WorldWideScience

Sample records for dimensional change prediction

  1. Radiation Damage and Dimensional Changes

    International Nuclear Information System (INIS)

    El-Barbary, A.A.; Lebda, H.I.; Kamel, M.A.

    2009-01-01

    The dimensional changes have been modeled in order to be accommodated in the reactor design. This study has major implications for the interpretation of damage in carbon based nuclear fission and fusion plant materials. Radiation damage of graphite leads to self-interstitials and vacancies defects. The aggregation of these defects causes dimensional changes. Vacancies aggregate into lines and disks which heal and contract the basal planes. Interstitials aggregate into interlayer disks which expand the dimension

  2. Dimensional changes of alginate dental impression materials.

    Science.gov (United States)

    Nallamuthu, N; Braden, M; Patel, M P

    2006-12-01

    The weight loss and corresponding dimensional changes of two dental alginate impression materials have been studied. The weight loss kinetics indicate this to be a diffusion controlled process, but with a boundary condition at the surface of the concentration decreasing exponentially with time. This is in marked contrast to most desorption processes, where the surface concentration becomes instantaneously zero. The appropriate theory has been developed for an exponential boundary condition, and its predictions compared with experimental data; the agreement was satisfactory. The diffusion coefficients for two thicknesses of the same material were not identical as predicted by theory; the possible reasons for this are discussed.

  3. Predicting space climate change

    Science.gov (United States)

    Balcerak, Ernie

    2011-10-01

    Galactic cosmic rays and solar energetic particles can be hazardous to humans in space, damage spacecraft and satellites, pose threats to aircraft electronics, and expose aircrew and passengers to radiation. A new study shows that these threats are likely to increase in coming years as the Sun approaches the end of the period of high solar activity known as “grand solar maximum,” which has persisted through the past several decades. High solar activity can help protect the Earth by repelling incoming galactic cosmic rays. Understanding the past record can help scientists predict future conditions. Barnard et al. analyzed a 9300-year record of galactic cosmic ray and solar activity based on cosmogenic isotopes in ice cores as well as on neutron monitor data. They used this to predict future variations in galactic cosmic ray flux, near-Earth interplanetary magnetic field, sunspot number, and probability of large solar energetic particle events. The researchers found that the risk of space weather radiation events will likely increase noticeably over the next century compared with recent decades and that lower solar activity will lead to increased galactic cosmic ray levels. (Geophysical Research Letters, doi:10.1029/2011GL048489, 2011)

  4. Are Some Semantic Changes Predictable?

    DEFF Research Database (Denmark)

    Schousboe, Steen

    2010-01-01

      Historical linguistics is traditionally concerned with phonology and syntax. With the exception of grammaticalization - the development of auxiliary verbs, the syntactic rather than localistic use of prepositions, etc. - semantic change has usually not been described as a result of regular...... developments, but only as specific meaning changes in individual words. This paper will suggest some regularities in semantic change, regularities which, like sound laws, have predictive power and can be tested against recorded languages....

  5. Are abrupt climate changes predictable?

    Science.gov (United States)

    Ditlevsen, Peter

    2013-04-01

    It is taken for granted that the limited predictability in the initial value problem, the weather prediction, and the predictability of the statistics are two distinct problems. Lorenz (1975) dubbed this predictability of the first and the second kind respectively. Predictability of the first kind in a chaotic dynamical system is limited due to the well-known critical dependence on initial conditions. Predictability of the second kind is possible in an ergodic system, where either the dynamics is known and the phase space attractor can be characterized by simulation or the system can be observed for such long times that the statistics can be obtained from temporal averaging, assuming that the attractor does not change in time. For the climate system the distinction between predictability of the first and the second kind is fuzzy. This difficulty in distinction between predictability of the first and of the second kind is related to the lack of scale separation between fast and slow components of the climate system. The non-linear nature of the problem furthermore opens the possibility of multiple attractors, or multiple quasi-steady states. As the ice-core records show, the climate has been jumping between different quasi-stationary climates, stadials and interstadials through the Dansgaard-Oechger events. Such a jump happens very fast when a critical tipping point has been reached. The question is: Can such a tipping point be predicted? This is a new kind of predictability: the third kind. If the tipping point is reached through a bifurcation, where the stability of the system is governed by some control parameter, changing in a predictable way to a critical value, the tipping is predictable. If the sudden jump occurs because internal chaotic fluctuations, noise, push the system across a barrier, the tipping is as unpredictable as the triggering noise. In order to hint at an answer to this question, a careful analysis of the high temporal resolution NGRIP isotope

  6. A predictive model for dimensional errors in fused deposition modeling

    DEFF Research Database (Denmark)

    Stolfi, A.

    2015-01-01

    This work concerns the effect of deposition angle (a) and layer thickness (L) on the dimensional performance of FDM parts using a predictive model based on the geometrical description of the FDM filament profile. An experimental validation over the whole a range from 0° to 177° at 3° steps and two...... values of L (0.254 mm, 0.330 mm) was produced by comparing predicted values with external face-to-face measurements. After removing outliers, the results show that the developed two-parameter model can serve as tool for modeling the FDM dimensional behavior in a wide range of deposition angles....

  7. The value of preoperative 3-dimensional over 2-dimensional valve analysis in predicting recurrent ischemic mitral regurgitation after mitral annuloplasty

    NARCIS (Netherlands)

    Wijdh-den Hamer, Inez J.; Bouma, Wobbe; Lai, Eric K.; Levack, Melissa M.; Shang, Eric K.; Pouch, Alison M.; Eperjesi, Thomas J.; Plappert, Theodore J.; Yushkevich, Paul A.; Hung, Judy; Mariani, Massimo A.; Khabbaz, Kamal R.; Gleason, Thomas G.; Mahmood, Feroze; Acker, Michael A.; Woo, Y. Joseph; Cheung, Albert T.; Gillespie, Matthew J.; Jackson, Benjamin M.; Gorman, Joseph H.; Gorman, Robert C.

    Objectives: Repair for ischemic mitral regurgitation with undersized annuloplasty is characterized by high recurrence rates. We sought to determine the value of pre-repair 3-dimensional echocardiography over 2-dimensional echocardiography in predicting recurrence at 6 months. Methods: Intraoperative

  8. Analytical Prediction of Three Dimensional Chatter Stability in Milling

    Science.gov (United States)

    Altintas, Yusuf

    The chip regeneration mechanism during chatter is influenced by vibrations in three directions when milling cutters with ball end, bull nose, or inclined cutting edges are used. A three dimensional chatter stability is modeled analytically in this article. The dynamic milling system is formulated as a function of cutter geometry, the frequency response of the machine tool structure at the cutting zone in three Cartesian directions, cutter engagement conditions and material property. The dynamic milling system with nonlinearities and periodic delayed differential equations is reduced to a three dimensional linear stability problem by approximations based on the physics of milling. The chatter stability lobes are predicted in the frequency domain using the proposed analytical solution, and verified experimentally in milling a Titanium alloy with a face milling cutter having circular inserts.

  9. Class prediction for high-dimensional class-imbalanced data

    Directory of Open Access Journals (Sweden)

    Lusa Lara

    2010-10-01

    Full Text Available Abstract Background The goal of class prediction studies is to develop rules to accurately predict the class membership of new samples. The rules are derived using the values of the variables available for each subject: the main characteristic of high-dimensional data is that the number of variables greatly exceeds the number of samples. Frequently the classifiers are developed using class-imbalanced data, i.e., data sets where the number of samples in each class is not equal. Standard classification methods used on class-imbalanced data often produce classifiers that do not accurately predict the minority class; the prediction is biased towards the majority class. In this paper we investigate if the high-dimensionality poses additional challenges when dealing with class-imbalanced prediction. We evaluate the performance of six types of classifiers on class-imbalanced data, using simulated data and a publicly available data set from a breast cancer gene-expression microarray study. We also investigate the effectiveness of some strategies that are available to overcome the effect of class imbalance. Results Our results show that the evaluated classifiers are highly sensitive to class imbalance and that variable selection introduces an additional bias towards classification into the majority class. Most new samples are assigned to the majority class from the training set, unless the difference between the classes is very large. As a consequence, the class-specific predictive accuracies differ considerably. When the class imbalance is not too severe, down-sizing and asymmetric bagging embedding variable selection work well, while over-sampling does not. Variable normalization can further worsen the performance of the classifiers. Conclusions Our results show that matching the prevalence of the classes in training and test set does not guarantee good performance of classifiers and that the problems related to classification with class

  10. Three-dimensional protein structure prediction: Methods and computational strategies.

    Science.gov (United States)

    Dorn, Márcio; E Silva, Mariel Barbachan; Buriol, Luciana S; Lamb, Luis C

    2014-10-12

    A long standing problem in structural bioinformatics is to determine the three-dimensional (3-D) structure of a protein when only a sequence of amino acid residues is given. Many computational methodologies and algorithms have been proposed as a solution to the 3-D Protein Structure Prediction (3-D-PSP) problem. These methods can be divided in four main classes: (a) first principle methods without database information; (b) first principle methods with database information; (c) fold recognition and threading methods; and (d) comparative modeling methods and sequence alignment strategies. Deterministic computational techniques, optimization techniques, data mining and machine learning approaches are typically used in the construction of computational solutions for the PSP problem. Our main goal with this work is to review the methods and computational strategies that are currently used in 3-D protein prediction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Predicting transition in two- and three-dimensional separated flows

    International Nuclear Information System (INIS)

    Cutrone, L.; De Palma, P.; Pascazio, G.; Napolitano, M.

    2008-01-01

    This paper is concerned with the numerical prediction of two- and three-dimensional transitional separated flows of turbomachinery interest. The recently proposed single-point transition model based on the use of a laminar kinetic energy transport equation is considered, insofar as it does not require to evaluate any integral parameter, such as boundary-layer thickness, and is thus directly applicable to three-dimensional flows. A well established model, combining a transition-onset correlation with an intermittency transport equation, is also used for comparison. Both models are implemented within a Reynolds-averaged Navier-Stokes solver employing a low-Reynolds-number k-ω turbulence model. The performance of the transition models have been evaluated and tested versus well-documented incompressible flows past a flat plate with semi-circular leading edge, namely: tests T3L2, T3L3, T3L5, and T3LA1 of ERCOFTAC, with different Reynolds numbers and free-stream conditions, the last one being characterized by a non-zero pressure gradient. In all computations, the first model has proven as adequate as or superior to the second one and has been then applied with success to two more complex test cases, for which detailed experimental data are available in the literature, namely: the two- and three-dimensional flows through the T106 linear turbine cascade

  12. Drying and control of moisture content and dimensional changes

    Science.gov (United States)

    Richard Bergman

    2010-01-01

    The discussion in this chapter is concerned with moisture content determination, recommended moisture content values, drying methods, methods of calculating dimensional changes, design factors affecting such changes in structures, and moisture content control during transit, storage, and construction. Data on green moisture content, fiber saturation point, shrinkage,...

  13. Predicting postoperative haemoglobin changes after burn surgery

    African Journals Online (AJOL)

    Burn surgery is associated with significant peri-operative haemoglobin. (Hb) changes. ... operative factors predictive of an Hb <7 g/dL on the first day after surgery, which were ..... clinical judgement, taking into consideration the risk associated.

  14. A double-pass interferometer for measurement of dimensional changes

    International Nuclear Information System (INIS)

    Ren, Dongmei; Lawton, K M; Miller, J A

    2008-01-01

    A double-pass interferometer was developed for measuring dimensional changes of materials in a nanoscale absolute interferometric dilatometer. This interferometer realized the double-ended measurement of a sample using a single-detection double-pass interference system. The nearly balanced design, in which the measurement beam and the reference beam have equal optical path lengths except for the path difference caused by the sample itself, makes this interferometer have high stability, which is verified by the measurement of a quasi-zero-length sample. The preliminary experiments and uncertainty analysis show that this interferometer should be able to measure dimensional changes with characteristic uncertainty at the nanometer level

  15. Climate Change as a Predictable Surprise

    International Nuclear Information System (INIS)

    Bazerman, M.H.

    2006-01-01

    In this article, I analyze climate change as a 'predictable surprise', an event that leads an organization or nation to react with surprise, despite the fact that the information necessary to anticipate the event and its consequences was available (Bazerman and Watkins, 2004). I then assess the cognitive, organizational, and political reasons why society fails to implement wise strategies to prevent predictable surprises generally and climate change specifically. Finally, I conclude with an outline of a set of response strategies to overcome barriers to change

  16. Tumor Volume Changes Assessed by Three-Dimensional Magnetic Resonance Volumetry in Rectal Cancer Patients After Preoperative Chemoradiation: The Impact of the Volume Reduction Ratio on the Prediction of Pathologic Complete Response

    International Nuclear Information System (INIS)

    Kang, Jeong Hyun; Kim, Young Chul; Kim, Hyunki; Kim, Young Wan; Hur, Hyuk; Kim, Jin Soo; Min, Byung Soh; Kim, Hogeun; Lim, Joon Seok; Seong, Jinsil; Keum, Ki Chang; Kim, Nam Kyu

    2010-01-01

    Purpose: The aim of this study was to determine the correlation between tumor volume changes assessed by three-dimensional (3D) magnetic resonance (MR) volumetry and the histopathologic tumor response in rectal cancer patients undergoing preoperative chemoradiation therapy (CRT). Methods and Materials: A total of 84 patients who underwent preoperative CRT followed by radical surgery were prospectively enrolled in the study. The post-treatment tumor volume and tumor volume reduction ratio (% decrease ratio), as shown by 3D MR volumetry, were compared with the histopathologic response, as shown by T and N downstaging and the tumor regression grade (TRG). Results: There were no significant differences in the post-treatment tumor volume and the volume reduction ratio shown by 3D MR volumetry with respect to T and N downstaging and the tumor regression grade. In a multivariate analysis, the tumor volume reduction ratio was not significantly associated with T and N downstaging. The volume reduction ratio (>75%, p = 0.01) and the pretreatment carcinoembryonic antigen level (≤3 ng/ml, p = 0.01), but not the post-treatment volume shown by 3D MR (≤ 5ml), were, however, significantly associated with an increased pathologic complete response rate. Conclusion: More than 75% of the tumor volume reduction ratios were significantly associated with a high pathologic complete response rate. Therefore, limited treatment options such as local excision or simple observation might be considered after preoperative CRT in this patient population.

  17. Ab Initio Prediction of Piezoelectricity in Two-Dimensional Materials.

    Science.gov (United States)

    Blonsky, Michael N; Zhuang, Houlong L; Singh, Arunima K; Hennig, Richard G

    2015-10-27

    Two-dimensional (2D) materials present many unique materials concepts, including material properties that sometimes differ dramatically from those of their bulk counterparts. One of these properties, piezoelectricity, is important for micro- and nanoelectromechanical systems applications. Using symmetry analysis, we determine the independent piezoelectric coefficients for four groups of predicted and synthesized 2D materials. We calculate with density-functional perturbation theory the stiffness and piezoelectric tensors of these materials. We determine the in-plane piezoelectric coefficient d11 for 37 materials within the families of 2D metal dichalcogenides, metal oxides, and III-V semiconductor materials. A majority of the structures, including CrSe2, CrTe2, CaO, CdO, ZnO, and InN, have d11 coefficients greater than 5 pm/V, a typical value for bulk piezoelectric materials. Our symmetry analysis shows that buckled 2D materials exhibit an out-of-plane coefficient d31. We find that d31 for 8 III-V semiconductors ranges from 0.02 to 0.6 pm/V. From statistical analysis, we identify correlations between the piezoelectric coefficients and the electronic and structural properties of the 2D materials that elucidate the origin of the piezoelectricity. Among the 37 2D materials, CdO, ZnO, and CrTe2 stand out for their combination of large piezoelectric coefficient and low formation energy and are recommended for experimental exploration.

  18. Predicting coastal morphological changes with empirical orthogonal functionmethod

    Directory of Open Access Journals (Sweden)

    Fernando Alvarez

    2016-01-01

    Full Text Available In order to improve the accuracy of prediction when using the empirical orthogonal function (EOF method, this paper describes a novel approach for two-dimensional (2D EOF analysis based on extrapolating both the spatial and temporal EOF components for long-term prediction of coastal morphological changes. The approach was investigated with data obtained from a process-based numerical model, COAST2D, which was applied to an idealized study site with a group of shore-parallel breakwaters. The progressive behavior of the spatial and temporal EOF components, related to bathymetric changes over a training period, was demonstrated, and EOF components were extrapolated with combined linear and exponential functions for long-term prediction. The extrapolated EOF components were then used to reconstruct bathymetric changes. The comparison of the reconstructed bathymetric changes with the modeled results from the COAST2D model illustrates that the presented approach can be effective for long-term prediction of coastal morphological changes, and extrapolating both the spatial and temporal EOF components yields better results than extrapolating only the temporal EOF component.

  19. Electron tomography, three-dimensional Fourier analysis and colour prediction of a three-dimensional amorphous biophotonic nanostructure

    Science.gov (United States)

    Shawkey, Matthew D.; Saranathan, Vinodkumar; Pálsdóttir, Hildur; Crum, John; Ellisman, Mark H.; Auer, Manfred; Prum, Richard O.

    2009-01-01

    Organismal colour can be created by selective absorption of light by pigments or light scattering by photonic nanostructures. Photonic nanostructures may vary in refractive index over one, two or three dimensions and may be periodic over large spatial scales or amorphous with short-range order. Theoretical optical analysis of three-dimensional amorphous nanostructures has been challenging because these structures are difficult to describe accurately from conventional two-dimensional electron microscopy alone. Intermediate voltage electron microscopy (IVEM) with tomographic reconstruction adds three-dimensional data by using a high-power electron beam to penetrate and image sections of material sufficiently thick to contain a significant portion of the structure. Here, we use IVEM tomography to characterize a non-iridescent, three-dimensional biophotonic nanostructure: the spongy medullary layer from eastern bluebird Sialia sialis feather barbs. Tomography and three-dimensional Fourier analysis reveal that it is an amorphous, interconnected bicontinuous matrix that is appropriately ordered at local spatial scales in all three dimensions to coherently scatter light. The predicted reflectance spectra from the three-dimensional Fourier analysis are more precise than those predicted by previous two-dimensional Fourier analysis of transmission electron microscopy sections. These results highlight the usefulness, and obstacles, of tomography in the description and analysis of three-dimensional photonic structures. PMID:19158016

  20. Irradiation-induced dimensional changes of poorly crystalline carbons

    International Nuclear Information System (INIS)

    Bullock, R.E.

    1979-01-01

    Data are presented on irradiation-induced changes of poorly crystalline carbons at high temperatures(>900 0 C). The materials surveyed include: (1) carbon fibers, (2) glassy carbons, (3) carbonaceous matrix materials for HTGR fuel rods and (4) pyrocarbons. The materials are listed in order of increasing stability, with maximum strains ranging from more than 50% for fibers to less than 10% for pyrocarbons. Dimensional changes of highly anisotropic carbon fibers appear to be sensitive to irradiation temperature, as slightly anisotropic pyrocarbons are, whereas temperature seems to have little influence on the behavior of isotropic glassy carbons over the range from 600 to 1350 0 C. Dimensional changes for graphite-filled matrix materials were roughly isotropic on the average and did not seem to be strongly temperature dependent for the lower fluences investigated. Increased graphite filler lowered volumetric dimensional changes of the matrix in agreement with a rule-of-mixtures relationship between change components for the filler and the less-stable binder phases. Instabilities of all of the poorly crystalline materials were generally greater than those for more crystalline carbons under the same conditions, including highly orientated graphites that approximate single-crystal behavior. (author)

  1. Multi-dimensional self-esteem and magnitude of change in the treatment of anorexia nervosa.

    Science.gov (United States)

    Collin, Paula; Karatzias, Thanos; Power, Kevin; Howard, Ruth; Grierson, David; Yellowlees, Alex

    2016-03-30

    Self-esteem improvement is one of the main targets of inpatient eating disorder programmes. The present study sought to examine multi-dimensional self-esteem and magnitude of change in eating psychopathology among adults participating in a specialist inpatient treatment programme for anorexia nervosa. A standardised assessment battery, including multi-dimensional measures of eating psychopathology and self-esteem, was completed pre- and post-treatment for 60 participants (all white Scottish female, mean age=25.63 years). Statistical analyses indicated that self-esteem improved with eating psychopathology and weight over the course of treatment, but that improvements were domain-specific and small in size. Global self-esteem was not predictive of treatment outcome. Dimensions of self-esteem at baseline (Lovability and Moral Self-approval), however, were predictive of magnitude of change in dimensions of eating psychopathology (Shape and Weight Concern). Magnitude of change in Self-Control and Lovability dimensions were predictive of magnitude of change in eating psychopathology (Global, Dietary Restraint, and Shape Concern). The results of this study demonstrate that the relationship between self-esteem and eating disorder is far from straightforward, and suggest that future research and interventions should focus less exclusively on self-esteem as a uni-dimensional psychological construct. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Saliency predicts change detection in pictures of natural scenes.

    Science.gov (United States)

    Wright, Michael J

    2005-01-01

    It has been proposed that the visual system encodes the salience of objects in the visual field in an explicit two-dimensional map that guides visual selective attention. Experiments were conducted to determine whether salience measurements applied to regions of pictures of outdoor scenes could predict the detection of changes in those regions. To obtain a quantitative measure of change detection, observers located changes in pairs of colour pictures presented across an interstimulus interval (ISI). Salience measurements were then obtained from different observers for image change regions using three independent methods, and all were positively correlated with change detection. Factor analysis extracted a single saliency factor that accounted for 62% of the variance contained in the four measures. Finally, estimates of the magnitude of the image change in each picture pair were obtained, using nine separate visual filters representing low-level vision features (luminance, colour, spatial frequency, orientation, edge density). None of the feature outputs was significantly associated with change detection or saliency. On the other hand it was shown that high-level (structural) properties of the changed region were related to saliency and to change detection: objects were more salient than shadows and more detectable when changed.

  3. WHAT DOES A WORD ALTER? THE EFFECT OF CONCEPTUAL NETWORKS ON THE DIMENSIONAL CHANGE SORTING TASK

    Directory of Open Access Journals (Sweden)

    Tolga Yildiz

    2013-06-01

    Full Text Available The purpose of the research was to examine the cognitive flexibility of three-year-olds, who usually persevere in the Dimensional Change Card Sort task, when a constant representation was referred in the classic instruction. In accordance with this purpose, the Dimensional Change Pencil Sort task was developed and used in the current study that 13 three-year-olds participated in. Findings seemed to support partially the hypothesis predicted that the kids could achieve the task in terms of rule use and mental representational flexibilities between length and color at the post switch phase in which situation classification dimensions were referred over a real and constant object (pencil instead of a card. This result drew attention to the conceptual and perceptual mediation roles of language and objects respectively in terms of the cognitive flexibility literature.

  4. Online prediction of respiratory motion: multidimensional processing with low-dimensional feature learning

    International Nuclear Information System (INIS)

    Ruan, Dan; Keall, Paul

    2010-01-01

    Accurate real-time prediction of respiratory motion is desirable for effective motion management in radiotherapy for lung tumor targets. Recently, nonparametric methods have been developed and their efficacy in predicting one-dimensional respiratory-type motion has been demonstrated. To exploit the correlation among various coordinates of the moving target, it is natural to extend the 1D method to multidimensional processing. However, the amount of learning data required for such extension grows exponentially with the dimensionality of the problem, a phenomenon known as the 'curse of dimensionality'. In this study, we investigate a multidimensional prediction scheme based on kernel density estimation (KDE) in an augmented covariate-response space. To alleviate the 'curse of dimensionality', we explore the intrinsic lower dimensional manifold structure and utilize principal component analysis (PCA) to construct a proper low-dimensional feature space, where kernel density estimation is feasible with the limited training data. Interestingly, the construction of this lower dimensional representation reveals a useful decomposition of the variations in respiratory motion into the contribution from semiperiodic dynamics and that from the random noise, as it is only sensible to perform prediction with respect to the former. The dimension reduction idea proposed in this work is closely related to feature extraction used in machine learning, particularly support vector machines. This work points out a pathway in processing high-dimensional data with limited training instances, and this principle applies well beyond the problem of target-coordinate-based respiratory-based prediction. A natural extension is prediction based on image intensity directly, which we will investigate in the continuation of this work. We used 159 lung target motion traces obtained with a Synchrony respiratory tracking system. Prediction performance of the low-dimensional feature learning

  5. Dimensional Stability of Color-Changing Irreversible Hydrocolloids after Disinfection

    Directory of Open Access Journals (Sweden)

    Khaledi AAR

    2015-03-01

    Full Text Available Statement of Problem: Disinfection of dental impressions is a weak point in the dental hygiene chain. In addition, dental office personnel and dental technicians are endangered by cross-contamination. Objectives: This study aimed to investigate the dimensional stability of two color-changing irreversible hydrocolloid materials (IH after disinfection with glutaraldehyde. Materials and Methods: In this in vitro study, impressions were made of a master maxillary arch containing three reference inserts on the occlucal surface of the left and right maxillary second molars and in the incisal surface of the maxillary central incisors. Two types of color-changing irreversible hydrocolloid (tetrachrom, cavex were used. Glutaraldehyde 2% was used in two methods of spraying and immersion to disinfect the impressions. The control group was not disinfected. Casts were made of type IV gypsum. The linear dimensional change of the stone casts was measured with a profile projector. For statistical analysis, Kruskall-Wallis and Mann-Witney tests were used (α=0.05. Results: By immersion method, the casts fabricated from tetrachrom were 0.36% larger in the anteroposterior (AP and 0.05% smaller in cross arch (CA dimensions; however, the casts prepared after spraying of tetrachrom were 0.44% larger in the AP and 0.10% smaller in CA dimensions. The casts made from Cavex were 0.05% smaller in the AP and 0.02% smaller in CA dimensions after spraying and 0.01% smaller in the AP and 0.003% smaller in CA dimensions after immersion. Generally there were not significant differences in AP and CA dimensions of the experimental groups compared to the control (p > 0.05. Conclusions: Disinfection of the tested color-changing irreversible hydrocolloids by glutaraldahyde 2% did not compromise the accuracy of the obtained casts.

  6. Thermodynamic-based retention time predictions of endogenous steroids in comprehensive two-dimensional gas chromatography.

    Science.gov (United States)

    Silva, Aline C A; Ebrahimi-Najafadabi, Heshmatollah; McGinitie, Teague M; Casilli, Alessandro; Pereira, Henrique M G; Aquino Neto, Francisco R; Harynuk, James J

    2015-05-01

    This work evaluates the application of a thermodynamic model to comprehensive two-dimensional gas chromatography (GC × GC) coupled with time-of-flight mass spectrometry for anabolic agent investigation. Doping control deals with hundreds of drugs that are prohibited in sports. Drug discovery in biological matrices is a challenging task that requires powerful tools when one is faced with the rapidly changing designer drug landscape. In this work, a thermodynamic model developed for the prediction of both primary and secondary retention times in GC × GC has been applied to trimethylsilylated hydroxyl (O-TMS)- and methoxime-trimethylsilylated carbonyl (MO-TMS)-derivatized endogenous steroids. This model was previously demonstrated on a pneumatically modulated GC × GC system, and is applied for the first time to a thermally modulated GC × GC system. Preliminary one-dimensional experiments allowed the calculation of thermodynamic parameters (ΔH, ΔS, and ΔC p ) which were successfully applied for the prediction of the analytes' interactions with the stationary phases of both the first-dimension column and the second-dimension column. The model was able to predict both first-dimension and second-dimension retention times with high accuracy compared with the GC × GC experimental measurements. Maximum differences of -8.22 s in the first dimension and 0.4 s in the second dimension were encountered for the O-TMS derivatives of 11β-hydroxyandrosterone and 11-ketoetiocholanolone, respectively. For the MO-TMS derivatives, the largest discrepancies were from testosterone (9.65 ) for the first-dimension retention times and 11-keto-etiocholanolone (0.4 s) for the second-dimension retention times.

  7. The relationship between irradiation induced dimensional change and the coefficient of thermal expansion: A new look

    International Nuclear Information System (INIS)

    Hall, G.; Marsden, B.J.; Fok, A.; Smart, J.

    2002-01-01

    In the 1960s, J.H.W. Simmons derived a theoretical relationship between the coefficient of thermal expansion (CTE) and dimensional changes in irradiated graphite. At low irradiation dose, the theory was shown to be consistent with experimental observations. However, at higher doses the results diverge. Despite this, modified versions of this theory have been used as the basis of the design and life prediction calculations for graphite-moderated reactors. This paper revisits Simmons's theory, summarising the assumptions made in its derivation. The paper then modifies and applies the theory to the dimensional change and CTE change behaviour in isotropic nuclear graphite, making use of trends in irradiated behaviour recently derived using finite element analyses. The importance of these issues to present HTR technology is that the life of HTR graphite components is related to their irradiated dimensional change behaviour. A more in depth understanding of this behaviour will allow suitable graphite material to be selected or new graphite types to be developed. (author)

  8. Hydrological model parameter dimensionality is a weak measure of prediction uncertainty (discussion paper)

    NARCIS (Netherlands)

    Pande, S.; Arkesteijn, L.; Savenije, H.H.G.; Bastidas, L.A.

    2014-01-01

    This paper presents evidence that model prediction uncertainty does not necessarily rise with parameter dimensionality (the number of parameters). Here by prediction we mean future simulation of a variable of interest conditioned on certain future values of input variables. We utilize a relationship

  9. Reduced-order prediction of rogue waves in two-dimensional deep-water waves

    Science.gov (United States)

    Sapsis, Themistoklis; Farazmand, Mohammad

    2017-11-01

    We consider the problem of large wave prediction in two-dimensional water waves. Such waves form due to the synergistic effect of dispersive mixing of smaller wave groups and the action of localized nonlinear wave interactions that leads to focusing. Instead of a direct simulation approach, we rely on the decomposition of the wave field into a discrete set of localized wave groups with optimal length scales and amplitudes. Due to the short-term character of the prediction, these wave groups do not interact and therefore their dynamics can be characterized individually. Using direct numerical simulations of the governing envelope equations we precompute the expected maximum elevation for each of those wave groups. The combination of the wave field decomposition algorithm, which provides information about the statistics of the system, and the precomputed map for the expected wave group elevation, which encodes dynamical information, allows (i) for understanding of how the probability of occurrence of rogue waves changes as the spectrum parameters vary, (ii) the computation of a critical length scale characterizing wave groups with high probability of evolving to rogue waves, and (iii) the formulation of a robust and parsimonious reduced-order prediction scheme for large waves. T.S. has been supported through the ONR Grants N00014-14-1-0520 and N00014-15-1-2381 and the AFOSR Grant FA9550-16-1-0231. M.F. has been supported through the second Grant.

  10. Verification of a 1-dimensional model for predicting shallow infiltration at Yucca Mountain

    International Nuclear Information System (INIS)

    Hevesi, J.; Flint, A.L.; Flint, L.E.

    1994-01-01

    A characterization of net infiltration rates is needed for site-scale evaluation of groundwater flow at Yucca Mountain, Nevada. Shallow infiltration caused by precipitation may be a potential source of net infiltration. A 1-dimensional finite difference model of shallow infiltration with a moisture-dependent evapotranspiration function and a hypothetical root-zone was calibrated and verified using measured water content profiles, measured precipitation, and estimated potential evapotranspiration. Monthly water content profiles obtained from January 1990 through October 1993 were measured by geophysical logging of 3 boreholes located in the alluvium channel of Pagany Wash on Yucca Mountain. The profiles indicated seasonal wetting and drying of the alluvium in response to winter season precipitation and summer season evapotranspiration above a depth of 2.5 meters. A gradual drying trend below a depth of 2.5 meters was interpreted as long-term redistribution and/or evapotranspiration following a deep infiltration event caused by runoff in Pagany Wash during 1984. An initial model, calibrated using the 1990 to 1992 record, did not provide a satisfactory prediction of water content profiles measured in 1993 following a relatively wet winter season. A re-calibrated model using a modified, seasonally-dependent evapotranspiration function provided an improved fit to the total record. The new model provided a satisfactory verification using water content changes measured at a distance of 6 meters from the calibration site, but was less satisfactory in predicting changes at a distance of 18 meters

  11. Verification of a 1-dimensional model for predicting shallow infiltration at Yucca Mountain

    International Nuclear Information System (INIS)

    Hevesi, J.A.; Flint, A.L.; Flint, L.E.

    1994-01-01

    A characterization of net infiltration rates is needed for site-scale evaluation of groundwater flow at Yucca Mountain, Nevada. Shallow infiltration caused by precipitation may be a potential source of net infiltration. A 1-dimensional finite difference model of shallow infiltration with a moisture-dependant evapotranspiration function and a hypothetical root-zone was calibrated and verified using measured water content profiles, measured precipitation, and estimated potential evapotranspiration. Monthly water content profiles obtained from January 1990 through October 1993 were measured by geophysical logging of 3 boreholes located in the alluvium channel of Pagany Wash on Yucca Mountain. The profiles indicated seasonal wetting and drying of the alluvium in response to winter season precipitation and summer season evapotranspiration above a depth of 2.5 meters. A gradual drying trend below a depth of 2.5 meters was interpreted as long-term redistribution and/or evapotranspiration following a deep infiltration event caused by runoff in Pagany Wash during 1984. An initial model, calibrated using the 1990 to 1 992 record, did not provide a satisfactory prediction of water content profiles measured in 1993 following a relatively wet winter season. A re-calibrated model using a modified, seasonally-dependent evapotranspiration function provided an improved fit to the total record. The new model provided a satisfactory verification using water content changes measured at a distance of 6 meters from the calibration site, but was less satisfactory in predicting changes at a distance of 18 meters

  12. On the role of radiation and dimensionality in predicting flow opposed flame spread over thin fuels

    Science.gov (United States)

    Kumar, Chenthil; Kumar, Amit

    2012-06-01

    In this work a flame-spread model is formulated in three dimensions to simulate opposed flow flame spread over thin solid fuels. The flame-spread model is coupled to a three-dimensional gas radiation model. The experiments [1] on downward spread and zero gravity quiescent spread over finite width thin fuel are simulated by flame-spread models in both two and three dimensions to assess the role of radiation and effect of dimensionality on the prediction of the flame-spread phenomena. It is observed that while radiation plays only a minor role in normal gravity downward spread, in zero gravity quiescent spread surface radiation loss holds the key to correct prediction of low oxygen flame spread rate and quenching limit. The present three-dimensional simulations show that even in zero gravity gas radiation affects flame spread rate only moderately (as much as 20% at 100% oxygen) as the heat feedback effect exceeds the radiation loss effect only moderately. However, the two-dimensional model with the gas radiation model badly over-predicts the zero gravity flame spread rate due to under estimation of gas radiation loss to the ambient surrounding. The two-dimensional model was also found to be inadequate for predicting the zero gravity flame attributes, like the flame length and the flame width, correctly. The need for a three-dimensional model was found to be indispensable for consistently describing the zero gravity flame-spread experiments [1] (including flame spread rate and flame size) especially at high oxygen levels (>30%). On the other hand it was observed that for the normal gravity downward flame spread for oxygen levels up to 60%, the two-dimensional model was sufficient to predict flame spread rate and flame size reasonably well. Gas radiation is seen to increase the three-dimensional effect especially at elevated oxygen levels (>30% for zero gravity and >60% for normal gravity flames).

  13. A Two Dimensional Prediction of Solar Cycle 25

    Science.gov (United States)

    Munoz-Jaramillo, A.; Martens, P. C.

    2017-12-01

    To this date solar cycle most cycle predictions have focused on the forecast of solar cycle amplitude and cycle bell-curve shape. However, recent intriguing observational results suggest that all solar cycles follow the same longitudinal path regardless of their amplitude, and have a very similar decay once they reach a sufficient level of maturity. Cast in the light of our current understanding, these results suggest that the toroidal fields inside the Sun are subject to a very high turbulent diffusivity (of the order of magnitude of mixing-length estimates), and their equatorward propagation is driven by a steady meridional flow. Assuming this is the case, we will revisit the relationship between the polar fields at minimum and the amplitude of the next cycle and deliver a new generation of polar-field based predictions that include the depth of the minimum, as well as the latitude and time of the first active regions of solar cycle 25.

  14. Pyridine-induced Dimensionality Change in Hybrid Perovskite Nanocrystals

    KAUST Repository

    Ahmed, Ghada H.; Yin, Jun; Bose, Riya; Sinatra, Lutfan; Alarousu, Erkki; Yengel, Emre; AlYami, Noktan; Saidaminov, Makhsud I.; Zhang, Yuhai; Hedhili, Mohamed N.; Bakr, Osman; Bredas, Jean-Luc; Mohammed, Omar F.

    2017-01-01

    of pyridine during the synthesis of methylammonium lead bromide (MAPbBr) perovskite nanocrystals can transform three-dimensional (3D) cubes into two-dimensional (2D) nanostructures. Density functional theory (DFT) calculations show that pyridine preferentially

  15. Predicting incentives to change among adolescents with substance abuse disorder.

    Science.gov (United States)

    Breda, Carolyn; Heflinger, Craig Anne

    2004-05-01

    While interest in understanding the incentives to change among individuals with substance abuse disorders is growing, little is known about incentives among adolescents with substance abuse disorders who are participating in formal services. The present research assesses the degree and nature of motivation and treatment readiness among adolescents admitted to substance abuse services, and whether such factors vary across significant subgroups of youth based on their social, legal, or clinical profiles. Data are based on interviews with 249 youth between 12 and 18 years of age who have been admitted to either inpatient, residential, or outpatient substance abuse treatment. Measures are adapted from an instrument developed to assess multiple domains of motivation to change (e.g., intrinsic and extrinsic motivation, treatment readiness). Results suggest that the incentive to change among adolescents with substance-abusing behavior is modest at best, regardless of dimension. Nonetheless, ethnicity, type of substance use, and psychopathology significantly predict incentives to change, though the predictors depend on which dimension is considered. The most robust predictor of incentives is the severity of negative consequences associated with youth's substance use--the greater the severity, the greater the incentives. Findings underscore the need to examine the utility and dimensionality of incentive for treatment planning, while at the same time, they identify factors that treatment planners can consider as they seek ways to enhance incentives and help adolescents with substance use disorders attain positive outcomes.

  16. High-dimensional change-point estimation: Combining filtering with convex optimization

    OpenAIRE

    Soh, Yong Sheng; Chandrasekaran, Venkat

    2017-01-01

    We consider change-point estimation in a sequence of high-dimensional signals given noisy observations. Classical approaches to this problem such as the filtered derivative method are useful for sequences of scalar-valued signals, but they have undesirable scaling behavior in the high-dimensional setting. However, many high-dimensional signals encountered in practice frequently possess latent low-dimensional structure. Motivated by this observation, we propose a technique for high-dimensional...

  17. Rapid prediction of multi-dimensional NMR data sets

    International Nuclear Information System (INIS)

    Gradmann, Sabine; Ader, Christian; Heinrich, Ines; Nand, Deepak; Dittmann, Marc; Cukkemane, Abhishek; Dijk, Marc van; Bonvin, Alexandre M. J. J.; Engelhard, Martin; Baldus, Marc

    2012-01-01

    We present a computational environment for Fast Analysis of multidimensional NMR DAta Sets (FANDAS) that allows assembling multidimensional data sets from a variety of input parameters and facilitates comparing and modifying such “in silico” data sets during the various stages of the NMR data analysis. The input parameters can vary from (partial) NMR assignments directly obtained from experiments to values retrieved from in silico prediction programs. The resulting predicted data sets enable a rapid evaluation of sample labeling in light of spectral resolution and structural content, using standard NMR software such as Sparky. In addition, direct comparison to experimental data sets can be used to validate NMR assignments, distinguish different molecular components, refine structural models or other parameters derived from NMR data. The method is demonstrated in the context of solid-state NMR data obtained for the cyclic nucleotide binding domain of a bacterial cyclic nucleotide-gated channel and on membrane-embedded sensory rhodopsin II. FANDAS is freely available as web portal under WeNMR (http://www.wenmr.eu/services/FANDAShttp://www.wenmr.eu/services/FANDAS).

  18. Rapid prediction of multi-dimensional NMR data sets

    Energy Technology Data Exchange (ETDEWEB)

    Gradmann, Sabine; Ader, Christian [Utrecht University, Faculty of Science, Bijvoet Center for Biomolecular Research (Netherlands); Heinrich, Ines [Max Planck Institute for Molecular Physiology, Department of Physical Biochemistry (Germany); Nand, Deepak [Utrecht University, Faculty of Science, Bijvoet Center for Biomolecular Research (Netherlands); Dittmann, Marc [Max Planck Institute for Molecular Physiology, Department of Physical Biochemistry (Germany); Cukkemane, Abhishek; Dijk, Marc van; Bonvin, Alexandre M. J. J. [Utrecht University, Faculty of Science, Bijvoet Center for Biomolecular Research (Netherlands); Engelhard, Martin [Max Planck Institute for Molecular Physiology, Department of Physical Biochemistry (Germany); Baldus, Marc, E-mail: m.baldus@uu.nl [Utrecht University, Faculty of Science, Bijvoet Center for Biomolecular Research (Netherlands)

    2012-12-15

    We present a computational environment for Fast Analysis of multidimensional NMR DAta Sets (FANDAS) that allows assembling multidimensional data sets from a variety of input parameters and facilitates comparing and modifying such 'in silico' data sets during the various stages of the NMR data analysis. The input parameters can vary from (partial) NMR assignments directly obtained from experiments to values retrieved from in silico prediction programs. The resulting predicted data sets enable a rapid evaluation of sample labeling in light of spectral resolution and structural content, using standard NMR software such as Sparky. In addition, direct comparison to experimental data sets can be used to validate NMR assignments, distinguish different molecular components, refine structural models or other parameters derived from NMR data. The method is demonstrated in the context of solid-state NMR data obtained for the cyclic nucleotide binding domain of a bacterial cyclic nucleotide-gated channel and on membrane-embedded sensory rhodopsin II. FANDAS is freely available as web portal under WeNMR (http://www.wenmr.eu/services/FANDAShttp://www.wenmr.eu/services/FANDAS).

  19. Three-dimensional carotid ultrasound plaque texture predicts vascular events

    DEFF Research Database (Denmark)

    van Engelen, Arna; Wannarong, Thapat; Parraga, Grace

    2014-01-01

    BACKGROUND AND PURPOSE: Carotid ultrasound atherosclerosis measurements, including those of the arterial wall and plaque, provide a way to monitor patients at risk of vascular events. Our objective was to examine carotid ultrasound plaque texture measurements and the change in carotid plaque text...

  20. Redox transitions in strontium vanadates: Electrical conductivity and dimensional changes

    International Nuclear Information System (INIS)

    Macías, J.; Yaremchenko, A.A.; Frade, J.R.

    2014-01-01

    Highlights: • Electrical conductivity and thermal expansion of strontium vanadates are measured. • Conductivity of SrVO 3−δ is 10 6 –10 8 times higher compared to Sr 2 V 2 O 7 and Sr 3 V 2 O 8 . • Sr 2 V 2 O 7 transforms on reduction to SrVO 3−δ via (5Sr 3 V 2 O 8 + SrV 6 O 11 ) intermediate. • This process is kinetically stagnated due to good redox stability of Sr 3 V 2 O 8 . • Large volume changes on Sr 2 V 2 O 7 ↔ SrVO 3 transformation are confirmed by dilatometry. - Abstract: The reversibility of redox-induced phase transformations and accompanying electrical conductivity and dimensional changes in perovskite-type SrVO 3−δ , a parent material for a family of potential solid oxide fuel cell anode materials, were evaluated employing X-ray diffraction, thermal analysis, dilatometry and electrical measurements. At 873–1273 K, the electrical conductivity of SrVO 3−δ is metallic-like and 6–8 orders of magnitude higher compared to semiconducting V 5+ -based strontium pyrovanadate Sr 2 V 2 O 7 and strontium orthovanadate Sr 3 V 2 O 8 existing under oxidizing conditions. SrVO 3−δ is easily oxidized to a pyrovanadate phase at atmospheric oxygen pressure. Inverse reduction in 10%H 2 –90%N 2 atmosphere occurs in two steps through (5Sr 3 V 2 O 8 + SrV 6 O 11 ) intermediate. As Sr 3 V 2 O 8 is relatively stable even under reducing conditions, the perovskite phase and its high level of electrical conductivity cannot be recovered completely in a reasonable time span at temperatures ⩽1273 K. Dilatometric studies confirmed that SrVO 3 ↔ Sr 2 V 2 O 7 redox transformation is accompanied with significant dimensional changes. Their extent depends on the degree of phase conversion and, apparently, on microstructural features

  1. Dimensional response of CANDU fuel to power changes

    Energy Technology Data Exchange (ETDEWEB)

    Fehrenbach, P J [Fuel Engineering Branch, Chalk River Nuclear Laboratories, Atomic Energy of Canada Limited, Chalk River, ON (Canada); Hastings, I J; Morel, P A; Sage, R D; Smith, A D [Fuel Materials Branch, Chalk River Nuclear Laboratories, Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    1983-06-01

    The introduction of CANLUB-coated fuel cladding, modified fuel management schemes, and revisions to the sequence of control rod movements, have eliminated power ramping fuel failures in CANDU power reactors. However, an irradiation program continues at Chalk River Nuclear Laboratories to determine the effect of various design and operating parameters on the dimensional response of UO{sub 2} fuel elements to power changes, over a range of conditions outside those normally experienced by CANDU power reactor fuel. We have investigated the effect of power changes on element diameter for UO{sub 2} fuel with starting densities of 10.6 and 10.8 Mg/m{sup 3} clad in 0.4 mm thick Zircaloy, at burnups from 0 to 100 MW.h/kg U. Element diameter measurements were obtained at power using an In-Reactor Diameter Measuring Rig (IRDMR). Rates of power change over the range 0.0005 to 0.03 kW.m{sup -1}.s{sup -1} were achieved by a combination of reactor power control and use of a Helium-3 power cycling facility. Total diameter increases in unirradiated elements were about 1% at pellet interface locations for both fuel densities during the initial power increase to 60 kW/m. Diameter changes during subsequent power cycles of these elements from 55 to 100% maximum power were significantly larger for the higher density fuel, ranging from 0.3 to 0.5% compared to less than 0.1% for the standard density (10.6 Mg/m{sup 3}) fuel. In elements pre-irradiated at 27 kW/m to burnups of about 100 MW.h/kg U prior to power ramping, the diameter increases measured after ramping to 55 kW/m also varied with starting fuel density. Diameter changes at pellet interface locations were about 0.9% and 0.6% for higher density and standard density fuel respectively. (author)

  2. Assessment of bracket surface morphology and dimensional change

    Directory of Open Access Journals (Sweden)

    Pillai Devu Radhakrishnan

    2017-01-01

    Full Text Available Objective: The objective of this study was to compare the surface morphology and dimensional stability of the bracket slot at the onset of treatment and after 12 months of intraoral exposure. The study also compared the amount of calcium at the bracket base which indicates enamel loss among the three orthodontic brackets following debonding after 12 months of intraoral exposure. Materials and Methods: The sample consisted of 60 (0.022” MBT canine brackets. They were divided into three groups: self-ligating, ceramic bracket with metal slot, and stainless steel (SS brackets. The slot dimensions, micromorphologic characteristics of as-received and retrieved brackets were measured with a stereomicroscope and scanning electron microscope (SEM, respectively. The amount of calcium at the bracket base which indicates enamel damage was quantified using energy-dispersive X-ray spectrometry (EDX. Results: The results showed statistically significant alterations (P < 0.05 in the right vertical dimension, internal tie wing width (cervical, right and left depth of the slot (Kruskal–Wallis test. Multiple comparison using Mann–Whitney test showed that ceramic brackets underwent (P < 0.05 minimal alterations in the right vertical dimension, internal tie wing width (cervical, right and left depth of the slot (0.01 mm, −0.003 mm, 0.006 mm, −0.002 mm, respectively when compared with the changes seen in SS and self-ligating brackets. SEM analysis revealed an increase in the surface roughness of ceramic with metal slot brackets and self-ligating bracket showed the least irregularity. The presence of calcium was noted on all evaluated brackets under EDX, but ceramic with metal slot brackets showed a significantly greater amount of enamel loss (P = 0.001. Conclusion: Ceramic brackets were found to be dimensionally stable when compared to SS and self-ligating. Self-ligating bracket showed minimal surface irregularity. Ceramic with metal slot brackets showed a

  3. Predicting Immediate Belief Change and Adherence to Argument Claims.

    Science.gov (United States)

    Hample, Dale

    1978-01-01

    Discusses the probative potential of evidence in argument, and evaluates the importance of evidence in predicting belief change. Predicts adherence to argument claims and confirms the traditionally recognized importance of evidence to persuasion. (JMF)

  4. Diffusion changes predict cognitive and functional outcome

    DEFF Research Database (Denmark)

    Jokinen, Hanna; Schmidt, Reinhold; Ropele, Stefan

    2013-01-01

    A study was undertaken to determine whether diffusion-weighted imaging (DWI) abnormalities in normal-appearing brain tissue (NABT) and in white matter hyperintensities (WMH) predict longitudinal cognitive decline and disability in older individuals independently of the concomitant magnetic...

  5. Predicting Persuasion-Induced Behavior Change from the Brain

    Science.gov (United States)

    Falk, Emily B.; Berkman, Elliot T.; Mann, Traci; Harrison, Brittany; Lieberman, Matthew D.

    2011-01-01

    Although persuasive messages often alter people’s self-reported attitudes and intentions to perform behaviors, these self-reports do not necessarily predict behavior change. We demonstrate that neural responses to persuasive messages can predict variability in behavior change in the subsequent week. Specifically, an a priori region of interest (ROI) in medial prefrontal cortex (MPFC) was reliably associated with behavior change (r = 0.49, p < 0.05). Additionally, an iterative cross-validation approach using activity in this MPFC ROI predicted an average 23% of the variance in behavior change beyond the variance predicted by self-reported attitudes and intentions. Thus, neural signals can predict behavioral changes that are not predicted from self-reported attitudes and intentions alone. Additionally, this is the first functional magnetic resonance imaging study to demonstrate that a neural signal can predict complex real world behavior days in advance. PMID:20573889

  6. Revealing skill of the MiKlip decadal prediction system by three-dimensional probabilistic evaluation

    Directory of Open Access Journals (Sweden)

    Sophie Stolzenberger

    2016-12-01

    Full Text Available Decadal climate predictions and their verification are part of ongoing research. This article studies different methods applied to decadal hindcasts of three-dimensional atmospheric variables to evaluate the MiKlip (Mittelfristige Klimaprognosen prediction system. Variables such as upper air temperature are tight to the core of the prediction system and hence help to reveal its power and deficiencies. The verification uses both, necessary and sufficient probabilistic measures. We analyze annual and multi-year averages of air temperature and geopotential height and the parametrized quantity net water flux at the ocean surface, the so-called freshwater flux, also known as E‑P (evaporation minus precipitation, as an important variable for atmosphere-ocean coupling. The model data stem from various versions of the MiKlip prediction system and constitute different sets of ensemble hindcasts covering 1979–2012. The results reveal that the freshwater flux is far more sensitive to model deficiencies than the basic dynamical variables and the predictability decays much earlier with prediction lead time. Initializing the atmospheric component is more important for the predictability than the difference in resolution between two model versions. The combined initialization of atmosphere and ocean has the effect of increasing the predictability in the inner tropics from 1 to 2 years compared to the ocean only initialization. For prediction year 7–10, the hindcasts are still closer to each other than to the uninitialized historical runs indicating that the prediction system is still influenced by the initial conditions. The skill for prediction year 7–10 is, however, only marginally larger than the skill of the uninitialized ensemble. The three-dimensional skill analysis reveals a clear indication of a mid-tropospheric temperature error developing in the tropical Pacific area.

  7. Predicting persuasion-induced behavior change from the brain.

    Science.gov (United States)

    Falk, Emily B; Berkman, Elliot T; Mann, Traci; Harrison, Brittany; Lieberman, Matthew D

    2010-06-23

    Although persuasive messages often alter people's self-reported attitudes and intentions to perform behaviors, these self-reports do not necessarily predict behavior change. We demonstrate that neural responses to persuasive messages can predict variability in behavior change in the subsequent week. Specifically, an a priori region of interest (ROI) in medial prefrontal cortex (MPFC) was reliably associated with behavior change (r = 0.49, p change beyond the variance predicted by self-reported attitudes and intentions. Thus, neural signals can predict behavioral changes that are not predicted from self-reported attitudes and intentions alone. Additionally, this is the first functional magnetic resonance imaging study to demonstrate that a neural signal can predict complex real world behavior days in advance.

  8. Flow predictions for MHD channels with an approximation for three-dimensional effects

    International Nuclear Information System (INIS)

    Blottner, F.G.

    1978-01-01

    A finite-difference procedure has been formulated for predicting the flow properties across channels. A quasi-two-dimensional approach has been developed which allows the three-dimensional channel effects to be taken into account. Comparison of the numerical solutions with experimental results show that this approach is a reasonable approximation for MHD flow conditions if there is not significant merging of the wall boundary layers. The resulting code provides a technique to obtain the flow details in the symmetry plane of the channel and requires only a small amount of computer time

  9. The validation and assessment of machine learning: a game of prediction from high-dimensional data

    DEFF Research Database (Denmark)

    Pers, Tune Hannes; Albrechtsen, A; Holst, C

    2009-01-01

    In applied statistics, tools from machine learning are popular for analyzing complex and high-dimensional data. However, few theoretical results are available that could guide to the appropriate machine learning tool in a new application. Initial development of an overall strategy thus often...... the ideas, the game is applied to data from the Nugenob Study where the aim is to predict the fat oxidation capacity based on conventional factors and high-dimensional metabolomics data. Three players have chosen to use support vector machines, LASSO, and random forests, respectively....

  10. Climate change affects rainmakers' predictions | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-10-08

    Oct 8, 2010 ... English · Français ... animals, associated with seasonal changes,” Mary O'Neill of Climate Change Adaptation in Africa ( CCAA ) told MediaGlobal. ... and the meteorologists forecast apply on the national and regional level.

  11. Predicting postoperative haemoglobin changes after burn surgery ...

    African Journals Online (AJOL)

    Background. Burn surgery is associated with significant blood loss and fluid shifts that cause rapid haemoglobin (Hb) changes during and after surgery. Understanding the relationship between intraoperative and postoperative (day 1) Hb changes may assist in avoiding postoperative anaemia and unnecessary ...

  12. Study of dimensional changes during redox cycling of oxygen carrier materials for chemical looping combustion

    NARCIS (Netherlands)

    Fossdal, A.; Darell, O.; Lambert, A.; Schols, E.; Comte, E.; Leenman, R.N.; Blom, R.

    2015-01-01

    Dimensional and phase changes of four candidate oxygen carrier materials for chemical looping combustion are investigated by dilatometry and high-temperature X-ray diffraction during four redox cycles. NiO/Ni2AlO4 does not exhibit significant dimensional changes during cycling, and it is shown that

  13. Pyridine-induced Dimensionality Change in Hybrid Perovskite Nanocrystals

    KAUST Repository

    Ahmed, Ghada H.

    2017-05-02

    Engineering the surface energy through careful manipulation of the surface chemistry is a convenient approach to control quantum confinement and structure dimensionality during nanocrystal growth. Here, we demonstrate that the introduction of pyridine during the synthesis of methylammonium lead bromide (MAPbBr) perovskite nanocrystals can transform three-dimensional (3D) cubes into two-dimensional (2D) nanostructures. Density functional theory (DFT) calculations show that pyridine preferentially binds to Pb atoms terminating the surface, driving the selective 2D growth of the nanostructures. These 2D nanostructures exhibit strong quantum confinement effects, high photoluminescence quantum yields in the visible spectral range, and efficient charge transfer to molecular acceptors. These qualities indicate the suitability of the synthesized 2D nanostructures for a wide range of optoelectronic applications.

  14. Relationship between efficiency and predictability in stock price change

    Science.gov (United States)

    Eom, Cheoljun; Oh, Gabjin; Jung, Woo-Sung

    2008-09-01

    In this study, we evaluate the relationship between efficiency and predictability in the stock market. The efficiency, which is the issue addressed by the weak-form efficient market hypothesis, is calculated using the Hurst exponent and the approximate entropy (ApEn). The predictability corresponds to the hit-rate; this is the rate of consistency between the direction of the actual price change and that of the predicted price change, as calculated via the nearest neighbor prediction method. We determine that the Hurst exponent and the ApEn value are negatively correlated. However, predictability is positively correlated with the Hurst exponent.

  15. Compound Structure-Independent Activity Prediction in High-Dimensional Target Space.

    Science.gov (United States)

    Balfer, Jenny; Hu, Ye; Bajorath, Jürgen

    2014-08-01

    Profiling of compound libraries against arrays of targets has become an important approach in pharmaceutical research. The prediction of multi-target compound activities also represents an attractive task for machine learning with potential for drug discovery applications. Herein, we have explored activity prediction in high-dimensional target space. Different types of models were derived to predict multi-target activities. The models included naïve Bayesian (NB) and support vector machine (SVM) classifiers based upon compound structure information and NB models derived on the basis of activity profiles, without considering compound structure. Because the latter approach can be applied to incomplete training data and principally depends on the feature independence assumption, SVM modeling was not applicable in this case. Furthermore, iterative hybrid NB models making use of both activity profiles and compound structure information were built. In high-dimensional target space, NB models utilizing activity profile data were found to yield more accurate activity predictions than structure-based NB and SVM models or hybrid models. An in-depth analysis of activity profile-based models revealed the presence of correlation effects across different targets and rationalized prediction accuracy. Taken together, the results indicate that activity profile information can be effectively used to predict the activity of test compounds against novel targets. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The relationship between irradiation induced dimensional change and the coefficient of thermal expansion: a modified Simmons relationship

    International Nuclear Information System (INIS)

    Hall, G.; Marsden, B.J.; Fok, S.L.; Smart, J.

    2003-01-01

    In the 1960s, a theoretical relationship between the dimensional changes and the coefficient of thermal expansion of irradiated graphite was derived by J.H.W. Simmons. The theory was shown to be comparable with experimental observations at low irradiation doses, but shown to diverge at higher irradiation doses. However, various modified versions of this theory have been used as the foundation of design and life prediction calculations for graphite-moderated reactors. This paper re-examines the Simmons relationship, summarising its derivation and assumptions. The relationship was then modified to incorporate the high dose, high strain changes that were assumed to be represented in the changes in Young's modulus with irradiation dose. By scrutinising the behaviour of finite element analyses, it was possible to use a modified Simmons relationship to predict the dimensional changes of an isotropic and anisotropic graphite to high irradiation doses. These issues are important to present high-temperature reactors (HTRs) as the life of HTR graphite components is dependent upon their dimensional change behaviour. A greater understanding of this behaviour will help in the selection and development of graphite materials

  17. Separation prediction in two dimensional boundary layer flows using artificial neural networks

    International Nuclear Information System (INIS)

    Sabetghadam, F.; Ghomi, H.A.

    2003-01-01

    In this article, the ability of artificial neural networks in prediction of separation in steady two dimensional boundary layer flows is studied. Data for network training is extracted from numerical solution of an ODE obtained from Von Karman integral equation with approximate one parameter Pohlhousen velocity profile. As an appropriate neural network, a two layer radial basis generalized regression artificial neural network is used. The results shows good agreements between the overall behavior of the flow fields predicted by the artificial neural network and the actual flow fields for some cases. The method easily can be extended to unsteady separation and turbulent as well as compressible boundary layer flows. (author)

  18. Three-dimensional computed tomographic volumetry precisely predicts the postoperative pulmonary function.

    Science.gov (United States)

    Kobayashi, Keisuke; Saeki, Yusuke; Kitazawa, Shinsuke; Kobayashi, Naohiro; Kikuchi, Shinji; Goto, Yukinobu; Sakai, Mitsuaki; Sato, Yukio

    2017-11-01

    It is important to accurately predict the patient's postoperative pulmonary function. The aim of this study was to compare the accuracy of predictions of the postoperative residual pulmonary function obtained with three-dimensional computed tomographic (3D-CT) volumetry with that of predictions obtained with the conventional segment-counting method. Fifty-three patients scheduled to undergo lung cancer resection, pulmonary function tests, and computed tomography were enrolled in this study. The postoperative residual pulmonary function was predicted based on the segment-counting and 3D-CT volumetry methods. The predicted postoperative values were compared with the results of postoperative pulmonary function tests. Regarding the linear correlation coefficients between the predicted postoperative values and the measured values, those obtained using the 3D-CT volumetry method tended to be higher than those acquired using the segment-counting method. In addition, the variations between the predicted and measured values were smaller with the 3D-CT volumetry method than with the segment-counting method. These results were more obvious in COPD patients than in non-COPD patients. Our findings suggested that the 3D-CT volumetry was able to predict the residual pulmonary function more accurately than the segment-counting method, especially in patients with COPD. This method might lead to the selection of appropriate candidates for surgery among patients with a marginal pulmonary function.

  19. Global vegetation change predicted by the modified Budyko model

    Energy Technology Data Exchange (ETDEWEB)

    Monserud, R.A.; Tchebakova, N.M.; Leemans, R. (US Department of Agriculture, Moscow, ID (United States). Intermountain Research Station, Forest Service)

    1993-09-01

    A modified Budyko global vegetation model is used to predict changes in global vegetation patterns resulting from climate change (CO[sub 2] doubling). Vegetation patterns are predicted using a model based on a dryness index and potential evaporation determined by solving radiation balance equations. Climate change scenarios are derived from predictions from four General Circulation Models (GCM's) of the atmosphere (GFDL, GISS, OSU, and UKMO). All four GCM scenarios show similar trends in vegetation shifts and in areas that remain stable, although the UKMO scenario predicts greater warming than the others. Climate change maps produced by all four GCM scenarios show good agreement with the current climate vegetation map for the globe as a whole, although over half of the vegetation classes show only poor to fair agreement. The most stable areas are Desert and Ice/Polar Desert. Because most of the predicted warming is concentrated in the Boreal and Temperate zones, vegetation there is predicted to undergo the greatest change. Most vegetation classes in the Subtropics and Tropics are predicted to expand. Any shift in the Tropics favouring either Forest over Savanna, or vice versa, will be determined by the magnitude of the increased precipitation accompanying global warming. Although the model predicts equilibrium conditions to which many plant species cannot adjust (through migration or microevolution) in the 50-100 y needed for CO[sub 2] doubling, it is not clear if projected global warming will result in drastic or benign vegetation change. 72 refs., 3 figs., 3 tabs.

  20. Strain dyssynchrony index determined by three-dimensional speckle area tracking can predict response to cardiac resynchronization therapy

    Directory of Open Access Journals (Sweden)

    Onishi Tetsuari

    2011-04-01

    Full Text Available Abstract Background We have previously reported strain dyssynchrony index assessed by two-dimensional speckle tracking strain, and a marker of both dyssynchrony and residual myocardial contractility, can predict response to cardiac resynchronization therapy (CRT. A newly developed three-dimensional (3-D speckle tracking system can quantify endocardial area change ratio (area strain, which coupled with the factors of both longitudinal and circumferential strain, from all 16 standard left ventricular (LV segments using complete 3-D pyramidal datasets. Our objective was to test the hypothesis that strain dyssynchrony index using area tracking (ASDI can quantify dyssynchrony and predict response to CRT. Methods We studied 14 heart failure patients with ejection fraction of 27 ± 7% (all≤35% and QRS duration of 172 ± 30 ms (all≥120 ms who underwent CRT. Echocardiography was performed before and 6-month after CRT. ASDI was calculated as the average difference between peak and end-systolic area strain of LV endocardium obtained from 3-D speckle tracking imaging using 16 segments. Conventional dyssynchrony measures were assessed by interventricular mechanical delay, Yu Index, and two-dimensional radial dyssynchrony by speckle-tracking strain. Response was defined as a ≥15% decrease in LV end-systolic volume 6-month after CRT. Results ASDI ≥ 3.8% was the best predictor of response to CRT with a sensitivity of 78%, specificity of 100% and area under the curve (AUC of 0.93 (p Conclusions ASDI can predict responders and LV reverse remodeling following CRT. This novel index using the 3-D speckle tracking system, which shows circumferential and longitudinal LV dyssynchrony and residual endocardial contractility, may thus have clinical significance for CRT patients.

  1. Validation of Molecular Dynamics Simulations for Prediction of Three-Dimensional Structures of Small Proteins.

    Science.gov (United States)

    Kato, Koichi; Nakayoshi, Tomoki; Fukuyoshi, Shuichi; Kurimoto, Eiji; Oda, Akifumi

    2017-10-12

    Although various higher-order protein structure prediction methods have been developed, almost all of them were developed based on the three-dimensional (3D) structure information of known proteins. Here we predicted the short protein structures by molecular dynamics (MD) simulations in which only Newton's equations of motion were used and 3D structural information of known proteins was not required. To evaluate the ability of MD simulationto predict protein structures, we calculated seven short test protein (10-46 residues) in the denatured state and compared their predicted and experimental structures. The predicted structure for Trp-cage (20 residues) was close to the experimental structure by 200-ns MD simulation. For proteins shorter or longer than Trp-cage, root-mean square deviation values were larger than those for Trp-cage. However, secondary structures could be reproduced by MD simulations for proteins with 10-34 residues. Simulations by replica exchange MD were performed, but the results were similar to those from normal MD simulations. These results suggest that normal MD simulations can roughly predict short protein structures and 200-ns simulations are frequently sufficient for estimating the secondary structures of protein (approximately 20 residues). Structural prediction method using only fundamental physical laws are useful for investigating non-natural proteins, such as primitive proteins and artificial proteins for peptide-based drug delivery systems.

  2. Empirical analysis of change metrics for software fault prediction

    NARCIS (Netherlands)

    Choudhary, Garvit Rajesh; Kumar, Sandeep; Kumar, Kuldeep; Mishra, Alok; Catal, Cagatay

    2018-01-01

    A quality assurance activity, known as software fault prediction, can reduce development costs and improve software quality. The objective of this study is to investigate change metrics in conjunction with code metrics to improve the performance of fault prediction models. Experimental studies are

  3. Irradiation-induced dimensional changes of fuel compacts and graphite sleeves of OGL-1 fuel assemblies

    International Nuclear Information System (INIS)

    Hayashi, Kimio; Minato, Kazuo; Kobayashi, Fumiaki; Tobita, Tsutomu; Kikuchi, Teruo; Kurobane, Shiro; Adachi, Mamoru; Fukuda, Kousaku

    1988-06-01

    Experimental data are summarized on irradiation-induced dimensional changes of fuel compacts and graphite sleeves of the first to ninth OGL-1 fuel assemblies. The range of fast-neutron fluence is up to 4 x 10 24 n/m 2 (E > 0.18 MeV); and that of irradiation temperature is 900 - 1400 deg C for fuel compacts and 800 - 1050 deg C for graphite sleeves. The dimensional change of the fuel compacts was shrinkage under these test conditions, and the shrinkage fraction increased almost linearly with fast-neutron fluence. The shrinkage fraction of the fuel compacts was larger by 20 % in the axial direction than in the radial direction. Influence of the irradiation temperature on the dimensional-change behavior of the fuel compacts was not observed clearly; presumably the influence was hidden by scatter of the data because of low level of the fast-neutron fluence and the resultant small dimensional changes. (author)

  4. Maximal locality and predictive power in higher-dimensional, compactified field theories

    International Nuclear Information System (INIS)

    Kubo, Jisuke; Nunami, Masanori

    2004-01-01

    To realize maximal locality in a trivial field theory, we maximize the ultraviolet cutoff of the theory by fine tuning the infrared values of the parameters. This optimization procedure is applied to the scalar theory in D + 1 dimensional (D ≥ 4) with one extra dimension compactified on a circle of radius R. The optimized, infrared values of the parameters are then compared with the corresponding ones of the uncompactified theory in D dimensions, which is assumed to be the low-energy effective theory. We find that these values approximately agree with each other as long as R -1 > approx sM is satisfied, where s ≅ 10, 50, 50, 100 for D = 4,5,6,7, and M is a typical scale of the D-dimensional theory. This result supports the previously made claim that the maximization of the ultraviolet cutoff in a nonrenormalizable field theory can give the theory more predictive power. (author)

  5. Prediction-Oriented Marker Selection (PROMISE): With Application to High-Dimensional Regression.

    Science.gov (United States)

    Kim, Soyeon; Baladandayuthapani, Veerabhadran; Lee, J Jack

    2017-06-01

    In personalized medicine, biomarkers are used to select therapies with the highest likelihood of success based on an individual patient's biomarker/genomic profile. Two goals are to choose important biomarkers that accurately predict treatment outcomes and to cull unimportant biomarkers to reduce the cost of biological and clinical verifications. These goals are challenging due to the high dimensionality of genomic data. Variable selection methods based on penalized regression (e.g., the lasso and elastic net) have yielded promising results. However, selecting the right amount of penalization is critical to simultaneously achieving these two goals. Standard approaches based on cross-validation (CV) typically provide high prediction accuracy with high true positive rates but at the cost of too many false positives. Alternatively, stability selection (SS) controls the number of false positives, but at the cost of yielding too few true positives. To circumvent these issues, we propose prediction-oriented marker selection (PROMISE), which combines SS with CV to conflate the advantages of both methods. Our application of PROMISE with the lasso and elastic net in data analysis shows that, compared to CV, PROMISE produces sparse solutions, few false positives, and small type I + type II error, and maintains good prediction accuracy, with a marginal decrease in the true positive rates. Compared to SS, PROMISE offers better prediction accuracy and true positive rates. In summary, PROMISE can be applied in many fields to select regularization parameters when the goals are to minimize false positives and maximize prediction accuracy.

  6. Predicting Ligand Binding Sites on Protein Surfaces by 3-Dimensional Probability Density Distributions of Interacting Atoms

    Science.gov (United States)

    Jian, Jhih-Wei; Elumalai, Pavadai; Pitti, Thejkiran; Wu, Chih Yuan; Tsai, Keng-Chang; Chang, Jeng-Yih; Peng, Hung-Pin; Yang, An-Suei

    2016-01-01

    Predicting ligand binding sites (LBSs) on protein structures, which are obtained either from experimental or computational methods, is a useful first step in functional annotation or structure-based drug design for the protein structures. In this work, the structure-based machine learning algorithm ISMBLab-LIG was developed to predict LBSs on protein surfaces with input attributes derived from the three-dimensional probability density maps of interacting atoms, which were reconstructed on the query protein surfaces and were relatively insensitive to local conformational variations of the tentative ligand binding sites. The prediction accuracy of the ISMBLab-LIG predictors is comparable to that of the best LBS predictors benchmarked on several well-established testing datasets. More importantly, the ISMBLab-LIG algorithm has substantial tolerance to the prediction uncertainties of computationally derived protein structure models. As such, the method is particularly useful for predicting LBSs not only on experimental protein structures without known LBS templates in the database but also on computationally predicted model protein structures with structural uncertainties in the tentative ligand binding sites. PMID:27513851

  7. Predictive validity of a three-dimensional model of performance anxiety in the context of tae-kwon-do.

    Science.gov (United States)

    Cheng, Wen-Nuan Kara; Hardy, Lew; Woodman, Tim

    2011-02-01

    We tested the predictive validity of the recently validated three-dimensional model of performance anxiety (Chang, Hardy, & Markland, 2009) with elite tae-kwon-do competitors (N = 99). This conceptual framework emphasized the adaptive potential of anxiety by including a regulatory dimension (reflected by perceived control) along with the intensity-oriented dimensions of cognitive and physiological anxiety. Anxiety was assessed 30 min before a competitive contest using the Three-Factor Anxiety Inventory. Competitors rated their performance on a tae-kwon-do-specific performance scale within 30 min after completion of their contest. Moderated hierarchical regression analyses revealed initial support for the predictive validity of the three-dimensional performance anxiety model. The regulatory dimension of anxiety (perceived control) revealed significant main and interactive effects on performance. This dimension appeared to be adaptive, as performance was better under high than low perceived control, and best vs. worst performance was associated with highest vs. lowest perceived control, respectively. Results are discussed in terms of the importance of the regulatory dimension of anxiety.

  8. Numerical prediction of turbulent heat transfer augmentation in an annular fuel channel with two-dimensional square ribs

    International Nuclear Information System (INIS)

    Takase, Kazuyuki

    1996-01-01

    The square-ribbed fuel rod for high temperature gas-cooled reactors was developed in order to enhance the turbulent heat transfer in comparison with the standard fuel rod. To evaluate the heat transfer performance of the square-ribbed fuel rod, the turbulent heat transfer coefficients in an annular fuel channel with repeated two-dimensional square ribs were analyzed numerically on a fully developed incompressible flow using the k - ε turbulence model and the two-dimensional axisymmetrical coordinate system. Numerical analyses were carried out for a range of Reynolds numbers from 3000 to 20000 and ratios of square-rib pitch to height of 10, 20 and 40, respectively. The predicted values of the heat transfer coefficients agreed within an error of 10% for the square-rib pitch to height ratio of 10, 20% for 20 and 25% for 40, respectively, with the heat transfer empirical correlations obtained from the experimental data. It was concluded by the present study that the effect of the heat transfer augmentation by square ribs could be predicted sufficiently by the present numerical simulations and also a part of its mechanism could be explained by means of the change in the turbulence kinematic energy distribution along the flow direction. (author)

  9. Numerical prediction of augmented turbulent heat transfer in an annular fuel channel with repeated two-dimensional square ribs

    International Nuclear Information System (INIS)

    Takase, K.

    1996-01-01

    The square-ribbed fuel rod for high temperature gas-cooled reactors was designed and developed so as to enhance the turbulent heat transfer in comparison with the previous standard fuel rod. The turbulent heat transfer characteristics in an annular fuel channel with repeated two-dimensional square ribs were analysed numerically on a fully developed incompressible flow using the k-ε turbulence model and the two-dimensional axisymmetrical coordinate system. Numerical analyses were carried out under the conditions of Reynolds numbers from 3000 to 20000 and ratios of square-rib pitch to height of 10, 20 and 40 respectively. The predictions of the heat transfer coefficients agreed well within an error of 10% for the square-rib pitch to height ratio of 10, 20% for 20 and 25% for 40 respectively, with the heat transfer empirical correlations obtained from the experimental data due to the simulated square-ribbed fuel rods. Therefore it was found that the effect of heat transfer augmentation due to the square ribs could be predicted by the present numerical simulations and the mechanism could be explained by the change in the turbulence kinematic energy distribution along the flow direction. (orig.)

  10. Predicting respiratory tumor motion with multi-dimensional adaptive filters and support vector regression

    International Nuclear Information System (INIS)

    Riaz, Nadeem; Wiersma, Rodney; Mao Weihua; Xing Lei; Shanker, Piyush; Gudmundsson, Olafur; Widrow, Bernard

    2009-01-01

    Intra-fraction tumor tracking methods can improve radiation delivery during radiotherapy sessions. Image acquisition for tumor tracking and subsequent adjustment of the treatment beam with gating or beam tracking introduces time latency and necessitates predicting the future position of the tumor. This study evaluates the use of multi-dimensional linear adaptive filters and support vector regression to predict the motion of lung tumors tracked at 30 Hz. We expand on the prior work of other groups who have looked at adaptive filters by using a general framework of a multiple-input single-output (MISO) adaptive system that uses multiple correlated signals to predict the motion of a tumor. We compare the performance of these two novel methods to conventional methods like linear regression and single-input, single-output adaptive filters. At 400 ms latency the average root-mean-square-errors (RMSEs) for the 14 treatment sessions studied using no prediction, linear regression, single-output adaptive filter, MISO and support vector regression are 2.58, 1.60, 1.58, 1.71 and 1.26 mm, respectively. At 1 s, the RMSEs are 4.40, 2.61, 3.34, 2.66 and 1.93 mm, respectively. We find that support vector regression most accurately predicts the future tumor position of the methods studied and can provide a RMSE of less than 2 mm at 1 s latency. Also, a multi-dimensional adaptive filter framework provides improved performance over single-dimension adaptive filters. Work is underway to combine these two frameworks to improve performance.

  11. Analytical approach for predicting three-dimensional tire-pavement contact load

    CSIR Research Space (South Africa)

    Hernandez, JA

    2014-12-01

    Full Text Available stream_source_info De Beer1_2014.pdf.txt stream_content_type text/plain stream_size 38657 Content-Encoding UTF-8 stream_name De Beer1_2014.pdf.txt Content-Type text/plain; charset=UTF-8 75 Transportation Research Record... by measuring the applied forces in each perpendicular direction (15). Analytical Approach for Predicting Three-Dimensional Tire–Pavement Contact Load Jaime A. Hernandez, Angeli Gamez, Imad L. Al-Qadi, and Morris De Beer J. A. Hernandez, A. Gamez, and I. L...

  12. High-order accurate numerical algorithm for three-dimensional transport prediction

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, D W [Savannah River Lab., Aiken, SC; Baker, A J

    1980-01-01

    The numerical solution of the three-dimensional pollutant transport equation is obtained with the method of fractional steps; advection is solved by the method of moments and diffusion by cubic splines. Topography and variable mesh spacing are accounted for with coordinate transformations. First estimate wind fields are obtained by interpolation to grid points surrounding specific data locations. Numerical results agree with results obtained from analytical Gaussian plume relations for ideal conditions. The numerical model is used to simulate the transport of tritium released from the Savannah River Plant on 2 May 1974. Predicted ground level air concentration 56 km from the release point is within 38% of the experimentally measured value.

  13. The IEA Annex 20 Two-Dimensional Benchmark Test for CFD Predictions

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Rong, Li; Cortes, Ines Olmedo

    2010-01-01

    predictions both for isothermal flow and for nonisothermal flow. The benchmark is defined on a web page, which also shows about 50 different benchmark tests with studies of e.g. grid dependence, numerical schemes, different source codes, different turbulence models, RANS or LES, different turbulence levels...... in a supply opening, study of local emission and study of airborne chemical reactions. Therefore the web page is also a collection of information which describes the importance of the different elements of a CFD procedure. The benchmark is originally developed for test of two-dimensional flow, but the paper...

  14. Predicting future changes in Muskegon River Watershed game fish distributions under future land cover alteration and climate change scenarios

    Science.gov (United States)

    Steen, Paul J.; Wiley, Michael J.; Schaeffer, Jeffrey S.

    2010-01-01

    Future alterations in land cover and climate are likely to cause substantial changes in the ranges of fish species. Predictive distribution models are an important tool for assessing the probability that these changes will cause increases or decreases in or the extirpation of species. Classification tree models that predict the probability of game fish presence were applied to the streams of the Muskegon River watershed, Michigan. The models were used to study three potential future scenarios: (1) land cover change only, (2) land cover change and a 3°C increase in air temperature by 2100, and (3) land cover change and a 5°C increase in air temperature by 2100. The analysis indicated that the expected change in air temperature and subsequent change in water temperatures would result in the decline of coldwater fish in the Muskegon watershed by the end of the 21st century while cool- and warmwater species would significantly increase their ranges. The greatest decline detected was a 90% reduction in the probability that brook trout Salvelinus fontinalis would occur in Bigelow Creek. The greatest increase was a 276% increase in the probability that northern pike Esox lucius would occur in the Middle Branch River. Changes in land cover are expected to cause large changes in a few fish species, such as walleye Sander vitreus and Chinook salmon Oncorhynchus tshawytscha, but not to drive major changes in species composition. Managers can alter stream environmental conditions to maximize the probability that species will reside in particular stream reaches through application of the classification tree models. Such models represent a good way to predict future changes, as they give quantitative estimates of the n-dimensional niches for particular species.

  15. Dimensional analysis and prediction of dielectrophoretic crossover frequency of spherical particles

    Directory of Open Access Journals (Sweden)

    Che-Kai Yeh

    2017-06-01

    Full Text Available The manipulation of biological cells and micrometer-scale particles using dielectrophoresis (DEP is an indispensable technique for lab-on-a-chip systems for many biological and colloidal science applications. However, existing models, including the dipole model and numerical simulations based on Maxwell stress tensor (MST, cannot achieve high accuracy and high computation efficiency at the same time. The dipole model is widely used and provides adequate predictions on the crossover frequency of submicron particles, but cannot predict the crossover frequency for larger particles accurately; on the other hand, the MST method offers high accuracy for a wide variety of particle sizes and shapes, but is time-consuming and may lack predictive understanding of the interplay between key parameters. Here we present a mathematical model, using dimensional analysis and the Buckingham pi theorem, that permits high accuracy and efficiency in predicting the crossover frequency of spherical particles. The curve fitting and calculation are performed using commercial packages OriginLab and MATLAB, respectively. In addition, through this model we also can predict the conditions in which no crossover frequency exists. Also, we propose a pair of dimensionless parameters, forming a functional relation, that provide physical insights into the dependency of the crossover frequency on five key parameters. The model is verified under several scenarios using comprehensive MST simulations by COMSOL Multiphysics software (COMSOL, Inc. and some published experimental data.

  16. Regime shifts limit the predictability of land-system change

    DEFF Research Database (Denmark)

    Müller, Daniel; Sun, Zhanli; Vongvisouk, Thoumthone

    2014-01-01

    Payment schemes for ecosystem services such as Reducing Emissions from Deforestation and forest Degradation (REDD) rely on the prediction of ‘business-as-usual’ scenarios to ensure that emission reductions from carbon credits are additional. However, land systems often undergo periods of nonlinear...... and abrupt change that invalidate predictions calibrated on past trends. Rapid land-system change can occur when critical thresholds in broad-scale underlying drivers such as commodity prices and climate conditions are crossed or when sudden events such as political change or natural disasters punctuate long...

  17. Supporting change processes in design: Complexity, prediction and reliability

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, Claudia M. [Engineering Design Centre, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ (United Kingdom)]. E-mail: cme26@cam.ac.uk; Keller, Rene [Engineering Design Centre, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ (United Kingdom)]. E-mail: rk313@cam.ac.uk; Earl, Chris [Open University, Department of Design and Innovation, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)]. E-mail: C.F.Earl@open.ac.uk; Clarkson, P. John [Engineering Design Centre, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ (United Kingdom)]. E-mail: pjc10@cam.ac.uk

    2006-12-15

    Change to existing products is fundamental to design processes. New products are often designed through change or modification to existing products. Specific parts or subsystems are changed to similar ones whilst others are directly reused. Design by modification applies particularly to safety critical products where the reuse of existing working parts and subsystems can reduce cost and risk. However change is rarely a matter of just reusing or modifying parts. Changing one part can propagate through the entire design leading to costly rework or jeopardising the integrity of the whole product. This paper characterises product change based on studies in the aerospace and automotive industry and introduces tools to aid designers in understanding the potential effects of change. Two ways of supporting designers are described: probabilistic prediction of the effects of change and visualisation of change propagation through product connectivities. Change propagation has uncertainties which are amplified by the choices designers make in practice as they implement change. Change prediction and visualisation is discussed with reference to complexity in three areas of product development: the structural backcloth of connectivities in the existing product (and its processes), the descriptions of the product used in design and the actions taken to carry out changes.

  18. Fuzzy Regression Prediction and Application Based on Multi-Dimensional Factors of Freight Volume

    Science.gov (United States)

    Xiao, Mengting; Li, Cheng

    2018-01-01

    Based on the reality of the development of air cargo, the multi-dimensional fuzzy regression method is used to determine the influencing factors, and the three most important influencing factors of GDP, total fixed assets investment and regular flight route mileage are determined. The system’s viewpoints and analogy methods, the use of fuzzy numbers and multiple regression methods to predict the civil aviation cargo volume. In comparison with the 13th Five-Year Plan for China’s Civil Aviation Development (2016-2020), it is proved that this method can effectively improve the accuracy of forecasting and reduce the risk of forecasting. It is proved that this model predicts civil aviation freight volume of the feasibility, has a high practical significance and practical operation.

  19. Prediction of body lipid change in pregnancy and lactation.

    Science.gov (United States)

    Friggens, N C; Ingvartsen, K L; Emmans, G C

    2004-04-01

    A simple method to predict the genetically driven pattern of body lipid change through pregnancy and lactation in dairy cattle is proposed. The rationale and evidence for genetically driven body lipid change have their basis in evolutionary considerations and in the homeorhetic changes in lipid metabolism through the reproductive cycle. The inputs required to predict body lipid change are body lipid mass at calving (kg) and the date of conception (days in milk). Body lipid mass can be derived from body condition score and live weight. A key assumption is that there is a linear rate of change of the rate of body lipid change (dL/dt) between calving and a genetically determined time in lactation (T') at which a particular level of body lipid (L') is sought. A second assumption is that there is a linear rate of change of the rate of body lipid change (dL/dt) between T' and the next calving. The resulting model was evaluated using 2 sets of data. The first was from Holstein cows with 3 different levels of body fatness at calving. The second was from Jersey cows in first, second, and third parity. The model was found to reproduce the observed patterns of change in body lipid reserves through lactation in both data sets. The average error of prediction was low, less than the variation normally associated with the recording of condition score, and was similar for the 2 data sets. When the model was applied using the initially suggested parameter values derived from the literature the average error of prediction was 0.185 units of condition score (+/- 0.086 SD). After minor adjustments to the parameter values, the average error of prediction was 0.118 units of condition score (+/- 0.070 SD). The assumptions on which the model is based were sufficient to predict the changes in body lipid of both Holstein and Jersey cows under different nutritional conditions and parities. Thus, the model presented here shows that it is possible to predict genetically driven curves of body

  20. Climate modelling, uncertainty and responses to predictions of change

    International Nuclear Information System (INIS)

    Henderson-Sellers, A.

    1996-01-01

    Article 4.1(F) of the Framework Convention on Climate Change commits all parties to take climate change considerations into account, to the extent feasible, in relevant social, economic and environmental policies and actions and to employ methods such as impact assessments to minimize adverse effects of climate change. This could be achieved by, inter alia, incorporating climate change risk assessment into development planning processes, i.e. relating climatic change to issues of habitability and sustainability. Adaptation is an ubiquitous and beneficial natural and human strategy. Future adaptation (adjustment) to climate is inevitable at the least to decrease the vulnerability to current climatic impacts. An urgent issue is the mismatch between the predictions of global climatic change and the need for information on local to regional change in order to develop adaptation strategies. Mitigation efforts are essential since the more successful mitigation activities are, the less need there will be for adaptation responses. And, mitigation responses can be global (e.g. a uniform percentage reduction in greenhouse gas emissions) while adaptation responses will be local to regional in character and therefore depend upon confident predictions of regional climatic change. The dilemma facing policymakers is that scientists have considerable confidence in likely global climatic changes but virtually zero confidence in regional changes. Mitigation and adaptation strategies relevant to climatic change can most usefully be developed in the context of sound understanding of climate, especially the near-surface continental climate, permitting discussion of societally relevant issues. But, climate models can't yet deliver this type of regionally and locationally specific prediction and some aspects of current research even seem to indicate increased uncertainty. These topics are explored in this paper using the specific example of the prediction of land-surface climate changes

  1. The validation and assessment of machine learning: a game of prediction from high-dimensional data.

    Directory of Open Access Journals (Sweden)

    Tune H Pers

    Full Text Available In applied statistics, tools from machine learning are popular for analyzing complex and high-dimensional data. However, few theoretical results are available that could guide to the appropriate machine learning tool in a new application. Initial development of an overall strategy thus often implies that multiple methods are tested and compared on the same set of data. This is particularly difficult in situations that are prone to over-fitting where the number of subjects is low compared to the number of potential predictors. The article presents a game which provides some grounds for conducting a fair model comparison. Each player selects a modeling strategy for predicting individual response from potential predictors. A strictly proper scoring rule, bootstrap cross-validation, and a set of rules are used to make the results obtained with different strategies comparable. To illustrate the ideas, the game is applied to data from the Nugenob Study where the aim is to predict the fat oxidation capacity based on conventional factors and high-dimensional metabolomics data. Three players have chosen to use support vector machines, LASSO, and random forests, respectively.

  2. Hydrological model parameter dimensionality is a weak measure of prediction uncertainty

    Science.gov (United States)

    Pande, S.; Arkesteijn, L.; Savenije, H.; Bastidas, L. A.

    2015-04-01

    This paper shows that instability of hydrological system representation in response to different pieces of information and associated prediction uncertainty is a function of model complexity. After demonstrating the connection between unstable model representation and model complexity, complexity is analyzed in a step by step manner. This is done measuring differences between simulations of a model under different realizations of input forcings. Algorithms are then suggested to estimate model complexity. Model complexities of the two model structures, SAC-SMA (Sacramento Soil Moisture Accounting) and its simplified version SIXPAR (Six Parameter Model), are computed on resampled input data sets from basins that span across the continental US. The model complexities for SIXPAR are estimated for various parameter ranges. It is shown that complexity of SIXPAR increases with lower storage capacity and/or higher recession coefficients. Thus it is argued that a conceptually simple model structure, such as SIXPAR, can be more complex than an intuitively more complex model structure, such as SAC-SMA for certain parameter ranges. We therefore contend that magnitudes of feasible model parameters influence the complexity of the model selection problem just as parameter dimensionality (number of parameters) does and that parameter dimensionality is an incomplete indicator of stability of hydrological model selection and prediction problems.

  3. Predicting the bounds of large chaotic systems using low-dimensional manifolds.

    Directory of Open Access Journals (Sweden)

    Asger M Haugaard

    Full Text Available Predicting extrema of chaotic systems in high-dimensional phase space remains a challenge. Methods, which give extrema that are valid in the long term, have thus far been restricted to models of only a few variables. Here, a method is presented which treats extrema of chaotic systems as belonging to discretised manifolds of low dimension (low-D embedded in high-dimensional (high-D phase space. As a central feature, the method exploits that strange attractor dimension is generally much smaller than parent system phase space dimension. This is important, since the computational cost associated with discretised manifolds depends exponentially on their dimension. Thus, systems that would otherwise be associated with tremendous computational challenges, can be tackled on a laptop. As a test, bounding manifolds are calculated for high-D modifications of the canonical Duffing system. Parameters can be set such that the bounding manifold displays harmonic behaviour even if the underlying system is chaotic. Thus, solving for one post-transient forcing cycle of the bounding manifold predicts the extrema of the underlying chaotic problem indefinitely.

  4. Dimensional changes of alginate impression by using perforated and non-perforated ring trays

    Directory of Open Access Journals (Sweden)

    Sumadhi Sastrodihardjo

    2010-03-01

    Full Text Available Dimensional changes are a common occurrence in impressions, either during or after impression taking. It produces a difference in the dimensions of the object and the model, which leads to the restoration being ill-fitted. Several causal factors have been proposed such as friction between the impression material and the teeth, the bulk of the impression material, the type of impression materials used, the impression technique, the pouring time and many others. The exact causal factor is still unknown and the dimensional change mechanism is still poorly understood. The objective of this research was to investigate the role of the perforation on the ring trays in producing dimensional changes in the impression by using perforated and non-perforated ring trays. Alginate impressions were made on the frustum of cone metal master die with a 7.08 mm base diameter, 7.03 mm top diameter and 9.23 mm height using perforated and non-perforated ring trays with 9.40 mm in diameter and 14.17 mm in height. The dimensional change was determined by comparing the dimension of the dental stone die and its metal master die. The results showed that the percentage of dimensional changes that occurred by using perforated ring tray were (+ 0.56±0.40 on the top area, (- 3.54±2.92 on base area and (+ 1.54±0.83 in height, respectively. As compared to using non-perforated ring trays, the percentage of dimensional changes that occurred were (- 0.49±0.49 on top area, (- 8.76±3.95 on base area and (+ 1.19±0.71 in height, respectively. There was a significant difference in the direction of the dimensional changes on both the top areas, but not in the base areas and height.

  5. Stock price change rate prediction by utilizing social network activities.

    Science.gov (United States)

    Deng, Shangkun; Mitsubuchi, Takashi; Sakurai, Akito

    2014-01-01

    Predicting stock price change rates for providing valuable information to investors is a challenging task. Individual participants may express their opinions in social network service (SNS) before or after their transactions in the market; we hypothesize that stock price change rate is better predicted by a function of social network service activities and technical indicators than by a function of just stock market activities. The hypothesis is tested by accuracy of predictions as well as performance of simulated trading because success or failure of prediction is better measured by profits or losses the investors gain or suffer. In this paper, we propose a hybrid model that combines multiple kernel learning (MKL) and genetic algorithm (GA). MKL is adopted to optimize the stock price change rate prediction models that are expressed in a multiple kernel linear function of different types of features extracted from different sources. GA is used to optimize the trading rules used in the simulated trading by fusing the return predictions and values of three well-known overbought and oversold technical indicators. Accumulated return and Sharpe ratio were used to test the goodness of performance of the simulated trading. Experimental results show that our proposed model performed better than other models including ones using state of the art techniques.

  6. Stock Price Change Rate Prediction by Utilizing Social Network Activities

    Directory of Open Access Journals (Sweden)

    Shangkun Deng

    2014-01-01

    Full Text Available Predicting stock price change rates for providing valuable information to investors is a challenging task. Individual participants may express their opinions in social network service (SNS before or after their transactions in the market; we hypothesize that stock price change rate is better predicted by a function of social network service activities and technical indicators than by a function of just stock market activities. The hypothesis is tested by accuracy of predictions as well as performance of simulated trading because success or failure of prediction is better measured by profits or losses the investors gain or suffer. In this paper, we propose a hybrid model that combines multiple kernel learning (MKL and genetic algorithm (GA. MKL is adopted to optimize the stock price change rate prediction models that are expressed in a multiple kernel linear function of different types of features extracted from different sources. GA is used to optimize the trading rules used in the simulated trading by fusing the return predictions and values of three well-known overbought and oversold technical indicators. Accumulated return and Sharpe ratio were used to test the goodness of performance of the simulated trading. Experimental results show that our proposed model performed better than other models including ones using state of the art techniques.

  7. Changes in Pilot Behavior with Predictive System Status Information

    Science.gov (United States)

    Trujillo, Anna C.

    1998-01-01

    Research has shown a strong pilot preference for predictive information of aircraft system status in the flight deck. However, changes in pilot behavior associated with using this predictive information have not been ascertained. The study described here quantified these changes using three types of predictive information (none, whether a parameter was changing abnormally, and the time for a parameter to reach an alert range) and three initial time intervals until a parameter alert range was reached (ITIs) (1 minute, 5 minutes, and 15 minutes). With predictive information, subjects accomplished most of their tasks before an alert occurred. Subjects organized the time they did their tasks by locus-of-control with no predictive information and for the 1-minute ITI, and by aviatenavigate-communicate for the time for a parameter to reach an alert range and the 15-minute conditions. Overall, predictive information and the longer ITIs moved subjects to performing tasks before the alert actually occurred and had them more mission oriented as indicated by their tasks grouping of aviate-navigate-communicate.

  8. A three-dimensional relaxation model for calculation of atomic mixing and topography changes induces by ion beams

    International Nuclear Information System (INIS)

    Collins, R.; Perez-Martin, A.M.C.; Dominguez-Vazquez, J.; Jimenez-Rodriguez, J.J.

    1994-01-01

    A simple model for three-dimensional material relaxation associated with atomic mixing is presented. The relaxation of the solid to accommodate the extra effective displacement volume Ω of an implanted or relocated atom is modelled by treating the surrounding solid as an incompressible medium. This leads to a tractable general formalism which can be used to predict implant distribution and changes in surface topography induced by ion beams, both in monatomic and multicomponent targets. The two-component case is discussed in detail. (orig.)

  9. Predicting vulnerabilities of North American shorebirds to climate change.

    Directory of Open Access Journals (Sweden)

    Hector Galbraith

    Full Text Available Despite an increase in conservation efforts for shorebirds, there are widespread declines of many species of North American shorebirds. We wanted to know whether these declines would be exacerbated by climate change, and whether relatively secure species might become at-risk species. Virtually all of the shorebird species breeding in the USA and Canada are migratory, which means climate change could affect extinction risk via changes on the breeding, wintering, and/or migratory refueling grounds, and that ecological synchronicities could be disrupted at multiple sites. To predict the effects of climate change on shorebird extinction risks, we created a categorical risk model complementary to that used by Partners-in-Flight and the U.S. Shorebird Conservation Plan. The model is based on anticipated changes in breeding, migration, and wintering habitat, degree of dependence on ecological synchronicities, migration distance, and degree of specialization on breeding, migration, or wintering habitat. We evaluated 49 species, and for 3 species we evaluated 2 distinct populations each, and found that 47 (90% taxa are predicted to experience an increase in risk of extinction. No species was reclassified into a lower-risk category, although 6 species had at least one risk factor decrease in association with climate change. The number of species that changed risk categories in our assessment is sensitive to how much of an effect of climate change is required to cause the shift, but even at its least sensitive, 20 species were at the highest risk category for extinction. Based on our results it appears that shorebirds are likely to be highly vulnerable to climate change. Finally, we discuss both how our approach can be integrated with existing risk assessments and potential future directions for predicting change in extinction risk due to climate change.

  10. Climate-Induced Boreal Forest Change: Predictions versus Current Observations

    Science.gov (United States)

    Soja, Amber J.; Tchebakova, Nadezda M.; French, Nancy H. F.; Flannigan, Michael D.; Shugart, Herman H.; Stocks, Brian J.; Sukhinin, Anatoly I.; Parfenova, E. I.; Chapin, F. Stuart, III; Stackhouse, Paul W., Jr.

    2007-01-01

    For about three decades, there have been many predictions of the potential ecological response in boreal regions to the currently warmer conditions. In essence, a widespread, naturally occurring experiment has been conducted over time. In this paper, we describe previously modeled predictions of ecological change in boreal Alaska, Canada and Russia, and then we investigate potential evidence of current climate-induced change. For instance, ecological models have suggested that warming will induce the northern and upslope migration of the treeline and an alteration in the current mosaic structure of boreal forests. We present evidence of the migration of keystone ecosystems in the upland and lowland treeline of mountainous regions across southern Siberia. Ecological models have also predicted a moisture-stress-related dieback in white spruce trees in Alaska, and current investigations show that as temperatures increase, white spruce tree growth is declining. Additionally, it was suggested that increases in infestation and wildfire disturbance would be catalysts that precipitate the alteration of the current mosaic forest composition. In Siberia, five of the last seven years have resulted in extreme fire seasons, and extreme fire years have also been more frequent in both Alaska and Canada. In addition, Alaska has experienced extreme and geographically expansive multi-year outbreaks of the spruce beetle, which had been previously limited by the cold, moist environment. We suggest that there is substantial evidence throughout the circumboreal region to conclude that the biosphere within the boreal terrestrial environment has already responded to the transient effects of climate change. Additionally, temperature increases and warming-induced change are progressing faster than had been predicted in some regions, suggesting a potential non-linear rapid response to changes in climate, as opposed to the predicted slow linear response to climate change.

  11. THE PROCESS OF CHANGE - PREDICTION OF SPORT ACHIEVEMENTS HISTORICAL TENDENCY

    Directory of Open Access Journals (Sweden)

    Izenedin Mehmeti

    2015-05-01

    Full Text Available The aim of this paper is to summarize the different standpoints and different approaches in regard to the sport performance preparation and achievement prediction. Sports researchers are concerned more directly with learning about scientific sports prediction. Their involvement in the sport sciences focuses on understanding how sports organized and how changes in that organization might influence sports experiences for both athletes and coaches. The goal of these scholars is often to improve sport experiences and performance prediction for current participants and make sport participation more attractive and accessible for those who do not currently play sports, prospective athletes. They also may want to help athletes improve their performance, help coaches work effectively with athletes and win more games. Sports researchers intention is also to assist and help sport organizations grow and operate more efficiently and profitably, and improve sport achievement prediction.

  12. Prediction of axial limit capacity of stone columns using dimensional analysis

    Science.gov (United States)

    Nazaruddin A., T.; Mohamed, Zainab; Mohd Azizul, L.; Hafez M., A.

    2017-08-01

    Stone column is the most favorable method used by engineers in designing work for stabilization of soft ground for road embankment, and foundation for liquid structure. Easy installation and cheaper cost are among the factors that make stone column more preferable than other method. Furthermore, stone column also can acts as vertical drain to increase the rate of consolidation during preloading stage before construction work started. According to previous studied there are several parameters that influence the capacity of stone column. Among of them are angle friction of among the stones, arrangement of column (two pattern arrangement most applied triangular and square), spacing center to center between columns, shear strength of soil, and physical size of column (diameter and length). Dimensional analysis method (Buckingham-Pi Theorem) has used to carry out the new formula for prediction of load capacity stone columns. Experimental data from two previous studies was used for analysis of study.

  13. A low-dimensional tool for predicting force decomposition coefficients for varying inflow conditions

    KAUST Repository

    Ghommem, Mehdi; Akhtar, Imran; Hajj, M. R.

    2013-01-01

    We develop a low-dimensional tool to predict the effects of unsteadiness in the inflow on force coefficients acting on a circular cylinder using proper orthogonal decomposition (POD) modes from steady flow simulations. The approach is based on combining POD and linear stochastic estimator (LSE) techniques. We use POD to derive a reduced-order model (ROM) to reconstruct the velocity field. To overcome the difficulty of developing a ROM using Poisson's equation, we relate the pressure field to the velocity field through a mapping function based on LSE. The use of this approach to derive force decomposition coefficients (FDCs) under unsteady mean flow from basis functions of the steady flow is illustrated. For both steady and unsteady cases, the final outcome is a representation of the lift and drag coefficients in terms of velocity and pressure temporal coefficients. Such a representation could serve as the basis for implementing control strategies or conducting uncertainty quantification. Copyright © 2013 Inderscience Enterprises Ltd.

  14. A phase change processor method for solving a one-dimensional phase change problem with convection boundary

    Energy Technology Data Exchange (ETDEWEB)

    Halawa, E.; Saman, W.; Bruno, F. [Institute for Sustainable Systems and Technologies, School of Advanced Manufacturing and Mechanical Engineering, University of South Australia, Mawson Lakes SA 5095 (Australia)

    2010-08-15

    A simple yet accurate iterative method for solving a one-dimensional phase change problem with convection boundary is described. The one-dimensional model takes into account the variation in the wall temperature along the direction of the flow as well as the sensible heat during preheating/pre-cooling of the phase change material (PCM). The mathematical derivation of convective boundary conditions has been integrated into a phase change processor (PCP) algorithm that solves the liquid fraction and temperature of the nodes. The algorithm is based on the heat balance at each node as it undergoes heating or cooling which inevitably involves phase change. The paper presents the model and its experimental validation. (author)

  15. Density prediction and dimensionality reduction of mid-term electricity demand in China: A new semiparametric-based additive model

    International Nuclear Information System (INIS)

    Shao, Zhen; Yang, Shan-Lin; Gao, Fei

    2014-01-01

    Highlights: • A new stationary time series smoothing-based semiparametric model is established. • A novel semiparametric additive model based on piecewise smooth is proposed. • We model the uncertainty of data distribution for mid-term electricity forecasting. • We provide efficient long horizon simulation and extraction for external variables. • We provide stable and accurate density predictions for mid-term electricity demand. - Abstract: Accurate mid-term electricity demand forecasting is critical for efficient electric planning, budgeting and operating decisions. Mid-term electricity demand forecasting is notoriously complicated, since the demand is subject to a range of external drivers, such as climate change, economic development, which will exhibit monthly, seasonal, and annual complex variations. Conventional models are based on the assumption that original data is stable and normally distributed, which is generally insignificant in explaining actual demand pattern. This paper proposes a new semiparametric additive model that, in addition to considering the uncertainty of the data distribution, includes practical discussions covering the applications of the external variables. To effectively detach the multi-dimensional volatility of mid-term demand, a novel piecewise smooth method which allows reduction of the data dimensionality is developed. Besides, a semi-parametric procedure that makes use of bootstrap algorithm for density forecast and model estimation is presented. Two typical cases in China are presented to verify the effectiveness of the proposed methodology. The results suggest that both meteorological and economic variables play a critical role in mid-term electricity consumption prediction in China, while the extracted economic factor is adequate to reveal the potentially complex relationship between electricity consumption and economic fluctuation. Overall, the proposed model can be easily applied to mid-term demand forecasting, and

  16. Applicability of one-dimensional mechanistic post-dryout prediction model

    International Nuclear Information System (INIS)

    Jeong, Hae Yong; No Hee Cheon

    1996-01-01

    Through the analysis of many experimental post-dryout data, it is shown that the most probable flow regime near dryout or quench front is not annular flow but churn-turbulent flow when the mass flux is low. A correlation describing the initial droplet size just after the CHF position at low mass flux is low. A correlation describing the initial droplet size just after the CHF position at low mass flux is suggested through regression analysis. In the post-dryout region at low pressure and low flow, it is found that the suggested one-dimensional mechanistic model is not applicable when the vapor superficial velocity is very low, i. e., when the flow is bubbly or slug flow regime. This is explained by the change of main entrainment mechanism with the change of flow regime. Therefore, the suggested correlation is valid only in the churn-turbulent flow regime (j * g = 0.5 ∼ 4.5)

  17. AucPR: An AUC-based approach using penalized regression for disease prediction with high-dimensional omics data

    OpenAIRE

    Yu, Wenbao; Park, Taesung

    2014-01-01

    Motivation It is common to get an optimal combination of markers for disease classification and prediction when multiple markers are available. Many approaches based on the area under the receiver operating characteristic curve (AUC) have been proposed. Existing works based on AUC in a high-dimensional context depend mainly on a non-parametric, smooth approximation of AUC, with no work using a parametric AUC-based approach, for high-dimensional data. Results We propose an AUC-based approach u...

  18. Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Sumida, Iori, E-mail: sumida@radonc.med.osaka-u.ac.jp [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Yamaguchi, Hajime; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yoshikawa, Nobuhiko; Yamada, Yuji [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan); Suzuki, Osamu; Seo, Yuji [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Isohashi, Fumiaki [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan); Yoshioka, Yasuo [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Ogawa, Kazuhiko [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan)

    2015-07-15

    Purpose: To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Methods and Materials: Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV, spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. Results: The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. Conclusions: RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.

  19. Neural activity predicts attitude change in cognitive dissonance.

    Science.gov (United States)

    van Veen, Vincent; Krug, Marie K; Schooler, Jonathan W; Carter, Cameron S

    2009-11-01

    When our actions conflict with our prior attitudes, we often change our attitudes to be more consistent with our actions. This phenomenon, known as cognitive dissonance, is considered to be one of the most influential theories in psychology. However, the neural basis of this phenomenon is unknown. Using a Solomon four-group design, we scanned participants with functional MRI while they argued that the uncomfortable scanner environment was nevertheless a pleasant experience. We found that cognitive dissonance engaged the dorsal anterior cingulate cortex and anterior insula; furthermore, we found that the activation of these regions tightly predicted participants' subsequent attitude change. These effects were not observed in a control group. Our findings elucidate the neural representation of cognitive dissonance, and support the role of the anterior cingulate cortex in detecting cognitive conflict and the neural prediction of attitude change.

  20. Changing predictions, stable recognition: Children's representations of downward incline motion.

    Science.gov (United States)

    Hast, Michael; Howe, Christine

    2017-11-01

    Various studies to-date have demonstrated children hold ill-conceived expressed beliefs about the physical world such as that one ball will fall faster than another because it is heavier. At the same time, they also demonstrate accurate recognition of dynamic events. How these representations relate is still unresolved. This study examined 5- to 11-year-olds' (N = 130) predictions and recognition of motion down inclines. Predictions were typically in error, matching previous work, but children largely recognized correct events as correct and rejected incorrect ones. The results also demonstrate while predictions change with increasing age, recognition shows signs of stability. The findings provide further support for a hybrid model of object representations and argue in favour of stable core cognition existing alongside developmental changes. Statement of contribution What is already known on this subject? Children's predictions of physical events show limitations in accuracy Their recognition of such events suggests children may use different knowledge sources in their reasoning What the present study adds? Predictions fluctuate more strongly than recognition, suggesting stable core cognition But recognition also shows some fluctuation, arguing for a hybrid model of knowledge representation. © 2017 The British Psychological Society.

  1. "You've Changed": Low Self-Concept Clarity Predicts Lack of Support for Partner Change.

    Science.gov (United States)

    Emery, Lydia F; Gardner, Wendi L; Finkel, Eli J; Carswell, Kathleen L

    2018-03-01

    People often pursue self-change, and having a romantic partner who supports these changes increases relationship satisfaction. However, most existing research focuses only on the experience of the person who is changing. What predicts whether people support their partner's change? People with low self-concept clarity resist self-change, so we hypothesized that they would be unsupportive of their partner's changes. People with low self-concept clarity did not support their partner's change (Study 1a), because they thought they would have to change, too (Study 1b). Low self-concept clarity predicted failing to support a partner's change, but not vice versa (Studies 2 and 3), and only for larger changes (Study 3). Not supporting a partner's change predicted decreases in relationship quality for both members of the couple (Studies 2 and 3). This research underscores the role of partners in self-change, suggesting that failing to support a partner's change may stem from self-concept confusion.

  2. Change in avian abundance predicted from regional forest inventory data

    Science.gov (United States)

    Twedt, Daniel J.; Tirpak, John M.; Jones-Farrand, D. Todd; Thompson, Frank R.; Uihlein, William B.; Fitzgerald, Jane A.

    2010-01-01

    An inability to predict population response to future habitat projections is a shortcoming in bird conservation planning. We sought to predict avian response to projections of future forest conditions that were developed from nationwide forest surveys within the Forest Inventory and Analysis (FIA) program. To accomplish this, we evaluated the historical relationship between silvicolous bird populations and FIA-derived forest conditions within 25 ecoregions that comprise the southeastern United States. We aggregated forest area by forest ownership, forest type, and tree size-class categories in county-based ecoregions for 5 time periods spanning 1963-2008. We assessed the relationship of forest data with contemporaneous indices of abundance for 24 silvicolous bird species that were obtained from Breeding Bird Surveys. Relationships between bird abundance and forest inventory data for 18 species were deemed sufficient as predictive models. We used these empirically derived relationships between regional forest conditions and bird populations to predict relative changes in abundance of these species within ecoregions that are anticipated to coincide with projected changes in forest variables through 2040. Predicted abundances of these 18 species are expected to remain relatively stable in over a quarter (27%) of the ecoregions. However, change in forest area and redistribution of forest types will likely result in changed abundance of some species within many ecosystems. For example, abundances of 11 species, including pine warbler (Dendroica pinus), brown-headed nuthatch (Sitta pusilla), and chuckwills- widow (Caprimulgus carolinensis), are projected to increase within more ecoregions than ecoregions where they will decrease. For 6 other species, such as blue-winged warbler (Vermivora pinus), Carolina wren (Thryothorus ludovicianus), and indigo bunting (Passerina cyanea), we projected abundances will decrease within more ecoregions than ecoregions where they will

  3. A two-dimensional matrix correction for off-axis portal dose prediction errors

    International Nuclear Information System (INIS)

    Bailey, Daniel W.; Kumaraswamy, Lalith; Bakhtiari, Mohammad; Podgorsak, Matthew B.

    2013-01-01

    Purpose: This study presents a follow-up to a modified calibration procedure for portal dosimetry published by Bailey et al. [“An effective correction algorithm for off-axis portal dosimetry errors,” Med. Phys. 36, 4089–4094 (2009)]. A commercial portal dose prediction system exhibits disagreement of up to 15% (calibrated units) between measured and predicted images as off-axis distance increases. The previous modified calibration procedure accounts for these off-axis effects in most regions of the detecting surface, but is limited by the simplistic assumption of radial symmetry. Methods: We find that a two-dimensional (2D) matrix correction, applied to each calibrated image, accounts for off-axis prediction errors in all regions of the detecting surface, including those still problematic after the radial correction is performed. The correction matrix is calculated by quantitative comparison of predicted and measured images that span the entire detecting surface. The correction matrix was verified for dose-linearity, and its effectiveness was verified on a number of test fields. The 2D correction was employed to retrospectively examine 22 off-axis, asymmetric electronic-compensation breast fields, five intensity-modulated brain fields (moderate-high modulation) manipulated for far off-axis delivery, and 29 intensity-modulated clinical fields of varying complexity in the central portion of the detecting surface. Results: Employing the matrix correction to the off-axis test fields and clinical fields, predicted vs measured portal dose agreement improves by up to 15%, producing up to 10% better agreement than the radial correction in some areas of the detecting surface. Gamma evaluation analyses (3 mm, 3% global, 10% dose threshold) of predicted vs measured portal dose images demonstrate pass rate improvement of up to 75% with the matrix correction, producing pass rates that are up to 30% higher than those resulting from the radial correction technique alone. As

  4. A predictive framework to understand forest responses to global change.

    Science.gov (United States)

    McMahon, Sean M; Dietze, Michael C; Hersh, Michelle H; Moran, Emily V; Clark, James S

    2009-04-01

    Forests are one of Earth's critical biomes. They have been shown to respond strongly to many of the drivers that are predicted to change natural systems over this century, including climate, introduced species, and other anthropogenic influences. Predicting how different tree species might respond to this complex of forces remains a daunting challenge for forest ecologists. Yet shifts in species composition and abundance can radically influence hydrological and atmospheric systems, plant and animal ranges, and human populations, making this challenge an important one to address. Forest ecologists have gathered a great deal of data over the past decades and are now using novel quantitative and computational tools to translate those data into predictions about the fate of forests. Here, after a brief review of the threats to forests over the next century, one of the more promising approaches to making ecological predictions is described: using hierarchical Bayesian methods to model forest demography and simulating future forests from those models. This approach captures complex processes, such as seed dispersal and mortality, and incorporates uncertainty due to unknown mechanisms, data problems, and parameter uncertainty. After describing the approach, an example by simulating drought for a southeastern forest is offered. Finally, there is a discussion of how this approach and others need to be cast within a framework of prediction that strives to answer the important questions posed to environmental scientists, but does so with a respect for the challenges inherent in predicting the future of a complex biological system.

  5. Predictive capabilities of a two-dimensional model in the ground water transport of radionuclides

    International Nuclear Information System (INIS)

    Gureghian, A.B.; Beskid, N.J.; Marmer, G.J.

    1978-01-01

    The discharge of low-level radioactive waste into tailings ponds is a potential source of ground water contamination. The estimation of the radiological hazards related to the ground water transport of radionuclides from tailings retention systems depends on reasonably accurate estimates of the movement of both water and solute. A two-dimensional mathematical model having predictive capability for ground water flow and solute transport has been developed. The flow equation has been solved under steady-state conditions and the mass transport equation under transient conditions. The simultaneous solution of both equations is achieved through the finite element technique using isoparametric elements, based on the Galerkin formulation. However, in contrast to the flow equation solution, the weighting functions used in the solution of the mass transport equation have a non-symmetric form. The predictive capability of the model is demonstrated using an idealized case based on analyses of field data obtained from the sites of operating uranium mills. The pH of the solution, which regulates the variation of the distribution coefficient (K/sub d/) in a particular site, appears to be the most important factor in the assessment of the rate of migration of the elements considered herein

  6. Multi-Scale Three-Dimensional Variational Data Assimilation System for Coastal Ocean Prediction

    Science.gov (United States)

    Li, Zhijin; Chao, Yi; Li, P. Peggy

    2012-01-01

    A multi-scale three-dimensional variational data assimilation system (MS-3DVAR) has been formulated and the associated software system has been developed for improving high-resolution coastal ocean prediction. This system helps improve coastal ocean prediction skill, and has been used in support of operational coastal ocean forecasting systems and field experiments. The system has been developed to improve the capability of data assimilation for assimilating, simultaneously and effectively, sparse vertical profiles and high-resolution remote sensing surface measurements into coastal ocean models, as well as constraining model biases. In this system, the cost function is decomposed into two separate units for the large- and small-scale components, respectively. As such, data assimilation is implemented sequentially from large to small scales, the background error covariance is constructed to be scale-dependent, and a scale-dependent dynamic balance is incorporated. This scheme then allows effective constraining large scales and model bias through assimilating sparse vertical profiles, and small scales through assimilating high-resolution surface measurements. This MS-3DVAR enhances the capability of the traditional 3DVAR for assimilating highly heterogeneously distributed observations, such as along-track satellite altimetry data, and particularly maximizing the extraction of information from limited numbers of vertical profile observations.

  7. Hemp yarn reinforced composites – III. Moisture content and dimensional changes

    DEFF Research Database (Denmark)

    Madsen, Bo; Hoffmeyer, Preben; Lilholt, Hans

    2012-01-01

    Based on a comprehensive set of experimental data it is demonstrated that the moisture properties of aligned hemp fibre yarn/thermoplastic matrix composites are showing low moisture sorption capacity and low dimensional changes. Using a reference humidity of 65% RH, and a common span of ambient...

  8. TH-CD-207A-07: Prediction of High Dimensional State Subject to Respiratory Motion: A Manifold Learning Approach

    International Nuclear Information System (INIS)

    Liu, W; Sawant, A; Ruan, D

    2016-01-01

    Purpose: The development of high dimensional imaging systems (e.g. volumetric MRI, CBCT, photogrammetry systems) in image-guided radiotherapy provides important pathways to the ultimate goal of real-time volumetric/surface motion monitoring. This study aims to develop a prediction method for the high dimensional state subject to respiratory motion. Compared to conventional linear dimension reduction based approaches, our method utilizes manifold learning to construct a descriptive feature submanifold, where more efficient and accurate prediction can be performed. Methods: We developed a prediction framework for high-dimensional state subject to respiratory motion. The proposed method performs dimension reduction in a nonlinear setting to permit more descriptive features compared to its linear counterparts (e.g., classic PCA). Specifically, a kernel PCA is used to construct a proper low-dimensional feature manifold, where low-dimensional prediction is performed. A fixed-point iterative pre-image estimation method is applied subsequently to recover the predicted value in the original state space. We evaluated and compared the proposed method with PCA-based method on 200 level-set surfaces reconstructed from surface point clouds captured by the VisionRT system. The prediction accuracy was evaluated with respect to root-mean-squared-error (RMSE) for both 200ms and 600ms lookahead lengths. Results: The proposed method outperformed PCA-based approach with statistically higher prediction accuracy. In one-dimensional feature subspace, our method achieved mean prediction accuracy of 0.86mm and 0.89mm for 200ms and 600ms lookahead lengths respectively, compared to 0.95mm and 1.04mm from PCA-based method. The paired t-tests further demonstrated the statistical significance of the superiority of our method, with p-values of 6.33e-3 and 5.78e-5, respectively. Conclusion: The proposed approach benefits from the descriptiveness of a nonlinear manifold and the prediction

  9. Prediction of three-dimensional femoral offset from AP pelvis radiographs in primary hip osteoarthritis

    Energy Technology Data Exchange (ETDEWEB)

    Merle, C., E-mail: christian.merle@med.uni-heidelberg.de [Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford (United Kingdom); Department of Orthopaedic and Trauma Surgery, University Hospital Heidelberg (Germany); Waldstein, W., E-mail: wwaldstein@gmail.com [Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford (United Kingdom); Department of Orthopaedic and Trauma Surgery, University Hospital Heidelberg (Germany); Pegg, E.C., E-mail: elise.pegg@ndorms.ox.ac.uk [Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford (United Kingdom); Streit, M.R., E-mail: marcus.streit@med.uni-heidelberg.de [Department of Orthopaedic and Trauma Surgery, University Hospital Heidelberg (Germany); Gotterbarm, T., E-mail: tobias.gotterbarm@med.uni-heidelberg.de [Department of Orthopaedic and Trauma Surgery, University Hospital Heidelberg (Germany); Aldinger, P.R., E-mail: peter.aldinger@diak-stuttgart.de [Department of Orthopaedic Surgery, Paulinenhilfe, Diakonieklinikum, Stuttgart (Germany); Murray, D.W., E-mail: david.murray@ndorms.ox.ac.uk [Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford (United Kingdom); Gill, H.S., E-mail: r.gill@bath.ac.uk [Department of Mechanical Engineering, University of Bath (United Kingdom)

    2013-08-15

    Background: In pre-operative planning for total hip arthroplasty (THA), femoral offset (FO) is frequently underestimated on AP pelvis radiographs as a result of inaccurate patient positioning, imprecise magnification, and radiographic beam divergence. The aim of the present study was to evaluate the accuracy and reliability of predicting three-dimensional (3-D) FO from standardised AP pelvis radiographs. Methods: In a retrospective cohort study, pre-operative AP pelvis radiographs, AP hip radiographs and CT scans of a consecutive series of 345 patients (345 hips, 146 males, 199 females, mean age 60 (range: 40–79) years, mean body-mass-index 27 (range: 19–57) kg/m{sup 2}) with primary end-stage hip OA were reviewed. Patients were positioned according to a standardised protocol and all images were calibrated. Using validated custom programmes, FO was measured on corresponding radiographs and CT scans. Measurement reliability was evaluated using intra-class-correlation-coefficients. To predict 3-D FO from AP pelvis measurements and to assess the accuracy compared to CT, the entire cohort was randomly split into subgroups A and B. Gender specific regression equations were derived from group A (245 patients) and the accuracy of prediction was evaluated in group B (100 patients) using Bland–Altman plots. Results: In the entire cohort, mean FO was 39.2 mm (95%CI: 38.5–40.0 mm) on AP pelvis radiographs, 44.1 mm (95%CI: 43.4–44.9 mm) on AP hip radiographs and 44.6 mm (95%CI: 44.0–45.2 mm) on CT scans. In group B, we observed no significant difference between gender specific predicted FO (males: 48.0 mm, 95%CI: 47.1–48.8 mm; females: 42.0 mm, 95%CI: 41.1–42.8 mm) and FO as measured on CT (males: 47.7 mm, 95%CI: 46.1–49.4 mm, p = 0.689; females: 41.6 mm, 95%CI: 40.3–43.0 mm, p = 0.607). Conclusions: The present study suggests that FO can be accurately and reliably predicted from AP pelvis radiographs in patients with primary end-stage hip osteoarthritis

  10. Prediction of permeability changes in an excavation response zone

    International Nuclear Information System (INIS)

    Kinoshita, Naoto; Ishii, Takashi; Kuroda, Hidetaka; Tada, Hiroyuki

    1992-01-01

    In geologic disposal of radioactive wastes, stress changes due to cavern excavation may expand the existing fractures and create possible bypasses for groundwater. This paper proposes a simple method for predicting permeability changes in the excavation response zones. Numerical analyses using this method predict that the response zones created by cavern excavation would differ greatly in thickness and permeability depending on the depth of the cavern site and the initial in-situ stress, that when the cavern site is deeper, response zones would expand more and permeability would increases more, and that if the ratio of horizontal to vertical in-situ stress is small, extensive permeable zones at the crown and the bottom would occur, whereas if the ratio is large, extensive permeable zones would occur in the side walls. (orig.)

  11. Predicting Climate Change Impacts to the Canadian Boreal Forest

    Directory of Open Access Journals (Sweden)

    Trisalyn A. Nelson

    2014-03-01

    Full Text Available Climate change is expected to alter temperature, precipitation, and seasonality with potentially acute impacts on Canada’s boreal. In this research we predicted future spatial distributions of biodiversity in Canada’s boreal for 2020, 2050, and 2080 using indirect indicators derived from remote sensing and based on vegetation productivity. Vegetation productivity indices, representing annual amounts and variability of greenness, have been shown to relate to tree and wildlife richness in Canada’s boreal. Relationships between historical satellite-derived productivity and climate data were applied to modelled scenarios of future climate to predict and map potential future vegetation productivity for 592 regions across Canada. Results indicated that the pattern of vegetation productivity will become more homogenous, particularly west of Hudson Bay. We expect climate change to impact biodiversity along north/south gradients and by 2080 vegetation distributions will be dominated by processes of seasonality in the north and a combination of cumulative greenness and minimum cover in the south. The Hudson Plains, which host the world’s largest and most contiguous wetland, are predicted to experience less seasonality and more greenness. The spatial distribution of predicted trends in vegetation productivity was emphasized over absolute values, in order to support regional biodiversity assessments and conservation planning.

  12. HESS Opinions: Hydrologic predictions in a changing environment: behavioral modeling

    Directory of Open Access Journals (Sweden)

    S. J. Schymanski

    2011-02-01

    Full Text Available Most hydrological models are valid at most only in a few places and cannot be reasonably transferred to other places or to far distant time periods. Transfer in space is difficult because the models are conditioned on past observations at particular places to define parameter values and unobservable processes that are needed to fully characterize the structure and functioning of the landscape. Transfer in time has to deal with the likely temporal changes to both parameters and processes under future changed conditions. This remains an important obstacle to addressing some of the most urgent prediction questions in hydrology, such as prediction in ungauged basins and prediction under global change. In this paper, we propose a new approach to catchment hydrological modeling, based on universal principles that do not change in time and that remain valid across many places. The key to this framework, which we call behavioral modeling, is to assume that there are universal and time-invariant organizing principles that can be used to identify the most appropriate model structure (including parameter values and responses for a given ecosystem at a given moment in time. These organizing principles may be derived from fundamental physical or biological laws, or from empirical laws that have been demonstrated to be time-invariant and to hold at many places and scales. Much fundamental research remains to be undertaken to help discover these organizing principles on the basis of exploration of observed patterns of landscape structure and hydrological behavior and their interpretation as legacy effects of past co-evolution of climate, soils, topography, vegetation and humans. Our hope is that the new behavioral modeling framework will be a step forward towards a new vision for hydrology where models are capable of more confidently predicting the behavior of catchments beyond what has been observed or experienced before.

  13. Three-dimensional evaluation of changes in lip position from before to after orthodontic appliance removal.

    Science.gov (United States)

    Eidson, Lindsey; Cevidanes, Lucia H S; de Paula, Leonardo Koerich; Hershey, H Garland; Welch, Gregory; Rossouw, P Emile

    2012-09-01

    Our objectives were to develop a reproducible method of superimposing 3-dimensional images for measuring soft-tissue changes over time and to use this method to document changes in lip position after the removal of orthodontic appliances. Three-dimensional photographs of 50 subjects were made in repose and maximum intercuspation before and after orthodontic appliance removal with a stereo camera. For reliability assessment, 2 photographs were repeated for 15 patients. The images were registered on stable areas, and surface-to-surface measurements were made for defined landmarks. Mean changes were below the level of clinical significance (set at 1.5 mm). However, 51% and 18% of the subjects experienced changes greater than 1.5 mm at the commissures and lower lips, respectively. The use of serial 3-dimensional photographs is a reliable method of documenting soft-tissue changes. Soft-tissue changes after appliance removal are not clinically significant; however, there is great individual variability. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  14. Predicting Peri-Device Leakage of Left Atrial Appendage Device Closure Using Novel Three-Dimensional Geometric CT Analysis.

    Science.gov (United States)

    Chung, Hyemoon; Jeon, Byunghwan; Chang, Hyuk-Jae; Han, Dongjin; Shim, Hackjoon; Cho, In Jeong; Shim, Chi Young; Hong, Geu-Ru; Kim, Jung-Sun; Jang, Yangsoo; Chung, Namsik

    2015-12-01

    After left atrial appendage (LAA) device closure, peri-device leakage into the LAA persists due to incomplete occlusion. We hypothesized that pre-procedural three-dimensional (3D) geometric analysis of the interatrial septum (IAS) and LAA orifice can predict this leakage. We investigated the predictive parameters of LAA device closure obtained from baseline cardiac computerized tomography (CT) using a novel 3D analysis system. We conducted a retrospective study of 22 patients who underwent LAA device closure. We defined peri-device leakage as the presence of a Doppler signal inside the LAA after device deployment (group 2, n = 5) compared with patients without peri-device leakage (group 1, n = 17). Conventional parameters were measured by cardiac CT. Angles θ and φ were defined between the IAS plane and the line, linking the LAA orifice center and foramen ovale. Group 2 exhibited significantly better left atrial (LA) function than group 1 (p = 0.031). Pre-procedural θ was also larger in this group (41.9° vs. 52.3°, p = 0.019). The LAA cauliflower-type morphology was more common in group 2. Overall, the patients' LA reserve significantly decreased after the procedure (21.7 mm(3) vs. 17.8 mm(3), p = 0.035). However, we observed no significant interval changes in pre- and post-procedural values of θ and φ in either group (all p > 0.05). Angles between the IAS and LAA orifice might be a novel anatomical parameter for predicting peri-device leakage after LAA device closure. In addition, 3D CT analysis of the LA and LAA orifice could be used to identify clinically favorable candidates for LAA device closure.

  15. Reconstruction 3-dimensional image from 2-dimensional image of status optical coherence tomography (OCT) for analysis of changes in retinal thickness

    Energy Technology Data Exchange (ETDEWEB)

    Arinilhaq,; Widita, Rena [Department of Physics, Nuclear Physics and Biophysics Research Group, Institut Teknologi Bandung (Indonesia)

    2014-09-30

    Optical Coherence Tomography is often used in medical image acquisition to diagnose that change due easy to use and low price. Unfortunately, this type of examination produces a two-dimensional retinal image of the point of acquisition. Therefore, this study developed a method that combines and reconstruct 2-dimensional retinal images into three-dimensional images to display volumetric macular accurately. The system is built with three main stages: data acquisition, data extraction and 3-dimensional reconstruction. At data acquisition step, Optical Coherence Tomography produced six *.jpg images of each patient were further extracted with MATLAB 2010a software into six one-dimensional arrays. The six arrays are combined into a 3-dimensional matrix using a kriging interpolation method with SURFER9 resulting 3-dimensional graphics of macula. Finally, system provides three-dimensional color graphs based on the data distribution normal macula. The reconstruction system which has been designed produces three-dimensional images with size of 481 × 481 × h (retinal thickness) pixels.

  16. Editorial Commentary: Single-Image Slice Magnetic Resonance Imaging Assessments Do Not Predict 3-Dimensional Muscle Volume.

    Science.gov (United States)

    Brand, Jefferson C

    2016-01-01

    No single-image magnetic resonance imaging (MRI) assessment-Goutallier classification, Fuchs classification, or cross-sectional area-is predictive of whole-muscle volume or fatty atrophy of the supraspinatus or infraspinatus. Rather, 3-dimensional MRI measurement of whole-muscle volume and fat-free muscle volume is required and is associated with shoulder strength, which is clinically relevant. Three-dimensional MRI may represent a new gold standard for assessment of the rotator cuff musculature using imaging and may help to predict the feasibility of repair of a rotator cuff tear as well as the postoperative outcome. Unfortunately, 3-dimensional MRI assessment of muscle volume is labor intensive and is not widely available for clinical use. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  17. Dimensional Changes of Nb$_{3}$Sn Rutherford Cables During Heat Treatment

    CERN Document Server

    Rochepault, E; Ambrosio, G; Anerella, M; Ballarino, A; Bonasia, A; Bordini, B; Cheng, D; Dietderich, D R; Felice, H; Garcia Fajardo, L; Ghosh, A; Holik, E F; Izquierdo Bermudez, S; Perez, J C; Pong, I; Schmalzle, J; Yu, M

    2016-01-01

    In high field magnet applications, Nb$_{3}$Sn coils undergo a heat treatment step after winding. During this stage, coils radially expand and longitudinally contract due to the Nb$_{3}$Sn phase change. In order to prevent residual strain from altering superconducting performances, the tooling must provide the adequate space for these dimensional changes. The aim of this paper is to understand the behavior of cable dimensions during heat treatment and to provide estimates of the space to be accommodated in the tooling for coil expansion and contraction. This paper summarizes measurements of dimensional changes on strands, single Rutherford cables, cable stacks, and coils performed between 2013 and 2015. These samples and coils have been performed within a collaboration between CERN and the U.S. LHC Accelerator Research Program to develop Nb$_{3}$Sn quadrupole magnets for the HiLumi LHC. The results are also compared with other high field magnet projects.

  18. A multi-dimensional assessment of urban vulnerability to climate change in Sub-Saharan Africa

    DEFF Research Database (Denmark)

    Herslund, Lise Byskov; Jalyer, Fatameh; Jean-Baptiste, Nathalie

    2016-01-01

    In this paper, we develop and apply a multi-dimensional vulnerability assessment framework for understanding the impacts of climate change-induced hazards in Sub- Saharan African cities. The research was carried out within the European/African FP7 project CLimate change and Urban Vulnerability...... in Africa, which investigated climate change-induced risks, assessed vulnerability and proposed policy initiatives in five African cities. Dar es Salaam (Tanzania) was used as a main case with a particular focus on urban flooding. The multi-dimensional assessment covered the physical, institutional...... encroachment on green and flood-prone land). Scenario modeling suggests that vulnerability will continue to increase strongly due to the expected loss of agricultural land at the urban fringes and loss of green space within the city. However, weak institutional commitment and capacity limit the potential...

  19. Short-Term Predictive Validity of Cluster Analytic and Dimensional Classification of Child Behavioral Adjustment in School

    Science.gov (United States)

    Kim, Sangwon; Kamphaus, Randy W.; Baker, Jean A.

    2006-01-01

    A constructive debate over the classification of child psychopathology can be stimulated by investigating the validity of different classification approaches. We examined and compared the short-term predictive validity of cluster analytic and dimensional classifications of child behavioral adjustment in school using the Behavior Assessment System…

  20. Predicting tropospheric ozone and hydroxyl radical in a global, three-dimensional, chemistry, transport, and deposition model

    Energy Technology Data Exchange (ETDEWEB)

    Atherton, C.S.

    1995-01-05

    Two of the most important chemically reactive tropospheric gases are ozone (O{sub 3}) and the hydroxyl radical (OH). Although ozone in the stratosphere is a necessary protector against the sun`s radiation, tropospheric ozone is actually a pollutant which damages materials and vegetation, acts as a respiratory irritant, and is a greenhouse gas. One of the two main sources of ozone in the troposphere is photochemical production. The photochemistry is initiated when hydrocarbons and carbon monoxide (CO) react with nitrogen oxides (NO{sub x} = NO + NO{sub 2}) in the presence of sunlight. Reaction with the hydroxyl radical, OH, is the main sink for many tropospheric gases. The hydroxyl radical is highly reactive and has a lifetime on the order of seconds. Its formation is initiated by the photolysis of tropospheric ozone. Tropospheric chemistry involves a complex, non-linear set of chemical reactions between atmospheric species that vary substantially in time and space. To model these and other species on a global scale requires the use of a global, three-dimensional chemistry, transport, and deposition (CTD) model. In this work, I developed two such three dimensional CTD models. The first model incorporated the chemistry necessary to model tropospheric ozone production from the reactions of nitrogen oxides with carbon monoxide (CO) and methane (CH{sub 4}). The second also included longer-lived alkane species and the biogenic hydrocarbon isoprene, which is emitted by growing plants and trees. The models` ability to predict a number of key variables (including the concentration of O{sub 3}, OH, and other species) were evaluated. Then, several scenarios were simulated to understand the change in the chemistry of the troposphere since preindustrial times and the role of anthropogenic NO{sub x} on present day conditions.

  1. Turbulence prediction in two-dimensional bundle flows using large eddy simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, W.A.; Hassan, Y.A. [Texas A& M Univ., College Station, TX (United States)

    1995-09-01

    Turbulent flow is characterized by random fluctuations in the fluid velocity and by intense mixing of the fluid. Due to velocity fluctuations, a wide range of eddies exists in the flow field. Because these eddies carry mass, momentum, and energy, this enhanced mixing can sometimes lead to serious problems, such as tube vibrations in many engineering systems that include fluid-tube bundle combinations. Nuclear fuel bundles and PWR steam generators are existing examples in nuclear power plants. Fluid-induced vibration problems are often discovered during the operation of such systems because some of the fluid-tube interaction characteristics are not fully understood. Large Eddy Simulation, incorporated in a three dimensional computer code, became one of the promising techniques to estimate flow turbulence, predict and prevent of long-term tube fretting affecting PWR steam generators. the present turbulence investigations is a step towards more understanding of fluid-tube interaction characteristics by comparing the tube bundles with various pitch-to-diameter ratios were performed. Power spectral densities were used for comparison with experimental data. Correlations, calculations of different length scales in the flow domain and other important turbulent-related parameters were calculated. Finally, important characteristics of turbulent flow field were presented with the aid of flow visualization with tracers impeded in the flow field.

  2. A low-dimensional tool for predicting force decomposition coefficients for varying inflow conditions

    KAUST Repository

    Ghommem, Mehdi

    2013-01-01

    We develop a low-dimensional tool to predict the effects of unsteadiness in the inflow on force coefficients acting on a circular cylinder using proper orthogonal decomposition (POD) modes from steady flow simulations. The approach is based on combining POD and linear stochastic estimator (LSE) techniques. We use POD to derive a reduced-order model (ROM) to reconstruct the velocity field. To overcome the difficulty of developing a ROM using Poisson\\'s equation, we relate the pressure field to the velocity field through a mapping function based on LSE. The use of this approach to derive force decomposition coefficients (FDCs) under unsteady mean flow from basis functions of the steady flow is illustrated. For both steady and unsteady cases, the final outcome is a representation of the lift and drag coefficients in terms of velocity and pressure temporal coefficients. Such a representation could serve as the basis for implementing control strategies or conducting uncertainty quantification. Copyright © 2013 Inderscience Enterprises Ltd.

  3. Rotary engine performance limits predicted by a zero-dimensional model

    Science.gov (United States)

    Bartrand, Timothy A.; Willis, Edward A.

    1992-01-01

    A parametric study was performed to determine the performance limits of a rotary combustion engine. This study shows how well increasing the combustion rate, insulating, and turbocharging increase brake power and decrease fuel consumption. Several generalizations can be made from the findings. First, it was shown that the fastest combustion rate is not necessarily the best combustion rate. Second, several engine insulation schemes were employed for a turbocharged engine. Performance improved only for a highly insulated engine. Finally, the variability of turbocompounding and the influence of exhaust port shape were calculated. Rotary engines performance was predicted by an improved zero-dimensional computer model based on a model developed at the Massachusetts Institute of Technology in the 1980's. Independent variables in the study include turbocharging, manifold pressures, wall thermal properties, leakage area, and exhaust port geometry. Additions to the computer programs since its results were last published include turbocharging, manifold modeling, and improved friction power loss calculation. The baseline engine for this study is a single rotor 650 cc direct-injection stratified-charge engine with aluminum housings and a stainless steel rotor. Engine maps are provided for the baseline and turbocharged versions of the engine.

  4. Predicting drought propagation within peat layers using a three dimensionally explicit voxel based model

    Science.gov (United States)

    Condro, A. A.; Pawitan, H.; Risdiyanto, I.

    2018-05-01

    Peatlands are very vulnerable to widespread fires during dry seasons, due to availability of aboveground fuel biomass on the surface and belowground fuel biomass on the sub-surface. Hence, understanding drought propagation occurring within peat layers is crucial with regards to disaster mitigation activities on peatlands. Using a three dimensionally explicit voxel-based model of peatland hydrology, this study predicted drought propagation time lags into sub-surface peat layers after drought events occurrence on the surface of about 1 month during La-Nina and 2.5 months during El-Nino. The study was carried out on a high-conservation-value area of oil palm plantation in West Kalimantan. Validity of the model was evaluated and its applicability for disaster mitigation was discussed. The animations of simulated voxels are available at: goo.gl/HDRMYN (El-Nino 2015 episode) and goo.gl/g1sXPl (La-Nina 2016 episode). The model is available at: goo.gl/RiuMQz.

  5. An analytical one-dimensional model for predicting waste package performance

    International Nuclear Information System (INIS)

    Relyea, J.F.; Wood, M.I.

    1984-01-01

    A method for allocating waste package performance requirements among waste package components with regard to radionuclide isolation has been developed. Modification or change in this approach can be expected as the understanding of radionuclide behavior in the waste package improves. Thus, the performance requirements derived in this document are preliminary and subject to change. However, this kind of analysis is a useful starting point. It has also proved useful for identifying a small group of radionuclides which should be emphasized in a laboratory experimental program designed to characterize the behavior of specific radionuclides in the waste package environment. A simple one-dimensional, two media transport model has been derived and used to calculate radionuclide transport from the waste form-packing material interface of the waste package into the host rock. Cumulative release over 10,000 years, maximum yearly releases and release rates at the packing material-host rock interface were evaluated on a radionuclide-by radionuclide basis. The major parameters controlling radionuclide release were found to be: radionuclide solubility, porosity of the rock, isotopic ratio of the radionuclide and surface area of the waste form-packing material interface. 15 refs., 2 figs., 16 tabs

  6. Clinical Prediction Performance of Glaucoma Progression Using a 2-Dimensional Continuous-Time Hidden Markov Model with Structural and Functional Measurements.

    Science.gov (United States)

    Song, Youngseok; Ishikawa, Hiroshi; Wu, Mengfei; Liu, Yu-Ying; Lucy, Katie A; Lavinsky, Fabio; Liu, Mengling; Wollstein, Gadi; Schuman, Joel S

    2018-03-20

    Previously, we introduced a state-based 2-dimensional continuous-time hidden Markov model (2D CT HMM) to model the pattern of detected glaucoma changes using structural and functional information simultaneously. The purpose of this study was to evaluate the detected glaucoma change prediction performance of the model in a real clinical setting using a retrospective longitudinal dataset. Longitudinal, retrospective study. One hundred thirty-four eyes from 134 participants diagnosed with glaucoma or as glaucoma suspects (average follow-up, 4.4±1.2 years; average number of visits, 7.1±1.8). A 2D CT HMM model was trained using OCT (Cirrus HD-OCT; Zeiss, Dublin, CA) average circumpapillary retinal nerve fiber layer (cRNFL) thickness and visual field index (VFI) or mean deviation (MD; Humphrey Field Analyzer; Zeiss). The model was trained using a subset of the data (107 of 134 eyes [80%]) including all visits except for the last visit, which was used to test the prediction performance (training set). Additionally, the remaining 27 eyes were used for secondary performance testing as an independent group (validation set). The 2D CT HMM predicts 1 of 4 possible detected state changes based on 1 input state. Prediction accuracy was assessed as the percentage of correct prediction against the patient's actual recorded state. In addition, deviations of the predicted long-term detected change paths from the actual detected change paths were measured. Baseline mean ± standard deviation age was 61.9±11.4 years, VFI was 90.7±17.4, MD was -3.50±6.04 dB, and cRNFL thickness was 74.9±12.2 μm. The accuracy of detected glaucoma change prediction using the training set was comparable with the validation set (57.0% and 68.0%, respectively). Prediction deviation from the actual detected change path showed stability throughout patient follow-up. The 2D CT HMM demonstrated promising prediction performance in detecting glaucoma change performance in a simulated clinical setting

  7. LSD-induced entropic brain activity predicts subsequent personality change.

    Science.gov (United States)

    Lebedev, A V; Kaelen, M; Lövdén, M; Nilsson, J; Feilding, A; Nutt, D J; Carhart-Harris, R L

    2016-09-01

    Personality is known to be relatively stable throughout adulthood. Nevertheless, it has been shown that major life events with high personal significance, including experiences engendered by psychedelic drugs, can have an enduring impact on some core facets of personality. In the present, balanced-order, placebo-controlled study, we investigated biological predictors of post-lysergic acid diethylamide (LSD) changes in personality. Nineteen healthy adults underwent resting state functional MRI scans under LSD (75µg, I.V.) and placebo (saline I.V.). The Revised NEO Personality Inventory (NEO-PI-R) was completed at screening and 2 weeks after LSD/placebo. Scanning sessions consisted of three 7.5-min eyes-closed resting-state scans, one of which involved music listening. A standardized preprocessing pipeline was used to extract measures of sample entropy, which characterizes the predictability of an fMRI time-series. Mixed-effects models were used to evaluate drug-induced shifts in brain entropy and their relationship with the observed increases in the personality trait openness at the 2-week follow-up. Overall, LSD had a pronounced global effect on brain entropy, increasing it in both sensory and hierarchically higher networks across multiple time scales. These shifts predicted enduring increases in trait openness. Moreover, the predictive power of the entropy increases was greatest for the music-listening scans and when "ego-dissolution" was reported during the acute experience. These results shed new light on how LSD-induced shifts in brain dynamics and concomitant subjective experience can be predictive of lasting changes in personality. Hum Brain Mapp 37:3203-3213, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Predicting Mood Changes in Bipolar Disorder through Heartbeat Nonlinear Dynamics.

    Science.gov (United States)

    Valenza, Gaetano; Nardelli, Mimma; Lanata', Antonio; Gentili, Claudio; Bertschy, Gilles; Kosel, Markus; Scilingo, Enzo Pasquale

    2016-04-20

    Bipolar Disorder (BD) is characterized by an alternation of mood states from depression to (hypo)mania. Mixed states, i.e., a combination of depression and mania symptoms at the same time, can also be present. The diagnosis of this disorder in the current clinical practice is based only on subjective interviews and questionnaires, while no reliable objective psychophysiological markers are available. Furthermore, there are no biological markers predicting BD outcomes, or providing information about the future clinical course of the phenomenon. To overcome this limitation, here we propose a methodology predicting mood changes in BD using heartbeat nonlinear dynamics exclusively, derived from the ECG. Mood changes are here intended as transitioning between two mental states: euthymic state (EUT), i.e., the good affective balance, and non-euthymic (non-EUT) states. Heart Rate Variability (HRV) series from 14 bipolar spectrum patients (age: 33.439.76, age range: 23-54; 6 females) involved in the European project PSYCHE, undergoing whole night ECG monitoring were analyzed. Data were gathered from a wearable system comprised of a comfortable t-shirt with integrated fabric electrodes and sensors able to acquire ECGs. Each patient was monitored twice a week, for 14 weeks, being able to perform normal (unstructured) activities. From each acquisition, the longest artifact-free segment of heartbeat dynamics was selected for further analyses. Sub-segments of 5 minutes of this segment were used to estimate trends of HRV linear and nonlinear dynamics. Considering data from a current observation at day t0, and past observations at days (t1, t2,...,), personalized prediction accuracies in forecasting a mood state (EUT/non-EUT) at day t+1 were 69% on average, reaching values as high as 83.3%. This approach opens to the possibility of predicting mood states in bipolar patients through heartbeat nonlinear dynamics exclusively.

  9. Effect of immersion disinfection of alginate impressions in sodium hypochlorite solution on the dimensional changes of stone models.

    Science.gov (United States)

    Hiraguchi, Hisako; Kaketani, Masahiro; Hirose, Hideharu; Yoneyama, Takayuki

    2012-01-01

    This study investigated the effect of the immersion of alginate impressions in 0.5% sodium hypochlorite solution for 15 min on the dimensional changes of stone models designed to simulate a sectional form of a residual ridge. Five brands of alginate impression materials, which underwent various dimensional changes in water, were used. A stone model made with an impression that had not been immersed was prepared as a control. The immersion of two brands of alginate impressions that underwent small dimensional changes in water did not lead to serious deformation of the stone models, and the differences in the dimensional changes between the stone models produced with disinfected impressions and those of the control were less than 15 µm. In contrast, the immersions of three brands of alginate impressions that underwent comparatively large dimensional changes in water caused deformation of the stone models.

  10. AucPR: an AUC-based approach using penalized regression for disease prediction with high-dimensional omics data.

    Science.gov (United States)

    Yu, Wenbao; Park, Taesung

    2014-01-01

    It is common to get an optimal combination of markers for disease classification and prediction when multiple markers are available. Many approaches based on the area under the receiver operating characteristic curve (AUC) have been proposed. Existing works based on AUC in a high-dimensional context depend mainly on a non-parametric, smooth approximation of AUC, with no work using a parametric AUC-based approach, for high-dimensional data. We propose an AUC-based approach using penalized regression (AucPR), which is a parametric method used for obtaining a linear combination for maximizing the AUC. To obtain the AUC maximizer in a high-dimensional context, we transform a classical parametric AUC maximizer, which is used in a low-dimensional context, into a regression framework and thus, apply the penalization regression approach directly. Two kinds of penalization, lasso and elastic net, are considered. The parametric approach can avoid some of the difficulties of a conventional non-parametric AUC-based approach, such as the lack of an appropriate concave objective function and a prudent choice of the smoothing parameter. We apply the proposed AucPR for gene selection and classification using four real microarray and synthetic data. Through numerical studies, AucPR is shown to perform better than the penalized logistic regression and the nonparametric AUC-based method, in the sense of AUC and sensitivity for a given specificity, particularly when there are many correlated genes. We propose a powerful parametric and easily-implementable linear classifier AucPR, for gene selection and disease prediction for high-dimensional data. AucPR is recommended for its good prediction performance. Beside gene expression microarray data, AucPR can be applied to other types of high-dimensional omics data, such as miRNA and protein data.

  11. Numerical Simulation of Three-Dimensional Flow Through Full Passage and Performance Prediction of Nuclear Reactor Coolant Pump

    International Nuclear Information System (INIS)

    Li Ying; Zhou Wenxia; Zhang Jige; Wang Dezhong

    2009-01-01

    In order to achieve the level of self-design and domestic manufacture of the reactor coolant pump (nuclear main pump), the software FLUENT was used to simulate the three-dimensional flow through full passage of one nuclear main pump basing on RNG κ-ε turbulence model and SIMPLE algorithm. The distribution of pressure and velocity of the flow in the impeller's surface was analyzed in different working conditions. Moreover, the performance of the pump was predicted based on the simulation results. The results show that the distributions of pressure and velocity are reasonable in both the working and back face of the blade in the steady working condition. The pressure of the flow is increased from the inlet to the outlet of the pump, and shows the maximal value in the impeller region. Comparatively satisfactory efficiency and head value were obtained in the condition of the pump design. The shaft power of the nuclear main pump is gradually increased with the increase of the flow flux. These results are helpful in understanding the change of the internal flow field in the nuclear main pump, which is of some importance for the pre-exploration and theoretical research on the domestic manufacture of the nuclear main pump. (authors)

  12. Validation of a zero-dimensional model for prediction of NOx and engine performance for electronically controlled marine two-stroke diesel engines

    DEFF Research Database (Denmark)

    Scappin, Fabio; Stefansson, Sigurður H.; Haglind, Fredrik

    2012-01-01

    The aim of this paper is to derive a methodology suitable for energy system analysis for predicting the performance and NOx emissions of marine low speed diesel engines. The paper describes a zero-dimensional model, evaluating the engine performance by means of an energy balance and a two zone...... experimental data from two MAN B&W engines; one case being data subject to engine parameter changes corresponding to simulating an electronically controlled engine; the second case providing data covering almost all model input and output parameters. The first case of validation suggests that the model can...

  13. Cod Gadus morhua and climate change: processes, productivity and prediction

    DEFF Research Database (Denmark)

    Brander, Keith

    2010-01-01

    the causes. Investigation of cod Gadus morhua populations across the whole North Atlantic Ocean has shown large-scale patterns of change in productivity due to lower individual growth and condition, caused by large-scale climate forcing. If a population is being heavily exploited then a drop in productivity......Environmental factors act on individual fishes directly and indirectly. The direct effects on rates and behaviour can be studied experimentally and in the field, particularly with the advent of ever smarter tags for tracking fishes and their environment. Indirect effects due to changes in food......, predators, parasites and diseases are much more difficult to estimate and predict. Climate can affect all life-history stages through direct and indirect processes and although the consequences in terms of growth, survival and reproductive output can be monitored, it is often difficult to determine...

  14. Change in BMI accurately predicted by social exposure to acquaintances.

    Directory of Open Access Journals (Sweden)

    Rahman O Oloritun

    Full Text Available Research has mostly focused on obesity and not on processes of BMI change more generally, although these may be key factors that lead to obesity. Studies have suggested that obesity is affected by social ties. However these studies used survey based data collection techniques that may be biased toward select only close friends and relatives. In this study, mobile phone sensing techniques were used to routinely capture social interaction data in an undergraduate dorm. By automating the capture of social interaction data, the limitations of self-reported social exposure data are avoided. This study attempts to understand and develop a model that best describes the change in BMI using social interaction data. We evaluated a cohort of 42 college students in a co-located university dorm, automatically captured via mobile phones and survey based health-related information. We determined the most predictive variables for change in BMI using the least absolute shrinkage and selection operator (LASSO method. The selected variables, with gender, healthy diet category, and ability to manage stress, were used to build multiple linear regression models that estimate the effect of exposure and individual factors on change in BMI. We identified the best model using Akaike Information Criterion (AIC and R(2. This study found a model that explains 68% (p<0.0001 of the variation in change in BMI. The model combined social interaction data, especially from acquaintances, and personal health-related information to explain change in BMI. This is the first study taking into account both interactions with different levels of social interaction and personal health-related information. Social interactions with acquaintances accounted for more than half the variation in change in BMI. This suggests the importance of not only individual health information but also the significance of social interactions with people we are exposed to, even people we may not consider as

  15. Improving predictive capabilities of environmental change with GLOBE data

    Science.gov (United States)

    Robin, Jessica Hill

    This dissertation addresses two applications of Normalized Difference Vegetation Index (NDVI) essential for predicting environmental changes. The first study focuses on whether NDVI can improve model simulations of evapotranspiration for temperate Northern (>35°) regions. The second study focuses on whether NDVI can detect phenological changes in start of season (SOS) for high Northern (>60°) environments. The overall objectives of this research were to (1) develop a methodology for utilizing GLOBE data in NDVI research; and (2) provide a critical analysis of NDVI as a long-term monitoring tool for environmental change. GLOBE is an international partnership network of K-12 students, teachers, and scientists working together to study and understand the global environment. The first study utilized data collected by one GLOBE school in Greenville, Pennsylvania and the second utilized phenology observations made by GLOBE students in Alaska. Results from the first study showed NDVI could predict transpiration periods for environments like Greenville, Pennsylvania. In phenological terms, these environments have three distinct periods (QI, QII, and QIII). QI reflects onset of the growing season (mid March--mid May) when vegetation is greening up (NDVI 0.60). Results from the second study showed that a climate threshold of 153 +/- 22 growing degree days was a better predictor of SOS for Fairbanks than a NDVI threshold applied to temporal AVHRR and MODIS datasets. Accumulated growing degree days captured the interannual variability of SOS better than the NDVI threshold and most closely resembled actual SOS observations made by GLOBE students. Overall, biweekly composites and effects of clouds, snow, and conifers limit the ability of NDVI to monitor phenological changes in Alaska. Both studies did show that GLOBE data provides an important source of input and validation information for NDVI research.

  16. Predicting Seagrass Occurrence in a Changing Climate Using Random Forests

    Science.gov (United States)

    Aydin, O.; Butler, K. A.

    2017-12-01

    Seagrasses are marine plants that can quickly sequester vast amounts of carbon (up to 100 times more and 12 times faster than tropical forests). In this work, we present an integrated GIS and machine learning approach to build a data-driven model of seagrass presence-absence. We outline a random forest approach that avoids the prevalence bias in many ecological presence-absence models. One of our goals is to predict global seagrass occurrence from a spatially limited training sample. In addition, we conduct a sensitivity study which investigates the vulnerability of seagrass to changing climate conditions. We integrate multiple data sources including fine-scale seagrass data from MarineCadastre.gov and the recently available globally extensive publicly available Ecological Marine Units (EMU) dataset. These data are used to train a model for seagrass occurrence along the U.S. coast. In situ oceans data are interpolated using Empirical Bayesian Kriging (EBK) to produce globally extensive prediction variables. A neural network is used to estimate probable future values of prediction variables such as ocean temperature to assess the impact of a warming climate on seagrass occurrence. The proposed workflow can be generalized to many presence-absence models.

  17. Use of a three dimensional network model to predict equilibrium desaturation properties of coal filter cakes

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, I.; Bayles, G.A.; Tierney, J.W.; Chiang, S.-H.; Klinzing, G.E.

    1987-01-01

    A three dimensional bond-flow correlated network model has been successfully used to calculate equilibrium desaturation curves for coal filter cakes. A simple cubic lattice with the pore sizes correlated in the direction of macroscopic flow is used as the network. A new method of pore volume assignment is presented in which the pore volume occupied by the large pores (which give rise to capillary pressures less than a calculated critical value) is assigned to the nodes and the rest is distributed to the bonds according to an experimentally determined micrographic pore size distribution. Equilibrium desaturation curves for -32 mesh, -200 mesh and -100 + 200 mesh coal cakes (Pittsburgh Seam coal), formed with distilled water have been calculated. A bond flow correlation factor, F/sub c/ is introduced to account for channeling of the displacing fluid through high volume, low resistance flow paths - a phenomenon which is displayed by many real systems. It is determined that a single value of 0.6 for F/sub c/ is required for -32 mesh and -200 mesh coals. However, for -100 + 200 mesh coal, where all small as well as large particles have been removed, a value of 1.0 is required. The results of six -32 mesh cakes formed with surfactants show that the effect of surfactants can be accounted for by modifying one of the model parameters, the entry diameter correction. A correlation is presented to estimate the modified correction using experimentally determined surface tension and contact angle values. Further, the predicted final saturations agree with the experimental values within an average absolute error of 5%. 16 refs., 11 figs., 2 tabs.

  18. Two-dimensional NMR measurement and point dipole model prediction of paramagnetic shift tensors in solids

    Energy Technology Data Exchange (ETDEWEB)

    Walder, Brennan J.; Davis, Michael C.; Grandinetti, Philip J. [Department of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210 (United States); Dey, Krishna K. [Department of Physics, Dr. H. S. Gour University, Sagar, Madhya Pradesh 470003 (India); Baltisberger, Jay H. [Division of Natural Science, Mathematics, and Nursing, Berea College, Berea, Kentucky 40403 (United States)

    2015-01-07

    A new two-dimensional Nuclear Magnetic Resonance (NMR) experiment to separate and correlate the first-order quadrupolar and chemical/paramagnetic shift interactions is described. This experiment, which we call the shifting-d echo experiment, allows a more precise determination of tensor principal components values and their relative orientation. It is designed using the recently introduced symmetry pathway concept. A comparison of the shifting-d experiment with earlier proposed methods is presented and experimentally illustrated in the case of {sup 2}H (I = 1) paramagnetic shift and quadrupolar tensors of CuCl{sub 2}⋅2D{sub 2}O. The benefits of the shifting-d echo experiment over other methods are a factor of two improvement in sensitivity and the suppression of major artifacts. From the 2D lineshape analysis of the shifting-d spectrum, the {sup 2}H quadrupolar coupling parameters are 〈C{sub q}〉 = 118.1 kHz and 〈η{sub q}〉 = 0.88, and the {sup 2}H paramagnetic shift tensor anisotropy parameters are 〈ζ{sub P}〉 = − 152.5 ppm and 〈η{sub P}〉 = 0.91. The orientation of the quadrupolar coupling principal axis system (PAS) relative to the paramagnetic shift anisotropy principal axis system is given by (α,β,γ)=((π)/2 ,(π)/2 ,0). Using a simple ligand hopping model, the tensor parameters in the absence of exchange are estimated. On the basis of this analysis, the instantaneous principal components and orientation of the quadrupolar coupling are found to be in excellent agreement with previous measurements. A new point dipole model for predicting the paramagnetic shift tensor is proposed yielding significantly better agreement than previously used models. In the new model, the dipoles are displaced from nuclei at positions associated with high electron density in the singly occupied molecular orbital predicted from ligand field theory.

  19. Quantifying and Predicting Three-Dimensional Heterogeneity in Transient Storage Using Roving Profiling

    Science.gov (United States)

    Kaplan, D. A.; Reaver, N.; Hensley, R. T.; Cohen, M. J.

    2017-12-01

    Hydraulic transport is an important component of nutrient spiraling in streams. Quantifying conservative solute transport is a prerequisite for understanding the cycling and fate of reactive solutes, such as nutrients. Numerous studies have modeled solute transport within streams using the one-dimensional advection, dispersion and storage (ADS) equation calibrated to experimental data from tracer experiments. However, there are limitations to the information about in-stream transient storage that can be derived from calibrated ADS model parameters. Transient storage (TS) in the ADS model is most often modeled as a single process, and calibrated model parameters are "lumped" values that are the best-fit representation of multiple real-world TS processes. In this study, we developed a roving profiling method to assess and predict spatial heterogeneity of in-stream TS. We performed five tracer experiments on three spring-fed rivers in Florida (USA) using Rhodamine WT. During each tracer release, stationary fluorometers were deployed to measure breakthrough curves for multiple reaches within the river. Teams of roving samplers moved along the rivers measuring tracer concentrations at various locations and depths within the reaches. A Bayesian statistical method was used to calibrate the ADS model to the stationary breakthrough curves, resulting in probability distributions for both the advective and TS zone as a function of river distance and time. Rover samples were then assigned a probability of being from either the advective or TS zone by comparing measured concentrations to the probability distributions of concentrations in the ADS advective and TS zones. A regression model was used to predict the probability of any in-stream position being located within the advective versus TS zone based on spatiotemporal predictors (time, river position, depth, and distance from bank) and eco-geomorphological feature (eddies, woody debris, benthic depressions, and aquatic

  20. Change in BMI accurately predicted by social exposure to acquaintances.

    Science.gov (United States)

    Oloritun, Rahman O; Ouarda, Taha B M J; Moturu, Sai; Madan, Anmol; Pentland, Alex Sandy; Khayal, Inas

    2013-01-01

    Research has mostly focused on obesity and not on processes of BMI change more generally, although these may be key factors that lead to obesity. Studies have suggested that obesity is affected by social ties. However these studies used survey based data collection techniques that may be biased toward select only close friends and relatives. In this study, mobile phone sensing techniques were used to routinely capture social interaction data in an undergraduate dorm. By automating the capture of social interaction data, the limitations of self-reported social exposure data are avoided. This study attempts to understand and develop a model that best describes the change in BMI using social interaction data. We evaluated a cohort of 42 college students in a co-located university dorm, automatically captured via mobile phones and survey based health-related information. We determined the most predictive variables for change in BMI using the least absolute shrinkage and selection operator (LASSO) method. The selected variables, with gender, healthy diet category, and ability to manage stress, were used to build multiple linear regression models that estimate the effect of exposure and individual factors on change in BMI. We identified the best model using Akaike Information Criterion (AIC) and R(2). This study found a model that explains 68% (pchange in BMI. The model combined social interaction data, especially from acquaintances, and personal health-related information to explain change in BMI. This is the first study taking into account both interactions with different levels of social interaction and personal health-related information. Social interactions with acquaintances accounted for more than half the variation in change in BMI. This suggests the importance of not only individual health information but also the significance of social interactions with people we are exposed to, even people we may not consider as close friends.

  1. Predicting implementation from organizational readiness for change: a study protocol

    Directory of Open Access Journals (Sweden)

    Kelly P Adam

    2011-07-01

    Full Text Available Abstract Background There is widespread interest in measuring organizational readiness to implement evidence-based practices in clinical care. However, there are a number of challenges to validating organizational measures, including inferential bias arising from the halo effect and method bias - two threats to validity that, while well-documented by organizational scholars, are often ignored in health services research. We describe a protocol to comprehensively assess the psychometric properties of a previously developed survey, the Organizational Readiness to Change Assessment. Objectives Our objective is to conduct a comprehensive assessment of the psychometric properties of the Organizational Readiness to Change Assessment incorporating methods specifically to address threats from halo effect and method bias. Methods and Design We will conduct three sets of analyses using longitudinal, secondary data from four partner projects, each testing interventions to improve the implementation of an evidence-based clinical practice. Partner projects field the Organizational Readiness to Change Assessment at baseline (n = 208 respondents; 53 facilities, and prospectively assesses the degree to which the evidence-based practice is implemented. We will conduct predictive and concurrent validities using hierarchical linear modeling and multivariate regression, respectively. For predictive validity, the outcome is the change from baseline to follow-up in the use of the evidence-based practice. We will use intra-class correlations derived from hierarchical linear models to assess inter-rater reliability. Two partner projects will also field measures of job satisfaction for convergent and discriminant validity analyses, and will field Organizational Readiness to Change Assessment measures at follow-up for concurrent validity (n = 158 respondents; 33 facilities. Convergent and discriminant validities will test associations between organizational readiness and

  2. Predicting impacts of climate change on Fasciola hepatica risk.

    Science.gov (United States)

    Fox, Naomi J; White, Piran C L; McClean, Colin J; Marion, Glenn; Evans, Andy; Hutchings, Michael R

    2011-01-10

    Fasciola hepatica (liver fluke) is a physically and economically devastating parasitic trematode whose rise in recent years has been attributed to climate change. Climate has an impact on the free-living stages of the parasite and its intermediate host Lymnaea truncatula, with the interactions between rainfall and temperature having the greatest influence on transmission efficacy. There have been a number of short term climate driven forecasts developed to predict the following season's infection risk, with the Ollerenshaw index being the most widely used. Through the synthesis of a modified Ollerenshaw index with the UKCP09 fine scale climate projection data we have developed long term seasonal risk forecasts up to 2070 at a 25 km square resolution. Additionally UKCIP gridded datasets at 5 km square resolution from 1970-2006 were used to highlight the climate-driven increase to date. The maps show unprecedented levels of future fasciolosis risk in parts of the UK, with risk of serious epidemics in Wales by 2050. The seasonal risk maps demonstrate the possible change in the timing of disease outbreaks due to increased risk from overwintering larvae. Despite an overall long term increase in all regions of the UK, spatio-temporal variation in risk levels is expected. Infection risk will reduce in some areas and fluctuate greatly in others with a predicted decrease in summer infection for parts of the UK due to restricted water availability. This forecast is the first approximation of the potential impacts of climate change on fasciolosis risk in the UK. It can be used as a basis for indicating where active disease surveillance should be targeted and where the development of improved mitigation or adaptation measures is likely to bring the greatest benefits.

  3. Predicting impacts of climate change on Fasciola hepatica risk.

    Directory of Open Access Journals (Sweden)

    Naomi J Fox

    2011-01-01

    Full Text Available Fasciola hepatica (liver fluke is a physically and economically devastating parasitic trematode whose rise in recent years has been attributed to climate change. Climate has an impact on the free-living stages of the parasite and its intermediate host Lymnaea truncatula, with the interactions between rainfall and temperature having the greatest influence on transmission efficacy. There have been a number of short term climate driven forecasts developed to predict the following season's infection risk, with the Ollerenshaw index being the most widely used. Through the synthesis of a modified Ollerenshaw index with the UKCP09 fine scale climate projection data we have developed long term seasonal risk forecasts up to 2070 at a 25 km square resolution. Additionally UKCIP gridded datasets at 5 km square resolution from 1970-2006 were used to highlight the climate-driven increase to date. The maps show unprecedented levels of future fasciolosis risk in parts of the UK, with risk of serious epidemics in Wales by 2050. The seasonal risk maps demonstrate the possible change in the timing of disease outbreaks due to increased risk from overwintering larvae. Despite an overall long term increase in all regions of the UK, spatio-temporal variation in risk levels is expected. Infection risk will reduce in some areas and fluctuate greatly in others with a predicted decrease in summer infection for parts of the UK due to restricted water availability. This forecast is the first approximation of the potential impacts of climate change on fasciolosis risk in the UK. It can be used as a basis for indicating where active disease surveillance should be targeted and where the development of improved mitigation or adaptation measures is likely to bring the greatest benefits.

  4. Cardiovascular change during encoding predicts the nonconscious mere exposure effect.

    Science.gov (United States)

    Ladd, Sandra L; Toscano, William B; Cowings, Patricia S; Gabrieli, John D E

    2014-01-01

    These studies examined memory encoding to determine whether the mere exposure effect could be categorized as a form of conceptual or perceptual implicit priming and, if it was not conceptual or perceptual, whether cardiovascular psychophysiology could reveal its nature. Experiment 1 examined the effects of study phase level of processing on recognition, the mere exposure effect, and word identification implicit priming. Deep relative to shallow processing improved recognition but did not influence the mere exposure effect for nonwords or word identification implicit priming for words. Experiments 2 and 3 examined the effect of study-test changes in font and orientation, respectively, on the mere exposure effect and word identification implicit priming. Different study-test font and orientation reduced word identification implicit priming but had no influence on the mere exposure effect. Experiments 4 and 5 developed and used, respectively, a cardiovascular psychophysiological implicit priming paradigm to examine whether stimulus-specific cardiovascular reactivity at study predicted the mere exposure effect at test. Blood volume pulse change at study was significantly greater for nonwords that were later preferred than for nonwords that were not preferred at test. There was no difference in blood volume pulse change for words at study that were later either identified or not identified at test. Fluency effects, at encoding or retrieval, are an unlikely explanation for these behavioral and cardiovascular findings. The relation of blood volume pulse to affect suggests that an affective process that is not conceptual or perceptual contributes to the mere exposure effect.

  5. Selenium deficiency risk predicted to increase under future climate change.

    Science.gov (United States)

    Jones, Gerrad D; Droz, Boris; Greve, Peter; Gottschalk, Pia; Poffet, Deyan; McGrath, Steve P; Seneviratne, Sonia I; Smith, Pete; Winkel, Lenny H E

    2017-03-14

    Deficiencies of micronutrients, including essential trace elements, affect up to 3 billion people worldwide. The dietary availability of trace elements is determined largely by their soil concentrations. Until now, the mechanisms governing soil concentrations have been evaluated in small-scale studies, which identify soil physicochemical properties as governing variables. However, global concentrations of trace elements and the factors controlling their distributions are virtually unknown. We used 33,241 soil data points to model recent (1980-1999) global distributions of Selenium (Se), an essential trace element that is required for humans. Worldwide, up to one in seven people have been estimated to have low dietary Se intake. Contrary to small-scale studies, soil Se concentrations were dominated by climate-soil interactions. Using moderate climate-change scenarios for 2080-2099, we predicted that changes in climate and soil organic carbon content will lead to overall decreased soil Se concentrations, particularly in agricultural areas; these decreases could increase the prevalence of Se deficiency. The importance of climate-soil interactions to Se distributions suggests that other trace elements with similar retention mechanisms will be similarly affected by climate change.

  6. Predicting effects of environmental change on river inflows to ...

    Science.gov (United States)

    Estuarine river watersheds provide valued ecosystem services to their surrounding communities including drinking water, fish habitat, and regulation of estuarine water quality. However, the provisioning of these services can be affected by changes in the quantity and quality of river water, such as those caused by altered landscapes or shifting temperatures or precipitation. We used the ecohydrology model, VELMA, in the Trask River watershed to simulate the effects of environmental change scenarios on estuarine river inputs to Tillamook Bay (OR) estuary. The Trask River watershed is 453 km2 and contains extensive agriculture, silviculture, urban, and wetland areas. VELMA was parameterized using existing spatial datasets of elevation, soil type, land use, air temperature, precipitation, river flow, and water quality. Simulated land use change scenarios included alterations in the distribution of the nitrogen-fixing tree species Alnus rubra, and comparisons of varying timber harvest plans. Scenarios involving spatial and temporal shifts in air temperature and precipitation trends were also simulated. Our research demonstrates the utility of ecohydrology models such as VELMA to aid in watershed management decision-making. Model outputs of river water flow, temperature, and nutrient concentrations can be used to predict effects on drinking water quality, salmonid populations, and estuarine water quality. This modeling effort is part of a larger framework of

  7. Observations on dimensional changes of sized canvas based on glue temperature

    DEFF Research Database (Denmark)

    Krarup Andersen, Cecil

    2008-01-01

    The aim of this study was to explore dimensional changes caused by water on sized canvas. Samples of new linen canvas were mounted on a rig for biaxial tensioning, holding a constant stress of 100 N/m in both weave directions. The samples were then sized with respectively warm fluent glue (45 °C......) or a cold gel (20 °C), both consisting of a 5 percent sheepskin glue extracted from parchment clippings. The warm glue was absorbed into the canvas structure, whereas the cold gel mostly stayed as a discrete layer on the canvas. Twice the amount of glue was therefore needed for the warm sizing. When...... of size layers during application is important to the dimensional reaction of a canvas painting that is exposed to water....

  8. Three dimensional force prediction in a model linear brushless dc motor

    Energy Technology Data Exchange (ETDEWEB)

    Moghani, J.S.; Eastham, J.F.; Akmese, R.; Hill-Cottingham, R.J. (Univ. of Bath (United Kingdom). School of Electronic and Electric Engineering)

    1994-11-01

    Practical results are presented for the three axes forces produced on the primary of a linear brushless dc machine which is supplied from a three-phase delta-modulated inverter. Conditions of both lateral alignment and lateral displacement are considered. Finite element analysis using both two and three dimensional modeling is compared with the practical results. It is shown that a modified two dimensional model is adequate, where it can be used, in the aligned position and that the full three dimensional method gives good results when the machine is axially misaligned.

  9. Predicted Mobility Edges in One-Dimensional Incommensurate Optical Lattices: An Exactly Solvable Model of Anderson Localization

    International Nuclear Information System (INIS)

    Biddle, J.; Das Sarma, S.

    2010-01-01

    Localization properties of noninteracting quantum particles in one-dimensional incommensurate lattices are investigated with an exponential short-range hopping that is beyond the minimal nearest-neighbor tight-binding model. Energy dependent mobility edges are analytically predicted in this model and verified with numerical calculations. The results are then mapped to the continuum Schroedinger equation, and an approximate analytical expression for the localization phase diagram and the energy dependent mobility edges in the ground band is obtained.

  10. Predictive zero-dimensional combustion model for DI diesel engine feed-forward control

    International Nuclear Information System (INIS)

    Catania, Andrea Emilio; Finesso, Roberto; Spessa, Ezio

    2011-01-01

    Highlights: → Zero-dimensional low-throughput combustion model for real-time control in diesel engine applications. → Feed-forward control of MFB50, p max and IMEP in both conventional and PCCI combustion modes. → Capability of resolving the contribution to HRR of each injection pulse in multiple injection schedule. → Ignition delay and model parameters estimated through physically consistent and easy-to-tune correlations. - Abstract: An innovative zero-dimensional predictive combustion model has been developed for the estimation of HRR (heat release rate) and in-cylinder pressure traces. This model has been assessed and applied to conventional and PCCI (premixed charge compression ignition) DI diesel engines for model-based feed-forward control purposes. The injection rate profile is calculated on the basis of the injected fuel quantities and on the injection parameters, such as SOI (start of injection), ET (energizing time), and DT (dwell time), taking the injector NOD (nozzle opening delay) and NCD (nozzle closure delay) into account. The injection rate profile in turn allows the released chemical energy Q ch to be estimated. The approach starts from the assumption that, at each time instant, the HRR is proportional to the energy associated with the accumulated fuel mass in the combustion chamber. The main novelties of the proposed approach consist of the method that is adopted to estimate the fuel ignition delay and of injection rate splitting for HRR estimation. The procedure allows an accurate calculation to be made of the different combustion parameters that are important for engine calibration, such as SOC (start of combustion) and MFB50 (50% of fuel mass fraction burned angle). On the basis of an estimation of the fuel released chemical energy, of the heat globally exchanged from the charge with the walls and of the energy associated with the fuel evaporation, the charge net energy is calculated, for a subsequent evaluation of the in

  11. Predictive zero-dimensional combustion model for DI diesel engine feed-forward control

    Energy Technology Data Exchange (ETDEWEB)

    Catania, Andrea Emilio; Finesso, Roberto [IC Engines Advanced Laboratory, Politecnico di Torino, c.so Duca degli Abruzzi 24, 10129 Torino (Italy); Spessa, Ezio, E-mail: ezio.spessa@polito.it [IC Engines Advanced Laboratory, Politecnico di Torino, c.so Duca degli Abruzzi 24, 10129 Torino (Italy)

    2011-09-15

    Highlights: {yields} Zero-dimensional low-throughput combustion model for real-time control in diesel engine applications. {yields} Feed-forward control of MFB50, p{sub max} and IMEP in both conventional and PCCI combustion modes. {yields} Capability of resolving the contribution to HRR of each injection pulse in multiple injection schedule. {yields} Ignition delay and model parameters estimated through physically consistent and easy-to-tune correlations. - Abstract: An innovative zero-dimensional predictive combustion model has been developed for the estimation of HRR (heat release rate) and in-cylinder pressure traces. This model has been assessed and applied to conventional and PCCI (premixed charge compression ignition) DI diesel engines for model-based feed-forward control purposes. The injection rate profile is calculated on the basis of the injected fuel quantities and on the injection parameters, such as SOI (start of injection), ET (energizing time), and DT (dwell time), taking the injector NOD (nozzle opening delay) and NCD (nozzle closure delay) into account. The injection rate profile in turn allows the released chemical energy Q{sub ch} to be estimated. The approach starts from the assumption that, at each time instant, the HRR is proportional to the energy associated with the accumulated fuel mass in the combustion chamber. The main novelties of the proposed approach consist of the method that is adopted to estimate the fuel ignition delay and of injection rate splitting for HRR estimation. The procedure allows an accurate calculation to be made of the different combustion parameters that are important for engine calibration, such as SOC (start of combustion) and MFB50 (50% of fuel mass fraction burned angle). On the basis of an estimation of the fuel released chemical energy, of the heat globally exchanged from the charge with the walls and of the energy associated with the fuel evaporation, the charge net energy is calculated, for a subsequent

  12. Climate change and predicting soil loss from rainfall

    Science.gov (United States)

    Kinnell, Peter

    2017-04-01

    Conceptually, rainfall has a certain capacity to cause soil loss from an eroding area while soil surfaces have a certain resistance to being eroded by rainfall. The terms "rainfall erosivity' and "soil erodibility" are frequently used to encapsulate the concept and in the Revised Universal Soil Loss Equation (RUSLE), the most widely used soil loss prediction equation in the world, average annual values of the R "erosivity" factor and the K "erodibility" factor provide a basis for accounting for variation in rainfall erosion associated with geographic variations of climate and soils. In many applications of RUSLE, R and K are considered to be independent but in reality they are not. In RUSLE2, provision has been made to take account of the fact that K values determined using soil physical factors have to be adjusted for variations in climate because runoff is not directly included as a factor in determining R. Also, the USLE event erosivity index EI30 is better related to accounting for event sediment concentration than event soil loss. While the USLE-M, a modification of the USLE which includes runoff as a factor in determining the event erosivity index provides better estimates of event soil loss when event runoff is known, runoff prediction provides a challenge to modelling event soil loss as climate changes

  13. Prediction of inorganic superconductors with quasi-one-dimensional crystal structure

    International Nuclear Information System (INIS)

    Volkova, L M; Marinin, D V

    2013-01-01

    Models of superconductors having a quasi-one-dimensional crystal structure based on the convoluted into a tube Ginzburg sandwich, which comprises a layered dielectric–metal–dielectric structure, have been suggested. The critical crystal chemistry parameters of the Ginzburg sandwich determining the possibility of the emergence of superconductivity and the T c value in layered high-T c cuprates, which could have the same functions in quasi-one-dimensional fragments (sandwich-type tubes), have been examined. The crystal structures of known low-temperature superconductors, in which one can mark out similar quasi-one-dimensional fragments, have been analyzed. Five compounds with quasi-one-dimensional structures, which can be considered as potential parents of new superconductor families, possibly with high transition temperatures, have been suggested. The methods of doping and modification of these compounds are provided. (paper)

  14. THE INFRARED PROPERTIES OF EMBEDDED SUPER STAR CLUSTERS: PREDICTIONS FROM THREE-DIMENSIONAL RADIATIVE TRANSFER MODELS

    International Nuclear Information System (INIS)

    Whelan, David G.; Johnson, Kelsey E.; Indebetouw, Remy; Whitney, Barbara A.; Wood, Kenneth

    2011-01-01

    With high-resolution infrared data becoming available that can probe the formation of high-mass stellar clusters for the first time, appropriate models that make testable predictions of these objects are necessary. We utilize a three-dimensional radiative transfer code, including a hierarchically clumped dusty envelope, to study the earliest stages of super star cluster (SSC) evolution. We explore a range of parameter space in geometric sequences that mimic the hypothesized evolution of an embedded SSC. The inclusion of a hierarchically clumped medium can make the envelope porous, in accordance with previous models and supporting observational evidence. The infrared luminosity inferred from observations can differ by a factor of two from the true value in the clumpiest envelopes depending on the viewing angle. The infrared spectral energy distribution also varies with viewing angle for clumpy envelopes, creating a range in possible observable infrared colors and magnitudes, silicate feature depths, and dust continua. General observable features of cluster evolution differ between envelopes that are relatively opaque or transparent to mid-infrared photons. For optically thick envelopes, evolution is marked by a gradual decline of the 9.8 μm silicate absorption feature depth and a corresponding increase in the visual/ultraviolet flux. For the optically thin envelopes, clusters typically begin with a strong hot dust component and silicates in emission, and these features gradually fade until the mid-infrared polycyclic aromatic hydrocarbon features are predominant. For the models with a smooth dust distribution, the Spitzer MIPS or Herschel PACS [70]-[160] color is a good probe of the stellar mass relative to the total mass or star formation efficiency (SFE). Likewise, the IRAC/MIPS [3.6]-[24] color can be used to constrain the R in and R out values of the envelope. However, clumpiness confuses the general trends seen in the smooth dust distribution models, making it

  15. Prediction of DVH parameter changes due to setup errors for breast cancer treatment based on 2D portal dosimetry

    International Nuclear Information System (INIS)

    Nijsten, S. M. J. J. G.; Elmpt, W. J. C. van; Mijnheer, B. J.; Minken, A. W. H.; Persoon, L. C. G. G.; Lambin, P.; Dekker, A. L. A. J.

    2009-01-01

    Electronic portal imaging devices (EPIDs) are increasingly used for portal dosimetry applications. In our department, EPIDs are clinically used for two-dimensional (2D) transit dosimetry. Predicted and measured portal dose images are compared to detect dose delivery errors caused for instance by setup errors or organ motion. The aim of this work is to develop a model to predict dose-volume histogram (DVH) changes due to setup errors during breast cancer treatment using 2D transit dosimetry. First, correlations between DVH parameter changes and 2D gamma parameters are investigated for different simulated setup errors, which are described by a binomial logistic regression model. The model calculates the probability that a DVH parameter changes more than a specific tolerance level and uses several gamma evaluation parameters for the planning target volume (PTV) projection in the EPID plane as input. Second, the predictive model is applied to clinically measured portal images. Predicted DVH parameter changes are compared to calculated DVH parameter changes using the measured setup error resulting from a dosimetric registration procedure. Statistical accuracy is investigated by using receiver operating characteristic (ROC) curves and values for the area under the curve (AUC), sensitivity, specificity, positive and negative predictive values. Changes in the mean PTV dose larger than 5%, and changes in V 90 and V 95 larger than 10% are accurately predicted based on a set of 2D gamma parameters. Most pronounced changes in the three DVH parameters are found for setup errors in the lateral-medial direction. AUC, sensitivity, specificity, and negative predictive values were between 85% and 100% while the positive predictive values were lower but still higher than 54%. Clinical predictive value is decreased due to the occurrence of patient rotations or breast deformations during treatment, but the overall reliability of the predictive model remains high. Based on our

  16. A GIS tool for two-dimensional glacier-terminus change tracking

    Science.gov (United States)

    Urbanski, Jacek Andrzej

    2018-02-01

    This paper presents a Glacier Termini Tracking (GTT) toolbox for the two-dimensional analysis of glacier-terminus position changes. The input consists of a vector layer with several termini lines relating to the same glacier at different times. The output layers allow analyses to be conducted of glacier-terminus retreats, changes in retreats over time and along the ice face, and glacier-terminus fluctuations over time. The application of three tools from the toolbox is demonstrated via the analysis of eight glacier-terminus retreats and fluctuations at the Hornsund fjord in south Svalbard. It is proposed that this toolbox may also be useful in the study of other line features that change over time, like coastlines and rivers. The toolbox has been coded in Python and runs via ArcGIS.

  17. Influence of predicted climage change elements on Z. ...

    Science.gov (United States)

    Global climate change (GCC) is expected to have pronounced impacts on estuarine and marine habitats including sea level rise, increased storm intensity, increased air and water temperatures, changes in upwelling dynamics and ocean acidification. All of these elements are likely to impact the growth and potential distribution of the non-indigenous seagrass Zostera japonica both within the State of Washington and within the region. Understanding how Z. japonica will respond to GCC requires a thorough understanding of plant physiology and predictions of GCC effects. Furthermore, Washington State is proposing to list Z. japonica as a “noxious weed” which will allow the state to use herbicide controls for management. We present data from manipulative experiments designed to better understand how Z. japonica photosynthetic physiology responds to temperature, salinity and light. We found that Z. japonica is well adapted to moderate temperatures and salinity with maximum photosynthesis of salinity of 20. The Coos Bay population had greater Pmax and saturation irradiance (Ik) than the Padilla bay population (p < 0.001) and tolerates daily exposure to both freshwater and marine water, suggesting that this population tolerates fairly extreme environmental fluctuations. Extreme temperatures (35 °C) were generally lethal to Z. japonica populations from Padilla, Coos and Yaquina Bays. High salinity (35) had lower mortality than either salinity of 5 or 20 (p = 0.0

  18. The anatomy of the aging face: volume loss and changes in 3-dimensional topography.

    Science.gov (United States)

    Coleman, Sydney R; Grover, Rajiv

    2006-01-01

    Facial aging reflects the dynamic, cumulative effects of time on the skin, soft tissues, and deep structural components of the face, and is a complex synergy of skin textural changes and loss of facial volume. Many of the facial manifestations of aging reflect the combined effects of gravity, progressive bone resorption, decreased tissue elasticity, and redistribution of subcutaneous fullness. A convenient method for assessing the morphological effects of aging is to divide the face into the upper third (forehead and brows), middle third (midface and nose), and lower third (chin, jawline, and neck). The midface is an important factor in facial aesthetics because perceptions of facial attractiveness are largely founded on the synergy of the eyes, nose, lips, and cheek bones (central facial triangle). For aesthetic purposes, this area should be considered from a 3-dimensional rather than a 2-dimensional perspective, and restoration of a youthful 3-dimensional facial topography should be regarded as the primary goal in facial rejuvenation. Recent years have seen a significant increase in the number of nonsurgical procedures performed for facial rejuvenation. Patients seeking alternatives to surgical procedures include those who require restoration of lost facial volume, those who wish to enhance normal facial features, and those who want to correct facial asymmetry. Important factors in selecting a nonsurgical treatment option include the advantages of an immediate cosmetic result and a short recovery time.

  19. Heat transfer of phase-change materials in two-dimensional cylindrical coordinates

    Science.gov (United States)

    Labdon, M. B.; Guceri, S. I.

    1981-01-01

    Two-dimensional phase-change problem is numerically solved in cylindrical coordinates (r and z) by utilizing two Taylor series expansions for the temperature distributions in the neighborhood of the interface location. These two expansions form two polynomials in r and z directions. For the regions sufficiently away from the interface the temperature field equations are numerically solved in the usual way and the results are coupled with the polynomials. The main advantages of this efficient approach include ability to accept arbitrarily time dependent boundary conditions of all types and arbitrarily specified initial temperature distributions. A modified approach using a single Taylor series expansion in two variables is also suggested.

  20. Three dimensional changes in maxillary complete dentures immersed in water for seven days after polymerization

    Directory of Open Access Journals (Sweden)

    Shinsuke Sadamori

    2008-03-01

    Full Text Available The purpose of this study was to investigate the three dimensional changes in the fitting surface and artificial teeth of maxillary complete dentures which were fabricated using two different polymerizing processes: heat polymerization (HP and microwave polymerization (MP, after immersion in water for seven days. The amount of distortion in the molar region of the alveolar ridge was significantly different between HP and MP. However, the overall distortion of the dentures polymerized using both methods was similar. The distortion due to immersion in water for seven days compensated for the polymerization distortion, but the amount of distortion was very slight.

  1. Interrelated Dimensional Chains in Predicting Accuracy of Turbine Wheel Assembly Parameters

    Science.gov (United States)

    Yanyukina, M. V.; Bolotov, M. A.; Ruzanov, N. V.

    2018-03-01

    The working capacity of any device primarily depends on the assembly accuracy which, in its turn, is determined by the quality of each part manufactured, i.e., the degree of conformity between final geometrical parameters and the set ones. However, the assembly accuracy depends not only on a qualitative manufacturing process but also on the assembly process correctness. In this connection, there were preliminary calculations of assembly stages in terms of conformity to real geometrical parameters with their permissible values. This task is performed by means of the calculation of dimensional chains. The calculation of interrelated dimensional chains in the aircraft industry requires particular attention. The article considers the issues of dimensional chain calculation modelling by the example of the turbine wheel assembly process. The authors described the solution algorithm in terms of mathematical statistics implemented in Matlab. The paper demonstrated the results of a dimensional chain calculation for a turbine wheel in relation to the draw of turbine blades to the shroud ring diameter. Besides, the article provides the information on the influence of a geometrical parameter tolerance for the dimensional chain link elements on a closing one.

  2. Emotion dysregulation and social competence: stability, change and predictive power.

    Science.gov (United States)

    Berkovits, L D; Baker, B L

    2014-08-01

    Social difficulties are closely linked to emotion dysregulation among children with typical development (TD). Children with developmental delays (DD) are at risk for poor social outcomes, but the relationship between social and emotional development within this population is not well understood. The current study examines the extent to which emotion dysregulation is related to social problems across middle childhood among children with TD or DD. Children with TD (IQ ≥ 85, n = 113) and children with DD (IQ ≤ 75, n = 61) participated in a longitudinal study. Annual assessments were completed at ages 7, 8 and 9 years. At each assessment, mothers reported on children's emotion dysregulation, and both mothers and teachers reported on children's social difficulties. Children with DD had higher levels of emotion dysregulation and social problems at each age than those with TD. Emotion dysregulation and social problems were significantly positively correlated within both TD and DD groups using mother report of social problems, and within the TD group using teacher report of social problems. Among children with TD, emotion dysregulation consistently predicted change in social problems from one year to the next. However, among children with DD, emotion dysregulation offered no unique prediction value above and beyond current social problems. Results suggested that the influence of emotion regulation abilities on social development may be a less salient pathway for children with DD. These children may have more influences, beyond emotion regulation, on their social behaviour, highlighting the importance of directly targeting social skill deficits among children with DD in order to ameliorate their social difficulties. © 2013 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.

  3. Three dimensional assessment of condylar surface changes and remodeling after orthognathic surgery

    International Nuclear Information System (INIS)

    Lee, Jung Hye; Lee, Jin Woo; Huh, Kyung Hoe; Yi, Won Jin; Heo, Min Suk; Lee, Sam Sun; Choi, Soon Chul; Shin, Jae Myung

    2016-01-01

    This study was performed to evaluate condylar surface changes and remodeling after orthognathic surgery using three-dimensional computed tomography (3D CT) imaging, including comparisons between the right and left sides and between the sexes. Forty patients (20 males and 20 females) who underwent multi-detector CT examinations before and after surgery were selected. Three-dimensional images comprising thousands of points on the condylar surface were obtained before and after surgery. For the quantitative assessment of condylar surface changes, point-to-point (preoperative-to-postoperative) distances were calculated using D processing software. These point-to-point distances were converted to a color map. In order to evaluate the types of condylar remodeling, the condylar head was divided into six areas (anteromedial, anteromiddle, anterolateral, posteromedial, posteromiddle, and posterolateral areas) and each area was classified into three types of condylar remodeling (bone formation, no change, and bone resorption) based on the color map. Additionally, comparative analyses were performed between the right and left sides and according to sex. The mean of the average point-to-point distances on condylar surface was 0.11±0.03 mm. Bone resorption occurred more frequently than other types of condylar remodeling, especially in the lateral areas. However, bone formation in the anteromedial area was particularly prominent. No significant difference was found between the right and left condyles, but condylar surface changes in males were significantly larger than in females. This study revealed that condylar remodeling exhibited a tendency towards bone resorption, especially in the lateral areas. Condylar surface changes occurred, but were small

  4. Three dimensional assessment of condylar surface changes and remodeling after orthognathic surgery

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Hye; Lee, Jin Woo; Huh, Kyung Hoe; Yi, Won Jin; Heo, Min Suk; Lee, Sam Sun; Choi, Soon Chul [Dental Research Institute, Seoul National University, Seoul (Korea, Republic of); Shin, Jae Myung [Dept. of Oral and Maxillofacial Surgery, Ilsan Paik Hospital, Inje University College of Medicine, Goyang (Korea, Republic of)

    2016-03-15

    This study was performed to evaluate condylar surface changes and remodeling after orthognathic surgery using three-dimensional computed tomography (3D CT) imaging, including comparisons between the right and left sides and between the sexes. Forty patients (20 males and 20 females) who underwent multi-detector CT examinations before and after surgery were selected. Three-dimensional images comprising thousands of points on the condylar surface were obtained before and after surgery. For the quantitative assessment of condylar surface changes, point-to-point (preoperative-to-postoperative) distances were calculated using D processing software. These point-to-point distances were converted to a color map. In order to evaluate the types of condylar remodeling, the condylar head was divided into six areas (anteromedial, anteromiddle, anterolateral, posteromedial, posteromiddle, and posterolateral areas) and each area was classified into three types of condylar remodeling (bone formation, no change, and bone resorption) based on the color map. Additionally, comparative analyses were performed between the right and left sides and according to sex. The mean of the average point-to-point distances on condylar surface was 0.11±0.03 mm. Bone resorption occurred more frequently than other types of condylar remodeling, especially in the lateral areas. However, bone formation in the anteromedial area was particularly prominent. No significant difference was found between the right and left condyles, but condylar surface changes in males were significantly larger than in females. This study revealed that condylar remodeling exhibited a tendency towards bone resorption, especially in the lateral areas. Condylar surface changes occurred, but were small.

  5. Performance of a process-based hydrodynamic model in predicting shoreline change

    Science.gov (United States)

    Safak, I.; Warner, J. C.; List, J. H.

    2012-12-01

    Shoreline change is controlled by a complex combination of processes that include waves, currents, sediment characteristics and availability, geologic framework, human interventions, and sea level rise. A comprehensive data set of shoreline position (14 shorelines between 1978-2002) along the continuous and relatively non-interrupted North Carolina Coast from Oregon Inlet to Cape Hatteras (65 km) reveals a spatial pattern of alternating erosion and accretion, with an erosional average shoreline change rate of -1.6 m/yr and up to -8 m/yr in some locations. This data set gives a unique opportunity to study long-term shoreline change in an area hit by frequent storm events while relatively uninfluenced by human interventions and the effects of tidal inlets. Accurate predictions of long-term shoreline change may require a model that accurately resolves surf zone processes and sediment transport patterns. Conventional methods for predicting shoreline change such as one-line models and regression of shoreline positions have been designed for computational efficiency. These methods, however, not only have several underlying restrictions (validity for small angle of wave approach, assuming bottom contours and shoreline to be parallel, depth of closure, etc.) but also their empirical estimates of sediment transport rates in the surf zone have been shown to vary greatly from the calculations of process-based hydrodynamic models. We focus on hind-casting long-term shoreline change using components of the process-based, three-dimensional coupled-ocean-atmosphere-wave-sediment transport modeling system (COAWST). COAWST is forced with historical predictions of atmospheric and oceanographic data from public-domain global models. Through a method of coupled concurrent grid-refinement approach in COAWST, the finest grid with resolution of O(10 m) that covers the surf zone along the section of interest is forced at its spatial boundaries with waves and currents computed on the grids

  6. Low-dimensionality and predictability of solar wind and global magnetosphere during magnetic storms

    OpenAIRE

    Zivkovic, Tatjana; Rypdal, Kristoffer

    2011-01-01

    This article is part of Tatjana Živkovics' doctoral thesis. Available in Munin at http://hdl.handle.net/10037/3231 The storm index SYM-H, the solar wind velocity v, and interplanetary magnetic field Bz show no signatures of low-dimensional dynamics in quiet periods, but tests for determinism in the time series indicate that SYM-H exhibits a significant low-dimensional component during storm time, suggesting that self-organization takes place during magnetic storms. Even though our analysis...

  7. Performance prediction of centrifugal compressor impellers using quasi-three-dimensional analysis

    International Nuclear Information System (INIS)

    Ahn, S. J.; Kim, K. Y.; Oh, H. W.

    2001-01-01

    This-paper presents analysis of the flows through three different types of radial compressor by using quasi-three-dimensional analysis method. The method obtains two-dimensional solution for velocity distribution on meridional plane, and then calculates approximately the static pressure distributions on blade surfaces. Finite difference method is used for the solutions of governing equations. The compressors have low level compression-ratio and 12 straight radial blades with no sweepback. The results are compared with experimental data and the results of inviscid analysis with finite element method. It can be concluded that the agreement is good for the cases where viscous effects are not dominant

  8. Predicting typhoon-induced storm surge tide with a two-dimensional hydrodynamic model and artificial neural network model

    Science.gov (United States)

    Chen, W.-B.; Liu, W.-C.; Hsu, M.-H.

    2012-12-01

    Precise predictions of storm surges during typhoon events have the necessity for disaster prevention in coastal seas. This paper explores an artificial neural network (ANN) model, including the back propagation neural network (BPNN) and adaptive neuro-fuzzy inference system (ANFIS) algorithms used to correct poor calculations with a two-dimensional hydrodynamic model in predicting storm surge height during typhoon events. The two-dimensional model has a fine horizontal resolution and considers the interaction between storm surges and astronomical tides, which can be applied for describing the complicated physical properties of storm surges along the east coast of Taiwan. The model is driven by the tidal elevation at the open boundaries using a global ocean tidal model and is forced by the meteorological conditions using a cyclone model. The simulated results of the hydrodynamic model indicate that this model fails to predict storm surge height during the model calibration and verification phases as typhoons approached the east coast of Taiwan. The BPNN model can reproduce the astronomical tide level but fails to modify the prediction of the storm surge tide level. The ANFIS model satisfactorily predicts both the astronomical tide level and the storm surge height during the training and verification phases and exhibits the lowest values of mean absolute error and root-mean-square error compared to the simulated results at the different stations using the hydrodynamic model and the BPNN model. Comparison results showed that the ANFIS techniques could be successfully applied in predicting water levels along the east coastal of Taiwan during typhoon events.

  9. Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems

    KAUST Repository

    Cheng, Yingchun; Guo, Z. B.; Mi, W. B.; Schwingenschlö gl, Udo; Zhu, Zhiyong

    2013-01-01

    Using first-principles calculations, we propose a two-dimensional diluted magnetic semiconductor: monolayer MoS2 doped by transition metals. Doping of transition metal atoms from the IIIB to VIB groups results in nonmagnetic states, since the number

  10. Effects of bathymetric lidar errors on flow properties predicted with a multi-dimensional hydraulic model

    Science.gov (United States)

    J. McKean; D. Tonina; C. Bohn; C. W. Wright

    2014-01-01

    New remote sensing technologies and improved computer performance now allow numerical flow modeling over large stream domains. However, there has been limited testing of whether channel topography can be remotely mapped with accuracy necessary for such modeling. We assessed the ability of the Experimental Advanced Airborne Research Lidar, to support a multi-dimensional...

  11. Integrated model for predicting rice yield with climate change

    Science.gov (United States)

    Park, Jin-Ki; Das, Amrita; Park, Jong-Hwa

    2018-04-01

    Rice is the chief agricultural product and one of the primary food source. For this reason, it is of pivotal importance for worldwide economy and development. Therefore, in a decision-support-system both for the farmers and in the planning and management of the country's economy, forecasting yield is vital. However, crop yield, which is a dependent of the soil-bio-atmospheric system, is difficult to represent in statistical language. This paper describes a novel approach for predicting rice yield using artificial neural network, spatial interpolation, remote sensing and GIS methods. Herein, the variation in the yield is attributed to climatic parameters and crop health, and the normalized difference vegetation index from MODIS is used as an indicator of plant health and growth. Due importance was given to scaling up the input parameters using spatial interpolation and GIS and minimising the sources of error in every step of the modelling. The low percentage error (2.91) and high correlation (0.76) signifies the robust performance of the proposed model. This simple but effective approach is then used to estimate the influence of climate change on South Korean rice production. As proposed in the RCP8.5 scenario, an upswing in temperature may increase the rice yield throughout South Korea.

  12. Integration of meanline and one-dimensional methods for prediction of pulsating performance of a turbocharger turbine

    International Nuclear Information System (INIS)

    Chiong, M.S.; Rajoo, S.; Romagnoli, A.; Costall, A.W.; Martinez-Botas, R.F.

    2014-01-01

    Highlights: • Unsteady turbine performance prediction by integrating the 1-D and meanline models. • The optimum discretization length/diameter ratio is identified. • No improvement is gained by increasing the number of rotor entries. • The predicted instantaneous mass flow and output power are analysed in detail. - Abstract: Stringent emission regulations are driving engine manufacturers to increase investment into enabling technologies to achieve better specific fuel consumption, thermal efficiency and most importantly carbon reduction. Engine downsizing is seen as a key enabler to successfully achieve all of these requirements. Boosting through turbocharging is widely regarded as one of the most promising technologies for engine downsizing. However, the wide range of engine speeds and loads requires enhanced quality of engine-turbocharger matching, compared to the conventional approach which considers only the full load condition. Thus, development of computational models capable of predicting the unsteady behaviour of a turbocharger turbine is crucial to the overall matching process. A purely one-dimensional (1D) turbine model is capable of good unsteady swallowing capacity predictions, however it has not been fully exploited to predict instantaneous turbine power. On the contrary, meanline models (zero-dimensional) are regarded as a good tool to determine turbine efficiency in steady state but they do not include any information about the pressure wave action occurring within the turbine. This paper explores an alternative methodology to predict instantaneous turbine power and swallowing capacity by integrating one-dimensional and meanline models. A single entry mixed-flow turbine is modelled using a 1D gas dynamic code to solve the unsteady flow state in the volute, consequently used as the input for a meanline model to evaluate the instantaneous turbine power. The key in the effectiveness of this methodology relies on the synchronisation of the flow

  13. Knowledge-based prediction of three-dimensional dose distributions for external beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, Satomi; Moore, Kevin L., E-mail: kevinmoore@ucsd.edu [Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California 92093 (United States)

    2016-01-15

    Purpose: To demonstrate knowledge-based 3D dose prediction for external beam radiotherapy. Methods: Using previously treated plans as training data, an artificial neural network (ANN) was trained to predict a dose matrix based on patient-specific geometric and planning parameters, such as the closest distance (r) to planning target volume (PTV) and organ-at-risks (OARs). Twenty-three prostate and 43 stereotactic radiosurgery/radiotherapy (SRS/SRT) cases with at least one nearby OAR were studied. All were planned with volumetric-modulated arc therapy to prescription doses of 81 Gy for prostate and 12–30 Gy for SRS. Using these clinically approved plans, ANNs were trained to predict dose matrix and the predictive accuracy was evaluated using the dose difference between the clinical plan and prediction, δD = D{sub clin} − D{sub pred}. The mean (〈δD{sub r}〉), standard deviation (σ{sub δD{sub r}}), and their interquartile range (IQR) for the training plans were evaluated at a 2–3 mm interval from the PTV boundary (r{sub PTV}) to assess prediction bias and precision. Initially, unfiltered models which were trained using all plans in the cohorts were created for each treatment site. The models predict approximately the average quality of OAR sparing. Emphasizing a subset of plans that exhibited superior to the average OAR sparing during training, refined models were created to predict high-quality rectum sparing for prostate and brainstem sparing for SRS. Using the refined model, potentially suboptimal plans were identified where the model predicted further sparing of the OARs was achievable. Replans were performed to test if the OAR sparing could be improved as predicted by the model. Results: The refined models demonstrated highly accurate dose distribution prediction. For prostate cases, the average prediction bias for all voxels irrespective of organ delineation ranged from −1% to 0% with maximum IQR of 3% over r{sub PTV} ∈ [ − 6, 30] mm. The

  14. Knowledge-based prediction of three-dimensional dose distributions for external beam radiotherapy

    International Nuclear Information System (INIS)

    Shiraishi, Satomi; Moore, Kevin L.

    2016-01-01

    Purpose: To demonstrate knowledge-based 3D dose prediction for external beam radiotherapy. Methods: Using previously treated plans as training data, an artificial neural network (ANN) was trained to predict a dose matrix based on patient-specific geometric and planning parameters, such as the closest distance (r) to planning target volume (PTV) and organ-at-risks (OARs). Twenty-three prostate and 43 stereotactic radiosurgery/radiotherapy (SRS/SRT) cases with at least one nearby OAR were studied. All were planned with volumetric-modulated arc therapy to prescription doses of 81 Gy for prostate and 12–30 Gy for SRS. Using these clinically approved plans, ANNs were trained to predict dose matrix and the predictive accuracy was evaluated using the dose difference between the clinical plan and prediction, δD = D clin − D pred . The mean (〈δD r 〉), standard deviation (σ δD r ), and their interquartile range (IQR) for the training plans were evaluated at a 2–3 mm interval from the PTV boundary (r PTV ) to assess prediction bias and precision. Initially, unfiltered models which were trained using all plans in the cohorts were created for each treatment site. The models predict approximately the average quality of OAR sparing. Emphasizing a subset of plans that exhibited superior to the average OAR sparing during training, refined models were created to predict high-quality rectum sparing for prostate and brainstem sparing for SRS. Using the refined model, potentially suboptimal plans were identified where the model predicted further sparing of the OARs was achievable. Replans were performed to test if the OAR sparing could be improved as predicted by the model. Results: The refined models demonstrated highly accurate dose distribution prediction. For prostate cases, the average prediction bias for all voxels irrespective of organ delineation ranged from −1% to 0% with maximum IQR of 3% over r PTV ∈ [ − 6, 30] mm. The average prediction error was less

  15. A framework for predicting three-dimensional prostate deformation in real time

    NARCIS (Netherlands)

    Jahya, Alex; Herink, Mark; Misra, Sarthak

    2013-01-01

    Background Surgical simulation systems can be used to estimate soft tissue deformation during pre- and intra-operative planning. Such systems require a model that can accurately predict the deformation in real time. In this study, we present a back-propagation neural network for predicting

  16. Fourth-dimensional changes in nasolabial dimensions following rotation-advancement repair of unilateral cleft lip.

    Science.gov (United States)

    Mulliken, John B; LaBrie, Richard A

    2012-02-01

    Repair of unilateral cleft lip requires three-dimensional craftsmanship and understanding four-dimensional changes. Ninety-nine children with unilateral complete or incomplete cleft lip were measured by direct anthropometry following rotation-advancement repair (intraoperatively) and again in childhood. Changes in heminasal width, labial height, and labial width were analyzed and compared measures depending on whether the cleft was incomplete/complete or involved left/right side. Average heminasal width (sn-al) was set 1 mm less on the cleft side and measured only 0.7 mm less at 6 years. Labial height (sn-cphi) was slightly greater on the cleft side at repair and matched the noncleft side at follow-up. Vertical dimension (sbal-cphi) was slightly less at operation; the percent change was the same on both sides. Transverse labial width (cphi-ch) was set short on the cleft side and lengthened disproportionately, resulting in less than 1 mm difference at 6 years. All anthropometric dimensions grew less in complete cleft lips compared with incomplete forms; however, only labial height and width were significantly different. There were no disparities in nasolabial growth between left- and right-sided cleft lips. Cleft side alar base drifts laterally and should be positioned slightly more medial and secured to nasalis or periosteum. Growth in labial height lags and, therefore, the repaired side should be equal to or slightly greater than on the normal side, particularly in a complete labial cleft. Transverse labial width grows more on the cleft side; thus, lateral Cupid's bow peak point can be marked closer to the commissure to match the labial height on the noncleft side. Therapeutic, IV.

  17. Prediction of two-dimensional diluted magnetic semiconductors: Doped monolayer MoS2 systems

    KAUST Repository

    Cheng, Yingchun

    2013-03-05

    Using first-principles calculations, we propose a two-dimensional diluted magnetic semiconductor: monolayer MoS2 doped by transition metals. Doping of transition metal atoms from the IIIB to VIB groups results in nonmagnetic states, since the number of valence electrons is smaller or equal to that of Mo. Doping of atoms from the VIIB to IIB groups becomes energetically less and less favorable. Magnetism is observed for Mn, Fe, Co, Zn, Cd, and Hg doping, while for the other dopants from these groups it is suppressed by Jahn-Teller distortions. Analysis of the binding energies and magnetic properties indicates that (Mo,X)S2 (X=Mn, Fe, Co, and Zn) are promising systems to explore two-dimensional diluted magnetic semiconductors.

  18. Three-dimensional space changes after premature loss of a maxillary primary first molar.

    Science.gov (United States)

    Park, Kitae; Jung, Da-Woon; Kim, Ji-Yeon

    2009-11-01

    A space maintainer is generally preferred when a primary first molar is lost before or during active eruption of the first permanent molars in order to prevent space loss. However, controversy prevails regarding the space loss after eruption of the permanent first molars. The purpose of this study was to examine spatial changes subsequent to premature loss of a maxillary primary first molar after the eruption of the permanent first molars. Thirteen children, five girls and eight boys, expecting premature extraction of a maxillary primary first molar because of caries and/or failed pulp therapy, were selected. Spatial changes were investigated using a three-dimensional laser scanner by comparing the primary molar space, arch width, arch length, and arch perimeter before and after the extraction of a maxillary primary first molar. Also, the inclination and angulation changes in the maxillary primary canines, primary second molars, and permanent first molars adjacent to the extraction site were investigated before and after the extraction of the maxillary primary first molar in order to examine the source of space loss. There was no statistically significant space loss on the extraction side compared to the control side (P = 0.33). No consistent findings were seen on the inclination and angulation changes on the extraction side. The premature loss of a maxillary primary first molar, in cases with class I molar relationship, has limited influence on the space in permanent dentition.

  19. Change in attachment predicts change in emotion regulation particularly among 5-HTTLPR short-allele homozygotes.

    Science.gov (United States)

    Viddal, Kristine Rensvik; Berg-Nielsen, Turid Suzanne; Belsky, Jay; Wichstrøm, Lars

    2017-07-01

    In view of the theory that the attachment relationship provides a foundation for the development of emotion regulation, here, we evaluated (a) whether change in attachment security from 4 to 6 years predicts change in emotion regulation from 6 to 8 years and (b) whether 5-HTTLPR moderates this relation in a Norwegian community sample (n = 678, 99.7% Caucasian). Attachment was measured with the Manchester Child Attachment Story Task, and teachers completed the Emotion Regulation Checklist. Attachment security was modestly stable, with children becoming more secure over time. Regression analyses revealed that increased attachment security from 4 to 6 forecasted increases in emotion regulation from 6 to 8 and decreased attachment security forecasted decreases in emotion regulation. This effect was strongest among the 5-HTTLPR short-allele homozygotes and, according to competitive model fitting, in a differential-susceptibility manner. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. Short-term changes in arterial inflammation predict long-term changes in atherosclerosis progression

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Philip [Massachusetts General Hospital and Harvard Medical School, Cardiology Division and Cardiac MR PET CT Program, Boston, MA (United States); McMaster University, Population Health Research Institute, Department of Medicine, and Department of Radiology, Hamilton, ON (Canada); Ishai, Amorina; Tawakol, Ahmed [Massachusetts General Hospital and Harvard Medical School, Cardiology Division and Cardiac MR PET CT Program, Boston, MA (United States); Mani, Venkatesh [Icahn School of Medicine at Mount Sinai School of Medicine, Translational and Molecular Imaging Institute and Department of Radiology, New York, NY (United States); Kallend, David [The Medicines Company, Parsippany, NJ (United States); Rudd, James H.F. [University of Cambridge, Division of Cardiovascular Medicine, Cambridge (United Kingdom); Fayad, Zahi A. [Icahn School of Medicine at Mount Sinai School of Medicine, Translational and Molecular Imaging Institute and Department of Radiology, New York, NY (United States); Icahn School of Medicine at Mount Sinai School of Medicine, Hess CSM Building Floor TMII, Rm S1-104, Translational and Molecular Imaging Institute and Department of Radiology, New York, NY (United States)

    2017-01-15

    It remains unclear whether changes in arterial wall inflammation are associated with subsequent changes in the rate of structural progression of atherosclerosis. In this sub-study of the dal-PLAQUE clinical trial, multi-modal imaging was performed using 18-fludeoxyglucose (FDG) positron emission tomography (PET, at 0 and 6 months) and magnetic resonance imaging (MRI, at 0 and 24 months). The primary objective was to determine whether increasing FDG uptake at 6 months predicted atherosclerosis progression on MRI at 2 years. Arterial inflammation was measured by the carotid FDG target-to-background ratio (TBR), and atherosclerotic plaque progression was defined as the percentage change in carotid mean wall area (MWA) and mean wall thickness (MWT) on MRI between baseline and 24 months. A total of 42 participants were included in this sub-study. The mean age of the population was 62.5 years, and 12 (28.6 %) were women. In participants with (vs. without) any increase in arterial inflammation over 6 months, the long-term changes in both MWT (% change MWT: 17.49 % vs. 1.74 %, p = 0.038) and MWA (% change MWA: 25.50 % vs. 3.59 %, p = 0.027) were significantly greater. Results remained significant after adjusting for clinical and biochemical covariates. Individuals with no increase in arterial inflammation over 6 months had no significant structural progression of atherosclerosis over 24 months as measured by MWT (p = 0.616) or MWA (p = 0.373). Short-term changes in arterial inflammation are associated with long-term structural atherosclerosis progression. These data support the concept that therapies that reduce arterial inflammation may attenuate or halt progression of atherosclerosis. (orig.)

  1. Short-term changes in arterial inflammation predict long-term changes in atherosclerosis progression

    International Nuclear Information System (INIS)

    Joseph, Philip; Ishai, Amorina; Tawakol, Ahmed; Mani, Venkatesh; Kallend, David; Rudd, James H.F.; Fayad, Zahi A.

    2017-01-01

    It remains unclear whether changes in arterial wall inflammation are associated with subsequent changes in the rate of structural progression of atherosclerosis. In this sub-study of the dal-PLAQUE clinical trial, multi-modal imaging was performed using 18-fludeoxyglucose (FDG) positron emission tomography (PET, at 0 and 6 months) and magnetic resonance imaging (MRI, at 0 and 24 months). The primary objective was to determine whether increasing FDG uptake at 6 months predicted atherosclerosis progression on MRI at 2 years. Arterial inflammation was measured by the carotid FDG target-to-background ratio (TBR), and atherosclerotic plaque progression was defined as the percentage change in carotid mean wall area (MWA) and mean wall thickness (MWT) on MRI between baseline and 24 months. A total of 42 participants were included in this sub-study. The mean age of the population was 62.5 years, and 12 (28.6 %) were women. In participants with (vs. without) any increase in arterial inflammation over 6 months, the long-term changes in both MWT (% change MWT: 17.49 % vs. 1.74 %, p = 0.038) and MWA (% change MWA: 25.50 % vs. 3.59 %, p = 0.027) were significantly greater. Results remained significant after adjusting for clinical and biochemical covariates. Individuals with no increase in arterial inflammation over 6 months had no significant structural progression of atherosclerosis over 24 months as measured by MWT (p = 0.616) or MWA (p = 0.373). Short-term changes in arterial inflammation are associated with long-term structural atherosclerosis progression. These data support the concept that therapies that reduce arterial inflammation may attenuate or halt progression of atherosclerosis. (orig.)

  2. Prediction of equibiaxial loading stress in collagen-based extracellular matrix using a three-dimensional unit cell model.

    Science.gov (United States)

    Susilo, Monica E; Bell, Brett J; Roeder, Blayne A; Voytik-Harbin, Sherry L; Kokini, Klod; Nauman, Eric A

    2013-03-01

    Mechanical signals are important factors in determining cell fate. Therefore, insights as to how mechanical signals are transferred between the cell and its surrounding three-dimensional collagen fibril network will provide a basis for designing the optimum extracellular matrix (ECM) microenvironment for tissue regeneration. Previously we described a cellular solid model to predict fibril microstructure-mechanical relationships of reconstituted collagen matrices due to unidirectional loads (Acta Biomater 2010;6:1471-86). The model consisted of representative volume elements made up of an interconnected network of flexible struts. The present study extends this work by adapting the model to account for microstructural anisotropy of the collagen fibrils and a biaxial loading environment. The model was calibrated based on uniaxial tensile data and used to predict the equibiaxial tensile stress-stretch relationship. Modifications to the model significantly improved its predictive capacity for equibiaxial loading data. With a comparable fibril length (model 5.9-8μm, measured 7.5μm) and appropriate fibril anisotropy the anisotropic model provides a better representation of the collagen fibril microstructure. Such models are important tools for tissue engineering because they facilitate prediction of microstructure-mechanical relationships for collagen matrices over a wide range of microstructures and provide a framework for predicting cell-ECM interactions. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. An Extended Assessment of Fluid Flow Models for the Prediction of Two-Dimensional Steady-State Airfoil Aerodynamics

    Directory of Open Access Journals (Sweden)

    José F. Herbert-Acero

    2015-01-01

    Full Text Available This work presents the analysis, application, and comparison of thirteen fluid flow models in the prediction of two-dimensional airfoil aerodynamics, considering laminar and turbulent subsonic inflow conditions. Diverse sensitivity analyses of different free parameters (e.g., the domain topology and its discretization, the flow model, and the solution method together with its convergence mechanisms revealed important effects on the simulations’ outcomes. The NACA 4412 airfoil was considered throughout the work and the computational predictions were compared with experiments conducted under a wide range of Reynolds numbers (7e5≤Re≤9e6 and angles-of-attack (-10°≤α≤20°. Improvements both in modeling accuracy and processing time were achieved by considering the RS LP-S and the Transition SST turbulence models, and by considering finite volume-based solution methods with preconditioned systems, respectively. The RS LP-S model provided the best lift force predictions due to the adequate modeling of the micro and macro anisotropic turbulence at the airfoil’s surface and at the nearby flow field, which in turn allowed the adequate prediction of stall conditions. The Transition-SST model provided the best drag force predictions due to adequate modeling of the laminar-to-turbulent flow transition and the surface shear stresses. Conclusions, recommendations, and a comprehensive research agenda are presented based on validated computational results.

  4. PREDICTS: Projecting Responses of Ecological Diversity in Changing Terrestrial Systems

    Directory of Open Access Journals (Sweden)

    Georgina Mace

    2012-12-01

    Full Text Available The PREDICTS project (www.predicts.org.uk is a three-year NERC-funded project to model and predict at a global scale how local terrestrial diversity responds to human pressures such as land use, land cover, pollution, invasive species and infrastructure. PREDICTS is a collaboration between Imperial College London, the UNEP World Conservation Monitoring Centre, Microsoft Research Cambridge, UCL and the University of Sussex. In order to meet its aims, the project relies on extensive data describing the diversity and composition of biological communities at a local scale. Such data are collected on a vast scale through the committed efforts of field ecologists. If you have appropriate data that you would be willing to share with us, please get in touch (enquiries@predicts.org.uk. All contributions will be acknowledged appropriately and all data contributors will be included as co-authors on an open-access paper describing the database.

  5. Hydrological model parameter dimensionality is a weak measure of prediction uncertainty (discussion paper)

    NARCIS (Netherlands)

    Pande, S.; Arkesteijn, L.; Savenije, H.H.G.; Bastidas, L.A.

    2015-01-01

    This paper shows that instability of hydrological system representation in response to different pieces of information and associated prediction uncertainty is a function of model complexity. After demonstrating the connection between unstable model representation and model complexity, complexity is

  6. Dimensional Changes of Fresh Sockets With Reactive Soft Tissue Preservation: A Cone Beam CT Study.

    Science.gov (United States)

    Crespi, Roberto; Capparé, Paolo; Crespi, Giovanni; Gastaldi, Giorgio; Gherlone, Enrico Felice

    2017-06-01

    The aim of this study was to assess dimensional changes of the fresh sockets grafted with collagen sheets and maintenance of reactive soft tissue, using cone beam computed tomography (CBCT). Tooth extractions were performed with maximum preservation of the alveolar housing, reactive soft tissue was left into the sockets and collagen sheets filled bone defects. Cone beam computed tomography were performed before and 3 months after extractions. One hundred forty-five teeth, 60 monoradiculars and 85 molars, were extracted. In total, 269 alveoli were evaluated. In Group A, not statistically significant differences were found between monoradiculars, whereas statistically significant differences (P 0.05) for all types of teeth. This study reported an atraumatic tooth extraction, reactive soft tissue left in situ, and grafted collagen sponge may be helpful to reduce fresh socket collapse after extraction procedures.

  7. Visual Scanning Patterns during the Dimensional Change Card Sorting Task in Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Li Yi

    2012-01-01

    Full Text Available Impaired cognitive flexibility in children with autism spectrum disorder (ASD has been reported in previous literature. The present study explored ASD children’s visual scanning patterns during the Dimensional Change Card Sorting (DCCS task using eye-tracking technique. ASD and typical developing (TD children completed the standardized DCCS procedure on the computer while their eye movements were tracked. Behavioral results confirmed previous findings on ASD children’s deficits in executive function. ASD children’s visual scanning patterns also showed some specific underlying processes in the DCCS task compared to TD children. For example, ASD children looked shorter at the correct card in the postswitch phase and spent longer time at blank areas than TD children did. ASD children did not show a bias to the color dimension as TD children did. The correlations between the behavioral performance and eye moments were also discussed.

  8. The direct field boundary impedance of two-dimensional periodic structures with application to high frequency vibration prediction.

    Science.gov (United States)

    Langley, Robin S; Cotoni, Vincent

    2010-04-01

    Large sections of many types of engineering construction can be considered to constitute a two-dimensional periodic structure, with examples ranging from an orthogonally stiffened shell to a honeycomb sandwich panel. In this paper, a method is presented for computing the boundary (or edge) impedance of a semi-infinite two-dimensional periodic structure, a quantity which is referred to as the direct field boundary impedance matrix. This terminology arises from the fact that none of the waves generated at the boundary (the direct field) are reflected back to the boundary in a semi-infinite system. The direct field impedance matrix can be used to calculate elastic wave transmission coefficients, and also to calculate the coupling loss factors (CLFs), which are required by the statistical energy analysis (SEA) approach to predicting high frequency vibration levels in built-up systems. The calculation of the relevant CLFs enables a two-dimensional periodic region of a structure to be modeled very efficiently as a single subsystem within SEA, and also within related methods, such as a recently developed hybrid approach, which couples the finite element method with SEA. The analysis is illustrated by various numerical examples involving stiffened plate structures.

  9. Changing currents: a strategy for understanding and predicting the changing ocean circulation.

    Science.gov (United States)

    Bryden, Harry L; Robinson, Carol; Griffiths, Gwyn

    2012-12-13

    Within the context of UK marine science, we project a strategy for ocean circulation research over the next 20 years. We recommend a focus on three types of research: (i) sustained observations of the varying and evolving ocean circulation, (ii) careful analysis and interpretation of the observed climate changes for comparison with climate model projections, and (iii) the design and execution of focused field experiments to understand ocean processes that are not resolved in coupled climate models so as to be able to embed these processes realistically in the models. Within UK-sustained observations, we emphasize smart, cost-effective design of the observational network to extract maximum information from limited field resources. We encourage the incorporation of new sensors and new energy sources within the operational environment of UK-sustained observational programmes to bridge the gap that normally separates laboratory prototype from operational instrument. For interpreting the climate-change records obtained through a variety of national and international sustained observational programmes, creative and dedicated UK scientists should lead efforts to extract the meaningful signals and patterns of climate change and to interpret them so as to project future changes. For the process studies, individual scientists will need to work together in team environments to combine observational and process modelling results into effective improvements in the coupled climate models that will lead to more accurate climate predictions.

  10. Three-dimensional dental arch changes of patients submitted to orthodontic-surgical treatment for correction of Class II malocclusion

    OpenAIRE

    Peixoto,Adriano Porto; Pinto,Ary dos Santos; Garib,Daniela Gamba; Gonçalves,João Roberto

    2014-01-01

    INTRODUCTION: This study assessed the three-dimensional changes in the dental arch of patients submitted to orthodontic-surgical treatment for correction of Class II malocclusions at three different periods. METHODS: Landmarks previously identified on upper and lower dental casts were digitized on a three-dimensional digitizer MicroScribe-3DX and stored in Excel worksheets in order to assess the width, length and depth of patient's dental arches. RESULTS: During orthodontic preparation, the m...

  11. Technique for the measurement of dimensional changes of natural microfibril materials under variable humidity environments

    International Nuclear Information System (INIS)

    Lee, Jung Myoung; Heitmann, John A.; Pawlak, Joel J.

    2007-01-01

    An algorithm was developed to analyze the dimensions of line scan data of step-shaped disconitunities acquired with an atomic force microscope. The effect of a number of AFM parameters on the quantitative imaging of step features was discussed. Quantitiative imaging using AFM was shown to be very reproducible as five successive scans of a standard step height grating produced less than 3% variation in measured parameters. A cellulose microfibril, called cellulose aggregate fibril (CAF), with dimensions of ∼50,000 nm x 2000 nm x 300 nm derived from papermaking fibers was scanned under cyclic relative humdity conditions with the relative humidity starting at 50% then raising to 80% followed by a decrease in the relative humidity to 28%. Changes in the width of the CAF were weakly correlated with changes in the relative humdity, while changes in the height and area of the CAF were positively correlated with the relative humdity. The length of the CAF was negatively correlated with the given relative humdity cycle. These findings have significant implications in paper dimensional stability and the engineering of cellulose micro and nano-fiber composites

  12. Deformation behaviors of three-dimensional graphene honeycombs under out-of-plane compression: Atomistic simulations and predictive modeling

    Science.gov (United States)

    Meng, Fanchao; Chen, Cheng; Hu, Dianyin; Song, Jun

    2017-12-01

    Combining atomistic simulations and continuum modeling, a comprehensive study of the out-of-plane compressive deformation behaviors of equilateral three-dimensional (3D) graphene honeycombs was performed. It was demonstrated that under out-of-plane compression, the honeycomb exhibits two critical deformation events, i.e., elastic mechanical instability (including elastic buckling and structural transformation) and inelastic structural collapse. The above events were shown to be strongly dependent on the honeycomb cell size and affected by the local atomic bonding at the cell junction. By treating the 3D graphene honeycomb as a continuum cellular solid, and accounting for the structural heterogeneity and constraint at the junction, a set of analytical models were developed to accurately predict the threshold stresses corresponding to the onset of those deformation events. The present study elucidates key structure-property relationships of 3D graphene honeycombs under out-of-plane compression, and provides a comprehensive theoretical framework to predictively analyze their deformation responses, and more generally, offers critical new knowledge for the rational bottom-up design of 3D networks of two-dimensional nanomaterials.

  13. Three-dimensional prediction of the human eyeball and canthi for craniofacial reconstruction using cone-beam computed tomography.

    Science.gov (United States)

    Kim, Sang-Rok; Lee, Kyung-Min; Cho, Jin-Hyoung; Hwang, Hyeon-Shik

    2016-04-01

    An anatomical relationship between the hard and soft tissues of the face is mandatory for facial reconstruction. The purpose of this study was to investigate the positions of the eyeball and canthi three-dimensionally from the relationships between the facial hard and soft tissues using cone-beam computed tomography (CBCT). CBCT scan data of 100 living subjects were used to obtain the measurements of facial hard and soft tissues. Stepwise multiple regression analyses were carried out using the hard tissue measurements in the orbit, nasal bone, nasal cavity and maxillary canine to predict the most probable positions of the eyeball and canthi within the orbit. Orbital width, orbital height, and orbital depth were strong predictors of the eyeball and canthi position. Intercanine width was also a predictor of the mediolateral position of the eyeball. Statistically significant regression models for the positions of the eyeball and canthi could be derived from the measurements of orbit and maxillary canine. These results suggest that CBCT data can be useful in predicting the positions of the eyeball and canthi three-dimensionally. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Prediction uncertainty of environmental change effects on temperate European biodiversity

    NARCIS (Netherlands)

    Dormann, C.; Schweiger, O.; Arens, P.F.P.; Augenstein, I.; Aviron, S.; Bailey, D.; Baudry, J.; Billeter, R.; Bugter, R.J.F.; Bukacek, R.; Burel, F.; Cerny, M.; Cock, de R.; Blust, de G.; DeFilippi, R.; Diekotter, T.; Dirksen, J.; Durka, W.; Edwards, P.J.; Frenzel, M.; Hamersky, R.; Hendrickx, F.; Herzog, F.; Klotz, S.; Koolstra, B.J.H.; Lausch, A.; Coeur, Le D.; Liira, J.; Maelfait, J.P.; Opdam, P.; Roubalova, M.; Schermann, A.; Schermann, N.; Schmidt, T.; Smulders, M.J.M.; Speelmans, M.; Simova, P.; Verboom, J.; Wingerden, van W.K.R.E.; Zobel, M.

    2008-01-01

    Observed patterns of species richness at landscape scale (gamma diversity) cannot always be attributed to a specific set of explanatory variables, but rather different alternative explanatory statistical models of similar quality may exist. Therefore predictions of the effects of environmental

  15. Three-dimensional anatomy of equine incisors: tooth length, enamel cover and age related changes

    Science.gov (United States)

    2013-01-01

    Background Equine incisors are subjected to continuous occlusal wear causing multiple, age related changes of the extragingival crown. It is assumed that the occlusal wear is compensated by continued tooth elongation at the apical ends of the teeth. In this study, μCT-datasets offered the opportunity to analyze the three-dimensional appearance of the extra- and intraalveolar parts of the enamel containing dental crown as well as of the enamel-free dental root. Multiple morphometric measurements elucidated age related, morphological changes within the intraalveolar part of the incisors. Results Equine incisors possess a unique enamel cover displaying large indentations on the mesial and distal sides. After eruption tooth elongation at the apical end outbalances occlusal wear for two to four years resulting in increasing incisor length in this period of time. Remarkably, this maximum length is maintained for about ten years, up to a tooth age of 13 to 15 years post eruption. Variances in the total length of individual teeth are related to different Triadan positions (central-, middle- and corner incisors) as well as to the upper and lower arcades. Conclusion Equine incisors are able to fully compensate occlusal wear for a limited period of time. However, after this ability ceases, it is expected that a diminished intraalveolar tooth length will cause massive changes in periodontal biomechanics. The time point of these morphodynamic and biomechanical changes (13 to 15 years post eruption) occurs in coincidence with the onset of a recently described destructive disease of equine incisor (equine odontoclastic tooth resorption and hypercementosis) in aged horses. However, further biomechanical, cell biological and microbiological investigations are needed to elucidate a correlation between age related changes of incisor morphology and this disease. PMID:24321365

  16. Changes in Mitral Annular Geometry after Aortic Valve Replacement: A Three-Dimensional Transesophageal Echocardiographic Study

    Science.gov (United States)

    Mahmood, Feroze; Warraich, Haider J.; Gorman, Joseph H.; Gorman, Robert C.; Chen, Tzong-Huei; Panzica, Peter; Maslow, Andrew; Khabbaz, Kamal

    2014-01-01

    Background and aim of the study Intraoperative real-time three-dimensional transesophageal echocardiography (RT-3D TEE) was used to examine the geometric changes that occur in the mitral annulus immediately after aortic valve replacement (AVR). Methods A total of 35 patients undergoing elective surgical AVR under cardiopulmonary bypass was enrolled in the study. Intraoperative RT-3D TEE was used prospectively to acquire volumetric echocardiographic datasets immediately before and after AVR. The 3D echocardiographic data were analyzed offline using TomTec® Mitral Valve Assessment software to assess changes in specific mitral annular geometric parameters. Results Datasets were successfully acquired and analyzed for all patients. A significant reduction was noted in the mitral annular area (-16.3%, p <0.001), circumference (-8.9% p <0.001) and the anteroposterior (-6.3%, p = 0.019) and anterolateral-posteromedial (-10.5%, p <0.001) diameters. A greater reduction was noted in the anterior annulus length compared to the posterior annulus length (10.5% versus 62%, p <0.05) after AVR. No significant change was seen in the non-planarity angle, coaptation depth, and closure line length. During the period of data acquisition before and after AVR, no significant change was noted in the central venous pressure or left ventricular end-diastolic diameter. Conclusion The mitral annulus undergoes significant geometric changes immediately after AVR Notably, a 16.3% reduction was observed in the mitral annular area. The anterior annulus underwent a greater reduction in length compared to the posterior annulus, which suggested the existence of a mechanical compression by the prosthetic valve. PMID:23409347

  17. Impact of climatic change on alpine ecosystems: inference and prediction

    Directory of Open Access Journals (Sweden)

    Nigel G. Yoccoz

    2011-01-01

    Full Text Available Alpine ecosystems will be greatly impacted by climatic change, but other factors, such as land use and invasive species, are likely to play an important role too. Climate can influence ecosystems at several levels. We describe some of them, stressing methodological approaches and available data. Climate can modify species phenology, such as flowering date of plants and hatching date in insects. It can also change directly population demography (survival, reproduction, dispersal, and therefore species distribution. Finally it can effect interactions among species – snow cover for example can affect the success of some predators. One characteristic of alpine ecosystems is the presence of snow cover, but surprisingly the role played by snow is relatively poorly known, mainly for logistical reasons. Even if we have made important progress regarding the development of predictive models, particularly so for distribution of alpine plants, we still need to set up observational and experimental networks which properly take into account the variability of alpine ecosystems and of their interactions with climate.Les écosystèmes alpins vont être grandement influencés par les changements climatiques à venir, mais d’autres facteurs, tels que l’utilisation des terres ou les espèces invasives, pourront aussi jouer un rôle important. Le climat peut influencer les écosystèmes à différents niveaux, et nous en décrivons certains, en mettant l’accent sur les méthodes utilisées et les données disponibles. Le climat peut d’abord modifier la phénologie des espèces, comme la date de floraison des plantes ou la date d’éclosion des insectes. Il peut ensuite affecter directement la démographie des espèces (survie, reproduction, dispersion et donc à terme leur répartition. Il peut enfin agir sur les interactions entre espèces – le couvert neigeux par exemple modifie le succès de certains prédateurs. Une caractéristique des

  18. Unsteady single-phase natural circulation flow mixing prediction using CATHARE three-dimensional capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Salah, Anis Bousbia; Vlassenbroeck, Jacques [Bel V - Subsidiary of the Belgian Federal Agency for Nuclear Contro, Brussels (Belize)

    2017-04-15

    Coolant mixing under natural circulation flow regime constitutes a key parameter that may play a role in the course of an accidental transient in a nuclear pressurized water reactor. This issue has motivated some experimental investigations carried out within the OECD/NEA PKL projects. The aim was to assess the coolant mixing phenomenon in the reactor pressure vessel downcomer and the core lower plenum under several asymmetric steady and unsteady flow conditions, and to provide experimental data for code validations. Former studies addressed the mixing phenomenon using, on the one hand, one-dimensional computational approaches with cross flows that are not fully validated under transient conditions and, on the other hand, expensive computational fluid dynamic tools that are not always justified for large-scale macroscopic phenomena. In the current framework, an unsteady coolant mixing experiment carried out in the Rossendorf coolant mixing test facility is simulated using the three-dimensional porous media capabilities of the thermal–hydraulic system CATHARE code. The current study allows highlighting the current capabilities of these codes and their suitability for reproducing the main phenomena occurring during asymmetric transient natural circulation mixing conditions.

  19. The role of the dendritic growth model dimensionality in predicting the Columnar to Equiaxed Transition (CET)

    Science.gov (United States)

    Seredyński, M.; Rebow, M.; Banaszek, J.

    2017-06-01

    The dendrite tip kinetics model accuracy relies on the reliability of the stability constant used, which is usually experimentally determined for 3D situations and applied to 2D models. The paper reports authors` attempts to cure the situation by deriving 2D dendritic tip scaling parameter for aluminium-based alloy: Al-4wt%Cu. The obtained parameter is then incorporated into the KGT dendritic growth model in order to compare it with the original 3D KGT counterpart and to derive two-dimensional and three-dimensional versions of the modified Hunt's analytical model for the columnar-to-equiaxed transition (CET). The conclusions drawn from the above analysis are further confirmed through numerical calculations of the two cases of Al-4wt%Cu metallic alloy solidification using the front tracking technique. Results, including the porous zone-under-cooled liquid front position, the calculated solutal under-cooling, the average temperature gradient at a front of the dendrite tip envelope and a new predictor of the relative tendency to form an equiaxed zone, are shown, compared and discussed for two numerical cases. The necessity to calculate sufficiently precise values of the tip scaling parameter in 2D and 3D is stressed.

  20. Using Flow Characteristics in Three-Dimensional Power Doppler Ultrasound Imaging to Predict Complete Responses in Patients Undergoing Neoadjuvant Chemotherapy.

    Science.gov (United States)

    Shia, Wei-Chung; Huang, Yu-Len; Wu, Hwa-Koon; Chen, Dar-Ren

    2017-05-01

    Strategies are needed for the identification of a poor response to treatment and determination of appropriate chemotherapy strategies for patients in the early stages of neoadjuvant chemotherapy for breast cancer. We hypothesize that power Doppler ultrasound imaging can provide useful information on predicting response to neoadjuvant chemotherapy. The solid directional flow of vessels in breast tumors was used as a marker of pathologic complete responses (pCR) in patients undergoing neoadjuvant chemotherapy. Thirty-one breast cancer patients who received neoadjuvant chemotherapy and had tumors of 2 to 5 cm were recruited. Three-dimensional power Doppler ultrasound with high-definition flow imaging technology was used to acquire the indices of tumor blood flow/volume, and the chemotherapy response prediction was established, followed by support vector machine classification. The accuracy of pCR prediction before the first chemotherapy treatment was 83.87% (area under the ROC curve [AUC] = 0.6957). After the second chemotherapy treatment, the accuracy of was 87.9% (AUC = 0.756). Trend analysis showed that good and poor responders exhibited different trends in vascular flow during chemotherapy. This preliminary study demonstrates the feasibility of using the vascular flow in breast tumors to predict chemotherapeutic efficacy. © 2017 by the American Institute of Ultrasound in Medicine.

  1. Three-dimensional transient cooling simulations of a portable electronic device using PCM (phase change materials) in multi-fin heat sink

    International Nuclear Information System (INIS)

    Wang, Yi-Hsien; Yang, Yue-Tzu

    2011-01-01

    Transient three-dimensional heat transfer numerical simulations were conducted to investigate a hybrid PCM (phase change materials) based multi-fin heat sink. Numerical computation was conducted with different amounts of fins (0 fin, 3 fins and 6 fins), various heating power level (2 W, 3 W and 4 W), different orientation tests (vertical/horizontal/slanted), and charge and discharge modes. Calculating time step (0.03 s, 0.05 s, and 0.07 s) size was discussed for transient accuracy as well. The theoretical model developed is validated by comparing numerical predictions with the available experimental data in the literature. The results showed that the transient surface temperatures are predicted with a maximum discrepancy within 10.2%. The operation temperature can be controlled well by the attendance of phase change material and the longer melting time can be conducted by using a multi-fin hybrid heat sink respectively. -- Highlights: → Electronic device cooling use phase change materials. → N-eicosane is adapted as phase change materials. → Present surface transient temperatures prediction error is within 10.2%. → Hybrid PCM-heat sink system provides stable operation temperature. → Orientation effects show independent on the phase change performance.

  2. Understanding, Predicting, and Preventing Life Changing and Life Threatening Health Changes among Aging Veterans and Civilians with Spinal Cord Injury

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0629 TITLE: Understanding, Predicting, and Preventing Life -Changing and Life -Threatening Health Changes among Aging...Annual 3. DATES COVERED 30 Sep 2016 - 29 Sep 2017 4. TITLE AND SUBTITLE Understanding, Predicting, and Preventing Life -Changing and Life ... hope of preventing them. Our purpose is to better understand the how and why of the development of negative health spirals and how they may best be

  3. Ways that Social Change Predicts Personal Quality of Life

    Science.gov (United States)

    Cheung, Chau-Kiu; Leung, Kwok

    2010-01-01

    A notable way that social change affects personal quality of life would rely on the person's experience with social change. This experience may influence societal quality of life and quality of work life, which may in turn affect personal quality of life. Additionally, the experience of social change is possibly less detrimental to personal…

  4. Regression models for predicting peak and continuous three-dimensional spinal loads during symmetric and asymmetric lifting tasks.

    Science.gov (United States)

    Fathallah, F A; Marras, W S; Parnianpour, M

    1999-09-01

    Most biomechanical assessments of spinal loading during industrial work have focused on estimating peak spinal compressive forces under static and sagittally symmetric conditions. The main objective of this study was to explore the potential of feasibly predicting three-dimensional (3D) spinal loading in industry from various combinations of trunk kinematics, kinetics, and subject-load characteristics. The study used spinal loading, predicted by a validated electromyography-assisted model, from 11 male participants who performed a series of symmetric and asymmetric lifts. Three classes of models were developed: (a) models using workplace, subject, and trunk motion parameters as independent variables (kinematic models); (b) models using workplace, subject, and measured moments variables (kinetic models); and (c) models incorporating workplace, subject, trunk motion, and measured moments variables (combined models). The results showed that peak 3D spinal loading during symmetric and asymmetric lifting were predicted equally well using all three types of regression models. Continuous 3D loading was predicted best using the combined models. When the use of such models is infeasible, the kinematic models can provide adequate predictions. Finally, lateral shear forces (peak and continuous) were consistently underestimated using all three types of models. The study demonstrated the feasibility of predicting 3D loads on the spine under specific symmetric and asymmetric lifting tasks without the need for collecting EMG information. However, further validation and development of the models should be conducted to assess and extend their applicability to lifting conditions other than those presented in this study. Actual or potential applications of this research include exposure assessment in epidemiological studies, ergonomic intervention, and laboratory task assessment.

  5. Validation of a zero-dimensional model for prediction of NOx and engine performance for electronically controlled marine two-stroke diesel engines

    International Nuclear Information System (INIS)

    Scappin, Fabio; Stefansson, Sigurður H.; Haglind, Fredrik; Andreasen, Anders; Larsen, Ulrik

    2012-01-01

    The aim of this paper is to derive a methodology suitable for energy system analysis for predicting the performance and NO x emissions of marine low speed diesel engines. The paper describes a zero-dimensional model, evaluating the engine performance by means of an energy balance and a two zone combustion model using ideal gas law equations over a complete crank cycle. The combustion process is divided into intervals, and the product composition and flame temperature are calculated in each interval. The NO x emissions are predicted using the extended Zeldovich mechanism. The model is validated using experimental data from two MAN B and W engines; one case being data subject to engine parameter changes corresponding to simulating an electronically controlled engine; the second case providing data covering almost all model input and output parameters. The first case of validation suggests that the model can predict specific fuel oil consumption and NO x emissions within the 95% confidence intervals given by the experimental measurements. The second validation confirms the capability of the model to match measured engine output parameters based on measured engine input parameters with a maximum 5% deviation. - Highlights: ► A fast realistic model of a marine two-stroke low speed diesel engine was derived. ► The model is fast and accurate enough for future complex energy systems analysis. ► The effects of engine tuning were validated with experimental tests. ► The model was validated while constrained by experimental input and output data.

  6. Prediction of pesticide acute toxicity using two-dimensional chemical descriptors and target species classification

    Science.gov (United States)

    Previous modelling of the median lethal dose (oral rat LD50) has indicated that local class-based models yield better correlations than global models. We evaluated the hypothesis that dividing the dataset by pesticidal mechanisms would improve prediction accuracy. A linear discri...

  7. Prediction of retention times in comprehensive two-dimensional gas chromatography using thermodynamic models.

    Science.gov (United States)

    McGinitie, Teague M; Harynuk, James J

    2012-09-14

    A method was developed to accurately predict both the primary and secondary retention times for a series of alkanes, ketones and alcohols in a flow-modulated GC×GC system. This was accomplished through the use of a three-parameter thermodynamic model where ΔH, ΔS, and ΔC(p) for an analyte's interaction with the stationary phases in both dimensions are known. Coupling this thermodynamic model with a time summation calculation it was possible to accurately predict both (1)t(r) and (2)t(r) for all analytes. The model was able to predict retention times regardless of the temperature ramp used, with an average error of only 0.64% for (1)t(r) and an average error of only 2.22% for (2)t(r). The model shows promise for the accurate prediction of retention times in GC×GC for a wide range of compounds and is able to utilize data collected from 1D experiments. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. A novel two-dimensional liquid chromatographic system for the online toxicity prediction of pharmaceuticals and related substances

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian; Xu, Li [Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030 (China); Shi, Zhi-guo, E-mail: shizg@whu.edu.cn [Department of Chemistry, Wuhan University, Wuhan 430072 (China); Hu, Min [Hubei Instrument for Food and Drug Control, Wuhan (China)

    2015-08-15

    Highlights: • A novel two-dimensional liquid chromatographic system was developed. • The 1st dimension was ODS to separate components in the sample. • The 2nd dimension was biopartitioning micellar chromatography to predict toxicity. • The system was used to screen toxicity of pharmaceuticals and related substances. • It was promising for fast online toxicity screening of complex sample in one step. - Abstract: In this study, a novel two-dimensional liquid chromatographic (2D-LC) system was developed for simultaneous separation and toxicity prediction of pharmaceutical and its related substances. A conventional ODS column was used on the 1st-D to separate the sample; while, bio-partitioning micellar chromatography served as the 2nd-D to predict toxicity of the components. The established system was tested for the toxicity of ibuprofen and its impurities with known toxicity. With only one injection, ibuprofen and its impurities were separated on the 1st-D; and LC50 values of individual impurity were obtained based on the quantitative retention–activity relationships, which agreed well with the reported data. Furthermore, LC50 values of photolysis transformation products (TPs) of carprofen, ketoprofen and diclofenac acid (as unknown compounds) were screened in this 2D-LC system, which could be an indicator of the toxicity of these TPs and was meaningful for the environmental monitoring and drinking water treatment. The established 2D-LC system was cost-effective, time-saving and reliable, and was promising for fast online screening of toxicity of known and unknown analytes in the complex sample in a single step. It may find applications in environment, pharmaceutical and food, etc.

  9. A novel two-dimensional liquid chromatographic system for the online toxicity prediction of pharmaceuticals and related substances

    International Nuclear Information System (INIS)

    Li, Jian; Xu, Li; Shi, Zhi-guo; Hu, Min

    2015-01-01

    Highlights: • A novel two-dimensional liquid chromatographic system was developed. • The 1st dimension was ODS to separate components in the sample. • The 2nd dimension was biopartitioning micellar chromatography to predict toxicity. • The system was used to screen toxicity of pharmaceuticals and related substances. • It was promising for fast online toxicity screening of complex sample in one step. - Abstract: In this study, a novel two-dimensional liquid chromatographic (2D-LC) system was developed for simultaneous separation and toxicity prediction of pharmaceutical and its related substances. A conventional ODS column was used on the 1st-D to separate the sample; while, bio-partitioning micellar chromatography served as the 2nd-D to predict toxicity of the components. The established system was tested for the toxicity of ibuprofen and its impurities with known toxicity. With only one injection, ibuprofen and its impurities were separated on the 1st-D; and LC50 values of individual impurity were obtained based on the quantitative retention–activity relationships, which agreed well with the reported data. Furthermore, LC50 values of photolysis transformation products (TPs) of carprofen, ketoprofen and diclofenac acid (as unknown compounds) were screened in this 2D-LC system, which could be an indicator of the toxicity of these TPs and was meaningful for the environmental monitoring and drinking water treatment. The established 2D-LC system was cost-effective, time-saving and reliable, and was promising for fast online screening of toxicity of known and unknown analytes in the complex sample in a single step. It may find applications in environment, pharmaceutical and food, etc

  10. Serial Changes in 3-Dimensional Supraspinatus Muscle Volume After Rotator Cuff Repair.

    Science.gov (United States)

    Chung, Seok Won; Oh, Kyung-Soo; Moon, Sung Gyu; Kim, Na Ra; Lee, Ji Whan; Shim, Eungjune; Park, Sehyung; Kim, Youngjun

    2017-08-01

    There is considerable debate on the recovery of rotator cuff muscle atrophy after rotator cuff repair. To evaluate the serial changes in supraspinatus muscle volume after rotator cuff repair by using semiautomatic segmentation software and to determine the relationship with functional outcomes. Case series; Level of evidence, 4. Seventy-four patients (mean age, 62.8 ± 8.8 years) who underwent arthroscopic rotator cuff repair and obtained 3 consecutive (preoperatively, immediately postoperatively, and later postoperatively [≥1 year postoperatively]) magnetic resonance imaging (MRI) scans having complete Y-views were included. We generated a 3-dimensional (3D) reconstructed model of the supraspinatus muscle by using in-house semiautomatic segmentation software (ITK-SNAP) and calculated both the 2-dimensional (2D) cross-sectional area and 3D volume of the muscle in 3 different views (Y-view, 1 cm medial to the Y-view [Y+1 view], and 2 cm medial to the Y-view [Y+2 view]) at the 3 time points. The area and volume changes at each time point were evaluated according to repair integrity. Later postoperative volumes were compared with immediately postoperative volumes, and their relationship with various clinical factors and the effect of higher volume increases on range of motion, muscle power, and visual analog scale pain and American Shoulder and Elbow Surgeons scores were evaluated. The interrater reliabilities were excellent for all measurements. Areas and volumes increased immediately postoperatively as compared with preoperatively; however, only volumes on the Y+1 view and Y+2 view significantly increased later postoperatively as compared with immediately postoperatively ( P < .05). There were 9 patients with healing failure, and area and volume changes were significantly less later postoperatively compared with immediately postoperatively at all measurement points in these patients ( P < .05). After omitting the patients with healing failure, volume increases

  11. Longitudinal and concurrent dimensional changes of cellulose aggregate fibrils during sorption stages

    International Nuclear Information System (INIS)

    Lee, Jung Myoung; Pawlak, Joel J.; Heitmann, John A.

    2010-01-01

    Atomic force microscopy (AFM) studies of the dimensional changes of cellulose microfibril materials, called cellulose aggregate fibrils (approx. 100 μm x 3 μm x 300 nm), exposed to two distinct relative humidities of 80% and 23% for 24 h and then suddenly subjected to 50% RH and 23 deg. C show that the fibrils are responsive to the surrounding environments in a nonspecific fashion. AFM images (10 μm x 10 μm) of the individual straight cellulose aggregate fibrils were taken as a function of elapsed time during both desorption and adsorption of moisture. The longitudinal distance between discrete natural defects observed on the cellulose aggregate fibrils as well as the width, cross-sectional area, and height of the cellulose aggregate fibril were measured from the AFM images. The length of the cellulose aggregate fibrils was found to have reduced after exposure to either high or low relative humidity, and then placement in ambient conditions. Over time in ambient conditions, the cellulose aggregate fibrils progressively relaxed to their original length during both desorption and adsorption of moisture. However, the relaxation rate during adsorption was faster than that during desorption. The possible explanations for this phenomenon are discussed including the sample preparation method, volume conservation, entropy elasticity, and free volume theory. The changes in the width, height, and cross-sectional area are also discussed.

  12. Automatic measurement for dimensional changes of woven fabrics based on texture

    Science.gov (United States)

    Liu, Jihong; Jiang, Hongxia; Liu, X.; Chai, Zhilei

    2014-01-01

    Dimensional change or shrinkage is an important functional attribute of woven fabrics that affects their basic function and price in the market. This paper presents a machine vision system that evaluates the shrinkage of woven fabrics by analyzing the change of fabric construction. The proposed measurement method has three features. (i) There will be no stain of shrinkage markers on the fabric specimen compared to the existing measurement method. (ii) The system can be used on fabric with reduced area. (iii) The system can be installed and used as a laboratory or industrial application system. The method processed can process the image of the fabric and is divided into four steps: acquiring a relative image from the sample of the woven fabric, obtaining a gray image and then the segmentation of the warp and weft from the fabric based on fast Fourier transform and inverse fast Fourier transform, calculation of the distance of the warp or weft sets by gray projection method and character shrinkage of the woven fabric by the average distance, coefficient of variation of distance and so on. Experimental results on virtual and physical woven fabrics indicated that the method provided could obtain the shrinkage information of woven fabric in detail. The method was programmed by Matlab software, and a graphical user interface was built by Delphi. The program has potential for practical use in the textile industry.

  13. Predicting Weight Change in Gari in Two Packaging Materials ...

    African Journals Online (AJOL)

    An equation for predicting moisture loss or gain by gari grain packed in two types of materials was developed. From this, it may be possible to establish the storability of gari in these two packaging material. The equation took into account the permeabilities of the materials, which were determined experimentally. The validity ...

  14. Predicting climate change impacts on polar bear litter size.

    Science.gov (United States)

    Molnár, Péter K; Derocher, Andrew E; Klanjscek, Tin; Lewis, Mark A

    2011-02-08

    Predicting the ecological impacts of climate warming is critical for species conservation. Incorporating future warming into population models, however, is challenging because reproduction and survival cannot be measured for yet unobserved environmental conditions. In this study, we use mechanistic energy budget models and data obtainable under current conditions to predict polar bear litter size under future conditions. In western Hudson Bay, we predict climate warming-induced litter size declines that jeopardize population viability: ∼28% of pregnant females failed to reproduce for energetic reasons during the early 1990s, but 40-73% could fail if spring sea ice break-up occurs 1 month earlier than during the 1990s, and 55-100% if break-up occurs 2 months earlier. Simultaneously, mean litter size would decrease by 22-67% and 44-100%, respectively. The expected timeline for these declines varies with climate-model-specific sea ice predictions. Similar litter size declines may occur in over one-third of the global polar bear population.

  15. Adaptation is.... Predicting malaria's changing course in East Africa

    International Development Research Centre (IDRC) Digital Library (Canada)

    IDRC

    Health experts say controlling malaria is crucial if the three East African nations are to achieve the UN Millennium. Development Goal of halving the incidence of infectious diseases such as malaria, tuberculosis, and HIV/AIDS by 2015. Looking ahead:Prevention and treatment. Improved malaria prediction will be an.

  16. Forest cover change prediction using hybrid methodology of ...

    Indian Academy of Sciences (India)

    to assess the present and future land use/land cover scenario of Gangtok, the subHimalayan capital of ... data is minimal. Finally, a combination of Markov modelling and SAVI was used to predict the probable land-use scenario in Gangtok in 2020 AD, which indicted that more ... to develop resource allocation strategies.

  17. predicting weight change in gari in two packaging materials

    African Journals Online (AJOL)

    MIS

    1983-09-01

    Sep 1, 1983 ... involved the microbial deterioration of gari stored in hessian and polythene bags, showed that the polythene bag gave a better result when gari was stored at moisture content of 11.2% wet basis. Mizrahi et al (1970) using dehydrated cabbage packed in two types of packaging materials predicted value.

  18. Resistive transition for two-dimensional superconductors: Comparison between experiments and Coulomb-gas-model predictions

    International Nuclear Information System (INIS)

    Minnhagen, P.

    1983-01-01

    The Coulomb-gas model of vortex fluctuations leads to scaling relations for the resistive transition which can be directly tested by experiments. By analyzing published resistance data, it is shown that there is experimental evidence for the Coulomb-gas scaling relation in the absence of a perpendicular magnetic field. It is also shown that there exists some suggestive support for the Coulomb-gas predictions in the presence of a magnetic field

  19. Predicting clinically unrecognized coronary artery disease: use of two- dimensional echocardiography

    Directory of Open Access Journals (Sweden)

    Nagueh Sherif F

    2009-03-01

    Full Text Available Abstract Background 2-D Echo is often performed in patients without history of coronary artery disease (CAD. We sought to determine echo features predictive of CAD. Methods 2-D Echo of 328 patients without known CAD performed within one year prior to stress myocardial SPECT and angiography were reviewed. Echo features examined were left ventricular and atrial enlargement, LV hypertrophy, wall motion abnormality (WMA, LV ejection fraction (EF 15% LV perfusion defect or multivessel distribution. Severe coronary artery stenosis (CAS was defined as left main, 3 VD or 2VD involving proximal LAD. Results The mean age was 62 ± 13 years, 59% men, 29% diabetic (DM and 148 (45% had > 2 risk factors. Pharmacologic stress was performed in 109 patients (33%. MPA was present in 200 pts (60% of which, 137 were high risk. CAS was present in 166 pts (51%, 75 were severe. Of 87 patients with WMA, 83% had MPA and 78% had CAS. Multivariate analysis identified age >65, male, inability to exercise, DM, WMA, MAC and AS as independent predictors of MPA and CAS. Independent predictors of high risk MPA and severe CAS were age, DM, inability to exercise and WMA. 2-D echo findings offered incremental value over clinical information in predicting CAD by angiography. (Chi square: 360 vs. 320 p = 0.02. Conclusion 2-D Echo was valuable in predicting presence of physiological and anatomical CAD in addition to clinical information.

  20. Pelvic Incidence: A Predictive Factor for Three-Dimensional Acetabular Orientation—A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Christophe Boulay

    2014-01-01

    Full Text Available Acetabular cup orientation (inclination and anteversion is a fundamental topic in orthopaedics and depends on pelvis tilt (positional parameter emphasising the notion of a safe range of pelvis tilt. The hypothesis was that pelvic incidence (morphologic parameter could yield a more accurate and reliable assessment than pelvis tilt. The aim was to find out a predictive equation of acetabular 3D orientation parameters which were determined by pelvic incidence to include in the model. The second aim was to consider the asymmetry between the right and left acetabulae. Twelve pelvic anatomic specimens were measured with an electromagnetic Fastrak system (Polhemus Society providing 3D position of anatomical landmarks to allow measurement of acetabular and pelvic parameters. Acetabulum and pelvis data were correlated by a Spearman matrix. A robust linear regression analysis provided prediction of acetabulum axes. The orientation of each acetabulum could be predicted by the incidence. The incidence is correlated with the morphology of acetabula. The asymmetry of the acetabular roof was correlated with pelvic incidence. This study allowed analysis of relationships of acetabular orientation and pelvic incidence. Pelvic incidence (morphologic parameter could determine the safe range of pelvis tilt (positional parameter for an individual and not a group.

  1. Characterizing and predicting submovements during human three-dimensional arm reaches.

    Directory of Open Access Journals (Sweden)

    James Y Liao

    Full Text Available We have demonstrated that 3D target-oriented human arm reaches can be represented as linear combinations of discrete submovements, where the submovements are a set of minimum-jerk basis functions for the reaches. We have also demonstrated the ability of deterministic feed-forward Artificial Neural Networks (ANNs to predict the parameters of the submovements. ANNs were trained using kinematic data obtained experimentally from five human participants making target-directed movements that were decomposed offline into minimum-jerk submovements using an optimization algorithm. Under cross-validation, the ANNs were able to accurately predict the parameters (initiation-time, amplitude, and duration of the individual submovements. We also demonstrated that the ANNs can together form a closed-loop model of human reaching capable of predicting 3D trajectories with VAF >95.9% and RMSE ≤4.32 cm relative to the actual recorded trajectories. This closed-loop model is a step towards a practical arm trajectory generator based on submovements, and should be useful for the development of future arm prosthetic devices that are controlled by brain computer interfaces or other user interfaces.

  2. Predicted impacts of land use change on groundwater recharge of ...

    African Journals Online (AJOL)

    2012-04-13

    Apr 13, 2012 ... (2003) found no significant effect of a change in forest cover on peaks and low flows for 25 basins across north- western Europe, while deforestation led to an increase in base flow in more temperate climates (Hornbeck et al., 1993). Land use change also has a direct influence on the catch- ment hydrology ...

  3. Predicting Change in Postpartum Depression: An Individual Growth Curve Approach.

    Science.gov (United States)

    Buchanan, Trey

    Recently, methodologists interested in examining problems associated with measuring change have suggested that developmental researchers should focus upon assessing change at both intra-individual and inter-individual levels. This study used an application of individual growth curve analysis to the problem of maternal postpartum depression.…

  4. Changes in fire weather distributions: effects on predicted fire behavior

    Science.gov (United States)

    Lucy A. Salazar; Larry S. Bradshaw

    1984-01-01

    Data that represent average worst fire weather for a particular area are used to index daily fire danger; however, they do not account for different locations or diurnal weather changes that significantly affect fire behavior potential. To study the effects that selected changes in weather databases have on computed fire behavior parameters, weather data for the...

  5. A linear regression model for predicting PNW estuarine temperatures in a changing climate

    Science.gov (United States)

    Pacific Northwest coastal regions, estuaries, and associated ecosystems are vulnerable to the potential effects of climate change, especially to changes in nearshore water temperature. While predictive climate models simulate future air temperatures, no such projections exist for...

  6. Predictive factors of gastroduodenal toxicity in cirrhotic patients after three-dimensional conformal radiotherapy for hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Kim, Haeyoung; Lim, Do Hoon; Paik, Seung Woon; Yoo, Byung Chul; Koh, Kwang Gheol; Lee, Joon Hyoek; Choi, Moon Seok; Park, Won; Park, Hee Chul; Huh, Seung Jae; Choi, Doo Ho; Ahn, Yong Chan

    2009-01-01

    Background and purpose: To identify predictive factors for the development of gastroduodenal toxicity (GDT) in cirrhotic patients treated with three-dimensional conformal radiotherapy (3D-CRT) for hepatocellular carcinoma (HCC). Materials and methods: We retrospectively analyzed dose-volume histograms (DVHs) and clinical records of 73 cirrhotic patients treated with 3D-CRT for HCC. The median radiation dose was 36 Gy (range, 30-54 Gy) with a daily dose of 3 Gy. The grade of GDT was defined by the Common Toxicity Criteria Version 2. The predictive factors of grade 3 GDT were identified. Results: Grade 3 GDT was found in 9 patients. Patient's age and the percentage of gastroduodenal volume receiving more than 35 Gy (V 35 ) significantly affected the development of grade 3 GDT. Patients over 50 years of age developed grade 3 GDT more frequently than patients under 50 years of age. The risk of grade 3 GDT grew exponentially as V 35 increased. The 1-year actuarial rate of grade 3 GDT in patients with V 35 35 ≥5% (4% vs. 48%, p 35 were the most predictive factors for the development of grade 3 GDT in patients treated with RT.

  7. Prediction of three-dimensional arm trajectories based on ECoG signals recorded from human sensorimotor cortex.

    Directory of Open Access Journals (Sweden)

    Yasuhiko Nakanishi

    Full Text Available Brain-machine interface techniques have been applied in a number of studies to control neuromotor prostheses and for neurorehabilitation in the hopes of providing a means to restore lost motor function. Electrocorticography (ECoG has seen recent use in this regard because it offers a higher spatiotemporal resolution than non-invasive EEG and is less invasive than intracortical microelectrodes. Although several studies have already succeeded in the inference of computer cursor trajectories and finger flexions using human ECoG signals, precise three-dimensional (3D trajectory reconstruction for a human limb from ECoG has not yet been achieved. In this study, we predicted 3D arm trajectories in time series from ECoG signals in humans using a novel preprocessing method and a sparse linear regression. Average Pearson's correlation coefficients and normalized root-mean-square errors between predicted and actual trajectories were 0.44~0.73 and 0.18~0.42, respectively, confirming the feasibility of predicting 3D arm trajectories from ECoG. We foresee this method contributing to future advancements in neuroprosthesis and neurorehabilitation technology.

  8. Predictive Roles of Three-Dimensional Psychological Pain, Psychache, and Depression in Suicidal Ideation among Chinese College Students

    Directory of Open Access Journals (Sweden)

    Huanhuan Li

    2017-09-01

    Full Text Available How to develop an effective screening instrument for predicting suicide risk is an important issue in suicidal research. The aim of the present research was to explore the predictive roles of three screening measures in the evaluation of preexisting suicide risk factors in a sample of undergraduate students. We assessed 1,061 students using the Beck depression and suicidal ideation scales (BDI-I (BSI, the Psychache Scale (PAS, and the three-dimensional Psychological Pain Scale (TDPPS. Simultaneous multivariate regression analysis showed that the predictive values of pain avoidance scores and BDI scores for suicidal ideation were more significant than that of the PAS scores. Subsequently, 42 patients with major depressive disorder (MDD, 39 students with subthreshold depression (SD, and 18 healthy controls were voluntarily recruited. Students with SD were divided into high suicidal ideation (HSI-SD and low suicidal ideation (LSI-SD groups. Pain avoidance scores and BDI scores differed significantly among the MDD, HSI-SD, LSI-SD, and healthy control groups. Pain avoidance and BSI scores were significantly higher in the MDD and HSI-SD groups than those in the LSI-SD and healthy control groups. However, no significant difference was observed in BDI scores between the HSI-SD and LSI-SD groups. Pain avoidance and depression, rather than psychache, may be promising predictors of suicidal ideation in a Chinese young adult population.

  9. Hydrophysical conditions and periphyton in natural rivers. Analysis and predictive modelling of periphyton by changed regulations

    International Nuclear Information System (INIS)

    Stokseth, S.

    1994-10-01

    The objective of this thesis has been to examine the interaction between hydrodynamical and physical factors and the temporal and spatial dynamics of periphyton in natural steep rivers. The study strategy has been to work with quantitative system variables to be able to evaluate the potential usability of a predictive model for periphyton changes as a response to river regulations. The thesis is constituted by a theoretical and an empirical study. The theoretical study is aimed at presenting a conceptual model of the relevant factors based on an analysis of published studies. Effort has been made to evaluate and present the background material in a structured way. To concurrently handle the spatial and temporal dynamics of periphyton a new method for data collection has been developed. A procedure for quantifying the photo registrations has been developed. The simple hydrodynamical parameters were estimated from a set of standard formulas whereas the complex parameters were estimated from a three dimensional simulation model called SSIIM. The main conclusion from the analysis is that flood events are the major controlling factors wrt. periphyton biomass and that water temperature is of major importance for the periphyton resistance. Low temperature clearly increases the periphyton erosion resistance. Thus, to model or control the temporal dynamics the river periphyton, the water temperature and the frequency and size of floods should be regarded the most significant controlling factors. The data in this study has been collected from a river with a stable water quality and frequent floods. 109 refs., 41 figs., 34 tabs

  10. Predicting Three-Dimensional Conformations of Peptides Constructed of Only Glycine, Alanine, Aspartic Acid, and Valine

    Science.gov (United States)

    Oda, Akifumi; Fukuyoshi, Shuichi

    2015-06-01

    The GADV hypothesis is a form of the protein world hypothesis, which suggests that life originated from proteins (Lacey et al. 1999; Ikehara 2002; Andras 2006). In the GADV hypothesis, life is thought to have originated from primitive proteins constructed of only glycine, alanine, aspartic acid, and valine ([GADV]-proteins). In this study, the three-dimensional (3D) conformations of randomly generated short [GADV]-peptides were computationally investigated using replica-exchange molecular dynamics (REMD) simulations (Sugita and Okamoto 1999). Because the peptides used in this study consisted of only 20 residues each, they could not form certain 3D structures. However, the conformational tendencies of the peptides were elucidated by analyzing the conformational ensembles generated by REMD simulations. The results indicate that secondary structures can be formed in several randomly generated [GADV]-peptides. A long helical structure was found in one of the hydrophobic peptides, supporting the conjecture of the GADV hypothesis that many peptides aggregated to form peptide multimers with enzymatic activity in the primordial soup. In addition, these results indicate that REMD simulations can be used for the structural investigation of short peptides.

  11. Confronting Theoretical Predictions With Experimental Data; Fitting Strategy For Multi-Dimensional Distributions

    Directory of Open Access Journals (Sweden)

    Tomasz Przedziński

    2015-01-01

    Full Text Available After developing a Resonance Chiral Lagrangian (RχL model to describe hadronic τ lepton decays [18], the model was confronted with experimental data. This was accomplished using a fitting framework which was developed to take into account the complexity of the model and to ensure the numerical stability for the algorithms used in the fitting. Since the model used in the fit contained 15 parameters and there were only three 1-dimensional distributions available, we could expect multiple local minima or even whole regions of equal potential to appear. Our methods had to thoroughly explore the whole parameter space and ensure, as well as possible, that the result is a global minimum. This paper is focused on the technical aspects of the fitting strategy used. The first approach was based on re-weighting algorithm published in [17] and produced results in around two weeks. Later approach, with improved theoretical model and simple parallelization algorithm based on Inter-Process Communication (IPC methods of UNIX system, reduced computation time down to 2-3 days. Additional approximations were introduced to the model decreasing time to obtain the preliminary results down to 8 hours. This allowed to better validate the results leading to a more robust analysis published in [12].

  12. Three-dimensional evaluation of lumbar disc hernia and prediction of absorption by enhanced MRI

    International Nuclear Information System (INIS)

    Kawaji, Youichi; Uchiyama, Seiji; Yagi, Eiichi

    2001-01-01

    Both the spontaneous shrinkage and the disappearance of disc hernia have been confirmed through the use of computed tomography (CT) and magnetic resonance imaging (MRI). There is, however, no practical method to predict the likely absorption of the herniated mass. The objective of this study was to predict the spontaneous absorption of disc hernia by MRI, and to select the optimum treatment. The study involved 65 patients with lumbar disc hernias. Conservative treatment was carried out in 21 patients, while 44 patients underwent herniotomy. In the nonoperated patients, an MRI was taken both during the painful period, and shortly after pain remission. Hernial shrinkage was evaluated according to the decrease in the calculated volume, in addition to the decrease in hernial area, calculated by MRI. In the operated group, preoperative MRI enhancement, type of hernia, and invasion of granulation tissue in the histological specimens were studied. In the 21 nonoperated patients, the volume (mean ±SD) was 0.488±208 cm 3 (range, 0.197-0.931 cm 3 ) in the painful period and 0.214±0.181 cm 3 (range, 0.0-0.744 cm 3 ) in the remission period. This decrease in volume was statistically significant. There was also a greater decrease in hernias exhibiting positive enhancement by MRI. In the operated patients, hernias that penetrated the posterior longitudinal ligament (PLL) had high rates of preoperative enhancement, and these hernias showed invasion of granulation tissue with marked neovascularization. Positive enhancement by MRI confirms an ongoing absorption process. Enhanced MRI can be a good method for the prediction of spontaneous absorption of lumbar disc hernias. (author)

  13. Three-dimensional evaluation of lumbar disc hernia and prediction of absorption by enhanced MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kawaji, Youichi; Uchiyama, Seiji [Niigata Univ. (Japan). School of Medicine; Yagi, Eiichi

    2001-07-01

    Both the spontaneous shrinkage and the disappearance of disc hernia have been confirmed through the use of computed tomography (CT) and magnetic resonance imaging (MRI). There is, however, no practical method to predict the likely absorption of the herniated mass. The objective of this study was to predict the spontaneous absorption of disc hernia by MRI, and to select the optimum treatment. The study involved 65 patients with lumbar disc hernias. Conservative treatment was carried out in 21 patients, while 44 patients underwent herniotomy. In the nonoperated patients, an MRI was taken both during the painful period, and shortly after pain remission. Hernial shrinkage was evaluated according to the decrease in the calculated volume, in addition to the decrease in hernial area, calculated by MRI. In the operated group, preoperative MRI enhancement, type of hernia, and invasion of granulation tissue in the histological specimens were studied. In the 21 nonoperated patients, the volume (mean {+-}SD) was 0.488{+-}208 cm{sup 3} (range, 0.197-0.931 cm{sup 3}) in the painful period and 0.214{+-}0.181 cm{sup 3} (range, 0.0-0.744 cm{sup 3}) in the remission period. This decrease in volume was statistically significant. There was also a greater decrease in hernias exhibiting positive enhancement by MRI. In the operated patients, hernias that penetrated the posterior longitudinal ligament (PLL) had high rates of preoperative enhancement, and these hernias showed invasion of granulation tissue with marked neovascularization. Positive enhancement by MRI confirms an ongoing absorption process. Enhanced MRI can be a good method for the prediction of spontaneous absorption of lumbar disc hernias. (author)

  14. Predicting Future High-Cost Schizophrenia Patients Using High-Dimensional Administrative Data

    Directory of Open Access Journals (Sweden)

    Yajuan Wang

    2017-06-01

    Full Text Available BackgroundThe burden of serious and persistent mental illness such as schizophrenia is substantial and requires health-care organizations to have adequate risk adjustment models to effectively allocate their resources to managing patients who are at the greatest risk. Currently available models underestimate health-care costs for those with mental or behavioral health conditions.ObjectivesThe study aimed to develop and evaluate predictive models for identification of future high-cost schizophrenia patients using advanced supervised machine learning methods.MethodsThis was a retrospective study using a payer administrative database. The study cohort consisted of 97,862 patients diagnosed with schizophrenia (ICD9 code 295.* from January 2009 to June 2014. Training (n = 34,510 and study evaluation (n = 30,077 cohorts were derived based on 12-month observation and prediction windows (PWs. The target was average total cost/patient/month in the PW. Three models (baseline, intermediate, final were developed to assess the value of different variable categories for cost prediction (demographics, coverage, cost, health-care utilization, antipsychotic medication usage, and clinical conditions. Scalable orthogonal regression, significant attribute selection in high dimensions method, and random forests regression were used to develop the models. The trained models were assessed in the evaluation cohort using the regression R2, patient classification accuracy (PCA, and cost accuracy (CA. The model performance was compared to the Centers for Medicare & Medicaid Services Hierarchical Condition Categories (CMS-HCC model.ResultsAt top 10% cost cutoff, the final model achieved 0.23 R2, 43% PCA, and 63% CA; in contrast, the CMS-HCC model achieved 0.09 R2, 27% PCA with 45% CA. The final model and the CMS-HCC model identified 33 and 22%, respectively, of total cost at the top 10% cost cutoff.ConclusionUsing advanced feature selection leveraging detailed

  15. Categorical and dimensional study of the predictive factors of the development of a psychotrauma in victims of car accidents.

    Science.gov (United States)

    Berna, G; Vaiva, G; Ducrocq, F; Duhem, S; Nandrino, J L

    2012-01-01

    This study aimed to evaluate the predictive factors of the emergence of complete PTSD and subsyndromal PTSD (defined as individuals exposed to a traumatic event with at least one psychopathological impact, such as hyperarousal, avoidance or persistent re-experiencing) following a motor vehicle accident (MVA). We recruited 155 adult MVA patients, physically injured and admitted to trauma service, over two years. In the week following the accident, patients were asked to complete questionnaires assessing their social situation (sex, age, marital and employment status, prior MVA or trauma), comorbidity (MINI), distress (PDI) and dissociation (PDEQ) experienced during and immediately after the trauma. An evaluation using the CAPS was conducted six months after the trauma to assess a possible PTSD. At six months, 25.8% of the participants developed subsyndromal symptoms and 7.74% developed complete PTSD. The three symptoms that best discriminated the groups were dysphoric emotion, perceived life threat and dissociation. Logistic regression results showed that the strongest predictor of PTSD was the perceived life threat. In addition, a dimensional approach to the results revealed significant correlations between (1) peritraumatic distress and persistent re-experiencing or hyperarousal and (2) dissociation score and avoidance strategy. The presence of a prior traumatic event reinforces avoidance strategies. Our results stress that peritraumatic factors (especially the perception of a life threat) are good predictors of PTSD development. A dimensional perspective allows better identification of psychological complications following an MVA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. model prediction of maize yield responses to climate change

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    identified in the Intergovernmental Panel on Climate Change Third Assessment Report (IPCC-TAR) as a major .... carbon dioxide concentration and management ... address conditions where water is a key limiting ... Laboratory, United States.

  17. Flow-induced vibration and flow characteristics prediction for a sliding roller gate by two-dimensional unsteady CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nak-Geun; Lee, Kye-Bock [Chungbuk National University, Cheongju (Korea, Republic of); Cho, Yong [Korea Water Resources Corporation, Daejeon (Korea, Republic of)

    2017-07-15

    Numerical analysis on the flow induced vibration and flow characteristics in the water gate has been carried out by 2-dimensional unsteady CFD simulation when sea water flows into the port in the river. Effect of gate opening on the frequency and the mean velocity and the vortex shedding under the water gate were studied. The streamlines were compared for various gate openings. To get the frequency spectrum, Fourier transform should be performed. Spectral analysis of the excitation force signals permitted identification of the main characteristics of the interaction process. The results show that the sources of disturbed frequency are the vortex shedding from under the water gate. As the gate opening ratio increases, the predicted vibration frequency decreases. The bottom scouring occurs for large gate opening rather than smaller one. The unstable operation conditions can be estimated by using the CFD results and the Strouhal number results for various gate opening gaps.

  18. Flow-induced vibration and flow characteristics prediction for a sliding roller gate by two-dimensional unsteady CFD simulation

    International Nuclear Information System (INIS)

    Kim, Nak-Geun; Lee, Kye-Bock; Cho, Yong

    2017-01-01

    Numerical analysis on the flow induced vibration and flow characteristics in the water gate has been carried out by 2-dimensional unsteady CFD simulation when sea water flows into the port in the river. Effect of gate opening on the frequency and the mean velocity and the vortex shedding under the water gate were studied. The streamlines were compared for various gate openings. To get the frequency spectrum, Fourier transform should be performed. Spectral analysis of the excitation force signals permitted identification of the main characteristics of the interaction process. The results show that the sources of disturbed frequency are the vortex shedding from under the water gate. As the gate opening ratio increases, the predicted vibration frequency decreases. The bottom scouring occurs for large gate opening rather than smaller one. The unstable operation conditions can be estimated by using the CFD results and the Strouhal number results for various gate opening gaps.

  19. Half-metallic ferromagnetism prediction in MoS2-based two-dimensional superlattice from first-principles

    Science.gov (United States)

    Wen, Yan-Ni; Gao, Peng-Fei; Xia, Ming-Gang; Zhang, Sheng-Li

    2018-03-01

    Half-metallic ferromagnetism (HMFM) has great potential application in spin filter. However, it is extremely rare, especially in two-dimensional (2D) materials. At present, 2D materials have drawn international interest in spintronic devices. Here, we use ab initio density functional theory (DFT) calculations to study the structural stability and electrical and magnetic properties of the MoS2-based 2D superlattice formed by inserting graphene hexagonal ring in 6 × 6 × 1 MoS2 supercell. Two kinds of structures with hexagonal carbon ring were predicted with structural stability and were shown HMFM. The two structures combine the spin transport capacity of graphene with the magnetism of the defective 2D MoS2. And they have strong covalent bonding between the C and S or Mo atoms near the interface. This work is very useful to help us to design reasonable MoS2-based spin filter.

  20. The predictive value of three-dimensional Doppler ultrasonography in determining implantation in patients underwent in vitro fertilization

    Directory of Open Access Journals (Sweden)

    Yusuf Çakmak

    2015-12-01

    Full Text Available Objective: The aim of this study is to evaluate the relationship between endometrial and sub-endometrial blood flow and implantation rate in patients whose undergone in vitro fertilization. Methods: A prospective study was conducted. Long protocol and antagonist regimens were administered to the patients. Endometrial and sub-endometrial blood flow was evaluated by using 3 dimensional Doppler ultrasonography on the day of oocyt retrieval measurement. For comparison pregnant and non-pregnant women in terms of endometrial and sub-endometrial blood flow, t test was used. The p value was considered statistically meaningful as 0.05. In long protocol group, the number of embryo was greater in pregnant women than non-pregnant women (p=0.012. The number of transferred embryo increased pregnancy rate almost 3.5 fold (p=0.002. Conclusion: The endometrial and subendometrial blood flow is not reliable factor in prediction pregnancy or implantation.

  1. Three-dimensional fuel pin model validation by prediction of hydrogen distribution in cladding and comparison with experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aly, A. [North Carolina State Univ., Raleigh, NC (United States); Avramova, Maria [North Carolina State Univ., Raleigh, NC (United States); Ivanov, Kostadin [Pennsylvania State Univ., University Park, PA (United States); Motta, Arthur [Pennsylvania State Univ., University Park, PA (United States); Lacroix, E. [Pennsylvania State Univ., University Park, PA (United States); Manera, Annalisa [Univ. of Michigan, Ann Arbor, MI (United States); Walter, D. [Univ. of Michigan, Ann Arbor, MI (United States); Williamson, R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gamble, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-10-29

    To correctly describe and predict this hydrogen distribution there is a need for multi-physics coupling to provide accurate three-dimensional azimuthal, radial, and axial temperature distributions in the cladding. Coupled high-fidelity reactor-physics codes with a sub-channel code as well as with a computational fluid dynamics (CFD) tool have been used to calculate detailed temperature distributions. These high-fidelity coupled neutronics/thermal-hydraulics code systems are coupled further with the fuel-performance BISON code with a kernel (module) for hydrogen. Both hydrogen migration and precipitation/dissolution are included in the model. Results from this multi-physics analysis is validated utilizing calculations of hydrogen distribution using models informed by data from hydrogen experiments and PIE data.

  2. Transitional states in marine fisheries: adapting to predicted global change.

    Science.gov (United States)

    MacNeil, M Aaron; Graham, Nicholas A J; Cinner, Joshua E; Dulvy, Nicholas K; Loring, Philip A; Jennings, Simon; Polunin, Nicholas V C; Fisk, Aaron T; McClanahan, Tim R

    2010-11-27

    Global climate change has the potential to substantially alter the production and community structure of marine fisheries and modify the ongoing impacts of fishing. Fish community composition is already changing in some tropical, temperate and polar ecosystems, where local combinations of warming trends and higher environmental variation anticipate the changes likely to occur more widely over coming decades. Using case studies from the Western Indian Ocean, the North Sea and the Bering Sea, we contextualize the direct and indirect effects of climate change on production and biodiversity and, in turn, on the social and economic aspects of marine fisheries. Climate warming is expected to lead to (i) yield and species losses in tropical reef fisheries, driven primarily by habitat loss; (ii) community turnover in temperate fisheries, owing to the arrival and increasing dominance of warm-water species as well as the reduced dominance and departure of cold-water species; and (iii) increased diversity and yield in Arctic fisheries, arising from invasions of southern species and increased primary production resulting from ice-free summer conditions. How societies deal with such changes will depend largely on their capacity to adapt--to plan and implement effective responses to change--a process heavily influenced by social, economic, political and cultural conditions.

  3. Predicted macroinvertebrate response to water diversion from a montane stream using two-dimensional hydrodynamic models and zero flow approximation

    Science.gov (United States)

    Holmquist, Jeffrey G.; Waddle, Terry J.

    2013-01-01

    We used two-dimensional hydrodynamic models for the assessment of water diversion effects on benthic macroinvertebrates and associated habitat in a montane stream in Yosemite National Park, Sierra Nevada Mountains, CA, USA. We sampled the macroinvertebrate assemblage via Surber sampling, recorded detailed measurements of bed topography and flow, and coupled a two-dimensional hydrodynamic model with macroinvertebrate indicators to assess habitat across a range of low flows in 2010 and representative past years. We also made zero flow approximations to assess response of fauna to extreme conditions. The fauna of this montane reach had a higher percentage of Ephemeroptera, Plecoptera, and Trichoptera (%EPT) than might be expected given the relatively low faunal diversity of the study reach. The modeled responses of wetted area and area-weighted macroinvertebrate metrics to decreasing discharge indicated precipitous declines in metrics as flows approached zero. Changes in area-weighted metrics closely approximated patterns observed for wetted area, i.e., area-weighted invertebrate metrics contributed relatively little additional information above that yielded by wetted area alone. Loss of habitat area in this montane stream appears to be a greater threat than reductions in velocity and depth or changes in substrate, and the modeled patterns observed across years support this conclusion. Our models suggest that step function losses of wetted area may begin when discharge in the Merced falls to 0.02 m3/s; proportionally reducing diversions when this threshold is reached will likely reduce impacts in low flow years.

  4. Morphological changes after pelvic floor muscle training measured by 3-dimensional ultrasonography: a randomized controlled trial.

    Science.gov (United States)

    Braekken, Ingeborg Hoff; Hoff Braekken, Ingeborg; Majida, Memona; Engh, Marie Ellström; Bø, Kari

    2010-02-01

    To investigate morphological and functional changes after pelvic floor muscle training in women with pelvic organ prolapse. This randomized controlled trial was conducted at a university hospital and a physical therapy clinic. One hundred nine women with pelvic organ prolapse stages I, II, and III were randomly allocated by a computer-generated random number system to pelvic floor muscle training (n=59) or control (n=50). Both groups received lifestyle advice and learned to contract the pelvic floor muscles before and during increases in intraabdominal pressure. In addition the pelvic floor muscle training group did individual strength training with a physical therapist and daily home exercise for 6 months. Primary outcome measures were pelvic floor muscle (pubovisceral muscle) thickness, levator hiatus area, pubovisceral muscle length at rest and Valsalva, and resting position of bladder and rectum, measured by three-dimensional ultrasonography. Seventy-nine percent of women in the pelvic floor muscle training group adhered to at least 80% of the training protocol. Compared with women in the control group, women in the pelvic floor muscle training group increased muscle thickness (difference between groups: 1.9 mm, 95% confidence interval [CI] 1.1-2.7, Ppelvic floor muscle stiffness. Supervised pelvic floor muscle training can increase muscle volume, close the levator hiatus, shorten muscle length, and elevate the resting position of the bladder and rectum. www.clinicaltrials.gov, NCT00271297. I.

  5. Three-dimensional analysis of post-caloric nystagmus caused by postural change.

    Science.gov (United States)

    Young, Y H; Chiang, C W; Wang, C P

    2001-01-01

    In order to record caloric nystagmus (CN) using three-dimensional videonystagmography (3D VNG) 14 subjects were placed in the supine position with the head tilted up 30 degrees relative to the earth's horizontal plane. After the primary-phase CN had terminated, the subjects were repositioned from a supine to a sitting position, with the head anteflexed 30 degrees for recording the post-caloric nystagmus (PCN). In addition, 8 of the original subjects were placed in the supine position but with the head turned 40 degrees to the left so that the irrigated (right) ear was oriented upwards. After the primary-phase CN had terminated, the subjects were rotated by 180 degrees so that the irrigated ear was oriented downwards to record PCN. The results indicated that both methods successfully provoked horizontal and vertical CN. For torsional CN, the irrigated ear up/down method produced a higher provocation rate (75%) than the supine/sitting method (50%), but the difference was not significant. Comparing the provocation rate of the PCN for the horizontal component revealed that the two methods do not differ significantly. However, when comparing the provocation rates of PCN for the vertical component, the irrigated ear up/down method showed a higher rate (82%) than the supine/sitting method (18%). Thus using 3D VNG coupled with postural change during caloric testing, the horizontal or vertical components of PCN can be successfully provoked.

  6. Three-Dimensional Changes in the Midface Following Malar Calcium Hydroxyapatite Injection in a Cadaver Model.

    Science.gov (United States)

    Gatherwright, James R; Brown, Matthew S; Katira, Kristopher M; Rowe, David J

    2015-08-01

    Three-dimensional (3D) changes in the midface following malar calcium hydroxyapatite (CaHa) injection have not been systematically analyzed. The authors analyzed 3D volume changes in midface and naso-labial fold (NLF) volume, as well as lateral movement in the NLF/naso-labial crease (NLC) junction following malar injection of CaHa in a cadaver model. A single surgeon injected CaHa in the supraperiosteal plane. Sequential images were obtained with the VECTRA 3D system pre- and post-1.5- and 3-cc CaHa injections. All measurements were performed by a single examiner. Injection location was verified anatomically. Injections were performed in 16 fresh cadaver hemi-faces. Maximal increases in projection were centered on the malar injection site, with associated decreases in projection and volume in the infero-medial locations. Relative mean increases in volume of 3.16 cc and 4.94 cc were observed following the 1.5-cc and 3-cc injections, respectively. There was a relative decrease in the volume of the NLF of -0.3 cc and -0.4 cc following the 1.5- and 3-cc injections, respectively. Injection of CaHa was associated with lateral movements of the NLF-NLC junction at the level of the nasal sill, philtral columns, and oral commissure, measuring 2.7, 2.5, and 1.9 mm and 2.8, 2.9, and 2.4 mm following the 1.5- and 3-cc injections, respectively. Anatomical dissection verified the location in the supraperiosteal space and within the middle malar fat pad. Following malar CaHa injection, 3D photographic analysis showed a measureable lifting effect with recruitment of ptotic tissue and lateral movement of the NLF-NLC junction in a cadaver model. © 2015 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  7. Protein-protein interaction site predictions with three-dimensional probability distributions of interacting atoms on protein surfaces.

    Directory of Open Access Journals (Sweden)

    Ching-Tai Chen

    Full Text Available Protein-protein interactions are key to many biological processes. Computational methodologies devised to predict protein-protein interaction (PPI sites on protein surfaces are important tools in providing insights into the biological functions of proteins and in developing therapeutics targeting the protein-protein interaction sites. One of the general features of PPI sites is that the core regions from the two interacting protein surfaces are complementary to each other, similar to the interior of proteins in packing density and in the physicochemical nature of the amino acid composition. In this work, we simulated the physicochemical complementarities by constructing three-dimensional probability density maps of non-covalent interacting atoms on the protein surfaces. The interacting probabilities were derived from the interior of known structures. Machine learning algorithms were applied to learn the characteristic patterns of the probability density maps specific to the PPI sites. The trained predictors for PPI sites were cross-validated with the training cases (consisting of 432 proteins and were tested on an independent dataset (consisting of 142 proteins. The residue-based Matthews correlation coefficient for the independent test set was 0.423; the accuracy, precision, sensitivity, specificity were 0.753, 0.519, 0.677, and 0.779 respectively. The benchmark results indicate that the optimized machine learning models are among the best predictors in identifying PPI sites on protein surfaces. In particular, the PPI site prediction accuracy increases with increasing size of the PPI site and with increasing hydrophobicity in amino acid composition of the PPI interface; the core interface regions are more likely to be recognized with high prediction confidence. The results indicate that the physicochemical complementarity patterns on protein surfaces are important determinants in PPIs, and a substantial portion of the PPI sites can be predicted

  8. Protein-Protein Interaction Site Predictions with Three-Dimensional Probability Distributions of Interacting Atoms on Protein Surfaces

    Science.gov (United States)

    Chen, Ching-Tai; Peng, Hung-Pin; Jian, Jhih-Wei; Tsai, Keng-Chang; Chang, Jeng-Yih; Yang, Ei-Wen; Chen, Jun-Bo; Ho, Shinn-Ying; Hsu, Wen-Lian; Yang, An-Suei

    2012-01-01

    Protein-protein interactions are key to many biological processes. Computational methodologies devised to predict protein-protein interaction (PPI) sites on protein surfaces are important tools in providing insights into the biological functions of proteins and in developing therapeutics targeting the protein-protein interaction sites. One of the general features of PPI sites is that the core regions from the two interacting protein surfaces are complementary to each other, similar to the interior of proteins in packing density and in the physicochemical nature of the amino acid composition. In this work, we simulated the physicochemical complementarities by constructing three-dimensional probability density maps of non-covalent interacting atoms on the protein surfaces. The interacting probabilities were derived from the interior of known structures. Machine learning algorithms were applied to learn the characteristic patterns of the probability density maps specific to the PPI sites. The trained predictors for PPI sites were cross-validated with the training cases (consisting of 432 proteins) and were tested on an independent dataset (consisting of 142 proteins). The residue-based Matthews correlation coefficient for the independent test set was 0.423; the accuracy, precision, sensitivity, specificity were 0.753, 0.519, 0.677, and 0.779 respectively. The benchmark results indicate that the optimized machine learning models are among the best predictors in identifying PPI sites on protein surfaces. In particular, the PPI site prediction accuracy increases with increasing size of the PPI site and with increasing hydrophobicity in amino acid composition of the PPI interface; the core interface regions are more likely to be recognized with high prediction confidence. The results indicate that the physicochemical complementarity patterns on protein surfaces are important determinants in PPIs, and a substantial portion of the PPI sites can be predicted correctly with

  9. Computational modeling for prediction of the shear stress of three-dimensional isotropic and aligned fiber networks.

    Science.gov (United States)

    Park, Seungman

    2017-09-01

    Interstitial flow (IF) is a creeping flow through the interstitial space of the extracellular matrix (ECM). IF plays a key role in diverse biological functions, such as tissue homeostasis, cell function and behavior. Currently, most studies that have characterized IF have focused on the permeability of ECM or shear stress distribution on the cells, but less is known about the prediction of shear stress on the individual fibers or fiber networks despite its significance in the alignment of matrix fibers and cells observed in fibrotic or wound tissues. In this study, I developed a computational model to predict shear stress for different structured fibrous networks. To generate isotropic models, a random growth algorithm and a second-order orientation tensor were employed. Then, a three-dimensional (3D) solid model was created using computer-aided design (CAD) software for the aligned models (i.e., parallel, perpendicular and cubic models). Subsequently, a tetrahedral unstructured mesh was generated and flow solutions were calculated by solving equations for mass and momentum conservation for all models. Through the flow solutions, I estimated permeability using Darcy's law. Average shear stress (ASS) on the fibers was calculated by averaging the wall shear stress of the fibers. By using nonlinear surface fitting of permeability, viscosity, velocity, porosity and ASS, I devised new computational models. Overall, the developed models showed that higher porosity induced higher permeability, as previous empirical and theoretical models have shown. For comparison of the permeability, the present computational models were matched well with previous models, which justify our computational approach. ASS tended to increase linearly with respect to inlet velocity and dynamic viscosity, whereas permeability was almost the same. Finally, the developed model nicely predicted the ASS values that had been directly estimated from computational fluid dynamics (CFD). The present

  10. THE EFFECTS OF GLYCOL METHACRYLATE AS A DEHYDRATING AGENT ON THE DIMENSIONAL CHANGES OF LIVER-TISSUE

    NARCIS (Netherlands)

    GERRITS, PO; HOROBIN, RW; STOKROOS, [No Value

    The dimensional changes of liver sections during the course of processing with glycol methacrylate (GMA) or with ethanol are described. Tissue processing with ethanol served as a control. During prolonged processing steps (24 h each), linear shrinkage of tissue specimens dehydrated with GMA at room

  11. Influence of chemical treatments on moisture-induced dimensional change and elastic modulus of earlywood and latewood

    Science.gov (United States)

    Robert J. Moon; Joseph Wells; David E. Kretschmann; James Evans; Alex C. Wiedenhoeft; Charles R. Frihart

    2010-01-01

    To better understand the performance of bonded, coated, and modified wood, knowledge of how these processes alter the dimensional change and mechanical properties of wood at a given moisture content (MC) are important. These localized influences on earlywood (EW) and latewood (LW) properties are not well understood. In the present study, the influence of chemical...

  12. Prediction of residual lung function after lung surgery, and examination of blood perfusion in the pre- and postoperative lung using three-dimensional SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Shimatani, Shinji [Toho Univ., Tokyo (Japan). School of Medicine

    2001-01-01

    In order to predict postoperative pulmonary function after lung surgery, preoperative {sup 99m}Tc-macroaggregated albumin (MAA) lung perfusion scans with single-photon emission computed tomography (SPECT) were performed. Spirometry was also performed before and 4-6 months after surgery in 40 patients. In addition, changes in blood perfusion in the pre- and postoperative lung were examined by postoperative lung perfusion scans in 18 of the 40 patients. We measured the three-dimensional (3-D) imaging volume of the operative and contralateral lungs using the volumes rendering method at blood perfusion thresholds of 20, 50 and 75%, utilizing {sup 99m}Tc-MAA lung perfusion, and predicted pulmonary function by means of the measured volumes. We examined the correlation between predicted and the measured values of postoperative pulmonary function, forced vital capacity (FVC) and forced expiratory volume in one second (FEV{sub 1.0}). The correlation between FEV{sub 1.0} predicted by SPECT (threshold 50%) and measured postoperative lung function resembled that between lung function predicted by the standard planar method and measured FEV{sub 1.0} in the lobectomy group. We then examined the ratios of both pre- and postoperative blood perfusion volumes obtained using 3-D imaging at lung perfusion threshold ranges of 10% each (PV20-29, PV30-39) to pre- and postoperative total perfusion (PV20-100). In the lobectomy group, the postoperative PV20-29/PV20-100 value was significantly higher for the operative side lung than the preoperative PV20-29/PV20-100 value, and the postoperative PV50-59, 60-69, 70-79, 80-89 and 90-100/PV20-100 values were significantly lower than the respective preoperative values. However, in the contralateral lung, the respective pre- and postoperative PV/PV20-100 values were almost identical. These findings suggest that the rate of low blood perfusion increased while the rate of middle to high perfusion decreased in the lobectomy group in the operative

  13. Application of General Regression Neural Network to the Prediction of LOD Change

    Science.gov (United States)

    Zhang, Xiao-Hong; Wang, Qi-Jie; Zhu, Jian-Jun; Zhang, Hao

    2012-01-01

    Traditional methods for predicting the change in length of day (LOD change) are mainly based on some linear models, such as the least square model and autoregression model, etc. However, the LOD change comprises complicated non-linear factors and the prediction effect of the linear models is always not so ideal. Thus, a kind of non-linear neural network — general regression neural network (GRNN) model is tried to make the prediction of the LOD change and the result is compared with the predicted results obtained by taking advantage of the BP (back propagation) neural network model and other models. The comparison result shows that the application of the GRNN to the prediction of the LOD change is highly effective and feasible.

  14. Predicting the Response of Electricity Load to Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Patrick [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Colman, Jesse [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kalendra, Eric [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-07-28

    Our purpose is to develop a methodology to quantify the impact of climate change on electric loads in the United States. We perform simple linear regression, assisted by geospatial smoothing, on paired temperature and load time-series to estimate the heating- and coolinginduced sensitivity to temperature across 300 transmission zones and 16 seasonal and diurnal time periods. The estimated load sensitivities can be coupled with climate scenarios to quantify the potential impact of climate change on load, with a primary application being long-term electricity scenarios. The method allows regional and seasonal differences in climate and load response to be reflected in the electricity scenarios. While the immediate product of this analysis was designed to mesh with the spatial and temporal resolution of a specific electricity model to enable climate change scenarios and analysis with that model, we also propose that the process could be applied for other models and purposes.

  15. Improvement of Bragg peak shift estimation using dimensionality reduction techniques and predictive linear modeling

    Science.gov (United States)

    Xing, Yafei; Macq, Benoit

    2017-11-01

    With the emergence of clinical prototypes and first patient acquisitions for proton therapy, the research on prompt gamma imaging is aiming at making most use of the prompt gamma data for in vivo estimation of any shift from expected Bragg peak (BP). The simple problem of matching the measured prompt gamma profile of each pencil beam with a reference simulation from the treatment plan is actually made complex by uncertainties which can translate into distortions during treatment. We will illustrate this challenge and demonstrate the robustness of a predictive linear model we proposed for BP shift estimation based on principal component analysis (PCA) method. It considered the first clinical knife-edge slit camera design in use with anthropomorphic phantom CT data. Particularly, 4115 error scenarios were simulated for the learning model. PCA was applied to the training input randomly chosen from 500 scenarios for eliminating data collinearities. A total variance of 99.95% was used for representing the testing input from 3615 scenarios. This model improved the BP shift estimation by an average of 63+/-19% in a range between -2.5% and 86%, comparing to our previous profile shift (PS) method. The robustness of our method was demonstrated by a comparative study conducted by applying 1000 times Poisson noise to each profile. 67% cases obtained by the learning model had lower prediction errors than those obtained by PS method. The estimation accuracy ranged between 0.31 +/- 0.22 mm and 1.84 +/- 8.98 mm for the learning model, while for PS method it ranged between 0.3 +/- 0.25 mm and 20.71 +/- 8.38 mm.

  16. Mathematical modeling of left ventricular dimensional changes in mice during aging

    Directory of Open Access Journals (Sweden)

    Yang Tianyi

    2012-12-01

    Full Text Available Abstract Cardiac aging is characterized by diastolic dysfunction of the left ventricle (LV, which is due in part to increased LV wall stiffness. In the diastolic phase, myocytes are relaxed and extracellular matrix (ECM is a critical determinant to the changes of LV wall stiffness. To evaluate the effects of ECM composition on cardiac aging, we developed a mathematical model to predict LV dimension and wall stiffness changes in aging mice by integrating mechanical laws and our experimental results. We measured LV dimension, wall thickness, LV mass, and collagen content for wild type (WT C57/BL6J mice of ages ranging from 7.3 months to those of 34.0 months. The model was established using the thick wall theory and stretch-induced tissue growth to an isotropic and homogeneous elastic composite with mixed constituents. The initial conditions of the simulation were set based on the data from the young mice. Matlab simulations of this mathematical model demonstrated that the model captured the major features of LV remodeling with age and closely approximated experimental results. Specifically, the temporal progression of the LV interior and exterior dimensions demonstrated the same trend and order-of-magnitude change as our experimental results. In conclusion, we present here a validated mathematical model of cardiac aging that applies the thick-wall theory and stretch-induced tissue growth to LV remodeling with age.

  17. Ab initio and template-based prediction of multi-class distance maps by two-dimensional recursive neural networks

    Directory of Open Access Journals (Sweden)

    Martin Alberto JM

    2009-01-01

    Full Text Available Abstract Background Prediction of protein structures from their sequences is still one of the open grand challenges of computational biology. Some approaches to protein structure prediction, especially ab initio ones, rely to some extent on the prediction of residue contact maps. Residue contact map predictions have been assessed at the CASP competition for several years now. Although it has been shown that exact contact maps generally yield correct three-dimensional structures, this is true only at a relatively low resolution (3–4 Å from the native structure. Another known weakness of contact maps is that they are generally predicted ab initio, that is not exploiting information about potential homologues of known structure. Results We introduce a new class of distance restraints for protein structures: multi-class distance maps. We show that Cα trace reconstructions based on 4-class native maps are significantly better than those from residue contact maps. We then build two predictors of 4-class maps based on recursive neural networks: one ab initio, or relying on the sequence and on evolutionary information; one template-based, or in which homology information to known structures is provided as a further input. We show that virtually any level of sequence similarity to structural templates (down to less than 10% yields more accurate 4-class maps than the ab initio predictor. We show that template-based predictions by recursive neural networks are consistently better than the best template and than a number of combinations of the best available templates. We also extract binary residue contact maps at an 8 Å threshold (as per CASP assessment from the 4-class predictors and show that the template-based version is also more accurate than the best template and consistently better than the ab initio one, down to very low levels of sequence identity to structural templates. Furthermore, we test both ab-initio and template-based 8

  18. Improving models to predict phenological responses to global change

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Andrew D. [Harvard College, Cambridge, MA (United States)

    2015-11-25

    The term phenology describes both the seasonal rhythms of plants and animals, and the study of these rhythms. Plant phenological processes, including, for example, when leaves emerge in the spring and change color in the autumn, are highly responsive to variation in weather (e.g. a warm vs. cold spring) as well as longer-term changes in climate (e.g. warming trends and changes in the timing and amount of rainfall). We conducted a study to investigate the phenological response of northern peatland communities to global change. Field work was conducted at the SPRUCE experiment in northern Minnesota, where we installed 10 digital cameras. Imagery from the cameras is being used to track shifts in plant phenology driven by elevated carbon dioxide and elevated temperature in the different SPRUCE experimental treatments. Camera imagery and derived products (“greenness”) is being posted in near-real time on a publicly available web page (http://phenocam.sr.unh.edu/webcam/gallery/). The images will provide a permanent visual record of the progression of the experiment over the next 10 years. Integrated with other measurements collected as part of the SPRUCE program, this study is providing insight into the degree to which phenology may mediate future shifts in carbon uptake and storage by peatland ecosystems. In the future, these data will be used to develop improved models of vegetation phenology, which will be tested against ground observations collected by a local collaborator.

  19. Thermal and hydrologic responses to climate change predict marked alterations in boreal stream invertebrate assemblages.

    Science.gov (United States)

    Mustonen, Kaisa-Riikka; Mykrä, Heikki; Marttila, Hannu; Sarremejane, Romain; Veijalainen, Noora; Sippel, Kalle; Muotka, Timo; Hawkins, Charles P

    2018-06-01

    Air temperature at the northernmost latitudes is predicted to increase steeply and precipitation to become more variable by the end of the 21st century, resulting in altered thermal and hydrological regimes. We applied five climate scenarios to predict the future (2070-2100) benthic macroinvertebrate assemblages at 239 near-pristine sites across Finland (ca. 1200 km latitudinal span). We used a multitaxon distribution model with air temperature and modeled daily flow as predictors. As expected, projected air temperature increased the most in northernmost Finland. Predicted taxonomic richness also increased the most in northern Finland, congruent with the predicted northwards shift of many species' distributions. Compositional changes were predicted to be high even without changes in richness, suggesting that species replacement may be the main mechanism causing climate-induced changes in macroinvertebrate assemblages. Northern streams were predicted to lose much of the seasonality of their flow regimes, causing potentially marked changes in stream benthic assemblages. Sites with the highest loss of seasonality were predicted to support future assemblages that deviate most in compositional similarity from the present-day assemblages. Macroinvertebrate assemblages were also predicted to change more in headwaters than in larger streams, as headwaters were particularly sensitive to changes in flow patterns. Our results emphasize the importance of focusing protection and mitigation on headwater streams with high-flow seasonality because of their vulnerability to climate change. © 2018 John Wiley & Sons Ltd.

  20. A Quantum Annealing Computer Team Addresses Climate Change Predictability

    Science.gov (United States)

    Halem, M. (Principal Investigator); LeMoigne, J.; Dorband, J.; Lomonaco, S.; Yesha, Ya.; Simpson, D.; Clune, T.; Pelissier, C.; Nearing, G.; Gentine, P.; hide

    2016-01-01

    The near confluence of the successful launch of the Orbiting Carbon Observatory2 on July 2, 2014 and the acceptance on August 20, 2015 by Google, NASA Ames Research Center and USRA of a 1152 qubit D-Wave 2X Quantum Annealing Computer (QAC), offered an exceptional opportunity to explore the potential of this technology to address the scientific prediction of global annual carbon uptake by land surface processes. At UMBC,we have collected and processed 20 months of global Level 2 light CO2 data as well as fluorescence data. In addition we have collected ARM data at 2sites in the US and Ameriflux data at more than 20 stations. J. Dorband has developed and implemented a multi-hidden layer Boltzmann Machine (BM) algorithm on the QAC. Employing the BM, we are calculating CO2 fluxes by training collocated OCO-2 level 2 CO2 data with ARM ground station tower data to infer to infer measured CO2 flux data. We generate CO2 fluxes with a regression analysis using these BM derived weights on the level 2 CO2 data for three Ameriflux sites distinct from the ARM stations. P. Gentine has negotiated for the access of K34 Ameriflux data in the Amazon and is applying a neural net to infer the CO2 fluxes. N. Talik validated the accuracy of the BM performance on the QAC against a restricted BM implementation on the IBM Softlayer Cloud with the Nvidia co-processors utilizing the same data sets. G. Nearing and K. Harrison have extended the GSFC LIS model with the NCAR Noah photosynthetic parameterization and have run a 10 year global prediction of the net ecosystem exchange. C. Pellisier is preparing a BM implementation of the Kalman filter data assimilation of CO2 fluxes. At UMBC, R. Prouty is conducting OSSE experiments with the LISNoah model on the IBM iDataPlex to simulate the impact of CO2 fluxes to improve the prediction of global annual carbon uptake. J. LeMoigne and D. Simpson have developed a neural net image registration system that will be used for MODIS ENVI and will be

  1. Evaluation of a Semiempirical, Zero-Dimensional, Multizone Model to Predict Nitric Oxide Emissions in DI Diesel Engines’ Combustion Chamber

    Directory of Open Access Journals (Sweden)

    Nicholas S. Savva

    2016-01-01

    Full Text Available In the present study, a semiempirical, zero-dimensional multizone model, developed by the authors, is implemented on two automotive diesel engines, a heavy-duty truck engine and a light-duty passenger car engine with pilot fuel injection, for various operating conditions including variation of power/speed, EGR rate, fuel injection timing, fuel injection pressure, and boost pressure, to verify its capability for Nitric Oxide (NO emission prediction. The model utilizes cylinder’s basic geometry and engine operating data and measured cylinder pressure to estimate the apparent combustion rate which is then discretized into burning zones according to the calculation step used. The requisite unburnt charge for the combustion in the zones is calculated using the zone equivalence ratio provided from a new empirical formula involving parameters derived from the processing of the measured cylinder pressure and typical engine operating parameters. For the calculation of NO formation, the extended Zeldovich mechanism is used. From this approach, the model is able to provide the evolution of NO formation inside each burned zone and, cumulatively, the cylinder’s NO formation history. As proven from the investigation conducted herein, the proposed model adequately predicts NO emissions and NO trends when the engine settings vary, with low computational cost. These encourage its use for engine control optimization regarding NOx abatement and real-time/model-based NOx control applications.

  2. Prediction of the microsurgical window for skull-base tumors by advanced three-dimensional multi-fusion volumetric imaging

    International Nuclear Information System (INIS)

    Oishi, Makoto; Fukuda, Masafumi; Saito, Akihiko; Hiraishi, Tetsuya; Fujii, Yukihiko; Ishida, Go

    2011-01-01

    The surgery of skull base tumors (SBTs) is difficult due to the complex and narrow surgical window that is restricted by the cranium and important structures. The utility of three-dimensional multi-fusion volumetric imaging (3-D MFVI) for visualizing the predicted window for SBTs was evaluated. Presurgical simulation using 3-D MFVI was performed in 32 patients with SBTs. Imaging data were collected from computed tomography, magnetic resonance imaging, and digital subtraction angiography. Skull data was processed to imitate actual bone resection and integrated with various structures extracted from appropriate imaging modalities by image-analyzing software. The simulated views were compared with the views obtained during surgery. All craniotomies and bone resections except opening of the acoustic canal in 2 patients were performed as simulated. The simulated window allowed observation of the expected microsurgical anatomies including tumors, vasculatures, and cranial nerves, through the predicted operative window. We could not achieve the planned tumor removal in only 3 patients. 3-D MFVI afforded high quality images of the relevant microsurgical anatomies during the surgery of SBTs. The intraoperative deja-vu effect of the simulation increased the confidence of the surgeon in the planned surgical procedures. (author)

  3. Prediction of three-dimensional residual stresses at localised indentations in pipes

    International Nuclear Information System (INIS)

    Hyde, T.H.; Luo, R.; Becker, A.A.

    2012-01-01

    Residual stresses are investigated using Finite Element (FE) analyses at localised indentations in pipes with and without internal pressures due to reverse plasticity caused by springback of the surrounding material after removal of the indenter. The indentation loading is applied via rigid 3D short indenters. The effects of the residual indentation depth, internal pressure, indenter size and different material properties on the residual stresses for different pipes have been investigated by carrying out parametric sensitivity studies. In order to predict the residual stresses, empirical formulations have been developed, which show a good correlation with the FE for residual stresses for pipes with diameter to thickness ratios of 35–72. - Highlights: ► A comprehensive elastic–plastic FE analysis of residual stresses caused by localised pipe indentations is presented. ► The effects of residual indentation depth, internal pressure, indenter size and material properties have been studied. ► Empirical formulations have been developed, which show a good correlation with the FE for residual stresses for pipes with diameter to thickness ratios of 35–72.

  4. The relationship between the changes in three-dimensional facial morphology and mandibular movement after orthognathic surgery.

    Science.gov (United States)

    Kim, Dae-Seung; Huh, Kyung-Hoe; Lee, Sam-Sun; Heo, Min-Suk; Choi, Soon-Chul; Hwang, Soon-Jung; Yi, Won-Jin

    2013-10-01

    The purpose of this study was to investigate the relationship between changes in three-dimensional (3D) facial morphology and mandibular movement after orthognathic surgery. We hypothesized that facial morphology changes after orthognathic surgery exert effects on 3D mandibular movement. We conducted a prospective follow-up study of patients who had undergone orthognathic surgical procedures. Three-dimensional facial morphological values were measured from facial CT images before and three months after orthognathic surgery. Three-dimensional maximum mandibular opening (MMO) values of four points (bilateral condylions, infradentale, and pogonion) were also measured using a mandibular movement tracking and simulation system. The predictor variables were changes in morphological parameters divided into two groups (deviated side (DS) or contralateral side (CS) groups), and the outcome variables were changes in the MMO at four points. We evaluated 21 subjects who had undergone orthognathic surgical procedures. Alterations in the TFH (total facial height), LFH (lower facial height), CS MBL (mandibular body length), and DS RL (ramus length) were negatively correlated with changes in bilateral condylar movement. The UFH, DS MBL and CS ML (mandibular length) showed correlations with infradentale movement. The CS ML, DS ML, MBL, UFH, and SNB were correlated with pogonion movement. The height of the face is most likely to affect post-operative mandibular movement, and is negatively correlated with movement changes in the condyles, infradentale and pogonion. The changes in CS morphological parameters are more correlated with mandibular movement changes than the DS. The changes in CS MBL and bilateral RL were negatively correlated with condylar movement changes, while the bilateral MBL and CS ML were positively correlated with changes in infradentale and pogonion. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights

  5. Improving the reliability of fishery predictions under climate change

    DEFF Research Database (Denmark)

    Brander, Keith

    2015-01-01

    The increasing number of publications assessing impacts of climate change on marine ecosystems and fisheries attests to rising scientific and public interest. A selection of recent papers, dealing more with biological than social and economic aspects, is reviewed here, with particular attention...... to the reliability of projections of climate impacts on future fishery yields. The 2014 Intergovernmental Panel on Climate Change (IPCC) report expresses high confidence in projections that mid- and high-latitude fish catch potential will increase by 2050 and medium confidence that low-latitude catch potential...... understanding of climate impacts, such as how to improve coupled models from physics to fish and how to strengthen confidence in analysis of time series...

  6. How the cerebral serotonin homeostasis predicts environmental changes

    DEFF Research Database (Denmark)

    Kalbitzer, Jan; Kalbitzer, Urs; Knudsen, Gitte Moos

    2013-01-01

    Molecular imaging studies with positron emission tomography have revealed that the availability of serotonin transporter (5-HTT) in the human brain fluctuates over the course of the year. This effect is most pronounced in carriers of the short allele of the 5-HTT promoter region (5-HTTLPR), which...... has in several previous studies been linked to an increased risk to develop mood disorders. We argue that long-lasting fluctuations in the cerebral serotonin transmission, which is regulated via the 5-HTT, are responsible for mediating responses to environmental changes based on an assessment...... of cerebral serotonin transmission to seasonal and other forms of environmental change imparts greater behavioral flexibility, at the expense of increased vulnerability to stress. This model may explain the somewhat higher prevalence of the s-allele in some human populations dwelling at geographic latitudes...

  7. Stages of Change or Changes of Stage? Predicting Transitions in Transtheoretical Model Stages in Relation to Healthy Food Choice

    Science.gov (United States)

    Armitage, Christopher J.; Sheeran, Paschal; Conner, Mark; Arden, Madelynne A.

    2004-01-01

    Relatively little research has examined factors that account for transitions between transtheoretical model (TTM) stages of change. The present study (N=787) used sociodemographic, TTM, and theory of planned behavior (TPB) variables, as well as theory-driven interventions to predict changes in stage. Longitudinal analyses revealed that…

  8. Prediction of three-dimensional crack propagation paths taking high cycle fatigue into account

    Directory of Open Access Journals (Sweden)

    Guido Dhondt

    2016-01-01

    Full Text Available Engine components are usually subject to complex loading patterns such as mixed-mode Low Cycle Fatigue Loading due to maneuvering. In practice, this LCF Loading has to be superimposed by High Cyclic Fatigue Loading caused by vibrations. The changes brought along by HCF are twofold: first, the vibrational cycles which are superposed on the LCF mission increase the maximum loading of the mission and may alter the principal stress planes. Secondly, the HCF cycles themselves have to be evaluated on their own, assuring that no crack propagation occurs. Indeed, the vibrational frequency is usually so high that propagation leads to immediate failure. In the present paper it is explained how these two effects can be taken care of in a standard LCF crack propagation procedure. The method is illustrated by applying the Finite Element based crack propagation software CRACKTRACER3D on an engine blade.

  9. Predicting Subtype Selectivity for Adenosine Receptor Ligands with Three-Dimensional Biologically Relevant Spectrum (BRS-3D)

    Science.gov (United States)

    He, Song-Bing; Ben Hu; Kuang, Zheng-Kun; Wang, Dong; Kong, De-Xin

    2016-11-01

    Adenosine receptors (ARs) are potential therapeutic targets for Parkinson’s disease, diabetes, pain, stroke and cancers. Prediction of subtype selectivity is therefore important from both therapeutic and mechanistic perspectives. In this paper, we introduced a shape similarity profile as molecular descriptor, namely three-dimensional biologically relevant spectrum (BRS-3D), for AR selectivity prediction. Pairwise regression and discrimination models were built with the support vector machine methods. The average determination coefficient (r2) of the regression models was 0.664 (for test sets). The 2B-3 (A2B vs A3) model performed best with q2 = 0.769 for training sets (10-fold cross-validation), and r2 = 0.766, RMSE = 0.828 for test sets. The models’ robustness and stability were validated with 100 times resampling and 500 times Y-randomization. We compared the performance of BRS-3D with 3D descriptors calculated by MOE. BRS-3D performed as good as, or better than, MOE 3D descriptors. The performances of the discrimination models were also encouraging, with average accuracy (ACC) 0.912 and MCC 0.792 (test set). The 2A-3 (A2A vs A3) selectivity discrimination model (ACC = 0.882 and MCC = 0.715 for test set) outperformed an earlier reported one (ACC = 0.784). These results demonstrated that, through multiple conformation encoding, BRS-3D can be used as an effective molecular descriptor for AR subtype selectivity prediction.

  10. Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis.

    Science.gov (United States)

    Masso, Majid; Vaisman, Iosif I

    2008-09-15

    Accurate predictive models for the impact of single amino acid substitutions on protein stability provide insight into protein structure and function. Such models are also valuable for the design and engineering of new proteins. Previously described methods have utilized properties of protein sequence or structure to predict the free energy change of mutants due to thermal (DeltaDeltaG) and denaturant (DeltaDeltaG(H2O)) denaturations, as well as mutant thermal stability (DeltaT(m)), through the application of either computational energy-based approaches or machine learning techniques. However, accuracy associated with applying these methods separately is frequently far from optimal. We detail a computational mutagenesis technique based on a four-body, knowledge-based, statistical contact potential. For any mutation due to a single amino acid replacement in a protein, the method provides an empirical normalized measure of the ensuing environmental perturbation occurring at every residue position. A feature vector is generated for the mutant by considering perturbations at the mutated position and it's ordered six nearest neighbors in the 3-dimensional (3D) protein structure. These predictors of stability change are evaluated by applying machine learning tools to large training sets of mutants derived from diverse proteins that have been experimentally studied and described. Predictive models based on our combined approach are either comparable to, or in many cases significantly outperform, previously published results. A web server with supporting documentation is available at http://proteins.gmu.edu/automute.

  11. Automatic detection of adverse events to predict drug label changes using text and data mining techniques.

    Science.gov (United States)

    Gurulingappa, Harsha; Toldo, Luca; Rajput, Abdul Mateen; Kors, Jan A; Taweel, Adel; Tayrouz, Yorki

    2013-11-01

    The aim of this study was to assess the impact of automatically detected adverse event signals from text and open-source data on the prediction of drug label changes. Open-source adverse effect data were collected from FAERS, Yellow Cards and SIDER databases. A shallow linguistic relation extraction system (JSRE) was applied for extraction of adverse effects from MEDLINE case reports. Statistical approach was applied on the extracted datasets for signal detection and subsequent prediction of label changes issued for 29 drugs by the UK Regulatory Authority in 2009. 76% of drug label changes were automatically predicted. Out of these, 6% of drug label changes were detected only by text mining. JSRE enabled precise identification of four adverse drug events from MEDLINE that were undetectable otherwise. Changes in drug labels can be predicted automatically using data and text mining techniques. Text mining technology is mature and well-placed to support the pharmacovigilance tasks. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Three dimensional evaluation of alveolar bone changes in response to different rapid palatal expansion activation rates

    Directory of Open Access Journals (Sweden)

    Brian LaBlonde

    Full Text Available ABSTRACT Introduction: The aim of this multi-center retrospective study was to quantify the changes in alveolar bone height and thickness after using two different rapid palatal expansion (RPE activation protocols, and to determine whether a more rapid rate of expansion is likely to cause more adverse effects, such as alveolar tipping, dental tipping, fenestration and dehiscence of anchorage teeth. Methods: The sample consisted of pre- and post-expansion records from 40 subjects (age 8-15 years who underwent RPE using a 4-banded Hyrax appliance as part of their orthodontic treatment to correct posterior buccal crossbites. Subjects were divided into two groups according to their RPE activation rates (0.5 mm/day and 0.8 mm/day; n = 20 each group. Three-dimensional images for all included subjects were evaluated using Dolphin Imaging Software 11.7 Premium. Maxillary base width, buccal and palatal cortical bone thickness, alveolar bone height, and root angulation and length were measured. Significance of the changes in the measurements was evaluated using Wilcoxon signed-rank test and comparisons between groups were done using ANOVA. Significance was defined at p ≤ 0.05. Results: RPE activation rates of 0.5 mm per day (Group 1 and 0.8 mm per day (Group 2 caused significant increase in arch width following treatment; however, Group 2 showed greater increases compared to Group 1 (p < 0.01. Buccal alveolar height and width decreased significantly in both groups. Both treatment protocols resulted in significant increases in buccal-lingual angulation of teeth; however, Group 2 showed greater increases compared to Group 1 (p < 0.01. Conclusion: Both activation rates are associated with significant increase in intra-arch widths. However, 0.8 mm/day resulted in greater increases. The 0.8 mm/day activation rate also resulted in more increased dental tipping and decreased buccal alveolar bone thickness over 0.5 mm/day.

  13. Prediction of optimal deployment projection for transcatheter aortic valve replacement: angiographic 3-dimensional reconstruction of the aortic root versus multidetector computed tomography.

    OpenAIRE

    Binder Ronald K; Leipsic Jonathon; Wood David; Moore Teri; Toggweiler Stefan; Willson Alex; Gurvitch Ronen; Freeman Melanie; Webb John G

    2012-01-01

    BACKGROUND Identifying the optimal fluoroscopic projection of the aortic valve is important for successful transcatheter aortic valve replacement (TAVR). Various imaging modalities including multidetector computed tomography (MDCT) have been proposed for prediction of the optimal deployment projection. We evaluated a method that provides 3 dimensional angiographic reconstructions (3DA) of the aortic root for prediction of the optimal deployment angle and compared it with MDCT. METHODS AND RES...

  14. Search predicts and changes patience in intertemporal choice

    Science.gov (United States)

    Johnson, Eric J.

    2017-01-01

    Intertemporal choice impacts many important outcomes, such as decisions about health, education, wealth, and the environment. However, the psychological processes underlying decisions involving outcomes at different points in time remain unclear, limiting opportunities to intervene and improve people’s patience. This research examines information-search strategies used during intertemporal choice and their impact on decisions. In experiment 1, we demonstrate that search strategies vary substantially across individuals. We subsequently identify two distinct search strategies across individuals. Comparative searchers, who compare features across options, discount future options less and are more susceptible to acceleration versus delay framing than integrative searchers, who integrate the features of an option. Experiment 2 manipulates search using an unobtrusive method to establish a causal relationship between strategy and choice, randomly assigning participants to conditions promoting either comparative or integrative search. Again, comparative search promotes greater patience than integrative search. Additionally, when participants adopt a comparative search strategy, they also exhibit greater effects of acceleration versus delay framing. Although most participants reported that the manipulation did not change their behavior, promoting comparative search decreased discounting of future rewards substantially and speeded patient choices. These findings highlight the central role that heterogeneity in psychological processes plays in shaping intertemporal choice. Importantly, these results indicate that theories that ignore variability in search strategies may be inadvertently aggregating over different subpopulations that use very different processes. The findings also inform interventions in choice architecture to increase patience and improve consumer welfare. PMID:29078303

  15. Search predicts and changes patience in intertemporal choice.

    Science.gov (United States)

    Reeck, Crystal; Wall, Daniel; Johnson, Eric J

    2017-11-07

    Intertemporal choice impacts many important outcomes, such as decisions about health, education, wealth, and the environment. However, the psychological processes underlying decisions involving outcomes at different points in time remain unclear, limiting opportunities to intervene and improve people's patience. This research examines information-search strategies used during intertemporal choice and their impact on decisions. In experiment 1, we demonstrate that search strategies vary substantially across individuals. We subsequently identify two distinct search strategies across individuals. Comparative searchers, who compare features across options, discount future options less and are more susceptible to acceleration versus delay framing than integrative searchers, who integrate the features of an option. Experiment 2 manipulates search using an unobtrusive method to establish a causal relationship between strategy and choice, randomly assigning participants to conditions promoting either comparative or integrative search. Again, comparative search promotes greater patience than integrative search. Additionally, when participants adopt a comparative search strategy, they also exhibit greater effects of acceleration versus delay framing. Although most participants reported that the manipulation did not change their behavior, promoting comparative search decreased discounting of future rewards substantially and speeded patient choices. These findings highlight the central role that heterogeneity in psychological processes plays in shaping intertemporal choice. Importantly, these results indicate that theories that ignore variability in search strategies may be inadvertently aggregating over different subpopulations that use very different processes. The findings also inform interventions in choice architecture to increase patience and improve consumer welfare. Copyright © 2017 the Author(s). Published by PNAS.

  16. Predicting Wetland Distribution Changes under Climate Change and Human Activities in a Mid- and High-Latitude Region

    Directory of Open Access Journals (Sweden)

    Dandan Zhao

    2018-03-01

    Full Text Available Wetlands in the mid- and high-latitudes are particularly vulnerable to environmental changes and have declined dramatically in recent decades. Climate change and human activities are arguably the most important factors driving wetland distribution changes which will have important implications for wetland ecological functions and services. We analyzed the importance of driving variables for wetland distribution and investigated the relative importance of climatic factors and human activity factors in driving historical wetland distribution changes. We predicted wetland distribution changes under climate change and human activities over the 21st century using the Random Forest model in a mid- and high-latitude region of Northeast China. Climate change scenarios included three Representative Concentration Pathways (RCPs based on five general circulation models (GCMs downloaded from the Coupled Model Intercomparison Project, Phase 5 (CMIP5. The three scenarios (RCP 2.6, RCP 4.5, and RCP 8.5 predicted radiative forcing to peak at 2.6, 4.5, and 8.5 W/m2 by the 2100s, respectively. Our results showed that the variables with high importance scores were agricultural population proportion, warmness index, distance to water body, coldness index, and annual mean precipitation; climatic variables were given higher importance scores than human activity variables on average. Average predicted wetland area among three emission scenarios were 340,000 ha, 123,000 ha, and 113,000 ha for the 2040s, 2070s, and 2100s, respectively. Average change percent in predicted wetland area among three periods was greatest under the RCP 8.5 emission scenario followed by RCP 4.5 and RCP 2.6 emission scenarios, which were 78%, 64%, and 55%, respectively. Losses in predicted wetland distribution were generally around agricultural lands and expanded continually from the north to the whole region over time, while the gains were mostly associated with grasslands and water in the

  17. Early changes in socioeconomic status do not predict changes in body mass in the first decade of life.

    Science.gov (United States)

    Starkey, Leighann; Revenson, Tracey A

    2015-04-01

    Many studies link childhood socioeconomic status (SES) to body mass index (BMI), but few account for the impact of socioeconomic mobility throughout the lifespan. This study aims to investigate the impact of socioeconomic mobility on changes in BMI in childhood. Analyses tested whether [1] socioeconomic status influences BMI, [2] changes in socioeconomic status impact changes in BMI, and [3] timing of socioeconomic status mobility impacts BMI. Secondary data spanning birth to age 9 were analyzed. SES and BMI were investigated with gender, birth weight, maternal race/ethnicity, and maternal nativity as covariates. Autoregressive structural equation modeling and latent growth modeling were used. Socioeconomic status in the first year of life predicted body mass index. Child covariates were consistently associated with body mass index. Rate of change in socioeconomic status did not predict change in body mass index. The findings suggest that early socioeconomic status may most influence body mass in later childhood.

  18. Medium- and Long-term Prediction of LOD Change by the Leap-step Autoregressive Model

    Science.gov (United States)

    Wang, Qijie

    2015-08-01

    The accuracy of medium- and long-term prediction of length of day (LOD) change base on combined least-square and autoregressive (LS+AR) deteriorates gradually. Leap-step autoregressive (LSAR) model can significantly reduce the edge effect of the observation sequence. Especially, LSAR model greatly improves the resolution of signals’ low-frequency components. Therefore, it can improve the efficiency of prediction. In this work, LSAR is used to forecast the LOD change. The LOD series from EOP 08 C04 provided by IERS is modeled by both the LSAR and AR models. The results of the two models are analyzed and compared. When the prediction length is between 10-30 days, the accuracy improvement is less than 10%. When the prediction length amounts to above 30 day, the accuracy improved obviously, with the maximum being around 19%. The results show that the LSAR model has higher prediction accuracy and stability in medium- and long-term prediction.

  19. Two-dimensional global longitudinal strain is superior to left ventricular ejection fraction in prediction of outcome in patients with left-sided infective endocarditis

    DEFF Research Database (Denmark)

    Lauridsen, Trine Kiilerich; Alhede, Christina; Crowley, Anna Lisa

    2018-01-01

    BACKGROUND: Impaired cardiac function is the main predictor of poor outcome in infective endocarditis (IE). Global longitudinal strain (GLS) derived from two-dimensional strain echocardiography has proven superior in prediction of long-term outcome as compared to left ventricular ejection fraction...

  20. Contextual remapping in visual search after predictable target-location changes.

    Science.gov (United States)

    Conci, Markus; Sun, Luning; Müller, Hermann J

    2011-07-01

    Invariant spatial context can facilitate visual search. For instance, detection of a target is faster if it is presented within a repeatedly encountered, as compared to a novel, layout of nontargets, demonstrating a role of contextual learning for attentional guidance ('contextual cueing'). Here, we investigated how context-based learning adapts to target location (and identity) changes. Three experiments were performed in which, in an initial learning phase, observers learned to associate a given context with a given target location. A subsequent test phase then introduced identity and/or location changes to the target. The results showed that contextual cueing could not compensate for target changes that were not 'predictable' (i.e. learnable). However, for predictable changes, contextual cueing remained effective even immediately after the change. These findings demonstrate that contextual cueing is adaptive to predictable target location changes. Under these conditions, learned contextual associations can be effectively 'remapped' to accommodate new task requirements.

  1. Optimal classifier selection and negative bias in error rate estimation: an empirical study on high-dimensional prediction

    Directory of Open Access Journals (Sweden)

    Boulesteix Anne-Laure

    2009-12-01

    Full Text Available Abstract Background In biometric practice, researchers often apply a large number of different methods in a "trial-and-error" strategy to get as much as possible out of their data and, due to publication pressure or pressure from the consulting customer, present only the most favorable results. This strategy may induce a substantial optimistic bias in prediction error estimation, which is quantitatively assessed in the present manuscript. The focus of our work is on class prediction based on high-dimensional data (e.g. microarray data, since such analyses are particularly exposed to this kind of bias. Methods In our study we consider a total of 124 variants of classifiers (possibly including variable selection or tuning steps within a cross-validation evaluation scheme. The classifiers are applied to original and modified real microarray data sets, some of which are obtained by randomly permuting the class labels to mimic non-informative predictors while preserving their correlation structure. Results We assess the minimal misclassification rate over the different variants of classifiers in order to quantify the bias arising when the optimal classifier is selected a posteriori in a data-driven manner. The bias resulting from the parameter tuning (including gene selection parameters as a special case and the bias resulting from the choice of the classification method are examined both separately and jointly. Conclusions The median minimal error rate over the investigated classifiers was as low as 31% and 41% based on permuted uninformative predictors from studies on colon cancer and prostate cancer, respectively. We conclude that the strategy to present only the optimal result is not acceptable because it yields a substantial bias in error rate estimation, and suggest alternative approaches for properly reporting classification accuracy.

  2. The use of specialisation indices to predict vulnerability of coral-feeding butterflyfishes to environmental change

    KAUST Repository

    Lawton, Rebecca J.; Pratchett, Morgan S.; Berumen, Michael L.

    2011-01-01

    , the utility of these different indices to predict vulnerability to future environmental change is unknown. Here we compare the performance of specialisation indices using coral-feeding butterflyfishes as a model group. Our aims were to 1) quantify the dietary

  3. New England observed and predicted August stream/river temperature maximum daily rate of change points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted August stream/river temperature maximum negative rate of change in New England based on a...

  4. prediction of the impacts of climate changes on the stream flow

    African Journals Online (AJOL)

    HOD

    Soil and Water Assessment Tool, (SWAT) model was used to predict the impacts of Climate Change on Ajali River watershed ... Climate is the synthesis of atmospheric conditions characteristic of a .... generator available in the SWAT model.

  5. Predicting Effects of Water Regime Changes on Waterbirds: Insights from Staging Swans

    NARCIS (Netherlands)

    Nolet, Bart A.; Gyimesi, Abel; Krimpen, Van Roderick R.D.; Boer, de Fred; Stillman, Richard A.; Green, Andy J.

    2016-01-01

    Predicting the environmental impact of a proposed development is notoriously difficult,
    especially when future conditions fall outside the current range of conditions. Individualbased
    approaches have been developed and applied to predict the impact of environmental
    changes on wintering

  6. Predicting effects of water regime changes on waterbirds : insights from staging swans

    NARCIS (Netherlands)

    Nolet, B.A.; Gyimesi, A.; van Krimpen, R.R.D.; de Boer, W.F.; Stillman, R.A.

    2016-01-01

    Predicting the environmental impact of a proposed development is notoriously difficult, especially when future conditions fall outside the current range of conditions. Individual-based approaches have been developed and applied to predict the impact of environmental changes on wintering and staging

  7. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    Science.gov (United States)

    Lawrence N. Hudson; Joseph Wunderle M.; And Others

    2016-01-01

    The PREDICTS project—Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)—has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to...

  8. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    NARCIS (Netherlands)

    Hudson, Lawrence N; Newbold, Tim; Contu, Sara; Hill, Samantha L L; Lysenko, Igor; De Palma, Adriana; Phillips, Helen R P; Alhusseini, Tamera I; Bedford, Felicity E; Bennett, Dominic J; Booth, Hollie; Burton, Victoria J; Chng, Charlotte W T; Choimes, Argyrios; Correia, David L P; Day, Julie; Echeverría-Londoño, Susy; Emerson, Susan R; Gao, Di; Garon, Morgan; Harrison, Michelle L K; Ingram, Daniel J; Jung, Martin; Kemp, Victoria; Kirkpatrick, Lucinda; Martin, Callum D; Pan, Yuan; Pask-Hale, Gwilym D; Pynegar, Edwin L; Robinson, Alexandra N; Sanchez-Ortiz, Katia; Senior, Rebecca A; Simmons, Benno I; White, Hannah J; Zhang, Hanbin; Aben, Job; Abrahamczyk, Stefan; Adum, Gilbert B; Aguilar-Barquero, Virginia; Aizen, Marcelo A; Albertos, Belén; Alcala, E L; Del Mar Alguacil, Maria; Alignier, Audrey; Ancrenaz, Marc; Andersen, Alan N; Arbeláez-Cortés, Enrique; Armbrecht, Inge; Arroyo-Rodríguez, Víctor; Aumann, Tom; Axmacher, Jan C; Azhar, Badrul; Azpiroz, Adrián B; Baeten, Lander; Bakayoko, Adama; Báldi, András; Banks, John E; Baral, Sharad K; Barlow, Jos; Barratt, Barbara I P; Barrico, Lurdes; Bartolommei, Paola; Barton, Diane M; Basset, Yves; Batáry, Péter; Bates, Adam J; Baur, Bruno; Bayne, Erin M; Beja, Pedro; Benedick, Suzan; Berg, Åke; Bernard, Henry; Berry, Nicholas J; Bhatt, Dinesh; Bicknell, Jake E; Bihn, Jochen H; Blake, Robin J; Bobo, Kadiri S; Bóçon, Roberto; Boekhout, Teun; Böhning-Gaese, Katrin; Bonham, Kevin J; Borges, Paulo A V; Borges, Sérgio H; Boutin, Céline; Bouyer, Jérémy; Bragagnolo, Cibele; Brandt, Jodi S; Brearley, Francis Q; Brito, Isabel; Bros, Vicenç; Brunet, Jörg; Buczkowski, Grzegorz; Buddle, Christopher M; Bugter, Rob; Buscardo, Erika; Buse, Jörn; Cabra-García, Jimmy; Cáceres, Nilton C; Cagle, Nicolette L; Calviño-Cancela, María; Cameron, Sydney A; Cancello, Eliana M; Caparrós, Rut; Cardoso, Pedro; Carpenter, Dan; Carrijo, Tiago F; Carvalho, Anelena L; Cassano, Camila R; Castro, Helena; Castro-Luna, Alejandro A; Rolando, Cerda B; Cerezo, Alexis; Chapman, Kim Alan; Chauvat, Matthieu; Christensen, Morten; Clarke, Francis M; Cleary, Daniel F R; Colombo, Giorgio; Connop, Stuart P; Craig, Michael D; Cruz-López, Leopoldo; Cunningham, Saul A; D'Aniello, Biagio; D'Cruze, Neil; da Silva, Pedro Giovâni; Dallimer, Martin; Danquah, Emmanuel; Darvill, Ben; Dauber, Jens; Davis, Adrian L V; Dawson, Jeff; de Sassi, Claudio; de Thoisy, Benoit; Deheuvels, Olivier; Dejean, Alain; Devineau, Jean-Louis; Diekötter, Tim; Dolia, Jignasu V; Domínguez, Erwin; Dominguez-Haydar, Yamileth; Dorn, Silvia; Draper, Isabel; Dreber, Niels; Dumont, Bertrand; Dures, Simon G; Dynesius, Mats; Edenius, Lars; Eggleton, Paul; Eigenbrod, Felix; Elek, Zoltán; Entling, Martin H; Esler, Karen J; de Lima, Ricardo F; Faruk, Aisyah; Farwig, Nina; Fayle, Tom M; Felicioli, Antonio; Felton, Annika M; Fensham, Roderick J; Fernandez, Ignacio C; Ferreira, Catarina C; Ficetola, Gentile F; Fiera, Cristina; Filgueiras, Bruno K C; Fırıncıoğlu, Hüseyin K; Flaspohler, David; Floren, Andreas; Fonte, Steven J; Fournier, Anne; Fowler, Robert E; Franzén, Markus; Fraser, Lauchlan H; Fredriksson, Gabriella M; Freire, Geraldo B; Frizzo, Tiago L M; Fukuda, Daisuke; Furlani, Dario; Gaigher, René; Ganzhorn, Jörg U; García, Karla P; Garcia-R, Juan C; Garden, Jenni G; Garilleti, Ricardo; Ge, Bao-Ming; Gendreau-Berthiaume, Benoit; Gerard, Philippa J; Gheler-Costa, Carla; Gilbert, Benjamin; Giordani, Paolo; Giordano, Simonetta; Golodets, Carly; Gomes, Laurens G L; Gould, Rachelle K; Goulson, Dave; Gove, Aaron D; Granjon, Laurent; Grass, Ingo; Gray, Claudia L; Grogan, James; Gu, Weibin; Guardiola, Moisès; Gunawardene, Nihara R; Gutierrez, Alvaro G; Gutiérrez-Lamus, Doris L; Haarmeyer, Daniela H; Hanley, Mick E; Hanson, Thor; Hashim, Nor R; Hassan, Shombe N; Hatfield, Richard G; Hawes, Joseph E; Hayward, Matt W; Hébert, Christian; Helden, Alvin J; Henden, John-André; Henschel, Philipp; Hernández, Lionel; Herrera, James P; Herrmann, Farina; Herzog, Felix; Higuera-Diaz, Diego; Hilje, Branko; Höfer, Hubert; Hoffmann, Anke; Horgan, Finbarr G; Hornung, Elisabeth; Horváth, Roland; Hylander, Kristoffer; Isaacs-Cubides, Paola; Ishida, Hiroaki; Ishitani, Masahiro; Jacobs, Carmen T; Jaramillo, Víctor J; Jauker, Birgit; Hernández, F Jiménez; Johnson, McKenzie F; Jolli, Virat; Jonsell, Mats; Juliani, S Nur; Jung, Thomas S; Kapoor, Vena; Kappes, Heike; Kati, Vassiliki; Katovai, Eric; Kellner, Klaus; Kessler, Michael; Kirby, Kathryn R; Kittle, Andrew M; Knight, Mairi E; Knop, Eva; Kohler, Florian; Koivula, Matti; Kolb, Annette; Kone, Mouhamadou; Kőrösi, Ádám; Krauss, Jochen; Kumar, Ajith; Kumar, Raman; Kurz, David J; Kutt, Alex S; Lachat, Thibault; Lantschner, Victoria; Lara, Francisco; Lasky, Jesse R; Latta, Steven C; Laurance, William F; Lavelle, Patrick; Le Féon, Violette; LeBuhn, Gretchen; Légaré, Jean-Philippe; Lehouck, Valérie; Lencinas, María V; Lentini, Pia E; Letcher, Susan G; Li, Qi; Litchwark, Simon A; Littlewood, Nick A; Liu, Yunhui; Lo-Man-Hung, Nancy; López-Quintero, Carlos A; Louhaichi, Mounir; Lövei, Gabor L; Lucas-Borja, Manuel Esteban; Luja, Victor H; Luskin, Matthew S; MacSwiney G, M Cristina; Maeto, Kaoru; Magura, Tibor; Mallari, Neil Aldrin; Malone, Louise A; Malonza, Patrick K; Malumbres-Olarte, Jagoba; Mandujano, Salvador; Måren, Inger E; Marin-Spiotta, Erika; Marsh, Charles J; Marshall, E J P; Martínez, Eliana; Martínez Pastur, Guillermo; Moreno Mateos, David; Mayfield, Margaret M; Mazimpaka, Vicente; McCarthy, Jennifer L; McCarthy, Kyle P; McFrederick, Quinn S; McNamara, Sean; Medina, Nagore G; Medina, Rafael; Mena, Jose L; Mico, Estefania; Mikusinski, Grzegorz; Milder, Jeffrey C; Miller, James R; Miranda-Esquivel, Daniel R; Moir, Melinda L; Morales, Carolina L; Muchane, Mary N; Muchane, Muchai; Mudri-Stojnic, Sonja; Munira, A Nur; Muoñz-Alonso, Antonio; Munyekenye, B F; Naidoo, Robin; Naithani, A; Nakagawa, Michiko; Nakamura, Akihiro; Nakashima, Yoshihiro; Naoe, Shoji; Nates-Parra, Guiomar; Navarrete Gutierrez, Dario A; Navarro-Iriarte, Luis; Ndang'ang'a, Paul K; Neuschulz, Eike L; Ngai, Jacqueline T; Nicolas, Violaine; Nilsson, Sven G; Noreika, Norbertas; Norfolk, Olivia; Noriega, Jorge Ari; Norton, David A; Nöske, Nicole M; Nowakowski, A Justin; Numa, Catherine; O'Dea, Niall; O'Farrell, Patrick J; Oduro, William; Oertli, Sabine; Ofori-Boateng, Caleb; Oke, Christopher Omamoke; Oostra, Vicencio; Osgathorpe, Lynne M; Otavo, Samuel Eduardo; Page, Navendu V; Paritsis, Juan; Parra-H, Alejandro; Parry, Luke; Pe'er, Guy; Pearman, Peter B; Pelegrin, Nicolás; Pélissier, Raphaël; Peres, Carlos A; Peri, Pablo L; Persson, Anna S; Petanidou, Theodora; Peters, Marcell K; Pethiyagoda, Rohan S; Phalan, Ben; Philips, T Keith; Pillsbury, Finn C; Pincheira-Ulbrich, Jimmy; Pineda, Eduardo; Pino, Joan; Pizarro-Araya, Jaime; Plumptre, A J; Poggio, Santiago L; Politi, Natalia; Pons, Pere; Poveda, Katja; Power, Eileen F; Presley, Steven J; Proença, Vânia; Quaranta, Marino; Quintero, Carolina; Rader, Romina; Ramesh, B R; Ramirez-Pinilla, Martha P; Ranganathan, Jai; Rasmussen, Claus; Redpath-Downing, Nicola A; Reid, J Leighton; Reis, Yana T; Rey Benayas, José M; Rey-Velasco, Juan Carlos; Reynolds, Chevonne; Ribeiro, Danilo Bandini; Richards, Miriam H; Richardson, Barbara A; Richardson, Michael J; Ríos, Rodrigo Macip; Robinson, Richard; Robles, Carolina A; Römbke, Jörg; Romero-Duque, Luz Piedad; Rös, Matthias; Rosselli, Loreta; Rossiter, Stephen J; Roth, Dana S; Roulston, T'ai H; Rousseau, Laurent; Rubio, André V; Ruel, Jean-Claude; Sadler, Jonathan P; Sáfián, Szabolcs; Saldaña-Vázquez, Romeo A; Sam, Katerina; Samnegård, Ulrika; Santana, Joana; Santos, Xavier; Savage, Jade; Schellhorn, Nancy A; Schilthuizen, Menno; Schmiedel, Ute; Schmitt, Christine B; Schon, Nicole L; Schüepp, Christof; Schumann, Katharina; Schweiger, Oliver; Scott, Dawn M; Scott, Kenneth A; Sedlock, Jodi L; Seefeldt, Steven S; Shahabuddin, Ghazala; Shannon, Graeme; Sheil, Douglas; Sheldon, Frederick H; Shochat, Eyal; Siebert, Stefan J; Silva, Fernando A B; Simonetti, Javier A; Slade, Eleanor M; Smith, Jo; Smith-Pardo, Allan H; Sodhi, Navjot S; Somarriba, Eduardo J; Sosa, Ramón A; Soto Quiroga, Grimaldo; St-Laurent, Martin-Hugues; Starzomski, Brian M; Stefanescu, Constanti; Steffan-Dewenter, Ingolf; Stouffer, Philip C; Stout, Jane C; Strauch, Ayron M; Struebig, Matthew J; Su, Zhimin; Suarez-Rubio, Marcela; Sugiura, Shinji; Summerville, Keith S; Sung, Yik-Hei; Sutrisno, Hari; Svenning, Jens-Christian; Teder, Tiit; Threlfall, Caragh G; Tiitsaar, Anu; Todd, Jacqui H; Tonietto, Rebecca K; Torre, Ignasi; Tóthmérész, Béla; Tscharntke, Teja; Turner, Edgar C; Tylianakis, Jason M; Uehara-Prado, Marcio; Urbina-Cardona, Nicolas; Vallan, Denis; Vanbergen, Adam J; Vasconcelos, Heraldo L; Vassilev, Kiril; Verboven, Hans A F; Verdasca, Maria João; Verdú, José R; Vergara, Carlos H; Vergara, Pablo M; Verhulst, Jort; Virgilio, Massimiliano; Vu, Lien Van; Waite, Edward M; Walker, Tony R; Wang, Hua-Feng; Wang, Yanping; Watling, James I; Weller, Britta; Wells, Konstans; Westphal, Catrin; Wiafe, Edward D; Williams, Christopher D; Willig, Michael R; Woinarski, John C Z; Wolf, Jan H D; Wolters, Volkmar; Woodcock, Ben A; Wu, Jihua; Wunderle, Joseph M; Yamaura, Yuichi; Yoshikura, Satoko; Yu, Douglas W; Zaitsev, Andrey S; Zeidler, Juliane; Zou, Fasheng; Collen, Ben; Ewers, Rob M; Mace, Georgina M; Purves, Drew W; Scharlemann, Jörn P W; Purvis, Andy

    The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of

  9. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    DEFF Research Database (Denmark)

    Hudson, Lawrence N; Newbold, Tim; Contu, Sara

    2017-01-01

    The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity ...

  10. Dimensional and Compositional Change of 1D Chalcogen Nanostructures Leading to Tunable Localized Surface Plasmon Resonances.

    Science.gov (United States)

    Min, Yuho; Seo, Ho Jun; Choi, Jong-Jin; Hahn, Byung-Dong; Moon, Geon Dae

    2018-05-31

    As the oxygen family, chalcogen (Se, Te) nanostructures have been considered important elements for various practical fields and further exploited to constitute metal chalcogenides for each targeted application. Here we report a controlled synthesis of well-defined one-dimensional chalcogen nanostructures such as nanowries, nanorods, and nanotubes by controlling reduction reaction rate to fine-tune the dimension and composition of the products. Tunable optical properties (localized surface plasmon resonances) of these chalcogen nanostructures are observed depending on their morphological, dimensional, and compositional variation. © 2018 IOP Publishing Ltd.

  11. Prediction of Land Use Change Based on Markov and GM(1,1 Models

    Directory of Open Access Journals (Sweden)

    SUN Yi-yang

    2016-05-01

    Full Text Available In order to explore the law of land use change in Laiwu City, Markov and GM(1,1 were respectively employed in the prediction of land use change in Laiwu from 2015 to 2050, after which the results were analyzed and discussed. The results showed that:(1The variational trends of all kinds of land use change predicted by the two models were consistent and the goodness of fit of the predictive value in corresponding years in the near future was high, illustrating that the predicted results in the near future were credible and the trend predicted in mid long term could be used as reference. (2The cultivated land would remanin almost no change from 2015 to 2020, and then gradually decreaseed in a small range from 2020 to 2050. The garden, the woodland, the grassland always reducing and the decreare range of the grassland was the largest. The urban village and industrial and mining land, the transportation land would be continuously increased and the range of urban village and industrial and mining land was the largest. The water and water conservancy facilities land and the other land would be always reduced in a very small range. It could be concluded that the results predicted by the two models in the near future were credible and could provide scientific basis for land use planning of Laiwu, while the method could provide reference for the prediction of land use change.

  12. Predicting the performances of a CAMPRO engine retrofitted with liquefied petroleum gas (LPG system using 1-dimensional software

    Directory of Open Access Journals (Sweden)

    Kamaruddin M. Hazeem

    2017-01-01

    Full Text Available Recently, the depletion of petroleum resources and the impact of exhaust emission caused by combustion towards environmental has been forced to all researchers to come out with an alternative ways to prevent this situation become worse. Liquefied petroleum gas (LPG is the most compatible and have a potential to become a source of energy for internal combustion engine. Unfortunately, the investigation of LPG in internal combustion engine among researcher still have a gap in research. Thus, in this study a 1-Dimensional simulation CAMPRO 1.6L engine model using GT-Power is developed to predict the performances of engines that using LPG as a fuel for internal combustion engine. The constructed model simulation will throughout the validation process with the experimental data to make sure the precision of this model. The validation process shows that the results have a good agreement between the simulation model and the experimental data. As a result, the performance of LPG simulation model shows that a Brake Torque (BT, Brake Power (BP and Brake Mean Effective Pressure (BMEP were significantly improved in average of 7% in comparison with gasoline model. In addition, Brake Specific Fuel Consumption (BSFC also shows an improvement by 5%, which is become more economic. Therefore, the developed GT-Power model offer a successful fuel conversion to LPG systems via retrofit technology to provide comprehensive support for implementation of energy efficient and environmental friendly vehicles.

  13. Three-dimensional transport coefficient model and prediction-correction numerical method for thermal margin analysis of PWR cores

    International Nuclear Information System (INIS)

    Chiu, C.

    1981-01-01

    Combustion Engineering Inc. designs its modern PWR reactor cores using open-core thermal-hydraulic methods where the mass, momentum and energy equations are solved in three dimensions (one axial and two lateral directions). The resultant fluid properties are used to compute the minimum Departure from Nuclear Boiling Ratio (DNBR) which ultimately sets the power capability of the core. The on-line digital monitoring and protection systems require a small fast-running algorithm of the design code. This paper presents two techniques used in the development of the on-line DNB algorithm. First, a three-dimensional transport coefficient model is introduced to radially group the flow subchannel into channels for the thermal-hydraulic fluid properties calculation. Conservation equations of mass, momentum and energy for this channels are derived using transport coefficients to modify the calculation of the radial transport of enthalpy and momentum. Second, a simplified, non-iterative numerical method, called the prediction-correction method, is applied together with the transport coefficient model to reduce the computer execution time in the determination of fluid properties. Comparison of the algorithm and the design thermal-hydraulic code shows agreement to within 0.65% equivalent power at a 95/95 confidence/probability level for all normal operating conditions of the PWR core. This algorithm accuracy is achieved with 1/800th of the computer processing time of its parent design code. (orig.)

  14. Theoretical prediction of sandwiched two-dimensional phosphide binary compound sheets with tunable bandgaps and anisotropic physical properties

    Science.gov (United States)

    Zhang, C. Y.; Yu, M.

    2018-03-01

    Atomic layers of GaP and InP binary compounds with unique anisotropic structural, electronic and mechanical properties have been predicted from first-principle molecular dynamics simulations. These new members of the phosphide binary compound family stabilize to a sandwiched two-dimensional (2D) crystalline structure with orthorhombic lattice symmetry and high buckling of 2.14 Å-2.46 Å. Their vibration modes are similar to those of phosphorene with six Raman active modes ranging from ˜80 cm-1 to 400 cm-1. The speeds of sound in their phonon dispersions reflect anisotropy in their elastic constants, which was further confirmed by their strong directional dependence of Young’s moduli and effective nonlinear elastic moduli. They show wide bandgap semiconductor behavior with fundamental bandgaps of 2.89 eV for GaP and 2.59 eV for InP, respectively, even wider than their bulk counterparts. Such bandgaps were found to be tunable under strain. In particular, a direct-indirect bandgap transition was found under certain strains along zigzag or biaxial orientations, reflecting their promising applications in strain-induced bandgap engineering in nanoelectronics and photovoltaics. Feasible pathways to realize these novel 2D phosphide compounds are also proposed.

  15. Local Fitness Landscapes Predict Yeast Evolutionary Dynamics in Directionally Changing Environments.

    Science.gov (United States)

    Gorter, Florien A; Aarts, Mark G M; Zwaan, Bas J; de Visser, J Arjan G M

    2018-01-01

    The fitness landscape is a concept that is widely used for understanding and predicting evolutionary adaptation. The topography of the fitness landscape depends critically on the environment, with potentially far-reaching consequences for evolution under changing conditions. However, few studies have assessed directly how empirical fitness landscapes change across conditions, or validated the predicted consequences of such change. We previously evolved replicate yeast populations in the presence of either gradually increasing, or constant high, concentrations of the heavy metals cadmium (Cd), nickel (Ni), and zinc (Zn), and analyzed their phenotypic and genomic changes. Here, we reconstructed the local fitness landscapes underlying adaptation to each metal by deleting all repeatedly mutated genes both by themselves and in combination. Fitness assays revealed that the height, and/or shape, of each local fitness landscape changed considerably across metal concentrations, with distinct qualitative differences between unconditionally (Cd) and conditionally toxic metals (Ni and Zn). This change in topography had particularly crucial consequences in the case of Ni, where a substantial part of the individual mutational fitness effects changed in sign across concentrations. Based on the Ni landscape analyses, we made several predictions about which mutations had been selected when during the evolution experiment. Deep sequencing of population samples from different time points generally confirmed these predictions, demonstrating the power of landscape reconstruction analyses for understanding and ultimately predicting evolutionary dynamics, even under complex scenarios of environmental change. Copyright © 2018 by the Genetics Society of America.

  16. An investigation on the effects of different polymerization techniques on dimensional changes ofAcropars, an Iranian autopolymerizing acrylic resin

    Directory of Open Access Journals (Sweden)

    Ebadian B

    2004-02-01

    Full Text Available Iranian product, Acropars autopolymerizing acrylic resin is nowadays widely used in"ndental prostheses. Dimensional change is a common problem among Iranian made acrylic resins in making"ncustom trays and record bases, seems to be more than the similar foreign products. In order to achieve a"ntechnique for making a record base with minimum dimensional changes, more research is necessary."nPurpose: The aim of the present study was to determine a curing technique for Iranian autopolymerizing"nacrylic resins leading to the least polymerization shrinkage and the most adaptation between record bases and"nstone casts."nMaterials and Methods: In this experimental study, 40 stone casts were divided into four 10- member group."nFor each group, polymerization shrinkage was determined at three points with one of the following"ntechniques: Bench curing, Curing under a coat of petroleum jelly , Curing in a monomer saturated"natmosphere, Curing in boiled water. Adaptation between bases and stone casts were measured at three points"n(the right and left crests of the ridge and the midpalatal region with a light-measuring microscope. To analyze"nthe data, Variance analysis was used."nResults: The monomer atmosphere technique showed the minimum dimensional changes and the samples in"nboiled water group had the maximum dimensional changes. No statistical differences were observed between"nother groups."nConclusion: More adaptation between record bases and stone casts was observed in monomer atmosphere"npolymerization technique. The differences between bench curing and curing under a coat of petroleum jelly"ntechniques with this method were not statistically significant. Therefore, it is suggested for making base"nrecords with maximum adaptation.

  17. Prediction of deformation and hygro-thermal stresses distribution in PEM fuel cell vehicle using three-dimensional CFD model

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy & Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2012-07-01

    Durability is one of the most critical remaining issues impeding successful commercialization of broad PEM fuel cell transportation energy applications. Automotive fuel cells are likely to operate with neat hydrogen under load-following or load-levelled modes and be expected to withstand variations in environmental conditions, particularly in the context of temperature and atmospheric composition. In addition, they are also required to survive over the course of their expected operational lifetimes i.e., around 5,500 hrs, while undergoing as many as 30,000 startup/shutdown cycles. The damage mechanisms in a PEM fuel cell are accelerated by mechanical stresses arising during fuel cell assembly (bolt assembling), and the stresses arise during fuel cell running, because it consists of the materials with different thermal expansion and swelling coefficients. Therefore, in order to acquire a complete understanding of the damage mechanisms in the membrane, mechanical response under steady-state hygro-thermal stresses should be studied under real cell operating conditions and in real cell geometry (three-dimensional). In this work, full three-dimensional, non-isothermal computational fluid dynamics model of a PEM fuel cell has been developed to simulate the stresses inside the PEM fuel cell, which are occurring during fuel cell assembly (bolt assembling), and the stresses arise during fuel cell running due to the changes of temperature and relative humidity. A unique feature of the present model is to incorporate the effect of hygro and thermal stresses into actual three-dimensional fuel cell model. In addition, the temperature and humidity dependent material properties are utilize in the simulation for the membrane. The model is shown to be able to understand the many interacting, complex electrochemical, transport phenomena, and stresses distribution that have limited experimental data. This model is used to study and analyse the effect of operating parameters on the

  18. Predicting the genetic consequences of future climate change: The power of coupling spatial demography, the coalescent, and historical landscape changes.

    Science.gov (United States)

    Brown, Jason L; Weber, Jennifer J; Alvarado-Serrano, Diego F; Hickerson, Michael J; Franks, Steven J; Carnaval, Ana C

    2016-01-01

    Climate change is a widely accepted threat to biodiversity. Species distribution models (SDMs) are used to forecast whether and how species distributions may track these changes. Yet, SDMs generally fail to account for genetic and demographic processes, limiting population-level inferences. We still do not understand how predicted environmental shifts will impact the spatial distribution of genetic diversity within taxa. We propose a novel method that predicts spatially explicit genetic and demographic landscapes of populations under future climatic conditions. We use carefully parameterized SDMs as estimates of the spatial distribution of suitable habitats and landscape dispersal permeability under present-day, past, and future conditions. We use empirical genetic data and approximate Bayesian computation to estimate unknown demographic parameters. Finally, we employ these parameters to simulate realistic and complex models of responses to future environmental shifts. We contrast parameterized models under current and future landscapes to quantify the expected magnitude of change. We implement this framework on neutral genetic data available from Penstemon deustus. Our results predict that future climate change will result in geographically widespread declines in genetic diversity in this species. The extent of reduction will heavily depend on the continuity of population networks and deme sizes. To our knowledge, this is the first study to provide spatially explicit predictions of within-species genetic diversity using climatic, demographic, and genetic data. Our approach accounts for climatic, geographic, and biological complexity. This framework is promising for understanding evolutionary consequences of climate change, and guiding conservation planning. © 2016 Botanical Society of America.

  19. Understanding decay resistance, dimensional stability and strength changes in heat treated and acetylated wood

    Science.gov (United States)

    Roger M. Rowell; Rebecca E. Ibach; James McSweeny; Thomas Nilsson

    2009-01-01

    Reductions in hygroscopicity, increased dimensional stability and decay resistance of heat-treated wood depend on decomposition of a large portion of the hemicelluloses in the wood cell wall. In theory, these hemicelluloses are converted to small organic molecules, water and volatile furan-type intermediates that can polymerize in the cell wall. Reductions in...

  20. Topology Change and the Emergence of Geometry in Two Dimensional Causal Quantum Gravity

    NARCIS (Netherlands)

    Westra, W.

    2007-01-01

    Despite many attempts, gravity has vigorously resisted a unification with the laws of quantum mechanics. Besides a plethora of technical issues, one is also faced with many interesting conceptual problems. The study of quantum gravity in lower dimensional models ameliorates the technical

  1. Changes in Dimensionality and Fractal Scaling Suggest Soft-Assembled Dynamics in Human EEG

    DEFF Research Database (Denmark)

    Wiltshire, Travis; Euler, Matthew J.; McKinney, Ty

    2017-01-01

    Humans are high-dimensional, complex systems consisting of many components that must coordinate in order to perform even the simplest of activities. Many behavioral studies, especially in the movement sciences, have advanced the notion of soft-assembly to describe how systems with many components...

  2. Casting dimensional control and fatigue life prediction for permanent mold casting dies. Technical progress report, September 29, 1993-- September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    First year efforts as part of a three year program to address metal casting dimensional control and fatigue life prediction for permanent mold casting dies are described. Procedures have been developed and implemented to collect dimensional variability data from production steel castings. The influence of process variation and casting geometry variables on dimensional tolerances have been investigated. Preliminary results have shown that these factors have a significant influence on dimensional variability, although this variability is considerably less than the variability indicated in current tolerance standards. Gage repeatability and reproducibility testing must precede dimensional studies to insure that measurement system errors are acceptably small. Also initial efforts leading to the development and validation of a CAD/CAE model to predict the thermal fatigue life of permanent molds for aluminum castings are described. An appropriate thermomechanical property database for metal, mold and coating materials has been constructed. A finite element model has been developed to simulate the mold temperature distribution during repeated casting cycles. Initial validation trials have indicated the validity of the temperature distribution model developed.

  3. Within-person changes in salivary testosterone and physical characteristics of puberty predict boys' daily affect.

    Science.gov (United States)

    Klipker, Kathrin; Wrzus, Cornelia; Rauers, Antje; Boker, Steven M; Riediger, Michaela

    2017-09-01

    Recent investigations highlighted the role of within-person pubertal changes for adolescents' behavior. Yet, little is known about effects on adolescents' daily affect, particularly regarding the hormonal changes underlying physical changes during puberty. In a study with 148 boys aged 10 to 20years, we tested whether within-person physical and hormonal changes over eight months predicted everyday affect fluctuations, measured with experience sampling. As expected, greater within-person changes in testosterone (but not in dehydroepiandrosterone) were associated with higher affect fluctuations in daily life. Additionally, greater physical changes predicted higher affect fluctuations for individuals in the beginning of puberty. The findings demonstrate the relevance of physical and hormonal changes in boys' affective (in)stability. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Medium- and Long-term Prediction of LOD Change with the Leap-step Autoregressive Model

    Science.gov (United States)

    Liu, Q. B.; Wang, Q. J.; Lei, M. F.

    2015-09-01

    It is known that the accuracies of medium- and long-term prediction of changes of length of day (LOD) based on the combined least-square and autoregressive (LS+AR) decrease gradually. The leap-step autoregressive (LSAR) model is more accurate and stable in medium- and long-term prediction, therefore it is used to forecast the LOD changes in this work. Then the LOD series from EOP 08 C04 provided by IERS (International Earth Rotation and Reference Systems Service) is used to compare the effectiveness of the LSAR and traditional AR methods. The predicted series resulted from the two models show that the prediction accuracy with the LSAR model is better than that from AR model in medium- and long-term prediction.

  5. The effect of disinfection of alginate impressions with 35% beetle juice spray on stone model linear dimensional changes

    Directory of Open Access Journals (Sweden)

    Anggra Yudha Ramadianto

    2007-07-01

    Full Text Available Dimensional stability of alginate impression is very important for treatment in dentistry. This study was to find the effect of the beetle juice spray procedure on alginate impression on gypsum model linear dimensional changes. This experimental study used 25 samples, divided into 5 groups. The first group, as control, were the alginate impressions filled with dental stone immediately after forming. The other four groups were the alginate impressions gel spray each 1,2,3, and 4 times with 35% beetle juice and then filled with dental stone. Dimensional changes were measured in the lower part of the plaster model from buccal-lingual and mesial-distal direction and also measured in the outer distance between the upper part of the stone model by using Mitutoyo digital micrometre and profile projector scaled 0,001 mm. The results of mesial-distal diameter average of the control group and group 2,3,4, and 5 were 9.909 mm, 9.852 mm, 9.845 mm, 9.824 mm, and 9.754 mm. Meanwhile, the results of buccal-lingual diameter average were 9.847 mm, 9.841 mm, 9.826 mm, 9.776 mm, and 9.729 mm. The results of the outer distance between the upper part of the stone model were 31.739 mm, 31.689 mm, 31.682 mm, 31.670 mm, and 31.670 mm. The data of this study was evaluated statistically based on the variant analysis. The conclusion of this study was statistically, there was no significant effect on gypsum model linear dimensional changes obtained from alginate impressions sprayed with 35% beetle juice.

  6. Changing relationships between land use and environmental characteristics and their consequences for spatially explicit land-use change prediction

    NARCIS (Netherlands)

    Bakker, M.; Veldkamp, A.

    2012-01-01

    Spatially explicit land-use change prediction is often based on environmental characteristics of land-use types, such as soil type and slope, as observed at one time instant. This approach presumes that relationships between land use and environment are constant over time. We argue that such

  7. Is Personality Fixed? Personality Changes as Much as "Variable" Economic Factors and More Strongly Predicts Changes to Life Satisfaction

    Science.gov (United States)

    Boyce, Christopher J.; Wood, Alex M.; Powdthavee, Nattavudh

    2013-01-01

    Personality is the strongest and most consistent cross-sectional predictor of high subjective well-being. Less predictive economic factors, such as higher income or improved job status, are often the focus of applied subjective well-being research due to a perception that they can change whereas personality cannot. As such there has been limited…

  8. Changes in income predict change in social trust : A longitudinal analysis

    NARCIS (Netherlands)

    Brandt, M.J.; Wetherell, G.A.; Henry, P.J.

    2015-01-01

    Social trust is a psychological variable important to politics, the community, and health. Theorists have predicted that socioeconomic status determines social trust, but also that social trust determines socioeconomic status. The current study tested the viability of both causal directions using

  9. Short-Term changes on MRI predict long-Term changes on radiography in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Peterfy, Charles; Strand, Vibeke; Tian, Lu

    2017-01-01

    Objective In rheumatoid arthritis (RA), MRI provides earlier detection of structural damage than radiography (X-ray) and more sensitive detection of intra-Articular inflammation than clinical examination. This analysis was designed to evaluate the ability of early MRI findings to predict subsequent...

  10. Three-dimensional geometrical changes of the human tibialis anterior muscle and its central aponeurosis measured with three-dimensional ultrasound during isometric contractions

    Directory of Open Access Journals (Sweden)

    Brent J. Raiteri

    2016-07-01

    Full Text Available Background. Muscles not only shorten during contraction to perform mechanical work, but they also bulge radially because of the isovolumetric constraint on muscle fibres. Muscle bulging may have important implications for muscle performance, however quantifying three-dimensional (3D muscle shape changes in human muscle is problematic because of difficulties with sustaining contractions for the duration of an in vivo scan. Although two-dimensional ultrasound imaging is useful for measuring local muscle deformations, assumptions must be made about global muscle shape changes, which could lead to errors in fully understanding the mechanical behaviour of muscle and its surrounding connective tissues, such as aponeurosis. Therefore, the aims of this investigation were (a to determine the intra-session reliability of a novel 3D ultrasound (3DUS imaging method for measuring in vivo human muscle and aponeurosis deformations and (b to examine how contraction intensity influences in vivo human muscle and aponeurosis strains during isometric contractions. Methods. Participants (n = 12 were seated in a reclined position with their left knee extended and ankle at 90° and performed isometric dorsiflexion contractions up to 50% of maximal voluntary contraction. 3DUS scans of the tibialis anterior (TA muscle belly were performed during the contractions and at rest to assess muscle volume, muscle length, muscle cross-sectional area, muscle thickness and width, fascicle length and pennation angle, and central aponeurosis width and length. The 3DUS scan involved synchronous B-mode ultrasound imaging and 3D motion capture of the position and orientation of the ultrasound transducer, while successive cross-sectional slices were captured by sweeping the transducer along the muscle. Results. 3DUS was shown to be highly reliable across measures of muscle volume, muscle length, fascicle length and central aponeurosis length (ICC ≥ 0.98, CV < 1%. The TA remained

  11. Nasal changes after orthognathic surgery for patients with prognathism and Class III malocclusion: analysis using three-dimensional photogrammetry.

    Science.gov (United States)

    Worasakwutiphong, Saran; Chuang, Ya-Fang; Chang, Hsin-Wen; Lin, Hsiu-Hsia; Lin, Pei-Ju; Lo, Lun-Jou

    2015-02-01

    Orthognathic surgery alters the position of maxilla and mandible, and consequently changes the nasal shape. The nasal change remains a concern to Asian patients. The aim of this study was to measure the nasal changes using a novel three-dimensional photographic imaging method. A total of 38 patients with Class III malocclusion and prognathism were enrolled. All patients underwent two-jaw surgery with the standard technique. A nasal alar cinching suture was included at the end of procedure. Facial landmarks and nasal morphology were defined and measured from pre- and postoperative three-dimensional photographic images. Intra-rater errors on landmark identification were controlled. Patient's reports of perceptual nasal changes were recorded. The average width of the alar base and subalare remained similar after surgery. Alar width was increased by 0.74 mm. Nasal height and length remained the same. Nasolabial angle increased significantly. The area of nostril show revealed a significant increase and was correlated with a decrease of columella inclination. Nasal tip projection decreased significantly, by 1.99 mm. Preoperative nasal morphology was different between patients with and without cleft lip/palate, but most nasal changes were concordant. In the self-perception, 37% of patients reported improved nasal appearance, 58% reported no change, and 5% were not satisfied with the nasal changes. After the surgery, characteristic nasal changes occurred with an increase of nasolabial angle and nostril show, but a preserved nasal width. The majority of patients did not perceive adverse nasal changes. Copyright © 2014. Published by Elsevier B.V.

  12. The predictive skill of species distribution models for plankton in a changing climate

    DEFF Research Database (Denmark)

    Brun, Philipp Georg; Kiørboe, Thomas; Licandro, Priscilla

    2016-01-01

    Statistical species distribution models (SDMs) are increasingly used to project spatial relocations of marine taxa under future climate change scenarios. However, tests of their predictive skill in the real-world are rare. Here, we use data from the Continuous Plankton Recorder program, one...... null models, is essential to assess the robustness of projections of marine planktonic species under climate change...

  13. Forest processes and global environmental change: predicting the effects of individual and multiple stressors

    Science.gov (United States)

    John Aber; Ronald P. Neilson; Steve McNulty; James M. Lenihan; Dominque Bachelet; Raymond J. Drapek

    2001-01-01

    The purpose of this article is to review the state of prediction of forest ecosystem response to envisioned changes in the physical and chemical climate. These results are offered as one part of the forest sector analysis of the National Assessment of the Potential Consequences of Climate Variability and Change. This article has three sections. The first offers a very...

  14. An Application to the Prediction of LOD Change Based on General Regression Neural Network

    Science.gov (United States)

    Zhang, X. H.; Wang, Q. J.; Zhu, J. J.; Zhang, H.

    2011-07-01

    Traditional prediction of the LOD (length of day) change was based on linear models, such as the least square model and the autoregressive technique, etc. Due to the complex non-linear features of the LOD variation, the performances of the linear model predictors are not fully satisfactory. This paper applies a non-linear neural network - general regression neural network (GRNN) model to forecast the LOD change, and the results are analyzed and compared with those obtained with the back propagation neural network and other models. The comparison shows that the performance of the GRNN model in the prediction of the LOD change is efficient and feasible.

  15. Can tail damage outbreaks in the pig be predicted by behavioural change?

    DEFF Research Database (Denmark)

    Larsen, Mona Lilian Vestbjerg; Andersen, Heidi Mai-Lis; Pedersen, Lene Juul

    2016-01-01

    preventive methods. One strategy is the surveillance of the pigs' behaviour for known preceding indicators of tail damage, which makes it possible to predict a tail damage outbreak and prevent it in proper time. This review discusses the existing literature on behavioural changes observed prior to a tail...... damage outbreak. Behaviours found to change prior to an outbreak include increased activity level, increased performance of enrichment object manipulation, and a changed proportion of tail posture with more tails between the legs. Monitoring these types of behaviours is also discussed for the purpose......, starting with the description of the temporal development of the predictive behaviour in relation to tail damage outbreaks...

  16. Dimensional Changes of Alginate Dental Impression Materials-An Invitro Study.

    Science.gov (United States)

    Kulkarni, Manisha M; Thombare, Ram U

    2015-08-01

    Dentists are always looking ahead for more dimensionally stable material for accurate and successful fabrication of prosthesis in this competitive world. Arrival of newer materials and increased material market puts dentists in dilemma for selection of material. The study evaluated the effect of variations in time of pour and temperature on dimensional stability of three brands of commercially available alginates. Velplast, Marieflex & Zelgan alginate impression materials were evaluated by measuring dimensional accuracy of the master cast. A die was prepared and mounted on the apparatus for the ease of impression making. The prepared casts were categorized into five groups and made up of three brands of alginate impression material with variation in time of pour viz: immediate, 20&40 minutes interval and with varying temperature of 25(0)C, 30(0)C & 40(0)C. Impressions showed least distortion at varying degrees of temperature for 20 minutes, but the values obtained by storing of alginate impressions for 20 minutes at 30(0)C were found to be nearly accurate than the values obtained by storing of impression at 40(0)C. However, storing showed shrinkage of impressions. Marieflex showed better accuracy in comparison with other two materials. Maintenance of temperature and humidity play key role during storage & transport to prevent distortion. But the study suggests immediate pouring which will minimize the distortion. The manipulation instructions, temperature of mixing water, environment & water powder ratio also plays key role in minimizing the distortion.

  17. Three-dimensional volumetric gray-scale uterine cervix histogram prediction of days to delivery in full term pregnancy.

    Science.gov (United States)

    Kim, Ji Youn; Kim, Hai-Joong; Hahn, Meong Hi; Jeon, Hye Jin; Cho, Geum Joon; Hong, Sun Chul; Oh, Min Jeong

    2013-09-01

    Our aim was to figure out whether volumetric gray-scale histogram difference between anterior and posterior cervix can indicate the extent of cervical consistency. We collected data of 95 patients who were appropriate for vaginal delivery with 36th to 37th weeks of gestational age from September 2010 to October 2011 in the Department of Obstetrics and Gynecology, Korea University Ansan Hospital. Patients were excluded who had one of the followings: Cesarean section, labor induction, premature rupture of membrane. Thirty-four patients were finally enrolled. The patients underwent evaluation of the cervix through Bishop score, cervical length, cervical volume, three-dimensional (3D) cervical volumetric gray-scale histogram. The interval days from the cervix evaluation to the delivery day were counted. We compared to 3D cervical volumetric gray-scale histogram, Bishop score, cervical length, cervical volume with interval days from the evaluation of the cervix to the delivery. Gray-scale histogram difference between anterior and posterior cervix was significantly correlated to days to delivery. Its correlation coefficient (R) was 0.500 (P = 0.003). The cervical length was significantly related to the days to delivery. The correlation coefficient (R) and P-value between them were 0.421 and 0.013. However, anterior lip histogram, posterior lip histogram, total cervical volume, Bishop score were not associated with days to delivery (P >0.05). By using gray-scale histogram difference between anterior and posterior cervix and cervical length correlated with the days to delivery. These methods can be utilized to better help predict a cervical consistency.

  18. A Bayesian network model for predicting aquatic toxicity mode of action using two dimensional theoretical molecular descriptors

    Energy Technology Data Exchange (ETDEWEB)

    Carriger, John F. [U.S. Environmental Protection Agency, Office of Research and Development, Gulf Ecology Division, Gulf Breeze, FL, 32561 (United States); Martin, Todd M. [U.S. Environmental Protection Agency, Office of Research and Development, Sustainable Technology Division, Cincinnati, OH, 45220 (United States); Barron, Mace G., E-mail: barron.mace@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, Gulf Ecology Division, Gulf Breeze, FL, 32561 (United States)

    2016-11-15

    Highlights: • A Bayesian network was developed to classify chemical mode of action (MoA). • The network was based on the aquatic toxicity MoA for over 1000 chemicals. • A Markov blanket algorithm selected a subset of theoretical molecular descriptors. • Sensitivity analyses found influential descriptors for classifying the MoAs. • Overall precision of the Bayesian MoA classification model was 80%. - Abstract: The mode of toxic action (MoA) has been recognized as a key determinant of chemical toxicity, but development of predictive MoA classification models in aquatic toxicology has been limited. We developed a Bayesian network model to classify aquatic toxicity MoA using a recently published dataset containing over one thousand chemicals with MoA assignments for aquatic animal toxicity. Two dimensional theoretical chemical descriptors were generated for each chemical using the Toxicity Estimation Software Tool. The model was developed through augmented Markov blanket discovery from the dataset of 1098 chemicals with the MoA broad classifications as a target node. From cross validation, the overall precision for the model was 80.2%. The best precision was for the AChEI MoA (93.5%) where 257 chemicals out of 275 were correctly classified. Model precision was poorest for the reactivity MoA (48.5%) where 48 out of 99 reactive chemicals were correctly classified. Narcosis represented the largest class within the MoA dataset and had a precision and reliability of 80.0%, reflecting the global precision across all of the MoAs. False negatives for narcosis most often fell into electron transport inhibition, neurotoxicity or reactivity MoAs. False negatives for all other MoAs were most often narcosis. A probabilistic sensitivity analysis was undertaken for each MoA to examine the sensitivity to individual and multiple descriptor findings. The results show that the Markov blanket of a structurally complex dataset can simplify analysis and interpretation by

  19. Assessment of Soft Tissue Changes by Cephalometry and Two-Dimensional Photogrammetry in Bilateral Sagittal Split Ramus Osteotomy Cases

    Science.gov (United States)

    Martin, Alice

    2011-01-01

    ABSTRACT Objectives We aimed to compare the standard methods of cephalometry and two-dimensional photogrammetry, to evaluate the reliability and accuracy of both methods. Material and Methods Twenty-six patients (mean age 25.5, standard deviation (SD) 5.2 years) with Class II relationship and 23 patients with Class III relationship (mean age 26.4, SD 4.7 years) who had undergone bilateral sagittal split ramus osteotomy were selected, with a median follow-up of 8 months between pre- and postsurgical evaluation. Pre- and postsurgical cephalograms and lateral photograms were traced and changes were recorded. Results Pre- and postsurgical measurements of hard tissue angles and distances revealed higher correlations with cephalometrically performed soft tissue measurements of facial convexity (Class II: N-PG, r = - 0.50, P = 0.047; Class III: ANB, r = 0.73, P = 0.005; NaPg , r = 0.71, P = 0.007;) and labiomental angle (Class II: SNB, r = 0.72, P = 0.002; ANB, r = - 0.72, P = 0.002; N-B, r = - 0.68, P = 0.004; ANS-Gn, r = 0.71, P = 0.002; Class III: ANS-Gn, r = 0.65, P = 0.043) compared with two-dimensional photogrammetry. However, two-dimensional photogrammetry revealed higher correlation between lower lip length and cephalometrically assessed angular hard tissue changes (Class II: SNB, r = 0.98, P = 0.007; N-B, r = 0.89, P = 0.037; N-Pg, r = 0.90, P = 0.033; Class III: SNB, r = - 0.54, P = 0.060; NAPg, r = - 0.65, P = 0.041; N-Pg, r = 0.58, P = 0.039). Conclusions Our findings suggest that cephalometry and two-dimensional photogrammetry offer the possibility to complement one another. PMID:24421994

  20. Assessment of Soft Tissue Changes by Cephalometry and Two-Dimensional Photogrammetry in Bilateral Sagittal Split Ramus Osteotomy Cases

    Directory of Open Access Journals (Sweden)

    Jan Rustemeyer

    2011-07-01

    Full Text Available Objectives: We aimed to compare the standard methods of cephalometry and two-dimensional photogrammetry, to evaluate the reliability and accuracy of both methods.Material and Methods: Twenty-six patients (mean age 25.5, standard deviation (SD 5.2 years with Class II relationship and 23 patients with Class III relationship (mean age 26.4, SD 4.7 years who had undergone bilateral sagittal split ramus osteotomy were selected, with a median follow-up of 8 months between pre- and postsurgical evaluation. Pre- and postsurgical cephalograms and lateral photograms were traced and changes were recorded.Results: Pre- and postsurgical measurements of hard tissue angles and distances revealed higher correlations with cephalometrically performed soft tissue measurements of facial convexity (Class II: N-PG, r = - 0.50, P = 0.047; Class III: ANB, r = 0.73, P = 0.005; NaPg , r = 0.71, P = 0.007; and labiomental angle (Class II: SNB, r = 0.72, P = 0.002; ANB, r = - 0.72, P = 0.002; N-B, r = - 0.68, P = 0.004; ANS-Gn, r = 0.71, P = 0.002; Class III: ANS-Gn, r = 0.65, P = 0.043 compared with two-dimensional photogrammetry. However, two-dimensional photogrammetry revealed higher correlation between lower lip length and cephalometrically assessed angular hard tissue changes (Class II: SNB, r = 0.98, P = 0.007; N-B, r = 0.89, P = 0.037; N-Pg, r = 0.90, P = 0.033; Class III: SNB, r = - 0.54, P = 0.060; NAPg, r = - 0.65, P = 0.041; N-Pg, r = 0.58, P = 0.039.Conclusions: Our findings suggest that cephalometry and two-dimensional photogrammetry offer the possibility to complement one another.

  1. Path dependent models to predict property changes in graphite irradiated at changing irradiation temperatures

    CSIR Research Space (South Africa)

    Kok, S

    2010-10-01

    Full Text Available Property changes occur in materials subjected to irradiation. The bulk of experimental data and associated empirical models are for isothermal irradiation. The form that these isothermal models take is usually closed form expressions in terms...

  2. Prediction of optimal deployment projection for transcatheter aortic valve replacement: angiographic 3-dimensional reconstruction of the aortic root versus multidetector computed tomography.

    Science.gov (United States)

    Binder, Ronald K; Leipsic, Jonathon; Wood, David; Moore, Teri; Toggweiler, Stefan; Willson, Alex; Gurvitch, Ronen; Freeman, Melanie; Webb, John G

    2012-04-01

    Identifying the optimal fluoroscopic projection of the aortic valve is important for successful transcatheter aortic valve replacement (TAVR). Various imaging modalities, including multidetector computed tomography (MDCT), have been proposed for prediction of the optimal deployment projection. We evaluated a method that provides 3-dimensional angiographic reconstructions (3DA) of the aortic root for prediction of the optimal deployment angle and compared it with MDCT. Forty patients undergoing transfemoral TAVR at St Paul's Hospital, Vancouver, Canada, were evaluated. All underwent preimplant 3DA and 68% underwent preimplant MDCT. Three-dimensional angiographic reconstructions were generated from images of a C-arm rotational aortic root angiogram during breath-hold, rapid ventricular pacing, and injection of 32 mL contrast medium at 8 mL/s. Two independent operators prospectively predicted perpendicular valve projections. The implant angle was chosen at the discretion of the physician performing TAVR. The angles from 3DA, from MDCT, the implant angle, and the postdeployment perpendicular prosthesis view were compared. The shortest distance from the postdeployment perpendicular prosthesis projection to the regression line of predicted perpendicular projections was calculated. All but 1 patient had adequate image quality for reproducible angle predictions. There was a significant correlation between 3DA and MDCT for prediction of perpendicular valve projections (r=0.682, Pregression line of predicted angles to the postdeployment prosthesis view was 5.1±4.6° for 3DA and 7.9±4.9° for MDCT (P=0.01). Three-dimensional angiographic reconstructions and MDCT are safe, practical, and accurate imaging modalities for identifying the optimal perpendicular valve deployment projection during TAVR.

  3. A Theoretical Study on Quantitative Prediction and Evaluation of Thermal Residual Stresses in Metal Matrix Composite (Case 1 : Two-Dimensional In-Plane Fiber Distribution)

    International Nuclear Information System (INIS)

    Lee, Joon Hyun; Son, Bong Jin

    1997-01-01

    Although discontinuously reinforced metal matrix composite(MMC) is one of the most promising materials for applications of aerospace, automotive industries, the thermal residual stresses developed in the MMC due to the mismatch in coefficients of thermal expansion between the matrix and the fiber under a temperature change has been pointed out as one of the serious problem in practical applications. There are very limited nondestructive techniques to measure the residual stress of composite materials. However, many difficulties have been reported in their applications. Therefore it is important to establish analytical model to evaluate the thermal residual stress of MMC for practical engineering application. In this study, an elastic model is developed to predict the average thermal residual stresses in the matrix and fiber of a misoriented short fiber composite. The thermal residual stresses are induced by the mismatch in the coefficient of the thermal expansion of the matrix and fiber when the composite is subjected to a uniform temperature change. The model considers two-dimensional in-plane fiber misorientation. The analytical formulation of the model is based on Eshelby's equivalent inclusion method and is unique in that it is able to account for interactions among fibers. This model is more general than past models to investigate the effect of parameters which might influence thermal residual stress in composites. The present model is to investigate the effects of fiber volume fraction, distribution type, distribution cut-off angle, and aspect ratio on thermal residual stress for in-plane fiber misorientation. Fiber volume fraction, aspect ratio, and distribution cut-off angle are shown to have more significant effects on the magnitude of the thermal residual stresses than fiber distribution type for in-plane misorientation

  4. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    OpenAIRE

    Hudson, LN; Newbold, T; Contu, S; Hill, SLL; Lysenko, I; De Palma, A; Phillips, HRP; Alhusseini, TI; Bedford, FE; Bennett, DJ; Booth, H; Burton, VJ; Chng, CWT; Choimes, A; Correia, DLP

    2017-01-01

    The PREDICTS project—Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)—has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make free...

  5. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    OpenAIRE

    Hudson, L. N.; Newbold, T.; Contu, S.; Hill, S. L.; Lysenko, I.; De Palma, A.; Phillips, H. R.; Alhusseini, T. I.; Bedford, F. E.; Bennett, D. J.; Booth, H.; Burton, V. J.; Chng, C. W.; Choimes, A.; Correia, D. L.

    2017-01-01

    The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make free...

  6. Woody plants and the prediction of climate-change impacts on bird diversity

    DEFF Research Database (Denmark)

    Kissling, W. Daniel; Field, R.; Korntheuer, H.

    2010-01-01

    Current methods of assessing climate-induced shifts of species distributions rarely account for species interactions and usually ignore potential differences in response times of interacting taxa to climate change. Here, we used species-richness data from 1005 breeding bird and 1417 woody plant...... species in Kenya and employed model-averaged coefficients from regression models and median climatic forecasts assembled across 15 climate-change scenarios to predict bird species richness under climate change. Forecasts assuming an instantaneous response of woody plants and birds to climate change...... suggested increases in future bird species richness across most of Kenya whereas forecasts assuming strongly lagged woody plant responses to climate change indicated a reversed trend, i.e. reduced bird species richness. Uncertainties in predictions of future bird species richness were geographically...

  7. A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change.

    Directory of Open Access Journals (Sweden)

    M Irfan Ashraf

    Full Text Available Global climate is changing due to increasing anthropogenic emissions of greenhouse gases. Forest managers need growth and yield models that can be used to predict future forest dynamics during the transition period of present-day forests under a changing climatic regime. In this study, we developed a forest growth and yield model that can be used to predict individual-tree growth under current and projected future climatic conditions. The model was constructed by integrating historical tree growth records with predictions from an ecological process-based model using neural networks. The new model predicts basal area (BA and volume growth for individual trees in pure or mixed species forests. For model development, tree-growth data under current climatic conditions were obtained using over 3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect tree growth under a changing climatic regime were projected with JABOWA-3 (an ecological process-based model. Model validation with designated data produced model efficiencies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is a relative index of model performance, where 1 indicates an ideal fit, while values lower than zero means the predictions are no better than the average of the observations. Overall mean prediction error (BIAS of basal area and volume growth predictions was nominal (i.e., for BA: -0.0177 cm(2 5-year(-1 and volume: 0.0008 m(3 5-year(-1. Model variability described by root mean squared error (RMSE in basal area prediction was 40.53 cm(2 5-year(-1 and 0.0393 m(3 5-year(-1 in volume prediction. The new modelling approach has potential to reduce uncertainties in growth and yield predictions under different climate change scenarios. This novel approach provides an avenue for forest managers to generate required information for the management of forests in transitional periods of climate change. Artificial intelligence

  8. Inter-decadal change in potential predictability of the East Asian summer monsoon

    Science.gov (United States)

    Li, Jiao; Ding, Ruiqiang; Wu, Zhiwei; Zhong, Quanjia; Li, Baosheng; Li, Jianping

    2018-05-01

    The significant inter-decadal change in potential predictability of the East Asian summer monsoon (EASM) has been investigated using the signal-to-noise ratio method. The relatively low potential predictability appears from the early 1950s through the late 1970s and during the early 2000s, whereas the potential predictability is relatively high from the early 1980s through the late 1990s. The inter-decadal change in potential predictability of the EASM can be attributed mainly to variations in the external signal of the EASM. The latter is mostly caused by the El Niño-Southern Oscillation (ENSO) inter-decadal variability. As a major external signal of the EASM, the ENSO inter-decadal variability experiences phase transitions from negative to positive phases in the late 1970s, and to negative phases in the late 1990s. Additionally, ENSO is generally strong (weak) during a positive (negative) phase of the ENSO inter-decadal variability. The strong ENSO is expected to have a greater influence on the EASM, and vice versa. As a result, the potential predictability of the EASM tends to be high (low) during a positive (negative) phase of the ENSO inter-decadal variability. Furthermore, a suite of Pacific Pacemaker experiments suggests that the ENSO inter-decadal variability may be a key pacemaker of the inter-decadal change in potential predictability of the EASM.

  9. Leading change: a three-dimensional model of nurse leaders' main tasks and roles during a change process.

    Science.gov (United States)

    Salmela, Susanne; Eriksson, Katie; Fagerström, Lisbeth

    2012-02-01

    This paper is a report of a qualitative study which explored how nurse leaders described and understood their main tasks and roles during a change process. During a database search for literature, no actual research that highlighted the main tasks and roles of nurse leaders during a change process was found. Earlier research has indicated the need for different leadership styles and the importance of strategies and values. In-depth interviews with 17 nurse leaders took place in 2004. A phenomenological-hermeneutical approach was used for data analysis. The findings resulted in a model of leading change in health care that focuses on good patient care and consists of three dimensions: leading relationships, leading processes and leading a culture. In addition to leading relationships and processes, nurse leaders, as role models, greatly impact caring culture and its inherent ethical behaviour, especially about the responsibility for achieving good patient care. Nurse leaders are also instrumental in leading ward culture. Nurse leaders need guidance and knowledge of what is expected of them during a structural change process. They play different roles by directing, guiding, motivating, supporting and communicating without losing their cultural ethos of caring and use various leadership styles to bring about actual change, which, in turn, requires learning so that the thought patterns, values and attitudes of personnel can be changed. © 2011 Blackwell Publishing Ltd.

  10. An overview of techniques for linking high-dimensional molecular data to time-to-event endpoints by risk prediction models.

    Science.gov (United States)

    Binder, Harald; Porzelius, Christine; Schumacher, Martin

    2011-03-01

    Analysis of molecular data promises identification of biomarkers for improving prognostic models, thus potentially enabling better patient management. For identifying such biomarkers, risk prediction models can be employed that link high-dimensional molecular covariate data to a clinical endpoint. In low-dimensional settings, a multitude of statistical techniques already exists for building such models, e.g. allowing for variable selection or for quantifying the added value of a new biomarker. We provide an overview of techniques for regularized estimation that transfer this toward high-dimensional settings, with a focus on models for time-to-event endpoints. Techniques for incorporating specific covariate structure are discussed, as well as techniques for dealing with more complex endpoints. Employing gene expression data from patients with diffuse large B-cell lymphoma, some typical modeling issues from low-dimensional settings are illustrated in a high-dimensional application. First, the performance of classical stepwise regression is compared to stage-wise regression, as implemented by a component-wise likelihood-based boosting approach. A second issues arises, when artificially transforming the response into a binary variable. The effects of the resulting loss of efficiency and potential bias in a high-dimensional setting are illustrated, and a link to competing risks models is provided. Finally, we discuss conditions for adequately quantifying the added value of high-dimensional gene expression measurements, both at the stage of model fitting and when performing evaluation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Changing word usage predicts changing word durations in New Zealand English.

    Science.gov (United States)

    Sóskuthy, Márton; Hay, Jennifer

    2017-09-01

    This paper investigates the emergence of lexicalized effects of word usage on word duration by looking at parallel changes in usage and duration over 130years in New Zealand English. Previous research has found that frequent words are shorter, informative words are longer, and words in utterance-final position are also longer. It has also been argued that some of these patterns are not simply online adjustments, but are incorporated into lexical representations. While these studies tend to focus on the synchronic aspects of such patterns, our corpus shows that word-usage patterns and word durations are not static over time. Many words change in duration and also change with respect to frequency, informativity and likelihood of occurring utterance-finally. Analysis of changing word durations over this time period shows substantial patterns of co-adaptation between word usage and word durations. Words that are increasing in frequency are becoming shorter. Words that are increasing/decreasing in informativity show a change in the same direction in duration (e.g. increasing informativity is associated with increasing duration). And words that are increasingly appearing utterance-finally are lengthening. These effects exist independently of the local effects of the predictors. For example, words that are increasing utterance-finally lengthen in all positions, including utterance-medially. We show that these results are compatible with a number of different views about lexical representations, but they cannot be explained without reference to a production-perception loop that allows speakers to update their representations dynamically on the basis of their experience. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Three-dimensional morphological characterization of the skin surface micro-topography using a skin replica and changes with age.

    Science.gov (United States)

    Masuda, Y; Oguri, M; Morinaga, T; Hirao, T

    2014-08-01

    Skin surface micro-topography (SSMT), consisting of pores, ridges and furrows, reflects the skin condition and is an important factor determining the aesthetics of the skin. Most previous studies evaluating SSMT have employed two-dimensional image analysis of magnified pictures captured by a video microscope. To improve the accuracy of SSMT analysis, we established a three-dimensional (3D) analysis method for SSMT and developed various parameters including the skin ridge number, and applied the method to study the age-dependent change in skin. Confocal laser scanning microscopy was used for 3D measurement of the surface morphology of silicon replicas taken from the cheek. We then used these data to calculate the parameters that reflect the nature of SSTM including the skin ridge number using originally developed software. Employing a superscription technique, we investigated the variation in SSMT with age for replicas taken from the cheeks of 103 Japanese females (5-85 years old). The skin surface area and roughness, the area of pores, the area, length, depth and width of skin furrows and the number of skin ridges were examined. The surface roughness, the area of pores and the depth of skin furrows increased with age. The area and length of skin furrows and the number of skin ridges decreased with age. The method proposed to analyse SSMT three dimensionally is an effective tool with which to characterize the condition of the skin. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. IMPROVING KNITTED FABRICS BY A STATISTICAL CONTROL OF DIMENSIONAL CHANGES AFTER THE DYEING PROCESS

    Directory of Open Access Journals (Sweden)

    LLINARES-BERENGUER Jorge

    2017-05-01

    Full Text Available One of the most important problems that cotton knitted fabrics present during the manufacturing process is their dimensional instability, which needs to be minimised. Some of the variables that intervene in fabric shrinkage are related with its structural characteristics, use of fiber when producing yarn, the yarn count used or the dyeing process employed. Conducted under real factory conditions, the present study attempted to model the behaviour of a fabric structure after a dyeing process by contributing several algorithms that calculate dyed fabric stability after the first wash cycle. Small-diameter circular machines are used to produce garments with no side seams. This is the reason why a list of machines that produce the same fabrics for different widths needs to be made available to produce all the sizes of a given garment. Two relaxation states were distingued for interlock fabric: dyed and dry relaxation, and dyed and wash relaxation. The linear density of the yarn employed to produce sample fabric was combed cotton Ne 30. The machines used for optic bleaching were Overflow. To obtain knitting structures with optimum dimensional stability, different statistical tools were used to help us to evaluate all the production process variables (raw material, machines and process responsible for this variation. This allowed to guarantee product quality without creating costs and losses.

  14. Three-dimensional dental arch changes of patients submitted to orthodontic-surgical treatment for correction of Class II malocclusion

    Directory of Open Access Journals (Sweden)

    Adriano Porto Peixoto

    2014-08-01

    Full Text Available INTRODUCTION: This study assessed the three-dimensional changes in the dental arch of patients submitted to orthodontic-surgical treatment for correction of Class II malocclusions at three different periods. METHODS: Landmarks previously identified on upper and lower dental casts were digitized on a three-dimensional digitizer MicroScribe-3DX and stored in Excel worksheets in order to assess the width, length and depth of patient's dental arches. RESULTS: During orthodontic preparation, the maxillary and mandibular transverse dimensions measured at the premolar regions were increased and maintained throughout the follow-up period. Intercanine width was increased only in the upper arch during orthodontic preparation. Maxillary arch length was reduced during orthodontic finalization, only. Upper and lower arch depths were stable in the study periods. Differences between centroid and gingival changes suggested that upper and lower arch premolars buccaly proclined during the pre-surgical period. CONCLUSIONS: Maxillary and mandibular dental arches presented transverse expansion at premolar regions during preoperative orthodontic preparation, with a tendency towards buccal tipping. The transverse dimensions were not altered after surgery. No sagittal or vertical changes were observed during the follow-up periods.

  15. Three-dimensional dental arch changes of patients submitted to orthodontic-surgical treatment for correction of Class II malocclusion.

    Science.gov (United States)

    Peixoto, Adriano Porto; dos Santos Pinto, Ary; Garib, Daniela Gamba; Gonçalves, João Roberto

    2014-01-01

    This study assessed the three-dimensional changes in the dental arch of patients submitted to orthodontic-surgical treatment for correction of Class II malocclusions at three different periods. Landmarks previously identified on upper and lower dental casts were digitized on a three-dimensional digitizer MicroScribe-3DX and stored in Excel worksheets in order to assess the width, length and depth of patient's dental arches. During orthodontic preparation, the maxillary and mandibular transverse dimensions measured at the premolar regions were increased and maintained throughout the follow-up period. Intercanine width was increased only in the upper arch during orthodontic preparation. Maxillary arch length was reduced during orthodontic finalization, only. Upper and lower arch depths were stable in the study periods. Differences between changes in centroid and gingival points suggested that upper and lower premolars buccaly proclined during the pre-surgical period. Maxillary and mandibular dental arches presented transverse expansion at premolar regions during preoperative orthodontic preparation, with a tendency towards buccal tipping. The transverse dimensions were not altered after surgery. No sagittal or vertical changes were observed during the follow-up periods.

  16. Change in the Pathologic Supraspinatus: A Three-Dimensional Model of Fiber Bundle Architecture within Anterior and Posterior Regions

    Directory of Open Access Journals (Sweden)

    Soo Y. Kim

    2015-01-01

    Full Text Available Supraspinatus tendon tears are common and lead to changes in the muscle architecture. To date, these changes have not been investigated for the distinct regions and parts of the pathologic supraspinatus. The purpose of this study was to create a novel three-dimensional (3D model of the muscle architecture throughout the supraspinatus and to compare the architecture between muscle regions and parts in relation to tear severity. Twelve cadaveric specimens with varying degrees of tendon tears were used. Three-dimensional coordinates of fiber bundles were collected in situ using serial dissection and digitization. Data were reconstructed and modeled in 3D using Maya. Fiber bundle length (FBL and pennation angle (PA were computed and analyzed. FBL was significantly shorter in specimens with large retracted tears compared to smaller tears, with the deeper fibers being significantly shorter than other parts in the anterior region. PA was significantly greater in specimens with large retracted tears, with the superficial fibers often demonstrating the largest PA. The posterior region was absent in two specimens with extensive tears. Architectural changes associated with tendon tears affect the regions and varying depths of supraspinatus differently. The results provide important insights on residual function of the pathologic muscle, and the 3D model includes detailed data that can be used in future modeling studies.

  17. Variance in predicted cup size by 2-dimensional vs 3-dimensional computerized tomography-based templating in primary total hip arthroplasty.

    Science.gov (United States)

    Osmani, Feroz A; Thakkar, Savyasachi; Ramme, Austin; Elbuluk, Ameer; Wojack, Paul; Vigdorchik, Jonathan M

    2017-12-01

    Preoperative total hip arthroplasty templating can be performed with radiographs using acetate prints, digital viewing software, or with computed tomography (CT) images. Our hypothesis is that 3D templating is more precise and accurate with cup size prediction as compared to 2D templating with acetate prints and digital templating software. Data collected from 45 patients undergoing robotic-assisted total hip arthroplasty compared cup sizes templated on acetate prints and OrthoView software to MAKOplasty software that uses CT scan. Kappa analysis determined strength of agreement between each templating modality and the final size used. t tests compared mean cup-size variance from the final size for each templating technique. Interclass correlation coefficient (ICC) determined reliability of digital and acetate planning by comparing predictions of the operating surgeon and a blinded adult reconstructive fellow. The Kappa values for CT-guided, digital, and acetate templating with the final size was 0.974, 0.233, and 0.262, respectively. Both digital and acetate templating significantly overpredicted cup size, compared to CT-guided methods ( P cup size when compared to the significant overpredictions of digital and acetate templating. CT-guided templating may also lead to better outcomes due to bone stock preservation from a smaller and more accurate cup size predicted than that of digital and acetate predictions.

  18. Six-month changes in spirituality and religiousness in alcoholics predict drinking outcomes at nine months.

    Science.gov (United States)

    Robinson, Elizabeth A R; Krentzman, Amy R; Webb, Jon R; Brower, Kirk J

    2011-07-01

    Although spiritual change is hypothesized to contribute to recovery from alcohol dependence, few studies have used prospective data to investigate this hypothesis. Prior studies have also been limited to treatment-seeking and Alcoholics Anonymous (AA) samples. This study included alcohol-dependent individuals, both in treatment and not, to investigate the effect of spiritual and religious (SR) change on subsequent drinking outcomes, independent of AA involvement. Alcoholics (N = 364) were recruited for a panel study from two abstinence-based treatment centers, a moderation drinking program, and untreated individuals from the local community. Quantitative measures of SR change between baseline and 6 months were used to predict 9-month drinking outcomes, controlling for baseline drinking and AA involvement. Significant 6-month changes in 8 of 12 SR measures were found, which included private SR practices, beliefs, daily spiritual experiences, three measures of forgiveness, negative religious coping, and purpose in life. Increases in private SR practices and forgiveness of self were the strongest predictors of improvements in drinking outcomes. Changes in daily spiritual experiences, purpose in life, a general measure of forgiveness, and negative religious coping also predicted favorable drinking outcomes. SR change predicted good drinking outcomes in alcoholics, even when controlling for AA involvement. SR variables, broadly defined, deserve attention in fostering change even among those who do not affiliate with AA or religious institutions. Last, future research should include SR variables, particularly various types of forgiveness, given the strong effects found for forgiveness of self.

  19. Neural response to pictorial health warning labels can predict smoking behavioral change.

    Science.gov (United States)

    Riddle, Philip J; Newman-Norlund, Roger D; Baer, Jessica; Thrasher, James F

    2016-11-01

    In order to improve our understanding of how pictorial health warning labels (HWLs) influence smoking behavior, we examined whether brain activity helps to explain smoking behavior above and beyond self-reported effectiveness of HWLs. We measured the neural response in the ventromedial prefrontal cortex (vmPFC) and the amygdala while adult smokers viewed HWLs. Two weeks later, participants' self-reported smoking behavior and biomarkers of smoking behavior were reassessed. We compared multiple models predicting change in self-reported smoking behavior (cigarettes per day [CPD]) and change in a biomarkers of smoke exposure (expired carbon monoxide [CO]). Brain activity in the vmPFC and amygdala not only predicted changes in CO, but also accounted for outcome variance above and beyond self-report data. Neural data were most useful in predicting behavioral change as quantified by the objective biomarker (CO). This pattern of activity was significantly modulated by individuals' intention to quit. The finding that both cognitive (vmPFC) and affective (amygdala) brain areas contributed to these models supports the idea that smokers respond to HWLs in a cognitive-affective manner. Based on our findings, researchers may wish to consider using neural data from both cognitive and affective networks when attempting to predict behavioral change in certain populations (e.g. cigarette smokers). © The Author (2016). Published by Oxford University Press.

  20. Livestock Helminths in a Changing Climate: Approaches and Restrictions to Meaningful Predictions.

    Science.gov (United States)

    Fox, Naomi J; Marion, Glenn; Davidson, Ross S; White, Piran C L; Hutchings, Michael R

    2012-03-06

    Climate change is a driving force for livestock parasite risk. This is especially true for helminths including the nematodes Haemonchus contortus, Teladorsagia circumcincta, Nematodirus battus, and the trematode Fasciola hepatica, since survival and development of free-living stages is chiefly affected by temperature and moisture. The paucity of long term predictions of helminth risk under climate change has driven us to explore optimal modelling approaches and identify current bottlenecks to generating meaningful predictions. We classify approaches as correlative or mechanistic, exploring their strengths and limitations. Climate is one aspect of a complex system and, at the farm level, husbandry has a dominant influence on helminth transmission. Continuing environmental change will necessitate the adoption of mitigation and adaptation strategies in husbandry. Long term predictive models need to have the architecture to incorporate these changes. Ultimately, an optimal modelling approach is likely to combine mechanistic processes and physiological thresholds with correlative bioclimatic modelling, incorporating changes in livestock husbandry and disease control. Irrespective of approach, the principal limitation to parasite predictions is the availability of active surveillance data and empirical data on physiological responses to climate variables. By combining improved empirical data and refined models with a broad view of the livestock system, robust projections of helminth risk can be developed.

  1. Livestock Helminths in a Changing Climate: Approaches and Restrictions to Meaningful Predictions

    Directory of Open Access Journals (Sweden)

    Ross S. Davidson

    2012-03-01

    Full Text Available Climate change is a driving force for livestock parasite risk. This is especially true for helminths including the nematodes Haemonchus contortus, Teladorsagia circumcincta, Nematodirus battus, and the trematode Fasciola hepatica, since survival and development of free-living stages is chiefly affected by temperature and moisture. The paucity of long term predictions of helminth risk under climate change has driven us to explore optimal modelling approaches and identify current bottlenecks to generating meaningful predictions. We classify approaches as correlative or mechanistic, exploring their strengths and limitations. Climate is one aspect of a complex system and, at the farm level, husbandry has a dominant influence on helminth transmission. Continuing environmental change will necessitate the adoption of mitigation and adaptation strategies in husbandry. Long term predictive models need to have the architecture to incorporate these changes. Ultimately, an optimal modelling approach is likely to combine mechanistic processes and physiological thresholds with correlative bioclimatic modelling, incorporating changes in livestock husbandry and disease control. Irrespective of approach, the principal limitation to parasite predictions is the availability of active surveillance data and empirical data on physiological responses to climate variables. By combining improved empirical data and refined models with a broad view of the livestock system, robust projections of helminth risk can be developed.

  2. Changes in Predictive Task Switching with Age and with Cognitive Load.

    Science.gov (United States)

    Levy-Tzedek, Shelly

    2017-01-01

    Predictive control of movement is more efficient than feedback-based control, and is an important skill in everyday life. We tested whether the ability to predictively control movements of the upper arm is affected by age and by cognitive load. A total of 63 participants were tested in two experiments. In both experiments participants were seated, and controlled a cursor on a computer screen by flexing and extending their dominant arm. In Experiment 1, 20 young adults and 20 older adults were asked to continuously change the frequency of their horizontal arm movements, with the goal of inducing an abrupt switch between discrete movements (at low frequencies) and rhythmic movements (at high frequencies). We tested whether that change was performed based on a feed-forward (predictive) or on a feedback (reactive) control. In Experiment 2, 23 young adults performed the same task, while being exposed to a cognitive load half of the time via a serial subtraction task. We found that both aging and cognitive load diminished, on average, the ability of participants to predictively control their movements. Five older adults and one young adult under a cognitive load were not able to perform the switch between rhythmic and discrete movement (or vice versa). In Experiment 1, 40% of the older participants were able to predictively control their movements, compared with 70% in the young group. In Experiment 2, 48% of the participants were able to predictively control their movements with a cognitively loading task, compared with 70% in the no-load condition. The ability to predictively change a motor plan in anticipation of upcoming changes may be an important component in performing everyday functions, such as safe driving and avoiding falls.

  3. Quantification of topological changes of vorticity contours in two-dimensional Navier-Stokes flow.

    Science.gov (United States)

    Ohkitani, Koji; Al Sulti, Fayeza

    2010-06-01

    A characterization of reconnection of vorticity contours is made by direct numerical simulations of the two-dimensional Navier-Stokes flow at a relatively low Reynolds number. We identify all the critical points of the vorticity field and classify them by solving an eigenvalue problem of its Hessian matrix on the basis of critical-point theory. The numbers of hyperbolic (saddles) and elliptic (minima and maxima) points are confirmed to satisfy Euler's index theorem numerically. Time evolution of these indices is studied for a simple initial condition. Generally speaking, we have found that the indices are found to decrease in number with time. This result is discussed in connection with related works on streamline topology, in particular, the relationship between stagnation points and the dissipation. Associated elementary procedures in physical space, the merging of vortices, are studied in detail for a number of snapshots. A similar analysis is also done using the stream function.

  4. Sexual selection predicts advancement of avian spring migration in response to climate change

    DEFF Research Database (Denmark)

    Spottiswoode, Claire N; Tøttrup, Anders P; Coppack, Timothy

    2006-01-01

    Global warming has led to earlier spring arrival of migratory birds, but the extent of this advancement varies greatly among species, and it remains uncertain to what degree these changes are phenotypically plastic responses or microevolutionary adaptations to changing environmental conditions. We...... suggest that sexual selection could help to understand this variation, since early spring arrival of males is favoured by female choice. Climate change could weaken the strength of natural selection opposing sexual selection for early migration, which would predict greatest advancement in species...... in the timing of first-arriving individuals, suggesting that selection has not only acted on protandrous males. These results suggest that sexual selection may have an impact on the responses of organisms to climate change, and knowledge of a species' mating system might help to inform attempts at predicting...

  5. Dimensional Modeling By Using a New Response to Slowly Changing Dimensions

    DEFF Research Database (Denmark)

    Frank, L.; Frank, C.; Jensen, Christian Søndergaard

    2005-01-01

    solutions/responses to handling the aggregation problems caused by slowly changing dimensions. In this paper, we will describe a fourth solution. A special aspect of our new response is that it should be used before the other responses, as it will change the design of the data warehouse. Afterwards, it may...

  6. Dimensional Modeling By Using a New Response to Slowly Changing Dimensions

    DEFF Research Database (Denmark)

    Frank, L.; Frank, C.; Jensen, Christian Søndergaard

    2005-01-01

    Dimensions are defined as dynamic or slowly changing if the attributes or relationships of a dimension can be updated. Aggregations to dynamic dimensions might be misleading if the measures are aggregated without regarding the changes of the dimensions. Kimball et al. has described three classic ...

  7. Predicting ecological responses in a changing ocean: the effects of future climate uncertainty.

    Science.gov (United States)

    Freer, Jennifer J; Partridge, Julian C; Tarling, Geraint A; Collins, Martin A; Genner, Martin J

    2018-01-01

    Predicting how species will respond to climate change is a growing field in marine ecology, yet knowledge of how to incorporate the uncertainty from future climate data into these predictions remains a significant challenge. To help overcome it, this review separates climate uncertainty into its three components (scenario uncertainty, model uncertainty, and internal model variability) and identifies four criteria that constitute a thorough interpretation of an ecological response to climate change in relation to these parts (awareness, access, incorporation, communication). Through a literature review, the extent to which the marine ecology community has addressed these criteria in their predictions was assessed. Despite a high awareness of climate uncertainty, articles favoured the most severe emission scenario, and only a subset of climate models were used as input into ecological analyses. In the case of sea surface temperature, these models can have projections unrepresentative against a larger ensemble mean. Moreover, 91% of studies failed to incorporate the internal variability of a climate model into results. We explored the influence that the choice of emission scenario, climate model, and model realisation can have when predicting the future distribution of the pelagic fish, Electrona antarctica . Future distributions were highly influenced by the choice of climate model, and in some cases, internal variability was important in determining the direction and severity of the distribution change. Increased clarity and availability of processed climate data would facilitate more comprehensive explorations of climate uncertainty, and increase in the quality and standard of marine prediction studies.

  8. [Effects of sampling plot number on tree species distribution prediction under climate change].

    Science.gov (United States)

    Liang, Yu; He, Hong-Shi; Wu, Zhi-Wei; Li, Xiao-Na; Luo, Xu

    2013-05-01

    Based on the neutral landscapes under different degrees of landscape fragmentation, this paper studied the effects of sampling plot number on the prediction of tree species distribution at landscape scale under climate change. The tree species distribution was predicted by the coupled modeling approach which linked an ecosystem process model with a forest landscape model, and three contingent scenarios and one reference scenario of sampling plot numbers were assumed. The differences between the three scenarios and the reference scenario under different degrees of landscape fragmentation were tested. The results indicated that the effects of sampling plot number on the prediction of tree species distribution depended on the tree species life history attributes. For the generalist species, the prediction of their distribution at landscape scale needed more plots. Except for the extreme specialist, landscape fragmentation degree also affected the effects of sampling plot number on the prediction. With the increase of simulation period, the effects of sampling plot number on the prediction of tree species distribution at landscape scale could be changed. For generalist species, more plots are needed for the long-term simulation.

  9. Improving sub-pixel imperviousness change prediction by ensembling heterogeneous non-linear regression models

    Science.gov (United States)

    Drzewiecki, Wojciech

    2016-12-01

    In this work nine non-linear regression models were compared for sub-pixel impervious surface area mapping from Landsat images. The comparison was done in three study areas both for accuracy of imperviousness coverage evaluation in individual points in time and accuracy of imperviousness change assessment. The performance of individual machine learning algorithms (Cubist, Random Forest, stochastic gradient boosting of regression trees, k-nearest neighbors regression, random k-nearest neighbors regression, Multivariate Adaptive Regression Splines, averaged neural networks, and support vector machines with polynomial and radial kernels) was also compared with the performance of heterogeneous model ensembles constructed from the best models trained using particular techniques. The results proved that in case of sub-pixel evaluation the most accurate prediction of change may not necessarily be based on the most accurate individual assessments. When single methods are considered, based on obtained results Cubist algorithm may be advised for Landsat based mapping of imperviousness for single dates. However, Random Forest may be endorsed when the most reliable evaluation of imperviousness change is the primary goal. It gave lower accuracies for individual assessments, but better prediction of change due to more correlated errors of individual predictions. Heterogeneous model ensembles performed for individual time points assessments at least as well as the best individual models. In case of imperviousness change assessment the ensembles always outperformed single model approaches. It means that it is possible to improve the accuracy of sub-pixel imperviousness change assessment using ensembles of heterogeneous non-linear regression models.

  10. Solving one-dimensional phase change problems with moving grid method and mesh free radial basis functions

    International Nuclear Information System (INIS)

    Vrankar, L.; Turk, G.; Runovc, F.; Kansa, E.J.

    2006-01-01

    Many heat-transfer problems involve a change of phase of material due to solidification or melting. Applications include: the safety studies of nuclear reactors (molten core concrete interaction), the drilling of high ice-content soil, the storage of thermal energy, etc. These problems are often called Stefan's or moving boundary value problems. Mathematically, the interface motion is expressed implicitly in an equation for the conservation of thermal energy at the interface (Stefan's conditions). This introduces a non-linear character to the system which treats each problem somewhat uniquely. The exact solution of phase change problems is limited exclusively to the cases in which e.g. the heat transfer regions are infinite or semi-infinite one dimensional-space. Therefore, solution is obtained either by approximate analytical solution or by numerical methods. Finite-difference methods and finite-element techniques have been used extensively for numerical solution of moving boundary problems. Recently, the numerical methods have focused on the idea of using a mesh-free methodology for the numerical solution of partial differential equations based on radial basis functions. In our case we will study solid-solid transformation. The numerical solutions will be compared with analytical solutions. Actually, in our work we will examine usefulness of radial basis functions (especially multiquadric-MQ) for one-dimensional Stefan's problems. The position of the moving boundary will be simulated by moving grid method. The resultant system of RBF-PDE will be solved by affine space decomposition. (author)

  11. Tracking Ionic Rearrangements and Interpreting Dynamic Volumetric Changes in Two-Dimensional Metal Carbide Supercapacitors: A Molecular Dynamics Simulation Study.

    Science.gov (United States)

    Xu, Kui; Lin, Zifeng; Merlet, Céline; Taberna, Pierre-Louis; Miao, Ling; Jiang, Jianjun; Simon, Patrice

    2017-12-06

    We present a molecular dynamics simulation study achieved on two-dimensional (2D) Ti 3 C 2 T x MXenes in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM] + [TFSI] - ) electrolyte. Our simulations reproduce the different patterns of volumetric change observed experimentally for both the negative and positive electrodes. The analysis of ionic fluxes and structure rearrangements in the 2D material provide an atomic scale insight into the charge and discharge processes in the layer pore and confirm the existence of two different charge-storage mechanisms at the negative and positive electrodes. The ionic number variation and the structure rearrangement contribute to the dynamic volumetric changes of both electrodes: negative electrode expansion and positive electrode contraction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Early prediction of tumor recurrence based on CT texture changes after stereotactic ablative radiotherapy (SABR) for lung cancer

    International Nuclear Information System (INIS)

    Mattonen, Sarah A.; Palma, David A.; Haasbeek, Cornelis J. A.; Senan, Suresh; Ward, Aaron D.

    2014-01-01

    Purpose: Benign computed tomography (CT) changes due to radiation induced lung injury (RILI) are common following stereotactic ablative radiotherapy (SABR) and can be difficult to differentiate from tumor recurrence. The authors measured the ability of CT image texture analysis, compared to more traditional measures of response, to predict eventual cancer recurrence based on CT images acquired within 5 months of treatment. Methods: A total of 24 lesions from 22 patients treated with SABR were selected for this study: 13 with moderate to severe benign RILI, and 11 with recurrence. Three-dimensional (3D) consolidative and ground-glass opacity (GGO) changes were manually delineated on all follow-up CT scans. Two size measures of the consolidation regions (longest axial diameter and 3D volume) and nine appearance features of the GGO were calculated: 2 first-order features [mean density and standard deviation of density (first-order texture)], and 7 second-order texture features [energy, entropy, correlation, inverse difference moment (IDM), inertia, cluster shade, and cluster prominence]. For comparison, the corresponding response evaluation criteria in solid tumors measures were also taken for the consolidation regions. Prediction accuracy was determined using the area under the receiver operating characteristic curve (AUC) and two-fold cross validation (CV). Results: For this analysis, 46 diagnostic CT scans scheduled for approximately 3 and 6 months post-treatment were binned based on their recorded scan dates into 2–5 month and 5–8 month follow-up time ranges. At 2–5 months post-treatment, first-order texture, energy, and entropy provided AUCs of 0.79–0.81 using a linear classifier. On two-fold CV, first-order texture yielded 73% accuracy versus 76%–77% with the second-order features. The size measures of the consolidative region, longest axial diameter and 3D volume, gave two-fold CV accuracies of 60% and 57%, and AUCs of 0.72 and 0.65, respectively

  13. Predicting the effects of climate change on marine communities and the consequences for fisheries

    DEFF Research Database (Denmark)

    Jennings, Simon; Brander, Keith

    2010-01-01

    for the community under the same climate scenario. The main weakness of the community approach is that the methods predict abundance and production by size-class rather than taxonomic group, and society would be particularly concerned if climate driven changes had a strong effect on the relative production...... of fishable and non-fishable species in the community. The main strength of the community approach is that it provides widely applicable ‘null’ models for assessing the biological effects of climate change and a baseline for model comparisons.......Climate effects on the structure and function of marine communities have received scant attention. The few existing approaches for predicting climate effects suggest that community responses might be predicted from the responses of component populations. These approaches require a very complex...

  14. Landscape genomic prediction for restoration of a Eucalyptus foundation species under climate change.

    Science.gov (United States)

    Supple, Megan Ann; Bragg, Jason G; Broadhurst, Linda M; Nicotra, Adrienne B; Byrne, Margaret; Andrew, Rose L; Widdup, Abigail; Aitken, Nicola C; Borevitz, Justin O

    2018-04-24

    As species face rapid environmental change, we can build resilient populations through restoration projects that incorporate predicted future climates into seed sourcing decisions. Eucalyptus melliodora is a foundation species of a critically endangered community in Australia that is a target for restoration. We examined genomic and phenotypic variation to make empirical based recommendations for seed sourcing. We examined isolation by distance and isolation by environment, determining high levels of gene flow extending for 500 km and correlations with climate and soil variables. Growth experiments revealed extensive phenotypic variation both within and among sampling sites, but no site-specific differentiation in phenotypic plasticity. Model predictions suggest that seed can be sourced broadly across the landscape, providing ample diversity for adaptation to environmental change. Application of our landscape genomic model to E. melliodora restoration projects can identify genomic variation suitable for predicted future climates, thereby increasing the long term probability of successful restoration. © 2018, Supple et al.

  15. Cognitive biases to healthy and unhealthy food words predict change in BMI.

    Science.gov (United States)

    Calitri, Raff; Pothos, Emmanuel M; Tapper, Katy; Brunstrom, Jeffrey M; Rogers, Peter J

    2010-12-01

    The current study explored the predictive value of cognitive biases to food cues (assessed by emotional Stroop and dot probe tasks) on weight change over a 1-year period. This was a longitudinal study with undergraduate students (N = 102) living in shared student accommodation. After controlling for the effects of variables associated with weight (e.g., physical activity, stress, restrained eating, external eating, and emotional eating), no effects of cognitive bias were found with the dot probe. However, for the emotional Stroop, cognitive bias to unhealthy foods predicted an increase in BMI whereas cognitive bias to healthy foods was associated with a decrease in BMI. Results parallel findings in substance abuse research; cognitive biases appear to predict behavior change. Accordingly, future research should consider strategies for attentional retraining, encouraging individuals to reorient attention away from unhealthy eating cues.

  16. Nonlinear model predictive control of a passenger vehicle for automated lane changes

    NARCIS (Netherlands)

    Acosta, A.F.; Marquez-Ruiz, A.; Espinosa, J.J.

    2017-01-01

    This article presents a nonlinear Model Predictive Control (MPC) for lane changes, based on a simplified Single Track Model (STM) of the vehicle. The STM includes the position of the vehicle in global coordinates as a state so that the position of the target lane can be specified to the MPC for

  17. LANDIS PRO: a landscape model that predicts forest composition and structure changes at regional scales

    Science.gov (United States)

    Wen J. Wang; Hong S. He; Jacob S. Fraser; Frank R. Thompson; Stephen R. Shifley; Martin A. Spetich

    2014-01-01

    LANDIS PRO predicts forest composition and structure changes incorporating species-, stand-, and landscape-scales processes at regional scales. Species-scale processes include tree growth, establishment, and mortality. Stand-scale processes contain density- and size-related resource competition that regulates self-thinning and seedling establishment. Landscapescale...

  18. Fat or lean: adjustment of endogenous energy stores to predictable and unpredictable changes in allostatic load

    Science.gov (United States)

    Schultner, Jannik; Kitaysky, Alexander S.; Welcker, Jorg; Hatch, Scott

    2013-01-01

    1. The ability to store energy endogenously is an important ecological mechanism that allows animals to buffer predictable and unpredictable variation in allostatic load. The secretion of glucocorticoids, which reflects changes in allostatic load, is suggested to play a major role in the adjustment of endogenous stores to these varying conditions.

  19. Prediction of the impacts of climate changes on the stream flow of ...

    African Journals Online (AJOL)

    Abstract. Soil and Water Assessment Tool, (SWAT) model was used to predict the impacts of Climate Change on Ajali River watershed, Aguobu-Umumba, Ezeagu, Enugu State, Nigeria. The model was first used to simulate stream flow using observed data. After model run, parameterization, sensitivity analysis, the monthly ...

  20. Burrowing Behavior of a Deposit Feeding Bivalve Predicts Change in Intertidal Ecosystem State

    NARCIS (Netherlands)

    Compton, T.J.; Bodnar, W.; Koolhaas, A.; Dekinga, A.; Holthuijsen, S.; Ten Horn, J.; McSweeney, N.; van Gils, J.A.; Piersma, T.

    2016-01-01

    Behavior has a predictive power that is often underutilized as a tool for signaling ecological change. The burrowing behavior of the deposit feeding bivalve Macoma balthica reflects a typical food-safety trade-off. The choice to live close to the sediment surface comes at a risk of predation and is

  1. Burrowing behavior of a deposit feeding bivalve predicts change in intertidal ecosystem state

    NARCIS (Netherlands)

    Compton, Tanya J.; Bodnar, Wanda; Koolhaas, Anita; Dekinga, Anne; Holthuijsen, Sander; ten Horn, Job; McSweeney, Niamh; van Gils, Jan; Piersma, Theunis

    2016-01-01

    Behavior has a predictive power that is often underutilized as a tool for signaling ecological change. The burrowing behavior of the deposit feeding bivalve Macoma balthica reflects a typical food-safety trade-off. The choice to live close to the sediment surface comes at a risk of predation and is

  2. Gianluigi Zenti, President, Academia Barilla SpA - The Changing Consumer: Demanding but Predictable

    OpenAIRE

    Hartl, Jochen

    2006-01-01

    It is crucial to understand and predict consumers' behaviour to meet future consumer demands. This report contributes to the discussion by giving an insight into consumers' behaviour from the perspective of Gianluigi Zenti, executive director of Academia Barilla. It is discussed how consumers' choice has changed in particular with regard to Italian food in the US and how Barilla has responded to that challenge.

  3. Caregiver Confidence: Does It Predict Changes in Disability among Elderly Home Care Recipients?

    Science.gov (United States)

    Li, Lydia W.; McLaughlin, Sara J.

    2012-01-01

    Purpose of the study: The primary aim of this investigation was to determine whether caregiver confidence in their care recipients' functional capabilities predicts changes in the performance of activities of daily living (ADL) among elderly home care recipients. A secondary aim was to explore how caregiver confidence and care recipient functional…

  4. The Predictive Utility of Hypnotizability: The Change in Suggestibility Produced by Hypnosis

    Science.gov (United States)

    Milling, Leonard S.; Coursen, Elizabeth L.; Shores, Jessica S.; Waszkiewicz, Jolanta A.

    2010-01-01

    Objective: The predictive utility of hypnotizability, conceptualized as the change in suggestibility produced by a hypnotic induction, was investigated in the suggested reduction of experimental pain. Method: One hundred and seventy-three participants were assessed for nonhypnotic imaginative suggestibility. Thereafter, participants experienced…

  5. Dynamic-landscape metapopulation models predict complex response of wildlife populations to climate and landscape change

    Science.gov (United States)

    Thomas W. Bonnot; Frank R. Thompson; Joshua J. Millspaugh

    2017-01-01

    The increasing need to predict how climate change will impact wildlife species has exposed limitations in how well current approaches model important biological processes at scales at which those processes interact with climate. We used a comprehensive approach that combined recent advances in landscape and population modeling into dynamic-landscape metapopulation...

  6. Nitridation of one-dimensional tungsten oxide nanostructures: Changes in structure and photoactivity

    KAUST Repository

    Varga, Tamá s; Haspel, Henrik; Kormá nyos, Attila; Janá ky, Csaba; Kukovecz, Á kos; Kó nya, Zoltá n

    2017-01-01

    nitrogen atmosphere. Morphological changes and structural transitions were followed by transmission and scanning electron microscopy and X-ray diffraction. Bandgap energies were determined from the UV–vis spectra of the materials, while photoelectrochemical

  7. Predictive modelling of the spatial pattern of past and future forest cover changes in India

    Science.gov (United States)

    Reddy, C. Sudhakar; Singh, Sonali; Dadhwal, V. K.; Jha, C. S.; Rao, N. Rama; Diwakar, P. G.

    2017-02-01

    This study was carried out to simulate the forest cover changes in India using Land Change Modeler. Classified multi-temporal long-term forest cover data was used to generate the forest covers of 1880 and 2025. The spatial data were overlaid with variables such as the proximity to roads, settlements, water bodies, elevation and slope to determine the relationship between forest cover change and explanatory variables. The predicted forest cover in 1880 indicates an area of 10,42,008 km2, which represents 31.7% of the geographical area of India. About 40% of the forest cover in India was lost during the time interval of 1880-2013. Ownership of majority of forest lands by non-governmental agencies and large scale shifting cultivation are responsible for higher deforestation rates in the Northeastern states. The six states of the Northeast (Assam, Manipur, Meghalaya, Mizoram, Nagaland, Tripura) and one union territory (Andaman & Nicobar Islands) had shown an annual gross rate of deforestation of >0.3 from 2005 to 2013 and has been considered in the present study for the prediction of future forest cover in 2025. The modelling results predicted widespread deforestation in Northeast India and in Andaman & Nicobar Islands and hence is likely to affect the remaining forests significantly before 2025. The multi-layer perceptron neural network has predicted the forest cover for the period of 1880 and 2025 with a Kappa statistic of >0.70. The model predicted a further decrease of 2305 km2 of forest area in the Northeast and Andaman & Nicobar Islands by 2025. The majority of the protected areas are successful in the protection of the forest cover in the Northeast due to management practices, with the exception of Manas, Sonai-Rupai, Nameri and Marat Longri. The predicted forest cover scenario for the year 2025 would provide useful inputs for effective resource management and help in biodiversity conservation and for mitigating climate change.

  8. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory.

    Directory of Open Access Journals (Sweden)

    Luis-Miguel Chevin

    2010-04-01

    Full Text Available Many species are experiencing sustained environmental change mainly due to human activities. The unusual rate and extent of anthropogenic alterations of the environment may exceed the capacity of developmental, genetic, and demographic mechanisms that populations have evolved to deal with environmental change. To begin to understand the limits to population persistence, we present a simple evolutionary model for the critical rate of environmental change beyond which a population must decline and go extinct. We use this model to highlight the major determinants of extinction risk in a changing environment, and identify research needs for improved predictions based on projected changes in environmental variables. Two key parameters relating the environment to population biology have not yet received sufficient attention. Phenotypic plasticity, the direct influence of environment on the development of individual phenotypes, is increasingly considered an important component of phenotypic change in the wild and should be incorporated in models of population persistence. Environmental sensitivity of selection, the change in the optimum phenotype with the environment, still crucially needs empirical assessment. We use environmental tolerance curves and other examples of ecological and evolutionary responses to climate change to illustrate how these mechanistic approaches can be developed for predictive purposes.

  9. Dimensional crossover in fragmentation

    Science.gov (United States)

    Sotolongo-Costa, Oscar; Rodriguez, Arezky H.; Rodgers, G. J.

    2000-11-01

    Experiments in which thick clay plates and glass rods are fractured have revealed different behavior of fragment mass distribution function in the small and large fragment regions. In this paper we explain this behavior using non-extensive Tsallis statistics and show how the crossover between the two regions is caused by the change in the fragments’ dimensionality during the fracture process. We obtain a physical criterion for the position of this crossover and an expression for the change in the power-law exponent between the small and large fragment regions. These predictions are in good agreement with the experiments on thick clay plates.

  10. Catchment coevolution: A useful framework for improving predictions of hydrological change?

    Science.gov (United States)

    Troch, Peter A.

    2017-04-01

    The notion that landscape features have co-evolved over time is well known in the Earth sciences. Hydrologists have recently called for a more rigorous connection between emerging spatial patterns of landscape features and the hydrological response of catchments, and have termed this concept catchment coevolution. In this presentation we present a general framework of catchment coevolution that could improve predictions of hydrologic change. We first present empirical evidence of the interaction and feedback of landscape evolution and changes in hydrological response. From this review it is clear that the independent drivers of catchment coevolution are climate, geology, and tectonics. We identify common currency that allows comparing the levels of activity of these independent drivers, such that, at least conceptually, we can quantify the rate of evolution or aging. Knowing the hydrologic age of a catchment by itself is not very meaningful without linking age to hydrologic response. Two avenues of investigation have been used to understand the relationship between (differences in) age and hydrological response: (i) one that is based on relating present landscape features to runoff processes that are hypothesized to be responsible for the current fingerprints in the landscape; and (ii) one that takes advantage of an experimental design known as space-for-time substitution. Both methods have yielded significant insights in the hydrologic response of landscapes with different histories. If we want to make accurate predictions of hydrologic change, we will also need to be able to predict how the catchment will further coevolve in association with changes in the activity levels of the drivers (e.g., climate). There is ample evidence in the literature that suggests that whole-system prediction of catchment coevolution is, at least in principle, plausible. With this imperative we outline a research agenda that implements the concepts of catchment coevolution for building

  11. The predicted influence of climate change on lesser prairie-chicken reproductive parameters

    Science.gov (United States)

    Grisham, Blake A.; Boal, Clint W.; Haukos, David A.; Davis, D.; Boydston, Kathy K.; Dixon, Charles; Heck, Willard R.

    2013-01-01

    The Southern High Plains is anticipated to experience significant changes in temperature and precipitation due to climate change. These changes may influence the lesser prairie-chicken (Tympanuchus pallidicinctus) in positive or negative ways. We assessed the potential changes in clutch size, incubation start date, and nest survival for lesser prairie-chickens for the years 2050 and 2080 based on modeled predictions of climate change and reproductive data for lesser prairie-chickens from 2001-2011 on the Southern High Plains of Texas and New Mexico. We developed 9 a priori models to assess the relationship between reproductive parameters and biologically relevant weather conditions. We selected weather variable(s) with the most model support and then obtained future predicted values from climatewizard.org. We conducted 1,000 simulations using each reproductive parameter's linear equation obtained from regression calculations, and the future predicted value for each weather variable to predict future reproductive parameter values for lesser prairie-chickens. There was a high degree of model uncertainty for each reproductive value. Winter temperature had the greatest effect size for all three parameters, suggesting a negative relationship between above-average winter temperature and reproductive output. The above-average winter temperatures are correlated to La Nina events, which negatively affect lesser prairie-chickens through resulting drought conditions. By 2050 and 2080, nest survival was predicted to be below levels considered viable for population persistence; however, our assessment did not consider annual survival of adults, chick survival, or the positive benefit of habitat management and conservation, which may ultimately offset the potentially negative effect of drought on nest survival.

  12. Metopic synostosis: Measuring intracranial volume change following fronto-orbital advancement using three-dimensional photogrammetry.

    Science.gov (United States)

    Freudlsperger, Christian; Steinmacher, Sahra; Bächli, Heidi; Somlo, Elek; Hoffmann, Jürgen; Engel, Michael

    2015-06-01

    There is still disagreement regarding the intracranial volumes of patients with metopic synostosis compared with healthy patients. This study aimed to compare the intracranial volume of children with metopic synostosis before and after surgery to an age- and sex-matched control cohort using three-dimensional (3D) photogrammetry. Eighteen boys with metopic synostosis were operated on using standardized fronto-orbital advancement. Frontal, posterior and total intracranial volumes were measured exactly 1 day pre-operatively and 10 days post-operatively, using 3D photogrammetry. To establish an age- and sex-matched control group, the 3D photogrammetric data of 634 healthy boys between the ages of 3 and 13 months were analyzed. Mean age at surgery was 9 months (SD 1.7). Prior to surgery, boys with metopic synostosis showed significantly reduced frontal and total intracranial volumes compared with the reference group, but similar posterior volumes. After surgery, frontal and total intracranial volumes did not differ statistically from the control group. As children with metopic synostosis showed significantly smaller frontal and total intracranial volumes compared with an age- and sex-matched control group, corrective surgery should aim to achieve volume expansion. Furthermore, 3D photogrammetry provides a valuable alternative to CT scans in the measurement of intracranial volume in children with metopic synostosis, which significantly reduces the amount of radiation exposure to the growing brain. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  13. Ultrastructural changes following electron irradiation in three-dimensional culture of normal human dermal fibroblasts

    International Nuclear Information System (INIS)

    Han, Chunmao; Ishikura, Naotaka; Tsukada, Sadao

    1994-01-01

    The present study was designed to examine the effect of electron irradiation on fibroblasts and extracellular matrices electron-microscopically. The three-dimensional dermal fibroblast culture was exposed to one, 4 or 10 Gy of electron beams. One day after irradiation, fibroblasts were vacuolated in all irradiated groups and intercellular spaces were increased in a dose-dependent manner. Seven days later, intercellular spaces became dense in both one and 4 Gy groups, although they were still extremely increased in the 10 Gy group. The remaining fibroblasts were still activated in all groups. Thirty days after irradiation, myofibroblastic cells were scarcely observed, but extracellular fine fibrils and collagen fibrils were observed in all irradiated groups. The other ultrastructural findings were similar to those in the control group. In conclusion, electron beams damaged not only cells but also extracellular matrix. The extracellular matrix may be repaired by activated residual fibroblasts, resulting in the mixture of new and old collagen fibrils having different diamters. (N.K.)

  14. Prediction of crack density and electrical resistance changes in indium tin oxide/polymer thin films under tensile loading

    KAUST Repository

    Mora Cordova, Angel; Khan, Kamran; El Sayed, Tamer

    2014-01-01

    We present unified predictions for the crack onset strain, evolution of crack density, and changes in electrical resistance in indium tin oxide/polymer thin films under tensile loading. We propose a damage mechanics model to quantify and predict

  15. A 2.5-dimensional method for the prediction of structure-borne low-frequency noise from concrete rail transit bridges.

    Science.gov (United States)

    Li, Qi; Song, Xiaodong; Wu, Dingjun

    2014-05-01

    Predicting structure-borne noise from bridges subjected to moving trains using the three-dimensional (3D) boundary element method (BEM) is a time consuming process. This paper presents a two-and-a-half dimensional (2.5D) BEM-based procedure for simulating bridge-borne low-frequency noise with higher efficiency, yet no loss of accuracy. The two-dimensional (2D) BEM of a bridge with a constant cross section along the track direction is adopted to calculate the spatial modal acoustic transfer vectors (MATVs) of the bridge using the space-wave number transforms of its 3D modal shapes. The MATVs calculated using the 2.5D method are then validated by those computed using the 3D BEM. The bridge-borne noise is finally obtained through the MATVs and modal coordinate responses of the bridge, considering time-varying vehicle-track-bridge dynamic interaction. The presented procedure is applied to predict the sound pressure radiating from a U-shaped concrete bridge, and the computed results are compared with those obtained from field tests on Shanghai rail transit line 8. The numerical results match well with the measured results in both time and frequency domains at near-field points. Nevertheless, the computed results are smaller than the measured ones for far-field points, mainly due to the sound radiation from adjacent spans neglected in the current model.

  16. THE DEVELOPMENT AND USE OF A MODEL TO PREDICT SUSTAINABILITY OF CHANGE IN HEALTH CARE SETTINGS.

    Science.gov (United States)

    Molfenter, Todd; Ford, James H; Bhattacharya, Abhik

    2011-01-01

    Innovations adopted through organizational change initiatives are often not sustained leading to diminished quality, productivity, and consumer satisfaction. Research explaining variance in the use of adopted innovations in health care settings is sparse, suggesting the need for a theoretical model to guide research and practice. In this article, we describe the development of a hybrid conjoint decision theoretic model designed to predict the sustainability of organizational change in health care settings. An initial test of the model's predictive validity using expert scored hypothetic profiles resulted in an r-squared value of .77. The test of this model offers a theoretical base for future research on the sustainability of change in health care settings.

  17. A New Model for Birth Weight Prediction Using 2- and 3-Dimensional Ultrasonography by Principal Component Analysis: A Chinese Population Study.

    Science.gov (United States)

    Liao, Shuxin; Wang, Yunfang; Xiao, Shufang; Deng, Xujie; Fang, Bimei; Yang, Fang

    2018-03-30

    To establish a new model for birth weight prediction using 2- and 3-dimensional ultrasonography (US) by principal component analysis (PCA). Two- and 3-dimensional US was prospectively performed in women with normal singleton pregnancies within 7 days before delivery (37-41 weeks' gestation). The participants were divided into a development group (n = 600) and a validation group (n = 597). Principal component analysis and stepwise linear regression analysis were used to develop a new prediction model. The new model's accuracy in predicting fetal birth weight was confirmed by the validation group through comparisons with previously published formulas. A total of 1197 cases were recruited in this study. All interclass and intraclass correlation coefficients of US measurements were greater than 0.75. Two principal components (PCs) were considered primary in determining estimated fetal birth weight, which were derived from 9 US measurements. Stepwise linear regression analysis showed a positive association between birth weight and PC1 and PC2. In the development group, our model had a small mean percentage error (mean ± SD, 3.661% ± 3.161%). At least a 47.558% decrease in the mean percentage error and a 57.421% decrease in the standard deviation of the new model compared with previously published formulas were noted. The results were similar to those in the validation group, and the new model covered 100% of birth weights within 10% of actual birth weights. The birth weight prediction model based on 2- and 3-dimensional US by PCA could help improve the precision of estimated fetal birth weight. © 2018 by the American Institute of Ultrasound in Medicine.

  18. Dimensional and ice content changes of hardened concrete at different freezing and thawing temperatures

    DEFF Research Database (Denmark)

    Johannesson, Björn

    2010-01-01

    Samples of concrete at different water-to-cement ratios and air contents subjected to freeze/thaw cycles with the lowest temperature at about -80 degrees C are investigated. By adopting a novel technique, a scanning calorimeter is used to obtain data from which the ice contents at different freeze...... temperatures can be calculated. The length change caused by temperature and ice content changes during test is measured by a separate experiment using the same types of freeze-thaw cycles as in the calorimetric tests. In this way it was possible to compare the amount of formed ice at different temperatures...... and the corresponding measured length changes. The development of cracks in the material structure was indicated by an ultra-sonic technique by measuring on the samples before and after the freeze-thaw tests. Further the air void structure was investigated using a microscopic technique in which air'bubble' size...

  19. Life history and spatial traits predict extinction risk due to climate change

    Science.gov (United States)

    Pearson, Richard G.; Stanton, Jessica C.; Shoemaker, Kevin T.; Aiello-Lammens, Matthew E.; Ersts, Peter J.; Horning, Ned; Fordham, Damien A.; Raxworthy, Christopher J.; Ryu, Hae Yeong; McNees, Jason; Akçakaya, H. Reşit

    2014-03-01

    There is an urgent need to develop effective vulnerability assessments for evaluating the conservation status of species in a changing climate. Several new assessment approaches have been proposed for evaluating the vulnerability of species to climate change based on the expectation that established assessments such as the IUCN Red List need revising or superseding in light of the threat that climate change brings. However, although previous studies have identified ecological and life history attributes that characterize declining species or those listed as threatened, no study so far has undertaken a quantitative analysis of the attributes that cause species to be at high risk of extinction specifically due to climate change. We developed a simulation approach based on generic life history types to show here that extinction risk due to climate change can be predicted using a mixture of spatial and demographic variables that can be measured in the present day without the need for complex forecasting models. Most of the variables we found to be important for predicting extinction risk, including occupied area and population size, are already used in species conservation assessments, indicating that present systems may be better able to identify species vulnerable to climate change than previously thought. Therefore, although climate change brings many new conservation challenges, we find that it may not be fundamentally different from other threats in terms of assessing extinction risks.

  20. Modeling of dimensional changes of spent WWER fuel rods during dry storage

    International Nuclear Information System (INIS)

    Aliev, T.; Evdokimov, I.; Likhanskii, V.; Sorokin, A.; Kolesnik, M.; Kozhakin, A.; Zborovskii, V.; Zvir, E.; Ilyin, P.

    2015-01-01

    The engineering model of anisotropic creep is developed to predict the behavior of WWER fuel rods in dry storage of spent fuel. The model considers several deformation mechanisms, the main one being the dislocation creep. The effects of radiation defects accumulation and its partial annealing during storage, as well as work hardening are taken into account. Based on the available experimental data preliminary verification of the developed model is performed. The model adequately describes the data set used. Conditions of experiments conducted up to date are more severe in temperature and stresses than ones in dry storage. It is shown that in dry storage additional deformation mechanisms play an important role. One such mechanism is the creep induced by temperature cycling that occurs during the experiments. Thermal cycles produce internal stresses caused by thermal expansion anisotropy in α-Zr crystallites. This mechanism makes a significant contribution to the experimentally measured strain at stresses characteristic for spent fuel claddings. Additional experimental research is planned to expand the range of Verification Matrix to the prototype conditions for dry storage and to improve prediction accuracy of the model. (author)

  1. Cross-modal prediction changes the timing of conscious access during the motion-induced blindness.

    Science.gov (United States)

    Chang, Acer Y C; Kanai, Ryota; Seth, Anil K

    2015-01-01

    Despite accumulating evidence that perceptual predictions influence perceptual content, the relations between these predictions and conscious contents remain unclear, especially for cross-modal predictions. We examined whether predictions of visual events by auditory cues can facilitate conscious access to the visual stimuli. We trained participants to learn associations between auditory cues and colour changes. We then asked whether congruency between auditory cues and target colours would speed access to consciousness. We did this by rendering a visual target subjectively invisible using motion-induced blindness and then gradually changing its colour while presenting congruent or incongruent auditory cues. Results showed that the visual target gained access to consciousness faster in congruent than in incongruent trials; control experiments excluded potentially confounding effects of attention and motor response. The expectation effect was gradually established over blocks suggesting a role for extensive training. Overall, our findings show that predictions learned through cross-modal training can facilitate conscious access to visual stimuli. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. An Improved Optimal Slip Ratio Prediction considering Tyre Inflation Pressure Changes

    Directory of Open Access Journals (Sweden)

    Guoxing Li

    2015-01-01

    Full Text Available The prediction of optimal slip ratio is crucial to vehicle control systems. Many studies have verified there is a definitive impact of tyre pressure change on the optimal slip ratio. However, the existing method of optimal slip ratio prediction has not taken into account the influence of tyre pressure changes. By introducing a second-order factor, an improved optimal slip ratio prediction considering tyre inflation pressure is proposed in this paper. In order to verify and evaluate the performance of the improved prediction, a cosimulation platform is developed by using MATLAB/Simulink and CarSim software packages, achieving a comprehensive simulation study of vehicle braking performance cooperated with an ABS controller. The simulation results show that the braking distances and braking time under different tyre pressures and initial braking speeds are effectively shortened with the improved prediction of optimal slip ratio. When the tyre pressure is slightly lower than the nominal pressure, the difference of braking performances between original optimal slip ratio and improved optimal slip ratio is the most obvious.

  3. Prediction of plasma-induced damage distribution during silicon nitride etching using advanced three-dimensional voxel model

    Energy Technology Data Exchange (ETDEWEB)

    Kuboi, Nobuyuki, E-mail: Nobuyuki.Kuboi@jp.sony.com; Tatsumi, Tetsuya; Kinoshita, Takashi; Shigetoshi, Takushi; Fukasawa, Masanaga; Komachi, Jun; Ansai, Hisahiro [Device and Material Research Group, RDS Platform, Sony Corporation, 4-14-1 Asahi-cho, Atsugi, Kanagawa 243-0014 (Japan)

    2015-11-15

    The authors modeled SiN film etching with hydrofluorocarbon (CH{sub x}F{sub y}/Ar/O{sub 2}) plasma considering physical (ion bombardment) and chemical reactions in detail, including the reactivity of radicals (C, F, O, N, and H), the area ratio of Si dangling bonds, the outflux of N and H, the dependence of the H/N ratio on the polymer layer, and generation of by-products (HCN, C{sub 2}N{sub 2}, NH, HF, OH, and CH, in addition to CO, CF{sub 2}, SiF{sub 2}, and SiF{sub 4}) as ion assistance process parameters for the first time. The model was consistent with the measured C-F polymer layer thickness, etch rate, and selectivity dependence on process variation for SiN, SiO{sub 2}, and Si film etching. To analyze the three-dimensional (3D) damage distribution affected by the etched profile, the authors developed an advanced 3D voxel model that can predict the time-evolution of the etched profile and damage distribution. The model includes some new concepts for gas transportation in the pattern using a fluid model and the property of voxels called “smart voxels,” which contain details of the history of the etching situation. Using this 3D model, the authors demonstrated metal–oxide–semiconductor field-effect transistor SiN side-wall etching that consisted of the main-etch step with CF{sub 4}/Ar/O{sub 2} plasma and an over-etch step with CH{sub 3}F/Ar/O{sub 2} plasma under the assumption of a realistic process and pattern size. A large amount of Si damage induced by irradiated hydrogen occurred in the source/drain region, a Si recess depth of 5 nm was generated, and the dislocated Si was distributed in a 10 nm deeper region than the Si recess, which was consistent with experimental data for a capacitively coupled plasma. An especially large amount of Si damage was also found at the bottom edge region of the metal–oxide–semiconductor field-effect transistors. Furthermore, our simulation results for bulk fin-type field-effect transistor side-wall etching

  4. Linear dimensional changes in plaster die models using different elastomeric materials

    Directory of Open Access Journals (Sweden)

    Jefferson Ricardo Pereira

    2010-09-01

    Full Text Available Dental impression is an important step in the preparation of prostheses since it provides the reproduction of anatomic and surface details of teeth and adjacent structures. The objective of this study was to evaluate the linear dimensional alterations in gypsum dies obtained with different elastomeric materials, using a resin coping impression technique with individual shells. A master cast made of stainless steel with fixed prosthesis characteristics with two prepared abutment teeth was used to obtain the impressions. References points (A, B, C, D, E and F were recorded on the occlusal and buccal surfaces of abutments to register the distances. The impressions were obtained using the following materials: polyether, mercaptan-polysulfide, addition silicone, and condensation silicone. The transfer impressions were made with custom trays and an irreversible hydrocolloid material and were poured with type IV gypsum. The distances between identified points in gypsum dies were measured using an optical microscope and the results were statistically analyzed by ANOVA (p < 0.05 and Tukey's test. The mean of the distances were registered as follows: addition silicone (AB = 13.6 µm, CD=15.0 µm, EF = 14.6 µm, GH=15.2 µm, mercaptan-polysulfide (AB = 36.0 µm, CD = 36.0 µm, EF = 39.6 µm, GH = 40.6 µm, polyether (AB = 35.2 µm, CD = 35.6 µm, EF = 39.4 µm, GH = 41.4 µm and condensation silicone (AB = 69.2 µm, CD = 71.0 µm, EF = 80.6 µm, GH = 81.2 µm. All of the measurements found in gypsum dies were compared to those of a master cast. The results demonstrated that the addition silicone provides the best stability of the compounds tested, followed by polyether, polysulfide and condensation silicone. No statistical differences were obtained between polyether and mercaptan-polysulfide materials.

  5. Predictive rhythmic tapping to isochronous and tempo changing metronomes in the nonhuman primate.

    Science.gov (United States)

    Gámez, Jorge; Yc, Karyna; Ayala, Yaneri A; Dotov, Dobromir; Prado, Luis; Merchant, Hugo

    2018-04-30

    Beat entrainment is the ability to entrain one's movements to a perceived periodic stimulus, such as a metronome or a pulse in music. Humans have a capacity to predictively respond to a periodic pulse and to dynamically adjust their movement timing to match the varying music tempos. Previous studies have shown that monkeys share some of the human capabilities for rhythmic entrainment, such as tapping regularly at the period of isochronous stimuli. However, it is still unknown whether monkeys can predictively entrain to dynamic tempo changes like humans. To address this question, we trained monkeys in three tapping tasks and compared their rhythmic entrainment abilities with those of humans. We found that, when immediate feedback about the timing of each movement is provided, monkeys can predictively entrain to an isochronous beat, generating tapping movements in anticipation of the metronome pulse. This ability also generalized to a novel untrained tempo. Notably, macaques can modify their tapping tempo by predicting the beat changes of accelerating and decelerating visual metronomes in a manner similar to humans. Our findings support the notion that nonhuman primates share with humans the ability of temporal anticipation during tapping to isochronous and smoothly changing sequences of stimuli. © 2018 New York Academy of Sciences.

  6. Alveolar bone dimensional changes of post-extraction sockets in humans: a systematic review

    NARCIS (Netherlands)

    van der Weijden, F.; Dell'Acqua, F.; Slot, D.E.

    2009-01-01

    Objective: To review the literature to assess the amount of change in height and width of the residual ridge after tooth extraction. Material and Methods: MEDLINE-PubMed and the Cochrane Central register of controlled trials (CENTRAL) were searched through up to March 2009. Appropriate studies which

  7. Predicting protein folding rate change upon point mutation using residue-level coevolutionary information.

    Science.gov (United States)

    Mallik, Saurav; Das, Smita; Kundu, Sudip

    2016-01-01

    Change in folding kinetics of globular proteins upon point mutation is crucial to a wide spectrum of biological research, such as protein misfolding, toxicity, and aggregations. Here we seek to address whether residue-level coevolutionary information of globular proteins can be informative to folding rate changes upon point mutations. Generating residue-level coevolutionary networks of globular proteins, we analyze three parameters: relative coevolution order (rCEO), network density (ND), and characteristic path length (CPL). A point mutation is considered to be equivalent to a node deletion of this network and respective percentage changes in rCEO, ND, CPL are found linearly correlated (0.84, 0.73, and -0.61, respectively) with experimental folding rate changes. The three parameters predict the folding rate change upon a point mutation with 0.031, 0.045, and 0.059 standard errors, respectively. © 2015 Wiley Periodicals, Inc.

  8. Physics-Based Predictions for Coherent Change Detection Using X-Band Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Mark Preiss

    2005-12-01

    Full Text Available A theoretical model is developed to describe the interferometric coherency between pairs of SAR images of rough soil surfaces. The model is derived using a dyadic form for surface reflectivity in the Kirchhoff approximation. This permits the combination of Kirchhoff theory and spotlight synthetic aperture radar (SAR image formation theory. The resulting model is used to describe the interferometric coherency between pairs of SAR images of rough soil surfaces. The theoretical model is applied to SAR images formed before and after surface changes observed by a repeat-pass SAR system. The change in surface associated with a tyre track following vehicle passage is modelled and SAR coherency estimates are obtained. Predicted coherency distributions for both the change and no-change scenarios are used to estimate receiver operator curves for the detection of the changes using a high-resolution, X-band SAR system.

  9. Comparison of an Imaging Software and Manual Prediction of Soft Tissue Changes after Orthognathic Surgery

    Directory of Open Access Journals (Sweden)

    M. S. Ahmad Akhoundi

    2012-01-01

    Full Text Available Objective: Accurate prediction of the surgical outcome is important in treating dentofacial deformities. Visualized treatment objectives usually involve manual surgical simulation based on tracing of cephalometric radiographs. Recent technical advancements have led to the use of computer assisted imaging systems in treatment planning for orthognathic surgical cases. The purpose of this study was to examine and compare the ability and reliability of digitization using Dolphin Imaging Software with traditional manual techniques and to compare orthognathic prediction with actual outcomes.Materials and Methods: Forty patients consisting of 35 women and 5 men (32 class III and 8 class II with no previous surgery were evaluated by manual tracing and indirect digitization using Dolphin Imaging Software. Reliability of each method was assessed then the two techniques were compared using paired t test.Result: The nasal tip presented the least predicted error and higher reliability. The least accurate regions in vertical plane were subnasal and upper lip, and subnasal and pogonion in horizontal plane. There were no statistically significant differences between the predictions of groups with and without genioplasty.Conclusion: Computer-generated image prediction was suitable for patient education and communication. However, efforts are still needed to improve accuracy and reliability of the prediction program and to include changes in soft tissue tension and muscle strain.

  10. Using decadal climate prediction to characterize and manage changing drought and flood risks in Colorado

    Science.gov (United States)

    Lazrus, H.; Done, J.; Morss, R. E.

    2017-12-01

    A new branch of climate science, known as decadal prediction, seeks to predict the time-varying trajectory of climate over the next 3-30 years and not just the longer-term trends. Decadal predictions bring climate information into the time horizon of decision makers, particularly those tasked with managing water resources and floods whose master planning is often on the timescale of decades. Information from decadal predictions may help alleviate some aspects of vulnerability by helping to inform decisions that reduce drought and flood exposure and increase adaptive capacities including preparedness, response, and recovery. This presentation will highlight an interdisciplinary project - involving atmospheric and social scientists - on the development of decadal climate information and its use in decision making. The presentation will explore the skill and utility of decadal drought and flood prediction along Colorado's Front Range, an area experiencing rapid population growth and uncertain climate variability and climate change impacts. Innovative statistical and dynamical atmospheric modeling techniques explore the extent to which Colorado precipitation can be predicted on decadal scales using remote Pacific Ocean surface temperature patterns. Concurrently, stakeholder interviews with flood managers in Colorado are being used to explore the potential utility of decadal climate information. Combining the modeling results with results from the stakeholder interviews shows that while there is still significant uncertainty surrounding precipitation on decadal time scales, relevant and well communicated decadal information has potential to be useful for drought and flood management.

  11. Predicting CD4 count changes among patients on antiretroviral treatment: Application of data mining techniques.

    Science.gov (United States)

    Kebede, Mihiretu; Zegeye, Desalegn Tigabu; Zeleke, Berihun Megabiaw

    2017-12-01

    To monitor the progress of therapy and disease progression, periodic CD4 counts are required throughout the course of HIV/AIDS care and support. The demand for CD4 count measurement is increasing as ART programs expand over the last decade. This study aimed to predict CD4 count changes and to identify the predictors of CD4 count changes among patients on ART. A cross-sectional study was conducted at the University of Gondar Hospital from 3,104 adult patients on ART with CD4 counts measured at least twice (baseline and most recent). Data were retrieved from the HIV care clinic electronic database and patients` charts. Descriptive data were analyzed by SPSS version 20. Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology was followed to undertake the study. WEKA version 3.8 was used to conduct a predictive data mining. Before building the predictive data mining models, information gain values and correlation-based Feature Selection methods were used for attribute selection. Variables were ranked according to their relevance based on their information gain values. J48, Neural Network, and Random Forest algorithms were experimented to assess model accuracies. The median duration of ART was 191.5 weeks. The mean CD4 count change was 243 (SD 191.14) cells per microliter. Overall, 2427 (78.2%) patients had their CD4 counts increased by at least 100 cells per microliter, while 4% had a decline from the baseline CD4 value. Baseline variables including age, educational status, CD8 count, ART regimen, and hemoglobin levels predicted CD4 count changes with predictive accuracies of J48, Neural Network, and Random Forest being 87.1%, 83.5%, and 99.8%, respectively. Random Forest algorithm had a superior performance accuracy level than both J48 and Artificial Neural Network. The precision, sensitivity and recall values of Random Forest were also more than 99%. Nearly accurate prediction results were obtained using Random Forest algorithm. This algorithm could be

  12. "Engage" therapy: Prediction of change of late-life major depression.

    Science.gov (United States)

    Alexopoulos, George S; O'Neil, Robert; Banerjee, Samprit; Raue, Patrick J; Victoria, Lindsay W; Bress, Jennifer N; Pollari, Cristina; Arean, Patricia A

    2017-10-15

    Engage grew out of the need for streamlined psychotherapies that can be accurately used by community therapists in late-life depression. Engage was based on the view that dysfunction of reward networks is the principal mechanism mediating depressive symptoms. Accordingly, Engage uses "reward exposure" (exposure to meaningful activities) and assumes that repeated activation of reward networks will normalize these systems. This study examined whether change in a behavioral activation scale, an index of reward system function, predicts change in depressive symptomatology. The participants (N = 48) were older adults with major depression treated with 9 weekly sessions of Engage and assessed 27 weeks after treatment. Depression was assessed with the 24-item Hamilton Depression Rating Scale (HAM-D) and behavioral activation with the four subscales of Behavioral Activation for Depression Scale (activation, avoidance/rumination, work impairment, social impairment) at baseline, 6 weeks (mid-treatment), 9 weeks (end of treatment), and 36 weeks. Change only in the Activation subscale during successive periods of assessment predicted depression severity (HAM-D) at the end of each period (F 1, 47 = 21.05, psocial support. Change in behavioral activation predicts improvement of depressive symptoms and signs in depressed older adults treated with Engage. Copyright © 2017. Published by Elsevier B.V.

  13. Computed tomographic analysis of deformity and dimensional changes in the eyeball

    International Nuclear Information System (INIS)

    Osborne, D.R.; Foulks, G.N.

    1984-01-01

    Computed tomography (CT) was performed in 40 patients with a confirmed ophthalmic diagnosis and a change in the dimensions or configuration of the eyeball. Abnormalities studied included coloboma, microphthalmus, buphthalmos, axial myopia, macrophthalmus, phthisis bulbi, trauma, neoplasm, posterior staphyloma, granuloma, pseudotumor, and surgicalscleral banding for retinal detachment. CT findings could be grouped into three categories depending upon whether the eye was small, large, or normal in size, with the findings in each group allowing distinction of most disease processes

  14. On the importance of paleoclimate modelling for improving predictions of future climate change

    Directory of Open Access Journals (Sweden)

    J. C. Hargreaves

    2009-12-01

    Full Text Available We use an ensemble of runs from the MIROC3.2 AGCM with slab-ocean to explore the extent to which mid-Holocene simulations are relevant to predictions of future climate change. The results are compared with similar analyses for the Last Glacial Maximum (LGM and pre-industrial control climate. We suggest that the paleoclimate epochs can provide some independent validation of the models that is also relevant for future predictions. Considering the paleoclimate epochs, we find that the stronger global forcing and hence larger climate change at the LGM makes this likely to be the more powerful one for estimating the large-scale changes that are anticipated due to anthropogenic forcing. The phenomena in the mid-Holocene simulations which are most strongly correlated with future changes (i.e., the mid to high northern latitude land temperature and monsoon precipitation do, however, coincide with areas where the LGM results are not correlated with future changes, and these are also areas where the paleodata indicate significant climate changes have occurred. Thus, these regions and phenomena for the mid-Holocene may be useful for model improvement and validation.

  15. Are climate-related changes to the character of global-mean precipitation predictable?

    International Nuclear Information System (INIS)

    Stephens, Graeme L; Hu, Yongxiang

    2010-01-01

    The physical basis for the change in global-mean precipitation projected to occur with the warming associated with increased greenhouse gases is discussed. The expected increases to column water vapor W control the rate of increase of global precipitation accumulation through its affect on the planet's energy balance. The key role played by changes to downward longwave radiation controlled by this changing water vapor is emphasized. The basic properties of molecular absorption by water vapor dictate that the fractional rate of increase of global-mean precipitation must be significantly less that the fractional rate of increase in water vapor and it is further argued that this reduced rate of precipitation increase implies that the timescale for water re-cycling is increased in the global mean. This further implies less frequent precipitation over a fixed period of time, and the intensity of these less frequent precipitating events must subsequently increase in the mean to realize the increased global accumulation. These changes to the character of global-mean precipitation, predictable consequences of equally predictable changes to W, apply only to the global-mean state and not to the regional or local scale changes in precipitation.

  16. Ensembles-based predictions of climate change impacts on bioclimatic zones in Northeast Asia

    Science.gov (United States)

    Choi, Y.; Jeon, S. W.; Lim, C. H.; Ryu, J.

    2017-12-01

    Biodiversity is rapidly declining globally and efforts are needed to mitigate this continually increasing loss of species. Clustering of areas with similar habitats can be used to prioritize protected areas and distribute resources for the conservation of species, selection of representative sample areas for research, and evaluation of impacts due to environmental changes. In this study, Northeast Asia (NEA) was classified into 14 bioclimatic zones using statistical techniques, which are correlation analysis and principal component analysis (PCA), and the iterative self-organizing data analysis technique algorithm (ISODATA). Based on these bioclimatic classification, we predicted shift of bioclimatic zones due to climate change. The input variables include the current climatic data (1960-1990) and the future climatic data of the HadGEM2-AO model (RCP 4.5(2050, 2070) and 8.5(2050, 2070)) provided by WorldClim. Using these data, multi-modeling methods including maximum likelihood classification, random forest, and species distribution modelling have been used to project the impact of climate change on the spatial distribution of bioclimatic zones within NEA. The results of various models were compared and analyzed by overlapping each result. As the result, significant changes in bioclimatic conditions can be expected throughout the NEA by 2050s and 2070s. The overall zones moved upward and some zones were predicted to disappear. This analysis provides the basis for understanding potential impacts of climate change on biodiversity and ecosystem. Also, this could be used more effectively to support decision making on climate change adaptation.

  17. Modelling changes to electricity demand load duration curves as a consequence of predicted climate change for Australia

    International Nuclear Information System (INIS)

    Thatcher, Marcus J.

    2007-01-01

    In this paper, we describe a method for constructing regional electricity demand data sets at 30 min intervals, which are consistent with climate change scenarios. Specifically, we modify a commonly used linear regression model between regional electricity demand and climate to also describe intraday variability in demand so that regional load duration curves (LDCs) can be predicted. The model is evaluated for four different Australian states that are participants in the Australian National Electricity Market (NEM) and the resultant data sets are found to reproduce each state's LDCs with reasonable accuracy. We also apply the demand model to CSIRO's Mk 3 global climate model data sets that have been downscaled to 60 km resolution using CSIRO's conformal-cubic atmospheric model to estimate how LDCs change as a consequence of a 1 C increase in the average temperature of Australian state capital cities. These regional electricity demand data sets are then useful for economic modelling of electricity markets such as the NEM. (author)

  18. A comparison of three dimensional change in maxillary complete dentures between conventional heat polymerizing and microwave polymerizing techniques

    Directory of Open Access Journals (Sweden)

    Shinsuke Sadamori

    2007-03-01

    Full Text Available The purpose of this study was to measure and compare two different polymerizing processes, heat polymerizing (HP and microwave polymerizing (MP, on the three dimensional changes in the fitting surface and artificial teeth of maxillary complete dentures. A threedimensional coordinate measurement system was used to record distortion of the specimens. The distortion of the fitting surface was measured from the reference plane on the fitting side from which a coordinate system was set, and the movement of the artificial teeth and the distortion of the polished surface was measured from the reference plane of the artificial tooth side, from which a coordinate system was set. It was clearly showed that various distortions of denture specimens after polymerization process can be measured with this three-coordinate measuring machine. The study showed that the overall distortion of the fitting surface in HP specimens was shown to be larger than in MP ones.

  19. Insights into the Structural Changes Occurring upon Photoconversion in the Orange Carotenoid Protein from Broadband Two-Dimensional Electronic Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    De Re, Eleonora; Schlau-Cohen, Gabriela S.; Leverenz, Ryan L.; Huxter, Vanessa M.; Oliver, Thomas A. A.; Mathies, Richard A.; Fleming, Graham R.

    2014-05-22

    Carotenoids play an essential role in photoprotection, interacting with other pigments to safely dissipate excess absorbed energy as heat. In cyanobacteria, the short time scale photoprotective mechanisms involve the photoactive orange carotenoid protein (OCP), which binds a single carbonyl carotenoid. Blue-green light induces the photoswitching of OCP from its ground state form (OCPO) to a metastable photoproduct (OCPR). OCPR can bind to the phycobilisome antenna and induce fluorescence quenching. The photoswitching is accompanied by structural and functional changes at the level of the protein and of the bound carotenoid. In this study, we use broadband two-dimensional electronic spectroscopy to look at the differences in excited state dynamics of the carotenoid in the two forms of OCP. Our results provide insight into the origin of the pronounced vibrational lineshape and oscillatory dynamics observed in linear absorption and 2D electronic spectroscopy of OCPO and the large inhomogeneous broadening in OCPR, with consequences for the chemical function of the two forms.

  20. Social Networking Site Use Predicts Changes in Young Adults’ Psychological Adjustment

    Science.gov (United States)

    Szwedo, David E.; Mikami, Amori Yee; Allen, Joseph P.

    2012-01-01

    This study examined youths’ friendships and posted pictures on social networking sites as predictors of changes in their adjustment over time. Observational, self-report, and peer report data were obtained from a community sample of 89 young adults interviewed at age 21 and again at age 22. Findings were consistent with a leveling effect for online friendships, predicting decreases in internalizing symptoms for youth with lower initial levels of social acceptance, but increases in symptoms for youth with higher initial levels over the following year. Across the entire sample, deviant behavior in posted photos predicted increases in young adults’ problematic alcohol use over time. The importance of considering the interplay between online and offline social factors for predicting adjustment is discussed. PMID:23109797

  1. Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays

    Energy Technology Data Exchange (ETDEWEB)

    Morton, M.J., E-mail: michael.morton@astrazeneca.com [Discovery Sciences, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Armstrong, D.; Abi Gerges, N. [Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Bridgland-Taylor, M. [Discovery Sciences, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Pollard, C.E.; Bowes, J.; Valentin, J.-P. [Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom)

    2014-09-01

    Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity in the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility.

  2. Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays

    International Nuclear Information System (INIS)

    Morton, M.J.; Armstrong, D.; Abi Gerges, N.; Bridgland-Taylor, M.; Pollard, C.E.; Bowes, J.; Valentin, J.-P.

    2014-01-01

    Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity in the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility

  3. Three-dimensional nanomechanical mapping of amorphous and crystalline phase transitions in phase-change materials.

    Science.gov (United States)

    Grishin, Ilja; Huey, Bryan D; Kolosov, Oleg V

    2013-11-13

    The nanostructure of micrometer-sized domains (bits) in phase-change materials (PCM) that undergo switching between amorphous and crystalline phases plays a key role in the performance of optical PCM-based memories. Here, we explore the dynamics of such phase transitions by mapping PCM nanostructures in three dimensions with nanoscale resolution by combining precision Ar ion beam cross-sectional polishing and nanomechanical ultrasonic force microscopy (UFM) mapping. Surface and bulk phase changes of laser written submicrometer to micrometer sized amorphous-to-crystalline (SET) and crystalline-to-amorphous (RESET) bits in chalcogenide Ge2Sb2Te5 PCM are observed with 10-20 nm lateral and 4 nm depth resolution. UFM mapping shows that the Young's moduli of crystalline SET bits exceed the moduli of amorphous areas by 11 ± 2%, with crystalline content extending from a few nanometers to 50 nm in depth depending on the energy of the switching pulses. The RESET bits written with 50 ps pulses reveal shallower depth penetration and show 30-50 nm lateral and few nanometer vertical wavelike topography that is anticorrelated with the elastic modulus distribution. Reverse switching of amorphous RESET bits results in the full recovery of subsurface nanomechanical properties accompanied with only partial topography recovery, resulting in surface corrugations attributed to quenching. This precision sectioning and nanomechanical mapping approach could be applicable to a wide range of amorphous, nanocrystalline, and glass-forming materials for 3D nanomechanical mapping of amorphous-crystalline transitions.

  4. a Novel Methodology for Developing Inundation Maps Under Climate Change Scenarios Using One-Dimensional Model

    Science.gov (United States)

    Vu, M. T.; Liong, S. Y.; Raghavan, V. S.; Liew, S. C.

    2011-07-01

    Climate change is expected to cause increases in extreme climatic events such as heavy rainstorms and rising tidal level. Heavy rainstorms are known to be serious causes of flooding problems in big cities. Thus, high density residential and commercial areas along the rivers are facing risks of being flooded. For that reason, inundated area determination is now being considered as one of the most important areas of research focus in flood forecasting. In such a context, this paper presents the development of a floodmap in determining flood-prone areas and its volumes. The areas and volumes of flood are computed by the inundated level using the existing digital elevation model (DEM) of a hypothetical catchment chosen for study. The study focuses on the application of Flood Early Warning System (Delft — FEWS, Deltares), which is designated to work with the SOBEK (Delft) to simulate the extent of stormwater on the ground surface. The results from FEWS consist of time-series of inundation maps in Image file format (PNG) and ASCII format, which are subsequently imported to ArcGIS for further calculations. In addition, FEWS results provide options to export the video clip of water spreading out over the catchment. Consequently, inundated area and volume will be determined by the water level on the ground. Final floodmap is displayed in colors created by ArcGIS. Various flood map results corresponding to climate change scenarios will be displayed in the main part of the paper.

  5. Tire Changes, Fresh Air, and Yellow Flags: Challenges in Predictive Analytics for Professional Racing.

    Science.gov (United States)

    Tulabandhula, Theja; Rudin, Cynthia

    2014-06-01

    Our goal is to design a prediction and decision system for real-time use during a professional car race. In designing a knowledge discovery process for racing, we faced several challenges that were overcome only when domain knowledge of racing was carefully infused within statistical modeling techniques. In this article, we describe how we leveraged expert knowledge of the domain to produce a real-time decision system for tire changes within a race. Our forecasts have the potential to impact how racing teams can optimize strategy by making tire-change decisions to benefit their rank position. Our work significantly expands previous research on sports analytics, as it is the only work on analytical methods for within-race prediction and decision making for professional car racing.

  6. Validity of predicting left ventricular end systolic pressure changes following an acute bout of exercise.

    Science.gov (United States)

    Kappus, Rebecca M; Ranadive, Sushant M; Yan, Huimin; Lane, Abbi D; Cook, Marc D; Hall, Grenita; Harvey, I Shevon; Wilund, Kenneth R; Woods, Jeffrey A; Fernhall, Bo

    2013-01-01

    Left ventricular end systolic pressure (LV ESP) is important in assessing left ventricular performance and is usually derived from prediction equations. It is unknown whether these equations are accurate at rest or following exercise in a young, healthy population. Measured LV ESP vs. LV ESP values from the prediction equations were compared at rest, 15 min and 30 min following peak aerobic exercise in 60 participants. LV ESP was obtained by applanation tonometry at rest, 15 min post and 30 min post peak cycle exercise. Measured LV ESP was significantly lower (p<0.05) at all time points in comparison to the two calculated values. Measured LV ESP decreased significantly from rest at both the post15 and post30 time points (p<0.05) and changed differently in comparison to the calculated values (significant interaction; p<0.05). The two LV ESP equations were also significantly different from each other (p<0.05) and changed differently over time (significant interaction; p<0.05). The two commonly used prediction equations did not accurately predict either resting or post exercise LV ESP in a young, healthy population. Thus, LV ESP needs to be individually determined in young, healthy participants. Non-invasive measurement through applanation tonometry appears to allow for a more accurate determination of LV ESP. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  7. Transitioning to adolescence: how changes in child personality and overreactive parenting predict adolescent adjustment problems.

    Science.gov (United States)

    van den Akker, Alithe L; Deković, Maja; Prinzie, Peter

    2010-01-01

    The present study examined how changes in child Big Five personality characteristics and overreactive parenting during the transition from childhood to adolescence predict adolescent adjustment problems. The sample included 290 children, aged 8-9 years. At three moments, with 2-year intervals, mothers, fathers, and a teacher reported on the child's personality, and mothers and fathers reported on their parenting behavior. At the third measurement moment, mothers, fathers, and children reported on the child's adjustment problems. Rank-order stability of the personality dimensions and overreactive parenting were high. Univariate latent growth models revealed mean-level decreases for extraversion, conscientiousness, and imagination. Mean levels of benevolence, emotional stability, and overreactive parenting were stable. Multivariate latent growth models revealed that decreases in extraversion and emotional stability predicted internalizing problems, whereas decreases in benevolence, conscientiousness, and emotional stability predicted externalizing problems. Increases in overreactive parenting predicted externalizing, but not internalizing problems. The associations were similar for boys and girls. The results indicate that changes in child personality and overreactive parenting during the transition to adolescence are associated with adolescent adjustment problems. Overall, child personality was more important than overreactive parenting, and children were more likely to "act out" than to "withdraw" in reaction to overreactive parenting.

  8. Postnatal width changes in the internal structures of the human mandible: a longitudinal three-dimensional cephalometric study using implants.

    Science.gov (United States)

    Baumrind, S; Korn, E L

    1992-12-01

    This paper presents case-specific quantitative evidence of the systematic lateral displacement of metallic implants in the mandibles of treated and untreated human subjects between the ages of 8.5 and 15.5 years. This evidence appears to be consistent with the inference of small, but systematic increases in distance between the internal structures of the two sides of the osseous mandible during growth. Such a conclusion, however, is inconsistent with traditional beliefs that the internal structures of the mandibular symphysis fuse at the midline during the first post-natal year and remain dimensionally constant thereafter. We recently published evidence of statistically significant transverse displacement of metallic implants in the mandibular body region for 12 of 28 subjects for whom longitudinal data were available. Of the twelve subjects for whom statistically significant changes were observed, widening occurred in eleven cases and narrowing in one. Matching data are now available on concurrent ramus changes for 22 of the same 28 subjects, including 11 of the 12 for whom statistically significant width changes had previously been noted in the body region. In eight of these 11 subjects, statistically significant widening in the ramus region was also observed. No subject had statistically significant widening in the ramus region without also having statistically significant widening in the body region. No subject had statistically significant trans-ramus narrowing.

  9. Tolerance and potential for adaptation of a Baltic Sea rockweed under predicted climate change conditions.

    Science.gov (United States)

    Rugiu, Luca; Manninen, Iita; Rothäusler, Eva; Jormalainen, Veijo

    2018-03-01

    Climate change is threating species' persistence worldwide. To predict species responses to climate change we need information not just on their environmental tolerance but also on its adaptive potential. We tested how the foundation species of rocky littoral habitats, Fucus vesiculosus, responds to combined hyposalinity and warming projected to the Baltic Sea by 2070-2099. We quantified responses of replicated populations originating from the entrance, central, and marginal Baltic regions. Using replicated individuals, we tested for the presence of within-population tolerance variation. Future conditions hampered growth and survival of the central and marginal populations whereas the entrance populations fared well. Further, both the among- and within-population variation in responses to climate change indicated existence of genetic variation in tolerance. Such standing genetic variation provides the raw material necessary for adaptation to a changing environment, which may eventually ensure the persistence of the species in the inner Baltic Sea. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Quantitative prediction of respiratory tidal volume based on the external torso volume change: a potential volumetric surrogate

    International Nuclear Information System (INIS)

    Li Guang; Arora, Naveen C; Xie Huchen; Ning, Holly; Citrin, Deborah; Kaushal, Aradhana; Zach, Leor; Camphausen, Kevin; Miller, Robert W; Lu Wei; Low, Daniel

    2009-01-01

    An external respiratory surrogate that not only highly correlates with but also quantitatively predicts internal tidal volume should be useful in guiding four-dimensional computed tomography (4DCT), as well as 4D radiation therapy (4DRT). A volumetric surrogate should have advantages over external fiducial point(s) for monitoring respiration-induced motion of the torso, which deforms in synchronization with a patient-specific breathing pattern. This study establishes a linear relationship between the external torso volume change (TVC) and lung air volume change (AVC) by validating a proposed volume conservation hypothesis (TVC = AVC) throughout the respiratory cycle using 4DCT and spirometry. Fourteen patients' torso 4DCT images and corresponding spirometric tidal volumes were acquired to examine this hypothesis. The 4DCT images were acquired using dual surrogates in cine mode and amplitude-based binning in 12 respiratory stages, minimizing residual motion artifacts. Torso and lung volumes were calculated using threshold-based segmentation algorithms and volume changes were calculated relative to the full-exhalation stage. The TVC and AVC, as functions of respiratory stages, were compared, showing a high correlation (r = 0.992 ± 0.005, p 2 = 0.980) without phase shift. The AVC was also compared to the spirometric tidal volumes, showing a similar linearity (slope = 1.030 ± 0.092, R 2 = 0.947). In contrast, the thoracic and abdominal heights measured from 4DCT showed relatively low correlation (0.28 ± 0.44 and 0.82 ± 0.30, respectively) and location-dependent phase shifts. This novel approach establishes the foundation for developing an external volumetric respiratory surrogate.

  11. Quantitative prediction of respiratory tidal volume based on the external torso volume change: a potential volumetric surrogate

    Energy Technology Data Exchange (ETDEWEB)

    Li Guang; Arora, Naveen C; Xie Huchen; Ning, Holly; Citrin, Deborah; Kaushal, Aradhana; Zach, Leor; Camphausen, Kevin; Miller, Robert W [Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Lu Wei; Low, Daniel [Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO 63110 (United States)], E-mail: ligeorge@mail.nih.gov

    2009-04-07

    An external respiratory surrogate that not only highly correlates with but also quantitatively predicts internal tidal volume should be useful in guiding four-dimensional computed tomography (4DCT), as well as 4D radiation therapy (4DRT). A volumetric surrogate should have advantages over external fiducial point(s) for monitoring respiration-induced motion of the torso, which deforms in synchronization with a patient-specific breathing pattern. This study establishes a linear relationship between the external torso volume change (TVC) and lung air volume change (AVC) by validating a proposed volume conservation hypothesis (TVC = AVC) throughout the respiratory cycle using 4DCT and spirometry. Fourteen patients' torso 4DCT images and corresponding spirometric tidal volumes were acquired to examine this hypothesis. The 4DCT images were acquired using dual surrogates in cine mode and amplitude-based binning in 12 respiratory stages, minimizing residual motion artifacts. Torso and lung volumes were calculated using threshold-based segmentation algorithms and volume changes were calculated relative to the full-exhalation stage. The TVC and AVC, as functions of respiratory stages, were compared, showing a high correlation (r = 0.992 {+-} 0.005, p < 0.0001) as well as a linear relationship (slope = 1.027 {+-} 0.061, R{sup 2} = 0.980) without phase shift. The AVC was also compared to the spirometric tidal volumes, showing a similar linearity (slope = 1.030 {+-} 0.092, R{sup 2} = 0.947). In contrast, the thoracic and abdominal heights measured from 4DCT showed relatively low correlation (0.28 {+-} 0.44 and 0.82 {+-} 0.30, respectively) and location-dependent phase shifts. This novel approach establishes the foundation for developing an external volumetric respiratory surrogate.

  12. Predicting the change of child’s behavior problems: sociodemographic and maternal parenting stress factors

    OpenAIRE

    Viduolienė, Evelina

    2013-01-01

    Purpose: evaluate 1) whether child’s externalizing problems increase or decrease within 12 months period; 2) the change of externalizing problems with respect to child gender and age, and 3) which maternal parenting stress factors and family sociodemographic characteristics can predict the increase and decrease of child’s externalizing problems. Design/methodology/approach: participants were evaluated 2 times (with the interval of 12 months) with the Parenting Stress Index (Abidin, 1990) and ...

  13. Murals as Models: Supporting NGSS three-dimensional teaching in climate change educator professional learning

    Science.gov (United States)

    Rogers, M. J. B.; Petrone, C.; Merrick, B. A.; Drewes, A.

    2017-12-01

    The current shift in K-12 science education is towards a teaching and learning approach in which students actively do and experience science in a deep, meaningful way while being fully active in their learning. For students and teachers who have not experienced this approach, this shift is difficult without scaffolding. Professional learning for educators must allow teachers to experience this approach and reflect on their experience. We share an example from our 2017 K-12 Climate Change Academy in which educators created and modified murals of Earth's climate system while investigating ecosystem interactions, the carbon cycle, energy flow, and human impacts. The Academy constituted an online component followed by three consecutive in person days. The mural activity served as a framework. The first mural modeling occurred online. A1: Take a photo of an outdoor landscape. Annotate it with elements of Earth's atmosphere, biosphere, geosphere, hydrosphere and indicate energy flow, carbon cycling, and the processes driving these. Activities 2-6 were employed throughout the in person days. A2: Small groups create 2D, mural sized models of Earth's climate system. A3: Groups use carbon themed cards to document naturally occurring and human-influenced aspects of the carbon cycle on their models. A4-5: Teams add climate change impacts and possible mitigation/adaptation responses to murals. A6: Ongoing throughout, team members modify models as needed based on learning. Throughout the Academy, participants were able to experience the activities as students. As Academy facilitators, we modeled how educators could use these models in their classrooms. We used A1 submissions as a formative assessment tool and also as a guide for forming groups for the first in person mural. A2 was used as a small group icebreaker, serving as a bridge between the online and in person sessions both for community building and for providing peer support in knowledge building. A3-A5 allowed for

  14. National Scale Prediction of Soil Carbon Sequestration under Scenarios of Climate Change

    Science.gov (United States)

    Izaurralde, R. C.; Thomson, A. M.; Potter, S. R.; Atwood, J. D.; Williams, J. R.

    2006-12-01

    Carbon sequestration in agricultural soils is gaining momentum as a tool to mitigate the rate of increase of atmospheric CO2. Researchers from the Pacific Northwest National Laboratory, Texas A&M University, and USDA-NRCS used the EPIC model to develop national-scale predictions of soil carbon sequestration with adoption of no till (NT) under scenarios of climate change. In its current form, the EPIC model simulates soil C changes resulting from heterotrophic respiration and wind / water erosion. Representative modeling units were created to capture the climate, soil, and management variability at the 8-digit hydrologic unit (USGS classification) watershed scale. The soils selected represented at least 70% of the variability within each watershed. This resulted in 7,540 representative modeling units for 1,412 watersheds. Each watershed was assigned a major crop system: corn, soybean, spring wheat, winter wheat, cotton, hay, alfalfa, corn-soybean rotation or wheat-fallow rotation based on information from the National Resource Inventory. Each representative farm was simulated with conventional tillage and no tillage, and with and without irrigation. Climate change scenarios for two future periods (2015-2045 and 2045-2075) were selected from GCM model runs using the IPCC SRES scenarios of A2 and B2 from the UK Hadley Center (HadCM3) and US DOE PCM (PCM) models. Changes in mean and standard deviation of monthly temperature and precipitation were extracted from gridded files and applied to baseline climate (1960-1990) for each of the 1,412 modeled watersheds. Modeled crop yields were validated against historical USDA NASS county yields (1960-1990). The HadCM3 model predicted the most severe changes in climate parameters. Overall, there would be little difference between the A2 and B2 scenarios. Carbon offsets were calculated as the difference in soil C change between conventional and no till. Overall, C offsets during the first 30-y period (513 Tg C) are predicted to

  15. Healthy work revisited: do changes in time strain predict well-being?

    Science.gov (United States)

    Moen, Phyllis; Kelly, Erin L; Lam, Jack

    2013-04-01

    Building on Karasek and Theorell (R. Karasek & T. Theorell, 1990, Healthy work: Stress, productivity, and the reconstruction of working life, New York, NY: Basic Books), we theorized and tested the relationship between time strain (work-time demands and control) and seven self-reported health outcomes. We drew on survey data from 550 employees fielded before and 6 months after the implementation of an organizational intervention, the results only work environment (ROWE) in a white-collar organization. Cross-sectional (wave 1) models showed psychological time demands and time control measures were related to health outcomes in expected directions. The ROWE intervention did not predict changes in psychological time demands by wave 2, but did predict increased time control (a sense of time adequacy and schedule control). Statistical models revealed increases in psychological time demands and time adequacy predicted changes in positive (energy, mastery, psychological well-being, self-assessed health) and negative (emotional exhaustion, somatic symptoms, psychological distress) outcomes in expected directions, net of job and home demands and covariates. This study demonstrates the value of including time strain in investigations of the health effects of job conditions. Results encourage longitudinal models of change in psychological time demands as well as time control, along with the development and testing of interventions aimed at reducing time strain in different populations of workers.

  16. Predicting short-term weight loss using four leading health behavior change theories

    Directory of Open Access Journals (Sweden)

    Barata José T

    2007-04-01

    Full Text Available Abstract Background This study was conceived to analyze how exercise and weight management psychosocial variables, derived from several health behavior change theories, predict weight change in a short-term intervention. The theories under analysis were the Social Cognitive Theory, the Transtheoretical Model, the Theory of Planned Behavior, and Self-Determination Theory. Methods Subjects were 142 overweight and obese women (BMI = 30.2 ± 3.7 kg/m2; age = 38.3 ± 5.8y, participating in a 16-week University-based weight control program. Body weight and a comprehensive psychometric battery were assessed at baseline and at program's end. Results Weight decreased significantly (-3.6 ± 3.4%, p Conclusion The present models were able to predict 20–30% of variance in short-term weight loss and changes in weight management self-efficacy accounted for a large share of the predictive power. As expected from previous studies, exercise variables were only moderately associated with short-term outcomes; they are expected to play a larger explanatory role in longer-term results.

  17. Scenario Simulation and the Prediction of Land Use and Land Cover Change in Beijing, China

    Directory of Open Access Journals (Sweden)

    Huiran Han

    2015-04-01

    Full Text Available Land use and land cover (LULC models are essential for analyzing LULC change and predicting land use requirements and are valuable for guiding reasonable land use planning and management. However, each LULC model has its own advantages and constraints. In this paper, we explore the characteristics of LULC change and simulate future land use demand by combining a CLUE-S model with a Markov model to deal with some shortcomings of existing LULC models. Using Beijing as a case study, we describe the related driving factors from land-adaptive variables, regional spatial variables and socio-economic variables and then simulate future land use scenarios from 2010 to 2020, which include a development scenario (natural development and rapid development and protection scenarios (ecological and cultivated land protection. The results indicate good consistency between predicted results and actual land use situations according to a Kappa statistic. The conversion of cultivated land to urban built-up land will form the primary features of LULC change in the future. The prediction for land use demand shows the differences under different scenarios. At higher elevations, the geographical environment limits the expansion of urban built-up land, but the conversion of cultivated land to built-up land in mountainous areas will be more prevalent by 2020; Beijing, however, still faces the most pressure in terms of ecological and cultivated land protection.

  18. Comparison of clinical utility between diaphragm excursion and thickening change using ultrasonography to predict extubation success

    Science.gov (United States)

    Yoo, Jung-Wan; Lee, Seung Jun; Lee, Jong Deog; Kim, Ho Cheol

    2018-01-01

    Background/Aims Both diaphragmatic excursion and change in muscle thickening are measured using ultrasonography (US) to assess diaphragm function and mechanical ventilation weaning outcomes. However, which parameter can better predict successful extubation remains to be determined. The aim of this study was to compare the clinical utility of these two diaphragmatic parameters to predict extubation success. Methods This study included patients subjected to extubation trial in the medical or surgical intensive care unit of a university-affiliated hospital from May 2015 through February 2016. Diaphragm excursion and percent of thickening change (Δtdi%) were measured using US within 24 hours before extubation. Results Sixty patients were included, and 78.3% (47/60) of these patients were successfully extubated, whereas 21.7% (13/60) were not. The median degree of excursion was greater in patients with extubation success than in those with extubation failure (1.65 cm vs. 0.8 cm, p success had a greater Δtdi% than those with extubation failure (42.1% vs. 22.5%, p = 0.03). The areas under the receiver operating curve for excursion and Δtdi% were 0.836 (95% confidence interval [CI], 0.717 to 0.919) and 0.698 (95% CI, 0.566 to 0.810), respectively (p = 0.017). Conclusions Diaphragm excursion seems more accurate than a change in the diaphragm thickness to predict extubation success. PMID:29050461

  19. Hemostatic system changes predictive value in patients with ischemic brain disorders

    Directory of Open Access Journals (Sweden)

    Raičević Ranko

    2002-01-01

    Full Text Available The aim of this research was to determine the importance of tracking the dynamics of changes of the hemostatic system factors (aggregation of thrombocytes, D-dimer, PAI-1, antithrombin III, protein C and protein S, factor VII and factor VIII, fibrin degradation products, euglobulin test and the activated partial thromboplastin time – aPTPV in relation to the level of the severity of ischemic brain disorders (IBD and the level of neurological and functional deficiency in the beginning of IBD manifestation from 7 to 10 days, 19 to 21 day, and after 3 to 6 months. The research results confirmed significant predictive value of changes of hemostatic system with the predomination of procoagulant factors, together with the insufficiency of fibrinolysis. Concerning the IBD severity and it's outcome, the significant predictive value was shown in the higher levels of PAI-1 and the lower level of antithrombin III, and borderline significant value was shown in the accelerated aggregation of thrombocytes and the increased concentration of D-dimer. It could be concluded that the tracking of the dynamics of changes in parameters of hemostatic system proved to be an easily accessible method with the significant predictive value regarding the development of more severe. IBD cases and the outcome of the disease itself.

  20. Improving behavioral performance under full attention by adjusting response criteria to changes in stimulus predictability.

    Science.gov (United States)

    Katzner, Steffen; Treue, Stefan; Busse, Laura

    2012-09-04

    One of the key features of active perception is the ability to predict critical sensory events. Humans and animals can implicitly learn statistical regularities in the timing of events and use them to improve behavioral performance. Here, we used a signal detection approach to investigate whether such improvements in performance result from changes of perceptual sensitivity or rather from adjustments of a response criterion. In a regular sequence of briefly presented stimuli, human observers performed a noise-limited motion detection task by monitoring the stimulus stream for the appearance of a designated target direction. We manipulated target predictability through the hazard rate, which specifies the likelihood that a target is about to occur, given it has not occurred so far. Analyses of response accuracy revealed that improvements in performance could be accounted for by adjustments of the response criterion; a growing hazard rate was paralleled by an increasing tendency to report the presence of a target. In contrast, the hazard rate did not affect perceptual sensitivity. Consistent with previous research, we also found that reaction time decreases as the hazard rate grows. A simple rise-to-threshold model could well describe this decrease and attribute predictability effects to threshold adjustments rather than changes in information supply. We conclude that, even under conditions of full attention and constant perceptual sensitivity, behavioral performance can be optimized by dynamically adjusting the response criterion to meet ongoing changes in the likelihood of a target.

  1. Application of Artificial Neural Network to Predict Colour Change, Shrinkage and Texture of Osmotically Dehydrated Pumpkin

    Science.gov (United States)

    Tang, S. Y.; Lee, J. S.; Loh, S. P.; Tham, H. J.

    2017-06-01

    The objectives of this study were to use Artificial Neural Network (ANN) to predict colour change, shrinkage and texture of osmotically dehydrated pumpkin slices. The effects of process variables such as concentration of osmotic solution, immersion temperature and immersion time on the above mentioned physical properties were studied. The colour of the samples was measured using a colorimeter and the net colour difference changes, ΔE were determined. The texture was measured in terms of hardness by using a Texture Analyzer. As for the shrinkage, displacement of volume method was applied and percentage of shrinkage was obtained in terms of volume changes. A feed-forward backpropagation network with sigmoidal function was developed and best network configuration was chosen based on the highest correlation coefficients between the experimental values versus predicted values. As a comparison, Response Surface Methodology (RSM) statistical analysis was also employed. The performances of both RSM and ANN modelling were evaluated based on absolute average deviation (AAD), correlation of determination (R2) and root mean square error (RMSE). The results showed that ANN has higher prediction capability as compared to RSM. The relative importance of the variables on the physical properties were also determined by using connection weight approach in ANN. It was found that solution concentration showed the highest influence on all three physical properties.

  2. Collaborative Research: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Gutowski, William J. [Iowa State Univ., Ames, IA (United States)

    2017-12-28

    This project developed and applied a regional Arctic System model for enhanced decadal predictions. It built on successful research by four of the current PIs with support from the DOE Climate Change Prediction Program, which has resulted in the development of a fully coupled Regional Arctic Climate Model (RACM) consisting of atmosphere, land-hydrology, ocean and sea ice components. An expanded RACM, a Regional Arctic System Model (RASM), has been set up to include ice sheets, ice caps, mountain glaciers, and dynamic vegetation to allow investigation of coupled physical processes responsible for decadal-scale climate change and variability in the Arctic. RASM can have high spatial resolution (~4-20 times higher than currently practical in global models) to advance modeling of critical processes and determine the need for their explicit representation in Global Earth System Models (GESMs). The pan-Arctic region is a key indicator of the state of global climate through polar amplification. However, a system-level understanding of critical arctic processes and feedbacks needs further development. Rapid climate change has occurred in a number of Arctic System components during the past few decades, including retreat of the perennial sea ice cover, increased surface melting of the Greenland ice sheet, acceleration and thinning of outlet glaciers, reduced snow cover, thawing permafrost, and shifts in vegetation. Such changes could have significant ramifications for global sea level, the ocean thermohaline circulation and heat budget, ecosystems, native communities, natural resource exploration, and commercial transportation. The overarching goal of the RASM project has been to advance understanding of past and present states of arctic climate and to improve seasonal to decadal predictions. To do this the project has focused on variability and long-term change of energy and freshwater flows through the arctic climate system. The three foci of this research are: - Changes

  3. Has growth mixture modeling improved our understanding of how early change predicts psychotherapy outcome?

    Science.gov (United States)

    Koffmann, Andrew

    2017-03-02

    Early change in psychotherapy predicts outcome. Seven studies have used growth mixture modeling [GMM; Muthén, B. (2001). Second-generation structural equation modeling with a combination of categorical and continuous latent variables: New opportunities for latent class-latent growth modeling. In L. M. Collins & A. G. Sawyers (Eds.), New methods for the analysis of change (pp. 291-322). Washington, DC: American Psychological Association] to identify patient classes based on early change but have yielded conflicting results. Here, we review the earlier studies and apply GMM to a new data set. In a university-based training clinic, 251 patients were administered the Outcome Questionnaire-45 [Lambert, M. J., Hansen, N. B., Umphress, V., Lunnen, K., Okiishi, J., Burlingame, G., … Reisinger, C. W. (1996). Administration and scoring manual for the Outcome Questionnaire (OQ 45.2). Wilmington, DE: American Professional Credentialing Services] at each psychotherapy session. We used GMM to identify class structure based on change in the first six sessions and examined trajectories as predictors of outcome. The sample was best described as a single class. There was no evidence of autoregressive trends in the data. We achieved better fit to the data by permitting latent variables some degree of kurtosis, rather than to assume multivariate normality. Treatment outcome was predicted by the amount of early improvement, regardless of initial level of distress. The presence of sudden early gains or losses did not further improve outcome prediction. Early improvement is an easily computed, powerful predictor of psychotherapy outcome. The use of GMM to investigate the relationship between change and outcome is technically complex and computationally intensive. To date, it has not been particularly informative.

  4. The use of specialisation indices to predict vulnerability of coral-feeding butterflyfishes to environmental change

    KAUST Repository

    Lawton, Rebecca J.

    2011-07-14

    In the absence of detailed assessments of extinction risk, ecological specialisation is often used as a proxy of vulnerability to environmental disturbances and extinction risk. Numerous indices can be used to estimate specialisation; however, the utility of these different indices to predict vulnerability to future environmental change is unknown. Here we compare the performance of specialisation indices using coral-feeding butterflyfishes as a model group. Our aims were to 1) quantify the dietary preferences of three butterflyfish species across habitats with differing levels of resource availability; 2) investigate how estimates of dietary specialisation vary with the use of different specialisation indices; 3) determine which specialisation indices best inform predictions of vulnerability to environmental change; and 4) assess the utility of resource selection functions to inform predictions of vulnerability to environmental change. The relative level of dietary specialisation estimated for all three species varied when different specialisation indices were used, indicating that the choice of index can have a considerable impact upon estimates of specialisation. Specialisation indices that do not consider resource abundance may fail to distinguish species that primarily use common resources from species that actively target resources disproportionately more than they are available. Resource selection functions provided the greatest insights into the potential response of species to changes in resource availability. Examination of resource selection functions, in addition to specialisation indices, indicated that Chaetodon trifascialis was the most specialised feeder, with highly conserved dietary preferences across all sites, suggesting that this species is highly vulnerable to the impacts of climate-induced coral loss on reefs. Our results indicate that vulnerability assessments based on some specialisation indices may be misleading and the best estimates of

  5. Does scale matter? A systematic review of incorporating biological realism when predicting changes in species distributions.

    Science.gov (United States)

    Record, Sydne; Strecker, Angela; Tuanmu, Mao-Ning; Beaudrot, Lydia; Zarnetske, Phoebe; Belmaker, Jonathan; Gerstner, Beth

    2018-01-01

    There is ample evidence that biotic factors, such as biotic interactions and dispersal capacity, can affect species distributions and influence species' responses to climate change. However, little is known about how these factors affect predictions from species distribution models (SDMs) with respect to spatial grain and extent of the models. Understanding how spatial scale influences the effects of biological processes in SDMs is important because SDMs are one of the primary tools used by conservation biologists to assess biodiversity impacts of climate change. We systematically reviewed SDM studies published from 2003-2015 using ISI Web of Science searches to: (1) determine the current state and key knowledge gaps of SDMs that incorporate biotic interactions and dispersal; and (2) understand how choice of spatial scale may alter the influence of biological processes on SDM predictions. We used linear mixed effects models to examine how predictions from SDMs changed in response to the effects of spatial scale, dispersal, and biotic interactions. There were important biases in studies including an emphasis on terrestrial ecosystems in northern latitudes and little representation of aquatic ecosystems. Our results suggest that neither spatial extent nor grain influence projected climate-induced changes in species ranges when SDMs include dispersal or biotic interactions. We identified several knowledge gaps and suggest that SDM studies forecasting the effects of climate change should: 1) address broader ranges of taxa and locations; and 1) report the grain size, extent, and results with and without biological complexity. The spatial scale of analysis in SDMs did not affect estimates of projected range shifts with dispersal and biotic interactions. However, the lack of reporting on results with and without biological complexity precluded many studies from our analysis.

  6. Nitridation of one-dimensional tungsten oxide nanostructures: Changes in structure and photoactivity

    KAUST Repository

    Varga, Tamás

    2017-10-12

    In the search for stable, visible light active photoelectrodes, hydrothermally synthesized tungsten oxide nanowires were modified via nitrogen incorporation into their structure. To this end, nanowires were heat-treated in ammonia/nitrogen atmosphere at different temperatures. This procedure caused transitions in their structure that were investigated along with the photoelectrochemical properties of the samples. Results were subsequently compared to the reference samples treated in inert nitrogen atmosphere. Morphological changes and structural transitions were followed by transmission and scanning electron microscopy and X-ray diffraction. Bandgap energies were determined from the UV–vis spectra of the materials, while photoelectrochemical properties were tested by linear sweep photovoltammetry and electrochemical impedance spectroscopy. Pristine tungsten oxide nanowires were first transformed into tungsten oxynitride and then tungsten nitride during high-temperature calcination in ammonia atmosphere. Electron microscopic investigation revealed that, along with phase transition, the initial fibrous morphology gradually converted into nanosheets. Simultaneously, bandgap energies significantly decreased in the calcination process, too. Photoelectrochemical measurements demonstrated that photoactivity in the treated samples was not improved by the decrease of the bandgap. This behavior might be explained with the deterioration of charge carrier transport properties of the materials due to the increased number of structural defects (acting as trap states), and current ongoing work aims to verify this notion.

  7. Simulation of post-impact rotational changes through multi-dimensional parametrization

    Science.gov (United States)

    Gauchez, Damien; Souchay, Jean

    2006-11-01

    In this paper we propose firstly a full parametrization of an impact on a target body considered as ellipsoidal, including several geometrical parameters which are generally not included. Then we construct a more detailed and complete theoretical model of the rotational changes of the target body arising from a single impact, by taking into account the various parameters above. Secondly from these theoretical studies we carry out simulations of impacts and then we evaluate the influences of the various parameters on the rotational evolution of a specific target, in particular the angular speed of rotation and the direction of the axis of rotation. For that we consider two cases: in the first one, which we call accretion, the projectile is simply stuck to the target without a significant amount of ejected mass. In the second case, which we call craterization, the target body is eroded with formation of ejecta and a crater. The physical properties of the target are close to those of the Asteroid 21 Lutetia which Rosetta mission would fly in July 2010. We obtain quite different results according to the considered mode of impact (accretion or craterization): in the case of an impact with accretion the results are intuitively foreseeable whereas those corresponding to an impact with craterization are more difficult to interpret. Our work can be applied to obtain information on the rotational effects of an impact on a given target body with well constrained physical characteristics, in particular within the framework of the Don Quijote mission project.

  8. Application of a two-dimensional model for predicting the pressure-flow and compression properties during column packing scale-up.

    Science.gov (United States)

    McCue, Justin T; Cecchini, Douglas; Chu, Cathy; Liu, Wei-Han; Spann, Andrew

    2007-03-23

    A two-dimensional model was formulated to describe the pressure-flow behavior of compressible stationary phases for protein chromatography at different temperatures and column scales. The model was based on the assumption of elastic deformation of the solid phase and steady-state Darcy flow. Using a single fitted value for the empirical modulus parameters, the model was applied to describe the pressure-flow behavior of several adsorbents packed using both fluid flow and mechanical compression. Simulations were in agreement with experimental data and accurately predicted the pressure-flow and compression behavior of three adsorbents over a range of column scales and operating temperatures. Use of the described theoretical model potentially improves the accuracy of the column scale-up process, allowing the use of limited laboratory scale data to predict column performance in large scale applications.

  9. Three-dimensional one-way bubble tracking method for the prediction of developing bubble-slug flows in a vertical pipe. 1st report, models and demonstration

    International Nuclear Information System (INIS)

    Tamai, Hidesada; Tomiyama, Akio

    2004-01-01

    A three-dimensional one-way bubble tracking method is one of the most promising numerical methods for the prediction of a developing bubble flow in a vertical pipe, provided that several constitutive models are prepared. In this study, a bubble shape, an equation of bubble motion, a liquid velocity profile, a pressure field, turbulent fluctuation and bubble coalescence are modeled based on available knowledge on bubble dynamics. Bubble shapes are classified into four types in terms of bubble equivalent diameter. A wake velocity model is introduced to simulate approaching process among bubbles due to wake entrainment. Bubble coalescence is treated as a stochastic phenomenon with the aid of coalescence probabilities that depend on the sizes of two interacting bubbles. The proposed method can predict time-spatial evolution of flow pattern in a developing bubble-slug flow. (author)

  10. Can positional MRI predict dynamic changes in the medial plantar arch?

    DEFF Research Database (Denmark)

    Johannsen, Finn E; Hansen, Philip; Stallknecht, Sandra

    2016-01-01

    BACKGROUND: Positional MRI (pMRI) allows for three-dimensional visual assessment of navicular position. In this exploratory pilot study pMRI was validated against a stretch sensor device, which measures movement of the medial plantar arch. We hypothesized that a combined pMRI measure incorporating...... and c) standing position with addition of 10 % body weight during static loading of the foot. Stretch sensor measurements were also performed during barefoot walking. RESULTS: The total change in navicular position measured by pMRI was 10.3 mm (CI: 7.0 to 13.5 mm). No further displacement occurred when.......08). CONCLUSIONS: Total navicular bone displacements determined by pMRI showed concurrent validity with stretch sensor measurements but only so under static loading conditions. Although assessment of total navicular displacement by combining concomitant vertical and medial navicular bone movements would appear...

  11. Do symptom-specific stages of change predict eating disorder treatment outcome?

    Science.gov (United States)

    Ackard, Diann M; Cronemeyer, Catherine L; Richter, Sara; Egan, Amber

    2015-03-01

    Interview methods to assess stages of change (SOC) in eating disorders (ED) indicate that SOC are positively correlated with symptom improvement over time. However, interviews require significant time and staff training and global measures of SOC do not capture varying levels of motivation across ED symptoms. This study used a self-report, ED symptom-specific SOC measure to determine prevalence of stages across symptoms and identify if SOC predict treatment outcome. Participants [N = 182; age 13-58 years; 92% Caucasian; 96% female; average BMI 21.7 (SD = 5.9); 50% ED not otherwise specified (EDNOS), 30.8% bulimia nervosa (BN), 19.2% anorexia nervosa (AN)] seeking ED treatment at a diverse-milieu multi-disciplinary facility in the United States completed stages of change, behavioral (ED symptom use and frequency) and psychological (ED concerns, anxiety, depression) measures at intake assessment and at 3, 6 and 12 months thereafter. Descriptive summaries were generated using ANOVA or Kruskal-Wallis (continuous) and χ (2) (categorical) tests. Repeated measures linear regression models with autoregressive correlation structure predicted treatment outcome. At intake assessment, 53.3% of AN, 34.0% of BN and 18.1% of EDNOS patients were in Preparation/Action. Readiness to change specific symptoms was highest for binge-eating (57.8%) and vomiting (56.5%). Frequency of fasting and restricting behaviors, and scores on all eating disorder and psychological measures improved over time regardless of SOC at intake assessment. Symptom-specific SOC did not predict reductions in ED symptom frequency. Overall SOC predicted neither improvement in Eating Disorder Examination Questionnaire (EDE-Q) scores nor reduction in depression or trait anxiety; however, higher overall SOC predicted lower state anxiety across follow-up. Readiness to change ED behaviors varies considerably. Most patients reduced eating disorder behaviors and increased psychological functioning regardless of stages

  12. Can we predict the response of large sand bed rivers to changes in flow and sediment supply? The case of the Missouri River.

    Science.gov (United States)

    Viparelli, E.; Blum, M. D.

    2015-12-01

    In the past century engineering projects and changes in land use significantly modified the hydrology and the sediment supply of large sand bed rivers all over the world. Field studies documented the river responses to the imposed changes, which can be summarized as adjustments in channel geometry, slope, and/or characteristics of the bed material. Further, one-, two- and three-dimensional river morphodynamic models were used to predict the fluvial system response to the imposed changes at time scales ranging from few months up to several decades. Notwithstading this previous research effort, the spatial and temporal scales of river adjustment, as well as quantitative predictions of the river responses, are still a matter of debate due to the difficulties associated with the interpretation of limited field datasets and with the large scale sediment transport modeling. Here we present the preliminary results of a study of the Missouri River response to the construction of dams, i.e. reduction in flood flow and sediment supply. In particular, we first compare the numerical results of a one-dimensional model of river morphodynamics for large, low slope sand bed rivers with field data to validate the model. The validated model is then used to constrain the spatial and temporal scales of the river adjustment, i.e. bed degradation in the Missouri River case. In other words, our numerical work focuses on how the magnitude and speed of the wave of channel bed degradation changes in time and space for the Missouri River case and how these scales change for different values of the ratio between pre- and pos-dam flow rates, and pre- and post-dam sediment loads.

  13. Changes in event-related potential functional networks predict traumatic brain injury in piglets.

    Science.gov (United States)

    Atlan, Lorre S; Lan, Ingrid S; Smith, Colin; Margulies, Susan S

    2018-06-01

    Traumatic brain injury is a leading cause of cognitive and behavioral deficits in children in the US each year. None of the current diagnostic tools, such as quantitative cognitive and balance tests, have been validated to identify mild traumatic brain injury in infants, adults and animals. In this preliminary study, we report a novel, quantitative tool that has the potential to quickly and reliably diagnose traumatic brain injury and which can track the state of the brain during recovery across multiple ages and species. Using 32 scalp electrodes, we recorded involuntary auditory event-related potentials from 22 awake four-week-old piglets one day before and one, four, and seven days after two different injury types (diffuse and focal) or sham. From these recordings, we generated event-related potential functional networks and assessed whether the patterns of the observed changes in these networks could distinguish brain-injured piglets from non-injured. Piglet brains exhibited significant changes after injury, as evaluated by five network metrics. The injury prediction algorithm developed from our analysis of the changes in the event-related potentials functional networks ultimately produced a tool with 82% predictive accuracy. This novel approach is the first application of auditory event-related potential functional networks to the prediction of traumatic brain injury. The resulting tool is a robust, objective and predictive method that offers promise for detecting mild traumatic brain injury, in particular because collecting event-related potentials data is noninvasive and inexpensive. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Personality traits and individual differences predict threat-induced changes in postural control.

    Science.gov (United States)

    Zaback, Martin; Cleworth, Taylor W; Carpenter, Mark G; Adkin, Allan L

    2015-04-01

    This study explored whether specific personality traits and individual differences could predict changes in postural control when presented with a height-induced postural threat. Eighty-two healthy young adults completed questionnaires to assess trait anxiety, trait movement reinvestment (conscious motor processing, movement self-consciousness), physical risk-taking, and previous experience with height-related activities. Tests of static (quiet standing) and anticipatory (rise to toes) postural control were completed under low and high postural threat conditions. Personality traits and individual differences significantly predicted height-induced changes in static, but not anticipatory postural control. Individuals less prone to taking physical risks were more likely to lean further away from the platform edge and sway at higher frequencies and smaller amplitudes. Individuals more prone to conscious motor processing were more likely to lean further away from the platform edge and sway at larger amplitudes. Individuals more self-conscious about their movement appearance were more likely to sway at smaller amplitudes. Evidence is also provided that relationships between physical risk-taking and changes in static postural control are mediated through changes in fear of falling and physiological arousal. Results from this study may have indirect implications for balance assessment and treatment; however, further work exploring these factors in patient populations is necessary. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The Metabolic Syndrome Predicts Longitudinal Changes in Clock Drawing Test Performance in Older Nondemented Hypertensive Individuals.

    Science.gov (United States)

    Viscogliosi, Giovanni; Chiriac, Iulia Maria; Andreozzi, Paola; Ettorre, Evaristo

    2016-05-01

    The present study evaluated the metabolic syndrome (MetS) as independent predictor of 1-year longitudinal changes in cognitive function. 104 stroke- and dementia-free older hypertensive subjects were studied. MetS was defined by NCEP ATP-III criteria. Cognitive function was assessed by the Clock Drawing Test (CDT); 1-year changes in cognitive function were expressed as annual changes in CDT performance. Brain magnetic resonance imaging studies (1.5T) were performed. Participants with MetS exhibited greater cognitive decline than those without (-1.78 ± 1.47 versus -0.74 ± 1.44 CDT points, t = 3.348, df = 102, p < 0.001). MetS predicted cognitive decline (β = -0.327, t = -3.059, df = 96, p = 0.003) independently of its components, age, baseline cognition, neuroimaging findings, blood pressure levels, and duration of hypertension. With the exception of systolic blood pressure, none of the individual components of MetS explained 1-year changes in CDT performance. MetS as an entity predicted accelerated 1-year decline in cognitive function, assessed by CDT, in a sample of older hypertensive subjects. Copyright © 2016 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. Effects of predicted climatic changes on distribution of organic contaminants in brackish water mesocosms.

    Science.gov (United States)

    Ripszam, M; Gallampois, C M J; Berglund, Å; Larsson, H; Andersson, A; Tysklind, M; Haglund, P

    2015-06-01

    Predicted consequences of future climate change in the northern Baltic Sea include increases in sea surface temperatures and terrestrial dissolved organic carbon (DOC) runoff. These changes are expected to alter environmental distribution of anthropogenic organic contaminants (OCs). To assess likely shifts in their distributions, outdoor mesocosms were employed to mimic pelagic ecosystems at two temperatures and two DOC concentrations, current: 15°C and 4 mg DOCL(-1) and, within ranges of predicted increases, 18°C and 6 mg DOCL(-1), respectively. Selected organic contaminants were added to the mesocosms to monitor changes in their distribution induced by the treatments. OC partitioning to particulate matter and sedimentation were enhanced at the higher DOC concentration, at both temperatures, while higher losses and lower partitioning of OCs to DOC were observed at the higher temperature. No combined effects of higher temperature and DOC on partitioning were observed, possibly because of the balancing nature of these processes. Therefore, changes in OCs' fates may largely depend on whether they are most sensitive to temperature or DOC concentration rises. Bromoanilines, phenanthrene, biphenyl and naphthalene were sensitive to the rise in DOC concentration, whereas organophosphates, chlorobenzenes (PCBz) and polychlorinated biphenyls (PCBs) were more sensitive to temperature. Mitotane and diflufenican were sensitive to both temperature and DOC concentration rises individually, but not in combination. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Ability of One-Dimensional Hairsine-Rose Erosion Model to Predict Sediment Transport over a Soil with Significant Surface Stones

    Science.gov (United States)

    Jomaa, S.; Barry, D. A.; Sander, G. C.; Parlange, J.-Y.; Heng, B. C. P.; Tromp-van Meerveld, H. J.

    2010-05-01

    Surface stones affect erosion rates by reducing raindrop-driven detachment and protecting the original soil against overland flow induced-hydraulic stress. Numerous studies have shown that the effect of surface stones on erosion depends on both the stone characteristics (e.g., size, distribution) and the soil properties. The aim of this study was (i) to quantify how the stone characteristics can affect the total sediment concentration and the concentrations of the individual size classes, (ii) to test if stones affect preferentially a particular size class within the eroded sediment and (iii) to determine whether the 1D Hairsine-Rose (H-R) erosion model can represent the experimental data. A series of laboratory experiments were conducted using the 2 m × 6 m EPFL erosion flume for a high rainfall intensity (60 mm/h) event on a gentle slope (2.2%). The flume was divided into two identical 1-m wide flumes. This separation was done to allow simultaneous replicate experiments. Experiments were conducted with different configurations and scenarios (stone coverage, size and emplacement). Three coverage proportions (20%, 40%, and 70%), two stone diameters (3-4 and 6-7 cm) and two emplacement types (topsoil and partially embedded) were tested. For each experiment, the total sediment concentration, the concentration for the individual size classes, and the flume discharge were measured. Infiltration rates were measured at different depths and locations. A high resolution laser scanner provided details of the surface change due to erosion during the experiments. This technique allowed us to quantify the spatial distribution of eroded soil and to understand better if sediment transport is 1D or rather 2D over the flumes. The one-dimensional Hairsine-Rose (H-R) erosion model was used to fit the integrated data and to provide estimates of the parameters. The ability of the 1D H-R model to predict the measured sediment concentrations in the presence of stones in the soil matrix

  18. Predicting the impact of climate change on threatened species in UK waters.

    Directory of Open Access Journals (Sweden)

    Miranda C Jones

    Full Text Available Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis and angelshark (Squatina squatina.

  19. Predicting Impact of Climate Change on Water Temperature and Dissolved Oxygen in Tropical Rivers

    Directory of Open Access Journals (Sweden)

    Al-Amin Danladi Bello

    2017-07-01

    Full Text Available Predicting the impact of climate change and human activities on river systems is imperative for effective management of aquatic ecosystems. Unique information can be derived that is critical to the survival of aquatic species under dynamic environmental conditions. Therefore, the response of a tropical river system under climate and land-use changes from the aspects of water temperature and dissolved oxygen concentration were evaluated. Nine designed projected climate change scenarios and three future land-use scenarios were integrated into the Hydrological Simulation Program FORTRAN (HSPF model to determine the impact of climate change and land-use on water temperature and dissolved oxygen (DO concentration using basin-wide simulation of river system in Malaysia. The model performance coefficients showed a good correlation between simulated and observed streamflow, water temperature, and DO concentration in a monthly time step simulation. The Nash–Sutcliffe Efficiency for streamflow was 0.88 for the calibration period and 0.82 for validation period. For water temperature and DO concentration, data from three stations were calibrated and the Nash–Sutcliffe Efficiency for both water temperature and DO ranged from 0.53 to 0.70. The output of the calibrated model under climate change scenarios show that increased rainfall and air temperature do not affects DO concentration and water temperature as much as the condition of a decrease in rainfall and increase in air temperature. The regression model on changes in streamflow, DO concentration, and water temperature under the climate change scenarios illustrates that scenarios that produce high to moderate streamflow, produce small predicted change in water temperatures and DO concentrations compared with the scenarios that produced a low streamflow. It was observed that climate change slightly affects the relationship between water temperatures and DO concentrations in the tropical rivers that we

  20. The three-dimensional assessment of dynamic changes of the proximal segments after intraoral vertical ramus osteotomy.

    Science.gov (United States)

    Ohba, Seigo; Nakao, Noriko; Awara, Kousuke; Tobita, Takayoshi; Minamizato, Tokutarou; Kawasaki, Takako; Koga, Takamitsu; Nakatani, Yuya; Yoshida, Noriaki; Asahina, Izumi

    2015-10-01

    The aim of this study was to assess the positional changes of the proximal segments after intraoral vertical ramus osteotomy (IVRO). Fifteen patients underwent IVRO and were followed according to the authors' unique postoperative management regimen. The analyses of the positions and angles of the proximal segments were performed on frontal and lateral cephalograms, which were taken before surgery (T1) and within 3 days (T2), at 4 weeks (T3), and later than 6 months after surgery (T4). The three-dimensional positions of the condylar heads were also assessed by CT images, which were taken before and 1 year after surgery. The proximal segments temporarily swung posteriorly and laterally with a center on the condylar head as a fulcrum point at T2 and T3, compared with T1, and they repositioned at T4. The condylar heads moved inferior approximately 2 mm with lateral rotation one year after surgery, as seen in the CT. The condylar heads changed their positions physiologically for newly established jaw movement after IVRO with the authors' post-operative management regimen because the post-operative skeletal stability and the jaw function were good and stable using this method.

  1. 640-slice DVCT multi-dimensionally and dynamically presents changes in bladder volume and urine flow rate

    Science.gov (United States)

    Su, Yunshan; Fang, Kewei; Mao, Chongwen; Xiang, Shutian; Wang, Jin; Li, Yingwen

    2018-01-01

    The present study aimed to explore the application of 640-slice dynamic volume computed tomography (DVCT) to excretory cystography and urethrography. A total of 70 healthy subjects were included in the study. Excretory cystography and urethrography using 640-slice DVCT was conducted to continuously record the motions of the bladder and the proximal female and male urethra. The patients' voiding process was divided into early, early to middle, middle, middle to late, and late voiding phases. The subjects were analyzed using DVCT and conventional CT. The cross-sectional areas of various sections of the male and female urethra were evaluated, and the average urine flow rate was calculated. The 640-slice DVCT technique was used to dynamically observe the urine flow rate and changes in bladder volume at all voiding phases. The urine volume detected by 640-slice DVCT exhibited no significant difference compared with the actual volume, and no significant difference compared with that determined using conventional CT. Furthermore, no significant difference in the volume of the bladder at each phase of the voiding process was detected between 640-slice DVCT and conventional CT. The results indicate that 640-slice DVCT can accurately evaluate the status of the male posterior urethra and female urethra. In conclusion, 640-slice DVCT is able to multi-dimensionally and dynamically present changes in bladder volume and urine flow rate, and could obtain similar results to conventional CT in detecting urine volume, as well as the status of the male posterior urethra and female urethra. PMID:29467853

  2. Approaches to predicting potential impacts of climate change on forest disease: An example with Armillaria root disease

    Science.gov (United States)

    Ned B. Klopfenstein; Mee-Sook Kim; John W. Hanna; Bryce A. Richardson; John E. Lundquist

    2011-01-01

    Climate change will likely have dramatic impacts on forest health because many forest trees could become maladapted to climate. Furthermore, climate change will have additional impacts on forest health through changes in the distribution and severity of forest disease. Methods are needed to predict the influence of climate change on forest disease so that appropriate...

  3. Distill: a suite of web servers for the prediction of one-, two- and three-dimensional structural features of proteins

    Directory of Open Access Journals (Sweden)

    Walsh Ian

    2006-09-01

    Full Text Available Abstract Background We describe Distill, a suite of servers for the prediction of protein structural features: secondary structure; relative solvent accessibility; contact density; backbone structural motifs; residue contact maps at 6, 8 and 12 Angstrom; coarse protein topology. The servers are based on large-scale ensembles of recursive neural networks and trained on large, up-to-date, non-redundant subsets of the Protein Data Bank. Together with structural feature predictions, Distill includes a server for prediction of Cα traces for short proteins (up to 200 amino acids. Results The servers are state-of-the-art, with secondary structure predicted correctly for nearly 80% of residues (currently the top performance on EVA, 2-class solvent accessibility nearly 80% correct, and contact maps exceeding 50% precision on the top non-diagonal contacts. A preliminary implementation of the predictor of protein Cα traces featured among the top 20 Novel Fold predictors at the last CASP6 experiment as group Distill (ID 0348. The majority of the servers, including the Cα trace predictor, now take into account homology information from the PDB, when available, resulting in greatly improved reliability. Conclusion All predictions are freely available through a simple joint web interface and the results are returned by email. In a single submission the user can send protein sequences for a total of up to 32k residues to all or a selection of the servers. Distill is accessible at the address: http://distill.ucd.ie/distill/.

  4. Advanced 2-dimensional quantitative coronary angiographic analysis for prediction of fractional flow reserve in intermediate coronary stenoses.

    Science.gov (United States)

    Opolski, Maksymilian P; Pregowski, Jerzy; Kruk, Mariusz; Kepka, Cezary; Staruch, Adam D; Witkowski, Adam

    2014-07-01

    The widespread clinical application of coronary computed tomography angiography (CCTA) has resulted in increased referral patterns of patients with intermediate coronary stenoses to invasive coronary angiography. We evaluated the application of advanced quantitative coronary angiography (A-QCA) for predicting fractional flow reserve (FFR) in intermediate coronary lesions detected on CCTA. Fifty-six patients with 66 single intermediate coronary lesions (≥ 50% to 80% stenosis) on CCTA prospectively underwent coronary angiography and FFR. A-QCA including calculation of the Poiseuille-based index defined as the ratio of lesion length to the fourth power of the minimal lumen diameter (MLD) was performed. Significant stenosis was defined as FFR ≤ 0.80. The mean FFR was 0.86 ± 0.09, and 18 lesions (27%) were functionally significant. FFR correlated with lesion length (R=-0.303, P=0.013), MLD (R=0.527, P44%, and >69%, respectively (maximum negative predictive value of 94% for MLA, maximum positive predictive value of 58% for diameter stenosis). The Poiseuille-based index was the most accurate (C statistic 0.86, sensitivity 100%, specificity 71%, positive predictive value 56%, and negative predictive value 100%) predictor of FFR ≤ 0.80, but showed the lowest interobserver agreement (intraclass correlation coefficient 0.37). A-QCA might be used to rule out significant ischemia in intermediate stenoses detected by CCTA. The diagnostic application of the Poiseuille-based angiographic index is precluded by its high interobserver variability.

  5. Chaos and the (un)predictability of evolution in a changing environment.

    Science.gov (United States)

    Rego-Costa, Artur; Débarre, Florence; Chevin, Luis-Miguel

    2018-02-01

    Among the factors that may reduce the predictability of evolution, chaos, characterized by a strong dependence on initial conditions, has received much less attention than randomness due to genetic drift or environmental stochasticity. It was recently shown that chaos in phenotypic evolution arises commonly under frequency-dependent selection caused by competitive interactions mediated by many traits. This result has been used to argue that chaos should often make evolutionary dynamics unpredictable. However, populations also evolve largely in response to external changing environments, and such environmental forcing is likely to influence the outcome of evolution in systems prone to chaos. We investigate how a changing environment causing oscillations of an optimal phenotype interacts with the internal dynamics of an eco-evolutionary system that would be chaotic in a constant environment. We show that strong environmental forcing can improve the predictability of evolution by reducing the probability of chaos arising, and by dampening the magnitude of chaotic oscillations. In contrast, weak forcing can increase the probability of chaos, but it also causes evolutionary trajectories to track the environment more closely. Overall, our results indicate that, although chaos may occur in evolution, it does not necessarily undermine its predictability. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  6. Structural integrity of frontostriatal connections predicts longitudinal changes in self-esteem.

    Science.gov (United States)

    Chavez, Robert S; Heatherton, Todd F

    2017-06-01

    Diverse neurological and psychiatric conditions are marked by a diminished sense of positive self-regard, and reductions in self-esteem are associated with risk for these disorders. Recent evidence has shown that the connectivity of frontostriatal circuitry reflects individual differences in self-esteem. However, it remains an open question as to whether the integrity of these connections can predict self-esteem changes over larger timescales. Using diffusion magnetic resonance imaging and probabilistic tractography, we demonstrate that the integrity of white matter pathways linking the medial prefrontal cortex to the ventral striatum predicts changes in self-esteem 8 months after initial scanning in a sample of 30 young adults. Individuals with greater integrity of this pathway during the scanning session at Time 1 showed increased levels of self-esteem at follow-up, whereas individuals with lower integrity showed stifled or decreased levels of self-esteem. These results provide evidence that frontostriatal white matter integrity predicts the trajectory of self-esteem development in early adulthood, which may contribute to blunted levels of positive self-regard seen in multiple psychiatric conditions, including depression and anxiety.

  7. Hydrological responses to climatic changes in the Yellow River basin, China: Climatic elasticity and streamflow prediction

    Science.gov (United States)

    Zhang, Qiang; Liu, Jianyu; Singh, Vijay P.; Shi, Peijun; Sun, Peng

    2017-11-01

    Prediction of streamflow of the Yellow River basin was done using downscaled precipitation and temperature based on outputs of 12 GCMs under RCP2.6 and RCP8.5 scenarios. Streamflow changes of 37 tributaries of the Yellow River basin during 2070-2099 were predicted related to different GCMs and climatic scenarios using Budyko framework. The results indicated that: (1) When compared to precipitation and temperature during 1960-1979, increasing precipitation and temperature are dominant during 2070-2099. Particularly, under RCP8.5, increase of 10% and 30% can be detected for precipitation and temperature respectively; (2) Precipitation changes have larger fractional contribution to streamflow changes than temperature changes, being the major driver for spatial and temporal patterns of water resources across the Yellow River basin; (3) 2070-2099 period will witness increased streamflow depth and decreased streamflow can be found mainly in the semi-humid regions and headwater regions of the Yellow River basin, which can be attributed to more significant increase of temperature than precipitation in these regions; (4) Distinctly different picture of streamflow changes can be observed with consideration of different outputs of GCMs which can be attributed to different outputs of GCMs under different scenarios. Even so, under RCP2.6 and RCP8.5 scenarios, 36.8% and 71.1% of the tributaries of the Yellow River basin are dominated by increasing streamflow. The results of this study are of theoretical and practical merits in terms of management of water resources and also irrigated agriculture under influences of changing climate.

  8. Preoperative Prediction of Ki-67 Labeling Index By Three-dimensional CT Image Parameters for Differential Diagnosis Of Ground-Glass Opacity (GGO.

    Directory of Open Access Journals (Sweden)

    Mingzheng Peng

    Full Text Available The aim of this study was to predict Ki-67 labeling index (LI preoperatively by three-dimensional (3D CT image parameters for pathologic assessment of GGO nodules. Diameter, total volume (TV, the maximum CT number (MAX, average CT number (AVG and standard deviation of CT number within the whole GGO nodule (STD were measured by 3D CT workstation. By detection of immunohistochemistry and Image Software Pro Plus 6.0, different Ki-67 LI were measured and statistically analyzed among preinvasive adenocarcinoma (PIA, minimally invasive adenocarcinoma (MIA and invasive adenocarcinoma (IAC. Receiver operating characteristic (ROC curve, Spearman correlation analysis and multiple linear regression analysis with cross-validation were performed to further research a quantitative correlation between Ki-67 labeling index and radiological parameters. Diameter, TV, MAX, AVG and STD increased along with PIA, MIA and IAC significantly and consecutively. In the multiple linear regression model by a stepwise way, we obtained an equation: prediction of Ki-67 LI=0.022*STD+0.001* TV+2.137 (R=0.595, R's square=0.354, p<0.001, which can predict Ki-67 LI as a proliferative marker preoperatively. Diameter, TV, MAX, AVG and STD could discriminate pathologic categories of GGO nodules significantly. Ki-67 LI of early lung adenocarcinoma presenting GGO can be predicted by radiologic parameters based on 3D CT for differential diagnosis.

  9. Wave climate change, coastline response and hazard prediction in New South Wales, Australia

    International Nuclear Information System (INIS)

    Goodwin, Ian D.; Verdon, Danielle; Cowell, Peter

    2007-01-01

    Full text: Full text: Considerable research effort has been directed towards understanding and the gross prediction of shoreline response to sea level rise (eg. Cowell ef a/. 2003a, b). In contrast, synoptic prediction of changes in the planform configuration of shorelines in response to changes in wind and wave climates over many decades has been limited by the lack of geohistorical data on shoreline alignment evolution and long time series of wave climate. This paper presents new data sets on monthly mean wave direction variability based on: a. Waverider buoy data; b. a reconstruction of monthly mid-shelf wave direction, 1877 to 2002 AD from historical MSLP data (Goodwin 2005); and c. a multi-decadal reconstruction of wave direction, in association with the Interdecadal Pacific Oscillation and the Southern Annular Mode of climate variability, covering the past millennium. A model of coastline response to the wave climate variability is presented for northern and central New South Wales (NSW) for decadal to multi-decadal time scales, and is based on instrumental and geohistorical data. The sensitivity of the coastline position and alignment, and beach state to mean and extreme wave climate changes is demonstrated (e.g. Goodwin et al. 2006). State changes in geometric shoreline alignment rotation, sand volume (progradation/recession) for NSW and mean wave direction, are shown to be in agreement with the low-frequency change in Pacific-wide climate. Synoptic typing of climate patterns using Self Organised Mapping methods is used to downscale CSIRO GCM output for this century. The synoptic types are correlated to instrumental wave climate data and coastal behaviour. The shifts in downscaled synoptic types for 2030 and 2070 AD are then used as the basis for predicting mean wave climate changes, coastal behaviour and hazards along the NSW coastline. The associated coastal hazards relate to the definition of coastal land loss through rising sea levels and shoreline

  10. Prediction of Android and Gynoid Body Adiposity via a Three-dimensional Stereovision Body Imaging System and Dual-Energy X-ray Absorptiometry.

    Science.gov (United States)

    Lee, Jane J; Freeland-Graves, Jeanne H; Pepper, M Reese; Stanforth, Philip R; Xu, Bugao

    2015-01-01

    Current methods for measuring regional body fat are expensive and inconvenient compared to the relative cost-effectiveness and ease of use of a stereovision body imaging (SBI) system. The primary goal of this research is to develop prediction models for android and gynoid fat by body measurements assessed via SBI and dual-energy x-ray absorptiometry (DXA). Subsequently, mathematical equations for prediction of total and regional (trunk, leg) body adiposity were established via parameters measured by SBI and DXA. A total of 121 participants were randomly assigned into primary and cross-validation groups. Body measurements were obtained via traditional anthropometrics, SBI, and DXA. Multiple regression analysis was conducted to develop mathematical equations by demographics and SBI assessed body measurements as independent variables and body adiposity (fat mass and percentage fat) as dependent variables. The validity of the prediction models was evaluated by a split sample method and Bland-Altman analysis. The R(2) of the prediction equations for fat mass and percentage body fat were 93.2% and 76.4% for android and 91.4% and 66.5% for gynoid, respectively. The limits of agreement for the fat mass and percentage fat were -0.06 ± 0.87 kg and -0.11% ± 1.97% for android and -0.04 ± 1.58 kg and -0.19% ± 4.27% for gynoid. Prediction values for fat mass and percentage fat were 94.6% and 88.9% for total body, 93.9% and 71.0% for trunk, and 92.4% and 64.1% for leg, respectively. The three-dimensional (3D) SBI produces reliable parameters that can predict android and gynoid as well as total and regional (trunk, leg) fat mass.

  11. Continuously Growing Rodent Molars Result from a Predictable Quantitative Evolutionary Change over 50 Million Years

    Directory of Open Access Journals (Sweden)

    Vagan Tapaltsyan

    2015-05-01

    Full Text Available The fossil record is widely informative about evolution, but fossils are not systematically used to study the evolution of stem-cell-driven renewal. Here, we examined evolution of the continuous growth (hypselodonty of rodent molar teeth, which is fuelled by the presence of dental stem cells. We studied occurrences of 3,500 North American rodent fossils, ranging from 50 million years ago (mya to 2 mya. We examined changes in molar height to determine whether evolution of hypselodonty shows distinct patterns in the fossil record, and we found that hypselodont taxa emerged through intermediate forms of increasing crown height. Next, we designed a Markov simulation model, which replicated molar height increases throughout the Cenozoic and, moreover, evolution of hypselodonty. Thus, by extension, the retention of the adult stem cell niche appears to be a predictable quantitative rather than a stochastic qualitative process. Our analyses predict that hypselodonty will eventually become the dominant phenotype.

  12. Phase change predictions for liquid fuel in contact with steel structure using the heat conduction equation

    Energy Technology Data Exchange (ETDEWEB)

    Brear, D.J. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-01-01

    When liquid fuel makes contact with steel structure the liquid can freeze as a crust and the structure can melt at the surface. The melting and freezing processes that occur can influence the mode of fuel freezing and hence fuel relocation. Furthermore the temperature gradients established in the fuel and steel phases determine the rate at which heat is transferred from fuel to steel. In this memo the 1-D transient heat conduction equations are applied to the case of initially liquid UO{sub 2} brought into contact with solid steel using up-to-date materials properties. The solutions predict criteria for fuel crust formation and steel melting and provide a simple algorithm to determine the interface temperature when one or both of the materials is undergoing phase change. The predicted steel melting criterion is compared with available experimental results. (author)

  13. Phase change predictions for liquid fuel in contact with steel structure using the heat conduction equation

    International Nuclear Information System (INIS)

    Brear, D.J.

    1998-01-01

    When liquid fuel makes contact with steel structure the liquid can freeze as a crust and the structure can melt at the surface. The melting and freezing processes that occur can influence the mode of fuel freezing and hence fuel relocation. Furthermore the temperature gradients established in the fuel and steel phases determine the rate at which heat is transferred from fuel to steel. In this memo the 1-D transient heat conduction equations are applied to the case of initially liquid UO 2 brought into contact with solid steel using up-to-date materials properties. The solutions predict criteria for fuel crust formation and steel melting and provide a simple algorithm to determine the interface temperature when one or both of the materials is undergoing phase change. The predicted steel melting criterion is compared with available experimental results. (author)

  14. Can phenological models predict tree phenology accurately under climate change conditions?

    Science.gov (United States)

    Chuine, Isabelle; Bonhomme, Marc; Legave, Jean Michel; García de Cortázar-Atauri, Inaki; Charrier, Guillaume; Lacointe, André; Améglio, Thierry

    2014-05-01

    The onset of the growing season of trees has been globally earlier by 2.3 days/decade during the last 50 years because of global warming and this trend is predicted to continue according to climate forecast. The effect of temperature on plant phenology is however not linear because temperature has a dual effect on bud development. On one hand, low temperatures are necessary to break bud dormancy, and on the other hand higher temperatures are necessary to promote bud cells growth afterwards. Increasing phenological changes in temperate woody species have strong impacts on forest trees distribution and productivity, as well as crops cultivation areas. Accurate predictions of trees phenology are therefore a prerequisite to understand and foresee the impacts of climate change on forests and agrosystems. Different process-based models have been developed in the last two decades to predict the date of budburst or flowering of woody species. They are two main families: (1) one-phase models which consider only the ecodormancy phase and make the assumption that endodormancy is always broken before adequate climatic conditions for cell growth occur; and (2) two-phase models which consider both the endodormancy and ecodormancy phases and predict a date of dormancy break which varies from year to year. So far, one-phase models have been able to predict accurately tree bud break and flowering under historical climate. However, because they do not consider what happens prior to ecodormancy, and especially the possible negative effect of winter temperature warming on dormancy break, it seems unlikely that they can provide accurate predictions in future climate conditions. It is indeed well known that a lack of low temperature results in abnormal pattern of bud break and development in temperate fruit trees. An accurate modelling of the dormancy break date has thus become a major issue in phenology modelling. Two-phases phenological models predict that global warming should delay

  15. Gestational changes in left ventricular myocardial contractile function: new insights from two-dimensional speckle tracking echocardiography.

    Science.gov (United States)

    Sengupta, Shantanu P; Bansal, Manish; Hofstra, Leonard; Sengupta, Partho P; Narula, Jagat

    2017-01-01

    The goal of this study was to evaluate the impact of pregnancy and labor on left ventricular (LV) myocardial mechanics using speckle tracking echocardiography (STE). Pregnancy is characterized by profound hormonal and hemodynamic alterations that directly or indirectly influence cardiac structure and function. However, the impact of these changes on left ventricular (LV) myocardial contractile function has not been fully elucidated. In this prospective, longitudinal study, 35 pregnant women underwent serial clinical and echocardiographic evaluation during each trimester and at labor. Two dimensional STE was performed to measure global LV longitudinal, circumferential and radial strain (GLS, GCS and GRS, respectively). Similar data obtained from 20 nulliparous, age-matched women were used as control. All strain values during pregnancy were adjusted for age and hemodynamic parameters. There was a progressive increase in heart rate, systolic and diastolic blood pressure, cardiac output and LV stroke-work during pregnancy. LV end-diastolic and end-systolic volumes also increased progressively but LV ejection fraction remained unaltered, except for slight reduction during the second trimester. Compared to the controls, GLS and GCS were reduced in the first trimester itself (GLS -22.39 ± 5.43 % vs. -18.66 ± 0.64 %, P 0.0002; GCS -20.84 ± 3.20 vs. -17.88 ± 0.09, P counterbalancing changes in the myocardial mechanics. LV longitudinal and circumferential strain are reduced whereas radial strain is increased. These counterbalancing changes serve to maintain overall LV ejection performance within a normal range and enable the maternal heart to meet the hemodynamic demands of pregnancy and labor.

  16. Prediction of Tubal Ectopic Pregnancy Using Offline Analysis of 3-Dimensional Transvaginal Ultrasonographic Data Sets: An Interobserver and Diagnostic Accuracy Study.

    Science.gov (United States)

    Infante, Fernando; Espada Vaquero, Mercedes; Bignardi, Tommaso; Lu, Chuan; Testa, Antonia C; Fauchon, David; Epstein, Elisabeth; Leone, Francesco P G; Van den Bosch, Thierry; Martins, Wellington P; Condous, George

    2017-12-08

    To assess interobserver reproducibility in detecting tubal ectopic pregnancies by reading data sets from 3-dimensional (3D) transvaginal ultrasonography (TVUS) and comparing it with real-time 2-dimensional (2D) TVUS. Images were initially classified as showing pregnancies of unknown location or tubal ectopic pregnancies on real time 2D TVUS by an experienced sonologist, who acquired 5 3D volumes. Data sets were analyzed offline by 5 observers who had to classify each case as ectopic pregnancy or pregnancy of unknown location. The interobserver reproducibility was evaluated by the Fleiss κ statistic. The performance of each observer in predicting ectopic pregnancies was compared to that of the experienced sonologist. Women were followed until they were reclassified as follows: (1) failed pregnancy of unknown location; (2) intrauterine pregnancy; (3) ectopic pregnancy; or (4) persistent pregnancy of unknown location. Sixty-one women were included. The agreement between reading offline 3D data sets and the first real-time 2D TVUS was very good (80%-82%; κ = 0.89). The overall interobserver agreement among observers reading offline 3D data sets was moderate (κ = 0.52). The diagnostic performance of experienced observers reading offline 3D data sets had accuracy of 78.3% to 85.0%, sensitivity of 66.7% to 81.3%, specificity of 79.5% to 88.4%, positive predictive value of 57.1% to 72.2%, and negative predictive value of 87.5% to 91.3%, compared to the experienced sonologist's real-time 2D TVUS: accuracy of 94.5%, sensitivity of 94.4%, specificity of 94.5%, positive predictive value of 85.0%, and negative predictive value of 98.1%. The diagnostic accuracy of 3D TVUS by reading offline data sets for predicting ectopic pregnancies is dependent on experience. Reading only static 3D data sets without clinical information does not match the diagnostic performance of real time 2D TVUS combined with clinical information obtained during the scan. © 2017 by the American

  17. Measuring interfraction and intrafraction lung function changes during radiation therapy using four-dimensional cone beam CT ventilation imaging

    International Nuclear Information System (INIS)

    Kipritidis, John; Keall, Paul J.; Hugo, Geoffrey; Weiss, Elisabeth; Williamson, Jeffrey

    2015-01-01

    Purpose: Adaptive ventilation guided radiation therapy could minimize the irradiation of healthy lung based on repeat lung ventilation imaging (VI) during treatment. However the efficacy of adaptive ventilation guidance requires that interfraction (e.g., week-to-week), ventilation changes are not washed out by intrafraction (e.g., pre- and postfraction) changes, for example, due to patient breathing variability. The authors hypothesize that patients undergoing lung cancer radiation therapy exhibit larger interfraction ventilation changes compared to intrafraction function changes. To test this, the authors perform the first comparison of interfraction and intrafraction lung VI pairs using four-dimensional cone beam CT ventilation imaging (4D-CBCT VI), a novel technique for functional lung imaging. Methods: The authors analyzed a total of 215 4D-CBCT scans acquired for 19 locally advanced non-small cell lung cancer (LA-NSCLC) patients over 4–6 weeks of radiation therapy. This set of 215 scans was sorted into 56 interfraction pairs (including first day scans and each of treatment weeks 2, 4, and 6) and 78 intrafraction pairs (including pre/postfraction scans on the same-day), with some scans appearing in both sets. VIs were obtained from the Jacobian determinant of the transform between the 4D-CBCT end-exhale and end-inhale images after deformable image registration. All VIs were deformably registered to their corresponding planning CT and normalized to account for differences in breathing effort, thus facilitating image comparison in terms of (i) voxelwise Spearman correlations, (ii) mean image differences, and (iii) gamma pass rates for all interfraction and intrafraction VI pairs. For the side of the lung ipsilateral to the tumor, we applied two-sided t-tests to determine whether interfraction VI pairs were more different than intrafraction VI pairs. Results: The (mean ± standard deviation) Spearman correlation for interfraction VI pairs was r - Inter =0.52±0

  18. Measuring interfraction and intrafraction lung function changes during radiation therapy using four-dimensional cone beam CT ventilation imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kipritidis, John, E-mail: john.kipritidis@sydney.edu.au; Keall, Paul J. [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney NSW 2006 (Australia); Hugo, Geoffrey; Weiss, Elisabeth; Williamson, Jeffrey [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia 23298 (United States)

    2015-03-15

    Purpose: Adaptive ventilation guided radiation therapy could minimize the irradiation of healthy lung based on repeat lung ventilation imaging (VI) during treatment. However the efficacy of adaptive ventilation guidance requires that interfraction (e.g., week-to-week), ventilation changes are not washed out by intrafraction (e.g., pre- and postfraction) changes, for example, due to patient breathing variability. The authors hypothesize that patients undergoing lung cancer radiation therapy exhibit larger interfraction ventilation changes compared to intrafraction function changes. To test this, the authors perform the first comparison of interfraction and intrafraction lung VI pairs using four-dimensional cone beam CT ventilation imaging (4D-CBCT VI), a novel technique for functional lung imaging. Methods: The authors analyzed a total of 215 4D-CBCT scans acquired for 19 locally advanced non-small cell lung cancer (LA-NSCLC) patients over 4–6 weeks of radiation therapy. This set of 215 scans was sorted into 56 interfraction pairs (including first day scans and each of treatment weeks 2, 4, and 6) and 78 intrafraction pairs (including pre/postfraction scans on the same-day), with some scans appearing in both sets. VIs were obtained from the Jacobian determinant of the transform between the 4D-CBCT end-exhale and end-inhale images after deformable image registration. All VIs were deformably registered to their corresponding planning CT and normalized to account for differences in breathing effort, thus facilitating image comparison in terms of (i) voxelwise Spearman correlations, (ii) mean image differences, and (iii) gamma pass rates for all interfraction and intrafraction VI pairs. For the side of the lung ipsilateral to the tumor, we applied two-sided t-tests to determine whether interfraction VI pairs were more different than intrafraction VI pairs. Results: The (mean ± standard deviation) Spearman correlation for interfraction VI pairs was r{sup -}{sub Inter

  19. Post-anoxic quantitative MRI changes may predict emergence from coma and functional outcomes at discharge.

    Science.gov (United States)

    Reynolds, Alexandra S; Guo, Xiaotao; Matthews, Elizabeth; Brodie, Daniel; Rabbani, Leroy E; Roh, David J; Park, Soojin; Claassen, Jan; Elkind, Mitchell S V; Zhao, Binsheng; Agarwal, Sachin

    2017-08-01

    Traditional predictors of neurological prognosis after cardiac arrest are unreliable after targeted temperature management. Absence of pupillary reflexes remains a reliable predictor of poor outcome. Diffusion-weighted imaging has emerged as a potential predictor of recovery, and here we compare imaging characteristics to pupillary exam. We identified 69 patients who had MRIs within seven days of arrest and used a semi-automated algorithm to perform quantitative volumetric analysis of apparent diffusion coefficient (ADC) sequences at various thresholds. Area under receiver operating characteristic curves (ROC-AUC) were estimated to compare predictive values of quantitative MRI with pupillary exam at days 3, 5 and 7 post-arrest, for persistence of coma and functional outcomes at discharge. Cerebral Performance Category scores of 3-4 were considered poor outcome. Excluding patients where life support was withdrawn, ≥2.8% diffusion restriction of the entire brain at an ADC of ≤650×10 -6 m 2 /s was 100% specific and 68% sensitive for failure to wake up from coma before discharge. The ROC-AUC of ADC changes at ≤450×10 -6 mm 2 /s and ≤650×10 -6 mm 2 /s were significantly superior in predicting failure to wake up from coma compared to bilateral absence of pupillary reflexes. Among survivors, >0.01% of diffusion restriction of the entire brain at an ADC ≤450×10 -6 m 2 /s was 100% specific and 46% sensitive for poor functional outcome at discharge. The ROC curve predicting poor functional outcome at ADC ≤450×10 -6 mm 2 /s had an AUC of 0.737 (0.574-0.899, p=0.04). Post-anoxic diffusion changes using quantitative brain MRI may aid in predicting persistent coma and poor functional outcomes at hospital discharge. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Switch region for pathogenic structural change in conformational disease and its prediction.

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2010-01-01

    Full Text Available Many diseases are believed to be related to abnormal protein folding. In the first step of such pathogenic structural changes, misfolding occurs in regions important for the stability of the native structure. This destabilizes the normal protein conformation, while exposing the previously hidden aggregation-prone regions, leading to subsequent errors in the folding pathway. Sites involved in this first stage can be deemed switch regions of the protein, and can represent perfect binding targets for drugs to block the abnormal folding pathway and prevent pathogenic conformational changes. In this study, a prediction algorithm for the switch regions responsible for the start of pathogenic structural changes is introduced. With an accuracy of 94%, this algorithm can successfully find short segments covering sites significant in triggering conformational diseases (CDs and is the first that can predict switch regions for various CDs. To illustrate its effectiveness in dealing with urgent public health problems, the reason of the increased pathogenicity of H5N1 influenza virus is analyzed; the mechanisms of the pandemic swine-origin 2009 A(H1N1 influenza virus in overcoming species barriers and in infecting large number of potential patients are also suggested. It is shown that the algorithm is a potential tool useful in the study of the pathology of CDs because: (1 it can identify the origin of pathogenic structural conversion with high sensitivity and specificity, and (2 it provides an ideal target for clinical treatment.

  1. Can tail damage outbreaks in the pig be predicted by behavioural change?

    Science.gov (United States)

    Larsen, Mona Lilian Vestbjerg; Andersen, Heidi Mai-Lis; Pedersen, Lene Juul

    2016-03-01

    Tail biting, resulting in outbreaks of tail damage in pigs, is a multifactorial welfare and economic problem which is usually partly prevented through tail docking. According to European Union legislation, tail docking is not allowed on a routine basis; thus there is a need for alternative preventive methods. One strategy is the surveillance of the pigs' behaviour for known preceding indicators of tail damage, which makes it possible to predict a tail damage outbreak and prevent it in proper time. This review discusses the existing literature on behavioural changes observed prior to a tail damage outbreak. Behaviours found to change prior to an outbreak include increased activity level, increased performance of enrichment object manipulation, and a changed proportion of tail posture with more tails between the legs. Monitoring these types of behaviours is also discussed for the purpose of developing an automatic warning system for tail damage outbreaks, with activity level showing promising results for being monitored automatically. Encouraging results have been found so far for the development of an automatic warning system; however, there is a need for further investigation and development, starting with the description of the temporal development of the predictive behaviour in relation to tail damage outbreaks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Prediction of hospital mortality by changes in the estimated glomerular filtration rate (eGFR).

    LENUS (Irish Health Repository)

    Berzan, E

    2015-03-01

    Deterioration of physiological or laboratory variables may provide important prognostic information. We have studied whether a change in estimated glomerular filtration rate (eGFR) value calculated using the (Modification of Diet in Renal Disease (MDRD) formula) over the hospital admission, would have predictive value. An analysis was performed on all emergency medical hospital episodes (N = 61964) admitted between 1 January 2002 and 31 December 2011. A stepwise logistic regression model examined the relationship between mortality and change in renal function from admission to discharge. The fully adjusted Odds Ratios (OR) for 5 classes of GFR deterioration showed a stepwise increased risk of 30-day death with OR\\'s of 1.42 (95% CI: 1.20, 1.68), 1.59 (1.27, 1.99), 2.71 (2.24, 3.27), 5.56 (4.54, 6.81) and 11.9 (9.0, 15.6) respectively. The change in eGFR during a clinical episode, following an emergency medical admission, powerfully predicts the outcome.

  3. Land use change and prediction in the Baimahe Basin using GIS and CA-Markov model

    International Nuclear Information System (INIS)

    Wang, Shixu; Zhang, Zulu; Wang, Xue

    2014-01-01

    Using ArcGIS and IDRISI, land use dynamics and Shannon entropy information were applied in this paper to analyze the quantity and structure change in the Baimahe Basin from 1996 to 2008. A CA-Markov model was applied to predict the land use patterns in 2020. Results showed that farmland, forest and construction land are the dominant land use types in the Baimahe Basin. From 1996 to 2008, areas of farmland and forest decreased and other land use types increased, with construction land increasing the most. The prediction results showed that the changes in land use patterns from 2008 to 2020 would be the same with those from 1996 to 2008. Main changes are the transiting out of farmland and forest and the transiting in of construction land. The order degree of the whole basin goes on decreasing. Measures of farmland protection and grain for green projects should be adopted to enhance the stability of land use system in the Baimahe Basin in order to promote regional sustainable development

  4. The predictive power of the business and bank sentiment of firms : A high-dimensional Granger causality approach

    NARCIS (Netherlands)

    Wilms, I.; Gelper, S.E.C.; Croux, C.

    2016-01-01

    We study the predictive power of industry-specific economic sentiment indicators for future macro-economic developments. In addition to the sentiment of firms towards their own business situation, we study their sentiment with respect to the banking sector – their main credit providers. The use of

  5. Comparison of conventional versus three-dimensional ultrasound in fetal renal pelvis measurement and their potential prediction of neonatal uropathies

    NARCIS (Netherlands)

    Duin, L. K.; Nijhuis, J. G.; Scherjon, S. A.; Vossen, M.; Willekes, C.

    2016-01-01

    Objective: To establish a threshold value for fetal renal pelvis dilatation measured by automatic volume calculation (SonoAVC) in the third trimester of pregnancy to predict neonatal uropathies, and to compare these results with conventional antero-posterior (AP) measurement, fetal kidney 3D volume

  6. Coupled, parabolic-marching method for the prediction of three-dimensional viscous incompressible turbomachinery flows. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Kirtley, K.R.

    1988-10-01

    A new coupled parabolic-marching method was developed to solve the three-dimensional incompressible Navier-Stokes equation for turbulent turbomachinery flows. Earlier space-marching methods were analyzed to determine their global stability during multiple passes of the computational domain. The methods were found to be unconditionally unstable even when an extra equation for the pressure, namely the Poisson equation for the pressure, was used between passes of the domain. Relaxation of one constraint during the solution process was found to be necessary for the successful calculation of a complex flow.Thus, the method of pseudocompressibility was introduced into the partially parabolized Navier-Stokes equation to relax the mass flow constraint during a forward-marching integration as well as globally stable during successive passes of the domain. With consistent discretization, the new method was found to be convergent.

  7. A Bayesian Belief Network framework to predict SOC stock change: the Veneto region (Italy) case study

    Science.gov (United States)

    Dal Ferro, Nicola; Quinn, Claire Helen; Morari, Francesco

    2017-04-01

    A key challenge for soil scientists is predicting agricultural management scenarios that combine crop productions with high standards of environmental quality. In this context, reversing the soil organic carbon (SOC) decline in croplands is required for maintaining soil fertility and contributing to mitigate GHGs emissions. Bayesian belief networks (BBN) are probabilistic models able to accommodate uncertainty and variability in the predictions of the impacts of management and environmental changes. By linking multiple qualitative and quantitative variables in a cause-and-effect relationships, BBNs can be used as a decision support system at different spatial scales to find best management strategies in the agroecosystems. In this work we built a BBN to model SOC dynamics (0-30 cm layer) in the low-lying plain of Veneto region, north-eastern Italy, and define best practices leading to SOC accumulation and GHGs (CO2-equivalent) emissions reduction. Regional pedo-climatic, land use and management information were combined with experimental and modelled data on soil C dynamics as natural and anthropic key drivers affecting SOC stock change. Moreover, utility nodes were introduced to determine optimal decisions for mitigating GHGs emissions from croplands considering also three different IPCC climate scenarios. The network was finally validated with real field data in terms of SOC stock change. Results showed that the BBN was able to model real SOC stock changes, since validation slightly overestimated SOC reduction (+5%) at the expenses of its accumulation. At regional level, probability distributions showed 50% of SOC loss, while only 17% of accumulation. However, the greatest losses (34%) were associated with low reduction rates (100-500 kg C ha-1 y-1), followed by 33% of stabilized conditions (-100 < SOC < 100 kg ha-1 y-1). Land use management (especially tillage operations and soil cover) played a primary role to affect SOC stock change, while climate conditions

  8. Revisiting concepts of thermal physiology: Predicting responses of mammals to climate change.

    Science.gov (United States)

    Mitchell, Duncan; Snelling, Edward P; Hetem, Robyn S; Maloney, Shane K; Strauss, Willem Maartin; Fuller, Andrea

    2018-02-26

    The accuracy of predictive models (also known as mechanistic or causal models) of animal responses to climate change depends on properly incorporating the principles of heat transfer and thermoregulation into those models. Regrettably, proper incorporation of these principles is not always evident. We have revisited the relevant principles of thermal physiology and analysed how they have been applied in predictive models of large mammals, which are particularly vulnerable, to climate change. We considered dry heat exchange, evaporative heat transfer, the thermoneutral zone and homeothermy, and we examined the roles of size and shape in the thermal physiology of large mammals. We report on the following misconceptions in influential predictive models: underestimation of the role of radiant heat transfer, misassignment of the role and misunderstanding of the sustainability of evaporative cooling, misinterpretation of the thermoneutral zone as a zone of thermal tolerance or as a zone of sustainable energetics, confusion of upper critical temperature and critical thermal maximum, overestimation of the metabolic energy cost of evaporative cooling, failure to appreciate that the current advantages of size and shape will become disadvantageous as climate change advances, misassumptions about skin temperature and, lastly, misconceptions about the relationship between body core temperature and its variability with body mass in large mammals. Not all misconceptions invalidate the models, but we believe that preventing inappropriate assumptions from propagating will improve model accuracy, especially as models progress beyond their current typically static format to include genetic and epigenetic adaptation that can result in phenotypic plasticity. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.

  9. Predicting hydrological response to forest changes by simple statistical models: the selection of the best indicator of forest changes with a hydrological perspective

    Science.gov (United States)

    Ning, D.; Zhang, M.; Ren, S.; Hou, Y.; Yu, L.; Meng, Z.

    2017-01-01

    Forest plays an important role in hydrological cycle, and forest changes will inevitably affect runoff across multiple spatial scales. The selection of a suitable indicator for forest changes is essential for predicting forest-related hydrological response. This study used the Meijiang River, one of the headwaters of the Poyang Lake as an example to identify the best indicator of forest changes for predicting forest change-induced hydrological responses. Correlation analysis was conducted first to detect the relationships between monthly runoff and its predictive variables including antecedent monthly precipitation and indicators for forest changes (forest coverage, vegetation indices including EVI, NDVI, and NDWI), and by use of the identified predictive variables that were most correlated with monthly runoff, multiple linear regression models were then developed. The model with best performance identified in this study included two independent variables -antecedent monthly precipitation and NDWI. It indicates that NDWI is the best indicator of forest change in hydrological prediction while forest coverage, the most commonly used indicator of forest change is insignificantly related to monthly runoff. This highlights the use of vegetation index such as NDWI to indicate forest changes in hydrological studies. This study will provide us with an efficient way to quantify the hydrological impact of large-scale forest changes in the Meijiang River watershed, which is crucial for downstream water resource management and ecological protection in the Poyang Lake basin.

  10. Distributional changes and range predictions of downy brome (Bromus tectorum) in Rocky Mountain National Park

    Science.gov (United States)

    Bromberg, J.E.; Kumar, S.; Brown, C.S.; Stohlgren, T.J.

    2011-01-01

    Downy brome (Bromus tectorum L.), an invasive winter annual grass, may be increasing in extent and abundance at high elevations in the western United States. This would pose a great threat to high-elevation plant communities and resources. However, data to track this species in high-elevation environments are limited. To address changes in the distribution and abundance of downy brome and the factors most associated with its occurrence, we used field sampling and statistical methods, and niche modeling. In 2007, we resampled plots from two vegetation surveys in Rocky Mountain National Park for presence and cover of downy brome. One survey was established in 1993 and had been resampled in 1999. The other survey was established in 1996 and had not been resampled until our study. Although not all comparisons between years demonstrated significant changes in downy brome abundance, its mean cover increased nearly fivefold from 1993 (0.7%) to 2007 (3.6%) in one of the two vegetation surveys (P = 0.06). Although the average cover of downy brome within the second survey appeared to be increasing from 1996 to 2007, this slight change from 0.5% to 1.2% was not statistically significant (P = 0.24). Downy brome was present in 50% more plots in 1999 than in 1993 (P = 0.02) in the first survey. In the second survey, downy brome was present in 30% more plots in 2007 than in 1996 (P = 0.08). Maxent, a species-environmental matching model, was generally able to predict occurrences of downy brome, as new locations were in the ranges predicted by earlier generated models. The model found that distance to roads, elevation, and vegetation community influenced the predictions most. The strong response of downy brome to interannual environmental variability makes detecting change challenging, especially with small sample sizes. However, our results suggest that the area in which downy brome occurs is likely increasing in Rocky Mountain National Park through increased frequency and cover

  11. Narrative Changes Predict a Decrease in Symptoms in CBT for Depression: An Exploratory Study.

    Science.gov (United States)

    Gonçalves, Miguel M; Silva, Joana Ribeiro; Mendes, Inês; Rosa, Catarina; Ribeiro, António P; Batista, João; Sousa, Inês; Fernandes, Carlos F

    2017-07-01

    Innovative moments (IMs) are new and more adjusted ways of thinking, acting, feeling and relating that emerge during psychotherapy. Previous research on IMs has provided sustainable evidence that IMs differentiate recovered from unchanged psychotherapy cases. However, studies with cognitive behavioural therapy (CBT) are so far absent. The present study tests whether IMs can be reliably identified in CBT and examines if IMs and symptoms' improvement are associated. The following variables were assessed in each session from a sample of six cases of CBT for depression (a total of 111 sessions): (a) symptomatology outcomes (Outcome Questionnaire-OQ-10) and (b) IMs. Two hierarchical linear models were used: one to test whether IMs predicted a symptom decrease in the next session and a second one to test whether symptoms in one session predicted the emergence of IMs in the next session. Innovative moments were better predictors of symptom decrease than the reverse. A higher proportion of a specific type of IMs-reflection 2-in one session predicted a decrease in symptoms in the next session. Thus, when clients further elaborated this type of IM (in which clients describe positive contrasts or elaborate on changes processes), a reduction in symptoms was observed in the next session. A higher expression and elaboration of reflection 2 IMs appear to have a facilitative function in the reduction of depressive symptoms in this sample of CBT. Copyright © 2016 John Wiley & Sons, Ltd. Elaborating innovative moments (IMs) that are new ways of thinking, feeling, behaving and relating, in the therapeutic dialogue, may facilitate change. IMs that are more predictive of amelioration of symptoms in CBT are the ones focused on contrasts between former problematic patterns and new adjusted ones; and the ones in which the clients elaborate on processes of change. Therapists may integrate these kinds of questions (centred on contrasts and centred on what allowed change from the client

  12. Making predictions in a changing world-inference, uncertainty, and learning.

    Science.gov (United States)

    O'Reilly, Jill X

    2013-01-01

    To function effectively, brains need to make predictions about their environment based on past experience, i.e., they need to learn about their environment. The algorithms by which learning occurs are of interest to n