Stokes equations and convergence results
International Nuclear Information System (INIS)
Emonot, P.
1992-01-01
In the first chapter are described the equations modeling incompressible fluid flow and a quick presentation of finite volumes method. The second chapter is an introduction to the finite elements volumes method. The box model is described and a method adapted to Navier-Stokes problems is proposed. The third chapter shows a fault analysis of the finite elements volumes method for the Laplacian problem and some examples in one, two, three dimensional calculations. The fourth chapter is an extension of the error analysis of the method for the Navier-Stokes problem
Niemi, Antti; Babuška, Ivo M.; Pitkä ranta, Juhani; Demkowicz, Leszek F.
2011-01-01
elasticity theory and (2) by using a dimensionally reduced shell-ring model. In the first approach the problem is solved with a fully automatic hp-adaptive finite element solver whereas the classical h-version of the finite element method is used
International Nuclear Information System (INIS)
Tonks, M.R.; Williamson, R.; Masson, R.
2015-01-01
The Finite Element Method (FEM) is a numerical technique for finding approximate solutions to boundary value problems. While FEM is commonly used to solve solid mechanics equations, it can be applied to a large range of BVPs from many different fields. FEM has been used for reactor fuels modelling for many years. It is most often used for fuel performance modelling at the pellet and pin scale, however, it has also been used to investigate properties of the fuel material, such as thermal conductivity and fission gas release. Recently, the United Stated Department Nuclear Energy Advanced Modelling and Simulation Program has begun using FEM as the basis of the MOOSE-BISON-MARMOT Project that is developing a multi-dimensional, multi-physics fuel performance capability that is massively parallel and will use multi-scale material models to provide a truly predictive modelling capability. (authors)
Conci, Ricardo Augusto; Tomazi, Flavio Henrique Silveira; Noritomi, Pedro Yoshito; da Silva, Jorge Vicente Lopes; Fritscher, Guilherme Genehr; Heitz, Claiton
2015-07-01
To compare the mechanical stress on the mandibular condyle after the reduction and fixation of mandibular condylar fractures using the neck screw and 2 other conventional techniques according to 3-dimensional finite element analysis. A 3-dimensional finite element model of a mandible was created and graphically simulated on a computer screen. The model was fixed with 3 different techniques: a 2.0-mm plate with 4 screws, 2 plates (1 1.5-mm plate and 1 2.0-mm plate) with 4 screws, and a neck screw. Loads were applied that simulated muscular action, with restrictions of the upper movements of the mandible, differentiation of the cortical and medullary bone, and the virtual "folds" of the plates and screws so that they could adjust to the condylar surface. Afterward, the data were exported for graphic visualization of the results and quantitative analysis was performed. The 2-plate technique exhibited better stability in regard to displacement of fractures, deformity of the synthesis materials, and minimum and maximum tension values. The results with the neck screw were satisfactory and were similar to those found when a miniplate was used. Although the study shows that 2 isolated plates yielded better results compared with the other groups using other fixation systems and methods, the neck screw could be an option for condylar fracture reduction. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Finite element analysis of helical flows in human aortic arch: A novel index
Lee, Cheng-Hung; Liu, Kuo-Sheng; Jhong, Guan-Heng; Liu, Shih-Jung; Hsu, Ming-Yi; Wang, Chao-Jan; Hung, Kuo-Chun
2014-01-01
This study investigates the helical secondary flows in the aortic arch using finite element analysis. The relationship between helical flow and the configuration of the aorta in patients of whose three-dimensional images constructed from computed tomography scans was examined. A finite element model of the pressurized root, arch, and supra-aortic vessels was developed to simulate the pattern of helical secondary flows. Calculations indicate that most of the helical secondary flow was formed i...
Directory of Open Access Journals (Sweden)
Nikhita Pekhale
2016-01-01
Full Text Available Introduction: The aim of this study is to evaluate stress and displacement effects of maxillary posterior intrusion mechanics with mini-implant anchorage by using finite element method. Materials and Methods: A computer stimulation of three-dimensional model maxilla with all teeth, PDL, bone, mini-implants, brackets, arch wire, force element, and transpalatal arch was constructed on the basis of average anatomic morphology. Finite element analysis was done to evaluate the amount of stress and its distribution during orthodontic intrusive force. Results: Increased Von Mises stress values were observed in mesio-cervical region of first molar. The middle third of second premolar and second molar and regions adjacent to force application sites also showed relatively high stress values. Minimum stress values were observed in apical region of first premolar as it is away from force application. Conclusion: Using three mini-implant and transpalatal arches, this study demonstrates that significant amount of true intrusion of maxillary molars could be obtained with lesser concentration of stresses in the apical area recorded.
Measurement of Temperature and Soil Properties for Finite Element Model Verification
2012-08-01
In recent years, ADOT&PF personnel have used TEMP/W, a commercially available two-dimensional finite element program, to conduct thermal modeling of various : embankment configurations in an effort to reduce the thawing of ice-rich permafrost through...
Castellazzi, Giovanni; D'Altri, Antonio Maria; Bitelli, Gabriele; Selvaggi, Ilenia; Lambertini, Alessandro
2015-07-28
In this paper, a new semi-automatic procedure to transform three-dimensional point clouds of complex objects to three-dimensional finite element models is presented and validated. The procedure conceives of the point cloud as a stacking of point sections. The complexity of the clouds is arbitrary, since the procedure is designed for terrestrial laser scanner surveys applied to buildings with irregular geometry, such as historical buildings. The procedure aims at solving the problems connected to the generation of finite element models of these complex structures by constructing a fine discretized geometry with a reduced amount of time and ready to be used with structural analysis. If the starting clouds represent the inner and outer surfaces of the structure, the resulting finite element model will accurately capture the whole three-dimensional structure, producing a complex solid made by voxel elements. A comparison analysis with a CAD-based model is carried out on a historical building damaged by a seismic event. The results indicate that the proposed procedure is effective and obtains comparable models in a shorter time, with an increased level of automation.
Finite element based composite solution for neutron transport problems
International Nuclear Information System (INIS)
Mirza, A.N.; Mirza, N.M.
1995-01-01
A finite element treatment for solving neutron transport problems is presented. The employs region-wise discontinuous finite elements for the spatial representation of the neutron angular flux, while spherical harmonics are used for directional dependence. Composite solutions has been obtained by using different orders of angular approximations in different parts of a system. The method has been successfully implemented for one dimensional slab and two dimensional rectangular geometry problems. An overall reduction in the number of nodal coefficients (more than 60% in some cases as compared to conventional schemes) has been achieved without loss of accuracy with better utilization of computational resources. The method also provides an efficient way of handling physically difficult situations such as treatment of voids in duct problems and sharply changing angular flux. It is observed that a great wealth of information about the spatial and directional dependence of the angular flux is obtained much more quickly as compared to Monte Carlo method, where most of the information in restricted to the locality of immediate interest. (author)
ZONE: a finite element mesh generator. [In FORTRAN IV for CDC 7600
Energy Technology Data Exchange (ETDEWEB)
Burger, M. J.
1976-05-01
The ZONE computer program is a finite-element mesh generator which produces the nodes and element description of any two-dimensional geometry. The geometry is subdivided into a mesh of quadrilateral and triangular zones arranged sequentially in an ordered march through the geometry. The order of march can be chosen so that the minimum bandwidth is obtained. The node points are defined in terms of the x and y coordinates in a global rectangular coordinate system. The zones generated are quadrilaterals or triangles defined by four node points in a counterclockwise sequence. Node points defining the outside boundary are generated to describe pressure boundary conditions. The mesh that is generated can be used as input to any two-dimensional as well as any axisymmetrical structure program. The output from ZONE is essentially the input file to NAOS, HONDO, and other axisymmetric finite element programs. 14 figures. (RWR)
Finite elements and approximation
Zienkiewicz, O C
2006-01-01
A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o
A first course in finite elements
Fish, Jacob
2007-01-01
Developed from the authors, combined total of 50 years undergraduate and graduate teaching experience, this book presents the finite element method formulated as a general-purpose numerical procedure for solving engineering problems governed by partial differential equations. Focusing on the formulation and application of the finite element method through the integration of finite element theory, code development, and software application, the book is both introductory and self-contained, as well as being a hands-on experience for any student. This authoritative text on Finite Elements:Adopts
Finite element simulation of piezoelectric transformers.
Tsuchiya, T; Kagawa, Y; Wakatsuki, N; Okamura, H
2001-07-01
Piezoelectric transformers are nothing but ultrasonic resonators with two pairs of electrodes provided on the surface of a piezoelectric substrate in which electrical energy is carried in the mechanical form. The input and output electrodes are arranged to provide the impedance transformation, which results in the voltage transformation. As they are operated at a resonance, the electrical equivalent circuit approach has traditionally been developed in a rather empirical way and has been used for analysis and design. The present paper deals with the analysis of the piezoelectric transformers based on the three-dimensional finite element modelling. The PIEZO3D code that we have developed is modified to include the external loading conditions. The finite element approach is now available for a wide variety of the electrical boundary conditions. The equivalent circuit of lumped parameters can also be derived from the finite element method (FEM) solution if required. The simulation of the present transformers is made for the low intensity operation and compared with the experimental results. Demonstration is made for basic Rosen-type transformers in which the longitudinal mode of a plate plays an important role; in which the equivalent circuit of lumped constants has been used. However, there are many modes of vibration associated with the plate, the effect of which cannot always be ignored. In the experiment, the double resonances are sometimes observed in the vicinity of the operating frequency. The simulation demonstrates that this is due to the coupling of the longitudinal mode with the flexural mode. Thus, the simulation provides an invaluable guideline to the transformer design.
Parallelized Three-Dimensional Resistivity Inversion Using Finite Elements And Adjoint State Methods
Schaa, Ralf; Gross, Lutz; Du Plessis, Jaco
2015-04-01
The resistivity method is one of the oldest geophysical exploration methods, which employs one pair of electrodes to inject current into the ground and one or more pairs of electrodes to measure the electrical potential difference. The potential difference is a non-linear function of the subsurface resistivity distribution described by an elliptic partial differential equation (PDE) of the Poisson type. Inversion of measured potentials solves for the subsurface resistivity represented by PDE coefficients. With increasing advances in multichannel resistivity acquisition systems (systems with more than 60 channels and full waveform recording are now emerging), inversion software require efficient storage and solver algorithms. We developed the finite element solver Escript, which provides a user-friendly programming environment in Python to solve large-scale PDE-based problems (see https://launchpad.net/escript-finley). Using finite elements, highly irregular shaped geology and topography can readily be taken into account. For the 3D resistivity problem, we have implemented the secondary potential approach, where the PDE is decomposed into a primary potential caused by the source current and the secondary potential caused by changes in subsurface resistivity. The primary potential is calculated analytically, and the boundary value problem for the secondary potential is solved using nodal finite elements. This approach removes the singularity caused by the source currents and provides more accurate 3D resistivity models. To solve the inversion problem we apply a 'first optimize then discretize' approach using the quasi-Newton scheme in form of the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method (see Gross & Kemp 2013). The evaluation of the cost function requires the solution of the secondary potential PDE for each source current and the solution of the corresponding adjoint-state PDE for the cost function gradients with respect to the subsurface
Finite Element in Angle Unit Sphere Meshing for Charged Particle Transport.
Energy Technology Data Exchange (ETDEWEB)
Ortega, Mario Ivan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Drumm, Clifton R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-10-01
Finite element in angle formulations of the charged particle transport equation require the discretization of the unit sphere. In Sceptre, a three-dimensional surface mesh of a sphere is transformed into a two-dimensional mesh. Projection of a sphere onto a two-dimensional surface is well studied with map makers spending the last few centuries attempting to create maps that preserve proportion and area. Using these techniques, various meshing schemes for the unit sphere were investigated.
International Nuclear Information System (INIS)
Fujihara, Hirohiko; Ueda, Masahiro
1975-01-01
In the design of chemical reactors or nuclear pressure vessels it is often important to evaluate the stress distribution in nozzle-to-shell intersections. The finite element method is a powerful tool for stress analysis, but it has a defects to require troublesome work in preparing input data. Specially, the mesh data of oblique nozzles and tangential nozzles, in which stress concentration is very high, are very difficult to be prepared. The authors made a mesh generation program which can be used to any nozzle-to-shell intersections, and combining this program with a three dimensional stress analysis program by the finite element method they made the stress analysis of nozzle-to-shell intersections under internal pressure. Consequently, stresses, strains and deformations of nozzles nonsymmetrical to spherical shells and nozzles tangential to cylindrical shells were made clear and it was shown that the curvature of the inner surface of the nozzle corner was a controlling factor in reducing stress concentration. (auth.)
Nakamura, Yoshinori; Kanbara, Ryo; Ochiai, Kent T; Tanaka, Yoshinobu
2014-10-01
The mechanical evaluation of the function of partial removable dental prostheses with 3-dimensional finite element modeling requires the accurate assessment and incorporation of soft tissue behavior. The differential behaviors of the residual ridge mucosa and periodontal ligament tissues have been shown to exhibit nonlinear displacement. The mathematic incorporation of known values simulating nonlinear soft tissue behavior has not been investigated previously via 3-dimensional finite element modeling evaluation to demonstrate the effect of prosthesis design on the supporting tissues. The purpose of this comparative study was to evaluate the functional differences of 3 different partial removable dental prosthesis designs with 3-dimensional finite element analysis modeling and a simulated patient model incorporating known viscoelastic, nonlinear soft tissue properties. Three different designs of distal extension removable partial dental prostheses were analyzed. The stress distributions to the supporting abutments and soft tissue displacements of the designs tested were calculated and mechanically compared. Among the 3 dental designs evaluated, the RPI prosthesis demonstrated the lowest stress concentrations on the tissue supporting the tooth abutment and also provided wide mucosa-borne areas of support, thereby demonstrating a mechanical advantage and efficacy over the other designs evaluated. The data and results obtained from this study confirmed that the functional behavior of partial dental prostheses with supporting abutments and soft tissues are consistent with the conventional theories of design and clinical experience. The validity and usefulness of this testing method for future applications and testing protocols are shown. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Modelling optimization involving different types of elements in finite element analysis
International Nuclear Information System (INIS)
Wai, C M; Rivai, Ahmad; Bapokutty, Omar
2013-01-01
Finite elements are used to express the mechanical behaviour of a structure in finite element analysis. Therefore, the selection of the elements determines the quality of the analysis. The aim of this paper is to compare and contrast 1D element, 2D element, and 3D element used in finite element analysis. A simple case study was carried out on a standard W460x74 I-beam. The I-beam was modelled and analyzed statically with 1D elements, 2D elements and 3D elements. The results for the three separate finite element models were compared in terms of stresses, deformation and displacement of the I-beam. All three finite element models yield satisfactory results with acceptable errors. The advantages and limitations of these elements are discussed. 1D elements offer simplicity although lacking in their ability to model complicated geometry. 2D elements and 3D elements provide more detail yet sophisticated results which require more time and computer memory in the modelling process. It is also found that the choice of element in finite element analysis is influence by a few factors such as the geometry of the structure, desired analysis results, and the capability of the computer
Energy Technology Data Exchange (ETDEWEB)
Hosseini, Seyed Abolfaz [Dept. of Energy Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)
2017-02-15
The purpose of the present study is the presentation of the appropriate element and shape function in the solution of the neutron diffusion equation in two-dimensional (2D) geometries. To this end, the multigroup neutron diffusion equation is solved using the Galerkin finite element method in both rectangular and hexagonal reactor cores. The spatial discretization of the equation is performed using unstructured triangular and quadrilateral finite elements. Calculations are performed using both linear and quadratic approximations of shape function in the Galerkin finite element method, based on which results are compared. Using the power iteration method, the neutron flux distributions with the corresponding eigenvalue are obtained. The results are then validated against the valid results for IAEA-2D and BIBLIS-2D benchmark problems. To investigate the dependency of the results to the type and number of the elements, and shape function order, a sensitivity analysis of the calculations to the mentioned parameters is performed. It is shown that the triangular elements and second order of the shape function in each element give the best results in comparison to the other states.
The ACR-program for automatic finite element model generation for part through cracks
International Nuclear Information System (INIS)
Leinonen, M.S.; Mikkola, T.P.J.
1989-01-01
The ACR-program (Automatic Finite Element Model Generation for Part Through Cracks) has been developed at the Technical Research Centre of Finland (VTT) for automatic finite element model generation for surface flaws using three dimensional solid elements. Circumferential or axial cracks can be generated on the inner or outer surface of a cylindrical or toroidal geometry. Several crack forms are available including the standard semi-elliptical surface crack. The program can be used in the development of automated systems for fracture mechanical analyses of structures. The tests for the accuracy of the FE-mesh have been started with two-dimensional models. The results indicate that the accuracy of the standard mesh is sufficient for practical analyses. Refinement of the standard mesh is needed in analyses with high load levels well over the limit load of the structure
Directory of Open Access Journals (Sweden)
Mojtaba Mahmoodi
2017-09-01
Full Text Available Introduction: In post-core crown restorations, the use of prefabricated composite posts concentrate stress at the cervical region and the use of metal posts (prefabricated and customized posts concentrates stress at the interfaces. Fiber reinforced composite posts (FRCs with oval cross-section (oval posts were proposed for post-core crown restorations to reduce the stress levels at the cervical region. The aim of the present study was to investigate the impact of oval cross-section composite posts on stress distribution of premolar with oval-shaped canal by using three-dimensional (3D finite element analysis. Materials and Methods: An extracted premolar tooth was mounted, sectioned, and photographed to create a 3D model. The surrounding tissues of the tooth, periodontal ligament, as well as cortical and trabecular bones were modeled. Seven taper posts with two different cross-section geometries (circular and oval shapes were modeled, as well. Then, the effect of post geometry, post material (carbon fiber and fiberglass, and cement material were investigated by 3D finite element analysis and the stress distribution results were compared. Results: In all the models, the highest stress levels of the dentin were accumulated at the coronal third of the root, and the highest stress levels at the bonding layers were accumulated at the cervical margin. Narrow circular posts induced the highest stress levels, whereas the stress levels were reduced by using thick oval posts. Application of elastic cement reduces the stress at the bonding layers but increases stress at the dentin. Conclusion: Finite element analysis showed that prefabricated oval posts are superior to traditional circular ones. The use of cement with low elastic modulus reduces the risk of debonding but raises the risk of root fracture.
DEFF Research Database (Denmark)
Fasano, Andrea; Rasmussen, Henrik K.
2017-01-01
A third order accurate, in time and space, finite element scheme for the numerical simulation of three- dimensional time-dependent flow of the molecular stress function type of fluids in a generalized formu- lation is presented. The scheme is an extension of the K-BKZ Lagrangian finite element me...
Fazi, Giovanni; Tellini, Simone; Vangi, Dario; Branchi, Roberto
2011-01-01
The distribution of stresses in bone, implants, and prosthesis were analyzed via three-dimensional finite element modeling in different implant configurations for a fixed implant-supported prosthesis in an edentulous mandible. A finite element model was created with data obtained from computed tomographic scans of a human mandible. Anisotropic characteristics for cortical and cancellous bone were incorporated into the model. Six different configurations of intraforaminal implants were tested, with the number of implants varying from three to five and the distal implants inserted either parallel to the other implants or tilted distally by 17 or 34 degrees. A prosthetic structure connecting the implants was designed, with 20-mm posterior cantilevers for the parallel implant configurations, and a load of 200 N was applied to the distal portion of the cantilevers. Stresses were measured at the level of the implant, the prosthetic structure, and the bone. Bone-level stresses were analyzed at the implant-bone interface, at the external cortical bone surface, distal to the terminal implant, and in the cancellous bone along the implant body. A three-parallel-implant configuration resulted in higher stress in the implant and bone than configurations with four or five parallel implants. Configurations with the distal implants tilted resulted in a more favorable stress distribution at all levels. In parallel-implant configurations for fixed implant-supported mandibular prostheses, four and five implants resulted in similar stress distribution in the bone, framework, and implants. A distribution of four implants with the distal implants tilted 34 degrees (ie, the "All-on-Four" configuration) resulted in a favorable reduction of stresses in the bone, framework, and implants.
Yang, Wenting; Wang, Dongmei; Lei, Zhoujixin; Wang, Chunhui; Chen, Shanguang
2017-12-01
Astronauts who are exposed to weightless environment in long-term spaceflight might encounter bone density and mass loss for the mechanical stimulus is smaller than normal value. This study built a three dimensional model of human femur to simulate the remodeling process of human femur during bed rest experiment based on finite element analysis (FEA). The remodeling parameters of this finite element model was validated after comparing experimental and numerical results. Then, the remodeling process of human femur in weightless environment was simulated, and the remodeling function of time was derived. The loading magnitude and loading cycle on human femur during weightless environment were increased to simulate the exercise against bone loss. Simulation results showed that increasing loading magnitude is more effective in diminishing bone loss than increasing loading cycles, which demonstrated that exercise of certain intensity could help resist bone loss during long-term spaceflight. At the end, this study simulated the bone recovery process after spaceflight. It was found that the bone absorption rate is larger than bone formation rate. We advise that astronauts should take exercise during spaceflight to resist bone loss.
Yamaguchi, Satoshi; Tsutsui, Kihei; Satake, Koji; Morikawa, Shigehiro; Shirai, Yoshiaki; Tanaka, Hiromi T
2014-10-01
Our goal was to develop a three-dimensional finite element model that enables dynamic analysis of needle insertion for soft materials. To demonstrate large deformation and fracture, we used the arbitrary Lagrangian-Eulerian (ALE) method for fluid analysis. We performed ALE-based finite element analysis for 3% agar gel and three types of copper needle with bevel tips. To evaluate simulation results, we compared the needle deflection and insertion force with corresponding experimental results acquired with a uniaxial manipulator. We studied the shear stress distribution of agar gel on various time scales. For 30°, 45°, and 60°, differences in deflections of each needle between both sets of results were 2.424, 2.981, and 3.737mm, respectively. For the insertion force, there was no significant difference for mismatching area error (p<0.05) between simulation and experimental results. Our results have the potential to be a stepping stone to develop pre-operative surgical planning to estimate an optimal needle insertion path for MR image-guided microwave coagulation therapy and for analyzing large deformation and fracture in biological tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Hutula, D.N.; Wiancko, B.E.
1980-03-01
ACCEPT is a three-dimensional finite element computer program for analysis of large-deformation elastic-plastic-creep response of Zircaloy tubes subjected to temperature, surface pressures, and axial force. A twenty-mode, tri-quadratic, isoparametric element is used along with a Zircaloy materials model. A linear time-incremental procedure with residual force correction is used to solve for the time-dependent response. The program features an algorithm which automatically chooses the time step sizes to control the accuracy and numerical stability of the solution. A contact-separation capability allows modeling of interaction of reactor fuel rod cladding with fuel pellets or external supports
Finite element analysis of an inflatable torus considering air mass structural element
Gajbhiye, S. C.; Upadhyay, S. H.; Harsha, S. P.
2014-01-01
Inflatable structures, also known as gossamer structures, are at high boom in the current space technology due to their low mass and compact size comparing to the traditional spacecraft designing. Internal pressure becomes the major source of strength and rigidity, essentially stiffen the structure. However, inflatable space based membrane structure are at high risk to the vibration disturbance due to their low structural stiffness and material damping. Hence, the vibration modes of the structure should be known to a high degree of accuracy in order to provide better control authority. In the past, most of the studies conducted on the vibration analysis of gossamer structures used inaccurate or approximate theories in modeling the internal pressure. The toroidal shaped structure is one of the important key element in space application, helps to support the reflector in space application. This paper discusses the finite-element analysis of an inflated torus. The eigen-frequencies are obtained via three-dimensional small-strain elasticity theory, based on extremum energy principle. The two finite-element model (model-1 and model-2) have cases have been generated using a commercial finite-element package. The structure model-1 with shell element and model-2 with the combination of the mass of enclosed fluid (air) added to the shell elements have been taken for the study. The model-1 is computed with present analytical approach to understand the convergence rate and the accuracy. The convergence study is made available for the symmetric modes and anti-symmetric modes about the centroidal-axis plane, meeting the eigen-frequencies of an inflatable torus with the circular cross section. The structural model-2 is introduced with air mass element and analyzed its eigen-frequency with different aspect ratio and mode shape response using in-plane and out-plane loading condition are studied.
Finite element modeling of piezoelectric elements with complex electrode configuration
International Nuclear Information System (INIS)
Paradies, R; Schläpfer, B
2009-01-01
realized for a commercial finite element program allowing for an automatic assignment of different material properties for two- and three-dimensional FEMs with arbitrary electrode configurations. Examples of piezoelectric transducers with complex electrode configurations are presented and the influence of the material description on the behavior of the modeled element is discussed. Furthermore, as an attempt at verification of the FEM simulation, a comparison of simulated stress concentrations with experimental investigations is presented
Non-linear finite element modeling
DEFF Research Database (Denmark)
Mikkelsen, Lars Pilgaard
The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...
Structural modeling techniques by finite element method
International Nuclear Information System (INIS)
Kang, Yeong Jin; Kim, Geung Hwan; Ju, Gwan Jeong
1991-01-01
This book includes introduction table of contents chapter 1 finite element idealization introduction summary of the finite element method equilibrium and compatibility in the finite element solution degrees of freedom symmetry and anti symmetry modeling guidelines local analysis example references chapter 2 static analysis structural geometry finite element models analysis procedure modeling guidelines references chapter 3 dynamic analysis models for dynamic analysis dynamic analysis procedures modeling guidelines and modeling guidelines.
SAFE-3D, Stress Analysis of 3-D Composite Structure by Finite Elements Method
International Nuclear Information System (INIS)
Cornell, D.C.; Jadhav, K.; Crowell, J.S.
1969-01-01
1 - Description of problem or function: SAFE-3D is a finite-element program for the three-dimensional elastic analysis of heterogeneous composite structures. The program uses the following types of finite elements - (1) tetrahedral elements to represent the continuum, (2) triangular plane stress membrane elements to represent inner liner or outer case, and (3) uniaxial tension-compression elements to represent internal reinforcement. The structure can be of arbitrary geometry and have any distribution of material properties, temperatures, surface loadings, and boundary conditions. 2 - Method of solution: The finite-element variational method is used. Equilibrium equations are solved by the alternating component iterative method. 3 - Restrictions on the complexity of the problem - Maxima of: 5000 nodes; 16000 elements. The program cannot be applied to incompressible solids and is not recommended for Poisson's ratio in the range of nu between 0.495 and 0.5
Hermitian Mindlin Plate Wavelet Finite Element Method for Load Identification
Directory of Open Access Journals (Sweden)
Xiaofeng Xue
2016-01-01
Full Text Available A new Hermitian Mindlin plate wavelet element is proposed. The two-dimensional Hermitian cubic spline interpolation wavelet is substituted into finite element functions to construct frequency response function (FRF. It uses a system’s FRF and response spectrums to calculate load spectrums and then derives loads in the time domain via the inverse fast Fourier transform. By simulating different excitation cases, Hermitian cubic spline wavelets on the interval (HCSWI finite elements are used to reverse load identification in the Mindlin plate. The singular value decomposition (SVD method is adopted to solve the ill-posed inverse problem. Compared with ANSYS results, HCSWI Mindlin plate element can accurately identify the applied load. Numerical results show that the algorithm of HCSWI Mindlin plate element is effective. The accuracy of HCSWI can be verified by comparing the FRF of HCSWI and ANSYS elements with the experiment data. The experiment proves that the load identification of HCSWI Mindlin plate is effective and precise by using the FRF and response spectrums to calculate the loads.
Finite element method for neutron diffusion problems in hexagonal geometry
International Nuclear Information System (INIS)
Wei, T.Y.C.; Hansen, K.F.
1975-06-01
The use of the finite element method for solving two-dimensional static neutron diffusion problems in hexagonal reactor configurations is considered. It is investigated as a possible alternative to the low-order finite difference method. Various piecewise polynomial spaces are examined for their use in hexagonal problems. The central questions which arise in the design of these spaces are the degree of incompleteness permissible and the advantages of using a low-order space fine-mesh approach over that of a high-order space coarse-mesh one. There is also the question of the degree of smoothness required. Two schemes for the construction of spaces are described and a number of specific spaces, constructed with the questions outlined above in mind, are presented. They range from a complete non-Lagrangian, non-Hermite quadratic space to an incomplete ninth order space. Results are presented for two-dimensional problems typical of a small high temperature gas-cooled reactor. From the results it is concluded that the space used should at least include the complete linear one. Complete spaces are to be preferred to totally incomplete ones. Once function continuity is imposed any additional degree of smoothness is of secondary importance. For flux shapes typical of the small high temperature gas-cooled reactor the linear space fine-mesh alternative is to be preferred to the perturbation quadratic space coarse-mesh one and the low-order finite difference method is to be preferred over both finite element schemes
Application of Dynamic Analysis in Semi-Analytical Finite Element Method.
Liu, Pengfei; Xing, Qinyan; Wang, Dawei; Oeser, Markus
2017-08-30
Analyses of dynamic responses are significantly important for the design, maintenance and rehabilitation of asphalt pavement. In order to evaluate the dynamic responses of asphalt pavement under moving loads, a specific computational program, SAFEM, was developed based on a semi-analytical finite element method. This method is three-dimensional and only requires a two-dimensional FE discretization by incorporating Fourier series in the third dimension. In this paper, the algorithm to apply the dynamic analysis to SAFEM was introduced in detail. Asphalt pavement models under moving loads were built in the SAFEM and commercial finite element software ABAQUS to verify the accuracy and efficiency of the SAFEM. The verification shows that the computational accuracy of SAFEM is high enough and its computational time is much shorter than ABAQUS. Moreover, experimental verification was carried out and the prediction derived from SAFEM is consistent with the measurement. Therefore, the SAFEM is feasible to reliably predict the dynamic response of asphalt pavement under moving loads, thus proving beneficial to road administration in assessing the pavement's state.
Belytschko, Ted; Wing, Kam Liu
1987-01-01
In the Probabilistic Finite Element Method (PFEM), finite element methods have been efficiently combined with second-order perturbation techniques to provide an effective method for informing the designer of the range of response which is likely in a given problem. The designer must provide as input the statistical character of the input variables, such as yield strength, load magnitude, and Young's modulus, by specifying their mean values and their variances. The output then consists of the mean response and the variance in the response. Thus the designer is given a much broader picture of the predicted performance than with simply a single response curve. These methods are applicable to a wide class of problems, provided that the scale of randomness is not too large and the probabilistic density functions possess decaying tails. By incorporating the computational techniques we have developed in the past 3 years for efficiency, the probabilistic finite element methods are capable of handling large systems with many sources of uncertainties. Sample results for an elastic-plastic ten-bar structure and an elastic-plastic plane continuum with a circular hole subject to cyclic loadings with the yield stress on the random field are given.
Finite element and finite difference methods in electromagnetic scattering
Morgan, MA
2013-01-01
This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled sca
Finite-element pre-analysis for pressurized thermoshock tests
International Nuclear Information System (INIS)
Keinaenen, H.; Talja, H.; Lehtonen, M.; Rintamaa, R.; Bljumin, A.; Timofeev, B.
1992-05-01
The behaviour of a model pressure vessel is studied in a pressurized thermal shock loading. The tests were performed at the Prometey Institute in St. Petersburg. The calculations were performed at the Technical Research Centre of Finland. The report describes the preliminary finite-element analyses for the fourth, fifth and sixth thermoshock tests with the first model pressure vessel. Seven pressurized thermoshock tests were made with the same model using five different flaw geometries. In the first three tests the flaw was actually a blunt notch. In the two following tests (tests 4 and 5) a sharp pre-crack was produced before the test. In the last two test (tests 6 and 7) the old crack was used. According to the measurements and post-test ultrasonic examination of the crack front, the sixth test led to significant crack extension. Both temperatures and stresses were calculated using the finite-element method. The calculations were made using the idealized initial flaw geometry and preliminary material data. Both two-and three-dimensional models were used in the calculations. J-integral values were calculated from the elastic-plastic finite-element results. The stress intensity factor values were evaluated on the basis of the calculated J-integrals and compared with the preliminary material fracture toughness data obtained from the Prometey Institute
HYFRAC3D, 3-D Hydraulic Rock Fracture Propagation by Finite Element Method
International Nuclear Information System (INIS)
Advani, S.H.; Lee, J.K.; Lee, T.S.
2001-01-01
1 - Description of program or function: HYFRAC3D is a finite element program for simulation of three-dimensional fracture geometries with a two-dimensional planar solution. The model predicts the height, width and wing length over time for a hydraulic fracture propagating in a multi-layered system of rock with variable fluid flow and rock mechanics properties. 2 - Method of solution: The program uses the finite element Method of solution. A backward difference scheme is used by taking the weight functions on the time axis. This implicit time matching scheme requires iteration since the fracture configuration at time t+dt is not known. 3 - Restrictions on the complexity of the problem: Graphics output is not available and program is limited to fracture propagation in a single plane without proppant transport
Two Dimensional Finite Element Model to Study Calcium Distribution in Oocytes
Naik, Parvaiz Ahmad; Pardasani, Kamal Raj
2015-06-01
Cytosolic free calcium concentration is a key regulatory factor and perhaps the most widely used means of controlling cellular function. Calcium can enter cells through different pathways which are activated by specific stimuli including membrane depolarization, chemical signals and calcium depletion of intracellular stores. One of the important components of oocyte maturation is differentiation of the Ca2+ signaling machinery which is essential for egg activation after fertilization. Eggs acquire the ability to produce the fertilization-specific calcium signal during oocyte maturation. The calcium concentration patterns required during different stages of oocyte maturation are still not completely known. Also the mechanisms involved in calcium dynamics in oocyte cell are still not well understood. In view of above a two dimensional FEM model has been proposed to study calcium distribution in an oocyte cell. The parameters such as buffers, ryanodine receptor, SERCA pump and voltage gated calcium channel are incorporated in the model. Based on the biophysical conditions the initial and boundary conditions have been framed. The model is transformed into variational form and Ritz finite element method has been employed to obtain the solution. A program has been developed in MATLAB 7.10 for the entire problem and executed to obtain numerical results. The numerical results have been used to study the effect of buffers, RyR, SERCA pump and VGCC on calcium distribution in an oocyte cell.
Li, Zuoping; Alonso, Jorge E; Kim, Jong-Eun; Davidson, James S; Etheridge, Brandon S; Eberhardt, Alan W
2006-09-01
Three-dimensional finite element (FE) models of human pubic symphyses were constructed from computed tomography image data of one male and one female cadaver pelvis. The pubic bones, interpubic fibrocartilaginous disc and four pubic ligaments were segmented semi-automatically and meshed with hexahedral elements using automatic mesh generation schemes. A two-term viscoelastic Prony series, determined by curve fitting results of compressive creep experiments, was used to model the rate-dependent effects of the interpubic disc and the pubic ligaments. Three-parameter Mooney-Rivlin material coefficients were calculated for the discs using a heuristic FE approach based on average experimental joint compression data. Similarly, a transversely isotropic hyperelastic material model was applied to the ligaments to capture average tensile responses. Linear elastic isotropic properties were assigned to bone. The applicability of the resulting models was tested in bending simulations in four directions and in tensile tests of varying load rates. The model-predicted results correlated reasonably with the joint bending stiffnesses and rate-dependent tensile responses measured in experiments, supporting the validity of the estimated material coefficients and overall modeling approach. This study represents an important and necessary step in the eventual development of biofidelic pelvis models to investigate symphysis response under high-energy impact conditions, such as motor vehicle collisions.
International Nuclear Information System (INIS)
Nkemzi, Boniface
2003-10-01
This paper is concerned with the effective implementation of the Fourier-finite-element method, which combines the approximating Fourier and the finite-element methods, for treating the Derichlet problem for the Lam.6 equations in axisymmetric domains Ω-circumflex is contained in R 3 with conical vertices and reentrant edges. The partial Fourier decomposition reduces the three-dimensional boundary value problem to an infinite sequence of decoupled two-dimensional boundary value problems on the plane meridian domain Ω α is contained in R + 2 of Ω-circumflex with solutions u, n (n = 0,1,2,...) being the Fourier coefficients of the solution u of the 3D problem. The asymptotic behavior of the Fourier coefficients near the angular points of Ω α , is described by appropriate singular vector-functions and treated numerically by linear finite elements on locally graded meshes. For the right-hand side function f-circumflex is an element of (L 2 (Ω-circumflex)) 3 it is proved that with appropriate mesh grading the rate of convergence of the combined approximations in (W 2 1 (Ω-circumflex)) 3 is of the order O(h + N -1 ), where h and N are the parameters of the finite-element and Fourier approximations, respectively, with h → 0 and N → ∞. (author)
Singh, Gurdeep; Saxena, Ravindra K.; Pandey, Sunil
2018-04-01
The aim of this study to developed a 3-D thermal finite element model for dissimilar material welding of AISI-304 stainless steel and copper. Welding of similar material is widely studied using experimental and numerical methods but the problem becomes trivial for the welding of dissimilar materials especially in ferrous and nonferrous materials. Finite element analysis of dissimilar material welding is a cost-effective method for the understanding and analysis of the process. The finite element analysis has been performed to predict the heat affected zone and temperature distribution in AISI-304 stainless steel and copper dissimilar weldment using MSC Marc 2017®. Due to the difference in physical properties of these materials the behavior of heat affected zone and temperature distribution are perceived to be different. To verify the accuracy of the thermal finite element model, the welding process was simulated with butt-welded joints having same dimensions and parameters from Attarha and Far [1]. It is found from the study that the heat affected zone is larger in copper weld pads than in AISI 304 stainless steel due to large difference in thermal conductivity of these two weld pads.
International Nuclear Information System (INIS)
Gartling, D.K.
1978-04-01
The theoretical background for the finite element computer program, NACHOS, is presented in detail. The NACHOS code is designed for the two-dimensional analysis of viscous incompressible fluid flows, including the effects of heat transfer. A general description of the fluid/thermal boundary value problems treated by the program is described. The finite element method and the associated numerical methods used in the NACHOS code are also presented. Instructions for use of the program are documented in SAND77-1334
Modelling 3-D mechanical phenomena in a 1-D industrial finite element code: results and perspectives
International Nuclear Information System (INIS)
Guicheret-Retel, V.; Trivaudey, F.; Boubakar, M.L.; Masson, R.; Thevenin, Ph.
2005-01-01
Assessing fuel rod integrity in PWR reactors must enjoin two opposite goals: a one-dimensional finite element code (axial revolution symmetry) is needed to provide industrial results at the scale of the reactor core, while the main risk of cladding failure [e.g. pellet-cladding interaction (PCI)] is based on fully three-dimensional phenomena. First, parametric three-dimensional elastic calculations were performed to identify the relevant parameters (fragment number, contact pellet-cladding conditions, etc.) as regards PCI. Axial fragment number as well as friction coefficient are shown to play a major role in PCI as opposed to other parameters. Next, the main limitations of the one-dimensional hypothesis of the finite element code CYRANO3 are identified. To overcome these limitations, both two- and three-dimensional emulations of CYRANO3 were developed. These developments are shown to significantly improve the results provided by CYRANO3. (authors)
International Nuclear Information System (INIS)
Witt, R.J.
1989-01-01
Toroidal field (TF) coils in fusion systems are routinely operated at very high magnetic fields. While obtaining the response of the coil to in-plane loads is relatively straightforward, the same is not true for the out-of-plane loads. Previous treatments of the out-of-plane problem have involved large, three-dimensional finite element idealizations. A new treatment of the out-of-plane problem is presented here; the model is two-dimensional in nature, and consumes far less CPU-time than three-dimensional methods. The approach assumes there exists a region of torsional deformation in the inboard leg and a bending region in the outboard leg. It also assumes the outboard part of the coil is attached to a torque frame/cylinder, which experiences primarily torsional deformation. Three-dimensional transition regions exist between the inboard and outboard legs and between the outboard leg and the torque frame. By considering several idealized problems of cylindrical shells subjected to moment distributions, it is shown that the size of these three-dimensional regions is quite small, and that the interaction between the torsional and bending regions can be treated in an equivalent two-dimensional fashion. Equivalent stiffnesses are derived to model penetration into and twist along the cylinders. These stiffnesses are then used in a special substructuring analysis to couple the three regions together. Results from the new method are compared to results from a 3D continuum model. (orig.)
DEFF Research Database (Denmark)
Cai, Hongzhu; Čuma, Martin; Zhdanov, Michael
2015-01-01
This paper presents a parallelized version of the edge-based finite element method with a novel post-processing approach for numerical modeling of an electromagnetic field in complex media. The method uses an unstructured tetrahedral mesh which can reduce the number of degrees of freedom signific......This paper presents a parallelized version of the edge-based finite element method with a novel post-processing approach for numerical modeling of an electromagnetic field in complex media. The method uses an unstructured tetrahedral mesh which can reduce the number of degrees of freedom...... significantly. The linear system of finite element equations is solved using parallel direct solvers which are robust for ill-conditioned systems and efficient for multiple source electromagnetic (EM) modeling. We also introduce a novel approach to compute the scalar components of the electric field from...... the tangential components along each edge based on field redatuming. The method can produce a more accurate result as compared to conventional approach. We have applied the developed algorithm to compute the EM response for a typical 3D anisotropic geoelectrical model of the off-shore HC reservoir with complex...
Development of polygon elements based on the scaled boundary finite element method
International Nuclear Information System (INIS)
Chiong, Irene; Song Chongmin
2010-01-01
We aim to extend the scaled boundary finite element method to construct conforming polygon elements. The development of the polygonal finite element is highly anticipated in computational mechanics as greater flexibility and accuracy can be achieved using these elements. The scaled boundary polygonal finite element will enable new developments in mesh generation, better accuracy from a higher order approximation and better transition elements in finite element meshes. Polygon elements of arbitrary number of edges and order have been developed successfully. The edges of an element are discretised with line elements. The displacement solution of the scaled boundary finite element method is used in the development of shape functions. They are shown to be smooth and continuous within the element, and satisfy compatibility and completeness requirements. Furthermore, eigenvalue decomposition has been used to depict element modes and outcomes indicate the ability of the scaled boundary polygonal element to express rigid body and constant strain modes. Numerical tests are presented; the patch test is passed and constant strain modes verified. Accuracy and convergence of the method are also presented and the performance of the scaled boundary polygonal finite element is verified on Cook's swept panel problem. Results show that the scaled boundary polygonal finite element method outperforms a traditional mesh and accuracy and convergence are achieved from fewer nodes. The proposed method is also shown to be truly flexible, and applies to arbitrary n-gons formed of irregular and non-convex polygons.
Finite element analysis of cutting tools prior to fracture in hard turning operations
International Nuclear Information System (INIS)
Cakir, M. Cemal; I Sik, Yahya
2005-01-01
In this work cutting FEA of cutting tools prior to fracture is investigated. Fracture is the catastrophic end of the cutting edge that should be avoided for the cutting tool in order to have a longer tool life. This paper presents finite element modelling of a cutting tool just before its fracture. The data used in FEA are gathered from a tool breakage system that detects the fracture according to the variations of the cutting forces measured by a three-dimensional force dynamometer. The workpiece material used in the experiments is cold work tool steel, AISI O1 (60 HRC) and the cutting tool material is uncoated tungsten carbide (DNMG 150608). In order to investigate the cutting tool conditions in longitudinal external turning operations prior to fracture, static and dynamic finite element analyses are conducted. After the static finite element analysis, the modal and harmonic response analyses are carried on and the dynamic behaviours of the cutting tool structure are investigated. All FE analyses were performed using a commercial finite element package ANSYS
TRIP: a finite element computer program for the solution of convection heat transfer problems
International Nuclear Information System (INIS)
Slagter, W.; Roodbergen, H.A.
1976-01-01
The theory and use of the finite element code TRIP are described. The code calculates temperature distributions in three-dimensional continua subjected to convection heat transfer. A variational principle for transport phenomena is applied to solve the convection heat transfer problem with temperature and heat flux boundary conditions. The finite element discretization technique is used to reduce the continuous spatial solution into a finite number of unknowns. The method is developed in detail to determine temperature distributions in coolant passages of fuel rod bundles which are idealized by hexahedral elements. The development of the TRIP code is discussed and the listing of the program is given in FORTRAN IV. An example is given to illustrate the validity and practicality of the method
Structural weights analysis of advanced aerospace vehicles using finite element analysis
Bush, Lance B.; Lentz, Christopher A.; Rehder, John J.; Naftel, J. Chris; Cerro, Jeffrey A.
1989-01-01
A conceptual/preliminary level structural design system has been developed for structural integrity analysis and weight estimation of advanced space transportation vehicles. The system includes a three-dimensional interactive geometry modeler, a finite element pre- and post-processor, a finite element analyzer, and a structural sizing program. Inputs to the system include the geometry, surface temperature, material constants, construction methods, and aerodynamic and inertial loads. The results are a sized vehicle structure capable of withstanding the static loads incurred during assembly, transportation, operations, and missions, and a corresponding structural weight. An analysis of the Space Shuttle external tank is included in this paper as a validation and benchmark case of the system.
Spectral/hp least-squares finite element formulation for the Navier-Stokes equations
International Nuclear Information System (INIS)
Pontaza, J.P.; Reddy, J.N.
2003-01-01
We consider the application of least-squares finite element models combined with spectral/hp methods for the numerical solution of viscous flow problems. The paper presents the formulation, validation, and application of a spectral/hp algorithm to the numerical solution of the Navier-Stokes equations governing two- and three-dimensional stationary incompressible and low-speed compressible flows. The Navier-Stokes equations are expressed as an equivalent set of first-order equations by introducing vorticity or velocity gradients as additional independent variables and the least-squares method is used to develop the finite element model. High-order element expansions are used to construct the discrete model. The discrete model thus obtained is linearized by Newton's method, resulting in a linear system of equations with a symmetric positive definite coefficient matrix that is solved in a fully coupled manner by a preconditioned conjugate gradient method. Spectral convergence of the L 2 least-squares functional and L 2 error norms is verified using smooth solutions to the two-dimensional stationary Poisson and incompressible Navier-Stokes equations. Numerical results for flow over a backward-facing step, steady flow past a circular cylinder, three-dimensional lid-driven cavity flow, and compressible buoyant flow inside a square enclosure are presented to demonstrate the predictive capability and robustness of the proposed formulation
Harutyunyan, D.; Izsak, F.; van der Vegt, Jacobus J.W.; Bochev, Mikhail A.
For the adaptive solution of the Maxwell equations on three-dimensional domains with N´ed´elec edge finite element methods, we consider an implicit a posteriori error estimation technique. On each element of the tessellation an equation for the error is formulated and solved with a properly chosen
Ruiz-Baier, Ricardo; Lunati, Ivan
2016-10-01
We present a novel discretization scheme tailored to a class of multiphase models that regard the physical system as consisting of multiple interacting continua. In the framework of mixture theory, we consider a general mathematical model that entails solving a system of mass and momentum equations for both the mixture and one of the phases. The model results in a strongly coupled and nonlinear system of partial differential equations that are written in terms of phase and mixture (barycentric) velocities, phase pressure, and saturation. We construct an accurate, robust and reliable hybrid method that combines a mixed finite element discretization of the momentum equations with a primal discontinuous finite volume-element discretization of the mass (or transport) equations. The scheme is devised for unstructured meshes and relies on mixed Brezzi-Douglas-Marini approximations of phase and total velocities, on piecewise constant elements for the approximation of phase or total pressures, as well as on a primal formulation that employs discontinuous finite volume elements defined on a dual diamond mesh to approximate scalar fields of interest (such as volume fraction, total density, saturation, etc.). As the discretization scheme is derived for a general formulation of multicontinuum physical systems, it can be readily applied to a large class of simplified multiphase models; on the other, the approach can be seen as a generalization of these models that are commonly encountered in the literature and employed when the latter are not sufficiently accurate. An extensive set of numerical test cases involving two- and three-dimensional porous media are presented to demonstrate the accuracy of the method (displaying an optimal convergence rate), the physics-preserving properties of the mixed-primal scheme, as well as the robustness of the method (which is successfully used to simulate diverse physical phenomena such as density fingering, Terzaghi's consolidation
Geramizadeh, Maryam; Katoozian, Hamidreza; Amid, Reza; Kadkhodazadeh, Mahdi
2018-04-01
This study aimed to optimize the thread depth and pitch of a recently designed dental implant to provide uniform stress distribution by means of a response surface optimization method available in finite element (FE) software. The sensitivity of simulation to different mechanical parameters was also evaluated. A three-dimensional model of a tapered dental implant with micro-threads in the upper area and V-shaped threads in the rest of the body was modeled and analyzed using finite element analysis (FEA). An axial load of 100 N was applied to the top of the implants. The model was optimized for thread depth and pitch to determine the optimal stress distribution. In this analysis, micro-threads had 0.25 to 0.3 mm depth and 0.27 to 0.33 mm pitch, and V-shaped threads had 0.405 to 0.495 mm depth and 0.66 to 0.8 mm pitch. The optimized depth and pitch were 0.307 and 0.286 mm for micro-threads and 0.405 and 0.808 mm for V-shaped threads, respectively. In this design, the most effective parameters on stress distribution were the depth and pitch of the micro-threads based on sensitivity analysis results. Based on the results of this study, the optimal implant design has micro-threads with 0.307 and 0.286 mm depth and pitch, respectively, in the upper area and V-shaped threads with 0.405 and 0.808 mm depth and pitch in the rest of the body. These results indicate that micro-thread parameters have a greater effect on stress and strain values.
Energy Technology Data Exchange (ETDEWEB)
Hallquist, J.O.
1982-02-01
This revised report provides an updated user's manual for DYNA2D, an explicit two-dimensional axisymmetric and plane strain finite element code for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. A contact-impact algorithm permits gaps and sliding along material interfaces. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 4-node solid elements, and the equations-of motion are integrated by the central difference method. An interactive rezoner eliminates the need to terminate the calculation when the mesh becomes too distorted. Rather, the mesh can be rezoned and the calculation continued. The command structure for the rezoner is described and illustrated by an example.
A collocation--Galerkin finite element model of cardiac action potential propagation.
Rogers, J M; McCulloch, A D
1994-08-01
A new computational method was developed for modeling the effects of the geometric complexity, nonuniform muscle fiber orientation, and material inhomogeneity of the ventricular wall on cardiac impulse propagation. The method was used to solve a modification to the FitzHugh-Nagumo system of equations. The geometry, local muscle fiber orientation, and material parameters of the domain were defined using linear Lagrange or cubic Hermite finite element interpolation. Spatial variations of time-dependent excitation and recovery variables were approximated using cubic Hermite finite element interpolation, and the governing finite element equations were assembled using the collocation method. To overcome the deficiencies of conventional collocation methods on irregular domains, Galerkin equations for the no-flux boundary conditions were used instead of collocation equations for the boundary degrees-of-freedom. The resulting system was evolved using an adaptive Runge-Kutta method. Converged two-dimensional simulations of normal propagation showed that this method requires less CPU time than a traditional finite difference discretization. The model also reproduced several other physiologic phenomena known to be important in arrhythmogenesis including: Wenckebach periodicity, slowed propagation and unidirectional block due to wavefront curvature, reentry around a fixed obstacle, and spiral wave reentry. In a new result, we observed wavespeed variations and block due to nonuniform muscle fiber orientation. The findings suggest that the finite element method is suitable for studying normal and pathological cardiac activation and has significant advantages over existing techniques.
International Nuclear Information System (INIS)
Hutchinson, S.; Costillo, S.; Dalton, K.; Hensel, E.
1990-01-01
A study is conducted of the finite element solution of the partial differential equations governing two-dimensional electromagnetic field scattering problems on a SIMD computer. A nodal assembly technique is introduced which maps a single node to a single processor. The physical domain is first discretized in parallel to yield the node locations of an O-grid mesh. Next, the system of equations is assembled and then solved in parallel using a conjugate gradient algorithm for complex-valued, non-symmetric, non-positive definite systems. Using this technique and Thinking Machines Corporation's Connection Machine-2 (CM-2), problems with more than 250k nodes are solved. Results of electromagnetic scattering, governed by the 2-d scalar Hemoholtz wave equations are presented in this paper. Solutions are demonstrated for a wide range of objects. A summary of performance data is given for the set of test problems
COYOTE: a finite element computer program for nonlinear heat conduction problems
International Nuclear Information System (INIS)
Gartling, D.K.
1978-06-01
COYOTE is a finite element computer program designed for the solution of two-dimensional, nonlinear heat conduction problems. The theoretical and mathematical basis used to develop the code is described. Program capabilities and complete user instructions are presented. Several example problems are described in detail to demonstrate the use of the program
Energy Technology Data Exchange (ETDEWEB)
Bailey, Teresa S. [Texas A and M University, Department of Nuclear Engineering, College Station, TX 77843-3133 (United States)], E-mail: baileyte@tamu.edu; Adams, Marvin L. [Texas A and M University, Department of Nuclear Engineering, College Station, TX 77843-3133 (United States)], E-mail: mladams@tamu.edu; Yang, Brian [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Zika, Michael R. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)], E-mail: zika@llnl.gov
2008-04-01
We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses recently introduced piecewise linear weight and basis functions in the finite element approximation and it can be applied on arbitrary polygonal (2D) or polyhedral (3D) grids. We first demonstrate some analytical properties of the PWL method and perform a simple mode analysis to compare the PWL method with Palmer's vertex-centered finite-volume method and with a bilinear continuous finite element method. We then show that this new PWL method gives solutions comparable to those from Palmer's. However, since the PWL method produces a symmetric positive-definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids.
International Nuclear Information System (INIS)
Bailey, Teresa S.; Adams, Marvin L.; Yang, Brian; Zika, Michael R.
2008-01-01
We develop a piecewise linear (PWL) Galerkin finite element spatial discretization for the multi-dimensional radiation diffusion equation. It uses recently introduced piecewise linear weight and basis functions in the finite element approximation and it can be applied on arbitrary polygonal (2D) or polyhedral (3D) grids. We first demonstrate some analytical properties of the PWL method and perform a simple mode analysis to compare the PWL method with Palmer's vertex-centered finite-volume method and with a bilinear continuous finite element method. We then show that this new PWL method gives solutions comparable to those from Palmer's. However, since the PWL method produces a symmetric positive-definite coefficient matrix, it should be substantially more computationally efficient than Palmer's method, which produces an asymmetric matrix. We conclude that the Galerkin PWL method is an attractive option for solving diffusion equations on unstructured grids
TAURUS, Post-processor of 3-D Finite Elements Plots
International Nuclear Information System (INIS)
Brown, B.E.; Hallquist, J.O.; Kennedy, T.
2002-01-01
Description of program or function: TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D (NESC 9725), DYNA3D (NESC 9909), TACO3D (NESC 9838), TOPAZ3D (NESC9599) and GEMINI and plots contours, time histories, and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing
FINITE ELEMENT MODEL FOR PREDICTING RESIDUAL ...
African Journals Online (AJOL)
FINITE ELEMENT MODEL FOR PREDICTING RESIDUAL STRESSES IN ... the transverse residual stress in the x-direction (σx) had a maximum value of 375MPa ... the finite element method are in fair agreement with the experimental results.
International Nuclear Information System (INIS)
Koteras, J.R.
1996-01-01
The prediction of stresses and displacements around tunnels buried deep within the earth is an important class of geomechanics problems. The material behavior immediately surrounding the tunnel is typically nonlinear. The surrounding mass, even if it is nonlinear, can usually be characterized by a simple linear elastic model. The finite element method is best suited for modeling nonlinear materials of limited volume, while the boundary element method is well suited for modeling large volumes of linear elastic material. A computational scheme that couples the finite element and boundary element methods would seem particularly useful for geomechanics problems. A variety of coupling schemes have been proposed, but they rely on direct solution methods. Direct solution techniques have large storage requirements that become cumbersome for large-scale three-dimensional problems. An alternative to direct solution methods is iterative solution techniques. A scheme has been developed for coupling the finite element and boundary element methods that uses an iterative solution method. This report shows that this coupling scheme is valid for problems where nonlinear material behavior occurs in the finite element region
International Nuclear Information System (INIS)
Ansanay-Alex, G.
2009-01-01
The development of simulation codes aimed at a precise simulation of fires requires a precise approach of flame front phenomena by using very fine grids. The need to take different spatial scale into consideration leads to a local grid refinement and to a discretization with homogeneous grid for computing time and memory purposes. The author reports the approximation of the non-linear convection term, the scalar advection-diffusion in finite volumes, numerical simulations of a flow in a bent tube, of a three-dimensional laminar flame and of a low Mach number an-isotherm flow. Non conformal finite elements are also presented (Rannacher-Turek and Crouzeix-Raviart elements)
Finite element methods a practical guide
Whiteley, Jonathan
2017-01-01
This book presents practical applications of the finite element method to general differential equations. The underlying strategy of deriving the finite element solution is introduced using linear ordinary differential equations, thus allowing the basic concepts of the finite element solution to be introduced without being obscured by the additional mathematical detail required when applying this technique to partial differential equations. The author generalizes the presented approach to partial differential equations which include nonlinearities. The book also includes variations of the finite element method such as different classes of meshes and basic functions. Practical application of the theory is emphasised, with development of all concepts leading ultimately to a description of their computational implementation illustrated using Matlab functions. The target audience primarily comprises applied researchers and practitioners in engineering, but the book may also be beneficial for graduate students.
DEFF Research Database (Denmark)
Yoon, Gil Ho; Joung, Young Soo; Kim, Yoon Young
2005-01-01
The topology design optimization of “three-dimensional geometrically-nonlinear” continuum structures is still a difficult problem not only because of its problem size but also the occurrence of unstable continuum finite elements during the design optimization. To overcome this difficulty, the ele......) stiffness matrix of continuum finite elements. Therefore, any finite element code, including commercial codes, can be readily used for the ECP implementation. The key ideas and characteristics of these methods will be presented in this paper....
Finite element analysis of piezoelectric materials
International Nuclear Information System (INIS)
Lowrie, F.; Stewart, M.; Cain, M.; Gee, M.
1999-01-01
This guide is intended to help people wanting to do finite element analysis of piezoelectric materials by answering some of the questions that are peculiar to piezoelectric materials. The document is not intended as a complete beginners guide for finite element analysis in general as this is better dealt with by the individual software producers. The guide is based around the commercial package ANSYS as this is a popular package amongst piezoelectric material users, however much of the information will still be useful to users of other finite element codes. (author)
Fracture Capabilities in Grizzly with the extended Finite Element Method (X-FEM)
Energy Technology Data Exchange (ETDEWEB)
Dolbow, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Ziyu [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spencer, Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jiang, Wen [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-09-01
Efforts are underway to develop fracture mechanics capabilities in the Grizzly code to enable it to be used to perform deterministic fracture assessments of degraded reactor pressure vessels (RPVs). A capability was previously developed to calculate three-dimensional interaction- integrals to extract mixed-mode stress-intensity factors. This capability requires the use of a finite element mesh that conforms to the crack geometry. The eXtended Finite Element Method (X-FEM) provides a means to represent a crack geometry without explicitly fitting the finite element mesh to it. This is effected by enhancing the element kinematics to represent jump discontinuities at arbitrary locations inside of the element, as well as the incorporation of asymptotic near-tip fields to better capture crack singularities. In this work, use of only the discontinuous enrichment functions was examined to see how accurate stress intensity factors could still be calculated. This report documents the following work to enhance Grizzly’s engineering fracture capabilities by introducing arbitrary jump discontinuities for prescribed crack geometries; X-FEM Mesh Cutting in 3D: to enhance the kinematics of elements that are intersected by arbitrary crack geometries, a mesh cutting algorithm was implemented in Grizzly. The algorithm introduces new virtual nodes and creates partial elements, and then creates a new mesh connectivity; Interaction Integral Modifications: the existing code for evaluating the interaction integral in Grizzly was based on the assumption of a mesh that was fitted to the crack geometry. Modifications were made to allow for the possibility of a crack front that passes arbitrarily through the mesh; and Benchmarking for 3D Fracture: the new capabilities were benchmarked against mixed-mode three-dimensional fracture problems with known analytical solutions.
Generalized multiscale finite element methods (GMsFEM)
Efendiev, Yalchin R.; Galvis, Juan; Hou, Thomasyizhao
2013-01-01
In this paper, we propose a general approach called Generalized Multiscale Finite Element Method (GMsFEM) for performing multiscale simulations for problems without scale separation over a complex input space. As in multiscale finite element methods (MsFEMs), the main idea of the proposed approach is to construct a small dimensional local solution space that can be used to generate an efficient and accurate approximation to the multiscale solution with a potentially high dimensional input parameter space. In the proposed approach, we present a general procedure to construct the offline space that is used for a systematic enrichment of the coarse solution space in the online stage. The enrichment in the online stage is performed based on a spectral decomposition of the offline space. In the online stage, for any input parameter, a multiscale space is constructed to solve the global problem on a coarse grid. The online space is constructed via a spectral decomposition of the offline space and by choosing the eigenvectors corresponding to the largest eigenvalues. The computational saving is due to the fact that the construction of the online multiscale space for any input parameter is fast and this space can be re-used for solving the forward problem with any forcing and boundary condition. Compared with the other approaches where global snapshots are used, the local approach that we present in this paper allows us to eliminate unnecessary degrees of freedom on a coarse-grid level. We present various examples in the paper and some numerical results to demonstrate the effectiveness of our method. © 2013 Elsevier Inc.
Generalized multiscale finite element methods (GMsFEM)
Efendiev, Yalchin R.
2013-10-01
In this paper, we propose a general approach called Generalized Multiscale Finite Element Method (GMsFEM) for performing multiscale simulations for problems without scale separation over a complex input space. As in multiscale finite element methods (MsFEMs), the main idea of the proposed approach is to construct a small dimensional local solution space that can be used to generate an efficient and accurate approximation to the multiscale solution with a potentially high dimensional input parameter space. In the proposed approach, we present a general procedure to construct the offline space that is used for a systematic enrichment of the coarse solution space in the online stage. The enrichment in the online stage is performed based on a spectral decomposition of the offline space. In the online stage, for any input parameter, a multiscale space is constructed to solve the global problem on a coarse grid. The online space is constructed via a spectral decomposition of the offline space and by choosing the eigenvectors corresponding to the largest eigenvalues. The computational saving is due to the fact that the construction of the online multiscale space for any input parameter is fast and this space can be re-used for solving the forward problem with any forcing and boundary condition. Compared with the other approaches where global snapshots are used, the local approach that we present in this paper allows us to eliminate unnecessary degrees of freedom on a coarse-grid level. We present various examples in the paper and some numerical results to demonstrate the effectiveness of our method. © 2013 Elsevier Inc.
Finite rotation shells basic equations and finite elements for Reissner kinematics
Wisniewski, K
2010-01-01
This book covers theoretical and computational aspects of non-linear shells. Several advanced topics of shell equations and finite elements - not included in standard textbooks on finite elements - are addressed, and the book includes an extensive bibliography.
Stress-intensity factor equations for cracks in three-dimensional finite bodies
Newman, J. C., Jr.; Raju, I. S.
1981-01-01
Empirical stress intensity factor equations are presented for embedded elliptical cracks, semi-elliptical surface cracks, quarter-elliptical corner cracks, semi-elliptical surface cracks at a hole, and quarter-elliptical corner cracks at a hole in finite plates. The plates were subjected to remote tensile loading. Equations give stress intensity factors as a function of parametric angle, crack depth, crack length, plate thickness, and where applicable, hole radius. The stress intensity factors used to develop the equations were obtained from three dimensional finite element analyses of these crack configurations.
Electrothermal Equivalent Three-Dimensional Finite-Element Model of a Single Neuron.
Cinelli, Ilaria; Destrade, Michel; Duffy, Maeve; McHugh, Peter
2018-06-01
We propose a novel approach for modelling the interdependence of electrical and mechanical phenomena in nervous cells, by using electrothermal equivalences in finite element (FE) analysis so that existing thermomechanical tools can be applied. First, the equivalence between electrical and thermal properties of the nerve materials is established, and results of a pure heat conduction analysis performed in Abaqus CAE Software 6.13-3 are validated with analytical solutions for a range of steady and transient conditions. This validation includes the definition of equivalent active membrane properties that enable prediction of the action potential. Then, as a step toward fully coupled models, electromechanical coupling is implemented through the definition of equivalent piezoelectric properties of the nerve membrane using the thermal expansion coefficient, enabling prediction of the mechanical response of the nerve to the action potential. Results of the coupled electromechanical model are validated with previously published experimental results of deformation for squid giant axon, crab nerve fibre, and garfish olfactory nerve fibre. A simplified coupled electromechanical modelling approach is established through an electrothermal equivalent FE model of a nervous cell for biomedical applications. One of the key findings is the mechanical characterization of the neural activity in a coupled electromechanical domain, which provides insights into the electromechanical behaviour of nervous cells, such as thinning of the membrane. This is a first step toward modelling three-dimensional electromechanical alteration induced by trauma at nerve bundle, tissue, and organ levels.
A multigrid solution method for mixed hybrid finite elements
Energy Technology Data Exchange (ETDEWEB)
Schmid, W. [Universitaet Augsburg (Germany)
1996-12-31
We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.
Test Functions for Three-Dimensional Control-Volume Mixed Finite-Element Methods on Irregular Grids
National Research Council Canada - National Science Library
Naff, R. L; Russell, T. F; Wilson, J. D
2000-01-01
.... For control-volume mixed finite-element methods, vector shape functions are used to approximate the distribution of velocities across cells and vector test functions are used to minimize the error...
International Nuclear Information System (INIS)
Biffle, J.H.; Blanford, M.L.
1994-05-01
JAC2D is a two-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations. The method is implemented in a two-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. A four-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic/plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere
International Nuclear Information System (INIS)
Biffle, J.H.
1993-02-01
JAC3D is a three-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equation. The method is implemented in a three-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. An eight-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic-plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere
An adaptive finite element method for steady and transient problems
International Nuclear Information System (INIS)
Benner, R.E. Jr.; Davis, H.T.; Scriven, L.E.
1987-01-01
Distributing integral error uniformly over variable subdomains, or finite elements, is an attractive criterion by which to subdivide a domain for the Galerkin/finite element method when localized steep gradients and high curvatures are to be resolved. Examples are fluid interfaces, shock fronts and other internal layers, as well as fluid mechanical and other boundary layers, e.g. thin-film states at solid walls. The uniform distribution criterion is developed into an adaptive technique for one-dimensional problems. Nodal positions can be updated simultaneously with nodal values during Newton iteration, but it is usually better to adopt nearly optimal nodal positions during Newton iteration upon nodal values. Three illustrative problems are solved: steady convection with diffusion, gradient theory of fluid wetting on a solid surface and Buckley-Leverett theory of two phase Darcy flow in porous media
Qinghua, Zhao; Jipeng, Li; Yongxing, Zhang; He, Liang; Xuepeng, Wang; Peng, Yan; Xiaofeng, Wu
2015-04-07
To employ three-dimensional finite element modeling and biomechanical simulation for evaluating the stability and stress conduction of two postoperative internal fixed modeling-multilevel posterior instrumentation ( MPI) and MPI with anterior instrumentation (MPAI) with neck-thoracic vertebral tumor en bloc resection. Mimics software and computed tomography (CT) images were used to establish the three-dimensional (3D) model of vertebrae C5-T2 and simulated the C7 en bloc vertebral resection for MPI and MPAI modeling. Then the statistics and images were transmitted into the ANSYS finite element system and 20N distribution load (simulating body weight) and applied 1 N · m torque on neutral point for simulating vertebral displacement and stress conduction and distribution of motion mode, i. e. flexion, extension, bending and rotating. With a better stability, the displacement of two adjacent vertebral bodies of MPI and MPAI modeling was less than that of complete vertebral modeling. No significant differences existed between each other. But as for stress shielding effect reduction, MPI was slightly better than MPAI. From biomechanical point of view, two internal instrumentations with neck-thoracic tumor en bloc resection may achieve an excellent stability with no significant differences. But with better stress conduction, MPI is more advantageous in postoperative reconstruction.
PRIAM: A self consistent finite element code for particle simulation in electromagnetic fields
International Nuclear Information System (INIS)
Le Meur, G.; Touze, F.
1990-06-01
A 2 1/2 dimensional, relativistic particle simulation code is described. A short review of the used mixed finite element method is given. The treatment of the driving terms (charge and current densities), initial, boundary conditions are exposed. Graphical results are shown
Limbert, Georges; van Lierde, Carl; Muraru, O Luiza; Walboomers, X Frank; Frank, Milan; Hansson, Stig; Middleton, John; Jaecques, Siegfried
2010-05-07
The first objective of this computational study was to assess the strain magnitude and distribution within the three-dimensional (3D) trabecular bone structure around an osseointegrated dental implant loaded axially. The second objective was to investigate the relative micromotions between the implant and the surrounding bone. The work hypothesis adopted was that these virtual measurements would be a useful indicator of bone adaptation (resorption, homeostasis, formation). In order to reach these objectives, a microCT-based finite element model of an oral implant implanted into a Berkshire pig mandible was developed along with a robust software methodology. The finite element mesh of the 3D trabecular bone architecture was generated from the segmentation of microCT scans. The implant was meshed independently from its CAD file obtained from the manufacturer. The meshes of the implant and the bone sample were registered together in an integrated software environment. A series of non-linear contact finite element (FE) analyses considering an axial load applied to the top of the implant in combination with three sets of mechanical properties for the trabecular bone tissue was devised. Complex strain distribution patterns are reported and discussed. It was found that considering the Young's modulus of the trabecular bone tissue to be 5, 10 and 15GPa resulted in maximum peri-implant bone microstrains of about 3000, 2100 and 1400. These results indicate that, for the three sets of mechanical properties considered, the magnitude of maximum strain lies within an homeostatic range known to be sufficient to maintain/form bone. The corresponding micro-motions of the implant with respect to the bone microstructure were shown to be sufficiently low to prevent fibrous tissue formation and to favour long-term osseointegration. Copyright 2010 Elsevier Ltd. All rights reserved.
Wu, Xian-Qian; Wang, Xi; Wei, Yan-Peng; Song, Hong-Wei; Huang, Chen-Guang
2012-06-01
Shot peening is a widely used surface treatment method by generating compressive residual stress near the surface of metallic materials to increase fatigue life and resistance to corrosion fatigue, cracking, etc. Compressive residual stress and dent profile are important factors to evaluate the effectiveness of shot peening process. In this paper, the influence of dimensionless parameters on maximum compressive residual stress and maximum depth of the dent were investigated. Firstly, dimensionless relations of processing parameters that affect the maximum compressive residual stress and the maximum depth of the dent were deduced by dimensional analysis method. Secondly, the influence of each dimensionless parameter on dimensionless variables was investigated by the finite element method. Furthermore, related empirical formulas were given for each dimensionless parameter based on the simulation results. Finally, comparison was made and good agreement was found between the simulation results and the empirical formula, which shows that a useful approach is provided in this paper for analyzing the influence of each individual parameter.
Assessment of Structural Behavior of Non-corroded and Corroded RCC Beams Using Finite Element Method
Directory of Open Access Journals (Sweden)
Anand Parande
2008-09-01
Full Text Available A three dimensional finite element model is developed to examine the structural behaviour of corroded reinforced concrete beam and non corroded reinforced concrete beam. Non linear finite element analysis is performed using the ANSYS program. SOLID 65, LINK 8 element represent concrete and discrete reinforcing steel bars, based on each component actual characteristics, non linear material properties are defined for both elements. The effect of corrosion in reinforced concrete is studied by finite element analysis; an approach is developed to model the corrosion product expansion causing concrete cover cracking for this, beam has been modeled using ANSYS and using this data the beam has been casted with M20 concrete after 28 days the beam will be tested for flexural strength. The comparison between ANSYS prediction and field data are made in terms of deflection, stress, strain, bond strength and crack pattern of concrete beam.
Elastoplastic finite element analysis for wet multidisc brake during lasting braking
Directory of Open Access Journals (Sweden)
Ji Zhanling
2015-01-01
Full Text Available Addressed to serious heat degradation problem of the braking continuously performed in the drag brake application for a long time, finite element analysis for bidirectional thermal-structure coupling is adopted to investigate temperature and stress when material properties are temperature-dependent. Based on the constitutive relations of heat transfer and strain-stress, three-dimensional transient finite element equilibrium equations with many kinds of boundary conditions for bidirectional thermal-structure coupling were derived. And it was originally presented that start time, location, severity and evolution laws of plastic deformation were depicted using dimensionless stress distribution contour with the yield limit related to temperature. The change laws of plastic element number and contact area versus braking time were expressed by plasticity ratio and contact ratio curves, respectively. The laws revealed by the numerical calculation results are in accordance with the objective perception and reasoning.
Domain decomposition methods for mortar finite elements
Energy Technology Data Exchange (ETDEWEB)
Widlund, O.
1996-12-31
In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.
The development of a curved beam element model applied to finite elements method
International Nuclear Information System (INIS)
Bento Filho, A.
1980-01-01
A procedure for the evaluation of the stiffness matrix for a thick curved beam element is developed, by means of the minimum potential energy principle, applied to finite elements. The displacement field is prescribed through polynomial expansions, and the interpolation model is determined by comparison of results obtained by the use of a sample of different expansions. As a limiting case of the curved beam, three cases of straight beams, with different dimensional ratios are analised, employing the approach proposed. Finally, an interpolation model is proposed and applied to a curved beam with great curvature. Desplacements and internal stresses are determined and the results are compared with those found in the literature. (Author) [pt
Why do probabilistic finite element analysis ?
Thacker, Ben H
2008-01-01
The intention of this book is to provide an introduction to performing probabilistic finite element analysis. As a short guideline, the objective is to inform the reader of the use, benefits and issues associated with performing probabilistic finite element analysis without excessive theory or mathematical detail.
International Nuclear Information System (INIS)
Kraus, H.G.
1991-01-01
This paper discusses methods for calculating Fraunhofer intensity fields resulting from diffraction through one- and two-dimensional apertures are presented. These methods are based on the geometric concept of finite elements and on Fourier and Abbe transforms. The geometry of the two-dimensional diffracting aperture(s) is based on biquadratic isoparametric elements, which are used to define aperture(s) of complex geometry. These elements are also used to build complex amplitude and phase functions across the aperture(s) which may be of continuous or discontinuous form. The transform integrals are accurately and efficiently integrated numerically using Gaussian quadrature. The power of these methods is most evident in two dimensions, where several examples are presented which include secondary obstructions, straight and curved secondary spider supports, multiple-mirror arrays, synthetic aperture arrays, segmented mirrors, apertures covered by screens, apodization, and phase plates. Typically, the finite element Abbe transform method results in significant gains in computational efficiency over the finite element Fourier transform method, but is also subject to some loss in generality
International Nuclear Information System (INIS)
Xi Li-Ying; Chen Huan-Ming; Zheng Fu; Gao Hua; Tong Yang; Ma Zhi
2015-01-01
Three-dimensional simulations of ferroelectric hysteresis and butterfly loops are carried out based on solving the time dependent Ginzburg–Landau equations using a finite volume method. The influence of externally mechanical loadings with a tensile strain and a compressive strain on the hysteresis and butterfly loops is studied numerically. Different from the traditional finite element and finite difference methods, the finite volume method is applicable to simulate the ferroelectric phase transitions and properties of ferroelectric materials even for more realistic and physical problems. (paper)
An efficient finite element solution for gear dynamics
International Nuclear Information System (INIS)
Cooley, C G; Parker, R G; Vijayakar, S M
2010-01-01
A finite element formulation for the dynamic response of gear pairs is proposed. Following an established approach in lumped parameter gear dynamic models, the static solution is used as the excitation in a frequency domain solution of the finite element vibration model. The nonlinear finite element/contact mechanics formulation provides accurate calculation of the static solution and average mesh stiffness that are used in the dynamic simulation. The frequency domain finite element calculation of dynamic response compares well with numerically integrated (time domain) finite element dynamic results and previously published experimental results. Simulation time with the proposed formulation is two orders of magnitude lower than numerically integrated dynamic results. This formulation admits system level dynamic gearbox response, which may include multiple gear meshes, flexible shafts, rolling element bearings, housing structures, and other deformable components.
Finite element analysis of beam-to-column joints in steel frames under cyclic loading
Directory of Open Access Journals (Sweden)
Elsayed Mashaly
2011-03-01
Full Text Available The aim of this paper is to present a simple and accurate three-dimensional (3D finite element model (FE capable of predicting the actual behavior of beam-to-column joints in steel frames subjected to lateral loads. The software package ANSYS is used to model the joint. The bolted extended-end-plate connection was chosen as an important type of beam–column joints. The extended-end-plate connection is chosen for its complexity in the analysis and behavior due to the number of connection components and their inheritable non-linear behavior. Two experimental tests in the literature were chosen to verify the finite element model. The results of both the experimental and the proposed finite element were compared. One of these tests was monotonically loaded, whereas the second was cyclically loaded. The finite element model is improved to enhance the defects of the finite element model used. These defects are; the long time need for the analysis and the inability of the contact element type to follow the behavior of moment–rotation curve under cyclic loading. As a contact element, the surface-to-surface element is used instead of node-to-node element to enhance the model. The FE results show good correlation with the experimental one. An attempt to improve a new technique for modeling bolts is conducted. The results show that this technique is supposed to avoid the defects above, give much less elements number and less solution time than the other modeling techniques.
Finite Element Analysis of Walking Beam of a New Compound Adjustment Balance Pumping Unit
Wu, Jufei; Wang, Qian; Han, Yunfei
2017-12-01
In this paper, taking the designer of the new compound balance pumping unit beam as our research target, the three-dimensional model is established by Solid Works, the load and the constraint are determined. ANSYS Workbench is used to analyze the tail and the whole of the beam, the stress and deformation are obtained to meet the strength requirements. The finite element simulation and theoretical calculation of the moment of the center axis beam are carried out. The finite element simulation results are compared with the calculated results of the theoretical mechanics model to verify the correctness of the theoretical calculation. Finally, the finite element analysis is consistent with the theoretical calculation results. The theoretical calculation results are preferable, and the bending moment value provides the theoretical reference for the follow-up optimization and research design.
First Instances of Generalized Expo-Rational Finite Elements on Triangulations
Dechevsky, Lubomir T.; Zanaty, Peter; Laksa˚, Arne; Bang, Børre
2011-12-01
In this communication we consider a construction of simplicial finite elements on triangulated two-dimensional polygonal domains. This construction is, in some sense, dual to the construction of generalized expo-rational B-splines (GERBS). The main result is in the obtaining of new polynomial simplicial patches of the first several lowest possible total polynomial degrees which exhibit Hermite interpolatory properties. The derivation of these results is based on the theory of piecewise polynomial GERBS called Euler Beta-function B-splines. We also provide 3-dimensional visualization of the graphs of the new polynomial simplicial patches and their control polygons.
FINELM: a multigroup finite element diffusion code. Part I
International Nuclear Information System (INIS)
Davierwalla, D.M.
1980-12-01
The author presents a two dimensional code for multigroup diffusion using the finite element method. It was realized that the extensive connectivity which contributes significantly to the accuracy, results in a matrix which, although symmetric and positive definite, is wide band and possesses an irregular profile. Hence, it was decided to introduce sparsity techniques into the code. The introduction of the R-Z geometry lead to a great deal of changes in the code since the rotational invariance of the removal matrices in X-Y geometry did not carry over in R-Z geometry. Rectangular elements were introduced to remedy the inability of the triangles to model essentially one dimensional problems such as slab geometry. The matter is discussed briefly in the text in the section on benchmark problems. This report is restricted to the general theory of the triangular elements and to the sparsity techniques viz. incomplete disections. The latter makes the size of the problem that can be handled independent of core memory and dependent only on disc storage capacity which is virtually unlimited. (Auth.)
Finite element analysis theory and application with ANSYS
Moaveni, Saeed
2015-01-01
For courses in Finite Element Analysis, offered in departments of Mechanical or Civil and Environmental Engineering. While many good textbooks cover the theory of finite element modeling, Finite Element Analysis: Theory and Application with ANSYS is the only text available that incorporates ANSYS as an integral part of its content. Moaveni presents the theory of finite element analysis, explores its application as a design/modeling tool, and explains in detail how to use ANSYS intelligently and effectively. Teaching and Learning Experience This program will provide a better teaching and learning experience-for you and your students. It will help: *Present the Theory of Finite Element Analysis: The presentation of theoretical aspects of finite element analysis is carefully designed not to overwhelm students. *Explain How to Use ANSYS Effectively: ANSYS is incorporated as an integral part of the content throughout the book. *Explore How to Use FEA as a Design/Modeling Tool: Open-ended design problems help stude...
Finite element application to global reactor analysis
International Nuclear Information System (INIS)
Schmidt, F.A.R.
1981-01-01
The Finite Element Method is described as a Coarse Mesh Method with general basis and trial functions. Various consequences concerning programming and application of Finite Element Methods in reactor physics are drawn. One of the conclusions is that the Finite Element Method is a valuable tool in solving global reactor analysis problems. However, problems which can be described by rectangular boxes still can be solved with special coarse mesh programs more efficiently. (orig.) [de
DEFF Research Database (Denmark)
Salimzadeh, Saeed; Usui, Tomoya; Paluszny, Adriana
2017-01-01
A fully coupled three-dimensional finite-element model for hydraulic fractures in permeable rocks is presented, and used to investigate the ranges of applicability of the classical analytical solutions that are known to be valid in limiting cases. This model simultaneously accounts for fluid flow...
Books and monographs on finite element technology
Noor, A. K.
1985-01-01
The present paper proviees a listing of all of the English books and some of the foreign books on finite element technology, taking into account also a list of the conference proceedings devoted solely to finite elements. The references are divided into categories. Attention is given to fundamentals, mathematical foundations, structural and solid mechanics applications, fluid mechanics applications, other applied science and engineering applications, computer implementation and software systems, computational and modeling aspects, special topics, boundary element methods, proceedings of symmposia and conferences on finite element technology, bibliographies, handbooks, and historical accounts.
Probabilistic finite elements for fracture mechanics
Besterfield, Glen
1988-01-01
The probabilistic finite element method (PFEM) is developed for probabilistic fracture mechanics (PFM). A finite element which has the near crack-tip singular strain embedded in the element is used. Probabilistic distributions, such as expectation, covariance and correlation stress intensity factors, are calculated for random load, random material and random crack length. The method is computationally quite efficient and can be expected to determine the probability of fracture or reliability.
Two dimensional finite element modelling for dynamic water diffusion through stratum corneum.
Xiao, Perry; Imhof, Robert E
2012-10-01
Solvents penetration through in vivo human stratum corneum (SC) has always been an interesting research area for trans-dermal drug delivery studies, and the importance of intercellular routes (diffuse in between corneocytes) and transcellular routes (diffuse through corneocytes) during diffusion is often debatable. In this paper, we have developed a two dimensional finite element model to simulate the dynamic water diffusion through the SC. It is based on the brick-and-mortar model, with brick represents corneocytes and mortar represents lipids, respectively. It simulates the dynamic water diffusion process through the SC from pre-defined initial conditions and boundary conditions. Although the simulation is based on water diffusions, the principles can also be applied to the diffusions of other topical applied substances. The simulation results show that both intercellular routes and transcellular routes are important for water diffusion. Although intercellular routes have higher flux rates, most of the water still diffuse through transcellular routes because of the high cross area ratio of corneocytes and lipids. The diffusion water flux, or trans-epidermal water loss (TEWL), is reversely proportional to corneocyte size, i.e. the larger the corneocyte size, the lower the TEWL, and vice versa. There is also an effect of the SC thickness, external air conditions and diffusion coefficients on the water diffusion through SC on the resulting TEWL. Copyright © 2012 Elsevier B.V. All rights reserved.
A code for obtaining temperature distribution by finite element method
International Nuclear Information System (INIS)
Bloch, M.
1984-01-01
The ELEFIB Fortran language computer code using finite element method for calculating temperature distribution of linear and two dimensional problems, in permanent region or in the transient phase of heat transfer, is presented. The formulation of equations uses the Galerkin method. Some examples are shown and the results are compared with other papers. The comparative evaluation shows that the elaborated code gives good values. (M.C.K.) [pt
Vampola, Tomáš; Horáček, Jaromír; Laukkanen, Anne-Maria; Švec, Jan G
2015-04-01
Resonance frequencies of the vocal tract have traditionally been modelled using one-dimensional models. These cannot accurately represent the events in the frequency region of the formant cluster around 2.5-4.5 kHz, however. Here, the vocal tract resonance frequencies and their mode shapes are studied using a three-dimensional finite element model obtained from computed tomography measurements of a subject phonating on vowel [a:]. Instead of the traditional five, up to eight resonance frequencies of the vocal tract were found below the prominent antiresonance around 4.7 kHz. The three extra resonances were found to correspond to modes which were axially asymmetric and involved the piriform sinuses, valleculae, and transverse vibrations in the oral cavity. The results therefore suggest that the phenomenon of speaker's and singer's formant clustering may be more complex than originally thought.
Finite-dimensional effects and critical indices of one-dimensional quantum models
International Nuclear Information System (INIS)
Bogolyubov, N.M.; Izergin, A.G.; Reshetikhin, N.Yu.
1986-01-01
Critical indices, depending on continuous parameters in Bose-gas quantum models and Heisenberg 1/2 spin antiferromagnetic in two-dimensional space-time at zero temperature, have been calculated by means of finite-dimensional effects. In this case the long-wave asymptotics of the correlation functions is of a power character. Derivation of man asymptotics terms is reduced to the determination of a central charge in the appropriate Virassoro algebra representation and the anomalous dimension-operator spectrum in this representation. The finite-dimensional effects allow to find these values
Application of the finite element groundwater model FEWA to the engineered test facility
International Nuclear Information System (INIS)
Craig, P.M.; Davis, E.C.
1985-09-01
A finite element model for water transport through porous media (FEWA) has been applied to the unconfined aquifer at the Oak Ridge National Laboratory Solid Waste Storage Area 6 Engineered Test Facility (ETF). The model was developed in 1983 as part of the Shallow Land Burial Technology - Humid Task (ONL-WL14) and was previously verified using several general hydrologic problems for which an analytic solution exists. Model application and calibration, as described in this report, consisted of modeling the ETF water table for three specialized cases: a one-dimensional steady-state simulation, a one-dimensional transient simulation, and a two-dimensional transient simulation. In the one-dimensional steady-state simulation, the FEWA output accurately predicted the water table during a long period in which there were no man-induced or natural perturbations to the system. The input parameters of most importance for this case were hydraulic conductivity and aquifer bottom elevation. In the two transient cases, the FEWA output has matched observed water table responses to a single rainfall event occurring in February 1983, yielding a calibrated finite element model that is useful for further study of additional precipitation events as well as contaminant transport at the experimental site
Energy Technology Data Exchange (ETDEWEB)
Mellor, A.; Domenech-Garret, J.L.; Chemisana, D.; Rosell, J.I. [Departament de Medi Ambient i C.S., University of Lleida, Av. Alcalde Rovira Roure 191, E25198 (Spain)
2009-09-15
A two-dimensional finite element model of current flow in the front surface of a PV cell is presented. In order to validate this model we perform an experimental test. Later, particular attention is paid to the effects of non-uniform illumination in the finger direction which is typical in a linear concentrator system. Fill factor, open circuit voltage and efficiency are shown to decrease with increasing degree of non-uniform illumination. It is shown that these detrimental effects can be mitigated significantly by reoptimization of the number of front surface metallization fingers to suit the degree of non-uniformity. The behavior of current flow in the front surface of a cell operating at open circuit voltage under non-uniform illumination is discussed in detail. (author)
Introduction to finite and spectral element methods using Matlab
Pozrikidis, Constantine
2014-01-01
The Finite Element Method in One Dimension. Further Applications in One Dimension. High-Order and Spectral Elements in One Dimension. The Finite Element Method in Two Dimensions. Quadratic and Spectral Elements in Two Dimensions. Applications in Mechanics. Viscous Flow. Finite and Spectral Element Methods in Three Dimensions. Appendices. References. Index.
Finite Element Methods and Their Applications
Chen, Zhangxin
2005-01-01
This book serves as a text for one- or two-semester courses for upper-level undergraduates and beginning graduate students and as a professional reference for people who want to solve partial differential equations (PDEs) using finite element methods. The author has attempted to introduce every concept in the simplest possible setting and maintain a level of treatment that is as rigorous as possible without being unnecessarily abstract. Quite a lot of attention is given to discontinuous finite elements, characteristic finite elements, and to the applications in fluid and solid mechanics including applications to porous media flow, and applications to semiconductor modeling. An extensive set of exercises and references in each chapter are provided.
Finite-element analysis of NiTi wire deflection during orthodontic levelling treatment
International Nuclear Information System (INIS)
Razali, M F; Mahmud, A S; Abdullah, J; Mokhtar, N
2016-01-01
Finite-element analysis is an important product development tool in medical devices industry for design and failure analysis of devices. This tool helps device designers to quickly explore various design options, optimizing specific designs and providing a deeper insight how a device is actually performing. In this study, three-dimensional finite-element models of superelastic nickel-titanium arch wire engaged in a three brackets system were developed. The aim was to measure the effect of binding friction developed on wire-bracket interaction towards the remaining recovery force available for tooth movement. Uniaxial and three brackets bending test were modelled and validated against experimental works. The prediction made by the three brackets bending models shows good agreement with the experimental results. (paper)
Finite-element analysis of NiTi wire deflection during orthodontic levelling treatment
Razali, M. F.; Mahmud, A. S.; Mokhtar, N.; Abdullah, J.
2016-02-01
Finite-element analysis is an important product development tool in medical devices industry for design and failure analysis of devices. This tool helps device designers to quickly explore various design options, optimizing specific designs and providing a deeper insight how a device is actually performing. In this study, three-dimensional finite-element models of superelastic nickel-titanium arch wire engaged in a three brackets system were developed. The aim was to measure the effect of binding friction developed on wire-bracket interaction towards the remaining recovery force available for tooth movement. Uniaxial and three brackets bending test were modelled and validated against experimental works. The prediction made by the three brackets bending models shows good agreement with the experimental results.
Energy Technology Data Exchange (ETDEWEB)
Cwik, T. [California Institute of Technology, Pasadena, CA (United States); Katz, D.S. [Cray Research, El Segundo, CA (United States)
1996-12-31
Finite element modeling has proven useful for accurately simulating scattered or radiated electromagnetic fields from complex three-dimensional objects whose geometry varies on the scale of a fraction of an electrical wavelength. An unstructured finite element model of realistic objects leads to a large, sparse, system of equations that needs to be solved efficiently with regard to machine memory and execution time. Both factorization and iterative solvers can be used to produce solutions to these systems of equations. Factorization leads to high memory requirements that limit the electrical problem size of three-dimensional objects that can be modeled. An iterative solver can be used to efficiently solve the system without excessive memory use and in a minimal amount of time if the convergence rate is controlled.
International Nuclear Information System (INIS)
Lacey, G.; Thenoux, G.; Rodriguez-Roa, F.
2008-01-01
In accordance with the present development of empirical-mechanistic tools, this paper presents an alternative to traditional analysis methods for flexible pavements using a three-dimensional finite element formulation based on a liner-elastic perfectly-plastic Drucker-Pager model for granular soil layers and a linear-elastic stress-strain law for the asphalt layer. From the sensitivity analysis performed, it was found that variations of +-4 degree in the internal friction angle of granular soil layers did not significantly affect the analyzed pavement response. On the other hand, a null dilation angle is conservatively proposed for design purposes. The use of a Light Falling Weight Deflectometer is also proposed as an effective and practical tool for on-site elastic modulus determination of granular soil layers. However, the stiffness value obtained from the tested layer should be corrected when the measured peak deflection and the peak force do not occur at the same time. In addition, some practical observations are given to achieve successful field measurements. The importance of using a 3D FE analysis to predict the maximum tensile strain at the bottom of the asphalt layer (related to pavement fatigue) and the maximum vertical comprehensive strain transmitted to the top of the granular soil layers (related to rutting) is also shown. (author)
Programming the finite element method
Smith, I M; Margetts, L
2013-01-01
Many students, engineers, scientists and researchers have benefited from the practical, programming-oriented style of the previous editions of Programming the Finite Element Method, learning how to develop computer programs to solve specific engineering problems using the finite element method. This new fifth edition offers timely revisions that include programs and subroutine libraries fully updated to Fortran 2003, which are freely available online, and provides updated material on advances in parallel computing, thermal stress analysis, plasticity return algorithms, convection boundary c
Niemi, Antti
2011-06-03
We perform finite element analysis of the so called Girkmann problem in structural mechanics. The problem involves an axially symmetric spherical shell stiffened with a foot ring and is approached (1) by using the axisymmetric formulation of linear elasticity theory and (2) by using a dimensionally reduced shell-ring model. In the first approach the problem is solved with a fully automatic hp-adaptive finite element solver whereas the classical h-version of the finite element method is used in the second approach. We study the convergence behaviour of the different numerical models and show that accurate stress resultants can be obtained with both models by using effective post-processing formulas. © Springer-Verlag London Limited 2011.
International Nuclear Information System (INIS)
Silver, A.H.; Lee, J.Y.
1983-01-01
Cellular convection was studied rigorously during the development of the Clinch River Breeder Reactor Plant (CRBRP) Program Pumps. This paper presents the development of a three-dimensional finite-element heat transfer model which accounts for the cellular convection phenomena. A buoyancy driven cellular convection flow pattern is introduced in the annulus region between the upper inner structure and the pump tank. Steady-state thermal data were obtained for several test conditions for argon gas pressures up to 93 psig (741 kPa) and sodium operating temperatures to 1000 0 F (811 0 K). Test temperature distributions on the pump tank and inner structure were correlated with numerical results and excellent agreement was obtained
International Nuclear Information System (INIS)
Adamik, V.; Matejovic, P.
1989-01-01
The problems are discussed of nonstationary, nonlinear dynamics of the continuum. A survey is presented of calculation methods in the given area with emphasis on the area of impact problems. A description is presented of the explicit finite elements method and its application to two-dimensional Cartesian and cylindrical configurations. Using the method the explicit calculation code FINEDAN was written which was tested in a series of verification calculations for different configurations and different types of continuum. The main characteristics are presented of the code and of some, of its practical applications. Envisaged trends of the development of the code and its possible applications in the technology of nuclear reactors are given. (author). 9 figs., 4 tabs., 10 refs
Mixed Generalized Multiscale Finite Element Methods and Applications
Chung, Eric T.
2015-03-03
In this paper, we present a mixed generalized multiscale finite element method (GMsFEM) for solving flow in heterogeneous media. Our approach constructs multiscale basis functions following a GMsFEM framework and couples these basis functions using a mixed finite element method, which allows us to obtain a mass conservative velocity field. To construct multiscale basis functions for each coarse edge, we design a snapshot space that consists of fine-scale velocity fields supported in a union of two coarse regions that share the common interface. The snapshot vectors have zero Neumann boundary conditions on the outer boundaries, and we prescribe their values on the common interface. We describe several spectral decompositions in the snapshot space motivated by the analysis. In the paper, we also study oversampling approaches that enhance the accuracy of mixed GMsFEM. A main idea of oversampling techniques is to introduce a small dimensional snapshot space. We present numerical results for two-phase flow and transport, without updating basis functions in time. Our numerical results show that one can achieve good accuracy with a few basis functions per coarse edge if one selects appropriate offline spaces. © 2015 Society for Industrial and Applied Mathematics.
Mixed Element Formulation for the Finite Element-Boundary Integral Method
National Research Council Canada - National Science Library
Meese, J; Kempel, L. C; Schneider, S. W
2006-01-01
A mixed element approach using right hexahedral elements and right prism elements for the finite element-boundary integral method is presented and discussed for the study of planar cavity-backed antennas...
Simulation of natural convection in a rectangular loop using finite elements
International Nuclear Information System (INIS)
Pepper, D.W.; Hamm, L.L.; Kehoe, A.B.
1984-01-01
A two-dimensional finite-element analysis of natural convection in a rectangular loop is presented. A psi-omega formulation of the Boussinesque approximation to the Navier-Stokes equation is solved by the false transient technique. Streamlines and isotherms at Ra = 10 4 are shown for three different modes of heating. The results indicate that corner effects should be considered when modeling flow patterns in thermosyphons
Two-dimensional multigroup finite element calculation of fast reactor in diffusion approximation
International Nuclear Information System (INIS)
Schmid, J.
1986-06-01
When a linear element of triangular shape is used the actual finite element calculation is relatively simple. Extensive programs for mesh generation were written for easy inputting the configuration of reactors. A number of other programs were written for plotting neutron flux fields in individual groups, the power distribution, spatial plotting of fields, etc. The operation of selected programs, data preparation and operating instructions are described and examples given of data and results. All programs are written in GIER ALGOL. The used method and the developed programs have demonstrated that they are a useful instrument for the calculation of criticality and the distribution of neutron flux and power of both fast and thermal reactors. (J.B.)
International Nuclear Information System (INIS)
Frater, J.; Lestingi, J.; Padovan, J.
1977-01-01
This paper describes the development of an improved semi-analytical finite element for the stress analysis of anisotropic axisymmetric solids subjected to nonsymmetric loads. Orthogonal functions in the form of finite Fourier exponential transforms, which satisfy the equations of equilibrium of the theory of elasticity for an anisotropic solid of revolution, are used to expand the imposed loadings and displacement field. It is found that the orthogonality conditions for the assumed solution reduce the theta-dependency, thus reducing the three dimensional problem to an infinite series of two dimensional problems. (Auth.)
Rezende, Carlos Eduardo Edwards; Chase-Diaz, Melody; Costa, Max Doria; Albarracin, Max Laurent; Paschoeto, Gabriela; Sousa, Edson Antonio Capello; Rubo, José Henrique; Borges, Ana Flávia Sanches
2015-10-01
This study aimed to analyze the stress distribution in single implant system and to evaluate the compatibility of an in vitro model with finite element (FE) model. The in vitro model consisted of Brånemark implant; multiunit set abutment of 5 mm height; metal-ceramic screw-retained crown, and polyurethane simulating the bone. Deformations were recorded in the peri-implant region in the mesial and distal aspects, after an axial 300 N load application at the center of the occlusal aspect of the crown, using strain gauges. This in vitro model was scanned with micro CT to design a three-dimensional FE model and the strains in the peri-implant bone region were registered to check the compatibility between both models. The FE model was used to evaluate stress distribution in different parts of the system. The values obtained from the in vitro model (20-587 με) and the finite element analysis (81-588 με) showed agreement among them. The highest stresses because of axial and oblique load, respectively were 5.83 and 40 MPa for the cortical bone, 55 and 1200 MPa for the implant, and 80 and 470 MPa for the abutment screw. The FE method proved to be effective for evaluating the deformation around single implant. Oblique loads lead to higher stress concentrations.
FINITE ELEMENT ANALYSIS OF STRUCTURES
Directory of Open Access Journals (Sweden)
PECINGINA OLIMPIA-MIOARA
2015-05-01
Full Text Available The application of finite element method is analytical when solutions can not be applied for deeper study analyzes static, dynamic or other types of requirements in different points of the structures .In practice it is necessary to know the behavior of the structure or certain parts components of the machine under the influence of certain factors static and dynamic . The application of finite element in the optimization of components leads to economic growth , to increase reliability and durability organs studied, thus the machine itself.
Surgery simulation using fast finite elements
DEFF Research Database (Denmark)
Bro-Nielsen, Morten
1996-01-01
This paper describes our recent work on real-time surgery simulation using fast finite element models of linear elasticity. In addition, we discuss various improvements in terms of speed and realism......This paper describes our recent work on real-time surgery simulation using fast finite element models of linear elasticity. In addition, we discuss various improvements in terms of speed and realism...
Directory of Open Access Journals (Sweden)
M.H.R. Ghoreishy
2008-02-01
Full Text Available This research work is devoted to the footprint analysis of a steel-belted radial tyre (185/65R14 under vertical static load using finite element method. Two models have been developed in which in the first model the tread patterns were replaced by simple ribs while the second model was consisted of details of the tread blocks. Linear elastic and hyper elastic (Arruda-Boyce material models were selected to describe the mechanical behavior of the reinforcing and rubbery parts, respectively. The above two finite element models of the tyre were analyzed under inflation pressure and vertical static loads. The second model (with detailed tread patterns was analyzed with and without friction effect between tread and contact surfaces. In every stage of the analysis, the results were compared with the experimental data to confirm the accuracy and applicability of the model. Results showed that neglecting the tread pattern design not only reduces the computational cost and effort but also the differences between computed deformations do not show significant changes. However, more complicated variables such as shape and area of the footprint zone and contact pressure are affected considerably by the finite element model selected for the tread blocks. In addition, inclusion of friction even in static state changes these variables significantly.
van der Vegt, Jacobus J.W.; van der Ven, H.
1998-01-01
A new discretization method for the three-dimensional Euler equations of gas dynamics is presented, which is based on the discontinuous Galerkin finite element method. Special attention is paid to an efficient implementation of the discontinuous Galerkin method that minimizes the number of flux
Precise magnetostatic field using the finite element method
International Nuclear Information System (INIS)
Nascimento, Francisco Rogerio Teixeira do
2013-01-01
The main objective of this work is to simulate electromagnetic fields using the Finite Element Method. Even in the easiest case of electrostatic and magnetostatic numerical simulation some problems appear when the nodal finite element is used. It is difficult to model vector fields with scalar functions mainly in non-homogeneous materials. With the aim to solve these problems two types of techniques are tried: the adaptive remeshing using nodal elements and the edge finite element that ensure the continuity of tangential components. Some numerical analysis of simple electromagnetic problems with homogeneous and non-homogeneous materials are performed using first, the adaptive remeshing based in various error indicators and second, the numerical solution of waveguides using edge finite element. (author)
Jie, Lin; Shinya, Akikazu; Lassila, Lippo V J; Vallittu, Pekka K
2013-01-01
Pre-tensioned construction material is utilized in engineering applications of high strength demands. The purpose of this study was to evaluate the effect of the pre-tensioning fibers of fiber-reinforced composite (FRC) using three-dimensional finite element (FE) analysis. The 3D FE models of particulate composite resin (CR), FRC and composite resin reinforced with pre-tensioned fibers (PRE-T-FRC) were constructed. The uniaxial three-point bending test was simulated using FE analysis to calculate the principal stress distribution. In the FRC and PRE-T-FRC, stresses were higher than CR, and they were located in the fiber. However, the maximum principal stress value at the composite of PRE-T-FRC was lower than the FRC and CR. Composite resin reinforced with pre-tensioned fibers was advantageous for stress distribution and lowering the stress at the composite itself. Experimental studies on physical properties of pre-tensioned FRC are encouraged to be conducted.
Krishna Chaitanya Kanneganti; Dileep Nag Vinnakota; Srinivas Rao Pottem; Mahesh Pulagam
2018-01-01
Purpose: The purpose of this study is to compare the effect of implant-abutment connections, abutment angulations, and screw lengths on screw loosening (SL) of preloaded abutment using three dimensional (3D) finite element analysis. Materials and Methods: 3D models of implants (conical connection with hex/trilobed connections), abutments (straight/angulated), abutment screws (short/long), and crown and bone were designed using software Parametric Technology Corporation Creo and assembled t...
Finite element study of growth stress formation in wood and related distortion of sawn timber
DEFF Research Database (Denmark)
Ormarsson, Sigurdur; Dahlblom, O.; Johansson, M.
2009-01-01
-related stresses in wood (drying distortions) and growth-related stresses (distortions appearing when logs are split up to timber boards by sawing). To get more knowledge on how these distortions can be reduced in wooden products, there is a need for improved understanding of this material behaviour through good...... numerical tools developed from empirical data. A three-dimensional finite element board distortion model developed by Ormarsson (1999) has been extended to include the influence of growth stresses by incorporating a one-dimensional finite element growth stress model developed here. The growth stress model...... is formulated as an axisymmetric general plane strain model where material for all new annual rings is progressively added to the tree during the analysis. The simulation results presented include how stresses are progressively generated during the tree growth, distortions related to the redistribution...
A unidirectional approach for d-dimensional finite element methods for higher order on sparse grids
Energy Technology Data Exchange (ETDEWEB)
Bungartz, H.J. [Technische Universitaet Muenchen (Germany)
1996-12-31
In the last years, sparse grids have turned out to be a very interesting approach for the efficient iterative numerical solution of elliptic boundary value problems. In comparison to standard (full grid) discretization schemes, the number of grid points can be reduced significantly from O(N{sup d}) to O(N(log{sub 2}(N)){sup d-1}) in the d-dimensional case, whereas the accuracy of the approximation to the finite element solution is only slightly deteriorated: For piecewise d-linear basis functions, e. g., an accuracy of the order O(N{sup - 2}(log{sub 2}(N)){sup d-1}) with respect to the L{sub 2}-norm and of the order O(N{sup -1}) with respect to the energy norm has been shown. Furthermore, regular sparse grids can be extended in a very simple and natural manner to adaptive ones, which makes the hierarchical sparse grid concept applicable to problems that require adaptive grid refinement, too. An approach is presented for the Laplacian on a uinit domain in this paper.
A novel finite element method for moving conductor eddy current problems
Energy Technology Data Exchange (ETDEWEB)
Liu, Z.; Eastham, A.R.; Dawson, G.E. (Queen' s Univ., Kingston, Ontario (Canada). Dept. of Electrical Engineering)
1993-11-01
A novel finite element method, as an alternative to upwinding, is proposed based on the elimination of the factors which could cause numerical oscillation and instability by properly choosing a set of unconventional weighting functions. The proposed method is first developed and verified for a one dimensional case and then extended to two dimensional problems. The calculation results for a 2D problem, along with the exact solutions and those obtained from Galerkin's and ''optimal'' upwinding methods, show that the proposed method is superior to the other two methods in terms of accuracy and freedom from oscillation.
ANSYS mechanical APDL for finite element analysis
Thompson, Mary Kathryn
2017-01-01
ANSYS Mechanical APDL for Finite Element Analysis provides a hands-on introduction to engineering analysis using one of the most powerful commercial general purposes finite element programs on the market. Students will find a practical and integrated approach that combines finite element theory with best practices for developing, verifying, validating and interpreting the results of finite element models, while engineering professionals will appreciate the deep insight presented on the program's structure and behavior. Additional topics covered include an introduction to commands, input files, batch processing, and other advanced features in ANSYS. The book is written in a lecture/lab style, and each topic is supported by examples, exercises and suggestions for additional readings in the program documentation. Exercises gradually increase in difficulty and complexity, helping readers quickly gain confidence to independently use the program. This provides a solid foundation on which to build, preparing readers...
Finite elements of nonlinear continua
Oden, John Tinsley
1972-01-01
Geared toward undergraduate and graduate students, this text extends applications of the finite element method from linear problems in elastic structures to a broad class of practical, nonlinear problems in continuum mechanics. It treats both theory and applications from a general and unifying point of view.The text reviews the thermomechanical principles of continuous media and the properties of the finite element method, and then brings them together to produce discrete physical models of nonlinear continua. The mathematical properties of these models are analyzed, along with the numerical s
Finite element analysis and validation of dielectric elastomer actuators used for active origami
International Nuclear Information System (INIS)
McGough, Kevin; Ahmed, Saad; Frecker, Mary; Ounaies, Zoubeida
2014-01-01
The field of active origami explores the incorporation of active materials into origami-inspired structures in order to serve as a means of actuation. Active origami-inspired structures capable of folding into complex three-dimensional (3D) shapes have the potential to be lightweight and versatile compared to traditional methods of actuation. This paper details the finite element analysis and experimental validation of unimorph actuators. Actuators are fabricated by adhering layers of electroded dielectric elastomer (3M VHB F9473PC) onto a passive substrate layer (3M Magic Scotch Tape). Finite element analysis of the actuators simulates the electromechanical coupling of the dielectric elastomer under an applied voltage by applying pressures to the surfaces of the dielectric elastomer where the compliant electrode (conductive carbon grease) is present. 3D finite element analysis of the bending actuators shows that applying contact boundary conditions to the electroded region of the active and passive layers provides better agreement to experimental data compared to modeling the entire actuator as continuous. To improve the applicability of dielectric elastomer-based actuators for active origami-inspired structures, folding actuators are developed by taking advantage of localized deformation caused by a passive layer with non-uniform thickness. Two-dimensional analysis of the folding actuators shows that agreement to experimental data diminishes as localized deformation increases. Limitations of using pressures to approximate the electromechanical coupling of the dielectric elastomer under an applied electric field and additional modeling considerations are also discussed. (paper)
International Nuclear Information System (INIS)
Oliveira, C.R.E. de; Goddard, A.
1991-01-01
In this paper we review the current status of the finite element method applied to the solution of the neutron transport equation and we discuss its potential role in the field of criticality safety. We show that the method's ability in handling complex, irregular geometry in two- and three-dimensions coupled with its accurate solutions potentially renders it an attractive alternative to the longer-established Monte Carlo method. Details of the most favoured form of the method - that which combines finite elements in space and spherical harmonics in angle - are presented. This form of the method, which has been extensively investigated over the last decade by research groups at the University of London, has been numerically implemented in the finite element code EVENT. The code has among its main features the capability of solving fixed source eigenvalue and time-dependent complex geometry problems in two- and three-dimensions. Other features of the code include anisotropic up- and down-scatter, direct and/or adjoint solutions and access to standard data libraries. Numerical examples, ranging from simple criticality benchmark studies to the analysis of idealised three-dimensional reactor cores, are presented to demonstrate the potential of the method. (author)
The finite element method in engineering, 2nd edition
International Nuclear Information System (INIS)
Rao, S.S.
1986-01-01
This work provides a systematic introduction to the various aspects of the finite element method as applied to engineering problems. Contents include: introduction to finite element method; solution of finite element equations; solid and structural mechanics; static analysis; dynamic analysis; heat transfer; fluid mechanics and additional applications
The discontinuous finite element method for solving Eigenvalue problems of transport equations
International Nuclear Information System (INIS)
Yang, Shulin; Wang, Ruihong
2011-01-01
In this paper, the multigroup transport equations for solving the eigenvalues λ and K_e_f_f under two dimensional cylindrical coordinate are discussed. Aimed at the equations, the discretizing way combining discontinuous finite element method (DFE) with discrete ordinate method (SN) is developed, and the iterative algorithms and steps are studied. The numerical results show that the algorithms are efficient. (author)
Frost heave modelling of buried pipelines using non-linear Fourier finite elements
International Nuclear Information System (INIS)
Wan, R. G.; You, R.
1998-01-01
Numerical analysis of the response of a three-dimensional soil-pipeline system in a freezing environment using non-linear Fourier finite elements was described as an illustration of the effectiveness of this technique in analyzing plasticity problems. Plastic deformations occur when buried pipeline is under the action of non-uniform frost heave. The three-dimensional frost heave which develops over time including elastoplastic deformations of the soil and pipe are computed. The soil heave profile obtained in the numerical analysis was consistent with experimental findings for similar configurations. 8 refs., 8 figs
A finite element method for solving the shallow water equations on the sphere
Comblen, Richard; Legrand, Sébastien; Deleersnijder, Eric; Legat, Vincent
Within the framework of ocean general circulation modeling, the present paper describes an efficient way to discretize partial differential equations on curved surfaces by means of the finite element method on triangular meshes. Our approach benefits from the inherent flexibility of the finite element method. The key idea consists in a dialog between a local coordinate system defined for each element in which integration takes place, and a nodal coordinate system in which all local contributions related to a vectorial degree of freedom are assembled. Since each element of the mesh and each degree of freedom are treated in the same way, the so-called pole singularity issue is fully circumvented. Applied to the shallow water equations expressed in primitive variables, this new approach has been validated against the standard test set defined by [Williamson, D.L., Drake, J.B., Hack, J.J., Jakob, R., Swarztrauber, P.N., 1992. A standard test set for numerical approximations to the shallow water equations in spherical geometry. Journal of Computational Physics 102, 211-224]. Optimal rates of convergence for the P1NC-P1 finite element pair are obtained, for both global and local quantities of interest. Finally, the approach can be extended to three-dimensional thin-layer flows in a straightforward manner.
Energy Technology Data Exchange (ETDEWEB)
Lee, Sang Jin; Seo, Jeong Moon
2000-08-01
The main goal of this research is to establish a methodology of finite element analysis of containment building predicting not only global behaviour but also local failure mode. In this report, we summerize some existing numerical analysis techniques to be improved for containment building. In other words, a complete description of the standard degenerated shell finite element formulation is provided for nonlinear stress analysis of nuclear containment structure. A shell finite element is derived using the degenerated solid concept which does not rely on a specific shell theory. Reissner-Mindlin assumptions are adopted to consider the transverse shear deformation effect. In order to minimize the sensitivity of the constitutive equation to structural types, microscopic material model is adopted. The four solution algorithms based on the standard Newton-Raphson method are discussed. Finally, two numerical examples are carried out to test the performance of the adopted shell medel.
International Nuclear Information System (INIS)
Lee, Sang Jin; Seo, Jeong Moon
2000-08-01
The main goal of this research is to establish a methodology of finite element analysis of containment building predicting not only global behaviour but also local failure mode. In this report, we summerize some existing numerical analysis techniques to be improved for containment building. In other words, a complete description of the standard degenerated shell finite element formulation is provided for nonlinear stress analysis of nuclear containment structure. A shell finite element is derived using the degenerated solid concept which does not rely on a specific shell theory. Reissner-Mindlin assumptions are adopted to consider the transverse shear deformation effect. In order to minimize the sensitivity of the constitutive equation to structural types, microscopic material model is adopted. The four solution algorithms based on the standard Newton-Raphson method are discussed. Finally, two numerical examples are carried out to test the performance of the adopted shell medel
Finite Element Analysis of Pipe T-Joint
P.M.Gedkar; Dr. D.V. Bhope
2012-01-01
This paper reports stress analysis of two pressurized cylindrical intersection using finite element method. The different combinations of dimensions of run pipe and the branch pipe are used to investigate thestresses in pipe at the intersection. In this study the stress analysis is accomplished by finite element package ANSYS.
Introduction to finite element analysis using MATLAB and Abaqus
Khennane, Amar
2013-01-01
There are some books that target the theory of the finite element, while others focus on the programming side of things. Introduction to Finite Element Analysis Using MATLAB(R) and Abaqus accomplishes both. This book teaches the first principles of the finite element method. It presents the theory of the finite element method while maintaining a balance between its mathematical formulation, programming implementation, and application using commercial software. The computer implementation is carried out using MATLAB, while the practical applications are carried out in both MATLAB and Abaqus. MA
Application of finite element numerical technique to nuclear reactor geometries
Energy Technology Data Exchange (ETDEWEB)
Rouai, N M [Nuclear engineering department faculty of engineering Al-fateh universty, Tripoli (Libyan Arab Jamahiriya)
1995-10-01
Determination of the temperature distribution in nuclear elements is of utmost importance to ensure that the temperature stays within safe limits during reactor operation. This paper discusses the use of Finite element numerical technique (FE) for the solution of the two dimensional heat conduction equation in geometries related to nuclear reactor cores. The FE solution stats with variational calculus which considers transforming the heat conduction equation into an integral equation I(O) and seeks a function that minimizes this integral and hence gives the solution to the heat conduction equation. In this paper FE theory as applied to heat conduction is briefly outlined and a 2-D program is used to apply the theory to simple shapes and to two gas cooled reactor fuel elements. Good results are obtained for both cases with reasonable number of elements. 7 figs.
Application of finite element numerical technique to nuclear reactor geometries
International Nuclear Information System (INIS)
Rouai, N. M.
1995-01-01
Determination of the temperature distribution in nuclear elements is of utmost importance to ensure that the temperature stays within safe limits during reactor operation. This paper discusses the use of Finite element numerical technique (FE) for the solution of the two dimensional heat conduction equation in geometries related to nuclear reactor cores. The FE solution stats with variational calculus which considers transforming the heat conduction equation into an integral equation I(O) and seeks a function that minimizes this integral and hence gives the solution to the heat conduction equation. In this paper FE theory as applied to heat conduction is briefly outlined and a 2-D program is used to apply the theory to simple shapes and to two gas cooled reactor fuel elements. Good results are obtained for both cases with reasonable number of elements. 7 figs
Energy Technology Data Exchange (ETDEWEB)
Shadid, J.N.; Moffat, H.K.; Hutchinson, S.A.; Hennigan, G.L.; Devine, K.D.; Salinger, A.G.
1996-05-01
The theoretical background for the finite element computer program, MPSalsa, is presented in detail. MPSalsa is designed to solve laminar, low Mach number, two- or three-dimensional incompressible and variable density reacting fluid flows on massively parallel computers, using a Petrov-Galerkin finite element formulation. The code has the capability to solve coupled fluid flow, heat transport, multicomponent species transport, and finite-rate chemical reactions, and to solver coupled multiple Poisson or advection-diffusion- reaction equations. The program employs the CHEMKIN library to provide a rigorous treatment of multicomponent ideal gas kinetics and transport. Chemical reactions occurring in the gas phase and on surfaces are treated by calls to CHEMKIN and SURFACE CHEMKIN, respectively. The code employs unstructured meshes, using the EXODUS II finite element data base suite of programs for its input and output files. MPSalsa solves both transient and steady flows by using fully implicit time integration, an inexact Newton method and iterative solvers based on preconditioned Krylov methods as implemented in the Aztec solver library.
Nonlinear finite element modeling of corrugated board
A. C. Gilchrist; J. C. Suhling; T. J. Urbanik
1999-01-01
In this research, an investigation on the mechanical behavior of corrugated board has been performed using finite element analysis. Numerical finite element models for corrugated board geometries have been created and executed. Both geometric (large deformation) and material nonlinearities were included in the models. The analyses were performed using the commercial...
Oomori, H; Imura, S; Gesso, H
1992-04-01
To develop stem design achieving primary fixation of stems and effective load transfer to the femur, we studied stress analysis of stems in cementless total hip arthroplasty by two-dimensional finite element method using boundary friction layer in stem-bone interface. The results of analyses of stem-bone interface stresses and von Mises stresses at the cortical bones indicated that ideal stem design features would be as follows: 1) Sufficient length, with the distal end extending beyond the isthmus region. 2) Maximum possible width, to contact the cortical bones in the isthmus region. 3) No collars but a lateral shoulder at the proximal portion. 4) A distal tip, to contact the cortical bones at the distal portion.
Peridynamic Multiscale Finite Element Methods
Energy Technology Data Exchange (ETDEWEB)
Costa, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moore, Stan Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-12-01
The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic and local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the
Finite element analysis of prestressed concrete reactor vessels
International Nuclear Information System (INIS)
Smith, P.D.; Cook, W.A.; Anderson, C.A.
1977-01-01
This paper discusses the development of a finite element code suitable for the safety analysis of prestressed concrete reactor vessels. The project has involved modification of a general purpose computer code to handle reinforced concrete structures as well as comparison of results obtained with the code against published experimental data. The NONSAP nonlinear structural analysis program was selected for the ease with which it can be modified to encompass problems peculiar to nuclear reactors. Pre- and post-processors have been developed for mesh generation and for graphical display of response variables. An out-of-core assembler and solver have been developed for the analysis of large three dimensional problems. The constitutive model for short term loads forms an orthotropic stress-strain relationship in which the concrete and the reinforcing steel are treated as a composite. The variation of stiffness and strength of concrete under multiaxial stress states is accounted for. Cracks are allowed to form at element integration points based on a three dimensional failure envelope in stress space. Composite tensile and shear properties across a crack are modified to account for bond degradation and for dowel action of the reinforcement. The constitutive law for creep is base on the expansion of the usual creep compliance function in the form of a Dirichlet exponential series. Empirical creep data are then fit to the Dirichlet series approximation by means of a least squares procedure. The incremental deformation process is subsequently reduced to a series of variable stiffness elasticity problems in which the past stress history is represented by a finite number of hidden material variables
Bibliography for finite elements. [2200 references
Energy Technology Data Exchange (ETDEWEB)
Whiteman, J R [comp.
1975-01-01
This bibliography cites almost all of the significant papers on advances in the mathematical theory of finite elements. Reported are applications in aeronautical, civil, mechanical, nautical and nuclear engineering. Such topics as classical analysis, functional analysis, approximation theory, fluids, and diffusion are covered. Over 2200 references to publications up to the end of 1974 are included. Publications are listed alphabetically by author and also by keywords. In addition, finite element packages are listed.
Complex finite element sensitivity method for creep analysis
International Nuclear Information System (INIS)
Gomez-Farias, Armando; Montoya, Arturo; Millwater, Harry
2015-01-01
The complex finite element method (ZFEM) has been extended to perform sensitivity analysis for mechanical and structural systems undergoing creep deformation. ZFEM uses a complex finite element formulation to provide shape, material, and loading derivatives of the system response, providing an insight into the essential factors which control the behavior of the system as a function of time. A complex variable-based quadrilateral user element (UEL) subroutine implementing the power law creep constitutive formulation was incorporated within the Abaqus commercial finite element software. The results of the complex finite element computations were verified by comparing them to the reference solution for the steady-state creep problem of a thick-walled cylinder in the power law creep range. A practical application of the ZFEM implementation to creep deformation analysis is the calculation of the skeletal point of a notched bar test from a single ZFEM run. In contrast, the standard finite element procedure requires multiple runs. The value of the skeletal point is that it identifies the location where the stress state is accurate, regardless of the certainty of the creep material properties. - Highlights: • A novel finite element sensitivity method (ZFEM) for creep was introduced. • ZFEM has the capability to calculate accurate partial derivatives. • ZFEM can be used for identification of the skeletal point of creep structures. • ZFEM can be easily implemented in a commercial software, e.g. Abaqus. • ZFEM results were shown to be in excellent agreement with analytical solutions
Some studies on weld bead geometries for laser spot welding process using finite element analysis
International Nuclear Information System (INIS)
Siva Shanmugam, N.; Buvanashekaran, G.; Sankaranarayanasamy, K.
2012-01-01
Highlights: → In this study, a 2 kW Nd:YAG laser welding system is used to conduct laser spot welding trials. → The size and shape of the laser spot weld is predicted using finite element simulation. → The heat input is assumed to be a three-dimensional conical Gaussian heat source. → The result highlights the effect of beam incident angle on laser spot welds. → The achieved results of numerical simulation are almost identical with a real weldment. -- Abstract: Nd:YAG laser beam welding is a high power density welding process which has the capability to focus the beam to a very small spot diameter of about 0.4 mm. It has favorable characteristics namely, low heat input, narrow heat affected zone and lower distortions, as compared to conventional welding processes. In this study, finite element method (FEM) is applied for predicting the weld bead geometry i.e. bead length (BL), bead width (BW) and depth of penetration (DP) in laser spot welding of AISI 304 stainless steel sheet of thickness 2.5 mm. The input parameters of laser spot welding such as beam power, incident angle of the beam and beam exposure time are varied for conducting experimental trials and numerical simulations. Temperature-dependent thermal properties of AISI 304 stainless steel, the effect of latent heat of fusion, and the convective and radiative aspects of boundary conditions are considered while developing the finite element model. The heat input to the developed model is assumed to be a three-dimensional conical Gaussian heat source. Finite-element simulations of laser spot welding were carried out by using Ansys Parametric Design Language (APDL) available in finite-element code, ANSYS. The results of the numerical analysis provide the shape of the weld beads for different ranges of laser input parameters that are subsequently compared with the results obtained through experimentation and it is found that they are in good agreement.
Solution of three-dimensional energy equation using finite element method
International Nuclear Information System (INIS)
Bhasin, V.; Singh, R.K.; Dutta, B.K.; Kushwaha, H.S.
1993-01-01
In the present work an attempt has been made to formulate an efficient 3-D finite element program for solving coupled momentum-energy equation with unsymmetric frontal solver and a suitable upwinding scheme. Based on the above solution technique of energy equation it can be concluded that upwinding scheme can lead to fairly accurate and smooth results even with coarse mesh. Otherwise the mesh size requirement will be extremely stringent for most of the practical problems. With upwinding the additional computer time required is marginally more. This effort has resulted in getting practical solution for large size real life problems in nuclear industry. The program was used for computation of temperature field in heavy water moderator of Madras Atomic Power Station (MAPS) reactor, in new mode of operation. (author). 9 refs., 7 figs
A suitable low-order, eight-node tetrahedral finite element for solids
Energy Technology Data Exchange (ETDEWEB)
Key, S.W.; Heinstein, M.S.; Stone, C.M.; Mello, F.J.; Blanford, M.L.; Budge, K.G.
1998-03-01
To use the all-tetrahedral mesh generation existing today, the authors have explored the creation of a computationally efficient eight-node tetrahedral finite element (a four-node tetrahedral finite element enriched with four mid-face nodal points). The derivation of the element`s gradient operator, studies in obtaining a suitable mass lumping, and the element`s performance in applications are presented. In particular they examine the eight-node tetrahedral finite element`s behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element samples only constant strain states and, therefore, has 12 hour-glass modes. In this regard it bears similarities to the eight-node, mean-quadrature hexahedral finite element. Comparisons with the results obtained from the mean-quadrature eight-node hexahedral finite element and the four-node tetrahedral finite element are included. Given automatic all-tetrahedral meshing, the eight-node, constant-strain tetrahedral finite element is a suitable replacement for the eight-node hexahedral finite element in those cases where mesh generation requires an inordinate amount of user intervention and direction to obtain acceptable mesh properties.
Application of Mass Lumped Higher Order Finite Elements
International Nuclear Information System (INIS)
J. Chen, H.R. Strauss, S.C. Jardin, W. Park, L.E. Sugiyama, G. Fu, J. Breslau
2005-01-01
There are many interesting phenomena in extended-MHD such as anisotropic transport, mhd, 2-fluid effects stellarator and hot particles. Any one of them challenges numerical analysts, and researchers are seeking for higher order methods, such as higher order finite difference, higher order finite elements and hp/spectral elements. It is true that these methods give more accurate solution than their linear counterparts. However, numerically they are prohibitively expensive. Here we give a successful solution of this conflict by applying mass lumped higher order finite elements. This type of elements not only keep second/third order accuracy but also scale closely to linear elements by doing mass lumping. This is especially true for second order lump elements. Full M3D and anisotropic transport models are studied
PLANS; a finite element program for nonlinear analysis of structures. Volume 2: User's manual
Pifko, A.; Armen, H., Jr.; Levy, A.; Levine, H.
1977-01-01
The PLANS system, rather than being one comprehensive computer program, is a collection of finite element programs used for the nonlinear analysis of structures. This collection of programs evolved and is based on the organizational philosophy in which classes of analyses are treated individually based on the physical problem class to be analyzed. Each of the independent finite element computer programs of PLANS, with an associated element library, can be individually loaded and used to solve the problem class of interest. A number of programs have been developed for material nonlinear behavior alone and for combined geometric and material nonlinear behavior. The usage, capabilities, and element libraries of the current programs include: (1) plastic analysis of built-up structures where bending and membrane effects are significant, (2) three dimensional elastic-plastic analysis, (3) plastic analysis of bodies of revolution, and (4) material and geometric nonlinear analysis of built-up structures.
A suitable low-order, eight-node tetrahedral finite element for solids
International Nuclear Information System (INIS)
Key, S.W.; Heinstein, M.S.; Stone, C.M.; Mello, F.J.; Blanford, M.L.; Budge, K.G.
1998-03-01
To use the all-tetrahedral mesh generation existing today, the authors have explored the creation of a computationally efficient eight-node tetrahedral finite element (a four-node tetrahedral finite element enriched with four mid-face nodal points). The derivation of the element's gradient operator, studies in obtaining a suitable mass lumping, and the element's performance in applications are presented. In particular they examine the eight-node tetrahedral finite element's behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element samples only constant strain states and, therefore, has 12 hour-glass modes. In this regard it bears similarities to the eight-node, mean-quadrature hexahedral finite element. Comparisons with the results obtained from the mean-quadrature eight-node hexahedral finite element and the four-node tetrahedral finite element are included. Given automatic all-tetrahedral meshing, the eight-node, constant-strain tetrahedral finite element is a suitable replacement for the eight-node hexahedral finite element in those cases where mesh generation requires an inordinate amount of user intervention and direction to obtain acceptable mesh properties
Application of finite-element-methods in food processing
DEFF Research Database (Denmark)
Risum, Jørgen
2004-01-01
Presentation of the possible use of finite-element-methods in food processing. Examples from diffusion studies are given.......Presentation of the possible use of finite-element-methods in food processing. Examples from diffusion studies are given....
The Mixed Finite Element Multigrid Method for Stokes Equations
Muzhinji, K.; Shateyi, S.; Motsa, S. S.
2015-01-01
The stable finite element discretization of the Stokes problem produces a symmetric indefinite system of linear algebraic equations. A variety of iterative solvers have been proposed for such systems in an attempt to construct efficient, fast, and robust solution techniques. This paper investigates one of such iterative solvers, the geometric multigrid solver, to find the approximate solution of the indefinite systems. The main ingredient of the multigrid method is the choice of an appropriate smoothing strategy. This study considers the application of different smoothers and compares their effects in the overall performance of the multigrid solver. We study the multigrid method with the following smoothers: distributed Gauss Seidel, inexact Uzawa, preconditioned MINRES, and Braess-Sarazin type smoothers. A comparative study of the smoothers shows that the Braess-Sarazin smoothers enhance good performance of the multigrid method. We study the problem in a two-dimensional domain using stable Hood-Taylor Q 2-Q 1 pair of finite rectangular elements. We also give the main theoretical convergence results. We present the numerical results to demonstrate the efficiency and robustness of the multigrid method and confirm the theoretical results. PMID:25945361
Shih, D.; Yeh, G.
2009-12-01
This paper applies two numerical approximations, the particle tracking technique and Galerkin finite element method, to solve the diffusive wave equation in both one-dimensional and two-dimensional flow simulations. The finite element method is one of most commonly approaches in numerical problems. It can obtain accurate solutions, but calculation times may be rather extensive. The particle tracking technique, using either single-velocity or average-velocity tracks to efficiently perform advective transport, could use larger time-step sizes than the finite element method to significantly save computational time. Comparisons of the alternative approximations are examined in this poster. We adapt the model WASH123D to examine the work. WASH123D is an integrated multimedia, multi-processes, physics-based computational model suitable for various spatial-temporal scales, was first developed by Yeh et al., at 1998. The model has evolved in design capability and flexibility, and has been used for model calibrations and validations over the course of many years. In order to deliver a locally hydrological model in Taiwan, the Taiwan Typhoon and Flood Research Institute (TTFRI) is working with Prof. Yeh to develop next version of WASH123D. So, the work of our preliminary cooperationx is also sketched in this poster.
Investigation of High-Speed Cryogenic Machining Based on Finite Element Approach
Directory of Open Access Journals (Sweden)
Pooyan Vahidi Pashaki
Full Text Available Abstract The simulation of cryogenic machining process because of using a three-dimensional model and high process duration time in the finite element method, have been studied rarely. In this study, to overcome this limitation, a 2.5D finite element model using the commercial finite element software ABAQUS has been developed for the cryogenic machining process and by considering more realistic assumptions, the chip formation procedure investigated. In the proposed method, the liquid nitrogen has been used as a coolant. At the modeling of friction during the interaction of tools - chip, the Coulomb law has been used. In order to simulate the behavior of plasticity and failure criterion, Johnson-Cook model was used, and unlike previous investigations, thermal and mechanical properties of materials as a function of temperature were applied to the software. After examining accuracy of the model with present experimental data, the effect of parameters such as rake angle and the cutting speed as well as dry machining of aluminum alloy by the use of coupled dynamic temperature solution has been studied. Results indicated that at the cutting velocity of 10 m/s, cryogenic cooling has caused into decreasing 60 percent of tools temperature in comparison with the dry cooling. Furthermore, a chip which has been made by cryogenic machining were connected and without fracture in contrast to dry machining.
Accuracy of finite-element models for the stress analysis of multiple-holed moderator blocks
International Nuclear Information System (INIS)
Smith, P.D.; Sullivan, R.M.; Lewis, A.C.; Yu, H.J.
1981-01-01
Two steps have been taken to quantify and improve the accuracy in the analysis. First, the limitations of various approximation techniques have been studied with the aid of smaller benchmark problems containing fewer holes. Second, a new family of computer programs has been developed for handling such large problems. This paper describes the accuracy studies and the benchmark problems. A review is given of some proposed modeling techniques including local mesh refinement, homogenization, a special-purpose finite element, and substructuring. Some limitations of these approaches are discussed. The new finite element programs and the features that contribute to their efficiency are discussed. These include a standard architecture for out-of-core data processing and an equation solver that operates on a peripheral array processor. The central conclusions of the paper are: (1) modeling approximation methods such as local mesh refinement and homogenization tend to be unreliable, and they should be justified by a fine mesh benchmark analysis; and (2) finite element codes are now available that can achieve accurate solutions at a reasonable cost, and there is no longer a need to employ modeling approximations in the two-dimensional analysis of HTGR fuel elements. 10 figures
International Nuclear Information System (INIS)
Xiong Yuhong; Hofmeister, William H.; Cheng Zhao; Smugeresky, John E.; Lavernia, Enrique J.; Schoenung, Julie M.
2009-01-01
Laser deposition is being used for the fabrication of net shapes from a broad range of materials, including tungsten carbide-cobalt (WC-Co) cermets (composites composed of a metallic phase and a hard refractory phase). During deposition, an unusual thermal condition is created for cermets, resulting in rather complex microstructures. To provide a fundamental insight into the evolution of such microstructures, we studied the thermal behavior of WC-Co cermets during laser deposition involving complementary results from in situ high-speed thermal imaging and three-dimensional finite element modeling. The former allowed for the characterization of temperature gradients and cooling rates in the vicinity of the molten pool, whereas the latter allowed for simulation of the entire sample. By combining the two methods, a more robust analysis of the thermal behavior was achieved. The model and the imaging results correlate well with each other and with the alternating sublayers observed in the microstructure.
Zhang, Yi; Zhang, Lei; Fan, Yu-bo; Song, Jin-lin; Deng, Feng
2009-10-01
To investigate the biomechanical effects of micro-implant anchorage technique with sliding mechanics on maxillary anterior teeth retraction under different implant insertion heights and different retraction hook heights. The three dimensional finite element model of maxillary anterior teeth retraction force system was constructed with CT scanning and MIMICS software and the relationships between brackets, teeth, wire and micro-implant were simulating the clinical factions. Then the initial tooth displacement was calculated when the insertion heights were 4 mm and 8 mm and the retraction hook heights were 1, 4, 7, 10 mm respectively. With retraction hook height added, the anterior teeth movement changed from lingual crown tipping to labial crown tipping and the intrusion movement was more apparent when the micro-implant was inserted in a higher location. The ideal teeth movement control could be achieved by different insertion heights of micro-implant and different retraction hook heights in straight wire retraction force system.
Advances in 3D electromagnetic finite element modeling
International Nuclear Information System (INIS)
Nelson, E.M.
1997-01-01
Numerous advances in electromagnetic finite element analysis (FEA) have been made in recent years. The maturity of frequency domain and eigenmode calculations, and the growth of time domain applications is briefly reviewed. A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will also be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis is also discussed
Accurate Modeling of a Transverse Flux Permanent Magnet Generator Using 3D Finite Element Analysis
DEFF Research Database (Denmark)
Hosseini, Seyedmohsen; Moghani, Javad Shokrollahi; Jensen, Bogi Bech
2011-01-01
method is then proposed that reveals the behavior of the generator under any load. Finally, torque calculations are carried out using three dimensional finite element analyses. It is shown that although in the single-phase generator the cogging torque is very high, this can be improved significantly...
On symmetric pyramidal finite elements
Czech Academy of Sciences Publication Activity Database
Liu, L.; Davies, K. B.; Yuan, K.; Křížek, Michal
2004-01-01
Roč. 11, 1-2 (2004), s. 213-227 ISSN 1492-8760 R&D Projects: GA AV ČR IAA1019201 Institutional research plan: CEZ:AV0Z1019905 Keywords : mesh generation * finite element method * composite elements Subject RIV: BA - General Mathematics Impact factor: 0.108, year: 2004
Two dimensional finite element thermal model of laser surface glazing for H13 tool steel
Kabir, I. R.; Yin, D.; Naher, S.
2016-10-01
A two dimensional (2D) transient thermal model with line-heat-source was developed by Finite Element Method (FEM) for laser surface glazing of H13 tool steel using commercial software-ANSYS 15. The geometry of the model was taken as a transverse circular cross-section of cylindrical specimen. Two different power levels (300W, 200W) were used with 0.2mm width of laser beam and 0.15ms exposure time. Temperature distribution, heating and cooling rates, and the dimensions of modified surface were analysed. The maximum temperatures achieved were 2532K (2259°C) and 1592K (1319°C) for laser power 300W and 200W respectively. The maximum cooling rates were 4.2×107 K/s for 300W and 2×107 K/s for 200W. Depths of modified zone increased with increasing laser power. From this analysis, it can be predicted that for 0.2mm beam width and 0.15ms time exposer melting temperature of H13 tool steel is achieved within 200-300W power range of laser beam in laser surface glazing.
International Nuclear Information System (INIS)
Nkemzi, B.
2005-10-01
Three-dimensional time-harmonic Maxwell's problems in axisymmetric domains Ω-circumflex with edges and conical points on the boundary are treated by means of the Fourier-finite-element method. The Fourier-fem combines the approximating Fourier series expansion of the solution with respect to the rotational angle using trigonometric polynomials of degree N (N → ∞), with the finite element approximation of the Fourier coefficients on the plane meridian domain Ω a is a subset of R + 2 of Ω-circumflex with mesh size h (h → 0). The singular behaviors of the Fourier coefficients near angular points of the domain Ω a are fully described by suitable singular functions and treated numerically by means of the singular function method with the finite element method on graded meshes. It is proved that the rate of convergence of the mixed approximations in H 1 (Ω-circumflex) 3 is of the order O (h+N -1 ) as known for the classical Fourier-finite-element approximation of problems with regular solutions. (author)
Error Analysis of a Finite Element Method for the Space-Fractional Parabolic Equation
Jin, Bangti; Lazarov, Raytcho; Pasciak, Joseph; Zhou, Zhi
2014-01-01
© 2014 Society for Industrial and Applied Mathematics We consider an initial boundary value problem for a one-dimensional fractional-order parabolic equation with a space fractional derivative of Riemann-Liouville type and order α ∈ (1, 2). We study a spatial semidiscrete scheme using the standard Galerkin finite element method with piecewise linear finite elements, as well as fully discrete schemes based on the backward Euler method and the Crank-Nicolson method. Error estimates in the L2(D)- and Hα/2 (D)-norm are derived for the semidiscrete scheme and in the L2(D)-norm for the fully discrete schemes. These estimates cover both smooth and nonsmooth initial data and are expressed directly in terms of the smoothness of the initial data. Extensive numerical results are presented to illustrate the theoretical results.
The finite element method in electromagnetics
Jin, Jianming
2014-01-01
A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The
Finite elements for analysis and design
Akin, J E; Davenport, J H
1994-01-01
The finite element method (FEM) is an analysis tool for problem-solving used throughout applied mathematics, engineering, and scientific computing. Finite Elements for Analysis and Design provides a thoroughlyrevised and up-to-date account of this important tool and its numerous applications, with added emphasis on basic theory. Numerous worked examples are included to illustrate the material.Key Features* Akin clearly explains the FEM, a numerical analysis tool for problem-solving throughout applied mathematics, engineering and scientific computing* Basic theory has bee
Solving the Einstein constraint equations on multi-block triangulations using finite element methods
Energy Technology Data Exchange (ETDEWEB)
Korobkin, Oleg; Pazos, Enrique [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Aksoylu, Burak [Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803 (United States); Holst, Michael [Department of Mathematics, University of California at San Diego 9500 Gilman Drive La Jolla, CA 92093-0112 (United States); Tiglio, Manuel [Department of Physics, University of Maryland, College Park, MD 20742 (United States)
2009-07-21
In order to generate initial data for nonlinear relativistic simulations, one needs to solve the Einstein constraints, which can be cast into a coupled set of nonlinear elliptic equations. Here we present an approach for solving these equations on three-dimensional multi-block domains using finite element methods. We illustrate our approach on a simple example of Brill wave initial data, with the constraints reducing to a single linear elliptic equation for the conformal factor psi. We use quadratic Lagrange elements on semi-structured simplicial meshes, obtained by triangulation of multi-block grids. In the case of uniform refinement the scheme is superconvergent at most mesh vertices, due to local symmetry of the finite element basis with respect to local spatial inversions. We show that in the superconvergent case subsequent unstructured mesh refinements do not improve the quality of our initial data. As proof of concept that this approach is feasible for generating multi-block initial data in three dimensions, after constructing the initial data we evolve them in time using a high-order finite-differencing multi-block approach and extract the gravitational waves from the numerical solution.
Solving the Einstein constraint equations on multi-block triangulations using finite element methods
International Nuclear Information System (INIS)
Korobkin, Oleg; Pazos, Enrique; Aksoylu, Burak; Holst, Michael; Tiglio, Manuel
2009-01-01
In order to generate initial data for nonlinear relativistic simulations, one needs to solve the Einstein constraints, which can be cast into a coupled set of nonlinear elliptic equations. Here we present an approach for solving these equations on three-dimensional multi-block domains using finite element methods. We illustrate our approach on a simple example of Brill wave initial data, with the constraints reducing to a single linear elliptic equation for the conformal factor ψ. We use quadratic Lagrange elements on semi-structured simplicial meshes, obtained by triangulation of multi-block grids. In the case of uniform refinement the scheme is superconvergent at most mesh vertices, due to local symmetry of the finite element basis with respect to local spatial inversions. We show that in the superconvergent case subsequent unstructured mesh refinements do not improve the quality of our initial data. As proof of concept that this approach is feasible for generating multi-block initial data in three dimensions, after constructing the initial data we evolve them in time using a high-order finite-differencing multi-block approach and extract the gravitational waves from the numerical solution.
Jin, Qiyun; Thompson, David J.; Lurcock, Daniel E. J.; Toward, Martin G. R.; Ntotsios, Evangelos
2018-05-01
A numerical model is presented for the ground-borne vibration produced by trains running in tunnels. The model makes use of the assumption that the geometry and material properties are invariant in the axial direction. It is based on the so-called two-and-a-half dimensional (2.5D) coupled Finite Element and Boundary Element methodology, in which a two-dimensional cross-section is discretised into finite elements and boundary elements and the third dimension is represented by a Fourier transform over wavenumbers. The model is applied to a particular case of a metro line built with a cast-iron tunnel lining. An equivalent continuous model of the tunnel is developed to allow it to be readily implemented in the 2.5D framework. The tunnel structure and the track are modelled using solid and beam finite elements while the ground is modelled using boundary elements. The 2.5D track-tunnel-ground model is coupled with a train consisting of several vehicles, which are represented by multi-body models. The response caused by the passage of a train is calculated as the sum of the dynamic component, excited by the combined rail and wheel roughness, and the quasi-static component, induced by the constant moving axle loads. Field measurements have been carried out to provide experimental validation of the model. These include measurements of the vibration of the rail, the tunnel invert and the tunnel wall. In addition, simultaneous measurements were made on the ground surface above the tunnel. Rail roughness and track characterisation measurements were also made. The prediction results are compared with measured vibration obtained during train passages, with good agreement.
2D Finite Element Model of a CIGS Module
Energy Technology Data Exchange (ETDEWEB)
Janssen, G.J.M.; Slooff, L.H.; Bende, E.E. [ECN Solar Energy, P.O.Box 1, NL-1755 ZG Petten (Netherlands)
2012-06-15
The performance of thin-film CIGS (Copper indium gallium selenide) modules is often limited due to inhomogeneities in CIGS layers. A 2-dimensional Finite Element Model for CIGS modules is presented that predicts the impact of such inhomogeneities on the module performance. Results are presented of a module with a region of poor diode characteristics. It is concluded that according to this model the effects of poor diodes depend strongly on their location in the module and on their dispersion over the module surface. Due to its generic character the model can also be applied to other series connections of photovoltaic cells.
2D - Finite element model of a CIGS module
Energy Technology Data Exchange (ETDEWEB)
Janssen, G.J.M.; Slooff, L.H.; Bende, E.E. [ECN Solar Energy, Petten (Netherlands)
2012-09-15
The performance of thin-film CIGS modules is often limited due to inhomogeneities in CIGS layers. A 2-dimensional Finite Element Model for CIGS modules is demonstrated that predicts the impact of such inhomogeneities on the module performance. Results are presented of a module with a region of poor diode characteristics. It is concluded that according to this model the effects of poor diodes depend strongly on their location in the module and on their dispersion over the module surface. Due to its generic character the model can also be applied to other series connections of photovoltaic cells.
Finite Element Method in Machining Processes
Markopoulos, Angelos P
2013-01-01
Finite Element Method in Machining Processes provides a concise study on the way the Finite Element Method (FEM) is used in the case of manufacturing processes, primarily in machining. The basics of this kind of modeling are detailed to create a reference that will provide guidelines for those who start to study this method now, but also for scientists already involved in FEM and want to expand their research. A discussion on FEM, formulations and techniques currently in use is followed up by machining case studies. Orthogonal cutting, oblique cutting, 3D simulations for turning and milling, grinding, and state-of-the-art topics such as high speed machining and micromachining are explained with relevant examples. This is all supported by a literature review and a reference list for further study. As FEM is a key method for researchers in the manufacturing and especially in the machining sector, Finite Element Method in Machining Processes is a key reference for students studying manufacturing processes but al...
SAFE-PLANE, Stress Analysis of Planar Structure by Finite Elements Method
International Nuclear Information System (INIS)
Cornell, D.C.; Reich, Morris
1967-01-01
1 - Description of problem or function: SAFE-PLANE is applied to two- dimensional structures of arbitrary geometry under in-plane loads. Either plane stress or plane strain conditions may be imposed. Mechanical and thermal loads are permitted. 2 - Method of solution: The finite-element method is used to construct a mathematical model by assembling discrete elements. The total potential energy of the structure is determined and subsequently minimized by iteration on components of the displacement field until static equilibrium of the structure is attained. Strains and stresses are computed from the resulting displacements. 3 - Restrictions on the complexity of the problem: Multi-material structures with varying rigidities converge very slowly. Not valid for incompressible materials. Maximum number of nodal points = 675. Maximum number of elements = 1350
Weiser, Martin
2016-01-01
All relevant implementation aspects of finite element methods are discussed in this book. The focus is on algorithms and data structures as well as on their concrete implementation. Theory is covered as far as it gives insight into the construction of algorithms. Throughout the exercises a complete FE-solver for scalar 2D problems will be implemented in Matlab/Octave.
Directory of Open Access Journals (Sweden)
Claudio A. Careglio
2016-01-01
Full Text Available In simulations of forged and stamping processes using the finite element method, load displacement paths and three-dimensional stress and strains states should be well and reliably represented. The simple tension test is a suitable and economical tool to calibrate constitutive equations with finite strains and plasticity for those simulations. A complex three-dimensional stress and strain states are developed when this test is done on rectangular bars and the necking phenomenon appears. In this work, global and local numerical results of the mechanical response of rectangular bars subjected to simple tension test obtained from two different finite element formulations are compared and discussed. To this end, Updated and Total Lagrangian formulations are used in order to get the three-dimensional stress and strain states. Geometric changes together with strain and stress distributions at the cross section where necking occurs are assessed. In particular, a detailed analysis of the effective plastic strain, stress components in axial and transverse directions and pressure, and deviatoric stress components is presented. Specific numerical results are also validated with experimental measurements comparing, in turn, the performance of the two numerical approaches used in this study.
Directory of Open Access Journals (Sweden)
Iman Zafarparandeh
2016-03-01
Full Text Available In some finite element analysis studies of models of sections of the spine, the three-dimensional solid model is built by assuming symmetry about the mid-sagittal plane of the section, whereas in other studies, the model is built from the exact geometry of the section. The influence of the method used to build the solid model on model parameters, in the case of the cervical spine, has not been reported in the literature. This issue is the subject of this study, with the section being C2–C7, the applied loadings being extension, flexion, left lateral bending, and right axial rotation (each of magnitude 1 Nm, and the model parameters determined being rotation, intradiskal pressure, and facet load at each of the segments. When all the parameter results were considered, it was found that, by and large, the influence of solid model construction method used (exact geometry vs assumption of symmetry about the mid-sagittal plane of the section was marginal. As construction of a symmetric finite element model requires less time and effort, construction of an asymmetric model may be justified in special cases only.
1978-01-01
A three-dimensional finite elements analysis is reported of the nonlinear behavior of PCRV subjected to internal pressure by comparing calculated results with test results. As the first stage, an analysis considering the nonlinearity of cracking in concrete was attempted. As a result, it is found possible to make an analysis up to three times the design pressure (50 kg/sqcm), and calculated results agree well with test results.
Finite Element Modelling of Seismic Liquefaction in Soils
Galavi, V.; Petalas, A.; Brinkgreve, R.B.J.
2013-01-01
Numerical aspects of seismic liquefaction in soils as implemented in the finite element code, PLAXIS, is described in this paper. After description of finite element equations of dynamic problems, three practical dynamic boundary conditions, namely viscous boundary tractions, tied degrees of freedom
Biderivations of finite dimensional complex simple Lie algebras
Tang, Xiaomin
2016-01-01
In this paper, we prove that a biderivation of a finite dimensional complex simple Lie algebra without the restriction of skewsymmetric is inner. As an application, the biderivation of a general linear Lie algebra is presented. In particular, we find a class of a non-inner and non-skewsymmetric biderivations. Furthermore, we also get the forms of linear commuting maps on the finite dimensional complex simple Lie algebra or general linear Lie algebra.
Directory of Open Access Journals (Sweden)
Liu Bing
2014-10-01
Full Text Available Earthquake action is the main external factor which influences long-term safe operation of civil construction, especially of the high-rise building. Applying time-history method to simulate earthquake response process of civil construction foundation surrounding rock is an effective method for the anti-knock study of civil buildings. Therefore, this paper develops a civil building earthquake disaster three-dimensional dynamic finite element numerical simulation system. The system adopts the explicit central difference method. Strengthening characteristics of materials under high strain rate and damage characteristics of surrounding rock under the action of cyclic loading are considered. Then, dynamic constitutive model of rock mass suitable for civil building aseismic analysis is put forward. At the same time, through the earthquake disaster of time-history simulation of Shenzhen Children’s Palace, reliability and practicability of system program is verified in the analysis of practical engineering problems.
Chen, Wen-Ming; Lee, Sung-Jae; Lee, Peter Vee Sin
2015-02-26
Therapeutic footwear with specially-made insoles is often used in people with diabetes and rheumatoid arthritis to relieve ulcer risks and pain due to high pressures from areas beneath bony prominences of the foot, in particular to the metatarsal heads (MTHs). In a three-dimensional finite element study of the foot and footwear with sensitivity analysis, effects of geometrical variations of a therapeutic insole, in terms of insole thicknesses and metatarsal pad (MP) placements, on local peak plantar pressure under MTHs and stress/strain states within various forefoot tissues, were determined. A validated musculoskeletal finite element model of the human foot was employed. Analyses were performed in a simulated muscle-demanding instant in gait. For many design combinations, increasing insole thicknesses consistently reduce peak pressures and internal tissue strain under MTHs, but the effects reach a plateau when insole becomes very thick (e.g., a value of 12.7mm or greater). Altering MP placements, however, showed a proximally- and a distally-placed MP could result in reverse effects on MTH pressure-relief. The unsuccessful outcome due to a distally-placed MP may attribute to the way it interacts with plantar tissue (e.g., plantar fascia) adjacent to the MTH. A uniform pattern of tissue compression under metatarsal shaft is necessary for a most favorable pressure-relief under MTHs. The designated functions of an insole design can best be achieved when the insole is very thick, and when the MP can achieve a uniform tissue compression pattern adjacent to the MTH. Copyright © 2015 Elsevier Ltd. All rights reserved.
Three-dimensional Finite Element Modelling of Composite Slabs for High Speed Rails
Mlilo, Nhlanganiso; Kaewunruen, Sakdirat
2017-12-01
Currently precast steel-concrete composite slabs are being considered on railway bridges as a viable alternative replacement for timber sleepers. However, due to their nature and the loading conditions, their behaviour is often complex. Present knowledge of the behaviour of precast steel-concrete composite slabs subjected to rail loading is limited. FEA is an important tool used to simulate real life behaviour and is widely accepted in many disciples of engineering as an alternative to experimental test methods, which are often costly and time consuming. This paper seeks to detail FEM of precast steel-concrete slabs subjected to standard in-service loading in high-speed rail with focus on the importance of accurately defining material properties, element type, mesh size, contacts, interactions and boundary conditions that will give results representative of real life behaviour. Initial finite element model show very good results, confirming the accuracy of the modelling procedure
Fast solution of neutron diffusion problem by reduced basis finite element method
International Nuclear Information System (INIS)
Chunyu, Zhang; Gong, Chen
2018-01-01
Highlights: •An extremely efficient method is proposed to solve the neutron diffusion equation with varying the cross sections. •Three orders of speedup is achieved for IAEA benchmark problems. •The method may open a new possibility of efficient high-fidelity modeling of large scale problems in nuclear engineering. -- Abstract: For the important applications which need carry out many times of neutron diffusion calculations such as the fuel depletion analysis and the neutronics-thermohydraulics coupling analysis, fast and accurate solutions of the neutron diffusion equation are demanding but necessary. In the present work, the certified reduced basis finite element method is proposed and implemented to solve the generalized eigenvalue problems of neutron diffusion with variable cross sections. The order reduced model is built upon high-fidelity finite element approximations during the offline stage. During the online stage, both the k eff and the spatical distribution of neutron flux can be obtained very efficiently for any given set of cross sections. Numerical tests show that a speedup of around 1100 is achieved for the IAEA two-dimensional PWR benchmark problem and a speedup of around 3400 is achieved for the three-dimensional counterpart with the fission cross-sections, the absorption cross-sections and the scattering cross-sections treated as parameters.
A finite-element for the analysis of shell intersections
International Nuclear Information System (INIS)
Koves, W.J.; Nair, S.
1994-01-01
The analysis of discontinuity stresses at shell intersections is a problem of great importance in several major industries. Some of the major areas of interest are pressure-containing equipment, such as reactors and piping, in the nuclear and fossil power industry; pressure vessels and heat exchangers in the petrochemical industry; bracing in offshore oil platforms; and aerospace structures. A specialized shell-intersection finite element, which is compatible with adjoining shell elements, has been developed that has the capability of physically representing the complex three-dimensional geometry and stress state at shell intersections. The element geometry is a contoured shape that matches a wide variety of practical nozzle configurations used in ASME Code pressure vessel construction, and allows computational rigor. A closed-form theory of elasticity solution was used to compute the stress state and strain energy in the element. The concept of an energy-equivalent nodal displacement and force vector set was then developed to allow complete compatibility with adjoining shell elements and retain the analytical rigor within the element. This methodology provides a powerful and robust computation scheme that maintains the computational efficiency of shell element solutions. The shell-intersection element was then applied to the cylinder-sphere and cylinder-cylinder intersection problems
International Nuclear Information System (INIS)
Guerreiro, J.N.C.; Loula, A.F.D.
1988-12-01
The mixed Petrov-Galerkin finite element formulation is applied to transiente and steady state creep problems. Numerical analysis has shown additional stability of this method compared to classical Galerkin formulations. The accuracy of the new formulation is confirmed in some representative examples of two dimensional and axisymmetric problems. (author) [pt
Mesh-size errors in diffusion-theory calculations using finite-difference and finite-element methods
International Nuclear Information System (INIS)
Baker, A.R.
1982-07-01
A study has been performed of mesh-size errors in diffusion-theory calculations using finite-difference and finite-element methods. As the objective was to illuminate the issues, the study was performed for a 1D slab model of a reactor with one neutron-energy group for which analytical solutions were possible. A computer code SLAB was specially written to perform the finite-difference and finite-element calculations and also to obtain the analytical solutions. The standard finite-difference equations were obtained by starting with an expansion of the neutron current in powers of the mesh size, h, and keeping terms as far as h 2 . It was confirmed that these equations led to the well-known result that the criticality parameter varied with the square of the mesh size. An improved form of the finite-difference equations was obtained by continuing the expansion for the neutron current as far as the term in h 4 . In this case, the critical parameter varied as the fourth power of the mesh size. The finite-element solutions for 2 and 3 nodes per element revealed that the criticality parameter varied as the square and fourth power of the mesh size, respectively. Numerical results are presented for a bare reactive core of uniform composition with 2 zones of different uniform mesh and for a reactive core with an absorptive reflector. (author)
Berezhnoi, D. V.; Balafendieva, I. S.; Sachenkov, A. A.; Sekaeva, L. R.
2017-06-01
In work the technique of calculation of elements of three-dimensional reinforced concrete substructures located in a soil, interacting with each other through rubber linings is realized. To describe the interaction of deformable structures with the ground, special “semi-infinite” finite elements are used. A technique has been implemented that allows one to describe the contact interaction of three-dimensional structures by means of a special contact finite element with specific properties. The obtained numerical results are compared with the experimental data, their good agreement is noted.
A geometric toolbox for tetrahedral finite element partitions
Brandts, J.; Korotov, S.; Křížek, M.; Axelsson, O.; Karátson, J.
2011-01-01
In this work we present a survey of some geometric results on tetrahedral partitions and their refinements in a unified manner. They can be used for mesh generation and adaptivity in practical calculations by the finite element method (FEM), and also in theoretical finite element (FE) analysis.
Multi-dimensional Fokker-Planck equation analysis using the modified finite element method
Czech Academy of Sciences Publication Activity Database
Náprstek, Jiří; Král, Radomil
2016-01-01
Roč. 744, č. 1 (2016), č. článku 012177. ISSN 1742-6588. [International Conference on Motion and Vibration Control (MOVIC 2016) /13./ and International Conference on Recent Advances in Structural Dynamics (RASD 2016) /12./. Southampton, 04.07.2016-06.07.2016] R&D Projects: GA ČR(CZ) GP14-34467P; GA ČR(CZ) GA15-01035S Institutional support: RVO:68378297 Keywords : Fokker-Planck equation * finite element method * single degree of freedom systems (SDOF) Subject RIV: JM - Building Engineering http://iopscience.iop.org/article/10.1088/1742-6596/744/1/012177
International Nuclear Information System (INIS)
Ruas, V.
1982-09-01
A class of simplicial finite elements for solving incompressible elasticity problems in n-dimensional space, n=2 or 3, is presented. An asymmetric structure of the shape functions with respect to the centroid of the simplex, renders them particularly stable in the large strain case, in which the incompressibility condition is nonlinear. It is proved that under certain assembling conditions of the elements, there exists a solution to the corresponding discrete problems. Numerical examples illustrate the efficiency of the method. (Author) [pt
Superconvergence of mixed finite element approximations to 3-D Maxwell's equations in metamaterials
Huang, Yunqing
2011-09-01
Numerical simulation of metamaterials has attracted more and more attention since 2000, after the first metamaterial with negative refraction index was successfully constructed. In this paper we construct a fully-discrete leap-frog type finite element scheme to solve the three-dimensional time-dependent Maxwell\\'s equations when metamaterials are involved. First, we obtain some superclose results between the interpolations of the analytical solutions and finite element solutions obtained using arbitrary orders of Raviart-Thomas-Nédélec mixed spaces on regular cubic meshes. Then we prove the superconvergence result in the discrete l2 norm achieved for the lowest-order Raviart-Thomas-Nédélec space. To our best knowledge, such superconvergence results have never been obtained elsewhere. Finally, we implement the leap-frog scheme and present numerical results justifying our theoretical analysis. © 2011 Elsevier Inc.
Superconvergence of mixed finite element approximations to 3-D Maxwell's equations in metamaterials
Huang, Yunqing; Li, Jichun; Yang, Wei; Sun, Shuyu
2011-01-01
Numerical simulation of metamaterials has attracted more and more attention since 2000, after the first metamaterial with negative refraction index was successfully constructed. In this paper we construct a fully-discrete leap-frog type finite element scheme to solve the three-dimensional time-dependent Maxwell's equations when metamaterials are involved. First, we obtain some superclose results between the interpolations of the analytical solutions and finite element solutions obtained using arbitrary orders of Raviart-Thomas-Nédélec mixed spaces on regular cubic meshes. Then we prove the superconvergence result in the discrete l2 norm achieved for the lowest-order Raviart-Thomas-Nédélec space. To our best knowledge, such superconvergence results have never been obtained elsewhere. Finally, we implement the leap-frog scheme and present numerical results justifying our theoretical analysis. © 2011 Elsevier Inc.
Finite element analysis of rotating beams physics based interpolation
Ganguli, Ranjan
2017-01-01
This book addresses the solution of rotating beam free-vibration problems using the finite element method. It provides an introduction to the governing equation of a rotating beam, before outlining the solution procedures using Rayleigh-Ritz, Galerkin and finite element methods. The possibility of improving the convergence of finite element methods through a judicious selection of interpolation functions, which are closer to the problem physics, is also addressed. The book offers a valuable guide for students and researchers working on rotating beam problems – important engineering structures used in helicopter rotors, wind turbines, gas turbines, steam turbines and propellers – and their applications. It can also be used as a textbook for specialized graduate and professional courses on advanced applications of finite element analysis.
International Nuclear Information System (INIS)
Nguyen Anh Ky; Stoilova, N.I.
1994-11-01
The construction approach proposed in the previous paper Ref.1 allows us there and in the present paper to construct at generic deformation parameter q all finite-dimensional representations of the quantum Lie superalgebra U q [gl(2/2)]. The finite-dimensional U q [gl(2/2)]-modules W q constructed in Ref.1 are either irreducible or indecomposable. If a module W q is indecomposable, i.e. when the condition (4.41) in Ref.1 does not hold, there exists an invariant maximal submodule of W q , to say I q k , such that the factor-representation in the factor-module W q /I q k is irreducible and called nontypical. Here, in this paper, indecomposable representations and nontypical finite-dimensional representations of the quantum Lie superalgebra U q [gl(2/2)] are considered and classified as their module structures are analyzed and the matrix elements of all nontypical representations are written down explicitly. (author). 23 refs
Impact of new computing systems on finite element computations
International Nuclear Information System (INIS)
Noor, A.K.; Fulton, R.E.; Storaasi, O.O.
1983-01-01
Recent advances in computer technology that are likely to impact finite element computations are reviewed. The characteristics of supersystems, highly parallel systems, and small systems (mini and microcomputers) are summarized. The interrelations of numerical algorithms and software with parallel architectures are discussed. A scenario is presented for future hardware/software environment and finite element systems. A number of research areas which have high potential for improving the effectiveness of finite element analysis in the new environment are identified
Lonsdale, R. D.; Webster, R.
This paper demonstrates the application of a simple finite volume approach to a finite element mesh, combining the economy of the former with the geometrical flexibility of the latter. The procedure is used to model a three-dimensional flow on a mesh of linear eight-node brick (hexahedra). Simulations are performed for a wide range of flow problems, some in excess of 94,000 nodes. The resulting computer code ASTEC that incorporates these procedures is described.
Finite size effects of a pion matrix element
International Nuclear Information System (INIS)
Guagnelli, M.; Jansen, K.; Palombi, F.; Petronzio, R.; Shindler, A.; Wetzorke, I.
2004-01-01
We investigate finite size effects of the pion matrix element of the non-singlet, twist-2 operator corresponding to the average momentum of non-singlet quark densities. Using the quenched approximation, they come out to be surprisingly large when compared to the finite size effects of the pion mass. As a consequence, simulations of corresponding nucleon matrix elements could be affected by finite size effects even stronger which could lead to serious systematic uncertainties in their evaluation
Variational approach to probabilistic finite elements
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1991-08-01
Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
Verification of Orthogrid Finite Element Modeling Techniques
Steeve, B. E.
1996-01-01
The stress analysis of orthogrid structures, specifically with I-beam sections, is regularly performed using finite elements. Various modeling techniques are often used to simplify the modeling process but still adequately capture the actual hardware behavior. The accuracy of such 'Oshort cutso' is sometimes in question. This report compares three modeling techniques to actual test results from a loaded orthogrid panel. The finite element models include a beam, shell, and mixed beam and shell element model. Results show that the shell element model performs the best, but that the simpler beam and beam and shell element models provide reasonable to conservative results for a stress analysis. When deflection and stiffness is critical, it is important to capture the effect of the orthogrid nodes in the model.
SOLUTION OF TRANSIENT HEAT CONDUCTION PROBLEM BY THE FINITE ELEMENT METHOD
Directory of Open Access Journals (Sweden)
Süleyman TAŞGETİREN
1995-01-01
Full Text Available Determination of temperature distribution is generally the first step in the design of machine elements subjected to ubnormal temperatures in their service life and for selection of materials. During this heat transfer analysis, the boundary and enviromental conditions must be modeled realistically and the geometry must be well represented. A variety of materials deviating from simple constant property isotropic material to composit materials having different properties according to direction of reinforcements are to be analysed. Then, the finite element method finds a large application area due to its use of same notation in heat transfer analysis and mechanical analysis of elements. In this study, the general formulation of two dimensional transient heat conduction is developed and a sample solution is given for arectangular bar subjected to convection baundary condition.
Review of Tomographic Imaging using Finite Element Method
Directory of Open Access Journals (Sweden)
Mohd Fua’ad RAHMAT
2011-12-01
Full Text Available Many types of techniques for process tomography were proposed and developed during the past 20 years. This paper review the techniques and the current state of knowledge and experience on the subject, aimed at highlighting the problems associated with the non finite element methods, such as the ill posed, ill conditioned which relates to the accuracy and sensitivity of measurements. In this paper, considerations for choice of sensors and its applications were outlined and descriptions of non finite element tomography systems were presented. The finite element method tomography system as obtained from recent works, suitable for process control and measurement were also presented.
Magnetic materials and 3D finite element modeling
Bastos, Joao Pedro A
2014-01-01
Magnetic Materials and 3D Finite Element Modeling explores material characterization and finite element modeling (FEM) applications. This book relates to electromagnetic analysis based on Maxwell’s equations and application of the finite element (FE) method to low frequency devices. A great source for senior undergraduate and graduate students in electromagnetics, it also supports industry professionals working in magnetics, electromagnetics, ferromagnetic materials science and electrical engineering. The authors present current concepts on ferromagnetic material characterizations and losses. They provide introductory material; highlight basic electromagnetics, present experimental and numerical modeling related to losses and focus on FEM applied to 3D applications. They also explain various formulations, and discuss numerical codes.
New mixed finite-element methods
International Nuclear Information System (INIS)
Franca, L.P.
1987-01-01
New finite-element methods are proposed for mixed variational formulations. The methods are constructed by adding to the classical Galerkin method various least-squares like terms. The additional terms involve integrals over element interiors, and include mesh-parameter dependent coefficients. The methods are designed to enhance stability. Consistency is achieved in the sense that exact solutions identically satisfy the variational equations.Applied to several problems, simple finite-element interpolations are rendered convergent, including convenient equal-order interpolations generally unstable within the Galerkin approach. The methods are subdivided into two classes according to the manner in which stability is attained: (1) circumventing Babuska-Brezzi condition methods; (2) satisfying Babuska-Brezzi condition methods. Convergence is established for each class of methods. Applications of the first class of methods to Stokes flow and compressible linear elasticity are presented. The second class of methods is applied to the Poisson, Timoshenko beam and incompressible elasticity problems. Numerical results demonstrate the good stability and accuracy of the methods, and confirm the error estimates
International Nuclear Information System (INIS)
Kulak, R.F.; Kennedy, J.M.; Belytschko, T.B.; Schoeberle, D.F.
1977-01-01
This paper describes finite-element formulations for the thermal stress analysis of LMFBR structures. The first formulation is applicable to large displacement rotation problems in which the strains are small. For this formulation, a general temperature-dependent constituent relationship is derived from a Gibbs potential and a temperature dependent surface. A second formulation is presented for problems characterized by both large displacement-rotations and large strains. Here a set of large strain hypoelastic-plastic relationships are developed to linearly relate the rate of stress to the rate of deformation. These developments were incorporated into two ANL developed finite-element computer codes: the implicit version of STRAW and the 3D Implicit Structural Analaysis code. A set of problems is presented to validate both the 3D and 2D programs and to illustrate their applicability to a variety of problems. (Auth.)
Finite element method for time-space-fractional Schrodinger equation
Directory of Open Access Journals (Sweden)
Xiaogang Zhu
2017-07-01
Full Text Available In this article, we develop a fully discrete finite element method for the nonlinear Schrodinger equation (NLS with time- and space-fractional derivatives. The time-fractional derivative is described in Caputo's sense and the space-fractional derivative in Riesz's sense. Its stability is well derived; the convergent estimate is discussed by an orthogonal operator. We also extend the method to the two-dimensional time-space-fractional NLS and to avoid the iterative solvers at each time step, a linearized scheme is further conducted. Several numerical examples are implemented finally, which confirm the theoretical results as well as illustrate the accuracy of our methods.
Quadratic Finite Element Method for 1D Deterministic Transport
International Nuclear Information System (INIS)
Tolar, D R Jr.; Ferguson, J M
2004-01-01
In the discrete ordinates, or SN, numerical solution of the transport equation, both the spatial ((und r)) and angular ((und (Omega))) dependences on the angular flux ψ(und r),(und (Omega))are modeled discretely. While significant effort has been devoted toward improving the spatial discretization of the angular flux, we focus on improving the angular discretization of ψ(und r),(und (Omega)). Specifically, we employ a Petrov-Galerkin quadratic finite element approximation for the differencing of the angular variable (μ) in developing the one-dimensional (1D) spherical geometry S N equations. We develop an algorithm that shows faster convergence with angular resolution than conventional S N algorithms
International Nuclear Information System (INIS)
Bailey, Teresa S.; Warsa, James S.; Chang, Jae H.; Adams, Marvin L.
2011-01-01
We present a new spatial discretization of the discrete-ordinates transport equation in two dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretization that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems. (author)
International Nuclear Information System (INIS)
Bailey, T.S.; Chang, J.H.; Warsa, J.S.; Adams, M.L.
2010-01-01
We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretizations that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems.
Energy Technology Data Exchange (ETDEWEB)
Bailey, T S; Chang, J H; Warsa, J S; Adams, M L
2010-12-22
We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional Cartesian (X-Y) geometry for arbitrary polygonal meshes. The discretization is a discontinuous finite element method (DFEM) that utilizes piecewise bi-linear (PWBL) basis functions, which are formally introduced in this paper. We also present a series of numerical results on quadrilateral and polygonal grids and compare these results to a variety of other spatial discretizations that have been shown to be successful on these grid types. Finally, we note that the properties of the PWBL basis functions are such that the leading-order piecewise bi-linear discontinuous finite element (PWBLD) solution will satisfy a reasonably accurate diffusion discretization in the thick diffusion limit, making the PWBLD method a viable candidate for many different classes of transport problems.
Validation of High Displacement Piezoelectric Actuator Finite Element Models
Taleghani, B. K.
2000-01-01
The paper presents the results obtained by using NASTRAN(Registered Trademark) and ANSYS(Regitered Trademark) finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness are important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN(Registered Trademark) and ANSYS(Registered Trademark) used different methods for modeling piezoelectric effects. In NASTRAN(Registered Trademark), a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS(Registered Trademark) processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.
International Nuclear Information System (INIS)
Basombrio, F.G.; Sanchez Sarmiento, G.
1978-01-01
A general code for solving two-dimensional thermo-elastoplastic problems in geometries of arbitrary shape using the finite element method, is presented. The initial stress incremental procedure was adopted, for given histories of load and temperature. Some classical applications are included. (Auth.)
The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion
International Nuclear Information System (INIS)
Moszo, P.; Kristek, J.; Galis, M.; Pazak, P.; Balazovijech, M.
2006-01-01
Numerical modeling of seismic wave propagation and earthquake motion is an irreplaceable tool in investigation of the Earth's structure, processes in the Earth, and particularly earthquake phenomena. Among various numerical methods, the finite-difference method is the dominant method in the modeling of earthquake motion. Moreover, it is becoming more important in the seismic exploration and structural modeling. At the same time we are convinced that the best time of the finite-difference method in seismology is in the future. This monograph provides tutorial and detailed introduction to the application of the finite-difference, finite-element, and hybrid finite-difference-finite-element methods to the modeling of seismic wave propagation and earthquake motion. The text does not cover all topics and aspects of the methods. We focus on those to which we have contributed. (Author)
Directory of Open Access Journals (Sweden)
Mir Hamid Reza Ghoreishy
2014-10-01
Full Text Available This research work is devoted to the simulation of a steel-belted radial tire under different static loads. The nonlinear finite element calculations were performed using the MSC.MARC code, installed on a computer system equipped with a parallel processing technology. Hybrid elements in conjunction with two hyperelastic models, namely Marlow and Yeoh, and rebar layer implemented in surface elements were used for the modeling of rubbery and reinforcing parts, respectively. Linear elastic material models were also used for the modeling of the reinforcing elements including steel cord in belts, polyester cord in carcass and nylon cord in cap ply section. Two-dimensional axisymmetric elements were used for the modeling of rim-mounting and inflation and three-dimensional models were developed for the application of the radial, tangential, lateral and torsional loads. Different finite element models were developed, in which both linear and quadratic elements were used in conjunction with different mesh densities in order to find the optimum finite element model. Based on the results of the load deflection (displacement data, the tire stiffness under radial, tangential, lateral and torsional loads were calculated and compared with their corresponding experimentally measured values. The comparison was verified by the accuracy of the measured radial stiffness. However, due to the neglecting of the stiffness in shear and bending modes in cord-rubber composites, modeled with rebar layer methodology, the difference between computed values and real data are not small enough so that a more robust material models and element formulation are required to be developed.
The Galerkin finite element method for a multi-term time-fractional diffusion equation
Jin, Bangti
2015-01-01
© 2014 The Authors. We consider the initial/boundary value problem for a diffusion equation involving multiple time-fractional derivatives on a bounded convex polyhedral domain. We analyze a space semidiscrete scheme based on the standard Galerkin finite element method using continuous piecewise linear functions. Nearly optimal error estimates for both cases of initial data and inhomogeneous term are derived, which cover both smooth and nonsmooth data. Further we develop a fully discrete scheme based on a finite difference discretization of the time-fractional derivatives, and discuss its stability and error estimate. Extensive numerical experiments for one- and two-dimensional problems confirm the theoretical convergence rates.
Crack Propagation by Finite Element Method
Directory of Open Access Journals (Sweden)
Luiz Carlos H. Ricardo
2018-01-01
Full Text Available Crack propagation simulation began with the development of the finite element method; the analyses were conducted to obtain a basic understanding of the crack growth. Today structural and materials engineers develop structures and materials properties using this technique. The aim of this paper is to verify the effect of different crack propagation rates in determination of crack opening and closing stress of an ASTM specimen under a standard suspension spectrum loading from FDandE SAE Keyhole Specimen Test Load Histories by finite element analysis. To understand the crack propagation processes under variable amplitude loading, retardation effects are observed
Sohn, Kiho D.; Ip, Shek-Se P.
1988-01-01
Three-dimensional finite element models were generated and transferred into three-dimensional finite difference models to perform transient thermal analyses for the SSME high pressure fuel turbopump's first stage nozzles and rotor blades. STANCOOL was chosen to calculate the heat transfer characteristics (HTCs) around the airfoils, and endwall effects were included at the intersections of the airfoils and platforms for the steady-state boundary conditions. Free and forced convection due to rotation effects were also considered in hollow cores. Transient HTCs were calculated by taking ratios of the steady-state values based on the flow rates and fluid properties calculated at each time slice. Results are presented for both transient plots and three-dimensional color contour isotherm plots; they were also converted into universal files to be used for FEM stress analyses.
Goal-Oriented Self-Adaptive hp Finite Element Simulation of 3D DC Borehole Resistivity Simulations
Calo, Victor M.
2011-05-14
In this paper we present a goal-oriented self-adaptive hp Finite Element Method (hp-FEM) with shared data structures and a parallel multi-frontal direct solver. The algorithm automatically generates (without any user interaction) a sequence of meshes delivering exponential convergence of a prescribed quantity of interest with respect to the number of degrees of freedom. The sequence of meshes is generated from a given initial mesh, by performing h (breaking elements into smaller elements), p (adjusting polynomial orders of approximation) or hp (both) refinements on the finite elements. The new parallel implementation utilizes a computational mesh shared between multiple processors. All computational algorithms, including automatic hp goal-oriented adaptivity and the solver work fully in parallel. We describe the parallel self-adaptive hp-FEM algorithm with shared computational domain, as well as its efficiency measurements. We apply the methodology described to the three-dimensional simulation of the borehole resistivity measurement of direct current through casing in the presence of invasion.
Finite element analysis of plastic recycling machine designed for ...
African Journals Online (AJOL)
... design was evaluated using finite element analysis (FEA) tool in Solid Works Computer ... Also, a minimum factor of safety value of 5.3 was obtained for shredder shaft ... Machine; Design; Recycling; Sustainability; Finite Element; Simulation ...
Evaluation of radiation damping using 3-D finite element models
International Nuclear Information System (INIS)
Vaughan, D.K.; Isenberg, J.
1983-01-01
The paper presents an analytic approach which is being used to quantify the contribution of radiation damping to overall system damping. The approach uses three-dimensional finite element techniques and can easily include details of site geology, foundation shape, and embedment depth. The approach involves performing free vibration response analyses for each soil-structure interaction (SSI) mode of interest. The structural model is specified without damping and, consequently, amplitude decay of the structure's free vibration response is a measure of the radiation damping characteristics of the soil-structure system for the particular deformational mode being investigated. The computational approach developed is highly efficient in order to minimize the impact of including three-dimensional geometry within the model. A new finite element code, FLEX, has been developed to represent the soil continuum. FLEX uses a highly optimized explicit time integration algorithm which takes advantage of parallel processing on vector machines, such as the CRAY 1 computer. A modal representation of the superstructure is used in combination with a substructuring approach to solve for the coupled response of the soil-structure system. This requires solving for numerical Green's functions for each degree-of-freedom of the foundation (assumed rigid). Once computed for a particular site and foundation, these Green's functions may be used within a convolution integral to represent the continuum forces on the foundation for any free vibration SSI response computation of any superstructure model. This analytic approach is applied to an investigation of the radiation damping coefficients for the first two fundamental SSI modes of the HDR containment structure. (orig./HP)
An introduction to the UNCLE finite element scheme
International Nuclear Information System (INIS)
Enderby, J.A.
1983-01-01
UNCLE is a completely general finite element scheme which provides common input, output, equation-solving and other facilities for a family of finite element codes for linear and non-linear stress analysis, heat transfer etc. This report describes the concepts on which UNCLE is based and gives a general account of the facilities provided. (author)
An introduction to the UNCLE finite element scheme
Energy Technology Data Exchange (ETDEWEB)
Enderby, J A [UK Atomic Energy Authority, Northern Division, Risley Nuclear Power Development Establishment, Risley, Warrington (United Kingdom)
1983-05-01
UNCLE is a completely general finite element scheme which provides common input, output, equation-solving and other facilities for a family of finite element codes for linear and non-linear stress analysis, heat transfer etc. This report describes the concepts on which UNCLE is based and gives a general account of the facilities provided. (author)
A particle finite element method for machining simulations
Sabel, Matthias; Sator, Christian; Müller, Ralf
2014-07-01
The particle finite element method (PFEM) appears to be a convenient technique for machining simulations, since the geometry and topology of the problem can undergo severe changes. In this work, a short outline of the PFEM-algorithm is given, which is followed by a detailed description of the involved operations. The -shape method, which is used to track the topology, is explained and tested by a simple example. Also the kinematics and a suitable finite element formulation are introduced. To validate the method simple settings without topological changes are considered and compared to the standard finite element method for large deformations. To examine the performance of the method, when dealing with separating material, a tensile loading is applied to a notched plate. This investigation includes a numerical analysis of the different meshing parameters, and the numerical convergence is studied. With regard to the cutting simulation it is found that only a sufficiently large number of particles (and thus a rather fine finite element discretisation) leads to converged results of process parameters, such as the cutting force.
On the reliability of finite element solutions
International Nuclear Information System (INIS)
Prasad, K.S.R.K.
1975-01-01
The extent of reliability of the finite element method for analysis of nuclear reactor structures, and that of reactor vessels in particular and the need for the engineer to guard against the pitfalls that may arise out of both physical and mathematical models have been high-lighted. A systematic way of checking the model to obtain reasonably accurate solutions is presented. Quite often sophisticated elements are suggested for specific design and stress concentration problems. The desirability or otherwise of these elements, their scope and utility vis-a-vis the use of large stack of conventional elements are discussed from the view point of stress analysts. The methods of obtaining a check on the reliability of the finite element solutions either through modelling changes or an extrapolation technique are discussed. (author)
Directory of Open Access Journals (Sweden)
Akimov Pavel
2016-01-01
Full Text Available The distinctive paper is devoted to the two-dimensional semi-analytical solution of boundary problems of analysis of shear walls with the use of discrete-continual finite element method (DCFEM. This approach allows obtaining the exact analytical solution in one direction (so-called “basic” direction, also decrease the size of the problem to one-dimensional common finite element analysis. The resulting multipoint boundary problem for the first-order system of ordinary differential equations with piecewise constant coefficients is solved analytically. The proposed method is rather efficient for evaluation of the boundary effect (such as the stress field near the concentrated force. DCFEM also has a completely computer-oriented algorithm, computational stability, optimal conditionality of resultant system and it is applicable for the various loads at an arbitrary point or a region of the wall.
Zhao, Y.; Qin, R. S.; Chen, D. F.
2013-08-01
A three-dimensional (3D) cellular automata (CA) model has been developed for the simulation of microstructure evolution in alloy solidification. The governing rule for the CA model is associated with the phase transition driving force which is obtained via a thermodynamic database. This determines the migration rate of the non-equilibrium solid-liquid (SL) interface and is calculated according to the local temperature and chemical composition. The curvature of the interface and the anisotropic property of the surface energy are taken into consideration. A 3D finite element (FE) method is applied for the calculation of transient heat and mass transfer. Numerical calculations for the solidification of Fe-1.5 wt% C alloy have been performed. The morphological evolution of dendrites, carbon segregation and temperature distribution in both isothermal and non-isothermal conditions are studied. The parameters affecting the growth of equiaxed and columnar dendrites are discussed. The calculated results are verified using the analytical model and previous experiments. The method provides a sophisticated approach to the solidification of multi-phase and multi-component systems.
Energy Technology Data Exchange (ETDEWEB)
Biffle, J.H.
1993-02-01
JAC3D is a three-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equation. The method is implemented in a three-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. An eight-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic-plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.
Energy Technology Data Exchange (ETDEWEB)
Biffle, J.H.; Blanford, M.L.
1994-05-01
JAC2D is a two-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations. The method is implemented in a two-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. A four-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic/plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.
Adaptive Smoothed Finite Elements (ASFEM) for history dependent material models
International Nuclear Information System (INIS)
Quak, W.; Boogaard, A. H. van den
2011-01-01
A successful simulation of a bulk forming process with finite elements can be difficult due to distortion of the finite elements. Nodal smoothed Finite Elements (NSFEM) are an interesting option for such a process since they show good distortion insensitivity and moreover have locking-free behavior and good computational efficiency. In this paper a method is proposed which takes advantage of the nodally smoothed field. This method, named adaptive smoothed finite elements (ASFEM), revises the mesh for every step of a simulation without mapping the history dependent material parameters. In this paper an updated-Lagrangian implementation is presented. Several examples are given to illustrate the method and to show its properties.
Automation of finite element methods
Korelc, Jože
2016-01-01
New finite elements are needed as well in research as in industry environments for the development of virtual prediction techniques. The design and implementation of novel finite elements for specific purposes is a tedious and time consuming task, especially for nonlinear formulations. The automation of this process can help to speed up this process considerably since the generation of the final computer code can be accelerated by order of several magnitudes. This book provides the reader with the required knowledge needed to employ modern automatic tools like AceGen within solid mechanics in a successful way. It covers the range from the theoretical background, algorithmic treatments to many different applications. The book is written for advanced students in the engineering field and for researchers in educational and industrial environments.
Finite Element Based Design and Optimization for Piezoelectric Accelerometers
DEFF Research Database (Denmark)
Liu, Bin; Kriegbaum, B.; Yao, Q.
1998-01-01
A systematic Finite Element design and optimisation procedure is implemented for the development of piezoelectric accelerometers. Most of the specifications of accelerometers can be obtained using the Finite Element simulations. The deviations between the simulated and calibrated sensitivities...
Hybrid Fundamental Solution Based Finite Element Method: Theory and Applications
Directory of Open Access Journals (Sweden)
Changyong Cao
2015-01-01
Full Text Available An overview on the development of hybrid fundamental solution based finite element method (HFS-FEM and its application in engineering problems is presented in this paper. The framework and formulations of HFS-FEM for potential problem, plane elasticity, three-dimensional elasticity, thermoelasticity, anisotropic elasticity, and plane piezoelectricity are presented. In this method, two independent assumed fields (intraelement filed and auxiliary frame field are employed. The formulations for all cases are derived from the modified variational functionals and the fundamental solutions to a given problem. Generation of elemental stiffness equations from the modified variational principle is also described. Typical numerical examples are given to demonstrate the validity and performance of the HFS-FEM. Finally, a brief summary of the approach is provided and future trends in this field are identified.
THE PRACTICAL ANALYSIS OF FINITE ELEMENTS METHOD ERRORS
Directory of Open Access Journals (Sweden)
Natalia Bakhova
2011-03-01
Full Text Available Abstract. The most important in the practical plan questions of reliable estimations of finite elementsmethod errors are considered. Definition rules of necessary calculations accuracy are developed. Methodsand ways of the calculations allowing receiving at economical expenditures of computing work the best finalresults are offered.Keywords: error, given the accuracy, finite element method, lagrangian and hermitian elements.
High accuracy 3D electromagnetic finite element analysis
International Nuclear Information System (INIS)
Nelson, Eric M.
1997-01-01
A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis will also be discussed
High accuracy 3D electromagnetic finite element analysis
International Nuclear Information System (INIS)
Nelson, E.M.
1996-01-01
A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis will also be discussed
Finite element simulation and testing of ISW CFRP anchorage
DEFF Research Database (Denmark)
Schmidt, Jacob Wittrup; Goltermann, Per; Hertz, Kristian Dahl
2013-01-01
is modelled in the 3D finite Element program ABAQUS, just as digital image correlation (DIC) testing was performed to verify the finite element simulation. Also a new optimized design was produced to ensure that the finite element simulation and anchorage behaviour correlated well. It is seen....... This paper presents a novel mechanical integrated sleeve wedge anchorage which seem very promising when perusing the scope of ultimate utilization of CFRP 8mm rods (with a tension capacity of approximately 140kN). Compression transverse to the CFRP is evaluated to prevent premature failure. The anchorage...
Finite-Dimensional Representations for Controlled Diffusions with Delay
Energy Technology Data Exchange (ETDEWEB)
Federico, Salvatore, E-mail: salvatore.federico@unimi.it [Università di Milano, Dipartimento di Economia, Management e Metodi Quantitativi (Italy); Tankov, Peter, E-mail: tankov@math.univ-paris-diderot.fr [Université Paris Diderot, Laboratoire de Probabilités et Modèles Aléatoires (France)
2015-02-15
We study stochastic delay differential equations (SDDE) where the coefficients depend on the moving averages of the state process. As a first contribution, we provide sufficient conditions under which the solution of the SDDE and a linear path functional of it admit a finite-dimensional Markovian representation. As a second contribution, we show how approximate finite-dimensional Markovian representations may be constructed when these conditions are not satisfied, and provide an estimate of the error corresponding to these approximations. These results are applied to optimal control and optimal stopping problems for stochastic systems with delay.
Hydrothermal analysis in engineering using control volume finite element method
Sheikholeslami, Mohsen
2015-01-01
Control volume finite element methods (CVFEM) bridge the gap between finite difference and finite element methods, using the advantages of both methods for simulation of multi-physics problems in complex geometries. In Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, CVFEM is covered in detail and applied to key areas of thermal engineering. Examples, exercises, and extensive references are used to show the use of the technique to model key engineering problems such as heat transfer in nanofluids (to enhance performance and compactness of energy systems),
A multiscale mortar multipoint flux mixed finite element method
Wheeler, Mary Fanett; Xue, Guangri; Yotov, Ivan
2012-01-01
In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite
Energy Technology Data Exchange (ETDEWEB)
Kim, S. [Purdue Univ., West Lafayette, IN (United States)
1994-12-31
Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.
Global-Local Finite Element Analysis of Bonded Single-Lap Joints
Kilic, Bahattin; Madenci, Erdogan; Ambur, Damodar R.
2004-01-01
Adhesively bonded lap joints involve dissimilar material junctions and sharp changes in geometry, possibly leading to premature failure. Although the finite element method is well suited to model the bonded lap joints, traditional finite elements are incapable of correctly resolving the stress state at junctions of dissimilar materials because of the unbounded nature of the stresses. In order to facilitate the use of bonded lap joints in future structures, this study presents a finite element technique utilizing a global (special) element coupled with traditional elements. The global element includes the singular behavior at the junction of dissimilar materials with or without traction-free surfaces.
NAMMU: finite element program for coupled heat and groundwater flow problems
International Nuclear Information System (INIS)
Rae, J.; Robinson, P.C.
1979-11-01
NAMMU is a computer program which will calculate the evolution in time of coupled water and heat flow in a porous medium. It is intended to be used primarily for modelling studies of underground nuclear waste repositories. NAMMU is based on the Galerkin-Finite-element method and has self-adjusting time stepping. The present version is written for 2-dimensional cartesian or cylindrical coordinate systems. It has been checked against two calculations from the KBS study and an exact solution by Hodgkinson for a very idealised repository design. (author)
Solving the transport equation with quadratic finite elements: Theory and applications
International Nuclear Information System (INIS)
Ferguson, J.M.
1997-01-01
At the 4th Joint Conference on Computational Mathematics, the author presented a paper introducing a new quadratic finite element scheme (QFEM) for solving the transport equation. In the ensuing year the author has obtained considerable experience in the application of this method, including solution of eigenvalue problems, transmission problems, and solution of the adjoint form of the equation as well as the usual forward solution. He will present detailed results, and will also discuss other refinements of his transport codes, particularly for 3-dimensional problems on rectilinear and non-rectilinear grids
A new (in)finite-dimensional algebra for quantum integrable models
International Nuclear Information System (INIS)
Baseilhac, Pascal; Koizumi, Kozo
2005-01-01
A new (in)finite-dimensional algebra which is a fundamental dynamical symmetry of a large class of (continuum or lattice) quantum integrable models is introduced and studied in details. Finite-dimensional representations are constructed and mutually commuting quantities-which ensure the integrability of the system-are written in terms of the fundamental generators of the new algebra. Relation with the deformed Dolan-Grady integrable structure recently discovered by one of the authors and Terwilliger's tridiagonal algebras is described. Remarkably, this (in)finite-dimensional algebra is a 'q-deformed' analogue of the original Onsager's algebra arising in the planar Ising model. Consequently, it provides a new and alternative algebraic framework for studying massive, as well as conformal, quantum integrable models
Finite element simulation of laser transmission welding of dissimilar ...
African Journals Online (AJOL)
user
materials between polyvinylidene fluoride and titanium ... finite element (FE) thermal model is developed to simulate the laser ... Keywords: Laser transmission welding, Temperature field, Weld dimension, Finite element analysis, Thermal modeling. 1. .... 4) The heating phenomena due to the phase changes are neglected.
Finite element analysis of tibial fractures
DEFF Research Database (Denmark)
Wong, Christian Nai En; Mikkelsen, Mikkel Peter W; Hansen, Leif Berner
2010-01-01
Project. The data consisted of 21,219 3D elements with a cortical shell and a trabecular core. Three types of load of torsion, a direct lateral load and axial compression were applied. RESULTS: The finite element linear static analysis resulted in relevant fracture localizations and indicated relevant...
Sobajima, M; Yamazaki, T; Yoshikawa, K; Ohnishi, M; Toku, H; Masuda, K; Kitagaki, J; Nakamura, T
1999-01-01
In January 1997, the Beijing FEL observed large laser amplification at 8-18 mu m. However, through the collaborative work, it was found from both experiments and numerical simulations that the laser loss on the beam tube wall was not negligible, and that the saturation was not seen in the relatively long wavelength range because of this loss. This calls for further investigation on the effects of the beam tube of finite size. In order to include such effects self-consistently, we have developed a new three-dimensional code that can solve equations with the boundary conditions of the beam tube by using the Finite Element Method. Results show that the beam tube effects are dominant in deriving higher laser modes in the tube, compared with the optical guiding effects, and consequently reduced gain especially in the longer wavelength range, where the beam tube effects are greatly emphasized. It is also found that TEM sub 0 sub 2 mode is the most dominant higher mode in the beam tube, and is also the main cause of...
Generalized multiscale finite element method. Symmetric interior penalty coupling
Efendiev, Yalchin R.; Galvis, Juan; Lazarov, Raytcho D.; Moon, M.; Sarkis, Marcus V.
2013-01-01
Motivated by applications to numerical simulations of flows in highly heterogeneous porous media, we develop multiscale finite element methods for second order elliptic equations. We discuss a multiscale model reduction technique in the framework of the discontinuous Galerkin finite element method. We propose two different finite element spaces on the coarse mesh. The first space is based on a local eigenvalue problem that uses an interior weighted L2-norm and a boundary weighted L2-norm for computing the "mass" matrix. The second choice is based on generation of a snapshot space and subsequent selection of a subspace of a reduced dimension. The approximation with these multiscale spaces is based on the discontinuous Galerkin finite element method framework. We investigate the stability and derive error estimates for the methods and further experimentally study their performance on a representative number of numerical examples. © 2013 Elsevier Inc.
Generalized multiscale finite element method. Symmetric interior penalty coupling
Efendiev, Yalchin R.
2013-12-01
Motivated by applications to numerical simulations of flows in highly heterogeneous porous media, we develop multiscale finite element methods for second order elliptic equations. We discuss a multiscale model reduction technique in the framework of the discontinuous Galerkin finite element method. We propose two different finite element spaces on the coarse mesh. The first space is based on a local eigenvalue problem that uses an interior weighted L2-norm and a boundary weighted L2-norm for computing the "mass" matrix. The second choice is based on generation of a snapshot space and subsequent selection of a subspace of a reduced dimension. The approximation with these multiscale spaces is based on the discontinuous Galerkin finite element method framework. We investigate the stability and derive error estimates for the methods and further experimentally study their performance on a representative number of numerical examples. © 2013 Elsevier Inc.
Development of a finite element model for ultrasonic NDT phenomena
International Nuclear Information System (INIS)
Lord, W.
1988-01-01
Ultrasonic NDT techniques are used extensively in the nuclear industry for the detection and characterization of defects in critical structural components such as pressure vessels and piping. The feasibility of applying finite element analysis methods to the problem of modeling ultrasound/defect interactions has been shown. Considerable work remains to be done before a full three-dimensional model is available for the prediction of realistic ultrasonic transducer signals from sound wave interaction with arbitrarily shaped defects in highly attenuative and anisotropic materials. However, a two-dimensional code has been developed that is capable of predicting finite aperture ultrasonic transducer signals associated with wave propagations in isotropic materials and that shows good qualitative agreement with corresponding experimental observations. This 2-D code has now been extended to include anisotropic materials such as centrifugally cast stainless steel (CCSS), a necessary step in the development of the full 3-D code. Results are given showing the capability of the 2-D code to predict the anomalous wave behavior normally associated with ultrasonic wave propagation in anisotropic materials. In addition, a new signal processing technique is discussed, based on the Wigner transformation, that shows promise for application to centrifugally cast stainless steel NDT problems
Papagiannis, P.; Azariadis, P.; Papanikos, P.
2017-10-01
Footwear is subject to bending and torsion deformations that affect comfort perception. Following review of Finite Element Analysis studies of sole rigidity and comfort, a three-dimensional, linear multi-material finite element sole model for quasi-static bending and torsion simulation, overcoming boundary and optimisation limitations, is described. Common footwear materials properties and boundary conditions from gait biomechanics are used. The use of normalised strain energy for product benchmarking is demonstrated along with comfort level determination through strain energy density stratification. Sensitivity of strain energy against material thickness is greater for bending than for torsion, with results of both deformations showing positive correlation. Optimization for a targeted performance level and given layer thickness is demonstrated with bending simulations sufficing for overall comfort assessment. An algorithm for comfort optimization w.r.t. bending is presented, based on a discrete approach with thickness values set in line with practical manufacturing accuracy. This work illustrates the potential of the developed finite element analysis applications to offer viable and proven aids to modern footwear sole design assessment and optimization.
Cho, Sung-Yong; Huh, Yun-Hyuk; Park, Chan-Jin; Cho, Lee-Ra
To investigate the stress distribution in an implant-abutment complex with a preloaded abutment screw by comparing implant-abutment engagement features using three-dimensional finite element analysis (FEA). For FEA modeling, two implants-one with a single (S) engagement system and the other with a double (D) engagement system-were placed in the human mandibular molar region. Two types of abutments (hexagonal, conical) were connected to the implants. Different implant models (a single implant, two parallel implants, and mesial and tilted distal implants with 1-mm bone loss) were assumed. A static axial force and a 45-degree oblique force of 200 N were applied as the sum of vectors to the top of the prosthetic occlusal surface with a preload of 30 Ncm in the abutment screw. The von Mises stresses at the implant-abutment and abutment-screw interfaces were measured. In the single implant model, the S-conical abutment type exhibited broader stress distribution than the S-hexagonal abutment. In the double engagement system, the stress concentration was high in the lower contact area of the implant-abutment engagement. In the tilted implant model, the stress concentration point was different from that in the parallel implant model because of the difference in the bone level. The double engagement system demonstrated a high stress concentration at the lower contact area of the implant-abutment interface. To decrease the stress concentration, the type of engagement features of the implant-abutment connection should be carefully considered.
Finite Element Analysis of Circular Plate using SolidWorks
International Nuclear Information System (INIS)
Kang, Yeo Jin; Jhung, Myung Jo
2011-01-01
Circular plates are used extensively in mechanical engineering for nuclear reactor internal components. The examples in the reactor vessel internals are upper guide structure support plate, fuel alignment plate, lower support plate etc. To verify the structural integrity of these plates, the finite element analyses are performed, which require the development of the finite element model. Sometimes it is very costly and time consuming to make the model especially for the beginners who start their engineering job for the structural analysis, necessitating a simple method to develop the finite element model for the pursuing structural analysis. Therefore in this study, the input decks are generated for the finite element analysis of a circular plate as shown in Fig. 1, which can be used for the structural analysis such as modal analysis, response spectrum analysis, stress analysis, etc using the commercial program Solid Works. The example problems are solved and the results are included for analysts to perform easily the finite element analysis of the mechanical plate components due to various loadings. The various results presented in this study would be helpful not only for the benchmark calculations and results comparisons but also as a part of the knowledge management for the future generation of young designers, scientists and computer analysts
A multiscale mortar multipoint flux mixed finite element method
Wheeler, Mary Fanett
2012-02-03
In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid scale. With an appropriate choice of polynomial degree of the mortar space, we derive optimal order convergence on the fine scale for both the multiscale pressure and velocity, as well as the coarse scale mortar pressure. Some superconvergence results are also derived. The algebraic system is reduced via a non-overlapping domain decomposition to a coarse scale mortar interface problem that is solved using a multiscale flux basis. Numerical experiments are presented to confirm the theory and illustrate the efficiency and flexibility of the method. © EDP Sciences, SMAI, 2012.
High accuracy 3D electromagnetic finite element analysis
International Nuclear Information System (INIS)
Nelson, E.M.
1997-01-01
A high accuracy 3D electromagnetic finite element field solver employing quadratic hexahedral elements and quadratic mixed-order one-form basis functions will be described. The solver is based on an object-oriented C++ class library. Test cases demonstrate that frequency errors less than 10 ppm can be achieved using modest workstations, and that the solutions have no contamination from spurious modes. The role of differential geometry and geometrical physics in finite element analysis will also be discussed. copyright 1997 American Institute of Physics
Inelastic analysis of finite length and depth cracked tubes
International Nuclear Information System (INIS)
Reich, M.; Gardner, D.; Prachuktam, S.; Chang, T.Y.
1977-01-01
Steam generator tube failure can at times result in reactor safety problems and subsequent premature reactor shutdowns. This paper concerns itself with the prediction of the failure pressures for typical PWR steam generator tubes with longitudinal finite length and finite depth cracks. Only local plastic overload failure is considered since the material is non-notch sensitive. Non-linear finite element analyses are carried out to determine the burst pressures of steam generator tubes containing longitudinal cracks located on the outer surface of the tubes. The non-linearities considered herein include elastic-plastic material behavior and large deformations. A non-proprietary general purpose non-linear finite element program, NFAP was adopted for the analysis. Due to the asymmetric nature of the cracks, two-dimensional, as well as three-dimensional finite element analyses, were performed. The two-dimensional element and its formulations are similar to those of NONSAP. The three-dimensional isoparametric element with elastic-plastic material characteristics together with the large deformation formulations used in NFAP are described in the Report BNL-20684. The numerical accuracy of the program was investigated and checked with known solutions of benchmark problems. In addition to the three-dimensional element which was specifically inserted into NFAP for this problem, other features such as direct pressure inputs for isoparametric elements, automatic load increment adjustments for convergent non-linear solutions, and automatic bandwidth reduction schemes are incorporated into the program thus allowing for a more economical evaluation of three-dimensional inelastic analysis. In summary the analysis clearly shows that for short cracks axial effects play a significant role. For long cracks, they are not important since two-dimensional conditions predominate and failure is governed by circumferential or hoop stress conditions
finite element model for predicting residual stresses in shielded
African Journals Online (AJOL)
eobe
This paper investigates the prediction of residual stresses developed ... steel plates through Finite Element Model simulation and experiments. ... The experimental values as measured by the X-Ray diffractometer were of ... Based on this, it can be concluded that Finite Element .... Comparison of Residual Stresses from X.
Main formulations of the finite element method for the problems of structural mechanics. Part 2
Directory of Open Access Journals (Sweden)
Ignat’ev Aleksandr Vladimirovich
Full Text Available The author offers a classification of Finite Element formulations, which allows orienting in a great number of the published and continuing to be published works on the problem of raising the efficiency of this widespread numerical method. The second part of the article offers examination of straight formulations of FEM in the form of displacement approach, area method and classical mixed-mode method. The question of solution convergence according to FEM in the form of classical mixed-mode method is considered on the example of single-input single-output system of a beam in case of finite element grid refinement. The author draws a conclusion, that extinction of algebraic equations system of FEM in case of passage to the limit is not a peculiar feature of this method in general, but manifests itself only in some particular cases. At the same time the obtained results prove that FEM in mixed-mode form provides obtaining more stable results in case of finite element grid refinement in comparison with FEM in the form of displacement approach. It is quite obvious that the same qualities will appear also in two-dimensional systems.
Directory of Open Access Journals (Sweden)
Moses Omolayo PETINRIN
2010-12-01
Full Text Available In this work, the capability of MATLAB software package to develop graphical user interface (GUI package was demonstrated. A GUI was successfully developed using MATLAB programming language to study the behaviour of a suspended column under uniaxial static loading by solving the numerical model created based on the finite element method (FEM. The comparison between the exact solution from previous researches and the numerical analysis showed good agreement. The column average strain, average stress and average load are equivalent but more accurate to the ones obtained when the whole column is taken as one element (two nodes for one dimensional linear finite element problem. It was established in this work that MATLAB is not only a software package for numerical computation but also for application development.
Finite-Element Modeling of Timber Joints with Punched Metal Plate Fasteners
DEFF Research Database (Denmark)
Ellegaard, Peter
2006-01-01
The focus of this paper is to describe the idea and the theory behind a finite-element model developed for analysis of timber trusses with punched metal plate fasteners (nail plates). The finite-element model includes the semirigid and nonlinear behavior of the joints (nonlinear nail and plate...... elements) and contact between timber beams, if any (bilinear contact elements). The timber beams have linear-elastic properties. The section forces needed for design of the joints are given directly by the finite-element model, since special elements are used to model the nail groups and the nail plate...... the behavior of the joints very well at lower load levels. At higher load levels the stiffness is overestimated due to development of cracks in the timber and the linear-elastic timber properties in the finite-element model....
Finite element analysis of inelastic structural behavior
International Nuclear Information System (INIS)
Argyris, J.H.; Szimmat, J.; Willam, K.J.
1977-01-01
The paper describes recent achievements in the finite element analysis of inelastic material behavior. The main purpose is to examine the interaction of three disciplines; (i) the finite element formulation of large deformation problems in the light of a systematic linearization, (ii) the constitutive modelling of inelastic processes in the rate-dependent and rate-independent response regime and (iii) the numerical solution of nonlinear rate problems via incremental iteration techniques. In the first part, alternative finite element models are developed for the idealization of large deformation problems. A systematic approach is presented to linearize the field equations locally by an incremental procedure. The finite element formulation is then examined for the description of inelastic material processes. In the second part, nonlinear and inelastic material phenomena are classified and illustrated with representative examples of concrete and metal components. In particular, rate-dependent and rate-independent material behavior is examined and representative constitutive models are assessed for their mathematical characterization. Hypoelastic, elastoplastic and endochronic models are compared for the description rate-independent material phenomena. In the third part, the numerial solution of inelastic structural behavior is discussed. In this context, several incremental techniques are developed and compared for tracing the evolution of the inelastic process. The numerical procedures are examined with regard to stability and accuracy to assess the overall efficiency. The 'optimal' incremental technique is then contrasted with the computer storage requirements to retain the data for the 'memory-characteristics' of the constitutive model
Numerical experiment on finite element method for matching data
International Nuclear Information System (INIS)
Tokuda, Shinji; Kumakura, Toshimasa; Yoshimura, Koichi.
1993-03-01
Numerical experiments are presented on the finite element method by Pletzer-Dewar for matching data of an ordinary differential equation with regular singular points by using model equation. Matching data play an important role in nonideal MHD stability analysis of a magnetically confined plasma. In the Pletzer-Dewar method, the Frobenius series for the 'big solution', the fundamental solution which is not square-integrable at the regular singular point, is prescribed. The experiments include studies of the convergence rate of the matching data obtained by the finite element method and of the effect on the results of computation by truncating the Frobenius series at finite terms. It is shown from the present study that the finite element method is an effective method for obtaining the matching data with high accuracy. (author)
A 3D finite element simulation model for TBM tunnelling in soft ground
Kasper, Thomas; Meschke, Günther
2004-12-01
A three-dimensional finite element simulation model for shield-driven tunnel excavation is presented. The model takes into account all relevant components of the construction process (the soil and the ground water, the tunnel boring machine with frictional contact to the soil, the hydraulic jacks, the tunnel lining and the tail void grouting). The paper gives a detailed description of the model components and the stepwise procedure to simulate the construction process. The soil and the grout material are modelled as saturated porous media using a two-field finite element formulation. This allows to take into account the groundwater, the grouting pressure and the fluid interaction between the soil and slurry at the cutting face and between the soil and grout around the tail void. A Cam-Clay plasticity model is used to describe the material behaviour of cohesive soils. The cementitious grouting material in the tail void is modelled as an ageing elastic material with time-dependent stiffness and permeability. To allow for an automated computation of arbitrarily long and also curvilinear driving paths with suitable finite element meshes, the simulation procedure has been fully automated. The simulation of a tunnel advance in soft cohesive soil below the ground water table is presented and the results are compared with measurements taken from the literature. Copyright
Analytical and finite element modeling of grounding systems
Energy Technology Data Exchange (ETDEWEB)
Luz, Mauricio Valencia Ferreira da [University of Santa Catarina (UFSC), Florianopolis, SC (Brazil)], E-mail: mauricio@grucad.ufsc.br; Dular, Patrick [University of Liege (Belgium). Institut Montefiore], E-mail: Patrick.Dular@ulg.ac.be
2007-07-01
Grounding is the art of making an electrical connection to the earth. This paper deals with the analytical and finite element modeling of grounding systems. An electrokinetic formulation using a scalar potential can benefit from floating potentials to define global quantities such as electric voltages and currents. The application concerns a single vertical grounding with one, two and three-layer soil, where the superior extremity stays in the surface of the soil. This problem has been modeled using a 2D axi-symmetric electrokinetic formulation. The grounding resistance obtained by finite element method is compared with the analytical one for one-layer soil. With the results of this paper it is possible to show that finite element method is a powerful tool in the analysis of the grounding systems in low frequencies. (author)
Finite element method programs to analyze irradiation behavior of fuel pellets
International Nuclear Information System (INIS)
Yamada, Rayji; Harayama, Yasuo; Ishibashi, Akihiro; Ono, Masao.
1979-09-01
For the safety assessment of reactor fuel, it is important to grasp local changes of fuel pins due to irradiation in a reactor. Such changes of fuel result mostly from irradiation of fuel pellets. Elasto-plastic analysis programs based on the finite element method were developed to analyze these local changes. In the programs, emphasis is placed on the analysis of cracks in pellets; the interaction between cracked-pellets and cladding is not taken into consideration. The two programs developed are FEMF3 based on a two-dimensional axially symmetric model (r-z system) and FREB4 on a two-dimensional plane model (r-theta system). It is discussed in this report how the occurrence and distribution of cracks depend on heat rate of the fuel pin. (author)
International Nuclear Information System (INIS)
Al-Akhrass, Dina
2014-01-01
Simulations in solid mechanics exhibit several difficulties, as dealing with incompressibility, with nonlinearities due to finite strains, contact laws, or constitutive laws. The basic motivation of our work is to propose efficient finite element methods capable of dealing with incompressibility in finite strain context, and using elements of low order. During the three last decades, many approaches have been proposed in the literature to overcome the incompressibility problem. Among them, mixed formulations offer an interesting theoretical framework. In this work, a three-field mixed formulation (displacement, pressure, volumetric strain) is investigated. In some cases, this formulation can be condensed in a two-field (displacement - pressure) mixed formulation. However, it is well-known that the discrete problem given by the Galerkin finite element technique, does not inherit the 'inf-sup' stability condition from the continuous problem. Hence, the interpolation orders in displacement and pressure have to be chosen in a way to satisfy the Brezzi-Babuska stability conditions when using Galerkin approaches. Interpolation orders must be chosen so as to satisfy this condition. Two possibilities are considered: to use stable finite element satisfying this requirement, or to use finite element that does not satisfy this condition, and to add terms stabilizing the FE Galerkin formulation. The latter approach allows the use of equal order interpolation. In this work, stable finite element P2/P1 and P2/P1/P1 are used as reference, and compared to P1/P1 and P1/P1/P1 formulations stabilized with a bubble function or with a VMS method (Variational Multi-Scale) based on a sub-grid-space orthogonal to the FE space. A finite strain model based on logarithmic strain is selected. This approach is extended to three and two field mixed formulations with stable or stabilized elements. These approaches are validated on academic cases and used on industrial cases. (author)
PROBABILISTIC FINITE ELEMENT ANALYSIS OF A HEAVY DUTY RADIATOR UNDER INTERNAL PRESSURE LOADING
Directory of Open Access Journals (Sweden)
ROBIN ROY P.
2017-09-01
Full Text Available Engine cooling is vital in keeping the engine at most efficient temperature for the different vehicle speed and operating road conditions. Radiator is one of the key components in the heavy duty engine cooling system. Heavy duty radiator is subjected to various kinds of loading such as pressure, thermal, vibration, internal erosion, external corrosion, creep. Pressure cycle durability is one of the most important characteristic in the design of heavy duty radiator. Current design methodologies involve design of heavy duty radiator using the nominal finite element approach which does not take into account of the variations occurring in the geometry, material and boundary condition, leading to over conservative and uneconomical designs of radiator system. A new approach is presented in the paper to integrate traditional linear finite element method and probabilistic approach to design a heavy duty radiator by including the uncertainty in the computational model. As a first step, nominal run is performed with input design variables and desired responses are extracted. A probabilistic finite elementanalysis is performed to identify the robust designs and validated for reliability. Probabilistic finite element includes the uncertainty of the material thickness, dimensional and geometrical variation. Gaussian distribution is employed to define the random variation and uncertainty. Monte Carlo method is used to generate the random design points.Output response distributions of the random design points are post-processed using different statistical and probability technique to find the robust design. The above approach of systematic virtual modelling and analysis of the data helps to find efficient and reliable robust design.
1DFEMWATER: A one-dimensional finite element model of WATER flow through saturated-unsaturated media
International Nuclear Information System (INIS)
Yeh, G.T.
1988-08-01
This report presents the development and verification of a one- dimensional finite element model of water flow through saturated- unsaturated media. 1DFEMWATER is very flexible and capable of modeling a wide range of real-world problems. The model is designed to (1) treat heterogeneous media consisting of many geologic formations; (2) consider distributed and point sources/sinks that are spatially and temporally variable; (3) accept prescribed initial conditions or obtain them from steady state simulations; (4) deal with transient heads distributed over the Dirichlet boundary; (5) handle time-dependent fluxes caused by pressure gradient on the Neumann boundary; (6) treat time-dependent total fluxes (i.e., the sum of gravitational fluxes and pressure-gradient fluxes) on the Cauchy boundary; (7) automatically determine variable boundary conditions of evaporation, infiltration, or seepage on the soil-air interface; (8) provide two options for treating the mass matrix (consistent and lumping); (9) provide three alternatives for approximating the time derivative term (Crank-Nicolson central difference, backward difference, and mid-difference); (10) give three options (exact relaxation, underrelaxation, and overrelaxation) for estimating the nonlinear matrix; (11) automatically reset the time step size when boundary conditions or source/sinks change abruptly; and (12) check mass balance over the entire region for every time step. The model is verified with analytical solutions and other numerical models for three examples
Solution of 3-dimensional diffusion equation by finite Fourier transformation
International Nuclear Information System (INIS)
Krishnani, P.D.
1978-01-01
Three dimensional diffusion equation in Cartesian co-ordinates is solved by using the finite Fourier transformation. This method is different from the usual Fourier transformation method in the sense that the solutions are obtained without performing the inverse Fourier transformation. The advantage has been taken of the fact that the flux is finite and integrable in the finite region. By applying this condition, a two-dimensional integral equation, involving flux and its normal derivative at the boundary, is obtained. By solving this equation with given boundary conditions, all of the boundary values are determined. In order to calculate the flux inside the region, flux is expanded into three-dimensional Fourier series. The Fourier coefficients of the flux in the region are calculated from the boundary values. The advantage of this method is that the integrated flux is obtained without knowing the fluxes inside the region as in the case of finite difference method. (author)
Finite elements for the calculation of turbulent flows in three-dimensional complex geometries
Ruprecht, A.
A finite element program for the calculation of incompressible turbulent flows is presented. In order to reduce the required storage an iterative algorithm is used which solves the necessary equations sequentially. The state of turbulence is defined by the k-epsilon model. In addition to the standard k-epsilon model, the modification of Bardina et al., taking into account the rotation of the mean flow, is investigated. With this program, the flow in the draft tube of a Kaplan turbine is examined. Calculations are carried out for swirling and nonswirling entrance flow. The results are compared with measurements.
FEHMN 1.0: Finite element heat and mass transfer code
International Nuclear Information System (INIS)
Zyvoloski, G.; Dash, Z.; Kelkar, S.
1991-04-01
A computer code is described which can simulate non-isothermal multiphase multicomponent flow in porous media. It is applicable to natural-state studies of geothermal systems and ground-water flow. The equations of heat and mass transfer for multiphase flow in porous and permeable media are solved using the finite element method. The permeability and porosity of the medium are allowed to depend on pressure and temperature. The code also has provisions for movable air and water phases and noncoupled tracers; that is, tracer solutions that do not affect the heat and mass transfer solutions. The tracers can be passive or reactive. The code can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. A summary of the equations in the model and the numerical solution procedure are provided in this report. A user's guide and sample problems are also included. The main use of FEHMN will be to assist in the understanding of flow fields in the saturated zone below the proposed Yucca Mountain Repository. 33 refs., 27 figs., 12 tabs
International Nuclear Information System (INIS)
Casalotti, N.; Magnaud, J.P.
1989-01-01
The possibilities of the TRIO-EF software in the thermal field are presented. The TRIO-EF is a computer program based on the finite element method and used for three-dimensional incompressible flow analysis. It enables the calculation of three-dimensional heat transfer and the fluid/structure analysis. The geometrically complex radiative reactor systems are taken into account in the form factor calculation. The implemented algorithms are described [fr
Gear hot forging process robust design based on finite element method
International Nuclear Information System (INIS)
Xuewen, Chen; Won, Jung Dong
2008-01-01
During the hot forging process, the shaping property and forging quality will fluctuate because of die wear, manufacturing tolerance, dimensional variation caused by temperature and the different friction conditions, etc. In order to control this variation in performance and to optimize the process parameters, a robust design method is proposed in this paper, based on the finite element method for the hot forging process. During the robust design process, the Taguchi method is the basic robust theory. The finite element analysis is incorporated in order to simulate the hot forging process. In addition, in order to calculate the objective function value, an orthogonal design method is selected to arrange experiments and collect sample points. The ANOVA method is employed to analyze the relationships of the design parameters and design objectives and to find the best parameters. Finally, a case study for the gear hot forging process is conducted. With the objective to reduce the forging force and its variation, the robust design mathematical model is established. The optimal design parameters obtained from this study indicate that the forging force has been reduced and its variation has been controlled
SEACAS Theory Manuals: Part III. Finite Element Analysis in Nonlinear Solid Mechanics
Energy Technology Data Exchange (ETDEWEB)
Laursen, T.A.; Attaway, S.W.; Zadoks, R.I.
1999-03-01
This report outlines the application of finite element methodology to large deformation solid mechanics problems, detailing also some of the key technological issues that effective finite element formulations must address. The presentation is organized into three major portions: first, a discussion of finite element discretization from the global point of view, emphasizing the relationship between a virtual work principle and the associated fully discrete system, second, a discussion of finite element technology, emphasizing the important theoretical and practical features associated with an individual finite element; and third, detailed description of specific elements that enjoy widespread use, providing some examples of the theoretical ideas already described. Descriptions of problem formulation in nonlinear solid mechanics, nonlinear continuum mechanics, and constitutive modeling are given in three companion reports.
Simulation of the dynamic behavior of the coffee fruit-stem system using finite element method
Directory of Open Access Journals (Sweden)
Fábio Lúcio Santos
2015-01-01
Full Text Available Mechanical harvesting can be considered an important factor to reduce the costs in coffee production and to improve the quality of the final product. Coffee harvesting machinery uses mechanical vibrations to accomplish the harvesting. Therefore, the determination of the natural frequencies of the fruit-stem systems is an essential dynamic parameter for the development of mechanized harvesting system by mechanical vibrations. The objective of this study was to develop a three-dimensional finite element model to determine the natural frequencies and mode shapes of the coffee fruit-stem systems, considering different fruit ripeness. Moreover, it was carried out a theoretical study, using the finite element three-dimensional model, based on the linear theory of elasticity, for determining the generated stress in a coffee fruit-stem system, during the harvesting process by mechanical vibration. The results showed that natural frequencies decrease as the ripeness condition of the fruit increases. Counter-phase mode shape can provide better detachment efficiency considering the stress generation on coffee fruit-stem system during the harvesting by mechanical vibrations and presented a difference greater than 40 Hz between the natural frequencies of the green and ripe fruit.
Kim, Jeongho; Dhital, Sukirti; Zhivago, Paul; Kaizer, Marina R; Zhang, Yu
2018-06-01
The main problem of porcelain-veneered zirconia (PVZ) dental restorations is chipping and delamination of veneering porcelain owing to the development of deleterious residual stresses during the cooling phase of veneer firing. The aim of this study is to elucidate the effects of cooling rate, thermal contraction coefficient and elastic modulus on residual stresses developed in PVZ dental crowns using viscoelastic finite element methods (VFEM). A three-dimensional VFEM model has been developed to predict residual stresses in PVZ structures using ABAQUS finite element software and user subroutines. First, the newly established model was validated with experimentally measured residual stress profiles using Vickers indentation on flat PVZ specimens. An excellent agreement between the model prediction and experimental data was found. Then, the model was used to predict residual stresses in more complex anatomically-correct crown systems. Two PVZ crown systems with different thermal contraction coefficients and porcelain moduli were studied: VM9/Y-TZP and LAVA/Y-TZP. A sequential dual-step finite element analysis was performed: heat transfer analysis and viscoelastic stress analysis. Controlled and bench convection cooling rates were simulated by applying different convective heat transfer coefficients 1.7E-5 W/mm 2 °C (controlled cooling) and 0.6E-4 W/mm 2 °C (bench cooling) on the crown surfaces exposed to the air. Rigorous viscoelastic finite element analysis revealed that controlled cooling results in lower maximum stresses in both veneer and core layers for the two PVZ systems relative to bench cooling. Better compatibility of thermal contraction coefficients between porcelain and zirconia and a lower porcelain modulus reduce residual stresses in both layers. Copyright © 2018 Elsevier Ltd. All rights reserved.
Liu, Jingyin; Pan, Shaoxia; Dong, Jing; Mo, Zhongjun; Fan, Yubo; Feng, Hailan
2013-03-01
The aim of this study was to evaluate strain distribution in peri-implant bone, stress in the abutments and denture stability of mandibular overdentures anchored by different numbers of implants under different loading conditions, through three-dimensional finite element analysis (3D FEA). Four 3D finite element models of mandibular overdentures were established, using between one and four Straumann implants with Locator attachments. Three types of load were applied to the overdenture in each model: 100N vertical and inclined loads on the left first molar and a 100N vertical load on the lower incisors. The biomechanical behaviours of peri-implant bone, implants, abutments and overdentures were recorded. Under vertical load on the lower incisors, the single-implant overdenture rotated over the implant from side to side, and no obvious increase of strain was found in peri-implant bone. Under the same loading conditions, the two-implant-retained overdenture showed more apparent rotation around the fulcrum line passing through the two implants, and the maximum equivalent stress in the abutments was higher than in the other models. In the three-implant-supported overdenture, no strain concentration was found in cortical bone around the middle implant under three loading conditions. Single-implant-retained mandibular overdentures do not show damaging strain concentration in the bone around the only implant and may be a cost-effective treatment option for edentulous patients. A third implant can be placed between the original two when patients rehabilitated by two-implant overdentures report constant and obvious denture rotation around the fulcrum line. Copyright © 2012 Elsevier Ltd. All rights reserved.
Finite element approximation to the even-parity transport equation
International Nuclear Information System (INIS)
Lewis, E.E.
1981-01-01
This paper studies the finite element method, a procedure for reducing partial differential equations to sets of algebraic equations suitable for solution on a digital computer. The differential equation is cast into the form of a variational principle, the resulting domain then subdivided into finite elements. The dependent variable is then approximated by a simple polynomial, and these are linked across inter-element boundaries by continuity conditions. The finite element method is tailored to a variety of transport problems. Angular approximations are formulated, and the extent of ray effect mitigation is examined. Complex trial functions are introduced to enable the inclusion of buckling approximations. The ubiquitous curved interfaces of cell calculations, and coarse mesh methods are also treated. A concluding section discusses limitations of the work to date and suggests possible future directions
Quadrature representation of finite element variational forms
DEFF Research Database (Denmark)
Ølgaard, Kristian Breum; Wells, Garth N.
2012-01-01
This chapter addresses the conventional run-time quadrature approach for the numerical integration of local element tensors associated with finite element variational forms, and in particular automated optimizations that can be performed to reduce the number of floating point operations...
Large Eddy Simulation of turbulent flows in compound channels with a finite element code
International Nuclear Information System (INIS)
Xavier, C.M.; Petry, A.P.; Moeller, S.V.
2011-01-01
This paper presents the numerical investigation of the developing flow in a compound channel formed by a rectangular main channel and a gap in one of the sidewalls. A three dimensional Large Eddy Simulation computational code with the classic Smagorinsky model is introduced, where the transient flow is modeled through the conservation equations of mass and momentum of a quasi-incompressible, isothermal continuous medium. Finite Element Method, Taylor-Galerkin scheme and linear hexahedrical elements are applied. Numerical results of velocity profile show the development of a shear layer in agreement with experimental results obtained with Pitot tube and hot wires. (author)
Energy Technology Data Exchange (ETDEWEB)
A. T. Till; M. Hanuš; J. Lou; J. E. Morel; M. L. Adams
2016-05-01
The standard multigroup (MG) method for energy discretization of the transport equation can be sensitive to approximations in the weighting spectrum chosen for cross-section averaging. As a result, MG often inaccurately treats important phenomena such as self-shielding variations across a material. From a finite-element viewpoint, MG uses a single fixed basis function (the pre-selected spectrum) within each group, with no mechanism to adapt to local solution behavior. In this work, we introduce the Finite-Element-with-Discontiguous-Support (FEDS) method, whose only approximation with respect to energy is that the angular flux is a linear combination of unknowns multiplied by basis functions. A basis function is non-zero only in the discontiguous set of energy intervals associated with its energy element. Discontiguous energy elements are generalizations of bands and are determined by minimizing a norm of the difference between snapshot spectra and their averages over the energy elements. We begin by presenting the theory of the FEDS method. We then compare to continuous-energy Monte Carlo for one-dimensional slab and two-dimensional pin-cell problem. We find FEDS to be accurate and efficient at producing quantities of interest such as reaction rates and eigenvalues. Results show that FEDS converges at a rate that is approximately first-order in the number of energy elements and that FEDS is less sensitive to weighting spectrum than standard MG.
Robbins, Joshua; Voth, Thomas
2011-06-01
Material response to dynamic loading is often dominated by microstructure such as grain topology, porosity, inclusions, and defects; however, many models rely on assumptions of homogeneity. We use the probabilistic finite element method (WK Liu, IJNME, 1986) to introduce local uncertainty to account for material heterogeneity. The PFEM uses statistical information about the local material response (i.e., its expectation, coefficient of variation, and autocorrelation) drawn from knowledge of the microstructure, single crystal behavior, and direct numerical simulation (DNS) to determine the expectation and covariance of the system response (velocity, strain, stress, etc). This approach is compared to resolved grain-scale simulations of the equivalent system. The microstructures used for the DNS are produced using Monte Carlo simulations of grain growth, and a sufficient number of realizations are computed to ensure a meaningful comparison. Finally, comments are made regarding the suitability of one-dimensional PFEM for modeling material heterogeneity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
CSIR Research Space (South Africa)
Suliman, Ridhwaan
2012-07-01
Full Text Available -linear deformations are accounted for. As will be demonstrated, the finite volume approach exhibits similar disad- vantages to the linear Q4 finite element formulation when undergoing bending. An enhanced finite volume approach is discussed and compared with finite...
International Nuclear Information System (INIS)
Laval, H.
1981-01-01
This report describes the theoretical and numerical aspects of the finite element computer code CONVEC designed for the transient analysis of two-dimensional plane or three-dimensional axisymmetric incompressible flows including the effects of heat transfer. The governing equations for the above class of problems are the time-dependent incompressible Navier-Stokes equations and the thermal energy equation. The general class of flow problems analysed by CONVEC is discussed and the equations for the initial-boundary value problem are represented. A brief description of the finite element method and the weighted residual formulation is presented. The numerical solution of the incompressible equations is achieved by using a fractional step method. The mass lumping process associated with an explicit time integration scheme is described. The time integration is analysed and the stability conditions are derived. Numerical applications are presented. Standard problems of natural and forced convection are solved and the solutions obtained are compared with other numerical solutions published in the literature
The finite element analysis program MSC Marc/Mentat a first introduction
Öchsner, Andreas
2016-01-01
Based on simple examples, this book offers a short introduction to the general-purpose finite element program MSC Marc, a specialized program for non-linear problems (implicit solver) distributed by the MSC Software Corporation, which is commonly used in academia and industry. Today the documentation of all finite element programs includes a variety of step-by-step examples of differing complexity, and in addition, all software companies offer professional workshops on different topics. As such, rather than competing with these, the book focuses on providing simple examples, often single-element problems, which can easily be related to the theory that is discussed in finite element lectures. This makes it an ideal companion book to classical introductory courses on the finite element method.
A finite element thermohydrodynamic analyis of profile bore bearing
International Nuclear Information System (INIS)
Shah Nor bin Basri
1994-01-01
A finite element-based method is presented for analysing the thermohydrodynamic (THD) behaviour of profile bore bearing. A variational statement for the governing equation is derived and used to formulate a non-linear quadrilateral finite element of serendipity family. The predicted behaviour is compared with experimental evidence where possible and favorable correlation is obtained
Energy Technology Data Exchange (ETDEWEB)
Marcondes, Francisco [Federal University of Ceara, Fortaleza (Brazil). Dept. of Metallurgical Engineering and Material Science], e-mail: marcondes@ufc.br; Varavei, Abdoljalil; Sepehrnoori, Kamy [The University of Texas at Austin (United States). Petroleum and Geosystems Engineering Dept.], e-mails: varavei@mail.utexas.edu, kamys@mail.utexas.edu
2010-07-01
An element-based finite-volume approach in conjunction with unstructured grids for naturally fractured compositional reservoir simulation is presented. In this approach, both the discrete fracture and the matrix mass balances are taken into account without any additional models to couple the matrix and discrete fractures. The mesh, for two dimensional domains, can be built of triangles, quadrilaterals, or a mix of these elements. However, due to the available mesh generator to handle both matrix and discrete fractures, only results using triangular elements will be presented. The discrete fractures are located along the edges of each element. To obtain the approximated matrix equation, each element is divided into three sub-elements and then the mass balance equations for each component are integrated along each interface of the sub-elements. The finite-volume conservation equations are assembled from the contribution of all the elements that share a vertex, creating a cell vertex approach. The discrete fracture equations are discretized only along the edges of each element and then summed up with the matrix equations in order to obtain a conservative equation for both matrix and discrete fractures. In order to mimic real field simulations, the capillary pressure is included in both matrix and discrete fracture media. In the implemented model, the saturation field in the matrix and discrete fractures can be different, but the potential of each phase in the matrix and discrete fracture interface needs to be the same. The results for several naturally fractured reservoirs are presented to demonstrate the applicability of the method. (author)
Hualien forced vibration calculation with a finite element model
International Nuclear Information System (INIS)
Wang, F.; Gantenbein, F.; Nedelec, M.; Duretz, Ch.
1995-01-01
The forced vibration tests of the Hualien mock-up were useful to validate finite element models developed for soil-structure interaction. In this paper the two sets of tests with and without backfill were analysed. the methods used are based on finite element modeling for the soil. Two approaches were considered: calculation of soil impedance followed by the calculation of the transfer functions with a model taking into account the superstructure and the impedance; direct calculation of the soil-structure transfer functions, with the soil and the structure being represented in the same model by finite elements. Blind predictions and post-test calculations are presented and compared with the test results. (author). 4 refs., 8 figs., 2 tabs
The Finite Element Numerical Modelling of 3D Magnetotelluric
Directory of Open Access Journals (Sweden)
Ligang Cao
2014-01-01
Full Text Available The ideal numerical simulation of 3D magnetotelluric was restricted by the methodology complexity and the time-consuming calculation. Boundary values, the variation of weighted residual equation, and the hexahedral mesh generation method of finite element are three major causes. A finite element method for 3D magnetotelluric numerical modeling is presented in this paper as a solution for the problem mentioned above. In this algorithm, a hexahedral element coefficient matrix for magnetoelluric finite method is developed, which solves large-scale equations using preconditioned conjugate gradient of the first-type boundary conditions. This algorithm is verified using the homogeneous model, and the positive landform model, as well as the low resistance anomaly model.
Finite element analyses of a linear-accelerator electron gun
Iqbal, M.; Wasy, A.; Islam, G. U.; Zhou, Z.
2014-02-01
Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.
Finite element analyses of a linear-accelerator electron gun
Energy Technology Data Exchange (ETDEWEB)
Iqbal, M., E-mail: muniqbal.chep@pu.edu.pk, E-mail: muniqbal@ihep.ac.cn [Centre for High Energy Physics, University of the Punjab, Lahore 45590 (Pakistan); Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wasy, A. [Department of Mechanical Engineering, Changwon National University, Changwon 641773 (Korea, Republic of); Islam, G. U. [Centre for High Energy Physics, University of the Punjab, Lahore 45590 (Pakistan); Zhou, Z. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)
2014-02-15
Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.
Finite element analyses of a linear-accelerator electron gun
International Nuclear Information System (INIS)
Iqbal, M.; Wasy, A.; Islam, G. U.; Zhou, Z.
2014-01-01
Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator
Directory of Open Access Journals (Sweden)
Tianyong Jiang
2017-09-01
Full Text Available With the development of the post-tensioning technique, prestressed concrete structures have been widely used in civil engineering. To ensure the long-term effectiveness of the prestressed tendon, the grouting quality of the tendon duct is one of the important factors. However, it is still a challenge to monitor the grouting quality of post-tensioning tendon ducts, due to the invisibility of the grouting. The authors’ previous work proposed a real-time method that employed a stress wave-based active sensing approach with piezoceramic transducers to monitor the grouting compactness of a Post-Tensioning Tendon Duct (PTTD. To further understand the piezoceramic induced stress wave propagation in the PTTD with different grouting levels, this paper develops a two-dimensional finite element model for monitoring the grouting compactness of the tendon duct with a piezoceramic transducer. A smart aggregate (SA developed to utilize one Lead Zirconate Titanate (PZT transducer with marble protection is installed in the center location of the tendon duct as an actuator. Two PZT patches are bonded on the bottom and top surface of the tendon duct as the sensors. The analysis results show that the finite element analysis results are in good agreement with the experimental results, which demonstrates that the finite element analysis is feasible and reliable. For the top half of the specimen, not much stress wave could be detected before the full grouting level, except for negligible signals that may propagate through the walls of the tendon duct. When the tendon duct grouting is at 100%, the stress wave propagates to the top of the specimen, and the displacements are symmetric in both left-right and top-bottom directions before the stress waves reach the boundary. The proposed two-dimensional finite element model has the potential to be implemented to simulate the stress wave propagation principle for monitoring grouting compaction of the post-tensioning tendon
Jiang, Tianyong; Zheng, Junbo; Huo, Linsheng; Song, Gangbing
2017-09-29
With the development of the post-tensioning technique, prestressed concrete structures have been widely used in civil engineering. To ensure the long-term effectiveness of the prestressed tendon, the grouting quality of the tendon duct is one of the important factors. However, it is still a challenge to monitor the grouting quality of post-tensioning tendon ducts, due to the invisibility of the grouting. The authors' previous work proposed a real-time method that employed a stress wave-based active sensing approach with piezoceramic transducers to monitor the grouting compactness of a Post-Tensioning Tendon Duct (PTTD). To further understand the piezoceramic induced stress wave propagation in the PTTD with different grouting levels, this paper develops a two-dimensional finite element model for monitoring the grouting compactness of the tendon duct with a piezoceramic transducer. A smart aggregate (SA) developed to utilize one Lead Zirconate Titanate (PZT) transducer with marble protection is installed in the center location of the tendon duct as an actuator. Two PZT patches are bonded on the bottom and top surface of the tendon duct as the sensors. The analysis results show that the finite element analysis results are in good agreement with the experimental results, which demonstrates that the finite element analysis is feasible and reliable. For the top half of the specimen, not much stress wave could be detected before the full grouting level, except for negligible signals that may propagate through the walls of the tendon duct. When the tendon duct grouting is at 100%, the stress wave propagates to the top of the specimen, and the displacements are symmetric in both left-right and top-bottom directions before the stress waves reach the boundary. The proposed two-dimensional finite element model has the potential to be implemented to simulate the stress wave propagation principle for monitoring grouting compaction of the post-tensioning tendon duct.
International Nuclear Information System (INIS)
Schmid, J.
1985-11-01
A package of updated computer codes for velocity and temperature field calculations for a fast reactor fuel subassembly (or its part) by the finite element method is described. Isoparametric triangular elements of the second degree are used. (author)
Energy Technology Data Exchange (ETDEWEB)
Ansanay-Alex, G.
2009-06-17
The development of simulation codes aimed at a precise simulation of fires requires a precise approach of flame front phenomena by using very fine grids. The need to take different spatial scale into consideration leads to a local grid refinement and to a discretization with homogeneous grid for computing time and memory purposes. The author reports the approximation of the non-linear convection term, the scalar advection-diffusion in finite volumes, numerical simulations of a flow in a bent tube, of a three-dimensional laminar flame and of a low Mach number an-isotherm flow. Non conformal finite elements are also presented (Rannacher-Turek and Crouzeix-Raviart elements)
Finite Element Modeling of Thermo Creep Processes Using Runge-Kutta Method
Directory of Open Access Journals (Sweden)
Yu. I. Dimitrienko
2015-01-01
Full Text Available Thermo creep deformations for most heat-resistant alloys, as a rule, nonlinearly depend on stresses and are practically non- reversible. Therefore, to calculate the properties of these materials the theory of plastic flow is most widely used. Finite-element computations of a stress-strain state of structures with account of thermo creep deformations up to now are performed using main commercial software, including ANSYS package. However, in most cases to solve nonlinear creep equations, one should apply explicit or implicit methods based on the Euler method of approximation of time-derivatives. The Euler method is sufficiently efficient in terms of random access memory in computations, however this method is cumbersome in computation time and does not always provide a required accuracy for creep deformation computations.The paper offers a finite-element algorithm to solve a three-dimensional problem of thermo creep based on the Runge-Kutta finite-difference schemes of different orders with respect to time. It shows a numerical test example to solve the problem on the thermo creep of a beam under tensile loading. The computed results demonstrate that using the Runge-Kutta method with increasing accuracy order allows us to obtain a more accurate solution (with increasing accuracy order by 1 a relative error decreases, approximately, by an order too. The developed algorithm proves to be efficient enough and can be recommended for solving the more complicated problems of thermo creep of structures.
Bubble-Enriched Least-Squares Finite Element Method for Transient Advective Transport
Directory of Open Access Journals (Sweden)
Rajeev Kumar
2008-01-01
Full Text Available The least-squares finite element method (LSFEM has received increasing attention in recent years due to advantages over the Galerkin finite element method (GFEM. The method leads to a minimization problem in the L2-norm and thus results in a symmetric and positive definite matrix, even for first-order differential equations. In addition, the method contains an implicit streamline upwinding mechanism that prevents the appearance of oscillations that are characteristic of the Galerkin method. Thus, the least-squares approach does not require explicit stabilization and the associated stabilization parameters required by the Galerkin method. A new approach, the bubble enriched least-squares finite element method (BELSFEM, is presented and compared with the classical LSFEM. The BELSFEM requires a space-time element formulation and employs bubble functions in space and time to increase the accuracy of the finite element solution without degrading computational performance. We apply the BELSFEM and classical least-squares finite element methods to benchmark problems for 1D and 2D linear transport. The accuracy and performance are compared.
Finite element model updating of concrete structures based on imprecise probability
Biswal, S.; Ramaswamy, A.
2017-09-01
Imprecise probability based methods are developed in this study for the parameter estimation, in finite element model updating for concrete structures, when the measurements are imprecisely defined. Bayesian analysis using Metropolis Hastings algorithm for parameter estimation is generalized to incorporate the imprecision present in the prior distribution, in the likelihood function, and in the measured responses. Three different cases are considered (i) imprecision is present in the prior distribution and in the measurements only, (ii) imprecision is present in the parameters of the finite element model and in the measurement only, and (iii) imprecision is present in the prior distribution, in the parameters of the finite element model, and in the measurements. Procedures are also developed for integrating the imprecision in the parameters of the finite element model, in the finite element software Abaqus. The proposed methods are then verified against reinforced concrete beams and prestressed concrete beams tested in our laboratory as part of this study.
Probabilistic Failure Analysis of Bone Using a Finite Element Model of Mineral-Collagen Composites
Dong, X. Neil; Guda, Teja; Millwater, Harry R.; Wang, Xiaodu
2008-01-01
Microdamage accumulation is a major pathway for energy dissipation during the post-yield deformation of bone. In this study, a two-dimensional probabilistic finite element model of a mineral-collagen composite was developed to investigate the influence of the tissue and ultrastructural properties of bone on the evolution of microdamage from an initial defect in tension. The probabilistic failure analyses indicated that the microdamage progression would be along the plane of the initial defect...
Finite element investigations on the microstructure of fibre-reinforced composites
Directory of Open Access Journals (Sweden)
2008-09-01
Full Text Available The effect of residual stress due to the curing process on damage evolution in unidirectional (UD fibre-reinforced polymer-matrix composites under longitudinal and transverse loading has been investigated using a three-dimensional micromechanical representative volume element (RVE model with a hexagonal packing geometry and the finite element method. Residual stress has been determined by considering two contributions: volume shrinkage of matrix resin from the crosslink polymerization during isothermal curing and thermal contraction of both resin and fibre as a result of cooling from the curing temperature to room temperature. To examine the effect of residual stress on failure, a study based on different failure criteria and a stiffness degradation technique has been used for damage analysis of the RVE subjected to mechanical loading after curing for a range of fibre volume fractions. Predicted damage initiation and evolution are clearly influenced by the presence of residual stress.
B-spline based finite element method in one-dimensional discontinuous elastic wave propagation
Czech Academy of Sciences Publication Activity Database
Kolman, Radek; Okrouhlík, Miloslav; Berezovski, A.; Gabriel, Dušan; Kopačka, Ján; Plešek, Jiří
2017-01-01
Roč. 46, June (2017), s. 382-395 ISSN 0307-904X R&D Projects: GA ČR(CZ) GAP101/12/2315; GA MŠk(CZ) EF15_003/0000493 Grant - others:AV ČR(CZ) DAAD-16-12; AV ČR(CZ) ETA-15-03 Program:Bilaterální spolupráce; Bilaterální spolupráce Institutional support: RVO:61388998 Keywords : discontinuous elastic wave propagation * B-spline finite element method * isogeometric analysis * implicit and explicit time integration * dispersion * spurious oscillations Subject RIV: BI - Acoustics OBOR OECD: Acoustics Impact factor: 2.350, year: 2016 http://www.sciencedirect.com/science/article/pii/S0307904X17300835
On Using Particle Finite Element for Hydrodynamics Problems Solving
Directory of Open Access Journals (Sweden)
E. V. Davidova
2015-01-01
Full Text Available The aim of the present research is to develop software for the Particle Finite Element Method (PFEM and its verification on the model problem of viscous incompressible flow simulation in a square cavity. The Lagrangian description of the medium motion is used: the nodes of the finite element mesh move together with the fluid that allows to consider them as particles of the medium. Mesh cells deform when in time-stepping procedure, so it is necessary to reconstruct the mesh to provide stability of the finite element numerical procedure.Meshing algorithm allows us to obtain the mesh, which satisfies the Delaunay criteria: it is called \\the possible triangles method". This algorithm is based on the well-known Fortune method of Voronoi diagram constructing for a certain set of points in the plane. The graphical representation of the possible triangles method is shown. It is suitable to use generalization of Delaunay triangulation in order to construct meshes with polygonal cells in case of multiple nodes close to be lying on the same circle.The viscous incompressible fluid flow is described by the Navier | Stokes equations and the mass conservation equation with certain initial and boundary conditions. A fractional steps method, which allows us to avoid non-physical oscillations of the pressure, provides the timestepping procedure. Using the finite element discretization and the Bubnov | Galerkin method allows us to carry out spatial discretization.For form functions calculation of finite element mesh with polygonal cells, \
Finite element solution of quasistationary nonlinear magnetic field
International Nuclear Information System (INIS)
Zlamal, Milos
1982-01-01
The computation of quasistationary nonlinear two-dimensional magnetic field leads to the following problem. There is given a bounded domain OMEGA and an open nonempty set R included in OMEGA. We are looking for the magnetic vector potential u(x 1 , x 2 , t) which satisifies: 1) a certain nonlinear parabolic equation and an initial condition in R: 2) a nonlinear elliptic equation in S = OMEGA - R which is the stationary case of the above mentioned parabolic equation; 3) a boundary condition on delta OMEGA; 4) u as well as its conormal derivative are continuous accross the common boundary of R and S. This problem is formulated in two equivalent abstract ways. There is constructed an approximate solution completely discretized in space by a generalized Galerkin method (straight finite elements are a special case) and by backward A-stable differentiation methods in time. Existence and uniqueness of a weak solution is proved as well as a weak and strong convergence of the approximate solution to this solution. There are also derived error bounds for the solution of the two-dimensional nonlinear magnetic field equations under the assumption that the exact solution is sufficiently smooth
Shakedown analysis by finite element incremental procedures
International Nuclear Information System (INIS)
Borkowski, A.; Kleiber, M.
1979-01-01
It is a common occurence in many practical problems that external loads are variable and the exact time-dependent history of loading is unknown. Instead of it load is characterized by a given loading domain: a convex polyhedron in the n-dimensional space of load parameters. The problem is then to check whether a structure shakes down, i.e. responds elastically after a few elasto-plastic cycles, or not to a variable loading as defined above. Such check can be performed by an incremental procedure. One should reproduce incrementally a simple cyclic process which consists of proportional load paths that connect the origin of the load space with the corners of the loading domain. It was proved that if a structure shakes down to such loading history then it is able to adopt itself to an arbitrary load path contained in the loading domain. The main advantage of such approach is the possibility to use existing incremental finite-element computer codes. (orig.)
Torcato, Leonardo Bueno; Pellizzer, Eduardo Piza; Verri, Fellippo Ramos; Falcón-Antenucci, Rosse Mary; Santiago Júnior, Joel Ferreira; de Faria Almeida, Daniel Augusto
2015-11-01
Clinicians should consider parafunctional occlusal load when planning treatment. Prosthetic connections can reduce the stress distribution on an implant-supported prosthesis. The purpose of this 3-dimensional finite element study was to assess the influence of parafunctional loading and prosthetic connections on stress distribution. Computer-aided design software was used to construct 3 models. Each model was composed of a bone and an implant (external hexagon, internal hexagon, or Morse taper) with a crown. Finite element analysis software was used to generate the finite element mesh and establish the loading and boundary conditions. A normal force (200-N axial load and 100-N oblique load) and parafunctional force (1000-N axial and 500-N oblique load) were applied. Results were visualized as the maximum principal stress. Three-way analysis of variance and Tukey test were performed, and the percentage of contribution of each variable to the stress concentration was calculated from sum-of squares-analysis. Stress was concentrated around the implant at the cortical bone, and models with the external hexagonal implant showed the highest stresses (PProsthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Buckling Analysis of Single and Multi Delamination In Composite Beam Using Finite Element Method
Simanjorang, Hans Charles; Syamsudin, Hendri; Giri Suada, Muhammad
2018-04-01
Delamination is one type of imperfection in structure which found usually in the composite structure. Delamination may exist due to some factors namely in-service condition where the foreign objects hit the composite structure and creates inner defect and poor manufacturing that causes the initial imperfections. Composite structure is susceptible to the compressive loading. Compressive loading leads the instability phenomenon in the composite structure called buckling. The existence of delamination inside of the structure will cause reduction in buckling strength. This paper will explain the effect of delamination location to the buckling strength. The analysis will use the one-dimensional modelling approach using two- dimensional finite element method.
Directory of Open Access Journals (Sweden)
Fan Yuxin
2014-12-01
Full Text Available A fluid–structure interaction method combining a nonlinear finite element algorithm with a preconditioning finite volume method is proposed in this paper to simulate parachute transient dynamics. This method uses a three-dimensional membrane–cable fabric model to represent a parachute system at a highly folded configuration. The large shape change during parachute inflation is computed by the nonlinear Newton–Raphson iteration and the linear system equation is solved by the generalized minimal residual (GMRES method. A membrane wrinkling algorithm is also utilized to evaluate the special uniaxial tension state of membrane elements on the parachute canopy. In order to avoid large time expenses during structural nonlinear iteration, the implicit Hilber–Hughes–Taylor (HHT time integration method is employed. For the fluid dynamic simulations, the Roe and HLLC (Harten–Lax–van Leer contact scheme has been modified and extended to compute flow problems at all speeds. The lower–upper symmetric Gauss–Seidel (LU-SGS approximate factorization is applied to accelerate the numerical convergence speed. Finally, the test model of a highly folded C-9 parachute is simulated at a prescribed speed and the results show similar characteristics compared with experimental results and previous literature.
Analysis of thin composite structures using an efficient hex-shell finite element
Energy Technology Data Exchange (ETDEWEB)
Shiri, Seddik [Universite Bordeaux, Pessac (France); Naceur, Hakim [Universite de valenciennes, Valenciennes (France)
2013-12-15
In this paper a general methodology for the modeling of material composite multilayered shell structures is proposed using a Hex-shell finite element modeling. The first part of the paper is devoted to the general FE formulation of the present composite 8-node Hex-shell element called SCH8, based only on displacement degrees of freedom. A particular attention is given to alleviate shear, trapezoidal and thickness locking, without resorting to the classical plane-stress assumption. The anisotropic material behavior of layered shells is modeled using a fully three dimensional elastic orthotropic material law in each layer, including the thickness stress component. Applications to laminate thick shell structures are studied to validate the methodology, and good results have been obtained in comparison with ABAQUS commercial code.
Osman, Reham B; Elkhadem, Amr H; Ma, Sunyoung; Swain, Michael V
2013-01-01
The purpose of this study was to compare the stress and strain occurring in peri-implant bone and implants used to support maxillary overdentures. Three-dimensional finite element analysis (3D FEA) was used to compare one-piece zirconia and titanium implants. Two types of implants were simulated using a 3D FEA model: one-piece zirconia and titanium implants (diameter, 3.8 × 11.5 mm) with 2.25-mm diameter ball abutments. In each simulation four implants were placed bilaterally in the canine/premolar region of an edentulous maxillary model. Static loads were applied axially and 20 degrees buccolingually on the buccal slope of the lingual cusps of posterior teeth of the first quadrant. Von Mises stresses and equivalent strains generated in peri-implant bone and first principal stresses in the implants were calculated. Comparable stress and strain values were shown in the peri-implant bone for both types of implants. The maximum equivalent strain produced in the peri-implant region was mostly within the range for bone augmentation. Under oblique loading, maximum von Mises stresses and equivalent strain were more evident at the neck of the most distal implant on the loaded side. Under axial load, the stress and strain were transferred to the peri-implant bone around the apex of the implant. Maximum tensile stresses that developed for either material were well below their fracture strength. The highest stresses were mainly located at the distobuccal region of the neck for the two implant materials under both loading conditions. From a biomechanical point of view, ceramic implants made from yttrium-stabilized tetragonal polycrystalline zirconia may be a potential alternative to conventional titanium implants for the support of overdentures. This is particularly relevant for a select group of patients with a proven allergy to titanium. Prospective clinical studies are still required to confirm these in vitro results. Different simulations presenting various cortical bone
Numerical stress analysis of toroidal coil by three-dimensional finite element method
International Nuclear Information System (INIS)
Nishimura, Hidetomo; Shimamoto, Susumu
1977-10-01
A structure analysis program based on finite element method for toroidal coils, developed in JAERI, and its example application to a medium-size tokamak are described. In this application, the effects of material anisotropy, poloidal field and spring constant value were studied, and also the influence of toroidal coil failure on the peak stress. The following were revealed. The effect of anisotropy on the peak stress in reinforcement must be considered. The effect of poloidal field on the peak stress is small compared with that of toroidal field. The spring constant value between coil and support does not much influence the peak stress value, The peak stress in reinforcement rises with increasing number of failed coils. In the case of 2000 nodes on the structure, CPU time with the program is about 40 min. (auth.)
Finite element simulations of two rock mechanics tests
International Nuclear Information System (INIS)
Dahlke, H.J.; Lott, S.A.
1986-04-01
Rock mechanics tests are performed to determine in situ stress conditions and material properties of an underground rock mass. To design stable underground facilities for the permanent storage of high-level nuclear waste, determination of these properties and conditions is a necessary first step. However, before a test and its associated equipment can be designed, the engineer needs to know the range of expected values to be measured by the instruments. Sensitivity studies by means of finite element simulations are employed in this preliminary design phase to evaluate the pertinent parameters and their effects on the proposed measurements. The simulations, of two typical rock mechanics tests, the plate bearing test and the flat-jack test, by means of the finite element analysis, are described. The plate bearing test is used to determine the rock mass deformation modulus. The flat-jack test is used to determine the in situ stress conditions of the host rock. For the plate bearing test, two finite element models are used to simulate the classic problem of a load on an elastic half space and the actual problem of a plate bearing test in an underground tunnel of circular cross section. For the flat-jack simulation, a single finite element model is used to simulate both horizontal and vertical slots. Results will be compared to closed-form solutions available in the literature
A simple finite element method for linear hyperbolic problems
International Nuclear Information System (INIS)
Mu, Lin; Ye, Xiu
2017-01-01
Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.
Nazari, Mohammad Ali; Perrier, Pascal; Payan, Yohan
2013-01-01
Purpose: The authors aimed to design a distributed lambda model (DLM), which is well adapted to implement three-dimensional (3-D), finite-element descriptions of muscles. Method: A muscle element model was designed. Its stress-strain relationships included the active force-length characteristics of the ? model along the muscle fibers, together…
Finite element prediction of elastic strains in beryllium compact tension specimens
International Nuclear Information System (INIS)
Guerra, F.; Varma, R.; Bourke, M.
1997-01-01
Three-dimensional finite element (FE) calculations using ABAQUS version 5.5.9 were compared to neutron diffraction measurements of a loaded, pre-cracked beryllium compact tension (CT) specimens. The objective was to validate the FE results with the experimental open-quotes elastic strainclose quotes measurements. Then the FE calculations could be used to study residual stress and other aspects of these problems in the unloaded state and the crack tip stress in the loaded state which is hard to measure experimentally. A graded FE mesh was focused on the regions containing high strain gradients, the smallest elements were approximately 0.5 mm x 0.5 mm x 0.4 mm. A standard 20-node brick element model was complemented by a model with 1/4-point elements at the crack tip. Since the neutron diffraction measurements provided a volume average of approximately a cube of edge 3.0 mm, various averaging (or integrating) techniques were used on the FE results. Several integration schemes showed good agreement with the experimental results
Predoi, Mihai Valentin
2014-09-01
The dispersion curves for hollow multilayered cylinders are prerequisites in any practical guided waves application on such structures. The equations for homogeneous isotropic materials have been established more than 120 years ago. The difficulties in finding numerical solutions to analytic expressions remain considerable, especially if the materials are orthotropic visco-elastic as in the composites used for pipes in the last decades. Among other numerical techniques, the semi-analytical finite elements method has proven its capability of solving this problem. Two possibilities exist to model a finite elements eigenvalue problem: a two-dimensional cross-section model of the pipe or a radial segment model, intersecting the layers between the inner and the outer radius of the pipe. The last possibility is here adopted and distinct differential problems are deduced for longitudinal L(0,n), torsional T(0,n) and flexural F(m,n) modes. Eigenvalue problems are deduced for the three modes classes, offering explicit forms of each coefficient for the matrices used in an available general purpose finite elements code. Comparisons with existing solutions for pipes filled with non-linear viscoelastic fluid or visco-elastic coatings as well as for a fully orthotropic hollow cylinder are all proving the reliability and ease of use of this method. Copyright © 2014 Elsevier B.V. All rights reserved.
Aspects of Finite Element Simulation of Axi-Symmetric Hydromechanical Deep Drawing
DEFF Research Database (Denmark)
Jensen, Morten Rikard; Olovsson, Lars; Danckert, Joachim
1999-01-01
A new approach for the Finite Element modelling of the hydromechanical deep drawing process is evaluated. In the model a Finite Difference approximation of Reynold’s equation is solved for the fluid flow between the blank and the draw die in the flange region. The approach is implemented...... as a contact algorithm in an explicit Finite Element code, Exhale2D. The developed model is verified against experiments and good agreement is obtained. It is concluded that the developed model is a promising approach for simulating the hydromechanical deep drawing process using the Finite Element Method....
Parallel direct solver for finite element modeling of manufacturing processes
DEFF Research Database (Denmark)
Nielsen, Chris Valentin; Martins, P.A.F.
2017-01-01
The central processing unit (CPU) time is of paramount importance in finite element modeling of manufacturing processes. Because the most significant part of the CPU time is consumed in solving the main system of equations resulting from finite element assemblies, different approaches have been...
Directory of Open Access Journals (Sweden)
Cheng-dong Piao
2015-01-01
Full Text Available In the repair of peripheral nerve injury using autologous or synthetic nerve grafting, the magnitude of tensile forces at the anastomosis affects its response to physiological stress and the ultimate success of the treatment. One-dimensional stretching is commonly used to measure changes in tensile stress and strain however, the accuracy of this simple method is limited. Therefore, in the present study, we established three-dimensional finite element models of sciatic nerve defects repaired by autologous nerve grafts. Using PRO E 5.0 finite element simulation software, we calculated the maximum stress and displacement of an anastomosis under a 5 N load in 10-, 20-, 30-, 40-mm long autologous nerve grafts. We found that maximum displacement increased with graft length, consistent with specimen force. These findings indicate that three-dimensional finite element simulation is a feasible method for analyzing stress and displacement at the anastomosis after autologous nerve grafting.
Modeling bistable behaviors in morphing structures through finite element simulations.
Guo, Qiaohang; Zheng, Huang; Chen, Wenzhe; Chen, Zi
2014-01-01
Bistable structures, exemplified by the Venus flytrap and slap bracelets, can transit between different configurations upon certain external stimulation. Here we study, through three-dimensional finite element simulations, the bistable behaviors in elastic plates in the absence of terminate loads, but with pre-strains in one (or both) of the two composite layers. Both the scenarios with and without a given geometric mis-orientation angle are investigated, the results of which are consistent with recent theoretical and experimental studies. This work can open ample venues for programmable designs of plant/shell structures with large deformations, with applications in designing bio-inspired robotics for biomedical research and morphing/deployable structures in aerospace engineering.
A General Finite Element Scheme for Limit State Analysis and Optimization
DEFF Research Database (Denmark)
Damkilde, Lars
1999-01-01
Limit State analysis which is based on a perfect material behaviour is used in many different applications primarily within Structural Engineering and Geotechnics. The calculation methods have not reached the same level of automation such as Finite Element Analysis for elastic structures....... The computer based systems are more ad hoc based and are typically not well-integrated with pre- and postprocessors well-known from commercial Finite Element codes.A finite element based formulation of limit state analysis is presented which allows an easy integration with standard Finite Element codes...... for elastic analysis. In this way the user is able to perform a limit state analysis on the same model used for elastic analysis only adding data for the yield surface.The method is based on the lower-bound theorem and uses stress-based elements with a linearized yield surface. The mathematical problem...
Engineering computation of structures the finite element method
Neto, Maria Augusta; Roseiro, Luis; Cirne, José; Leal, Rogério
2015-01-01
This book presents theories and the main useful techniques of the Finite Element Method (FEM), with an introduction to FEM and many case studies of its use in engineering practice. It supports engineers and students to solve primarily linear problems in mechanical engineering, with a main focus on static and dynamic structural problems. Readers of this text are encouraged to discover the proper relationship between theory and practice, within the finite element method: Practice without theory is blind, but theory without practice is sterile. Beginning with elasticity basic concepts and the classical theories of stressed materials, the work goes on to apply the relationship between forces, displacements, stresses and strains on the process of modeling, simulating and designing engineered technical systems. Chapters discuss the finite element equations for static, eigenvalue analysis, as well as transient analyses. Students and practitioners using commercial FEM software will find this book very helpful. It us...
International Nuclear Information System (INIS)
Yeh, G.T.; Wong, K.V.; Craig, P.M.; Davis, E.C.
1985-01-01
This paper presents the construction, verification, and application of two groundwater flow and contaminant transport models: A Finite Element Model of Water Flow through Aquifers (FEWA) and A Finite Element Model of Material Transport through Aquifers (FEMA). The construction is based on the finite element approximation of partial differential equations of groundwater flow (FEWA) and of solute movement (FEMA). The particular features of FEWA and FEMA are their versatility and flexibility for dealing with nearly all vertically integrated two-dimensional problems. The models were verified against both analytical solutions and widely used US Geological Survey finite difference approximations. They were then applied for calibration and validation, using data obtained in experiments at the Engineering Test Facility at Oak Ridge National Laboratory. Results indicated that the models are valid for this specific site. To demonstrate the versatility anf flexibility of the models, they were applied to two hypothetical, but realistic, complex problems and three field sites across the United States. In these applications the models yielded good agreement with the field data for all three sites. Finally, the predictive capabilities of the models were demonstrated using data obtained at the Hialeah Preston site in Florida. This case illustrates the capability of FEWA and FEMA as predictive tools and their usefulness in the management of groundwater flow and contaminant transport. 25 refs
Modelling drawbeads with finite elements and verification
Carleer, B.D.; Carleer, B.D.; Vreede, P.T.; Vreede, P.T.; Louwes, M.F.M.; Louwes, M.F.M.; Huetink, Han
1994-01-01
Drawbeads are commonly used in deep drawing processes to control the flow of the blank during the forming operation. In finite element simulations of deep drawing the drawbead geometries are seldom included because of the small radii; because of these small radii a very large number of elements is
Essentials of the finite element method for mechanical and structural engineers
Pavlou, Dimitrios G
2015-01-01
Fundamental coverage, analytic mathematics, and up-to-date software applications are hard to find in a single text on the finite element method (FEM). Dimitrios Pavlou's Essentials of the Finite Element Method: For Structural and Mechanical Engineers makes the search easier by providing a comprehensive but concise text for those new to FEM, or just in need of a refresher on the essentials. Essentials of the Finite Element Method explains the basics of FEM, then relates these basics to a number of practical engineering applications. Specific topics covered include linear spring elements, bar elements, trusses, beams and frames, heat transfer, and structural dynamics. Throughout the text, readers are shown step-by-step detailed analyses for finite element equations development. The text also demonstrates how FEM is programmed, with examples in MATLAB, CALFEM, and ANSYS allowing readers to learn how to develop their own computer code. Suitable for everyone from first-time BSc/MSc students to practicing mechanic...
International Nuclear Information System (INIS)
Usami, Akinobu; Hara, Toshihiro; Ide, Yoshinobu
2003-01-01
The purpose of this study was to analyze the morphological and mechanical properties of the internal structures of maxillae at the molar region using a micro-CT system. Ten dentulous and edentulous maxillae were employed in this study. Images and angle information from all materials were taken by a micro-CT and 100 x 100 x 100 voxels were extracted from the fixed buccal and palatal molar regions in each material for three-dimensional morphological analysis of the internal structure. The bone volume fraction, trabecular thickness, trabecular separation and trabecular number were calculated. To analyze mechanical properties all voxels were converted to micro finite element models with element size of 33 x 33 x 33 μm 3 and maximal stiffness, axial stiffness and angle between the stiffest direction of trabecular and the axial loading direction (angleα) were determined using micro finite element method. In the result, the morphological changes including decrease of bone volume fraction, trabecular thickness and increase of trabecular separation were evident with tooth loss, although trabecular number was not changed. Mechanically, maximal stiffness was decreased with tooth loss at buccal region. However, the axial stiffness at buccal region was larger and the angleα was distributed widely in each edentulous maxilla, comparing to the same region of dentulous maxilla. These findings suggest that trabecular bone become thinner in both buccal and palatal regions, consequently maximal stiffness at buccal region become smaller with tooth loss. On the other hand, axial stiffness at the buccal region in edentulous was larger than one in dentulous. It seems to be caused by the change of the angleα. (author)
Trend analysis using non-stationary time series clustering based on the finite element method
Gorji Sefidmazgi, M.; Sayemuzzaman, M.; Homaifar, A.; Jha, M. K.; Liess, S.
2014-01-01
In order to analyze low-frequency variability of climate, it is useful to model the climatic time series with multiple linear trends and locate the times of significant changes. In this paper, we have used non-stationary time series clustering to find change points in the trends. Clustering in a multi-dimensional non-stationary time series is challenging, since the problem is mathematically ill-posed. Clustering based on the finite element method (FEM) is one of the methods ...
Analysis of lower head failure with simplified models and a finite element code
Energy Technology Data Exchange (ETDEWEB)
Koundy, V. [CEA-IPSN-DPEA-SEAC, Service d' Etudes des Accidents, Fontenay-aux-Roses (France); Nicolas, L. [CEA-DEN-DM2S-SEMT, Service d' Etudes Mecaniques et Thermiques, Gif-sur-Yvette (France); Combescure, A. [INSA-Lyon, Lab. Mecanique des Solides, Villeurbanne (France)
2001-07-01
The objective of the OLHF (OECD lower head failure) experiments is to characterize the timing, mode and size of lower head failure under high temperature loading and reactor coolant system pressure due to a postulated core melt scenario. Four tests have been performed at Sandia National Laboratories (USA), in the frame of an OECD project. The experimental results have been used to develop and validate predictive analysis models. Within the framework of this project, several finite element calculations were performed. In parallel, two simplified semi-analytical methods were developed in order to get a better understanding of the role of various parameters on the creep phenomenon, e.g. the behaviour of the lower head material and its geometrical characteristics on the timing, mode and location of failure. Three-dimensional modelling of crack opening and crack propagation has also been carried out using the finite element code Castem 2000. The aim of this paper is to present the two simplified semi-analytical approaches and to report the status of the 3D crack propagation calculations. (authors)
Topological Design for Acoustic-Structure Interaction Problems with a Mixed Finite Element Method
DEFF Research Database (Denmark)
Yoon, Gil Ho; Jensen, Jakob Søndergaard; Sigmund, Ole
2006-01-01
to subdomain interfaces evolving during the optimization process. In this paper, we propose to use a mixed finite element formulation with displacements and pressure as primary variables (u/p formulation) which eliminates the need for explicit boundary representation. In order to describe the Helmholtz...... equation and the linear elasticity equation, the mass density as well as the shear and bulk moduli are interpolated with the design variables. In this formulation, the coupled interface boundary conditions are automatically satisfied without having to compute surface coupling integrals. Two dimensional...
A finite element solution method for quadrics parallel computer
International Nuclear Information System (INIS)
Zucchini, A.
1996-08-01
A distributed preconditioned conjugate gradient method for finite element analysis has been developed and implemented on a parallel SIMD Quadrics computer. The main characteristic of the method is that it does not require any actual assembling of all element equations in a global system. The physical domain of the problem is partitioned in cells of n p finite elements and each cell element is assigned to a different node of an n p -processors machine. Element stiffness matrices are stored in the data memory of the assigned processing node and the solution process is completely executed in parallel at element level. Inter-element and therefore inter-processor communications are required once per iteration to perform local sums of vector quantities between neighbouring elements. A prototype implementation has been tested on an 8-nodes Quadrics machine in a simple 2D benchmark problem
Evaluation of Concrete Cylinder Tests Using Finite Elements
DEFF Research Database (Denmark)
Saabye Ottosen, Niels
1984-01-01
Nonlinear axisymmetric finite element analyses are performed on the uniaxial compressive test of concrete cylinders. The models include thick steel loading plates, and cylinders with height‐to‐diameter ratios (h/d) ranging from 1‐3 are treated. A simple constitutive model of the concrete is emplo......Nonlinear axisymmetric finite element analyses are performed on the uniaxial compressive test of concrete cylinders. The models include thick steel loading plates, and cylinders with height‐to‐diameter ratios (h/d) ranging from 1‐3 are treated. A simple constitutive model of the concrete...... uniaxial strength the use of geometrically matched loading plates seems to be advantageous. Finally, it is observed that for variations of the element size within limits otherwise required to obtain a realistic analysis, the results are insensitive to the element size....
Finite element analysis of structures through unified formulation
Carrera, Erasmo; Petrolo, Marco; Zappino, Enrico
2014-01-01
The finite element method (FEM) is a computational tool widely used to design and analyse complex structures. Currently, there are a number of different approaches to analysis using the FEM that vary according to the type of structure being analysed: beams and plates may use 1D or 2D approaches, shells and solids 2D or 3D approaches, and methods that work for one structure are typically not optimized to work for another. Finite Element Analysis of Structures Through Unified Formulation deals with the FEM used for the analysis of the mechanics of structures in the case of linear elasticity. The novelty of this book is that the finite elements (FEs) are formulated on the basis of a class of theories of structures known as the Carrera Unified Formulation (CUF). It formulates 1D, 2D and 3D FEs on the basis of the same ''fundamental nucleus'' that comes from geometrical relations and Hooke''s law, and presents both 1D and 2D refined FEs that only have displacement variables as in 3D elements. It also covers 1D...
Exponentially-convergent Monte Carlo via finite-element trial spaces
International Nuclear Information System (INIS)
Morel, Jim E.; Tooley, Jared P.; Blamer, Brandon J.
2011-01-01
Exponentially-Convergent Monte Carlo (ECMC) methods, also known as adaptive Monte Carlo and residual Monte Carlo methods, were the subject of intense research over a decade ago, but they never became practical for solving the realistic problems. We believe that the failure of previous efforts may be related to the choice of trial spaces that were global and thus highly oscillatory. As an alternative, we consider finite-element trial spaces, which have the ability to treat fully realistic problems. As a first step towards more general methods, we apply piecewise-linear trial spaces to the spatially-continuous two-stream transport equation. Using this approach, we achieve exponential convergence and computationally demonstrate several fundamental properties of finite-element based ECMC methods. Finally, our results indicate that the finite-element approach clearly deserves further investigation. (author)
Finite element simulation of ironing process under warm conditions
Directory of Open Access Journals (Sweden)
Swadesh Kumar Singh
2014-01-01
Full Text Available Metal forming is one of the most important steps in manufacturing of a large variety of products. Ironing in deep drawing is done by adjusting the clearance between the punch and the die and allow the material flow over the punch. In the present investigation effect of extent of ironing behavior on the characteristics of the product like thickness distribution with respect to temperature was studied. With the help of finite element simulation using explicit finite element code LS-DYNA the stress in the drawn cup were predicted in the drawn cup. To increase the accuracy in the simulation process, numbers of integration points were increased in the thickness direction and it was found that there is very close prediction of finite element results to that of experimental ones.
Directory of Open Access Journals (Sweden)
Junjie Zeng
2018-03-01
Full Text Available Fiber-reinforced polymer (FRP jacketing/wrapping has become an attractive strengthening technique for concrete columns. Wrapping an existing concrete column with continuous FRP jackets with the fiber in the jacket being oriented in the hoop direction is referred to as FRP full wrapping strengthening technique. In practice, however, strengthening concrete columns with vertically discontinuous FRP strips is also favored and this technique is referred to as FRP partial wrapping strengthening technique. Existing research has demonstrated that FRP partial wrapping strengthening technique is a promising and economical alternative to the FRP full wrapping strengthening technique. Although extensive experimental investigations have hitherto been conducted on partially FRP-confined concrete columns, the confinement mechanics of confined concrete in partially FRP-confined circular columns remains unclear. In this paper, an experimental program consisting of fifteen column specimens was conducted and the test results were presented. A reliable three-dimensional (3D finite element (FE approach for modeling of partially FRP-confined circular columns was established. In the proposed FE approach, an accurate plastic-damage model for concrete under multiaxial compression is employed. The accuracy of the proposed FE approach was verified by comparisons between the numerical results and the test results. Numerical results from the verified FE approach were then presented to gain an improved understanding of the behavior of confined concrete in partially FRP-confined concrete columns.
de Souza, Fernando Isquierdo; Poi, Wilson Roberto; da Silva, Vanessa Ferreira; Martini, Ana Paula; Melo, Regis Alexandre da Cunha; Panzarini, Sonia Regina; Rocha, Eduardo Passos
2015-06-01
The aim was to evaluate the biomechanical behavior of the supporting bony structures of replanted teeth and the periodontal ligament (PDL) of adjacent teeth when orthodontic wires with different mechanical properties are applied, with three-dimensional finite element analysis. Based on tomographic and microtomographic data, a three-dimensional model of the anterior maxilla with the corresponding teeth (tooth 13-tooth 23) was generated to simulate avulsion and replantation of the tooth 21. The teeth were splinted with orthodontic wire (Ø 0.8 mm) and composite resin. The elastic modulus of the three orthodontic wires used, that is, steel wire (FA), titanium-molybdenum wire (FTM), and nitinol wire (FN) were 200 GPa, 84 GPa, and 52 GPa, respectively. An oblique load (100 N) was applied at an angle of 45° on the incisal edge of the replanted tooth and was analyzed using Ansys Workbench software. The maximum (σmax) and minimum (σmin) principal stresses generated in the PDL, cortical and alveolar bones, and the modified von Mises (σvM) values for the orthodontic wires were obtained. With regard to the cortical bone and PDL, the highest σmin and σmax values for FTM, FN, and FA were checked. With regard to the alveolar bone, σmax and σmin values were highest for FA, followed by FTM and FN. The σvM values of the orthodontic wires followed the order of rigidity of the alloys, that is, FA > FTM > FN. The biomechanical behavior of the analyzed structures with regard to all the three patterns of flexibility was similar. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Przybytek, Michal; Helgaker, Trygve
2013-08-07
We analyze the accuracy of the Coulomb energy calculated using the Gaussian-and-finite-element-Coulomb (GFC) method. In this approach, the electrostatic potential associated with the molecular electronic density is obtained by solving the Poisson equation and then used to calculate matrix elements of the Coulomb operator. The molecular electrostatic potential is expanded in a mixed Gaussian-finite-element (GF) basis set consisting of Gaussian functions of s symmetry centered on the nuclei (with exponents obtained from a full optimization of the atomic potentials generated by the atomic densities from symmetry-averaged restricted open-shell Hartree-Fock theory) and shape functions defined on uniform finite elements. The quality of the GF basis is controlled by means of a small set of parameters; for a given width of the finite elements d, the highest accuracy is achieved at smallest computational cost when tricubic (n = 3) elements are used in combination with two (γ(H) = 2) and eight (γ(1st) = 8) Gaussians on hydrogen and first-row atoms, respectively, with exponents greater than a given threshold (αmin (G)=0.5). The error in the calculated Coulomb energy divided by the number of atoms in the system depends on the system type but is independent of the system size or the orbital basis set, vanishing approximately like d(4) with decreasing d. If the boundary conditions for the Poisson equation are calculated in an approximate way, the GFC method may lose its variational character when the finite elements are too small; with larger elements, it is less sensitive to inaccuracies in the boundary values. As it is possible to obtain accurate boundary conditions in linear time, the overall scaling of the GFC method for large systems is governed by another computational step-namely, the generation of the three-center overlap integrals with three Gaussian orbitals. The most unfavorable (nearly quadratic) scaling is observed for compact, truly three-dimensional systems
Inelastic analysis of finite length and depth cracked tubes
International Nuclear Information System (INIS)
Reich, M.; Gardner, D.; Prachuktam, S.; Chang, T.Y.
1977-01-01
Steam generator tube failure can at times result in reactor safety problems and subsequent premature reactor shutdown. This paper concerns itself with the prediction of the failure pressures for typical PWR steam generator tubes with longitudinal finite length and finite depth cracks. Only local plastic overload failure is considered since the material is non-notch sensitive. Non-linear finite element analyses are carried out to determine the burst pressures of steam generator tubes containing longitudinal cracks located on the outer surface of the tubes. The non-linearities considered herein include elastic-plastic material behaviour and large deformations. A non-proprietary general purpose non-linear finite element program, NFAP was adopted for the analysis. Due to the asymmetric nature of the cracks, two-dimensional as well as three-dimensional finite element analyses, were performed. The analysis clearly shows that for short cracks axial effects play a significant role. For long cracks, they are not important since two-dimensional conditions predominate and failure is governed by circumferential or hoop stress conditions. (Auth.)
Zhebel, E.; Minisini, S.; Mulder, W.A.
2012-01-01
We solve the three-dimensional acoustic wave equation, discretized on tetrahedral meshes. Two methods are considered: mass-lumped continuous finite elements and the symmetric interior-penalty discontinuous Galerkin method (SIP-DG). Combining the spatial discretization with the leap-frog
Analysis of Tube Drawing Process – A Finite Element Approach ...
African Journals Online (AJOL)
In this paper the effect of die semi angle on drawing load in cold tube drawing has been investigated numerically using the finite element method. The equation governing the stress distribution was derived and solved using Galerkin finite element method. An isoparametric formulation for the governing equation was utilized ...
Finite element meshing approached as a global minimization process
Energy Technology Data Exchange (ETDEWEB)
WITKOWSKI,WALTER R.; JUNG,JOSEPH; DOHRMANN,CLARK R.; LEUNG,VITUS J.
2000-03-01
The ability to generate a suitable finite element mesh in an automatic fashion is becoming the key to being able to automate the entire engineering analysis process. However, placing an all-hexahedron mesh in a general three-dimensional body continues to be an elusive goal. The approach investigated in this research is fundamentally different from any other that is known of by the authors. A physical analogy viewpoint is used to formulate the actual meshing problem which constructs a global mathematical description of the problem. The analogy used was that of minimizing the electrical potential of a system charged particles within a charged domain. The particles in the presented analogy represent duals to mesh elements (i.e., quads or hexes). Particle movement is governed by a mathematical functional which accounts for inter-particles repulsive, attractive and alignment forces. This functional is minimized to find the optimal location and orientation of each particle. After the particles are connected a mesh can be easily resolved. The mathematical description for this problem is as easy to formulate in three-dimensions as it is in two- or one-dimensions. The meshing algorithm was developed within CoMeT. It can solve the two-dimensional meshing problem for convex and concave geometries in a purely automated fashion. Investigation of the robustness of the technique has shown a success rate of approximately 99% for the two-dimensional geometries tested. Run times to mesh a 100 element complex geometry were typically in the 10 minute range. Efficiency of the technique is still an issue that needs to be addressed. Performance is an issue that is critical for most engineers generating meshes. It was not for this project. The primary focus of this work was to investigate and evaluate a meshing algorithm/philosophy with efficiency issues being secondary. The algorithm was also extended to mesh three-dimensional geometries. Unfortunately, only simple geometries were tested
Ramakrishaniah, Ravikumar; Al Kheraif, Abdulaziz A; Elsharawy, Mohamed A; Alsaleh, Ayman K; Ismail Mohamed, Karem M; Rehman, Ihtesham Ur
2015-05-01
The purpose of this study was to investigate and compare the load distribution and displacement of cantilever prostheses with and without glass abutment by three dimensional finite element analysis. Micro-computed tomography was used to study the relationship between the glass abutment and the ridge. The external surface of the maxilla was scanned, and a simplified finite element model was constructed. The ZX-27 glass abutment and the maxillary first and second premolars were created and modified. The solid model of the three-unit cantilever fixed partial denture was scanned, and the fitting surface was modified with reference to the created abutments using the 3D CAD system. The finite element analysis was completed in ANSYS. The fit and total gap volume between the glass abutment and dental model were determined by Skyscan 1173 high-energy spiral micro-CT scan. The results of the finite element analysis in this study showed that the cantilever prosthesis supported by the glass abutment demonstrated significantly less stress on the terminal abutment and overall deformation of the prosthesis under vertical and oblique load. Micro-computed tomography determined a gap volume of 6.74162 mm(3). By contacting the mucosa, glass abutments transfer some amount of masticatory load to the residual alveolar ridge, thereby preventing damage to the periodontal microstructures of the terminal abutment. The passive contact of the glass abutment with the mucosa not only preserves the health of the mucosa covering the ridge but also permits easy cleaning. It is possible to increase the success rate of cantilever FPDs by supporting the cantilevered pontic with glass abutments. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Finite elements in fracture mechanics theory, numerics, applications
Kuna, Meinhard
2013-01-01
Fracture mechanics has established itself as an important discipline of growing interest to those working to assess the safety, reliability and service life of engineering structures and materials. In order to calculate the loading situation at cracks and defects, nowadays numerical techniques like finite element method (FEM) have become indispensable tools for a broad range of applications. The present monograph provides an introduction to the essential concepts of fracture mechanics, its main goal being to procure the special techniques for FEM analysis of crack problems, which have to date only been mastered by experts. All kinds of static, dynamic and fatigue fracture problems are treated in two- and three-dimensional elastic and plastic structural components. The usage of the various solution techniques is demonstrated by means of sample problems selected from practical engineering case studies. The primary target group includes graduate students, researchers in academia and engineers in practice.
A finite element for plates and shells
International Nuclear Information System (INIS)
Muller, A.; Feijoo, R.A.; Bevilacqua, L.
1981-08-01
A simple triangular finite element for plates and shells, is presented. Since the rotation fields are assumed independent of the displacement fields, the element allows one to solve thick shells problems. In the limit for thin shell, the Kirchoff-Love hypothesis is automatically satisfied, thus enlarging its range of application. (Author) [pt
COMPUTER EXPERIMENTS WITH FINITE ELEMENTS OF HIGHER ORDER
Directory of Open Access Journals (Sweden)
Khomchenko A.
2017-12-01
Full Text Available The paper deals with the problem of constructing the basic functions of a quadrilateral finite element of the fifth order by the means of the computer algebra system Maple. The Lagrangian approximation of such a finite element contains 36 nodes: 20 nodes perimeter and 16 internal nodes. Alternative models with reduced number of internal nodes are considered. Graphs of basic functions and cognitive portraits of lines of zero level are presented. The work is aimed at studying the possibilities of using modern information technologies in the teaching of individual mathematical disciplines.
Stochastic Finite Elements in Reliability-Based Structural Optimization
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Engelund, S.
Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect to optimi......Application of stochastic finite elements in structural optimization is considered. It is shown how stochastic fields modelling e.g. the modulus of elasticity can be discretized in stochastic variables and how a sensitivity analysis of the reliability of a structural system with respect...
International Nuclear Information System (INIS)
Sivkova, G.N.; Spirchenko, Yu.V.; Chvartatskij, P.V.
1981-01-01
Stressed-deformed state of toroidal field coils of the disc type with elastic couplings of the tokamaks has been investigated with provision for the effect of the central core pliability by means of the two-dimensional version of the finite element method. Numerical solution of the finite element method is performed by means of the ES 1040 computer according to the computer code permitting taking account of boundary conditions of elastic support. The calculation has been performed using as the example the project of T-20 facility coil of the disc type. Consideration of pliability of the central core of the facility inductor is accomplished by the introduction of additional rigidities to the complete matrix of rigidity. Scheme of the structure distretization includes 141 units, 211 elements. The accuracy of solution depends on the reduction accuracy of the volume load to unit forces and on the number of finite elements. Analysis of the solution convergence is performed by the comparison of solutions obtained for three different schemes of the disk discretization without regard for the inductor pliability. The comparative analysis of the results shows that transfer epures for all the three discretization versions practically coincide and stresses differ not more than by 10%. On the whole the above investigation has demonstrated good convergence of the problem solution [ru
Modelling bucket excavation by finite element
Pecingina, O. M.
2015-11-01
Changes in geological components of the layers from lignite pits have an impact on the sustainability of the cup path elements and under the action of excavation force appear efforts leading to deformation of the entire assembly. Application of finite element method in the optimization of components leads to economic growth, to increase the reliability and durability of the studied machine parts thus the machine. It is obvious usefulness of knowledge the state of mechanical tensions that the designed piece or the assembly not to break under the action of tensions that must cope during operation. In the course of excavation work on all bucket cutting force components, the first coming into contact with the material being excavated cutting edge. Therefore in the study with finite element analysis is retained only cutting edge. To study the field of stress and strain on the cutting edge will be created geometric patterns for each type of cup this will be subject to static analysis. The geometric design retains the cutting edge shape and on this on the tooth cassette location will apply an areal force on the abutment tooth. The cutting edge real pattern is subjected to finite element study for the worst case of rock cutting by symmetrical and asymmetrical cups whose profile is different. The purpose of this paper is to determine the displacement and tensions field for both profiles considering the maximum force applied on the cutting edge and the depth of the cutting is equal with the width of the cutting edge of the tooth. It will consider the worst case when on the structure will act both the tangential force and radial force on the bucket profile. For determination of stress and strain field on the form design of cutting edge profile will apply maximum force assuming uniform distribution and on the edge surface force will apply a radial force. After geometric patterns discretization on the cutting knives and determining stress field, can be seen that at the
Introduction to the Explicit Finite Element Method for Nonlinear Transient Dynamics
Wu, Shen R
2012-01-01
A systematic introduction to the theories and formulations of the explicit finite element method As numerical technology continues to grow and evolve with industrial applications, understanding the explicit finite element method has become increasingly important, particularly in the areas of crashworthiness, metal forming, and impact engineering. Introduction to the Explicit FiniteElement Method for Nonlinear Transient Dynamics is the first book to address specifically what is now accepted as the most successful numerical tool for nonlinear transient dynamics. The book aids readers in master
Directory of Open Access Journals (Sweden)
Peter Schuller-Götzburg
2018-01-01
Full Text Available Purpose: the aim of the computational 3D-finite element study is to evaluate the influence of an augmented sinus lift with additional inserted bone grafting. The bone graft block stabilizes the implant in conjunction with conventional bone augmentation. Two finite element models were applied: the real geometry based bone models and the simplified geometry models. The bone graft block was placed in three different positions. The implants were loaded first with an axial force and then with forces simulating laterotrusion and protrusion. This study examines whether the calculated stress behavior is symmetrical for both models. Having established a symmetry between the primary axis, the laterotrusion and protrusion behavior reduces calculation efforts, by simplifying the model. Material and Methods: a simplified U-shaped 3D finite element model of the molar region of the upper jaw and a more complex anatomical model of the left maxilla with less cortical bone were created. The bone graft block was placed in the maxillary sinus. Then the von Mises stress distribution was calculated and analyzed at three block positions: at contact with the sinus floor, in the middle of the implant helix and in the upper third of the implant. The two finite element models were then compared to simplify the modelling. Results: the position of the bone graft block significantly influences the magnitude of stress distribution. A bone graft block positioned in the upper third or middle of the implant reduces the quantity of stress compared to the reference model without a bone graft block. The low bone graft block position is clearly associated with lower stress distribution in compact bone. We registered no significant differences in stress in compact bone with regard to laterotrusion or protrusion. Conclusions: maximum values of von Mises stresses in compact bone can be reduced significantly by using a bone graft block. The reduction of stress is nearly the same for
Progress on a Taylor weak statement finite element algorithm for high-speed aerodynamic flows
Baker, A. J.; Freels, J. D.
1989-01-01
A new finite element numerical Computational Fluid Dynamics (CFD) algorithm has matured to the point of efficiently solving two-dimensional high speed real-gas compressible flow problems in generalized coordinates on modern vector computer systems. The algorithm employs a Taylor Weak Statement classical Galerkin formulation, a variably implicit Newton iteration, and a tensor matrix product factorization of the linear algebra Jacobian under a generalized coordinate transformation. Allowing for a general two-dimensional conservation law system, the algorithm has been exercised on the Euler and laminar forms of the Navier-Stokes equations. Real-gas fluid properties are admitted, and numerical results verify solution accuracy, efficiency, and stability over a range of test problem parameters.
Finite element analysis of car hood for impact test by using ...
African Journals Online (AJOL)
Finite element analysis of car hood for impact test by using solidworks software ... high safety and at the same time can be built according to market demands. ... Keywords: finite element analysis; impact test; Solidworks; automation, car hood.
International Nuclear Information System (INIS)
Besuner, P.M.; Caughey, W.R.
1976-11-01
The finite element (FE) and influence function (IF) methods are compared for a three-dimensional elastic analysis of postulated circular-shaped surface cracks in the feedwater nozzle of a typical boiling water reactor (BWR). These are two of the possible methods for determining stress intensity factors for nozzle corner cracks. The FE method is incorporated in a direct manner. The IF method is used to compute stress intensity factors only when the uncracked stress field (i.e., the stress in the uncracked solid at the locus of the crack to be eventually considered) has been computed previously. Both the IF and FE methods are described in detail and are applied to several test cases chosen for their similarity to the nozzle crack problem and for the availablility of an accurate published result obtained from some recognized third method of solution
Dimensional regularization and analytical continuation at finite temperature
International Nuclear Information System (INIS)
Chen Xiangjun; Liu Lianshou
1998-01-01
The relationship between dimensional regularization and analytical continuation of infrared divergent integrals at finite temperature is discussed and a method of regularization of infrared divergent integrals and infrared divergent sums is given
International Nuclear Information System (INIS)
Mintchev, Pavel; Dimitrov, Marin; Balinov, Stoimen
2002-01-01
The possibilities for applying the Finite Element Method (FEM) with gauged magnetic vector potential and the Edge Element Method (EEM) for three-dimensional numerical analysis of magnetostatic systems are analyzed. It is established that the EEM ensures sufficient accuracy for engineering calculations but in some cases its use results in bad convergence. The use of the FEM with gauged magnetic vector potential instead of the EEM is recommended for preliminary calculations of devices with complex geometry and large air gaps between the ferromagnetic parts. (Author)
Coupling of smooth particle hydrodynamics with the finite element method
International Nuclear Information System (INIS)
Attaway, S.W.; Heinstein, M.W.; Swegle, J.W.
1994-01-01
A gridless technique called smooth particle hydrodynamics (SPH) has been coupled with the transient dynamics finite element code ppercase[pronto]. In this paper, a new weighted residual derivation for the SPH method will be presented, and the methods used to embed SPH within ppercase[pronto] will be outlined. Example SPH ppercase[pronto] calculations will also be presented. One major difficulty associated with the Lagrangian finite element method is modeling materials with no shear strength; for example, gases, fluids and explosive biproducts. Typically, these materials can be modeled for only a short time with a Lagrangian finite element code. Large distortions cause tangling of the mesh, which will eventually lead to numerical difficulties, such as negative element area or ''bow tie'' elements. Remeshing will allow the problem to continue for a short while, but the large distortions can prevent a complete analysis. SPH is a gridless Lagrangian technique. Requiring no mesh, SPH has the potential to model material fracture, large shear flows and penetration. SPH computes the strain rate and the stress divergence based on the nearest neighbors of a particle, which are determined using an efficient particle-sorting technique. Embedding the SPH method within ppercase[pronto] allows part of the problem to be modeled with quadrilateral finite elements, while other parts are modeled with the gridless SPH method. SPH elements are coupled to the quadrilateral elements through a contact-like algorithm. ((orig.))
Approximate Approaches to the One-Dimensional Finite Potential Well
Singh, Shilpi; Pathak, Praveen; Singh, Vijay A.
2011-01-01
The one-dimensional finite well is a textbook problem. We propose approximate approaches to obtain the energy levels of the well. The finite well is also encountered in semiconductor heterostructures where the carrier mass inside the well (m[subscript i]) is taken to be distinct from mass outside (m[subscript o]). A relevant parameter is the mass…
Finite element formulation for dynamics of planar flexible multi-beam system
International Nuclear Information System (INIS)
Liu Zhuyong; Hong Jiazhen; Liu Jinyang
2009-01-01
In some previous geometric nonlinear finite element formulations, due to the use of axial displacement, the contribution of all the elements lying between the reference node of zero axial displacement and the element to the foreshortening effect should be taken into account. In this paper, a finite element formulation is proposed based on geometric nonlinear elastic theory and finite element technique. The coupling deformation terms of an arbitrary point only relate to the nodal coordinates of the element at which the point is located. Based on Hamilton principle, dynamic equations of elastic beams undergoing large overall motions are derived. To investigate the effect of coupling deformation terms on system dynamic characters and reduce the dynamic equations, a complete dynamic model and three reduced models of hub-beam are prospected. When the Cartesian deformation coordinates are adopted, the results indicate that the terms related to the coupling deformation in the inertia forces of dynamic equations have small effect on system dynamic behavior and may be neglected, whereas the terms related to coupling deformation in the elastic forces are important for system dynamic behavior and should be considered in dynamic equation. Numerical examples of the rotating beam and flexible beam system are carried out to demonstrate the accuracy and validity of this dynamic model. Furthermore, it is shown that a small number of finite elements are needed to obtain a stable solution using the present coupling finite element formulation
Li, Xiaomin; Guo, Xueli; Guo, Haiyan
2018-06-01
Robust numerical models that describe the complex behaviors of risers are needed because these constitute dynamically sensitive systems. This paper presents a simple and efficient algorithm for the nonlinear static and dynamic analyses of marine risers. The proposed approach uses the vector form intrinsic finite element (VFIFE) method, which is based on vector mechanics theory and numerical calculation. In this method, the risers are described by a set of particles directly governed by Newton's second law and are connected by weightless elements that can only resist internal forces. The method does not require the integration of the stiffness matrix, nor does it need iterations to solve the governing equations. Due to these advantages, the method can easily increase or decrease the element and change the boundary conditions, thus representing an innovative concept of solving nonlinear behaviors, such as large deformation and large displacement. To prove the feasibility of the VFIFE method in the analysis of the risers, rigid and flexible risers belonging to two different categories of marine risers, which usually have differences in modeling and solving methods, are employed in the present study. In the analysis, the plane beam element is adopted in the simulation of interaction forces between the particles and the axial force, shear force, and bending moment are also considered. The results are compared with the conventional finite element method (FEM) and those reported in the related literature. The findings revealed that both the rigid and flexible risers could be modeled in a similar unified analysis model and that the VFIFE method is feasible for solving problems related to the complex behaviors of marine risers.