WorldWideScience

Sample records for dihydropyridine-derivative ca antagonist

  1. Synthesis and evaluation of calcium channel antagonist activity of new 1, 4-dihydropyridines containing phenylamineimidazolyl substitute in guinea-pig ileal smooth muscle

    Directory of Open Access Journals (Sweden)

    A Fassihi

    2004-02-01

    Full Text Available Background: 1,4-dihydropyridines are a class of drugs which are used in the treatment of some cardiovascular disorders. The prototype, Nifedipine, does not have optimal pharmacokinetic and pharmacodynamic properties. Several new derivatives of 1, 4-dihydropyridine have been produced and pharmacologically evaluated in order to find drugs with better pharmacological properties. Among them, those with a substituted heteroaromatic ring in the C4 position of the 1, 4-dihydropyridine ring, instead of the phenyl ring in Nifedipine, are most considered. In this study, eight novel derivatives of this class with “2-methylthio-1-(phenylaminoimidazole-5-yl” in the C4, C3 and C5 positions were prepared and evaluated as calcium channel antagonist agents. Methods: To prepare these compounds, Hantzsch method for the synthesis of 1, 4-dihydropyridine derivatives was deployed. An aldehyde was reacted with appropriate acetoacetate ester and ammonium acetate. This aldehyde was prepared in three steps. Cumulative doses were applied to determine the relaxing effect of the compounds on the longitudinal smooth muscle of male albino guinea pigs. Results: Chemical structures of the compounds were characterized by 1H nuclear magnetic resonance, infrared and mass spectroscopy. The IC50 of each compound was graphically determined from the concentration-response curves. Conclusions: Two compounds were more active than Nifedipine. Both had lipophilic ester groups with low steric hindrance that met the merits of a better receptor binding of 1, 4-dihydropyridines. These derivatives have high potential for further study. Keywords: 1, 4-dihydropyridine, Calcium channel antagonist, Phenylamineimidazolyl, Cardiovascular disorder

  2. Characteristics of the binding of [3H]nitrendipine to rabbit ventricular membranes: modification by other Ca++ channel antagonists and by the Ca++ channel agonist Bay K 8644

    International Nuclear Information System (INIS)

    Janis, R.A.; Sarmiento, J.G.; Maurer, S.C.; Bolger, G.T.; Triggle, D.J.

    1984-01-01

    This study was carried out to characterize [ 3 H]nitrendipine binding to cardiac membranes and to test the hypothesis that high affinity binding of Ca++ channel antagonists and agonists is to Ca++ channels. Binding was specific, rapid, reversible and stereoselective. The relative order of potency of nifedipine analogs for inhibition of binding was the same as that for inhibition of smooth and cardiac muscle contraction. Results with diltiazem, verapamil and lidoflazine were consistent with the hypothesis that nondihydropyridine Ca++ channel antagonists act at one or more sites allosterically linked to the 1,4-dihydropyridine site in cardiac cells. The Ca++ channel agonist Bay K 8644 [methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)-pyridine- 5-carboxylate] displaced specifically bound [ 3 H]nitrendipine in an apparently competitive manner with an IC50 value of 5 nM. The results suggest that organic antagonists do not act by physically blocking the Ca++ channel. The data also support the hypothesis that the high affinity binding sites for [ 3 H]nitrendipine in isolated cardiac membranes are associated with Ca++ channels that are inactivated or are otherwise unavailable for opening

  3. Characteristics of the binding of (/sup 3/H)nitrendipine to rabbit ventricular membranes: modification by other Ca++ channel antagonists and by the Ca++ channel agonist Bay K 8644

    Energy Technology Data Exchange (ETDEWEB)

    Janis, R.A.; Sarmiento, J.G.; Maurer, S.C.; Bolger, G.T.; Triggle, D.J.

    1984-10-01

    This study was carried out to characterize (/sup 3/H)nitrendipine binding to cardiac membranes and to test the hypothesis that high affinity binding of Ca++ channel antagonists and agonists is to Ca++ channels. Binding was specific, rapid, reversible and stereoselective. The relative order of potency of nifedipine analogs for inhibition of binding was the same as that for inhibition of smooth and cardiac muscle contraction. Results with diltiazem, verapamil and lidoflazine were consistent with the hypothesis that nondihydropyridine Ca++ channel antagonists act at one or more sites allosterically linked to the 1,4-dihydropyridine site in cardiac cells. The Ca++ channel agonist Bay K 8644 (methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)-pyridine- 5-carboxylate) displaced specifically bound (/sup 3/H)nitrendipine in an apparently competitive manner with an IC50 value of 5 nM. The results suggest that organic antagonists do not act by physically blocking the Ca++ channel. The data also support the hypothesis that the high affinity binding sites for (/sup 3/H)nitrendipine in isolated cardiac membranes are associated with Ca++ channels that are inactivated or are otherwise unavailable for opening.

  4. Multicomponent Reaction in Ionic Liquid: A Novel and Green Synthesis of 1, 4-Dihydropyridine Derivatives

    Institute of Scientific and Technical Information of China (English)

    Xin Ying ZHANG; Yan Zhen LI; Xue Sen FAN; Gui Rong QU; Xue Yuan HU; Jian Ji WANG

    2006-01-01

    An efficient and green method for the synthesis of 1, 4-dihydropyridine derivatives mediated in an ionic liquid, [bmim][BF4], through a four-component condensation process of aldehydes, 1, 3-dione, Meldrum's acid and ammonium acetate is disclosed in this paper.

  5. Reduction of cerebral injury in stroke-prone spontaneously hypertensive rats by amlodipine

    NARCIS (Netherlands)

    Blezer, E.L.A.; Nicolaij, K.; Goldschmeding, R.C.; Koomans, H.A.; Joles, Jaap

    2002-01-01

    Dihydropyridine Ca2+ channel antagonists, initiated together with high salt intake, prevent the development of hypertension and subsequent cerebral damage in stroke-prone spontaneously hypertensive rats (SHRSP). We hypothesized that the dihydropyridine Ca2+ channel antagonist amlodipine

  6. A novel dihydropyridine with 3-aryl meta-hydroxyl substitution blocks L-type calcium channels in rat cardiomyocytes

    International Nuclear Information System (INIS)

    Galvis-Pareja, David; Zapata-Torres, Gerald; Hidalgo, Jorge; Ayala, Pedro

    2014-01-01

    Rationale: Dihydropyridines are widely used for the treatment of several cardiac diseases due to their blocking activity on L-type Ca 2+ channels and their renowned antioxidant properties. Methods: We synthesized six novel dihydropyridine molecules and performed docking studies on the binding site of the L-type Ca 2+ channel. We used biochemical techniques on isolated adult rat cardiomyocytes to assess the efficacy of these molecules on their Ca 2+ channel-blocking activity and antioxidant properties. The Ca 2+ channel-blocking activity was evaluated by confocal microscopy on fluo-3AM loaded cardiomyocytes, as well as using patch clamp experiments. Antioxidant properties were evaluated by flow cytometry using the ROS sensitive dye 1,2,3 DHR. Results: Our docking studies show that a novel compound with 3-OH substitution inserts into the active binding site of the L-type Ca 2+ channel previously described for nitrendipine. In biochemical assays, the novel meta-OH group in the aryl in C4 showed a high blocking effect on L-type Ca 2+ channel as opposed to para-substituted compounds. In the tests we performed, none of the molecules showed antioxidant properties. Conclusions: Only substitutions in C2, C3 and C5 of the aryl ring render dihydropyridine compounds with the capacity of blocking LTCC. Based on our docking studies, we postulate that the antioxidant activity requires a larger group than the meta-OH substitution in C2, C3 or C5 of the dihydropyridine ring. - Highlights: • Dihydropyridine (DHP) molecules are widely used in cardiovascular disease. • DHPs block Ca 2+ entry through LTCC—some DHPs have antioxidant activity as well. • We synthesized 6 new DHPs and tested their Ca 2+ blocking and antioxidant activities. • 3-Aryl meta-hydroxyl substitution strongly increases their Ca 2+ blocking activity. • 3-Aryl meta-hydroxyl substitution did not affect the antioxidant properties

  7. Role of L-Type Ca[superscript 2+] Channel Isoforms in the Extinction of Conditioned Fear

    Science.gov (United States)

    Busquet, Perrine; Hetzenauer, Alfred; Sinnegger-Brauns, Martina J.; Striessnig, Jorg; Singewald, Nicolas

    2008-01-01

    Dihydropyridine (DHP) L-type Ca[superscript 2+] channel (LTCC) antagonists, such as nifedipine, have been reported to impair the extinction of conditioned fear without interfering with its acquisition. Identification of the LTCC isoforms mediating this DHP effect is an essential basis to reveal their role as potential drug targets for the…

  8. A novel dihydropyridine with 3-aryl meta-hydroxyl substitution blocks L-type calcium channels in rat cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Galvis-Pareja, David [Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas and Facultad Medicina, Universidad de Chile, Santiago (Chile); Centro Estudios Moleculares de la Célula (CEMC), Facultad de Ciencias Químicas y Farmacéuticas and Facultad Medicina, Universidad de Chile, Santiago (Chile); Zapata-Torres, Gerald [Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago (Chile); Hidalgo, Jorge [Centro Estudios Moleculares de la Célula (CEMC), Facultad de Ciencias Químicas y Farmacéuticas and Facultad Medicina, Universidad de Chile, Santiago (Chile); Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago (Chile); Ayala, Pedro [Centro Estudios Moleculares de la Célula (CEMC), Facultad de Ciencias Químicas y Farmacéuticas and Facultad Medicina, Universidad de Chile, Santiago (Chile); and others

    2014-08-15

    Rationale: Dihydropyridines are widely used for the treatment of several cardiac diseases due to their blocking activity on L-type Ca{sup 2+} channels and their renowned antioxidant properties. Methods: We synthesized six novel dihydropyridine molecules and performed docking studies on the binding site of the L-type Ca{sup 2+} channel. We used biochemical techniques on isolated adult rat cardiomyocytes to assess the efficacy of these molecules on their Ca{sup 2+} channel-blocking activity and antioxidant properties. The Ca{sup 2+} channel-blocking activity was evaluated by confocal microscopy on fluo-3AM loaded cardiomyocytes, as well as using patch clamp experiments. Antioxidant properties were evaluated by flow cytometry using the ROS sensitive dye 1,2,3 DHR. Results: Our docking studies show that a novel compound with 3-OH substitution inserts into the active binding site of the L-type Ca{sup 2+} channel previously described for nitrendipine. In biochemical assays, the novel meta-OH group in the aryl in C4 showed a high blocking effect on L-type Ca{sup 2+} channel as opposed to para-substituted compounds. In the tests we performed, none of the molecules showed antioxidant properties. Conclusions: Only substitutions in C2, C3 and C5 of the aryl ring render dihydropyridine compounds with the capacity of blocking LTCC. Based on our docking studies, we postulate that the antioxidant activity requires a larger group than the meta-OH substitution in C2, C3 or C5 of the dihydropyridine ring. - Highlights: • Dihydropyridine (DHP) molecules are widely used in cardiovascular disease. • DHPs block Ca{sup 2+} entry through LTCC—some DHPs have antioxidant activity as well. • We synthesized 6 new DHPs and tested their Ca{sup 2+} blocking and antioxidant activities. • 3-Aryl meta-hydroxyl substitution strongly increases their Ca{sup 2+} blocking activity. • 3-Aryl meta-hydroxyl substitution did not affect the antioxidant properties.

  9. Study on Ca2+ antagonistic effect and mechanism of Chinese herbal drugs using 45Ca

    International Nuclear Information System (INIS)

    Yang Yuanyou; Liu Ning; Mo Shangwu; Qiu Mingfeng; Jin Jiannan; Liao Jiali

    2002-01-01

    The Ca 2+ antagonistic effect and mechanism of Chinese herbal drugs are studied by using 45 Ca. The results indicate that potential-dependent Ca 2+ channel (PDC) and receptor-operated Ca 2+ channel (ROC) in cell membranes of smooth muscle can be blocked by several Chinese herbal drugs, including as Crocus sativus L., Carthamus L., Di-ao-xin-xue-kang (DAXXG) and Ginkgo biloba L. leaves. Among them Crocus sativus L. has the strongest antagonistic effect on Ca 2+ channel, while Ginkgo biloba L. leaves has no obvious effect. The whole prescription and the other functional drugs have significant effect on ROC and PDC. The compositions extracted by hexane have the strongest antagonistic. The wrinkled giant hyssop have five active compositions and Pei-lan have two active compositions

  10. Dihydropyridine-fused and pyridine-fused coumarins: Reduction on a glassy carbon electrode in dimethylformamide

    International Nuclear Information System (INIS)

    Nuñez-Vergara, Luis J.; Pardo-Jiménez, V.; Barrientos, C.; Olea-Azar, C.A.; Navarrete-Encina, P.A.; Squella, J.A.

    2012-01-01

    In this study, two series of dihydropyridine-fused and pyridine-fused coumarins were synthesised and electrochemically characterised in aprotic medium. In both series, the most easily reducible groups were the endocyclic carbonyl groups. The electrochemical mechanism for both types of compounds is strongly dependent on the experimental time-scale. Cyclic voltammetric (CV) reduction on a glassy carbon electrode (GCE) of the endocyclic carbonyl group of dihydropyridine-fused coumarins involves an ECEC mechanism with two electron transfer steps that are coupled with chemical reactions to produce the corresponding hemiacetal derivative. In the case of pyridine-fused coumarins, CV reduction of the endocyclic carbonyl group involves an EEC mechanism. ESR studies revealed the presence of a stabilised intermediate only for the pyridine-fused derivatives. Our theoretical study showed a spin density map of radical species delocalised mainly within the coumarin ring, indicating the reduction of the endocyclic carbonyl group. In the case of the dihydropyridine-fused derivatives, the mildly acid hydrogen of the dihydropyridine ring destabilises the radical via a father–son type reaction.

  11. Vascular mechanism of action of endothelin-1: Effect of Ca2+ antagonists

    International Nuclear Information System (INIS)

    Chabrier, P.E.; Auguet, M.; Roubert, P.; Lonchampt, M.O.; Gillard, V.; Guillon, J.M.; Delaflotte, S.; Braquet, P.

    1989-01-01

    The vasoconstrictive properties of the endothelium-derived peptide, endothelin-1 (ET-1), were investigated on rat isolated aorta and on cultured rat aortic smooth muscle cells. In rat isolated aorta, endothelin-1 induced a slow and sustained contraction in a Ca2+-free medium; after calcium readmission, an additional sustained contraction was elicited. In vascular smooth muscle cells, endothelin-1 provoked a dose-dependent Ca2+ influx that was not inhibited by calcium entry blockers (nifedipine, D 600, or diltiazem). In these cells, [ 125 I]-endothelin-1 bound to a specific, saturable, and high affinity recognition site (Kd about 10(-9) M and Bmax = 52 +/- 2 fmol/10(6) cells). The binding was not reversible and not affected by calcium antagonists. These data do not support the hypothesis that endothelin-1 acts as an endogenous agonist of the voltage-dependent Ca2+ channels. The action of endothelin-1 can be separated into two components: one dependent on Ca2+ influx but insensitive to calcium antagonists and another independent of extracellular Ca2+. The irreversible binding of endothelin-1 may reflect an internalization of the ligand inside the cell membrane, leading to multiple contractile events

  12. Efficient sonochemical synthesis of alkyl 4-aryl-6-chloro-5-formyl-2-methyl-1,4-dihydropyridine-3-carboxylate derivatives.

    Science.gov (United States)

    Ruiz, Enrique; Rodríguez, Hortensia; Coro, Julieta; Niebla, Vladimir; Rodríguez, Alfredo; Martínez-Alvarez, Roberto; de Armas, Hector Novoa; Suárez, Margarita; Martín, Nazario

    2012-03-01

    A facile, efficient and environment-friendly protocol for the synthesis of 6-chloro-5-formyl-1,4-dihydropyridine derivatives has been developed by the convenient ultrasound-mediated reaction of 2(1H)pyridone derivatives with the Vilsmeier-Haack reagent. This method provides several advantages over current reaction methodologies including a simpler work-up procedure, shorter reaction times and higher yields. Copyright © 2011. Published by Elsevier B.V.

  13. Purification of dihydropyridine receptor from rabbit skeletal muscle

    International Nuclear Information System (INIS)

    Nakayama, N.; Vaghy, P.; Schwartz, A.

    1986-01-01

    Dihydropyridine (DHP)receptor was purified from T-tubules isolated from freeze-thawed rabbit skeletal muscle after French press treatment of microsomal membranes. DHP receptor was labeled with 25 nM [ 3 H]-(+)-PN-200-110 (PN, one of the most potent Ca-antagonists) and solubilized with 1% digitonin. The solubilized receptor was purified in the presence of protease inhibitors (0.1 mM PMSF, 1 mM iodoacetamide, 1μM pepstatin A, 1 mg/l antipain and 0.2 mM o-phenanthroline) using WGA-Sepharose and DEAE-Biogel A column chromatography as well as sucrose density gradient (SDG) centrifugation. The pooled fractions of the SDG had a maximum binding of 590 pmol/mg protein even without correcting for dissociation of PN from the receptors during purification. On SDS-PAGE, a single major band (191 K dalton) was shown both in presence and absence of 20 mM N-ethyl maleimide. However, two major (145 and 103 K dalton) a few minor bands (55,46,32 and 31K dalton) were obtained if the fraction was treated with 20 mM dithiothreitol prior to electrophoresis. The authors data suggest that 191 and 145 k dalton proteins correspond to the α-subunit of the DHP receptor as reported by Curtis and Catterall

  14. Rational use of calcium-channel antagonists in Raynaud's phenomenon.

    Science.gov (United States)

    Sturgill, M G; Seibold, J R

    1998-11-01

    Raynaud's phenomenon (RP) is a peripheral circulatory disorder characterized by sudden episodes of digital artery spasm, often precipitated by cold temperature or emotional stress. Although the cause of RP is not fully known, it appears to involve inappropriate adrenergic response to cold stimuli. Treatment of RP is conservative in most patients, but in patients with severe disease includes the use of agents that promote digital vasodilation. The calcium-channel antagonists, particularly the dihydropyridine derivative nifedipine, are the most thoroughly studied drug class for the treatment of RP. Approximately two thirds of patients respond favorably, with significant reductions in the frequency and severity of vasospastic attacks. Nifedipine use is often limited by the appearance of adverse vasodilatory effects such as headache or peripheral edema. The newer second-generation dihydropyridines such as amlodipine, isradipine, nicardipine, and felodipine also appear to be effective in patients with RP and may be associated with fewer adverse effects.

  15. Effects of dihydropyridines on tension and calcium-45 influx in isolated mesenteric resistance vessels from spontaneously hypertensive and normotensive rats

    International Nuclear Information System (INIS)

    Cauvin, C.; Hwang, O.; Yamamoto, M.; van Breemen, C.

    1987-01-01

    Contractile tension responses to norepinephrine and depolarizing potassium (80 mM K+), as well as calcium-45 influx stimulated by these agents, were studied in isolated mesenteric resistance vessels (each 100 microM internal diameter) from spontaneously hypertensive rats (SHRs) and from normotensive Wistar Kyoto rats (WKYs). Inhibitory effects of 2 dihydropyridine Ca++ antagonists, PN 200-110 (isradipine) and nisoldipine, on these parameters were also determined. Contractile responses to 80 mM K+ were inhibited by both Ca++ antagonists with the same potency and efficacy in SHR compared with WKY vessels (PN 200-110 IC50 = 2.8 +/- 1.3 X 10(-8) M in SHRs and 2.5 +/- 1.5 X 10(-8) M in WKYs; nisoldipine IC50 = 1.1 +/- 0.4 X 10(-8) M in SHRs and 1.2 +/- 0.9 X 10(-8) M in WKYs). However, contractile responses to norepinephrine (10(-4) M) were inhibited less potently by nisoldipine in SHR vessels (IC50 = 2.2 +/- 0.3 X 10(-9) M) compared with WKY vessels (IC50 = 1.6 +/- 0.6 X 10(-10) M). Similarly, PN 200-110 tended to be less (but not significantly less) potent in SHR vessels (IC50 = 3.3 +/- 1.8 X 10(-8) M) than in WKY vessels (IC50 = 3.4 +/- 0.9 X 10(-9) M); its efficacy was significantly depressed in the SHR vessels (by approximately 20%). When norepinephrine-stimulated calcium-45 influx was determined in the presence of these Ca++ antagonists, a similar profile emerged with respect to a comparison of SHR and WKY vessels. These results support a previously hypothesized alteration in receptor-activated Ca++ influx pathways in SHR mesenteric resistance vessels

  16. One-pot multi-component synthesis of 1,4-dihydropyridine ...

    Indian Academy of Sciences (India)

    1,4-Dihydropyridines (1,4-DHPs) are an important class of bioactive molecules, well-known for their role as calcium channel modulators and used extensively for the treatment of hypertension.1–3 The derivatives of. 1,4-DHP have shown a variety of biological activities such as vasodilator, bronchodilator, antitumour, hepato-.

  17. Effects of dietary dihydropyridine on laying performance and lipid ...

    African Journals Online (AJOL)

    Effects of dietary dihydropyridine on laying performance and lipid metabolism of broiler breeder hens. ... A level of 100 mg dihydropyridine/kg had no effect on the hormone-sensitive triglyceride lipase (HSL) activity in the liver or abdominal fat, though higher levels of dietary dihydropyridine (200 mg/kg or 300 mg/kg) ...

  18. The effects of dihydropyridine and phenylalkylamine calcium antagonist classes on autonomic function in hypertension : The VAMPHYRE study

    NARCIS (Netherlands)

    Lefrandt, JD; Heitmann, J; Sevre, K; Castellano, M; Hausberg, M; Fallon, M; Fluckiger, L; Urbigkeit, A; Rostrup, M; Agabiti-Rosei, E; Rahn, KH; Murphy, M; Zannad, F; de Kam, PJ; van Roon, AM; Smit, AJ

    The aim of the present study was to compare the effects of a long-acting dihydropyridine (amlodipine) and a nondihydropyridine. (verapamil) on autonomic function in patients with mild to moderate hypertension. A total of 145 patients with a diastolic blood pressure (BP) between 95 and 110 mm Hg

  19. Interaction between Ca++-channel antagonists and α2-adrenergic receptors in rabbit ileal cell membrane

    International Nuclear Information System (INIS)

    Homeidan, F.R.; Wicks, J.; Cusolito, S.; El-Sabban, M.E.; Sharp, G.W.G.; Donowitz, M.

    1986-01-01

    An interaction between Ca ++ -channel antagonists and the α 2 -adrenergic receptor on active electrolyte transport was demonstrated in rabbit ileum. Clonidine, an α 2 -agonist, stimulated NaCl absorption apparently by Ca ++ -channel antagonism since it inhibited 45 Ca ++ uptake across the basolateral membrane and decreased total ileal calcium content. This stimulation was inhibited by the Ca ++ -channel antagonists dl- and l-verapamil and cadmium but not by nifedipine. The binding of 3 H-yohimbine, a specific α 2 -adrenergic antagonist, was studied on purified ileal cell membranes using a rapid filtration technique. dl-Verapamil and Cd ++ inhibited the specific binding of 3 H-yohimbine over the same concentration range in which they affected transport. In contrast, nifedipine had no effect on binding, just as it had no effect on clonidine-stimulated NaCl absorption. These data demonstrate that there is an interaction between Ca ++ -channels and α 2 -adrenergic receptors in ileal basolateral membranes. Some Ca ++ -channel antagonists alter α 2 -adrenergic binding to the receptor and α 2 -agonist binding leads to changes in Ca ++ entry. A close spatial relationship between the Ca ++ -channel and the α 2 -receptor could explain the data

  20. Calcium antagonistic effects of Chinese crude drugs: Preliminary investigation and evaluation by 45Ca

    International Nuclear Information System (INIS)

    Liu Ning; Yang Yuanyou; Mo Shangwu; Liao Jiali; Jin Jiannan

    2005-01-01

    Coronary and other diseases in cardiac or brain blood vessels are considered to be due to the excessive influx of Ca 2+ into cytoplasm. If Ca 2+ channels in cell membrane are blocked by medicines or other substances with considerable calcium antagonistic effects, these diseases might be cured or controlled. The influence of some Chinese crude drugs, including Crocus sativus, Carthamus tinctorius, Ginkgo biloba and Bulbus allii macrostemi on Ca 2+ influx in isolated rat aortas was investigated by using 45 Ca as a radioactive tracer, and their calcium antagonistic effects were evaluated. It can be noted that Ca 2+ uptake in isolated rat aorta rings in normal physiological status was not markedly altered by these drugs, whereas the Ca 2+ influxes induced by norepinephrine of 1.2 μmol/L and KCl of 100 mmol/L were significantly inhibited by Crocus, Carthamus and Bulbus in a concentration-dependent manner, but not by Ginkgo. The results show that extracellular Ca 2+ influx through receptor-operated Ca 2+ channels and potential-dependent Ca 2+ channels can be blocked by Crocus, Carthamus and Bulbus. This implies that these Chinese crude drugs have obvious calcium antagonistic effects

  1. Binding of [125I]iodipine to parathyroid cell membranes: Evidence of a dihydropyridine-sensitive calcium channel

    International Nuclear Information System (INIS)

    Jones, J.I.; Fitzpatrick, L.A.

    1990-01-01

    The parathyroid cell is unusual, in that an increase in extracellular calcium concentrations inhibits PTH release. Calcium channels are glycoproteins that span cell membranes and allow entry of extracellular calcium into cells. We have demonstrated that the calcium channel agonist (+)202-791, which opens calcium channels, inhibits PTH release and that the antagonist (-)202-791, which closes calcium channels, stimulates PTH release. To identify the calcium channels responsible for these effects, we used a radioligand that specifically binds to calcium channels. Bovine parathyroid cell membranes were prepared and incubated under reduced lighting with [125I] iodipine (SA, 2000 Ci/mmol), which recognizes 1,4-dihydropyridine-sensitive calcium channels. Bound ligand was separated from free ligand by rapid filtration through Whatman GF/B filters. Nonspecific binding was measured by the inclusion of nifedipine at 10 microM. Specific binding represented approximately 40% of the total binding. The optimal temperature for [125I] iodipine binding was 4 C, and binding reached equilibrium by 30 min. The equilibrium dissociation constant (Kd) was approximately 550 pM, and the maximum number of binding sites was 780 fmol/mg protein. Both the calcium channel agonist (+)202-791 and antagonist (-)202-791 competitively inhibited [125I] iodipine binding, with 50% inhibition concentrations of 20 and 300 nM, respectively. These data indicate the presence of dihydropyridine-sensitive calcium channels on parathyroid cell membranes

  2. NMR study of 1,4-dihydropyridine derivatives endowed with long alkyl and functionalized chains

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, Margarita; Salfran, Esperanza; Rodriguez, Hortensia; Coro, Julieta, E-mail: msuarez@fq.uh.c [Universidad de La Habana (Cuba). Facultad de Quimica. Lab. de Sintesis Organica; Molero, Dolores; Saez, Elena [Universidad Complutense, Madrid (Spain). CAI-RMN; Martinez-Alvarez, Roberto; Martin, Nazario [Universidad Complutense, Madrid (Spain). Facultad de Quimica. Dept. de Quimica Organica I

    2011-07-01

    The {sup 1}H , {sup 13}C and {sup 15}N NMR spectroscopic data for 1,4-dihydropyridine endowed with long alkyl and functionalized chain on C-3 and C-5, have been fully assigned by combination of one- and two dimensional experiments (DEPT, HMBC, HMQC, COSY, nOe). (author)

  3. A new magnetically recoverable catalyst promoting the synthesis of 1,4-dihydropyridine and polyhydroquinoline derivatives via the Hantzsch condensation under solvent-free conditions

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, Narges; Heidarizadeh, Fariba; Kiasat, Alireza

    2017-04-15

    In the current study, 1,4-dihydropyridine and polyhydroquinoline derivatives were efficiently synthesized under solvent-less conditions with a magnetic catalyst containing novel acidic ionic liquid functionalized silica modified Fe{sub 3}O{sub 4} nanoparticles through a four component combination of β-ketoester, aldehydes and ammonium acetate (1, 2, 2). Several approaches have been reported for synthesizing these derivatives, while each of these approaches have some weaknesses including long time of reaction, excess of volatile organic solvent, low efficiency, costly reagents, complex operation, high temperatures, production of a number of side products, and difficult catalyst recovery. The simple operation, short time of reaction (5–30 min) and the high efficiency (80–94%) are the special advantages of this technique. The immobilized catalyst exhibited an appropriate thermal stability and excellent recyclability. Different methods such as FT-IR, SEM, EDX, TGA-DTA, and VSM were used to confirm and characterize the catalyst. - Highlights: • A new acidic ionic liquid were first synthesized and applied in both symmetric and asymmetric hantzsch reactions for preparing 1, 4-dihydropyridine and polyhydroquinoline derivatives with high efficiencies under solvent-less conditions. • The immobilized catalyst exhibited an appropriate thermal stability and excellent recyclability. • The nanomagnetic catalyst could be recovered from solution with an external magnet at once, allowing undemanding recovery and reuse. • The catalyst was reused for five times with no considerable decrease in catalytic activity.

  4. Calcium antagonist binding sites in the rat brain: Quantitative autoradiographic mapping using the 1, 4-dihydropyridines (TH)PN 200-110 and (TH)PY 108-068

    Energy Technology Data Exchange (ETDEWEB)

    Cortes, R.; Supavilai, P.; Karobath, M.; Palacios, J.M.

    1984-01-01

    An in vitro autoradiographic technique has been used for the quantitative mapping of calcium antagonist binding sites (CABS) in the rat brain, using the 1, 4-dihydropyridines (TH)PN 200-110 and (TH)PY 108-068 as ligands. CABS were distributed throughout the brain in a highly heterogeneous fashion. The highest densities of CABS were observed in the olfactory bulb, hippocampus and parts of the amygdala. The neocortex was also rich in CABS. The basal ganglia, thalamus and hypothalamus presented intermediate levels of CABS while low densities of sites were seen in areas such as the cerebellum, pons and white matter tracts. The distributions of CABS in brain does not correlate with indexes of brain blood flow, regional glucose utilization or the distributions of receptor binding sites for drugs and neurotransmitters analyzed until now. No correlation exists between CABS distribution and that of any neurotransmitter or brain enzyme described so far. The heterogeneous distributions of CABS is suggestive of a neuronal localization, an idea supported by lesion experiments. (Author).

  5. Membrane depolarization increases ryanodine sensitivity to Ca2+ release to the cytosol in L6 skeletal muscle cells: Implications for excitation-contraction coupling.

    Science.gov (United States)

    Pitake, Saumitra; Ochs, Raymond S

    2016-04-01

    The dihydropyridine receptor in the plasma membrane and the ryanodine receptor in the sarcoplasmic reticulum are known to physically interact in the process of excitation-contraction coupling. However, the mechanism for subsequent Ca(2+) release through the ryanodine receptor is unknown. Our lab has previously presented evidence that the dihydropyridine receptor and ryanodine receptor combine as a channel for the entry of Ca(2+) under resting conditions, known as store operated calcium entry. Here, we provide evidence that depolarization during excitation-contraction coupling causes the dihydropyridine receptor to disengage from the ryanodine receptor. The newly freed ryanodine receptor can then transport Ca(2+) from the sarcoplasmic reticulum to the cytosol. Experimentally, this should more greatly expose the ryanodine receptor to exogenous ryanodine. To examine this hypothesis, we titrated L6 skeletal muscle cells with ryanodine in resting and excited (depolarized) states. When L6 muscle cells were depolarized with high potassium or exposed to the dihydropyridine receptor agonist BAYK-8644, known to induce dihydropyridine receptor movement within the membrane, ryanodine sensitivity was enhanced. However, ryanodine sensitivity was unaffected when Ca(2+) was elevated without depolarization by the ryanodine receptor agonist chloromethylcresol, or by increasing Ca(2+) concentration in the media. Ca(2+) entry currents (from the extracellular space) during excitation were strongly inhibited by ryanodine, but Ca(2+) entry currents in the resting state were not. We conclude that excitation releases the ryanodine receptor from occlusion by the dihydropyridine receptor, enabling Ca(2+) release from the ryanodine receptor to the cytosol. © 2015 by the Society for Experimental Biology and Medicine.

  6. On the one pot syntheses of chromeno[4,3-b]pyridine-3-carboxylate and chromeno[3,4-c]pyridine-3-carboxylate and dihydropyridines

    Energy Technology Data Exchange (ETDEWEB)

    Navarrete-Encina, Patricio A.; Vega-Retter, Christian, E-mail: pnavarre@vtr.ne [Universidad de Chile, Santiago (Chile). Facultad de Ciencias Quimicas y Farmaceuticas. Lab. de Sintesis Organica y Fisicoquimica; Salazar, Ricardo; Perez, Karina; Squella, Juan A.; Nunez-Vergara, Luis J. [Universidad de Chile, Santiago (Chile). Fac. de Ciencias Quimicas y Farmaceuticas. Lab. de Bioelectroquimica

    2010-07-01

    Substituted chromenos, dihydropyridines and pyridines have been important in the syntheses of compounds having interesting pharmacological properties. Therefore, we found of interest to synthesize chromenopyridines and chromeno dihydropyridines (i.e., fused chromeno and dihydropyridine or pyridine rings) to further study their biological activity. Here, we propose one-pot syntheses for substituted ethyl-2,4-dimethyl-5-oxo-5H-chromeno[4,3-b]pyridine-3-carboxylates, ethyl-2,4-dimethyl-5-oxo-5H-chromeno[3,4-c]pyridine-3-carboxylates and their respective 1,4-dihydropyridines based on a modified Hantzsch pyridine synthesis using 2-hydroxyaryl aldehydes, with electron withdrawing and electron donating groups on the phenyl ring, as starting reactants. Sixteen compounds were synthesized by the described method and fully characterized. An average yield of 37% was obtained for the different derivatives. (author)

  7. On the one pot syntheses of chromeno[4,3-b]pyridine-3-carboxylate and chromeno[3,4-c]pyridine-3-carboxylate and dihydropyridines

    International Nuclear Information System (INIS)

    Navarrete-Encina, Patricio A.; Vega-Retter, Christian; Salazar, Ricardo; Perez, Karina; Squella, Juan A.; Nunez-Vergara, Luis J.

    2010-01-01

    Substituted chromenos, dihydropyridines and pyridines have been important in the syntheses of compounds having interesting pharmacological properties. Therefore, we found of interest to synthesize chromenopyridines and chromeno dihydropyridines (i.e., fused chromeno and dihydropyridine or pyridine rings) to further study their biological activity. Here, we propose one-pot syntheses for substituted ethyl-2,4-dimethyl-5-oxo-5H-chromeno[4,3-b]pyridine-3-carboxylates, ethyl-2,4-dimethyl-5-oxo-5H-chromeno[3,4-c]pyridine-3-carboxylates and their respective 1,4-dihydropyridines based on a modified Hantzsch pyridine synthesis using 2-hydroxyaryl aldehydes, with electron withdrawing and electron donating groups on the phenyl ring, as starting reactants. Sixteen compounds were synthesized by the described method and fully characterized. An average yield of 37% was obtained for the different derivatives. (author)

  8. A Novel 1,4-Dihydropyridine Derivative Improves Spatial Learning and Memory and Modifies Brain Protein Expression in Wild Type and Transgenic APPSweDI Mice.

    Directory of Open Access Journals (Sweden)

    Baiba Jansone

    Full Text Available Ca2+ blockers, particularly those capable of crossing the blood-brain barrier (BBB, have been suggested as a possible treatment or disease modifying agents for neurodegenerative disorders, e.g., Alzheimer's disease. The present study investigated the effects of a novel 4-(N-dodecyl pyridinium group-containing 1,4-dihydropyridine derivative (AP-12 on cognition and synaptic protein expression in the brain. Treatment of AP-12 was investigated in wild type C57BL/6J mice and transgenic Alzheimer's disease model mice (Tg APPSweDI using behavioral tests and immunohistochemistry, as well as mass spectrometry to assess the blood-brain barrier (BBB penetration. The data demonstrated the ability of AP-12 to cross the BBB, improve spatial learning and memory in both mice strains, induce anxiolytic action in transgenic mice, and increase expression of hippocampal and cortical proteins (GAD67, Homer-1 related to synaptic plasticity. The compound AP-12 can be seen as a prototype molecule for use in the design of novel drugs useful to halt progression of clinical symptoms (more specifically, anxiety and decline in memory of neurodegenerative diseases, particularly Alzheimer's disease.

  9. 45Ca2+movements induced by Ca2+chloride in isolated rat aorta under K+-free conditions

    NARCIS (Netherlands)

    Wermelskirchen, D.; Nebel, U.; Wirth, A.; Wilffert, B.

    1991-01-01

    Increasing the extracellular Ca2+concentration induced a dihydropyridine-insensitive contraction in the isolated rat aorta bathed in K+-free solution. To obtained further insight into the mechanisms of this contraction45Ca2+uptake measurements were carried out with isolated rat aorta. Increasing the

  10. CA-45(2+) MOVEMENTS INDUCED BY CA2+ CHLORIDE IN ISOLATED RAT AORTA UNDER K+-FREE CONDITIONS

    NARCIS (Netherlands)

    WERMELSKIRCHEN, D; NEBEL, U; WIRTH, A; WILFFERT, B

    1991-01-01

    Increasing the extracellular Ca2+ concentration induced a dihydropyridine-insensitive contraction in the isolated rat aorta bathed in K+-free solution. To obtain further insight into the mechanism of this contraction Ca-45(2+) uptake measurements were carried out with isolated rat aorta. Increasing

  11. QSAR Modeling of COX -2 Inhibitory Activity of Some Dihydropyridine and Hydroquinoline Derivatives Using Multiple Linear Regression (MLR) Method.

    Science.gov (United States)

    Akbari, Somaye; Zebardast, Tannaz; Zarghi, Afshin; Hajimahdi, Zahra

    2017-01-01

    COX-2 inhibitory activities of some 1,4-dihydropyridine and 5-oxo-1,4,5,6,7,8-hexahydroquinoline derivatives were modeled by quantitative structure-activity relationship (QSAR) using stepwise-multiple linear regression (SW-MLR) method. The built model was robust and predictive with correlation coefficient (R 2 ) of 0.972 and 0.531 for training and test groups, respectively. The quality of the model was evaluated by leave-one-out (LOO) cross validation (LOO correlation coefficient (Q 2 ) of 0.943) and Y-randomization. We also employed a leverage approach for the defining of applicability domain of model. Based on QSAR models results, COX-2 inhibitory activity of selected data set had correlation with BEHm6 (highest eigenvalue n. 6 of Burden matrix/weighted by atomic masses), Mor03u (signal 03/unweighted) and IVDE (Mean information content on the vertex degree equality) descriptors which derived from their structures.

  12. Calcium antagonist binding sites in the rat brain: Quantitative autoradiographic mapping using the 1, 4-Dihydropyridines [3H]PN 200-110 and [3H]PY 108-068

    International Nuclear Information System (INIS)

    Cortes, R.; Supavilai, P.; Karobath, M.; Palacios, J.M.

    1984-01-01

    An in vitro autoradiographic technique has been used for the quantitative mapping of calcium antagonist binding sites (CABS) in the rat brain, using the 1, 4-dihydropyridines [ 3 H]PN 200-110 and [ 3 H]PY 108-068 as ligands. CABS were distributed throughout the brain in a highly heterogeneous fashion. The highest densities of CABS were observed in the olfactory bulb, hippocampus and parts of the amygdala. The neocortex was also rich in CABS. The basal ganglia, thalamus and hypothalamus presented intermediate levels of CABS while low densities of sites were seen in areas such as the cerebellum, pons and white matter tracts. The distributions of CABS in brain does not correlate with indexes of brain blood flow, regional glucose utilization or the distributions of receptor binding sites for drugs and neurotransmitters analyzed until now. No correlation exists between CABS distribution and that of any neurotransmitter or brain enzyme described so far. The heterogeneous distributions of CABS is suggestive of a neuronal localization, an idea supported by lesion experiments. (Author)

  13. Antischistosomal activity of a calcium channel antagonist on schistosomula and adult Schistosoma mansoni worms

    Directory of Open Access Journals (Sweden)

    Vanessa Silva-Moraes

    2013-08-01

    Full Text Available Current schistosomiasis control strategies are largely based on chemotherapeutic agents and a limited number of drugs are available today. Praziquantel (PZQ is the only drug currently used in schistosomiasis control programs. Unfortunately, this drug shows poor efficacy in patients during the earliest infection phases. The effects of PZQ appear to operate on the voltage-operated Ca2+channels, which are located on the external Schistosoma mansoni membrane. Because some Ca2+channels have dihydropyridine drug class (a class that includes nifedipine sensitivity, an in vitro analysis using a calcium channel antagonist (clinically used for cardiovascular hypertension was performed to determine the antischistosomal effects of nifedipine on schistosomula and adult worm cultures. Nifedipine demonstrated antischistosomal activity against schistosomula and significantly reduced viability at all of the concentrations used alone or in combination with PZQ. In contrast, PZQ did not show significant efficacy when used alone. Adult worms were also affected by nifedipine after a 24 h incubation and exhibited impaired motility, several lesions on the tegument and intense contractility. These data support the idea of Ca2+channels subunits as drug targets and favour alternative therapeutic schemes when drug resistance has been reported. In this paper, strong arguments encouraging drug research are presented, with a focus on exploring schistosomal Ca2+channels.

  14. Direct Aminolysis of Ethoxycarbonylmethyl 1,4-Dihydropyridine-3-carboxylates

    Directory of Open Access Journals (Sweden)

    Brigita Vigante

    2015-11-01

    Full Text Available The ethoxycarbonylmethyl esters of 1,4-dihydropyridines were directly converted into carbamoylmethyl esters in the presence of 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD in good to excellent yields under mild conditions. The use of TBD is crucial for the successful aminolysis of ethoxycarbonylmethyl ester of 1,4-dihydropyridines with secondary amines as without it the reaction does not proceed at all. The aminolysis reaction proceeded regioselectively, as the alkyl ester conjugated with the 1,4-dihydropyridine cycle was not involved in the reaction. Screening of other N-containing bases, such as triethylamine (TEA, pyridine, 4-(N,N-dimethylaminopyridine (DMAP, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU, 1,5-diazabicyclo[4.3.0]non-5-ene (DBN, imidazole, tetramethyl guanidine (TMG and 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD as catalysts revealed no activity in the studied reaction.

  15. Bismuth nitrate as an efficient recyclable catalyst for the one-pot multi component synthesis of 1,4-dihydropyridine derivatives through unsymmetrical Hantzsch reaction

    Directory of Open Access Journals (Sweden)

    S. Sheik Mansoor

    2016-09-01

    Full Text Available Bismuth nitrate catalyzed efficient Hantzsch reaction via four-component coupling reactions of aromatic aldehydes, 5,5-dimethyl-1,3-cyclohexanedione (dimedone, ethyl acetoacetate and ammonium acetate at 80 °C temperature was described as the preparation of 1,4-dihydropyridine derivatives. 2-Amino-4-phenyl-3-cyano-7,7-dimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline derivatives are also prepared under the same experimental conditions using aldehydes, dimedone, malononitrile and ammonium acetate in good yield. The higher catalytic activity of Bi(NO3·5H2O is ascribed to its high acidity, thermal stability and water tolerance. The process presented here is operationally simple, environmentally benign and has excellent yield. Furthermore, the catalyst can be recovered conveniently and reused efficiently.

  16. Pharmacological analysis of calcium antagonist receptors

    International Nuclear Information System (INIS)

    Reynolds, I.J.

    1987-01-01

    This work focuses on two aspects of the action of calcium antagonist drugs, namely, the interaction of drugs with receptors for verapamil-like calcium antagonists, and the interactions of drugs with voltage-sensitive calcium fluxes in rat brain synaptosomes. From binding studies I have found that the ligand of choice for labeling the verapamil receptor is (-)[ 3 H]desmethoxy-verapamil. This drug labels potently, reversibly and stereoselectively two receptors in membranes prepared from rat brain and rabbit skeletal muscle tissues. In equilibrium studies dihydropyridine calcium antagonists interact in a non-competitive fashion, while many non-DHPs are apparently competitive. In-depth kinetic studies in skeletal muscle membranes indicate that the two receptors are linked in a negative heterotropic fashion, and that low-affinity binding of (-) [ 3 H]desmethoxy-verapamil may be to the diltiazem receptor. However, these studies were not able to distinguish between the hypothesis that diltiazem binds to spatially separate, allosterically coupled receptors, and the hypothesis that diltiazem binds to a subsite of the verapamil receptor

  17. Characterization and bioactivity of novel calcium antagonists - N-methoxy-benzyl haloperidol quaternary ammonium salt

    Science.gov (United States)

    Chen, Yi-Cun; Zhu, Wei; Zhong, Shu-Ping; Zheng, Fu-Chun; Gao, Fen-Fei; Zhang, Yan-Mei; Xu, Han; Zheng, Yan-Shan; Shi, Gang-Gang

    2015-01-01

    BACKGROUND AND PURPOSE Calcium antagonists play an important role in clinical practice. However, most of them have serious side effects. We have synthesized a series of novel calcium antagonists, quaternary ammonium salt derivatives of haloperidol with N-p-methoxybenzyl (X1), N-m-methoxybenzyl (X2) and N-o-methoxybenzyl (X3) groups. The objective of this study was to investigate the bioactivity of these novel calcium antagonists, especially the vasodilation activity and cardiac side-effects. The possible working mechanisms of these haloperidol derivatives were also explored. EXPERIMENTAL APPROACH Novel calcium antagonists were synthesized by amination. Compounds were screened for their activity of vasodilation on isolated thoracic aortic ring of rats. Their cardiac side effects were explored. The patch-clamp, confocal laser microscopy and the computer-fitting molecular docking experiments were employed to investigate the possible working mechanisms of these calcium antagonists. RESULTS The novel calcium antagonists, X1, X2 and X3 showed stronger vasodilation effect and less cardiac side effect than that of classical calcium antagonists. They blocked L-type calcium channels with an potent effect order of X1 > X2 > X3. Consistently, X1, X2 and X3 interacted with different regions of Ca2+-CaM-CaV1.2 with an affinity order of X1 > X2 > X3. CONCLUSIONS The new halopedidol derivatives X1, X2 and X3 are novel calcium antagonists with stronger vasodilation effect and less cardiac side effect. They could have wide clinical application. PMID:26544729

  18. Voltage-Induced Ca²⁺ Release in Postganglionic Sympathetic Neurons in Adult Mice.

    Directory of Open Access Journals (Sweden)

    Hong-Li Sun

    Full Text Available Recent studies have provided evidence that depolarization in the absence of extracellular Ca2+ can trigger Ca2+ release from internal stores in a variety of neuron subtypes. Here we examine whether postganglionic sympathetic neurons are able to mobilize Ca2+ from intracellular stores in response to depolarization, independent of Ca2+ influx. We measured changes in cytosolic ΔF/F0 in individual fluo-4 -loaded sympathetic ganglion neurons in response to maintained K+ depolarization in the presence (2 mM and absence of extracellular Ca2+ ([Ca2+]e. Progressive elevations in extracellular [K+]e caused increasing membrane depolarizations that were of similar magnitude in 0 and 2 mM [Ca2+]e. Peak amplitude of ΔF/F0 transients in 2 mM [Ca2+]e increased in a linear fashion as the membrane become more depolarized. Peak elevations of ΔF/F0 in 0 mM [Ca2+]e were ~5-10% of those evoked at the same membrane potential in 2 mM [Ca2+]e and exhibited an inverse U-shaped dependence on voltage. Both the rise and decay of ΔF/F0 transients in 0 mM [Ca2+]e were slower than those of ΔF/F0 transients evoked in 2 mM [Ca2+]e. Rises in ΔF/F0 evoked by high [K+]e in the absence of extracellular Ca2+ were blocked by thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ ATPase, or the inositol 1,4,5-triphosphate (IP3 receptor antagonists 2-aminoethoxydiphenyl borate and xestospongin C, but not by extracellular Cd2+, the dihydropyridine antagonist nifedipine, or by ryanodine at concentrations that caused depletion of ryanodine-sensitive Ca2+ stores. These results support the notion that postganglionic sympathetic neurons possess the ability to release Ca2+ from IP3-sensitive internal stores in response to membrane depolarization, independent of Ca2+ influx.

  19. MICROVASCULAR CHANGES IN AGED RAT FOREBRAIN - EFFECTS OF CHRONIC NIMODIPINE TREATMENT

    NARCIS (Netherlands)

    de Jong, Giena; Weerd, H. de; Schuurman, T.; Traber, J.; Luiten, P.G.M.

    1990-01-01

    In the present study the effects of long-term treatment with the 1,4-dihydropyridine calcium antagonist nimodipine on ultrastructural alterations of the microvascular morphology were examined in the frontoparietal cortex, entorhinal cortex and CA1 of the hippocampus in the aged rat. Qualitative

  20. Dihydropyridines decrease X-ray-induced DNA base damage in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Wojewodzka, M., E-mail: marylaw@ichtj.waw.pl [Center of Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warszawa (Poland); Gradzka, I.; Buraczewska, I.; Brzoska, K.; Sochanowicz, B. [Center of Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warszawa (Poland); Goncharova, R.; Kuzhir, T. [Institute of Genetics and Cytology, Belarussian National Academy of Sciences, Minsk (Belarus); Szumiel, I. [Center of Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warszawa (Poland)

    2009-12-01

    Compounds with the structural motif of 1,4-dihydropyridine display a broad spectrum of biological activities, often defined as bioprotective. Among them are L-type calcium channel blockers, however, also derivatives which do not block calcium channels exert various effects at the cellular and organismal levels. We examined the effect of sodium 3,5-bis-ethoxycarbonyl-2,6-dimethyl-1,4-dihydropyridine-4-carboxylate (denoted here as DHP and previously also as AV-153) on X-ray-induced DNA damage and mutation frequency at the HGPRT (hypoxanthine-guanine phosphoribosyl transferase) locus in Chinese hamster ovary CHO-K1 cells. Using formamido-pyrimidine glycosylase (FPG) comet assay, we found that 1-h DHP (10 nM) treatment before X-irradiation considerably reduced the initial level of FPG-recognized DNA base damage, which was consistent with decreased 8-oxo-7,8-dihydro-2'-deoxyguanosine content and mutation frequency lowered by about 40%. No effect on single strand break rejoining or on cell survival was observed. Similar base damage-protective effect was observed for two calcium channel blockers: nifedipine (structurally similar to DHP) or verapamil (structurally unrelated). So far, the specificity of the DHP-caused reduction in DNA damage - practically limited to base damage - has no satisfactory explanation.

  1. 3D structure of muscle dihydropyridine receptor

    Directory of Open Access Journals (Sweden)

    Montserrat Samsó

    2015-01-01

    Full Text Available Excitation contraction coupling, the rapid and massive Ca2+ release under control of an action potential that triggers muscle contraction, takes places at specialized regions of the cell called triad junctions. There, a highly ordered supramolecular complex between the dihydropyridine receptor (DHPR and the ryanodine receptor (RyR1 mediates the quasi‐instantaneous conversion from T‐tubule depolarization into Ca2+ release from the sarcoplasmic reticulum (SR. The DHPR has several key modules required for EC coupling: the voltage sensors and II‐III loop in the alpha1s subunit, and the beta subunit. To gain insight into their molecular organization, this review examines the most updated 3D structure of the DHPR as obtained by transmission electron microscopy and image reconstruction. Although structure determination of a heteromeric membrane protein such as the DHPR is challenging, novel technical advances in protein expression and 3D labeling facilitated this task. The 3D structure of the DHPR complex consists of a main body with five irregular corners around its perimeter encompassing the transmembrane alpha 1s subunit besides the intracellular beta subunit, an extended extracellular alpha 2 subunit, and a bulky intracellular II‐III loop. The structural definition attained at 19 Å resolution enabled docking of the atomic coordinates of structural homologs of the alpha1s and beta subunits. These structural features, together with their relative location with respect to the RyR1, are discussed in the context of the functional data.

  2. Tx1, from Phoneutria nigriventer spider venom, interacts with dihydropyridine sensitive-calcium channels in GH3 cells

    International Nuclear Information System (INIS)

    Gouvea dos Santos, R.; Soares, M.A.; Pimenta, A.M.; De Lima, M.E.; ICB, UFMG, Belo Horizonte

    2006-01-01

    The aim of this work was to use the binding assay of tritiated-dihydropyridine and radioiodinated Tx1, isolated from the Phoneutria nigriventer venom, in order to show the presence of Ca v 1 calcium channels on pituitary tumour cell (GH3). We showed that GH3 cells have specific sites for 125 I-Tx1, which are sensitive to nifedipine (∼20%). Reverse competition assay with 3 H-PN200-110 (40% inhibition) and electrophysiological data (50% inhibition) suggest that Ca v 1 calcium channels are target sites for this toxin. To summarize, Tx1 binds to specific sites on GH3 cells and this interaction results in Ca v 1 calcium channel blockade. 3 H-PN200-110 and 125 I-Tx1 binding assays proved to be useful tools to show the presence of calcium channels on GH3 cells. (author)

  3. Ca2+ handling abnormalities in early-onset muscle diseases: Novel concepts and perspectives.

    NARCIS (Netherlands)

    Treves, S.; Jungbluth, H.; Voermans, N.C.; Muntoni, F.; Zorzato, F.

    2017-01-01

    The physiological process by which Ca2+ is released from the sarcoplasmic reticulum is called excitation-contraction coupling; it is initiated by an action potential which travels deep into the muscle fiber where it is sensed by the dihydropyridine receptor, a voltage sensing L-type Ca2+channel

  4. 4-Alkyl radical extrusion in the cytochrome P-450-catalyzed oxidation of 4-alkyl-1,4-dihydropyridines

    International Nuclear Information System (INIS)

    Lee, J.S.; Jacobsen, N.E.; Ortiz de Montellano, P.R.

    1988-01-01

    Rat liver microsomal cytochrome P-450 oxidizes the 4-methyl, 4-ethyl (DDEP), and 4-isopropyl derivatives of 3,5-bis(carbethoxy)-2,6-dimethyl-1,4,-dihydropyridine to mixtures of the corresponding 4-alkyl and 4-dealkyl pyridines. A fraction of the total microsomal enzyme is destroyed in the process. The 4-dealkyl to 4-alkyl pyridine metabolite ratio, the extent of cytochrome P-450 destruction, and the rate of spin-trapped radical accumulation are correlated in a linear inverse manner with the homolytic or heterolytic bond energies of the 4-alkyl groups of the 4-alkyl-1,4-dihydropyridines. No isotope effects are observed on the pyridine matabolite ratio, the destruction of cytochrome P-450, or the formation of ethyl radicals when [4- 2 H]DDEP is used instead of DDEP. N-Methyl- and N-ethyl-DDEP undergo N-dealkylation rather than aromatization but N-phenyl-DDEP is oxidized to a mixture of the 4-ethyl and 4-deethyl N-phenylpyridinium metabolites. In contrast to the absence of an isotope effect in the oxidation of DDEP, the 4-deethyl to 4-ethyl N-phenylpyridinium metabolite ratio increases 6-fold when N-phenyl[4- 2 H]DDEP is used. The results support the hypothesis that cytochrome P-450 catalyzes the oxidation of dihydropyridines to radical cations and show that the radical cations decay to nonradical products by multiple, substituent-dependent, mechanisms

  5. Electrophysiological characterization of activation state-dependent Ca(v)2 channel antagonist TROX-1 in spinal nerve injured rats.

    Science.gov (United States)

    Patel, R; Rutten, K; Valdor, M; Schiene, K; Wigge, S; Schunk, S; Damann, N; Christoph, T; Dickenson, A H

    2015-06-25

    Prialt, a synthetic version of Ca(v)2.2 antagonist ω-conotoxin MVIIA derived from Conus magus, is the first clinically approved voltage-gated calcium channel blocker for refractory chronic pain. However, due to the narrow therapeutic window and considerable side effects associated with systemic dosing, Prialt is only administered intrathecally. N-triazole oxindole (TROX-1) is a novel use-dependent and activation state-selective small-molecule inhibitor of Ca(v)2.1, 2.2 and 2.3 calcium channels designed to overcome the limitations of Prialt. We have examined the neurophysiological and behavioral effects of blocking calcium channels with TROX-1. In vitro, TROX-1, in contrast to state-independent antagonist Prialt, preferentially inhibits Ca(v)2.2 currents in rat dorsal root ganglia (DRG) neurons under depolarized conditions. In vivo electrophysiology was performed to record from deep dorsal horn lamina V/VI wide dynamic range neurons in non-sentient spinal nerve-ligated (SNL) and sham-operated rats. In SNL rats, spinal neurons exhibited reduced responses to innocuous and noxious punctate mechanical stimulation of the receptive field following subcutaneous administration of TROX-1, an effect that was absent in sham-operated animals. No effect was observed on neuronal responses evoked by dynamic brushing, heat or cold stimulation in SNL or sham rats. The wind-up response of spinal neurons following repeated electrical stimulation of the receptive field was also unaffected. Spinally applied TROX-1 dose dependently inhibited mechanically evoked neuronal responses in SNL but not sham-operated rats, consistent with behavioral observations. This study confirms the pathological state-dependent actions of TROX-1 through a likely spinal mechanism and reveals a modality selective change in calcium channel function following nerve injury. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. (β-dicarbonyl) arylmethanes and dihydropyridine from dimedone in

    African Journals Online (AJOL)

    N. Bayou-Khier, M. Amari, M. Fodili, S.G.Grau, P. Hoffmann

    2016-09-01

    Sep 1, 2016 ... reaction and in absence of catalyst. Also these operating conditions .... 3 in the synthesis of new heterocyclic molecules, standard dihydropyridine, by subjecting it to the action of two monoamines ... electronic interaction N---H, according to the acid-base properties of Lewis. In a second step, the primary ...

  7. Evaluation of the brain-specific delivery of radioiodinated (iodophenyl)alkyl-substituted amines coupled to a dihydropyridine carrier

    International Nuclear Information System (INIS)

    Tedjamulia, M.L.; Srivastava, P.C.; Knapp, F.F. Jr.

    1985-01-01

    To evaluate the potential usefulness of radioiodinated phenylamines attached to dihydropyridine carriers as a means of brain-specific delivery of radiopharmaceuticals, 1-methyl-3-[N-[beta- (4-[125I]iodophenyl)ethyl]carbamoyl]-1,4-dihydropyridine ([125I]-9) and 1-methyl-3-[N-(4-[125I]iodophenyl)carbamoyl]-1,4-dihydropyridine ([125I]-13) have been prepared by dithionite reduction of the corresponding pyridinium precursors, [125I]-8 and [125I]-12, respectively. Formation of 8 involved coupling of (p-aminophenyl)ethylamine with N-succinimidyl (1-methyl-3-pyridinio)formate iodide (4) followed by transformation to the corresponding N-piperidinyl- (6) or (diethylamino)- (7) triazines that were converted to 8 by treatment with HI. Alternatively, 12 was prepared by initial conversion of (4-amino-phenyl)mercuric acetate (10) to 4-iodoaniline (11) by treatment with I2 and then coupling with 4. The radioiodinated quaternary products, 8 and 12, showed low brain uptake and low brain to blood ratios, whereas the dihydropyridine analogues, 9 and 13, showed comparatively good brain uptake and good brain to blood ratios in rats. These data demonstrate that dihydropyridine-coupled radiopharmaceuticals can cross the blood-brain barrier and the technique may be useful for the measurement of cerebral blood perfusion

  8. Clinical efficacy of efonidipine hydrochloride, a T-type calcium channel inhibitor, on sympathetic activities. Examination using spectral analysis of heart rate/blood pressure variabilities and 123I-Metaiodobenzylguanidine myocardial scintigraphy

    International Nuclear Information System (INIS)

    Harada, Kenji; Nomura, Masahiro; Nishikado, Akiyoshi; Uehara, Kouzoh; Nakaya, Yutaka; Ito, Susumu

    2003-01-01

    Dihydropyridine Ca antagonists cause reflex tachycardia related to their hypotensive effects. Efonidipine hydrochloride has inhibitory effects on T-type Ca channels, even as it inhibits reflex tachycardia. In the present study, the influence of efonidipine hydrochloride on heart rate and autonomic nervous function was investigated. Using an electrocardiogram and a tonometric blood pressure measurement, autonomic nervous activity was evaluated using spectral analysis of heart rate/systolic blood pressure variability. Three protocols were used: a single dose of efonidipine hydrochloride was administered orally to healthy subjects with resting heart rate values of 75 beats/min or more (high-heart rate (HR) group) and to healthy subjects with resting heart rate values less than 75 beats/min (low-HR group); efonidipine hydrochloride was newly administered to untreated patients with essential hypertension, and autonomic nervous activity was investigated after a 4-week treatment period; and patients with high heart rate values (≥75 beats/min) who had been treated with a dihydropyridine L-type Ca channel inhibitor for 1 month or more were switched to efonidipine hydrochloride and any changes in autonomic nervous activity were investigated. In all protocols, administration of efonidipine hydrochloride decreased the heart rate in patients with a high heart rate, reduced sympathetic nervous activity, and enhanced parasympathetic nervous activity. In addition, myocardial scintigraphy with 123 I-metaiodobenzylguanidine showed significant improvement in the washout rate and heart to mediastinum (H/M) ratio of patients who were switched from other dihydropyridine Ca antagonists to efonidipine hydrochloride. Efonidipine hydrochloride inhibits increases in heart rate and has effects on the autonomic nervous system. It may be useful for treating hypertension and angina pectoris, and may also have a cardiac protective function. (author)

  9. Role of L-type Ca2+ channel isoforms in the extinction of conditioned fear.

    Science.gov (United States)

    Busquet, Perrine; Hetzenauer, Alfred; Sinnegger-Brauns, Martina J; Striessnig, Jörg; Singewald, Nicolas

    2008-05-01

    Dihydropyridine (DHP) L-type Ca(2+) channel (LTCC) antagonists, such as nifedipine, have been reported to impair the extinction of conditioned fear without interfering with its acquisition. Identification of the LTCC isoforms mediating this DHP effect is an essential basis to reveal their role as potential drug targets for the treatment of specific anxiety disorders. Ca(V)1.2 and Ca(V)1.3 are the predominant LTCCs in the mammalian brain. However, since no isoform-selective DHP blockers are available, their individual contribution to fear memory extinction is unknown. We used a novel mouse model expressing DHP-insensitive Ca(V)1.2 LTCCs (Ca(V)1.2DHP(-/-) mice) to address this question. In line with previous studies, wild-type (WT) mice treated with systemic nifedipine displayed markedly impaired fear extinction. This DHP effect was completely abolished in Ca(V)1.2DHP(-/-) mice, indicating that it is mediated by Ca(V)1.2, but not by Ca(V)1.3 LTCCs. Supporting this conclusion, Ca(V)1.3-deficient mice (Ca(V)1.3(-/-)) showed extinction identical to the respective WT mice. The inhibition of fear extinction was not observed after intracerebroventricular (i.c.v.) application of different doses of nifedipine, suggesting that this effect is secondary to inhibition of peripheral Ca(V)1.2 channels. The LTCC activator BayK, which lacks neurotoxic effects in Ca(V)1.2DHP(-/-) mice, did not influence the extinction time course. In summary, we demonstrate that LTCC signaling through the Ca(V)1.2 isoform of LTCCs interferes with fear memory extinction, presumably via a peripherally mediated mechanism. Activation of other LTCC isoforms (predominantly Ca(V)1.3) is not sufficient to accelerate extinction of conditioned fear in mice.

  10. Oxidative activation of dihydropyridine amides to reactive acyl donors

    DEFF Research Database (Denmark)

    Funder, Erik Daa; Trads, Julie Brender; Gothelf, Kurt Vesterager

    2015-01-01

    Amides of 1,4-dihydropyridine (DHP) are activated by oxidation for acyl transfer to amines, alcohols and thiols. In the reduced form the DHP amide is stable towards reaction with amines at room temperature. However, upon oxidation with DDQ the acyl donor is activated via a proposed pyridinium...

  11. One-step synthesis of pyridines and dihydropyridines in a continuous flow microwave reactor

    Directory of Open Access Journals (Sweden)

    Mark C. Bagley

    2013-09-01

    Full Text Available The Bohlmann–Rahtz pyridine synthesis and the Hantzsch dihydropyridine synthesis can be carried out in a microwave flow reactor or using a conductive heating flow platform for the continuous processing of material. In the Bohlmann–Rahtz reaction, the use of a Brønsted acid catalyst allows Michael addition and cyclodehydration to be carried out in a single step without isolation of intermediates to give the corresponding trisubstituted pyridine as a single regioisomer in good yield. Furthermore, 3-substituted propargyl aldehydes undergo Hantzsch dihydropyridine synthesis in preference to Bohlmann–Rahtz reaction in a very high yielding process that is readily transferred to continuous flow processing.

  12. Spectroscopic studies of two dynamically different 1,4-dihydropyridine structures

    Czech Academy of Sciences Publication Activity Database

    Sliwinska, E.; Palewska, K.; Lewanowicz, A.; Lipinski, J.; Sworakowski, J.; Gancarz, R.; Nešpůrek, Stanislav

    2002-01-01

    Roč. 76, 2-3 (2002), s. 235-247 ISSN 0137- 5083 R&D Projects: GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : dihydropyridine * UV-Vis spectroscopy * NMR spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.528, year: 2002

  13. Novel dihydropyridine thioglycosides and their corresponding dehydrogenated forms as potent anti-hepatocellular carcinoma agents.

    Science.gov (United States)

    Elgemeie, Galal H; El-Naggar, Dina H

    2018-05-03

    A novel method for preparation of a new class of dihydropyridine thioglycosides and their corresponding dehydrogenated forms, via reaction of piperidinium salts of dihydropyridinethiones with 2,3,4,6-tetra-O-acetyl-α-D-gluco- and galactopyranosyl bromides has been studied. The evaluation of antiproliferative activity against HepG-2 cell lines (liver carcinoma cell lines) of the dihydropyridine thioglycosides and pyridine thioglycosides revealed that many of the thioglycosides have interesting antitumor activities specifically 5c, 5g, 5l, 5o, 5p, 7a, 7i, 7p, 8b, 8f, 8s, and 8v.

  14. Reduced density gradient as a novel approach for estimating QSAR descriptors, and its application to 1, 4-dihydropyridine derivatives with potential antihypertensive effects.

    Science.gov (United States)

    Jardínez, Christiaan; Vela, Alberto; Cruz-Borbolla, Julián; Alvarez-Mendez, Rodrigo J; Alvarado-Rodríguez, José G

    2016-12-01

    The relationship between the chemical structure and biological activity (log IC 50 ) of 40 derivatives of 1,4-dihydropyridines (DHPs) was studied using density functional theory (DFT) and multiple linear regression analysis methods. With the aim of improving the quantitative structure-activity relationship (QSAR) model, the reduced density gradient s( r) of the optimized equilibrium geometries was used as a descriptor to include weak non-covalent interactions. The QSAR model highlights the correlation between the log IC 50 with highest molecular orbital energy (E HOMO ), molecular volume (V), partition coefficient (log P), non-covalent interactions NCI(H4-G) and the dual descriptor [Δf(r)]. The model yielded values of R 2 =79.57 and Q 2 =69.67 that were validated with the next four internal analytical validations DK=0.076, DQ=-0.006, R P =0.056, and R N =0.000, and the external validation Q 2 boot =64.26. The QSAR model found can be used to estimate biological activity with high reliability in new compounds based on a DHP series. Graphical abstract The good correlation between the log IC 50 with the NCI (H4-G) estimated by the reduced density gradient approach of the DHP derivatives.

  15. Vasorelaxant Effect of a Newly Synthesized Dihydropyridine Ethyl Ester (DHPEE on Rat Thoracic Aorta: Dual Mechanism of Action

    Directory of Open Access Journals (Sweden)

    Hossein Babaei

    2011-06-01

    Full Text Available Introduction: DHPEE is a newly synthesized compound by merging the key structural elements in an angiotensin receptor blocker (Telmisartan with key structural elements in 1,4- dihydropyridine calcium channel blocker (Nifedipine. In this study, we examined dual calcium channel blocking and AT1 antagonist activity for DHPEE. Methods: The functional inhibitory characteristics of DHPEE were studied in vitro in rat thoracic aorta preparations precontracted by phenylephrine (1µM or KCl (80µM or Ang II in normal or calcium-free solutions. Results: Concentration–dependent significant relaxation was observed in aortic rings precontracted with phenylephrine, KCl or Ang II. The tension increment produced by increasing external calcium was also reduced by DHPEE. DHPEE caused a marked decrease in the maximal contractile response of the vasoactive agents and shifted their concentration-response curves to the right. Conclusion: DHPEE possesses dual characteristics and cause vasorelaxation by blocking the L-type calcium channels and blocking Ang II receptors (AT1 in rat aortic smooth muscle.

  16. Candida antartica lipase-catalyzed hydrolysis of 4-substituted bis(ethoxycarbonylmethyl) 1,4-dihydropyridine-3,5-dicarboxylates as the key step in the synthesis of optically active dihydropyridines

    NARCIS (Netherlands)

    Sobolev, A.; Franssen, M.C.R.; Makarova, N.; Duburs, G.; Groot, de Æ.

    2001-01-01

    Prochiral bis(ethoxycarbonylmethyl) substituted 4-aryl-1,4-dihydropyridine-3,5-dicarboxylates were hydrolyzed enantioselectively by Candida antarctica lipase B (Novozym 435). The enantiomeric excesses varied from 68 to 93°depending on the substituent at position 4. In some cases, the e.e. could be

  17. 3-(2-Benzofuranyl)quinuclidin-2-ene derivatives: novel muscarinic antagonists.

    Science.gov (United States)

    Nordvall, G; Sundquist, S; Johansson, G; Glas, G; Nilvebrant, L; Hacksell, U

    1996-08-16

    A series of 26 derivatives of the novel muscarinic antagonist 3-(2-benzofuranyl)quinuclidin-2-ene (1) has been synthesized and evaluated for muscarinic and antimuscarinic properties. The affinity of the compounds was determined by competition experiments in homogenates of cerebral cortex, heart, parotid gland, and urinary bladder from guinea pigs using (-)-[3H]-3-quinuclidinyl benzilate as the radioligand, and the antimuscarinic-potency was determined in a functional assay on isolated guinea pig urinary bladder using carbachol as the agonist. The 5-fluorobenzofuranyl derivative was slightly more potent than 1. The 7-bromo-substituted 8 displayed a 14-fold tissue selectivity ratio for muscarinic receptors in the cortex versus the parotid gland. Comparative molecular field analysis and quantitative structure-activity relationship models were developed for this series of substituted benzofuranyl derivatives.

  18. Renal protection in diabetes--an emerging role for calcium antagonists

    DEFF Research Database (Denmark)

    Parving, H H; Tarnow, L; Rossing, P

    1997-01-01

    The combination of diabetes and hypertension increases the changes of progressive renal disorder and ultimately renal failure. Roughly 40% of all diabetics, whether insulin dependent or not, develop diabetic nephropathy. Diabetic nephropathy is the single most important cause of end-stage renal...... disease in the western world and accounts for more than a quarter of all end-stage renal diseases. It is also a major cause of increased morbidity and mortality in diabetic patients. Increased arterial blood pressure is an early and common phenomenon in incipient and overt diabetic nephropathy...... the ability to retard renal growth and possibly to attenuate mesangial entrapment of macromolecules and to attenuate the mitogenic effects of diverse growth factors. Calcium antagonists (except the old short-acting dihydropyridine drugs) reduce microalbuminuria and preserve kidney function in diabetic...

  19. The discovery of tropane-derived CCR5 receptor antagonists.

    Science.gov (United States)

    Armour, Duncan R; de Groot, Marcel J; Price, David A; Stammen, Blanda L C; Wood, Anthony; Perros, Manos; Burt, Catherine

    2006-04-01

    The development of compound 1, a piperidine-based CCR5 receptor antagonist with Type I CYP2D6 inhibition, into the tropane-derived analogue 5, is described. This compound, which is devoid of CYP2D6 liabilities, is a highly potent ligand for the CCR5 receptor and has broad-spectrum activity against a range of clinically relevant HIV isolates. The identification of human ether a-go-go-related gene channel inhibition within this series is described and the potential for QTc interval prolongation discussed. Furthermore, structure activity relationship (SAR) around the piperidine moiety is also described.

  20. Nonpeptidic angiotensin II AT₁ receptor antagonists derived from 6-substituted aminocarbonyl and acylamino benzimidazoles.

    Science.gov (United States)

    Zhang, Jun; Wang, Jin-Liang; Yu, Wei-Fa; Zhou, Zhi-Ming; Tao, Wen-Chang; Wang, Yi-Cheng; Xue, Wei-Zhe; Xu, Di; Hao, Li-Ping; Han, Xiao-Feng; Fei, Fan; Liu, Ting; Liang, Ai-Hua

    2013-11-01

    Both 6-substituted aminocarbonyl and acylamino benzimidazole derivatives were designed and synthesized as nonpeptidic angiotensin II AT₁ receptor antagonists. Compounds 6f, 6g, 11e, 11f, 11g, and 12 showed nanomolar AT₁ receptor binding affinity and high AT₁ receptor selectivity over AT₂ receptor in a preliminary pharmacological evaluation. Among them, the two most active compounds 6f (AT₁ IC₅₀ = 3 nM, AT₂ IC₅₀ > 10,000 nM, PA₂ = 8.51) and 11g (AT₁ IC₅₀ = 0.1 nM, AT₂ IC₅₀ = 149 nM, PA₂ = 8.43) exhibited good antagonistic activity in isolated rabbit aortic strip functional assay. In addition, they were orally active AT₁ receptor antagonists in spontaneous hypertensive rats. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  1. Dietary nitrate increases tetanic [Ca2+]i and contractile force in mouse fast-twitch muscle.

    Science.gov (United States)

    Hernández, Andrés; Schiffer, Tomas A; Ivarsson, Niklas; Cheng, Arthur J; Bruton, Joseph D; Lundberg, Jon O; Weitzberg, Eddie; Westerblad, Håkan

    2012-08-01

    Dietary inorganic nitrate has profound effects on health and physiological responses to exercise. Here, we examined if nitrate, in doses readily achievable via a normal diet, could improve Ca(2+) handling and contractile function using fast- and slow-twitch skeletal muscles from C57bl/6 male mice given 1 mm sodium nitrate in water for 7 days. Age matched controls were provided water without added nitrate. In fast-twitch muscle fibres dissected from nitrate treated mice, myoplasmic free [Ca(2+)] was significantly greater than in Control fibres at stimulation frequencies from 20 to 150 Hz, which resulted in a major increase in contractile force at ≤ 50 Hz. At 100 Hz stimulation, the rate of force development was ∼35% faster in the nitrate group. These changes in nitrate treated mice were accompanied by increased expression of the Ca(2+) handling proteins calsequestrin 1 and the dihydropyridine receptor. No changes in force or calsequestrin 1 and dihydropyridine receptor expression were measured in slow-twitch muscles. In conclusion, these results show a striking effect of nitrate supplementation on intracellular Ca(2+) handling in fast-twitch muscle resulting in increased force production. A new mechanism is revealed by which nitrate can exert effects on muscle function with applications to performance and a potential therapeutic role in conditions with muscle weakness.

  2. Does calcium influx regulate melatonin production through the circadian pacemaker in chick pineal cells? Effects of nitrendipine, Bay K 8644, Co2+, Mn2+, and low external Ca2+.

    Science.gov (United States)

    Zatz, M; Mullen, D A

    1988-11-01

    We have recently described a system, using dispersed chick pineal cells in static culture, which displays a persistent, photosensitive, circadian rhythm of melatonin production and release. Here, we describe the effects of nitrendipine (NTR) (a dihydropyridine 'antagonist' of L-type calcium channels), Bay K 8644 (BK) (a dihydropyridine calcium channel 'agonist'), cobalt and manganese ions (both inorganic calcium channel blockers), and low external calcium concentrations, on the melatonin rhythm. NTR inhibited and BK stimulated melatonin output; they were potent and effective. Co2+, Mn2+, and low external Ca2+ markedly inhibited melatonin output. These results support a role for calcium influx through voltage-dependent calcium channels (L-type) in the regulation of melatonin production. Four or 8 h pulses of white light or darkness, in otherwise constant red light, cause, in addition to acute effects, phase-dependent phase shifts of the melatonin rhythm in subsequent cycles. Such phase shifts indicate an effect on (proximal to) the pacemaker generating the rhythm. Four or 8 h pulses of NTR, BK, Co2+, or low Ca2+, however, did not appreciably alter the phase of subsequent melatonin cycles. Neither did BK interfere with phase shifts induced by light pulses. Mn2+ pulses did induce phase-dependent phase shifts, but, unlike those evoked by light or dark pulses, these were all delays. Such effects of Mn2+ in other systems have been attributed to, and are characteristic of, 'metabolic inhibitors'. On balance, the results fail to support a prominent role for calcium influx in regulating the pacemaker underlying the circadian rhythm in chick pineal cells. Rather, calcium influx appears to regulate melatonin production primarily by acting on the melatonin-synthesizing apparatus, distal to the pacemaker.

  3. Drug: D00437 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available trate Same as: C07266 Therapeutic category: 2171 ATC code: C08CA05 Vasospastic angina... [DS:H01632] Chronic stable angina [DS:H01632] ... Dihydropyridine derivative CACNA1C [HSA:775] [KO:K04850

  4. Synthesis and photodegradation studies of analogues of muscle relaxant 1,4-dihydropyridine compounds

    Directory of Open Access Journals (Sweden)

    Gündüz Miyase Gözde

    2017-09-01

    Full Text Available This paper describes the synthesis of 1,4-dihydropyridine compounds (DHPs endowed with good muscle relaxant activity and stability to light. Six new condensed DHPs were synthesized by the microwave irradiation method. A long-chain ester moiety [2-(methacryloyloxyethyl] and various substituents on the phenyl ring were demonstrated to affect the muscle relaxant activity occurring in isolated rabbit gastric fundus smooth muscle strips. Forced photodegradation conditions were applied to the molecules according to the ICH rules. The degradation profile of the drugs was monitored by spectrophotometry coupled with the multivariate curve resolution technique. Formation of the oxidized pyridine derivative was observed for all the studied DHPs, except for one compound, which showed very fast degradation and formation of a second photo-product. Pharmacological tests on the molecules showed a good muscle relaxing effect, with a mechanism similar to that of nifedipine, however, proving to be more stable to light.

  5. A preliminary study of the metabolic stability of a series of benzoxazinone derivatives as potent neuropeptide Y5 antagonists.

    Science.gov (United States)

    Dordal, Alberto; Lipkin, Mike; Macritchie, Jackie; Mas, Josep; Port, Adriana; Rose, Sally; Salgado, Leonardo; Savic, Vladimir; Schmidt, Wolfgang; Serafini, Maria Teresa; Spearing, William; Torrens, Antoni; Yeste, Sandra

    2005-08-15

    The metabolic stability of benzoxazinone derivatives, a potent series of NPY Y5 antagonists, has been investigated. This study resulted in the identification of the structural moieties prone to metabolic transformations and which strongly influenced the in vitro half-life. This provides opportunities to optimize the structure of this new class of NPY Y5 antagonists.

  6. Novel selective thiazoleacetic acids as CRTH2 antagonists developed from in silico derived hits. Part 1

    DEFF Research Database (Denmark)

    Rist, Oystein; Grimstrup, Marie; Receveur, Jean-Marie

    2009-01-01

    Structure-activity relationships of three related series of 4-phenylthiazol-5-ylacetic acids, derived from two hits emanating from a focused library obtained by in silico screening, have been explored as CRTH2 (chemoattractant receptor-homologous molecule expressed on Th2 cells) antagonists....... Several compounds with double digit nanomolar binding affinity and full antagonistic efficacy for human CRTH2 receptor were obtained in all subclasses. The most potent compound was [2-(4-chloro-benzyl)-4-(4-phenoxy-phenyl)-thiazol-5-yl]acetic acid having an binding affinity of 3.7nM and functional...

  7. Hydrogen Transfer from Hantzsch 1,4-Dihydropyridines to Carbon-Carbon Double Bonds under Microwave Irradiation

    OpenAIRE

    Jean Jacques Vanden Eynde; Didier Barbry; Guy Cordonnier; Séverine Torchy

    2002-01-01

    1,4-Dihydropyridines (DHPs) have been used in the reduction of carbon-carbon double bonds under microwave irradiation without solvent. The efficiency of the reactions is dramatically dependent on the steric effects in the DHPs and on the electronic effects in the olefins.

  8. Drug: D02914 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available derivative Indication: Hypertension CACNA1C [HSA:775] [KO:K04850]; CACNA1D [HSA:776] [KO:K04851]; CACNA1F [...522 ... CYP3A4 inhibitor ATC code: C08CA01 Chemical group: DG00322 ... Dihydropyridine

  9. Stable coordination of the inhibitory Ca2+ ion at MIDAS in integrin CD11b/CD18 by an antibody-derived ligand aspartate: Implications for integrin regulation and structure-based drug design

    Science.gov (United States)

    Mahalingam, Bhuvaneshwari; Ajroud, Kaouther; Alonso, Jose Luis; Anand, Saurabh; Adair, Brian; Horenstein, Alberto L; Malavasi, Fabio; Xiong, Jian-Ping; Arnaout, M. Amin

    2011-01-01

    A central feature of integrin interaction with physiologic ligands is the monodentate binding of a ligand carboxylate to a Mg2+ ion hexacoordinated at the metal-ion-dependent-adhesion site (MIDAS) in the integrin A-domain. This interaction stabilizes the A-domain in the high-affinity state, which is distinguished from the default low-affinity state by tertiary changes in the domain that culminate in cell adhesion. Small molecule ligand-mimetic integrin antagonists act as partial agonists, eliciting similar activating conformational changes in the A-domain, which has contributed to paradoxical adhesion and increased patient mortality in large clinical trials. As with other ligand-mimetic integrin antagonists, the function-blocking monoclonal antibody (mAb) 107 binds MIDAS of integrin CD11b/CD18 A-domain (CD11bA), but in contrast, it favors the inhibitory Ca2+ ion over Mg2+ at MIDAS. We determined the crystal structures of the Fab fragment of mAb 107 complexed to the low- and high-affinity states of CD11bA. Favored binding of Ca2+ at MIDAS is caused by the unusual symmetric bidentate ligation of a Fab-derived ligand Asp to a heptacoordinated MIDAS Ca2+. Binding of Fab 107 to CD11bA did not trigger the activating tertiary changes in the domain or in the full-length integrin. These data show that denticity of the ligand Asp/Glu can modify divalent cation selectivity at MIDAS and hence integrin function. Stabilizing the Ca2+ ion at MIDAS by bidentate ligation to a ligand Asp/Glu may provide one approach for designing pure integrin antagonists. PMID:22095715

  10. Profiling the Interaction Mechanism of Quinoline/Quinazoline Derivatives as MCHR1 Antagonists: An in Silico Method

    Directory of Open Access Journals (Sweden)

    Mingwei Wu

    2014-09-01

    Full Text Available Melanin concentrating hormone receptor 1 (MCHR1, a crucial regulator of energy homeostasis involved in the control of feeding and energy metabolism, is a promising target for treatment of obesity. In the present work, the up-to-date largest set of 181 quinoline/quinazoline derivatives as MCHR1 antagonists was subjected to both ligand- and receptor-based three-dimensional quantitative structure–activity (3D-QSAR analysis applying comparative molecular field analysis (CoMFA and comparative molecular similarity indices analysis (CoMSIA. The optimal predictable CoMSIA model exhibited significant validity with the cross-validated correlation coefficient (Q2 = 0.509, non-cross-validated correlation coefficient (R2ncv = 0.841 and the predicted correlation coefficient (R2pred = 0.745. In addition, docking studies and molecular dynamics (MD simulations were carried out for further elucidation of the binding modes of MCHR1 antagonists. MD simulations in both water and lipid bilayer systems were performed. We hope that the obtained models and information may help to provide an insight into the interaction mechanism of MCHR1 antagonists and facilitate the design and optimization of novel antagonists as anti-obesity agents.

  11. Analogues of arginine vasopressin modified at position 2 with proline derivatives: selective antagonists of oxytocin in vitro

    Czech Academy of Sciences Publication Activity Database

    Sobolewski, D.; Prahl, A.; Slaninová, Jiřina; Lammek, B.

    2009-01-01

    Roč. 611, - (2009), s. 503-504 ISSN 0065-2598. [American Peptide Society Symposium /20./. 26.06.2007-30.06.2007, Montreal] Institutional research plan: CEZ:AV0Z40550506 Keywords : vasopressin * proline derivatives * oxytocin antagonists Subject RIV: CC - Organic Chemistry

  12. Effect of carbonation temperature on CO_2 adsorption capacity of CaO derived from micro/nanostructured aragonite CaCO_3

    International Nuclear Information System (INIS)

    Hlaing, Nwe Ni; Sreekantan, Srimala; Hinode, Hirofumi; Kurniawan, Winarto; Thant, Aye Aye; Othman, Radzali; Mohamed, Abdul Rahman; Salime, Chris

    2016-01-01

    Recent years, CaO-based synthetic materials have been attracted attention as potential adsorbents for CO_2 capture mainly due to their high CO_2 adsorption capacity. In this study, micro/nanostructured aragonite CaCO_3 was synthesized by a simple hydrothermal method with using polyacrylamide (PAM). The structural, morphological and thermal properties of the synthesized sample were investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and thermogravimetry analysis (TG-DTA). The XRD and FESEM results showed that the obtained sample was aragonite CaCO_3 with aggregated nanorods and microspheres composed of nanorods. A TG-DTA apparatus with Thermoplus 2 software was used to investigate the effect of carbonation temperature on the CO_2 adsorption capacity of CaO derived from aragonite CaCO_3 sample. At 300 °C, the sample reached the CO_2 adsorption capacity of 0.098 g-CO_2/g-adsorbent, whereas the sample achieved the highest capacity of 0.682 g-CO_2/g-adsorbent at 700 °C. The results showed that the carbonation temperature significantly influenced on the CO_2 adsorption capacity of the CaO derived from aragonite CaCO_3.

  13. Kinetics of photochromic processes in substituted dihydropyridines in the solid state and in solution

    Czech Academy of Sciences Publication Activity Database

    Sworakowski, J.; Nešpůrek, Stanislav; Lipinski, J.; Lewanowicz, A.; Sliwinska, E.

    2001-01-01

    Roč. 356, - (2001), s. 163-173 ISSN 1058-725X. [International Conference on the Chemistry of the Organic Solid State /14./. Cambridge, 25.07.1999-30.07.1999] R&D Projects: GA AV ČR IAA1050901; GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : dihydropyridine * photochromism * reaction kinetics Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.457, year: 2001

  14. Dielectric and piezoelectric properties of sol-gel derived Ca doped PbTiO3

    International Nuclear Information System (INIS)

    Chauhan, Arun Kumar Singh; Gupta, Vinay; Sreenivas, K.

    2006-01-01

    Synthesis of Ca doped PbTiO 3 powder by a chemically derived sol-gel process is described. Crystallization characteristics of different compositions Pb 1-x Ca x TiO 3 (PCT) with varying calcium (Ca) content in the range x = 0-0.45 has been investigated by DTA/TGA, X-ray diffraction and scanning electron microscopy. The crystallization temperature is found to decrease with increasing calcium content. X-ray diffraction reveals a tetragonal structure for PCT compositions with x ≤ 0.35, and a cubic structure for x = 0.45. Dielectric properties on sintered ceramics prepared with fine sol-gel derived powders have been measured. The dielectric constant is found to increase with increasing Ca content, and the dielectric loss decreases continuously. Sol-gel derived Pb 1-x Ca x TiO 3 ceramics with x = 0.45 after poling exhibit infinite electromechanical anisotropy (k t /k p ) with a high d 33 = 80 pC/N, ε' = 298 and low dielectric loss (tan δ = 0.0041)

  15. Expression of Dihydropyridine and Ryanodine Receptors in Type IIA Fibers of Rat Skeletal Muscle

    International Nuclear Information System (INIS)

    Anttila, Katja; Mänttäri, Satu; Järvilehto, Matti

    2007-01-01

    In this study, the fiber type specificity of dihydropyridine receptors (DHPRs) and ryanodine receptors (RyRs) in different rat limb muscles was investigated. Western blot and histochemical analyses provided for the first time evidence that the expression of both receptors correlates to a specific myosin heavy chain (MHC) composition. We observed a significant (p=0.01) correlation between DHP as well as Ry receptor density and the expression of MHC IIa (correlation factor r=0.674 and r=0.645, respectively) in one slow-twitch, postural muscle (m. soleus), one mixed, fast-twitch muscle (m. gastrocnemius) and two fast-twitch muscles (m. rectus femoris, m. extensor digitorum longus). The highest DHP and Ry receptor density was found in the white part of m. rectus femoris (0.058±0.0060 and 0.057±0.0158 ODu, respectively). As expected, the highest relative percentage of MHC IIa was also found in the white part of m. rectus femoris (70.0±7.77%). Furthermore, histochemical experiments revealed that the IIA fibers stained most strongly for the fluorophore-conjugated receptor blockers. Our data clearly suggest that the expression of DHPRs and RyRs follows a fiber type-specific pattern, indicating an important role for these proteins in the maintenance of an effective Ca 2+ cycle in the fast contracting fiber type IIA

  16. 125I-labeled 8-phenylxanthine derivatives: antagonist radioligands for adenosine A1 receptors

    International Nuclear Information System (INIS)

    Linden, J.; Patel, A.; Earl, C.Q.; Craig, R.H.; Daluge, S.M.

    1988-01-01

    A series of 8-phenylxanthine derivatives has been synthesized with oxyacetic acid on the para phenyl position to increase aqueous solubility and minimize nonspecific binding and iodinatable groups on the 1- or 3-position of the xanthine ring. The structure-activity relationship for binding of these compounds to A1 adenosine receptors of bovine and rat brain and A2 receptors of human platelets was examined. The addition of arylamine or photosensitive aryl azide groups to the 3-position of xanthine had little effect on A1 binding affinity with or without iodination, whereas substitutions at the 1-position caused greatly reduced A1 binding affinity. The addition of an aminobenzyl group to the 3-position of the xanthine had little effect on A2 binding affinity, but 3-aminophenethyl substitution decreased A2 binding affinity. Two acidic 3-(arylamino)-8-phenylxanthine derivatives were labeled with 125 I and evaluated as A1 receptor radioligands. The new radioligands bound to A1 receptors with KD values of 1-1.25 nM. Specific binding represented over 80% of total binding. High concentrations of NaCl or other salts increased the binding affinity of acidic but not neutral antagonists, suggesting that interactions between ionized xanthines and receptors may be affected significantly by changes in ionic strength. On the basis of binding studies with these antagonists and isotope dilution with the agonist [ 125 I]N6-(4-amino-3-iodobenzyl)adenosine, multiple agonist affinity states of A1 receptors have been identified

  17. Effects of mecamylamine (a nicotinic receptor antagonist on harman induced-amnesia in an inhibitory avoidance test

    Directory of Open Access Journals (Sweden)

    Mohammad Nasehi

    2011-10-01

    Full Text Available Introduction: β-carbolines alkaloids suchv as harmane have been found in common plant-derived foodstuffs (wheat, rice, corn, barley, grape and mushrooms. These alkaloids have many cognitive effects including alteration short and long term memory. In the present study, the effect of intra-CA1 injection of the nicotinic receptor antagonist mecamylamine on amnesia induced by harmane was examined in mice. Materials and Methods: Mice were bilaterally implanted with chronic cannulae in the CA1 regions of the dorsal hippocampus. One week after cannulae implantation, mice were trained in a step-down type inhibitory avoidance task, and were tested 24 h after training to measure step-down latency as a scale of memory. Results: Pre-training or post-training systemic injection of harmane induced amnesia. Pre-testing intra-dorsal hippocampus administration of the high dose of nicotinic receptor antagonist, mecamylamine (4 µg/mice also induced amnesia. On the other hand, pre-test intra-CA1 injection of ineffective doses of mecamylamine (0.5, 1 and 2 µg/mice fully restored harmane induced amnesia. Conclusion: The present finding in this study indicated that a complex interaction exists between nicotinic receptor of dorsal hippocampus and amnesia induced by Harmane.

  18. Alterations in brain-derived neurotrophic factor (BDNF) and its precursor proBDNF in the brain regions of a learned helplessness rat model and the antidepressant effects of a TrkB agonist and antagonist.

    Science.gov (United States)

    Shirayama, Yukihiko; Yang, Chun; Zhang, Ji-chun; Ren, Qian; Yao, Wei; Hashimoto, Kenji

    2015-12-01

    Role of brain-derived neurotrophic factor (BDNF)-TrkB signaling in a learned helplessness (LH) model of depression was investigated. LH rats showed a reduction of BDNF in the medial prefrontal cortex (mPFC), CA3, and dentate gyrus (DG) of the hippocampus, whereas LH rats showed an increase in BDNF in the nucleus accumbens (NAc). Furthermore, levels of proBDNF, a BDNF precursor, were higher in the mPFC, but lower in the NAc, of LH rats. A single bilateral infusion of a TrkB agonist 7,8-DHF, but not a TrkB antagonist ANA-12, into the infralimbic (IL) of mPFC, DG, and CA3, but not the prelimbic (PrL) of mPFC, exerted antidepressant effects in LH rats. In contrast, a single bilateral infusion of ANA-12, but not 7,8-DHF, into the core and shell of NAc exerted antidepressant-like effects in LH rats, with more potent effects observed for the NAc core than for NAc shell. Interestingly, a single administration of 7,8-DHF (10mg/kg, i.p.) significantly improved a decreased phosphorylation of TrkB in the mPFC, CA3, and DG of LH rats. Additionally, ANA-12 (0.5mg/kg, i.p.) significantly improved an increased phosphorylation of TrkB in the NAc of LH rats. In conclusion, these results suggest that LH causes depression-like behavior by altering BDNF in the brain regions, and that proBDNF-BDNF processing and transport may be altered in the mPFC-NAc circuit of LH rats. Therefore, TrkB agonists might exert antidepressant effects by stimulating TrkB in the IL, CA3, and DG, while TrkB antagonists might exert antidepressant effects by blocking TrkB in the NAc. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  19. Dielectric and piezoelectric properties of sol-gel derived Ca doped PbTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Arun Kumar Singh [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)]. E-mail: drvin_gupta@rediffmail.com; Sreenivas, K. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2006-06-15

    Synthesis of Ca doped PbTiO{sub 3} powder by a chemically derived sol-gel process is described. Crystallization characteristics of different compositions Pb{sub 1-x}Ca {sub x}TiO{sub 3} (PCT) with varying calcium (Ca) content in the range x = 0-0.45 has been investigated by DTA/TGA, X-ray diffraction and scanning electron microscopy. The crystallization temperature is found to decrease with increasing calcium content. X-ray diffraction reveals a tetragonal structure for PCT compositions with x {<=} 0.35, and a cubic structure for x = 0.45. Dielectric properties on sintered ceramics prepared with fine sol-gel derived powders have been measured. The dielectric constant is found to increase with increasing Ca content, and the dielectric loss decreases continuously. Sol-gel derived Pb{sub 1-x}Ca {sub x}TiO{sub 3} ceramics with x = 0.45 after poling exhibit infinite electromechanical anisotropy (k {sub t}/k {sub p}) with a high d {sub 33} = 80 pC/N, {epsilon}' = 298 and low dielectric loss (tan {delta} = 0.0041)

  20. Effect of carbonation temperature on CO{sub 2} adsorption capacity of CaO derived from micro/nanostructured aragonite CaCO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Hlaing, Nwe Ni, E-mail: nwenihlaing76@gmail.com [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Department of International Development Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo (Japan); Department of Physics, University of Yangon, 11041 Kamayut, Yangon (Myanmar); Sreekantan, Srimala, E-mail: srimala@usm.my [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Hinode, Hirofumi, E-mail: hinode@ide.titech.ac.jp; Kurniawan, Winarto, E-mail: Kurniawan.w.ab@m.titech.ac.jp [Department of International Development Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo (Japan); Thant, Aye Aye, E-mail: a2thant@gmail.com [Department of Physics, University of Yangon, 11041 Kamayut, Yangon (Myanmar); Othman, Radzali, E-mail: radzali@utem.edu.my [Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Malacca (Malaysia); Mohamed, Abdul Rahman, E-mail: chrahman@eng.usm.my [Low Carbon Economy (LCE) Research Group, School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Salime, Chris, E-mail: chris.salim@surya.ac.id [Environmental Engineering, Surya University, Tangerang, 15810 Banten (Indonesia)

    2016-07-06

    Recent years, CaO-based synthetic materials have been attracted attention as potential adsorbents for CO{sub 2} capture mainly due to their high CO{sub 2} adsorption capacity. In this study, micro/nanostructured aragonite CaCO{sub 3} was synthesized by a simple hydrothermal method with using polyacrylamide (PAM). The structural, morphological and thermal properties of the synthesized sample were investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and thermogravimetry analysis (TG-DTA). The XRD and FESEM results showed that the obtained sample was aragonite CaCO{sub 3} with aggregated nanorods and microspheres composed of nanorods. A TG-DTA apparatus with Thermoplus 2 software was used to investigate the effect of carbonation temperature on the CO{sub 2} adsorption capacity of CaO derived from aragonite CaCO{sub 3} sample. At 300 °C, the sample reached the CO{sub 2} adsorption capacity of 0.098 g-CO{sub 2}/g-adsorbent, whereas the sample achieved the highest capacity of 0.682 g-CO{sub 2}/g-adsorbent at 700 °C. The results showed that the carbonation temperature significantly influenced on the CO{sub 2} adsorption capacity of the CaO derived from aragonite CaCO{sub 3}.

  1. Discovery of novel quaternary ammonium derivatives of (3R)-quinuclidinyl amides as potent and long acting muscarinic antagonists.

    Science.gov (United States)

    Prat, Maria; Buil, María Antonia; Fernández, Maria Dolors; Tort, Laia; Monleón, Juan Manuel; Casals, Gaspar; Ferrer, Manuel; Castro, Jordi; Gavaldà, Amadeu; Miralpeix, Montserrat; Ramos, Israel; Vilella, Dolors; Huerta, Josep Maria; Espinosa, Sònia; Hernández, Begoña; Segarra, Victor; Córdoba, Mònica

    2015-04-15

    Novel quaternary ammonium derivatives of (3R)-quinuclidinyl amides have been identified as potent M3 muscarinic antagonists with a long duration of action in an in vivo model of bronchoconstriction. The synthesis, structure-activity relationships and biological evaluation of this series of compounds are reported. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Voltage-Gated Calcium Channel Antagonists and Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Bruce Lyeth

    2013-06-01

    Full Text Available Traumatic brain injury (TBI is a leading cause of death and disability in the United States. Despite more than 30 years of research, no pharmacological agents have been identified that improve neurological function following TBI. However, several lines of research described in this review provide support for further development of voltage gated calcium channel (VGCC antagonists as potential therapeutic agents. Following TBI, neurons and astrocytes experience a rapid and sometimes enduring increase in intracellular calcium ([Ca2+]i. These fluxes in [Ca2+]i drive not only apoptotic and necrotic cell death, but also can lead to long-term cell dysfunction in surviving cells. In a limited number of in vitro experiments, both L-type and N-type VGCC antagonists successfully reduced calcium loads as well as neuronal and astrocytic cell death following mechanical injury. In rodent models of TBI, administration of VGCC antagonists reduced cell death and improved cognitive function. It is clear that there is a critical need to find effective therapeutics and rational drug delivery strategies for the management and treatment of TBI, and we believe that further investigation of VGCC antagonists should be pursued before ruling out the possibility of successful translation to the clinic.

  3. Effects of dantrolene and its derivatives on Ca2+ release from the sarcoplasmic reticulum of mouse skeletal muscle fibres

    Science.gov (United States)

    Ikemoto, Takaaki; Hosoya, Takamitsu; Aoyama, Hiroshi; Kihara, Yasutaka; Suzuki, Masaaki; Endo, Makoto

    2001-01-01

    We analysed the effect of dantrolene (Dan) and five newly synthesized derivatives (GIFs) on Ca2+ release from the sarcoplasmic reticulum (SR) of mouse skeletal muscle.In intact muscles, GIF-0185 reduced the size of twitch contraction induced by electrical stimulation to the same extent as Dan. GIF-0082, an azido-functionalized Dan derivative, also inhibited twitch contraction, although the extent of inhibition was less than that of Dan and of GIF-0185.In skinned fibres, Dan inhibited Ca2+-induced Ca2+ release (CICR) under Mg2+-free conditions at room temperature. In contrast, GIF-0082 and GIF-0185 showed no inhibitory effect on CICR under the same conditions.Dan-induced inhibition of CICR was not affected by the presence of GIF-0082, whereas it was diminished in the presence of GIF-0185.GIF-0082 and GIF-0185 significantly inhibited clofibric acid (Clof)-induced Ca2+ release, as did Dan.Several Dan derivatives other than GIF-0082 and GIF-0185 showed an inhibitory effect on twitch tension but not on the CICR mechanism. All of these derivatives inhibited Clof-induced Ca2+ release.The magnitudes of inhibition of Clof-induced Ca2+ release by all Dan derivatives were well correlated with those of twitch inhibition. This supports the notion that the mode of Clof-induced opening of the RyR-Ca2+ release channel may be similar to that of physiological Ca2+ release (PCR).These results indicate that the difference in opening modes of the RyR-Ca2+ release channel is recognized by certain Dan derivatives. PMID:11606312

  4. P2Y1 receptor antagonists mitigate oxygen and glucose deprivation‑induced astrocyte injury.

    Science.gov (United States)

    Guo, Hui; Liu, Zhong-Qiang; Zhou, Hui; Wang, Zhi-Ling; Tao, Yu-Hong; Tong, Yu

    2018-01-01

    The aim of the present study was to elucidate the effects of blocking the calcium signaling pathway of astrocytes (ASs) on oxygen and glucose deprivation (OGD)‑induced AS injury. The association between the changes in the concentrations of AS‑derived transmitter ATP and glutamic acid, and the changes in calcium signaling under the challenge of OGD were investigated. The cortical ASs of Sprague Dawley rats were cultured to establish the OGD models of ASs. The extracellular concentrations of ATP and glutamic acid in the normal group and the OGD group were detected, and the intracellular concentration of calcium ions (Ca2+) was detected. The effects of 2'‑deoxy‑N6‑methyl adenosine 3', 5'‑diphosphate diammonium salt (MRS2179), a P2Y1 receptor antagonist, on the release of calcium and glutamic acid of ASs under the condition of OGD were observed. The OGD challenge induced the release of glutamic acid and ATP by ASs in a time‑dependent manner, whereas elevation in the concentration of glutamic acid lagged behind that of the ATP and Ca2+. The concentration of Ca2+ inside ASs peaked 16 h after OGD, following which the concentration of Ca2+ was decreased. The effects of elevated release of glutamic acid by ASs when challenged by OGD may be blocked by MRS2179, a P2Y1 receptor antagonist. Furthermore, MRS2179 may significantly mitigate OGD‑induced AS injury and increase cell survival. The ASs of rats cultured in vitro expressed P2Y1 receptors, which may inhibit excessive elevation in the concentration of intracellular Ca2+. Avoidance of intracellular calcium overload and the excessive release of glutamic acid may be an important reason why MRS2179 mitigates OGD‑induced AS injury.

  5. Suggesting a possible role of CA1 histaminergic system in harmane-induced amnesia.

    Science.gov (United States)

    Nasehi, Mohammad; Mashaghi, Elham; Khakpai, Fatemeh; Zarrindast, Mohammad-Reza

    2013-11-27

    A number of tremorogenic β-carboline alkaloids such as harmane are naturally present in the human food chain. They are derived from medicinal plants such as Peganum harmala that have been used as folk medicine in anticancer therapy. In the present study, effects of the histaminergic system of the dorsal hippocampus (CA1) on harmane-induced amnesia were examined. One-trial step-down was used to assess memory retention in adult male mice. The results showed that pre-training intra-CA1 administration of histamine (5μg/mouse), ranitidine (H2 receptor antagonist; at the doses of 0.25 and 0.5μg/mouse) and pyrilamine (H1 receptor antagonist; at the dose of 5μg/mouse) decreased memory formation. Pre-training intraperitoneal (i.p.) administration of harmane (12mg/kg) also decreased memory formation. Moreover, pre-training intra-CA1 injection of a sub-threshold dose of histamine (2.5μg/mouse) could reverse harmane (12mg/kg, i.p.)-induced impairment of memory. On the other hand, pre-training intra-CA1 injection of sub-threshold doses of ranitidine (0.0625μg/mouse) and pyrilamine (2.5μg/mouse) increased harmane-induced impairment of memory. In conclusion, the present findings suggest the involvement of the CA1 histaminergic system in harmane-induced impairment of memory formation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Dgroup: DG00326 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available nidipine hydrochloride (JAN/USAN) Cardiovascular agent ... DG01928 ... Dihydropyridine calcium channel blocker Oth...er ... DG01575 ... Calcium channel blocker Cyp substrate ... DG01633 ... CYP3A substrate ATC code: C08CA13 Dihydropyridine calcium channel block

  7. Potentiation of the isoproterenol-induced net /sup 45/Ca uptake into the ventricular myocardium of rats by means of 9. cap alpha. -fluorocortisoleacetate, dihydrotachysterole or NaH/sub 2/PO/sub 4/. Cancelling of the potentiation by organic Ca/sup 2 +/ antagonists or K/sup +/ and Mg/sup 2 +/ ions

    Energy Technology Data Exchange (ETDEWEB)

    Hein, R

    1974-01-01

    Myocardial necroses resembling infarctions as well as disseminated myocardial necroses can be induced in rats by high doses of isoprotenerol which effects a maximum stimulation of the decomposition of energy-rich phosphate. This leads to an isoprotenerol-induced increase of the transmembranous Ca/sup + +/ influx, flooding the myocardium with Ca/sup + +/ ions. It is these Ca/sup + +/ ions which then trigger the break-down of the ATP and creatine phosphate fractions by activating the myofibrit-ATPase and impairing the mitochondrial function. It seems that physiological Ca/sup + +/ antagonists such as K/sup +/- or Mg/sup + +/-salts counteract the loss of energy-rich phosphate, thus preventing necroses. A new group of organic Ca/sup + +/ antagonists (verapamil, substance D 600, prenylamine) appears to be even more effective in this respect. Given in appropriate doses, these substances may prevent the isoprotenerol-induced Ca/sup + +/ flooding of the myocardium to a large extent, so that a break-down of the ATP and creatine phosphate fractions is avoided. On the other hand, the isoprotenerol-induced increase of the Ca/sup + +/ influx may be further potentiated by a preliminary treatment of the animals with 9..cap alpha..-fluorocortisoleacetate, dihydrotachysterole or NaH/sub 2/PO/sub 4/. This results in an extreme loss of energy-rich phosphate from the myocardium with excessive enhancement of necrosis production. The findings suggest that - unrecognized so far - Ca/sup + +/ ions play a key role in the generation of myocardial necroses: the present assumption, according to which increased Ca/sup + +/ uptake into damaged myocardial fibres is only a result - or at the most an accompanying symptom - of necrosis can thus no longer be considered valid.

  8. Conducted vasoconstriction in rat mesenteric arterioles: role for dihydropyridine-insensitive Ca(2+) channels

    DEFF Research Database (Denmark)

    Gustafsson, F; Andreasen, D; Salomonsson, Max

    2001-01-01

    The aim of this study was to evaluate the role of voltage-operated Ca(2+) channels in the initiation and conduction of vasoconstrictor responses to local micropipette electrical stimulation of rat mesenteric arterioles (28 +/- 1 microm, n = 79) in vivo. Local and conducted (600 microm upstream from...... the pipette) vasoconstriction was not blocked by TTX (1 micromol/l, n = 5), nifedipine, or nimodipine (10 micromol/l, n = 9). Increasing the K(+) concentration of the superfusate to 75 mmol/l did not evoke vasoconstriction, but this depolarizing stimulus reversibly abolished vasoconstrictor responses...

  9. CCR5 receptor antagonists: discovery and SAR study of guanylhydrazone derivatives.

    Science.gov (United States)

    Wei, Robert G; Arnaiz, Damian O; Chou, Yuo-Ling; Davey, Dave; Dunning, Laura; Lee, Wheeseong; Lu, Shou-Fu; Onuffer, James; Ye, Bin; Phillips, Gary

    2007-01-01

    High throughput screening (HTS) led to the identification of the guanylhydrazone of 2-(4-chlorobenzyloxy)-5-bromobenzaldehyde as a CCR5 receptor antagonist. Initial modifications of the guanylhydrazone series indicated that substitution of the benzyl group at the para-position was well tolerated. Substitution at the 5-position of the central phenyl ring was critical for potency. Replacement of the guanylhydrazone group led to the discovery of a novel series of CCR5 antagonists.

  10. Involvement of Ca2+ Signaling in the Synergistic Effects between Muscarinic Receptor Antagonists and β2-Adrenoceptor Agonists in Airway Smooth Muscle

    Directory of Open Access Journals (Sweden)

    Kentaro Fukunaga

    2016-09-01

    Full Text Available Long-acting muscarinic antagonists (LAMAs and short-acting β2-adrenoceptor agonists (SABAs play important roles in remedy for COPD. To propel a translational research for development of bronchodilator therapy, synergistic effects between SABAs with LAMAs were examined focused on Ca2+ signaling using simultaneous records of isometric tension and F340/F380 in fura-2-loaded tracheal smooth muscle. Glycopyrronium (3 nM, a LAMA, modestly reduced methacholine (1 μM-induced contraction. When procaterol, salbutamol and SABAs were applied in the presence of glycopyrronium, relaxant effects of these SABAs are markedly enhanced, and percent inhibition of tension was much greater than the sum of those for each agent and those expected from the BI theory. In contrast, percent inhibition of F340/F380 was not greater than those values. Bisindolylmaleimide, an inhibitor of protein kinase C (PKC, significantly increased the relaxant effect of LAMA without reducing F340/F380. Iberiotoxin, an inhibitor of large-conductance Ca2+-activated K+ (KCa channels, significantly suppressed the effects of these combined agents with reducing F340/F380. In conclusion, combination of SABAs with LAMAs synergistically enhances inhibition of muscarinic contraction via decreasing both Ca2+ sensitization mediated by PKC and Ca2+ dynamics mediated by KCa channels. PKC and KCa channels may be molecular targets for cross talk between β2-adrenoceptors and muscarinic receptors.

  11. The PDZ motif of the α1C subunit is not required for surface trafficking and adrenergic modulation of CaV1.2 channel in the heart.

    Science.gov (United States)

    Yang, Lin; Katchman, Alexander; Weinberg, Richard L; Abrams, Jeffrey; Samad, Tahmina; Wan, Elaine; Pitt, Geoffrey S; Marx, Steven O

    2015-01-23

    Voltage-gated Ca(2+) channels play a key role in initiating muscle excitation-contraction coupling, neurotransmitter release, gene expression, and hormone secretion. The association of CaV1.2 with a supramolecular complex impacts trafficking, localization, turnover, and, most importantly, multifaceted regulation of its function in the heart. Several studies hint at an important role for the C terminus of the α1C subunit as a hub for multidimensional regulation of CaV1.2 channel trafficking and function. Recent studies have demonstrated an important role for the four-residue PDZ binding motif at the C terminus of α1C in interacting with scaffold proteins containing PDZ domains, in the subcellular localization of CaV1.2 in neurons, and in the efficient signaling to cAMP-response element-binding protein in neurons. However, the role of the α1C PDZ ligand domain in the heart is not known. To determine whether the α1C PDZ motif is critical for CaV1.2 trafficking and function in cardiomyocytes, we generated transgenic mice with inducible expression of an N-terminal FLAG epitope-tagged dihydropyridine-resistant α1C with the PDZ motif deleted (ΔPDZ). These mice were crossed with α-myosin heavy chain reverse transcriptional transactivator transgenic mice, and the double-transgenic mice were fed doxycycline. The ΔPDZ channels expressed, trafficked to the membrane, and supported robust excitation-contraction coupling in the presence of nisoldipine, a dihydropyridine Ca(2+) channel blocker, providing functional evidence that they appropriately target to dyads. The ΔPDZ Ca(2+) channels were appropriately regulated by isoproterenol and forskolin. These data indicate that the α1C PDZ motif is not required for surface trafficking, localization to the dyad, or adrenergic stimulation of CaV1.2 in adult cardiomyocytes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Regio- and stereoselective 1,2-dihydropyridine alkylation/addition sequence for the synthesis of piperidines with quaternary centers.

    Science.gov (United States)

    Duttwyler, Simon; Chen, Shuming; Lu, Colin; Mercado, Brandon Q; Bergman, Robert G; Ellman, Jonathan A

    2014-04-07

    The first example of C alkylation of 1,2-dihydropyridines with alkyl triflates and Michael acceptors was developed to introduce quaternary carbon centers with high regio- and diastereoselectivity. Hydride or carbon nucleophile addition to the resultant iminium ion also proceeded with high diastereoselectivity. Carbon nucleophile addition results in an unprecedented level of substitution to provide piperidine rings with adjacent tetrasubstituted carbon atoms. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Role of calpain in eccentric contraction-induced proteolysis of Ca2+-regulatory proteins and force depression in rat fast-twitch skeletal muscle.

    Science.gov (United States)

    Kanzaki, Keita; Watanabe, Daiki; Kuratani, Mai; Yamada, Takashi; Matsunaga, Satoshi; Wada, Masanobu

    2017-02-01

    The aim of this study was to examine the in vivo effects of eccentric contraction (ECC) on calpain-dependent proteolysis of Ca 2+ -regulatory proteins and force production in fast-twitch skeletal muscles. Rat extensor digitorum longus muscles were exposed to 200 repeated ECC in situ and excised immediately [recovery 0 (REC0)] or 3 days [recovery 3 (REC3)] after cessation of ECC. Calpain inhibitor (CI)-treated rats were intraperitoneally injected with MDL-28170 before ECC and during REC3. Tetanic force was markedly reduced at REC0 and remained reduced at REC3. CI treatment ameliorated the ECC-induced force decline but only at REC3. No evidence was found for proteolysis of dihydropyridine receptor (DHPR), junctophilin (JP)1, JP2, ryanodine receptor (RyR), sarcoplasmic reticulum Ca 2+ -ATPase (SERCA)1a, or junctional face protein-45 at REC0. At REC3, ECC resulted in decreases in DHPR, JP1, JP2, RyR, and SERCA1a. CI treatment prevented the decreases in DHPR, JP1, and JP2, whereas it had little effect on RyR and SERCA1a. These findings suggest that DHPR, JP1, and JP2, but not RyR and SERCA1a, undergo calpain-dependent proteolysis in in vivo muscles subjected to ECC and that impaired function of DHPR and/or JP might cause prolonged force deficits with ECC. NEW & NOTEWORTHY Calpain-dependent proteolysis is one of the contributing factors to muscle damage that occurs with eccentric contraction (ECC). It is unclear, however, whether calpains account for proteolysis of Ca 2+ -regulatory proteins in in vivo muscles subjected to ECC. Here, we provide evidence that dihydropyridine receptor and junctophilin, but not ryanodine receptor and sarcoplasmic reticulum Ca 2+ -ATPase, undergo calpain-dependent proteolysis. Copyright © 2017 the American Physiological Society.

  14. Synthesis of 4-aryl-2,6-dimethyl-3,5-bis-N-(aryl-carbamoyl-1,4-dihydropyridines as novel skin protecting and anti-aging agents

    Directory of Open Access Journals (Sweden)

    Aamer Saeed

    2017-06-01

    Full Text Available A series of 4-aryl-2,6-dimethyl-3,5-bis-N-(aryl-carbamoyl-1,4-dihydropyri-dines 6a-6h were prepared by using the one-pot three component synthetic method. The target compounds 6a-6h were synthesized by reacting two molar equivalents of ketone functionality and one mole of aromatic aldehydes in ammonium acetate to obtain the desired products. The structures of newly synthesized compounds were characterized by FT-IR, 1H-NMR, 13C-NMR, and elemental analysis. All the synthesized compounds were screened for their elastase inhibition and antioxidant activity. Almost all of the com-pounds 6a-h showed good to excellent activities against elastase enzyme more than the reference drug. Compounds 6d and 6b at 0.2 ± 0.0 µM and 0.2 ± 0.0 µM were found to most potent derivatives against elastase enzyme. Compound 6a exhibited prominent free radical scavenging activity. From the results of the biological activity, we infer that some derivatives can serve as lead molecules in pharmacology.

  15. Dgroup: DG00322 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available DG01928 ... Dihydropyridine calcium channel blocker Other ... DG01575 ... Calcium channel blocker ... DG01496 ... Calcium channel L type block...1522 ... CYP3A4 inhibitor ATC code: C08CA01 Dihydropyridine calcium channel blocker CACNA1-L [HSA:775 776 778 7

  16. The Three Dimensional Quantitative Structure Activity Relationships (3D-QSAR and Docking Studies of Curcumin Derivatives as Androgen Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2012-05-01

    Full Text Available Androgen receptor antagonists have been proved to be effective anti-prostate cancer agents. 3D-QSAR and Molecular docking methods were performed on curcumin derivatives as androgen receptor antagonists. The bioactive conformation was explored by docking the potent compound 29 into the binding site of AR. The constructed Comparative Molecular Field Analysis (CoMFA and Comparative Similarity Indices Analysis (CoMSIA models produced statistically significant results with the cross-validated correlation coefficients q2 of 0.658 and 0.567, non-cross-validated correlation coefficients r2 of 0.988 and 0.978, and predicted correction coefficients r2pred of 0.715 and 0.793, respectively. These results ensure the CoMFA and CoMSIA models as a tool to guide the design of novel potent AR antagonists. A set of 30 new analogs were proposed by utilizing the results revealed in the present study, and were predicted with potential activities in the developed models.

  17. Cytotoxicity assessment of adipose-derived mesenchymal stem cells on synthesized biodegradable Mg-Zn-Ca alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fazel Anvari-Yazdi, Abbas [Department of Biomedical Engineering, Materials and Biomaterials Research Center (MBMRC), Tehran, IR (Iran, Islamic Republic of); Tahermanesh, Kobra, E-mail: tahermanesh.k@iums.ac.ir [Endometriosis and Gynecologic Disorders Research Center, Department of Ob. & Gyn., Rasoul-e Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, IR (Iran, Islamic Republic of); Hadavi, Seyed Mohammad Mehdi [Materials and Energy Research Center (MERC), Karaj, IR (Iran, Islamic Republic of); Talaei-Khozani, Tahereh [Tissue Engineering Lab, Anatomy Department, School of Medicine, Shiraz University of Medical Sciences (SUMS), Shiraz, IR (Iran, Islamic Republic of); Razmkhah, Mahboobeh [Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences (SUMS), Shiraz, IR (Iran, Islamic Republic of); Abed, Seyedeh Mehr [School of Medicine, Yasuj University of Medical Sciences (YUMS), Yasuj, IR (Iran, Islamic Republic of); Mohtasebi, Maryam Sadat [Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences (SUMS), Shiraz, IR (Iran, Islamic Republic of)

    2016-12-01

    Magnesium (Mg)-based alloys have been extensively considered as biodegradable implant materials for orthopedic surgery. Mg and its alloys are metallic biomaterials that can degrade in the body and promote new bone formation. In this study, the corrosion behavior and cytotoxicity of Mg-Zn-Ca alloys are evaluated with adipose-derived mesenchymal stem cells (ASCs). Mg-2Zn and Mg-2Zn-xCa (x = 1, 2 and 3 wt.%) alloys were designated. Mg alloys were analyzed with scanning electron microscopy and potentiodynamic polarization. To understand the in-vitro biocompatibility and cytotoxicity of Mg-2Zn and Mg-2Zn-xCa alloys, ASCs were cultured for 24 and 72 h in contact with 10%, 50% and 100% extraction of all alloys prepared in DMEM. Cell cytotoxicity and viability of ASCs were examined by MTT assay. Alloying elements including Zn and Ca improved the corrosion resistance of alloys were compared with pure Mg. The cytotoxicity results showed that all alloys had no significant adverse effects on cell viability in 24 h. After 72 h, cell viability and proliferation increased in the cells exposed to pure Mg and Mg-2Zn-1Ca extracts. The release of Mg, Zn and Ca ions in culture media had no toxic impacts on ASCs viability and proliferation. Mg-2Zn-1Ca alloy can be suggested as a good candidate to be used in biomedical applications. - Highlights: • Short and long term corrosion behavior of Mg-Zn-Ca alloys studied • Viability and toxicity of Adipose-derived Stem cells studied with Mg-Zn-Ca alloys • Understanding the morphology of cultured adipose stem cells on Mg alloys • Stem cells on Mg-Zn-Ca alloys could proliferate and expand.

  18. Cytotoxicity assessment of adipose-derived mesenchymal stem cells on synthesized biodegradable Mg-Zn-Ca alloys

    International Nuclear Information System (INIS)

    Fazel Anvari-Yazdi, Abbas; Tahermanesh, Kobra; Hadavi, Seyed Mohammad Mehdi; Talaei-Khozani, Tahereh; Razmkhah, Mahboobeh; Abed, Seyedeh Mehr; Mohtasebi, Maryam Sadat

    2016-01-01

    Magnesium (Mg)-based alloys have been extensively considered as biodegradable implant materials for orthopedic surgery. Mg and its alloys are metallic biomaterials that can degrade in the body and promote new bone formation. In this study, the corrosion behavior and cytotoxicity of Mg-Zn-Ca alloys are evaluated with adipose-derived mesenchymal stem cells (ASCs). Mg-2Zn and Mg-2Zn-xCa (x = 1, 2 and 3 wt.%) alloys were designated. Mg alloys were analyzed with scanning electron microscopy and potentiodynamic polarization. To understand the in-vitro biocompatibility and cytotoxicity of Mg-2Zn and Mg-2Zn-xCa alloys, ASCs were cultured for 24 and 72 h in contact with 10%, 50% and 100% extraction of all alloys prepared in DMEM. Cell cytotoxicity and viability of ASCs were examined by MTT assay. Alloying elements including Zn and Ca improved the corrosion resistance of alloys were compared with pure Mg. The cytotoxicity results showed that all alloys had no significant adverse effects on cell viability in 24 h. After 72 h, cell viability and proliferation increased in the cells exposed to pure Mg and Mg-2Zn-1Ca extracts. The release of Mg, Zn and Ca ions in culture media had no toxic impacts on ASCs viability and proliferation. Mg-2Zn-1Ca alloy can be suggested as a good candidate to be used in biomedical applications. - Highlights: • Short and long term corrosion behavior of Mg-Zn-Ca alloys studied • Viability and toxicity of Adipose-derived Stem cells studied with Mg-Zn-Ca alloys • Understanding the morphology of cultured adipose stem cells on Mg alloys • Stem cells on Mg-Zn-Ca alloys could proliferate and expand

  19. DA-6034-induced mucin secretion via Ca2+-dependent pathways through P2Y receptor stimulation.

    Science.gov (United States)

    Lee, Hun; Kim, Eung Kweon; Kim, Ji Yeon; Yang, Yu-Mi; Shin, Dong Min; Kang, Kyung Koo; Kim, Tae-im

    2014-09-11

    We evaluated whether DA-6034 is involved in mucin secretion via P2Y receptor activation and/or intracellular Ca2+ concentration ([Ca2+]i) change. Also, we investigated the effect of P2Y receptor inhibitors or Ca2+ chelators on the DA-6034-induced mucin secretion and [Ca2+]i increases. Effects of DA-6034 on mucin expression in primary, cultured, conjunctival epithelial cells was studied using RT-PCR, Western blot analysis, and periodic acid-schiff (PAS) staining. To evaluate thin film layer thickness generated by mucin and fluid secretion, cells were incubated in DA-6034 with/without P2Y antagonists or extracellular/intracellular Ca2+ chelators, and were imaged with confocal microscope using Texas Red-dextran dye. In addition, DA-6034-induced Ca2+-dependent Cl- channels opening was evaluated using perforated patch clamp. Fluo-4/AM was used to measure changes in [Ca2+]i induced by DA-6034 in Ca2+-free or Ca2+-containing buffered condition, as well as P2Y antagonists. DA-6034 induced the expression of mucin genes, production of mucin protein, and increase of number of mucin-secreting cells. P2Y antagonists inhibited DA-6034-induced mucin and fluid secretion, which was also affected by extracellular/intracellular Ca2+ chelators. DA-6034 stimulated Cl- channel opening and [Ca2+]i elevation. Further, [Ca2+]i increases induced by DA-6034 were lacking in either P2Y antagonists or Ca2+-free buffered condition, and diminished when endoplasmic reticulum Ca2+ was depleted by cyclopiazonic acid in Ca2+-free buffered condition. This study demonstrated that DA-6034 has a potential to induce mucin secretion via Ca2+-dependent pathways through P2Y receptors in multilayer, cultured, human conjunctival epithelial cells. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  20. Ozone (O{sub 3}) elicits neurotoxicity in spinal cord neurons (SCNs) by inducing ER Ca{sup 2+} release and activating the CaMKII/MAPK signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yun; Lin, Xiaowen; Zhao, XueJun; Xie, Juntian; JunNan, Wang; Sun, Tao; Fu, Zhijian, E-mail: zhijian_fu@163.com

    2014-11-01

    Ozone (O{sub 3}) is widely used in the treatment of spinal cord related diseases. Excess or accumulation of this photochemical air can however be neurotoxic. In this study, in vitro cultured Wister rat spinal cord neurons (SCNs) were used to investigate the detrimental effects and underlying mechanisms of O{sub 3}. Ozone in a dose-dependent manner inhibited cell viability at a range of 20 to 500 μg/ml, with the dose at 40 μg/ml resulting in a decrease of cell viability to 75%. The cell death after O{sub 3} exposure was related to endoplasmic reticulum (ER) calcium (Ca{sup 2+}) release. Intracellular Ca{sup 2+} chelator, ER stabilizer (inositol 1,4,5-trisphosphate receptor (IP3R) antagonist and ryanodine receptor (RyR) antagonist) and calcium/calmodulin-dependent protein kinase II (CaMKII) antagonist could effectively block Ca{sup 2+} mobilization and inhibit cell death following 40 μg/ml O{sub 3} exposure. In addition, ER Ca{sup 2+} release due to O{sub 3} exposure enhanced phospho-p38 and phospho-JNK levels and apoptosis of SCNs through activating CaMKII. Based on these results, we confirm that ozone elicits neurotoxicity in SCNs via inducing ER Ca{sup 2+} release and activating CaMKII/MAPK signaling pathway. Therefore, physicians should get attention to the selection of treatment concentrations of oxygen/ozone. And, approaches, such as chelating intracellular Ca{sup 2+} and stabilizing neuronal Ca{sup 2+} homeostasis could effectively ameliorate the neurotoxicity of O{sub 3}. - Highlights: • Exposure to O{sub 3} can reduce the viability of SCNs and cause the cell death. • Exposure to O{sub 3} can trigger RyR and IP3R dependent intracellular Ca{sup 2+} release. • Exposure to O{sub 3} can enhance the phospho-CaMKII, phospho-JNK and phospho-p38 levels.

  1. Role of voltage-gated L-type Ca2+ channel isoforms for brain function.

    Science.gov (United States)

    Striessnig, J; Koschak, A; Sinnegger-Brauns, M J; Hetzenauer, A; Nguyen, N K; Busquet, P; Pelster, G; Singewald, N

    2006-11-01

    Voltage-gated LTCCs (L-type Ca2+ channels) are established drug targets for the treatment of cardiovascular diseases. LTCCs are also expressed outside the cardiovascular system. In the brain, LTCCs control synaptic plasticity in neurons, and DHP (dihydropyridine) LTCC blockers such as nifedipine modulate brain function (such as fear memory extinction and depression-like behaviour). Voltage-sensitive Ca2+ channels Cav1 .2 and Cav1.3 are the predominant brain LTCCs. As DHPs and other classes of organic LTCC blockers inhibit both isoforms, their pharmacological distinction is impossible and their individual contributions to defined brain functions remain largely unknown. Here, we summarize our recent experiments with two genetically modified mouse strains, which we generated to explore the individual biophysical features of Cav1.2 and Cav1.3 LTCCs and to determine their relative contributions to various physiological peripheral and neuronal functions. The results described here also allow predictions about the pharmacotherapeutic potential of isoform-selective LTCC modulators.

  2. Antagonist targeting microRNA-155 protects against lithium-pilocarpine-induced status epilepticus in C57BL/6 mice by activating brain-derived neurotrophic factor

    Directory of Open Access Journals (Sweden)

    Zhengxu eCai

    2016-05-01

    Full Text Available Epilepsy is a severe brain disorder affecting numerous patients. Recently, it is inferred that modulation of microRNA-155 (miR-155 could serve as a promising treatment of mesial temporal lobe epilepsy (MTLE. In the current study, the therapeutic potential of miR-155 antagonist against TLE was evaluated and the underlying mechanism involved in this regulation was explored. TLE model was induced by lithium-pilocarpine method. The effect of miR-155 antagonist on epilepticus symptoms of TLE mice was assessed using Racine classification and electroencephalogram (EEG recordings. The expression of brain-derived neurotrophic factor (BDNF and its association with miR-155 were also assessed with a series of experiments. Our results showed that level of miR-155 was significantly up-regulated after induction of TLE model. Based on the results of EEG and behavior analyses, seizures in mice were alleviated by miR-155 antagonist. Moreover, administration of miR-155 antagonist also significantly increased the level of BDNF. The results of dual luciferase assay and western blotting showed that miR-155 antagonist exerted its action on status epilepticus by directly regulating the activity of BDNF. Taken all the information together, our results demonstrated that miR-155 antagonist might firstly induce the expression of BDNF, which then contributed to the alleviation of epilepsy in the current study.

  3. Ginseng gintonin activates the human cardiac delayed rectifier K+ channel: involvement of Ca2+/calmodulin binding sites.

    Science.gov (United States)

    Choi, Sun-Hye; Lee, Byung-Hwan; Kim, Hyeon-Joong; Jung, Seok-Won; Kim, Hyun-Sook; Shin, Ho-Chul; Lee, Jun-Hee; Kim, Hyoung-Chun; Rhim, Hyewhon; Hwang, Sung-Hee; Ha, Tal Soo; Kim, Hyun-Ji; Cho, Hana; Nah, Seung-Yeol

    2014-09-01

    Gintonin, a novel, ginseng-derived G protein-coupled lysophosphatidic acid (LPA) receptor ligand, elicits [Ca(2+)]i transients in neuronal and non-neuronal cells via pertussis toxin-sensitive and pertussis toxin-insensitive G proteins. The slowly activating delayed rectifier K(+) (I(Ks)) channel is a cardiac K(+) channel composed of KCNQ1 and KCNE1 subunits. The C terminus of the KCNQ1 channel protein has two calmodulin-binding sites that are involved in regulating I(Ks) channels. In this study, we investigated the molecular mechanisms of gintonin-mediated activation of human I(Ks) channel activity by expressing human I(Ks) channels in Xenopus oocytes. We found that gintonin enhances IKs channel currents in concentration- and voltage-dependent manners. The EC50 for the I(Ks) channel was 0.05 ± 0.01 μg/ml. Gintonin-mediated activation of the I(Ks) channels was blocked by an LPA1/3 receptor antagonist, an active phospholipase C inhibitor, an IP3 receptor antagonist, and the calcium chelator BAPTA. Gintonin-mediated activation of both the I(Ks) channel was also blocked by the calmodulin (CaM) blocker calmidazolium. Mutations in the KCNQ1 [Ca(2+)]i/CaM-binding IQ motif sites (S373P, W392R, or R539W)blocked the action of gintonin on I(Ks) channel. However, gintonin had no effect on hERG K(+) channel activity. These results show that gintonin-mediated enhancement of I(Ks) channel currents is achieved through binding of the [Ca(2+)]i/CaM complex to the C terminus of KCNQ1 subunit.

  4. Biodiesel production from palm oil using hydrated lime-derived CaO as a low-cost basic heterogeneous catalyst

    International Nuclear Information System (INIS)

    Roschat, Wuttichai; Siritanon, Theeranun; Yoosuk, Boonyawan; Promarak, Vinich

    2016-01-01

    Graphical abstract: Hydrated lime-derived CaO can be utilized as high efficient heterogeneous solid catalyst for transesterification of palm oil to biodiesel product. - Highlights: • CaO with high surface area and pore volume was successfully prepared from hydrated lime using a simple method. • Hydrated lime-derived CaO were used as a catalyst in transesterification of palm oil to biodiesel. • Over 97% FAME yield was achieved from transesterification of palm oil in 2 h. • This CaO has high potential for applications as green and low-cost catalyst. - Abstract: In this study, hydrated lime-derived calcium oxide (CaO) was used as a catalyst for the transesterification of palm oil. The catalysts were characterized by TG-DTA, XRD, XRF, FT-IR, SEM, Hammett indicator method, TPD-CO_2 and BET by N_2 adsorption. Under the optimal conditions at catalyst loading of 6 wt.%, methanol/oil molar ratio of 15:1, reaction temperature 65 °C, and stirring rate of 200 rpm; 97% yield of biodiesel could be achieved in 2 h. Effects of water amount were investigated and the catalyst could tolerate high water content of 5 wt.%. The kinetic of the reaction followed pseudo-first order with the activation energy (Ea) of 121.12 kJ/mol and frequency factor (A) of 1.203 × 10"1"7 min"−"1. After treatments, high quality biodiesel was obtained which indicated that the very cheap hydrated lime-derived CaO showed excellent catalytic activity and high potential for applications in biodiesel production.

  5. Novel derivatives of 5,6-dimethoxy-1-indanone coupled with substituted pyridine as potential antimicrobial agents

    OpenAIRE

    Vimal M. Patel; Nilay D. Bhatt; Pralav V. Bhatt; Hasmukh D. Joshi

    2018-01-01

    Synthesis of novel derivatives of 5,6-dimethoxy-1-indanone was carried out via its Schiff’s base using 2-cyanoacetohydrazide followed by cyclization with 2-arylidenemalononitrile in the presence of a catalytical amount of piperidine to get 6-amino-1-(5,6-dimethoxy-2,3-dihydro-1H-inden-1-ylideneamino)-2-oxo-4-aryl-1,2-dihydropyridine-3,5-dicarbonitrile derivatives. The structures of the synthesized compounds were confirmed on the basis of their spectral and elemental analysis. The synthesized ...

  6. Nifedipine-activated Ca(2+) permeability in newborn rat cortical collecting duct cells in primary culture.

    Science.gov (United States)

    Valencia, L; Bidet, M; Martial, S; Sanchez, E; Melendez, E; Tauc, M; Poujeol, C; Martin, D; Namorado, M D; Reyes, J L; Poujeol, P

    2001-05-01

    To characterize Ca(2+) transport in newborn rat cortical collecting duct (CCD) cells, we used nifedipine, which in adult rat distal tubules inhibits the intracellular Ca(2+) concentration ([Ca(2+)](i)) increase in response to hormonal activation. We found that the dihydropyridine (DHP) nifedipine (20 microM) produced an increase in [Ca(2+)](i) from 87.6 +/- 3.3 nM to 389.9 +/- 29.0 nM in 65% of the cells. Similar effects of other DHP (BAY K 8644, isradipine) were also observed. Conversely, DHPs did not induce any increase in [Ca(2+)](i) in cells obtained from proximal convoluted tubule. In CCD cells, neither verapamil nor diltiazem induced any rise in [Ca(2+)](i). Experiments in the presence of EGTA showed that external Ca(2+) was required for the nifedipine effect, while lanthanum (20 microM), gadolinium (100 microM), and diltiazem (20 microM) inhibited the effect. Experiments done in the presence of valinomycin resulted in the same nifedipine effect, showing that K(+) channels were not involved in the nifedipine-induced [Ca(2+)](i) rise. H(2)O(2) also triggered [Ca(2+)](i) rise. However, nifedipine-induced [Ca(2+)](i) increase was not affected by protamine. In conclusion, the present results indicate that 1) primary cultures of cells from terminal nephron of newborn rats are a useful tool for investigating Ca(2+) transport mechanisms during growth, and 2) newborn rat CCD cells in primary culture exhibit a new apical nifedipine-activated Ca(2+) channel of capacitive type (either transient receptor potential or leak channel).

  7. Inhibition of Brain Swelling after Ischemia-Reperfusion by β-Adrenergic Antagonists: Correlation with Increased K+ and Decreased Ca2+ Concentrations in Extracellular Fluid

    Directory of Open Access Journals (Sweden)

    Dan Song

    2014-01-01

    Full Text Available Infarct size and brain edema following ischemia/reperfusion are reduced by inhibitors of the Na+, K+, 2Cl−, and water cotransporter NKCC1 and by β1-adrenoceptor antagonists. NKCC1 is a secondary active transporter, mainly localized in astrocytes, driven by transmembrane Na+/K+ gradients generated by the Na+,K+-ATPase. The astrocytic Na+,K+-ATPase is stimulated by small increases in extracellular K+ concentration and by the β-adrenergic agonist isoproterenol. Larger K+ increases, as occurring during ischemia, also stimulate NKCC1, creating cell swelling. This study showed no edema after 3 hr medial cerebral artery occlusion but pronounced edema after 8 hr reperfusion. The edema was abolished by inhibitors of specifically β1-adrenergic pathways, indicating failure of K+-mediated, but not β1-adrenoceptor-mediated, stimulation of Na+,K+-ATPase/NKCC1 transport during reoxygenation. Ninety percent reduction of extracellular Ca2+ concentration occurs in ischemia. Ca2+ omission abolished K+ uptake in normoxic cultures of astrocytes after addition of 5 mM KCl. A large decrease in ouabain potency on K+ uptake in cultured astrocytes was also demonstrated in Ca2+-depleted media, and endogenous ouabains are needed for astrocytic K+ uptake. Thus, among the ionic changes induced by ischemia, the decrease in extracellular Ca2+ causes failure of the high-K+-stimulated Na+,K+-ATPase/NKCC1 ion/water uptake, making β1-adrenergic activation the only stimulus and its inhibition effective against edema.

  8. Ultrasonic-assisted production of biodiesel from transesterification of palm oil over ostrich eggshell-derived CaO catalysts.

    Science.gov (United States)

    Chen, Guanyi; Shan, Rui; Shi, Jiafu; Yan, Beibei

    2014-11-01

    In this study, waste ostrich eggshell-derived calcium oxide (denoted as CaO(OE)) particles were synthesized and explored as cost-effective catalysts for the ultrasonic-assisted transesterification of palm oil. The physicochemical properties of the resultant catalysts were characterized by XRD, N2 adsorption, XRF and Hammett indicator, while the catalytic activity was evaluated through transesterification of palm oil with methanol under ultrasonic conditions. More specifically, the CaO(OE) showed comparable catalytic activity to the one derived from commercial calcium carbonate (denoted as CaO(Lab)). Moreover, under ultrasonic conditions, the catalytic activity of CaO(OE) could be enhanced significantly. The maximum yield of fatty acid methyl esters could reach 92.7% under the optimal condition of reaction time of 60 min with ultrasonic power of 60% (120 W), methanol-to-oil ratio of 9:1, and catalyst loading of 8 wt.%. The results indicated that the CaO(OE) catalysts showed good catalytic performance and reusability, and may potentially reduce the cost of biodiesel production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Radiosynthesis of dimethyl-2-[{sup 18}F]-(fluoromethyl)-6-methyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate for L-type calcium channel imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghpour, H. [Nuclear Medicine Research Group, Agricultural, Medical and Industrial Research School (AMIRS), Karaj (Iran); Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran Univ. of Medical Sciences, Tehran (Iran); Jalilian, A.R.; Akhlaghi, M.; Mirzaei, M. [Nuclear Medicine Research Group, Agricultural, Medical and Industrial Research School (AMIRS), Karaj (Iran); Shafiee, A. [Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran Univ. of Medical Sciences, Tehran (Iran); Miri, R. [Medicinal and Natural Products Chemistry Research Center, Shiraz Univ. of Medical Sciences, Shiraz (Iran)

    2008-07-01

    Dimethyl 2-(fluoromethyl)-6-methyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate 4a, a fluorinated nifedipine analog, has been shown to elicit significant calcium channel blocker activity using a guinea pig ileal longitudinal smooth muscle model. In order to perform biological studies for detection of L-type calcium channel distribution, we decided to prepare the [{sup 18}F]-labeled compound. The latter compound was prepared in no-carrier-added (n.c.a.) form from dimethyl 2-(bromomethyl)-6-methyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate 2 in one step at 80 C in Kryptofix[222]/K[{sup 18}F]F and acetonitrile as a solvent in 15 min. Column chromatography afforded the radiochemically pure compound in 20 min. Radiochemical purity of the {sup 18}F-nifedipine was determined by RTLC and HPLC (> 98%) and specific activity of 21-48 GBq/{mu}mol (EOB). (orig.)

  10. Neuroprotective and memory-related actions of novel alpha-7 nicotinic agents with different mixed agonist/antagonist properties.

    Science.gov (United States)

    Meyer, E M; Tay, E T; Zoltewicz, J A; Meyers, C; King, M A; Papke, R L; De Fiebre, C M

    1998-03-01

    The goals of this study were to develop compounds that were selective and highly efficacious agonists at alpha-7 receptors, while varying in antagonist activity; and to test the hypothesis that these compounds had memory-related and neuroprotective actions associated with both agonist and antagonist alpha-7 receptor activities. Three compounds were identified; E,E-3-(cinnamylidene)anabaseine (3-CA), E,E-3-(2-methoxycinnamylidene) anabaseine (2-MeOCA) and E,E-3-(4-methoxycinnamylidene) anabaseine (4-MeOCA) each displaced [125I]alpha-bungarotoxin binding from rat brain membranes and activated rat alpha-7 receptors in a Xenopus oocyte expression system fully efficaciously. The potency series for binding and receptor activation was 2-MeOCA > 4-MeOCA = 3-CA and 2-MeOCA = 3-CA > 4-MeOCA, respectively. No compound significantly activated oocyte-expressed alpha-4beta-2 receptors. Although each cinnamylidene-anabaseine caused a long-term inhibition of alpha-7 receptors, as measured by ACh-application 5 min later, this inhibition ranged considerably, from less than 20% (3-CA) to 90% (2-MeOCA) at an identical concentration (10 microM). These compounds improved passive avoidance behavior in nucleus basalis lesioned rats, with 2-MeOCA most potent in this respect. In contrast, only 3-CA was neuroprotective against neurite loss during nerve growth factor deprivation in differentiated rat pheochromocytoma (PC12) cells. Choline, an efficacious alpha-7 agonist without antagonist activity, was also protective in this model. These results suggest that the neurite-protective action of alpha-7 receptor agonists may be more sensitive to potential long-term antagonist properties than acute behavioral actions are.

  11. Evidence for a dihydropyridine-sensitive and conotoxin-insensitive release of noradrenaline and uptake of calcium in adrenal chromaffin cells.

    Science.gov (United States)

    Owen, P. J.; Marriott, D. B.; Boarder, M. R.

    1989-01-01

    1. It has been suggested that neuronal voltage-sensitive calcium channels (VSCC) may be divided into dihydropyridine (DHP)-sensitive (L) and DHP-insensitive (N and T), and that both the L and the N type channels are attenuated by the peptide blocker omega-conotoxin. Here the effects of omega-conotoxin on release of noradrenaline and uptake of calcium in bovine adrenal chromaffin cells were investigated. 2. Release of noradrenaline in response to 25 mM K+, 65 mM K+, 10 nM bradykinin or 10 microM prostaglandin E1 was not affected by omega-conotoxin in the range 10 nM-1 microM. 3. 45Ca2+ uptake stimulated by high K+ and prostaglandin was attenuated by 1 microM nitrendipine and enhanced by 1 microM Bay K 8644; these calcium fluxes were not modified by 20 nM omega-conotoxin. 4. With superfused rat brain striatal slices in the same medium as the above cell studies, release of dopamine in response to 25 mM K+ was attenuated by 20 nM omega-conotoxin. 5. These results show that in these neurone-like cells, release may be effected by calcium influx through DHP-sensitive but omega-conotoxin-insensitive VSCC, a result inconsistent with the suggestion that omega-conotoxin blocks both L-type and N-type neuronal calcium channels. PMID:2470457

  12. Value of the addition of Amlodipine to atenolol in patients with angina pectoris despite adequate beta blockade

    NARCIS (Netherlands)

    Dunselman, PHJM; Bouwens, LHM; Herweijer, AH; Bernink, PJLM

    1998-01-01

    Anginal patients who remain symptomatic despite optimally dosed beta blockade may also be given dihydropyridine calcium antagonists. This treatment regimen was examined in a double-blind parallel, randomized, controlled study in 147 patients with angina and positive bicycle exercise tests despite

  13. Transcription factor CREB is involved in CaSR-mediated cytoskeleton gene expression.

    Science.gov (United States)

    Huang, Shuaishuai; Ren, Yu; Wang, Ping; Li, Yanyuan; Wang, Xue; Zhuang, Haihui; Fang, Rong; Wang, Yuduo; Liu, Ningsheng; Hehir, Michael; Zhou, Jeff X

    2015-03-01

    Our previous studies illustrated that a steady increase of intracellular calcium concentration ([Ca2+]i) was important for maintaining microtubules (MTs) rearrangement in apoptotic cells. However, little is known about the effect of calcium sensing receptor (CaSR)-mediated increase in [Ca2+]i on cytoskeleton gene expression. We examined the impact of taxol or CaSR agonist/antagonist on the regulation of [Ca2+]i concentration, cytoskeleton arrangement, phosphorylated CREB and cytoskeleton gene expressions in HeLa cells with dominant negative plasmid of CREB (PM). This study demonstrated that Gdcl3 (a specific CaSR agonist) evoked a rapid increase of [Ca2+]i, formed a rigid bundle of MTs which surrounded the nucleus and decreased the cytoskeleton gene expressions in HeLa cells. These effects were rescued by addition of NPS2390 (a specific CaSR antagonist). Moreover, CaSR activity affected cytoskeleton gene expression through transcription factor CREB. Histoscores of pCREB immunoreactivity in tissues of cervical adenocarcinoma, renal clear cell carcinoma, and diffuse large B-cell lymphoma were markedly increased compared with non malignant tissue. These data demonstrate, for the first time, that CaSR-mediated increase in [Ca2+]i probably modulate cytoskeleton organization and gene expression via transcription factor. © 2014 Wiley Periodicals, Inc.

  14. Assay method for organic calcium antagonist drugs and a kit for such an assay

    International Nuclear Information System (INIS)

    Snyder, S. H.; Gould, R. J.

    1985-01-01

    A method for measuring the level of organic calcium antagonist drug in a body fluid comprises preparing a mixture of a radioactive calcium antagonist drug, a body fluid containing a calcium antagonist drug and a calcium antagonist receptor material, measuring the radioactivity of the radioactive calcium antagonist drug bound to said calcium antagonist receptor material and deriving the concentration of the calcium antagonist drug in the body fluid from a standard curve indicating the concentration of calcium antagonist drug versus inhibition of binding of said radioactive calcium antagonist drug to said receptor sites caused by the calcium antagonist drug in said body fluid. A kit for measuring the level of an organic calcium drug comprises a receptacle containing a radioactive calcium antagonist drug, a calcium antagonist receptor material and a standard amount of a nonradioactive calcium antagonist drug

  15. Differentiation of Human Adipose Derived Stem Cells into Smooth Muscle Cells Is Modulated by CaMKIIγ

    Directory of Open Access Journals (Sweden)

    Kaisaier Aji

    2016-01-01

    Full Text Available The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII is known to participate in maintenance and switches of smooth muscle cell (SMC phenotypes. However, which isoform of CaMKII is involved in differentiation of adult mesenchymal stem cells into contractile SMCs remains unclear. In the present study, we detected γ isoform of CaMKII in differentiation of human adipose derived stem cells (hASCs into SMCs that resulted from treatment with TGF-β1 and BMP4 in combination for 7 days. The results showed that CaMKIIγ increased gradually during differentiation of hASCs as determined by real-time PCR and western blot analysis. The siRNA-mediated knockdown of CaMKIIγ decreased the protein levels and transcriptional levels of smooth muscle contractile markers (a-SMA, SM22a, calponin, and SM-MHC, while CaMKIIγ overexpression increases the transcriptional and protein levels of smooth muscle contractile markers. These results suggested that γ isoform of CaMKII plays a significant role in smooth muscle differentiation of hASCs.

  16. Ankyrin-B coordinates the Na/K ATPase, Na/Ca exchanger, and InsP3 receptor in a cardiac T-tubule/SR microdomain.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available We report identification of an ankyrin-B-based macromolecular complex of Na/K ATPase (alpha 1 and alpha 2 isoforms, Na/Ca exchanger 1, and InsP3 receptor that is localized in cardiomyocyte T-tubules in discrete microdomains distinct from classic dihydropyridine receptor/ryanodine receptor "dyads." E1425G mutation of ankyrin-B, which causes human cardiac arrhythmia, also blocks binding of ankyrin-B to all three components of the complex. The ankyrin-B complex is markedly reduced in adult ankyrin-B(+/- cardiomyocytes, which may explain elevated [Ca2+]i transients in these cells. Thus, loss of the ankyrin-B complex provides a molecular basis for cardiac arrhythmia in humans and mice. T-tubule-associated ankyrin-B, Na/Ca exchanger, and Na/K ATPase are not present in skeletal muscle, where ankyrin-B is expressed at 10-fold lower levels than in heart. Ankyrin-B also is not abundantly expressed in smooth muscle. We propose that the ankyrin-B-based complex is a specialized adaptation of cardiomyocytes with a role for cytosolic Ca2+ modulation.

  17. MDM2 Antagonists Counteract Drug-Induced DNA Damage

    Directory of Open Access Journals (Sweden)

    Anna E. Vilgelm

    2017-10-01

    Full Text Available Antagonists of MDM2-p53 interaction are emerging anti-cancer drugs utilized in clinical trials for malignancies that rarely mutate p53, including melanoma. We discovered that MDM2-p53 antagonists protect DNA from drug-induced damage in melanoma cells and patient-derived xenografts. Among the tested DNA damaging drugs were various inhibitors of Aurora and Polo-like mitotic kinases, as well as traditional chemotherapy. Mitotic kinase inhibition causes mitotic slippage, DNA re-replication, and polyploidy. Here we show that re-replication of the polyploid genome generates replicative stress which leads to DNA damage. MDM2-p53 antagonists relieve replicative stress via the p53-dependent activation of p21 which inhibits DNA replication. Loss of p21 promoted drug-induced DNA damage in melanoma cells and enhanced anti-tumor activity of therapy combining MDM2 antagonist with mitotic kinase inhibitor in mice. In summary, MDM2 antagonists may reduce DNA damaging effects of anti-cancer drugs if they are administered together, while targeting p21 can improve the efficacy of such combinations.

  18. A systemized approach to investigate Ca2+ synchronization in clusters of human induced pluripotent stem-cell derived cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Aled R Jones

    2016-01-01

    Full Text Available Induced pluripotent stem cell-derived cardiomyocytes (IPS-CM are considered by many to be the cornerstone of future approaches to repair the diseased heart. However, current methods for producing IPS-CM typically yield highly variable populations with low batch-to-batch reproducibility. The underlying reasons for this are not fully understood. Here we report on a systematized approach to investigate the effect of maturation in embryoid bodies (EB versus ‘on plate’ culture on spontaneous activity and regional Ca2+ synchronization in IPS-CM clusters. A detailed analysis of the temporal and spatial organization of Ca2+ spikes in IPS-CM clusters revealed that the disaggregation of EBs between 0.5 and 2 weeks produced IPS-CM characterized by spontaneous beating and high levels of regional Ca2+ synchronization. These phenomena were typically absent in IPS-CM obtained from older EBs (> 2 weeks. The maintenance of all spontaneously active IPS-CM clusters under ‘on plate’ culture conditions promoted the progressive reduction in regional Ca2+ synchronization and the loss of spontaneous Ca2+ spiking. Raising the extracellular [Ca2+] surrounding these quiescent IPS-CM clusters from approximately 0.4 to 1.8 mM unmasked discrete behaviours typified by either a long-lasting Ca2+ elevation that returned to baseline or b persistent, large-amplitude Ca2+ oscillations around an increased cytoplasmic [Ca2+]. The different responses of IPS-CM to elevated extracellular [Ca2+] could be traced back to their routes of derivation. The data point to the possibility of predictably influencing IPS-CM phenotype and response to external activation via defined interventions at early stages in their maturation.

  19. Synthesis and Characterization of V2O5/SiO2 Nanoparticles as Efficient Catalyst for Aromatization 1,4 Dihydropyridines

    International Nuclear Information System (INIS)

    Farzaneh, F.; Zamanifar, E.; Jafari Foruzin, L.; Ghandi, M.

    2012-01-01

    V 2 O 5 /SiO 2 nanoparticles was prepared via an one-pot sol gel method from vanadyl- acetylacetonate and tetraethyl orthosilicate in refluxing MeOH, followed by calcination at 700 °C for 2 hours. The resultant nanoparticles was characterized by means of scanning electron microscopy, transmission electron microscopy, X-ray diffraction, TGA and FTIR techniques. Rapid and efficient aromatization of 1,4-dihydropyridines catalyzed by V 2 O 5 /SiO 2 nanoparticles is described in this presentation.

  20. Nitenpyram analogues with 1,4-dihydropyridine fixed cis-configuration:synthesis,insecticidal activities and molecular docking studies

    Directory of Open Access Journals (Sweden)

    XUE Sijia

    2013-08-01

    Full Text Available A novel series of Nitenpyram analogues(Ia-Ij with 1,4-dihydropyridine fixed cis-configuration were designed and synthesized.Preliminary bioassays showed that most of them exhibited good insecticidal activities against Aphis medicagini and Brown rice planthopper at 500 mg/L and 100 mg/L.The analogue Ij afforded the best activity in vitro,that had 100% mortality at 4 mg/L against Brown rice planthopper and Aphis medicagin.In addition,the molecular docking simulations revealed that the structural uniqueness of these analogues may lead to a unique molecular recognition and binding mode,and the results explained the SARs observed in vitro, which shed light on the novel insecticidal mechanism of these novel nitenpyam analogues.

  1. Novel derivatives of 5,6-dimethoxy-1-indanone coupled with substituted pyridine as potential antimicrobial agents

    Directory of Open Access Journals (Sweden)

    Vimal M. Patel

    2018-01-01

    Full Text Available Synthesis of novel derivatives of 5,6-dimethoxy-1-indanone was carried out via its Schiff’s base using 2-cyanoacetohydrazide followed by cyclization with 2-arylidenemalononitrile in the presence of a catalytical amount of piperidine to get 6-amino-1-(5,6-dimethoxy-2,3-dihydro-1H-inden-1-ylideneamino-2-oxo-4-aryl-1,2-dihydropyridine-3,5-dicarbonitrile derivatives. The structures of the synthesized compounds were confirmed on the basis of their spectral and elemental analysis. The synthesized compounds were also screened for antimicrobial activity and found to have promising antibacterial activity.

  2. A simple and efficient approach for synthesis of 1,4-dihydro-pyridines using nano-crystalline solid acid catalyst

    Directory of Open Access Journals (Sweden)

    A. Moatari

    2013-09-01

    Full Text Available A simple highly versatile and efficient synthesis of various 1,4-dihydropyridines in the condensation of aromatic aldehydes with β-dicarbonyl compounds and ammonium acetate in the presence of nano-sulfated zirconia, nano-structured ZnO, nano-γ-alumina and nano-ZSM-5 zeolites, as catalyst in the ethanol at moderate temperature is presented. The advantages of method are short reaction times and milder conditions and easy work-up. The catalysts can be recovered for the subsequent reactions and reused without any appreciable loss of efficiency.DOI: http://dx.doi.org/10.4314/bcse.v27i3.12

  3. Animal Ca2+ release-activated Ca2+ (CRAC channels appear to be homologous to and derived from the ubiquitous cation diffusion facilitators

    Directory of Open Access Journals (Sweden)

    Tamang Dorjee G

    2010-06-01

    Full Text Available Abstract Background Antigen stimulation of immune cells triggers Ca2+ entry through Ca2+ release-activated Ca2+ (CRAC channels, promoting an immune response to pathogens. Defects in a CRAC (Orai channel in humans gives rise to the hereditary Severe Combined Immune Deficiency (SCID syndrome. We here report results that define the evolutionary relationship of the CRAC channel proteins of animals, and the ubiquitous Cation Diffusion Facilitator (CDF carrier proteins. Findings CDF antiporters derived from a primordial 2 transmembrane spanner (TMS hairpin structure by intragenic triplication to yield 6 TMS proteins. Four programs (IC/GAP, GGSEARCH, HMMER and SAM were evaluated for identifying sequence similarity and establishing homology using statistical means. Overall, the order of sensitivity (similarity detection was IC/GAP = GGSEARCH > HMMER > SAM, but the use of all four programs was superior to the use of any two or three of them. Members of the CDF family appeared to be homologous to members of the 4 TMS Orai channel proteins. Conclusions CRAC channels derived from CDF carriers by loss of the first two TMSs of the latter. Based on statistical analyses with multiple programs, TMSs 3-6 in CDF carriers are homologous to TMSs 1-4 in CRAC channels, and the former was the precursor of the latter. This is an unusual example of how a functionally and structurally more complex protein may have predated a simpler one.

  4. Intracellular alkalinization induces cytosolic Ca2+ increases by inhibiting sarco/endoplasmic reticulum Ca2+-ATPase (SERCA.

    Directory of Open Access Journals (Sweden)

    Sen Li

    Full Text Available Intracellular pH (pHi and Ca(2+ regulate essentially all aspects of cellular activities. Their inter-relationship has not been mechanistically explored. In this study, we used bases and acetic acid to manipulate the pHi. We found that transient pHi rise induced by both organic and inorganic bases, but not acidification induced by acid, produced elevation of cytosolic Ca(2+. The sources of the Ca(2+ increase are from the endoplasmic reticulum (ER Ca(2+ pools as well as from Ca(2+ influx. The store-mobilization component of the Ca(2+ increase induced by the pHi rise was not sensitive to antagonists for either IP(3-receptors or ryanodine receptors, but was due to inhibition of the sarco/endoplasmic reticulum Ca(2+-ATPase (SERCA, leading to depletion of the ER Ca(2+ store. We further showed that the physiological consequence of depletion of the ER Ca(2+ store by pHi rise is the activation of store-operated channels (SOCs of Orai1 and Stim1, leading to increased Ca(2+ influx. Taken together, our results indicate that intracellular alkalinization inhibits SERCA activity, similar to thapsigargin, thereby resulting in Ca(2+ leak from ER pools followed by Ca(2+ influx via SOCs.

  5. Regulation of Ca2+ influx by a protein kinase C activator in chromaffin cells: differential role of P/Q- and L-type Ca2+ channels.

    Science.gov (United States)

    Sena, C M; Santos, R M; Boarder, M R; Rosário, L M

    1999-02-05

    Phorbol esters reduce depolarization-evoked Ca2+ influx in adrenal chromaffin cells, suggesting that voltage-sensitive Ca2+ channels (VSCCs) are inhibited by protein kinase C-mediated phosphorylation. We now address the possibility that L- and P/Q-type Ca2+ channel subtypes might be differentially involved in phorbol ester action. In bovine chromaffin cells, short-term (10 min) incubations with phorbol 12-myristate 13-acetate (PMA) inhibited early high K+-evoked rises in cytosolic free Ca2+ concentration ([Ca2+]i) and the early component of the depolarization-evoked Mn2+ quenching of fura-2 fluorescence in a dose-dependent manner (IC50: 18 and 7 nM; maximal inhibitions: 45 and 48%, respectively). The protein kinase C inhibitor staurosporine (100 nM) reverted the inhibitory action of PMA. PMA (0.1-1 microM) inhibited the early and late phases of the ionomycin (2 microM)-evoked [Ca2+]i transients by 14-23%. Omega-agatoxin IVA, a blocker of P/Q-type Ca2+ channels, inhibited high K+-evoked [Ca2+]i rises in a dose-dependent fashion (IC50 = 50 nM). In contrast, 0.1 microM omega-conotoxin GVIA, a blocker of N-type channels, was without effect. A sizeable (< 45%) component of early Ca2+ influx persisted in the combined presence of omega-agatoxin IVA (100 nM) and nitrendipine (1 microM). Simultaneous exposure to omega-agatoxin IVA and PMA inhibited both the early [Ca2+]i transients and Mn2+ quenching to a much greater extent than each drug separately. Inhibition of the [Ca2+]i transients by nitrendipine and PMA did not significantly exceed that produced by PMA alone. It is concluded that phorbol ester-mediated activation of protein kinase C inhibits preferentially L-type VSCCs over P/Q type channels in adrenal chromaffin cells. However, the possibility cannot be ruled out that dihydropyridine-resistant, non-P/Q type channels might also be negatively regulated by protein kinase C. This may represent an important pathway for the specific control of VSCCs by protein kinase C

  6. Serotonin regulates brain-derived neurotrophic factor expression in select brain regions during acute psychological stress

    Institute of Scientific and Technical Information of China (English)

    De-guo Jiang; Shi-li Jin; Gong-ying Li; Qing-qing Li; Zhi-ruo Li; Hong-xia Ma; Chuan-jun Zhuo; Rong-huan Jiang; Min-jie Ye

    2016-01-01

    Previous studies suggest that serotonin (5-HT) might interact with brain-derived neurotrophic factor (BDNF) during the stress response. However, the relationship between 5-HT and BDNF expression under purely psychological stress is unclear. In this study, one hour before psychological stress exposure, the 5-HT1A receptor agonist 8-OH-DPAT or antagonist MDL73005, or the 5-HT2A receptor agonist DOI or antagonist ketanserin were administered to rats exposed to psychological stress. Immunohistochemistry andin situ hybridization revealed that after psychological stress, with the exception of the ventral tegmental area, BDNF protein and mRNA expression levels were higher in the 5-HT1A and the 5-HT2A receptor agonist groups compared with the solvent control no-stress or psychological stress group in the CA1 and CA3 of the hippocampus, prefrontal cortex, central amygdaloid nucleus, dorsomedial hypothalamic nucleus, dentate gyrus, shell of the nucleus accumbens and the midbrain periaqueductal gray. There was no signiifcant difference between the two agonist groups. In contrast, after stress exposure, BDNF protein and mRNA expression levels were lower in the 5-HT1A and 5-HT2A receptor antagonist groups than in the solvent control non-stress group, with the exception of the ventral tegmental area. Our ifndings suggest that 5-HT regulates BDNF expression in a rat model of acute psychological stress.

  7. Dgroup: DG00325 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available ne hydrochloride (JAN) ... Cardiovascular agent ... DG01928 ... Dihydropyridine calcium channel blocker Other ... DG01575 ... Calcium channel bloc...ker ... DG01496 ... Calcium channel L type blocker Cyp substrate ... DG01633 ... CYP3A substra...te ATC code: C08CA12 Dihydropyridine calcium channel blocker CACNA1-L [HSA:775 776 778 779] [KO:K04850 K04851 K04853 K04857] Enzyme: CYP3A4 [HSA:1576] ...

  8. Dgroup: DG00324 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available hydrochloride (JP17) ... Cardiovascular agent ... DG01928 ... Dihydropyridine calcium channel blocker Other ... DG01575 ... Calcium channel block...er ... DG01496 ... Calcium channel L type blocker Cyp substrate ... DG01633 ... CYP3A substrate... ATC code: C08CA11 Dihydropyridine calcium channel blocker CACNA1-L [HSA:775 776 778 779] [KO:K04850 K04851 K04853 K04857] Enzyme: CYP3A4 [HSA:1576] ...

  9. Dgroup: DG00327 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available hydrochloride (JP17) ... Cardiovascular agent ... DG01928 ... Dihydropyridine calcium channel blocker Other ... DG01575 ... Calcium channel block...er ... DG01496 ... Calcium channel L type blocker Cyp substrate ... DG01633 ... CYP3A substrate... ATC code: C08CA15 Dihydropyridine calcium channel blocker CACNA1-L [HSA:775 776 778 779] [KO:K04850 K04851 K04853 K04857] Enzyme: CYP3A4 [HSA:1576] ...

  10. Decreased intracellular [Ca2+ ] coincides with reduced expression of Dhprα1s, RyR1, and diaphragmatic dysfunction in a rat model of sepsis.

    Science.gov (United States)

    Wang, Meng-Meng; Hao, Li-Ying; Guo, Feng; Zhong, Bin; Zhong, Xiao-Mei; Yuan, Jing; Hao, Yi-Fei; Zhao, Shuang; Sun, Xue-Fei; Lei, Ming; Jiao, Guang-Yu

    2017-12-01

    Sepsis can cause decreased diaphragmatic contractility. Intracellular calcium as a second messenger is central to diaphragmatic contractility. However, changes in intracellular calcium concentration ([Ca 2+ ]) and the distribution and co-localization of relevant calcium channels [dihydropyridine receptors, (DHPRα1s) and ryanodine receptors (RyR1)] remain unclear during sepsis. In this study we investigated the effect of changed intracellular [Ca 2+ ] and expression and distribution of DHPRα1s and RyR1 on diaphragm function during sepsis. We measured diaphragm contractility and isolated diaphragm muscle cells in a rat model of sepsis. The distribution and co-localization of DHPRα1s and RyR1 were determined using immunohistochemistry and immunofluorescence, whereas intracellular [Ca 2+ ] was measured by confocal microscopy and fluorescence spectrophotometry. Septic rat diaphragm contractility, expression of DHPRα1s and RyR1, and intracellular [Ca 2+ ] were significantly decreased in the rat sepsis model compared with controls. Decreased intracellular [Ca 2+ ] coincides with diaphragmatic contractility and decreased expression of DHPRα1s and RyR1 in sepsis. Muscle Nerve 56: 1128-1136, 2017. © 2017 Wiley Periodicals, Inc.

  11. Excitation contraction uncoupling by high intracellular [Ca2+] in frog skeletal muscle: a voltage clamp study.

    Science.gov (United States)

    Olivera, J Fernando; Pizarro, Gonzalo

    2016-10-01

    Raising the intracellular [Ca 2+ ] ([Ca 2+ ] i ) was previously found to produce uncoupling between the electrical depolarization of the transverse tubules and contraction in skinned muscle fibers. Here we study the effect of elevated [Ca 2+ ] i in voltage clamped cut fibers of frog skeletal muscle to establish how the charge movement, a measure of the activation of the dihydropyridine receptors (DHPR)-voltage sensors, and Ca 2+ release, a consequence of the opening of the ryanodine receptor (RyR)-release channels, were affected. [Ca 2+ ] i was raised by various procedures (pharmacological release from the sarcoplasmic reticulum, application of high [Ca 2+ ] i intracellular solution, permeabilization of the plasma membrane by a Ca 2+ ionophore) all of which produced impairment of excitation-contraction coupling. The charge movement was reduced from 20.2 ± 1.24 to 9.9 ± 0.94 nC/μF meanwhile the Ca 2+ release flux was reduced from 13.5 + 0.7 to 2.2 ± 0.3 μM/ms (n = 33). This suggests that a significant fraction of the DHPRs that remained functional, could not activate RyRs, and were therefore presumably disconnected. These results are broadly consistent with the original reports in skinned fibers. Uncoupling was prevented by the addition to the intracellular solution of the protease inhibitor leupeptin. In approximately 40 % of the uncoupled cells we observed that the [Ca 2+ ] i transient continued to rise after the voltage clamp pulse was turned off. This loss of control by membrane voltage suggests that the uncoupled release channels might have another mechanism of activation, likely by Ca 2+ .

  12. Adenosine A1 receptor antagonist mitigates deleterious effects of sleep deprivation on adult neurogenesis and spatial reference memory in rats.

    Science.gov (United States)

    Chauhan, G; Ray, K; Sahu, S; Roy, K; Jain, V; Wadhwa, M; Panjwani, U; Kishore, K; Singh, S B

    2016-11-19

    Sleep deprivation (SD) upsurges intracellular levels of adenosine, impairs adult neuronal cell proliferation (NCP) and cognition while caffeine, a non-selective adenosine A1 receptor (A1R) antagonist improves cognition and adult NCP during SD. We examined the selective antagonistic effects of adenosine A1R using 8-cyclopentyl-1,3-dimethylxanthine (8-CPT) on impairment of spatial reference memory and adult NCP during 48h SD. Adult male Sprague Dawley rats were sleep deprived for 48h, using an automatic cage vibrating stimulus based on animal activity. Spatial reference memory was tested as a measure of cognitive performance employing Morris Water Maze. Rats were given 8-CPT dissolved in 50% dimethyl sulfoxide (DMSO), twice daily (10mg/kg, i.p.) along with 5-bromo-2-deoxyuridine (BrdU) (50mg/kg/day, i.p.). The rats treated with 8-CPT showed significantly short mean latency and path-length to reach the platform compared to the SD rats. Consistent with these findings, 8-CPT-treated group was found to have significantly increased the number of BrdU, Ki-67 and doublecortin (DCX) positive cells. However, no significant difference was seen in NeuN expression in the Dentate Gyrus (DG). Brain-derived neurotropic factor (BDNF) expression in the DG and CA1 region was observed to decrease significantly after SD and be rescued by 8-CPT treatment. Furthermore, latency to reach platform showed a negative correlation with number of BrdU, DCX type-1 cells and BDNF expression in DG. Thus, it may be concluded that treatment with 8-CPT, an adenosine A1R antagonist during SD mitigates SD induced decline in spatial reference memory and adult NCP possibly via up regulation of BDNF levels in DG and CA1 regions. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Calcium-antagonists and islet function. V. Effect of R33711

    Energy Technology Data Exchange (ETDEWEB)

    Malaisse, W J; Sener, A; Devis, G; Somers, G [Brussels Univ. (Belgium). Lab. of Experimental Medicine

    1976-11-01

    R33711, a new drug with presumed potent calcium-antagonistic property, was found to suppress the insulinotropic action of glucose und gliclazide but not that of theophylline. A 0.2 ..mu..M concentration of R33711 was sufficient to abolish glucose-induced insulin release. At this concentration, R33711 inhibited the net uptake of /sup 45/Ca/sup 2 +/ by isolated islets, whether in the absence or presence of either glucose or sulfonylurea. In the isolated islets, R33711 failed to affect the glucose-stimulated production of lactate, the rate of /sup 45/Ca/sup 2 +/ efflux, the inhibitory action of glucose upon such an efflux and its increase in response to theophylline. These data are compatible with the view that R33711 inhibits entry of Ca/sup 2 +/ into the B-cell and that integrity of such an inward cationic movement usually plays a permissive role in the maintenance of the Ca/sup 2 +/-dependent insulin secretory process.

  14. The neuropeptide catestatin promotes vascular smooth muscle cell proliferation through the Ca{sup 2+}-calcineurin-NFAT signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaoxia [Department of Cardiology, People' s Hospital, Peking University, No. 11 South Avenue, Xi Zhi Men Xicheng District, Beijing 100044 (China); Zhou, Chunyan, E-mail: chunyanzhou@bjmu.edu.cn [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191 (China); Sun, Ningling, E-mail: nlsun@263.net [Department of Cardiology, People' s Hospital, Peking University, No. 11 South Avenue, Xi Zhi Men Xicheng District, Beijing 100044 (China)

    2011-04-22

    Highlights: {yields} Catestatin stimulates proliferation of vascular smooth muscle cells in a dose-dependent manner. {yields} Catestatin provokes sustained increase in intracellular Ca{sup 2+}. {yields} Catestatin produces increased activation of calcineurin and promotes NFATc1 translocation into the nucleus. -- Abstract: The Chromogranin A-derived neuropeptide catestatin is an endogenous nicotinic cholinergic antagonist that acts as a pleiotropic hormone. Since catestatin shares several functions with other members derived from the chromogranin/secretogranin protein family and other neuropeptides which exert proliferative effects on vascular smooth muscle cells (VSMCs), we therefore hypothesized that catestatin would regulate VSMC proliferation. The present study demonstrates that catestatin caused a dose-dependent induction of proliferation in rat aortic smooth muscle cells and furthermore evoked a sustained increase in intracellular calcium. This subsequently leaded to enhanced activation of the Ca{sup 2+}/calmodulin-dependent phosphatase, calcineurin and resulted in an activation of the Ca{sup 2+}-dependent transcription factor, nuclear factor of activated T cells (NFAT), initiating transcription of proliferative genes. In addition, cyclosporin A (CsA), a potent inhibitor of calcineurin, abrogated catestatin-mediated effect on VSMCs, indicating that the calcineurin-NFAT signaling is strongly required for catestatin-induced growth of VSMCs. The present study establishes catestatin as a novel proliferative cytokine on vascular smooth muscle cells and this effect is mediated by the Ca{sup 2+}-calcineurin-NFAT signaling pathway.

  15. Synthesis and pH-sensing Properties of a Push-Pull Conjugated Fluorophore Based on Dicyanomethylene-1,4-dihydropyridine

    International Nuclear Information System (INIS)

    Kim, Young Hyun; Kim, Heemoon; Kim, Hyung Jin

    2016-01-01

    A push-pull conjugated dye with a dicyanomethylene-1,4-dihydropyridine moiety (DCMP) was designed and synthesized for use as an optical pH sensor in acidic solution. The spectroscopic and pH-sensing properties of DCMP were investigated by UV-vis and fluorescence spectroscopy. DCMP displayed a pH-dependent ratiometric absorption property in the range of pH 4.5-12.0. The fluorescence intensity of DCMP around 560 nm, when irradiated at 435 nm, increased when pH was increased in the range of 2.0-7.0, showing a linear response in the pH range of 3.85-6.25.

  16. Neuronally mediated contraction responses of guinea-pig stomach smooth muscle preparations: modification by benzamide derivatives does not reflect a dopamine antagonist action.

    Science.gov (United States)

    Costall, B; Naylor, R J; Tan, C C

    1984-06-15

    The actions of the substituted benzamide derivatives metoclopramide, clebopride, YM-09151-2, tiapride, (+)- and (-)-sulpiride and (+)- and (-)-sultopride, and the dopamine antagonists haloperidol and domperidone, were studied on the responses to field stimulation (0.125-10 Hz) of smooth muscle strips taken from cardia, fundus, body and antral regions of the longitudinal and circular muscle of guinea-pig stomach. Field stimulation of the longitudinal strips caused contraction responses which were antagonised by atropine (but not by prazosin, yohimbine, propranolol or methysergide) to indicate a muscarinic cholinergic involvement. Antagonism of the contractions revealed or enhanced relaxation responses mediated via unidentified mechanisms (resistant to cholinergic and adrenergic antagonists). Metoclopramide enhanced the field stimulation-induced contractions of the stomach smooth muscle preparations via atropine sensitive mechanisms but failed to attenuate the field stimulation-induced relaxation responses. Clebopride's action closely followed that of metoclopramide but YM-09151-2 only enhanced the contraction responses of the longitudinal muscle preparations. Other dopamine antagonists, (+)- and (-)-sulpiride, (+)- and (-)-sultopride, tiapride, haloperidol and domperidone failed to facilitate contraction to field stimulation of any stomach tissue. Thus, the actions of metoclopramide, clebopride and YM-09151-2 to facilitate contraction to field stimulation of stomach smooth muscle are mediated via a muscarinic cholinergic mechanism and are not the consequence of an antagonism at any recognisable dopamine receptor.

  17. Antiproliferative effect of growth hormone-releasing hormone (GHRH antagonist on ovarian cancer cells through the EGFR-Akt pathway

    Directory of Open Access Journals (Sweden)

    Varga Jozsef

    2010-05-01

    Full Text Available Abstract Background Antagonists of growth hormone-releasing hormone (GHRH are being developed for the treatment of various human cancers. Methods MTT assay was used to test the proliferation of SKOV3 and CaOV3. The splice variant expression of GHRH receptors was examined by RT-PCR. The expression of protein in signal pathway was examined by Western blotting. siRNA was used to block the effect of EGFR. Results In this study, we investigated the effects of a new GHRH antagonist JMR-132, in ovarian cancer cell lines SKOV3 and CaOV3 expressing splice variant (SV1 of GHRH receptors. MTT assay showed that JMR-132 had strong antiproliferative effects on SKOV3 and CaOV3 cells in both a time-dependent and dose-dependent fashion. JMR-132 also induced the activation and increased cleaved caspase3 in a time- and dose-dependent manner in both cell lines. In addition, JMR-132 treatments decreased significantly the epidermal growth factor receptor (EGFR level and the phosphorylation of Akt (p-Akt, suggesting that JMR-132 inhibits the EGFR-Akt pathway in ovarian cancer cells. More importantly, treatment of SKOV3 and CaOV3 cells with 100 nM JMR-132 attenuated proliferation and the antiapoptotic effect induced by EGF in both cell lines. After the knockdown of the expression of EGFR by siRNA, the antiproliferative effect of JMR-132 was abolished in SKOV3 and CaOV3 cells. Conclusions The present study demonstrates that the inhibitory effect of the GHRH antagonist JMR-132 on proliferation is due, in part, to an interference with the EGFR-Akt pathway in ovarian cancer cells.

  18. Ca{sup 2+} ion sensing by a piperidin-4-one derivative and the effect of β-cyclodextrin complexation on the sensing

    Energy Technology Data Exchange (ETDEWEB)

    Sumithra, M.; Sivaraj, R.; Selvan, G. Tamil; Selvakumar, P. Mosae; Enoch, Israel V.M.V., E-mail: drisraelenoch@gmail.com

    2017-05-15

    In this paper, we report the turn-on fluorescence based Ca{sup 2+} ion sensing by an anthracene piperidin-4-one derivative. The compound is obtained using a simple two step synthesis. The compound is characterized using NMR and mass spectral methods. The host-guest complex formation of the compound with β-cyclodextrin is prepared and characterized using fluorescence and 2D ROESY spectroscopy. The compound forms the inclusion complex with a 1:1 stoichiometry. The structure of the host-guest complex is proposed. The Ca{sup 2+} ion selectivity of the compound in its free form and cyclodextrin-bound forms are studied. In both the forms, the piperidin-4-one derivative senses Ca{sup 2+} and in the case of the cyclodextrin encapsulated form it shows a better competitive binding of Ca{sup 2+} in the presence of other metal ions. - Highlights: •An anthracene iminoderivative of 3-methyl-2,6-diphenylpiperidin-4-one is synthesized. •The anthracene moiety of the compound is encapsulated by β-Cyclodextrin. •The compound senses Ca{sup 2+} ion both in water and β-CD media. •β-CD molecule does not interrupt the Ca{sup 2+} ion binding.

  19. Exploring 2D and 3D QSARs of benzimidazole derivatives as transient receptor potential melastatin 8 (TRPM8 antagonists using MLR and kNN-MFA methodology

    Directory of Open Access Journals (Sweden)

    Kamlendra Singh Bhadoriya

    2016-09-01

    Full Text Available TRPM8 is now best known as a cold- and menthol-activated channel implicated in thermosensation. TRPM8 is specifically expressed in a subset of pain- and temperature-sensing neuron. TRPM8 plays a major role in the sensation of cold and cooling substances. TRPM8 is a potential new target for the treatment of painful conditions. Thus, TRPM8 antagonists represent a new, novel and potentially useful treatment strategy to treat various disease states such as urological disorders, asthma, COPD, prostate and colon cancers, and painful conditions related to cold, such as cold allodynia and cold hyperalgesia. Better tools such as potent and specific TRPM8 antagonists are mandatory as high unmet medical need for such progress. To achieve this objective quantitative structure–activity relationship (QSAR studies were carried out on a series of 25 benzimidazole-containing TRPM8 antagonists to investigate the structural requirements of their inhibitory activity against cTRPM8. The statistically significant best 2D-QSAR model having correlation coefficient r2 = 0.88 and cross-validated squared correlation coefficient q2 = 0.64 with external predictive ability of pred_r2 = 0.69 was developed by SW-MLR. The physico-chemical descriptors such as polarizabilityAHP, kappa2, XcompDipole, +vePotentialSurfaceArea, XKMostHydrophilic were found to show a significant correlation with biological activity in benzimidazole derivatives. Molecular field analysis was used to construct the best 3D-QSAR model using SW-kNN method, showing good correlative and predictive capabilities in terms of q2 = 0.81 and pred_r2 = 0.55. Developed kNN-MFA model highlighted the importance of shape of the molecules, i.e., steric & electrostatic descriptors at the grid points S_774 & E_1024 for TRPM8 receptor binding. These models (2D & 3D were found to yield reliable clues for further optimization of benzimidazole derivatives in the data set. The information rendered by 2D- and 3D

  20. Derived (mutated)-types of TRPV6 channels elicit greater Ca²+ influx into the cells than ancestral-types of TRPV6: evidence from Xenopus oocytes and mammalian cell expression system.

    Science.gov (United States)

    Sudo, Yuka; Matsuo, Kiyotaka; Tetsuo, Tomoyuki; Tsutsumi, Satoshi; Ohkura, Masamichi; Nakai, Junichi; Uezono, Yasuhito

    2010-01-01

    The frequency of the allele containing three derived nonsynonymous SNPs (157C, 378M, 681M) of the gene encoding calcium permeable TRPV6 channels expressed in the intestine has been increased by positive selection in non-African populations. To understand the nature of these SNPs, we compared the properties of Ca²+ influx of ancestral (in African populations) and derived-TRPV6 (in non-African populations) channels with electrophysiological, Ca²+-imaging, and morphological methods using both the Xenopus oocyte and mammalian cell expression systems. Functional electrophysiological and Ca²+-imaging analyses indicated that the derived-TRPV6 elicited more Ca²+ influx than the ancestral one in TRPV6-expressing cells where both channels were equally expressed in the cells. Ca²+-inactivation properties in the ancestral- and derived-TRPV6 were almost the same. Furthermore, fluorescence resonance energy transfer (FRET) analysis showed that both channels have similar multimeric formation properties, suggesting that derived-TRPV6 itself could cause higher Ca²+ influx. These findings suggest that populations having derived-TRPV6 in non-African areas may absorb higher Ca²+ from the intestine than ancestral-TRPV6 in the African area.

  1. Synthesis and Cytotoxic Effect of Some Novel 1,2-Dihydropyridin-3-carbonitrile and Nicotinonitrile Derivatives

    Directory of Open Access Journals (Sweden)

    Eman M. Flefel

    2015-12-01

    Full Text Available 1-(2,4-Dichlorophenyl-3-(4-fluorophenylpropen-1-one (1 was prepared and reacted with an active methylene compound (ethyl cyanoacetate in the presence of ammonium acetate to give the corresponding cyanopyridone 2. Compound 2 reacted with hydrazine hydrate, malononitrile, ethyl bromoacetate and phosphorous oxychloride to afford compounds 4 and 7–11, respectively. The 2-chloropyridine derivative 11 reacted with different primary amines, namely benzyl amine, piperonyl amine, 1-phenylethyl amine, and/or the secondary amines 2-methyl-pipridine and morpholine to give the corresponding derivatives 12–15. Hydrazinolysis of chloropyridine derivative 11 with hydrazine hydrate afforded the corresponding hydrazino derivative 17. Condensation of compound 17 with ethyl acetoacetate, acetylacetone, isatin and different aldehydes gave the corresponding derivatives 18–21. Some of newly synthesized compounds were screened for cytotoxic activity against three tumor cell lines. The results indicated that compounds 8 and 16 showed the best results, exhibiting the highest inhibitory effects towards the three tumor cell lines, which were higher than that of the reference doxorubicin and these compounds were non-cytotoxic towards normal cells (IC50 values > 100 μg/mL.

  2. Magnetotransport of CaCu3Mn4O12 complex perovskite derivatives

    International Nuclear Information System (INIS)

    Sanchez-Benitez, J.; Andres, A. de; Garcia-Hernandez, M.; Alonso, J.A.; Martinez-Lope, M.J.

    2006-01-01

    Neutron powder diffraction, magnetic and magnetotransport studies were carried out on new derivatives of the CaCu 3 Mn 4 O 12 (A'A 3 B 4 O 12 ) complex perovskite. The samples were prepared in polycrystalline form under moderate pressure conditions. Substitutions at A and A' sites of CaCu 3 Mn 4 O 12 , with only Mn 4+ and insulating behavior, imply electron doping that affects the magnetic and transport properties. X-ray Absorption Spectroscopy showed that Mn 3+ /Mn 4+ valence mixing occurs only at B site, progressively filling the e g band and providing the metallic character in these compounds, as we observe in most of these samples. A semiconducting behavior is observed in samples with 50% Mn 3+ at B site. This can be understood by the opening of a gap in the conduction band corresponding to the half filling of the e g states. This is the case of the tetravalent rare earth doped samples (Ce and Th at A' site) and of the appropriate A site doped Ca(CuMn 2 )Mn 4 O 12 sample. At the strongly distorted A positions, Mn 3+ , with localized e g electrons, act as magnetic impurities at very low temperatures (<40 K) giving rise to the observed upturn in the resistivity. The magnetic origin of this scattering is evidenced by its drastic reduction under a magnetic field

  3. Activation of purified calcium channels by stoichiometric protein phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Nunoki, K.; Florio, V.; Catterall, W.A. (Univ. of Washington, Seattle (USA))

    1989-09-01

    Purified dihydropyridine-sensitive calcium channels from rabbit skeletal muscle were reconstituted into phosphatidylcholine vesicles to evaluate the effect of phosphorylation by cyclic AMP-dependent protein kinase (PK-A) on their function. Both the rate and extent of {sup 45}Ca{sup 2+} uptake into vesicles containing reconstituted calcium channels were increased severalfold after incubation with ATP and PK-A. The degree of stimulation of {sup 45}Ca{sup 2+} uptake was linearly proportional to the extent of phosphorylation of the alpha 1 and beta subunits of the calcium channel up to a stoichiometry of approximately 1 mol of phosphate incorporated into each subunit. The calcium channels activated by phosphorylation were determined to be incorporated into the reconstituted vesicles in the inside-out orientation and were completely inhibited by low concentrations of dihydropyridines, phenylalkylamines, Cd{sup 2+}, Ni{sup 2+}, and Mg{sup 2+}. The results demonstrate a direct relationship between PK-A-catalyzed phosphorylation of the alpha 1 and beta subunits of the purified calcium channel and activation of the ion conductance activity of the dihydropyridine-sensitive calcium channels.

  4. Activation of purified calcium channels by stoichiometric protein phosphorylation

    International Nuclear Information System (INIS)

    Nunoki, K.; Florio, V.; Catterall, W.A.

    1989-01-01

    Purified dihydropyridine-sensitive calcium channels from rabbit skeletal muscle were reconstituted into phosphatidylcholine vesicles to evaluate the effect of phosphorylation by cyclic AMP-dependent protein kinase (PK-A) on their function. Both the rate and extent of 45 Ca 2+ uptake into vesicles containing reconstituted calcium channels were increased severalfold after incubation with ATP and PK-A. The degree of stimulation of 45 Ca 2+ uptake was linearly proportional to the extent of phosphorylation of the alpha 1 and beta subunits of the calcium channel up to a stoichiometry of approximately 1 mol of phosphate incorporated into each subunit. The calcium channels activated by phosphorylation were determined to be incorporated into the reconstituted vesicles in the inside-out orientation and were completely inhibited by low concentrations of dihydropyridines, phenylalkylamines, Cd 2+ , Ni 2+ , and Mg 2+ . The results demonstrate a direct relationship between PK-A-catalyzed phosphorylation of the alpha 1 and beta subunits of the purified calcium channel and activation of the ion conductance activity of the dihydropyridine-sensitive calcium channels

  5. In vitro study on the agonistic and antagonistic activities of bisphenol-S and other bisphenol-A congeners and derivatives via nuclear receptors

    International Nuclear Information System (INIS)

    Molina-Molina, José-Manuel; Amaya, Esperanza; Grimaldi, Marina; Sáenz, José-María; Real, Macarena; Fernández, Mariana F.; Balaguer, Patrick; Olea, Nicolás

    2013-01-01

    Bisphenols are a group of chemicals structurally similar to bisphenol-A (BPA) in current use as the primary raw material in the production of polycarbonate and epoxy resins. Some bisphenols are intended to replace BPA in several industrial applications. This is the case of bisphenol-S (BPS), which has an excellent stability at high temperature and resistance to sunlight. Studies on the endocrine properties of BPS have focused on its interaction with human estrogen receptor alpha (hERα), but information on its interaction with other nuclear receptors is scarce. The aim of this study was to investigate interactions of BPS, BPF, BPA and its halogenated derivatives, tetrachlorobisphenol A (TCBPA), and tetrabromobisphenol A (TBBPA), with human estrogen receptors (hERα and hERβ), androgen receptor (hAR), and pregnane X receptor (hPXR), using a panel of in vitro bioassays based on competitive binding to nuclear receptors (NRs), reporter gene expression, and cell proliferation assessment. BPS, BPF, and BPA efficiently activated both ERs, while TCBPA behaved as weak hERα agonist. Unlike BPF and BPA, BPS was more active in the hERβ versus hERα assay. BPF and BPA were full hAR antagonists (BPA > BPF), whereas BPA and BPS were weak hAR agonists. Only BPA, TCBPA, and TBBPA, were hPXR agonists (TCBPA > TBBPA > BPA). These findings provide evidence that BPA congeners and derivatives disrupt multiple NRs and may therefore interfere with the endocrine system. Hence, further research is needed to evaluate the potential endocrine-disrupting activity of putative BPA substitutes. - Highlights: • We investigated the agonist/antagonist activities of BPS, BPF, BPA, TCBPA and TBBPA. • The direct interaction of these compounds with hERα, hERβ, hAR and hPXR was studied. • BPA congeners and derivatives were found to disrupt multiple NRs. • Further evaluation of their role as endocrine-disrupting chemicals is needed

  6. In vitro study on the agonistic and antagonistic activities of bisphenol-S and other bisphenol-A congeners and derivatives via nuclear receptors

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Molina, José-Manuel, E-mail: molinajm@ugr.es [Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, Cíber en Epidemiología y Salud Pública (CIBERESP), Granada E-18071 (Spain); Amaya, Esperanza [Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, Cíber en Epidemiología y Salud Pública (CIBERESP), Granada E-18071 (Spain); Grimaldi, Marina [INSERM, U896, Montpellier F-34298 (France); Université de Montpellier I, Montpellier F-34298 (France); Sáenz, José-María; Real, Macarena; Fernández, Mariana F. [Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, Cíber en Epidemiología y Salud Pública (CIBERESP), Granada E-18071 (Spain); Balaguer, Patrick [INSERM, U896, Montpellier F-34298 (France); Université de Montpellier I, Montpellier F-34298 (France); Olea, Nicolás [Laboratory of Medical Investigations, San Cecilio University Hospital, University of Granada, Cíber en Epidemiología y Salud Pública (CIBERESP), Granada E-18071 (Spain)

    2013-10-01

    Bisphenols are a group of chemicals structurally similar to bisphenol-A (BPA) in current use as the primary raw material in the production of polycarbonate and epoxy resins. Some bisphenols are intended to replace BPA in several industrial applications. This is the case of bisphenol-S (BPS), which has an excellent stability at high temperature and resistance to sunlight. Studies on the endocrine properties of BPS have focused on its interaction with human estrogen receptor alpha (hERα), but information on its interaction with other nuclear receptors is scarce. The aim of this study was to investigate interactions of BPS, BPF, BPA and its halogenated derivatives, tetrachlorobisphenol A (TCBPA), and tetrabromobisphenol A (TBBPA), with human estrogen receptors (hERα and hERβ), androgen receptor (hAR), and pregnane X receptor (hPXR), using a panel of in vitro bioassays based on competitive binding to nuclear receptors (NRs), reporter gene expression, and cell proliferation assessment. BPS, BPF, and BPA efficiently activated both ERs, while TCBPA behaved as weak hERα agonist. Unlike BPF and BPA, BPS was more active in the hERβ versus hERα assay. BPF and BPA were full hAR antagonists (BPA > BPF), whereas BPA and BPS were weak hAR agonists. Only BPA, TCBPA, and TBBPA, were hPXR agonists (TCBPA > TBBPA > BPA). These findings provide evidence that BPA congeners and derivatives disrupt multiple NRs and may therefore interfere with the endocrine system. Hence, further research is needed to evaluate the potential endocrine-disrupting activity of putative BPA substitutes. - Highlights: • We investigated the agonist/antagonist activities of BPS, BPF, BPA, TCBPA and TBBPA. • The direct interaction of these compounds with hERα, hERβ, hAR and hPXR was studied. • BPA congeners and derivatives were found to disrupt multiple NRs. • Further evaluation of their role as endocrine-disrupting chemicals is needed.

  7. Nicotine-Induced Effects on Nicotinic Acetylcholine Receptors (nAChRs), Ca2+ and Brain-Derived Neurotrophic Factor (BDNF) in STC-1 Cells.

    Science.gov (United States)

    Qian, Jie; Mummalaneni, Shobha K; Alkahtani, Reem M; Mahavadi, Sunila; Murthy, Karnam S; Grider, John R; Lyall, Vijay

    2016-01-01

    In addition to the T2R bitter taste receptors, neuronal nicotinic acetylcholine receptors (nAChRs) have recently been shown to be involved in the bitter taste transduction of nicotine, acetylcholine and ethanol. However, at present it is not clear if nAChRs are expressed in enteroendocrine cells other than beta cells of the pancreas and enterochromaffin cells, and if they play a role in the synthesis and release of neurohumoral peptides. Accordingly, we investigated the expression and functional role of nAChRs in enteroendocrine STC-1 cells. Our studies using RT-PCR, qRT-PCR, immunohistochemical and Western blotting techniques demonstrate that STC-1 cells express several α and β nAChR subunits. Exposing STC-1 cells to nicotine acutely (24h) or chronically (4 days) induced a differential increase in the expression of nAChR subunit mRNA and protein in a dose- and time-dependent fashion. Mecamylamine, a non-selective antagonist of nAChRs, inhibited the nicotine-induced increase in mRNA expression of nAChRs. Exposing STC-1 cells to nicotine increased intracellular Ca2+ in a dose-dependent manner that was inhibited in the presence of mecamylamine or dihydro-β-erythroidine, a α4β2 nAChR antagonist. Brain-derived neurotrophic factor (BDNF) mRNA and protein were detected in STC-1 cells using RT-PCR, specific BDNF antibody, and enzyme-linked immunosorbent assay. Acute nicotine exposure (30 min) decreased the cellular content of BDNF in STC-1 cells. The nicotine-induced decrease in BDNF was inhibited in the presence of mecamylamine. We also detected α3 and β4 mRNA in intestinal mucosal cells and α3 protein expression in intestinal enteroendocrine cells. We conclude that STC-1 cells and intestinal enteroendocrine cells express nAChRs. In STC-1 cells nAChR expression is modulated by exposure to nicotine in a dose- and time-dependent manner. Nicotine interacts with nAChRs and inhibits BDNF expression in STC-1 cells.

  8. Ca2+/cation antiporters (CaCA: Identification, characterization and expression profiling in bread wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Mehak Taneja

    2016-11-01

    Full Text Available The Ca2+/cation antiporters (CaCA superfamily proteins play vital function in Ca2+ ion homeostasis, which is an important event during development and defense response. Molecular characterization of these proteins has been performed in certain plants, but they are still not characterized in Triticum aestivum (bread wheat. Herein, we identified thirty four TaCaCA superfamily proteins, which were classified into TaCAX, TaCCX, TaNCL and TaMHX protein families based on their structural organization and evolutionary relation with earlier reported proteins. Since the T. aestivum comprises an allohexaploid genome, TaCaCA genes were derived from each A, B and D subgenome and homeologous chromosome (HC, except chromosome-group 1. Majority of genes were derived from more than one HCs in each family that were considered as homeologous genes (HGs due to their high similarity with each other. These HGs showed comparable gene and protein structures in terms of exon/intron organization and domain architecture. Majority of TaCaCA proteins comprised two Na_Ca_ex domains. However, TaNCLs consisted of an additional EF-hand domain with calcium binding motifs. Each TaCaCA protein family consisted of about ten transmembrane and two α-repeat regions with specifically conserved signature motifs except TaNCL, which had single α-repeat. Variable expression of most of the TaCaCA genes during various developmental stages suggested their specified role in development. However, constitutively high expression of a few genes like TaCAX1-A and TaNCL1-B indicated their role throughout the plant growth and development. The modulated expression of certain genes during biotic (fungal infections and abiotic stresses (heat, drought, salt suggested their role in stress response. Majority of TaCCX and TaNCL family genes were found highly affected during various abiotic stresses. However the role of individual gene needs to be established. The present study unfolded the opportunity

  9. Ca2+/Cation Antiporters (CaCA): Identification, Characterization and Expression Profiling in Bread Wheat (Triticum aestivum L.).

    Science.gov (United States)

    Taneja, Mehak; Tyagi, Shivi; Sharma, Shailesh; Upadhyay, Santosh Kumar

    2016-01-01

    The Ca 2+ /cation antiporters (CaCA) superfamily proteins play vital function in Ca 2+ ion homeostasis, which is an important event during development and defense response. Molecular characterization of these proteins has been performed in certain plants, but they are still not characterized in Triticum aestivum (bread wheat). Herein, we identified 34 TaCaCA superfamily proteins, which were classified into TaCAX, TaCCX, TaNCL, and TaMHX protein families based on their structural organization and evolutionary relation with earlier reported proteins. Since the T. aestivum comprises an allohexaploid genome, TaCaCA genes were derived from each A, B, and D subgenome and homeologous chromosome (HC), except chromosome-group 1. Majority of genes were derived from more than one HCs in each family that were considered as homeologous genes (HGs) due to their high similarity with each other. These HGs showed comparable gene and protein structures in terms of exon/intron organization and domain architecture. Majority of TaCaCA proteins comprised two Na_Ca_ex domains. However, TaNCLs consisted of an additional EF-hand domain with calcium binding motifs. Each TaCaCA protein family consisted of about 10 transmembrane and two α-repeat regions with specifically conserved signature motifs except TaNCL, which had single α-repeat. Variable expression of most of the TaCaCA genes during various developmental stages suggested their specified role in development. However, constitutively high expression of a few genes like TaCAX1-A and TaNCL1-B indicated their role throughout the plant growth and development. The modulated expression of certain genes during biotic (fungal infections) and abiotic stresses (heat, drought, salt) suggested their role in stress response. Majority of TaCCX and TaNCL family genes were found highly affected during various abiotic stresses. However, the role of individual gene needs to be established. The present study unfolded the opportunity for detail

  10. Domain cooperativity in the β1a subunit is essential for dihydropyridine receptor voltage sensing in skeletal muscle.

    Science.gov (United States)

    Dayal, Anamika; Bhat, Vinayakumar; Franzini-Armstrong, Clara; Grabner, Manfred

    2013-04-30

    The dihydropyridine receptor (DHPR) β1a subunit is crucial for enhancement of DHPR triad expression, assembly of DHPRs in tetrads, and elicitation of DHPRα1S charge movement--the three prerequisites of skeletal muscle excitation-contraction coupling. Despite the ability to fully target α1S into triadic junctions and tetradic arrays, the neuronal isoform β3 was unable to restore considerable charge movement (measure of α1S voltage sensing) upon expression in β1-null zebrafish relaxed myotubes, unlike the other three vertebrate β-isoforms (β1a, β2a, and β4). Thus, we used β3 for chimerization with β1a to investigate whether any of the five distinct molecular regions of β1a is dominantly involved in inducing the voltage-sensing function of α1S. Surprisingly, systematic domain swapping between β1a and β3 revealed a pivotal role of the src homology 3 (SH3) domain and C terminus of β1a in charge movement restoration. More interestingly, β1a SH3 domain and C terminus, when simultaneously engineered into β3 sequence background, were able to fully restore charge movement together with proper intracellular Ca(2+) release, suggesting cooperativity of these two domains in induction of the α1S voltage-sensing function in skeletal muscle excitation-contraction coupling. Furthermore, substitution of a proline by alanine in the putative SH3-binding polyproline motif in the proximal C terminus of β1a (also of β2a and β4) fully obstructed α1S charge movement. Consequently, we postulate a model according to which β subunits, probably via the SH3-C-terminal polyproline interaction, adapt a discrete conformation required to modify the α1S conformation apt for voltage sensing in skeletal muscle.

  11. The mibefradil derivative NNC55-0396, a specific T-type calcium channel antagonist, exhibits less CYP3A4 inhibition than mibefradil.

    Science.gov (United States)

    Bui, Peter H; Quesada, Arnulfo; Handforth, Adrian; Hankinson, Oliver

    2008-07-01

    A novel mibefradil derivative, NNC55-0396, designed to be hydrolysis-resistant, was shown to be a selective T-type Ca(2+) channel inhibitor without L-type Ca(2+) channel efficacy. However, its effects on cytochromes P450 (P450s) have not previously been examined. We investigated the inhibitory effects of NNC55-0396 toward seven major recombinant human P450s--CYP3A4, CYP2D6, CYP1A2, CYP2C9, CYP2C8, CYPC19, and CYP2E1--and compared its effects with those of mibefradil and its hydrolyzed metabolite, Ro40-5966. Our results show that CYP3A4 and CYP2D6 are the two P450s most affected by mibefradil, Ro40-5966, and NNC55-0396. Mibefradil (IC(50) = 33 +/- 3 nM, K(i) = 23 +/- 0.5 nM) and Ro40-5966 (IC(50) = 30 +/- 7.8 nM, K(i) = 21 +/- 2.8 nM) have a 9- to 10-fold greater inhibitory activity toward recombinant CYP3A4 benzyloxy-4-trifluoromethylcoumarin-O-debenzylation activity than NNC55-0396 (IC(50) = 300 +/- 30 nM, K(i) = 210 +/- 6 nM). More dramatically, mibefradil (IC(50) = 566 +/- 71 nM, K(i) = 202 +/- 39 nM) shows 19-fold higher inhibition of CYP3A-associated testosterone 6beta-hydroxylase activity in human liver microsomes compared with NNC55-0396 (IC(50) = 11 +/- 1.1 microM, K(i) = 3.9 +/- 0.4 microM). Loss of testosterone 6beta-hydroxylase activity by recombinant CYP3A4 was shown to be time- and concentration-dependent with both compounds. However, NNC55-0396 (K(I) = 3.87 microM, K(inact) = 0.061/min) is a much less potent mechanism-based inhibitor than mibefradil (K(I) = 83 nM, K(inact) = 0.048/min). In contrast, NNC55-0396 (IC(50) = 29 +/- 1.2 nM, K(i) = 2.8 +/- 0.3 nM) and Ro40-5966 (IC(50) = 46 +/- 11 nM, K(i) = 4.5 +/- 0.02 nM) have a 3- to 4-fold greater inhibitory activity toward recombinant CYP2D6 than mibefradil (IC(50) = 129 +/- 21 nM, K(i) = 12.7 +/- 0.9 nM). Our results suggest that NNC55-0396 could be a more favorable T-type Ca(2+) antagonist than its parent compound, mibefradil, which was withdrawn from the market because of strong inhibition of CYP3A4.

  12. Transesterification of palm oil to biodiesel by using waste obtuse horn shell-derived CaO catalyst

    International Nuclear Information System (INIS)

    Lee, Seik Lih; Wong, Yong Chen; Tan, Yen Ping; Yew, Sook Yan

    2015-01-01

    Highlights: • Cost effective CaO catalyst derived from waste obtuse horn shells. • The optimum biodiesel yield, 86.75% can be achieved under mild reaction conditions. • The catalyst can be reused up to 3 times with biodiesel yield more than 70%. • Deactivation of catalyst was due to leaching of CaO and pores-filling. - Abstract: The calcium oxide catalysts derived from waste obtuse horn shells were utilized in the transesterification of palm oil into biodiesel. This environment-friendly catalyst is thermally activated at 800 °C for 3 h. The resulting CaO catalyst was characterized using thermogravimetric analysis (TGA), X-ray diffraction (XRD), temperature-programmed desorption of CO 2 (TPD-CO 2 ), Brunauer–Emmett–Teller (BET) surface area analysis, and scanning electron microscopy (SEM). XRD patterns of calcined catalyst showed intense peaks of calcium oxide, consistent with XRF results that revealed calcium is the major element present in the obtuse horn shells. High calcination temperature (800 °C) tended to promote agglomeration of fine crystals, resulted in a smaller surface area (0.07 m 2 /g) as examined by BET. Catalytic activities in the transesterification process had been investigated using one-variable-at-a-time technique. The optimum palm oil conversion was 86.75% under reaction conditions of 6 h, 5 wt.% of catalyst amount and methanol to oil ratio of 12:1. Reusability of this waste shell derived catalyst was examined and results showed that the prepared catalysts are able to be reused up to 3 times with conversion of more than 70% after the third cycles. Although the reusability may not be excellent at the moment, it is still in the exploratory study. More efforts were done to improve its properties and stability

  13. Synthesis, radiosynthesis and biological evaluation of 1, 4-dihydroquinoline derivatives as new carriers for specific brain delivery

    International Nuclear Information System (INIS)

    Foucout, L.; Bohn, P.; Dupas, G.; Marsais, F.; Levacher, V.; Gourand, F.; Dhilly, M.; Barre, L.; Bohn, P.; Costentin, J.; Abbas, A.

    2009-01-01

    In spite of numerous reports dealing with the use of 1, 4-dihydro-pyridines as carriers to deliver biological active compounds to the brain, this chemical delivery system (CDS) suffers from poor stability of the 1, 4-dihydropyridine derivatives towards oxidation and hydration reactions seriously limiting further investigations in vivo. In an attempt to overcome these limitations, we report herein the first biological evaluation of more stable annellated NADH models in the quinoline series as relevant neuro-active drug-carrier candidates. The radiolabeled 1, 4-dihydroquinoline [ 11 C]1a was prepared to be subsequently peripherally injected in rats. The injected animals were sacrificed and brains were collected. The radioactivity measured in rat brain indicated a rapid penetration of the carrier [ 11 C]1a into the CNS. HPLC analysis of brain homogenates showed that oxidation of [ 11 C]1a into the corresponding quinolinium salt [ 11 C]4a was completed in less than 5 min. An in vivo evaluation in mice is also reported to illustrate the potential of such 1, 4-dihydroquinoline derivatives to transport a neuro-active drug in the CNS. For this purpose, g-aminobutyric acid (GABA), well known to poorly cross the brain blood barrier (BBB) was connected to this 1, 4-dihydroquinoline-type carrier. After i.p. injection of 1, 4-dihydroquinoline-GABA derivative 1b in mice, a significant alteration of locomotor activity (LMA) was observed presumably resulting from an enhancement of central GABAergic activity. These encouraging results give strong evidence for the capacity of carrier-GABA derivative 1b to cross the BBB and exert a pharmacological effect on the CNS. This study paves the way for further progress in designing new redox chemical delivery systems. (authors)

  14. Synthesis, radiosynthesis and biological evaluation of 1, 4-dihydroquinoline derivatives as new carriers for specific brain delivery

    Energy Technology Data Exchange (ETDEWEB)

    Foucout, L.; Bohn, P.; Dupas, G.; Marsais, F.; Levacher, V. [Laboratoire de Chimie Organique Fine et Heterocyclique, UMR 6014, IRCOF, CNRS, Universite et INSA de Rouen, B.P. 08 F-76131, Mont- Saint-Aignan Cedex (France); Gourand, F.; Dhilly, M.; Barre, L. [Groupe de Developpements Methodologiques en Tomographie par Emission de Positons, CEA/DSV/I2BM/CI-NAPS UMR6232, Universite de Caen Basse Normandie, Caen (France); Bohn, P.; Costentin, J. [Laboratoire de Neuropharmacologie Experimentale associe au CNRS, FRE-2735, Faculte de Medecine et de pharmacie, Universite de Rouen, F-76000 (France); Abbas, A. [Inserm-EPHE-Universite de Caen Basse-Normandie, Unite U923, GIP Cyceron, CHU Cote de Nacre, Caen (France)

    2009-07-01

    In spite of numerous reports dealing with the use of 1, 4-dihydro-pyridines as carriers to deliver biological active compounds to the brain, this chemical delivery system (CDS) suffers from poor stability of the 1, 4-dihydropyridine derivatives towards oxidation and hydration reactions seriously limiting further investigations in vivo. In an attempt to overcome these limitations, we report herein the first biological evaluation of more stable annellated NADH models in the quinoline series as relevant neuro-active drug-carrier candidates. The radiolabeled 1, 4-dihydroquinoline [{sup 11}C]1a was prepared to be subsequently peripherally injected in rats. The injected animals were sacrificed and brains were collected. The radioactivity measured in rat brain indicated a rapid penetration of the carrier [{sup 11}C]1a into the CNS. HPLC analysis of brain homogenates showed that oxidation of [{sup 11}C]1a into the corresponding quinolinium salt [{sup 11}C]4a was completed in less than 5 min. An in vivo evaluation in mice is also reported to illustrate the potential of such 1, 4-dihydroquinoline derivatives to transport a neuro-active drug in the CNS. For this purpose, g-aminobutyric acid (GABA), well known to poorly cross the brain blood barrier (BBB) was connected to this 1, 4-dihydroquinoline-type carrier. After i.p. injection of 1, 4-dihydroquinoline-GABA derivative 1b in mice, a significant alteration of locomotor activity (LMA) was observed presumably resulting from an enhancement of central GABAergic activity. These encouraging results give strong evidence for the capacity of carrier-GABA derivative 1b to cross the BBB and exert a pharmacological effect on the CNS. This study paves the way for further progress in designing new redox chemical delivery systems. (authors)

  15. Reverse mode Na+/Ca2+ exchange mediated by STIM1 contributes to Ca2+ influx in airway smooth muscle following agonist stimulation

    Directory of Open Access Journals (Sweden)

    Fox Jane

    2010-12-01

    Full Text Available Abstract Background Agonist stimulation of airway smooth muscle (ASM results in IP3 mediated Ca2+ release from the sarcoplasmic reticulum followed by the activation of store operated and receptor operated non-selective cation channels. Activation of these non-selective channels also results in a Na+ influx. This localised increase in Na+ levels can potentially switch the Na+/Ca2+ exchanger into reverse mode and so result in a further influx of Ca2+. The aim of this study was to characterise the expression and physiological function of the Na+/Ca2+ exchanger in cultured human bronchial smooth muscle cells and determine its contribution to agonist induced Ca2+ influx into these cells. Methods The expression profile of NCX (which encodes the Na+/Ca2+ exchanger homologues in cultured human bronchial smooth muscle cells was determined by reverse transcriptase PCR. The functional activity of reverse mode NCX was investigated using a combination of whole cell patch clamp, intracellular Ca2+ measurements and porcine airway contractile analyses. KB-R7943 (an antagonist for reverse mode NCX and target specific siRNA were utilised as tools to inhibit NCX function. Results NCX1 protein was detected in cultured human bronchial smooth muscle cells (HBSMC cells and NCX1.3 was the only mRNA transcript variant detected. A combination of intracellular Na+ loading and addition of extracellular Ca2+ induced an outwardly rectifying current which was augmented following stimulation with histamine. This outwardly rectifying current was inhibited by 10 μM KB-R7943 (an antagonist of reverse mode NCX1 and was reduced in cells incubated with siRNA against NCX1. Interestingly, this outwardly rectifying current was also inhibited following knockdown of STIM1, suggesting for the first time a link between store operated cation entry and NCX1 activation. In addition, 10 μM KB-R7943 inhibited agonist induced changes in cytosolic Ca2+ and induced relaxation of porcine

  16. Pharmacologic study of calcium influx pathways in rabbit aortic smooth muscle

    International Nuclear Information System (INIS)

    Lukeman, D.S.

    1987-01-01

    Functional characteristics and pharmacologic domains of receptor-operated and potential-sensitive calcium (Ca 2+ ) channels (ROCs and PSCs, respectively) were derived via measurements of 45 Ca 2+ influx (M/sup Ca/) during activation by the neurotransmitters norepinephrine (NE), histamine (HS), and serotonin (5-HT) and by elevated extracellular potassium (K + ) in the individual or combined presence of organic Ca 2+ channel antagonists (CAts), calmodulin antagonists (Calm-ants), lanthanum (La 3+ ), and agents that increase intracellular levels of cyclic AMP

  17. Voltammetric oxidation of Hantzsch 1,4-dihydropyridines in protic and aprotic media: relevance of the substitution on N position

    International Nuclear Information System (INIS)

    Lopez-Alarcon, C.; Nunez-Vergara, L.J.; Squella, J.A.

    2003-01-01

    A detailed investigation on the electrochemical oxidation of some Hantzsch 1,4-dihydropyridine derivatives with the aim of study the influence of the hydrogen substituent on the N1 position of the heterocyclic ring have been carried out in protic and aprotic media. For this objective we have synthesized two series of compounds wherein the difference was the substituent (H or ethyl) on the N1-position of the heterocyclic ring. Voltammetry, UV-Vis spectroscopy, Controlled potential electrolysis, EPR, 1 H NMR and gas chromatography-mass spectrometry techniques in order to obtain evidences for postulate oxidation mechanisms in both protic and aprotic media have been used. Compounds having the ethyl substituent in the N1 position follow an oxidation mechanism obeying the sequence ECE with the second step as the r.d.e. in both, protic and aprotic media, thus producing the corresponding ethyl substituted pyridinium cation. On the other hand compounds having H in the N1 position follow the same ECE sequence only at acidic media. At basic media, the mechanism consisted of a DISP1 scheme in which rate determining step (r.d.s.) is the uptake of the proton in the N1 position by the OH - ion of the media. In aprotic media both type of compounds follow the same ECEC mechanism with the second step as the r.d.s. but only the H-substituted compounds generates an anionic species that is more easily oxidized than the parent compounds

  18. Facile photoreduction of graphene oxide by an NAD(P)H model: Hantzsch 1,4-dihydropyridine.

    Science.gov (United States)

    Zhang, Hui-Hui; Liu, Qiang; Feng, Ke; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu

    2012-05-29

    To make "clean" reduced GO sheets in high quality and in large scale, a natural reduced nicotinamine adenine dinucleotide NAD(P)H model, Hantzsch 1,4-dihydropyridine (HEH), is used as a mild organic photoreductant in this work. Benefiting from the intense absorption of HEH in the range of 300-420 nm, the graphene oxide (GO) can be readily reduced by HEH under UV light irradiation (λ > 320 nm) to afford single or few-layer reduced graphene oxide at room temperature. Studies on reduction extent reveal that both irradiation time and concentration ratio of HEH to GO are important for effective reduction of GO under UV light. The as-prepared photochemically reduced graphene oxide (PRGO) dispersion is stable without the need for any polymeric or surfactant stabilizers. Simply by extraction treatment, the "clean" PRGO sheets can be obtained in large quantities, and its conductivity approaches to 4680 S·m(-1) that is the highest value reported by photochemical approaches so far.

  19. Ca2+ influx and efflux in animal cells in the presence of panax notoginseng extracts: investigated by using 45Ca as a radioactive tracer

    International Nuclear Information System (INIS)

    Yang Yuanyou; Liu Ning; Mo Shangwu; Liao Jiali; Xu Falun

    2010-01-01

    In this paper, the influence of extracts of Panax notoginseng on Ca 2+ influx and efflux in isolated rat visceral organs was investigated by using 45 Ca as a radioactive tracer. The results indicated that both extracts, the total flavonoids and total saponins of Panax notoginseng had significant influence on Ca 2+ influx and efflux in the isolated rat aorta, heart, and kidney, in those organs it could markedly block 45 Ca entering into cell and could facilitate efflux of intracellular Ca 2+ . Compared with the total flavonoids, total saponins had stronger role in the regulation of Ca 2+ influx and efflux. Also, regulation effects of Ca 2+ influx and efflux of the total saponins were compared with positive drug Verapamil, or even better. This implies that the total flavonoids and total saponins of Panax notoginseng have calcium antagonistic effect, and both may be the active ingredients in Panax notoginseng for coronary heart disease treatment. (authors)

  20. Effects of structural modifications of N-CPM-normorphine derivatives on agonist and antagonist activities in isolated organs.

    Science.gov (United States)

    Riba, P; Tóth, Z; Hosztafi, S; Friedmann, T; Fürst, S

    2003-01-01

    The agonistic and antagonistic properties of N-cyclopropylmethyl (N-CPM) morphine derivatives were observed in mouse vas deferens (MVD), longitudinal muscle of guinea pig ileum (GPI) and rabbit vas deferens (LVD). In MVD the K(e) values of the titled compounds (N-CPM-morphine, N-CPM-isomorphine, N-CPM-dihydromorphine, N-CPM-dihydroisomorpPhine, N-CPM-dihydromorphone and naltrexone) were measured for mu-, kappa- and delta-receptors using normorphine, ethylketocyclazocine (EKC) and D-Pen2-D-Pen5-enkephaline (DPDPE) as selective agonists on the receptors, respectively. For mu-receptors of MVD the tested compounds showed similar affinity. For kappa-receptors the non-iso-6-OH derivatives possessed much less affinity than the iso-derivatives. Similar difference could be observed for delta-receptors. The agonistic activities of these compounds in MVD were observed to be between 0-20% of the inhibition of muscle contractions. In GPI the compounds except naltrexone possessed strong agonistic activities effectively antagonized by nor-binaltorphimine (nor-BNI) (K(e) of nor-BNI was 0.23 nM) suggesting that they were strong kappa-receptor agonists. We investigated these agents in LVD too, which contains kappa-receptors, but they did not produce any agonist potencies. It raises the possibility that the kappa-receptor subtypes of LVD and MVD are different from the kappa-receptor subtype of GPI or the vasa deferentia contain much fewer kappa-receptors than GPI and the intrinsic activities of these compounds are too small to reach the 50% inhibition of the contractions.

  1. Biocompatibility and bioactivity of porous polymer-derived Ca-Mg silicate ceramics.

    Science.gov (United States)

    Fiocco, L; Li, S; Stevens, M M; Bernardo, E; Jones, J R

    2017-03-01

    Magnesium is a trace element in the human body, known to have important effects on cell differentiation and the mineralisation of calcified tissues. This study aimed to synthesise highly porous Ca-Mg silicate foamed scaffolds from preceramic polymers, with analysis of their biological response. Akermanite (Ak) and wollastonite-diopside (WD) ceramic foams were obtained from the pyrolysis of a liquid silicone mixed with reactive fillers. The porous structure was obtained by controlled water release from selected fillers (magnesium hydroxide and borax) at 350°C. The homogeneous distribution of open pores, with interconnects of modal diameters of 160-180μm was obtained and maintained after firing at 1100°C. Foams, with porosity exceeding 80%, exhibited compressive strength values of 1-2MPa. In vitro studies were conducted by immersion in SBF for 21days, showing suitable dissolution rates, pH and ionic concentrations. Cytotoxicity analysis performed in accordance with ISO10993-5 and ISO10993-12 standards confirmed excellent biocompatibility of both Ak and WD foams. In addition, MC3T3-E1 cells cultured on the Mg-containing scaffolds demonstrated enhanced osteogenic differentiation and the expression of osteogenic markers including Collagen Type I, Osteopontin and Osteocalcin, in comparison to Mg-free counterparts. The results suggest that the addition of magnesium can further enhance the bioactivity and the potential for bone regeneration applications of Ca-silicate materials. Here, we show that the incorporation of Mg in Ca-silicates plays a significant role in the enhancement of the osteogenic differentiation and matrix formation of MC3T3-E1 cells, cultured on polymer-derived highly porous scaffolds. Reduced degradation rates and improved mechanical properties are also observed, compared to Mg-free counterparts, suggesting the great potential of Ca-Mg silicates as bone tissue engineering materials. Excellent biocompatibility of the new materials, in accordance to

  2. Both short intense and prolonged moderate in vitro stimulation reduce the mRNA expression of calcium-regulatory proteins in rat skeletal muscle

    DEFF Research Database (Denmark)

    Mänttäri, Satu; Ørtenblad, N; Madsen, Klavs

    2013-01-01

    RNA expression of components involved in Ca(2+) regulation in oxidative and glycolytic skeletal muscle. The mRNA level of Ca(2+)-ATPase (SERCA1, 2), calsequestrin (CASQ1, 2), ryanodine receptor (RyR1), and dihydropyridine receptor (Cacna1) was assessed in rat extensor digitorum longus (EDL) and soleus (SOL...

  3. Studies on derivatives of bat chelates labelled with 67Ca, 113mIn and 201Tl: Pt. 1

    International Nuclear Information System (INIS)

    Meng Min; Jin Yutai; Liu Boli; Zhu Lin

    1989-01-01

    The use of 3, 3, 10, 10-tetraethy 1-1, 2-dithio-5, 8-diazacyclodecane (BAT-TE) and 3, 3, 6, 6, 10, 10-hexamethyl-1, 2-dithio-5, 8-diazacy-clodecane (BAT-HM) as new ligands for the preparation of M-BAT-TE (M = Ca 3+ , In 3+ ) and M-BAT-HM (M = Ca 3+ , In 3+ , Tl 3+ ) were investigated. The chelating reactions with high labelling yield are fairly simple and rapid. The biodistribution of BAT derivative chelates in mice exhibited considerable myocardial uptake and good selectivity. Slow washout in heart and high heart-to-blood ratios were observed during the period from 2 min to 30 min after intravenous injection. Based on these experimental results, M-BAT-TE (M = Ca 3+ , In 3+ ) and M-BAT-HM (M = Ca 3+ , IN 3+ , Tl 3+ ) are considered as potential myocardial imaging agents, and particularly Tl-BAT-HM is likely a promising imaging agent

  4. Uninterrupted monitoring of drug effects in human-induced pluripotent stem cell-derived cardiomyocytes with bioluminescence Ca2+ microscopy.

    Science.gov (United States)

    Suzuki, Kazushi; Onishi, Takahito; Nakada, Chieko; Takei, Shunsuke; Daniels, Matthew J; Nakano, Masahiro; Matsuda, Tomoki; Nagai, Takeharu

    2018-05-18

    Cardiomyocytes derived from human-induced pluripotent stem cells are a powerful platform for high-throughput drug screening in vitro. However, current modalities for drug testing, such as electrophysiology and fluorescence imaging have inherent drawbacks. To circumvent these problems, we report the development of a bioluminescent Ca 2+ indicator GmNL(Ca 2+ ), and its application in a customized microscope for high-throughput drug screening. GmNL(Ca 2+ ) gives a 140% signal change with Ca 2+ , and can image drug-induced changes of Ca 2+ dynamics in cultured cells. Since bioluminescence requires application of a chemical substrate, which is consumed over ~ 30 min we made a dedicated microscope with automated drug dispensing inside a light-tight box, to control drug addition. To overcome thermal instability of the luminescent substrate, or small molecule, dual climate control enables distinct temperature settings in the drug reservoir and the biological sample. By combining GmNL(Ca 2+ ) with this adaptation, we could image spontaneous Ca 2+ transients in cultured cardiomyocytes and phenotype their response to well-known drugs without accessing the sample directly. In addition, the bioluminescent strategy demonstrates minimal perturbation of contractile parameters and long-term observation attributable to lack of phototoxicity and photobleaching. Overall, bioluminescence may enable more accurate drug screening in a high-throughput manner.

  5. Synthesis of two tritium-labeled derivatives of a vasopressin antagonist peptide

    International Nuclear Information System (INIS)

    Landvatter, S.W.; Heys, J.R.

    1986-01-01

    SK and F 101926, a potent vasopressin antagonist, has been tritium labeled in the tyrosine residue via exchange followed by solid phase coupling to a hexapeptide. The peptide thus obtained was subsequently coupled with a PMP residue, cleaved from the resin with HF, oxidized by ferricyanide and purified by HPLC giving the desired cyclic peptide. Alternatively, a labeled PMP residue can be prepared via reduction starting from phenol. Conversion of the labeled cyclohexanone to PMP followed by solid phase coupling to a heptapeptide can then afford PMP labeled peptide. 3 refs

  6. Effects of single and repeated doses of the calcium antagonist felodipine on blood pressure, renal function, electrolytes and water balance, and renin-angiotensin-aldosterone system in hypertensive patients.

    Science.gov (United States)

    Leonetti, G; Gradnik, R; Terzoli, L; Fruscio, M; Rupoli, L; Cuspidi, C; Sampieri, L; Zanchetti, A

    1986-01-01

    Doses of 10 mg b.i.d. of the new dihydropyridine calcium antagonist, felodipine, were tested for seven consecutive days in 11 hospitalized hypertensive patients. A significant reduction of both systolic and diastolic blood pressures, with patients in both the supine and upright positions, occurred immediately after the first dose and was maintained (daily average 15%) throughout the following days. An increase in heart rate was observed after the first dose (15 and 23 beats/min, in supine and upright postures), and subsequently declined to average values of 8 and 14 beats/min on the seventh day. There was a marked natriuretic response during the first and second day, during which an average negative sodium balance of 95 mmol developed; on the following days sodium output was not significantly different from control, but a negative balance averaging 135 mmol was still present on the seventh day of felodipine administration. A moderate negative potassium balance also progressively developed and reached -48 mmol on the seventh day. Glomerular filtration rate was unchanged, but renal plasma flow increased significantly during administration of felodipine. Plasma renin activity and plasma aldosterone were also increased very moderately by felodipine. Compared with previous observations by our group with higher doses of felodipine (12.5, 25, and 50 mg t.i.d.), 10 mg b.i.d. of this new calcium antagonist appear to exert a marked and prolonged blood pressure reduction, accompanied by a definite natriuretic instead of an antinatriuretic effect.

  7. Psychiatric and subjective symptoms and cerebral blood flow in patients with chronic cerebral infarction after treatment with Ca antagonist (nilvadipine). Quantitative measurement of cerebral blood flow by the 123IMP-SPECT ARG method

    International Nuclear Information System (INIS)

    Sakayori, Osamu; Kitamura, Shin; Mishina, Masahiro; Yamazaki, Mineo; Terashi, Akirou

    1997-01-01

    Psychiatric and subjective symptoms such as headache, dizziness, lack of spontaneity, anxiety, and a depressive state are often found in patients with chronic cerebral infarction. Some Ca antagonists are reported to relieve such symptoms. The purpose of the present study was to investigate the relationship between psychiatric and subjective symptoms and cerebral blood flow (CBF) in cerebral infarction and to evaluate the clinical effects of Ca antagonists from the standpoint of the cerebral circulation. Nilvadipine was administered to is patients with chronic cerebral infarction and their CBF was measured by the 123 IMP-SPECT ARG method before and at 8 weeks after the nilvadipine treatment. The CBF in patients with hypertension was increased by 11% after giving nilvadipine. Patients without hypertension showed no tendency for elevation of their CBF. Patients who were relieved from some psychiatric symptoms revealed a 14% increase of CBF in all cortical regions, and a significant increase was noted in the frontal and temporal regions. In other patients without changes in psychiatric symptoms, the CBF did not increase in any of the cortical regions. No relationship between symptoms and CBF was observed in any of the patients with subjective symptoms. Our study demonstrated a close correlation between psychiatric symptoms and CBF. We speculate that psychiatric symptoms in chronic cerebral infarction may reflect diffuse brain dysfunctions. We also conclude that nilvadipine is more effective in relieving psychiatric symptoms in patients with hypertensive cerebral infarction. It is inferred that nilvadipine may be more effective in relieving psychiatric symptoms in patients with hypertension. (author)

  8. Photostabilization studies of antihypertensive 1,4-dihydropyridines using polymeric containers.

    Science.gov (United States)

    De Luca, Michele; Ioele, Giuseppina; Spatari, Claudia; Ragno, Gaetano

    2016-05-30

    1,4-dihydropyridine antihypertensives (DHPs) are almost all dispensed in solid pharmaceutical formulations for their easy lability when exposed to light. This paper reports a study on the photoprotective effect of containers in different glassy or polymeric matrices with regard to four known DHPs when in solutions. The samples were subjected to forced degradation by means of a Xenon lamp, in accordance with the international rules on drug stability evaluation. The simultaneous determination of the drugs and their photoproducts was carried out by applying the multivariate curve resolution (MCR) methodology to the spectral data recorded along the irradiation test. This technique was able to determine the kinetic parameters and resolve the spectra of the photoproducts. The time required to reduce by 10% the concentration of the drug (t0.1) was adopted as a criterion to compare the protective ability of the containers. A significant photoprotection for all drugs tested was obtained by the use of polyethylene terephthalate (PET) containers. The best result was achieved for the felodipine solution in blue PET transparent bottle of 0.6mm thickness, reaching an almost complete stabilization up to six hours under stressing irradiation. In contrast, the glass containers, whether or not coloured, did not provide a satisfactory photoprotection of the drugs, showing in any case t0.1 values under 24min. These results can be a good opportunity to design new photoprotective pharmaceutical packaging for DHPs in liquid dosage form. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. CaMKII determines mitochondrial stress responses in heart

    Science.gov (United States)

    Joiner, Mei-ling A.; Koval, Olha M.; Jingdong, Li; He, B. Julie; Allamargot, Chantal; Gao, Zhan; Luczak, Elizabeth D.; Hall, Duane D.; Fink, Brian D.; Chen, Biyi; Yang, Jinying; Moore, Steven A.; Scholz, Thomas D.; Strack, Stefan; Mohler, Peter J.; Sivitz, William I.; Song, Long-Sheng; Anderson, Mark E.

    2012-01-01

    Myocardial cell death is initiated by excessive mitochondrial Ca2+ entry, causing Ca2+ overload, mitochondrial permeability transition pore (mPTP) opening and dissipation of the mitochondrial inner membrane potential (ΔΨm)1,2. However, the signaling pathways that control mitochondrial Ca2+ entry through the inner membrane mitochondrial Ca2+ uniporter (MCU)3–5 are not known. The multifunctional Ca2+ and calmodulin-dependent protein kinase II (CaMKII) is activated in ischemia reperfusion (I/R), myocardial infarction (MI) and neurohumoral injury, common causes of myocardial death and heart failure, suggesting CaMKII could couple disease stress to mitochondrial injury. Here we show that CaMKII promotes mPTP opening and myocardial death by increasing MCU current (IMCU). Mitochondrial-targeted CaMKII inhibitory protein or cyclosporin A (CsA), an mPTP antagonist with clinical efficacy in I/R injury6, equivalently prevent mPTP opening, ΔΨm deterioration and diminish mitochondrial disruption and programmed cell death in response to I/R injury. Mice with myocardial and mitochondrial-targeted CaMKII inhibition are resistant to I/R injury, MI and neurohumoral injury, suggesting pathological actions of CaMKII are substantially mediated by increasing IMCU. Our findings identify CaMKII activity as a central mechanism for mitochondrial Ca2+ entry and suggest mitochondrial-targeted CaMKII inhibition could prevent or reduce myocardial death and heart failure dysfunction in response to common experimental forms of pathophysiological stress. PMID:23051746

  10. Carbobenzoxy amino acids: Structural requirements for cholecystokinin receptor antagonist activity

    International Nuclear Information System (INIS)

    Maton, P.N.; Sutliff, V.E.; Jensen, R.T.; Gardner, J.D.

    1985-01-01

    The authors used dispersed acini prepared from guinea pig pancreas to examine 28 carbobenzoxy (CBZ) amino acids for their abilities to function as cholecystokinin receptor antagonists. All amino acid derivatives tested, except for CBZ-alanine, CBZ-glycine, and N alpha-CBZ- lysine, were able to inhibit the stimulation of amylase secretion caused by the C-terminal octapeptide of cholecystokinin. In general, there was a good correlation between the ability of a carbobenzoxy amino acid to inhibit stimulated amylase secretion and the ability of the amino acid derivative to inhibit binding of 125 I-cholecystokinin. The inhibition of cholecystokinin-stimulated amylase secretion was competitive, fully reversible, and specific for those secretagogues that interact with the cholecystokinin receptor. The potencies with which the various carbobenzoxy amino acids inhibited the action of cholecystokinin varied 100-fold and CBZ-cystine was the most potent cholecystokinin receptor antagonist. This variation in potency was primarily but not exclusively a function of the hydrophobicity of the amino acid side chain

  11. From Chemotherapy-Induced Emesis to Neuroprotection: Therapeutic Opportunities for 5-HT3 Receptor Antagonists.

    Science.gov (United States)

    Fakhfouri, Gohar; Mousavizadeh, Kazem; Mehr, Sharam Ejtemaei; Dehpour, Ahmad Reza; Zirak, Mohammad Reza; Ghia, Jean-Eric; Rahimian, Reza

    2015-12-01

    5-HT3 receptor antagonists are extensively used as efficacious agents in counteracting chemotherapy-induced emesis. Recent investigations have shed light on other potential effects (analgesic, anxiolytic, and anti-psychotic). Some studies have reported neuroprotective properties for the 5-HT3 receptor antagonists in vitro and in vivo. When administered to Aβ-challenged rat cortical neurons, 5-HT3 receptor antagonists substantially abated apoptosis, elevation of cytosolic Ca(2), glutamate release, reactive oxygen species (ROS) generation, and caspase-3 activity. In addition, in vivo studies show that 5-HT3 receptor antagonists possess, alongside their anti-emetic effects, notable immunomodulatory properties in CNS. We found that pretreatment with tropisetron significantly improved neurological deficits and diminished leukocyte transmigration into the brain, TNF-α level, and brain infarction in a murine model of embolic stroke. Our recent investigation revealed that tropisetron protects against Aβ-induced neurotoxicity in vivo through both 5-HT3 receptor-dependent and -independent pathways. Tropisetron, in vitro, was found to be an efficacious inhibitor of the signaling pathway leading to the activation of pro-inflammatory NF-κB, a transcription factor pivotal to the upregulation of several neuroinflammatory mediators in brain. This mini review summarizes novel evidence concerning effects of 5-HT3 antagonists and their possible mechanisms of action in ameliorating neurodegenerative diseases including Alzheimer, multiple sclerosis, and stroke. Further, we discuss some newly synthesized 5-HT3 receptor antagonists with dual properties of 5-HT3 receptor blockade/alpha-7 nicotinic receptor activator and their potential in management of memory impairment. Since 5-HT3 receptor antagonists possess a large therapeutic window, they can constitute a scaffold for design and synthesis of new neuroprotective medications.

  12. Antibodies to the extracellular pore loop of TRPM8 act as antagonists of channel activation.

    Directory of Open Access Journals (Sweden)

    Silke Miller

    Full Text Available The mammalian transient receptor potential melastatin channel 8 (TRPM8 is highly expressed in trigeminal and dorsal root ganglia. TRPM8 is activated by cold temperature or compounds that cause a cooling sensation, such as menthol or icilin. TRPM8 may play a role in cold hypersensitivity and hyperalgesia in various pain syndromes. Therefore, TRPM8 antagonists are pursued as therapeutics. In this study we explored the feasibility of blocking TRPM8 activation with antibodies. We report the functional characterization of a rabbit polyclonal antibody, ACC-049, directed against the third extracellular loop near the pore region of the human TRPM8 channel. ACC-049 acted as a full antagonist at recombinantly expressed human and rodent TRPM8 channels in cell based agonist-induced 45Ca2+ uptake assays. Further, several poly-and monoclonal antibodies that recognize the same region also blocked icilin activation of not only recombinantly expressed TRPM8, but also endogenous TRPM8 expressed in rat dorsal root ganglion neurons revealing the feasibility of generating monoclonal antibody antagonists. We conclude that antagonist antibodies are valuable tools to investigate TRPM8 function and may ultimately pave the way for development of therapeutic antibodies.

  13. The effect of CA1 dopaminergic system on amnesia induced by harmane in mice.

    Science.gov (United States)

    Nasehi, Mohammad; Hasanvand, Simin; Khakpai, Fatemeh; Zarrindast, Mohammad-Reza

    2018-05-16

    In the present study, the effects of bilateral injections of dopaminergic drugs into the hippocampal CA1 regions (intra-CA1) on harmane-induced amnesia were examined in mice. We used a single-trial step-down inhibitory avoidance task for the assessment of memory acquisition in adult male mice. Our data indicated that pre-training intra-peritoneal (i.p.) administration of harmane (12 mg/kg) impaired memory acquisition. Moreover, intra-CA1 administration of dopamine D1 receptor agonist, SKF38393 (0.25 µg/mouse), dopamine D1 receptor antagonist, SCH23390 (0.25 µg/mouse), dopamine D2 receptor agonist, quinpirole (0.125 and 0.25 µg/mouse) and dopamine D2 receptor antagonist, sulpiride (0.2 and 0.4 µg/mouse) decreased the learning of a single-trial inhibitory avoidance task. Furthermore, pre-training intra-CA1 injection of sub-threshold doses of SKF38393 (0.0625 µg/mouse) or sulpiride (0.1 µg/mouse) increased pre-training harmane (4 and 8 mg/kg, i.p.)-induced amnesia. On the other hand, pre-training intra-CA1 injection of a sub-threshold dose of SCH23390 (0.0625 µg/mouse) reversed amnesia induced by an effective dose of harmane (12 mg/kg; i.p.). In addition, Pre-training intra-CA1 injection of quinpirole (0.0625 µg/mouse) had no effect on memory impairment induced by harmane. These findings indicate the involvement of CA1 dopaminergic system on harmane-induced impairment of memory acquisition.

  14. Involvement of N-methyl-D-aspartate receptor subunits in zinc-mediated modification of CA1 long-term potentiation in the developing hippocampus.

    Science.gov (United States)

    Takeda, Atsushi; Itagaki, Kosuke; Ando, Masaki; Oku, Naoto

    2012-03-01

    Zinc is an endogenous N-methyl-D-aspartate (NMDA) receptor blocker. It is possible that zinc-mediated modification of hippocampal CA1 long-term potentiation (LTP) is linked to the expression of NMDA receptor subunits, which varies with postnatal development. In the present study, the effect of ZnCl(2) and CaEDTA, a membrane-impermeable zinc chelator, on CA1 LTP induction was examined in hippocampal slices from immature (3-week-old) and young (6-week-old) rats. Tetanus (10-100 Hz, 1 sec)-induced CA1 LTP was more greatly enhanced in 3-week-old rats. CA1 LTP was inhibited in the presence of 2-amino-5-phosphonovalerate (APV), an NMDA receptor antagonist, and CaEDTA in 3-week-old rats, as in the case of 6-week-old rats reported previously. In 3-week-old rats, on the other hand, 5 μM ZnCl(2) attenuated NMDA receptor-mediated EPSPs more than in 6-week-old rats and significantly attenuated CA1 LTP. Moreover, 5 μM ZnCl(2) significantly attenuated CA1 LTP in the presence of (2R,4S)-4-(3-phosphonopropyl)-2-piperidinecarboxylic acid (PPPA), an NR2A antagonist, in 3-week-old rats, but not that in the presence of ifenprodil, an NR2B antagonist, suggesting that zinc-mediated attenuation of CA1 LTP is associated with the preferential expression of NR2B subunit in 3-week-old rats. In 6-week-old rats, however, 5 μM ZnCl(2) significantly potentiated CA1 LTP and also CA1 LTP in the presence of PPPA. The present study demonstrates that endogenous zinc may participate in the induction of CA1 LTP. It is likely that the changes in expression of NMDA receptor subunits are involved in the zinc-mediated modification of CA1 LTP in the developing hippocampus. Copyright © 2011 Wiley Periodicals, Inc.

  15. The crystal structure of zwitterionic 2-{[(4-iminiumyl-3-methyl-1,4-dihydropyridin-1-ylmethyl]carbamoyl}benzoate hemihydrate

    Directory of Open Access Journals (Sweden)

    C. S. Chidan Kumar

    2017-07-01

    Full Text Available The asymmetric unit of the title compound, C15H15N3O3·0.5H2O, comprises two 2-{[(4-iminiumyl-3-methyl-1,4-dihydropyridin-1-ylmethyl]carbamoyl}benzoate zwitterions (A and B and a water molecule. The dihedral angles between the pyridine and phenyl rings in the zwitterions are 53.69 (10 and 73.56 (11° in A and B, respectively. In the crystal, molecules are linked by N—H...O, O—H...O, C—H...O and C—H...π(ring hydrogen bonds into a three-dimensional network. The crystal structure also features π–π interactions involving the centroids of the pyridine and phenyl rings [centroid–centroid distances = 3.5618 (12 Å in A and 3.8182 (14 Å in B].

  16. Estradiol receptors mediate estradiol-induced inhibition of mitochondrial Ca^{2+} efflux in rat caudate nucleus and brain stem

    OpenAIRE

    PETROVIC, SNJEZANA; MILOSEVIC, MAJA; RISTIC-MEDIC, DANIJELA; VELICKOVIC, NATASA; DRAKULIC, DUNJA; GRKOVIC, IVANA; HORVAT, ANICA

    2015-01-01

    Our earlier studies found that in vitro estradiol modulates mitochondrial Ca2+ transport in discrete brain regions. The present study examined the role of estradiol receptors (ERs) in estradiol-induced inhibition of Ca^{2+} efflux from synaptosomal mitochondria isolated from rat caudate nuclei and brain stems. Radioactively labeled CaCl_2 (0.6?0.75 µCi ^45CaCl_{2}) was used for Ca^{2+} transport monitoring. The results revealed that in the presence of ER antagonist 7\\alpha,17ß-[9[(4,4,5,5,5-...

  17. AM-37 and ST-36 Are Small Molecule Bombesin Receptor Antagonists.

    Science.gov (United States)

    Moody, Terry W; Tashakkori, Nicole; Mantey, Samuel A; Moreno, Paola; Ramos-Alvarez, Irene; Leopoldo, Marcello; Jensen, Robert T

    2017-01-01

    While peptide antagonists for the gastrin-releasing peptide receptor (BB 2 R), neuromedin B receptor (BB 1 R), and bombesin (BB) receptor subtype-3 (BRS-3) exist, there is a need to develop non-peptide small molecule inhibitors for all three BBR. The BB agonist (BA)1 binds with high affinity to the BB 1 R, BB 2 R, and BRS-3. In this communication, small molecule BBR antagonists were evaluated using human lung cancer cells. AM-37 and ST-36 inhibited binding to human BB 1 R, BB 2 R, and BRS-3 with similar affinity ( K i = 1.4-10.8 µM). AM-13 and AM-14 were approximately an order of magnitude less potent than AM-37 and ST-36. The ability of BA1 to elevate cytosolic Ca 2+ in human lung cancer cells transfected with BB 1 R, BB 2 R, and BRS-3 was antagonized by AM-37 and ST-36. BA1 increased tyrosine phosphorylation of the EGFR and ERK in lung cancer cells, which was blocked by AM-37 and ST-36. AM-37 and ST-36 reduced the growth of lung cancer cells that have BBR. The results indicate that AM-37 and ST-36 function as small molecule BB receptor antagonists.

  18. SSTR-Mediated Imaging in Breast Cancer: Is There a Role for Radiolabeled Somatostatin Receptor Antagonists?

    Science.gov (United States)

    Dalm, Simone U; Haeck, Joost; Doeswijk, Gabriela N; de Blois, Erik; de Jong, Marion; van Deurzen, Carolien H M

    2017-10-01

    Recent studies have shown enhanced tumor targeting by novel somatostatin receptor (SSTR) antagonists compared with clinically widely used agonists. However, these results have been obtained mostly in neuroendocrine tumors, and only limited data are available for cancer types with lower SSTR expression, including breast cancer (BC). To date, two studies have reported higher binding of the antagonist than the agonist in BC, but in both studies only a limited number of cases were evaluated. In this preclinical study, we further investigated whether the application of an SSTR antagonist can improve SSTR-mediated BC imaging in a large panel of BC specimens. We also generated an in vivo BC mouse model and performed SPECT/MRI and biodistribution studies. Methods: Binding of 111 In-DOTA-Tyr 3 -octreotate (SSTR agonist) and 111 In-DOTA-JR11 (SSTR antagonist) to 40 human BC specimens was compared using in vitro autoradiography. SSTR2 immunostaining was performed to confirm SSTR2 expression of the tumor cells. Furthermore, binding of the radiolabeled SSTR agonist and antagonist was analyzed in tissue material from 6 patient-derived xenografts. One patient-derived xenograft, the estrogen receptor-positive model T126, was chosen to generate in vivo mouse models containing orthotopic breast tumors for in vivo SPECT/MRI and biodistribution studies after injection with 177 Lu-DOTA-Tyr 3 -octreotate or 177 Lu-DOTA-JR11. Results: 111 In-DOTA-JR11 binding to human BC tissue was significantly higher than 111 In-DOTA-Tyr 3 -octreotate binding ( P < 0.001). The median ratio of antagonist binding versus agonist binding was 3.39 (interquartile range, 2-5). SSTR2 immunostaining confirmed SSTR2 expression on the tumor cells. SPECT/MRI of the mouse model found better tumor visualization with the antagonist. This result was in line with the significantly higher tumor uptake of the radiolabeled antagonist than of the agonist as measured in biodistribution studies 285 min after radiotracer

  19. Carbamazepine and oxcarbazepine, but not eslicarbazepine, enhance excitatory synaptic transmission onto hippocampal CA1 pyramidal cells through an antagonist action at adenosine A1 receptors.

    Science.gov (United States)

    Booker, Sam A; Pires, Nuno; Cobb, Stuart; Soares-da-Silva, Patrício; Vida, Imre

    2015-06-01

    This study assessed the anticonvulsant and seizure generation effects of carbamazepine (CBZ), oxcarbazepine (OXC) and eslicarbazepine (S-Lic) in wild-type mice. Electrophysiological recordings were made to discriminate potential cellular and synaptic mechanisms underlying anti- and pro-epileptic actions. The anticonvulsant and pro-convulsant effects were evaluated in the MES, the 6-Hz and the Irwin tests. Whole-cell patch-clamp recordings were used to investigate the effects on fast excitatory and inhibitory synaptic transmission in hippocampal area CA1. The safety window for CBZ, OXC and eslicarbazepine (ED50 value against the MES test and the dose that produces grade 5 convulsions in all mice), was 6.3, 6.0 and 12.5, respectively. At high concentrations the three drugs reduced synaptic transmission. CBZ and OXC enhanced excitatory postsynaptic currents (EPSCs) at low, therapeutically-relevant concentrations. These effects were associated with no change in inhibitory postsynaptic currents (IPSCs) resulting in altered balance between excitation and inhibition. S-Lic had no effect on EPSC or IPSC amplitudes over the same concentration range. The CBZ mediated enhancement of EPSCs was blocked by DPCPX, a selective antagonist, and occluded by CCPA, a selective agonist of the adenosine A1 receptor. Furthermore, reduction of endogenous adenosine by application of the enzyme adenosine deaminase also abolished the CBZ- and OXC-induced increase of EPSCs, indicating that the two drugs act as antagonists at native adenosine receptors. In conclusion, CBZ and OXC possess pro-epileptic actions at clinically-relevant concentrations through the enhancement of excitatory synaptic transmission. S-Lic by comparison has no such effect on synaptic transmission, explaining its lack of seizure exacerbation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Nano-rod Ca-decorated sludge derived carbon for removal of phosphorus.

    Science.gov (United States)

    Kong, Lingjun; Han, Meina; Shih, Kaimin; Su, Minhua; Diao, Zenghui; Long, Jianyou; Chen, Diyun; Hou, Li'an; Peng, Yan

    2018-02-01

    Recovering phosphorus (P) from waste streams takes the unique advantage in simultaneously addressing the crisis of eutrophication and the shortage of P resource. A novel calcium decorated sludge carbon (Ca-SC) was developed from dyeing industry wastewater treatment sludge by decorating calcium (Ca) to effectively adsorb phosphorus from solution. The X-ray diffraction (XRD) and Fourier transform infrared (FTIR) techniques were used to characterize the Ca-SCs, followed by isotherm and kinetic sorption experiments. A preferred design with CaCO 3 to sludge mass ratio of 1:2 was found to have a sorption capacity of 116.82 mg/g for phosphorus. This work reveals the crucial role of well-dispersed nano-rod calcium on the Ca-SC surface for the sorption of phosphorus. Moreover, the decoration of nano-rod calcium was found to further promote the uptake of phosphorus through the formation of hydroxylapatite (Ca 5 (PO 4 ) 3 (OH)). Thus, the development of decorated Ca-SC for sorption of phosphorus is very important in solving the P pollution and resource loss. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Targeting cell migration and the endoplasmic reticulum stress response with calmodulin antagonists: a clinically tested small molecule phenocopy of SEC62 gene silencing in human tumor cells

    International Nuclear Information System (INIS)

    Linxweiler, Maximilian; Greiner, Markus; Schorr, Stefan; Schäuble, Nico; Jung, Martin; Linxweiler, Johannes; Langer, Frank; Schäfers, Hans-Joachim; Cavalié, Adolfo; Zimmermann, Richard

    2013-01-01

    Tumor cells benefit from their ability to avoid apoptosis and invade other tissues. The endoplasmic reticulum (ER) membrane protein Sec62 is a key player in these processes. Sec62 is essential for cell migration and protects tumor cells against thapsigargin-induced ER stress, which are both linked to cytosolic Ca 2+ . SEC62 silencing leads to elevated cytosolic Ca 2+ and increased ER Ca 2+ leakage after thapsigargin treatment. Sec62 protein levels are significantly increased in different tumors, including prostate, lung and thyroid cancer. In lung cancer, the influence of Sec62 protein levels on patient survival was analyzed using the Kaplan-Meier method and log-rank test. To elucidate the underlying pathophysiological functions of Sec62, Ca 2+ imaging techniques, real-time cell analysis and cell migration assays were performed. The effects of treatment with the calmodulin antagonists, trifluoperazine (TFP) and ophiobolin A, on cellular Ca 2+ homeostasis, cell growth and cell migration were compared with the effects of siRNA-mediated Sec62 depletion or the expression of a mutated SEC62 variant in vitro. Using Biacore analysis we examined the Ca 2+ -sensitive interaction of Sec62 with the Sec61 complex. Sec62 overproduction significantly correlated with reduced patient survival. Therefore, Sec62 is not only a predictive marker for this type of tumor, but also an interesting therapeutic target. The present study suggests a regulatory function for Sec62 in the major Ca 2+ leakage channel in the ER, Sec61, by a direct and Ca 2+ -sensitive interaction. A Ca 2+ -binding motif in Sec62 is essential for its molecular function. Treatment of cells with calmodulin antagonists mimicked Sec62 depletion by inhibiting cell migration and rendering the cells sensitive to thapsigargin treatment. Targeting tumors that overproduce Sec62 with calmodulin antagonists in combination with targeted thapsigargin analogues may offer novel personalized therapeutic options

  2. Skeletal muscle excitation-contraction coupling: who are the dancing partners?

    Science.gov (United States)

    Rebbeck, Robyn T; Karunasekara, Yamuna; Board, Philip G; Beard, Nicole A; Casarotto, Marco G; Dulhunty, Angela F

    2014-03-01

    There is an overwhelming body of work supporting the idea that excitation-contraction coupling in skeletal muscle depends on a physical interaction between the skeletal muscle isoform of the dihydropyridine receptor L-type Ca(2+) channel and the skeletal isoform of the ryanodine receptor Ca(2+) release channel. A general assumption is that this physical interaction is between "critical" residues that have been identified in the II-III loop of the dihydropyridine receptor alpha subunit and the ryanodine receptor. However, despite extensive searches, the complementary "critical" residues in the ryanodine receptor have not been identified. This raises the possibility that the coupling proceeds either through other subunits of the dihydropyridine receptor and/or other co-proteins within the large RyR1 protein complex. There have been some remarkable advances in recent years in identifying proteins in the RyR complex that impact on the coupling process, and these are considered in this review. A major candidate for a role in the coupling mechanism is the beta subunit of the dihydropyridine receptor, because specific residues in both the beta subunit and ryanodine receptor have been identified that facilitate an interaction between the two proteins and these also impact on excitation-contraction coupling. This role of beta subunit remains to be fully investigated as well as the degree to which it may complement any other direct or indirect voltage-dependent coupling interactions between the DHPR alpha II-III loop and the ryanodine receptor. Copyright © 2014. Published by Elsevier Ltd.

  3. Saussurea tridactyla Sch. Bip.-derived polysaccharides and flavones reduce oxidative damage in ultraviolet B-irradiated HaCaT cells via a p38MAPK-independent mechanism

    Directory of Open Access Journals (Sweden)

    Guo Y

    2016-01-01

    Full Text Available Yan Guo,1 Juan Sun,2 Juan Ye,1 Wenyu Ma,1 Hualing Yan,1 Gang Wang1 1Department of Dermatology and Venereology, Affiliated Hospital of Qinghai University, 2Department of Anatomy, Qinghai University Medical College, Xining, People’s Republic of China Objective: To investigate whether Saussurea tridactyla Sch. Bip.-derived polysaccharides and flavones exert apoptosis-inhibiting effects in ultraviolet B (UVB-irradiated HaCaT cells.Methods: We divided HaCaT cells into low radiation UVB and high radiation UVB groups. Low radiation UVB and high radiation UVB groups were further divided into a control group, UVB radiation group (UVB group, S. tridactyla Sch. Bip.-derived polysaccharides and flavones low-dose group, and S. tridactyla Sch. Bip.-derived polysaccharides and flavones high-dose group. Cell viability and morphology were assayed by MTT and trypan blue staining. Superoxide dismutase activity, glutathione content, malondialdehyde content, and catalase activity test kits were used to detect superoxide dismutase activity, glutathione content, malondialdehyde content, and catalase activity, respectively. Cell apoptosis, intracellular Ca2+ levels, and mitochondrial membrane potential (ΔΨ were detected by flow cytometry. Protein levels were analyzed by Western blotting and immunofluorescence.Results: S. tridactyla Sch. Bip.-derived polysaccharides and flavones were found to increase the absorbance of MTT, decrease cell death, alleviate the degree of cell edema, restore the cell morphology, reduce cell death fragments and chip phenomenon, increase superoxide dismutase activity, glutathione content, and catalase activity while decreasing the content of malondialdehyde, lowering the population of apoptotic cells, reducing the intracellular Ca2+ fluorescence, increasing the mitochondrial membrane potential (ΔΨ, increasing the expressions of p-38, p-53, Bcl-2, and decreasing the expressions of Bax and active-caspase-3.Conclusion: S. tridactyla Sch

  4. Design and Synthesis of Benzimidazoles As Novel Corticotropin-Releasing Factor 1 Receptor Antagonists.

    Science.gov (United States)

    Mochizuki, Michiyo; Kori, Masakuni; Kobayashi, Katsumi; Yano, Takahiko; Sako, Yuu; Tanaka, Maiko; Kanzaki, Naoyuki; Gyorkos, Albert C; Corrette, Christopher P; Cho, Suk Young; Pratt, Scott A; Aso, Kazuyoshi

    2016-03-24

    Benzazole derivatives with a flexible aryl group bonded through a one-atom linker as a new scaffold for a corticotropin-releasing factor 1 (CRF1) receptor antagonist were designed, synthesized, and evaluated. We expected that structural diversity could be expanded beyond that of reported CRF1 receptor antagonists. In a structure-activity relationship study, 4-chloro-N(2)-(4-chloro-2-methoxy-6-methylphenyl)-1-methyl-N(7),N(7)-dipropyl-1H-benzimidazole-2,7-diamine 29g had the most potent binding activity against a human CRF1 receptor and the antagonistic activity (IC50 = 9.5 and 88 nM, respectively) without concerns regarding cytotoxicity at 30 μM. Potent CRF1 receptor-binding activity in brain in an ex vivo test and suppression of stress-induced activation of the hypothalamus-pituitary-adrenocortical (HPA) axis were also observed at 138 μmol/kg of compound 29g after oral administration in mice. Thus, the newly designed benzimidazole 29g showed in vivo CRF1 receptor antagonistic activity and good brain penetration, indicating that it is a promising lead for CRF1 receptor antagonist drug discovery research.

  5. The gene for the alpha 1 subunit of the skeletal muscle dihydropyridine-sensitive calcium channel (Cchl1a3) maps to mouse chromosome 1.

    Science.gov (United States)

    Chin, H; Krall, M; Kim, H L; Kozak, C A; Mock, B

    1992-12-01

    Cchl1a3 encodes the dihydropyridine-sensitive calcium channel alpha 1 subunit isoform predominantly expressed in skeletal muscle. mdg (muscular dysgenesis) has previously been implicated as a mutant allele of this gene. Hybridization of a rat brain cDNA probe for Cchl1a3 to Southern blots of DNAs from a panel of Chinese hamster x mouse somatic cell hybrids suggested that this gene maps to mouse Chromosome 1. Analysis of the progeny of an inbred strain cross-positioned Cchl1a3 1.3 cM proximal to the Pep-3 locus on Chr 1.

  6. Stretch-induced Ca2+ independent ATP release in hippocampal astrocytes.

    Science.gov (United States)

    Xiong, Yingfei; Teng, Sasa; Zheng, Lianghong; Sun, Suhua; Li, Jie; Guo, Ning; Li, Mingli; Wang, Li; Zhu, Feipeng; Wang, Changhe; Rao, Zhiren; Zhou, Zhuan

    2018-02-28

    Similar to neurons, astrocytes actively participate in synaptic transmission via releasing gliotransmitters. The Ca 2+ -dependent release of gliotransmitters includes glutamate and ATP. Following an 'on-cell-like' mechanical stimulus to a single astrocyte, Ca 2+ independent single, large, non-quantal, ATP release occurs. Astrocytic ATP release is inhibited by either selective antagonist treatment or genetic knockdown of P2X7 receptor channels. Our work suggests that ATP can be released from astrocytes via two independent pathways in hippocampal astrocytes; in addition to the known Ca 2+ -dependent vesicular release, larger non-quantal ATP release depends on P2X7 channels following mechanical stretch. Astrocytic ATP release is essential for brain functions such as synaptic long-term potentiation for learning and memory. However, whether and how ATP is released via exocytosis remains hotly debated. All previous studies of non-vesicular ATP release have used indirect assays. By contrast, two recent studies report vesicular ATP release using more direct assays. In the present study, using patch clamped 'ATP-sniffer cells', we re-investigated astrocytic ATP release at single-vesicle resolution in hippocampal astrocytes. Following an 'on-cell-like' mechanical stimulus of a single astrocyte, a Ca 2+ independent single large non-quantal ATP release occurred, in contrast to the Ca 2+ -dependent multiple small quantal ATP release in a chromaffin cell. The mechanical stimulation-induced ATP release from an astrocyte was inhibited by either exposure to a selective antagonist or genetic knockdown of P2X7 receptor channels. Functional P2X7 channels were expressed in astrocytes in hippocampal brain slices. Thus, in addition to small quantal ATP release, larger non-quantal ATP release depends on P2X7 channels in astrocytes. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  7. In vitro and in vivo effects of kisspeptin antagonists p234, p271, p354, and p356 on GPR54 activation.

    Directory of Open Access Journals (Sweden)

    C H J Albers-Wolthers

    Full Text Available Kisspeptins (KPs and their receptor (GPR54 or KiSS1R play a key-role in regulation of the hypothalamic-pituitary-gonadal axis and are therefore interesting targets for therapeutic interventions in the field of reproductive endocrinology. As dogs show a rapid and robust LH response after the administration of KP10, they can serve as a good animal model for research concerning KP signaling. The aims of the present study were to test the antagonistic properties of KP analogs p234, p271, p354, and p356 in vitro, by determining the intracellular Ca2+ response of CHEM1 cells that stably express human GPR54, and to study the in vivo effects of these peptides on basal plasma LH concentration and the KP10-induced LH response in female dogs. Exposure of the CHEM1 cells to KP-10 resulted in a clear Ca2+ response. P234, p271, p354, and p356 did not prevent or lower the KP10-induced Ca2+ response. Moreover, the in vivo studies in the dogs showed that none of these supposed antagonists lowered the basal plasma LH concentration and none of the peptides lowered the KP10-induced LH response. In conclusion, p234, p271, p354, and p356 had no antagonistic effects in vitro nor any effect on basal and kisspeptin-stimulated plasma LH concentration in female dogs.

  8. Study of CO2 cyclic absorption stability of CaO-based sorbents derived from lime mud purified by sucrose method.

    Science.gov (United States)

    Ma, AiHua; Jia, QingMing; Su, HongYing; Zhi, YunFei; Tian, Na; Wu, Jing; Shan, ShaoYun

    2016-02-01

    Using lime mud (LM) purified by sucrose method, derived from paper-making industry, as calcium precursor, and using mineral rejects-bauxite-tailings (BTs) from aluminum production as dopant, the CaO-based sorbents for high-temperature CO2 capture were prepared. Effects of BTs content, precalcining time, and temperature on CO2 cyclic absorption stability were illustrated. The cyclic carbonation behavior was investigated in a thermogravimetric analyzer (TGA). Phase composition and morphologies were analyzed by XRD and SEM. The results reflected that the as-synthesized CaO-based sorbent doped with 10 wt% BTs showed a superior CO2 cyclic absorption-desorption conversion during multiple cycles, with conversion being >38 % after 50 cycles. Occurrence of Ca12Al14O33 phase during precalcination was probably responsible for the excellent CO2 cyclic stability.

  9. NMDA receptor antagonists inhibit catalepsy induced by either dopamine D1 or D2 receptor antagonists.

    Science.gov (United States)

    Moore, N A; Blackman, A; Awere, S; Leander, J D

    1993-06-11

    In the present study, we investigated the ability of NMDA receptor antagonists to inhibit catalepsy induced by haloperidol, or SCH23390 and clebopride, selective dopamine D1 and D2 receptor antagonists respectively. Catalepsy was measured by recording the time the animal remained with its forepaws placed over a rod 6 cm above the bench. Pretreatment with either the non-competitive NMDA receptor antagonist, MK-801 (0.25-0.5 mg/kg i.p.) or the competitive antagonist, LY274614 (10-20 mg/kg i.p.) reduced the cataleptic response produced by haloperidol (10 mg/kg), SCH23390 (2.5-10 mg/kp i.p.) or clebopride (5-20 mg/kg i.p.). This demonstrates that NMDA receptor antagonists will reduce both dopamine D1 and D2 receptor antagonist-induced catalepsy. Muscle relaxant doses of chlordiazepoxide (10 mg/kg i.p.) failed to reduce the catalepsy induced by haloperidol, suggesting that the anticataleptic effect of the NMDA receptor antagonists was not due to a non-specific action. These results support the hypothesis that NMDA receptor antagonists may have beneficial effects in disorders involving reduced dopaminergic function, such as Parkinson's disease.

  10. AM-37 and ST-36 Are Small Molecule Bombesin Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Terry W. Moody

    2017-07-01

    Full Text Available While peptide antagonists for the gastrin-releasing peptide receptor (BB2R, neuromedin B receptor (BB1R, and bombesin (BB receptor subtype-3 (BRS-3 exist, there is a need to develop non-peptide small molecule inhibitors for all three BBR. The BB agonist (BA1 binds with high affinity to the BB1R, BB2R, and BRS-3. In this communication, small molecule BBR antagonists were evaluated using human lung cancer cells. AM-37 and ST-36 inhibited binding to human BB1R, BB2R, and BRS-3 with similar affinity (Ki = 1.4–10.8 µM. AM-13 and AM-14 were approximately an order of magnitude less potent than AM-37 and ST-36. The ability of BA1 to elevate cytosolic Ca2+ in human lung cancer cells transfected with BB1R, BB2R, and BRS-3 was antagonized by AM-37 and ST-36. BA1 increased tyrosine phosphorylation of the EGFR and ERK in lung cancer cells, which was blocked by AM-37 and ST-36. AM-37 and ST-36 reduced the growth of lung cancer cells that have BBR. The results indicate that AM-37 and ST-36 function as small molecule BB receptor antagonists.

  11. AM-37 and ST-36 Are Small Molecule Bombesin Receptor Antagonists

    Science.gov (United States)

    Moody, Terry W.; Tashakkori, Nicole; Mantey, Samuel A.; Moreno, Paola; Ramos-Alvarez, Irene; Leopoldo, Marcello; Jensen, Robert T.

    2017-01-01

    While peptide antagonists for the gastrin-releasing peptide receptor (BB2R), neuromedin B receptor (BB1R), and bombesin (BB) receptor subtype-3 (BRS-3) exist, there is a need to develop non-peptide small molecule inhibitors for all three BBR. The BB agonist (BA)1 binds with high affinity to the BB1R, BB2R, and BRS-3. In this communication, small molecule BBR antagonists were evaluated using human lung cancer cells. AM-37 and ST-36 inhibited binding to human BB1R, BB2R, and BRS-3 with similar affinity (Ki = 1.4–10.8 µM). AM-13 and AM-14 were approximately an order of magnitude less potent than AM-37 and ST-36. The ability of BA1 to elevate cytosolic Ca2+ in human lung cancer cells transfected with BB1R, BB2R, and BRS-3 was antagonized by AM-37 and ST-36. BA1 increased tyrosine phosphorylation of the EGFR and ERK in lung cancer cells, which was blocked by AM-37 and ST-36. AM-37 and ST-36 reduced the growth of lung cancer cells that have BBR. The results indicate that AM-37 and ST-36 function as small molecule BB receptor antagonists. PMID:28785244

  12. Development of a potent DOTA-conjugated bombesin antagonist for targeting GRPr-positive tumours

    Energy Technology Data Exchange (ETDEWEB)

    Mansi, Rosalba; Maecke, Helmut R. [University Hospital Basel, Division of Radiological Chemistry, Basel (Switzerland); University of Freiburg, Department of Nuclear Medicine, Freiburg (Germany); Wang, Xuejuan [University Hospital Basel, Division of Radiological Chemistry, Basel (Switzerland); Forrer, Flavio [University Hospital Basel, Institute of Nuclear Medicine, Basel (Switzerland); Erasmus Medical Centre, Nuclear Medicine, Rotterdam (Netherlands); Waser, Beatrice; Cescato, Renzo; Reubi, Jean Claude [University of Berne, Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, Berne (Switzerland); Graham, Keith; Borkowski, Sandra [Bayer Schering Pharma AG, Global Drug Discovery, Berlin (Germany)

    2011-01-15

    Radiolabelled somatostatin-based antagonists show a higher uptake in tumour-bearing mouse models than agonists of similar or even distinctly higher receptor affinity. Very similar results were obtained with another family of G protein-coupled receptor ligands, the bombesin family. We describe a new conjugate, RM2, with the chelator DOTA coupled to D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH{sub 2} via the cationic spacer 4-amino-1-carboxymethyl-piperidine for labelling with radiometals such as {sup 111}In and {sup 68}Ga. RM2 was synthesized on a solid support and evaluated in vitro in PC-3 cells. IC{sub 50} and K{sub d} values were determined. The antagonist potency was evaluated by immunofluorescence-based internalization and Ca{sup 2+} mobilization assays. Biodistribution studies were performed in PC-3 and LNCaP tumour-bearing mice with {sup 111}In-RM2 and {sup 68}Ga-RM2, respectively. PET/CT studies were performed on PC-3 and LNCaP tumour-bearing nude mice with {sup 68}Ga-RM2. RM2 and {sup 111}In-RM2 are high-affinity and selective ligands for the GRP receptor (7.7{+-}3.3 nmol/l for RM2; 9.3{+-}3.3 nmol/l for {sup nat}In-RM2). The potent antagonistic properties were confirmed by an immunofluorescence-based internalization and Ca{sup 2+} mobilization assays. {sup 68}Ga- and {sup 111}In-RM2 showed high and specific uptake in both the tumour and the pancreas. Uptake in the tumour remained high (15.2{+-}4.8%IA/g at 1 h; 11.7{+-}2.4%IA/g at 4 h), whereas a relatively fast washout from the pancreas and the other abdominal organs was observed. Uptake in the pancreas decreased rapidly from 22.6{+-}4.7%IA/g at 1 h to 1.5{+-}0.5%IA/g at 4 h. RM2 was shown to be a potent GRPr antagonist. Pharmacokinetics and imaging studies indicate that {sup 111}In-RM2 and {sup 68}Ga-RM2 are ideal candidates for clinical SPECT and PET studies. (orig.)

  13. Development of a potent DOTA-conjugated bombesin antagonist for targeting GRPr-positive tumours

    International Nuclear Information System (INIS)

    Mansi, Rosalba; Maecke, Helmut R.; Wang, Xuejuan; Forrer, Flavio; Waser, Beatrice; Cescato, Renzo; Reubi, Jean Claude; Graham, Keith; Borkowski, Sandra

    2011-01-01

    Radiolabelled somatostatin-based antagonists show a higher uptake in tumour-bearing mouse models than agonists of similar or even distinctly higher receptor affinity. Very similar results were obtained with another family of G protein-coupled receptor ligands, the bombesin family. We describe a new conjugate, RM2, with the chelator DOTA coupled to D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH 2 via the cationic spacer 4-amino-1-carboxymethyl-piperidine for labelling with radiometals such as 111 In and 68 Ga. RM2 was synthesized on a solid support and evaluated in vitro in PC-3 cells. IC 50 and K d values were determined. The antagonist potency was evaluated by immunofluorescence-based internalization and Ca 2+ mobilization assays. Biodistribution studies were performed in PC-3 and LNCaP tumour-bearing mice with 111 In-RM2 and 68 Ga-RM2, respectively. PET/CT studies were performed on PC-3 and LNCaP tumour-bearing nude mice with 68 Ga-RM2. RM2 and 111 In-RM2 are high-affinity and selective ligands for the GRP receptor (7.7±3.3 nmol/l for RM2; 9.3±3.3 nmol/l for nat In-RM2). The potent antagonistic properties were confirmed by an immunofluorescence-based internalization and Ca 2+ mobilization assays. 68 Ga- and 111 In-RM2 showed high and specific uptake in both the tumour and the pancreas. Uptake in the tumour remained high (15.2±4.8%IA/g at 1 h; 11.7±2.4%IA/g at 4 h), whereas a relatively fast washout from the pancreas and the other abdominal organs was observed. Uptake in the pancreas decreased rapidly from 22.6±4.7%IA/g at 1 h to 1.5±0.5%IA/g at 4 h. RM2 was shown to be a potent GRPr antagonist. Pharmacokinetics and imaging studies indicate that 111 In-RM2 and 68 Ga-RM2 are ideal candidates for clinical SPECT and PET studies. (orig.)

  14. Unprecedented NES non-antagonistic inhibitor for nuclear export of Rev from Sida cordifolia.

    Science.gov (United States)

    Tamura, Satoru; Kaneko, Masafumi; Shiomi, Atsushi; Yang, Guang-Ming; Yamaura, Toshiaki; Murakami, Nobutoshi

    2010-03-15

    Bioassay-guided separation from the MeOH extract of the South American medicinal plant Sida cordifolia resulted in isolation of (10E,12Z)-9-hydroxyoctadeca-10,12-dienoic acid (1) as an unprecedented NES non-antagonistic inhibitor for nuclear export of Rev. This mechanism of action was established by competitive experiment by the biotinylated probe derived from leptomycin B, the known NES antagonistic inhibitor. Additionally, structure-activity relationship analysis by use of the synthesized analogs clarified cooperation of several functionalities in the Rev-export inhibitory activity of 1. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Nanosilica supported CaO: A regenerable and mechanically hard CO2 sorbent at Ca-looping conditions

    International Nuclear Information System (INIS)

    Sanchez-Jimenez, P.E.; Perez-Maqueda, L.A.; Valverde, J.M.

    2014-01-01

    Highlights: • A synthetic CO 2 sorbent is prepared by impregnation of calcium nitrate on a nanosilica matrix. • Sintering of the nascent CaO in the calcination stage of carbonation/calcination cycles is hindered. • CaO conversion reaches a stable value well above the residual conversion of natural limestone. • Particle fragmentation as caused by ultrasonic irradiation in a liquid dispersion is hindered. - Abstract: This work presents a CO 2 sorbent that may be synthesized from low-cost and widely available materials following a simple method basically consisting of impregnation of a nanostructured silica support with a saturated solution of calcium nitrate. In a first impregnation stage, the use of a stoichiometric CaO/SiO 2 ratio serves to produce a calcium silicate matrix after calcination. This calcium silicate matrix acts as a thermally stable and mechanically hard support for CaO deposited on it by further impregnation. The CaO-impregnated sorbent exhibits a stable CaO conversion at Ca-looping conditions whose value depends on the CaO wt% deposited on the calcium silicate matrix, which can be increased by successive reimpregnations. A 10 wt% CaO impregnated sorbent reaches a stable conversion above 0.6 whereas the stable conversion of a 30 wt% CaO impregnated sorbent is around 0.3, which is much larger than the residual conversion of CaO derived from natural limestone (between 0.07 and 0.08). Moreover, particle size distribution measurements of samples predispersed in a liquid and subjected to high energy ultrasonic waves indicate that the CaO-impregnated sorbent has a relatively high mechanical strength as compared to limestone derived CaO

  16. F-actin-based Ca signaling-a critical comparison with the current concept of Ca signaling.

    Science.gov (United States)

    Lange, Klaus; Gartzke, Joachim

    2006-11-01

    A short comparative survey on the current idea of Ca signaling and the alternative concept of F-actin-based Ca signaling is given. The two hypotheses differ in one central aspect, the mechanism of Ca storage. The current theory rests on the assumption of Ca-accumulating endoplasmic/sarcoplasmic reticulum-derived vesicles equipped with an ATP-dependent Ca pump and IP3- or ryanodine-sensitive channel-receptors for Ca-release. The alternative hypothesis proceeds from the idea of Ca storage at the high-affinity binding sites of actin filaments. Cellular sites of F-actin-based Ca storage are microvilli and the submembrane cytoskeleton. Several specific features of Ca signaling such as store-channel coupling, quantal Ca release, spiking and oscillations, biphasic and "phasic" uptake kinetics, and Ca-induced Ca release (CICR), which are not adequately described by the current concept, are inherent properties of the F-actin system and its dynamic state of treadmilling. Copyright 2006 Wiley-Liss, Inc.

  17. Rates for some reactions involving 42Ca and 44Ca

    International Nuclear Information System (INIS)

    Cheng, C.W.; King, J.D.

    1980-01-01

    Ground-state reaction rates have been deduced from recent cross section measurements for the 42 CA(α, n) 45 Ti, 42 Ca(p, γ) 43 Sc, and 44 Ca(p, n) 44 Sc reactions. Comparison of these rates with those calculated from a statistical model of nuclear reactions. (Woosley et al) shows good agreement for the first two, but the 44 Ca(p, n) rate is more than a factor of 2 less than the theoretical prediction. Stellar reaction rates have been derived from the ground-state rates by multiplying the ground-state rates by the ratio of stellar to ground-state rates given by the statistical model. Both ground-state and stellar rates have been represented by analytic functions of the temperature. The role of these reactions in the approach to quasi-equilibrium during explosive silicon burning is discussed

  18. Serotonin-mediated modulation of Na+/K+ pump current in rat hippocampal CA1 pyramidal neurons.

    Science.gov (United States)

    Zhang, Li Nan; Su, Su Wen; Guo, Fang; Guo, Hui Cai; Shi, Xiao Lu; Li, Wen Ya; Liu, Xu; Wang, Yong Li

    2012-01-19

    The aim of this study was to investigate whether serotonin (5-hydroxytryptamine, 5-HT) can modulate Na+/K+ pump in rat hippocampal CA1 pyramidal neurons. 5-HT (0.1, 1 mM) showed Na+/K+ pump current (Ip) densities of 0.40 ± 0.04, 0.34 ± 0.03 pA/pF contrast to 0.63 ± 0.04 pA/pF of the control of 0.5 mM strophanthidin (Str), demonstrating 5-HT-induced inhibition of Ip in a dose-dependent manner in hippocampal CA1 pyramidal neurons. The effect was partly attenuated by ondasetron, a 5-HT3 receptor (5-HT3R) antagonist, not by WAY100635, a 5-HT1AR antagonist, while 1-(3-Chlorophenyl) biguanide hydrochloride (m-CPBG), a 5-HT3R specific agonist, mimicked the effect of 5-HT on Ip. 5-HT inhibits neuronal Na+/K+ pump activity via 5-HT3R in rat hippocampal CA1 pyramidal neurons. This discloses novel mechanisms for the function of 5-HT in learning and memory, which may be a useful target to benefit these patients with cognitive disorder.

  19. [Control of generalized chronic periodontitis combined with calcium-antagonist-related gingival overgrowth by a complex periodontal-endodontic-prosthodontic treatment. Case report].

    Science.gov (United States)

    Szánto, Erika; Gera, István

    2011-12-01

    To day a relatively high percentage of elderly population of the industrialized world suffers with different cardiovascular diseases and are on permanent antihypertensive therapy. One of the most frequently used drugs is the calcium channel blockers prescribed against high blood pressure. The most common oral side effect of these drugs is the gingival enlargement that might develop even on otherwise healthy gingiva. The incidence of chronic periodontitis in this age group is also high and the Ca antagonist medication in those individuals might substantially modify the clinical course of periodontal inflammation leading to gingival enlargement and hypertrophic pocket wall. The case presented here is a 52 years old hypertonic woman with a long history of Ca-antagonist therapy and generalized chronic periodontitis combined with gingival hyperplasia. After the change of medication the 1,5 years comprehensive periodontal endodontic and prosthodontic therapy restored patient's periodontal health and provided complex dental rehabilitation. Nevertheless, only regular periodontal supportive therapy could ensure predictable outcome and guarantee long lasting periodontal health.

  20. Phosphatase Inhibitors Function as Novel, Broad Spectrum Botulinum Neurotoxin Antagonists in Mouse and Human Embryonic Stem Cell-Derived Motor Neuron-Based Assays.

    Directory of Open Access Journals (Sweden)

    Erkan Kiris

    Full Text Available There is an urgent need to develop novel treatments to counter Botulinum neurotoxin (BoNT poisoning. Currently, the majority of BoNT drug development efforts focus on directly inhibiting the proteolytic components of BoNT, i.e. light chains (LC. Although this is a rational approach, previous research has shown that LCs are extremely difficult drug targets and that inhibiting multi-serotype BoNTs with a single LC inhibitor may not be feasible. An alternative approach would target neuronal pathways involved in intoxication/recovery, rather than the LC itself. Phosphorylation-related mechanisms have been implicated in the intoxication pathway(s of BoNTs. However, the effects of phosphatase inhibitors upon BoNT activity in the physiological target of BoNTs, i.e. motor neurons, have not been investigated. In this study, a small library of phosphatase inhibitors was screened for BoNT antagonism in the context of mouse embryonic stem cell-derived motor neurons (ES-MNs. Four inhibitors were found to function as BoNT/A antagonists. Subsequently, we confirmed that these inhibitors protect against BoNT/A in a dose-dependent manner in human ES-MNs. Additionally, these compounds provide protection when administered in post-intoxication scenario. Importantly, the inhibitors were also effective against BoNT serotypes B and E. To the best of our knowledge, this is the first study showing phosphatase inhibitors as broad-spectrum BoNT antagonists.

  1. Neuroprotective activity of selective mGlu1 and mGlu5 antagonists in vitro and in vivo.

    Science.gov (United States)

    Szydlowska, Kinga; Kaminska, Bozena; Baude, Andrea; Parsons, Chris G; Danysz, Wojciech

    2007-01-05

    The neuroprotective potential of allosteric mGlu5 and mGlu1 antagonists such as 6-methyl-2-(phenylethynyl)-pyridin (MPEP)/[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) and (3-ethyl-2-methyl-quinolin-6-yl)-(4-methoxy-cyclohexyl)-methanone methanesulfonate (EMQMCM), was tested in vitro in organotypic hippocampal cultures and in the middle cerebral artery occlusion model of stroke in vivo. Both classes of agent have high selectivity toward mGlu sub-types and are active in animal models of various diseases indicating satisfactory CNS penetration. In organotypic hippocampal cultures MPEP showed high neuroprotective potency against sub-chronic (12 days) insult produced by 3-NP with an IC50 of c.a. 70 nM. In contrast, although the mGlu1 antagonist EMQMCM was also protective, it seems to be weaker yielding an IC50 of c.a. 1 microM. Similarly, in the transient (90 min) middle cerebral artery occlusion model of ischaemia in rats, MTEP seems to be more effective than EMQMCM. MTEP, at 2.5 mg/kg and at 5 mg/kg provided 50 and 70% neuroprotection if injected 2 h after the onset of ischaemia. At a dose of 5 mg/kg, significant (50%) neuroprotection was also seen if the treatment was delayed by 4 h. EMQMCM was not protective at 5 mg/kg (given 2 h after occlusion) but at 10 mg/kg 50% of neuroprotection was observed. The present data support stronger neuroprotective potential of mGlu5 than mGlu1 antagonists.

  2. Amniotic-fluid-derived mesenchymal stem cells overexpressing interleukin-1 receptor antagonist improve fulminant hepatic failure.

    Directory of Open Access Journals (Sweden)

    Yu-Bao Zheng

    Full Text Available Uncontrolled hepatic immunoactivation is regarded as the primary pathological mechanism of fulminant hepatic failure (FHF. The major acute-phase mediators associated with FHF, including IL-1β, IL-6, and TNF-α, impair the regeneration of liver cells and stem cell grafts. Amniotic-fluid-derived mesenchymal stem cells (AF-MSCs have the capacity, under specific conditions, to differentiate into hepatocytes. Interleukin-1-receptor antagonist (IL-1Ra plays an anti-inflammatory and anti-apoptotic role in acute and chronic inflammation, and has been used in many experimental and clinical applications. In the present study, we implanted IL-1Ra-expressing AF-MSCs into injured liver via the portal vein, using D-galactosamine-induced FHF in a rat model. IL-1Ra expression, hepatic injury, liver regeneration, cytokines (IL-1β, IL-6, and animal survival were assessed after cell transplantation. Our results showed that AF-MSCs over-expressing IL-1Ra prevented liver failure and reduced mortality in rats with FHF. These animals also exhibited improved liver function and increased survival rates after injection with these cells. Using green fluorescent protein as a marker, we demonstrated that the engrafted cells and their progeny were incorporated into injured livers and produced albumin. This study suggests that AF-MSCs genetically modified to over-express IL-1Ra can be implanted into the injured liver to provide a novel therapeutic approach to the treatment of FHF.

  3. Amine-free melanin-concentrating hormone receptor 1 antagonists: Novel 1-(1H-benzimidazol-6-yl)pyridin-2(1H)-one derivatives and design to avoid CYP3A4 time-dependent inhibition.

    Science.gov (United States)

    Igawa, Hideyuki; Takahashi, Masashi; Shirasaki, Mikio; Kakegawa, Keiko; Kina, Asato; Ikoma, Minoru; Aida, Jumpei; Yasuma, Tsuneo; Okuda, Shoki; Kawata, Yayoi; Noguchi, Toshihiro; Yamamoto, Syunsuke; Fujioka, Yasushi; Kundu, Mrinalkanti; Khamrai, Uttam; Nakayama, Masaharu; Nagisa, Yasutaka; Kasai, Shizuo; Maekawa, Tsuyoshi

    2016-06-01

    Melanin-concentrating hormone (MCH) is an attractive target for antiobesity agents, and numerous drug discovery programs are dedicated to finding small-molecule MCH receptor 1 (MCHR1) antagonists. We recently reported novel pyridine-2(1H)-ones as aliphatic amine-free MCHR1 antagonists that structurally featured an imidazo[1,2-a]pyridine-based bicyclic motif. To investigate imidazopyridine variants with lower basicity and less potential to inhibit cytochrome P450 3A4 (CYP3A4), we designed pyridine-2(1H)-ones bearing various less basic bicyclic motifs. Among these, a lead compound 6a bearing a 1H-benzimidazole motif showed comparable binding affinity to MCHR1 to the corresponding imidazopyridine derivative 1. Optimization of 6a afforded a series of potent thiophene derivatives (6q-u); however, most of these were found to cause time-dependent inhibition (TDI) of CYP3A4. As bioactivation of thiophenes to form sulfoxide or epoxide species was considered to be a major cause of CYP3A4 TDI, we introduced electron withdrawing groups on the thiophene and found that a CF3 group on the ring or a Cl adjacent to the sulfur atom helped prevent CYP3A4 TDI. Consequently, 4-[(5-chlorothiophen-2-yl)methoxy]-1-(2-cyclopropyl-1-methyl-1H-benzimidazol-6-yl)pyridin-2(1H)-one (6s) was identified as a potent MCHR1 antagonist without the risk of CYP3A4 TDI, which exhibited a promising safety profile including low CYP3A4 inhibition and exerted significant antiobesity effects in diet-induced obese F344 rats. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Novel selective thiazoleacetic acids as CRTH2 antagonists developed from in silico derived hits. Part 2

    DEFF Research Database (Denmark)

    Grimstrup, Marie; Rist, Øystein; Receveur, Jean-Marie

    2010-01-01

    Structure-activity relationships have been established by exploring the eastern and western side of 5-thiazolyleacetic acids as CRTH2 (chemoattractant receptor-homologous molecule expressed on Th2 cells) antagonists. Benzhydryl motifs in the 2-position of the thiazole was found to be most advanta...

  5. Kefir: composition and evaluation of in situ antagonistic activity against Staphylococcus aureus and Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Simone Weschenfelder

    Full Text Available ABSTRACT The aim of this study was to investigate whether produced kefir meets the identity and quality standards for fermented milks, to check the possibility of assigning a nutrition declaration, and to evaluate the antagonistic activity of the fermented milk against Staphylococcus aureus and Escherichia coli. Two different formulations of kefir (Kefir 1 and Kefir 2 were prepared to determine the percentage composition, minerals, pH, total lactic acid bacteria, and antagonistic activity against Staphylococcus aureus and Escherichia coli. The results of the physicochemical evaluation indicated a statistically significant difference between the formulations, except for the percentage of lipids, Ca, K, Mg and Na. The formulations met the parameters of identity and quality in the fermented milks under evaluation. Possible nutrition declarations for Kefir 1 are 'source of proteins' and 'reduced calorie', and for Kefir 2, 'high protein content' and 'high zinc content'. The fermented milks showed significant antagonistic activity against the tested microorganisms (> 24 h, with no activity seen after this period. Further studies involving kefir are suggested, exploring its potential as a probiotic food, and its inclusion in the diet of the population.

  6. Differential sensitivity to perchlorate and caffeine of tetracaine-resistant Ca2+ release in frog skeletal muscle.

    Science.gov (United States)

    Píriz, Nazira; Brum, Gustavo; Pizarro, Gonzalo

    2006-01-01

    In voltage clamped frog skeletal muscle fibres 0.2 mM tetracaine strongly suppresses Ca(2+) release. After this treatment Ca(2+) release flux lacks its characteristic initial peak and the remaining steady component is strongly reduced when compared with the control condition. We studied the effect of two agonists of Ca(2+) release on these tetracaine treated fibres. 8 mM ClO(4)(-) added after tetracaine potentiated release flux from 0.11 +/- 0.03 mM s(-1) to 0.34 +/- 0.07 mM s(-1) (n = 6) although without recovery of the peak at any test voltage. The voltage dependence of the increased release was shifted towards more negative potentials (approximately -10 mV). The effects of ClO(4)(-) on charge movement under these conditions showed the previously described characteristic changes consisting in a left shift of its voltage dependence (approximately -9 mV) together with a slower kinetics, both at the ON and OFF transients. Caffeine at 0.5 mM in the presence of the same concentration of tetracaine failed to potentiate release flux independently of the test voltage applied. When the cut ends of the fibre were exposed to a 10 mM BAPTA intracellular solution, in the absence of tetracaine, the peak was progressively abolished. Under these conditions caffeine potentiated release restoring the peak (from 0.63 +/- 0.12 mM s(-1) to 1.82 +/- 0.23 mM s(-1)) with no effect on charge movement. Taken together the present results suggest that tetracaine is blocking a Ca(2+) sensitive component of release flux. It is speculated that the suppressed release includes a component that is dependent on Ca(2+) and mainly mediated by the activation of the beta ryanodine receptors (the RyR3 equivalent isoform). These receptors are located parajunctionally in the frog and are not interacting with the dihydropyridine receptor.

  7. Design and validation of new genotypic tools for easy and reliable estimation of HIV tropism before using CCR5 antagonists.

    Science.gov (United States)

    Poveda, Eva; Seclén, Eduardo; González, María del Mar; García, Federico; Chueca, Natalia; Aguilera, Antonio; Rodríguez, Jose Javier; González-Lahoz, Juan; Soriano, Vincent

    2009-05-01

    Genotypic tools may allow easier and less expensive estimation of HIV tropism before prescription of CCR5 antagonists compared with the Trofile assay (Monogram Biosciences, South San Francisco, CA, USA). Paired genotypic and Trofile results were compared in plasma samples derived from the maraviroc expanded access programme (EAP) in Europe. A new genotypic approach was built to improve the sensitivity to detect X4 variants based on an optimization of the webPSSM algorithm. Then, the new tool was validated in specimens from patients included in the ALLEGRO trial, a multicentre study conducted in Spain to assess the prevalence of R5 variants in treatment-experienced HIV patients. A total of 266 specimens from the maraviroc EAP were tested. Overall geno/pheno concordance was above 72%. A high specificity was generally seen for the detection of X4 variants using genotypic tools (ranging from 58% to 95%), while sensitivity was low (ranging from 31% to 76%). The PSSM score was then optimized to enhance the sensitivity to detect X4 variants changing the original threshold for R5 categorization. The new PSSM algorithms, PSSM(X4R5-8) and PSSM(SINSI-6.4), considered as X4 all V3 scoring values above -8 or -6.4, respectively, increasing the sensitivity to detect X4 variants up to 80%. The new algorithms were then validated in 148 specimens derived from patients included in the ALLEGRO trial. The sensitivity/specificity to detect X4 variants was 93%/69% for PSSM(X4R5-8) and 93%/70% for PSSM(SINSI-6.4). PSSM(X4R5-8) and PSSM(SINSI-6.4) may confidently assist therapeutic decisions for using CCR5 antagonists in HIV patients, providing an easier and rapid estimation of tropism in clinical samples.

  8. Extended N-Arylsulfonylindoles as 5-HT6 Receptor Antagonists: Design, Synthesis & Biological Evaluation

    Directory of Open Access Journals (Sweden)

    Gonzalo Vera

    2016-08-01

    Full Text Available Based on a known pharmacophore model for 5-HT6 receptor antagonists, a series of novel extended derivatives of the N-arylsulfonyindole scaffold were designed and identified as a new class of 5-HT6 receptor modulators. Eight of the compounds exhibited moderate to high binding affinities and displayed antagonist profile in 5-HT6 receptor functional assays. Compounds 2-(4-(2-methoxyphenylpiperazin-1-yl-1-(1-tosyl-1H-indol-3-ylethanol (4b, 1-(1-(4-iodophenylsulfonyl-1H-indol-3-yl-2-(4-(2-methoxyphenylpiperazin-1-ylethanol (4g and 2-(4-(2-methoxyphenylpiperazin-1-yl-1-(1-(naphthalen-1-ylsulfonyl-1H-indol-3-ylethanol (4j showed the best binding affinity (4b pKi = 7.87; 4g pKi = 7.73; 4j pKi = 7.83. Additionally, compound 4j was identified as a highly potent antagonist (IC50 = 32 nM in calcium mobilisation functional assay.

  9. Novel quinolinone-phosphonic acid AMPA antagonists devoid of nephrotoxicity.

    Science.gov (United States)

    Cordi, Alex A; Desos, Patrice; Ruano, Elisabeth; Al-Badri, Hashim; Fugier, Claude; Chapman, Astrid G; Meldrum, Brian S; Thomas, Jean-Yves; Roger, Anita; Lestage, Pierre

    2002-10-01

    We reported previously the synthesis and structure-activity relationships (SAR) in a series of 2-(1H)-oxoquinolines bearing different acidic functions in the 3-position. Exploiting these SAR, we were able to identify 6,7-dichloro-2-(1H)-oxoquinoline-3-phosphonic acid compound 3 (S 17625) as a potent, in vivo active AMPA antagonist. Unfortunately, during the course of the development, nephrotoxicity was manifest at therapeutically effective doses. Considering that some similitude exists between S 17625 and probenecid, a compound known to protect against the nephrotoxicity and/or slow the clearance of different drugs, we decided to synthesise some new analogues of S 17625 incorporating some of the salient features of probenecid. Replacement of the chlorine in position 6 by a sulfonylamine led to very potent AMPA antagonists endowed with good in vivo activity and lacking nephrotoxicity potential. Amongst the compounds evaluated, derivatives 7a and 7s appear to be the most promising and are currently evaluated in therapeutically relevant stroke models.

  10. BAY K 8644-induced oscillations in rabbit gall-bladder transepithelial potential difference

    DEFF Research Database (Denmark)

    Hansen, C P; Holstein-Rathlou, N H; Frederiksen, O

    1986-01-01

    The effects of the Ca2+-channel activator BAY K 8644 (a novel dihydropyridine) on transepithelial potential difference (Pd), electrical resistance (Rt), and unidirectional Na+-fluxes were studied in the rabbit gall-bladder. It was observed that BAY K 8644 at concentrations between 10(-7) and 10...

  11. The effect of propofol on CA1 pyramidal cell excitability and GABAA-mediated inhibition in the rat hippocampal slice.

    Science.gov (United States)

    Albertson, T E; Walby, W F; Stark, L G; Joy, R M

    1996-05-24

    An in vitro paired-pulse orthodromic stimulation technique was used to examine the effects of propofol on excitatory afferent terminals, CA1 pyramidal cells and recurrent collateral evoked inhibition in the rat hippocampal slice. Hippocampal slices 400 microns thick were perfused with oxygenated artificial cerebrospinal fluid, and electrodes were placed in the CA1 region to record extracellular field population spike (PS) or excitatory postsynaptic potential (EPSP) responses to stimulation of Schaffer collateral/commissural fibers. Gamma-aminobutyric acid (GABA)-mediated recurrent inhibition was measured using a paired-pulse technique. The major effect of propofol (7-28 microM) was a dose and time dependent increase in the intensity and duration of GABA-mediated inhibition. This propofol effect could be rapidly and completely reversed by exposure to known GABAA antagonists, including picrotoxin, bicuculline and pentylenetetrazol. It was also reversed by the chloride channel antagonist, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). It was not antagonized by central (flumazenil) or peripheral (PK11195) benzodiazepine antagonists. Reversal of endogenous inhibition was also noted with the antagonists picrotoxin and pentylenetetrazol. Input/output curves constructed using stimulus propofol caused only a small enhancement of EPSPs at higher stimulus intensities but had no effect on PS amplitudes. These studies are consistent with propofol having a GABAA-chloride channel mechanism causing its effect on recurrent collateral evoked inhibition in the rat hippocampal slice.

  12. Quinazolin-4-one derivatives

    DEFF Research Database (Denmark)

    Mosley, Cara A; Acker, Timothy M; Hansen, Kasper Bø

    2010-01-01

    We describe a new class of subunit-selective antagonists of N-methyl D-aspartate (NMDA)-selective ionotropic glutamate receptors that contain the (E)-3-phenyl-2-styrylquinazolin-4(3H)-one backbone. The inhibition of recombinant NMDA receptor function induced by these quinazolin-4-one derivatives...

  13. Action potential-independent and pharmacologically unique vesicular serotonin release from dendrites

    Science.gov (United States)

    Colgan, Lesley A.; Cavolo, Samantha L.; Commons, Kathryn G.; Levitan, Edwin S.

    2012-01-01

    Serotonin released within the dorsal raphe nucleus (DR) induces feedback inhibition of serotonin neuron activity and consequently regulates mood-controlling serotonin release throughout the forebrain. Serotonin packaged in vesicles is released in response to action potentials by the serotonin neuron soma and terminals, but the potential for release by dendrites is unknown. Here three-photon (3P) microscopy imaging of endogenous serotonin in living rat brain slice, immunofluorescence and immuno-gold electron microscopy detection of VMAT2 (vesicular monoamine transporter 2) establish the presence of vesicular serotonin within DR dendrites. Furthermore, activation of glutamate receptors is shown to induce vesicular serotonin release from dendrites. However, unlike release from the soma and terminals, dendritic serotonin release is independent of action potentials, relies on L-type Ca2+ channels, is induced preferentially by NMDA, and displays distinct sensitivity to the selective serotonin reuptake inhibitor (SSRI) antidepressant fluoxetine. The unique control of dendritic serotonin release has important implications for DR physiology and the antidepressant action of SSRIs, dihydropyridines and NMDA receptor antagonists. PMID:23136413

  14. Ciproxifan, a histamine H{sub 3} receptor antagonist and inverse agonist, presynaptically inhibits glutamate release in rat hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Cheng-Wei; Lin, Tzu-Yu [Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City 22060, Taiwan (China); Department of Mechanical Engineering, Yuan Ze University, Taoyuan 320, Taiwan (China); Chang, Chia-Ying [Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City 22060, Taiwan (China); Department of Chemistry, Fu Jen Catholic University, No. 510, Chung-Cheng Road, Hsin-Chuang District, New Taipei City 24205, Taiwan (China); Huang, Shu-Kuei [Department of Anesthesiology, Far-Eastern Memorial Hospital, Pan-Chiao District, New Taipei City 22060, Taiwan (China); Wang, Su-Jane, E-mail: med0003@mail.fju.edu.tw [School of Medicine, Fu Jen Catholic University, No. 510, Chung-Cheng Rd., Hsin-Chuang, New Taipei 24205, Taiwan (China); Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan (China)

    2017-03-15

    Ciproxifan is an H{sub 3} receptor antagonist and inverse agonist with antipsychotic effects in several preclinical models; its effect on glutamate release has been investigated in the rat hippocampus. In a synaptosomal preparation, ciproxifan reduced 4-aminopyridine (4-AP)-evoked Ca{sup 2+}-dependent glutamate release and cytosolic Ca{sup 2+} concentration elevation but did not affect the membrane potential. The inhibitory effect of ciproxifan on 4-AP-evoked glutamate release was prevented by the Gi/Go-protein inhibitor pertussis toxin and Ca{sub v}2.2 (N-type) and Ca{sub v}2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC, but was not affected by the intracellular Ca{sup 2+}-release inhibitors dantrolene and CGP37157. Furthermore, the phospholipase A{sub 2} (PLA{sub 2}) inhibitor OBAA, prostaglandin E{sub 2} (PGE{sub 2}), PGE2 subtype 2 (EP{sub 2}) receptor antagonist PF04418948, and extracellular signal-regulated kinase (ERK) inhibitor FR180204 eliminated the inhibitory effect of ciproxifan on glutamate release. Ciproxifan reduced the 4-AP-evoked phosphorylation of ERK and synapsin I, a presynaptic target of ERK. The ciproxifan-mediated inhibition of glutamate release was prevented in synaptosomes from synapsin I-deficient mice. Moreover, ciproxifan reduced the frequency of miniature excitatory postsynaptic currents without affecting their amplitude in hippocampal slices. Our data suggest that ciproxifan, acting through the blockade of Gi/Go protein-coupled H{sub 3} receptors present on hippocampal nerve terminals, reduces voltage-dependent Ca{sup 2+} entry by diminishing PLA{sub 2}/PGE{sub 2}/EP{sub 2} receptor pathway, which subsequently suppresses the ERK/synapsin I cascade to decrease the evoked glutamate release. - Highlights: • Ciproxifan presynaptically reduces glutamate release in the hippocampus in vitro. • Decrease in voltage-dependent Ca{sup 2+} influx is involved. • A role for the PLA{sub 2}/PGE{sub 2}/EP{sub 2} pathway in the action of

  15. Carbon adaptation influence the antagonistic ability of ...

    African Journals Online (AJOL)

    Jane

    2011-10-24

    Oct 24, 2011 ... INTRODUCTION. The use of antagonistic bacteria to control soil-borne ... plant was used to evaluate the antifungal activities of antagonistic bacteria. ..... antagonistic bacteria and cloning of its phenazine carboxylic acid genes.

  16. Stimulant effects of adenosine antagonists on operant behavior: differential actions of selective A2A and A1 antagonists

    Science.gov (United States)

    Randall, Patrick A.; Nunes, Eric J.; Janniere, Simone L.; Stopper, Colin M.; Farrar, Andrew M.; Sager, Thomas N.; Baqi, Younis; Hockemeyer, Jörg; Müller, Christa E.

    2012-01-01

    Rationale Adenosine A2A antagonists can reverse many of the behavioral effects of dopamine antagonists, including actions on instrumental behavior. However, little is known about the effects of selective adenosine antagonists on operant behavior when these drugs are administered alone. Objective The present studies were undertaken to investigate the potential for rate-dependent stimulant effects of both selective and nonselective adenosine antagonists. Methods Six drugs were tested: two nonselective adenosine antagonists (caffeine and theophylline), two adenosine A1 antagonists (DPCPX and CPT), and two adenosine A2A antagonists (istradefylline (KW6002) and MSX-3). Two schedules of reinforcement were employed; a fixed interval 240-s (FI-240 sec) schedule was used to generate low baseline rates of responding and a fixed ratio 20 (FR20) schedule generated high rates. Results Caffeine and theophylline produced rate-dependent effects on lever pressing, increasing responding on the FI-240 sec schedule but decreasing responding on the FR20 schedule. The A2A antagonists MSX-3 and istradefylline increased FI-240 sec lever pressing but did not suppress FR20 lever pressing in the dose range tested. In fact, there was a tendency for istradefylline to increase FR20 responding at a moderate dose. A1 antagonists failed to increase lever pressing rate, but DPCPX decreased FR20 responding at higher doses. Conclusions These results suggest that adenosine A2A antagonists enhance operant response rates, but A1 antagonists do not. The involvement of adenosine A2A receptors in regulating aspects of instrumental response output and behavioral activation may have implications for the treatment of effort-related psychiatric dysfunctions, such as psychomotor slowing and anergia in depression. PMID:21347642

  17. Isolation and characterization of a novel analyte from Bacillus subtilis SC-8 antagonistic to Bacillus cereus.

    Science.gov (United States)

    Lee, Nam Keun; Yeo, In-Cheol; Park, Joung Whan; Kang, Byung-Sun; Hahm, Young Tae

    2010-09-01

    In this study, an effective substance was isolated from Bacillus subtilis SC-8, which was obtained from traditionally fermented soybean paste, cheonggukjang. The substance was purified by HPLC, and its properties were analyzed. It had an adequate antagonistic effect on Bacilluscereus, and its spectrum of activity was narrow. When tested on several gram-negative and gram-positive foodborne pathogenic bacteria such as Salmonella enterica, Salmonella enteritidis, Staphylococcus aureus, and Listeria monocytogenes, no antagonistic effect was observed. Applying the derivative from B. subtilis SC-8 within the same genus did not inhibit the growth of major soybean-fermenting bacteria such as Bacillus subtilis, Bacillus licheniformis, and Bacillus amyloquefaciens. The range of pH stability of the purified antagonistic substance was wide (from 4.0 to >10.0), and the substance was thermally stable up to 60 degrees C. In the various enzyme treatments, the antagonistic activity of the purified substance was reduced with proteinase K, protease, and lipase; its activity was partially destroyed with esterase. Spores of B. cereus did not grow at all in the presence of 5mug/mL of the purified antagonistic substance. The isolated antagonistic substance was thought to be an antibiotic-like lipopeptidal compound and was tentatively named BSAP-254 because it absorbed to UV radiation at 254nm. Copyright 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. In-situ thermal analysis and macroscopical characterization of Mg-xCa and Mg-0.5Ca-xZn alloy systems

    Energy Technology Data Exchange (ETDEWEB)

    Farahany, Saeed [Department of Materials Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Bakhsheshi-Rad, Hamid Reza, E-mail: Rezabakhsheshi@gmail.com [Department of Materials Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Idris, Mohd Hasbullah [Department of Materials Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Abdul Kadir, Mohammed Rafiq [Medical Implants Technology Group, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Department of Biomechanics and Biomedical Materials, Faculty of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Lotfabadi, Amir Fereidouni [Department of Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Ourdjini, Ali [Department of Materials Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2012-01-10

    Highlights: Black-Right-Pointing-Pointer The effect of Ca and Zn addition on Mg-Ca and Mg-Ca-Zn were investigated. Black-Right-Pointing-Pointer Ca and Zn addition decreased solid fraction at coherency point. Black-Right-Pointing-Pointer T{sub N}-T{sub DCP} increased by adding Ca and Zn in Mg-Ca and Mg-Ca-Zn, respectively. Black-Right-Pointing-Pointer Three reactions were detected when Zn/Ca atomic ratio less than 1.25 in Mg-Ca-Zn. Black-Right-Pointing-Pointer A new peak Mg{sub 51}Zn{sub 20} was identified in Mg-0.5Ca-9Zn in addition of other peaks. - Abstract: This research described the identification phases by thermal analysis and microscopy inspection of Mg-xCa and Mg-0.5%Ca-xZn alloys that were solidified at slow cooling rate. Analysis of cooling curve after Ca addition shows the evolution of the Mg{sub 2}Ca intermetallic phase at around 520 Degree-Sign C in addition to {alpha}-Mg phase. First derivative curves of alloys after the addition of Zn to Mg-0.5Ca alloy reveals three peaks related to {alpha}-Mg, Mg{sub 2}Ca and Ca{sub 2}Mg{sub 6}Zn{sub 3} for alloys that have Zn/Ca atomic ratio less than 1.23. The peak of Mg{sub 2}Ca reaction on the first derivative curves disappeared for alloys containing Zn/Ca ratio more than 1.23. A new peak was also observed at 330 Degree-Sign C for Mg-0.5Ca-9Zn which was identified as Mg{sub 51}Zn{sub 20}. Solid fraction at coherency point decreased with increasing Ca and Zn elements. However, coherency time and difference between the nucleation and coherency temperatures (T{sub N}-T{sub DCP}) increased by adding Ca and Zn in Mg-Ca and Mg-Ca-Zn systems.

  19. [3H]PN200-110 and [3H]ryanodine binding and reconstitution of ion channel activity with skeletal muscle membranes

    International Nuclear Information System (INIS)

    Hamilton, S.L.; Alvarez, R.M.; Fill, M.; Hawkes, M.J.; Brush, K.L.; Schilling, W.P.; Stefani, E.

    1989-01-01

    Skeletal muscle membranes derived either from the tubular (T) network or from the sarcoplasmic reticulum (SR) were characterized with respect to the binding of the dihydropyridine, [ 3 H]PN200-110, and the alkaloid, [ 3 H]ryanodine; polypeptide composition; and ion channel activity. Conditions for optimizing the binding of these radioligands are discussed. A bilayer pulsing technique is described and is used to examine the channels present in these membranes. Fusion of T-tubule membranes into bilayers revealed the presence of chloride channels and dihydropyridine-sensitive calcium channels with three distinct conductances. The dihydropyridine-sensitive channels were further characterized with respect to their voltage dependence. Pulsing experiments indicated that two different populations of dihydropyridine-sensitive channels existed. Fusion of heavy SR vesicles revealed three different ion channels; the putative calcium release channel, a potassium channel, and a chloride channel. Thus, this fractionation procedure provides T-tubules and SR membranes which, with radioligand binding and single channel recording techniques, provide a useful tool to study the characteristics of skeletal muscle ion channels and their possible role in excitation-contraction coupling

  20. Excitatory amino acid receptor antagonists

    DEFF Research Database (Denmark)

    Johansen, T N; Frydenvang, Karla Andrea; Ebert, B

    1997-01-01

    We have previously shown that (RS)-2-amino-2-(5-tert-butyl-3-hydroxyisoxazol-4-yl)acetic acid (ATAA) is an antagonist at N-methyl-D-aspartic acid (NMDA) and (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors. We have now resolved ATAA via diastereomeric salt formation......)-phenylethylamine salt of N-BOC-(R)-ATAA. Like ATAA, neither (R)- nor (S)-ATAA significantly affected (IC50 > 100 microM) the receptor binding of tritiated AMPA, kainic acid, or (RS)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid, the latter being a competitive NMDA antagonist. Electrophysiological experiments......, using the rat cortical wedge preparation, showed the NMDA antagonist effect as well as the AMPA antagonist effect of ATAA to reside exclusively in the (R)-enantiomer (Ki = 75 +/- 5 microM and 57 +/- 1 microM, respectively). Neither (R)- nor (S)-ATAA significantly reduced kainic acid-induced excitation...

  1. Spectrophotometric Method for Determination of Five 1,4-Dihydropyridine Drugs Using N-Bromosuccinimide and Indigo Carmine Dye

    Directory of Open Access Journals (Sweden)

    Mohamed A. El Hamd

    2013-01-01

    Full Text Available Indirect spectrophotometric method is described for quantification of five of 1,4-dihydropyridine (1,4-DHP drugs using N-bromosuccinimide (NBS with the aid of indigo carmine (INC dye. The method is based on addition of known excess of NBS to an acidified solution of 1,4-DHP drugs and determining the residual of NBS through its ability to bleach the colour of the used dye; the amount of NBS that reacted corresponded to the amount of drugs. Beer’s law is obeyed in the concentration range 1.25–13.00 μg/mL. Good correlation coefficients (0.998-0.999 were found between the absorbance values and the corresponding concentrations. Limits of detections ranged from 0.141 to 0.500 μg/mL. The proposed method was successfully applied to the analysis of dosage forms; percent of recoveries ranged from 97.31 to 99.46% without interference from any common excipients. The statistical comparison by Student’s t-test and variance ratio F-test showed no significant difference between the proposed and official or reported methods.

  2. Orexin-A increases the firing activity of hippocampal CA1 neurons through orexin-1 receptors.

    Science.gov (United States)

    Chen, Xin-Yi; Chen, Lei; Du, Yi-Feng

    2017-07-01

    Orexins including two peptides, orexin-A and orexin-B, are produced in the posterior lateral hypothalamus. Much evidence has indicated that central orexinergic systems play numerous functions including energy metabolism, feeding behavior, sleep/wakefulness, and neuroendocrine and sympathetic activation. Morphological studies have shown that the hippocampal CA1 regions receive orexinergic innervation originating from the hypothalamus. Positive orexin-1 (OX 1 ) receptors are detected in the CA1 regions. Previous behavioral studies have shown that microinjection of OX 1 receptor antagonist into the hippocampus impairs acquisition and consolidation of spatial memory. However, up to now, little has been known about the direct electrophysiological effects of orexin-A on hippocampal CA1 neurons. Employing multibarrel single-unit extracellular recordings, the present study showed that micropressure administration of orexin-A significantly increased the spontaneous firing rate from 2.96 ± 0.85 to 8.45 ± 1.86 Hz (P neurons in male rats. Furthermore, application of the specific OX 1 receptor antagonist SB-334867 alone significantly decreased the firing rate from 4.02 ± 1.08 to 2.11 ± 0.58 Hz in 7 out of the 17 neurons (P neurons. Coapplication of SB-334867 completely blocked orexin-A-induced excitation of hippocampal CA1 neurons. The PLC pathway may be involved in activation of OX 1 receptor-induced excitation of CA1 neurons. Taken together, the present study's results suggest that orexin-A produces excitatory effects on hippocampal neurons via OX 1 receptors. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. The tripeptide aldehyde, Boc-DPhe-Phe-Lysinal, is a novel Ca2+ channel inhibitor in pituitary cells.

    Science.gov (United States)

    Makara, G B; Rappay, G; Garamvölgyi, V; Nagy, I; Dankó, S; Bajusz, S

    1988-06-22

    The effect of Boc-DPhe-Phe-Lysinal (Boc-DPPL) on the 45Ca2+ uptake of rat anterior pituitary monolayer cultures was investigated. The compound decreased the basal Ca2+ uptake at 3 x 10(-4) mol/l. The 45Ca2+ uptake stimulated by potassium-induced depolarization was more sensitive to Boc-DPPL inhibition, a slight decrease was seen with 3 x 10(-6) mol/l and there was a half maximal inhibition at 3 x 10(-5) mol/l. Boc-DPPL is known to inhibit pituitary hormone release in similar concentrations, an effect might also be due to its calcium antagonist property.

  4. Assembly of high-affinity insulin receptor agonists and antagonists from peptide building blocks

    Science.gov (United States)

    Schäffer, Lauge; Brissette, Renee E.; Spetzler, Jane C.; Pillutla, Renuka C.; Østergaard, Søren; Lennick, Michael; Brandt, Jakob; Fletcher, Paul W.; Danielsen, Gillian M.; Hsiao, Ku-Chuan; Andersen, Asser S.; Dedova, Olga; Ribel, Ulla; Hoeg-Jensen, Thomas; Hansen, Per Hertz; Blume, Arthur J.; Markussen, Jan; Goldstein, Neil I.

    2003-01-01

    Insulin is thought to elicit its effects by crosslinking the two extracellular α-subunits of its receptor, thereby inducing a conformational change in the receptor, which activates the intracellular tyrosine kinase signaling cascade. Previously we identified a series of peptides binding to two discrete hotspots on the insulin receptor. Here we show that covalent linkage of such peptides into homodimers or heterodimers results in insulin agonists or antagonists, depending on how the peptides are linked. An optimized agonist has been shown, both in vitro and in vivo, to have a potency close to that of insulin itself. The ability to construct such peptide derivatives may offer a path for developing agonists or antagonists for treatment of a wide variety of diseases. PMID:12684539

  5. Mutational analysis of the antagonist-binding site of the histamine H(1) receptor.

    Science.gov (United States)

    Wieland, K; Laak, A M; Smit, M J; Kühne, R; Timmerman, H; Leurs, R

    1999-10-15

    We combined in a previously derived three-dimensional model of the histamine H(1) receptor (Ter Laak, A. M., Timmerman, H., Leurs, H., Nederkoorn, P. H. J., Smit, M. J., and Donne-Op den Kelder, G. M. (1995) J. Comp. Aid. Mol. Design. 9, 319-330) a pharmacophore for the H(1) antagonist binding site (Ter Laak, A. M., Venhorst, J., Timmerman, H., and Donné-Op de Kelder, G. M. (1994) J. Med. Chem. 38, 3351-3360) with the known interacting amino acid residue Asp(116) (in transmembrane domain III) of the H(1) receptor and verified the predicted receptor-ligand interactions by site-directed mutagenesis. This resulted in the identification of the aromatic amino acids Trp(167), Phe(433), and Phe(436) in transmembrane domains IV and VI of the H(1) receptor as probable interaction points for the trans-aromatic ring of the H(1) antagonists. Subsequently, a specific interaction of carboxylate moieties of two therapeutically important, zwitterionic H(1) antagonists with Lys(200) in transmembrane domain V was predicted. A Lys(200) --> Ala mutation results in a 50- (acrivastine) to 8-fold (d-cetirizine) loss of affinity of these zwitterionic antagonists. In contrast, the affinities of structural analogs of acrivastine and cetirizine lacking the carboxylate group, triprolidine and meclozine, respectively, are unaffected by the Lys(200) --> Ala mutation. These data strongly suggest that Lys(200), unique for the H(1) receptor, acts as a specific anchor point for these "second generation" H(1) antagonists.

  6. GABAA receptor partial agonists and antagonists

    DEFF Research Database (Denmark)

    Krall, Jacob; Balle, Thomas; Krogsgaard-Larsen, Niels

    2015-01-01

    to the local temporal pattern of GABA impact, enabling phasic or tonic inhibition. Specific GABAAR antagonists are essential tools for physiological and pharmacological elucidation of the different type of GABAAR inhibition. However, distinct selectivity among the receptor subtypes (populations) has been shown...... antagonists have been essential in defining the tonic current but both remaining issues concerning the GABAARs involved and the therapeutic possibilities of modulating tonic inhibition underline the need for GABAAR antagonists with improved selectivity....

  7. Fluoxetine-induced inhibition of synaptosomal [3H]5-HT release: Possible Ca2+-channel inhibition

    International Nuclear Information System (INIS)

    Stauderman, K.A.; Gandhi, V.C.; Jones, D.J.

    1992-01-01

    Fluoxetine, a selective 5-Ht uptake inhibitor, inhibited 15 mM K + -induced [ 3 H]5-HT release from rat spinal cord and cortical synaptosomes at concentrations > 0.5 uM. This effect reflected a property shared by another selective 5-HT uptake inhibitor paroxetine but not by less selective uptake inhibitors such as amitriptyline, desipramine, imipramine or nortriptyline. Inhibition of release by fluoxetine was inversely related to both the concentration of K + used to depolarize the synaptosomes and the concentration of external Ca 2+ . Experiments aimed at determining a mechanism of action revealed that fluoxetine did not inhibit voltage-independent release of [ 3 H]5-HT release induced by the Ca 2+ -ionophore A 23187 or Ca 2+ -independent release induced by fenfluramine. Moreover the 5-HT autoreceptor antagonist methiothepin did not reverse the inhibitory actions of fluoxetine on K + -induced release. Further studies examined the effects of fluoxetine on voltage-dependent Ca 2+ channels and Ca 2+ entry

  8. Naloxone : actions of an antagonist

    NARCIS (Netherlands)

    Dorp, Eveline Louise Arianna van

    2009-01-01

    The opioid antagonist naloxone has a special place in pharmacology – it has no intrinsic action of its own, but it is able to save lives in the case of life threatening side-effects caused by other drugs. Naloxone is an antagonist for all opioid receptors, but most specifically for the μ-opioid

  9. Omega-conotoxin- and nifedipine-insensitive voltage-operated calcium channels mediate K(+)-induced release of pro-thyrotropin-releasing hormone-connecting peptides Ps4 and Ps5 from perifused rat hypothalamic slices.

    Science.gov (United States)

    Valentijn, K; Tranchand Bunel, D; Vaudry, H

    1992-07-01

    The rat thyrotropin-releasing hormone (TRH) precursor (prepro-TRH) contains five copies of the TRH progenitor sequence linked together by intervening sequences. Recently, we have shown that the connecting peptides prepro-TRH-(160-169) (Ps4) and prepro-TRH-(178-199) (Ps5) are released from rat hypothalamic neurones in response to elevated potassium concentrations, in a calcium-dependent manner. In the present study, the role of voltage-operated calcium channels in potassium-induced release of Ps4 and Ps5 was investigated, using a perifusion system for rat hypothalamic slices. The release of Ps4 and Ps5 stimulated by potassium (70 mM) was blocked by the inorganic ions Co2+ (2.6 mM) and Ni2+ (5 mM). In contrast, the stimulatory effect of KCl was insensitive to Cd2+ (100 microM). The dihydropyridine antagonist nifedipine (10 microM) had no effect on K(+)-evoked release of Ps4 and Ps5. Furthermore, the response to KCl was not affected by nifedipine (10 microM) in combination with diltiazem (1 microM), a benzothiazepine which increases the affinity of dihydropyridine antagonists for their receptor. The dihydropyridine agonist BAY K 8644, at concentrations as high as 1 mM, did not stimulate the basal secretion of Ps4 and Ps5. In addition, BAY K 8644 had no potentiating effect on K(+)-induced release of Ps4 and Ps5. The marine cone snail toxin omega-conotoxin, a blocker of both L- and N-type calcium channels had no effect on the release of Ps4 and Ps5 stimulated by potassium. Similarly, the omega-conopeptide SNX-111, a selective blocker of N-type calcium channels, did not inhibit the stimulatory effect of potassium. The release of Ps4 and Ps5 evoked by high K+ was insensitive to the non-selective calcium channel blocker verapamil (20 microM). Amiloride (1 microM), a putative blocker of T-type calcium channels, did not affect KCl-induced secretion of the two connecting peptides. Taken together, these results indicate that two connecting peptides derived from the pro-TRH, Ps

  10. Estrogen induces rapid decrease in dendritic thorns of CA3 pyramidal neurons in adult male rat hippocampus

    International Nuclear Information System (INIS)

    Tsurugizawa, Tomokazu; Mukai, Hideo

    2005-01-01

    Modulation of hippocampal synaptic plasticity by estrogen has been attracting much attention. Thorns of thorny excrescences of CA3 hippocampal neurons are post-synaptic regions whose presynaptic partners are mossy fiber terminals. Here we demonstrated the rapid effect of estradiol on the density of thorns of thorny excrescences, by imaging Lucifer Yellow-injected CA3 neurons in adult male rat hippocampal slices. The application of 1 nM estradiol induced rapid decrease in the density of thorns on pyramidal neurons within 2 h. The estradiol-mediated decrease in the density of thorns was blocked by CNQX (AMPA receptor antagonist) and PD98059 (MAP kinase inhibitor), but not by MK-801 (NMDA receptor antagonist). ERα agonist PPT induced the same suppressive effect as that induced by estradiol on the density of thorns, but ERβ agonist DPN did not affect the density of thorns. Note that a 1 nM estradiol treatment did not affect the density of spines in the stratum radiatum and stratum oriens. A search for synaptic ERα was performed using purified RC-19 antibody. The localization of ERα (67 kDa) in the CA3 mossy fiber terminals and thorns was demonstrated using immunogold electron microscopy. These results imply that estradiol drives the signaling pathway including ERα and MAP kinase

  11. Radiation induced topotactic [2 + 2] dimerisation of acrylate derivatives among the layers of a CaFe layered double hydroxide followed by IR spectroscopy

    Science.gov (United States)

    Srankó, D. F.; Canton, S.; Enghdahl, A.; Muráth, Sz.; Kukovecz, Á.; Kónya, Z.; Sipiczki, M.; Sipos, P.; Pálinkó, I.

    2013-07-01

    Various acrylates [E-phenylpropenoate, E-3(4‧-nitrophenyl)propenoate, E-3(2‧,5‧-difluorphenyl)propenoate, E-3(2‧-thienyl)propenoate, E-3(4‧-imidazolyl)propenoate or E-2,3-dimethylpropenoate] were successfully intercalated into Ca(II)Fe(III) layered double hydroxide (CaFe-LDH) verified by a range of instrumental methods. The possible arrangements for the organic anions were suggested on the basis of basal spacing data, layer thickness and the dimensions of the quantum chemically optimised structures of the acrylate ions. Using the acrylate-CaFe-LDHs as reactant-filled nanoreactors, photoinitiated topotactic [2 + 2] cyclisation reactions followed by IR spectroscopy could be performed with many representatives [E-phenylpropenoate-, E-3(4‧-nitrophenyl)propenoate-, E-3(2‧,5‧-difluorphenyl)propenoate- or E-3(2‧-thienyl)propenoate-CaFe-LDHs] resulting in cyclobutane derivatives within the layers of the host material indicating that there were domains where the intercalated anions were in close proximity to each other and in proper arrangement for the reaction to occur.

  12. Functional expression of T-type Ca2+ channels in spinal motoneurons of the adult turtle.

    Directory of Open Access Journals (Sweden)

    Martha Canto-Bustos

    Full Text Available Voltage-gated Ca2+ (CaV channels are transmembrane proteins comprising three subfamilies named CaV1, CaV2 and CaV3. The CaV3 channel subfamily groups the low-voltage activated Ca2+ channels (LVA or T-type a significant role in regulating neuronal excitability. CaV3 channel activity may lead to the generation of complex patterns of action potential firing such as the postinhibitory rebound (PIR. In the adult spinal cord, these channels have been found in dorsal horn interneurons where they control physiological events near the resting potential and participate in determining excitability. In motoneurons, CaV3 channels have been found during development, but their functional expression has not yet been reported in adult animals. Here, we show evidence for the presence of CaV3 channel-mediated PIR in motoneurons of the adult turtle spinal cord. Our results indicate that Ni2+ and NNC55-0396, two antagonists of CaV3 channel activity, inhibited PIR in the adult turtle spinal cord. Molecular biology and biochemical assays revealed the expression of the CaV3.1 channel isotype and its localization in motoneurons. Together, these results provide evidence for the expression of CaV3.1 channels in the spinal cord of adult animals and show also that these channels may contribute to determine the excitability of motoneurons.

  13. Pellitorine, an extract of Tetradium daniellii, is an antagonist of the ion channel TRPV1.

    Science.gov (United States)

    Oláh, Zoltán; Rédei, Dóra; Pecze, László; Vizler, Csaba; Jósvay, Katalin; Forgó, Péter; Winter, Zoltán; Dombi, György; Szakonyi, Gerda; Hohmann, Judit

    2017-10-15

    Transient Receptor Potential Vanilloid 1 (TRPV1) confers noxious heat and inflammatory pain signals in the peripheral nervous system. Clinical trial of resiniferatoxin from Euphorbia species is successfully aimed at TRPV1 in cancer pain management and heading toward new selective painkiller status that further validates this target for drug discovery efforts. Evodia species, used in traditional medicine for hundreds of years, are a recognised source of different TRPV1 agonists, but no antagonist has yet been reported. In a search for painkiller leads, we noted for the first time a TRPV1 antagonist activity in the fresh fruits of Tetradium daniellii (Benn.) T.G. Hartley (syn. Evodia hupehensis Dode). Through a combination of extraction and purification methods with functional TRPV1-specific Ca 2+ uptake assays (bioactivity-guided fractionation/isolation/purification); we isolated a new painkiller candidate that is a distant structural homologue of capsiate exovanilloids and endovanilloids such as anandamide, but a putative competitive inhibitor of the TRPV1. Four additional inactive compounds (N-isobutyl-4,5-epoxy-2E-decadienamide, geranylpsoralen, 8-(7',8'-epoxygeranyloxy)psoralen, and xanthotoxol) were also co-purified with pellitorine. Their structures were established by extensive 1D- and 2D-NMR spectroscopic analysis. 1 H- and 13 C NMR determination of the chemical structure revealed it to be pellitorine, (2E,4E)-N-(2-methylpropyl)deca-2,4-dienamide, which can compete structurally with algesics released in inflammation. In contrast to previous isolates from Evodia species, pellitorine blocked capsaicin-evoked Ca 2+ uptake with an IC 50 of 154 µg/ml (0.69 mM/l). N-Isobutyl-4,5-epoxy-2E-decadienamide and geranylpsoralen, 8-(7',8'-epoxygeranyloxy)psoralen, and xanthotoxol did not affect the TRPV1. This is the first evidence that pellitorine, an aliphatic alkylamide analogue of capsaicin, can serve as an antagonist of the TRPV1 and may inhibit exovanilloid

  14. Tributyltin-induced endoplasmic reticulum stress and its Ca(2+)-mediated mechanism.

    Science.gov (United States)

    Isomura, Midori; Kotake, Yaichiro; Masuda, Kyoichi; Miyara, Masatsugu; Okuda, Katsuhiro; Samizo, Shigeyoshi; Sanoh, Seigo; Hosoi, Toru; Ozawa, Koichiro; Ohta, Shigeru

    2013-10-01

    Organotin compounds, especially tributyltin chloride (TBT), have been widely used in antifouling paints for marine vessels, but exhibit various toxicities in mammals. The endoplasmic reticulum (ER) is a multifunctional organelle that controls post-translational modification and intracellular Ca(2+) signaling. When the capacity of the quality control system of ER is exceeded under stress including ER Ca(2+) homeostasis disruption, ER functions are impaired and unfolded proteins are accumulated in ER lumen, which is called ER stress. Here, we examined whether TBT causes ER stress in human neuroblastoma SH-SY5Y cells. We found that 700nM TBT induced ER stress markers such as CHOP, GRP78, spliced XBP1 mRNA and phosphorylated eIF2α. TBT also decreased the cell viability both concentration- and time-dependently. Dibutyltin and monobutyltin did not induce ER stress markers. We hypothesized that TBT induces ER stress via Ca(2+) depletion, and to test this idea, we examined the effect of TBT on intracellular Ca(2+) concentration using fura-2 AM, a Ca(2+) fluorescent probe. TBT increased intracellular Ca(2+) concentration in a TBT-concentration-dependent manner, and Ca(2+) increase in 700nM TBT was mainly blocked by 50μM dantrolene, a ryanodine receptor antagonist (about 70% inhibition). Dantrolene also partially but significantly inhibited TBT-induced GRP78 expression and cell death. These results suggest that TBT increases intracellular Ca(2+) concentration by releasing Ca(2+) from ER, thereby causing ER stress. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Exercise reduces diet-induced cognitive decline and increases hippocampal brain-derived neurotrophic factor in CA3 neurons.

    Science.gov (United States)

    Noble, Emily E; Mavanji, Vijayakumar; Little, Morgan R; Billington, Charles J; Kotz, Catherine M; Wang, ChuanFeng

    2014-10-01

    Previous studies have shown that a western diet impairs, whereas physical exercise enhances hippocampus-dependent learning and memory. Both diet and exercise influence expression of hippocampal brain-derived neurotrophic factor (BDNF), which is associated with improved cognition. We hypothesized that exercise reverses diet-induced cognitive decline while increasing hippocampal BDNF. To test the effects of exercise on hippocampal-dependent memory, we compared cognitive scores of Sprague-Dawley rats exercised by voluntary running wheel (RW) access or forced treadmill (TM) to sedentary (Sed) animals. Memory was tested by two-way active avoidance test (TWAA), in which animals are exposed to a brief shock in a specific chamber area. When an animal avoids, escapes or has reduced latency to do either, this is considered a measure of memory. In a second experiment, rats were fed either a high-fat diet or control diet for 16 weeks, then randomly assigned to running wheel access or sedentary condition, and TWAA memory was tested once a week for 7 weeks of exercise intervention. Both groups of exercised animals had improved memory as indicated by reduced latency to avoid and escape shock, and increased avoid and escape episodes (pdiet resulted in poor performance during both the acquisition and retrieval phases of the memory test as compared to controls. Exercise reversed high-fat diet-induced memory impairment, and increased brain-derived neurotrophic factor (BDNF) in neurons of the hippocampal CA3 region. These data suggest that exercise improves memory retrieval, particularly with respect to avoiding aversive stimuli, and may be beneficial in protecting against diet induced cognitive decline, likely via elevated BDNF in neurons of the CA3 region. Published by Elsevier Inc.

  16. Behavioral, biological, and chemical perspectives on targeting CRF1 receptor antagonists to treat alcoholism

    Science.gov (United States)

    Zorrilla, Eric P.; Heilig, Markus; de Wit, Harriet; Shaham, Yavin

    2013-01-01

    Background Alcohol use disorders are chronic disabling conditions for which existing pharmacotherapies have only modest efficacy. In the present review, derived from the 2012 Behavior, Biology and Chemistry “Translational Research in Addiction” symposium, we summarize the anti-relapse potential of corticotropin-releasing factor type 1 (CRF1) receptor antagonists to reduce negative emotional symptoms of acute and protracted alcohol withdrawal and stress-induced relapse to alcohol seeking. Methods We review the biology of CRF1 systems, the activity of CRF1 receptor antagonists in animal models of anxiolytic and antidepressant activity, and experimental findings in alcohol addiction models. We also update the clinical trial status of CRF1 receptor antagonists, including pexacerfont (BMS-562086), emicerfont (GW876008), verucerfont (GSK561679), CP316311, SSR125543A, R121919/NBI30775, R317573/19567470/CRA5626, and ONO-2333Ms. Finally, we discuss the potential heterogeneity and pharmacogenomics of CRF1 receptor pharmacotherapy for alcohol dependence. Results The evidence suggests that brain penetrant-CRF1 receptor antagonists have therapeutic potential for alcohol dependence. Lead compounds with clinically desirable pharmacokinetic properties now exist, and longer receptor residence rates (i.e., slow dissociation) may predict greater CRF1 receptor antagonist efficacy. Functional variants in genes that encode CRF system molecules, including polymorphisms in Crhr1 (rs110402, rs1876831, rs242938) and Crhbp genes (rs10055255, rs3811939) may promote alcohol seeking and consumption by altering basal or stress-induced CRF system activation. Conclusions Ongoing clinical trials with pexacerfont and verucerfont in moderately to highly severe dependent anxious alcoholics may yield insight as to the role of CRF1 receptor antagonists in a personalized medicine approach to treat drug or alcohol dependence. PMID:23294766

  17. Tumour associated antigen CA-50, CA-242 immunoradiometric assay (IRMA) in genitourinary malignancy and gastrointestinal carcinoma early diagnosis

    International Nuclear Information System (INIS)

    Chen Zhizhou.

    1992-04-01

    Tumour markers CA-50 and CA-242 were measured by immunometric assay (IRMA) to investigate their usefulness in the diagnosis of cancer of the pancreas, biliary tract, liver, breast, lung, gastrointestinal and genitourinary systems. The cutoff points, derived from studies on normal subjects and those with proven benign disease, were 20 u/ml and 12 u/ml for CA-50 and CA-242 respectively. Both markers were found to be generally useful with significant differences between malignant and non malignant disease. The highest positive rates, were found in cancers of the pancreas and gall bladder. The overall rate of false positives was low. It is concluded that measurements of CA-50 and CA-242 are useful in the detection of malignancy, particularly of the pancreas and biliary tract. 2 figs, 2 tabs

  18. Preliminary Structure-Activity Relationship on Theonellasterol, a New Chemotype of FXR Antagonist, from the Marine Sponge Theonella swinhoei

    Directory of Open Access Journals (Sweden)

    Stefano Fiorucci

    2012-11-01

    Full Text Available Using theonellasterol as a novel FXR antagonist hit, we prepared a series of semi-synthetic derivatives in order to gain insight into the structural requirements for exhibiting antagonistic activity. These derivatives are characterized by modification at the exocyclic carbon-carbon double bond at C-4 and at the hydroxyl group at C-3 and were prepared from theonellasterol using simple reactions. Pharmacological investigation showed that the introduction of a hydroxyl group at C-4 as well as the oxidation at C-3 with or without concomitant modification at the exomethylene functionality preserve the ability of theonellasterol to inhibit FXR transactivation caused by CDCA. Docking analysis showed that the placement of these molecules in the FXR-LBD is well stabilized when on ring A functional groups, able to form hydrogen bonds and π interactions, are present.

  19. N-Oxide analogs of WAY-100635 : new high affinity 5-HT (1A) receptor antagonists

    NARCIS (Netherlands)

    Oberwinkler - Marchais, Sandrine; Nowicki, B; Pike, VW; Halldin, C; Sandell, J; Chou, YH; Gulyas, B; Brennum, LT; Farde, L; Wikstrom, H V

    2005-01-01

    WAY-100635 [N-(2-(1-(4-(2-methoxyphenyl)piperazinyl)ethyl))-N-(2-pyridinyl)cyclohexanecarboxamide] 1 and its O-des-methyl derivative DWAY 2 are well-known high affinity 5-HT1A receptor antagonists. which when labeled with carbon-II (beta(+): t(1/2) 20.4min) in the carbonyl group are effective

  20. Ca2+ signaling in injured in situ endothelium of rat aorta.

    Science.gov (United States)

    Berra-Romani, Roberto; Raqeeb, Abdul; Avelino-Cruz, José Everardo; Moccia, Francesco; Oldani, Amanda; Speroni, Francisco; Taglietti, Vanni; Tanzi, Franco

    2008-09-01

    The inner wall of excised rat aorta was scraped by a microelectrode and Ca2+ signals were investigated by fluorescence microscopy in endothelial cells (ECs) directly coupled with injured cells. The injury caused an immediate increase in the intracellular Ca2+ concentration ([Ca2+]i), followed by a long-lasting decay phase due to Ca2+ influx from extracellular space. The immediate response was mainly due to activation of purinergic receptors, as shown by the effect of P2X and P2Y receptors agonists and antagonists, such as suramin, alpha,beta-MeATP, MRS-2179 and 2-MeSAMP. Inhibition of store-operated Ca2+ influx did not affect either the peak response or the decay phase. Furthermore, the latter was: (i) insensitive to phospholipase C inhibition, (ii) sensitive to the gap junction blockers, palmitoleic acid, heptanol, octanol and oleamide, and (iii) sensitive to La3+ and Ni2+, but not to Gd3+. Finally, ethidium bromide or Lucifer Yellow did not enter ECs facing the scraped area. These results suggest that endothelium scraping: (i) causes a short-lasting stimulation of healthy ECs by extracellular nucleotides released from damaged cells and (ii) uncouples the hemichannels of the ECs facing the injury site; these hemichannels do not fully close and allow a long-lasting Ca2+ entry.

  1. Characterizing ligand-gated ion channel receptors with genetically encoded Ca2++ sensors.

    Directory of Open Access Journals (Sweden)

    John G Yamauchi

    2011-01-01

    Full Text Available We present a cell based system and experimental approach to characterize agonist and antagonist selectivity for ligand-gated ion channels (LGIC by developing sensor cells stably expressing a Ca(2+ permeable LGIC and a genetically encoded Förster (or fluorescence resonance energy transfer (FRET-based calcium sensor. In particular, we describe separate lines with human α7 and human α4β2 nicotinic acetylcholine receptors, mouse 5-HT(3A serotonin receptors and a chimera of human α7/mouse 5-HT(3A receptors. Complete concentration-response curves for agonists and Schild plots of antagonists were generated from these sensors and the results validate known pharmacology of the receptors tested. Concentration-response relations can be generated from either the initial rate or maximal amplitudes of FRET-signal. Although assaying at a medium throughput level, this pharmacological fluorescence detection technique employs a clonal line for stability and has versatility for screening laboratory generated congeners as agonists or antagonists on multiple subtypes of ligand-gated ion channels. The clonal sensor lines are also compatible with in vivo usage to measure indirectly receptor activation by endogenous neurotransmitters.

  2. Biological control of Fusarium solani f. sp. phaseoli the causal agent of root rot of bean using Bacillus subtilis CA32 and Trichoderma harzianum RU01

    Directory of Open Access Journals (Sweden)

    Saman Abeysinghe

    2007-09-01

    Full Text Available Root rot, caused by Fusarium solani f. sp. phaseoli, is one of the main root diseases impacting production of common bean in Sri Lanka. Rhizobacteria were screened in dual Petri plate assays to select antagonistic strains against F. solani f. sp. phaseoli. B. subtilis CA32 effectively antagonized the pathogen. T. harzianum RU01 also showed the antagonistic activity. The efficacy of the B. subtilis CA32 and the T. harzianum RU01 were tested in greenhouse pot experiments against F. solani f. sp. phaseoli. Seed bacterization with B. subtilis CA32 and T. harzianum RU01 significantly protected bean seedlings from F. solani f. sp. phaseoli compared to the untreated control plants. Plant protection was more pronounced in T. harzianum RU01 treated plants than bacterized plants. Enhanced root growth was observed only T. harzianum RU01 treated plants, suggesting that the biotic modifications of the mycorrhizosphere as a result of colonization with T. harzianum RU01.

  3. Combination of antagonistic yeasts with two food additives for control of brown rot caused by Monilinia fructicola on sweet cherry fruit.

    Science.gov (United States)

    Qin, G Z; Tian, S P; Xu, Y; Chan, Z L; Li, B Q

    2006-03-01

    To evaluate beneficial effect of two food additives, ammonium molybdate (NH4-Mo) and sodium bicarbonate (NaBi), on antagonistic yeasts for control of brown rot caused by Monilinia fructicola in sweet cherry fruit under various storage conditions. The mechanisms of action by which food additives enhance the efficacy of antagonistic yeasts were also evaluated. Biocontrol activity of Pichia membranefaciens and Cryptococcus laurentii against brown rot in sweet cherry fruit was improved by addition of 5 mmol l(-1) NH4-Mo or 2% NaBi when stored in air at 20 and 0 degrees C, and in controlled atmosphere (CA) storage with 10% O2 + 10% CO2 at 0 degrees C. Population dynamics of P. membranefaciens in the wounds of fruit were inhibited by NH4-Mo at 20 degrees C after 1 day of incubation and growth of C. laurentii was inhibited by NH4-Mo at 0 degrees C in CA storage after 60 days. In contrast, NaBi did not significantly influence growth of the two yeasts in fruit wounds under various storage conditions except that the growth of P. membranefaciens was stimulated after storage for 45 days at 0 degrees C in CA storage. When used alone, the two additives showed effective control of brown rot in sweet cherry fruit and the efficacy was closely correlated with the concentrations used. The result of in vitro indicated that growth of M. fructicola was significantly inhibited by NH4-Mo and NaBi. Application of additives improved biocontrol of brown rot on sweet cherry fruit under various storage conditions. It is postulated that the enhancement of disease control is directly because of the inhibitory effects of additives on pathogen growth, and indirectly because of the relatively little influence of additives on the growth of antagonistic yeasts. The results obtained in this study suggest that an integration of NH4-Mo or NaBi with biocontrol agents has great potential in commercial management of postharvest diseases of fruit.

  4. Impact of selected antagonistic fungi on Fusarium species – toxigenic cereal pathogens

    Directory of Open Access Journals (Sweden)

    Delfina Popiel

    2013-12-01

    Full Text Available Fusarium-ear blight is a destructive disease in various cereal-growing regions and leads to significant yield and quality losses for farmers and to contamination of cereal grains with mycotoxins, mainly deoxynivalenol and derivatives, zearalenone and moniliformin. Fusarium pathogens grow well and produce significant inoculum on crop resiudues. Reduction of mycotoxins production and pathogen sporulation may be influenced by saprophytic fungi, exhibiting antagonistic effect. Dual culture bioassays were used to examine the impact of 92 isolates (belonging to 29 fungal species against three toxigenic species, i.e. Fusarium avenaceum (Corda Saccardo, F. culmorum (W.G.Smith Saccardo and F. graminearum Schwabe. Both F.culmorum and F. graminearum isolates produce trichothecene mycotoxins and mycohormone zearalenone and are considered to be the most important cereal pathogens worldwide. Infection with those pathogens leads to accumulation of mycotoxins: deoxynivalenol (DON and zearalenone (ZEA in grains. Fusarium avenaceum isolates are producers of moniliformin (MON and enniatins. Isolates of Trichoderma sp. were found to be the most effective ones to control the growth of examined Fusarium species. The response of Fusarium isolates to antagonistic activity of Trichoderma isolates varied and also the isolates of Trichoderma differed in their antagonistic activity against Fusarium isolates. The production of MON by two isolates of F. avenaceum in dual culture on rice was reduced by 95% to 100% by T. atroviride isolate AN 35. The same antagonist reduced the amount of moniliformin from 100 μg/g to 6.5 μg/g when inoculated to rice culture contaminated with MON, which suggests the possible decomposition of this mycotoxin.

  5. Novel method for the study of receptor Ca2+ signalling exemplified by the NK1 receptor

    DEFF Research Database (Denmark)

    Heding, A; Elling, C E; Schwartz, T W

    2002-01-01

    We have used a novel technology (NovoStar from BMG Labtechnologies) for the study of the Ca2+ signalling of the human tackykinin NK1 (hNK-I receptor). The NovoStar is a microplate reader based on fluorescence and luminescence. The instrument implements a robotic pipettor arm and two microplate...... carriers, typically one for samples and one for cells. The robotic pipettor arm can transfer sample (agonist or antagonist) from the sample plate or other liquid containers to the cell plate, facilitating the study of Ca2+ signalling to such a degree that the instrument can be used for Medium Throughput...

  6. Inhibitory Effects of Cytosolic Ca2+ Concentration by Ginsenoside Ro Are Dependent on Phosphorylation of IP3RI and Dephosphorylation of ERK in Human Platelets

    Directory of Open Access Journals (Sweden)

    Hyuk-Woo Kwon

    2015-01-01

    Full Text Available Intracellular Ca2+ ([Ca2+]i is platelet aggregation-inducing molecule and is involved in activation of aggregation associated molecules. This study was carried out to understand the Ca2+-antagonistic effect of ginsenoside Ro (G-Ro, an oleanane-type saponin in Panax ginseng. G-Ro, without affecting leakage of lactate dehydrogenase, dose-dependently inhibited thrombin-induced platelet aggregation, and the half maximal inhibitory concentration was approximately 155 μM. G-Ro inhibited strongly thrombin-elevated [Ca2+]i, which was strongly increased by A-kinase inhibitor Rp-8-Br-cAMPS compared to G-kinase inhibitor Rp-8-Br-cGMPS. G-Ro increased the level of cAMP and subsequently elevated the phosphorylation of inositol 1, 4, 5-triphosphate receptor I (IP3RI (Ser1756 to inhibit [Ca2+]i mobilization in thrombin-induced platelet aggregation. Phosphorylation of IP3RI (Ser1756 by G-Ro was decreased by PKA inhibitor Rp-8-Br-cAMPS. In addition, G-Ro inhibited thrombin-induced phosphorylation of ERK 2 (42 kDa, indicating inhibition of Ca2+ influx across plasma membrane. We demonstrate that G-Ro upregulates cAMP-dependent IP3RI (Ser1756 phosphorylation and downregulates phosphorylation of ERK 2 (42 kDa to decrease thrombin-elevated [Ca2+]i, which contributes to inhibition of ATP and serotonin release, and p-selectin expression. These results indicate that G-Ro in Panax ginseng is a beneficial novel Ca2+-antagonistic compound and may prevent platelet aggregation-mediated thrombotic disease.

  7. Dopamine D1-like receptor in lateral habenula nucleus affects contextual fear memory and long-term potentiation in hippocampal CA1 in rats.

    Science.gov (United States)

    Chan, Jiangping; Guan, Xin; Ni, Yiling; Luo, Lilu; Yang, Liqiang; Zhang, Pengyue; Zhang, Jichuan; Chen, Yanmei

    2017-03-15

    The Lateral Habenula (LHb) plays an important role in emotion and cognition. Recent experiments suggest that LHb has functional interaction with the hippocampus and plays an important role in spatial learning. LHb is reciprocally connected with midbrain monoaminergic brain areas such as the ventral tegmental area (VTA). However, the role of dopamine type 1 receptor (D1R) in LHb in learning and memory is not clear yet. In the present study, D1R agonist or antagonist were administered bilaterally into the LHb in rats. We found that both D1R agonist and antagonist impaired the acquisition of contextual fear memory in rats. D1R agonist or antagonist also impaired long term potentiation (LTP) in hippocampal CA3-CA1 synapses in freely moving rats and attenuated learning induced phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) subunit 1 (GluA1) at Ser831 and Ser845 in hippocampus. Taken together, our results suggested that dysfunction of D1R in LHb affected the function of hippocampus. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. CaRMeN: a tool for analysing and deriving kinetics in the real world.

    Science.gov (United States)

    Gossler, H; Maier, L; Angeli, S; Tischer, S; Deutschmann, O

    2018-04-25

    This paper presents the concepts of an open software tool (CaRMeN) that can be used to rapidly analyse and derive models, in particular chemical kinetics. The software automates the workflow of comparing model vs. experiment, which must currently be done manually and is thus a time-consuming and error-prone task. The capabilities of the software are illustrated through a case study. Experimental data for the conversion of methane over rhodium catalysts in a wide range of conditions and experimental setups are numerically simulated using five different mechanisms from the literature. The applicability of the mechanisms as well as differences between flow and diffusion models are evaluated. The results show that no single mechanism reliably predicts the chemical conversions of all of the experiments. Although the software was initially developed for chemical kinetics applications, it can also be extended to run any simulation code, and can therefore be applied in other scenarios.

  9. Tributyltin-induced endoplasmic reticulum stress and its Ca2+-mediated mechanism

    International Nuclear Information System (INIS)

    Isomura, Midori; Kotake, Yaichiro; Masuda, Kyoichi; Miyara, Masatsugu; Okuda, Katsuhiro; Samizo, Shigeyoshi; Sanoh, Seigo; Hosoi, Toru; Ozawa, Koichiro; Ohta, Shigeru

    2013-01-01

    Organotin compounds, especially tributyltin chloride (TBT), have been widely used in antifouling paints for marine vessels, but exhibit various toxicities in mammals. The endoplasmic reticulum (ER) is a multifunctional organelle that controls post-translational modification and intracellular Ca 2+ signaling. When the capacity of the quality control system of ER is exceeded under stress including ER Ca 2+ homeostasis disruption, ER functions are impaired and unfolded proteins are accumulated in ER lumen, which is called ER stress. Here, we examined whether TBT causes ER stress in human neuroblastoma SH-SY5Y cells. We found that 700 nM TBT induced ER stress markers such as CHOP, GRP78, spliced XBP1 mRNA and phosphorylated eIF2α. TBT also decreased the cell viability both concentration- and time-dependently. Dibutyltin and monobutyltin did not induce ER stress markers. We hypothesized that TBT induces ER stress via Ca 2+ depletion, and to test this idea, we examined the effect of TBT on intracellular Ca 2+ concentration using fura-2 AM, a Ca 2+ fluorescent probe. TBT increased intracellular Ca 2+ concentration in a TBT-concentration-dependent manner, and Ca 2+ increase in 700 nM TBT was mainly blocked by 50 μM dantrolene, a ryanodine receptor antagonist (about 70% inhibition). Dantrolene also partially but significantly inhibited TBT-induced GRP78 expression and cell death. These results suggest that TBT increases intracellular Ca 2+ concentration by releasing Ca 2+ from ER, thereby causing ER stress. - Highlights: • We established that tributyltin induces endoplasmic reticulum (ER) stress. • Tributyltin induces ER stress markers in a concentration-dependent manner. • Tributyltin increases Ca 2+ release from ER, thereby causing ER stress. • Dibutyltin and monobutyltin did not increase GRP78 or intracellular Ca 2+

  10. Estradiol up-regulates L-type Ca2+ channels via membrane-bound estrogen receptor/phosphoinositide-3-kinase/Akt/cAMP response element-binding protein signaling pathway.

    Science.gov (United States)

    Yang, Xiaoyan; Mao, Xiaofang; Xu, Gao; Xing, Shasha; Chattopadhyay, Ansuman; Jin, Si; Salama, Guy

    2018-05-01

    In long QT syndrome type 2, women are more prone than men to the lethal arrhythmia torsades de pointes. We previously reported that 17β-estradiol (E2) up-regulates L-type Ca 2+ channels and current (I Ca,L ) (∼30%) in rabbit ventricular myocytes by a classic genomic mechanism mediated by estrogen receptor-α (ERα). In long QT syndrome type 2 (I Kr blockade or bradycardia), the higher Ca 2+ influx via I Ca,L causes Ca 2+ overload, spontaneous sarcoplasmic reticulum Ca 2+ release, and reactivation of I Ca,L that triggers early afterdepolarizations and torsades de pointes. The purpose of this study was to investigate the molecular mechanisms whereby E2 up-regulates I Ca,L , which are poorly understood. H9C2 and rat myocytes were incubated with E2 ± ER antagonist, or inhibitors of downstream transcription factors, for 24 hours, followed by western blots of Cav1.2α1C and voltage-clamp measurements of I Ca,L . Incubation of H9C2 cells with E2 (10-100 nM) increased I Ca,L density and Cav1.2α1C expression, which were suppressed by the ER antagonist ICI182,780 (1 μM). Enhanced I Ca,L and Cav1.2α1C expression by E2 was suppressed by inhibitors of phosphoinositide-3-kinase (Pi3K) (30 μM LY294002; P L via plasma membrane ER and by activating Pi3K, Akt, and CREB signaling. The promoter regions of the CACNA1C gene (human-rabbit-rat) contain adjacent/overlapping binding sites for p-CREB and ERα, which suggests a synergistic regulation by these pathways. Copyright © 2018 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  11. Interaction between harmane, a class of β-carboline alkaloids, and the CA1 serotonergic system in modulation of memory acquisition.

    Science.gov (United States)

    Nasehi, Mohammad; Ghadimi, Fatemeh; Khakpai, Fatemeh; Zarrindast, Mohammad-Reza

    2017-09-01

    This study set to assess the involvement of dorsal hippocampus (CA1) serotonergic system on harmane induced memory acquisition deficit. We used one trial step-down inhibitory avoidancetask to evaluate memory retention and then, open field test to evaluate locomotor activity in adult male NMRI mice. The results showed that pre-training intra-peritoneal (i.p.) administration of harmane (12mg/kg) induced impairment of memory acquisition. Pre-training intra-CA1 administration of 5-HT1B/1D receptor agonist (CP94253; 0.5 and 5ng/mouse) and 5-HT2A/2B/2C receptor agonist (α-methyl 5-HT; 50ng/mouse) impaired memory acquisition. Furthermore, intra-CA1 administration of 5-HT1B/1D receptor antagonist (GR127935; 0.5ng/mouse) and 5-HT2 receptor antagonist (cinancerine; 5ng/mouse) improved memory acquisition. In addition, pre-training intra-CA1 injection of sub-threshold dose of CP94253 (0.05ng/mouse) and α-methyl 5-HT (5ng/mouse) potentiated impairment of memory acquisition induced by harmane (12mg/kg, i.p.). On the other hand, pre-training intra-CA1 infusion of sub-threshold dose of GR127935 (0.05ng/mouse) and cinancerine (0.5ng/mouse) with the administration of harmane (12mg/kg, i.p.) weakened impairment of memory acquisition. Moreover, all above doses of drugs did not change locomotor activity. The present findings suggest that there is an interaction between harmane and the CA1 serotonergic system in modulation of memory acquisition. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  12. Prenatal nicotine and maternal deprivation stress de-regulate the development of CA1, CA3, and dentate gyrus neurons in hippocampus of infant rats.

    Directory of Open Access Journals (Sweden)

    Hong Wang

    Full Text Available Adverse experiences by the developing fetus and in early childhood are associated with profound effects on learning, emotional behavior, and cognition as a whole. In this study we investigated the effects of prenatal nicotine exposure (NIC, postnatal maternal deprivation (MD or the combination of the two (NIC+MD to determine if hippocampal neuron development is modulated by exposure to drugs of abuse and/or stress. Growth of rat offspring exposed to MD alone or NIC+MD was repressed until after weaning. In CA1 but not CA3 of postnatal day 14 (P14 pups, MD increased pyramidal neurons, however, in dentate gyrus (DG, decreased granule neurons. NIC had no effect on neuron number in CA1, CA3 or DG. Unexpectedly, NIC plus MD combined caused a synergistic increase in the number of CA1 or CA3 neurons. Neuron density in CA regions was unaffected by treatment, but in the DG, granule neurons had a looser packing density after NIC, MD or NIC+MD exposure. When septotemporal axes were analyzed, the synergism of stress and drug exposure in CA1 and CA3 was associated with rostral, whereas MD effects were predominantly associated with caudal neurons. TUNEL labeling suggests no active apoptosis at P14, and doublecortin positive neurons and mossy fibers were diminished in NIC+MD relative to controls. The laterality of the effect of nicotine and/or maternal deprivation in right versus left hippocampus was also analyzed and found to be insiginificant. We report for the first time that early life stressors such as postnatal MD and prenatal NIC exposure, when combined, may exhibit synergistic consequences for CA1 and CA3 pyramidal neuron development, and a potential antagonistic influence on developing DG neurons. These results suggest that early stressors may modulate neurogenesis, apoptosis, or maturation of glutamatergic neurons in the hippocampus in a region-specific manner during critical periods of neurodevelopment.

  13. Bovine pancreatic polypeptide as an antagonist of muscarinic cholinergic receptors

    International Nuclear Information System (INIS)

    Pan, G.Z.; Lu, L.; Qian, J.; Xue, B.G.

    1987-01-01

    In dispersed acini from rat pancreas, it was found that bovine pancreatic polypeptide (BPP) and its C-fragment hexapeptide amide (PP-6), at concentrations of 0.1 and 30 μM, respectively, could significantly inhibit amylase secretion stimulated by carbachol, and this inhibition by BPP was dose dependent. 45 Ca outflux induced by carbachol was also inhibited by BPP or PP-6, but they had no effect on cholecystokinin octapeptide- (CCK-8) or A23187-stimulated 45 Ca outflux. BPP was also capable of displacing the specific binding of [ 3 H]-quinuclidinyl benzilate to its receptors, and it possessed a higher affinity (K/sub i/35nM) than carbachol (K/sub i/ 1.8 μM) in binding with M-receptors. It is concluded from this study that BPP acts as an antagonist of muscarinic cholinergic receptors in rat pancreatic acini. In addition, BPP inhibited the potentiation of amylase secretion caused by the combination of carbachol plus secretin or vasoactive intestinal peptide. This may be a possible explanation of the inhibitory effect of BPP on secretin-induced pancreatic enzyme secretion shown in vivo, since pancreatic enzyme secretion stimulated by secretin under experimental conditions may be the result of potentiation of enzyme release produced by the peptide in combination with a cholinergic stimulant

  14. Synthesis and characterization of novel sulfonamides derivatives

    African Journals Online (AJOL)

    3Department of Chemistry, Comsat Institute of Information & Technology Riawind road. Lahore ... Newer sulfonamides and their derivatives has obtained great attention in pharmaceutical field in ... MS data was recorded on Finnigan MAT 112 mass ..... potent and orally active sulfonamide ETB selective antagonists. Bioorg.

  15. Environmental and cortisol-mediated control of Ca(2+) uptake in tilapia (Oreochromis mossambicus).

    Science.gov (United States)

    Lin, Chia-Hao; Kuan, Wei-Chun; Liao, Bo-Kai; Deng, Ang-Ni; Tseng, Deng-Yu; Hwang, Pung-Pung

    2016-04-01

    Ca(2+) is a vital element for many physiological processes in vertebrates, including teleosts, which live in aquatic environments and acquire Ca(2+) from their surroundings. Ionocytes within the adult gills or larval skin are critical sites for transcellular Ca(2+) uptake in teleosts. The ionocytes of zebrafish were found to contain transcellular Ca(2+) transporters, epithelial Ca(2+) channel (ECaC), plasma membrane Ca(2+)-ATPase 2 (PMCA2), and Na(+)/Ca(2+) exchanger 1b (NCX1b), providing information about the molecular mechanism of transcellular Ca(2+) transports mediated by ionocytes in fish. However, more evidence is required to establish whether or not a similar mechanism of transcellular Ca(2+) transport also exists in others teleosts. In the present study, ecac, pmca2, and ncx1 were found to be expressed in the branchial ionocytes of tilapia, thereby providing further support for the mechanism of transcellular Ca(2+) transport through ionocytes previously proposed for zebrafish. In addition, we also reveal that low Ca(2+) water treatment of tilapia stimulates Ca(2+) uptake and expression of ecac and cyp11b (the latter encodes a cortisol-synthesis enzyme). Treatment of tilapia with exogenous cortisol (20 mg/l) enhanced both Ca(2+) influx and ecac expression. Therefore, increased cyp11b expression is suggested to enhance Ca(2+) uptake capacity in tilapia exposed to low Ca(2+) water. Furthermore, the application of cortisol receptor antagonists revealed that cortisol may regulate Ca(2+) uptake through glucocorticoid and/or mineralocorticoid receptor (GR and/or MR) in tilapia. Taken together, the data suggest that cortisol may activate GR and/or MR to execute its hypercalcemic action by stimulating ecac expression in tilapia.

  16. Renal protection in diabetes

    DEFF Research Database (Denmark)

    Parving, H H; Tarnow, L; Rossing, P

    1996-01-01

    BACKGROUND: The combination of diabetes and hypertension increases the chances of progressive renal disorder and, ultimately, renal failure. Roughly 40% of all diabetics, whether insulin-dependent or not, develop diabetic nephropathy. Diabetic nephropathy is the single most important cause of end...... function in diabetic patients with incipient diabetic nephropathy. There are still no long-term trials using the new long-acting dihydropyridine calcium antagonists to treat patients with incipient nephropathy. A recent, 1-year, randomized, double-blind study in hypertensive insulin-dependent diabetic...... identical in both treatment groups, at 103 (SD 9) and 101 (SD 11) mmHg, respectively. Furthermore, a recent 5-year randomized open study in hypertensive non-insulin-dependent patients with diabetic nephropathy has revealed the same beneficial effect of a calcium antagonist and of ACE inhibition...

  17. High-Throughput Screening of Small Molecules Identifies Hepcidin Antagonists

    Science.gov (United States)

    Fung, Eileen; Sugianto, Priscilla; Hsu, Jason; Damoiseaux, Robert; Ganz, Tomas

    2013-01-01

    Anemia of inflammation (AI) is common in patients with infection, autoimmune diseases, cancer, and chronic kidney disease. Unless the underlying condition can be reversed, treatment options are limited to erythropoiesis-stimulating agents with or without intravenous iron therapy, modalities that are not always effective and can cause serious adverse effects. Hepcidin, the iron regulatory hormone, has been identified as a pathogenic factor in the development of AI. To explore new therapeutic options for AI and other iron-related disorders caused by hepcidin excess, we developed a cell-based screen to identify hepcidin antagonists. Of the 70,000 small molecules in the library, we identified 14 compounds that antagonized the hepcidin effect on ferroportin. One of these was fursultiamine, a Food and Drug Administration (FDA)–approved thiamine derivative. Fursultiamine directly interfered with hepcidin binding to its receptor, ferroportin, by blocking ferroportin C326 thiol residue essential for hepcidin binding. Consequently, fursultiamine prevented hepcidin-induced ferroportin ubiquitination, endocytosis, and degradation in vitro and allowed continuous cellular iron export despite the presence of hepcidin, with IC50 in the submicromolar range. Thiamine, the fursultiamine metabolite, and benfotiamine, another thiamine derivative, did not interfere with the effect of hepcidin on ferroportin. Other FDA-approved thiol-reactive compounds were at least 1000-fold less potent than fursultiamine in antagonizing hepcidin. In vivo, fursultiamine did not reproducibly antagonize the effect of hepcidin on serum iron, likely because of its rapid conversion to inactive metabolites. Fursultiamine is a unique antagonist of hepcidin in vitro that could serve as a template for the development of drug candidates that inhibit the hepcidin-ferroportin interaction. PMID:23292796

  18. Differential antiepileptic effects of the organic calcium antagonists verapamil and flunarizine in neurons of organotypic neocortical explants from newborn rats

    NARCIS (Netherlands)

    Bingmann, D; Speckmann, E J; Baker, R E; Ruijter, J; de Jong, B. M.

    1988-01-01

    Effects of the organic calcium antagonists verapamil and flunarizine on pentylenetetrazol induced paroxysmal depolarizations were tested in organotypic neocortical explants taken from neonatal rats. In these in vitro experiments the papaverin derivative verapamil depressed, and finally abolished,

  19. Adverse cutaneous reactions induced by TNF-alpha antagonist therapy.

    Science.gov (United States)

    Borrás-Blasco, Joaquín; Navarro-Ruiz, Andrés; Borrás, Consuelo; Casterá, Elvira

    2009-11-01

    To review adverse cutaneous drug reactions induced by tumor necrosis factor alpha (TNF-alpha) antagonist therapy. A literature search was performed using PubMed (1996-March 2009), EMBASE, and selected MEDLINE Ovid bibliography searches. All language clinical trial data, case reports, letters, and review articles identified from the data sources were used. Since the introduction of TNF-alpha antagonist, the incidence of adverse cutaneous drug reactions has increased significantly. A wide range of different skin lesions might occur during TNF-alpha antagonist treatment. New onset or exacerbation of psoriasis has been reported in patients treated with TNF-alpha antagonists for a variety of rheumatologic conditions. TNF-alpha antagonist therapy has been associated with a lupus-like syndrome; most of these case reports occurred in patients receiving either etanercept or infliximab. Serious skin reactions such as erythema multiforme, Stevens-Johnson syndrome, and toxic epidermal necrolysis have been reported rarely with the use of TNF-alpha antagonists. As the use of TNF-alpha antagonists continues to increase, the diagnosis and management of cutaneous side effects will become an increasingly important challenge. In patients receiving TNF-alpha antagonist treatment, skin disease should be considered, and clinicians need to be aware of the adverse reactions of these drugs.

  20. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Theoretical approaches to control spin dynamics in solid-state nuclear magnetic resonance ... Pyrolysis of 3-carene: Experiment, Theory and Modeling .... One-pot synthesis of N-aryl 1,4-dihydropyridine derivatives and their biological activities.

  1. DREAM (Downstream Regulatory Element Antagonist Modulator contributes to synaptic depression and contextual fear memory

    Directory of Open Access Journals (Sweden)

    Wu Long-Jun

    2010-01-01

    Full Text Available Abstract The downstream regulatory element antagonist modulator (DREAM, a multifunctional Ca2+-binding protein, binds specifically to DNA and several nucleoproteins regulating gene expression and with proteins outside the nucleus to regulate membrane excitability or calcium homeostasis. DREAM is highly expressed in the central nervous system including the hippocampus and cortex; however, the roles of DREAM in hippocampal synaptic transmission and plasticity have not been investigated. Taking advantage of transgenic mice overexpressing a Ca2+-insensitive DREAM mutant (TgDREAM, we used integrative methods including electrophysiology, biochemistry, immunostaining, and behavior tests to study the function of DREAM in synaptic transmission, long-term plasticity and fear memory in hippocampal CA1 region. We found that NMDA receptor but not AMPA receptor-mediated current was decreased in TgDREAM mice. Moreover, synaptic plasticity, such as long-term depression (LTD but not long-term potentiation (LTP, was impaired in TgDREAM mice. Biochemical experiments found that DREAM interacts with PSD-95 and may inhibit NMDA receptor function through this interaction. Contextual fear memory was significantly impaired in TgDREAM mice. By contrast, sensory responses to noxious stimuli were not affected. Our results demonstrate that DREAM plays a novel role in postsynaptic modulation of the NMDA receptor, and contributes to synaptic plasticity and behavioral memory.

  2. Small molecule antagonists of integrin receptors.

    Science.gov (United States)

    Perdih, A; Dolenc, M Sollner

    2010-01-01

    The complex and widespread family of integrin receptors is involved in numerous physiological processes, such as tissue remodeling, angiogenesis, development of the immune response and homeostasis. In addition, their key role has been elucidated in important pathological disorders such as cancer, cardiovascular diseases, osteoporosis, autoimmune and inflammatory diseases and in the pathogenesis of infectious diseases, making them highly important targets for modern drug design campaigns. In this review we seek to present a concise overview of the small molecule antagonists of this diverse and highly complex receptor family. Integrin antagonists are classified according to the targeted integrin receptor and are discussed in four sections. First we present the fibrinogen alpha(IIb)beta3 and the vitronectin alpha (V)beta(3) receptor antagonists. The remaining selective integrin antagonists are examined in the third section. The final section is dedicated to molecules with dual or multiple integrin activity. In addition, the use of antibodies and peptidomimetic approaches to modulate the integrin receptors are discussed, as well providing the reader with an overall appreciation of the field.

  3. Mechanisms of nitric-oxide-induced increase of free cytosolic Ca2+ concentration in Nicotiana plumbaginifolia cells.

    Science.gov (United States)

    Lamotte, Olivier; Courtois, Cécile; Dobrowolska, Grazyna; Besson, Angélique; Pugin, Alain; Wendehenne, David

    2006-04-15

    In this study, we investigated a role for nitric oxide (NO) in mediating the elevation of the free cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) in plants using Nicotiana plumbaginifolia cells expressing the Ca(2+) reporter apoaequorin. Hyperosmotic stress induced a fast increase of [Ca(2+)](cyt) which was strongly reduced by pretreating cell suspensions with the NO scavenger carboxy PTIO, indicating that NO mediates [Ca(2+)](cyt) changes in plant cells challenged by abiotic stress. Accordingly, treatment of transgenic N. plumbaginifolia cells with the NO donor diethylamine NONOate was followed by a transient increase of [Ca(2+)](cyt) sensitive to plasma membrane Ca(2+) channel inhibitors and antagonist of cyclic ADP ribose. We provided evidence that NO might activate plasma membrane Ca(2+) channels by inducing a rapid and transient plasma membrane depolarization. Furthermore, NO-induced elevation of [Ca(2+)](cyt) was suppressed by the kinase inhibitor staurosporine, suggesting that NO enhances [Ca(2+)](cyt) by promoting phosphorylation-dependent events. This result was further supported by the demonstration that the NO donor induced the activation of a 42-kDa protein kinase which belongs to SnRK2 families and corresponds to Nicotiana tabacum osmotic-stress-activated protein kinase (NtOSAK). Interestingly, NtOSAK was activated in response to hyperosmotic stress through a NO-dependent process, supporting the hypothesis that NO also promotes protein kinase activation during physiological processes.

  4. Tributyltin-induced endoplasmic reticulum stress and its Ca{sup 2+}-mediated mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Isomura, Midori; Kotake, Yaichiro, E-mail: yaichiro@hiroshima-u.ac.jp; Masuda, Kyoichi; Miyara, Masatsugu; Okuda, Katsuhiro; Samizo, Shigeyoshi; Sanoh, Seigo; Hosoi, Toru; Ozawa, Koichiro; Ohta, Shigeru

    2013-10-01

    Organotin compounds, especially tributyltin chloride (TBT), have been widely used in antifouling paints for marine vessels, but exhibit various toxicities in mammals. The endoplasmic reticulum (ER) is a multifunctional organelle that controls post-translational modification and intracellular Ca{sup 2+} signaling. When the capacity of the quality control system of ER is exceeded under stress including ER Ca{sup 2+} homeostasis disruption, ER functions are impaired and unfolded proteins are accumulated in ER lumen, which is called ER stress. Here, we examined whether TBT causes ER stress in human neuroblastoma SH-SY5Y cells. We found that 700 nM TBT induced ER stress markers such as CHOP, GRP78, spliced XBP1 mRNA and phosphorylated eIF2α. TBT also decreased the cell viability both concentration- and time-dependently. Dibutyltin and monobutyltin did not induce ER stress markers. We hypothesized that TBT induces ER stress via Ca{sup 2+} depletion, and to test this idea, we examined the effect of TBT on intracellular Ca{sup 2+} concentration using fura-2 AM, a Ca{sup 2+} fluorescent probe. TBT increased intracellular Ca{sup 2+} concentration in a TBT-concentration-dependent manner, and Ca{sup 2+} increase in 700 nM TBT was mainly blocked by 50 μM dantrolene, a ryanodine receptor antagonist (about 70% inhibition). Dantrolene also partially but significantly inhibited TBT-induced GRP78 expression and cell death. These results suggest that TBT increases intracellular Ca{sup 2+} concentration by releasing Ca{sup 2+} from ER, thereby causing ER stress. - Highlights: • We established that tributyltin induces endoplasmic reticulum (ER) stress. • Tributyltin induces ER stress markers in a concentration-dependent manner. • Tributyltin increases Ca{sup 2+} release from ER, thereby causing ER stress. • Dibutyltin and monobutyltin did not increase GRP78 or intracellular Ca{sup 2+}.

  5. Selective antagonists at group I metabotropic glutamate receptors: synthesis and molecular pharmacology of 4-aryl-3-isoxazolol amino acids

    DEFF Research Database (Denmark)

    Kromann, Hasse; Sløk, Frank A; Stensbøl, Tine B

    2002-01-01

    Homologation of (S)-glutamic acid (Glu, 1) and Glu analogues has previously provided ligands with activity at metabotropic Glu receptors (mGluRs). The homologue of ibotenic acid (7), 2-amino-3-(3-hydroxy-5-isoxazolyl)propionic acid (HIBO, 8), and the 4-phenyl derivative of 8, compound 9a, are bot...... antagonists at group I mGluRs. Here we report the synthesis and molecular pharmacology of HIBO analogues 9b-h containing different 4-aryl substituents. All of these compounds possess antagonist activity at group I mGluRs but are inactive at group II and III mGluRs....

  6. Oral curcumin has anti-arthritic efficacy through somatostatin generation via cAMP/PKA and Ca(2+)/CaMKII signaling pathways in the small intestine.

    Science.gov (United States)

    Yang, Yan; Wu, Xin; Wei, Zhifeng; Dou, Yannong; Zhao, Di; Wang, Ting; Bian, Difei; Tong, Bei; Xia, Ying; Xia, Yufeng; Dai, Yue

    2015-01-01

    Curcumin (CUR) has been proven to be clinically effective in rheumatoid arthritis (RA) therapy, but its low oral bioavailability eclipses existent evidence that attempts to explain the underlying mechanism. Small intestine, the only organ exposed to a relatively high concentration of CUR, is the main site that generates gut hormones which are involved in the pathogenesis of RA. This study aims at addressing the hypothesis that one or more gut hormones serve as an intermediary agent for the anti-arthritic action of CUR. The protein and mRNA levels of gut hormones in CUR-treated rats were analyzed by ELISA and RT-PCR. Somatostatin (SOM) depletor and receptor antagonist were used to verify the key role of SOM in CUR-mediated anti-arthritic effect. The mechanisms underlying CUR-induced upregulation of SOM levels were explored by cellular experiments and immunohistochemical staining. The data showed that oral administration of CUR (100 mg/kg) for consecutive two weeks in adjuvant-induced arthritis rats still exhibited an extremely low plasma exposure despite of a dramatic amelioration of arthritis symptoms. When injected intraperitoneally, CUR lost anti-arthritic effect in rats, suggesting that it functions in an intestine-dependent manner. CUR elevated SOM levels in intestines and sera, and SOM depletor and non-selective SOM receptor antagonist could abolish the inhibitory effect of CUR on arthritis. Immunohistochemical assay demonstrated that CUR markedly increased the number of SOM-positive cells in both duodenum and jejunum. In vitro experiments demonstrated that CUR could augment SOM secretion from intestinal endocrine cells, and this effect could be hampered by either MEK1/2 or Ca(2+)/calmodulin-dependent kinase II (CAMKII) inhibitor. In summary, oral administration of CUR exhibits anti-arthritic effect through augmenting SOM secretion from the endocrine cells in small intestines via cAMP/PKA and Ca(2+)/CaMKII signaling pathways. Copyright © 2015 Elsevier Ltd

  7. Gonadotrophin releasing hormone antagonist in IVF/ICSI

    Directory of Open Access Journals (Sweden)

    M S Kamath

    2008-01-01

    Full Text Available Objective : To study the efficacy of gonadotrophin releasing hormone (GnRH antagonist in In-vitro-fertilization/Intracytoplasmic sperm injection (IVF/ICSI cycles. Type of Study : Observational study. Setting: Reproductive Medicine Unit, Christian Medical College Hospital, Vellore, Tamil Nadu. Materials and Methods: GnRH antagonists were introduced into our practice in November 2005. Fifty-two women undergoing the antagonist protocol were studied and information gathered regarding patient profile, treatment parameters (total gonadotrophin dosage, duration of treatment, and oocyte yield, and outcomes in terms of embryological parameters (cleavage rates, implantation rates and clinical pregnancy. These parameters were compared with 121 women undergoing the standard long protocol. The costs between the two groups were also compared. Main Outcome : Clinical pregnancy rate. Results : The clinical pregnancy rate per embryo transfer in the antagonist group was 31.7% which was comparable to the clinical pregnancy rate in women undergoing the standard long protocol (30.63%. The costs between the two groups were comparable. Conclusions : GnRH antagonist protocol was found to be effective and comparable to the standard long protocol regimen. In addition it was simple, convenient, and patient friendly.

  8. History of the 'geste antagoniste' sign in cervical dystonia.

    Science.gov (United States)

    Poisson, A; Krack, P; Thobois, S; Loiraud, C; Serra, G; Vial, C; Broussolle, E

    2012-08-01

    The geste antagoniste is a voluntary maneuver that temporarily reduces the severity of dystonic posture or movements. It is a classical feature of focal and particularly cervical dystonia. However, the precise historical aspects of geste antagoniste still remain obscure. The goals of this review were (1) to clarify the origin of the geste antagoniste sign; (2) to identify the factors that led to its diffusion in the international literature; (3) to follow the evolution of that term across the twentieth century. We used medical and neurological French, German and English literature of the late nineteenth and early twentieth centuries, and the PubMed database by entering the terms geste antagoniste, antagonistic gesture and sensory trick. The geste antagoniste sign is a legacy of the Paris Neurological School of the end of the nineteenth century. The term was introduced by Meige and Feindel in their 1902 book on tics, written in the vein of their master, Brissaud, who first described this sign in 1893. The almost immediate translations of this book by Giese into German and Kinnier Wilson into English contributed to the rapid spreading of the term geste antagoniste, which is still in use worldwide today. The term antagonistic gesture is the translation proposed by Kinnier Wilson, which also led to the use of the term geste antagonistique. The geste antagoniste sign has long been considered a solid argument for the psychogenic origins of dystonia until the 1980s when Marsden made strong arguments for its organic nature.

  9. Ca2+ influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    International Nuclear Information System (INIS)

    Murata, Naohiko; Ito, Satoru; Furuya, Kishio; Takahara, Norihiro; Naruse, Keiji; Aso, Hiromichi; Kondo, Masashi; Sokabe, Masahiro; Hasegawa, Yoshinori

    2014-01-01

    Highlights: • Uniaxial stretching activates Ca 2+ signaling in human lung fibroblasts. • Stretch-induced intracellular Ca 2+ elevation is mainly via Ca 2+ influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca 2+ influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca 2+ concentration ([Ca 2+ ] i ) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca 2+ ] i transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca 2+ ] i . The stretch-induced [Ca 2+ ] i elevation was attenuated in Ca 2+ -free solution. In contrast, the increase of [Ca 2+ ] i by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd 3+ , ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca 2+ ] i elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca 2+ influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP

  10. Pregnancy outcome of “delayed start” GnRH antagonist protocol versus GnRH antagonist protocol in poor responders: A clinical trial study

    Directory of Open Access Journals (Sweden)

    Abbas Aflatoonian

    2017-08-01

    Full Text Available Background: Management of poor-responding patients is still major challenge in assisted reproductive techniques (ART. Delayed-start GnRH antagonist protocol is recommended to these patients, but little is known in this regards. Objective: The goal of this study was assessment of delayed-start GnRH antagonist protocol in poor responders, and in vitro fertilization (IVF outcomes. Materials and Methods: This randomized clinical trial included sixty infertile women with Bologna criteria for ovarian poor responders who were candidate for IVF. In case group (n=30, delayed-start GnRH antagonist protocol administered estrogen priming followed by early follicular-phase GnRH antagonist treatment for 7 days before ovarian stimulation with gonadotropin. Control group (n=30 treated with estrogen priming antagonist protocol. Finally, endometrial thickness, the rates of oocytes maturation, , embryo formation, and pregnancy were compared between two groups. Results: Rates of implantation, chemical, clinical, and ongoing pregnancy in delayed-start cycles were higher although was not statistically significant. Endometrial thickness was significantly higher in case group. There were no statistically significant differences in the rates of oocyte maturation, embryo formation, and IVF outcomes between two groups. Conclusion: There is no significant difference between delayed-start GnRH antagonist protocol versus GnRH antagonist protocol.

  11. EVALUATION OF NEEM (AZADIRACHTA IND/CA) DERIVATIVES ...

    African Journals Online (AJOL)

    The list continues to expand, as neem derivatives are tested ..... various stages stem borers and best integration of various management options are necessary. ... This may be an additional line of future neem study in the field of insecticides.

  12. The GABAA Antagonist DPP-4-PIOL Selectively Antagonises Tonic over Phasic GABAergic Currents in Dentate Gyrus Granule Cells

    DEFF Research Database (Denmark)

    Boddum, Kim; Frølund, Bente; Kristiansen, Uffe

    2014-01-01

    that phasic and tonic GABAA receptor currents can be selectively inhibited by the antagonists SR 95531 and the 4-PIOL derivative, 4-(3,3-diphenylpropyl)-5-(4-piperidyl)-3-isoxazolol hydrobromide (DPP-4-PIOL), respectively. In dentate gyrus granule cells, SR 95531 was found approximately 4 times as potent...

  13. Hydrogen-Deuterium Exchange Mass Spectrometry Reveals Calcium Binding Properties and Allosteric Regulation of Downstream Regulatory Element Antagonist Modulator (DREAM).

    Science.gov (United States)

    Zhang, Jun; Li, Jing; Craig, Theodore A; Kumar, Rajiv; Gross, Michael L

    2017-07-18

    Downstream regulatory element antagonist modulator (DREAM) is an EF-hand Ca 2+ -binding protein that also binds to a specific DNA sequence, downstream regulatory elements (DRE), and thereby regulates transcription in a calcium-dependent fashion. DREAM binds to DRE in the absence of Ca 2+ but detaches from DRE under Ca 2+ stimulation, allowing gene expression. The Ca 2+ binding properties of DREAM and the consequences of the binding on protein structure are key to understanding the function of DREAM. Here we describe the application of hydrogen-deuterium exchange mass spectrometry (HDX-MS) and site-directed mutagenesis to investigate the Ca 2+ binding properties and the subsequent conformational changes of full-length DREAM. We demonstrate that all EF-hands undergo large conformation changes upon calcium binding even though the EF-1 hand is not capable of binding to Ca 2+ . Moreover, EF-2 is a lower-affinity site compared to EF-3 and -4 hands. Comparison of HDX profiles between wild-type DREAM and two EF-1 mutated constructs illustrates that the conformational changes in the EF-1 hand are induced by long-range structural interactions. HDX analyses also reveal a conformational change in an N-terminal leucine-charged residue-rich domain (LCD) remote from Ca 2+ -binding EF-hands. This LCD domain is responsible for the direct interaction between DREAM and cAMP response element-binding protein (CREB) and regulates the recruitment of the co-activator, CREB-binding protein. These long-range interactions strongly suggest how conformational changes transmit the Ca 2+ signal to CREB-mediated gene transcription.

  14. 4-(Phenylsulfonyl)piperidines: novel, selective, and bioavailable 5-HT(2A) receptor antagonists.

    Science.gov (United States)

    Fletcher, Stephen R; Burkamp, Frank; Blurton, Peter; Cheng, Susan K F; Clarkson, Robert; O'Connor, Desmond; Spinks, Daniel; Tudge, Matthew; van Niel, Monique B; Patel, Smita; Chapman, Kerry; Marwood, Rose; Shepheard, Sara; Bentley, Graham; Cook, Gina P; Bristow, Linda J; Castro, Jose L; Hutson, Peter H; MacLeod, Angus M

    2002-01-17

    On the basis of a spirocyclic ether screening lead, a series of acyclic sulfones have been identified as high-affinity, selective 5-HT(2A) receptor antagonists. Bioavailability lacking in the parent, 1-(2-(2,4-difluorophenyl)ethyl)-4-(phenylsulfonyl)piperidine (12), was introduced by using stability toward rat liver microsomes as a predictor of bioavailability. By this means, the 4-cyano- and 4-carboxamidophenylsulfonyl derivatives 26 and 31 were identified as orally bioavailable, brain-penetrant analogues suitable for evaluation in animal models. Bioavailability was also attainable by N substitution leading to the N-phenacyl derivative 35. IKr activity detected through counterscreening was reduced to insignificant levels in vivo with the latter compound.

  15. Mobilization of Ca2+ by Cyclic ADP-Ribose from the Endoplasmic Reticulum of Cauliflower Florets1

    Science.gov (United States)

    Navazio, Lorella; Mariani, Paola; Sanders, Dale

    2001-01-01

    The NAD+ metabolite cADP-Rib (cADPR) elevates cytosolic free Ca2+ in plants and thereby plays a central role in signal transduction pathways evoked by the drought and stress hormone abscisic acid. cADPR is known to mobilize Ca2+ from the large vacuole of mature cells. To determine whether additional sites for cADPR-gated Ca2+ release reside in plant cells, microsomes from cauliflower (Brassica oleracea) inflorescences were subfractionated on sucrose density gradients, and the distribution of cADPR-elicited Ca2+ release was monitored. cADPR-gated Ca2+ release was detected in the heavy-density fractions associated with rough endoplasmic reticulum (ER). cADPR-dependent Ca2+ release co-migrated with two ER markers, calnexin and antimycin A-insensitive NADH-cytochrome c reductase activity. To investigate the possibility that contaminating plasma membrane in the ER-rich fractions was responsible for the observed release, plasma membrane vesicles were purified by aqueous two-phase partitioning, everted with Brij-58, and loaded with Ca2+: These vesicles failed to respond to cADPR. Ca2+ release evoked by cADPR at the ER was fully inhibited by ruthenium red and 8-NH2-cADPR, a specific antagonist of cADPR-gated Ca2+ release in animal cells. The presence of a Ca2+ release pathway activated by cADPR at higher plant ER reinforces the notion that, alongside the vacuole, the ER participates in Ca2+ signaling. PMID:11299392

  16. Functional characterization of the beta-adrenergic receptor subtypes expressed by CA1 pyramidal cells in the rat hippocampus.

    Science.gov (United States)

    Hillman, Kristin L; Doze, Van A; Porter, James E

    2005-08-01

    Recent studies have demonstrated that activation of the beta-adrenergic receptor (AR) using the selective beta-AR agonist isoproterenol (ISO) facilitates pyramidal cell long-term potentiation in the cornu ammonis 1 (CA1) region of the rat hippocampus. We have previously analyzed beta-AR genomic expression patterns of 17 CA1 pyramidal cells using single cell reverse transcription-polymerase chain reaction, demonstrating that all samples expressed the beta2-AR transcript, with four of the 17 cells additionally expressing mRNA for the beta1-AR subtype. However, it has not been determined which beta-AR subtypes are functionally expressed in CA1 for these same pyramidal neurons. Using cell-attached recordings, we tested the ability of ISO to increase pyramidal cell action potential (AP) frequency in the presence of subtype-selective beta-AR antagonists. ICI-118,551 [(+/-)-1-[2,3-(dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol] and butoxamine [alpha-[1-(t-butylamino)ethyl]-2,5-dimethoxybenzyl alcohol) hydrochloride], agents that selectively block the beta2-AR, produced significant parallel rightward shifts in the concentration-response curves for ISO. From these curves, apparent equilibrium dissociation constant (K(b)) values of 0.3 nM for ICI-118,551 and 355 nM for butoxamine were calculated using Schild regression analysis. Conversely, effective concentrations of the selective beta1-AR antagonists CGP 20712A [(+/-)-2-hydroxy-5-[2-([2-hydroxy-3-(4-[1-methyl-4-(trifluoromethyl)-1H-imidazol-2-yl]phenoxy)propyl]amino)ethoxy]-benzamide methanesulfonate] and atenolol [4-[2'-hydroxy-3'-(isopropyl-amino)propoxy]phenylacetamide] did not significantly affect the pyramidal cell response to ISO. However, at higher concentrations, atenolol significantly decreased the potency for ISO-mediated AP frequencies. From these curves, an apparent atenolol K(b) value of 3162 nM was calculated. This pharmacological profile for subtype-selective beta-AR antagonists

  17. Epigallocatechin-3-gallate increases intracellular [Ca2+] in U87 cells mainly by influx of extracellular Ca2+ and partly by release of intracellular stores.

    Science.gov (United States)

    Kim, Hee Jung; Yum, Keun Sang; Sung, Jong-Ho; Rhie, Duck-Joo; Kim, Myung-Jun; Min, Do Sik; Hahn, Sang June; Kim, Myung-Suk; Jo, Yang-Hyeok; Yoon, Shin Hee

    2004-02-01

    Green tea has been receiving considerable attention as a possible preventive agent against cancer and cardiovascular disease. Epigallocatechin-3-gallate (EGCG) is a major polyphenol component of green tea. Using digital calcium imaging and an assay for [3H]-inositol phosphates, we determined whether EGCG increases intracellular [Ca2+] ([Ca2+]i) in non-excitable human astrocytoma U87 cells. EGCG induced concentration-dependent increases in [Ca2+]i. The EGCG-induced [Ca2+]i increases were reduced to 20.9% of control by removal of extracellular Ca2+. The increases were also inhibited markedly by treatment with the non-specific Ca2+ channel inhibitors cobalt (3 mM) for 3 min and lanthanum (1 mM) for 5 min. The increases were not significantly inhibited by treatment for 10 min with the L-type Ca2+ channel blocker nifedipine (100 nM). Treatment with the inhibitor of endoplasmic reticulum Ca2+-ATPase thapsigargin (1 micro M) also significantly inhibited the EGCG-induced [Ca2+]i increases. Treatment for 15 min with the phospholipase C (PLC) inhibitor neomycin (300 micro M) attenuated the increases significantly, while the tyrosine kinase inhibitor genistein (30 micro M) had no effect. EGCG increased [3H]-inositol phosphates formation via PLC activation. Treatment for 10 min with mefenamic acid (100 micro M) and flufenamic acid (100 micro M), derivatives of diphenylamine-2-carboxylate, blocked the EGCG-induced [Ca2+]i increase in non-treated and thapsigargin-treated cells but indomethacin (100 micro M) did not affect the increases. Collectively, these data suggest that EGCG increases [Ca2+]i in non-excitable U87 cells mainly by eliciting influx of extracellular Ca2+ and partly by mobilizing intracellular Ca2+ stores by PLC activation. The EGCG-induced [Ca2+]i influx is mediated mainly through channels sensitive to diphenylamine-2-carboxylate derivatives.

  18. [{sup 11}C]A-69024: A potent and selective non-benzazepine radiotracer for in vivo studies of dopamine D1 receptors

    Energy Technology Data Exchange (ETDEWEB)

    Kassiou, Michael; Scheffel, Ursula; Ravert, Hayden T; Mathews, William B; Musachio, John L; Lambrecht, Richard M; Dannals, Robert F

    1995-02-01

    [{sup 11}C]A-69024, ({+-})-1-(2-bromo-4,5-dimethoxybenzyl)-7-hydroxy-6-methoxy-2-[{sup 11}C]methyl-1,2= ,3,4-tetrahydroisoquinoline, is a specific and selective dopamine D1 radiotracer. The in vivo biodistribution of this novel radioligand in mice showed a high uptake in the striatum (6.7% ID/g) at 5 min, followed by clearance with a half-life of 16.1 min. As a measure of specificity, the striatal/cerebellar ratio reached a maximum of 7.4 at 30 min post-injection. Radioactivity in the striatum was reduced to the level of the cerebellum by pre-administration of the D1 antagonist SCH 23390 (1 mg/kg). Pretreatment of mice with spiperone (D2), 7-hydroxydipropylaminotetralin (7-OH-DPAT) (D3), clozapine (D4), ketanserin (5-HT2/5-HT2C), mazindol (monoamine reuptake), prazosin ({alpha}{sub 1}), and haloperidol (D2/{sigma}) had no inhibitory effect on [{sup 11}C]A-69024 uptake in the striatum. The dextrotatory enantiomer of the dopamine antagonist butaclamol inhibited striatal uptake, while the less active isomer (-)-butaclamol did not. [{sup 11}C]A-69024 binding was inhibited by unlabeled A-69024 in a dose dependent manner (ED{sub 50} = 0.3 mg/kg) in the striatum while no change occurred in the cerebellum. [{sup 11}C]A-69024 warrants further investigation as a PET ligand for examination of central dopamine D1 receptors in humans.

  19. Antagonistic parent-offspring co-adaptation.

    Directory of Open Access Journals (Sweden)

    Mathias Kölliker

    2010-01-01

    Full Text Available In species across taxa, offspring have means to influence parental investment (PI. PI thus evolves as an interacting phenotype and indirect genetic effects may strongly affect the co-evolutionary dynamics of offspring and parental behaviors. Evolutionary theory focused on explaining how exaggerated offspring solicitation can be understood as resolution of parent-offspring conflict, but the evolutionary origin and diversification of different forms of family interactions remains unclear.In contrast to previous theory that largely uses a static approach to predict how "offspring individuals" and "parental individuals" should interact given conflict over PI, we present a dynamic theoretical framework of antagonistic selection on the PI individuals obtain/take as offspring and the PI they provide as parents to maximize individual lifetime reproductive success; we analyze a deterministic and a stochastic version of this dynamic framework. We show that a zone for equivalent co-adaptation outcomes exists in which stable levels of PI can evolve and be maintained despite fast strategy transitions and ongoing co-evolutionary dynamics. Under antagonistic co-adaptation, cost-free solicitation can evolve as an adaptation to emerging preferences in parents.We show that antagonistic selection across the offspring and parental life-stage of individuals favors co-adapted offspring and parental behavior within a zone of equivalent outcomes. This antagonistic parent-offspring co-adaptation does not require solicitation to be costly, allows for rapid divergence and evolutionary novelty and potentially explains the origin and diversification of the observed provisioning forms in family life.

  20. Dapson in heterocyclic chemistry, part VIII: synthesis, molecular docking and anticancer activity of some novel sulfonylbiscompounds carrying biologically active 1,3-dihydropyridine, chromene and chromenopyridine moieties

    Directory of Open Access Journals (Sweden)

    Al-Said Mansour S

    2012-07-01

    Full Text Available Abstract Several new sulfonebiscompounds having a biologically active 1,2-dihydropyridine-2-one 3–19, acrylamide 20, chromene 21, 22 and chromenopyridine 23, 24 moieties were synthesized and evaluated as potential anticancer agents. The structures of the products were confirmed via elemental analyses and spectral data. The screening tests showed that many of the biscompounds obtained exhibited good anticancer activity against human breast cell line (MCF7 comparable to doxorubicin which was used as reference drug. Compounds 11, 17 and 24 showed IC50 values 35.40 μM, 29.86 μM and 30.99 μM, respectively. In order to elucidate the mechanism of action of the synthesized compounds as anticancer agents, docking on the active site of farnesyltransferase and arginine methyltransferase was also performed and good results were obtained.

  1. Does protein binding modulate the effect of angiotensin II receptor antagonists?

    Directory of Open Access Journals (Sweden)

    Marc P Maillard

    2001-03-01

    Full Text Available IntroductionAngiotensin II AT 1-receptor antagonists are highly bound to plasma proteins (≥ 99%. With some antagonists, such as DuP-532, the protein binding was such that no efficacy of the drug could be demonstrated clinically. Whether protein binding interferes with the efficacy of other antagonists is not known. We have therefore investigated in vitro how plasma proteins may affect the antagonistic effect of different AT1-receptor antagonists.MethodsA radio-receptor binding assay was used to analyse the interaction between proteins and the ability of various angiotensin II (Ang II antagonists to block AT1-receptors. In addition, the Biacore technology, a new technique which enables the real-time monitoring of binding events between two molecules, was used to evaluate the dissociation rate constants of five AT1-receptor antagonists from human serum albumin.ResultsThe in vitro AT 1-antagonistic effects of different Ang II receptor antagonists were differentially affected by the presence of human plasma, with rightward shifts of the IC50 ranging from one to several orders of magnitude. The importance of the shift correlates with the dissociation rate constants of these drugs from albumin. Our experiments also show that the way that AT1-receptor antagonists bind to proteins differs from one compound to another. These results suggest that the interaction with plasma proteins appears to modulate the efficacy of some Ang II antagonists.ConclusionAlthough the high binding level of Ang II receptor antagonist to plasma proteins appears to be a feature common to this class of compounds, the kinetics and characteristics of this binding is of great importance. With some antagonists, protein binding interferes markedly with their efficacy to block AT1-receptors.

  2. Effects of a novel bradykinin B1 receptor antagonist and angiotensin II receptor blockade on experimental myocardial infarction in rats.

    Directory of Open Access Journals (Sweden)

    Dongmei Wu

    Full Text Available The aim of the present study was to evaluate the cardiovascular effects of the novel bradykinin B1 receptor antagonist BI-113823 following myocardial infarction (MI and to determine whether B1 receptor blockade alters the cardiovascular effects of an angiotensin II type 1 (AT1 receptor antagonist after MI in rats.Sprague Dawley rats were subjected to permanent occlusion of the left descending coronary artery. Cardiovascular function was determined at 7 days post MI. Treatment with either B1 receptor antagonist (BI-113823 or AT1 receptor antagonist (irbesartan alone or in combination improved post-MI cardiac function as evidenced by attenuation of elevated left ventricular end diastolic pressure (LVEDP; greater first derivative of left ventricular pressure (± dp/dt max, left ventricle ejection fraction, fractional shorting, and better wall motion; as we as reductions in post-MI up-regulation of matrix metalloproteinases 2 (MMP-2 and collagen III. In addition, the cardiac up-regulation of B1 receptor and AT1 receptor mRNA were markedly reduced in animals treated with BI 113823, although bradykinin B2 receptor and angiotensin 1 converting enzyme (ACE1 mRNA expression were not significantly affected by B1 receptor blockade.The present study demonstrates that treatment with the novel B1 receptor antagonist, BI-113823 improves post-MI cardiac function and does not influence the cardiovascular effects of AT1 receptor antagonist following MI.

  3. Nanomolar bifenthrin alters synchronous Ca2+ oscillations and cortical neuron development independent of sodium channel activity.

    Science.gov (United States)

    Cao, Zhengyu; Cui, Yanjun; Nguyen, Hai M; Jenkins, David Paul; Wulff, Heike; Pessah, Isaac N

    2014-04-01

    Bifenthrin, a relatively stable type I pyrethroid that causes tremors and impairs motor activity in rodents, is broadly used. We investigated whether nanomolar bifenthrin alters synchronous Ca(2+) oscillations (SCOs) necessary for activity-dependent dendritic development. Primary mouse cortical neurons were cultured 8 or 9 days in vitro (DIV), loaded with the Ca(2+) indicator Fluo-4, and imaged using a Fluorescence Imaging Plate Reader Tetra. Acute exposure to bifenthrin rapidly increased the frequency of SCOs by 2.7-fold (EC50 = 58 nM) and decreased SCO amplitude by 36%. Changes in SCO properties were independent of modifications in voltage-gated sodium channels since 100 nM bifenthrin had no effect on the whole-cell Na(+) current, nor did it influence neuronal resting membrane potential. The L-type Ca(2+) channel blocker nifedipine failed to ameliorate bifenthrin-triggered SCO activity. By contrast, the metabotropic glutamate receptor (mGluR)5 antagonist MPEP [2-methyl-6-(phenylethynyl)pyridine] normalized bifenthrin-triggered increase in SCO frequency without altering baseline SCO activity, indicating that bifenthrin amplifies mGluR5 signaling independent of Na(+) channel modification. Competitive [AP-5; (-)-2-amino-5-phosphonopentanoic acid] and noncompetitive (dizocilpine, or MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate]) N-methyl-d-aspartate antagonists partially decreased both basal and bifenthrin-triggered SCO frequency increase. Bifenthrin-modified SCO rapidly enhanced the phosphorylation of cAMP response element-binding protein (CREB). Subacute (48 hours) exposure to bifenthrin commencing 2 DIV-enhanced neurite outgrowth and persistently increased SCO frequency and reduced SCO amplitude. Bifenthrin-stimulated neurite outgrowth and CREB phosphorylation were dependent on mGluR5 activity since MPEP normalized both responses. Collectively these data identify a new mechanism by which bifenthrin potently alters Ca(2

  4. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 124; Issue 3. Activated anilide in heterocyclic synthesis: Synthesis of new hydrazo, dihydropyridazine, tetrahydropyridine, dihydropyridine and pyranopyridine derivatives. Ibrahim Saad Abdel Hafiz Mahmoud Mohamed Mahfouz Ramiz Mohamed Ahmed Elian. Volume ...

  5. 4-Ferrocenylpyridine- and 4-Ferrocenyl-3-ferrocenylmethyl-3,4-dihydropyridine-3,5-dicarbonitriles: Multi-Component Synthesis, Structures and Electrochemistry

    Directory of Open Access Journals (Sweden)

    Luis Ortiz-Frade

    2012-08-01

    Full Text Available The reactions of 2-cyano-3-ferrocenylacrylonitrile (1 with malononitrile (2 in a MeOH/H2O or 2-PrOH/H2O medium in the presence of Na2CO3 afforded 6-alkoxy-2-amino-4-ferrocenylpyridine-3,5-dicarbonitriles 3a,b (multi-component condensation and 6-alkoxy-2-amino-4-ferrocenyl-3-ferrocenylmethyl-3,4-dihydropyridine-3,5-dicarbonitriles 4a,b (multi-component cyclodimerization. Analogous reactions of 1 with 2 in an MeOH/H2O medium in the presence of NaOH, piperidine, or morpholine gave compounds 3a, 4a and 2-amino-4-ferrocenyl-6-hydroxy-, 6-piperidino- and 6-morpholinopyridine-3,5-dicarbonitriles 3ce, respectively. The structures of the compounds 3b, 4a and 4b were established by the spectroscopic data and X-ray diffraction analysis. The electrochemical behaviour of compounds 3b, 3d and 4b was investigated by means of cyclic voltammetry.

  6. Benzodiazepine receptor antagonists for hepatic encephalopathy

    DEFF Research Database (Denmark)

    Als-Nielsen, B; Gluud, L L; Gluud, C

    2004-01-01

    Hepatic encephalopathy may be associated with accumulation of substances that bind to a receptor-complex in the brain resulting in neural inhibition. Benzodiazepine receptor antagonists may have a beneficial effect on patients with hepatic encephalopathy.......Hepatic encephalopathy may be associated with accumulation of substances that bind to a receptor-complex in the brain resulting in neural inhibition. Benzodiazepine receptor antagonists may have a beneficial effect on patients with hepatic encephalopathy....

  7. Structure-activity relationships of dimethylsphingosine (DMS) derivatives and their effects on intracellular pH and Ca2+ in the U937 monocyte cell line.

    Science.gov (United States)

    Chang, Young-Ja; Lee, Yun-Kyung; Lee, Eun-Hee; Park, Jeong-Ju; Chung, Sung-Kee; Im, Dong-Soon

    2006-08-01

    We recently reported that dimethylsphingosine (DMS), a metabolite of sphingolipids, increased intracellular pH and Ca2+ concentration in U937 human monocytes. In the present study, we found that dimethylphytosphingosine (DMPH) induced the above responses more robustly than DMS. However, phytosphingosine, monomethylphytosphingosine or trimethylsphingosine showed little or no activity. Synthetic C3 deoxy analogues of sphingosine did show similar activities, with the C16 analogue more so than C18. The following structure-activity relationships were observed between DMS derivatives and the intracellular pH and Ca2+ concentrations in U937 monocytes; 1) dimethyl modification is important for the DMS-induced increase of intracellular pH and Ca2+, 2) the addition of an OH group on C4 enhances both activities, 3) the deletion of the OH group on C3 has a negligible effect on the activities, and 4) C16 appears to be more effective than C18. We also found that W-7, a calmodulin inhibitor, blocked the DMS-induced pH increase, whereas, KN-62, ML9, and MMPX, specific inhibitors for calmodulin-dependent kinase II, myosin light chain kinase, and Ca(2+)-calmodulin-dependent phosphodiesterase, respectively, did not affect DMS-induced increases of pH in the U937 monocytes.

  8. CaFeAl mixed oxide derived heterogeneous catalysts for transesterification of soybean oil to biodiesel.

    Science.gov (United States)

    Lu, Yongsheng; Zhang, Zaiwu; Xu, Yunfeng; Liu, Qiang; Qian, Guangren

    2015-08-01

    CaAl layered double oxides (LDO) were prepared by co-precipitation and calcined at 750°C, and then applied to biodiesel production by transesterification reaction between methanol and soybean oil. Compared with characteristics of CaFe/LDO and CaAl/LDO, CaFeAl/LDO had the best performance based on prominent catalytic activity and stability, and achieved over 90% biodiesel yield, which stayed stable (over 85%) even after 8 cycles of reaction. The optimal catalytic reaction condition was 12:1M-ratio of methanol/oil, reaction temperatures of 60°C, 270rpm stirring rate, 60min reaction time, and 6% weight-ratio of catalyst/oil. In addition, the CaFeAl/LDO catalyst is insoluble in both methanol and methyl esters and can be easily separated for further reaction, turning it into an excellent alternative for biodiesel synthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Spark plasma sintering of hydrothermally derived ultrafine Ca doped lanthanum chromite powders

    Directory of Open Access Journals (Sweden)

    Rendón-Angeles, J. C.

    2006-08-01

    Full Text Available Lanthanum chromite nano-particles, with a composition of La0.9Ca0.1CrO3 and La0.8Ca0.2CrO3, were produced by 1 h of hydrothermal reaction at 400 and 425°C respectively. The sintering of the powders was conducted using a spark plasma apparatus over the temperature range 1300-1550ºC for 1 min with a constant loading pressure of 45 MPa. Additional sintering experiments using conventional firing were carried out for comparison. Fully densified (98 % r.d. lanthanum chromite pellets with fine equiaxial grains 2.3 μm in size were obtained using the SPS (spark plasma sintering method. In contrast, a maximum relative density of 97 % was produced using La0.8Ca0.2CrO3 sintered conventionally at 1400ºC for 300 min, and the average grain size of the resulting sintered sample was 6 μm.

    Partículas ultrafinas de cromita de lantano, con una composición de La0.9Ca0.1CrO3 y La0.8Ca0.2CrO3, se obtuvieron después de 1 hora de síntesis hidrotermal a las temperaturas de 400 y 425°C respectivamente. Los compuestos obtenidos, con un tamaño de partícula de ~ 200 nm, se caracterizaron utilizando las técnicas de DRX, MEB y MET. La sinterización de estos polvos se efectuó en un equipo de chispa de plasma en el rango de temperatura de 1300-1500°C durante 1 min, y a una presión de compactación de 45 MPa. Ambos polvos también se sinterizaron siguiendo un tratamiento térmico convencional, en aire, con el propósito de comparar ambos métodos de sinterización. Las muestras de cromita de lantano sinterizadas por plasma presentaban una densidad relativa del 98 % (/t; y una microestructura monofásica con granos equaxiales con un tamaño medio de grano menor de 2.3 μm. En contraste, la composición La0.8Ca0.2CrO3, sinterizada a 1400°C/300 min, por métodos convencionales alcanzó una densidad relativa máxima del 97 % y su microestructura estaba formada por una sola fase con un tamaño medio de grano de 6 μm.

  10. Design and synthesis of aryloxypropanolamine as β3-adrenergic receptor antagonist in cancer and lipolysis.

    Science.gov (United States)

    Jin, Jiyu; Miao, Chunxiao; Wang, Zhilong; Zhang, Wanli; Zhang, Xiongwen; Xie, Xin; Lu, Wei

    2018-04-25

    β-adrenergic receptors (β-ARs) are broadly distributed in various tissues and regulate a panel of important physiological functions and disease states including cancer. Above all, β 3 -adrenergic receptor (β 3 -AR) plays a significant role in regulating lipolysis and thermogenesis in adipose tissue. In this study, we designed and synthesized a series of novel L-748,337 derivatives as selective human β 3 -AR antagonists. Among all the tested L-748,337 analogs, compound 23d was found to display 23-fold more potent β 3 -AR antagonist activity (EC 50  = 0.5117 nM) than L-748,337 (EC 50  = 11.91 nM). In vivo, compound 23d could alleviate weight loss and inhibit tumor growth in C26 tumor cachexia animal model. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Biochemical Evaluation and Toxicological Effects of Lacidipine on ...

    African Journals Online (AJOL)

    ... 1,4-dihydropyridine derivative with potent and long lasting antihypertensive ... the drug ranging from 0.02 to 0.23 mg/kg body weight over a two-week period. ... cause significant target organ toxicity or adverse effects on normotensive rats.

  12. Thrombin-receptor antagonist vorapaxar in acute coronary syndromes

    DEFF Research Database (Denmark)

    Tricoci, Pierluigi; Huang, Zhen; Held, Claes

    2012-01-01

    Vorapaxar is a new oral protease-activated-receptor 1 (PAR-1) antagonist that inhibits thrombin-induced platelet activation.......Vorapaxar is a new oral protease-activated-receptor 1 (PAR-1) antagonist that inhibits thrombin-induced platelet activation....

  13. Oxygen-coupled Redox Regulation of the Skeletal Muscle Ryanodine Receptor/Ca2+ Release Channel (RyR1)

    Science.gov (United States)

    Sun, Qi-An; Wang, Benlian; Miyagi, Masaru; Hess, Douglas T.; Stamler, Jonathan S.

    2013-01-01

    In mammalian skeletal muscle, Ca2+ release from the sarcoplasmic reticulum (SR) through the ryanodine receptor/Ca2+-release channel RyR1 can be enhanced by S-oxidation or S-nitrosylation of separate Cys residues, which are allosterically linked. S-Oxidation of RyR1 is coupled to muscle oxygen tension (pO2) through O2-dependent production of hydrogen peroxide by SR-resident NADPH oxidase 4. In isolated SR (SR vesicles), an average of six to eight Cys thiols/RyR1 monomer are reversibly oxidized at high (21% O2) versus low pO2 (1% O2), but their identity among the 100 Cys residues/RyR1 monomer is unknown. Here we use isotope-coded affinity tag labeling and mass spectrometry (yielding 93% coverage of RyR1 Cys residues) to identify 13 Cys residues subject to pO2-coupled S-oxidation in SR vesicles. Eight additional Cys residues are oxidized at high versus low pO2 only when NADPH levels are supplemented to enhance NADPH oxidase 4 activity. pO2-sensitive Cys residues were largely non-overlapping with those identified previously as hyperreactive by administration of exogenous reagents (three of 21) or as S-nitrosylated. Cys residues subject to pO2-coupled oxidation are distributed widely within the cytoplasmic domain of RyR1 in multiple functional domains implicated in RyR1 activity-regulating interactions with the L-type Ca2+ channel (dihydropyridine receptor) and FK506-binding protein 12 as well as in “hot spot” regions containing sites of mutation implicated in malignant hyperthermia and central core disease. pO2-coupled disulfide formation was identified, whereas neither S-glutathionylated nor sulfenamide-modified Cys residues were observed. Thus, physiological redox regulation of RyR1 by endogenously generated hydrogen peroxide is exerted through dynamic disulfide formation involving multiple Cys residues. PMID:23798702

  14. Calreticulin reveals a critical Ca2+ checkpoint in cardiac myofibrillogenesis

    Science.gov (United States)

    Li, Jian; Pucéat, Michel; Perez-Terzic, Carmen; Mery, Annabelle; Nakamura, Kimitoshi; Michalak, Marek; Krause, Karl-Heinz; Jaconi, Marisa E.

    2002-01-01

    Calreticulin (crt) is an ubiquitously expressed and multifunctional Ca2+-binding protein that regulates diverse vital cell functions, including Ca2+ storage in the ER and protein folding. Calreticulin deficiency in mice is lethal in utero due to defects in heart development and function. Herein, we used crt − / − embryonic stem (ES) cells differentiated in vitro into cardiac cells to investigate the molecular mechanisms underlying heart failure of knockout embryos. After 8 d of differentiation, beating areas were prominent in ES-derived wild-type (wt) embryoid bodies (EBs), but not in ES-derived crt − / − EBs, despite normal expression levels of cardiac transcription factors. Crt − / − EBs exhibited a severe decrease in expression and a lack of phosphorylation of ventricular myosin light chain 2 (MLC2v), resulting in an impaired organization of myofibrils. Crt − / − phenotype could be recreated in wt cells by chelating extracellular or cytoplasmic Ca2+ with EGTA or BAPTA, or by inhibiting Ca2+/calmodulin-dependent kinases (CaMKs). An imposed ionomycin-triggered cystolic-free Ca2+ concentration ([Ca2+]c) elevation restored the expression, phosphorylation, and insertion of MLC2v into sarcomeric structures and in turn the myofibrillogenesis. The transcription factor myocyte enhancer factor C2 failed to accumulate into nuclei of crt − / − cardiac cells in the absence of ionomycin-triggered [Ca2+]c increase. We conclude that the absence of calreticulin interferes with myofibril formation. Most importantly, calreticulin deficiency revealed the importance of a Ca2+-dependent checkpoint critical for early events during cardiac myofibrillogenesis. PMID:12105184

  15. Synthesis of carbon-11 labeled 1-(3,4-dimethoxybenzyl)-2,2-dimethyl-1,2,3,4-tetrahydroisoquinolinium derivatives as new potential PET SK{sub Ca} channel imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Gao Mingzhang; Wang Min [Department of Radiology, Indiana University School of Medicine, 1345 West 16th Street, L-3 Room 202, Indianapolis, IN 46202 (United States); Zheng Qihuang [Department of Radiology, Indiana University School of Medicine, 1345 West 16th Street, L-3 Room 202, Indianapolis, IN 46202 (United States)], E-mail: qzheng@iupui.edu

    2008-02-15

    Small conductance Ca{sup 2+}-activated K{sup +} (SK{sub Ca}) channels play an important role in many functions such as neuronal communication and behavioral plasticity, secretion, and cell proliferation. SK{sub Ca} channel modulation is associated with various brain, heart, and cancer diseases. N-methyl-laudanosine and its structurally related derivatives, substituted 1-(3,4-dimethoxybenzyl)-2,2-dimethyl-1,2,3,4-tetrahydroisoquinoliniums, are reversible and selective SK{sub Ca} channel blockers. Carbon-11 labeled N-methyl-laudanosine and its tetrahydroisoquinolinium derivatives may serve as new probes for positron emission tomography (PET) to image SK{sub Ca} channels in the brain, heart, and cancer. The key intermediates, substituted isoquinolines (3a-c), were synthesized using a modification of the Pomeranz-Fritsch procedure. The precursors, substituted 1-(3,4-dimethoxybenzyl)-2-methyl-1,2,3,4-tetrahydroisoquinolines (8a-c), and their corresponding reference standards, substituted 1-(3,4-dimethoxybenzyl)-2,2-dimethyl-1,2,3,4-tetrahydroisoquinoliniums (9a-c), were synthesized from compounds 3a-c with 3,4-dimethoxybenzyl chloride (2) in multiple steps with moderate to excellent chemical yields. The precursor 6,7-dimethoxy-1-(3,4-dimethoxybenzyl)-2-methyl-1,2,3, 4-tetrahydroisoquinoline (10) was commercially available, and the methylation of compound 10 with methyl iodide provided N-methyl-laudanosine (11). The target quaternary ammonium tracers, carbon-11 labeled 1-(3,4-dimethoxybenzyl)-2,2-dimethyl-1,2,3,4-tetrahydroisoquinoliniums ([{sup 11}C]9a-c and [{sup 11}C]11), were prepared by N-[{sup 11}C]methylation of the tertiary amine precursors (8a-c and 10) with [{sup 11}C]methyl triflate and isolated by a simplified solid-phase extraction (SPE) purification using a SiO{sub 2} or cation-exchange CM Sep-Pak cartridge in 40-65% radiochemical yields.

  16. Role of calcium in effects of atrial natriuretic peptide on aldosterone production in adrenal glomerulosa cells

    International Nuclear Information System (INIS)

    Chartier, L.; Schiffrin, E.L.

    1987-01-01

    Atrial natriuretic peptide (ANP) inhibits the stimulation of aldosterone secretion by isolated adrenal glomerulosa cells produced by angiotensin II (ANG II), ACTH, and potassium. The effect of ANP on the dose-response curve of aldosterone stimulated by ANG II, ACTH, and potassium on isolated rat adrenal glomerulosa cells was studied. In the presence of ANP the maximal response of aldosterone output stimulated by ANG II or potassium decreased and the half-maximum (EC 50 ) of the response to ACTH was displaced to the right. Because these effects resemble those of calcium-channel blockers, the authors investigated the effect of different concentrations of nifedipine, a dihydropyridine calcium-channel blocker, on the dose-response curve of aldosterone stimulated by ANG II, ACTH, and potassium. Nifedipine produced effects similar to ANP. The maximal response of aldosterone stimulated by ANG II and potassium was decreased and the dose-response curve to ACTH was displaced to the right. ANP decreased the maximal response of aldosterone to the dihydropyridine derivative BAY K8644, a calcium-channel activator, without change in its EC 50 . In contrast, nifedipine displaced the dose-response curve to BAY K8644 to the right as expected of a competitive inhibitor. The effect of ANP and nifedipine on basal and stimulated 45 Ca influx into isolated rat adrenal glomerulosa cells was studied. ANP may act on the rat adrenal glomerulosa cells at least in part by interference with calcium entry

  17. Triazole RGD antagonist reverts TGFβ1-induced endothelial-to-mesenchymal transition in endothelial precursor cells.

    Science.gov (United States)

    Bianchini, Francesca; Peppicelli, Silvia; Fabbrizzi, Pierangelo; Biagioni, Alessio; Mazzanti, Benedetta; Menchi, Gloria; Calorini, Lido; Pupi, Alberto; Trabocchi, Andrea

    2017-01-01

    Fibrosis is the dramatic consequence of a dysregulated reparative process in which activated fibroblasts (myofibroblasts) and Transforming Growth Factor β1 (TGFβ1) play a central role. When exposed to TGFβ1, fibroblast and epithelial cells differentiate in myofibroblasts; in addition, endothelial cells may undergo endothelial-to-mesenchymal transition (EndoMT) and actively participate to the progression of fibrosis. Recently, the role of αv integrins, which recognize the Arg-Gly-Asp (RGD) tripeptide, in the release and signal transduction activation of TGFβ1 became evident. In this study, we present a class of triazole-derived RGD antagonists that interact with αvβ3 integrin. Above different compounds, the RGD-2 specifically interferes with integrin-dependent TGFβ1 EndoMT in Endothelial Colony-Forming Cells (ECPCs) derived from circulating Endothelial Precursor Cells (ECPCs). The RGD-2 decreases the amount of membrane-associated TGFβ1, and reduces both ALK5/TGFβ1 type I receptor expression and Smad2 phosphorylation in ECPCs. We found that RGD-2 antagonist reverts EndoMT, reducing α-smooth muscle actin (α-SMA) and vimentin expression in differentiated ECPCs. Our results outline the critical role of integrin in fibrosis progression and account for the opportunity of using integrins as target for anti-fibrotic therapeutic treatment.

  18. Modification of a loop sequence between α-helices 6 and 7 of virus capsid (CA protein in a human immunodeficiency virus type 1 (HIV-1 derivative that has simian immunodeficiency virus (SIVmac239 vif and CA α-helices 4 and 5 loop improves replication in cynomolgus monkey cells

    Directory of Open Access Journals (Sweden)

    Adachi Akio

    2009-08-01

    Full Text Available Abstract Background Human immunodeficiency virus type 1 (HIV-1 productively infects only humans and chimpanzees but not cynomolgus or rhesus monkeys while simian immunodeficiency virus isolated from macaque (SIVmac readily establishes infection in those monkeys. Several HIV-1 and SIVmac chimeric viruses have been constructed in order to develop an animal model for HIV-1 infection. Construction of an HIV-1 derivative which contains sequences of a SIVmac239 loop between α-helices 4 and 5 (L4/5 of capsid protein (CA and the entire SIVmac239 vif gene was previously reported. Although this chimeric virus could grow in cynomolgus monkey cells, it did so much more slowly than did SIVmac. It was also reported that intrinsic TRIM5α restricts the post-entry step of HIV-1 replication in rhesus and cynomolgus monkey cells, and we previously demonstrated that a single amino acid in a loop between α-helices 6 and 7 (L6/7 of HIV type 2 (HIV-2 CA determines the susceptibility of HIV-2 to cynomolgus monkey TRIM5α. Results In the study presented here, we replaced L6/7 of HIV-1 CA in addition to L4/5 and vif with the corresponding segments of SIVmac. The resultant HIV-1 derivatives showed enhanced replication capability in established T cell lines as well as in CD8+ cell-depleted primary peripheral blood mononuclear cells from cynomolgus monkey. Compared with the wild type HIV-1 particles, the viral particles produced from a chimeric HIV-1 genome with those two SIVmac loops were less able to saturate the intrinsic restriction in rhesus monkey cells. Conclusion We have succeeded in making the replication of simian-tropic HIV-1 in cynomolgus monkey cells more efficient by introducing into HIV-1 the L6/7 CA loop from SIVmac. It would be of interest to determine whether HIV-1 derivatives with SIVmac CA L4/5 and L6/7 can establish infection of cynomolgus monkeys in vivo.

  19. Ca{sup 2+} influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Naohiko [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Ito, Satoru, E-mail: itori@med.nagoya-u.ac.jp [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Furuya, Kishio [Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Takahara, Norihiro [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Naruse, Keiji [Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Okayama 700-8558 (Japan); Aso, Hiromichi; Kondo, Masashi [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Sokabe, Masahiro [Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Hasegawa, Yoshinori [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan)

    2014-10-10

    Highlights: • Uniaxial stretching activates Ca{sup 2+} signaling in human lung fibroblasts. • Stretch-induced intracellular Ca{sup 2+} elevation is mainly via Ca{sup 2+} influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca{sup 2+} influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca{sup 2+}]{sub i} transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca{sup 2+}]{sub i}. The stretch-induced [Ca{sup 2+}]{sub i} elevation was attenuated in Ca{sup 2+}-free solution. In contrast, the increase of [Ca{sup 2+}]{sub i} by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd{sup 3+}, ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca{sup 2+}]{sub i} elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca{sup 2+} influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP.

  20. Bioactivity of gel-glass powders in the CaO-SiO2 system: a comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O).

    Science.gov (United States)

    Saravanapavan, Priya; Jones, Julian R; Pryce, Russell S; Hench, Larry L

    2003-07-01

    Bioactive glasses react chemically with body fluids in a manner that is compatible with the repair processes of the tissues. This results in the formation of an interfacial bond between the glasses and living tissue. Bioactive glasses also stimulate bone-cell proliferation. This behavior is dependent on the chemical composition as well as the surface texture of the glasses. It has been recently reported that gel-derived monolith specimens in the binary SiO2 - CaO are bioactive over a similar molar range of SiO2 content as the previously studied ternary CaO-P2O5-SiO2 system. In this report, the preparation and bioactivity of the binary gel-glass powder with 70 mol % SiO2 is discussed and its bioactivity is compared with the melt-derived 45S5 (quaternary) Bioglass and sol-gel-derived 58S (ternary) bioactive gel-glass compositions. Dissolution kinetic parameters K(1) and K(2) were also computed based on the silicon release for all glass powders. It was shown that the simple two-component SiO2-CaO gel-glass powder is bioactive with comparable dissolution rates as the clinically used melt-derived 45S5 Bioglass powder and extensively studied sol-gel-derived 58S gel-glass powder. Copyright 2003 Wiley Periodicals, Inc.

  1. Nuclear spectroscopy of Ca and Sc isotopes from inelastic scattering and one-nucleon transfer reactions on a radioactive 41Ca target

    International Nuclear Information System (INIS)

    Vold, P.

    1978-04-01

    The structure of energy levels in 40 , 42 Ca and 42 Sc has been studied using inelastic proton scattering and one-nucleon stripping and pick-up transfer reactions on a 41 Ca target. Data has given the following information on the properties of the 41 Ca ground state wave function; i) the 41 Ca (g.s.) looks very much like an f (sub7/2) neutron coupled to the 40 Ca (g.s.) core. ii) The core-excited component of the 41 Ca (g.s.) is determined to be 10 or less. It was inferred that the main constituents of the spectroscopic strength leading to the (f(sub7/2)) 2 , (f(sub7/2)p(sub3/2))(subt=1) and (f(sub7/2)p(sub1/2))(subT=1) configurations have been identified. This was used to deduce the effective two-particle matrix elements for these configurations. The 42 Sc and 42 Ca data result in excellent agreement for the T=1 members of the (f(sub7/2)) 2 multiplet while the (f(sub7/2)p(sub3/2))(subT=1) matrix elements derived from the 42 Sc data are about 0.2 MeV more repulsive than those obtained from the 42 Ca data. The (f(sub7/2)d(sub3/2) -1 ) matrix elements derived from the present ( 3 He,α) data were compared to the corresponding values obtained from one-nucleon stripping to mass 34 nuclei. The two sets of matrix elements are in very good agreement. The 40 Ca values are also well reproduced by calculations using the modified surface delta interaction. The experimental spectroscopic factors to both the T=0 and T=1 states of the (f(sub7/2)) 2 multiplet are in remarkably good agreement with the predicted values of the coexistence model considering the simplicity of this model. (JIW)

  2. Current position of 5HT3 antagonists and the additional value of NK1 antagonists; a new class of antiemetics

    NARCIS (Netherlands)

    R. de Wit (Ronald)

    2003-01-01

    textabstractThe advent of the 5HT3 receptor antagonists (5HT3 antagonists) in the 1990s and the combination with dexamethasone has resulted in acute emesis protection in 70% of patients receiving highly emetogenic chemotherapy. Despite complete protection in the acute phase, however, 40% of patients

  3. Opioid antagonists with minimal sedation for opioid withdrawal.

    Science.gov (United States)

    Gowing, Linda; Ali, Robert; White, Jason M

    2017-05-29

    Managed withdrawal is a necessary step prior to drug-free treatment or as the endpoint of long-term substitution treatment. To assess the effects of opioid antagonists plus minimal sedation for opioid withdrawal. Comparators were placebo as well as more established approaches to detoxification, such as tapered doses of methadone, adrenergic agonists, buprenorphine and symptomatic medications. We updated our searches of the following databases to December 2016: CENTRAL, MEDLINE, Embase, PsycINFO and Web of Science. We also searched two trials registers and checked the reference lists of included studies for further references to relevant studies. We included randomised and quasi-randomised controlled clinical trials along with prospective controlled cohort studies comparing opioid antagonists plus minimal sedation versus other approaches or different opioid antagonist regimens for withdrawal in opioid-dependent participants. We used standard methodological procedures expected by Cochrane. Ten studies (6 randomised controlled trials and 4 prospective cohort studies, involving 955 participants) met the inclusion criteria for the review. We considered 7 of the 10 studies to be at high risk of bias in at least one of the domains we assessed.Nine studies compared an opioid antagonist-adrenergic agonist combination versus a treatment regimen based primarily on an alpha 2 -adrenergic agonist (clonidine or lofexidine). Other comparisons (placebo, tapered doses of methadone, buprenorphine) made by included studies were too diverse for any meaningful analysis. This review therefore focuses on the nine studies comparing an opioid antagonist (naltrexone or naloxone) plus clonidine or lofexidine versus treatment primarily based on clonidine or lofexidine.Five studies took place in an inpatient setting, two studies were in outpatients with day care, two used day care only for the first day of opioid antagonist administration, and one study described the setting as outpatient

  4. A critical comparison of the current view of Ca signaling with the novel concept of F-actin-based Ca signaling.

    Science.gov (United States)

    Lange, Klaus; Gartzke, Joachim

    2006-01-01

    A detailed comparative survey on the current idea of Ca signaling and the alternative concept of F-actin-based Ca signaling is given. The two hypotheses differ in one central aspect - the mechanism of Ca storage. The current theory rests on the assumption of Ca-accumulating vesicles derived from the endoplasmic/ sarcoplasmic reticulum, which are equipped with an ATP-dependent Ca pump and IP3- or ryanodine-sensitive Ca-release channels/receptors. The alternative hypothesis proceeds from the idea of Ca storage at the high-affinity binding sites of F-actin subunits. Several prominent features of Ca signaling, which are not adequately described by the current concept, are inherent properties of the F-actin system and its dynamic state of treadmilling. F-actin is the only known biological Ca-binding system that has been proven by in vitro experiments to work within the physiological range of Ca concentrations and the only system that meets all necessary conditions to function as receptor-operated Ca store and as a coupling device between the Ca store and the store-operated Ca influx pathway. The most important properties of Ca signaling, such as store-channel coupling, quantal Ca release, spiking and oscillations, biphasic and "phasic" uptake kinetics, and Ca-induced Ca release, turn out to be systematic features of the new concept but remain unexplained by the classical vesicle storage hypothesis. A number of novel findings, specifically recent reports about direct effects of actin-specific toxins on Ca stores, have strengthened the new concept. The concept of F-actin-based Ca signaling combined with the notion of microvillar regulation of ion and substrate fluxes opens new aspects and far-reaching consequences, not only for cellular Ca signaling but also for various other cell functions, and represents an opportunity to connect several fields of cell physiology on the basis of a common mechanism.

  5. Novel 2-aminotetralin and 3-aminochroman derivatives as selective serotonin 5-HT7 receptor agonists and antagonists.

    Science.gov (United States)

    Holmberg, Pär; Sohn, Daniel; Leideborg, Robert; Caldirola, Patrizia; Zlatoidsky, Pavel; Hanson, Sverker; Mohell, Nina; Rosqvist, Susanne; Nordvall, Gunnar; Johansson, Anette M; Johansson, Rolf

    2004-07-29

    The understanding of the physiological role of the G-protein coupled serotonin 5-HT(7) receptor is largely rudimentary. Therefore, selective and potent pharmacological tools will add to the understanding of serotonergic effects mediated through this receptor. In this report, we describe two compound classes, chromans and tetralins, encompassing compounds with nanomolar affinity for the 5-HT(7) receptor and with good selectivity. Within theses classes, we have discovered both agonists and antagonists that can be used for further understanding of the pharmacology of the 5-HT(7) receptor.

  6. Ghrelin inhibits proliferation and increases T-type Ca2+ channel expression in PC-3 human prostate carcinoma cells

    International Nuclear Information System (INIS)

    Diaz-Lezama, Nundehui; Hernandez-Elvira, Mariana; Sandoval, Alejandro; Monroy, Alma; Felix, Ricardo; Monjaraz, Eduardo

    2010-01-01

    Research highlights: → Ghrelin decreases prostate carcinoma PC-3 cells proliferation. → Ghrelin favors apoptosis in PC-3 cells. → Ghrelin increase in intracellular free Ca 2+ levels in PC-3 cells. → Grelin up-regulates expression of T-type Ca 2+ channels in PC-3 cells. → PC-3 cells express T-channels of the Ca V 3.1 and Ca V 3.2 subtype. -- Abstract: Ghrelin is a multifunctional peptide hormone with roles in growth hormone release, food intake and cell proliferation. With ghrelin now recognized as important in neoplastic processes, the aim of this report is to present findings from a series of in vitro studies evaluating the cellular mechanisms involved in ghrelin regulation of proliferation in the PC-3 human prostate carcinoma cells. The results showed that ghrelin significantly decreased proliferation and induced apoptosis. Consistent with a role in apoptosis, an increase in intracellular free Ca 2+ levels was observed in the ghrelin-treated cells, which was accompanied by up-regulated expression of T-type voltage-gated Ca 2+ channels. Interestingly, T-channel antagonists were able to prevent the effects of ghrelin on cell proliferation. These results suggest that ghrelin inhibits proliferation and may promote apoptosis by regulating T-type Ca 2+ channel expression.

  7. Ca(2+)-calmodulin-dependent phosphorylation of islet secretory granule proteins

    International Nuclear Information System (INIS)

    Watkins, D.T.

    1991-01-01

    The effect of Ca2+ and calmodulin on phosphorylation of islet secretory granule proteins was studied. Secretory granules were incubated in a phosphorylation reaction mixture containing [32P]ATP and test reagents. The 32P-labeled proteins were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the 32P content was visualized by autoradiography, and the relative intensities of specific bands were quantitated. When the reaction mixture contained EGTA and no added Ca2+, 32P was incorporated into two proteins with molecular weights of 45,000 and 13,000. When 10(-4) M Ca2+ was added without EGTA, two additional proteins (58,000 and 48,000 Mr) were phosphorylated, and the 13,000-Mr protein was absent. The addition of 2.4 microM calmodulin markedly enhanced the phosphorylation of the 58,000- and 48,000-Mr proteins and resulted in the phosphorylation of a major protein whose molecular weight (64,000 Mr) is identical to that of one of the calmodulin binding proteins located on the granule surface. Calmodulin had no effect on phosphorylation in the absence of Ca2+ but was effective in the presence of calcium between 10 nM and 50 microM. Trifluoperazine and calmidazolium, calmodulin antagonists, produced a dose-dependent inhibition of the calmodulin effect. 12-O-tetradecanoylphorbol 13-acetate, a phorbol ester that activates protein kinase C, produced no increase in phosphorylation, and 1-(5-isoquinoline sulfonyl)-2-methyl piperazine dihydrochloride, an inhibitor of protein kinase C, had no effect. These results indicate that Ca(2+)-calmodulin-dependent protein kinases and endogenous substrates are present in islet secretory granules

  8. PDGF-induced migration of synthetic vascular smooth muscle cells through c-Src-activated L-type Ca2+ channels with full-length CaV1.2 C-terminus.

    Science.gov (United States)

    Guo, Xiaoguang; Kashihara, Toshihide; Nakada, Tsutomu; Aoyama, Toshifumi; Yamada, Mitsuhiko

    2018-06-01

    In atherosclerosis, vascular smooth muscle cells (VSMC) migrate from the media toward the intima of the arteries in response to cytokines, such as platelet-derived growth factor (PDGF). However, molecular mechanism underlying the PDGF-induced migration of VSMCs remains unclear. The migration of rat aorta-derived synthetic VSMCs, A7r5, in response to PDGF was potently inhibited by a Ca V 1.2 channel inhibitor, nifedipine, and a Src family tyrosine kinase (SFK)/Abl inhibitor, bosutinib, in a less-than-additive manner. PDGF significantly increased Ca V 1.2 channel currents without altering Ca V 1.2 protein expression levels in A7r5 cells. This reaction was inhibited by C-terminal Src kinase, a selective inhibitor of SFKs. In contractile VSMCs, the C-terminus of Ca V 1.2 is proteolytically cleaved into proximal and distal C-termini (PCT and DCT, respectively). Clipped DCT is noncovalently reassociated with PCT to autoinhibit the channel activity. Conversely, in synthetic A7r5 cells, full-length Ca V 1.2 (Ca V 1.2FL) is expressed much more abundantly than truncated Ca V 1.2. In a heterologous expression system, c-Src activated Ca V 1.2 channels composed of Ca V 1.2FL but not truncated Ca V 1.2 (Ca V 1.2Δ1763) or Ca V 1.2Δ1763 plus clipped DCT. Further, c-Src enhanced the coupling efficiency between the voltage-sensing domain and activation gate of Ca V 1.2FL channels by phosphorylating Tyr1709 and Tyr1758 in PCT. Compared with Ca V 1.2Δ1763, c-Src could more efficiently bind to and phosphorylate Ca V 1.2FL irrespective of the presence or absence of clipped DCT. Therefore, in atherosclerotic lesions, phenotypic switching of VSMCs may facilitate pro-migratory effects of PDGF on VSMCs by suppressing posttranslational Ca V 1.2 modifications.

  9. Combination decongestion therapy in hospitalized heart failure: loop diuretics, mineralocorticoid receptor antagonists and vasopressin antagonists.

    Science.gov (United States)

    Vaduganathan, Muthiah; Mentz, Robert J; Greene, Stephen J; Senni, Michele; Sato, Naoki; Nodari, Savina; Butler, Javed; Gheorghiade, Mihai

    2015-01-01

    Congestion is the most common reason for admissions and readmissions for heart failure (HF). The vast majority of hospitalized HF patients appear to respond readily to loop diuretics, but available data suggest that a significant proportion are being discharged with persistent evidence of congestion. Although novel therapies targeting congestion should continue to be developed, currently available agents may be utilized more optimally to facilitate complete decongestion. The combination of loop diuretics, natriuretic doses of mineralocorticoid receptor antagonists and vasopressin antagonists represents a regimen of currently available therapies that affects early and persistent decongestion, while limiting the associated risks of electrolyte disturbances, hemodynamic fluctuations, renal dysfunction and mortality.

  10. MECHANISMS CONTROLLING Ca ION RELEASE FROM SOL-GEL DERIVED IN SITU APATITE-SILICA NANOCOMPOSITE POWDER

    Directory of Open Access Journals (Sweden)

    Seyed Mohsen Latifi

    2015-03-01

    Full Text Available Ca ion release from bioactive biomaterials could play an important role in their bioactivity and osteoconductivity properties. In order to improve hydroxyapatite (HA dissolution rate, in situ apatite-silica nanocomposite powders with various silica contents were synthesized via sol-gel method and mechanisms controlling the Ca ion release from them were investigated. Obtained powders were characterized by X-ray diffraction (XRD and transmission electron spectroscopy (TEM techniques, acid dissolution test, and spectroscopy by atomic absorption spectrometer (AAS. Results indicated the possible incorporation of (SiO44- into the HA structure and tendency of amorphous silica to cover the surface of HA particles. However, 20 wt. % silica was the lowest amount that fully covered HA particles. All of the nanocomposite powders showed more Ca ion release compared with pure HA, and HA - 10 wt. % silica had the highest Ca ion release. The crystallinity, the crystallite size, and the content of HA, along with the integrity, thickness, and ion diffusion possibility through the amorphous silica layer on the surface of HA, were factors that varied due to changes in the silica content and were affected the Ca ion release from nanocomposite powders.

  11. Dual antagonists of integrins.

    Science.gov (United States)

    Nadrah, K; Dolenc, M Sollner

    2005-01-01

    The roles of integrins in pathologies have been studied intensively and only partially explained. This has resulted in the development of several nanomolar antagonists to certain integrins. In most cases, the aim was to produce compounds which are highly selective towards specific integrins. This paradigm has recently shifted a little. Targeting two or more integrins with one compound has become a very attractive concept, especially since it has become clear that several severe disorders, such as pathological angiogenesis, cannot be treated just with highly specific integrin antagonists. This review is aimed to elucidate some aspects regarding the design of drugs with dual activity towards integrins. Integrin structure and tissue distribution will first be described, in order to provide the basis for their functions in various pathologies which will follow. Inhibitors of several pairs of integrins will be described.

  12. An interplay between 2 signaling pathways: Melatonin-cAMP and IP3–Ca2+ signaling pathways control intraerythrocytic development of the malaria parasite Plasmodium falciparum

    International Nuclear Information System (INIS)

    Furuyama, Wakako; Enomoto, Masahiro; Mossaad, Ehab; Kawai, Satoru; Mikoshiba, Katsuhiko; Kawazu, Shin-ichiro

    2014-01-01

    Highlights: • A melatonin receptor antagonist blocked Ca 2+ oscillation in P. falciparum and inhibited parasite growth. • P. falciparum development is controlled by Ca 2+ - and cAMP-signaling pathways. • The cAMP-signaling pathway at ring form and late trophozoite stages governs parasite growth of P. falciparum. - Abstract: Plasmodium falciparum spends most of its asexual life cycle within human erythrocytes, where proliferation and maturation occur. Development into the mature forms of P. falciparum causes severe symptoms due to its distinctive sequestration capability. However, the physiological roles and the molecular mechanisms of signaling pathways that govern development are poorly understood. Our previous study showed that P. falciparum exhibits stage-specific spontaneous Calcium (Ca 2+ ) oscillations in ring and early trophozoites, and the latter was essential for parasite development. In this study, we show that luzindole (LZ), a selective melatonin receptor antagonist, inhibits parasite growth. Analyses of development and morphology of LZ-treated P. falciparum revealed that LZ severely disrupted intraerythrocytic maturation, resulting in parasite death. When LZ was added at ring stage, the parasite could not undergo further development, whereas LZ added at the trophozoite stage inhibited development from early into late schizonts. Live-cell Ca 2+ imaging showed that LZ treatment completely abolished Ca 2+ oscillation in the ring forms while having little effect on early trophozoites. Further, the melatonin-induced cAMP increase observed at ring and late trophozoite stage was attenuated by LZ treatment. These suggest that a complex interplay between IP 3 –Ca 2+ and cAMP signaling pathways is involved in intraerythrocytic development of P. falciparum

  13. Antagonistic studies and hyphal interactions of the new antagonist Aspergillus piperis against some phytopathogenic fungi in vitro in comparison with Trichoderma harzianum.

    Science.gov (United States)

    El-Debaiky, Samah A

    2017-12-01

    The present study represents, for the first time, the detailed studies about the hyphal interactions of Aspergillus piperis, as a new antagonist, against some isolated plant pathogenic fungi (Alternaria alternata, Alternaria solani, Botrytis cinerea, Sclerotium cepivorum and Sclerotinia sclerotiorum) in vitro. The bio-controlling capability of A. piperis against the tested phytopathogens was tested using the dual culture method. This experiment revealed that A. piperis had antagonistic activity and reduced the growth of the tested phytopathogens and grew over their mycelia in the paired plates. Also, several antagonistic mechanisms were recorded, in this study, between A. piperis and the tested phytopathogens using the microscopic examination. The bio-controlling activity and the antagonistic mechanisms exhibited by the new antagonist, A. piperis were compared with those obtained by the common antagonist, Trichoderma harzianum against the same phytopathogens. The obtained results showed that, A. piperis was more effective than T. harzianum in inhibiting all the tested species in the dual culture plates. The best result was 81.85% inhibition percentage against S. sclerotiorum by A. piperis while, T. harzianum exhibits only 45.18%. Moreover, several antagonistic mechanisms and hyphal interactions were investigated among the hyphae of both A.piperis and T. harzianum and the hyphae of the tested phytopathogens. These mechanisms were summarized as; mycoparasitism (coiling and penetration of the hyphae) and antibiosis in the form of lysis of the hyphal cells and spores, denaturation and breaking of the hyphae. The indirect interaction (antibiosis) and the direct mycoparasitism were observed by A. piperis against all the tested phytopathogens, but it attacked the hyphae and conidiophores of A. alternata by only the antibiosis interaction. The microscopic examination revealed also that T. harzianum attacked the tested phytopathogens by both antibiosis and mycoparasitism

  14. Human induced pluripotent stem cell (hiPSC)-derived neurons respond to convulsant drugs when co-cultured with hiPSC-derived astrocytes.

    Science.gov (United States)

    Ishii, Misawa Niki; Yamamoto, Koji; Shoji, Masanobu; Asami, Asano; Kawamata, Yuji

    2017-08-15

    Accurate risk assessment for drug-induced seizure is expected to be performed before entering clinical studies because of its severity and fatal damage to drug development. Induced pluripotent stem cell (iPSC) technology has allowed the use of human neurons and glial cells in toxicology studies. Recently, several studies showed the advantage of co-culture system of human iPSC (hiPSC)-derived neurons with rodent/human primary astrocytes regarding neuronal functions. However, the application of hiPSC-derived neurons for seizure risk assessment has not yet been fully addressed, and not at all when co-cultured with hiPSC-derived astrocytes. Here, we characterized hiPSC-derived neurons co-cultured with hiPSC-derived astrocytes to discuss how hiPSC-derived neurons are useful to assess seizure risk of drugs. First, we detected the frequency of spikes and synchronized bursts hiPSC-derived neurons when co-cultured with hiPSC-derived astrocytes for 8 weeks. This synchronized burst was suppressed by the treatment with 6-cyano-7-nitroquinoxaline-2,3-dione, α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor antagonist, and D-(-)-2-amino-5-phosphonopentanoic acid, an N-Methyl-d-aspartate (NMDA) receptor antagonist. These data suggested that co-cultured hiPSC-derived neurons formed synaptic connections mediated by AMPA and NMDA receptors. We also demonstrated that co-cultured hiPSC-derived neurons showed epileptiform activity upon treatment with gabazine or kaliotoxin. Finally, we performed single-cell transcriptome analysis in hiPSC-derived neurons and found that hiPSC-derived astrocytes activated the pathways involved in the activities of AMPA and NMDA receptor functions, neuronal polarity, and axon guidance in hiPSC-derived neurons. These data suggested that hiPSC-derived astrocytes promoted the development of action potential, synaptic functions, and neuronal networks in hiPSC-derived neurons, and then these functional alterations result in the epileptiform

  15. Oral tremor induced by the muscarinic agonist pilocarpine is suppressed by the adenosine A2A antagonists MSX-3 and SCH58261, but not the adenosine A1 antagonist DPCPX.

    Science.gov (United States)

    Collins, Lyndsey E; Galtieri, Daniel J; Brennum, Lise T; Sager, Thomas N; Hockemeyer, Jörg; Müller, Christa E; Hinman, James R; Chrobak, James J; Salamone, John D

    2010-02-01

    Tremulous jaw movements in rats, which can be induced by dopamine (DA) antagonists, DA depletion, and cholinomimetics, have served as a useful model for studies of tremor. Although adenosine A(2A) antagonists can reduce the tremulous jaw movements induced by DA antagonists and DA depletion, there are conflicting reports about the interaction between adenosine antagonists and cholinomimetic drugs. The present studies investigated the ability of adenosine antagonists to reverse the tremorogenic effect of the muscarinic agonist pilocarpine. While the adenosine A(2A) antagonist MSX-3 was incapable of reversing the tremulous jaw movements induced by the 4.0mg/kg dose of pilocarpine, both MSX-3 and the adenosine A(2A) antagonist SCH58261 reversed the tremulous jaw movements elicited by 0.5mg/kg pilocarpine. Systemic administration of the adenosine A(1) antagonist DPCPX failed to reverse the tremulous jaw movements induced by either an acute 0.5mg/kg dose of the cholinomimetic pilocarpine or the DA D2 antagonist pimozide, indicating that the tremorolytic effects of adenosine antagonists may be receptor subtype specific. Behaviorally active doses of MSX-3 and SCH 58261 showed substantial in vivo occupancy of A(2A) receptors, but DPCPX did not. The results of these studies support the use of adenosine A(2A) antagonists for the treatment of tremor. Copyright 2009 Elsevier Inc. All rights reserved.

  16. Both neurons and astrocytes exhibited tetrodotoxin-resistant metabotropic glutamate receptor-dependent spontaneous slow Ca2+ oscillations in striatum.

    Directory of Open Access Journals (Sweden)

    Atsushi Tamura

    Full Text Available The striatum plays an important role in linking cortical activity to basal ganglia outputs. Group I metabotropic glutamate receptors (mGluRs are densely expressed in the medium spiny projection neurons and may be a therapeutic target for Parkinson's disease. The group I mGluRs are known to modulate the intracellular Ca(2+ signaling. To characterize Ca(2+ signaling in striatal cells, spontaneous cytoplasmic Ca(2+ transients were examined in acute slice preparations from transgenic mice expressing green fluorescent protein (GFP in the astrocytes. In both the GFP-negative cells (putative-neurons and astrocytes of the striatum, spontaneous slow and long-lasting intracellular Ca(2+ transients (referred to as slow Ca(2+ oscillations, which lasted up to approximately 200 s, were found. Neither the inhibition of action potentials nor ionotropic glutamate receptors blocked the slow Ca(2+ oscillation. Depletion of the intracellular Ca(2+ store and the blockade of inositol 1,4,5-trisphosphate receptors greatly reduced the transient rate of the slow Ca(2+ oscillation, and the application of an antagonist against mGluR5 also blocked the slow Ca(2+ oscillation in both putative-neurons and astrocytes. Thus, the mGluR5-inositol 1,4,5-trisphosphate signal cascade is the primary contributor to the slow Ca(2+ oscillation in both putative-neurons and astrocytes. The slow Ca(2+ oscillation features multicellular synchrony, and both putative-neurons and astrocytes participate in the synchronous activity. Therefore, the mGluR5-dependent slow Ca(2+ oscillation may involve in the neuron-glia interaction in the striatum.

  17. Homology-guided mutational analysis reveals the functional requirements for antinociceptive specificity of collapsin response mediator protein 2-derived peptides.

    Science.gov (United States)

    Moutal, Aubin; Li, Wennan; Wang, Yue; Ju, Weina; Luo, Shizhen; Cai, Song; François-Moutal, Liberty; Perez-Miller, Samantha; Hu, Jackie; Dustrude, Erik T; Vanderah, Todd W; Gokhale, Vijay; Khanna, May; Khanna, Rajesh

    2017-02-05

    N-type voltage-gated calcium (Ca v 2.2) channels are critical determinants of increased neuronal excitability and neurotransmission accompanying persistent neuropathic pain. Although Ca v 2.2 channel antagonists are recommended as first-line treatment for neuropathic pain, calcium-current blocking gabapentinoids inadequately alleviate chronic pain symptoms and often exhibit numerous side effects. Collapsin response mediator protein 2 (CRMP2) targets Ca v 2.2 channels to the sensory neuron membrane and allosterically modulates their function. A 15-amino-acid peptide (CBD3), derived from CRMP2, disrupts the functional protein-protein interaction between CRMP2 and Ca v 2.2 channels to inhibit calcium influx, transmitter release and acute, inflammatory and neuropathic pain. Here, we have mapped the minimal domain of CBD3 necessary for its antinociceptive potential. Truncated as well as homology-guided mutant versions of CBD3 were generated and assessed using depolarization-evoked calcium influx in rat dorsal root ganglion neurons, binding between CRMP2 and Ca v 2.2 channels, whole-cell voltage clamp electrophysiology and behavioural effects in two models of experimental pain: post-surgical pain and HIV-induced sensory neuropathy induced by the viral glycoprotein 120. The first six amino acids within CBD3 accounted for all in vitro activity and antinociception. Spinal administration of a prototypical peptide (TAT-CBD3-L5M) reversed pain behaviours. Homology-guided mutational analyses of these six amino acids identified at least two residues, Ala1 and Arg4, as being critical for antinociception in two pain models. These results identify an antinociceptive scaffold core in CBD3 that can be used for development of low MW mimetics of CBD3. © 2017 The British Pharmacological Society.

  18. Antagonistic and Bargaining Games in Optimal Marketing Decisions

    Science.gov (United States)

    Lipovetsky, S.

    2007-01-01

    Game theory approaches to find optimal marketing decisions are considered. Antagonistic games with and without complete information, and non-antagonistic games techniques are applied to paired comparison, ranking, or rating data for a firm and its competitors in the market. Mix strategy, equilibrium in bi-matrix games, bargaining models with…

  19. Compensatory mutations cause excess of antagonistic epistasis in RNA secondary structure folding

    Directory of Open Access Journals (Sweden)

    Adami Christoph

    2003-02-01

    Full Text Available Background The rate at which fitness declines as an organism's genome accumulates random mutations is an important variable in several evolutionary theories. At an intuitive level, it might seem natural that random mutations should tend to interact synergistically, such that the rate of mean fitness decline accelerates as the number of random mutations is increased. However, in a number of recent studies, a prevalence of antagonistic epistasis (the tendency of multiple mutations to have a mitigating rather than reinforcing effect has been observed. Results We studied in silico the net amount and form of epistatic interactions in RNA secondary structure folding by measuring the fraction of neutral mutants as a function of mutational distance d. We found a clear prevalence of antagonistic epistasis in RNA secondary structure folding. By relating the fraction of neutral mutants at distance d to the average neutrality at distance d, we showed that this prevalence derives from the existence of many compensatory mutations at larger mutational distances. Conclusions Our findings imply that the average direction of epistasis in simple fitness landscapes is directly related to the density with which fitness peaks are distributed in these landscapes.

  20. Compensatory mutations cause excess of antagonistic epistasis in RNA secondary structure folding.

    Science.gov (United States)

    Wilke, Claus O; Lenski, Richard E; Adami, Christoph

    2003-02-05

    The rate at which fitness declines as an organism's genome accumulates random mutations is an important variable in several evolutionary theories. At an intuitive level, it might seem natural that random mutations should tend to interact synergistically, such that the rate of mean fitness decline accelerates as the number of random mutations is increased. However, in a number of recent studies, a prevalence of antagonistic epistasis (the tendency of multiple mutations to have a mitigating rather than reinforcing effect) has been observed. We studied in silico the net amount and form of epistatic interactions in RNA secondary structure folding by measuring the fraction of neutral mutants as a function of mutational distance d. We found a clear prevalence of antagonistic epistasis in RNA secondary structure folding. By relating the fraction of neutral mutants at distance d to the average neutrality at distance d, we showed that this prevalence derives from the existence of many compensatory mutations at larger mutational distances. Our findings imply that the average direction of epistasis in simple fitness landscapes is directly related to the density with which fitness peaks are distributed in these landscapes.

  1. Ghrelin inhibits proliferation and increases T-type Ca{sup 2+} channel expression in PC-3 human prostate carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Lezama, Nundehui; Hernandez-Elvira, Mariana [Laboratory of Neuroendocrinology, Institute of Physiology, Autonomous University of Puebla (BUAP), Puebla (Mexico); Sandoval, Alejandro [School of Medicine FES Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla (Mexico); Monroy, Alma; Felix, Ricardo [Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City (Mexico); Monjaraz, Eduardo, E-mail: emguzman@siu.buap.mx [Laboratory of Neuroendocrinology, Institute of Physiology, Autonomous University of Puebla (BUAP), Puebla (Mexico)

    2010-12-03

    Research highlights: {yields} Ghrelin decreases prostate carcinoma PC-3 cells proliferation. {yields} Ghrelin favors apoptosis in PC-3 cells. {yields} Ghrelin increase in intracellular free Ca{sup 2+} levels in PC-3 cells. {yields} Grelin up-regulates expression of T-type Ca{sup 2+} channels in PC-3 cells. {yields} PC-3 cells express T-channels of the Ca{sub V}3.1 and Ca{sub V}3.2 subtype. -- Abstract: Ghrelin is a multifunctional peptide hormone with roles in growth hormone release, food intake and cell proliferation. With ghrelin now recognized as important in neoplastic processes, the aim of this report is to present findings from a series of in vitro studies evaluating the cellular mechanisms involved in ghrelin regulation of proliferation in the PC-3 human prostate carcinoma cells. The results showed that ghrelin significantly decreased proliferation and induced apoptosis. Consistent with a role in apoptosis, an increase in intracellular free Ca{sup 2+} levels was observed in the ghrelin-treated cells, which was accompanied by up-regulated expression of T-type voltage-gated Ca{sup 2+} channels. Interestingly, T-channel antagonists were able to prevent the effects of ghrelin on cell proliferation. These results suggest that ghrelin inhibits proliferation and may promote apoptosis by regulating T-type Ca{sup 2+} channel expression.

  2. Hypothalamic CaMKKβ mediates glucagon anorectic effect and its diet-induced resistance

    Science.gov (United States)

    Quiñones, Mar; Al-Massadi, Omar; Gallego, Rosalía; Fernø, Johan; Diéguez, Carlos; López, Miguel; Nogueiras, Ruben

    2015-01-01

    Objective Glucagon receptor antagonists and humanized glucagon antibodies are currently studied as promising therapies for obesity and type II diabetes. Among its variety of actions, glucagon reduces food intake, but the molecular mechanisms mediating this effect as well as glucagon resistance are totally unknown. Methods Glucagon and adenoviral vectors were administered in specific hypothalamic nuclei of lean and diet-induced obese rats. The expression of neuropeptides controlling food intake was performed by in situ hybridization. The regulation of factors of the glucagon signaling pathway was assessed by western blot. Results The central injection of glucagon decreased feeding through a hypothalamic pathway involving protein kinase A (PKA)/Ca2+-calmodulin-dependent protein kinase kinase β (CaMKKβ)/AMP-activated protein kinase (AMPK)-dependent mechanism. More specifically, the central injection of glucagon increases PKA activity and reduces protein levels of CaMKKβ and its downstream target phosphorylated AMPK in the hypothalamic arcuate nucleus (ARC). Consistently, central glucagon significantly decreased AgRP expression. Inhibition of PKA and genetic activation of AMPK in the ARC blocked glucagon-induced anorexia in lean rats. Genetic down-regulation of glucagon receptors in the ARC stimulates fasting-induced hyperphagia. Although glucagon was unable to decrease food intake in DIO rats, glucagon sensitivity was restored after inactivation of CaMKKβ, specifically in the ARC. Thus, glucagon decreases food intake acutely via PKA/CaMKKβ/AMPK dependent pathways in the ARC, and CaMKKβ mediates its obesity-induced hypothalamic resistance. Conclusions This work reveals the molecular underpinnings by which glucagon controls feeding that may lead to a better understanding of disease states linked to anorexia and cachexia. PMID:26909312

  3. Stereoselective inhibition of thromboxane-induced coronary vasoconstriction by 1,4-dihydropyridine calcium channel antagonists

    International Nuclear Information System (INIS)

    Eltze, M.; Boer, R.; Sanders, K.H.; Boss, H.; Ulrich, W.R.; Flockerzi, D.

    1990-01-01

    The biological activity of the (+)-S- and (-)-R-enantiomers of niguldipine, of the (-)-S- and (+)-R-enantiomers of felodipine and nitrendipine, and of rac-nisoldipine and rac-nimodipine was investigated in vitro and in vivo. Inhibition of coronary vasoconstriction due to the thromboxane A2 (TxA2)-mimetic U-46619 in guinea pig Langendorff hearts, displacement of (+)-[ 3 H]isradipine from calcium channel binding sites of guinea pig skeletal muscle T-tubule membranes, and blood pressure reduction in spontaneously hypertensive rats were determined. The enantiomers were obtained by stereoselective synthesis. Cross-contamination was less than 0.5% for both S- and R-enantiomers of niguldipine and nitrendipine and less than 1% for those of felodipine. From the doses necessary for a 50% inhibition of coronary vasoconstriction, stereoselectivity ratios for (+)-(S)-/(-)-(R)-niguldipine, (-)-(S)-/(+)-(R)-felodipine, and (-)-(S)-/(+)-(R)-nitrendipine of 28, 13, and 7, respectively, were calculated. The potency ratio rac-nisoldipine/rac-nimodipine was 3.5. Ratios obtained from binding experiments and antihypertensive activity were (+)-(S)-/(-)-(R)-niguldipine = 45 and 35, (-)-(S)-/(+)-(R)-felodipine = 12 and 13, (-)-(S)-/(+)-(R)-nitrendipine = 8 and 8, and rac-nisoldipine/rac-nimodipine = 8 and 7, respectively. Highly significant correlations were found between the in vitro potency of the substances to prevent U-46619-induced coronary vasoconstriction and their affinity for calcium channel binding sites as well as their antihypertensive activity

  4. Alpha-Adrenoceptor Antagonists Improve Memory by Activating -methyl-D-Aspartate-Induced Ion Currents in the Rat Hippocampus

    Directory of Open Access Journals (Sweden)

    Chang Hee Kim

    2015-12-01

    Full Text Available Purpose: Alpha1 (α1-adrenoceptor antagonists are widely used to treat lower urinary tract symptoms. These drugs not only act on peripheral tissues, but also cross the blood-brain barrier and affect the central nervous system. Therefore, α1-adrenoceptor antagonists may enhance brain functions. In the present study, we investigated the effects of tamsulosin, an α1-adrenoceptor antagonist, on short-term memory, as well as spatial learning and memory, in rats. Methods: The step-down avoidance test was used to evaluate short-term memory, and an eight-arm radial maze test was used to evaluate spatial learning and memory. TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling staining was performed in order to evaluate the effect of tamsulosin on apoptosis in the hippocampal dentate gyrus. Patch clamp recordings were used to evaluate the effect of tamsulosin on ionotropic glutamate receptors, such as N-methyl-D-aspartate (NMDA, amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA, and kainate receptors, in hippocampal CA1 neurons. Results: Tamsulosin treatment improved short-term memory, as well as spatial learning and memory, without altering apoptosis. The amplitudes of NMDA-induced ion currents were dose-dependently increased by tamsulosin. However, the amplitudes of AMPA- and kainate-induced ion currents were not affected by tamsulosin. Conclusions: Tamsulosin enhanced memory function by activating NMDA receptor-mediated ion currents in the hippocampus without initiating apoptosis. The present study suggests the possibility of using tamsulosin to enhance memory under normal conditions, in addition to its use in treating overactive bladder.

  5. Identification and characterization of MEL-3, a novel AR antagonist that suppresses prostate cancer cell growth.

    Science.gov (United States)

    Helsen, Christine; Marchand, Arnaud; Chaltin, Patrick; Munck, Sebastian; Voet, Arnout; Verstuyf, Annemieke; Claessens, Frank

    2012-06-01

    Antiandrogens are an important component of prostate cancer therapy as the androgen receptor (AR) is the key regulator of prostate cancer growth and survival. Current AR antagonists, such as bicalutamide and hydroxyflutamide, have a low affinity for the AR and as a result block AR signaling insufficiently. Moreover, many patients develop a resistance for bicalutamide or hydroxyflutamide during therapy or show a clinical improvement after withdrawal of the antiandrogen. New and more effective AR antagonists are needed to ensure follow-up of these patients. We therefore developed a screening system to identify novel AR antagonists from a collection of compounds. MEL-3 [8-(propan-2-yl)-5,6-dihydro-4H-pyrazino[3,2,1-jk]carbazole] was selected as potent inhibitor of the AR and was further characterized in vitro. On different prostate cancer cell lines MEL-3 displayed an improved therapeutic profile compared with bicalutamide. Not only cell growth was inhibited but also the expression of androgen-regulated genes: PSA and FKBP5. Prostate cancer is often associated with mutated ARs that respond to a broadened spectrum of ligands including the current antiandrogens used in the clinic, hydroxyflutamide and bicalutamide. The activity of two mutant receptors (AR T877A and AR W741C) was shown to be reduced in presence of MEL-3, providing evidence that MEL-3 can potentially be a follow-up treatment for bicalutamide- and hydroxyflutamide-resistant patients. The mechanism of action of MEL-3 on the molecular level was further explored by comparing the structure-activity relationship of different chemical derivatives of MEL-3 with the in silico docking of MEL-3 derivatives in the binding pocket of the AR. ©2012 AACR

  6. Antiallergic effects of H1-receptor antagonists.

    Science.gov (United States)

    Baroody, F M; Naclerio, R M

    2000-01-01

    The primary mechanism of antihistamine action in the treatment of allergic diseases is believed to be competitive antagonism of histamine binding to cellular receptors (specifically, the H1-receptors), which are present on nerve endings, smooth muscles, and glandular cells. This notion is supported by the fact that structurally unrelated drugs antagonize the H1-receptor and provide clinical benefit. However, H1-receptor antagonism may not be their sole mechanism of action in treating allergic rhinitis. On the basis of in vitro and animal experiments, drugs classified as H1-receptor antagonists have long been recognized to have additional pharmacological properties. Most first-generation H1-antihistamines have anticholinergic, sedative, local anaesthetic, and anti-5-HT effects, which might favourably affect the symptoms of the allergic response but also contribute to side-effects. These additional properties are not uniformly distributed among drugs classified as H1-receptor antagonists. Azatadine, for example, inhibits in vitro IgE-mediated histamine and leukotriene (LT) release from mast cells and basophils. In human challenge models, terfenadine, azatadine, and loratadine reduce IgE-mediated histamine release. Cetirizine reduces eosinophilic infiltration at the site of antigen challenge in the skin, but not the nose. In a nasal antigen challenge model, cetirizine pretreatment did not affect the levels of histamine and prostaglandin D2 recovered in postchallenge lavages, whereas the levels of albumin, N-tosyl-L-arginine methyl ester (TAME) esterase activity, and LTs were reduced. Terfenadine, cetirizine, and loratadine blocked allergen-induced hyperresponsiveness to methacholine. In view of the complexity of the pathophysiology of allergy, a number of H1 antagonists with additional properties are currently under development for allergic diseases. Mizolastine, a new H1-receptor antagonist, has been shown to have additional actions that should help reduce the

  7. Characterization and design of antagonistic shape memory alloy actuators

    International Nuclear Information System (INIS)

    Georges, T; Brailovski, V; Terriault, P

    2012-01-01

    Antagonistic shape memory actuators use opposing shape memory alloy (SMA) elements to create devices capable of producing differential motion paths and two-way mechanical work in a very efficient manner. There is no requirement for additional bias elements to ‘re-arm’ the actuators and allow repetitive actuation. The work generation potential of antagonistic shape memory actuators is determined by specific SMA element characteristics and their assembly conditions. In this study, the selected SMA wires are assembled in antagonistic configuration and characterized using a dedicated test bench to evaluate their stress–strain characteristics as a function of the number of cycles. Using these functional characteristics, a so-called ‘working envelope’ is built to assist in the design of such an actuator. Finally, the test bench is used to simulate a real application of an antagonistic actuator (case study). (paper)

  8. Structure-activity relationships in a new series of insecticidally active dioxatricycloalkenes derived by structural comparison of the GABA [γ-aminobutyric acid] antagonists bicycloorthocarboxylates and endosulfan

    International Nuclear Information System (INIS)

    Ozoe, Yoshihisa; Sawada, Yoshihiro; Mochida, Kazuo; Nakamura, Toshiie; Matsumura, Fumio

    1990-01-01

    To study structural requirements for picrotoxinin-type GABA (γ-aminobutyric acid) antagonists to interact with the receptor site, 5-substituted 4,6-dioxatricyclo[7.2.1.0 2,8 ]dodec-10-enes and related compounds were prepared and examined for their insecticidal activity and potency in displacing [ 35 S]tert-butylbicyclophosphorothionate (TBPS) binding. Compounds with high insecticidal activity possessed a phenyl group with an electron-withdrawing para substituent, a cycloalkyl group, or a C 3 -C 5 straight-chain alkyl group at the 5-position. The effect of the 5-substituents on insecticidal activity was very similar to that of the 1-substituents of the bicyloorthocarboxylate GABA antagonists. Representative dioxatricycloalkenes displaced the binding of the GABA antagonist [ 35 S]TBPS to housefly head membranes by 29-53% at 10 μM. X-ray crystal structure analysis demonstrated that this class of compounds had structures superimposable on those of 4-tert-butylbicycloorthocarboxylates. These findings indicate that the dioxatricycloalkenes and some other analogues occupy the picrotoxinin binding site in such a way that the fourth interacting subsite of the receptor site accommodates the 5-substituent

  9. Endothelin-1 stimulates the release of preloaded [3H]D-aspartate from cultured cerebellar granule cells

    International Nuclear Information System (INIS)

    Lin, W.W.; Lee, C.Y.; Chuang, D.M.

    1990-01-01

    We have recently reported that endothelin-1 (ET) induces phosphoinositide hydrolysis in primary cultures of rat cerebellar granule cells. Here we found that ET in a dose-dependent manner (1-30 nM) stimulated the release of preloaded [ 3 H]D-aspartate from granule cells. The ET-induced aspartate release was completely blocked in the absence of extracellular Ca 2+ , but was unaffected by 1 mM Co 2+ or 1 microM dihydropyridine derivatives (nisoldipine and nimodipine). At higher concentration (10 microM) of nisoldipine and nimodipine, the release was partially inhibited. Short-term pretreatment of cells with phorbol 12,13-dibutyrate (PDBu) potentiated the ET-induced aspartate release, while long-term pretreatment with PDBu attenuated the release. Long-term exposure of cells to pertussis toxin (PTX), on the other hand, potentiated the ET-induced effects. Our results suggest that ET has a neuromodulatory function in the central nervous system

  10. Zn2+, not Ca2+, is the most effective cation for activation of dolichol kinase of mammalian brain.

    Science.gov (United States)

    Sakakihara, Y; Volpe, J J

    1985-12-15

    The cation specificity of dolichol kinase of mammalian brain and the potential involvement of a Ca2+-calmodulin system in regulation of this enzyme have been studied. Among 10 divalent cations examined, Zn2+ was found to be most effective for the activation of dolichol kinase of rat and calf brain and cultured C-6 glial cells. The activations with Ca2+, Co2+, and Mg2+ were 53%, 32%, and 18% of the full activation with Zn2+, respectively. No combinations of the cations could activate the enzyme as much as Zn2+ alone. A role for a Ca2+-calmodulin system in the regulation of brain dolichol kinase was not supported by our data. First, the concentration of free Ca2+ required for the maximum activation of dolichol kinase was two to three orders of magnitude greater than the concentration required by typical calmodulin-dependent enzymes. Second, neither the depletion of calmodulin from the microsomal fraction nor the addition of exogenous calmodulin caused an alteration in the activation of dolichol kinase by Ca2+ (or Zn2+). Third, antagonists of calmodulin failed to suppress the activation of the enzyme by Ca2+ (or Zn2+). The data raise the possibility that Zn2+ is involved in the regulation of dolichol kinase in brain.

  11. Advanced glycation end-products (AGEs acutely impair Ca2+ signalling in bovine aortic endothelial cells

    Directory of Open Access Journals (Sweden)

    Nadim eNaser

    2013-03-01

    Full Text Available Post-translational modification of proteins in diabetes, including formation of advanced glycation end products (AGEs are believed to contribute to vascular dysfunction and disease. Impaired function of the endothelium is an early indicator of vascular dysfunction in diabetes and as many endothelial cell processes are dependent upon intracellular [Ca2+] and Ca2+ signalling, the aim of this study was to examine the acute effects of AGEs on Ca2+ signalling in bovine aortic endothelial cells (BAEC. Ca2+ signalling was studied using the fluorescent indicator dye Fura2-AM. AGEs were generated by incubating bovine serum albumin with 0 - 250 mM glucose or glucose-6-phosphate for 0 to 120 days at 37ºC. Under all conditions, the main AGE species generated was carboxymethyl lysine (CML as assayed using both GC-MS and HPLC. In Ca2+-replete solution, exposure of BAEC to AGEs for 5 min caused an elevation in basal [Ca2+] and attenuated the increase in intracellular [Ca2+] caused by ATP (100 µM. In the absence of extracellular Ca2+, exposure of BAEC to AGEs for 5 min caused an elevation in basal [Ca2+] and attenuated subsequent intracellular Ca2+ release caused by ATP, thapsigargin (0.1 µM and ionomycin (3 µM, but AGEs did not affect extracellular Ca2+ entry induced by the re-addition of Ca2+ to the bathing solution in the presence of any of these agents. The anti-oxidant α-lipoic acid (2 µM and NAD(PH oxidase inhibitors apocynin (500 µM and diphenyleneiodonium (DPI, 1 µM abolished these effects of AGEs on BAECs, as did the IP3 receptor antagonist xestospongin C (1 µM. In summary, AGEs caused an acute depletion of Ca2+ from the intracellular store in BAECs, such that the Ca2+ signal stimulated by the subsequent application other agents acting upon this store is reduced. The mechanism may involve generation of ROS from NAD(PH oxidase and possible activation of the IP3 receptor.

  12. Discovery and characterization of ACT-335827, an orally available, brain penetrant orexin receptor type 1 selective antagonist.

    Science.gov (United States)

    Steiner, Michel A; Gatfield, John; Brisbare-Roch, Catherine; Dietrich, Hendrik; Treiber, Alexander; Jenck, Francois; Boss, Christoph

    2013-06-01

    Stress relief: Orexin neuropeptides regulate arousal and stress processing through orexin receptor type 1 (OXR-1) and 2 (OXR-2) signaling. A selective OXR-1 antagonist, represented by a phenylglycine-amide substituted tetrahydropapaverine derivative (ACT-335827), is described that is orally available, penetrates the brain, and decreases fear, compulsive behaviors and autonomic stress reactions in rats. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Antagonist wear of monolithic zirconia crowns after 2 years.

    Science.gov (United States)

    Lohbauer, Ulrich; Reich, Sven

    2017-05-01

    The aim of this study was to evaluate the amount of wear on the antagonist occlusal surfaces of clinically placed monolithic zirconia premolar and molar crowns (LAVA Plus, 3M ESPE). Fourteen in situ monolithic zirconia crowns and their opposing antagonists (n = 26) are the subject of an ongoing clinical trial and have been clinically examined at baseline and after 24 months. Silicone impressions were taken and epoxy replicas produced for qualitative SEM analysis and quantitative analysis using optical profilometry. Based on the baseline replicas, the follow-up situation has been scanned and digitally matched with the initial topography in order to calculate the mean volume loss (in mm 3 ) as well as the mean maximum vertical loss (in mm) after 2 years in service. The mean volume loss for enamel antagonist contacts (n = 7) was measured to 0.361 mm 3 and the mean of the maximum vertical loss to 0.204 mm. The mean volume loss for pure ceramic contacts (n = 10) was measured to 0.333 mm 3 and the mean of the maximum vertical loss to 0.145 mm. The wear rates on enamel contacts were not significantly different from those measured on ceramic antagonists. Based on the limitations of this study, it can be concluded for the monolithic zirconia material LAVA Plus that the measured wear rates are in consensus with other in vivo studies on ceramic restorations. Further, that no significant difference was found between natural enamel antagonists and ceramic restorations as antagonists. The monolithic zirconia restorations do not seem to be affected by wear within the first 2 years. The monolithic zirconia crowns (LAVA Plus) show acceptable antagonist wear rates after 2 years in situ, regardless of natural enamel or ceramics as antagonist materials.

  14. Evaluation of antagonistic fungi against charcoal rot of sunflower ...

    African Journals Online (AJOL)

    In vitro, sensitivity of Macrophomina phaseolina (Tassi) Goid determined through inhibition zone technique to various antagonistic fungi viz., Aspergillus niger, Aspergillus flavus, Trichoderma viride, Trichoderma harzianum and Penicillium capsulatum amended into PDA medium. All the antagonists reduced the colony ...

  15. An interplay between 2 signaling pathways: Melatonin-cAMP and IP{sub 3}–Ca{sup 2+} signaling pathways control intraerythrocytic development of the malaria parasite Plasmodium falciparum

    Energy Technology Data Exchange (ETDEWEB)

    Furuyama, Wakako [National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 (Japan); Enomoto, Masahiro [Princess Margaret Cancer Centre, Department of Medical Biophysics, University of Toronto, M5G1L7 Toronto, Ontario (Canada); Mossaad, Ehab [National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 (Japan); Kawai, Satoru [Laboratory of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi 321-0293 (Japan); Mikoshiba, Katsuhiko [Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, Wako, Saitama 351-0198 (Japan); Kawazu, Shin-ichiro, E-mail: skawazu@obihiro.ac.jp [National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 (Japan)

    2014-03-28

    Highlights: • A melatonin receptor antagonist blocked Ca{sup 2+} oscillation in P. falciparum and inhibited parasite growth. • P. falciparum development is controlled by Ca{sup 2+}- and cAMP-signaling pathways. • The cAMP-signaling pathway at ring form and late trophozoite stages governs parasite growth of P. falciparum. - Abstract: Plasmodium falciparum spends most of its asexual life cycle within human erythrocytes, where proliferation and maturation occur. Development into the mature forms of P. falciparum causes severe symptoms due to its distinctive sequestration capability. However, the physiological roles and the molecular mechanisms of signaling pathways that govern development are poorly understood. Our previous study showed that P. falciparum exhibits stage-specific spontaneous Calcium (Ca{sup 2+}) oscillations in ring and early trophozoites, and the latter was essential for parasite development. In this study, we show that luzindole (LZ), a selective melatonin receptor antagonist, inhibits parasite growth. Analyses of development and morphology of LZ-treated P. falciparum revealed that LZ severely disrupted intraerythrocytic maturation, resulting in parasite death. When LZ was added at ring stage, the parasite could not undergo further development, whereas LZ added at the trophozoite stage inhibited development from early into late schizonts. Live-cell Ca{sup 2+} imaging showed that LZ treatment completely abolished Ca{sup 2+} oscillation in the ring forms while having little effect on early trophozoites. Further, the melatonin-induced cAMP increase observed at ring and late trophozoite stage was attenuated by LZ treatment. These suggest that a complex interplay between IP{sub 3}–Ca{sup 2+} and cAMP signaling pathways is involved in intraerythrocytic development of P. falciparum.

  16. Evidence for a Specific Integrative Mechanism for Episodic Memory Mediated by AMPA/kainate Receptors in a Circuit Involving Medial Prefrontal Cortex and Hippocampal CA3 Region.

    Science.gov (United States)

    de Souza Silva, Maria A; Huston, Joseph P; Wang, An-Li; Petri, David; Chao, Owen Yuan-Hsin

    2016-07-01

    We asked whether episodic-like memory requires neural mechanisms independent of those that mediate its component memories for "what," "when," and "where," and if neuronal connectivity between the medial prefrontal cortex (mPFC) and the hippocampus (HPC) CA3 subregion is essential for episodic-like memory. Unilateral lesion of the mPFC was combined with unilateral lesion of the CA3 in the ipsi- or contralateral hemispheres in rats. Episodic-like memory was tested using a task, which assesses the integration of memories for "what, where, and when" concomitantly. Tests for novel object recognition (what), object place (where), and temporal order memory (when) were also applied. Bilateral disconnection of the mPFC-CA3 circuit by N-methyl-d-aspartate (NMDA) lesions disrupted episodic-like memory, but left the component memories for object, place, and temporal order, per se, intact. Furthermore, unilateral NMDA lesion of the CA3 plus injection of (6-cyano-7-nitroquinoxaline-2,3-dione) (CNQX) (AMPA/kainate receptor antagonist), but not AP-5 (NMDA receptor antagonist), into the contralateral mPFC also disrupted episodic-like memory, indicating the mPFC AMPA/kainate receptors as critical for this circuit. These results argue for a selective neural system that specifically subserves episodic memory, as it is not critically involved in the control of its component memories for object, place, and time. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. A green and efficient method for the synthesis of homodimeric (β ...

    African Journals Online (AJOL)

    ... derivatives by intramolecular cyclization in various yields. Of particular interest is the use of the water as solvent of reaction and in absence of catalyst. Also these operating conditions protect the environment and economic points of view. Keywords: aqueous synthesis; bioactivity; dihydropyridine; dimedone; green method; ...

  18. Characterization of Anthraquinone-DerivedRedox Switchable Ionophores and Their Complexes with Li+, Na+, K+, Ca+, and Mg+ Metal Ions

    Directory of Open Access Journals (Sweden)

    Vaishali Vyas

    2011-01-01

    Full Text Available Anthraquinone derived redox switchable ionophores 1,5 bis (2-(2-(2-ethoxy ethoxy ethoxyanthracene-9,10-dione (V1 and 1,8-bis(2-(2-(2-ethoxyethoxyethoxy anthracene—9,10-dione (V2 have been used for isolation, extraction and liquid membrane transport studies of Li+, Na+, K+, Ca2+ and Mg2+ metal ions. These isolated complexes were characterized by melting point determination, CV and IR, 1H NMR spectral analysis. Ionophore V2 shows maximum shift in reduction potential (ΔE with Ca(Pic2. The observed sequence for the shifting in reduction potential (ΔE between V2 and their complexes is V2 calcium picrate (42 mV > V2 potassium picrate (33 mV > V2 lithium picrate (25 mV > V2 sodium picrate (18 mV > V2 magnesium picrate (15 mV. These findings are also supported by results of extraction, back extraction and transport studies. Ionophore V2 complexed with KPic and showed much higher extractability and selectivity towards K+ than V1. These synthetic ionophores show positive and negative cooperativity towards alkali and alkaline earth metal ions in reduced and oxidized state. Hence, this property can be used in selective separation and enrichment of metal ions using electrochemically driven ion transport.

  19. DA-6034 Induces [Ca(2+)]i Increase in Epithelial Cells.

    Science.gov (United States)

    Yang, Yu-Mi; Park, Soonhong; Ji, Hyewon; Kim, Tae-Im; Kim, Eung Kweon; Kang, Kyung Koo; Shin, Dong Min

    2014-04-01

    DA-6034, a eupatilin derivative of flavonoid, has shown potent effects on the protection of gastric mucosa and induced the increases in fluid and glycoprotein secretion in human and rat corneal and conjunctival cells, suggesting that it might be considered as a drug for the treatment of dry eye. However, whether DA-6034 induces Ca(2+) signaling and its underlying mechanism in epithelial cells are not known. In the present study, we investigated the mechanism for actions of DA-6034 in Ca(2+) signaling pathways of the epithelial cells (conjunctival and corneal cells) from human donor eyes and mouse salivary gland epithelial cells. DA-6034 activated Ca(2+)-activated Cl(-) channels (CaCCs) and increased intracellular calcium concentrations ([Ca(2+)]i) in primary cultured human conjunctival cells. DA-6034 also increased [Ca(2+)]i in mouse salivary gland cells and human corneal epithelial cells. [Ca(2+)]i increase of DA-6034 was dependent on the Ca(2+) entry from extracellular and Ca(2+) release from internal Ca(2+) stores. Interestingly, these effects of DA-6034 were related to ryanodine receptors (RyRs) but not phospholipase C/inositol 1,4,5-triphosphate (IP3) pathway and lysosomal Ca(2+) stores. These results suggest that DA-6034 induces Ca(2+) signaling via extracellular Ca(2+) entry and RyRs-sensitive Ca(2+) release from internal Ca(2+) stores in epithelial cells.

  20. Glechoma hederacea Suppresses RANKL-mediated Osteoclastogenesis.

    Science.gov (United States)

    Hwang, J K; Erkhembaatar, M; Gu, D R; Lee, S H; Lee, C H; Shin, D M; Lee, Y R; Kim, M S

    2014-07-01

    Glechoma hederacea (GH), commonly known as ground-ivy or gill-over-the-ground, has been extensively used in folk remedies for relieving symptoms of inflammatory disorders. However, the molecular mechanisms underlying the therapeutic action of GH are poorly understood. Here, we demonstrate that GH constituents inhibit osteoclastogenesis by abrogating receptor activator of nuclear κ-B ligand (RANKL)-induced free cytosolic Ca(2+) ([Ca(2+)]i) oscillations. To evaluate the effect of GH on osteoclastogenesis, we assessed the formation of multi-nucleated cells (MNCs), enzymatic activity of tartrate-resistant acidic phosphatase (TRAP), expression of nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), and [Ca(2+)]i alterations in response to treatment with GH ethanol extract (GHE) in primarily cultured bone marrow-derived macrophages (BMMs). Treatment of RANKL-stimulated or non-stimulated BMMs with GHE markedly suppressed MNC formation, TRAP activity, and NFATc1 expression in a dose-dependent manner. Additionally, GHE treatment induced a large transient elevation in [Ca(2+)]i while suppressing RANKL-induced [Ca(2+)]i oscillations, which are essential for NFATc1 activation. GHE-evoked increase in [Ca(2+)]i was dependent on extracellular Ca(2+) and was inhibited by 1,4-dihydropyridine (DHP), inhibitor of voltage-gated Ca(2+) channels (VGCCs), but was independent of store-operated Ca(2+) channels. Notably, after transient [Ca(2+)] elevation, treatment with GHE desensitized the VGCCs, resulting in an abrogation of RANKL-induced [Ca(2+)]i oscillations and MNC formation. These findings demonstrate that treatment of BMMs with GHE suppresses RANKL-mediated osteoclastogenesis by activating and then desensitizing DHP-sensitive VGCCs, suggesting potential applications of GH in the treatment of bone disorders, such as periodontitis, osteoporosis, and rheumatoid arthritis. © International & American Associations for Dental Research.

  1. Hierarchic stochastic modelling applied to intracellular Ca(2+ signals.

    Directory of Open Access Journals (Sweden)

    Gregor Moenke

    Full Text Available Important biological processes like cell signalling and gene expression have noisy components and are very complex at the same time. Mathematical analysis of such systems has often been limited to the study of isolated subsystems, or approximations are used that are difficult to justify. Here we extend a recently published method (Thurley and Falcke, PNAS 2011 which is formulated in observable system configurations instead of molecular transitions. This reduces the number of system states by several orders of magnitude and avoids fitting of kinetic parameters. The method is applied to Ca(2+ signalling. Ca(2+ is a ubiquitous second messenger transmitting information by stochastic sequences of concentration spikes, which arise by coupling of subcellular Ca(2+ release events (puffs. We derive analytical expressions for a mechanistic Ca(2+ model, based on recent data from live cell imaging, and calculate Ca(2+ spike statistics in dependence on cellular parameters like stimulus strength or number of Ca(2+ channels. The new approach substantiates a generic Ca(2+ model, which is a very convenient way to simulate Ca(2+ spike sequences with correct spiking statistics.

  2. Interactive HIV-1 Tat and morphine-induced synaptodendritic injury is triggered through focal disruptions in Na⁺ influx, mitochondrial instability, and Ca²⁺ overload.

    Science.gov (United States)

    Fitting, Sylvia; Knapp, Pamela E; Zou, Shiping; Marks, William D; Bowers, M Scott; Akbarali, Hamid I; Hauser, Kurt F

    2014-09-17

    Synaptodendritic injury is thought to underlie HIV-associated neurocognitive disorders and contributes to exaggerated inflammation and cognitive impairment seen in opioid abusers with HIV-1. To examine events triggering combined transactivator of transcription (Tat)- and morphine-induced synaptodendritic injury systematically, striatal neuron imaging studies were conducted in vitro. These studies demonstrated nearly identical pathologic increases in dendritic varicosities as seen in Tat transgenic mice in vivo. Tat caused significant focal increases in intracellular sodium ([Na(+)]i) and calcium ([Ca(2+)]i) in dendrites that were accompanied by the emergence of dendritic varicosities. These effects were largely, but not entirely, attenuated by the NMDA and AMPA receptor antagonists MK-801 and CNQX, respectively. Concurrent morphine treatment accelerated Tat-induced focal varicosities, which were accompanied by localized increases in [Ca(2+)]i and exaggerated instability in mitochondrial inner membrane potential. Importantly, morphine's effects were prevented by the μ-opioid receptor antagonist CTAP and were not observed in neurons cultured from μ-opioid receptor knock-out mice. Combined Tat- and morphine-induced initial losses in ion homeostasis and increases in [Ca(2+)]i were attenuated by the ryanodine receptor inhibitor ryanodine, as well as pyruvate. In summary, Tat induced increases in [Na(+)]i, mitochondrial instability, excessive Ca(2+) influx through glutamatergic receptors, and swelling along dendrites. Morphine, acting via μ-opioid receptors, exacerbates these excitotoxic Tat effects at the same subcellular locations by mobilizing additional [Ca(2+)]i and by further disrupting [Ca(2+)]i homeostasis. We hypothesize that the spatiotemporal relationship of μ-opioid and aberrant AMPA/NMDA glutamate receptor signaling is critical in defining the location and degree to which opiates exacerbate the synaptodendritic injury commonly observed in neuro

  3. Modification of HSP proteins and Ca2+ are responsible for the NO-derived peroxynitrite mediated neurological damage in PC12 cell.

    Science.gov (United States)

    Wen, Jun; Li, Hua; Zhang, Yudan; Li, Xia; Liu, Fang

    2015-01-01

    Peroxynitrite as one crucial metabolite of NO-derived agents has been well multi-investigated to inspect its potential role and sought to define its concrete mechanism underlying the memory loss and impaired cognition involved in pathological processes. In this investigation, the cell viability was assessed by the MTT assay. The neurotoxicity of peroxynitrite was analyzed by using immunohistochemical measurements in cultured PC12 cells to explore the underlying mechanisms. The generation of ROS was evaluated by a fluorometry assay by a fluorometry assay. Apoptosis was assayed by annexin V-FITC and PI staining with flow cytometry. [Ca2+]i was examined by using the microspectrofluorometer. Hsp70 was detected by western blot assay. The results revealed that PC12 cells were inhibited by peroxynitrite both in a dose-dependent and time-dependent manner. The level of ROS in PC12 cells exposed to SIN-1 was increased in a dose-dependent manner. The result indicated that the SIN-1 induced apoptosis of PC12 cells in a dose-dependent manner. Quercetin inhibited the viability of PC12 cells in a concentration-dependent manner. [Ca2+]i was increased gradually when cells treated with quercetin alone and also increased with treatment of dantrolene-containing. Hsp70 was significantly decreased in SIN-1-treated group compared with that of control group (P<0.01). In conclusion, Ca2+ homeostasis and chaperone Hsp70 were critically involved in peroxynitrite induced nitrosative stress as protective. Peroxynitrite acts as the pathological agent in learning and memory defects in CNS disorders associated with challenge.

  4. Atrial natriuretic peptide regulates Ca channel in early developmental cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Lin Miao

    Full Text Available BACKGROUND: Cardiomyocytes derived from murine embryonic stem (ES cells possess various membrane currents and signaling cascades link to that of embryonic hearts. The role of atrial natriuretic peptide (ANP in regulation of membrane potentials and Ca(2+ currents has not been investigated in developmental cardiomyocytes. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the role of ANP in regulating L-type Ca(2+ channel current (I(CaL in different developmental stages of cardiomyocytes derived from ES cells. ANP decreased the frequency of action potentials (APs in early developmental stage (EDS cardiomyocytes, embryonic bodies (EB as well as whole embryo hearts. ANP exerted an inhibitory effect on basal I(CaL in about 70% EDS cardiomyocytes tested but only in about 30% late developmental stage (LDS cells. However, after stimulation of I(CaL by isoproterenol (ISO in LDS cells, ANP inhibited the response in about 70% cells. The depression of I(CaL induced by ANP was not affected by either Nomega, Nitro-L-Arginine methyl ester (L-NAME, a nitric oxide synthetase (NOS inhibitor, or KT5823, a cGMP-dependent protein kinase (PKG selective inhibitor, in either EDS and LDS cells; whereas depression of I(CaL by ANP was entirely abolished by erythro-9-(2-Hydroxy-3-nonyl adenine (EHNA, a selective inhibitor of type 2 phosphodiesterase(PDE2 in most cells tested. CONCLUSION/SIGNIFICANCES: Taken together, these results indicate that ANP induced depression of action potentials and I(CaL is due to activation of particulate guanylyl cyclase (GC, cGMP production and cGMP-activation of PDE2 mediated depression of adenosine 3', 5'-cyclic monophophate (cAMP-cAMP-dependent protein kinase (PKA in early cardiomyogenesis.

  5. The Effect of Sympathetic Antagonists on the Antidepressant Action of Alprazolam

    Directory of Open Access Journals (Sweden)

    Gorash ZM

    2008-01-01

    Full Text Available Alprazolam is an anti-anxiety drug shown to be effective in the treatment of depression. In this study, the effect of sympathetic receptor antagonists on alprazolam–induced antidepressant action was studied using a mouse model of forced swimming behavioral despair. The interaction of three sympathetic receptor antagonists with benzodiazepines, which may impact the clinical use of alprazolam, was also studied. Behavioral despair was examined in six groups of albino mice. Drugs were administered intraperitoneally. The control group received only a single dose of 1% Tween 80. The second group received a single dose of alprazolam, and the third group received an antagonist followed by alprazolam. The fourth group was treated with imipramine, and the fifth group received an antagonist followed by imipramine. The sixth group was treated with a single dose of an antagonist alone (atenolol, a β1-selective adrenoceptor antagonist; propranolol, a non selective β-adrenoceptor antagonist; and prazocin, an α1-adrenoceptor antagonist. Results confirmed the antidepressant action of alprazolam and imipramine. Prazocin treatment alone produced depression, but it significantly potentiated the antidepressant actions of imipramine and alprazolam. Atenolol alone produced an antidepressant effect and potentiated the antidepressant action of alprazolam. Propranolol treatment alone produced depression, and antagonized the effects of alprazolam and imipramine, even producing depression in combined treatments. In conclusion, our results reveal that alprazolam may produce antidepressant effects through the release of noradrenaline, which stimulates β2 receptors to produce an antidepressant action. Imipramine may act by activating β2 receptors by blocking or down-regulating β1 receptors.

  6. Growth-inhibitory effects of a mineralized extract from the red marine algae, Lithothamnion calcareum, on Ca(2+)-sensitive and Ca(2+)-resistant human colon carcinoma cells.

    Science.gov (United States)

    Aslam, Muhammad Nadeem; Bhagavathula, Narasimharao; Paruchuri, Tejaswi; Hu, Xin; Chakrabarty, Subhas; Varani, James

    2009-10-08

    Proliferation and differentiation were assessed in a series of human colon carcinoma cell lines in response to a mineral-rich extract derived from the red marine algae, Lithothamnion calcareum. The extract contains 12% Ca2+, 1% Mg2+, and detectable amounts of 72 trace elements, but essentially no organic material. The red algae extract was as effective as inorganic Ca2+ alone in suppressing growth and inducing differentiation of colon carcinoma cells that are responsive to a physiological level of extracellular Ca2+ (1.4mM). However, with cells that are resistant to Ca2+ alone, the extract was still able to reduce proliferation and stimulate differentiation.

  7. Growth-inhibitory effects of a mineralized extract from the red marine algae, Lithothamnion calcareum, on Ca2+-sensitive and Ca2+-resistant human colon carcinoma cells

    Science.gov (United States)

    Nadeem Aslam, Muhammad; Bhagavathula, Narasimharao; Paruchuri, Tejaswi; Hu, Xin; Chakrabarty, Subhas; Varani, James

    2009-01-01

    Proliferation and differentiation were assessed in a series of human colon carcinoma cell lines in response to a mineral-rich extract derived from the red marine algae, Lithothamnion calcareum. The extract contains 12% Ca2+, 1% Mg2+, and detectable amounts of 72 trace elements, but essentially no organic material. The red algae extract was as effective as inorganic Ca2+ alone in suppressing growth and inducing differentiation of colon carcinoma cells that are responsive to a physiological level of extracellular Ca2+ (1.4 mM). However, with cells that are resistant to Ca2+ alone, the extract was still able to reduce proliferation and stimulate differentiation. PMID:19394137

  8. HPLC-MS Analysis of Lichen-Derived Metabolites in the Life Stages of Crambidia cephalica (Grote & Robinson).

    Science.gov (United States)

    Anderson, Timothy J; Wagner, David L; Cooper, Bruce R; McCarty, Megan E; Zaspel, Jennifer M

    2017-01-01

    Tiger moths (Lepidoptera: Erebidae: Arctiinae: Arctiini) are notable for their specialized associations with hosts that produce toxic secondary compounds, and are thus an ideal study system for understanding insect-plant interactions and the evolution of antipredatory defense. Likewise, their sister lineage (Arctiinae: Lithosiini) has been documented feeding on algae and lichens, and is known to sequester lichen-derived secondary compounds from the larval to adult stages. Prevalence of lichenivory in this early radiation (ca. 3000 species) may provide clues to the phylogenetic basis for storied chemical sequestration within all tiger moths. Despite the evolutionary significance of this trait, we lack a basic understanding of the extent of lichenivory among lithosiines, and the distribution of sequestered chemicals among life stages. The dynamics of chemical sequestration throughout the lifecycle for the lichen moth Crambidia cephalica were investigated by testing the hypothesis that lichen-derived metabolites are unequally distributed among life stages, and that laboratory-reared C. cephalica have less metabolite diversity than wild-caught individuals. Crambidia cephalica was reared on Physcia, and analyzed using high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS). Several putative lichen-derived metabolites were detected across three life stages, i.e., larval, pupal, and adult, and differences among life stages and lichen host were observed. These results provide evidence that multiple lichen-derived metabolites are sequestered by C. cephalica; some metabolites are retained through adulthood, and others are lost or modified in earlier life stages. The presence of differing lichen-derived metabolites across life stages may indicate functional properties of the metabolites for C. cephalica with regards to chemical protection from antagonists, and other physiological processes.

  9. Interaction between Antagonist of Cannabinoid Receptor and Antagonist of Adrenergic Receptor on Anxiety in Male Rat

    Directory of Open Access Journals (Sweden)

    Alireza Komaki

    2014-07-01

    Full Text Available Introduction: Anxiety is among the most common and treatable mental disorders. Adrenergic and cannabinoid systems have an important role in the neurobiology of anxiety. The elevated plus-maze (EPM has broadly been used to investigate anxiolytic and anxiogenic compounds. The present study investigated the effects of intraperitoneal (IP injection of cannabinoid CB1 receptor antagonist (AM251 in the presence of alpha-1 adrenergic antagonist (Prazosin on rat behavior in the EPM. Methods: In this study, the data were obtained from male Wistar rat, which weighing 200- 250 g. Animal behavior in EPM were videotaped and saved in computer for 10 min after IP injection of saline, AM251 (0.3 mg/kg, Prazosin (0.3 mg/kg and AM251 + Prazosin, subsequently scored for conventional indices of anxiety. During the test period, the number of open and closed arms entries, the percentage of entries into the open arms of the EPM, and the spent time in open and closed arms were recorded. Diazepam was considered as a positive control drug with anxiolytic effect (0.3, 0.6, 1.2 mg/kg. Results: Diazepam increased the number of open arm entries and the percentage of spent time on the open arms. IP injection of AM251 before EPM trial decreased open arms exploration and open arm entry. Whereas, Prazosin increased open arms exploration and open arm entry. This study showed that both substances in simultaneous injection have conflicting effects on the responses of each of these two compounds in a single injection. Discussion: Injection of CB1 receptor antagonist may have an anxiogenic profile in rat, whereas adrenergic antagonist has an anxiolytic effect. Further investigations are essential for better understanding of anxiolytic and anxiogenic properties and neurobiological mechanisms of action and probable interactions of the two systems.

  10. Interaction between Antagonist of Cannabinoid Receptor and Antagonist of Adrenergic Receptor on Anxiety in Male Rat.

    Science.gov (United States)

    Komaki, Alireza; Abdollahzadeh, Fatemeh; Sarihi, Abdolrahman; Shahidi, Siamak; Salehi, Iraj

    2014-01-01

    Anxiety is among the most common and treatable mental disorders. Adrenergic and cannabinoid systems have an important role in the neurobiology of anxiety. The elevated plus-maze (EPM) has broadly been used to investigate anxiolytic and anxiogenic compounds. The present study investigated the effects of intraperitoneal (IP) injection of cannabinoid CB1 receptor antagonist (AM251) in the presence of alpha-1 adrenergic antagonist (Prazosin) on rat behavior in the EPM. In this study, the data were obtained from male Wistar rat, which weighing 200- 250 g. Animal behavior in EPM were videotaped and saved in computer for 10 min after IP injection of saline, AM251 (0.3 mg/kg), Prazosin (0.3 mg/kg) and AM251 + Prazosin, subsequently scored for conventional indices of anxiety. During the test period, the number of open and closed arms entries, the percentage of entries into the open arms of the EPM, and the spent time in open and closed arms were recorded. Diazepam was considered as a positive control drug with anxiolytic effect (0.3, 0.6, 1.2 mg/kg). Diazepam increased the number of open arm entries and the percentage of spent time on the open arms. IP injection of AM251 before EPM trial decreased open arms exploration and open arm entry. Whereas, Prazosin increased open arms exploration and open arm entry. This study showed that both substances in simultaneous injection have conflicting effects on the responses of each of these two compounds in a single injection. Injection of CB1 receptor antagonist may have an anxiogenic profile in rat, whereas adrenergic antagonist has an anxiolytic effect. Further investigations are essential for better understanding of anxiolytic and anxiogenic properties and neurobiological mechanisms of action and probable interactions of the two systems.

  11. ANTAGONISTIC POTENTIAL OF FLUORESCENT Pseudomonas ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    GROWTH OF TOMATO CHALLENGED WITH PHTOPATHOGENS ... This study focused on the antagonistic potential of fluorescent Pseudomonas in vitro, and its inoculation effect on growth .... the 5 days old culture in starch agar with Lugol's.

  12. Effects of unpredictable chronic stress on behavior and brain-derived neurotrophic factor expression in CA3 subfield and dentate gyrus of the hippocampus in different aged rats.

    Science.gov (United States)

    Li, Ying; Ji, Yong-juan; Jiang, Hong; Liu, De-xiang; Zhang, Qian; Fan, Shu-jian; Pan, Fang

    2009-07-05

    Brain-derived neurotrophic factor (BDNF) is a stress-responsive intercellular messenger modifying hypothalamic-pituitary-adrenal (HPA) axis activity. The interaction between stress and age in BDNF expression is currently not fully understood. This study was conducted to observe unpredictable stress effect on behavior and BDNF expression in CA3 subfield (CA3) and dentate gyrus of hippocampus in different aged rats. Forty-eight Wistar rats of two different ages (2 months and 15 months) were randomly assigned to six groups: two control groups and four stress groups. The rats in the stress group received three weeks of unpredictable mild stress. The depression state and the stress level of the animals were determined by sucrose preference test and observation of exploratory behavior in an open field (OF) test. The expressions of BDNF in CA3 and dentate gyrus of the hippocampus were measured using immunohistochemistry. Age and stress had different effects on the behavior of different aged animals (age: F = 6.173, P BDNF expression in the CA3 and dentate gyrus regions of the hippocampus following stress in both age groups (P BDNF (F = 9.408, P BDNF expression compared to the young stressed group at every testing time point. Stress has age-dependent effects on behavioral responses and hippocampal BDNF expression in rats.

  13. Receptor model for the molecular basis of tissue selectivity of 1,4-dihydropyridine calcium channel drugs

    Science.gov (United States)

    Langs, David A.; Strong, Phyllis D.; Triggle, David J.

    1990-09-01

    Our analysis of the solid state conformations of nifedipine [dimethyl 1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl)-3,5-pyridinecarboxylate] and its 1,4-dihydropyridine (1,4-DHP) analogues produced a cartoon description of the important interactions between these drugs and their voltage-dependent calcium channel receptor. In the present study a molecular-level detailed model of the 1,4-DHP receptor binding site has been built from the published amino acid sequence of the 215-1 subunit of the voltage-dependent calcium channel isolated from rabbit skeletal muscle transverse tubule membranes. The voltage-sensing component of the channel described in this work differs from others reported for the homologous sodium channel in that it incorporates a water structure and a staggered, rather than eclipsed, hydrogen bonded S4 helix conformation. The major recognition surfaces of the receptor lie in helical grooves on the S4 or voltagesensing α-helix that is positioned in the center of the bundle of transmembrane helices that define each of the four calcium channel domains. Multiple binding clefts defined by Arg-X-X-Arg-P-X-X-S `reading frames' exist on the S4 strand. The tissue selectivity of nifedipine and its analogues may arise, in part, from conservative changes in the amino acid residues at the P and S positions of the reading frame that define the ester-binding regions of receptors from different tissues. The crystal structures of two tissue-selective nifedipine analogues, nimodipine [isopropyl (2-methoxyethyl) 1,4-dihydro-2,6- dimethyl-4-(3-nitrophenyl)-3,5-pyridinecarboxylate] and nitrendipine [ethyl methyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinecarboxylate] are reported. Nimodipine was observed to have an unusual ester side chain conformation that enhances the fit to the proposed ester-sensing region of the receptor.

  14. Protection of DFP-induced oxidative damage and neurodegeneration by antioxidants and NMDA receptor antagonist

    International Nuclear Information System (INIS)

    Zaja-Milatovic, Snjezana; Gupta, Ramesh C.; Aschner, Michael; Milatovic, Dejan

    2009-01-01

    Prophylactic agents acutely administered in response to anticholinesterases intoxication can prevent toxic symptoms, including fasciculations, seizures, convulsions and death. However, anticholinesterases also have long-term unknown pathophysiological effects, making rational prophylaxis/treatment problematic. Increasing evidence suggests that in addition to excessive cholinergic stimulation, organophosphate compounds such as diisopropylphosphorofluoridate (DFP) induce activation of glutamatergic neurons, generation of reactive oxygen (ROS) and nitrogen species (RNS), leading to neurodegeneration. The present study investigated multiple affectors of DFP exposure critical to cerebral oxidative damage and whether antioxidants and NMDA receptor antagonist memantine provide neuroprotection by preventing DFP-induced biochemical and morphometric changes in rat brain. Rats treated acutely with DFP (1.25 mg/kg, s.c.) developed onset of toxicity signs within 7-15 min that progressed to maximal severity of seizures and fasciculations within 60 min. At this time point, DFP caused significant (p 2 -isoprostanes, F 2 -IsoPs; and F 4 -neuroprostanes, F 4 -NeuroPs), RNS (citrulline), and declines in high-energy phosphates (HEP) in rat cerebrum. At the same time, quantitative morphometric analysis of pyramidal neurons of the hippocampal CA1 region revealed significant (p 2 -IsoPs, F 4 -NeuroPs, citrulline, and depletion of HEP were noted. Furthermore, attenuation in oxidative damage following antioxidants or memantine pretreatment was accompanied by rescue from dendritic degeneration of pyramidal neurons in the CA1 hippocampal area. These findings closely associated DFP-induced lipid peroxidation with dendritic degeneration of pyramidal neurons in the CA1 hippocampal area and point to possible interventions to limit oxidative injury and dendritic degeneration induced by anticholinesterase neurotoxicity.

  15. Structure-activity relationships in a new series of insecticidally active dioxatricycloalkenes derived by structural comparison of the GABA (. gamma. -aminobutyric acid) antagonists bicycloorthocarboxylates and endosulfan

    Energy Technology Data Exchange (ETDEWEB)

    Ozoe, Yoshihisa; Sawada, Yoshihiro; Mochida, Kazuo; Nakamura, Toshiie (Shimane Univ. (Japan)); Matsumura, Fumio (Univ. of California, Davis (USA))

    1990-05-01

    To study structural requirements for picrotoxinin-type GABA ({gamma}-aminobutyric acid) antagonists to interact with the receptor site, 5-substituted 4,6-dioxatricyclo(7.2.1.0{sup 2,8})dodec-10-enes and related compounds were prepared and examined for their insecticidal activity and potency in displacing ({sup 35}S)tert-butylbicyclophosphorothionate (TBPS) binding. Compounds with high insecticidal activity possessed a phenyl group with an electron-withdrawing para substituent, a cycloalkyl group, or a C{sub 3}-C{sub 5} straight-chain alkyl group at the 5-position. The effect of the 5-substituents on insecticidal activity was very similar to that of the 1-substituents of the bicyloorthocarboxylate GABA antagonists. Representative dioxatricycloalkenes displaced the binding of the GABA antagonist ({sup 35}S)TBPS to housefly head membranes by 29-53% at 10 {mu}M. X-ray crystal structure analysis demonstrated that this class of compounds had structures superimposable on those of 4-tert-butylbicycloorthocarboxylates. These findings indicate that the dioxatricycloalkenes and some other analogues occupy the picrotoxinin binding site in such a way that the fourth interacting subsite of the receptor site accommodates the 5-substituent.

  16. Antagonistic interactions between plant competition and insect herbivory.

    Science.gov (United States)

    Schädler, Martin; Brandl, Roland; Haase, Josephine

    2007-06-01

    Interspecific competition between plants and herbivory by specialized insects can have synergistic effects on the growth and performance of the attacked host plant. We tested the hypothesis that competition between plants may also negatively affect the performance of herbivores as well as their top-down effect on the host plant. In such a case, the combined effects of competition and herbivory may be less than expected from a simple multiplicative response. In other words, competition and herbivory may interact antagonistically. In a greenhouse experiment, Poa annua was grown in the presence or absence of a competitor (either Plantago lanceolata or Trifolium repens), as well as with or without a Poa-specialist aphid herbivore. Both competition and herbivory negatively affected Poa growth. Competition also reduced aphid density on Poa. This effect could in part be explained by changes in the biomass and the nitrogen content of Poa shoots. In treatments with competitors, reduced aphid densities alleviated the negative effect of herbivory on above- and belowground Poa biomass. Hence, we were able to demonstrate an antagonistic interaction between plant-plant interspecific competition and herbivory. However, response indices suggested that antagonistic interactions between competition and herbivory were contingent on the identity of the competitor. We found the antagonistic effect only in treatments with T. repens as the competitor. We conclude that both competitor identity and the herbivore's ability to respond with changes in its density or activity to plant competition affect the magnitude and direction (synergistic vs. antagonistic) of the interaction between competition and herbivory on plant growth.

  17. Early Illustrations of Geste Antagoniste in Cervical and Generalized Dystonia

    Science.gov (United States)

    Broussolle, Emmanuel; Laurencin, Chloé; Bernard, Emilien; Thobois, Stéphane; Danaila, Teodor; Krack, Paul

    2015-01-01

    Background Geste antagoniste, or sensory trick, is a voluntary maneuver that temporarily reduces the severity of dystonic postures or movements. We present a historical review of early reports and illustrations of geste antagoniste. Results In 1894, Brissaud described this phenomenon in Paris in patients with torticollis. He noted that a violent muscular contraction could be reversed by a minor voluntary action. He considered the improvement obtained by what he called “simple mannerisms, childish behaviour or fake pathological movements” was proof of the psychogenic origin of what he named mental torticollis. This concept was supported by photographical illustrations of the patients. The term geste antagoniste was used by Brissaud’s pupils, Meige and Feindel, in their 1902 monograph on movement disorders. Other reports and illustrations of this sign were published in Europe between 1894 and 1906. Although not mentioned explicitly, geste antagoniste was also illustrated in a case report of generalized dystonia in Oppenheim’s 1911 seminal description of dystonia musculorum deformans in Berlin. Discussion Brissaud-Meige’s misinterpretation of the geste antagoniste unfortunately anchored the psychogenic origin of dystonia for decades. In New York, Herz brought dystonia back into the realm of organic neurology in 1944. Thereafter, it was given prominence by other authors, notably Fahn and Marsden in the 1970–1980s. Nowadays, neurologists routinely investigate for geste antagoniste when a dystonic syndrome is suspected, because it provides a further argument in favor of dystonia. The term alleviating maneuver was proposed in 2014 to replace sensory trick or geste antagoniste. This major sign is now part of the motor phenomenology of the 2013 Movement Disorder Society’s classification of dystonia. PMID:26417535

  18. Biomass gasification bottom ash as a source of CaO catalyst for biodiesel production via transesterification of palm oil

    International Nuclear Information System (INIS)

    Maneerung, Thawatchai; Kawi, Sibudjing; Wang, Chi-Hwa

    2015-01-01

    Highlights: • CaO catalyst was successfully developed from wood gasification bottom ash. • CaCO 3 in bottom ash can be converted to CaO catalyst by calcination. • CaO catalysts derived from bottom ash exhibited high activity towards transesterification. • CaO catalysts derived from bottom ash can be reutilized up to four times. - Abstract: The main aim of this research is to develop environmentally and economically benign heterogeneous catalysts for biodiesel production via transesterification of palm oil. For this propose, calcium oxide (CaO) catalyst has been developed from bottom ash waste arising from woody biomass gasification. Calcium carbonate was found to be the main component in bottom ash and can be transformed into the active CaO catalyst by simple calcination at 800 °C without any chemical treatment. The obtained CaO catalysts exhibit high biodiesel production activity, over 90% yield of methyl ester can be achieved at the optimized reaction condition. Experimental kinetic data fit well the pseudo-first order kinetic model. The activation energy (E a ) of the transesterification reaction was calculated to be 83.9 kJ mol −1 . Moreover, the CaO catalysts derived from woody biomass gasification bottom ash can be reutilized up to four times, offering the efficient and low-cost CaO catalysts which could make biodiesel production process more economic and environmental friendly

  19. Endothelin receptor antagonists influence cardiovascular morphology in uremic rats.

    Science.gov (United States)

    Nabokov, A V; Amann, K; Wessels, S; Münter, K; Wagner, J; Ritz, E

    1999-02-01

    In is generally held that renal failure results in blood pressure (BP)-independent structural changes of the myocardium and the vasculature. The contribution, if any, of endothelin (ET) to these changes has been unknown. We morphometrically studied random samples of the left ventricle myocardium and small intramyocardial arteries in subtotally (5/6) nephrectomized (SNx) male Sprague-Dawley rats treated with either the selective ETA receptor antagonist BMS182874 (30 mg/kg/day) or the nonselective ETA/ETB receptor antagonist Ro46-2005 (30 mg/kg/day) in comparison with either sham-operated rats, untreated SNx, or SNx rats treated with the angiotensin-converting enzyme inhibitor trandolapril (0.1 mg/kg/day). Eight weeks later, systolic BP was lower in trandolapril-treated SNx compared with untreated SNx animals. No decrease in BP was seen following either ET receptor antagonist at the dose used. A significantly increased volume density of the myocardial interstitium was found in untreated SNx rats as compared with sham-operated controls. Such interstitial expansion was prevented by trandolapril and either ET receptor antagonist. SNx caused a substantial increase in the wall thickness of small intramyocardial arteries. The increase was prevented by trandolapril or BMS182874 treatment. The arteriolar wall:lumen ratio was significantly lower in all treated groups when compared with untreated SNx. In contrast, only trandolapril, but not the ET receptor antagonists, attenuated thickening of the aortic media in SNx animals. The ETA-selective and ETA/ETB-nonselective receptor antagonists appear to prevent development of myocardial fibrosis and structural changes of small intramyocardial arteries in experimental chronic renal failure. This effect is independent of systemic BP.

  20. High-pressure X-ray diffraction and Raman spectroscopy of CaFe2O4-type β-CaCr2O4

    Science.gov (United States)

    Zhai, Shuangmeng; Yin, Yuan; Shieh, Sean R.; Shan, Shuangming; Xue, Weihong; Wang, Ching-Pao; Yang, Ke; Higo, Yuji

    2016-04-01

    In situ high-pressure synchrotron X-ray diffraction and Raman spectroscopic studies of orthorhombic CaFe2O4-type β-CaCr2O4 chromite were carried out up to 16.2 and 32.0 GPa at room temperature using multi-anvil apparatus and diamond anvil cell, respectively. No phase transition was observed in this study. Fitting a third-order Birch-Murnaghan equation of state to the P-V data yields a zero-pressure volume of V 0 = 286.8(1) Å3, an isothermal bulk modulus of K 0 = 183(5) GPa and the first pressure derivative of isothermal bulk modulus K 0' = 4.1(8). Analyses of axial compressibilities show anisotropic elasticity for β-CaCr2O4 since the a-axis is more compressible than the b- and c-axis. Based on the obtained and previous results, the compressibility of several CaFe2O4-type phases was compared. The high-pressure Raman spectra of β-CaCr2O4 were analyzed to determine the pressure dependences and mode Grüneisen parameters of Raman-active bands. The thermal Grüneisen parameter of β-CaCr2O4 is determined to be 0.93(2), which is smaller than those of CaFe2O4-type CaAl2O4 and MgAl2O4.

  1. antagonistic effect of native bacillus isolates against black root rot

    African Journals Online (AJOL)

    ACSS

    A number of fungi and bacteria are known to be very effective .... Round. Convex. Smooth. Wrinkled. Slow. BS024. Irregular and spreading. Flat. Wavy .... Antibiotic effect of bacterial antagonist ..... antagonistic Bacillus and Trichoderma isolates ...

  2. Multiple Targeting Approaches on Histamine H3 Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Mohammad eKhanfar

    2016-05-01

    Full Text Available With the very recent market approval of pitolisant (Wakix®, the interest in clinical applications of novel multifunctional histamine H3 receptor antagonists has clearly increased. Since histamine H3 receptor antagonists in clinical development have been tested for a variety of different indications, the combination of pharmacological properties in one molecule for improved pharmacological effects and reduced unwanted side-effects is rationally based on the increasing knowledge on the complex neurotransmitter regulations. The polypharmacological approaches on histamine H3 receptor antagonists on different G-protein coupled receptors, transporters, enzymes as well as on NO-signaling mechanism are described, supported with some lead structures.

  3. Involvement of plasma membrane Ca2+ channels, IP3 receptors, and ryanodine receptors in the generation of spontaneous rhythmic contractions of the cricket lateral oviduct.

    Science.gov (United States)

    Tamashiro, Hirotake; Yoshino, Masami

    2014-12-01

    In the present study, the isolated cricket (Gryllus bimaculatus) lateral oviduct exhibited spontaneous rhythmic contractions (SRCs) with a frequency of 0.29±0.009 Hz (n=43) and an amplitude of 14.6±1.25 mg (n=29). SRCs completely disappeared following removal of extracellular Ca2+ using a solution containing 5mM EGTA. Application of the non-specific Ca2+ channel blockers Co2+, Ni2+, and Cd2+ also decreased both the frequency and amplitude of SRCs in dose-dependent manners, suggesting that Ca2+ entry through plasma membrane Ca2+ channels is essential for the generation of SRCs. Application of ryanodine (30 μM), which depletes intracellular Ca2+ by locking ryanodine receptor (RyR)-Ca2+ channels in an open state, gradually reduced the frequency and amplitude of SRCs. A RyR antagonist, tetracaine, reduced both the frequency and amplitude of SRCs, whereas a RyR activator, caffeine, increased the frequency of SRCs with a subsequent increase in basal tonus, indicating that RyRs are essential for generating SRCs. To further investigate the involvement of phospholipase C (PLC) and inositol 1,4,5-trisphosphate receptors (IP3Rs) in SRCs, we examined the effect of a PLC inhibitor, U73122, and an IP3R antagonist, 2-aminoethoxydiphenyl borate (2-APB), on SRCs. Separately, U73122 (10 μM) and 2-APB (30-50 μM) both significantly reduced the amplitude of SRCs with little effect on their frequency, further indicating that the PLC/IP3R signaling pathway is fundamental to the modulation of the amplitude of SRCs. A hypotonic-induced increase in the frequency and amplitude of SRCs and a hypertonic-induced decrease in the frequency and amplitude of SRCs indicated that mechanical stretch of the lateral oviduct is involved in the generation of SRCs. The sarcoplasmic reticulum Ca2+-pump ATPase inhibitors thapsigargin and cyclopiazonic acid impaired or suppressed the relaxation phase of SRCs. Taken together, the present results indicate that Ca2+ influx through plasma membrane Ca2

  4. In vitro Evaluation of a Bombesin Antagonistic Analogue Conjugated with DOTA-Ala(SO3H)-Aminooctanoyl for Targeting of the Gastrin-releasing Peptide Receptor

    International Nuclear Information System (INIS)

    Lim, Jae Cheong; Cho, Eun Ha; Kim, Jin Joo; Lee, So Young; Choi, Sang Mu

    2014-01-01

    As Bombesin (BBS) binds with high affinity to GRPR, BBS derivatives have been labeled with various radionuclides such as 99 mTc, 111 In, 90 Y, 64 Cu, 177 Lu, 68 Ga, or 18 F and have proved to be successful candidates for peptide receptor radiotherapy (PRRT). In this study, we employed Ala(SO 3 H)-Aminooctanoyl as a linker of BBS antagonistic peptide sequence, Gln-Trp-Ala-Val-N methyl Gly-His-Statine-Leu-NH 2 , with DOTA to prepare radiolabeled candidates for GRPR targeting. A DOTA-conjugated BBS antagonistic analogue was synthesized and radiolabeled with 177 Lu, and in vitro characteristics on GRPR-overexpressing human prostate tumor cells were evaluated. In conclusion, a novel BBS antagonistic analogue, 177 Lu-DOTA-sBBNA, is a promising candidate for the targeting of GRPR-over-expressing tumors. Further investigations to evaluate its in vivo characteristics and therapeutic efficacy are needed

  5. Kaempferol stimulates large conductance Ca2+-activated K+ (BKCa) channels in human umbilical vein endothelial cells via a cAMP/PKA-dependent pathway

    Science.gov (United States)

    Xu, Y C; Leung, G P H; Wong, P Y D; Vanhoutte, P M; Man, R Y K

    2008-01-01

    Background and purpose: Kaempferol has been shown to possess a vasodilator effect but its mechanism of action remains unclear. In this study, experiments were carried out to study the effect of kaempferol on K+ channels in endothelial cells. Experimental approach: K+ channel activities in human umbilical vein endothelial cells (HUVECs) were studied by conventional whole cell and cell-attached patch-clamp electrophysiology. Key results: Kaempferol stimulated an outward-rectifying current in HUVECs in a dose-dependent manner with an EC50 value of 2.5±0.02 μM. This kaempferol-induced current was abolished by large conductance Ca2+-activated K+ (BKCa) channel blockers, such as iberiotoxin (IbTX) and charybdotoxin (ChTX), whereas the small conductance Ca2+-activated K+ (SKCa) channel blocker, apamin, and the voltage-dependent K+ (KV) channel blocker, 4-aminopyridine, had no effect. Cell-attached patches demonstrated that kaempferol increased the open probability of BkCa channels in HUVECs. Clamping intracellular Ca2+ did not prevent kaempferol-induced increases in outward current. In addition, the kaempferol-induced current was diminished by the adenylyl cyclase inhibitor SQ22536, the cAMP antagonist Rp-8-Br-cAMP and the PKA inhibitor KT5720, but was not affected by the guanylyl cyclase inhibitor ODQ, the cGMP antagonist Rp-8-Br-cGMP and the PKG inhibitor KT5823. The activation of BKCa channels by kaempferol caused membrane hyperpolarization of HUVECs. Conclusion and implications: These results demonstrate that kaempferol activates the opening of BKCa channels in HUVECs via a cAMP/PKA-dependent pathway, resulting in membrane hyperpolarization. This mechanism may partly account for the vasodilator effects of kaempferol. PMID:18493242

  6. Effects of luminal flow and nucleotides on [Ca(2+)](i) in rabbit cortical collecting duct.

    Science.gov (United States)

    Woda, Craig B; Leite, Maurilo; Rohatgi, Rajeev; Satlin, Lisa M

    2002-09-01

    Nucleotide binding to purinergic P2 receptors contributes to the regulation of a variety of physiological functions in renal epithelial cells. Whereas P2 receptors have been functionally identified at the basolateral membrane of the cortical collecting duct (CCD), a final regulatory site of urinary Na(+), K(+), and acid-base excretion, controversy exists as to whether apical purinoceptors exist in this segment. Nor has the distribution of receptor subtypes present on the unique cell populations that constitute Ca(2+) the CCD been established. To examine this, we measured nucleotide-induced changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) in fura 2-loaded rabbit CCDs microperfused in vitro. Resting [Ca(2+)](i) did not differ between principal and intercalated cells, averaging approximately 120 nM. An acute increase in tubular fluid flow rate, associated with a 20% increase in tubular diameter, led to increases in [Ca(2+)](i) in both cell types. Luminal perfusion of 100 microM UTP or ATP-gamma-S, in the absence of change in flow rate, caused a rapid and transient approximately fourfold increase in [Ca(2+)](i) in both cell types (P < 0.05). Luminal suramin, a nonspecific P2 receptor antagonist, blocked the nucleotide- but not flow-induced [Ca(2+)](i) transients. Luminal perfusion with a P2X (alpha,beta-methylene-ATP), P2X(7) (benzoyl-benzoyl-ATP), P2Y(1) (2-methylthio-ATP), or P2Y(4)/P2Y(6) (UDP) receptor agonist had no effect on [Ca(2+)](i). The nucleotide-induced [Ca(2+)](i) transients were inhibited by the inositol-1,4,5-triphosphate receptor blocker 2-aminoethoxydiphenyl borate, thapsigargin, which depletes internal Ca(2+) stores, luminal perfusion with a Ca(2+)-free perfusate, or the L-type Ca(2+) channel blocker nifedipine. These results suggest that luminal nucleotides activate apical P2Y(2) receptors in the CCD via pathways that require both internal Ca(2+) mobilization and extracellular Ca(2+) entry. The flow-induced rise in [Ca(2+)](i) is

  7. Phosphodiesterase inhibitor KMUP-3 displays cardioprotection via protein kinase G and increases cardiac output via G-protein-coupled receptor agonist activity and Ca2+ sensitization

    Directory of Open Access Journals (Sweden)

    Chung-Pin Liu

    2016-02-01

    Full Text Available KMUP-3 (7-{2-[4-(4-nitrobenzene piperazinyl]ethyl}-1, 3-dimethylxanthine displays cardioprotection and increases cardiac output, and is suggested to increase cardiac performance and improve myocardial infarction. To determine whether KMUP-3 improves outcomes in hypoperfused myocardium by inducing Ca2+ sensitization to oppose protein kinase (PKG-mediated Ca2+ blockade, we measured left ventricular systolic blood pressure, maximal rates of pressure development, mean arterial pressure and heart rate in rats, and measured contractility and expression of PKs/RhoA/Rho kinase (ROCKII in beating guinea pig left atria. Hemodynamic changes induced by KMUP-3 (0.5–3.0 mg/kg, intravenously were inhibited by Y27632 [(R-(+-trans-4-1-aminoethyl-N-(4-Pyridyl cyclohexane carboxamide] and ketanserin (1 mg/kg, intravenously. In electrically stimulated left guinea pig atria, positive inotropy induced by KMUP-3 (0.1–100μM was inhibited by the endothelial NO synthase (eNOS inhibitors N-nitro-l-arginine methyl ester (L-NAME and 7-nitroindazole, cyclic AMP antagonist SQ22536 [9-(terahydro-2-furanyl-9H-purin-6-amine], soluble guanylyl cyclase (sGC antagonist ODQ (1H-[1,2,4] oxadiazolo[4,3-a] quinoxalin-1-one, RhoA inhibitor C3 exoenzyme, β-blocker propranolol, 5-hydroxytryptamine 2A antagonist ketanserin, ROCK inhibitor Y27632 and KMUP-1 (7-{2-[4-(2-chlorobenzene piperazinyl]ethyl}-1, 3-dimethylxanthine at 10μM. Western blotting assays indicated that KMUP-3 (0.1–10μM increased PKA, RhoA/ROCKII, and PKC translocation and CIP-17 (an endogenous 17-kDa inhibitory protein activation. In spontaneous right atria, KMUP-3 induced negative chronotropy that was blunted by 7-nitroindazole and atropine. In neonatal myocytes, L-NAME inhibited KMUP-3-induced eNOS phosphorylation and RhoA/ROCK activation. In H9c2 cells, Y-27632 (50μM and PKG antagonist KT5823 [2,3,9,10,11,12-hexahydro-10R- methoxy-2,9-dimethyl-1-oxo-9S,12R-epoxy-1H-diindolo(1,2,3-fg:3′,2′,1

  8. Neurotensin is an antagonist of the human neurotensin NT2 receptor expressed in Chinese hamster ovary cells.

    Science.gov (United States)

    Vita, N; Oury-Donat, F; Chalon, P; Guillemot, M; Kaghad, M; Bachy, A; Thurneyssen, O; Garcia, S; Poinot-Chazel, C; Casellas, P; Keane, P; Le Fur, G; Maffrand, J P; Soubrie, P; Caput, D; Ferrara, P

    1998-11-06

    The human levocabastine-sensitive neurotensin NT2 receptor was cloned from a cortex cDNA library and stably expressed in Chinese hamster ovary (CHO) cells in order to study its binding and signalling characteristics. The receptor binds neurotensin as well as several other ligands already described for neurotensin NT1 receptor. It also binds levocabastine, a histamine H1 receptor antagonist that is not recognised by neurotensin NT1 receptor. Neurotensin binding to recombinant neurotensin NT2 receptor expressed in CHO cells does not elicit a biological response as determined by second messenger measurements. Levocabastine, and the peptides neuromedin N and xenin were also ineffective on neurotensin NT2 receptor activation. Experiments with the neurotensin NT1 receptor antagonists SR48692 and SR142948A, resulted in the unanticipated discovery that both molecules are potent agonists on neurotensin NT2 receptor. Both compounds, following binding to neurotensin NT2 receptor, enhance inositol phosphates (IP) formation with a subsequent [Ca2+]i mobilisation; induce arachidonic acid release; and stimulate mitogen-activated protein kinase (MAPK) activity. Interestingly, these activities are antagonised by neurotensin and levocabastine in a concentration-dependent manner. These activities suggest that the human neurotensin NT2 receptor may be of physiological importance and that a natural agonist for the receptor may exist.

  9. Thermoluminescence properties of CaO powder obtained from chicken eggshells

    International Nuclear Information System (INIS)

    Nagabhushana, K.R.; Lokesha, H.S.; Satyanarayana Reddy, S.; Prakash, D.; Veerabhadraswamy, M.; Bhagyalakshmi, H.; Jayaramaiah, J.R.

    2017-01-01

    Eggshell wastage has created serious problem in disposal of the food processing industry which has been triggered the thoughts of researchers to use wasted eggshells as good source of calcium. In the present work, calcium oxide (CaO) has been synthesized by combustion process in furnace (F–CaO) and microwave oven (M–CaO) using the source of chicken eggshells. The obtained F–CaO and M–CaO are characterized by XRD, SEM with EDX and thermoluminescence (TL) technique. XRD pattern of both the samples show cubic phase with crystallite size 45–52 nm. TL glow curves are recorded for various gamma radiation dose (300–4000 Gy). Two TL glows, a small peak at 424 K and stronger peak at 597 K are observed. TL response of M–CaO is 2.67 times higher than F–CaO sample. TL kinetic parameters are calculated by computerized curve deconvolution analysis (CCDA) and discussed. - Highlights: • Calcium oxide powders have been synthesized using chicken egg shells as raw material. • Crystallite size was found to be 45–52 nm. • CaO derived from eggshells shows good thermoluminescence TL response. • TL response of the M–CaO is 2.67 times higher than the F–CaO sample.

  10. Vitamin K antagonist use and mortality in dialysis patients

    NARCIS (Netherlands)

    Voskamp, Pauline W.M.; Rookmaaker, Maarten B.; Verhaar, Marianne C.; Dekker, Friedo W.; Ocak, Gurbey

    2018-01-01

    Background. The risk-benefit ratio of vitamin K antagonists for different CHA2DS2-VASc scores in patients with end-stage renal disease treated with dialysis is unknown. The aim of this study was to investigate the association between vitamin K antagonist use and mortality for different CHA2DS2-VASc

  11. Potent and long-acting corticotropin releasing factor (CRF) receptor 2 selective peptide competitive antagonists.

    Science.gov (United States)

    Rivier, J; Gulyas, J; Kirby, D; Low, W; Perrin, M H; Kunitake, K; DiGruccio, M; Vaughan, J; Reubi, J C; Waser, B; Koerber, S C; Martinez, V; Wang, L; Taché, Y; Vale, W

    2002-10-10

    We present evidence that members of the corticotropin releasing factor (CRF) family assume distinct structures when interacting with the CRF(1) and CRF(2) receptors. Predictive methods, physicochemical measurements, and structure-activity relationship studies have suggested that CRF, its family members, and competitive antagonists such as astressin [cyclo(30-33)[DPhe(12),Nle(21),Glu(30),Lys(33),Nle(38)]hCRF((12-41))] assume an alpha-helical conformation when interacting with their receptors. We had shown that alpha-helical CRF((9-41)) and sauvagine showed some selectivity for CRF receptors other than that responsible for ACTH secretion(1) and later for CRF2.(2) More recently, we suggested the possibility of a helix-turn-helix motif around a turn encompassing residues 30-33(3) that would confer high affinity for both CRF(1) and CRF(2)(2,4) in agonists and antagonists of all members of the CRF family.(3) On the other hand, the substitutions that conferred ca. 100-fold CRF(2) selectivity to the antagonist antisauvagine-30 [[DPhe(11),His(12)]sauvagine((11-40))] did not confer such property to the corresponding N-terminally extended agonists. We find here that a Glu(32)-Lys(35) side chain to side chain covalent lactam constraint in hCRF and the corresponding Glu(31)-Lys(34) side chain to side chain covalent lactam constraint in sauvagine yield potent ligands that are selective for CRF(2). Additionally, we introduced deletions and substitutions known to increase duration of action to yield antagonists such as cyclo(31-34)[DPhe(11),His(12),C(alpha)MeLeu(13,39),Nle(17),Glu(31),Lys(34)]Ac-sauvagine((8-40)) (astressin(2)-B) with CRF(2) selectivities greater than 100-fold. CRF receptor autoradiography was performed in rat tissue known to express CRF(2) and CRF(1) in order to confirm that astressin(2)-B could indeed bind to established CRF(2) but not CRF(1) receptor-expressing tissues. Extended duration of action of astressin(2)-B vs that of antisauvagine-30 is demonstrated in

  12. Inflammatory mediator bradykinin increases population of sensory neurons expressing functional T-type Ca(2+) channels.

    Science.gov (United States)

    Huang, Dongyang; Liang, Ce; Zhang, Fan; Men, Hongchao; Du, Xiaona; Gamper, Nikita; Zhang, Hailin

    2016-04-29

    T-type Ca(2+) channels are important regulators of peripheral sensory neuron excitability. Accordingly, T-type Ca(2+) currents are often increased in various pathological pain conditions, such as inflammation or nerve injury. Here we investigated effects of inflammation on functional expression of T-type Ca(2+) channels in small-diameter cultured dorsal root ganglion (DRG) neurons. We found that overnight treatment of DRG cultures with a cocktail of inflammatory mediators bradykinin (BK), adenosine triphosphate (ATP), norepinephrine (NE) and prostaglandin E2 (PGE2) strongly increased the population size of the small-diameter neurons displaying low-voltage activated (LVA, T-type) Ca(2+) currents while having no effect on the peak LVA current amplitude. When applied individually, BK and ATP also increased the population size of LVA-positive neurons while NE and PGE2 had no effect. The PLC inhibitor U-73122 and B2 receptor antagonist, Hoe-140, both abolished the increase of the population of LVA-positive DRG neurons. Inflammatory treatment did not affect CaV3.2 mRNA or protein levels in DRG cultures. Furthermore, an ubiquitination inhibitor, MG132, did not increase the population of LVA-positive neurons. Our data suggest that inflammatory mediators BK and ATP increase the abundance of LVA-positive DRG neurons in total neuronal population by stimulating the recruitment of a 'reserve pool' of CaV3.2 channels, particularly in neurons that do not display measurable LVA currents under control conditions. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Characterization of a novel non-steroidal glucocorticoid receptor antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qun-Yi; Zhang, Meng [The National Center for Drug Screening, Shanghai (China); State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China); Hallis, Tina M.; DeRosier, Therese A. [Cell Systems Division, Invitrogen, Madison, WI (United States); Yue, Jian-Min; Ye, Yang [State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China); Mais, Dale E. [The National Center for Drug Screening, Shanghai (China); MPI Research, Mattawan, MI (United States); Wang, Ming-Wei, E-mail: wangmw@mail.shcnc.ac.cn [The National Center for Drug Screening, Shanghai (China); State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China)

    2010-01-15

    Selective antagonists of the glucocorticoid receptor (GR) are desirable for the treatment of hypercortisolemia associated with Cushing's syndrome, psychic depression, obesity, diabetes, neurodegenerative diseases, and glaucoma. NC3327, a non-steroidal small molecule with potent binding affinity to GR (K{sub i} = 13.2 nM), was identified in a high-throughput screening effort. As a full GR antagonist, NC3327 greatly inhibits the dexamethasone (Dex) induction of marker genes involved in hepatic gluconeogenesis, but has a minimal effect on matrix metalloproteinase 9 (MMP-9), a GR responsive pro-inflammatory gene. Interestingly, the compound recruits neither coactivators nor corepressors to the GR complex but competes with glucocorticoids for the interaction between GR and a coactivator peptide. Moreover, NC3327 does not trigger GR nuclear translocation, but significantly blocks Dex-induced GR transportation to the nucleus, and thus appears to be a 'competitive' GR antagonist. Therefore, the non-steroidal compound, NC3327, may represent a new class of GR antagonists as potential therapeutics for a variety of cortisol-related endocrine disorders.

  14. Characterization of a novel non-steroidal glucocorticoid receptor antagonist

    International Nuclear Information System (INIS)

    Li, Qun-Yi; Zhang, Meng; Hallis, Tina M.; DeRosier, Therese A.; Yue, Jian-Min; Ye, Yang; Mais, Dale E.; Wang, Ming-Wei

    2010-01-01

    Selective antagonists of the glucocorticoid receptor (GR) are desirable for the treatment of hypercortisolemia associated with Cushing's syndrome, psychic depression, obesity, diabetes, neurodegenerative diseases, and glaucoma. NC3327, a non-steroidal small molecule with potent binding affinity to GR (K i = 13.2 nM), was identified in a high-throughput screening effort. As a full GR antagonist, NC3327 greatly inhibits the dexamethasone (Dex) induction of marker genes involved in hepatic gluconeogenesis, but has a minimal effect on matrix metalloproteinase 9 (MMP-9), a GR responsive pro-inflammatory gene. Interestingly, the compound recruits neither coactivators nor corepressors to the GR complex but competes with glucocorticoids for the interaction between GR and a coactivator peptide. Moreover, NC3327 does not trigger GR nuclear translocation, but significantly blocks Dex-induced GR transportation to the nucleus, and thus appears to be a 'competitive' GR antagonist. Therefore, the non-steroidal compound, NC3327, may represent a new class of GR antagonists as potential therapeutics for a variety of cortisol-related endocrine disorders.

  15. PTFE Additive and Re-annealing Effect on Thermoluminescence Response of CaSO4:Dy Derived from Co-precipitation Method

    Science.gov (United States)

    Nuraeni, Nunung; Dwi Septianto, Ricky; Iskandar, Ferry; Haryanto, Freddy; Waris, Abdul; Hiswara, Eri

    2017-07-01

    Effect of re-annealing treatment in thermoluminescence response of thermoluminescent dosimeter (TLD) CaSO4:Dy and CaSO4:Dy with PTFE (Polytetrafluoroethylene) addition was investigated. CaSO4:Dy was prepared by a co-precipitation method. The PTFE was added before re-annealing treatment which the mass ratio of CaSO4:Dy and PTFE was fixed to 2:3. The re-annealing treatments of the samples were done at temperature 700 °C for 1 hr. The obtained samples were characterized using a Fourier-transform infrared (FTIR) and X-ray diffraction (XRD) to observe the molecule bonding in sample and crystal properties, respectively. From the experimental results, it was observed that the thermoluminescence intensity of CaSO4:Dy, CaSO4:Dy re-annealed at 700 °C, and CaSO4:Dy + PTFE re-annealed at 700 °C are 57.03, 75.15, and 1191.11 nC, respectively. The intensity of 700 °C-re-annealed CaSO4:Dy increased significantly after PTFE addition.

  16. The role of Ca2+/calmodulin-dependent protein kinase II and calcineurin in TNF-α-induced myocardial hypertrophy

    International Nuclear Information System (INIS)

    Wang, Gui-Jun; Wang, Hong-Xin; Yao, Yu-Sheng; Guo, Lian-Yi; Liu, Pei

    2012-01-01

    We investigated whether Ca 2+ /calmodulin-dependent kinase II (CaMKII) and calcineurin (CaN) are involved in myocardial hypertrophy induced by tumor necrosis factor α (TNF-α). The cardiomyocytes of neonatal Wistar rats (1-2 days old) were cultured and stimulated by TNF-α (100 µg/L), and Ca 2+ signal transduction was blocked by several antagonists, including BAPTA (4 µM), KN-93 (0.2 µM) and cyclosporin A (CsA, 0.2 µM). Protein content, protein synthesis, cardiomyocyte volumes, [Ca 2+ ] i transients, CaMKIIδ B and CaN were evaluated by the Lowry method, [ 3 H]-leucine incorporation, a computerized image analysis system, a Till imaging system, and Western blot analysis, respectively. TNF-α induced a significant increase in protein content in a dose-dependent manner from 10 µg/L (53.56 µg protein/well) to 100 µg/L (72.18 µg protein/well), and in a time-dependent manner from 12 h (37.42 µg protein/well) to 72 h (42.81 µg protein/well). TNF-α (100 µg/L) significantly increased the amplitude of spontaneous [Ca 2+ ] i transients, the total protein content, cell size, and [ 3 H]-leucine incorporation in cultured cardiomyocytes, which was abolished by 4 µM BAPTA, an intracellular Ca 2+ chelator. The increases in protein content, cell size and [ 3 H]-leucine incorporation were abolished by 0.2 µM KN-93 or 0.2 µM CsA. TNF-α increased the expression of CaMKIIδ B by 35.21% and that of CaN by 22.22% compared to control. These effects were abolished by 4 µM BAPTA, which itself had no effect. These results suggest that TNF-α induces increases in [Ca 2+ ] i , CaMKIIδ B and CaN and promotes cardiac hypertrophy. Therefore, we hypothesize that the Ca 2+ /CaMKII- and CaN-dependent signaling pathways are involved in myocardial hypertrophy induced by TNF-α

  17. Medicinal Chemistry of Competitive Kainate Receptor Antagonists

    Science.gov (United States)

    2010-01-01

    Kainic acid (KA) receptors belong to the group of ionotropic glutamate receptors and are expressed throughout in the central nervous system (CNS). The KA receptors have been shown to be involved in neurophysiological functions such as mossy fiber long-term potentiation (LTP) and synaptic plasticity and are thus potential therapeutic targets in CNS diseases such as schizophrenia, major depression, neuropathic pain and epilepsy. Extensive effort has been made to develop subtype-selective KA receptor antagonists in order to elucidate the physiological function of each of the five subunits known (GluK1−5). However, to date only selective antagonists for the GluK1 subunit have been discovered, which underlines the strong need for continued research in this area. The present review describes the structure−activity relationship and pharmacological profile for 10 chemically distinct classes of KA receptor antagonists comprising, in all, 45 compounds. To the medicinal chemist this information will serve as reference guidance as well as an inspiration for future effort in this field. PMID:22778857

  18. Structurally simplified biphenyl combretastatin A4 derivatives retain in vitro anti-cancer activity dependent on mitotic arrest

    Science.gov (United States)

    Tarade, Daniel; Ma, Dennis; Pignanelli, Christopher; Mansour, Fadi; Simard, Daniel; van den Berg, Sean; Gauld, James; McNulty, James; Pandey, Siyaram

    2017-01-01

    The cis-stilbene, combretastatin A4 (CA4), is a potent microtubule targeting and vascular damaging agent. Despite promising results at the pre-clinical level and extensive clinical evaluation, CA4 has yet to be approved for therapeutic use. One impediment to the development of CA4 is an inherent conformational instability about the ethylene linker, which joins two aromatic rings. We have previously published preliminary data regarding structurally simplified biphenyl derivatives of CA4, lacking an ethylene linker, which retain anti-proliferative and pro-apoptotic activity, albeit at higher doses. Our current study provides a more comprehensive evaluation regarding the anti-proliferative and pro-apoptotic properties of biphenyl CA4 derivatives in both 2D and 3D cancerous and non-cancerous cell models. Computational analysis has revealed that cytotoxicity of CA4 and biphenyl analogues correlates with predicted tubulin affinity. Additional mechanistic evaluation of the biphenyl derivatives found that their anti-cancer activity is dependent on prolonged mitotic arrest, in a similar manner to CA4. Lastly, we have shown that cancer cells deficient in the extrinsic pathway of apoptosis experience delayed cell death following treatment with CA4 or analogues. Biphenyl derivatives of CA4 represent structurally simplified analogues of CA4, which retain a similar mechanism of action. The biphenyl analogues warrant in vivo examination to evaluate their potential as vascular damaging agents. PMID:28253265

  19. Structurally simplified biphenyl combretastatin A4 derivatives retain in vitro anti-cancer activity dependent on mitotic arrest.

    Directory of Open Access Journals (Sweden)

    Daniel Tarade

    Full Text Available The cis-stilbene, combretastatin A4 (CA4, is a potent microtubule targeting and vascular damaging agent. Despite promising results at the pre-clinical level and extensive clinical evaluation, CA4 has yet to be approved for therapeutic use. One impediment to the development of CA4 is an inherent conformational instability about the ethylene linker, which joins two aromatic rings. We have previously published preliminary data regarding structurally simplified biphenyl derivatives of CA4, lacking an ethylene linker, which retain anti-proliferative and pro-apoptotic activity, albeit at higher doses. Our current study provides a more comprehensive evaluation regarding the anti-proliferative and pro-apoptotic properties of biphenyl CA4 derivatives in both 2D and 3D cancerous and non-cancerous cell models. Computational analysis has revealed that cytotoxicity of CA4 and biphenyl analogues correlates with predicted tubulin affinity. Additional mechanistic evaluation of the biphenyl derivatives found that their anti-cancer activity is dependent on prolonged mitotic arrest, in a similar manner to CA4. Lastly, we have shown that cancer cells deficient in the extrinsic pathway of apoptosis experience delayed cell death following treatment with CA4 or analogues. Biphenyl derivatives of CA4 represent structurally simplified analogues of CA4, which retain a similar mechanism of action. The biphenyl analogues warrant in vivo examination to evaluate their potential as vascular damaging agents.

  20. QSAR study on the histamine (H3 receptor antagonists using the genetic algorithm: Multi parameter linear regression

    Directory of Open Access Journals (Sweden)

    Adimi Maryam

    2012-01-01

    Full Text Available A quantitative structure activity relationship (QSAR model has been produced for predicting antagonist potency of biphenyl derivatives as human histamine (H3 receptors. The molecular structures of the compounds are numerically represented by various kinds of molecular descriptors. The whole data set was divided into training and test sets. Genetic algorithm based multiple linear regression is used to select most statistically effective descriptors. The final QSAR model (N =24, R2=0.916, F = 51.771, Q2 LOO = 0.872, Q2 LGO = 0.847, Q2 BOOT = 0.857 was fully validated employing leaveone- out (LOO cross-validation approach, Fischer statistics (F, Yrandomisation test, and predictions based on the test data set. The test set presented an external prediction power of R2 test=0.855. In conclusion, the QSAR model generated can be used as a valuable tool for designing similar groups of new antagonists of histamine (H3 receptors.

  1. Endothelin-1 stimulates the release of preloaded ( sup 3 H)D-aspartate from cultured cerebellar granule cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, W.W.; Lee, C.Y.; Chuang, D.M. (NIMH Neuroscience Center, Washington, DC (USA))

    1990-03-16

    We have recently reported that endothelin-1 (ET) induces phosphoinositide hydrolysis in primary cultures of rat cerebellar granule cells. Here we found that ET in a dose-dependent manner (1-30 nM) stimulated the release of preloaded ({sup 3}H)D-aspartate from granule cells. The ET-induced aspartate release was completely blocked in the absence of extracellular Ca{sup 2+}, but was unaffected by 1 mM Co{sup 2+} or 1 microM dihydropyridine derivatives (nisoldipine and nimodipine). At higher concentration (10 microM) of nisoldipine and nimodipine, the release was partially inhibited. Short-term pretreatment of cells with phorbol 12,13-dibutyrate (PDBu) potentiated the ET-induced aspartate release, while long-term pretreatment with PDBu attenuated the release. Long-term exposure of cells to pertussis toxin (PTX), on the other hand, potentiated the ET-induced effects. Our results suggest that ET has a neuromodulatory function in the central nervous system.

  2. (β-dicarbonyl) arylmethanes and dihydropyridine from dimedone in

    African Journals Online (AJOL)

    N. Bayou-Khier, M. Amari, M. Fodili, S.G.Grau, P. Hoffmann

    2016-09-01

    Sep 1, 2016 ... http://www.jfas.info ... arylmethane derivatives have attracted considerable attention ... In this work, we have obtained selectively, the homodimer 3 of dimedone .... impact ionization mass spectra were recorded on a Nermag ...

  3. Acute Cocaine Induces Fast Activation of D1 Receptor and Progressive Deactivation of D2 Receptor Strial Neurons: In Vivo Optical Microprobe [Ca2+]i Imaging

    International Nuclear Information System (INIS)

    Du, C.; Luo, Z.; Volkow, N.D.; Heintz, N.; Pan, Y.; Du, C.

    2011-01-01

    Cocaine induces fast dopamine increases in brain striatal regions, which are recognized to underlie its rewarding effects. Both dopamine D1 and D2 receptors are involved in cocaine's reward but the dynamic downstream consequences of cocaine effects in striatum are not fully understood. Here we used transgenic mice expressing EGFP under the control of either the D1 receptor (D1R) or the D2 receptor (D2R) gene and microprobe optical imaging to assess the dynamic changes in intracellular calcium ([Ca 2+ ] i ) responses (used as marker of neuronal activation) to acute cocaine in vivo separately for D1R- versus D2R-expressing neurons in striatum. Acute cocaine (8 mg/kg, i.p.) rapidly increased [Ca 2+ ] i in D1R-expressing neurons (10.6 ± 3.2%) in striatum within 8.3 ± 2.3 min after cocaine administration after which the increases plateaued; these fast [Ca 2+ ] i increases were blocked by pretreatment with a D1R antagonist (SCH23390). In contrast, cocaine induced progressive decreases in [Ca 2+ ] i in D2R-expressing neurons (10.4 ± 5.8%) continuously throughout the 30 min that followed cocaine administration; these slower [Ca 2+ ] i decreases were blocked by pretreatment with a D2R antagonist (raclopride). Since activation of striatal D1R-expressing neurons (direct-pathway) enhances cocaine reward, whereas activation of D2R expressing neurons suppresses it (indirect-pathway) (Lobo et al., 2010), this suggests that cocaine's rewarding effects entail both its fast stimulation ofD1R (resulting in abrupt activation of direct-pathway neurons) and a slower stimulation of D2R (resulting in longer-lasting deactivation of indirect-pathway neurons). We also provide direct in vivo evidence of D2R and D1R interactions in the striatal responses to acute cocaine administration.

  4. P2Y receptor-mediated transient relaxation of rat longitudinal ileum preparations involves phospholipase C activation, intracellular Ca(2+) release and SK channel activation.

    Science.gov (United States)

    Mader, Felix; Krause, Ludwig; Tokay, Tursonjan; Hakenberg, Oliver W; Köhling, Rüdiger; Kirschstein, Timo

    2016-05-01

    Purinergic signaling plays a major role in the enteric nervous system, where it governs gut motility through a number of P2X and P2Y receptors. The aim of this study was to investigate the P2Y receptor-mediated motility in rat longitudinal ileum preparations. Ileum smooth muscle strips were prepared from rats, and fixed in an organ bath. Isometric contraction and relaxation responses of the muscle strips were measured with force transducers. Drugs were applied by adding of stock solutions to the organ bath to yield the individual final concentrations. Application of the non-hydrolyzable P2 receptor agonists α,β-Me-ATP or 2-Me-S-ADP (10, 100 μmol/L) dose-dependently elicited a transient relaxation response followed by a sustained contraction. The relaxation response was largely blocked by SK channel blockers apamin (500 nmol/L) and UCL1684 (10 μmol/L), PLC inhibitor U73122 (100 μmol/L), IP3 receptor blocker 2-APB (100 μmol/L) or sarcoendoplasmic Ca(2+) ATPase inhibitor thapsigargin (1 μmol/L), but not affected by atropine, NO synthase blocker L-NAME or tetrodotoxin. Furthermore, α,β-Me-ATP-induced relaxation was suppressed by P2Y1 receptor antagonist MRS2179 (50 μmol/L) or P2Y13 receptor antagonist MRS2211 (100 μmol/L), and was abolished by co-application of the two antagonists, whereas 2-Me-S-ADP-induced relaxation was abolished by P2Y6 receptor antagonist MRS2578 (50 μmol/L). In addition, P2Y1 receptor antagonist MRS2500 (1 μmol/L) not only abolished α,β-Me-ATP-induced relaxation, but also suppressed 2-Me-S-ADP-induced relaxation. P2Y receptor agonist-induced transient relaxation of rat ileum smooth muscle strips is mediated predominantly by P2Y1 receptor, but also by P2Y6 and P2Y13 receptors, and involves PLC, IP3, Ca(2+) release and SK channel activation, but is independent of acetylcholine and NO release.

  5. Serum level of tumor marker CA-125 in ovarian pathology

    International Nuclear Information System (INIS)

    Bagni, B.; Feggi, L.M.; Prandini, N.; Pasini, S.; Mollica, G.

    1987-01-01

    The tumor marker CA-125 is an embrional glycoprotein detectable in tissues derived from celomatic epitelium. Serum Ca-125 was determined by RIA in 66 patients with various ovarian pathologies (16 malignant at stage III-IV and 50 benign). Six patients with ovarian carcinoma were monitored during the first week after surgery and chemiotherapy for a total of 150 days of treatment. It has been observed that CA-125 serum level is consistently above the normal range (>35 U/ml) in all malignant diseases. In benign pathology, levels above the normal were found to be represented almost exclusively by ovarian endometriosis. Furthermore, the results demonstrate that chemiotherapy alone is capable of lowering CA-125 serum levels. This tumor marker may be of great advantage in diagnosis and follow-up of ovarian malignancy

  6. Human limbic encephalitis serum enhances hippocampal mossy fiber-CA3 pyramidal cell synaptic transmission.

    Science.gov (United States)

    Lalic, Tatjana; Pettingill, Philippa; Vincent, Angela; Capogna, Marco

    2011-01-01

    Limbic encephalitis (LE) is a central nervous system (CNS) disease characterized by subacute onset of memory loss and epileptic seizures. A well-recognized form of LE is associated with voltage-gated potassium channel complex antibodies (VGKC-Abs) in the patients' sera. We aimed to test the hypothesis that purified immunoglobulin G (IgG) from a VGKC-Ab LE serum would excite hippocampal CA3 pyramidal cells by reducing VGKC function at mossy-fiber (MF)-CA3 pyramidal cell synapses. We compared the effects of LE and healthy control IgG by whole-cell patch-clamp and extracellular recordings from CA3 pyramidal cells of rat hippocampal acute slices. We found that the LE IgG induced epileptiform activity at a population level, since synaptic stimulation elicited multiple population spikes extracellularly recorded in the CA3 area. Moreover, the LE IgG increased the rate of tonic firing and strengthened the MF-evoked synaptic responses. The synaptic failure of evoked excitatory postsynaptic currents (EPSCs) was significantly lower in the presence of the LE IgG compared to the control IgG. This suggests that the LE IgG increased the release probability on MF-CA3 pyramidal cell synapses compared to the control IgG. Interestingly, α-dendrotoxin (120 nm), a selective Kv1.1, 1.2, and 1.6 subunit antagonist of VGKC, mimicked the LE IgG-mediated effects. This is the first functional demonstration that LE IgGs reduce VGKC function at CNS synapses and increase cell excitability. Wiley Periodicals, Inc. © 2010 International League Against Epilepsy.

  7. FGFR antagonist induces protective autophagy in FGFR1-amplified breast cancer cell

    International Nuclear Information System (INIS)

    Chen, Yi; Xie, Xiaoyan; Li, Xinyi; Wang, Peiqi; Jing, Qian; Yue, Jiaqi; Liu, Yang; Cheng, Zhong; Li, Jingyi; Song, Haixing; Li, Guoyu; Liu, Rui; Wang, Jinhui

    2016-01-01

    Breast cancer, representing approximately 30% of all gynecological cancer cases diagnosed yearly, is a leading cause of cancer-related mortality for women. Amplification of FGFR1 is frequently observed in breast cancers and is associated with poor prognosis. Though FGFRs have long been considered as anti-cancer drug targets, and a cluster of FGFR antagonists are currently under clinical trials, the precise cellular responses under the treatment of FGFR antagonists remains unclear. Here, we show that PD166866, an FGFR1-selective inhibitor, inhibits proliferation and triggers anoikis in FGFR1-amplified breast cancer cell lines. Notably, we demonstrate that PD166866 induces autophagy in FGFR1-amplified breast cancer cell lines, while blockage of autophagy by Atg5 knockdown further enhances the anti-proliferative activities of PD166866. Moreover, mechanistic study reveals that PD166866 induces autophagy through repressing Akt/mTOR signaling pathway. Together, the present study provides new insights into the molecular mechanisms underlying the anti-tumor activities of FGFR antagonists, and may further assist the FGFRs-based drug discovery. -- Highlights: •FGFR1 antagonist inhibits cell viability in FGFR1-amplified breast cancer cells. •FGFR1 antagonist induces autophagy in FGFR1-amplified breast cancer cells. •FGFR1 antagonist-induced autophagy is protective. •FGFR1 antagonist induces autophagy by inhibiting Akt/mTOR pathway.

  8. FGFR antagonist induces protective autophagy in FGFR1-amplified breast cancer cell

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yi [The School of Biomedical Sciences, Chengdu Medical College, Chengdu 610083 (China); Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu (China); Xie, Xiaoyan; Li, Xinyi; Wang, Peiqi [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University (China); Jing, Qian; Yue, Jiaqi; Liu, Yang [The School of Biomedical Sciences, Chengdu Medical College, Chengdu 610083 (China); Cheng, Zhong [Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu (China); Li, Jingyi, E-mail: li--jingyi@hotmail.com [The School of Biomedical Sciences, Chengdu Medical College, Chengdu 610083 (China); Song, Haixing [The School of Biomedical Sciences, Chengdu Medical College, Chengdu 610083 (China); Li, Guoyu, E-mail: liguoyulisa@163.com [School of Pharmacy, Shihezi University, Shihezi 832003 (China); Liu, Rui, E-mail: liurui_scu@hotmail.com [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University (China); Wang, Jinhui [School of Pharmacy, Shihezi University, Shihezi 832003 (China)

    2016-05-20

    Breast cancer, representing approximately 30% of all gynecological cancer cases diagnosed yearly, is a leading cause of cancer-related mortality for women. Amplification of FGFR1 is frequently observed in breast cancers and is associated with poor prognosis. Though FGFRs have long been considered as anti-cancer drug targets, and a cluster of FGFR antagonists are currently under clinical trials, the precise cellular responses under the treatment of FGFR antagonists remains unclear. Here, we show that PD166866, an FGFR1-selective inhibitor, inhibits proliferation and triggers anoikis in FGFR1-amplified breast cancer cell lines. Notably, we demonstrate that PD166866 induces autophagy in FGFR1-amplified breast cancer cell lines, while blockage of autophagy by Atg5 knockdown further enhances the anti-proliferative activities of PD166866. Moreover, mechanistic study reveals that PD166866 induces autophagy through repressing Akt/mTOR signaling pathway. Together, the present study provides new insights into the molecular mechanisms underlying the anti-tumor activities of FGFR antagonists, and may further assist the FGFRs-based drug discovery. -- Highlights: •FGFR1 antagonist inhibits cell viability in FGFR1-amplified breast cancer cells. •FGFR1 antagonist induces autophagy in FGFR1-amplified breast cancer cells. •FGFR1 antagonist-induced autophagy is protective. •FGFR1 antagonist induces autophagy by inhibiting Akt/mTOR pathway.

  9. ANTAGONISTIC BACTERIA AGAINST SCHIZOPHYLLUM COMMUNE FR. IN PENINSULAR MALAYSIA

    Directory of Open Access Journals (Sweden)

    ANTARJO DIKIN

    2006-01-01

    Full Text Available Schizophyllum commune Fr., is one of the important fungi, causes brown germ and seed rot of oil palm. Biodiversity of antagonistic bacteria from oil palm plantations in Peninsular Malaysia is expected to support in development of biopesticide. Isolation with liquid assay and screening antagonistic bacteria using dual culture assay were carried out in the bioexploration. A total of 265 bacterial isolates from plant parts of oil palm screened 52 antagonistic bacterial isolates against 5. commune. Bacterial isolates were identified by using Biolog* Identification System i.e. Bacillus macroccanus, B. thermoglucosidasius, Burkholderia cepacia, B. gladioli, B. multivorans, B pyrrocinia, B. spinosa, Corynebacterium agropyri, C. misitidis, Enterobacter aerogenes, Microbacterium testaceum, Pseudomonas aeruginosa, P. citronellolis, Rhodococcus rhodochrous, Serratia ficaria, Serratia sp., S. marcescens, Staphylococcus sciuri, Sternotrophomonas maltophilia.

  10. Salvia miltiorrhiza Induces Tonic Contraction of the Lower Esophageal Sphincter in Rats via Activation of Extracellular Ca2+ Influx

    Directory of Open Access Journals (Sweden)

    Ching-Chung Tsai

    2015-08-01

    Full Text Available Up to 40% of patients with gastroesophageal reflux disease (GERD suffer from proton pump inhibitor refractory GERD but clinically the medications to strengthen the lower esophageal sphincter (LES to avoid irritating reflux are few in number. This study aimed to examine whether Salvia miltiorrhiza (SM extracts induce tonic contraction of rat LES ex vivo and elucidate the underlying mechanisms. To investigate the mechanism underlying the SM extract-induced contractile effects, rats were pretreated with atropine (a muscarinic receptor antagonist, tetrodotoxin (a sodium channel blocker, nifedipine (a calcium channel blocker, and Ca2+-free Krebs-Henseleit solution with ethylene glycol tetraacetic acid (EGTA, followed by administration of cumulative dosages of SM extracts. SM extracts induced dose-related tonic contraction of the LES, which was unaffected by tetrodotoxin, atropine, or nifedipine. However, the SM extract-induced LES contraction was significantly inhibited by Ca2+-free Krebs-Henseleit solution with EGTA. Next, SM extracts significantly induce extracellular Ca2+ entry into primary LES cells in addition to intracellular Ca2+ release and in a dose-response manner. Confocal fluorescence microscopy showed that the SM extracts consistently induced significant extracellular Ca2+ influx into primary LES cells in a time-dependent manner. In conclusion, SM extracts could induce tonic contraction of LES mainly through the extracellular Ca2+ influx pathway.

  11. NMDA-dependent phase synchronization between septal and temporal CA3 hippocampal networks.

    Science.gov (United States)

    Gu, Ning; Jackson, Jesse; Goutagny, Romain; Lowe, Germaine; Manseau, Frédéric; Williams, Sylvain

    2013-05-08

    Increasing evidence suggests that synchronization between brain regions is essential for information exchange and memory processes. However, it remains incompletely known which synaptic mechanisms contribute to the process of synchronization. Here, we investigated whether NMDA receptor-mediated synaptic plasticity was an important player in synchronization between septal and temporal CA3 areas of the rat hippocampus. We found that both the septal and temporal CA3 regions intrinsically generate weakly synchronized δ frequency oscillations in the complete hippocampus in vitro. Septal and temporal oscillators differed in frequency, power, and rhythmicity, but both required GABAA and AMPA receptors. NMDA receptor activation, and most particularly the NR2B subunit, contributed considerably more to rhythm generation at the temporal than the septal region. Brief activation of NMDA receptors by application of extracellular calcium dramatically potentiated the septal-temporal coherence for long durations (>40 min), an effect blocked by the NMDA antagonist AP-5. This long-lasting NMDA-receptor-dependent increase in coherence was also associated with an elevated phase locking of spikes locally and across regions. Changes in coherence between oscillators were associated with increases in phase locking between oscillators independent of oscillator amplitude. Finally, although the septal CA3 rhythm preceded the oscillations in temporal regions in control conditions, this was reversed during the NMDA-dependent enhancement in coherence, suggesting that NMDA receptor activation can change the direction of information flow along the septotemporal CA3 axis. These data demonstrate that plastic changes in communication between septal and temporal hippocampal regions can arise from the NMDA-dependent phase locking of neural oscillators.

  12. Transient receptor potential ankyrin 1 antagonists block the noxious effects of toxic industrial isocyanates and tear gases.

    Science.gov (United States)

    Bessac, Bret F; Sivula, Michael; von Hehn, Christian A; Caceres, Ana I; Escalera, Jasmine; Jordt, Sven-Eric

    2009-04-01

    The release of methyl isocyanate in Bhopal, India, caused the worst industrial accident in history. Exposures to industrial isocyanates induce lacrimation, pain, airway irritation, and edema. Similar responses are elicited by chemicals used as tear gases. Despite frequent exposures, the biological targets of isocyanates and tear gases in vivo have not been identified, precluding the development of effective countermeasures. We use Ca(2+) imaging and electrophysiology to show that the noxious effects of isocyanates and those of all major tear gas agents are caused by activation of Ca(2+) influx and membrane currents in mustard oil-sensitive sensory neurons. These responses are mediated by transient receptor potential ankyrin 1 (TRPA1), an ion channel serving as a detector for reactive chemicals. In mice, genetic ablation or pharmacological inhibition of TRPA1 dramatically reduces isocyanate- and tear gas-induced nocifensive behavior after both ocular and cutaneous exposures. We conclude that isocyanates and tear gas agents target the same neuronal receptor, TRPA1. Treatment with TRPA1 antagonists may prevent and alleviate chemical irritation of the eyes, skin, and airways and reduce the adverse health effects of exposures to a wide range of toxic noxious chemicals.

  13. Dopaminergic enhancement of cellular adhesion in bone marrow derived mesenchymal stem cells (MSCs).

    Science.gov (United States)

    Chen, Si; Bai, Bing; Lee, Dong Joon; Diachina, Shannon; Li, Yina; Wong, Sing Wai; Wang, Zhengyan; Tseng, Henry C; Ko, Ching-Chang

    2017-08-01

    Dopamine (DA) is a well-known neurotransmitter and critical element in the mussel adhesive protein that has gained increasing attention for its role in cellular growth enhancement in biomaterials, including cellular adhesion improvement. As the mechanism underlying this remains unclear, the objective of this study was to explore the effects of DA on the adhesion properties of bone marrow derived rat mesenchymal stem cells (rMSCs) using an hydroxyapatite gelatin nanocomposite biomaterial and to test whether the effects are mediated through various endogenously expressed DA receptors. Primary rMSCs were pretreated with D1-like antagonist, D2-like antagonist, or a combination of these antagonists followed by treatment with 50 μM DA and cellular adhesion quantification at 0.5, 1, 2 and 4 hours post DA addition. DA was found to increase rMSC adhesion and spreading at the 0.5 hour time-point and the dopaminergic effect on cell adhesion was partially blocked by DA antagonists. In addition, the D1-like and D2-like antagonists appeared to have a similar effect on rMSCs. Immunofluorescent staining indicated that the rMSC spreading area was significantly increased in the DA treated group versus the control group. Treatment of the D1-like DA antagonists with DA revealed that the actin filaments of rMSCs could not connect the membrane with the nucleus. In summary, DA was found to enhance early rMSC adhesion partially via DA receptor activation.

  14. Antagonistic Phenomena in Network Dynamics

    Science.gov (United States)

    Motter, Adilson E.; Timme, Marc

    2018-03-01

    Recent research on the network modeling of complex systems has led to a convenient representation of numerous natural, social, and engineered systems that are now recognized as networks of interacting parts. Such systems can exhibit a wealth of phenomena that not only cannot be anticipated from merely examining their parts, as per the textbook definition of complexity, but also challenge intuition even when considered in the context of what is now known in network science. Here, we review the recent literature on two major classes of such phenomena that have far-reaching implications: (a) antagonistic responses to changes of states or parameters and (b) coexistence of seemingly incongruous behaviors or properties - both deriving from the collective and inherently decentralized nature of the dynamics. They include effects as diverse as negative compressibility in engineered materials, rescue interactions in biological networks, negative resistance in fluid networks, and the Braess paradox occurring across transport and supply networks. They also include remote synchronization, chimera states, and the converse of symmetry breaking in brain, power-grid, and oscillator networks as well as remote control in biological and bioinspired systems. By offering a unified view of these various scenarios, we suggest that they are representative of a yet broader class of unprecedented network phenomena that ought to be revealed and explained by future research.

  15. Apical P2XR contribute to [Ca2+]i signaling and Isc in mouse renal MCD.

    Science.gov (United States)

    Li, Liuzhe; Lynch, I Jeanette; Zheng, Wencui; Cash, Melanie N; Teng, Xueling; Wingo, Charles S; Verlander, Jill W; Xia, Shen-Ling

    2007-08-03

    We examined P2X receptor expression and distribution in the mouse collecting duct (CD) and their functional role in Ca(2+) signaling. Both P2X(1) and P2X(4) were detected by RT-PCR and Western blot. Immunohistochemistry demonstrated apical P2X(1) and P2X(4) immunoreactivity in principal cells in the outer medullary CD (OMCD) and inner medullary CD (IMCD). Luminal ATP induced an increase in Ca(2+) signaling in native medullary CD (MCD) as measured by fluorescence imaging. ATP also induced an increase in Ca(2+) signaling in MCD cells grown in primary culture but not in the presence of P2XR antagonist PPNDS. Short circuit current (I(sc)) measurement with mouse IMCD cells showed that P2XR agonist BzATP induced a larger I(sc) than did P2YR agonist UTP in the apical membrane. Our data reveal for the first time that P2X(1) and P2X(4) are cell-specific with prominent immunoreactivity in the apical area of MCD cells. The finding that P2XR blockade inhibits ATP-induced Ca(2+) signaling suggests that activation of P2XR is a key step in Ca(2+)-dependent purinergic signaling. The result that activation of P2XR produces large I(sc) indicates the necessity of P2XR in renal CD ion transport.

  16. In vitro Evaluation of a Bombesin Antagonistic Analogue Conjugated with DOTA-Ala(SO{sub 3}H)-Aminooctanoyl for Targeting of the Gastrin-releasing Peptide Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jae Cheong; Cho, Eun Ha; Kim, Jin Joo; Lee, So Young; Choi, Sang Mu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    As Bombesin (BBS) binds with high affinity to GRPR, BBS derivatives have been labeled with various radionuclides such as {sup 99}mTc, {sup 111}In, {sup 90}Y, {sup 64}Cu, {sup 177}Lu, {sup 68}Ga, or {sup 18}F and have proved to be successful candidates for peptide receptor radiotherapy (PRRT). In this study, we employed Ala(SO{sub 3}H)-Aminooctanoyl as a linker of BBS antagonistic peptide sequence, Gln-Trp-Ala-Val-N methyl Gly-His-Statine-Leu-NH{sub 2}, with DOTA to prepare radiolabeled candidates for GRPR targeting. A DOTA-conjugated BBS antagonistic analogue was synthesized and radiolabeled with {sup 177}Lu, and in vitro characteristics on GRPR-overexpressing human prostate tumor cells were evaluated. In conclusion, a novel BBS antagonistic analogue, {sup 177}Lu-DOTA-sBBNA, is a promising candidate for the targeting of GRPR-over-expressing tumors. Further investigations to evaluate its in vivo characteristics and therapeutic efficacy are needed.

  17. Nonpeptidic urotensin-II receptor antagonists I: in vitro pharmacological characterization of SB-706375

    Science.gov (United States)

    Douglas, Stephen A; Behm, David J; Aiyar, Nambi V; Naselsky, Diane; Disa, Jyoti; Brooks, David P; Ohlstein, Eliot H; Gleason, John G; Sarau, Henry M; Foley, James J; Buckley, Peter T; Schmidt, Dulcie B; Wixted, William E; Widdowson, Katherine; Riley, Graham; Jin, Jian; Gallagher, Timothy F; Schmidt, Stanley J; Ridgers, Lance; Christmann, Lisa T; Keenan, Richard M; Knight, Steven D; Dhanak, Dashyant

    2005-01-01

    SB-706375 potently inhibited [125I]hU-II binding to both mammalian recombinant and ‘native' UT receptors (Ki 4.7±1.5 to 20.7±3.6 nM at rodent, feline and primate recombinant UT receptors and Ki 5.4±0.4 nM at the endogenous UT receptor in SJRH30 cells). Prior exposure to SB-706375 (1 μM, 30 min) did not alter [125I]hU-II binding affinity or density in recombinant cells (KD 3.1±0.4 vs 5.8±0.9 nM and Bmax 3.1±1.0 vs 2.8±0.8 pmol mg−1) consistent with a reversible mode of action. The novel, nonpeptidic radioligand [3H]SB-657510, a close analogue of SB-706375, bound to the monkey UT receptor (KD 2.6±0.4 nM, Bmax 0.86±0.12 pmol mg−1) in a manner that was inhibited by both U-II isopeptides and SB-706375 (Ki 4.6±1.4 to 17.6±5.4 nM) consistent with the sulphonamides and native U-II ligands sharing a common UT receptor binding domain. SB-706375 was a potent, competitive hU-II antagonist across species with pKb 7.29–8.00 in HEK293-UT receptor cells (inhibition of [Ca2+]i-mobilization) and pKb 7.47 in rat isolated aorta (inhibition of contraction). SB-706375 also reversed tone established in the rat aorta by prior exposure to hU-II (Kapp∼20 nM). SB-706375 was a selective U-II antagonist with ⩾100-fold selectivity for the human UT receptor compared to 86 distinct receptors, ion channels, enzymes, transporters and nuclear hormones (Ki/IC50>1 μM). Accordingly, the contractile responses induced in isolated aortae by KCl, phenylephrine, angiotensin II and endothelin-1 were unaltered by SB-706375 (1 μM). In summary, SB-706375 is a high-affinity, surmountable, reversible and selective nonpeptide UT receptor antagonist with cross-species activity that will assist in delineating the pathophysiological actions of U-II in mammals. PMID:15852036

  18. Fast gamma oscillations are generated intrinsically in CA1 without the involvement of fast-spiking basket cells.

    Science.gov (United States)

    Craig, Michael T; McBain, Chris J

    2015-02-25

    Information processing in neuronal networks relies on the precise synchronization of ensembles of neurons, coordinated by the diverse family of inhibitory interneurons. Cortical interneurons can be usefully parsed by embryonic origin, with the vast majority arising from either the caudal or medial ganglionic eminences (CGE and MGE). Here, we examine the activity of hippocampal interneurons during gamma oscillations in mouse CA1, using an in vitro model where brief epochs of rhythmic activity were evoked by local application of kainate. We found that this CA1 KA-evoked gamma oscillation was faster than that in CA3 and, crucially, did not appear to require the involvement of fast-spiking basket cells. In contrast to CA3, we also found that optogenetic inhibition of pyramidal cells in CA1 did not significantly affect the power of the oscillation, suggesting that excitation may not be essential for gamma genesis in this region. We found that MGE-derived interneurons were generally more active than CGE interneurons during CA1 gamma, although a group of CGE-derived interneurons, putative trilaminar cells, were strongly phase-locked with gamma oscillations and, together with MGE-derived axo-axonic and bistratified cells, provide attractive candidates for being the driver of this locally generated, predominantly interneuron-driven model of gamma oscillations. Copyright © 2015 the authors 0270-6474/15/353616-09$15.00/0.

  19. Evaluation of the protagonist-antagonist dichotomy in Spanish television content targeting children

    Directory of Open Access Journals (Sweden)

    José A. García-Castillo, Ph.D.

    2010-01-01

    Full Text Available The goal of this study is to analyse the profile of the protagonist-antagonist dichotomy in all children’s television content, of all genres, offered by Spanish television channels. The analysis of protagonist and antagonist characters focuses on variables such as: type and number, age, gender, nationality, skills, relationship between the characters, characterisation, means used to achieve goals, consequences of the action of the antagonist over the antagonist and vice versa. The sample consists of 168 series that were analysed using descriptive content analysis and multivariate analysis. The results showed that over 50% of the series do not have an antagonist and that when there is one the most common type is a single human, which appears in more than 15% of the analysed series, followed by the fantastic creature type, which is present in just 10%. In 80% of the series the skills of the protagonists are social and human, and in 45.24% the exhibited skill is intelligence.

  20. Design, synthesis, and biological activities of novel hexahydropyrazino[1,2-a]indole derivatives as potent inhibitors of apoptosis (IAP) proteins antagonists with improved membrane permeability across MDR1 expressing cells.

    Science.gov (United States)

    Shiokawa, Zenyu; Hashimoto, Kentaro; Saito, Bunnai; Oguro, Yuya; Sumi, Hiroyuki; Yabuki, Masato; Yoshimatsu, Mie; Kosugi, Yohei; Debori, Yasuyuki; Morishita, Nao; Dougan, Douglas R; Snell, Gyorgy P; Yoshida, Sei; Ishikawa, Tomoyasu

    2013-12-15

    We previously reported octahydropyrrolo[1,2-a]pyrazine derivative 2 (T-3256336) as a potent antagonist for inhibitors of apoptosis (IAP) proteins. Because compound 2 was susceptible to MDR1 mediated efflux, we developed another scaffold, hexahydropyrazino[1,2-a]indole, using structure-based drug design. The fused benzene ring of this scaffold was aimed at increasing the lipophilicity and decreasing the basicity of the scaffold to improve the membrane permeability across MDR1 expressing cells. We established a chiral pool synthetic route to yield the desired tricyclic chiral isomers. Chemical modification of the core scaffold led to a representative compound 50, which showed strong inhibition of IAP binding (X chromosome-linked IAP [XIAP]: IC50 23 nM and cellular IAP [cIAP]: IC50 1.1 nM) and cell growth inhibition (MDA-MB-231 cells: GI50 2.8 nM) with high permeability and low potential of MDR1 substrate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Growth Hormone Receptor Antagonist Treatment Reduces Exercise Performance in Young Males

    DEFF Research Database (Denmark)

    Goto, K.; Doessing, S.; Nielsen, R.H.

    2009-01-01

    between the groups in terms of changes in serum free fatty acids, glycerol, (V) over dotO(2), or relative fat oxidation. Conclusion: GH might be an important determinant of exercise capacity during prolonged exercise, but GHR antagonist did not alter fat metabolism during exercise. (J Clin Endocrinol......Context: The effects of GH on exercise performance remain unclear. Objective: The aim of the study was to examine the effects of GH receptor (GHR) antagonist treatment on exercise performance. Design: Subjects were treated with the GHR antagonist pegvisomant or placebo for 16 d. After the treatment...... period, they exercised to determine exercise performance and hormonal and metabolic responses. Participants: Twenty healthy males participated in the study. Intervention: Subjects were treated with the GHR antagonist (n = 10; 10 mg/d) or placebo (n = 10). After the treatment period, they performed...

  2. A Devil in the Details: Matrix-Dependent 40Ca42Ca++/42Ca+ and Its Effects on Estimates of the Initial 41Ca/40Ca in the Solar System

    Science.gov (United States)

    McKeegan, K. D.; Liu, M.-C.

    2015-07-01

    Ian Hutcheon established that the molecular ion interference 40Ca42Ca++/42Ca+ on 41K+ is strongly dependent on the mineral analyzed. Correction for this "matrix effect" led to a downward revision of the initial 41Ca/40Ca of the solar system.

  3. Converting MMSE to MoCA and MoCA 5-minute protocol in an educationally heterogeneous sample with stroke or transient ischemic attack.

    Science.gov (United States)

    Wong, Adrian; Black, Sandra E; Yiu, Stanley Y P; Au, Lisa W C; Lau, Alexander Y L; Soo, Yannie O Y; Chan, Anne Y Y; Leung, Thomas W H; Wong, Lawrence K S; Kwok, Timothy C Y; Cheung, Theodore C K; Leung, Kam-Tat; Lam, Bonnie Y K; Kwan, Joseph S K; Mok, Vincent C T

    2018-05-01

    The Montreal Cognitive Assessment (MoCA) is psychometrically superior over the Mini-mental State Examination (MMSE) for cognitive screening in stroke or transient ischemic attack (TIA). It is free for clinical and research use. The objective of this study is to convert scores from the MMSE to MoCA and MoCA-5-minute protocol (MoCA-5 min) and to examine the ability of the converted scores in detecting cognitive impairment after stroke or TIA. A total of 904 patients were randomly divided into training (n = 623) and validation (n = 281) samples matched for demography and cognition. MMSE scores were converted to MoCA and MoCA-5 min using (1) equipercentile method with log-linear smoothing and (2) Poisson regression adjusting for age and education. Receiver operating characteristics curve analysis was used to examine the ability of the converted scores in differentiating patients with cognitive impairment. The mean education was 5.8 (SD = 4.6; ranged 0-20) years. The entire spectrum of MMSE scores was converted to MoCA and MoCA-5 min using equipercentile method. Relationship between MMSE and MoCA scores was confounded by age and education, and a conversion equation with adjustment for age and education was derived. In the validation sample, the converted scores differentiated cognitively impaired patients with area under receiver operating characteristics curve 0.826 to 0.859. We provided 2 methods to convert scores from the MMSE to MoCA and MoCA-5 min based on a large sample of patients with stroke or TIA having a wide range of education and cognitive levels. The converted scores differentiated patients with cognitive impairment after stroke or TIA with high accuracy. Copyright © 2018 John Wiley & Sons, Ltd.

  4. Drug safety is a barrier to the discovery and development of new androgen receptor antagonists.

    Science.gov (United States)

    Foster, William R; Car, Bruce D; Shi, Hong; Levesque, Paul C; Obermeier, Mary T; Gan, Jinping; Arezzo, Joseph C; Powlin, Stephanie S; Dinchuk, Joseph E; Balog, Aaron; Salvati, Mark E; Attar, Ricardo M; Gottardis, Marco M

    2011-04-01

    Androgen receptor (AR) antagonists are part of the standard of care for prostate cancer. Despite the almost inevitable development of resistance in prostate tumors to AR antagonists, no new AR antagonists have been approved for over a decade. Treatment failure is due in part to mutations that increase activity of AR in response to lower ligand concentrations as well as to mutations that result in AR response to a broader range of ligands. The failure to discover new AR antagonists has occurred in the face of continued research; to enable progress, a clear understanding of the reasons for failure is required. Non-clinical drug safety studies and safety pharmacology assays were performed on previously approved AR antagonists (bicalutamide, flutamide, nilutamide), next generation antagonists in clinical testing (MDV3100, BMS-641988), and a pre-clinical drug candidate (BMS-501949). In addition, non-clinical studies with AR mutant mice, and EEG recordings in rats were performed. Non-clinical findings are compared to disclosures of clinical trial results. As a drug class, AR antagonists cause seizure in animals by an off-target mechanism and are found in vitro to inhibit GABA-A currents. Clinical trials of candidate next generation AR antagonists identify seizure as a clinical safety risk. Non-clinical drug safety profiles of the AR antagonist drug class create a significant barrier to the identification of next generation AR antagonists. GABA-A inhibition is a common off-target activity of approved and next generation AR antagonists potentially explaining some side effects and safety hazards of this class of drugs. Copyright © 2010 Wiley-Liss, Inc.

  5. Discovery and Characterization of an Endogenous CXCR4 Antagonist

    Directory of Open Access Journals (Sweden)

    Onofrio Zirafi

    2015-05-01

    Full Text Available CXCL12-CXCR4 signaling controls multiple physiological processes and its dysregulation is associated with cancers and inflammatory diseases. To discover as-yet-unknown endogenous ligands of CXCR4, we screened a blood-derived peptide library for inhibitors of CXCR4-tropic HIV-1 strains. This approach identified a 16 amino acid fragment of serum albumin as an effective and highly specific CXCR4 antagonist. The endogenous peptide, termed EPI-X4, is evolutionarily conserved and generated from the highly abundant albumin precursor by pH-regulated proteases. EPI-X4 forms an unusual lasso-like structure and antagonizes CXCL12-induced tumor cell migration, mobilizes stem cells, and suppresses inflammatory responses in mice. Furthermore, the peptide is abundant in the urine of patients with inflammatory kidney diseases and may serve as a biomarker. Our results identify EPI-X4 as a key regulator of CXCR4 signaling and introduce proteolysis of an abundant precursor protein as an alternative concept for chemokine receptor regulation.

  6. The Cultivation of Antagonistic Bacteria in Irradiated Sludge for Biological Control of Soft Rot Erwinias : Screening of Antagonistic Bacteria for biological Control of Soft Rot Erwinias

    International Nuclear Information System (INIS)

    Sermkiattipong, Ng.; Sangsuk, L; Rattanapiriyakul, P; Dejsirilert, S.; Thaveechai, N.

    1998-01-01

    Pure cultures of 57 bacterial isolates for antagonistic activity screening were isolated from three areas of soft rot infested vegetable soil and 58 isolates were obtained from commercial seed compost and seed compost product of Division of Soil and Water Conservation, Department of Land Development. A total of 115 bacterial isolates were evaluated for antagonizing activity against Erwinia carotovora subsp. atroceptica in vitro. Out of them, 18 isolates were antagonists by showing zone of inhibition ranging from 1 to 17 mm by diameter. Most of antagonistic bacteria were identified as Bacillus spp. whereas only one isolate was Pseudomonas vesicularis

  7. Substituted 7-amino-5-thio-thiazolo[4,5-d]pyrimidines as potent and selective antagonists of the fractalkine receptor (CX3CR1).

    Science.gov (United States)

    Karlström, Sofia; Nordvall, Gunnar; Sohn, Daniel; Hettman, Andreas; Turek, Dominika; Åhlin, Kristofer; Kers, Annika; Claesson, Martina; Slivo, Can; Lo-Alfredsson, Yvonne; Petersson, Carl; Bessidskaia, Galina; Svensson, Per H; Rein, Tobias; Jerning, Eva; Malmberg, Åsa; Ahlgen, Charlotte; Ray, Colin; Vares, Lauri; Ivanov, Vladimir; Johansson, Rolf

    2013-04-25

    We have developed two parallel series, A and B, of CX3CR1 antagonists for the treatment of multiple sclerosis. By modifying the substituents on the 7-amino-5-thio-thiazolo[4,5-d]pyrimidine core structure, we were able to achieve compounds with high selectivity for CX3CR1 over the closely related CXCR2 receptor. The structure-activity relationships showed that a leucinol moiety attached to the core-structure in the 7-position together with α-methyl branched benzyl derivatives in the 5-position displayed promising affinity, and selectivity as well as physicochemical properties, as exemplified by compounds 18a and 24h. We show the preparation of the first potent and selective orally available CX3CR1 antagonists.

  8. DDPH ameliorated oxygen and glucose deprivation-induced injury in rat hippocampal neurons via interrupting Ca2+ overload and glutamate release.

    Science.gov (United States)

    He, Zhi; Lu, Qing; Xu, Xulin; Huang, Lin; Chen, Jianguo; Guo, Lianjun

    2009-01-28

    Our previous work has demonstrated that DDPH (1-(2, 6-dimethylphenoxy)-2-(3, 4-dimethoxyphenylethylamino) propane hydrochloride), a competitive alpha(1)-adrenoceptor antagonist, could improve cognitive deficits, reduce histopathological damage and facilitate synaptic plasticity in vivo possibly via increasing NR2B (NMDA receptor 2B) expression and antioxidation of DDPH itself. The present study further evaluated effects of DDPH on OGD (Oxygen and glucose deprivation)-induced neuronal damage in rat primary hippocampal cells. The addition of DDPH to the cultured cells 12 h before OGD for 4 h significantly reduced neuronal damage as determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and LDH (lactate dehydrogenase) release experiments. The effects of DDPH on intracellular calcium concentration were explored by Fura-2 based calcium imaging techniques and results showed that DDPH at the dosages of 5 microM and 10 microM suppressed the increase of intracellular calcium ([Ca(2+)](i)) stimulated by 50 mM KCl in Ca(2+)-containing extracellular solutions. However, DDPH couldn't suppress the increase of [Ca(2+)](i) induced by both 50 microM glutamate in Ca(2+)-containing extracellular solutions and 20 microM ATP (Adenosine Triphosphate) in Ca(2+)-free solution. These results indicated that DDPH prevented [Ca(2+)](i) overload in hippocampal neurons by blocking Ca(2+) influx (voltage-dependent calcium channel) but not Ca(2+) mobilization from the intracellular Ca(2+) store in endoplasm reticulum (ER). We also demonstrated that DDPH could decrease glutamate release when hippocampal cells were subjected to OGD. These observations demonstrated that DDPH protected hippocampal neurons against OGD-induced damage by preventing the Ca(2+) influx and decreasing glutamate release.

  9. Growth-inhibitory effects of a mineralized extract from the red marine algae, Lithothamnion calcareum, on Ca2+-sensitive and Ca2+-resistant human colon carcinoma cells

    OpenAIRE

    Nadeem Aslam, Muhammad; Bhagavathula, Narasimharao; Paruchuri, Tejaswi; Hu, Xin; Chakrabarty, Subhas; Varani, James

    2009-01-01

    Proliferation and differentiation were assessed in a series of human colon carcinoma cell lines in response to a mineral-rich extract derived from the red marine algae, Lithothamnion calcareum. The extract contains 12% Ca2+, 1% Mg2+, and detectable amounts of 72 trace elements, but essentially no organic material. The red algae extract was as effective as inorganic Ca2+ alone in suppressing growth and inducing differentiation of colon carcinoma cells that are responsive to a physiological lev...

  10. POST-NOAC: Portuguese observational study of intracranial hemorrhage on non-vitamin K antagonist oral anticoagulants.

    Science.gov (United States)

    Marques-Matos, Cláudia; Alves, José Nuno; Marto, João Pedro; Ribeiro, Joana Afonso; Monteiro, Ana; Araújo, José; Silva, Fernando; Grenho, Fátima; Viana-Baptista, Miguel; Sargento-Freitas, João; Pinho, João; Azevedo, Elsa

    2017-08-01

    Background There is a lower reported incidence of intracranial hemorrhage with non-vitamin K antagonist oral anticoagulants compared with vitamin K antagonist. However, the functional outcome and mortality of intracranial hemorrhage patients were not assessed. Aims To compare the outcome of vitamin K antagonists- and non-vitamin K antagonist oral anticoagulants-related intracranial hemorrhage. Methods We included consecutive patients with acute non-traumatic intracranial hemorrhage on oral anticoagulation therapy admitted between January 2013 and June 2015 at four university hospitals. Clinical and demographic data were obtained from individual medical records. Intracranial hemorrhage was classified as intracerebral, extra-axial, or multifocal using brain computed tomography. Three-month functional outcome was assessed using the modified Rankin Scale. Results Among 246 patients included, 24 (9.8%) were anticoagulated with a non-vitamin K antagonist oral anticoagulants and 222 (90.2%) with a vitamin K antagonists. Non-vitamin K antagonist oral anticoagulants patients were older (81.5 vs. 76 years, p = 0.048) and had intracerebral hemorrhage more often (83.3% vs. 63.1%, p = 0.048). We detected a non-significant trend for larger intracerebral hemorrhage volumes in vitamin K antagonists patients ( p = 0.368). Survival analysis adjusted for age, CHA 2 DS 2 VASc, HAS-BLED, and anticoagulation reversal revealed that non-vitamin K antagonist oral anticoagulants did not influence three-month mortality (hazard ratio (HR) = 0.83, 95% confidence interval (CI) = 0.39-1.80, p = 0.638). Multivariable ordinal regression for three-month functional outcome did not show a significant shift of modified Rankin Scale scores in non-vitamin K antagonist oral anticoagulants patients (odds ratio (OR) 1.26, 95%CI 0.55-2.87, p = 0.585). Conclusions We detected no significant differences in the three-month outcome between non-vitamin K antagonist oral anticoagulants

  11. Hydrolysis of molten CaCl2-CaF2 with additions of CaO

    Directory of Open Access Journals (Sweden)

    Espen Olsen

    2017-10-01

    Full Text Available Calcium halide based molten salts have recently attracted interest for a number of applications such as direct reduction of oxides for metal production and as liquefying agent in cyclic sorption processes for CO2 by CaO from dilute flue gases (Ca-looping. A fundamental aspect of these melts is the possible hydrolysis reaction upon exposure to gaseous H2O forming corrosive and poisonous hydrogen halides. In this work experiments have been performed investigating the formation of HCl and HF from a molten salt consisting of a 13.8 wt% CaF2 in CaCl2 eutectic exposed to a flowing gas consisting of 10 vol% H2O in N2. Hydrolysis has been investigated as function of content of CaO and temperature. HCl and HF are shown to be formed at elevated temperatures; HCl forms to a substantially larger extent than HF. Addition of CaO has a marked, limiting effect on the hydrolysis. Thermodynamic modeling of the reaction indicates activity coefficients for CaO above unity in the system. For cyclic CO2-capture based on thermal swing, it is advisable to keep the temperature in the carbonation (absorption reactor well below 850 ℃ while maintaining a high CaO content if molten CaCl2 is employed. Similar conclusions can be drawn with regards to CaF2.

  12. Synthesis and In Vitro Inhibition Effect of New Pyrido[2,3-d]pyrimidine Derivatives on Erythrocyte Carbonic Anhydrase I and II

    Directory of Open Access Journals (Sweden)

    Hilal Kuday

    2014-01-01

    Full Text Available In vitro inhibition effects of indolylchalcones and new pyrido[2,3-d]pyrimidine derivatives on purified human carbonic anhydrase I and II (hCA I and II were investigated by using CO2 as a substrate. The results showed that all compounds inhibited the hCA I and hCA II enzyme activities. Among all the synthesized compounds, 7e (IC50=6.79 µM was found to be the most active compound for hCA I inhibitory activity and 5g (IC50=7.22 µM showed the highest hCA II inhibitory activity. Structure-activity relationships study showed that indolylchalcone derivatives have higher inhibitory activities than pyrido[2,3-d]pyrimidine derivatives on hCA I and hCA II. Additionally, methyl group bonded to uracil ring increases inhibitory activities on both hCA I and hCA II.

  13. Cloning and expression analysis of a new anther-specific gene CaMF4 in Capsicum annuum.

    Science.gov (United States)

    Hao, Xuefeng; Chen, Changming; Chen, Guoju; Cao, Bihao; Lei, Jianjun

    2017-03-01

    Our previous study on the genic male sterile-fertile line 114AB of Capsicum annuum indicated a diversity of differentially expressed cDNA fragments in fertile and sterile lines. In this study, a transcript-derived fragment (TDF), male fertile 4 (CaMF4) was chosen for further investigation to observe that this specific fragment accumulates in the flower buds of the fertile line. The full genomic DNA sequence of CaMF4 was 894 bp in length, containing two exons and one intron, and the complete coding sequence encoded a putative 11.53 kDa protein of 109 amino acids. The derived protein of CaMF4 shared similarity with the members of PGPS/D3 protein family. The expression of CaMF4 was detected in both the flower buds at stage 8 and open flowers of the male fertile line. In contrast to this observation, expression of CaMF4 was not detected in any organs of the male sterile line. Further analysis revealed that CaMF4 was expressed particularly in anthers of the fertile line. Our results suggest that CaMF4 is an anther-specific gene and might be indispensable for anther or pollen development in C. annuum.

  14. Inhibition of mild steel corrosion by 1,4,6-trimethyl-2-oxo-1,2-dihydropyridine-3-carbonitrile and synergistic effect of halide ion in 0.5 M H{sub 2}SO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Mourya, Punita, E-mail: mouryapunita025@gmail.com [Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Singh, Praveen [Department of Chemistry, Banaras Hindu University, Varanasi 221005 (India); Rastogi, R.B.; Singh, M.M. [Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2016-09-01

    Highlights: • TODPCN is a good corrosion inhibitor for mild steel in 0.5 M H{sub 2}SO{sub 4} solution. • Addition of iodide ion increases the inhibition efficiency of the studied nitrile derivative. • Inhibition efficiency successively increases with concentration. • XPS study has revealed the chemical composition of the protective film. - Abstract: The effect of iodide ions on inhibitive performance of 1,4,6-trimethyl-2-oxo-1,2-dihydropyridine-3-carbonitrile (TODPCN) on mild steel (MS) corrosion in 0.5 M H{sub 2}SO{sub 4} was studied using gravimetric and electrochemical measurements. TODPCN inhibits the corrosion of MS to the extent of 62.3% at its lowest concentration (0.5 mM) and its inhibition efficiency (η) further increases on increasing concentration at 298 K. The adsorption of TODPCN on MS was found to follow the Langmuir adsorption isotherm. The value of η increased on the addition of 2.0 mM KI. The value of synergism parameter being more than unity indicates that the enhanced η value in the presence of iodide ions is only due to synergism. Thus, a cooperative mechanism of inhibition exists between the iodide anion and TODPCN cations. The increase in surface coverage in the presence of KI indicates that iodide ions enhance the adsorption of TODPCN. The surface morphology of corroded/inhibited MS was studied by atomic force microscopy. X-ray photoelectron spectroscopy of inhibited MS surface was carried out to determine the composition of the adsorbed film. Some quantum chemical parameters and the Mulliken charge densities for TODPCN calculated by density functional theory provided further insight into the mechanism of inhibition.

  15. Maintained LTP and Memory Are Lost by Zn2+ Influx into Dentate Granule Cells, but Not Ca2+ Influx.

    Science.gov (United States)

    Takeda, Atsushi; Tamano, Haruna; Hisatsune, Marie; Murakami, Taku; Nakada, Hiroyuki; Fujii, Hiroaki

    2018-02-01

    The idea that maintained LTP and memory are lost by either increase in intracellular Zn 2+ in dentate granule cells or increase in intracellular Ca 2+ was examined to clarify significance of the increases induced by excess synapse excitation. Both maintained LTP and space memory were impaired by injection of high K + into the dentate gyrus, but rescued by co-injection of CaEDTA, which blocked high K + -induced increase in intracellular Zn 2+ but not high K + -induced increase in intracellular Ca 2+ . High K + -induced disturbances of LTP and intracellular Zn 2+ are rescued by co-injection of 6-cyano-7-nitroquinoxakine-2,3-dione, an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonist, but not by co-injection of blockers of NMDA receptors, metabotropic glutamate receptors, and voltage-dependent calcium channels. Furthermore, AMPA impaired maintained LTP and the impairment was also rescued by co-injection of CaEDTA, which blocked increase in intracellular Zn 2+ , but not increase in intracellular Ca 2+ . NMDA and glucocorticoid, which induced Zn 2+ release from the internal stores, did not impair maintained LTP. The present study indicates that increase in Zn 2+ influx into dentate granule cells through AMPA receptors loses maintained LTP and memory. Regulation of Zn 2+ influx into dentate granule cells is more critical for not only memory acquisition but also memory retention than that of Ca 2+ influx.

  16. Brain-derived neurotrophic factor (BDNF) induces sustained intracellular Ca2+ elevation through the up-regulation of surface transient receptor potential 3 (TRPC3) channels in rodent microglia.

    Science.gov (United States)

    Mizoguchi, Yoshito; Kato, Takahiro A; Seki, Yoshihiro; Ohgidani, Masahiro; Sagata, Noriaki; Horikawa, Hideki; Yamauchi, Yusuke; Sato-Kasai, Mina; Hayakawa, Kohei; Inoue, Ryuji; Kanba, Shigenobu; Monji, Akira

    2014-06-27

    Microglia are immune cells that release factors, including proinflammatory cytokines, nitric oxide (NO), and neurotrophins, following activation after disturbance in the brain. Elevation of intracellular Ca(2+) concentration ([Ca(2+)]i) is important for microglial functions such as the release of cytokines and NO from activated microglia. There is increasing evidence suggesting that pathophysiology of neuropsychiatric disorders is related to the inflammatory responses mediated by microglia. Brain-derived neurotrophic factor (BDNF) is a neurotrophin well known for its roles in the activation of microglia as well as in pathophysiology and/or treatment of neuropsychiatric disorders. In this study, we sought to examine the underlying mechanism of BDNF-induced sustained increase in [Ca(2+)]i in rodent microglial cells. We observed that canonical transient receptor potential 3 (TRPC3) channels contribute to the maintenance of BDNF-induced sustained intracellular Ca(2+) elevation. Immunocytochemical technique and flow cytometry also revealed that BDNF rapidly up-regulated the surface expression of TRPC3 channels in rodent microglial cells. In addition, pretreatment with BDNF suppressed the production of NO induced by tumor necrosis factor α (TNFα), which was prevented by co-adiministration of a selective TRPC3 inhibitor. These suggest that BDNF induces sustained intracellular Ca(2+) elevation through the up-regulation of surface TRPC3 channels and TRPC3 channels could be important for the BDNF-induced suppression of the NO production in activated microglia. We show that TRPC3 channels could also play important roles in microglial functions, which might be important for the regulation of inflammatory responses and may also be involved in the pathophysiology and/or the treatment of neuropsychiatric disorders. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. New orthorhombic derivative of CaCu{sub 5}-type structure: RNi{sub 4}Si compounds (R=Y, La, Ce, Sm, Gd–Ho), crystal structure and some magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Morozkin, A.V., E-mail: morozkin@general.chem.msu.ru [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation); Knotko, A.V. [Department of Chemistry, Moscow State University, Leninskie Gory, House 1, Building 3, GSP-2, Moscow 119992 (Russian Federation); Yapaskurt, V.O. [Department of Petrology, Geological Faculty, Moscow State University, Leninskie Gory, Moscow 119992 (Russian Federation); Yuan, Fang; Mozharivskyj, Y. [Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1 (Canada); Nirmala, R. [Indian Institute of Technology Madras, Chennai 600036 (India)

    2013-12-15

    The crystal structure of new YNi{sub 4}Si-type RNi{sub 4}Si (R=Y, La, Ce, Sm, Gd–Ho) compounds has been established using powder X-ray diffraction. The YNi{sub 4}Si structure is a new structure type, which is orthorhombic derivative of CaCu{sub 5}-type structure (space group Cmmm N 65, oC12). GdNi{sub 4}Si and DyNi{sub 4}Si compounds order ferromagnetically at 25 and 19 K, respectively whereas YNi{sub 4}Si shows antiferromagnetic nature. At 15 K, DyNi{sub 4}Si shows second antiferromagnetic-like transition. The magnetic moment of GdNi{sub 4}Si at 5 K in 50 kOe field is ∼7.2 μ{sub B}/f.u. suggesting a completely ordered ferromagnetic state. The magnetocaloric effect of GdNi{sub 4}Si is calculated in terms of isothermal magnetic entropy change and it reaches the maximum value of −12.8 J/kg K for a field change of 50 kOe near T{sub C} ∼25 K. - Graphical abstract: The RNi{sub 4}Si (R=Y, La, Ce, Sm, Gd–Ho) compounds crystallize in new YNi{sub 4}Si-type structure which is orthorhombic derivative of the basic CaCu{sub 5}-type structure. GdNi{sub 4}Si and DyNi{sub 4}Si compounds show the ferromagnetic-like ordering, whereas.YNi{sub 4}Si has the antiferromagnetic nature. The GdNi{sub 4}Si demonstrates the big magnetocaloric effect near temperature of ferromagnetic ordering. The relationship between initial CaCu{sub 5}-type DyNi{sub 5} and YNi{sub 4}Si-type DyNi{sub 4}Si lattices.

  18. Calcium antagonists for aneurysmal subarachnoid haemorrhage

    NARCIS (Netherlands)

    Dorhout Mees, S. M.; Rinkel, G. J. E.; Feigin, V. L.; Algra, A.; van den Bergh, W. M.; Vermeulen, M.; van Gijn, J.

    2007-01-01

    BACKGROUND: Secondary ischaemia is a frequent cause of poor outcome in patients with subarachnoid haemorrhage (SAH). Its pathogenesis has been incompletely elucidated, but vasospasm probably is a contributing factor. Experimental studies have suggested that calcium antagonists can prevent or reverse

  19. Tris-hydroxymethyl-aminomethane enhances capsaicin-induced intracellular Ca2+ influx through transient receptor potential V1 (TRPV1 channels

    Directory of Open Access Journals (Sweden)

    Satoshi Murakami

    2016-02-01

    Full Text Available Non-selective transient receptor potential vanilloid (TRPV cation channels are activated by various insults, including exposure to heat, acidity, and the compound capsaicin, resulting in sensations of pain in the skin, visceral organs, and oral cavity. Recently, TRPV1 activation was also demonstrated in response to basic pH elicited by ammonia and intracellular alkalization. Tris-hydroxymethyl aminomethane (THAM is widely used as an alkalizing agent; however, the effects of THAM on TRPV1 channels have not been defined. In this study, we characterized the effects of THAM-induced TRPV1 channel activation in baby hamster kidney cells expressing human TRPV1 (hTRPV1 and the Ca2+-sensitive fluorescent sensor GCaMP2 by real-time confocal microscopy. Notably, both capsaicin (1 μM and pH 6.5 buffer elicited steep increases in the intracellular Ca2+ concentration ([Ca2+]i, while treatment with THAM (pH 8.5 alone had no effect. However, treatment with THAM (pH 8.5 following capsaicin application elicited a profound, long-lasting increase in [Ca2+]i that was completely inhibited by the TRPV1 antagonist capsazepine. Taken together, these results suggest that hTRPV1 pre-activation is required to provoke enhanced, THAM-induced [Ca2+]i increases, which could be a mechanism underlying pain induced by basic pH.

  20. First Irish birth following IVF therapy using antagonist protocol.

    LENUS (Irish Health Repository)

    Mocanu, E V

    2012-02-01

    BACKGROUND: During in vitro fertilization (IVF), the prevention of a premature LH surge was traditionally achieved using a gonadotrophin releasing hormone agonist (GnRH-a), and more recently, a GnRH antagonist. AIMS: We report a case of a 37 year old treated using the GnRH antagonist in a second completed cycle of IVF. METHODS: IVF was performed for primary infertility of 5-year duration due to frozen pelvis secondary to endometriosis. RESULTS: Following controlled ovarian hyperstimulation, oocyte recovery and fertilization, cleavage and transfer of two zygotes, a pregnancy established. A twin gestation was diagnosed at 7-weeks scan and pregnancy ended with the delivery of twin girls by emergency caesarean section. CONCLUSION: This is a first report of a delivery following IVF using the antagonist protocol in Ireland. Such therapy is patient friendly and its use should be introduced on a larger scale in clinical practice.

  1. The Angiotensin II Type 1 Receptor Antagonist Losartan Affects NHE1-Dependent Melanoma Cell Behavior

    Directory of Open Access Journals (Sweden)

    Daniel Navin Olschewski

    2018-03-01

    Full Text Available Background/Aims: The peptide hormone angiotensin II (ATII plays a prominent role in regulating vasoconstriction and blood pressure. Its primary target is the angiotensin II receptor type 1 (AT1, the stimulation of which induces an increase in cytosolic [Ca2+] and calmodulin activation. Ca2+-bound (activated calmodulin stimulates the activity of the Na+/ H+ exchanger isoform 1 (NHE1; and increased NHE1 activity is known to promote melanoma cell motility. The competitive AT1 receptor inhibitor losartan is often used to lower blood pressure in hypertensive patients. Since AT1 mediates ATII-stimulated NHE1 activity, we set out to investigate whether ATII and losartan have an impact on NHE1-dependent behavior of human melanoma (MV3 cells. Methods: ATII receptor expression was verified by PCR, F-actin was visualized using fluorescently labeled phalloidin, and cytosolic [Ca2+] and pH were determined ratiometrically using Fura-2 and BCECF, respectively. MV3 cell behavior was analyzed using migration, adhesion, invasion and proliferation assays. Results: MV3 cells express both AT1 and the angiotensin II receptor type 2 (AT2. Stimulation of MV3 cells with ATII increased NHE1 activity which could be counteracted by both losartan and the Ca2+/ calmodulin inhibitor ophiobolin-A. ATII stimulation induced a decrease in MV3 cell migration and a more spherical cell morphology accompanied by an increase in the density of F-actin. Independently of the presence of ATII, both NHE1 and migratory activity were reduced when AT1 was blocked by losartan. On the other hand, losartan clearly increased cell adhesion to, and the invasion of, a collagen type I substrate. The AT2 inhibitor PD123319 did not affect NHE1 activity, proliferation and migration, but increased adhesion and invasion. Conclusion: Losartan inhibits NHE1 activity and the migration of human melanoma cells. At the same time, losartan promotes MV3 cell adhesion and invasion. The therapeutic use of AT1

  2. Impaired Inactivation of L-Type Ca2+ Current as a Potential Mechanism for Variable Arrhythmogenic Liability of HERG K+ Channel Blocking Drugs.

    Directory of Open Access Journals (Sweden)

    Jae Gon Kim

    Full Text Available The proarrhythmic effects of new drugs have been assessed by measuring rapidly activating delayed-rectifier K+ current (IKr antagonist potency. However, recent data suggest that even drugs thought to be highly specific IKr blockers can be arrhythmogenic via a separate, time-dependent pathway such as late Na+ current augmentation. Here, we report a mechanism for a quinolone antibiotic, sparfloxacin-induced action potential duration (APD prolongation that involves increase in late L-type Ca2+ current (ICaL caused by a decrease in Ca2+-dependent inactivation (CDI. Acute exposure to sparfloxacin, an IKr blocker with prolongation of QT interval and torsades de pointes (TdP produced a significant APD prolongation in rat ventricular myocytes, which lack IKr due to E4031 pretreatment. Sparfloxacin reduced peak ICaL but increased late ICaL by slowing its inactivation. In contrast, ketoconazole, an IKr blocker without prolongation of QT interval and TdP produced reduction of both peak and late ICaL, suggesting the role of increased late ICaL in arrhythmogenic effect. Further analysis showed that sparfloxacin reduced CDI. Consistently, replacement of extracellular Ca2+ with Ba2+ abolished the sparfloxacin effects on ICaL. In addition, sparfloxacin modulated ICaL in a use-dependent manner. Cardiomyocytes from adult mouse, which is lack of native IKr, demonstrated similar increase in late ICaL and afterdepolarizations. The present findings show that sparfloxacin can prolong APD by augmenting late ICaL. Thus, drugs that cause delayed ICaL inactivation and IKr blockage may have more adverse effects than those that selectively block IKr. This mechanism may explain the reason for discrepancies between clinically reported proarrhythmic effects and IKr antagonist potencies.

  3. Aldosterone and aldosterone receptor antagonists in patients with chronic heart failure

    Directory of Open Access Journals (Sweden)

    Nappi J

    2011-06-01

    Full Text Available Jean M Nappi, Adam SiegClinical Pharmacy and Outcome Sciences, South Carolina College of Pharmacy, Medical University of South Carolina Campus, Charleston, SC, USAAbstract: Aldosterone is a mineralocorticoid hormone synthesized by the adrenal glands that has several regulatory functions to help the body maintain normal volume status and electrolyte balance. Studies have shown significantly higher levels of aldosterone secretion in patients with congestive heart failure compared with normal patients. Elevated levels of aldosterone have been shown to elevate blood pressure, cause left ventricular hypertrophy, and promote cardiac fibrosis. An appreciation of the true role of aldosterone in patients with chronic heart failure did not become apparent until the publication of the Randomized Aldactone Evaluation Study. Until recently, the use of aldosterone receptor antagonists has been limited to patients with severe heart failure and patients with heart failure following myocardial infarction. The Eplerenone in Mild Patients Hospitalization and Survival Study in Heart Failure (EMPHASIS-HF study added additional evidence to support the expanded use of aldosterone receptor antagonists in heart failure patients. The results of the EMPHASIS-HF trial showed that patients with mild-to-moderate (New York Heart Association Class II heart failure had reductions in mortality and hospitalizations from the addition of eplerenone to optimal medical therapy. Evidence remains elusive about the exact mechanism by which aldosterone receptor antagonists improve heart failure morbidity and mortality. The benefits of aldosterone receptor antagonist use in heart failure must be weighed against the potential risk of complications, ie, hyperkalemia and, in the case of spironolactone, possible endocrine abnormalities, in particular gynecomastia. With appropriate monitoring, these risks can be minimized. We now have evidence that patients with mild-to-severe symptoms

  4. Value of Combined Detection of Serum CEA, CA72-4, CA19-9, CA15-3 and CA12-5 in the Diagnosis of Gastric Cancer.

    Science.gov (United States)

    Chen, Changguo; Chen, Qiuyuan; Zhao, Qiangyuan; Liu, Min; Guo, Jianwei

    2017-05-01

    To examine whether the combined detection of serum tumor markers (CEA, CA72-4, CA19-9, CA15-3 and CA12-5) improves the sensitivity and accuracy in the diagnosis of gastric cancer (GC). An automatic chemiluminescence immune analyzer with matched kits was used to determine the levels of serum CEA, CA72-4, CA19-9, CA15-3, and CA12-5 in 87 patients with gastric cancer (GC group), 60 patients with gastric benign diseases (GBD group) who were hospitalized during the same period, and 40 healthy subjects undergoing a physical examination. The values of these 5 tumor markers in the diagnosis of gastric cancer were analyzed. The levels of serum CEA, CA72-4, CA19-9, and CA12-5 were higher in the GC group than in the GBD group and healthy subjects, and these differences were significant ( P 0.05). The combined detection of CEA, CA72-4, CA19-9, and CA12-5 had a higher diagnostic value for gastric cancer than did single detection, and the positive detection rate of the combined detection of the four tumor markers was 60.9%. The diagnostic power when using the combined detection of CA72-4, CEA, CA19-9, and CA12-5 was the best. The combined detection of serum CA72-4, CEA, CA19-9 and CA12-5 increases the sensitivity and accuracy in the diagnosis of GC and can thus be considered an important tool for early diagnosis. © 2017 by the Association of Clinical Scientists, Inc.

  5. CaO-Based CO2 Sorbents Effectively Stabilized by Metal Oxides.

    Science.gov (United States)

    Naeem, Muhammad Awais; Armutlulu, Andac; Imtiaz, Qasim; Müller, Christoph R

    2017-11-17

    Calcium looping (i.e., CO 2 capture by CaO) is a promising second-generation CO 2 capture technology. CaO, derived from naturally occurring limestone, offers an inexpensive solution, but due to the harsh operating conditions of the process, limestone-derived sorbents undergo a rapid capacity decay induced by the sintering of CaCO 3 . Here, we report a Pechini method to synthesize cyclically stable, CaO-based CO 2 sorbents with a high CO 2 uptake capacity. The sorbents synthesized feature compositional homogeneity in combination with a nanostructured and highly porous morphology. The presence of a single (Al 2 O 3 or Y 2 O 3 ) or bimetal oxide (Al 2 O 3 -Y 2 O 3 ) provides cyclic stability, except for MgO which undergoes a significant increase in its particle size with the cycle number. We also demonstrate a direct relationship between the CO 2 uptake and the morphology of the synthesized sorbents. After 30 cycles of calcination and carbonation, the best performing sorbent, containing an equimolar mixture of Al 2 O 3 and Y 2 O 3 , exhibits a CO 2 uptake capacity of 8.7 mmol CO 2  g -1 sorbent, which is approximately 360 % higher than that of the reference limestone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Two neutron transfer form factor for the reaction 42Ca(p,t)40Ca

    International Nuclear Information System (INIS)

    Meyer, R.H.

    1978-01-01

    In an attempt to better interpret experimental data concerning the two-neutron pickup process 42 Ca(p,t) 40 Ca, a detailed study of the form factors associated with the reaction is carried out. A set of coupled integro-differential equations describing these form factors is derived, starting from a microscopic, model-independent Hamiltonian. These equations allow contributions to the form factors from hole terms as well as from the particle and so-called ''continuum'' states, which were previously studied. An approximate solution of the form factor equations is obtained by neglecting the coupling terms and expressing the form factor in terms of a set of Sturmian states. Form factors for the transition to the 40 Ca ground state (O 1 + ) are calculated using various sets of Sturmian states. The inclusion of hole states is found to have a major effect upon both the shape of the form factor and the size of the related cross section. Finally, a comparison is made between the O 1 + form factors calculated using Sturmian states and a O 1 + form factor obtained using Sturmian states and a O 1 + form factor obtained using the coexistence model. It is found that a form factor based on Sturmian particle and hole states is very similar to the form factor obtained from the coexistence model calculation

  7. Purification and reconstitution of the calcium antagonist receptor of the voltage-sensitive calcium channel

    International Nuclear Information System (INIS)

    Curtis, B.M.

    1986-01-01

    Treatment with digitonin solubilized the calcium antagonist receptor as a stable complex with [ 3 H]nitrendipine from rat brain membranes. The solubilized complex retains allosteric coupling to binding sites for diltiazem, verapamil, and inorganic calcium antagonist sites. The calcium antagonist receptor from cardiac sarcolemma and the transverse-tubule membrane of skeletal muscle is also efficiently solubilized with digitonin and the receptor in all three tissues is a large glycoprotein with a sedimentation coefficient of 20 S. The T-tubule calcium antagonist receptor complex was extensively purified by a combination of chromatography on WGA-Sepharose, ion exchange chromatography, and sedimentation on sucrose gradients to yield preparations estimated to be 41% homogeneous by specific activity and 63% homogeneous by SDS gel electrophoresis. Analysis of SDS gels detect three polypeptides termed α(Mr 135,000), β(Mr 50,000), and γ(Mr 32,000) as noncovalently associated subunits of the calcium antagonist receptor. The α and γ subunits are glycosylated polypeptides, and the molecular weight of the core polypeptides are 108,000 and 24,000 respectively. The calcium antagonist receptor was reconstituted into a phospholipid bilayer by adding CHAPS and exogeneous lipid to the purified receptor followed by rapid detergent removal. This procedure resulted in the incorporation of 45% of the calcium antagonist receptor into closed phospholipid vesicles. Data suggests that the α, β, and γ subunits of the T-tubule calcium antagonist receptor are sufficient to form a functional calcium channel

  8. Opioid antagonists for pharmacological treatment of gambling disorder: Are they relevant?

    Science.gov (United States)

    Victorri-Vigneau, Caroline; Spiers, Andrew; Caillet, Pascal; Bruneau, Mélanie; Challet-Bouju, Gaëlle; Grall-Bronnec, Marie

    2017-07-18

    Background: To date, no drugs have been approved for gambling disorder. Numerous publications have described the value of opioid antagonists. Indeed, the mesocorticolimbic dopaminergic pathway has been suggested as the underlying cause of reward-seeking behaviour, and it is modulated by the opioid system. Objective: This study aims to evaluate the relevance of opioid antagonists for treating GD. Method A systematic literature review was conducted. A search of the PubMed electronic database, PsycINFO and the Cochrane Systematic Review Database without any limits was performed. Results: There is little information concerning the effects of opioid antagonists on GD. The total search with "nalmefene and gambling" without any limits revealed only 11 articles. The search with "naltrexone and gambling" without any limits generated 47 articles. Nevertheless, the best available data support the use of opioid antagonists, particularly in individuals with a history of alcohol use disorder or strong gambling urges. Conclusion: Future trials are still needed. Indeed, opioid antagonists effectiveness has been investigated in only a limited number of patients, clinical trials do not reflect the heterogeneity of GD and there is little knowledge of the predictive factors of response to treatments. Moreover, differential affinity to nalmefene for kappa receptors may be associated with a particular effect in a yet to be defined addiction phenotype. Head to head comparisons between naltrexone and nalmefene would be helpful in combining with other medication or psychotherapy. The identification of subgroups of patients that are more likely to benefit from opioid antagonists should be a goal. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Multiple C-terminal tail Ca(2+)/CaMs regulate Ca(V)1.2 function but do not mediate channel dimerization.

    Science.gov (United States)

    Kim, Eun Young; Rumpf, Christine H; Van Petegem, Filip; Arant, Ryan J; Findeisen, Felix; Cooley, Elizabeth S; Isacoff, Ehud Y; Minor, Daniel L

    2010-12-01

    Interactions between voltage-gated calcium channels (Ca(V)s) and calmodulin (CaM) modulate Ca(V) function. In this study, we report the structure of a Ca(2+)/CaM Ca(V)1.2 C-terminal tail complex that contains two PreIQ helices bridged by two Ca(2+)/CaMs and two Ca(2+)/CaM-IQ domain complexes. Sedimentation equilibrium experiments establish that the complex has a 2:1 Ca(2+)/CaM:C-terminal tail stoichiometry and does not form higher order assemblies. Moreover, subunit-counting experiments demonstrate that in live cell membranes Ca(V)1.2s are monomers. Thus, contrary to previous proposals, the crystallographic dimer lacks physiological relevance. Isothermal titration calorimetry and biochemical experiments show that the two Ca(2+)/CaMs in the complex have different properties. Ca(2+)/CaM bound to the PreIQ C-region is labile, whereas Ca(2+)/CaM bound to the IQ domain is not. Furthermore, neither of lobes of apo-CaM interacts strongly with the PreIQ domain. Electrophysiological studies indicate that the PreIQ C-region has a role in calcium-dependent facilitation. Together, the data show that two Ca(2+)/CaMs can bind the Ca(V)1.2 tail simultaneously and indicate a functional role for Ca(2+)/CaM at the C-region site.

  10. The site of net absorption of Ca from the intestinal tract of growing pigs and effect of phytic acid, Ca level and Ca source on Ca digestibility.

    Science.gov (United States)

    González-Vega, J Caroline; Walk, Carrie L; Liu, Yanhong; Stein, Hans H

    2014-01-01

    An experiment was conducted to test the hypothesis that the standardised digestibility of Ca in calcium carbonate and Lithothamnium calcareum Ca is not different regardless of the level of dietary Ca, and that phytic acid affects the digestibility of Ca in these two ingredients to the same degree. The objectives were to determine where in the intestinal tract Ca absorption takes place and if there are measurable quantities of basal endogenous Ca fluxes in the stomach, small intestine or large intestine. Diets contained calcium carbonate or L. calcareum Ca as the sole source of Ca, 0% or 1% phytic acid and 0.4% or 0.8% Ca. A Ca-free diet was also formulated and used to measure endogenous fluxes and losses of Ca. Nine growing pigs (initial body weight 23.8 ± 1.3 kg) were cannulated in the duodenum and in the distal ileum, and faecal, ileal and duodenal samples were collected. Duodenal endogenous fluxes of Ca were greater (p calcareum Ca diets, but that was not the case if calcium carbonate was the source of Ca (interaction, p calcareum Ca was greater (p calcareum Ca. In conclusion, under the conditions of this experiment, standardised digestibility of Ca is not affected by the level of phytic acid, but may be affected by dietary Ca level depending on the Ca source. Calcium from calcium carbonate is mostly absorbed before the duodenum, but Ca from L. calcareum Ca is mostly absorbed in the jejunum and ileum.

  11. Potentiation of glycine-gated NR1/NR3A NMDA receptors relieves Ca2+-dependent outward rectification

    Directory of Open Access Journals (Sweden)

    Christian Madry

    2010-03-01

    Full Text Available Glycine has diverse functions within the mammalian central nervous system. It inhibits postsynaptic neurons via strychnine-sensitive glycine receptors (GlyRs and enhances neuronal excitation through co-activation of N-methyl-D-aspartate (NMDA receptors. Classical Ca2+-permeable NMDA receptors are composed of glycine-binding NR1 and glutamate-binding NR2 subunits, and hence require both glutamate and glycine for efficient activation. In contrast, recombinant receptors composed of NR1 and the glycine binding NR3A and/or NR3B subunits lack glutamate binding sites and can be activated by glycine alone. Therefore these receptors are also named excitatory glycine receptors. Co-application of antagonists of the NR1 glycine-binding site or of the divalent cation Zn2+ markedly enhances the glycine responses of these receptors. To gain further insight into the properties of these glycine-gated NMDA receptors, we investigated their current-voltage (I-V dependence. Whole-cell current-voltage relations of glycine currents recorded from NR1/NR3B and NR1/NR3A/NR3B expressing oocytes were found to be linear under our recording conditions. In contrast, NR1/NR3A receptors displayed a strong outwardly rectifying I-V relation. Interestingly, the voltage-dependent inward current block was abolished in the presence of NR1 antagonists, Zn2+ or a combination of both. Further analysis revealed that Ca2+ (1.8 mM present in our recording solutions was responsible for the voltage-dependent inhibition of ion flux through NR1/NR3A receptors. Since physiological concentrations of the divalent cation Mg2+ did not affect the I-V dependence, our data suggest that relief of the voltage-dependent Ca2+ block of NR1/NR3A receptors by Zn2+ may be important for the regulation of excitatory glycinergic transmission, according to the Mg2+-block of conventional NR1/NR2 NMDA receptors.

  12. Crucial role of carbonic anhydrase IX in tumorigenicity of xenotransplanted adult T-cell leukemia-derived cells.

    Science.gov (United States)

    Nasu, Kentaro; Yamaguchi, Kazunori; Takanashi, Tomoka; Tamai, Keiichi; Sato, Ikuro; Ine, Shoji; Sasaki, Osamu; Satoh, Kennichi; Tanaka, Nobuyuki; Tanaka, Yuetsu; Fukushima, Takuya; Harigae, Hideo; Sugamura, Kazuo

    2017-03-01

    Carbonic anhydrase IX (CA9) is a membrane-associated carbonic anhydrase that regulates cellular pH, is upregulated in various solid tumors, and is considered to be a therapeutic target. Here, we describe the essential role of CA9 in the tumorigenicity of cells derived from human adult T-cell leukemia/lymphoma (ATL). We previously established the highly tumorigenic ST1-N6 subline from the ATL-derived ST1 cell line by serial xenotransplantation in NOG mice. In the present study, we first show that CA9 expression is strongly enhanced in ST1-N6 cells. We then sorted ST1 cells by high or low CA9 expression and established ST1-CA9 high and ST1-CA9 low sublines. ST1-CA9 high cells, like ST1-N6 cells, were more strongly tumorigenic than ST1-CA9 low or parental ST1 cells when injected into NOG mice. Knockdown of CA9 with shRNAs suppressed the ability of ST1-CA9 high cells to initiate tumors, and the tumorigenicity of ST1 cells was significantly enhanced by introducing wild-type CA9 or a CA9 mutant with deletion of an intracytoplasmic domain. However, a CA9 with point mutations in the catalytic site did not increase the tumorigenicity of ST1 cells. Furthermore, we detected a small population of CA9 + CD25 + cells in lymph nodes of ATL patients. These findings suggest that CA9, and particularly its carbonic anhydrase activity, promotes the tumorigenicity of ATL-derived cells and may be involved in malignant development of lymphoma-type ATL. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  13. Antitumor effect of cordycepin (3'-deoxyadenosine) on mouse melanoma and lung carcinoma cells involves adenosine A3 receptor stimulation.

    Science.gov (United States)

    Nakamura, Kazuki; Yoshikawa, Noriko; Yamaguchi, Yu; Kagota, Satomi; Shinozuka, Kazumasa; Kunitomo, Masaru

    2006-01-01

    An attempt was made to elucidate the molecular targetfor the antitumor effects of cordycepin (3'-deoxyadenosine) using non-selective and selective adenosine A1, A2a, A2b and A3 receptor agonists and antagonists. Although adenosine and 2'-deoxyadenosine (up to 100 microM) had no effect, cordycepin showed remarkable inhibitory effects on the growth curves of B16-BL6 mouse melanoma (IC50= 39 microM) and mouse Lewis lung carcinoma (IC50 = 48 microM) cell lines in vitro. Among the adenosine receptor agonists and antagonists used (up to 100 microM), only 2-chloro-N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA), a selective adenosine A3 receptor agonist, notably inhibited the growth of both mouse tumor cell lines (B16-BL6; IC50 = 5 microM, LLC; 14 microM). In addition, the tumor growth inhibitory effect of cordycepin was antagonized by 3-ethyl 5-benzyl 2-methyl-6-phenyl-4-phenylethynyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS1191), a selective adenosine A3 receptor antagonist. These results suggest that cordycepin exerts inhibitory effects on the growth of mouse melanoma and lung carcinoma cells by stimulating adenosine A3 receptors on tumor cells.

  14. Location of protons in N-H···N hydrogen-bonded systems: a theoretical study on intramolecular pyridine-dihydropyridine and pyridine-pyridinium pairs.

    Science.gov (United States)

    Mori, Yukie; Takano, Keiko

    2012-08-21

    Two-dimensional potential energy surfaces (PESs) were calculated for the degenerate intramolecular proton transfer (PT) in two N-H···N hydrogen-bonded systems, (Z)-2-(2-pyridylmethylidene)-1,2-dihydropyridine (1) and monoprotonated di(2-pyridyl) ether (2), at the MP2/cc-pVDZ level of theory. The calculated PES had two minima in both cases. The energy barrier in 1 was higher than the zero-point energy (ZPE) level, while that in 2 was close to the ZPE. Vibrational wavefunctions were obtained by solving time-independent Schrödinger equations with the calculated PESs. The maximum points of the probability density were shifted from the energy minima towards the region where the covalent N-H bond was elongated and the N···N distance shortened. The effects of a polar solvent on the PES were investigated with the continuum or cluster models in such a way that the solute-solvent electrostatic interactions could be taken into account under non-equilibrated conditions. A solvated contact ion-pair was modelled by a cluster consisting of one cation 2, one chloride ion and 26 molecules of acetonitrile. The calculation with this model suggested that the bridging proton is localised in the deeper well due to the significant asymmetry of the PES and the high potential barrier.

  15. Screening of chemokine receptor CCR4 antagonists by capillary zone electrophoresis

    Directory of Open Access Journals (Sweden)

    Zhe Sun

    2011-11-01

    Full Text Available CC chemokine receptor 4 (CCR4 is a kind of G-protein-coupled receptor, which plays a pivotal role in allergic inflammation. The interaction between 2-(2-(4-chloro-phenyl-5-{[(naphthalen-1-ylmethyl-carbamoyl]-methyl}-4-oxo-thiazolidin-3-yl-N-(3-morpholin-4-yl-propyl-acetamide (S009 and the N-terminal extracellular tail (ML40 of CCR4 has been validated to be high affinity by capillary zone electrophoresis (CZE. The S009 is a known CCR4 antagonist. Now, a series of new thiourea derivatives have been synthesized. Compared with positive control S009, they were screened using ML40 as target by CZE to find some new drugs for allergic inflammation diseases. The synthesized compounds XJH-5, XJH-4, XJH-17 and XJH-1 displayed the interaction with ML40, but XJH-9, XJH-10, XJH-11, XJH-12, XJH-13, XJH-14, XJH-3, XJH-8, XJH-6, XJH-7, XJH-15, XJH-16 and XJH-2 did not bind to ML40. Both qualification and quantification characterizations of the binding were determined. The affinity of the four compounds was valued by the binding constant, which was similar with the results of chemotactic experiments. The established CEZ method is capable of sensitive and fast screening for a series of lactam analogs in the drug discovery for allergic inflammation diseases. Keywords: Capillary zone electrophoresis, CCR4 antagonist, 2-(2-(4-chloro-phenyl-5-{[(naphthalen-1-ylmethyl-carbamoyl]-methyl}-4-oxo-thiazolidin-3-yl-N-(3-morpholin-4-yl-propyl-acetamide, Interactions, Structural modification

  16. Shifting to a non-vitamin K antagonist oral anticoagulation agent from vitamin K antagonist in atrial fibrillation

    DEFF Research Database (Denmark)

    Fosbøl, Emil L; Vinding, Naja Emborg; Lamberts, Morten

    2017-01-01

    Aims: After non-vitamin K antagonist (VKA) oral anticoagulation agents (NOAC) have been approved for thrombo-embolic prophylaxis in non-valvular atrial fibrillation (NVAF), utilization of oral anticoagulants (OAC) in NVAF has changed. Contemporary shifting from a VKA to a NOAC (dabigatran...

  17. Palliation of bone cancer pain by antagonists of platelet-activating factor receptors.

    Directory of Open Access Journals (Sweden)

    Katsuya Morita

    Full Text Available Bone cancer pain is the most severe among cancer pain and is often resistant to current analgesics. Thus, the development of novel analgesics effective at treating bone cancer pain are desired. Platelet-activating factor (PAF receptor antagonists were recently demonstrated to have effective pain relieving effects on neuropathic pain in several animal models. The present study examined the pain relieving effect of PAF receptor antagonists on bone cancer pain using the femur bone cancer (FBC model in mice. Animals were injected with osteolytic NCTC2472 cells into the tibia, and subsequently the effects of PAF receptor antagonists on pain behaviors were evaluated. Chemical structurally different type of antagonists, TCV-309, BN 50739 and WEB 2086 ameliorated the allodynia and improved pain behaviors such as guarding behavior and limb-use abnormalities in FBC model mice. The pain relieving effects of these antagonists were achieved with low doses and were long lasting. Blockade of spinal PAF receptors by intrathecal injection of TCV-309 and WEB 2086 or knockdown of the expression of spinal PAF receptor protein by intrathecal transfer of PAF receptor siRNA also produced a pain relieving effect. The amount of an inducible PAF synthesis enzyme, lysophosphatidylcholine acyltransferase 2 (LPCAT2 protein significantly increased in the spinal cord after transplantation of NCTC 2472 tumor cells into mouse tibia. The combination of morphine with PAF receptor antagonists develops marked enhancement of the analgesic effect against bone cancer pain without affecting morphine-induced constipation. Repeated administration of TCV-309 suppressed the appearance of pain behaviors and prolonged survival of FBC mice. The present results suggest that PAF receptor antagonists in combination with, or without, opioids may represent a new strategy for the treatment of persistent bone cancer pain and improve the quality of life of patients.

  18. Toxicological Differences Between NMDA Receptor Antagonists and Cholinesterase Inhibitors.

    Science.gov (United States)

    Shi, Xiaodong; Lin, Xiaotian; Hu, Rui; Sun, Nan; Hao, Jingru; Gao, Can

    2016-08-01

    Cholinesterase inhibitors (ChEIs), represented by donepezil, rivastigmine, and galantamine, used to be the only approved class of drugs for the treatment of Alzheimer's disease. After the approval of memantine by the Food and Drug Administration (FDA), N-methyl-d-aspartic acid (NMDA) receptor antagonists have been recognized by authorities and broadly used in the treatment of Alzheimer's disease. Along with complementary mechanisms of action, NMDA antagonists and ChEIs differ not only in therapeutic effects but also in adverse reactions, which is an important consideration in clinical drug use. And the number of patients using NMDA antagonists and ChEIs concomitantly has increased, making the matter more complicated. Here we used the FDA Adverse Event Reporting System for statistical analysis , in order to compare the adverse events of memantine and ChEIs. In general, the clinical evidence confirmed the safety advantages of memantine over ChEIs, reiterating the precautions of clinical drug use and the future direction of antidementia drug development. © The Author(s) 2016.

  19. Agar composition affects in vitro screening of biocontrol activity of antagonistic microorganisms

    NARCIS (Netherlands)

    Bosmans, Lien; De Bruijn, I.; de Mot, Rene; Readers, Hans; Lievens, Bart

    2016-01-01

    Agar-based screening assays are the method of choice when evaluating antagonistic potential of bacterial biocontrol-candidates against pathogens.Weshowed thatwhen using the samemedium, but different agar compositions, the activity of a bacterial antagonist against Agrobacteriumwas strongly affected.

  20. Novel CRTH2 antagonists: a review of patents from 2006 to 2009.

    Science.gov (United States)

    Ulven, Trond; Kostenis, Evi

    2010-11-01

    The receptor CRTH2 (also known as DP₂) is an important mediator of the inflammatory effects of prostaglandin D₂ and has attracted much attention as a therapeutic target for the treatment of conditions such as asthma, COPD, allergic rhinitis and atopic dermatitis. The validation of CRTH2 as a therapeutic target and the early antagonists are summarized, CRTH2 antagonists published in the patent literature from 2006 to 2009 are comprehensively covered and a general update on the recent progress in the development of CRTH2 antagonists for the treatment of inflammatory diseases is provided. Insight into the validation of CRTH2 as a therapeutic target, a comprehensive overview of the development of new CRTH2 ligands between 2006 and 2009, and a general overview of the state of the art. Many diverse potent CRTH2 antagonists are now available, and several are in or on the way into the clinic. It is still early to draw final conclusions, but preliminary results give reason for optimism, and the prospect that we will see new CRTH2 antagonists reaching the market for the treatment of asthma, rhinitis, atopic dermatitis and/or COPD seems good.

  1. Carbachol-mediated pigment granule dispersion in retinal pigment epithelium requires Ca2+ and calcineurin.

    Science.gov (United States)

    Johnson, Adam S; García, Dana M

    2007-12-19

    Inside bluegill (Lepomis macrochirus) retinal pigment epithelial cells, pigment granules move in response to extracellular signals. During the process of aggregation, pigment motility is directed toward the cell nucleus; in dispersion, pigment is directed away from the nucleus and into long apical processes. A number of different chemicals have been found to initiate dispersion, and carbachol (an acetylcholine analog) is one example. Previous research indicates that the carbachol-receptor interaction activates a Gq-mediated pathway which is commonly linked to Ca2+ mobilization. The purpose of the present study was to test for involvement of calcium and to probe calcium-dependent mediators to reveal their role in carbachol-mediated dispersion. Carbachol-induced pigment granule dispersion was blocked by the calcium chelator BAPTA. In contrast, the calcium channel antagonist verapamil, and incubation in Ca2+-free medium failed to block carbachol-induced dispersion. The calcineurin inhibitor cypermethrin blocked carbachol-induced dispersion; whereas, two protein kinase C inhibitors (staurosporine and bisindolylmaleimide II) failed to block carbachol-induced dispersion, and the protein kinase C activator phorbol 12-myristate 13-acetate failed to elicit dispersion. A rise in intracellular calcium is necessary for carbachol-induced dispersion; however, the Ca2+ requirement is not dependent on extracellular sources, implying that intracellular stores are sufficient to enable pigment granule dispersion to occur. Calcineurin is a likely Ca2+-dependent mediator involved in the signal cascade. Although the pathway leads to the generation of diacylglycerol and calcium (both required for the activation of certain PKC isoforms), our evidence does not support a significant role for PKC.

  2. Antagonist effects of calcium on borosilicate glass alteration

    Energy Technology Data Exchange (ETDEWEB)

    Mercado-Depierre, S. [CEA Marcoule, DTCD SPDE LCLT, 30207 Bagnols sur Cèze (France); Angeli, F., E-mail: frederic.angeli@cea.fr [CEA Marcoule, DTCD SPDE LCLT, 30207 Bagnols sur Cèze (France); Frizon, F. [CEA Marcoule, DTCD SECM LP2C, 30207 Bagnols sur Cèze (France); Gin, S. [CEA Marcoule, DTCD SPDE LCLT, 30207 Bagnols sur Cèze (France)

    2013-10-15

    Graphical abstract: Display Omitted -- Highlights: •Kinetic study of glass alteration is investigated in calcium-enriched solutions. •New insights into silicon–calcium interactions in glass/cement systems are proposed. •Glass alteration is controlled by pH, Ca concentration and reaction progress. •Evidence of antagonist effects according to the importance of these parameters. -- Abstract: Numerous studies have been conducted on glass and cement durability in contact with water, but very little work to date has focused directly on interactions between the two materials. These interactions are mostly controlled by silicon–calcium reactivity. However, the physical and chemical processes involved remain insufficiently understood to predict the evolution of coupled glass–cement systems used in several industrial applications. Results are reported from borosilicate glass alteration in calcium-rich solutions. Our data show that four distinct behaviors can be expected according to the relative importance of three key parameters: the pH, the reaction progress (short- or long-term alteration) and the calcium concentration. Glass alteration is thus controlled by specific mechanisms depending on the solution chemistry: calcium complexation at the glass surface, precipitation of calcium silicate hydrates (C–S–H) or calcium incorporation in the altered layer. These findings highlight the impact of silicon–calcium interactions on glass durability and open the way for a better understanding of glass–cement mixing in civil engineering applications as well as in nuclear waste storage.

  3. Antagonist effects of calcium on borosilicate glass alteration

    International Nuclear Information System (INIS)

    Mercado-Depierre, S.; Angeli, F.; Frizon, F.; Gin, S.

    2013-01-01

    Graphical abstract: Display Omitted -- Highlights: •Kinetic study of glass alteration is investigated in calcium-enriched solutions. •New insights into silicon–calcium interactions in glass/cement systems are proposed. •Glass alteration is controlled by pH, Ca concentration and reaction progress. •Evidence of antagonist effects according to the importance of these parameters. -- Abstract: Numerous studies have been conducted on glass and cement durability in contact with water, but very little work to date has focused directly on interactions between the two materials. These interactions are mostly controlled by silicon–calcium reactivity. However, the physical and chemical processes involved remain insufficiently understood to predict the evolution of coupled glass–cement systems used in several industrial applications. Results are reported from borosilicate glass alteration in calcium-rich solutions. Our data show that four distinct behaviors can be expected according to the relative importance of three key parameters: the pH, the reaction progress (short- or long-term alteration) and the calcium concentration. Glass alteration is thus controlled by specific mechanisms depending on the solution chemistry: calcium complexation at the glass surface, precipitation of calcium silicate hydrates (C–S–H) or calcium incorporation in the altered layer. These findings highlight the impact of silicon–calcium interactions on glass durability and open the way for a better understanding of glass–cement mixing in civil engineering applications as well as in nuclear waste storage

  4. Inhibition of [3H]nitrendipine binding by phospholipase A2

    International Nuclear Information System (INIS)

    Goldman, M.E.; Pisano, J.J.

    1985-01-01

    Phospholipase A 2 from several sources inhibited [ 3 H]nitrendipine binding to membranes from brain, heart and ileal longitudinal muscle. The enzymes from bee venom and Russell's viper venom were most potent, having IC 50 values of approximately 5 and 14 ng/ml, respectively, in all three membrane preparations. Inhibition of binding by bee venom phospholipase A 2 was time- and dose-dependent. Mastoparan, a known facilitator of phospholipase A 2 enzymatic activity, shifted the bee venom phospholipase A 2 dose-response curve to the left. Pretreatment of brain membranes with bee venom phospholipase A 2 (10 ng/ml) for 15 min caused a 2-fold increase in the K/sub d/ without changing the B/sub max/ compared with untreated membranes. Extension of the preincubation period to 30 min caused no further increase in the K/sub d/ but significantly decreased the B/sub max/ to 71% the value for untreated membranes. [ 3 H]Nitrendipine, preincubated with bee venom phospholipase A 2 , was recovered and found to be fully active, indicating that the phospholipase A 2 did not modify the ligand. It is concluded that phospholipase A 2 acts on the membrane at or near the [ 3 H]nitrendipine binding site and that phospholipids play a key role in the interactions of 1,4 dihydropyridine calcium channel antagonists with the dihydropyridine binding site. 33 references, 3 figures, 1 table

  5. Purification and sequencing of radish seed calmodulin antagonists phosphorylated by calcium-dependent protein kinase.

    Science.gov (United States)

    Polya, G M; Chandra, S; Condron, R

    1993-02-01

    A family of radish (Raphanus sativus) calmodulin antagonists (RCAs) was purified from seeds by extraction, centrifugation, batch-wise elution from carboxymethyl-cellulose, and high performance liquid chromatography (HPLC) on an SP5PW cation-exchange column. This RCA fraction was further resolved into three calmodulin antagonist polypeptides (RCA1, RCA2, and RCA3) by denaturation in the presence of guanidinium HCl and mercaptoethanol and subsequent reverse-phase HPLC on a C8 column eluted with an acetonitrile gradient in the presence of 0.1% trifluoroacetic acid. The RCA preparation, RCA1, RCA2, RCA3, and other radish seed proteins are phosphorylated by wheat embryo Ca(2+)-dependent protein kinase (CDPK). The RCA preparation contains other CDPK substrates in addition to RCA1, RCA2, and RCA3. The RCA preparation, RCA1, RCA2, and RCA3 inhibit chicken gizzard calmodulin-dependent myosin light chain kinase assayed with a myosin-light chain-based synthetic peptide substrate (fifty percent inhibitory concentrations of RCA2 and RCA3 are about 7 and 2 microM, respectively). N-terminal sequencing by sequential Edman degradation of RCA1, RCA2, and RCA3 revealed sequences having a high homology with the small subunit of the storage protein napin from Brassica napus and with related proteins. The deduced amino acid sequences of RCA1, RCA2, RCA3, and RCA3' (a subform of RCA3) have agreement with average molecular masses from electrospray mass spectrometry of 4537, 4543, 4532, and 4560 kD, respectively. The only sites for serine phosphorylation are near or at the C termini and hence adjacent to the sites of proteolytic precursor cleavage.

  6. A quantitative description of tubular system Ca2+ handling in fast‐ and slow‐twitch muscle fibres

    Science.gov (United States)

    Cully, Tanya R.; Edwards, Joshua N.; Murphy, Robyn M.

    2016-01-01

    Key points Current methods do not allow a quantitative description of Ca2+ movements across the tubular (t‐) system membrane without isolating the membranes from their native skeletal muscle fibre.Here we present a fluorescence‐based method that allows determination of the t‐system [Ca2+] transients and derivation of t‐system Ca2+ fluxes in mechanically skinned skeletal muscle fibres. Differences in t‐system Ca2+‐handling properties between fast‐ and slow‐twitch fibres from rat muscle are resolved for the first time using this new technique.The method can be used to study Ca2+ handling of the t‐system and allows direct comparisons of t‐system Ca2+ transients and Ca2+ fluxes between groups of fibres and fibres from different strains of animals. Abstract The tubular (t‐) system of skeletal muscle is an internalization of the plasma membrane that maintains a large Ca2+ gradient and exchanges Ca2+ between the extracellular and intracellular environments. Little is known of the Ca2+‐handling properties of the t‐system as the small Ca2+ fluxes conducted are difficult to resolve with conventional methods. To advance knowledge in this area we calibrated t‐system‐trapped rhod‐5N inside skinned fibres from rat and [Ca2+]t‐sys, allowing confocal measurements of Ca2+‐dependent changes in rhod‐5N fluorescence during rapid changes in the intracellular ionic environment to be converted to [Ca2+] transients in the t‐system ([Ca2+]t‐sys (t)). Furthermore, t‐system Ca2+‐buffering power was determined so that t‐system Ca2+ fluxes could be derived from [Ca2+]t‐sys (t). With this new approach, we show that rapid depletion of sarcoplasmic reticulum (SR) Ca2+ induced a robust store‐operated Ca2+ entry (SOCE) in fast‐ and slow‐twitch fibres, reducing [Ca2+]t‐sys to fibre types. Abruptly introducing internal solutions with 1 mm Mg2+ and [Ca2+]cyto (28 nm–1.3 μm) to Ca2+‐depleted fibres generated t‐system Ca2+ uptake rates

  7. A quantitative description of tubular system Ca(2+) handling in fast- and slow-twitch muscle fibres.

    Science.gov (United States)

    Cully, Tanya R; Edwards, Joshua N; Murphy, Robyn M; Launikonis, Bradley S

    2016-06-01

    Current methods do not allow a quantitative description of Ca(2+) movements across the tubular (t-) system membrane without isolating the membranes from their native skeletal muscle fibre. Here we present a fluorescence-based method that allows determination of the t-system [Ca(2+) ] transients and derivation of t-system Ca(2+) fluxes in mechanically skinned skeletal muscle fibres. Differences in t-system Ca(2+) -handling properties between fast- and slow-twitch fibres from rat muscle are resolved for the first time using this new technique. The method can be used to study Ca(2+) handling of the t-system and allows direct comparisons of t-system Ca(2+) transients and Ca(2+) fluxes between groups of fibres and fibres from different strains of animals. The tubular (t-) system of skeletal muscle is an internalization of the plasma membrane that maintains a large Ca(2+) gradient and exchanges Ca(2+) between the extracellular and intracellular environments. Little is known of the Ca(2+) -handling properties of the t-system as the small Ca(2+) fluxes conducted are difficult to resolve with conventional methods. To advance knowledge in this area we calibrated t-system-trapped rhod-5N inside skinned fibres from rat and [Ca(2+) ]t-sys , allowing confocal measurements of Ca(2+) -dependent changes in rhod-5N fluorescence during rapid changes in the intracellular ionic environment to be converted to [Ca(2+) ] transients in the t-system ([Ca(2+) ]t-sys (t)). Furthermore, t-system Ca(2+) -buffering power was determined so that t-system Ca(2+) fluxes could be derived from [Ca(2+) ]t-sys (t). With this new approach, we show that rapid depletion of sarcoplasmic reticulum (SR) Ca(2+) induced a robust store-operated Ca(2+) entry (SOCE) in fast- and slow-twitch fibres, reducing [Ca(2+) ]t-sys to fibre types. Abruptly introducing internal solutions with 1 mm Mg(2+) and [Ca(2+) ]cyto (28 nm-1.3 μm) to Ca(2+) -depleted fibres generated t-system Ca(2+) uptake rates dependent on [Ca(2

  8. 5-HT7 Receptor Antagonists with an Unprecedented Selectivity Profile.

    Science.gov (United States)

    Ates, Ali; Burssens, Pierre; Lorthioir, Olivier; Lo Brutto, Patrick; Dehon, Gwenael; Keyaerts, Jean; Coloretti, Francis; Lallemand, Bénédicte; Verbois, Valérie; Gillard, Michel; Vermeiren, Céline

    2018-04-23

    Selective leads: In this study, we generated a new series of serotonin 5-HT 7 receptor antagonists. Their synthesis, structure-activity relationships, and selectivity profiles are reported. This series includes 5-HT 7 antagonists with unprecedented high selectivity for the 5-HT 7 receptor, setting the stage for lead optimization of drugs acting on a range of neurological targets. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A general population genetic framework for antagonistic selection that accounts for demography and recurrent mutation.

    Science.gov (United States)

    Connallon, Tim; Clark, Andrew G

    2012-04-01

    Antagonistic selection--where alleles at a locus have opposing effects on male and female fitness ("sexual antagonism") or between components of fitness ("antagonistic pleiotropy")--might play an important role in maintaining population genetic variation and in driving phylogenetic and genomic patterns of sexual dimorphism and life-history evolution. While prior theory has thoroughly characterized the conditions necessary for antagonistic balancing selection to operate, we currently know little about the evolutionary interactions between antagonistic selection, recurrent mutation, and genetic drift, which should collectively shape empirical patterns of genetic variation. To fill this void, we developed and analyzed a series of population genetic models that simultaneously incorporate these processes. Our models identify two general properties of antagonistically selected loci. First, antagonistic selection inflates heterozygosity and fitness variance across a broad parameter range--a result that applies to alleles maintained by balancing selection and by recurrent mutation. Second, effective population size and genetic drift profoundly affect the statistical frequency distributions of antagonistically selected alleles. The "efficacy" of antagonistic selection (i.e., its tendency to dominate over genetic drift) is extremely weak relative to classical models, such as directional selection and overdominance. Alleles meeting traditional criteria for strong selection (N(e)s > 1, where N(e) is the effective population size, and s is a selection coefficient for a given sex or fitness component) may nevertheless evolve as if neutral. The effects of mutation and demography may generate population differences in overall levels of antagonistic fitness variation, as well as molecular population genetic signatures of balancing selection.

  10. CaII Κ Imaging to Understand UV Irradiance Variability

    Indian Academy of Sciences (India)

    tribpo

    the observational details, a new method of analysis, and the preliminary results of the. CaII Κ spectroheliograms of the National Solar Observatory at Sacramento Peak. (NSO/Sac Peak). The main purpose of the present paper is to separate and to derive the relative intensity and area of various chromospheric features from ...

  11. Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review.

    Science.gov (United States)

    Dukare, Ajinath Shridhar; Paul, Sangeeta; Nambi, V Eyarkai; Gupta, Ram Kishore; Singh, Rajbir; Sharma, Kalyani; Vishwakarma, Rajesh Kumar

    2018-01-16

    Fungal diseases result in significant losses of fruits and vegetables during handling, transportation and storage. At present, post-production fungal spoilage is predominantly controlled by using synthetic fungicides. Under the global climate change scenario and with the need for sustainable agriculture, biological control methods of fungal diseases, using antagonistic microorganisms, are emerging as ecofriendly alternatives to the use of fungicides. The potential of microbial antagonists, isolated from a diversity of natural habitats, for postharvest disease suppression has been investigated. Postharvest biocontrol systems involve tripartite interaction between microbial antagonists, the pathogen and the host, affected by environmental conditions. Several modes for fungistatic activities of microbial antagonists have been suggested, including competition for nutrients and space, mycoparasitism, secretion of antifungal antibiotics and volatile metabolites and induction of host resistance. Postharvest application of microbial antagonists is more successful for efficient disease control in comparison to pre-harvest application. Attempts have also been made to improve the overall efficacy of antagonists by combining them with different physical and chemical substances and methods. Globally, many microbe-based biocontrol products have been developed and registered for commercial use. The present review provides a brief overview on the use of microbial antagonists as postharvest biocontrol agents and summarises information on their isolation, mechanisms of action, application methods, efficacy enhancement, product formulation and commercialisation.

  12. Recent progress in the development of small-molecule glucagon receptor antagonists.

    Science.gov (United States)

    Sammons, Matthew F; Lee, Esther C Y

    2015-10-01

    The endocrine hormone glucagon stimulates hepatic glucose output via its action at the glucagon receptor (GCGr) in the liver. In the diabetic state, dysregulation of glucagon secretion contributes to abnormally elevated hepatic glucose output. The inhibition of glucagon-induced hepatic glucose output via antagonism of the GCGr using small-molecule ligands is a promising mechanism for improving glycemic control in the diabetic state. Clinical data evaluating the therapeutic potential of small-molecule GCGr antagonists is currently emerging. Recently disclosed clinical data demonstrates the potential efficacy and possible therapeutic limitations of small-molecule GCGr antagonists. Recent pre-clinical work on the development of GCGr antagonists is also summarized. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. β2-adrenoceptor blockage induces G1/S phase arrest and apoptosis in pancreatic cancer cells via Ras/Akt/NFκB pathway

    Directory of Open Access Journals (Sweden)

    Zhang Dong

    2011-11-01

    Full Text Available Abstract Background Smoking and stress, pancreatic cancer (PanCa risk factors, stimulate nitrosamine 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK and catecholamines production respectively. NNK and catecholamine bind the β-adrenoceptors and induce PanCa cell proliferation; and we have previously suggested that β-adrenergic antagonists may suppress proliferation and invasion and stimulate apoptosis in PanCa. To clarify the mechanism of apoptosis induced by β2-adrenergic antagonist, we hypothesize that blockage of the β2-adrenoceptor could induce G1/S phase arrest and apoptosis and Ras may be a key player in PanCa cells. Results The β1 and β2-adrenoceptor proteins were detected on the cell surface of PanCa cells from pancreatic carcinoma specimen samples by immunohistochemistry. The β2-adrenergic antagonist ICI118,551 significantly induced G1/S phase arrest and apoptosis compared with the β1-adrenergic antagonist metoprolol, which was determined by the flow cytometry assay. β2-adrenergic antagonist therapy significantly suppressed the expression of extracellular signal-regulated kinase, Akt, Bcl-2, cyclin D1, and cyclin E and induced the activation of caspase-3, caspase-9 and Bax by Western blotting. Additionally, the β2-adrenergic antagonist reduced the activation of NFκB in vitro cultured PanCa cells. Conclusions The blockage of β2-adrenoceptor markedly induced PanCa cells to arrest at G1/S phase and consequently resulted in cell death, which is possibly due to that the blockage of β2-adrenoceptor inhibited NFκB, extracellular signal-regulated kinase, and Akt pathways. Therefore, their upstream molecule Ras may be a key factor in the β2-adrenoceptor antagonist induced G1/S phase arrest and apoptosis in PanCa cells. The new pathway discovered in this study may provide an effective therapeutic strategy for PanCa.

  14. Subchronic treatment with fluoxetine and ketanserin increases hippocampal brain-derived neurotrophic factor, β-catenin and antidepressant-like effects.

    Science.gov (United States)

    Pilar-Cuéllar, F; Vidal, R; Pazos, A

    2012-02-01

    5-HT(2A) receptor antagonists improve antidepressant responses when added to 5-HT-selective reuptake inhibitors (SSRIs) or tricyclic antidepressants. Here, we have studied the involvement of neuroplasticity pathways and/or the 5-hydroxytryptaminergic system in the antidepressant-like effect of this combined treatment, given subchronically. Expression of brain-derived neurotrophic factor (BDNF) and its receptor (TrkB), 5-bromo-2'-deoxyuridine (BrdU) incorporation, and β-catenin protein expression in different cellular fractions, as well as 5-HT(1A) receptor function were measured in the hippocampus of rats treated with fluoxetine, ketanserin and fluoxetine + ketanserin for 7 days, followed by a forced swimming test (FST) to analyse antidepressant efficacy. mRNA for BDNF was increased in the CA3 field and dentate gyrus of the hippocampus by combined treatment with fluoxetine + ketanserin. Expression of β-catenin was increased in total hippocampal homogenate and in the membrane fraction, but unchanged in the nuclear fraction after combined treatment with fluoxetine + ketanserin. These effects were paralleled by a decreased immobility time in the FST. There were no changes in BrdU incorporation, TrkB expression and 5-HT(1A) receptor function in any of the groups studied. The antidepressant-like effect induced by subchronic co-treatment with a SSRI and a 5-HT(2A) receptor antagonist may mainly be because of modifications in hippocampal neuroplasticity (BDNF and membrane-associated β-catenin), without a significant role for other mechanisms involved in chronic antidepressant response, such as hippocampal neuroproliferation or 5-HT(1A) receptor desensitization in the dorsal raphe nucleus. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  15. PLCζ Induced Ca2+ Oscillations in Mouse Eggs Involve a Positive Feedback Cycle of Ca2+ Induced InsP3 Formation From Cytoplasmic PIP2

    Science.gov (United States)

    Sanders, Jessica R.; Ashley, Bethany; Moon, Anna; Woolley, Thomas E.; Swann, Karl

    2018-01-01

    Egg activation at fertilization in mammalian eggs is caused by a series of transient increases in the cytosolic free Ca2+ concentration, referred to as Ca2+ oscillations. It is widely accepted that these Ca2+ oscillations are initiated by a sperm derived phospholipase C isoform, PLCζ that hydrolyses its substrate PIP2 to produce the Ca2+ releasing messenger InsP3. However, it is not clear whether PLCζ induced InsP3 formation is periodic or monotonic, and whether the PIP2 source for generating InsP3 from PLCζ is in the plasma membrane or the cytoplasm. In this study we have uncaged InsP3 at different points of the Ca2+ oscillation cycle to show that PLCζ causes Ca2+ oscillations by a mechanism which requires Ca2+ induced InsP3 formation. In contrast, incubation in Sr2+ media, which also induces Ca2+ oscillations in mouse eggs, sensitizes InsP3-induced Ca2+ release. We also show that the cytosolic level Ca2+ is a key factor in setting the frequency of Ca2+ oscillations since low concentrations of the Ca2+ pump inhibitor, thapsigargin, accelerates the frequency of PLCζ induced Ca2+ oscillations in eggs, even in Ca2+ free media. Given that Ca2+ induced InsP3 formation causes a rapid wave during each Ca2+ rise, we use a mathematical model to show that InsP3 generation, and hence PLCζ's substate PIP2, has to be finely distributed throughout the egg cytoplasm. Evidence for PIP2 distribution in vesicles throughout the egg cytoplasm is provided with a rhodamine-peptide probe, PBP10. The apparent level of PIP2 in such vesicles could be reduced by incubating eggs in the drug propranolol which also reversibly inhibited PLCζ induced, but not Sr2+ induced, Ca2+ oscillations. These data suggest that the cytosolic Ca2+ level, rather than Ca2+ store content, is a key variable in setting the pace of PLCζ induced Ca2+ oscillations in eggs, and they imply that InsP3 oscillates in synchrony with Ca2+ oscillations. Furthermore, they support the hypothesis that PLCζ and sperm

  16. Control of ciliary motility by Ca2+: Integration of Ca2+-dependent functions and targets for Ca2+ action

    International Nuclear Information System (INIS)

    Evans, T.C.

    1988-01-01

    To identify functions that regulate Ca 2+ -induced ciliary reversal in Paramecium, mutants defective in terminating depolarization-induced backward swimming were selected. Six independent recessive mutations (k-shy) comprising two complementation groups, k-shyA and k-shyB, were identified. All mutants exhibited prolonged backward swimming in depolarizing solutions. Voltage clamp studies revealed that mutant Ca 2+ current amplitudes were reduced, but could be restored to wild type levels by EGTA injection. The recovery of the mutant Ca 2+ current from Ca 2+ -dependent inactivation, and the decay of the Ca 2+ -dependent K + and Ca 2+ -dependent Na + currents after depolarization were slow in k-shy compared to wild type. To identify protein targets of Ca 2+ action, ciliary proteins that interact with calmodulin (CaM) were characterized. With a 125 I-CaM blot assay, several CaM-binding proteins were identified including axonemal, soluble, and membrane-bound polypeptides. Competitive displacement studies with unlabeled Paramecium CaM, bovine CaM, and troponinC suggested that both protein types bind CaM with high affinity and specificity. To examine the presence of CaM-binding sites in intact axonemes, a filtration binding assay was developed

  17. The role of ecology, neutral processes and antagonistic coevolution in an apparent sexual arms race.

    Science.gov (United States)

    Perry, Jennifer C; Garroway, Colin J; Rowe, Locke

    2017-09-01

    Some of the strongest examples of a sexual 'arms race' come from observations of correlated evolution in sexually antagonistic traits among populations. However, it remains unclear whether these cases truly represent sexually antagonistic coevolution; alternatively, ecological or neutral processes might also drive correlated evolution. To investigate these alternatives, we evaluated the contributions of intersex genetic correlations, ecological context, neutral genetic divergence and sexual coevolution in the correlated evolution of antagonistic traits among populations of Gerris incognitus water striders. We could not detect intersex genetic correlations for these sexually antagonistic traits. Ecological variation was related to population variation in the key female antagonistic trait (spine length, a defence against males), as well as body size. Nevertheless, population covariation between sexually antagonistic traits remained substantial and significant even after accounting for all of these processes. Our results therefore provide strong evidence for a contemporary sexual arms race. © 2017 John Wiley & Sons Ltd/CNRS.

  18. Synthesis and Evaluation of New Phthalazine Urea and Thiourea Derivatives as Carbonic Anhydrase Inhibitors

    Directory of Open Access Journals (Sweden)

    Nurcan Berber

    2013-01-01

    Full Text Available A new series of phthalazine substituted urea and thiourea derivatives were synthesized, and their inhibitory effects on the activity of purified human carbonic anhydrases (hCAs I and II were evaluated. 2H-Indazolo[2,1-b]phthalazine-trione derivative (1 was prepared with 4-nitrobenzaldehyde, dimedone, and phthalhydrazide in the presence of TFA in DMF, and nitro group was reduced to amine derivative (2 with SnCl2·2H2O. The compound was reacted with isocyanates and isothiocyanates to get the final products (3a–p. The results showed that all the synthesized compounds inhibited the CA isoenzymes activity. 3a (IC50 = 6.40 µM for hCA I and 6.13 µM for hCA II has the most inhibitory effect. The synthesized compounds are very bulky to be able to bind near the zinc ion, and they much more probably bind as the coumarin derivatives.

  19. Low-molecular weight fractions of Japanese soy sauce act as a RAGE antagonist via inhibition of RAGE trafficking to lipid rafts.

    Science.gov (United States)

    Munesue, Seiichi; Yamamoto, Yasuhiko; Urushihara, Ryouta; Inomata, Kouhei; Saito, Hidehito; Motoyoshi, So; Watanabe, Takuo; Yonekura, Hideto; Yamamoto, Hiroshi

    2013-12-01

    Advanced glycation end-products (AGE) have been implicated in aging and the pathogenesis of diabetic complications, inflammation, Alzheimer's disease, and cancer. AGE engage the cell surface receptor for AGE (RAGE), which in turn elicits intracellular signaling, leading to activation of NF-κB to cause deterioration of tissue homeostasis. AGE are not only formed within our bodies but are also derived from foods, endowing them with flavor. In the present study, we assessed the agonistic/antagonistic effects of food-derived AGE on RAGE signaling in a reporter assay system and found that low-molecular weight AGE can antagonize the action of AGE-BSA. Foods tested were Japanese soy sauce, coffee, cola, and red wine, all of which showed fluorescence characteristics of AGE. Soy sauce and coffee contained N(ε)-carboxymethyl-lysine (CML). Soy sauce, coffee, and red wine inhibited the RAGE ligand-induced activation of NF-κB, whereas cola had no effect on the ligand induction of NF-κB. The liquids were then fractionated into high-molecular weight (HMW) fractions and low-molecular weight (LMW) fractions. Soy sauce-, coffee-, and red wine-derived LMW fractions consistently inhibited the RAGE ligand induction of NF-κB, whereas the HMW fractions of these foods activated RAGE signaling. Using the LMW fraction of soy sauce as a model food-derived RAGE antagonist, we performed a plate-binding assay and found that the soy sauce LMW fractions competitively inhibited AGE-RAGE association. Further, this fraction significantly reduced AGE-dependent monocyte chemoattractant protein-1 (MCP-1) secretion from murine peritoneal macrophages. The LMF from soy sauce suppressed the AGE-induced RAGE trafficking to lipid rafts. These results indicate that small components in some, if not all, foods antagonize RAGE signaling and could exhibit beneficial effects on RAGE-related diseases.

  20. West syndrome associated with administration of a histamine H1 antagonist, oxatomide.

    Science.gov (United States)

    Yamashita, Yushiro; Isagai, Takeo; Seki, Yoshitaka; Ohya, Takashi; Nagamitsu, Shinichiro; Matsuishi, Toyojiro

    2004-01-01

    We report a 4-month-old female infant who developed West syndrome eleven days after administration of a histamine H1 antagonist, oxatomide, for atopic dermatitis. It has been reported that some histamine H1 antagonists induce seizures in epileptic patients. The age, the interval between oxatomide administration, and the onset of West syndrome and its clinical course were similar to two previously reported 3-month-old infants with West syndrome associated with ketotifen administration. We should be cautious in using the histamine H1 antagonists, oxatomide and ketotifen, in young infants because such agents could potentially disturb the anticonvulsive central histaminergic system.

  1. Synthesis and serotonergic activity of substituted 2, N-benzylcarboxamido-5-(2-ethyl-1-dioxoimidazolidinyl)-N, N-dimethyltryptamine derivatives: novel antagonists for the vascular 5-HT(1B)-like receptor.

    Science.gov (United States)

    Moloney, G P; Martin, G R; Mathews, N; Milne, A; Hobbs, H; Dodsworth, S; Sang, P Y; Knight, C; Williams, M; Maxwell, M; Glen, R C

    1999-07-15

    The synthesis and vascular 5-HT(1B)-like receptor activity of a novel series of substituted 2, N-benzylcarboxamido-5-(2-ethyl-1-dioxoimidazolidinyl)-N, N-dimethyltryptamine derivatives are described. Modifications to the 5-ethylene-linked heterocycle and to substituents on the 2-benzylamide side chain have been explored. Several compounds were identified which exhibited affinity at the vascular 5-HT(1B)-like receptor of pK(B) > 7.0, up to 100-fold selectivity over alpha(1)-adrenoceptor affinity and 5-HT(2A) receptor affinity, and which exhibited a favorable pharmacokinetic profile. N-Benzyl-3-[2-(dimethylamino)ethyl]-5-[2-(4,4-dimethyl-2, 5-dioxo-1-imidazolidinyl)ethyl]-1H-indole-2-carboxamide (23) was identified as a highly potent, silent (as judged by the inability of angiotensin II to unmask 5-HT(1B)-like receptor-mediated agonist activity in the rabbit femoral artery), and competitive vascular 5-HT(1B)-like receptor antagonist with a plasma elimination half-life of approximately 4 h in dog plasma and with good oral bioavailability. The selectivity of compounds from this series for the vascular 5-HT(1B)-like receptors over other receptor subtypes is discussed as well as a proposed mode of binding to the receptor pharmacophore. It has been proposed that the aromatic ring of the 2, N-benzylcarboxamide group can occupy an aromatic binding site rather than the indole ring. The resulting conformation allows an amine-binding site to be occupied by the ethylamine nitrogen and a hydrogen-bonding site to be occupied by one of the hydantoin carbonyls. The electronic nature of the 2,N-benzylcarboxamide aromatic group as well as the size of substituents on this aromatic group is crucial for producing potent and selective antagonists. The structural requirement on the 3-ethylamine side chain incorporating the protonatable nitrogen is achieved by the bulky 2, N-benzylcarboxamide group and its close proximity to the 3-side chain.

  2. Ca uptake and its influence by growth hormone in osteoblasts of fetal rat calvaria

    International Nuclear Information System (INIS)

    Wang Hongfu; Jin Weifang; Sekimoto Haku

    1994-01-01

    Uptake and release of Ca 2+ are important functions of osteoblasts. In the paper we studied the uptake of calcium and influence by Growth Hormone in osteoblasts of fetal rat calvaria by liquid scintillation spectrometry of 45 Ca 2+ . In short-term cultures of the bone derived cells, the uptake of 45 Ca 2+ increased steadily. The activity of 45 Ca 2+ in the cells of 15 minute cultures was 2∼3 times of that in the 0 minute cultures. It continued to increase in the cells of 30 minute cultures. Exposure of the bone cells to GH at 55.3 ng/ml increased the uptake of 45 Ca 2+ by 2.3 times in the 30 minute cultures and 1.5 times in the 60 minute cultures than those of the control

  3. An inhibitory effect of extracellular Ca2+ on Ca2+-dependent exocytosis.

    Directory of Open Access Journals (Sweden)

    Wei Xiong

    Full Text Available AIM: Neurotransmitter release is elicited by an elevation of intracellular Ca(2+ concentration ([Ca(2+](i. The action potential triggers Ca(2+ influx through Ca(2+ channels which causes local changes of [Ca(2+](i for vesicle release. However, any direct role of extracellular Ca(2+ (besides Ca(2+ influx on Ca(2+-dependent exocytosis remains elusive. Here we set out to investigate this possibility on rat dorsal root ganglion (DRG neurons and chromaffin cells, widely used models for studying vesicle exocytosis. RESULTS: Using photolysis of caged Ca(2+ and caffeine-induced release of stored Ca(2+, we found that extracellular Ca(2+ inhibited exocytosis following moderate [Ca(2+](i rises (2-3 µM. The IC(50 for extracellular Ca(2+ inhibition of exocytosis (ECIE was 1.38 mM and a physiological reduction (∼30% of extracellular Ca(2+ concentration ([Ca(2+](o significantly increased the evoked exocytosis. At the single vesicle level, quantal size and release frequency were also altered by physiological [Ca(2+](o. The calcimimetics Mg(2+, Cd(2+, G418, and neomycin all inhibited exocytosis. The extracellular Ca(2+-sensing receptor (CaSR was not involved because specific drugs and knockdown of CaSR in DRG neurons did not affect ECIE. CONCLUSION/SIGNIFICANCE: As an extension of the classic Ca(2+ hypothesis of synaptic release, physiological levels of extracellular Ca(2+ play dual roles in evoked exocytosis by providing a source of Ca(2+ influx, and by directly regulating quantal size and release probability in neuronal cells.

  4. Methamphetamine reduces LTP and increases baseline synaptic transmission in the CA1 region of mouse hippocampus.

    Directory of Open Access Journals (Sweden)

    Jarod Swant

    2010-06-01

    Full Text Available Methamphetamine (METH is an addictive psychostimulant whose societal impact is on the rise. Emerging evidence suggests that psychostimulants alter synaptic plasticity in the brain--which may partly account for their adverse effects. While it is known that METH increases the extracellular concentration of monoamines dopamine, serotonin, and norepinephrine, it is not clear how METH alters glutamatergic transmission. Within this context, the aim of the present study was to investigate the effects of acute and systemic METH on basal synaptic transmission and long-term potentiation (LTP; an activity-induced increase in synaptic efficacy in CA1 sub-field in the hippocampus. Both the acute ex vivo application of METH to hippocampal slices and systemic administration of METH decreased LTP. Interestingly, the acute ex vivo application of METH at a concentration of 30 or 60 microM increased baseline synaptic transmission as well as decreased LTP. Pretreatment with eticlopride (D2-like receptor antagonist did not alter the effects of METH on synaptic transmission or LTP. In contrast, pretreatment with D1/D5 dopamine receptor antagonist SCH23390 or 5-HT1A receptor antagonist NAN-190 abrogated the effect of METH on synaptic transmission. Furthermore, METH did not increase baseline synaptic transmission in D1 dopamine receptor haploinsufficient mice. Our findings suggest that METH affects excitatory synaptic transmission via activation of dopamine and serotonin receptor systems in the hippocampus. This modulation may contribute to synaptic maladaption induced by METH addiction and/or METH-mediated cognitive dysfunction.

  5. Structure-guided design of a high-affinity platelet integrin αIIbβ3 receptor antagonist that disrupts Mg²⁺ binding to the MIDAS.

    Science.gov (United States)

    Zhu, Jieqing; Choi, Won-Seok; McCoy, Joshua G; Negri, Ana; Zhu, Jianghai; Naini, Sarasija; Li, Jihong; Shen, Min; Huang, Wenwei; Bougie, Daniel; Rasmussen, Mark; Aster, Richard; Thomas, Craig J; Filizola, Marta; Springer, Timothy A; Coller, Barry S

    2012-03-14

    An integrin found on platelets, α(IIb)β(3) mediates platelet aggregation, and α(IIb)β(3) antagonists are effective antithrombotic agents in the clinic. Ligands bind to integrins in part by coordinating a magnesium ion (Mg(2+)) located in the β subunit metal ion-dependent adhesion site (MIDAS). Drugs patterned on the integrin ligand sequence Arg-Gly-Asp have a basic moiety that binds the α(IIb) subunit and a carboxyl group that coordinates the MIDAS Mg(2+) in the β(3) subunits. They induce conformational changes in the β(3) subunit that may have negative consequences such as exposing previously hidden epitopes and inducing the active conformation of the receptor. We recently reported an inhibitor of α(IIb)β(3) (RUC-1) that binds exclusively to the α(IIb) subunit; here, we report the structure-based design and synthesis of RUC-2, a RUC-1 derivative with a ~100-fold higher affinity. RUC-2 does not induce major conformational changes in β(3) as judged by monoclonal antibody binding, light scattering, gel chromatography, electron microscopy, and a receptor priming assay. X-ray crystallography of the RUC-2-α(IIb)β(3) headpiece complex in 1 mM calcium ion (Ca(2+))/5 mM Mg(2+) at 2.6 Å revealed that RUC-2 binds to α(IIb) the way RUC-1 does, but in addition, it binds to the β(3) MIDAS residue glutamic acid 220, thus displacing Mg(2+) from the MIDAS. When the Mg(2+) concentration was increased to 20 mM, however, Mg(2+) was identified in the MIDAS and RUC-2 was absent. RUC-2's ability to inhibit ligand binding and platelet aggregation was diminished by increasing the Mg(2+) concentration. Thus, RUC-2 inhibits ligand binding by a mechanism different from that of all other α(IIb)β(3) antagonists and may offer advantages as a therapeutic agent.

  6. The comparision of effect of microdose GnRH-a flare-up, GnRH antagonist/aromatase inhibitor letrozole and GnRH antagonist/clomiphene citrate protocols on IVF outcomes in poor responder patients.

    Science.gov (United States)

    Ozcan Cenksoy, Pinar; Ficicioglu, Cem; Kizilkale, Ozge; Suhha Bostanci, Mehmet; Bakacak, Murat; Yesiladali, Mert; Kaspar, Cigdem

    2014-07-01

    To compare the effects of microdose GnRH-a flare-up, GnRH antagonist/aromatase inhibitor letrozole and GnRH antagonist/clomiphene citrate protocols on IVF outcomes in poor responder patients. Of 225 patients, 83 patients were in microdose flare-up group (Group 1), 70 patients were in GnRH antagonist/letrozole group (Group 2) and 72 patients were in GnRH antagonist/clomiphene citrate group (Group 3). Demographic and endocrine characteristics, the total number of oocytes retrieved, cancellation rate and clinical pregnancy rate were collected Results: Total dosage of gonadotropins (p=0.002) and serum E2 levels on the day of hCG administration (p=0.010) were significantly higher and duration of stimulations (p=0.03) was significantly longer in group 1. The number of oocytes retrieved was significantly greater in group 1 and 2 when compare to those of group 3 (p=0,000). There was a trend towards increasing cycle cancellation rates with GnRH antagonist/clomiphene citrate and GnRH antagonist/letrozole. Our finding suggest that the results of microdose flare-up protocol are better than other two used treatment protocols, in terms of maximum estradiol levels, number of mature oocytes retrieved, and cancellation rate and it still seems to be superior the ovarian stimulation regime for the poor responder patients.

  7. Biomaterial-Derived Calcium Carbonate Nanoparticles for Enteric Drug Delivery

    Directory of Open Access Journals (Sweden)

    Diane Render

    2016-01-01

    Full Text Available Oral drug delivery systems provide the most convenient, noninvasive, readily acceptable alternatives to parenteral systems. In the current work, eggshell-derived calcium carbonate (CaCO3 nanoparticles were used to develop enteric drug delivery system in the form of tablets. CaCO3 nanoparticles were manufactured using top-down ball-milling method and characterized by X-ray diffractometry (XRD and transmission electron microscopy (TEM and loaded with 5-fluorouracil as a model drug. Tablets with varying CaCO3 core and binder compositions were fabricated and coated with Eudragit S100 or Eudragit L100. Suitability for enteric delivery of the tablets was tested by oral administration to rabbits and radiography. Radiograph images showed that the tablet remained in the stomach of the rabbit for up to 3 hours. Further modifications of these biomaterial-derived nanoparticles and the coatings will enable manufacturing of stable formulations for slow or controlled release of pharmaceuticals for enteric delivery.

  8. Glutamic acid and its derivatives: candidates for rational design of anticancer drugs.

    Science.gov (United States)

    Ali, Imran; Wani, Waseem A; Haque, Ashanul; Saleem, Kishwar

    2013-05-01

    Throughout the history of human civilizations, cancer has been a major health problem. Its treatment has been interesting but challenging to scientists. Glutamic acid and its derivative glutamine are known to play interesting roles in cancer genesis, hence, it was realized that structurally variant glutamic acid derivatives may be designed and developed and, might be having antagonistic effects on cancer. The present article describes the state-of-art of glutamic acid and its derivatives as anticancer agents. Attempts have been made to explore the effectivity of drug-delivery systems based on glutamic acid for the delivery of anticancer drugs. Moreover, efforts have also been made to discuss the mechanism of action of glutamic acid derivatives as anticancer agents, clinical applications of glutamic acid derivatives, as well as recent developments and future perspectives of glutamic acid drug development have also been discussed.

  9. Cerebral blood flow modulation by Basal forebrain or whisker stimulation can occur independently of large cytosolic Ca2+ signaling in astrocytes.

    Science.gov (United States)

    Takata, Norio; Nagai, Terumi; Ozawa, Katsuya; Oe, Yuki; Mikoshiba, Katsuhiko; Hirase, Hajime

    2013-01-01

    We report that a brief electrical stimulation of the nucleus basalis of Meynert (NBM), the primary source of cholinergic projection to the cerebral cortex, induces a biphasic cerebral cortical blood flow (CBF) response in the somatosensory cortex of C57BL/6J mice. This CBF response, measured by laser Doppler flowmetry, was attenuated by the muscarinic type acetylcholine receptor antagonist atropine, suggesting a possible involvement of astrocytes in this type of CBF modulation. However, we find that IP3R2 knockout mice, which lack cytosolic Ca2+ surges in astrocytes, show similar CBF changes. Moreover, whisker stimulation resulted in similar degrees of CBF increase in IP3R2 knockout mice and the background strain C57BL/6J. Our results show that neural activity-driven CBF modulation could occur without large cytosolic increases of Ca2+ in astrocytes.

  10. Calcilytic Ameliorates Abnormalities of Mutant Calcium-Sensing Receptor (CaSR) Knock-In Mice Mimicking Autosomal Dominant Hypocalcemia (ADH).

    Science.gov (United States)

    Dong, Bingzi; Endo, Itsuro; Ohnishi, Yukiyo; Kondo, Takeshi; Hasegawa, Tomoka; Amizuka, Norio; Kiyonari, Hiroshi; Shioi, Go; Abe, Masahiro; Fukumoto, Seiji; Matsumoto, Toshio

    2015-11-01

    Activating mutations of calcium-sensing receptor (CaSR) cause autosomal dominant hypocalcemia (ADH). ADH patients develop hypocalcemia, hyperphosphatemia, and hypercalciuria, similar to the clinical features of hypoparathyroidism. The current treatment of ADH is similar to the other forms of hypoparathyroidism, using active vitamin D3 or parathyroid hormone (PTH). However, these treatments aggravate hypercalciuria and renal calcification. Thus, new therapeutic strategies for ADH are needed. Calcilytics are allosteric antagonists of CaSR, and may be effective for the treatment of ADH caused by activating mutations of CaSR. In order to examine the effect of calcilytic JTT-305/MK-5442 on CaSR harboring activating mutations in the extracellular and transmembrane domains in vitro, we first transfected a mutated CaSR gene into HEK cells. JTT-305/MK-5442 suppressed the hypersensitivity to extracellular Ca(2+) of HEK cells transfected with the CaSR gene with activating mutations in the extracellular and transmembrane domains. We then selected two activating mutations locating in the extracellular (C129S) and transmembrane (A843E) domains, and generated two strains of CaSR knock-in mice to build an ADH mouse model. Both mutant mice mimicked almost all the clinical features of human ADH. JTT-305/MK-5442 treatment in vivo increased urinary cAMP excretion, improved serum and urinary calcium and phosphate levels by stimulating endogenous PTH secretion, and prevented renal calcification. In contrast, PTH(1-34) treatment normalized serum calcium and phosphate but could not reduce hypercalciuria or renal calcification. CaSR knock-in mice exhibited low bone turnover due to the deficiency of PTH, and JTT-305/MK-5442 as well as PTH(1-34) increased bone turnover and bone mineral density (BMD) in these mice. These results demonstrate that calcilytics can reverse almost all the phenotypes of ADH including hypercalciuria and renal calcification, and suggest that calcilytics can become a

  11. Chloroquine, quinine, procaine, quinidine, tricyclic antidepressants, and methylxanthines as prostaglandin agonists and antagonists.

    Science.gov (United States)

    Manku, M S; Horrobin, D F

    1976-11-20

    Chloroquine, quanine, procaine, quinidine, clomipramine, theophylline, and caffeine have been shown to be strong prostaglandin antagonists and weak agonists. The antagonist effect is clearly demonstrable at concentrations reached in human plasma when the drugs are used therapeutically. This suggests that prostaglandins are important in several situations in which their role has hitherto been unsuspected. New approaches to the development of prostaglandin antagonists and new uses for established drugs are indicated. In a preliminary study chloroquine has been successfully used to close patent ductus arteriosus in three infants.

  12. An essential role for the K+-dependent Na+/Ca2+-exchanger, NCKX4, in melanocortin-4-receptor-dependent satiety.

    Science.gov (United States)

    Li, Xiao-Fang; Lytton, Jonathan

    2014-09-12

    K(+)-dependent Na(+)/Ca(2+)-exchangers are broadly expressed in various tissues, and particularly enriched in neurons of the brain. The distinct physiological roles for the different members of this Ca(2+) transporter family are, however, not well described. Here we show that gene-targeted mice lacking the K(+)-dependent Na(+)/Ca(2+)-exchanger, NCKX4 (gene slc24a4 or Nckx4), display a remarkable anorexia with severe hypophagia and weight loss. Feeding and satiety are coordinated centrally by melanocortin-4 receptors (MC4R) in neurons of the hypothalamic paraventricular nucleus (PVN). The hypophagic response of Nckx4 knock-out mice is accompanied by hyperactivation of neurons in the PVN, evidenced by high levels of c-Fos expression. The activation of PVN neurons in both fasted Nckx4 knock-out and glucose-injected wild-type animals is blocked by Ca(2+) removal and MC4R antagonists. In cultured hypothalamic neurons, melanocyte stimulating hormone induces an MC4R-dependent and sustained Ca(2+) signal, which requires phospholipase C activity and plasma membrane Ca(2+) entry. The Ca(2+) signal is enhanced in hypothalamic neurons from Nckx4 knock-out animals, and is depressed in cells in which NCKX4 is overexpressed. Finally, MC4R-dependent oxytocin expression in the PVN, a key essential step in satiety, is prevented by blocking phospholipase C activation or Ca(2+) entry. These findings highlight an essential, and to our knowledge previously unknown, role for Ca(2+) signaling in the MC4R pathway that leads to satiety, and a novel non-redundant role for NCKX4-mediated Ca(2+) extrusion in controlling MC4R signaling and feeding behavior. Together, these findings highlight a novel pathway that potentially could be exploited to develop much needed new therapeutics to tackle eating disorders and obesity. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. In-situ thermal analysis and macroscopical characterization of Mg–xCa and Mg–0.5Ca–xZn alloy systems

    International Nuclear Information System (INIS)

    Farahany, Saeed; Bakhsheshi-Rad, Hamid Reza; Idris, Mohd Hasbullah; Abdul Kadir, Mohammed Rafiq; Lotfabadi, Amir Fereidouni; Ourdjini, Ali

    2012-01-01

    Highlights: ► The effect of Ca and Zn addition on Mg–Ca and Mg–Ca–Zn were investigated. ► Ca and Zn addition decreased solid fraction at coherency point. ► T N –T DCP increased by adding Ca and Zn in Mg–Ca and Mg–Ca–Zn, respectively. ► Three reactions were detected when Zn/Ca atomic ratio less than 1.25 in Mg–Ca–Zn. ► A new peak Mg 51 Zn 20 was identified in Mg–0.5Ca–9Zn in addition of other peaks. - Abstract: This research described the identification phases by thermal analysis and microscopy inspection of Mg–xCa and Mg–0.5%Ca–xZn alloys that were solidified at slow cooling rate. Analysis of cooling curve after Ca addition shows the evolution of the Mg 2 Ca intermetallic phase at around 520 °C in addition to α-Mg phase. First derivative curves of alloys after the addition of Zn to Mg–0.5Ca alloy reveals three peaks related to α-Mg, Mg 2 Ca and Ca 2 Mg 6 Zn 3 for alloys that have Zn/Ca atomic ratio less than 1.23. The peak of Mg 2 Ca reaction on the first derivative curves disappeared for alloys containing Zn/Ca ratio more than 1.23. A new peak was also observed at 330 °C for Mg–0.5Ca–9Zn which was identified as Mg 51 Zn 20 . Solid fraction at coherency point decreased with increasing Ca and Zn elements. However, coherency time and difference between the nucleation and coherency temperatures (T N –T DCP ) increased by adding Ca and Zn in Mg–Ca and Mg–Ca–Zn systems.

  14. Thyroid Hormone Receptor Antagonists: From Environmental Pollution to Novel Small Molecules.

    Science.gov (United States)

    Mackenzie, Louise S

    2018-01-01

    Thyroid hormone receptors (TRs) are nuclear receptors which control transcription, and thereby have effects in all cells within the body. TRs are an important regulator in many basic physiological processes including development, growth, metabolism, and cardiac function. The hyperthyroid condition results from an over production of thyroid hormones resulting in a continual stimulation of thyroid receptors which is detrimental for the patient. Therapies for hyperthyroidism are available, but there is a need for new small molecules that act as TR antagonists to treat hyperthyroidism. Many compounds exhibit TR antagonism and are considered detrimental to health. Some drugs in the clinic (most importantly, amiodarone) and environmental pollution exhibit TR antagonist properties and thus have the potential to induce hypothyroidism in some people. This chapter provides an overview of novel small molecules that have been specifically designed or screened for their TR antagonist activity as novel treatments for hyperthyroidism. While novel compounds have been identified, to date none have been developed sufficiently to enter clinical trials. Furthermore, a discussion on other sources of TR antagonists is discussed in terms of side effects of current drugs in the clinic as well as environmental pollution. © 2018 Elsevier Inc. All rights reserved.

  15. Clinical applicability of determination of serum tumor markers (CEA, CA15-3 and CA125) levels changes for assessment of efficacy of chemotherapy in patients with breast cancer

    International Nuclear Information System (INIS)

    Xu Junying; Liu Chaoying; Li Jiang; Hu Hong; Wang Runjie

    2009-01-01

    Objective: To study the usefulness of monitoring changes of serum levels of tumor markers (CEA, CA15-3 and CA125) for assessment of efficacy of chemotherapy in patients with breast cancer. Methods: Serum CEA, CA15-3 and CA125 levels were measured with CLIA three days before beginning 1st course of appropriate chemotherapy and 3 weeks after completing 2nd course of treatment in 45 patients with advanced breast cancer (TNM stage III, n=20, stage IV n=25). Results: Expressed as CR, PR, SD and PD as defined by the changes of serum tumor markers levels (according to Bac D.J. et al) were compared with clinically observed ones (WHO standard). The serum levels of Cea, CA15-3 decreased markedly in the CR and PR groups of patients but increased markedly in PD patients (P 0.05). The coincidence rate between the results observed clinically and results derived from tumor marker changes was 50.0% for CEA, 55.6% for CA15-3, 31.1% for CA125 and 73% for three markers combined. Conclusion: Combined determination of the changes of serum levels of three tumor marker would help to make a reasonably satisfactory assessment of efficacy of chemotherapy in patients with breast cancer. (authors)

  16. Acute Cocaine Induces Fast Activation of D1 Receptor and Progressive Deactivation of D2 Receptor Strial Neurons: In Vivo Optical Microprobe [Ca(superscript)2+]subscript)i Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Du, C.; Luo, Z.; Volkow, N.D.; Heintz, N.; Pan, Y.; Du, C.

    2011-09-14

    Cocaine induces fast dopamine increases in brain striatal regions, which are recognized to underlie its rewarding effects. Both dopamine D1 and D2 receptors are involved in cocaine's reward but the dynamic downstream consequences of cocaine effects in striatum are not fully understood. Here we used transgenic mice expressing EGFP under the control of either the D1 receptor (D1R) or the D2 receptor (D2R) gene and microprobe optical imaging to assess the dynamic changes in intracellular calcium ([Ca{sup 2+}]{sub i} ) responses (used as marker of neuronal activation) to acute cocaine in vivo separately for D1R- versus D2R-expressing neurons in striatum. Acute cocaine (8 mg/kg, i.p.) rapidly increased [Ca{sup 2+}]{sub i} in D1R-expressing neurons (10.6 {+-} 3.2%) in striatum within 8.3 {+-} 2.3 min after cocaine administration after which the increases plateaued; these fast [Ca{sup 2+}]{sub i} increases were blocked by pretreatment with a D1R antagonist (SCH23390). In contrast, cocaine induced progressive decreases in [Ca{sup 2+}]{sub i} in D2R-expressing neurons (10.4 {+-} 5.8%) continuously throughout the 30 min that followed cocaine administration; these slower [Ca{sup 2+}]{sub i} decreases were blocked by pretreatment with a D2R antagonist (raclopride). Since activation of striatal D1R-expressing neurons (direct-pathway) enhances cocaine reward, whereas activation of D2R expressing neurons suppresses it (indirect-pathway) (Lobo et al., 2010), this suggests that cocaine's rewarding effects entail both its fast stimulation ofD1R (resulting in abrupt activation of direct-pathway neurons) and a slower stimulation of D2R (resulting in longer-lasting deactivation of indirect-pathway neurons). We also provide direct in vivo evidence of D2R and D1R interactions in the striatal responses to acute cocaine administration.

  17. The Effect of Antagonist Muscle Sensory Input on Force Regulation.

    Directory of Open Access Journals (Sweden)

    Tanya Onushko

    Full Text Available The purpose of this study was to understand how stretch-related sensory feedback from an antagonist muscle affects agonist muscle output at different contraction levels in healthy adults. Ten young (25.3 ± 2.4 years, healthy subjects performed constant isometric knee flexion contractions (agonist at 6 torque levels: 5%, 10%, 15%, 20%, 30%, and 40% of their maximal voluntary contraction. For half of the trials, subjects received patellar tendon taps (antagonist sensory feedback during the contraction. We compared error in targeted knee flexion torque and hamstring muscle activity, with and without patellar tendon tapping, across the 6 torque levels. At lower torque levels (5%, 10%, and 15%, subjects produced greater knee torque error following tendon tapping compared with the same torque levels without tendon tapping. In contrast, we did not find any difference in torque output at higher target levels (20%, 30%, and 40% between trials with and without tendon tapping. We also observed a load-dependent increase in the magnitude of agonist muscle activity after tendon taps, with no associated load-dependent increase in agonist and antagonist co-activation, or reflex inhibition from the antagonist tapping. The findings suggest that at relatively low muscle activity there is a deficiency in the ability to correct motor output after sensory disturbances, and cortical centers (versus sub-cortical are likely involved.

  18. Reduced endogenous Ca2+ buffering speeds active zone Ca2+ signaling.

    Science.gov (United States)

    Delvendahl, Igor; Jablonski, Lukasz; Baade, Carolin; Matveev, Victor; Neher, Erwin; Hallermann, Stefan

    2015-06-09

    Fast synchronous neurotransmitter release at the presynaptic active zone is triggered by local Ca(2+) signals, which are confined in their spatiotemporal extent by endogenous Ca(2+) buffers. However, it remains elusive how rapid and reliable Ca(2+) signaling can be sustained during repetitive release. Here, we established quantitative two-photon Ca(2+) imaging in cerebellar mossy fiber boutons, which fire at exceptionally high rates. We show that endogenous fixed buffers have a surprisingly low Ca(2+)-binding ratio (∼ 15) and low affinity, whereas mobile buffers have high affinity. Experimentally constrained modeling revealed that the low endogenous buffering promotes fast clearance of Ca(2+) from the active zone during repetitive firing. Measuring Ca(2+) signals at different distances from active zones with ultra-high-resolution confirmed our model predictions. Our results lead to the concept that reduced Ca(2+) buffering enables fast active zone Ca(2+) signaling, suggesting that the strength of endogenous Ca(2+) buffering limits the rate of synchronous synaptic transmission.

  19. Meiotic drive influences the outcome of sexually antagonistic selection at a linked locus.

    Science.gov (United States)

    Patten, M M

    2014-11-01

    Most meiotic drivers, such as the t-haplotype in Mus and the segregation distorter (SD) in Drosophila, act in a sex-specific manner, gaining a transmission advantage through one sex although suffering only the fitness costs associated with the driver in the other. Their inheritance is thus more likely through one of the two sexes, a property they share with sexually antagonistic alleles. Previous theory has shown that pairs of linked loci segregating for sexually antagonistic alleles are more likely to remain polymorphic and that linkage disequilibrium accrues between them. I probe this similarity between drive and sexual antagonism and examine the evolution of chromosomes experiencing these selection pressures simultaneously. Reminiscent of previous theory, I find that: the opportunity for polymorphism increases for a sexually antagonistic locus that is physically linked to a driving locus; the opportunity for polymorphism at a driving locus also increases when linked to a sexually antagonistic locus; and stable linkage disequilibrium accompanies any polymorphic equilibrium. Additionally, I find that drive at a linked locus favours the fixation of sexually antagonistic alleles that benefit the sex in which drive occurs. Further, I show that under certain conditions reduced recombination between these two loci is selectively favoured. These theoretical results provide clear, testable predictions about the nature of sexually antagonistic variation on driving chromosomes and have implications for the evolution of genomic architecture. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  20. Effect of acetylcholine receptors on the pain-related electrical activities in the hippocampal CA3 region of morphine-addicted rats.

    Science.gov (United States)

    Li, Guan Zeng; Liu, Zhe Hui; Wei, XinYa; Zhao, Pan; Yang, Chun Xiao; Xu, Man Ying

    2015-07-01

    To determine the effect of acetylcholine (ACh), pilocarpine, and atropine on pain evoked responses of pain excited neurons (PEN) and pain inhibited neurons (PIN) in hippocampal CA3 region of morphine addicted rats. Female Wistar rats, weighing between 230-260 g were used in this study. Morphine addicted rats were generated by subcutaneous injection of increasing concentrations of morphine hydrochloride for six days. Trains of electrical impulses applied to the sciatic nerve were used as noxious stimulation and the evoked electrical activities of PEN or PIN in hippocampal CA3 area were recorded using extracellular electrophysiological recording techniques in hippocampal slices. The effect of acetylcholine receptor stimulation by ACh, the muscarinic agonist pilocarpine, and the muscarinic antagonist atropine on the pain evoked responses of pain related electrical activities was analyzed in hippocampal CA3 area of morphine addicted rats. Intra-CA3 microinjection of ACh (2 μg/1 μl) or pilocarpine (2 μg/1 μl) decreased the discharge frequency and prolonged the firing latency of PEN, but increased the discharge frequency and shortened the firing inhibitory duration (ID) of PIN. The intra-CA3 administration of atropine (0.5 μg/1 μl) produced opposite effect. The peak activity of cholinergic modulators was 2 to 4 min later in morphine addicted rats compared to peak activity previously observed in normal rats. ACh dependent modulation of noxious stimulation exists in hippocampal CA3 area of morphine addicted rats. Morphine treatment may shift the sensitivity of pain related neurons towards a delayed response to muscarinergic neurotransmission in hippocampal CA3 region.

  1. Effect of acetylcholine receptors on the pain-related electrical activities in the hippocampal CA3 region of morphine-addicted rats

    Directory of Open Access Journals (Sweden)

    Guan Zeng Li

    2015-07-01

    Full Text Available Objective(s:To determine the effect of acetylcholine (ACh, pilocarpine, and atropine on pain evoked responses of pain excited neurons (PEN and pain inhibited neurons (PIN in hippocampal CA3 region of morphine addicted rats. Materials and Methods:Female Wistar rats, weighing between 230-260 g were used in this study. Morphine addicted rats were generated by subcutaneous injection of increasing concentrations of morphine hydrochloride for six days. Trains of electrical impulses applied to the sciatic nerve were used as noxious stimulation and the evoked electrical activities of PEN or PIN in hippocampal CA3 area were recorded using extracellular electrophysiological recording techniques in hippocampal slices. The effect of acetylcholine receptor stimulation byACh, the muscarinic agonist pilocarpine, and the muscarinic antagonist atropine on the pain evoked responses of pain related electrical activities was analyzed in hippocampal CA3 area of morphine addicted rats. Results:Intra-CA3 microinjection of ACh (2 μg/1 μl or pilocarpine (2 μg/1 μl decreased the discharge frequency and prolonged the firing latency of PEN, but increased the discharge frequency and shortened the firing inhibitory duration (ID of PIN. The intra-CA3 administration of atropine (0.5 μg/1 μl produced opposite effect. The peak activity of cholinergic modulators was 2 to 4 min later in morphine addicted rats compared to peak activity previously observed in normal rats. Conclusion: ACh dependent modulation of noxious stimulation exists in hippocampal CA3 area of morphine addicted rats. Morphine treatment may shift the sensitivity of pain related neurons towards a delayed response to muscarinergic neurotransmission in hippocampal CA3 region.

  2. Orexin 1 receptor antagonists in compulsive behaviour and anxiety: possible therapeutic use.

    Directory of Open Access Journals (Sweden)

    Emilio eMerlo-Pich

    2014-02-01

    Full Text Available Fifteen years after the discovery of hypocretin/orexin a large body of evidence has been collected supporting its critical role in the modulation of several regulatory physiological functions. While reduced levels of hypocretin/orexin were early on associated with narcolepsy, increased levels have been linked in recent years to pathological states of hypervigilance and, in particular, to insomnia. The filing to FDA of the dual-activity orexin receptor antagonist (DORA suvorexant for the indication of insomnia further corroborates the robustness of such evidences. However, as excessive vigilance is also typical of anxiety and panic episodes, as well as of abstinence and craving in substance misuse disorders, in this review we briefly discuss the evidence supporting the development of hypocretin/orexin receptor 1 (OX1 antagonists for these indications. Experiments using the OX1 antagonist SB-334867 and mutant mice have involved the OX1 receptor in mediating the compulsive reinstatement of drug seeking for ethanol, nicotine, cocaine, cannabinoids and morphine. More recently, data have been generated with the novel selective OX1 antagonists GSK1059865 and ACT-335827 on behavioural and cardiovascular response to stressors and panic-inducing agents in animals. Concluding, while waiting for pharmacologic data to become available in humans, risks and benefits for the development of an OX1 receptor antagonist for Binge Eating and Anxiety Disorders are discussed.

  3. Carbachol-mediated pigment granule dispersion in retinal pigment epithelium requires Ca2+ and calcineurin

    Directory of Open Access Journals (Sweden)

    García Dana M

    2007-12-01

    Full Text Available Abstract Background Inside bluegill (Lepomis macrochirus retinal pigment epithelial cells, pigment granules move in response to extracellular signals. During the process of aggregation, pigment motility is directed toward the cell nucleus; in dispersion, pigment is directed away from the nucleus and into long apical processes. A number of different chemicals have been found to initiate dispersion, and carbachol (an acetylcholine analog is one example. Previous research indicates that the carbachol-receptor interaction activates a Gq-mediated pathway which is commonly linked to Ca2+ mobilization. The purpose of the present study was to test for involvement of calcium and to probe calcium-dependent mediators to reveal their role in carbachol-mediated dispersion. Results Carbachol-induced pigment granule dispersion was blocked by the calcium chelator BAPTA. In contrast, the calcium channel antagonist verapamil, and incubation in Ca2+-free medium failed to block carbachol-induced dispersion. The calcineurin inhibitor cypermethrin blocked carbachol-induced dispersion; whereas, two protein kinase C inhibitors (staurosporine and bisindolylmaleimide II failed to block carbachol-induced dispersion, and the protein kinase C activator phorbol 12-myristate 13-acetate failed to elicit dispersion. Conclusion A rise in intracellular calcium is necessary for carbachol-induced dispersion; however, the Ca2+ requirement is not dependent on extracellular sources, implying that intracellular stores are sufficient to enable pigment granule dispersion to occur. Calcineurin is a likely Ca2+-dependent mediator involved in the signal cascade. Although the pathway leads to the generation of diacylglycerol and calcium (both required for the activation of certain PKC isoforms, our evidence does not support a significant role for PKC.

  4. Secreted Wnt antagonists in leukemia: A road yet to be paved.

    Science.gov (United States)

    Pehlivan, Melek; Çalışkan, Ceyda; Yüce, Zeynep; Sercan, Hakki Ogun

    2018-03-28

    Wnt signaling has been a topic of research for many years for its diverse and fundamental functions in physiological (such as embryogenesis, organogenesis, proliferation, tissue repair and cellular differentiation) and pathological (carcinogenesis, congenital/genetic diseases, and tissue degeneration) processes. Wnt signaling pathway aberrations are associated with both solid tumors and hematological malignancies. Unregulated Wnt signaling observed in malignancies may be due to a wide spectrum of abnormalities, from mutations in the genes of key players to epigenetic modifications of Wnt antagonists. Of these, Wnt antagonists are gaining significant attention for their potential of being targets for treatment and inhibition of Wnt signaling. In this review, we discuss and summarize the significance of Wnt signaling antagonists in the pathogenesis and treatment of hematological malignancies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Mechanisms of Nifedipine-Downregulated CD40L/sCD40L Signaling in Collagen Stimulated Human Platelets.

    Directory of Open Access Journals (Sweden)

    Tso-Hsiao Chen

    Full Text Available The platelet-derived soluble CD40L (sCD40L release plays a critical role in the development of atherosclerosis. Nifedipine, a dihydropyridine-based L-type calcium channel blocker (CCB, has been reported to have an anti-atherosclerotic effect beyond its blood pressure-lowering effect, but the molecular mechanisms remain unclear. The present study was designed to investigate whether nifedipine affects sCD40L release from collagen-stimulated human platelets and to determine the potential role of peroxisome proliferator-activated receptor-β/-γ (PPAR-β/-γ. We found that treatment with nifedipine significantly inhibited the platelet surface CD40L expression and sCD40L release in response to collagen, while the inhibition was markedly reversed by blocking PPAR-β/-γ activity with specific antagonist such as GSK0660 and GW9662. Meanwhile, nifedipine also enhanced nitric oxide (NO and cyclic GMP formation in a PPAR-β/-γ-dependent manner. When the NO/cyclic GMP pathway was suppressed, nifedipine-mediated inhibition of sCD40L release was abolished significantly. Collagen-induced phosphorylation of p38MAPK, ERK1/2 and HSP27, matrix metalloproteinase-2 (MMP-2 expression/activity and reactive oxygen species (ROS formation were significantly inhibited by nifedipine, whereas these alterations were all attenuated by co-treatment with PPAR-β/-γ antagonists. Collectively, these results demonstrate that PPAR-β/-γ-dependent pathways contribute to nifedipine-mediated downregulation of CD40L/sCD40L signaling in activated platelets through regulation of NO/ p38MAPK/ERK1/2/HSP27/MMP-2 signalings and provide a novel mechanism regarding the anti-atherosclerotic effect of nifedipine.

  6. Acute inhibition of selected membrane-proximal mouse T cell receptor signaling by mitochondrial antagonists.

    Directory of Open Access Journals (Sweden)

    Kwangmi Kim

    2009-11-01

    Full Text Available T cells absorb nanometric membrane vesicles, prepared from plasma membrane of antigen presenting cells, via dual receptor/ligand interactions of T cell receptor (TCR with cognate peptide/major histocompatibility complex (MHC plus lymphocyte function-associated antigen 1 (LFA-1 with intercellular adhesion molecule 1. TCR-mediated signaling for LFA-1 activation is also required for the vesicle absorption. Exploiting those findings, we had established a high throughput screening (HTS platform and screened a library for isolation of small molecules inhibiting the vesicle absorption. Follow-up studies confirmed that treatments (1 hour with various mitochondrial antagonists, including a class of anti-diabetic drugs (i.e., Metformin and Phenformin, resulted in ubiquitous inhibition of the vesicle absorption without compromising viability of T cells. Further studies revealed that the mitochondrial drug treatments caused impairment of specific membrane-proximal TCR signaling event(s. Thus, activation of Akt and PLC-gamma1 and entry of extracellular Ca(2+ following TCR stimulation were attenuated while polymerization of monomeric actins upon TCR triggering progressed normally after the treatments. Dynamic F-actin rearrangement concurring with the vesicle absorption was also found to be impaired by the drug treatments, implying that the inhibition by the drug treatments of downstream signaling events (and the vesicle absorption could result from lack of directional relocation of signaling and cell surface molecules. We also assessed the potential application of mitochondrial antagonists as immune modulators by probing effects of the long-term drug treatments (24 hours on viability of resting primary T cells and cell cycle progression of antigen-stimulated T cells. This study unveils a novel regulatory mechanism for T cell immunity in response to environmental factors having effects on mitochondrial function.

  7. FAST INVERSION OF SOLAR Ca II SPECTRA

    International Nuclear Information System (INIS)

    Beck, C.; Choudhary, D. P.; Rezaei, R.; Louis, R. E.

    2015-01-01

    We present a fast (<<1 s per profile) inversion code for solar Ca II lines. The code uses an archive of spectra that are synthesized prior to the inversion under the assumption of local thermodynamic equilibrium (LTE). We show that it can be successfully applied to spectrograph data or more sparsely sampled spectra from two-dimensional spectrometers. From a comparison to a non-LTE inversion of the same set of spectra, we derive a first-order non-LTE correction to the temperature stratifications derived in the LTE approach. The correction factor is close to unity up to log τ ∼ –3 and increases to values of 2.5 and 4 at log τ = –6 in the quiet Sun and the umbra, respectively

  8. Photoemission study of Ca-intercalated graphite superconductor CaC6

    International Nuclear Information System (INIS)

    Okazaki, Hiroyuki; Yoshida, Rikiya; Iwai, Keisuke; Noami, Kengo; Muro, Takayuki; Nakamura, Tetsuya; Wakita, Takanori; Muraoka, Yuji; Hirai, Masaaki; Tomioka, Fumiaki; Takano, Yoshihiko; Takenaka, Asami; Toyoda, Masahiro; Oguchi, Tamio; Yokoya, Takayoshi

    2010-01-01

    In this work, we have performed resonant photoemission studies of Ca-intercalated graphite superconductor CaC 6 . Using photon energy of the Ca 2p-3d threshold, the photoemission intensity of the peak at Fermi energy (E F ) is resonantly enhanced. This result provides spectroscopic evidence for the existence of Ca 3d states at E F , and strongly supports that Ca 3d state plays a crucial role for the superconductivity of this material with relatively high T c .

  9. The L‐type Ca2+ channel facilitates abnormal metabolic activity in the cTnI‐G203S mouse model of hypertrophic cardiomyopathy

    Science.gov (United States)

    Viola, Helena; Johnstone, Victoria; Cserne Szappanos, Henrietta; Richman, Tara; Tsoutsman, Tatiana; Filipovska, Aleksandra; Semsarian, Christopher

    2016-01-01

    Key points Genetic mutations in cardiac troponin I (cTnI) are associated with development of hypertrophic cardiomyopathy characterized by myocyte remodelling, disorganization of cytoskeletal proteins and altered energy metabolism.The L‐type Ca2+ channel is the main route for calcium influx and is crucial to cardiac excitation and contraction. The channel also regulates mitochondrial function in the heart by a functional communication between the channel and mitochondria via the cytoskeletal network.We find that L‐type Ca2+ channel kinetics are altered in cTnI‐G203S cardiac myocytes and that activation of the channel causes a significantly greater increase in mitochondrial membrane potential and metabolic activity in cTnI‐G203S cardiac myocytes.These responses occur as a result of impaired communication between the L‐type Ca2+ channel and cytoskeletal protein F‐actin, involving decreased movement of actin–myosin and block of the mitochondrial voltage‐dependent anion channel, resulting in a ‘hypermetabolic’ mitochondrial state.We propose that L‐type Ca2+ channel antagonists, such as diltiazem, might be effective in reducing the cardiomyopathy by normalizing mitochondrial metabolic activity. Abstract Genetic mutations in cardiac troponin I (cTnI) account for 5% of families with hypertrophic cardiomyopathy. Hypertrophic cardiomyopathy is associated with disorganization of cytoskeletal proteins and altered energy metabolism. The L‐type Ca2+ channel (ICa‐L) plays an important role in regulating mitochondrial function. This involves a functional communication between the channel and mitochondria via the cytoskeletal network. We investigate the role of ICa‐L in regulating mitochondrial function in 25‐ to 30‐week‐old cardiomyopathic mice expressing the human disease‐causing mutation Gly203Ser in cTnI (cTnI‐G203S). The inactivation rate of ICa‐L is significantly faster in cTnI‐G203S myocytes [cTnI‐G203S: τ1 = 40.68 ± 3.22, n

  10. Solubility of calcium in CaO-CaCl2

    International Nuclear Information System (INIS)

    Perry, G.S.; Shaw, S.J.

    1991-06-01

    The Direct Oxide Reduction (DOR) process is well established as a process to produce plutonium metal from plutonium dioxide by reaction with calcium. Calcium chloride is added to dissolve the calcium oxide produced, allowing the metal to coalesce into a button. Since calcium metal melts at 840 0 C and DOR can take place successfully below this temperature, it is likely calcium dissolved in calcium chloride reacts with the plutonium dioxide. The solubility of calcium in calcium chloride is reasonably well established but the effect of the CaO formed during the DOR process on the solubility of calcium has not been previously determined. For this reason the solubility of calcium in CaCl 2 -CaO melts at 800 o C has been studied. The solubility decreases from 2.7 mol % in CaCl 2 to 0.4 mol % in 9 mol % CaO-CaCl 2 . (author)

  11. Amyloid-beta induced CA1 pyramidal cell loss in young adult rats is alleviated by systemic treatment with FGL, a neural cell adhesion molecule-derived mimetic peptide.

    Directory of Open Access Journals (Sweden)

    Nicola J Corbett

    Full Text Available Increased levels of neurotoxic amyloid-beta in the brain are a prominent feature of Alzheimer's disease. FG-Loop (FGL, a neural cell adhesion molecule-derived peptide that corresponds to its second fibronectin type III module, has been shown to provide neuroprotection against a range of cellular insults. In the present study impairments in social recognition memory were seen 24 days after a 5 mg/15 µl amyloid-beta(25-35 injection into the right lateral ventricle of the young adult rat brain. This impairment was prevented if the animal was given a systemic treatment of FGL. Unbiased stereology was used to investigate the ability of FGL to alleviate the deleterious effects on CA1 pyramidal cells of the amyloid-beta(25-35 injection. NeuN, a neuronal marker (for nuclear staining was used to identify pyramidal cells, and immunocytochemistry was also used to identify inactive glycogen synthase kinase 3beta (GSK3β and to determine the effects of amyloid-beta(25-35 and FGL on the activation state of GSK3β, since active GSK3β has been shown to cause a range of AD pathologies. The cognitive deficits were not due to hippocampal atrophy as volume estimations of the entire hippocampus and its regions showed no significant loss, but amyloid-beta caused a 40% loss of pyramidal cells in the dorsal CA1 which was alleviated partially by FGL. However, FGL treatment without amyloid-beta was also found to cause a 40% decrease in CA1 pyramidal cells. The action of FGL may be due to inactivation of GSK3β, as an increased proportion of CA1 pyramidal neurons contained inactive GSK3β after FGL treatment. These data suggest that FGL, although potentially disruptive in non-pathological conditions, can be neuroprotective in disease-like conditions.

  12. Toward Biophysical Probes for the 5-HT3 Receptor: Structure−Activity Relationship Study of Granisetron Derivatives

    Science.gov (United States)

    2010-01-01

    This report describes the synthesis and biological characterization of novel granisetron derivatives that are antagonists of the human serotonin (5-HT3A) receptor. Some of these substituted granisetron derivatives showed low nanomolar binding affinity and allowed the identification of positions on the granisetron core that might be used as attachment points for biophysical tags. A BODIPY fluorophore was appended to one such position and specifically bound to 5-HT3A receptors in mammalian cells. PMID:20146481

  13. Toward biophysical probes for the 5-HT3 receptor: structure-activity relationship study of granisetron derivatives.

    Science.gov (United States)

    Vernekar, Sanjeev Kumar V; Hallaq, Hasan Y; Clarkson, Guy; Thompson, Andrew J; Silvestri, Linda; Lummis, Sarah C R; Lochner, Martin

    2010-03-11

    This report describes the synthesis and biological characterization of novel granisetron derivatives that are antagonists of the human serotonin (5-HT(3)A) receptor. Some of these substituted granisetron derivatives showed low nanomolar binding affinity and allowed the identification of positions on the granisetron core that might be used as attachment points for biophysical tags. A BODIPY fluorophore was appended to one such position and specifically bound to 5-HT(3)A receptors in mammalian cells.

  14. One-pot synthesis of N-aryl 1,4-dihydropyridine derivatives and their ...

    Indian Academy of Sciences (India)

    12, December 2015, pp. 2201–2209. c Indian Academy of Sciences. ... e-mail: padimini_tamilenthi@yahoo.co.in. MS received 2 March 2015; revised 19 September 2015; accepted 20 September 2015. Abstract. ..... X, Schmidt J, Agrawal K C and Kishore V 1998 Bioorg. Med. Chem. 6 563. 4. Hantzsch A 1881 Chem. Ber.

  15. Cyclic degradation of antagonistic shape memory actuated structures

    International Nuclear Information System (INIS)

    Sofla, A Y N; Elzey, D M; Wadley, H N G

    2008-01-01

    Antagonistic shape memory actuated structures exploit opposing pairs of one-way shape memory alloy (SMA) linear actuators to create devices capable of a fully reversible response. Unlike many conventional reversible SMA devices they do not require bias force components (springs) to return them to their pre-actuated configuration. However, the repeated use of SMA antagonistic devices results in the accumulation of plastic strain in the actuators which can diminish their actuation stroke. We have investigated this phenomenon and the effect of shape memory alloy pre-strain upon it for near equi-atomic NiTi actuators. We find that the degradation eventually stabilizes during cycling. A thermomechanical treatment has been found to significantly reduce degradation in cyclic response of the actuators

  16. Magnetic structure of the swedenborgite CaBa (Co3Fe ) O7 derived by unpolarized neutron diffraction and spherical neutron polarimetry

    Science.gov (United States)

    Qureshi, N.; Díaz, M. T. Fernández; Chapon, L. C.; Senyshyn, A.; Schweika, W.; Valldor, M.

    2018-02-01

    We present a study that combines polarized and unpolarized neutrons to derive the magnetic structure of the swedenborgite compound CaBa (Co3Fe ) O7. Integrated intensities from a standard neutron diffraction experiment and polarization matrices from spherical neutron polarimetry have been simultaneously analyzed revealing a complex order, which differs from the usual spin configurations on a kagome lattice. We find that the magnetic structure is well described by a combination of two one-dimensional representations corresponding to the magnetic superspace symmetry P 21' , and it consists of spins rotating around an axis close to the [110] direction. Due to the propagation vector q =(1/3 00 ) , this modulation has cycloidal and helicoidal character rendering this system a potential multiferroic. The resulting spin configuration can be mapped onto the classical √{3 }×√{3 } structure of a kagome lattice, and it indicates an important interplay between the kagome and the triangular layers of the crystal structure.

  17. L-type Ca²⁺ channel blockade with antihypertensive medication disrupts VTA synaptic plasticity and drug-associated contextual memory.

    Science.gov (United States)

    Degoulet, M; Stelly, C E; Ahn, K-C; Morikawa, H

    2016-03-01

    Drug addiction is driven, in part, by powerful and enduring memories of sensory cues associated with drug intake. As such, relapse to drug use during abstinence is frequently triggered by an encounter with drug-associated cues, including the drug itself. L-type Ca(2+) channels (LTCCs) are known to regulate different forms of synaptic plasticity, the major neural substrate for learning and memory, in various brain areas. Long-term potentiation (LTP) of NMDA receptor (NMDAR)-mediated glutamatergic transmission in the ventral tegmental area (VTA) may contribute to the increased motivational valence of drug-associated cues triggering relapse. In this study, using rat brain slices, we found that isradipine, a general LTCC antagonist used as antihypertensive medication, not only blocks the induction of NMDAR LTP but also promotes the reversal of previously induced LTP in the VTA. In behaving rats, isradipine injected into the VTA suppressed the acquisition of cocaine-paired contextual cue memory assessed using a conditioned place preference (CPP) paradigm. Furthermore, administration of isradipine or a CaV1.3 subtype-selective LTCC antagonist (systemic or intra-VTA) before a single extinction or reinstatement session, while having no immediate effect at the time of administration, abolished previously acquired cocaine and alcohol (ethanol) CPP on subsequent days. Notably, CPP thus extinguished cannot be reinstated by drug re-exposure, even after 2 weeks of withdrawal. These results suggest that LTCC blockade during exposure to drug-associated cues may cause unlearning of the increased valence of those cues, presumably via reversal of glutamatergic synaptic plasticity in the VTA.

  18. Isolation, identification, and biocontrol of antagonistic bacterium against Botrytis cinerea after tomato harvest

    Directory of Open Access Journals (Sweden)

    Jun-Feng Shi

    Full Text Available ABSTRACT Tomato is one of the most important vegetables in the world. Decay after harvest is a major issue in the development of tomato industry. Currently, the most effective method for controlling decay after harvest is storage of tomato at low temperature combined with usage of chemical bactericide; however, long-term usage of chemical bactericide not only causes pathogen resistance but also is harmful for human health and environment. Biocontrol method for the management of disease after tomato harvest has great practical significance. In this study, antagonistic bacterium B-6-1 strain was isolated from the surface of tomato and identified as Enterobacter cowanii based on morphological characteristics and physiological and biochemical features combined with sequence analysis of 16SrDNA and ropB gene and construction of dendrogram. Effects of different concentrations of antagonistic bacterium E. cowanii suspension on antifungal activity after tomato harvest were analyzed by mycelium growth rate method. Results revealed that antifungal activity was also enhanced with increasing concentrations of antagonistic bacterium; inhibitory rates of 1 × 105 colony-forming units (cfu/mL antagonistic bacterial solution on Fusarium verticillioides, Alternaria tenuissima, and Botrytis cinerea were 46.31%, 67.48%, and 75.67%, respectively. By using in vivo inoculation method, it was further confirmed that antagonistic bacterium could effectively inhibit the occurrence of B. cinerae after tomato harvest, biocontrol effect of 1 × 109 cfu/mL zymotic fluid reached up to 95.24%, and antagonistic bacterium E. cowanii has biocontrol potential against B. cinerea after harvest of fruits and vegetables.

  19. Radiolabelled GLP-1 receptor antagonist binds to GLP-1 receptor-expressing human tissues

    International Nuclear Information System (INIS)

    Waser, Beatrice; Reubi, Jean Claude

    2014-01-01

    Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. For the somatostatin receptor targeting of tumours, however, it was recently reported that antagonist tracers were superior to agonist tracers. The present study therefore evaluated various forms of the 125 iodinated-Bolton-Hunter (BH)-exendin(9-39) antagonist tracer for the in vitro visualization of GLP-1 receptor-expressing tissues in rats and humans and compared it with the agonist tracer 125 I-GLP-1(7-36)amide. Receptor autoradiography studies with 125 I-GLP-1(7-36)amide agonist or 125 I-BH-exendin(9-39) antagonist radioligands were performed in human and rat tissues. The antagonist 125 I-BH-exendin(9-39) labelled at lysine 19 identifies all human and rat GLP-1 target tissues and GLP-1 receptor-expressing tumours. Binding is of high affinity and is comparable in all tested tissues in its binding properties with the agonist tracer 125 I-GLP-1(7-36)amide. For comparison, 125 I-BH-exendin(9-39) with the BH labelled at lysine 4 did identify the GLP-1 receptor in rat tissues but not in human tissues. The GLP-1 receptor antagonist exendin(9-39) labelled with 125 I-BH at lysine 19 is an excellent GLP-1 radioligand that identifies human and rat GLP-1 receptors in normal and tumoural tissues. It may therefore be the molecular basis to develop suitable GLP-1 receptor antagonist radioligands for in vivo imaging of GLP-1 receptor-expressing tissues in patients. (orig.)

  20. Ergosteryl 2-naphthoate, An Ergosterol Derivative, Exhibits Antidepressant Effects Mediated by the Modification of GABAergic and Glutamatergic Systems

    Directory of Open Access Journals (Sweden)

    Mingzhu Lin

    2017-03-01

    Full Text Available Phytosterols are a kind of natural component including sitosterol, campesterol, avenasterol, ergosterol (Er and others. Their main natural sources are vegetable oils and their processed products, followed by grains, by-products of cereals and nuts, and small amounts of fruits, vegetables and mushrooms. In this study, three new Er monoester derivatives were obtained from the reflux reaction with Er: organic acids (furoic acid, salicylic acid and 2-naphthoic acid, 1-Ethylethyl-3-(3-dimethyllaminopropyl carbodiimide hydrochloride (EDCI and 4-dimethylaminopyridine (DMAP in dichloromethane. Their chemical structures were defined by IR and NMR. The present study was also undertaken to investigate the antidepressant-like effects of Er and its derivatives in male adult mice models of depression, and their probable involvement of GABAergic and glutamatergic systems by the forced swim test (FST. The results indicated that Er and its derivatives display antidepressant effects. Moreover, one derivative of Er, ergosteryl 2-naphthoate (ErN, exhibited stronger antidepressant activity in vivo compared to Er. Acute administration of ErN (5 mg/kg, i.p. and a combination of ErN (0.5 mg/kg, i.p., reboxetine (2.5 mg/kg, i.p., and tianeptine (15 mg/kg, i.p. reduced the immobility time in the FST. Pretreatment with bicuculline (a competitive γ-aminobutyric acid (GABA antagonist, 4 mg/kg, i.p. and N-methyl-d-aspartic acid (NMDA, an agonist at the glutamate site, 75 mg/kg, i.p. effectively reversed the antidepressant-like effect of ErN (5 mg/kg, i.p.. However, prazosin (a α1-adrenoceptor antagonist, 1 mg/kg, i.p. and haloperidol (a non-selective D2 receptor antagonist, 0.2 mg/kg, i.p. did not eliminate the reduced immobility time. Altogether, these results indicated that ErN produced antidepressant-like activity, which might be mediated by GABAergic and glutamatergic systems.