Radiochromic leuco dye micelle hydrogels: I. Initial investigation
International Nuclear Information System (INIS)
Jordan, Kevin; Avvakumov, Nikita
2009-01-01
This investigation reports the use of surfactants and colorless leuco triarylmethane dyes to form a new class of radiochromic micelle hydrogels for three-dimensional (3D) water-equivalent dosimetry. Gelatin gel samples with several surfactants and leuco dyes were prepared and evaluated for optical transparency, dose sensitivity and diffusion rates. The addition of Triton X-100, a non-ionic surfactant, at levels exceeding the critical micelle concentration provides a transparent hydrogel in which the water insoluble leuco Malachite Green (LMG) can dissolve. During irradiation, the LMG dye precursor converts to Malachite Green (MG + ). The most sensitive reported LMG gel formulation contains 0.3 mM LMG leuco dye, 16 mM trichloroacetic acid, 7 mM Triton X-100 and 4% w/w gelatin. A diffusion coefficient of 0.14 mm 2 h -1 was determined for MG + in this gel by fitting the time-dependent degradation of the transmission profile after irradiating half of the sample. The diffusion rate was three times lower than the standard radiochromic ferrous xylenol-orange (FX) gel. The primary feature of this 3D hydrogel is that it introduces transparent, radiochromic, micelle hydrogels. The radiochromic response to dose is instantaneous and images are stable for several hours. A dosimetric characterization revealed that the dose response is reproducible to within 10% over five separate batches and independent of both energy and dose rate. Uniform pre-irradiation of samples to 5 Gy provided a subsequent near linear response to greater than 110 Gy. LMG gels when read with a fast optical CT scanner can provide full 3D dose distributions in less than 30 min post-irradiation. LMG micelle gels scanned with a 633 nm light source are a promising system for quantitative water- or tissue-equivalent 3D dose verification in the 5-100 Gy dose range. These gels are useful for the scanning of larger volume dosimeters (i.e. >15 cm diameter) since they are easily prepared with inexpensive ingredients
Diffusion rates for elevated releases
International Nuclear Information System (INIS)
Ramsdell, J.V.
1983-11-01
A search of the literature related to diffusion from elevated sources has determined that an adequate data base exists for use in developing parameterizations for estimating diffusion rates for material released from free standing stacks at nuclear power plants. A review of published data analyses indicates that a new parameterization of horizontal diffusion rates specifically for elevated releases is not likely to significantly change the magnitudes of horizontal diffusion coefficients on the average. However, the uncertainties associated with horizontal diffusion coefficient estimates under any given set of atmospheric conditions could be reduced by a new parameterization. Similarly, a new parameterization of vertical diffusion rates would be unlikely to significantly alter the magnitudes of diffusion coefficients for unstable atmospheric conditons. However, for neutral and stable atmospheric conditions, a new parameterization of vertical diffusion rates might increase vertical diffusion coefficients significantly. The increase would move ground-level time-integrated concentration maxima closer to the plant and would increase the maxima. 55 references, 2 figures, 4 tables
International Nuclear Information System (INIS)
Liu Aiguo; Chen Wenxiu; Jia Haishun
1995-01-01
A leuco dye film dosimeter for dose measurement on Co-60 gamma radiation processing was developed. The matrix material polyvinyl butyral (PVB) with leuco malachite green (LMG) and additive halogenated compounds (RX) were manufactured as the PVG dosifilm. Its response (Δ A/L vs dose) at 627nm showed a linearity (correlation coefficient r>0.999) in the dose range from 0.5 to 80 kGy. The calibration coefficient of temperature during irradiation was + 0.053/degC. The response increased slightly with the increasing of relative humidities (0-96.4%); and the calibration coefficient was +0.006/Δr.h(%). From 54.9% to 96.4% the deviation was less than 4%. The PVG dosifilm was stable before and after irradiation when it was stored in the dark at a given relative humidity. The deviation of response on PVG dosifilm kept in a brown desiccator was less than 4% after 40 days. It was suitable to serve as a routine dosimeter. (author)
Energy Technology Data Exchange (ETDEWEB)
Aiguo, Liu; Wenxiu, Chen; Haishun, Jia [Beijing Normal University, Beijing (China). Dept. of Chemistry
1996-05-01
A leuco dye film dosimeter for dose measurement on {sup 60}Co gamma radiation processing was developed. The matrix material polyvinyl butyryl (PVB) with leuco malachite green (LMG) and additive halogenated compounds (RX) were manufactured as the PVG dosifilm. Its response ({Delta}A/L vs dose) at 627 nm showed a linearity (correlation coefficient r>0.999) in the dose range from 0.5 to 80 kGy. The calibration coefficient of temperature during irradiation was +0.053/degree C. The response increased slightly with the increasing of relative humidities (0{approx}96.4%); and the the calibration coefficient was +0.006/{Delta}r. h(%). From 54.9% to 96.4% the deviation was less than 4%. The PVG dosifilm was stable before and after irradiation when it was stored in the dark at a given relative humidity. The deviation of response on PVG dosifilm kept in a brown desiccator was less than 4% after 40 days. It was suitable to serve as a routine dosimeter.
Energy Technology Data Exchange (ETDEWEB)
Aiguo, Liu; Wenxiu, Chen; Haishun, Jia [Beijing Normal Univ., BJ (China). Dept. of Chemistry
1995-03-01
A leuco dye film dosimeter for dose measurement on Co-60 gamma radiation processing was developed. The matrix material polyvinyl butyral (PVB) with leuco malachite green (LMG) and additive halogenated compounds (RX) were manufactured as the PVG dosifilm. Its response ({Delta} A/L vs dose) at 627nm showed a linearity (correlation coefficient r>0.999) in the dose range from 0.5 to 80 kGy. The calibration coefficient of temperature during irradiation was + 0.053/degC. The response increased slightly with the increasing of relative humidities (0-96.4%); and the calibration coefficient was +0.006/{Delta}r.h(%). From 54.9% to 96.4% the deviation was less than 4%. The PVG dosifilm was stable before and after irradiation when it was stored in the dark at a given relative humidity. The deviation of response on PVG dosifilm kept in a brown desiccator was less than 4% after 40 days. It was suitable to serve as a routine dosimeter. (author).
Determination of malachite green and its leuco form in water
Allen, J.L.; Meinertz, J.R.; Gofus, J.E.
1992-01-01
Liquid chromatographic (lc) analysis can detect malachite green residues in water at less than 10 mu-g/l. Water samples were concentrated on disposable diol columns, eluted with 0.05m P-toluene-sulfonic acid in methanol, and determined by reversed-phase lc. When combined with a lead oxide postcolumn reactor, the lc method can simultaneously determine both leuco and chromatic forms of malachite green. Recoveries averaged 95.4% For the chromatic form and 57.3% For the leuco form of malachite green oxalate and leuco malachite green in spiked pond water samples. Recoveries of the carbinol form of malachite green (an equilibrium product of the dye in water) from spiked tap water samples averaged 98.6%. Recoveries of leuco malachite green were low and ph-dependent.
Flow, diffusion, and rate processes
International Nuclear Information System (INIS)
Sieniutycz, S.; Salamon, P.
1992-01-01
This volume contains recent results obtained for the nonequilibrium thermodynamics of transport and rate processes are reviewed. Kinetic equations, conservation laws, and transport coefficients are obtained for multicomponent mixtures. Thermodynamic principles are used in the design of experiments predicting heat and mass transport coefficients. Highly nonstationary conditions are analyzed in the context of transient heat transfer, nonlocal diffusion in stress fields and thermohydrodynamic oscillatory instabilities. Unification of the dynamics of chemical systems with other sorts of processes (e.g. mechanical) is given. Thermodynamics of reacting surfaces is developed. Admissible reaction paths are studied and a consistency of chemical kinetics with thermodynamics is shown. Oscillatory reactions are analyzed in a unifying approach showing explosive, conservation or damped behavior. A comprehensive review of transport processes in electrolytes and membranes is given. Applications of thermodynamics to thermoelectric systems and ionized gas (plasma) systems are reviewed
AGR-5/6/7 LEUCO Kernel Fabrication Readiness Review
Energy Technology Data Exchange (ETDEWEB)
Marshall, Douglas W. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Design and Development; Bailey, Kirk W. [Idaho National Lab. (INL), Idaho Falls, ID (United States). ART Quality Assurance Engineer
2015-02-01
In preparation for forming low-enriched uranium carbide/oxide (LEUCO) fuel kernels for the Advanced Gas Reactor (AGR) fuel development and qualification program, Idaho National Laboratory conducted an operational readiness review of the Babcock & Wilcox Nuclear Operations Group – Lynchburg (B&W NOG-L) procedures, processes, and equipment from January 14 – January 16, 2015. The readiness review focused on requirements taken from the American Society Mechanical Engineers (ASME) Nuclear Quality Assurance Standard (NQA-1-2008, 1a-2009), a recent occurrence at the B&W NOG-L facility related to preparation of acid-deficient uranyl nitrate solution (ADUN), and a relook at concerns noted in a previous review. Topic areas open for the review were communicated to B&W NOG-L in advance of the on-site visit to facilitate the collection of objective evidences attesting to the state of readiness.
Residues of malachite green (MG), gentian violet (GV), and their leuco metabolites in catfish muscle were individually determined by HPLC using visible and fluorescence detectors. This detection scheme obviated a PbO2 column that converts leuco forms to chromatic forms for visible detection, thus el...
Diffusion equations and the time evolution of foreign exchange rates
Energy Technology Data Exchange (ETDEWEB)
Figueiredo, Annibal; Castro, Marcio T. de [Institute of Physics, Universidade de Brasília, Brasília DF 70910-900 (Brazil); Fonseca, Regina C.B. da [Department of Mathematics, Instituto Federal de Goiás, Goiânia GO 74055-110 (Brazil); Gleria, Iram, E-mail: iram@fis.ufal.br [Institute of Physics, Federal University of Alagoas, Brazil, Maceió AL 57072-900 (Brazil)
2013-10-01
We investigate which type of diffusion equation is most appropriate to describe the time evolution of foreign exchange rates. We modify the geometric diffusion model assuming a non-exponential time evolution and the stochastic term is the sum of a Wiener noise and a jump process. We find the resulting diffusion equation to obey the Kramers–Moyal equation. Analytical solutions are obtained using the characteristic function formalism and compared with empirical data. The analysis focus on the first four central moments considering the returns of foreign exchange rate. It is shown that the proposed model offers a good improvement over the classical geometric diffusion model.
Diffusion equations and the time evolution of foreign exchange rates
Figueiredo, Annibal; de Castro, Marcio T.; da Fonseca, Regina C. B.; Gleria, Iram
2013-10-01
We investigate which type of diffusion equation is most appropriate to describe the time evolution of foreign exchange rates. We modify the geometric diffusion model assuming a non-exponential time evolution and the stochastic term is the sum of a Wiener noise and a jump process. We find the resulting diffusion equation to obey the Kramers-Moyal equation. Analytical solutions are obtained using the characteristic function formalism and compared with empirical data. The analysis focus on the first four central moments considering the returns of foreign exchange rate. It is shown that the proposed model offers a good improvement over the classical geometric diffusion model.
Diffusion equations and the time evolution of foreign exchange rates
International Nuclear Information System (INIS)
Figueiredo, Annibal; Castro, Marcio T. de; Fonseca, Regina C.B. da; Gleria, Iram
2013-01-01
We investigate which type of diffusion equation is most appropriate to describe the time evolution of foreign exchange rates. We modify the geometric diffusion model assuming a non-exponential time evolution and the stochastic term is the sum of a Wiener noise and a jump process. We find the resulting diffusion equation to obey the Kramers–Moyal equation. Analytical solutions are obtained using the characteristic function formalism and compared with empirical data. The analysis focus on the first four central moments considering the returns of foreign exchange rate. It is shown that the proposed model offers a good improvement over the classical geometric diffusion model.
International Nuclear Information System (INIS)
Kubaschewski, O.
1983-01-01
The diffusion rate values of titanium, its compounds and alloys are summarized and tabulated. The individual chemical diffusion coefficients and self-diffusion coefficients of certain isotopes are given. Experimental methods are listed which were used for the determination of diffusion coefficients. Some values have been taken over from other studies. Also given are graphs showing the temperature dependences of diffusion and changes in the diffusion coefficient with concentration changes
The Chern-Simons diffusion rate in improved holographic QCD
Gürsoy, U.; Iatrakis, I.; Kiritsis, E.; Nitti, F.; O’Bannon, A.
2013-01-01
In (3 + 1)-dimensional SU(N c) Yang-Mills (YM) theory, the Chern-Simons diffusion rate, ΓCS, is determined by the zero-momentum, zero-frequency limit of the retarded two-point function of the CP-odd operator tr [F ∧ F ], with F the YM field strength. The Chern-Simons diffusion rate is a crucial
Horst, G.J. ter; Karst, H.; Luiten, P.G.M.
1984-01-01
The autoradiographic pattern of anterograde labeling as a result from injections with tritiated amino acids is compared to the labeling of efferents with Phaseolus vulgaris leuco-agglutinin after lectin injections in the same nucleus visualized by immunohistochemical methods. This comparison is made
International Nuclear Information System (INIS)
Karimov, R.Sh.; Berdiev, N.B.
2004-01-01
With the aim or determining of the very beginning stages of phagositosis of segmented neutrophils in the blood of patients with geroin dependence it is necessary to perform investigations of phagosite reaction during short time inoculation of white blood cells (leuco cites) with pactertal cells (5 minutes and less)
Game, Frances; Jeffcoate, William; Tarnow, Lise; Day, Florence; Fitzsimmons, Deborah; Jacobsen, Judith
2017-10-10
Diabetic foot ulcers are a common and severe complication of diabetes mellitus. Standard treatment includes debridement, offloading, management of infection and revascularisation where appropriate, although healing times may be long. The LeucoPatch® device is used to generate an autologous platelet-rich fibrin and leucocyte wound dressing produced from the patient's own venous blood by centrifugation, but without the addition of any reagents. The final product comprises a thin, circular patch composed predominantly of fibrin together with living platelets and leucocytes. Promising results have been obtained in non-controlled studies this system, but this now needs to be tested in a randomised controlled trial (RCT). If confirmed, the LeucoPatch® may become an important new tool in the armamentarium in the management of diabetic foot ulcers which are hard-to-heal. People with diabetes and hard-to-heal ulcers of the foot will receive either pre-specified good standard care or good standard care supplemented by the application of the LeucoPatch® device. The primary outcome will be the percentage of ulcers healed within 20 weeks. Healing will be defined as complete epithelialisation without discharge that is maintained for 4 weeks and is confirmed by an observer blind to randomisation group. Ulcers of the foot are a major source of morbidity to patients with diabetes and costs to health care economies. The study population is designed to be as inclusive as possible with the aim of maximising the external validity of any findings. The primary outcome measure is healing within 20 weeks of randomisation and the trial also includes a number of secondary outcome measures. Among these are rate of change in ulcer area as a predictor of the likelihood of eventual healing, minor and major amputation of the target limb, the incidence of infection and quality of life. International Standard Randomised Controlled Trial, ISRCTN27665670 . Registered on 5 July 2013.
Liquid Film Diffusion on Reaction Rate in Submerged Biofilters
DEFF Research Database (Denmark)
Christiansen, Pia; Hollesen, Line; Harremoës, Poul
1995-01-01
Experiments were carried out in order to investigate the influence of liquid film diffusion on reaction rate in a submerged biofilter with denitrification and in order to compare with a theoretical study of the mass transfer coefficient. The experiments were carried out with varied flow, identified...... by the empty bed velocity of inflow and recirculation, respectively 1.3, 2.8, 5.6 and 10.9 m/h. The filter material consisted of 3 mm biostyren spheres. The results indicate that the influence of liquid film diffusion on reaction rate can be ignored....
Allen, J.L.; Meinertz, J.R.
1991-01-01
The chromatic and leuco forms of malachite green and crystal violet were readily separated and detected by a sensitive and selective high-performance liquid chromatographic procedure. The chromatic and leuco forms of the dyes were separated within 11 min on a C18 column with a mobile phase of 0.05 M sodium acetate and 0.05 M acetic acid in water (19%) and methanol (81%). A reaction chamber, containing 10% PbO2 in Celite 545, was placed between the column and the spectrophotometric detector to oxidize the leuco forms of the dyes to their chromatic forms. Chromatic and leuco malachite green were quantified by their absorbance at 618 nm; and chromatic and leuco Crystal Violet by their absorbance at 588 nm. Detection limits for chromatic and leuco forms of both dyes ranged from 0.12 to 0.28 ng. A linear range of 1 to 100 ng was established for both forms of the dyes.
Woods, G L; Proffitt, M R
1987-10-01
Plasmagel (Cellular Products, Inc., Buffalo, NY), which can separate both polymorphonuclear leukocytes (PMN) and mononuclear cells from other blood components, and LeucoPREP (Becton Dickinson Immunocytometry Systems, Mountain View, CA), which can separate mononuclear cells from other blood components, were used to harvest leukocytes from whole blood for the purpose of virus isolation. Macrodex was combined with the later, in a second step, for recovery of PMN. Of 90 peripheral blood specimens examined, cytomegalovirus was recovered from 10: in six by both methods, in three from Plasmagel prepared cells only, and in one from cells from the LeucoPREP-Macrodex preparation only. Total leukocyte counts, differential counts, and leukocyte viability did not differ significantly for the two methods. Plasmagel provided an efficient, inexpensive means of harvesting leukocytes from whole blood for virus isolation.
Polyvinyl butyral films containing leuco-malachite green as low-dose dosimeters
International Nuclear Information System (INIS)
Hoang Hoa Mai; Solomon, H.M.; Taguchi, M.; Kojima, T.
2008-01-01
Thin films containing leuco-malachite green (LMG) dye in polyvinyl butyral (PVB) have been developed for dose measurements of a few hundreds Gy level. The film shows significant color change in the visible range, and the sensitivity of the film to absorbed dose was enhanced by addition of chloride-containing compounds, such as chloral hydrate or 2,2,2-trichloroethanol. The film is suitable as dosimeters for dose measurements, e.g. in food irradiation and environmental protection
Transformation of a Plane Wavefront in Hemispherical Lenses Made of Leuco-Sapphire
Vetrov, V. N.; Ignatenkov, B. A.; Yakobson, V. E.
2018-01-01
An algorithm for wavefront calculation of ordinary and extraordinary waves after propagation through hemispherical components made of a uniaxial crystal is developed. The influence of frequency dispersion of n o and n e , as well as change in the direction of the optic axis of the crystal, on extraordinary wavefront in hemispheres made of from leuco-sapphire and a plastically deformed analog thereof is determined.
Determinants of Inter-Country Internet Diffusion Rates
Wunnava, Phanindra V.; Leiter, Daniel B.
2008-01-01
This paper employs cross-sectional data from 100 countries to analyze the main determinants of inter-country Internet diffusion rates. We set up an empirical model based on strong theoretical foundations, in which we regress Internet usage on variables that capture social, economic and political differences between these countries. Our results support past findings that economic strength, infrastructure and knowledge of the English language positively affect Internet connectivity. In addition...
Rate Theory for Correlated Processes: Double Jumps in Adatom Diffusion
DEFF Research Database (Denmark)
Jacobsen, J.; Jacobsen, Karsten Wedel; Sethna, J.
1997-01-01
We study the rate of activated motion over multiple barriers, in particular the correlated double jump of an adatom diffusing on a missing-row reconstructed platinum (110) surface. We develop a transition path theory, showing that the activation energy is given by the minimum-energy trajectory...... which succeeds in the double jump. We explicitly calculate this trajectory within an effective-medium molecular dynamics simulation. A cusp in the acceptance region leads to a root T prefactor for the activated rate of double jumps. Theory and numerical results agree....
Backtracking and Mixing Rate of Diffusion on Uncorrelated Temporal Networks
Directory of Open Access Journals (Sweden)
Martin Gueuning
2017-10-01
Full Text Available We consider the problem of diffusion on temporal networks, where the dynamics of each edge is modelled by an independent renewal process. Despite the apparent simplicity of the model, the trajectories of a random walker exhibit non-trivial properties. Here, we quantify the walker’s tendency to backtrack at each step (return where he/she comes from, as well as the resulting effect on the mixing rate of the process. As we show through empirical data, non-Poisson dynamics may significantly slow down diffusion due to backtracking, by a mechanism intrinsically different from the standard bus paradox and related temporal mechanisms. We conclude by discussing the implications of our work for the interpretation of results generated by null models of temporal networks.
The LeucoPatch® system in the management of hard-to-heal diabetic foot ulcers
DEFF Research Database (Denmark)
Game, Frances; Jeffcoate, William; Tarnow, Lise
2017-01-01
BACKGROUND: Diabetic foot ulcers are a common and severe complication of diabetes mellitus. Standard treatment includes debridement, offloading, management of infection and revascularisation where appropriate, although healing times may be long. The LeucoPatch® device is used to generate...... results have been obtained in non-controlled studies this system, but this now needs to be tested in a randomised controlled trial (RCT). If confirmed, the LeucoPatch® may become an important new tool in the armamentarium in the management of diabetic foot ulcers which are hard-to-heal. METHODS: People...... with diabetes and hard-to-heal ulcers of the foot will receive either pre-specified good standard care or good standard care supplemented by the application of the LeucoPatch® device. The primary outcome will be the percentage of ulcers healed within 20 weeks. Healing will be defined as complete...
International Nuclear Information System (INIS)
Izadifard, Maryam; Langford, Cooper H.; Achari, Gopal
2010-01-01
A study of dechlorination of PCB 138, under visible light employing methylene blue (MB) and triethylamine (TEA) in acetonitrile/water has been conducted to investigate the details of the mechanism of dechlorination and to determine the efficiency of the process for this representative congener. Two other amines, N-methyldiethanolamine (MEDA) and (triethanolamine) TEOA also replaced TEA and two other solvents, methanol and ethanol replacing acetonitrile were examined for effects on reaction rates. The results show that PCB 138 can be dechlorinated efficiently in this photocatalytic reaction. Clarifying ambiguities in several previous reports, the reduced form of MB, leuco-methylene blue (LMB) was identified as responsible for the photoreaction with its excited state transferring an electron to PCBs; oxidized LMB (i.e. MB) is reduced back to LMB by the excess amine present. The reaction depends on a cycle driven by the amine as a sacrificial electron donor. MEDA proved to be the most efficient electron donor; apparently in consequence of the most favourable steady state concentration of LMB. Methanol and ethanol may be used to replace acetonitrile with little change in the efficiency of the reaction.
SEE rate estimation based on diffusion approximation of charge collection
Sogoyan, Armen V.; Chumakov, Alexander I.; Smolin, Anatoly A.
2018-03-01
The integral rectangular parallelepiped (IRPP) method remains the main approach to single event rate (SER) prediction for aerospace systems, despite the growing number of issues impairing method's validity when applied to scaled technology nodes. One of such issues is uncertainty in parameters extraction in the IRPP method, which can lead to a spread of several orders of magnitude in the subsequently calculated SER. The paper presents an alternative approach to SER estimation based on diffusion approximation of the charge collection by an IC element and geometrical interpretation of SEE cross-section. In contrast to the IRPP method, the proposed model includes only two parameters which are uniquely determined from the experimental data for normal incidence irradiation at an ion accelerator. This approach eliminates the necessity of arbitrary decisions during parameter extraction and, thus, greatly simplifies calculation procedure and increases the robustness of the forecast.
International Nuclear Information System (INIS)
Imre, K.; Odian, G.
1979-01-01
The effect of diffusion on radiation-initiated graft polymerization has been studied with emphasis on the single- and two-penetrant cases. When the physical properties of the penetrants are similar, the two-penetrant problems can be reduced to the single-penetrant problem by redefining the characteristic parameters of the system. The diffusion-free graft polymerization rate is assumed to be proportional to the upsilon power of the monomer concentration respectively, and, in which the proportionality constant a = k/sub p/R/sub i//sup w//k/sub t//sup z/, where k/sub p/ and k/sub t/ are the propagation and termination rate constants, respectively, and R/sub i/ is the initiation rate. The values of upsilon, w, and z depend on the particular reaction system. The results of earlier work were generalized by allowing a non-Fickian diffusion rate which predicts an essentially exponential dependence on the monomer concentration of the diffusion coefficient, D = D 0 [exp(deltaC/M)], where M is the saturation concentration. A reaction system is characterized by the three dimensionless parameters, upsilon, delta, and A = (L/2)[aM/sup (upsilon--1)//D 0 ]/sup 1/2/, where L is the polymer film thickness. Graft polymerization tends to become diffusion controlled as A increases. Larger values of delta and ν cause a reaction system to behave closer to the diffusion-free regime. Transition from diffusion-free to diffusion-controlled reaction involves changes in the dependence of the reaction rate on film thickness, initiation rate, and monomer concentration. Although the diffusion-free rate is w order in initiation rate, upsilon order in monomer, and independent of film thickness, the diffusion-controlled rate is w/2 order in initiator rate and inverse first-order in film thickness. Dependence of the diffusion-controlled rate on monomer is dependent in a complex manner on the diffusional characteristics of the reaction system. 11 figures, 4 tables
Horst, G.J. ter; Luiten, P.G.M.
Intrahypothalamic connections of the lateral (LHA), ventromedial (VMH), dorsomedial (DMH) and paraventricular (PVN) hypothalamic nuclei were studied with anterograde transport of iontophoretically injected Phaseolus vulgaris leuco-agglutinin and the immunocytochemical detection of labeled
Energy Technology Data Exchange (ETDEWEB)
Giese, U.; Stenner, H.; Kettrup, A.
1989-05-01
When applicating diffusive sampling-systems to workplace air-monitoring it is necessary to know the behaviour of the diffusive-rate and the efficiency in dependence of concentration, exposition time and the type of pollutant. Especially concerning mixtures of pollutants there are negative influences by competition and mutual displacement possible. Diffusive-rate and discovery for CH/sub 2/Cl/sub 2/ and CHCl/sub 3/ were investigated using two different types of diffuse samplers. For this it was necessary to develop suitable defices for standard gas generation and for the exposition of diffusive-samplers to a standard gas mixture. (orig.).
Using genetic data to estimate diffusion rates in heterogeneous landscapes.
Roques, L; Walker, E; Franck, P; Soubeyrand, S; Klein, E K
2016-08-01
Having a precise knowledge of the dispersal ability of a population in a heterogeneous environment is of critical importance in agroecology and conservation biology as it can provide management tools to limit the effects of pests or to increase the survival of endangered species. In this paper, we propose a mechanistic-statistical method to estimate space-dependent diffusion parameters of spatially-explicit models based on stochastic differential equations, using genetic data. Dividing the total population into subpopulations corresponding to different habitat patches with known allele frequencies, the expected proportions of individuals from each subpopulation at each position is computed by solving a system of reaction-diffusion equations. Modelling the capture and genotyping of the individuals with a statistical approach, we derive a numerically tractable formula for the likelihood function associated with the diffusion parameters. In a simulated environment made of three types of regions, each associated with a different diffusion coefficient, we successfully estimate the diffusion parameters with a maximum-likelihood approach. Although higher genetic differentiation among subpopulations leads to more accurate estimations, once a certain level of differentiation has been reached, the finite size of the genotyped population becomes the limiting factor for accurate estimation.
Patonay, Gabor; Strekowski, Lucjan; Salon, Jozef; Medou-Ovono, Martial; Krutak, James J.; Leggitt, Jeffrey; Seubert, Heather; Craig, Rhonda
2004-12-01
New chemistry for leuco fluorescin and leuco rhodamine for latent bloodstain and fingerprint detection has been developed in our laboratories. The use of these leuco dyes results in excellent contrast for several hours. The FBI's Evidence Response Team and DNA I unit collaborated with Georgia State University to validate the new fluorescin chemistry for use in the field. In addition, several new NIR dyes have been developed in our laboratories that can be used to detect different chemical residues, e.g., pepper spray, latent fingerprint, latent blood, metal ions, or other trace evidence during crime scene investigations. Proof of principle experiments showed that NIR dyes reacting with such residues can be activated with appropriately filtered semiconductor lasers and LEDs to emit NIR fluorescence that can be observed using optimally filtered night vision intensifiers or pocket scopes, digital cameras, CCD and CMOS cameras, or other NIR detection systems. The main advantage of NIR detection is that the color of the background has very little influence on detection and that there are very few materials that would interfere by exhibiting NIR fluorescence. The use of pocket scopes permits sensitive and convenient detection. Once the residues are located, digital images of the fluorescence can be recorded and samples obtained for further analyses. NIR dyes do not interfere with subsequent follow-up or confirmation methods such as DNA or LC/MS analysis. Near-infrared absorbing dyes will be summarized along with detection mechanisms.
Effective reaction rates in diffusion-limited phosphorylation-dephosphorylation cycles
Szymańska, Paulina; Kochańczyk, Marek; Miekisz, Jacek; Lipniacki, Tomasz
2015-02-01
We investigate the kinetics of the ubiquitous phosphorylation-dephosphorylation cycle on biological membranes by means of kinetic Monte Carlo simulations on the triangular lattice. We establish the dependence of effective macroscopic reaction rate coefficients as well as the steady-state phosphorylated substrate fraction on the diffusion coefficient and concentrations of opposing enzymes: kinases and phosphatases. In the limits of zero and infinite diffusion, the numerical results agree with analytical predictions; these two limits give the lower and the upper bound for the macroscopic rate coefficients, respectively. In the zero-diffusion limit, which is important in the analysis of dense systems, phosphorylation and dephosphorylation reactions can convert only these substrates which remain in contact with opposing enzymes. In the most studied regime of nonzero but small diffusion, a contribution linearly proportional to the diffusion coefficient appears in the reaction rate. In this regime, the presence of opposing enzymes creates inhomogeneities in the (de)phosphorylated substrate distributions: The spatial correlation function shows that enzymes are surrounded by clouds of converted substrates. This effect becomes important at low enzyme concentrations, substantially lowering effective reaction rates. Effective reaction rates decrease with decreasing diffusion and this dependence is more pronounced for the less-abundant enzyme. Consequently, the steady-state fraction of phosphorylated substrates can increase or decrease with diffusion, depending on relative concentrations of both enzymes. Additionally, steady states are controlled by molecular crowders which, mostly by lowering the effective diffusion of reactants, favor the more abundant enzyme.
Gaussian and Affine Approximation of Stochastic Diffusion Models for Interest and Mortality Rates
Directory of Open Access Journals (Sweden)
Marcus C. Christiansen
2013-10-01
Full Text Available In the actuarial literature, it has become common practice to model future capital returns and mortality rates stochastically in order to capture market risk and forecasting risk. Although interest rates often should and mortality rates always have to be non-negative, many authors use stochastic diffusion models with an affine drift term and additive noise. As a result, the diffusion process is Gaussian and, thus, analytically tractable, but negative values occur with positive probability. The argument is that the class of Gaussian diffusions would be a good approximation of the real future development. We challenge that reasoning and study the asymptotics of diffusion processes with affine drift and a general noise term with corresponding diffusion processes with an affine drift term and an affine noise term or additive noise. Our study helps to quantify the error that is made by approximating diffusive interest and mortality rate models with Gaussian diffusions and affine diffusions. In particular, we discuss forward interest and forward mortality rates and the error that approximations cause on the valuation of life insurance claims.
A photo-tunable membrane based on inter-particle crosslinking for decreasing diffusion rates
Li, Song; Moosa, Basem; Chen, Ye; Li, Wengang; Khashab, Niveen M.
2015-01-01
%. To prove the applicability of the designed system, the composite membrane was coated on a model drug reservoir tablet. Upon irradiating the tablet with UV light, the original permeability decreased by 57%, and consequently the diffusion rate of the cargo
Rates of convergence and asymptotic normality of curve estimators for ergodic diffusion processes
J.H. van Zanten (Harry)
2000-01-01
textabstractFor ergodic diffusion processes, we study kernel-type estimators for the invariant density, its derivatives and the drift function. We determine rates of convergence and find the joint asymptotic distribution of the estimators at different points.
Strain rate effect on sooting characteristics in laminar counterflow diffusion flames
Wang, Yu; Chung, Suk-Ho
2016-01-01
The effects of strain rate, oxygen enrichment and fuel type on the sooting characteristics of counterflow diffusion flames were studied. The sooting structures and relative PAH concentrations were measured with laser diagnostics. Detailed soot
Absence of saturation of void growth in rate theory with anisotropic diffusion
Hudson, T S; Sutton, A P
2002-01-01
We present a first attempt at solution the problem of the growth of a single void in the presence of anisotropically diffusing radiation induced self-interstitial atom (SIA) clusters. In order to treat a distribution of voids we perform ensemble averaging over the positions of centres of voids using a mean-field approximation. In this way we are able to model physical situations in between the Standard Rate Theory (SRT) treatment of swelling (isotropic diffusion), and the purely 1-dimensional diffusion of clusters in the Production Bias Model. The background absorption by dislocations is however treated isotropically, with a bias for interstitial cluster absorption assumed similar to that of individual SIAs. We find that for moderate anisotropy, unsaturated void growth is characteristic of this anisotropic diffusion of clusters. In addition we obtain a higher initial void swelling rate than predicted by SRT whenever the diffusion is anisotropic.
Furusawa, Naoto
2014-01-01
This paper describes a reserved-phase high-performance liquid chromatographic (HPLC) method for detecting malachite green (MG) and leuco-malachite green (LMG) using an isocratic toxic organic solvent/reagent-free mobile phase. Chromatographic separations were performed an Inertsil® WP300 C4 with 0.02 mol/L octane sulfonic acid–ethanol mobile phase and a photodiode-array detector. The total run time was <5 min. The system suitability was well within the international acceptance criteria. A...
Directory of Open Access Journals (Sweden)
Naoto Furusawa
2014-05-01
Full Text Available This paper describes a reserved-phase high-performance liquid chromatographic (HPLC method for detecting malachite green (MG and leuco-malachite green (LMG using an isocratic toxic organic solvent/reagent-free mobile phase. Chromatographic separations were performed an Inertsil® WP300 C4 with 0.02 mol/L octane sulfonic acid–ethanol mobile phase and a photodiode-array detector. The total run time was <5 min. The system suitability was well within the international acceptance criteria. A harmless method for simultaneously detecting MG and LMG was developed and may be further applied to the quantification in foods.
Computing Rates of Small Molecule Diffusion Through Protein Channels Using Markovian Milestoning
Abrams, Cameron
2014-03-01
Measuring diffusion rates of ligands plays a key role in understanding the kinetic processes inside proteins. For example, although many molecular simulation studies have reported free energy barriers to infer rates for CO diffusion in myoglobin (Mb), they typically do not include direct calculation of diffusion rates because of the long simulation times needed to infer these rates with statistical accuracy. We show in this talk how to apply Markovian milestoning along minimum free-energy pathways to calculate diffusion rates of CO inside Mb. In Markovian milestoning, one partitions a suitable reaction coordinate space into regions and performs restrained molecular dynamics in each region to accumulate kinetic statistics that, when assembled across regions, provides an estimate of the mean first-passage time between states. The mean escape time for CO directly from the so-called distal pocket (DP) through the histidine gate (HG) is estimated at about 24 ns, confirming the importance of this portal for CO. But Mb is known to contain several internal cavities, and cavity-to-cavity diffusion rates are also computed and used to build a complete kinetic network as a Markov state model. Within this framework, the effective mean time of escape to the solvent through HG increases to 30 ns. Our results suggest that carrier protein structure may have evolved under pressure to modulate dissolved gas release rates using a network of ligand-accessible cavities. Support: NIH R01GM100472.
International Nuclear Information System (INIS)
Toyoshima, S.; Noguchi, K.; Seto, H.; Shimizu, M.; Watanabe, N.
2000-01-01
To determine the relationship between apparent diffusion coefficient (ADC) values measured by diffusion-weighted MR imaging and split renal function determined by renal scintigraphy in patients with hydronephrosis. Material and Methods: Diffusion-weighted imaging on a 1.5 T MR unit and renal scintigraphy were performed in 36 patients with hydronephrosis (45 hydronephrotic kidneys, 21 non-hydronephrotic kidneys). ADC values of the individual kidneys were measured by diffusion-weighted MR imaging. Split renal function (glomerular filtration rate (GFR)) was determined by renal scintigraphy using 99m Tc-DTPA. The relationship between ADC values and split GFR was examined in 66 kidneys. The hydronephrotic kidneys were further classified into three groups (severe renal dysfunction, GFR 25 ml/min, n=28), and mean values for ADCs were calculated. Results: In hydronephrotic kidneys, there was a moderate positive correlation between ADC values and split GFR (R2=0.56). On the other hand, in non-hydronephrotic kidneys, poor correlation between ADC values and split GFR was observed (R2=0.08). The mean values for ADCs of the dysfunctioning hydronephrotic kidneys (severe renal dysfunction, 1.32x10 -3 ±0.18x10 -3 mm 2 /s; moderate renal dysfunction, 1.38x10 -3 ±0.10x10 -3 mm2/s) were significantly lower than that of the normal functioning hydronephrotic kidneys (1.63x10 -3 ±0.12±10 -3 mm 2 /s). Conclusion: These results indicated that measurement of ADC values by diffusion-weighted MR imaging has a potential value in the evaluation of the functional status of hydronephrotic kidneys
Rate of riboflavin diffusion from intrastromal channels before corneal crosslinking.
McQuaid, Rebecca; Mrochen, Michael; Vohnsen, Brian
2016-03-01
To determine the diffusion of riboflavin from intrastromal channels through the effective diffusion coefficients compared with traditional axial diffusion with epithelium on or off. Advanced Optical Imaging Laboratory, University College Dublin, and Wellington Eye Clinic, Sandyford, Dublin, Ireland. Experimental study. The rate of diffusion in whole-mounted porcine eyes was monitored for a 30 minutes using an optical setup with a charge-coupled device camera and a bandpass filter (central wavelength 550 nm and 40 nm bandpass) to image the fluorescence under ultraviolet illumination (365 nm wavelength). For comparison, an isotropic corneal stroma with an annular channel was modeled numerically for different diffusion constants and boundary conditions. Numerical and experimental results were compared, allowing determination of the effective diffusion coefficient for each case. Experimental results for 6 different riboflavin solutions were in all cases found to be higher than for the common crosslinking (CXL) riboflavin protocol, where the diffusion constant is D0 = 6.5 × 10(-5) mm(2)/sec. For the intrastromal channel, 2 isotonic solutions containing riboflavin 0.1% correlated with a diffusion constant of 5D0 = 32.5 × 10(-5) mm(2)/sec. Hypotonic solutions and transepithelium had a higher diffusion coefficient approaching 10D0 = 65.0 × 10(-5) mm(2)/sec, which is an order-of-magnitude increase compared with the typical diffusion coefficient found in standard CXL. In this study, riboflavin had a faster stromal diffusion when injected into a corneal channel than when applied as drops to the anterior corneal surface. Further numerical modeling might allow optimization of the channel structure for any specific choice of riboflavin. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Effect of macromolecular crowding on the rate of diffusion-limited ...
Indian Academy of Sciences (India)
The enzymatic reaction rate has been shown to be affected by the presence of such macromolecules. A simple numerical model is proposed here based on percolation and diffusion in disordered systems to study the effect of macromolecular crowding on the enzymatic reaction rates. The model qualitatively explains some ...
International Nuclear Information System (INIS)
Ye, Yong-jun; Wang, Li-heng; Ding, De-xin; Zhao, Ya-li; Fan, Nan-bin
2014-01-01
The radon diffusion coefficient and the free radon production rate are important parameters for describing radon migration in the fragmented uranium ore. In order to determine the two parameters, the pure diffusion migration equation for radon was firstly established and its analytic solution with the two parameters to be determined was derived. Then, a self manufactured experimental column was used to simulate the pure diffusion of the radon, the improved scintillation cell method was used to measure the pore radon concentrations at different depths of the column loaded with the fragmented uranium ore, and the nonlinear least square algorithm was used to inversely determine the radon diffusion coefficient and the free radon production rate. Finally, the solution with the two inversely determined parameters was used to predict the pore radon concentrations at some depths of the column, and the predicted results were compared with the measured results. The results show that the predicted results are in good agreement with the measured results and the numerical inverse method is applicable to the determination of the radon diffusion coefficient and the free radon production rate for the fragmented uranium ore. - Highlights: • Inverse method for determining two transport parameters of radon is proposed. • A self-made experimental apparatus is used to simulate radon diffusion process. • Sampling volume and position for measuring radon concentration are optimized. • The inverse results of an experimental sample are verified
Jump rates for surface diffusion of large molecules from first principles
Energy Technology Data Exchange (ETDEWEB)
Shea, Patrick, E-mail: patrick.shea@dal.ca; Kreuzer, Hans Jürgen [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada)
2015-04-21
We apply a recently developed stochastic model for the surface diffusion of large molecules to calculate jump rates for 9,10-dithioanthracene on a Cu(111) surface. The necessary input parameters for the stochastic model are calculated from first principles using density functional theory (DFT). We find that the inclusion of van der Waals corrections to the DFT energies is critical to obtain good agreement with experimental results for the adsorption geometry and energy barrier for diffusion. The predictions for jump rates in our model are in excellent agreement with measured values and show a marked improvement over transition state theory (TST). We find that the jump rate prefactor is reduced by an order of magnitude from the TST estimate due to frictional damping resulting from energy exchange with surface phonons, as well as a rotational mode of the diffusing molecule.
Are US utility standby rates inhibiting diffusion of customer-owned generating systems?
International Nuclear Information System (INIS)
Jackson, Jerry
2007-01-01
New, small-scale electric generation technologies permit utility customers to generate some of their own electric power and to utilize waste heat for space heating and other applications at the building site. This combined heat and power (CHP) characteristic can provide significant energy-cost savings. However, most current US utility regulations leave CHP standby rate specification largely to utility discretion resulting in claims by CHP advocates that excessive standby rates are significantly reducing CHP-related savings and inhibiting CHP diffusion. The impacts of standby rates on the adoption of CHP are difficult to determine; however, because of the characteristically slow nature of new technology diffusion. This study develops an agent-based microsimulation model of CHP technology choice using cellular automata to represent new technology information dispersion and knowledge acquisition. Applying the model as an n-factorial experiment quantifies the impacts of standby rates on CHP technologies under alternative diffusion paths. Analysis of a sample utility indicates that, regardless of the likely diffusion process, reducing standby rates to reflect the cost of serving a large number of small, spatially clustered CHP systems significantly increases the adoption of these technologies
Schwarz, Karsten; Rieger, Heiko
2013-03-01
We present an efficient Monte Carlo method to simulate reaction-diffusion processes with spatially varying particle annihilation or transformation rates as it occurs for instance in the context of motor-driven intracellular transport. Like Green's function reaction dynamics and first-passage time methods, our algorithm avoids small diffusive hops by propagating sufficiently distant particles in large hops to the boundaries of protective domains. Since for spatially varying annihilation or transformation rates the single particle diffusion propagator is not known analytically, we present an algorithm that generates efficiently either particle displacements or annihilations with the correct statistics, as we prove rigorously. The numerical efficiency of the algorithm is demonstrated with an illustrative example.
International Nuclear Information System (INIS)
Kyte, W.S.
1980-01-01
The graphite moderator bricks which make up the moderator of an advanced gas-cooled nuclear reactor (AGR) are of many different and complex shapes. Many physico-chemical processes that occur within these porous bricks include a diffusional step and thus to model these processes it is necessary to solve the diffusion equation (with chemical reaction) in a porous medium of complex shape. A finite element technique is applied to calculating the rate at which nitrogen diffuses into and out of the porous moderator graphite during operation of a shutdown procedure for an AGR. However, the finite element method suffers from several disadvantages that undermine its general usefulness for calculating rates of diffusion in AGR moderator cores. A model which overcomes some of these disadvantages is presented (the equivalent cylinder model) and it is shown that this gives good results for a variety of different boundary and initial conditions
Hurtaud-Pessel, Dominique; Couëdor, Pierrick; Verdon, Eric; Dowell, Dawn
2013-01-01
During the AOAC Annual Meeting held from September 30 to October 3, 2012 in Las Vegas, NV, the Expert Review Panel (ERP) on Veterinary Drug Residues reviewed data for the method for determination of residues of three triphenylmethane dyes and their metabolites (malachite green, leuco malachite green, crystal violet, leuco crystal violet, and brilliant green) in aquaculture products by LC/MS/MS, previously published in the Journal of Chromatography A 1218, 1632-1645 (2006). The method data were reviewed and compared to the standard method performance requirements (SMPRs) found in SMPR 2009.001, published in AOAC's Official Methods of Analysis, 19th Ed. (2012). The ERP determined that the data were acceptable, and the method was approved AOAC Official First Action. The method uses acetonitrile to isolate the analyte from the matrix. Then determination is conducted by LCIMS/MS with positive electrospray ionization. Accuracy ranged from 100.1 to 109.8% for samples fortified at levels of 0.5, 0.75, 1.0, and 2.0 microg/kg. Precision ranged from 2.0 to 10.3% RSD for the intraday samples and 1.9 to 10.6% for the interday samples analyzed over 3 days. The described method is designed to accurately operate in the analytical range from 0.5 to 2 microg/kg, where the minimum required performance limit for laboratories has been fixed in the European Union at 2.0 microg/kg for these banned substances and their metabolites. Upper levels of concentrations (1-100 microg/kg) can be analyzed depending on the different optional calibrations used.
Order of current variance and diffusivity in the rate one totally asymmetric zero range process
Balázs, M.; Komjáthy, J.
2008-01-01
We prove that the variance of the current across a characteristic is of order t 2/3 in a stationary constant rate totally asymmetric zero range process, and that the diffusivity has order t 1/3. This is a step towards proving universality of this scaling behavior in the class of one-dimensional
Determination of H2 Diffusion Rates through Various Closures on TRU Waste Bag-Out Bags
International Nuclear Information System (INIS)
Noll, Phillip D. Jr.; Callis, E. Larry; Norman, Kirsten M.
1999-01-01
The amount of H 2 diffusion through twist and tape (horse-tail), wire tie, plastic tie, and heat sealed closures on transuranic (TRU) waste bag-out bags has been determined. H 2 diffusion through wire and plastic tie closures on TRU waste bag-out bags has not been previously characterized and, as such, TRU waste drums containing bags with these closures cannot be certified and/or shipped to the Waste Isolation Pilot Plant (WIPP). Since wire ties have been used at Los Alamos National Laboratory (LANL) from 1980 to 1991 and the plastic ties from 1991 to the present, there are currently thousands of waste drums that cannot be shipped to the WIPP site. Repackaging the waste would be prohibitively expensive. Diffusion experiments performed on the above mentioned closures show that the diffusion rates of plastic tie and horse-tail closures are greater than the accepted value presented in the TRU-PACT 11 Safety Analysis Report (SAR). Diffusion rates for wire tie closures are not statistically different from the SAR value. Thus, drums containing bags with these closures can now potentially be certified which would allow for their consequent shipment to WIPP
On diffusion processes with variable drift rates as models for decision making during learning
International Nuclear Information System (INIS)
Eckhoff, P; Holmes, P; Law, C; Connolly, P M; Gold, J I
2008-01-01
We investigate Ornstein-Uhlenbeck and diffusion processes with variable drift rates as models of evidence accumulation in a visual discrimination task. We derive power-law and exponential drift-rate models and characterize how parameters of these models affect the psychometric function describing performance accuracy as a function of stimulus strength and viewing time. We fit the models to psychophysical data from monkeys learning the task to identify parameters that best capture performance as it improves with training. The most informative parameter was the overall drift rate describing the signal-to-noise ratio of the sensory evidence used to form the decision, which increased steadily with training. In contrast, secondary parameters describing the time course of the drift during motion viewing did not exhibit steady trends. The results indicate that relatively simple versions of the diffusion model can fit behavior over the course of training, thereby giving a quantitative account of learning effects on the underlying decision process
International Nuclear Information System (INIS)
Altman, S.J.; Tidwell, V.C.; Uchida, M.
2001-01-01
Matrix diffusion is one of the most important contaminant migration retardation processes in crystalline rocks. Performance assessment calculations in various countries assume that only the area of the fracture surface where advection is active provides access to the rock matrix. However, accessibility to the matrix could be significantly enhanced with diffusion into stagnant zones, fracture fillings, and through an alteration rim in the matrix. Laboratory visualization experiments were conducted on granodiorite samples to investigate and quantify diffusion rates within different zones of a Cretaceous granodiorite. Samples were collected from the Kamaishi experimental site in the northern part of the main island of Japan. Diffusion of iodine out of the sample is visualized and rates are measured using x-ray absorption imaging. X-ray images allow for measurements of relative iodine concentration and relative iodine mass as a function of time and two-dimensional space at a sub-millimeter spatial resolution. In addition, two-dimensional heterogeneous porosity fields (at the same resolution as the relative concentration fields) are measured. This imaging technique allows for a greater understanding of the spatial variability of diffusion rates than can be accomplished with standard bulk measurements. It was found that diffusion rates were fastest in partially gouge-filled fractures. Diffusion rates in the recrystallized calcite-based fracture-filling material were up to an order of magnitude lower than in gouge-filled fractures. Diffusion in altered matrix around the fractures was over an order of magnitude lower than that in the gouge-filled fractures. Healed fractures did not appear to have different diffusion rates than the unaltered matrix
Energy Technology Data Exchange (ETDEWEB)
Altman, S.J.; Tidwell, V.C. [Sandia National Laboratories, Albuquerque, NM (United States); Uchida, M. [Japan Nuclear Cycle Development Inst., Ibaraki (Japan)
2001-08-01
Matrix diffusion is one of the most important contaminant migration retardation processes in crystalline rocks. Performance assessment calculations in various countries assume that only the area of the fracture surface where advection is active provides access to the rock matrix. However, accessibility to the matrix could be significantly enhanced with diffusion into stagnant zones, fracture fillings, and through an alteration rim in the matrix. Laboratory visualization experiments were conducted on granodiorite samples to investigate and quantify diffusion rates within different zones of a Cretaceous granodiorite. Samples were collected from the Kamaishi experimental site in the northern part of the main island of Japan. Diffusion of iodine out of the sample is visualized and rates are measured using x-ray absorption imaging. X-ray images allow for measurements of relative iodine concentration and relative iodine mass as a function of time and two-dimensional space at a sub-millimeter spatial resolution. In addition, two-dimensional heterogeneous porosity fields (at the same resolution as the relative concentration fields) are measured. This imaging technique allows for a greater understanding of the spatial variability of diffusion rates than can be accomplished with standard bulk measurements. It was found that diffusion rates were fastest in partially gouge-filled fractures. Diffusion rates in the recrystallized calcite-based fracture-filling material were up to an order of magnitude lower than in gouge-filled fractures. Diffusion in altered matrix around the fractures was over an order of magnitude lower than that in the gouge-filled fractures. Healed fractures did not appear to have different diffusion rates than the unaltered matrix.
von der Handt, A.; Hellebrand, E.; Snow, J. E.
2007-12-01
Cooling rates of ocean floor mantle rocks from mid-ocean ridges can potentially provide important information about ridge dynamics, emplacement mechanisms and mantle uplift. There are a growing number of geospeedometric methods to retrieve such cooling rates in various settings. However, few exist for typical four- phase mantle peridotites and they only cover temperatures below 800° C. The down-temperature lithophile trace element exchange between clinopyroxene (cpx) and orthopyroxene (opx) can provide such a high- temperature spinel peridotite geospeedometer. Orthopyroxenes studied by SIMS from two fresh Gakkel Ridge peridotites are zoned in all trace elements while clinopyroxenes are homogeneous. This allows the calculation of equilibrium temperatures [1]. Several profiles in opx cover a range of 1250° C (opx core) to 800° C (opx rim) and are in agreement with straightforward diffusion and closure temperature models. The systematics of REE diffusion in opx deviate from the results of a recent experimental study [2]. The data allow us to estimate diffusion systematics of 16 elements (REE and TE) and their cation distributions in orthopyroxene. The data set is internally coherent as all elements were subjected to the same extrinsic parameters. 1. Decreasing ionic radius increases REE diffusion in opx (as it does in cpx). 2. M2-site diffusion is controlled more by ionic radius than by cationic charge. 3. M1-site diffusion is controlled by both ionic radius and cationic charge. 4. M1-site diffusion is generally slower than M2-site diffusion for isovalent cations, most likely because of higher M1- site energies compared to M2-site. The advantages of this geospeedometer should be its relatively good precision, use of standard analytical methods and its coverage of the important range between solidus temperatures and 800° C. In combination with other geospeedometers it will be possible to retrieve the continuous cooling history of a mantle rock from its solidus down
Application of the multi-rate diffusion approach in tracer test studies at Aespoe HRL. Final report
Energy Technology Data Exchange (ETDEWEB)
Haggerty, R. [Oregon State Univ., Corvallis, OR (United States). Dept. of Geosciences
1999-11-01
This report summarizes an investigation into heterogeneous diffusivity and associated parameters within granitic rocks at the Aespoe Hard Rock Laboratory (HRL). Our tasks for this investigation were: (1) to assess the potential for either anomalous or multi-rate diffusion within Aespoe rocks; (2) to evaluate existing data relating to anomalous and multi-rate diffusion within Aespoe rocks; (3) to perform scoping calculations in support of a Long Term Diffusion Experiment (LTDE) design; and (4) to begin developing a mathematical and computer model for solute advection in the presence of anomalous matrix diffusion. In addition to carrying out these tasks, we also report on (5) the late-time behavior of breakthrough curves. First, in regard to the potential for anomalous and multi-rate diffusion and analyses of existing data, we find that (1) in a literature review of 100 column experiments in various types of rock and sediment, rate coefficients decrease with experimental observation time. This is precisely what would be expected of both multi-rate and anomalous diffusion. (2) Three sets of through-diffusion experiments in Fenno-Scandian granitic rock found decreasing effective diffusivity, D{sub e}, with sample length, while one set did not. (3) Based on diffusivity and sorption data, and speculation on matrix block size variability, the total variability of D{sub a}/a{sup 2} may reasonably be expected to exceed 4 orders of magnitude. (4) Analyses of two-well tracer data completed to date are ambiguous with respect to multi-rate diffusion. Analyses of TRUE data are currently underway and may support multi-rate diffusion. Second, in regard to the potential consequences of multi-rate and anomalous diffusion on nuclear waste disposal, we found the following key points: (1) No single value of diffusivity can represent the diffusion process at all time- or length-scales if diffusion is truly anomalous, while a single value of diffusivity will represent diffusion
Application of the multi-rate diffusion approach in tracer test studies at Aespoe HRL. Final report
International Nuclear Information System (INIS)
Haggerty, R.
1999-11-01
This report summarizes an investigation into heterogeneous diffusivity and associated parameters within granitic rocks at the Aespoe Hard Rock Laboratory (HRL). Our tasks for this investigation were: (1) to assess the potential for either anomalous or multi-rate diffusion within Aespoe rocks; (2) to evaluate existing data relating to anomalous and multi-rate diffusion within Aespoe rocks; (3) to perform scoping calculations in support of a Long Term Diffusion Experiment (LTDE) design; and (4) to begin developing a mathematical and computer model for solute advection in the presence of anomalous matrix diffusion. In addition to carrying out these tasks, we also report on (5) the late-time behavior of breakthrough curves. First, in regard to the potential for anomalous and multi-rate diffusion and analyses of existing data, we find that (1) in a literature review of 100 column experiments in various types of rock and sediment, rate coefficients decrease with experimental observation time. This is precisely what would be expected of both multi-rate and anomalous diffusion. (2) Three sets of through-diffusion experiments in Fenno-Scandian granitic rock found decreasing effective diffusivity, D e , with sample length, while one set did not. (3) Based on diffusivity and sorption data, and speculation on matrix block size variability, the total variability of D a /a 2 may reasonably be expected to exceed 4 orders of magnitude. (4) Analyses of two-well tracer data completed to date are ambiguous with respect to multi-rate diffusion. Analyses of TRUE data are currently underway and may support multi-rate diffusion. Second, in regard to the potential consequences of multi-rate and anomalous diffusion on nuclear waste disposal, we found the following key points: (1) No single value of diffusivity can represent the diffusion process at all time- or length-scales if diffusion is truly anomalous, while a single value of diffusivity will represent diffusion adequately for some
International Nuclear Information System (INIS)
Philipose, K.E.
1991-09-01
A waste repository for the belowground disposal of low-level radioactive waste, labelled IRUS (Intrusion Resistant Underground Structure), is planned at the Chalk River Laboratories. It relies greatly on the durability of concrete for a minimum of 500 years of service life. A research program based on laboratory testing to design a durable concrete and predict its useful engineered service life is in progress. The durability of concrete depends on its resistance to deterioration from both internal and external causes. Since the rate of degradation depends to a major extent on the rate of ingress of aggressive ions into concrete, laboratory testing is in progress to establish the diffusion rates of chlorides and sulphate ions. A total of 1000 concrete specimens and 500 paste specimens are being exposed at 22 degrees and 45 degrees C to twenty-five different combinations of corrosive agents, including CO 2 . Procedures to measure the ionic penetration profile and to determine the factors controlling diffusion of ions in the various concretes have been developed. The paper presents the initial results from the research program and the longevity predictions to qualify concretes for the IRUS waste repository, based on 16 months of diffusion testing on laboratory specimens
Quantitation of chemical exchange rates using pulsed-field-gradient diffusion measurements
International Nuclear Information System (INIS)
Andrec, Michael; Prestegard, James H.
1997-01-01
A new approach to the quantitation of chemical exchange rates is presented, and its utility is illustrated with application to the exchange of protein amide protons with bulk water. The approach consists of a selective-inversion exchange HMQC experiment in which a short spin echo diffusion filter has been inserted into the exchange period. In this way, the kinetics of exchange are encoded directly in an apparent diffusion coefficient which is a function of the position of the diffusion filter in the pulse sequence. A detailed theoretical analysis of this experiment indicates that, in addition to the measurement of simple exchange rates, the experiment is capable of measuring the effect of mediated exchange, e.g. the transfer of magnetization from bulk water to an amide site mediated by an internal bound water molecule or a labile protein side-chain proton in fast exchange with bulk water. Experimental results for rapid water/amide exchange in acyl carrier protein are shown to be quantitatively consistent with the exchange rates measured using a selective-inversion exchange experiment
Jump locations of jump-diffusion processes with state-dependent rates
International Nuclear Information System (INIS)
Miles, Christopher E; Keener, James P
2017-01-01
We propose a general framework for studying statistics of jump-diffusion systems driven by both Brownian noise (diffusion) and a jump process with state-dependent intensity. Of particular natural interest in many physical systems are the jump locations: the system evaluated at the jump times. As an example, this could be the voltage at which a neuron fires, or the so-called ‘threshold voltage’. However, the state-dependence of the jump rate provides direct coupling between the diffusion and jump components, making it difficult to disentangle the two to study individually. In this work, we provide an iterative map formulation of the sequence of distributions of jump locations. The distributions computed by this map can be used to elucidate other interesting quantities about the process, including statistics of the interjump times. Ultimately, the limit of the map reveals that knowledge of the stationary distribution of the full process is sufficient to recover (but not necessarily equal to) the distribution of jump locations. We propose two biophysical examples to illustrate the use of this framework to provide insight about a system. We find that a sharp threshold voltage emerges robustly in a simple stochastic integrate-and-fire neuronal model. The interplay between the two sources of noise is also investigated in a stepping model of molecular motor in intracellular transport pulling a diffusive cargo. (paper)
THE IMPLICATIONS OF A HIGH COSMIC-RAY IONIZATION RATE IN DIFFUSE INTERSTELLAR CLOUDS
International Nuclear Information System (INIS)
Indriolo, Nick; Fields, Brian D.; McCall, Benjamin J.
2009-01-01
Diffuse interstellar clouds show large abundances of H + 3 which can only be maintained by a high ionization rate of H 2 . Cosmic rays are the dominant ionization mechanism in this environment, so the large ionization rate implies a high cosmic-ray flux, and a large amount of energy residing in cosmic rays. In this paper, we find that the standard propagated cosmic-ray spectrum predicts an ionization rate much lower than that inferred from H + 3 . Low-energy (∼10 MeV) cosmic rays are the most efficient at ionizing hydrogen, but cannot be directly detected; consequently, an otherwise unobservable enhancement of the low-energy cosmic-ray flux offers a plausible explanation for the H + 3 results. Beyond ionization, cosmic rays also interact with the interstellar medium by spalling atomic nuclei and exciting atomic nuclear states. These processes produce the light elements Li, Be, and B, as well as gamma-ray lines. To test the consequences of an enhanced low-energy cosmic-ray flux, we adopt two physically motivated cosmic-ray spectra which by construction reproduce the ionization rate inferred in diffuse clouds, and investigate the implications of these spectra on dense cloud ionization rates, light-element abundances, gamma-ray fluxes, and energetics. One spectrum proposed here provides an explanation for the high ionization rate seen in diffuse clouds while still appearing to be broadly consistent with other observables, but the shape of this spectrum suggests that supernovae remnants may not be the predominant accelerators of low-energy cosmic rays.
An approximate stationary solution for multi-allele neutral diffusion with low mutation rates.
Burden, Conrad J; Tang, Yurong
2016-12-01
We address the problem of determining the stationary distribution of the multi-allelic, neutral-evolution Wright-Fisher model in the diffusion limit. A full solution to this problem for an arbitrary K×K mutation rate matrix involves solving for the stationary solution of a forward Kolmogorov equation over a (K-1)-dimensional simplex, and remains intractable. In most practical situations mutations rates are slow on the scale of the diffusion limit and the solution is heavily concentrated on the corners and edges of the simplex. In this paper we present a practical approximate solution for slow mutation rates in the form of a set of line densities along the edges of the simplex. The method of solution relies on parameterising the general non-reversible rate matrix as the sum of a reversible part and a set of (K-1)(K-2)/2 independent terms corresponding to fluxes of probability along closed paths around faces of the simplex. The solution is potentially a first step in estimating non-reversible evolutionary rate matrices from observed allele frequency spectra. Copyright © 2016 Elsevier Inc. All rights reserved.
Renny; Supriyanto
2018-04-01
Nutrition is the chemical compounds that needed by the organism for the growth process. In plants, nutrients are organic or inorganic compounds that are absorbed from the roots of the soil. It consist of macro and micro nutrient. Macro nutrients are nutrition that needed by plants in large quantities, such as, nitrogen, calcium, pottacium, magnesium, and sulfur. The total soil nutrient is the difference between the input nutrient and the output nutrients. Input nutrients are nutrient that derived from the decomposition of organic substances. Meanwhile, the output nutrient consists of the nutrients that absorbed by plant roots (uptake), the evaporated nutrients (volatilized) and leached nutrients. The nutrient transport can be done through diffusion process. The diffusion process is essential in removing the nutrient from one place to the root surface. It will cause the rate of absorption of nutrient by the roots will be greater. Nutrient concept in paddy filed can be represented into a mathematical modelling, by making compartment models. The rate of concentration change in the compartment model forms a system of homogeneous linear differential equations. In this research, we will use Laplaces transformation to solve the compartment model and determined the dynamics of macro nutrition due to diffusion process.
Effect of diffusion from a lateral surface on the rate of GaN nanowire growth
International Nuclear Information System (INIS)
Sibirev, N. V.; Tchernycheva, M.; Cirlin, G. E.; Patriarche, G.; Harmand, J. C.; Dubrovskii, V. G.
2012-01-01
The kinetics of the growth of GaN crystalline nanowires on a Si (111) surface with no catalyst is studied experimentally and theoretically. Noncatalytic GaN nanowires were grown by molecular-beam epitaxy with AlN inserts, which makes it possible to determine the rate of the vertical growth of nanowires. A model for the formation of GaN nanowires is developed, and an expression for their rate of growth is derived. It is shown that, in the general case, the dependence of the rate of growth on the nanowire diameter has a minimum. The diameter corresponding to the experimentally observed minimum of the rate of growth steadily increases with increasing diffusion flux from the lateral surface.
A Reaction-Diffusion-Based Coding Rate Control Mechanism for Camera Sensor Networks
Directory of Open Access Journals (Sweden)
Naoki Wakamiya
2010-08-01
Full Text Available A wireless camera sensor network is useful for surveillance and monitoring for its visibility and easy deployment. However, it suffers from the limited capacity of wireless communication and a network is easily overflown with a considerable amount of video traffic. In this paper, we propose an autonomous video coding rate control mechanism where each camera sensor node can autonomously determine its coding rate in accordance with the location and velocity of target objects. For this purpose, we adopted a biological model, i.e., reaction-diffusion model, inspired by the similarity of biological spatial patterns and the spatial distribution of video coding rate. Through simulation and practical experiments, we verify the effectiveness of our proposal.
A reaction-diffusion-based coding rate control mechanism for camera sensor networks.
Yamamoto, Hiroshi; Hyodo, Katsuya; Wakamiya, Naoki; Murata, Masayuki
2010-01-01
A wireless camera sensor network is useful for surveillance and monitoring for its visibility and easy deployment. However, it suffers from the limited capacity of wireless communication and a network is easily overflown with a considerable amount of video traffic. In this paper, we propose an autonomous video coding rate control mechanism where each camera sensor node can autonomously determine its coding rate in accordance with the location and velocity of target objects. For this purpose, we adopted a biological model, i.e., reaction-diffusion model, inspired by the similarity of biological spatial patterns and the spatial distribution of video coding rate. Through simulation and practical experiments, we verify the effectiveness of our proposal.
Strain rate effect on sooting characteristics in laminar counterflow diffusion flames
Wang, Yu
2016-01-20
The effects of strain rate, oxygen enrichment and fuel type on the sooting characteristics of counterflow diffusion flames were studied. The sooting structures and relative PAH concentrations were measured with laser diagnostics. Detailed soot modeling using recently developed PAH chemistry and surface reaction mechanism was performed and the results were compared with experimental data for ethylene flames, focusing on the effects of strain rates. The results showed that increase in strain rate reduced soot volume fraction, average size and peak number density. Increase in oxygen mole fraction increased soot loading and decreased its sensitivity on strain rate. The soot volume fractions of ethane, propene and propane flames were also measured as a function of global strain rate. The sensitivity of soot volume fraction to strain rate was observed to be fuel dependent at a fixed oxygen mole fraction, with the sensitivity being higher for more sooting fuels. However, when the soot loadings were matched at a reference strain rate for different fuels by adjusting oxygen mole fraction, the dependence of soot loading on strain rate became comparable among the tested fuels. PAH concentrations were shown to decrease with increase in strain rate and the dependence on strain rate is more pronounced for larger PAHs. Soot modeling was performed using detailed PAH growth chemistry with molecular growth up to coronene. A qualitative agreement was obtained between experimental and simulation results, which was then used to explain the experimentally observed strain rate effect on soot growth. However, quantitatively, the simulation result exhibits higher sensitivity to strain rate, especially for large PAHs and soot volume fractions.
Zhou, Xinhui; Zhang, Jiaran; Pan, Zhongli; Li, Daoliang
2018-05-14
Malachite green (MG) has been widely used in the aquaculture industry as a fungicide and parasiticide because of its high efficiency and low cost, and it is commonly found in aquatic products and environmental water. However, MG and its primary metabolite, leuco-malachite green (LMG), are also toxic inorganic contaminants that are hazardous to the health of humans and other organisms. A variety of methods have been proposed in recent years for detecting and monitoring MG and LMG. This article was compiled as a general review of the methods proposed for MG and LMG detection, and several important detection parameters, such as the limit of detection, recovery and relative standard deviation, were tabulated. The analytical methods for the determination of MG and LMG in various matrices include high-performance liquid chromatography separation-based methods, liquid chromatography tandem mass spectrometry, surface-enhanced Raman spectroscopy, electrochemical methods, immunological assays, spectrophotometry and fluorescent methods which were described in detail in this article. In addition, some sample preparation techniques were also described. This review can provide expert guidance to the reader on the advantages, disadvantages and applicability of the different methodologies. This review also discussed challenges and several perspectives on the future trends in the determination of MG and LMG.
Du, G; Lewis, M M; Kanekar, S; Sterling, N W; He, L; Kong, L; Li, R; Huang, X
2017-05-01
Both diffusion tensor imaging and the apparent transverse relaxation rate have shown promise in differentiating Parkinson disease from atypical parkinsonism (particularly multiple system atrophy and progressive supranuclear palsy). The objective of the study was to assess the ability of DTI, the apparent transverse relaxation rate, and their combination for differentiating Parkinson disease, multiple system atrophy, progressive supranuclear palsy, and controls. A total of 106 subjects (36 controls, 35 patients with Parkinson disease, 16 with multiple system atrophy, and 19 with progressive supranuclear palsy) were included. DTI and the apparent transverse relaxation rate measures from the striatal, midbrain, limbic, and cerebellar regions were obtained and compared among groups. The discrimination performance of DTI and the apparent transverse relaxation rate among groups was assessed by using Elastic-Net machine learning and receiver operating characteristic curve analysis. Compared with controls, patients with Parkinson disease showed significant apparent transverse relaxation rate differences in the red nucleus. Compared to those with Parkinson disease, patients with both multiple system atrophy and progressive supranuclear palsy showed more widespread changes, extending from the midbrain to striatal and cerebellar structures. The pattern of changes, however, was different between the 2 groups. For instance, patients with multiple system atrophy showed decreased fractional anisotropy and an increased apparent transverse relaxation rate in the subthalamic nucleus, whereas patients with progressive supranuclear palsy showed an increased mean diffusivity in the hippocampus. Combined, DTI and the apparent transverse relaxation rate were significantly better than DTI or the apparent transverse relaxation rate alone in separating controls from those with Parkinson disease/multiple system atrophy/progressive supranuclear palsy; controls from those with Parkinson
Edge flame instability in low-strain-rate counterflow diffusion flames
Energy Technology Data Exchange (ETDEWEB)
Park, June Sung; Hwang, Dong Jin; Park, Jeong; Kim, Jeong Soo; Kim, Sungcho [School of Mechanical and Aerospace Engineering, Sunchon National University, 315 Maegok-dong, Suncheon, Jeonnam 540-742 (Korea, Republic of); Keel, Sang In [Environment & amp; Energy Research Division, Korea Institute of Machinery and Materials, P.O. Box 101, Yusung-gu, Taejon 305-343 (Korea, Republic of); Kim, Tae Kwon [School of Mechanical & amp; Automotive Engineering, Keimyung University, 1000 Sindang-dong, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Noh, Dong Soon [Energy System Research Department, Korea Institute of Energy Research, 71-2 Jang-dong, Yusung-gu, Taejon 305-343 (Korea, Republic of)
2006-09-15
Experiments in low-strain-rate methane-air counterflow diffusion flames diluted with nitrogen have been conducted to study flame extinction behavior and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conductive heat loss, in addition to radiative loss, could be high at low global strain rates. The critical mole fraction at flame extinction is examined in terms of velocity ratio and global strain rate. Onset conditions of the edge flame oscillation and the relevant modes are also provided with global strain rate and nitrogen mole fraction in the fuel stream or in terms of fuel Lewis number. It is observed that flame length is intimately relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Lateral heat loss causes flame oscillation even at fuel Lewis number less than unity. Edge flame oscillations, which result from the advancing and retreating edge flame motion of the outer flame edge of low-strain-rate flames, are categorized into three modes: a growing, a decaying, and a harmonic-oscillation mode. A flame stability map based on the flame oscillation modes is also provided for low-strain-rate flames. The important contribution of lateral heat loss even to edge flame oscillation is clarified finally. (author)
Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates
Wu, Yixiang; Zou, Xingfu
2018-04-01
In this paper, we investigate a diffusive host-pathogen model with heterogeneous parameters and distinct dispersal rates for the susceptible and infected hosts. We first prove that the solution of the model exists globally and the model system possesses a global attractor. We then identify the basic reproduction number R0 for the model and prove its threshold role: if R0 ≤ 1, the disease free equilibrium is globally asymptotically stable; if R0 > 1, the solution of the model is uniformly persistent and there exists a positive (pathogen persistent) steady state. Finally, we study the asymptotic profiles of the positive steady state as the dispersal rate of the susceptible or infected hosts approaches zero. Our result suggests that the infected hosts concentrate at certain points which can be characterized as the pathogen's most favoured sites when the mobility of the infected host is limited.
Increasing inhibitory input increases neuronal firing rate: why and when? Diffusion process cases
Energy Technology Data Exchange (ETDEWEB)
Feng Jianfeng [COGS, Sussex University (United Kingdom)]. E-mail: jf218@cam.ac.uk; Wei Gang [Department of Mathematics, Hong Kong Baptist University, Hong Kong (China)]. E-mail gwei@math.hkbu.edu.hk
2001-09-21
Increasing inhibitory input to single neuronal models, such as the FitzHugh-Nagumo model and the Hodgkin-Huxley model, can sometimes increase their firing rates, a phenomenon which we term inhibition-boosted firing (IBF). Here we consider neuronal models with diffusion approximation inputs, i.e. they share the identical first- and second-order statistics of the corresponding Poisson process inputs. Using the integrate-and-fire model and the IF-FHN model, we explore theoretically how and when IBF can happen. For both models, it is shown that there is a critical input frequency at which the efferent firing rate is identical when the neuron receives purely excitatory inputs or exactly balanced inhibitory and excitatory inputs. When the input frequency is lower than the critical frequency, IBF occurs. (author)
Energy Technology Data Exchange (ETDEWEB)
Tringe, J.W., E-mail: tringe2@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA (United States); Ileri, N. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA (United States); Department of Chemical Engineering & Materials Science, University of California, Davis, CA (United States); Levie, H.W. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA (United States); Stroeve, P.; Ustach, V.; Faller, R. [Department of Chemical Engineering & Materials Science, University of California, Davis, CA (United States); Renaud, P. [Swiss Federal Institute of Technology, Lausanne, (EPFL) (Switzerland)
2015-08-18
Highlights: • WGA proteins in nanochannels modeled by Molecular Dynamics and Monte Carlo. • Protein surface coverage characterized by atomic force microscopy. • Models indicate transport characteristics depend strongly on surface coverage. • Results resolve of a four orders of magnitude difference in diffusion coefficient values. - Abstract: We use Molecular Dynamics and Monte Carlo simulations to examine molecular transport phenomena in nanochannels, explaining four orders of magnitude difference in wheat germ agglutinin (WGA) protein diffusion rates observed by fluorescence correlation spectroscopy (FCS) and by direct imaging of fluorescently-labeled proteins. We first use the ESPResSo Molecular Dynamics code to estimate the surface transport distance for neutral and charged proteins. We then employ a Monte Carlo model to calculate the paths of protein molecules on surfaces and in the bulk liquid transport medium. Our results show that the transport characteristics depend strongly on the degree of molecular surface coverage. Atomic force microscope characterization of surfaces exposed to WGA proteins for 1000 s show large protein aggregates consistent with the predicted coverage. These calculations and experiments provide useful insight into the details of molecular motion in confined geometries.
A photo-tunable membrane based on inter-particle crosslinking for decreasing diffusion rates
Li, Song
2015-01-01
Functional polymeric membranes are widely used to adjust and control the diffusion of molecules. Herein, photosensitive poly(hydroxycinnamic acid) (PHCA) microspheres, which were fabricated by an emulsification solvent-evaporation method, were embedded into an ethyl cellulose matrix to fabricate composite membranes with a photo-tunable property. The photoreaction of PHCA is based on the [2 + 2] cycloaddition of cinnamic moieties upon irradiation with 365 nm light. Intra-particle crosslinking in PHCA microspheres was confirmed in the solution phase, while inter-particle crosslinking between adjacent PHCA microspheres dominated the solid membrane phase. The inter-particle crosslinking turned down the permeability of the composite membranes by 74%. To prove the applicability of the designed system, the composite membrane was coated on a model drug reservoir tablet. Upon irradiating the tablet with UV light, the original permeability decreased by 57%, and consequently the diffusion rate of the cargo (Rhodamine B) from the tablet slowed down. Most importantly, the tablet showed sustained release for over 10 days. This controllability can be further tuned by adjusting the membrane thickness. Composite membranes showed excellent processing reproducibility together with consistent mechanical properties. These results demonstrate that the incorporation of photosensitive PHCA microspheres in polymeric membranes provides a promising photo-tunable material for different applications including coating and separation. This journal is © The Royal Society of Chemistry 2015.
Cendagorta, Joseph R; Powers, Anna; Hele, Timothy J H; Marsalek, Ondrej; Bačić, Zlatko; Tuckerman, Mark E
2016-11-30
Clathrate hydrates hold considerable promise as safe and economical materials for hydrogen storage. Here we present a quantum mechanical study of H 2 and D 2 diffusion through a hexagonal face shared by two large cages of clathrate hydrates over a wide range of temperatures. Path integral molecular dynamics simulations are used to compute the free-energy profiles for the diffusion of H 2 and D 2 as a function of temperature. Ring polymer molecular dynamics rate theory, incorporating both exact quantum statistics and approximate quantum dynamical effects, is utilized in the calculations of the H 2 and D 2 diffusion rates in a broad temperature interval. We find that the shape of the quantum free-energy profiles and their height relative to the classical free energy barriers at a given temperature, as well as the rate of diffusion, are strongly affected by competing quantum effects: above 25 K, zero-point energy (ZPE) perpendicular to the reaction path for diffusion between cavities decreases the quantum rate compared to the classical rate, whereas at lower temperatures tunneling outcompetes the ZPE and as a result the quantum rate is greater than the classical rate.
Leveraging tagging and rating for recommendation: RMF meets weighted diffusion on tripartite graphs
Li, Jianguo; Tang, Yong; Chen, Jiemin
2017-10-01
Recommender systems (RSs) have been a widely exploited approach to solving the information overload problem. However, the performance is still limited due to the extreme sparsity of the rating data. With the popularity of Web 2.0, the social tagging system provides more external information to improve recommendation accuracy. Although some existing approaches combine the matrix factorization models with the tag co-occurrence and context of tags, they neglect the issue of tag sparsity that would also result in inaccurate recommendations. Consequently, in this paper, we propose a novel hybrid collaborative filtering model named WUDiff_RMF, which improves regularized matrix factorization (RMF) model by integrating Weighted User-Diffusion-based CF algorithm(WUDiff) that obtains the information of similar users from the weighted tripartite user-item-tag graph. This model aims to capture the degree correlation of the user-item-tag tripartite network to enhance the performance of recommendation. Experiments conducted on four real-world datasets demonstrate that our approach significantly performs better than already widely used methods in the accuracy of recommendation. Moreover, results show that WUDiff_RMF can alleviate the data sparsity, especially in the circumstance that users have made few ratings and few tags.
International Nuclear Information System (INIS)
Urbach, H.; Flacke, S.; Keller, E.; Textor, J.; Berlis, A.; Reul, J.; Schild, H.H.; Hartmann, A.; Solymosi, L.
2000-01-01
Our purpose was to compare the detectability and detection rate of acute ischaemic cerebral hemisphere infarcts on CT and diffusion-weighted MRI (DWI). We investigated 32 consecutive patients with acute hemisphere stroke with unenhanced CT and DWI within 6 h of stroke onset. The interval between CT and DWI ranged from 15 to 180 min (mean 60 min). Infarct detectability on CT and DWI was determined by comparing the initial CT, DWI and later reference images in a consensus reading of five independent examiners. The ''true'' detection rate was assessed by analysing all single readings. Two patients had intracerebral haematomas on DWI and CT and were excluded. There were 27 patients with ischaemic infarcts; all were visible on DWI and proven by follow-up. DWI was negative in three patients without a final diagnosis of infarct (100 % sensitivity, 100 % specificity, χ 2 = 30, P 2 = 1.48, P = 0.224). With regard to the single readings (30 examinations x 5 examiners = 150 readings), 63 CT readings were true positive and 72 false negative (sensitivity 47 %, specificity 86 %, χ 2 = 2.88, P = 0.089). Of the DWI readings 128 were true positive and 7 false negative (sensitivity 95 %, specificity 87 %, χ 2 = 70.67, P < 0.0001). Interobserver agreement was substantial for CT (χ= 0.72, 95 % confidence interval, 0.6-0.84) and DWI (χ= 0.82, 95 % confidence interval, 0.46-1). Taken together, detectability and detection rate of acute (< 6 h) hemisphere infarcts are significantly higher with DWI than with CT. (orig.)
International Nuclear Information System (INIS)
Aleksiejūnas, R.; Gelžinytė, K.; Nargelas, S.; Jarašiūnas, K.; Vengris, M.; Armour, E. A.; Byrnes, D. P.; Arif, R. A.; Lee, S. M.; Papasouliotis, G. D.
2014-01-01
We report on diffusion-driven and excitation-dependent carrier recombination rate in multiple InGaN/GaN quantum wells by using photoluminescence, light-induced absorption, and diffraction techniques. We demonstrate gradually increasing with excitation carrier diffusivity and its correlation with the recombination rate. At low carrier densities, an increase in radiative emission and carrier lifetime was observed due to partial saturation of non-radiative recombination centers. However, at carrier densities above ∼5 × 10 18 cm −3 , a typical value of photoluminescence efficiency droop, a further increase of diffusivity forces the delocalized carriers to face higher number of fast non-radiative recombination centers leading to an increase of non-radiative losses
Energy Technology Data Exchange (ETDEWEB)
Aleksiejūnas, R.; Gelžinytė, K.; Nargelas, S., E-mail: saulius.nargelas@ff.vu.lt; Jarašiūnas, K. [Department of Semiconductor Optoelectronics, Institute of Applied Research, Vilnius University, Saulėtekio 9–III, 10222 Vilnius (Lithuania); Vengris, M. [Laser Research Center, Vilnius University, Saulėtekio 10, 10223 Vilnius (Lithuania); Armour, E. A.; Byrnes, D. P.; Arif, R. A.; Lee, S. M.; Papasouliotis, G. D. [Veeco Instruments, Turbodisc Operations, 394 Elizabeth Avenue, Somerset, New Jersey 08873 (United States)
2014-01-13
We report on diffusion-driven and excitation-dependent carrier recombination rate in multiple InGaN/GaN quantum wells by using photoluminescence, light-induced absorption, and diffraction techniques. We demonstrate gradually increasing with excitation carrier diffusivity and its correlation with the recombination rate. At low carrier densities, an increase in radiative emission and carrier lifetime was observed due to partial saturation of non-radiative recombination centers. However, at carrier densities above ∼5 × 10{sup 18} cm{sup −3}, a typical value of photoluminescence efficiency droop, a further increase of diffusivity forces the delocalized carriers to face higher number of fast non-radiative recombination centers leading to an increase of non-radiative losses.
Gray, Kishonna L.
2012-01-01
This article examines the response of minority gamers as they adopt new innovations in Xbox Live. Using diffusion of innovation theory, specific attention is given to gamers' rate of adoption of the new Xbox Live environment, which was a recent update to the Xbox Live interface. By employing virtual ethnography, observations, and interviews reveal…
Lu, Shih-Yuan; Yen, Yi-Ming
2002-02-01
A first-passage scheme is devised to determine the overall rate constant of suspensions under the non-diffusion-limited condition. The original first-passage scheme developed for diffusion-limited processes is modified to account for the finite incorporation rate at the inclusion surface by using a concept of the nonzero survival probability of the diffusing entity at entity-inclusion encounters. This nonzero survival probability is obtained from solving a relevant boundary value problem. The new first-passage scheme is validated by an excellent agreement between overall rate constant results from the present development and from an accurate boundary collocation calculation for the three common spherical arrays [J. Chem. Phys. 109, 4985 (1998)], namely simple cubic, body-centered cubic, and face-centered cubic arrays, for a wide range of P and f. Here, P is a dimensionless quantity characterizing the relative rate of diffusion versus surface incorporation, and f is the volume fraction of the inclusion. The scheme is further applied to random spherical suspensions and to investigate the effect of inclusion coagulation on overall rate constants. It is found that randomness in inclusion arrangement tends to lower the overall rate constant for f up to the near close-packing value of the regular arrays because of the inclusion screening effect. This screening effect turns stronger for regular arrays when f is near and above the close-packing value of the regular arrays, and consequently the overall rate constant of the random array exceeds that of the regular array. Inclusion coagulation too induces the inclusion screening effect, and leads to lower overall rate constants.
International Nuclear Information System (INIS)
Larin, K V; Tuchin, V V
2008-01-01
Functional imaging, monitoring and quantitative description of glucose diffusion in epithelial and underlying stromal tissues in vivo and controlling of the optical properties of tissues are extremely important for many biomedical applications including the development of noninvasive or minimally invasive glucose sensors as well as for therapy and diagnostics of various diseases, such as cancer, diabetic retinopathy, and glaucoma. Recent progress in the development of a noninvasive molecular diffusion biosensor based on optical coherence tomography (OCT) is described. The diffusion of glucose was studied in several epithelial tissues both in vitro and in vivo. Because OCT provides depth-resolved imaging of tissues with high in-depth resolution, the glucose diffusion is described not only as a function of time but also as a function of depth. (special issue devoted to application of laser technologies in biophotonics and biomedical studies)
Effect of macromolecular crowding on the rate of diffusion-limited ...
Indian Academy of Sciences (India)
Enzyme kinetics; Monte Carlo; percolation; random walk; obstacle. .... enzyme E, P remains on the same site but S is converted to P with unit probability. ..... is then qualitatively understood with the help of diffusion and percolation theory.
Anisotropic conductivity tensor imaging in MREIT using directional diffusion rate of water molecules
International Nuclear Information System (INIS)
Kwon, Oh In; Jeong, Woo Chul; Sajib, Saurav Z K; Kim, Hyung Joong; Woo, Eung Je
2014-01-01
Magnetic resonance electrical impedance tomography (MREIT) is an emerging method to visualize electrical conductivity and/or current density images at low frequencies (below 1 KHz). Injecting currents into an imaging object, one component of the induced magnetic flux density is acquired using an MRI scanner for isotropic conductivity image reconstructions. Diffusion tensor MRI (DT-MRI) measures the intrinsic three-dimensional diffusion property of water molecules within a tissue. It characterizes the anisotropic water transport by the effective diffusion tensor. Combining the DT-MRI and MREIT techniques, we propose a novel direct method for absolute conductivity tensor image reconstructions based on a linear relationship between the water diffusion tensor and the electrical conductivity tensor. We first recover the projected current density, which is the best approximation of the internal current density one can obtain from the measured single component of the induced magnetic flux density. This enables us to estimate a scale factor between the diffusion tensor and the conductivity tensor. Combining these values at all pixels with the acquired diffusion tensor map, we can quantitatively recover the anisotropic conductivity tensor map. From numerical simulations and experimental verifications using a biological tissue phantom, we found that the new method overcomes the limitations of each method and successfully reconstructs both the direction and magnitude of the conductivity tensor for both the anisotropic and isotropic regions. (paper)
International Nuclear Information System (INIS)
Danesi, P.R.; Horwitz, E.P.; Vandegrift, G.F.; Chiarizia, R.
1981-01-01
Equations describing the permeability of a liquid membrane to metal cations have been derived taking into account aqueous diffusion, membrane diffusion, and interfacial chemical reactions as simultaneous permeability controlling factors. Diffusion and chemical reactions have been coupled by a simple model analogous to the one previously described by us to represent liquid-liquid extraction kinetics. The derived equations, which make use of experimentally determined interfacial reaction mechanisms, qualitatively fit unexplained literature data regarding Cu 2+ transfer through liquid membranes. Their use to predict and optimize membrane permeability in practical separation processes by setting the appropriate concentration of the membrane carrier [LIX 64 (General Mills), a commercial β-hydroxy-oxime] and the pH of the aqueous copper feed solution is briefly discussed. 4 figures
International Nuclear Information System (INIS)
Tokoro, K.; Wikstrom, N.P.; Ojo, O.A.; Chaturvedi, M.C.
2008-01-01
A microstructural study was performed on transient liquid phase (TLP) bonded Waspaloy superalloy with a Ni-Cr-B filler. The applicability of a diffusion model based on Fick's second law of diffusion to determine the time required for complete isothermal solidification (t f ) was investigated. Over the temperature range of 1065-1110 deg. C, experimental observations of t f were in reasonable agreement with t f values predicted by the diffusion model. However, a notable deviation was observed in joints prepared between 1175 and 1225 deg. C in that the rate of isothermal solidification was reduced at these temperatures resulting in the formation of a centerline eutectic-type microconstituent, which in contrast, was prevented from forming after holding the brazing assembly for an equivalent bonding time at a lower temperature of 1145 deg. C. Boride particles were observed as part of the eutectic product, which suggested that diffusion of boron out of the liquated insert was also reduced at these higher temperatures. A decrease in solubility of the melting point depressing solute, boron, with increase in temperature is suggested to be an important factor contributing to the reduction in isothermal solidification rate observed at the higher bonding temperatures
Diffusion Modeling of Cooling Rates of Relict Olivine in Semarkona Chondrules
Hewins, R. H.; Ganguly, J.; Mariani, E.
2009-03-01
Diffusive exchange profiles between relict olivine and melt-grown olivine in Semarkona Type IIA chondrules were oriented by EBSD to correct D. Results for Fe-Mg (D from Dohmen) and Cr (Ito and Ganguly) are concordant at 300°-400°C/hr.
Energy Technology Data Exchange (ETDEWEB)
Aminfar, Habib, E-mail: hh_aminfar@tabrizu.ac.ir [Faculty of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of); Mohammadpourfard, Mousa, E-mail: Mohammadpour@tabrizu.ac.ir [Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz 5166616471 (Iran, Islamic Republic of); Khajeh, Kosar, E-mail: k.khajeh.2005@tabrizu.ac.ir [Faculty of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of)
2017-03-15
It is well-known that the Low Density Lipoprotein (LDL) can accumulate and penetrate into the arterial wall. Here, we have investigated the diffusion rate of macromolecules across the porous layer of blood vessel under the effects of magnetic force. By using a finite volume technique, it was found that magnetic field makes alterations in diffusion rate of LDLs, also surface concentration of macromolecules on the walls. As well, the influence of different value of Re and Sc number in the presence of a magnetic field have shown as nondimensional concentration profiles. Magnetic field considered as a body force, porous layer simulated by using Darcy's law and the blood regarded as nano fluid which was examined as a single phase model. - Highlights: • LDLs mass transfer across the arterial wall under magnetic field has simulated numerically. • Arterial wall assumed as a homogeneous porous layer by using Darcy's law. • Blood containing 4% Vol. Fe{sub 3}O{sub 4} regarded as nanofluid and has examined by single phase model. • Magnetic field significantly affects the diffusion rate of LDLs through porous arterial wall.
Mueller-Klieser, W.
1984-01-01
A method has been developed for the quantitative evaluation of oxygen tension (PO2) distributions in multicellular spheroids measured with O2-sensitive microelectrodes. The experimental data showed that multicellular tumor spheroids in stirred growth media were characterized by a diffusion-depleted zone surrounding the spheroids. This zone was elicited by an unstirred layer of medium next to the spheroid leading to a continuous decrease in the PO2 values from the bulk medium towards the spher...
Colson, Russell O.; Haskin, Larry A.; Crane, Daniel
1990-01-01
Results are presented on determinations of reduction potentials and their temperature dependence of selected ions in diopsidic melt, by using linear sweep voltammetry. Diffusion coefficients were measured for cations of Eu, Mn, Cr, and In. Enthalpies and entropies of reduction were determined for the cations V(V), Cr(3+), Mn(2+), Mn(3+), Fe(2+), Cu(2+), Mo(VI), Sn(IV), and Eu(3+). Reduction potentials were used to study the structural state of cations in the melt.
International Nuclear Information System (INIS)
Jung, Inhwa; Kim, Doyeon; Yun, Yongsik; Chung, Suengyoung; Lee, Jaeyoung; Tak, Yongsug
2004-01-01
Methanol crossover rate through proton exchange membrane (Nafion 117) was investigated with a newly designed electrochemical stripping cell. Nanosize Pt electrode was prepared by the electroless deposition. Distinct electrocatalytic oxidation behaviors of methanol inside membrane were similar to the methanol oxidation in aqueous electrolyte, except adsorption/desorption of hydrogen. The amount of methanol diffused through membrane was calculated from the charge of methanol oxidation during repetitive cyclic voltammetry (CV) and methanol crossover rate was estimated to be 0.69 nmol/s
Fischer, T W; Burmeister, G; Schmidt, H W; Elsner, P
2004-02-01
In addition to the well-known hormonal influences of testosterone and dihydrotestosterone on the hair cycle, melatonin has been reported to have a beneficial effect on hair growth in animals. The effect of melatonin on hair growth in humans has not been investigated so far. To examine whether topically applied melatonin influences anagen and telogen hair rate in women with androgenetic or diffuse hair loss. A double-blind, randomized, placebo-controlled study was conducted in 40 women suffering from diffuse alopecia or androgenetic alopecia. A 0.1% melatonin or a placebo solution was applied on the scalp once daily for 6 months and trichograms were performed to assess anagen and telogen hair rate. To monitor effects of treatment on physiological melatonin levels, blood samples were taken over the whole study period. Melatonin led to a significantly increased anagen hair rate in occipital hair in women with androgenetic hair loss compared with placebo (n=12; P=0.012). For frontal hair, melatonin gave a significant increase in the group with diffuse alopecia (n=28; P=0.046). The occipital hair samples of patients with diffuse alopecia and the frontal hair counts of those with androgenetic alopecia also showed an increase of anagen hair, but differences were not significant. Plasma melatonin levels increased under treatment with melatonin, but did not exceed the physiological night peak. To the authors' knowledge, this pilot study is the first to show that topically applied melatonin might influence hair growth in humans in vivo. The mode of action is not known, but the effect might result from an induction of anagen phase.
Lu, Benzhuo; Zhou, Y.C.
2011-01-01
The effects of finite particle size on electrostatics, density profiles, and diffusion have been a long existing topic in the study of ionic solution. The previous size-modified Poisson-Boltzmann and Poisson-Nernst-Planck models are revisited in this article. In contrast to many previous works that can only treat particle species with a single uniform size or two sizes, we generalize the Borukhov model to obtain a size-modified Poisson-Nernst-Planck (SMPNP) model that is able to treat nonuniform particle sizes. The numerical tractability of the model is demonstrated as well. The main contributions of this study are as follows. 1), We show that an (arbitrarily) size-modified PB model is indeed implied by the SMPNP equations under certain boundary/interface conditions, and can be reproduced through numerical solutions of the SMPNP. 2), The size effects in the SMPNP effectively reduce the densities of highly concentrated counterions around the biomolecule. 3), The SMPNP is applied to the diffusion-reaction process for the first time, to our knowledge. In the case of low substrate density near the enzyme reactive site, it is observed that the rate coefficients predicted by SMPNP model are considerably larger than those by the PNP model, suggesting both ions and substrates are subject to finite size effects. 4), An accurate finite element method and a convergent Gummel iteration are developed for the numerical solution of the completely coupled nonlinear system of SMPNP equations. PMID:21575582
International Nuclear Information System (INIS)
Matsuoka, Shingo; Nakamura, Hirone; Tamura, Takaaki; Fujii, Toshihiro.
1984-01-01
A flowing afterglow apparatus was constructed and the operation of the afterglow system including data analysis was tested by measuring the rate constants for the reactions N + + NO, N 2 + + NO, He + + N 2 , and SF 6 + e; the results were 5.8 x 10 -10 , 3.9 x 10 -10 , 1.20 x 10 -9 , and 2.1 x 10 -7 cm 3 s -1 respectively. In the measurements an extraction voltage for ion sampling was not applied to the nose cone in order not to introduce an electric field into the reaction region. A ''non-ambipolar'' model developed by us was used for the data analysis of the ion/molecule reactions. For the data analysis of the electron attachment, a typical curve fit mehtod to the product ion signal was used. However, no theoretical curves fit the experimental points. This disagreement is attributed to a change of the ion-sampling efficiency through the nose-cone aperture arising from a change of the electron-dominated plasma to a negative-ion-dominated plasma with an increasing flow rate of SF 6 . Nevertheless, the attachment rate could be determined by fitting the theoretical and experimantal curves in the limited region of the SF 6 flow rate where the negative-ion-dominated plasma is established at the sampling aperture. All the rate constants obtained here agree reasonably well with literature values. Next, errors in the positive ion/molecule reaction rate constants, which would occur if the diffusion coefficients of the ions and neutrals each have a + 10 % error were calculated for the flow model to be -0.4 and +1.2 % respectively, demonstrating that these parameters are not important in the analysis of data. This insensitivity explains why the nose-cone voltage applied in a typical flowing afterglow operation has not caused a significant error in the published rate constants although it disturbs the ion diffusive behavior. (author)
International Nuclear Information System (INIS)
Lee, K.R.
1992-01-01
This paper reports that when a 90Mo-10Ni alloy (by wt) liquid phase sintered at 1400 degrees C is heat-treated at 1400 degrees C after replacing the matrix with a melt of 44Ni-34Mo-22W (by wt), the liquid films between the grains migrate, leaving behind an Mo alloy enriched with W. The ratio of the lattice diffusivity of W in Mo, D, to the initial migration velocity, v. (D/v) is estimated to be between 0.03 and 0.18 angstrom. Hence it appears that there is no lattice diffusion of W ahead of the migrating liquid film, and is such a case the driving force has been suggested to be the chemical free energy. But the observed v is approximately same as that to be expected if the driving force is assumed to be diffusional coherency strain energy. Likewise, a previous study of den Broeder and Nakahara shows that the rate of chemically-induced grain boundary migration in Cu-Ni shows a smooth variation with temperature as D/v decreases from values much larger than the interatomic spacing to values much smaller with decreasing temperature. The coherency strain energy thus appears to be a general driving force for the migration even when the apparent diffusion length indicated by D/v is smaller than the interatomic spacing
Modelling of a 400 kW natural gas diffusion flame using finite-rate chemistry schemes
International Nuclear Information System (INIS)
Mueller, Christian; Kremer, Hans; Brink, Anders; Kilpinen, Pia; Hupa, Mikko
1999-01-01
The Eddy-Dissipation Combustion Model combined with three different reaction mechanisms is applied to simulate a fuel-rich 400 kW natural gas diffusion flame. The chemical schemes include a global 2-step and a global 4-step approach as well as a reduced 4-step mechanism systematically derived from an elementary scheme. The species and temperature distributions resulting from the different schemes are studied in detail and compared to each other and to experiments. Furthermore the method of implementing finite-rate chemistry to the Eddy-Dissipation Combustion Model is discussed. (author)
Rantala, Olavi
1992-01-01
The paper presents a model ofexchange rate movements within a specified exchange rate band enforced by central bank interventions. The model is based on the empirical observation that the exchange rate has usually been strictly inside the band, at least in Finland. In this model the distribution of the exchange rate is truncated lognormal from the edges towards the center of the band and hence quite different from the bimodal distribution of the standard target zone model. The model is estima...
Experimental study of the inverse diffusion flame using high repetition rate OH/acetone PLIF and PIV
Elbaz, Ayman M.; Roberts, William L.
2015-01-01
Most previous work on inverse diffusion flames (IDFs) has focused on laminar IDF emissions and the soot formation characteristics. Here, we investigate the characteristics and structure of methane IDFs using high speed planar laser-induced fluorescence (PLIF) images of OH, particle image velocimetry (PIV), and acetone PLIF imaging for non-reacting cases. First, the flame appearance was investigated with fixed methane loading (mass flux) but with varying airflow rates, yielding a central air jet Reynolds number (Re) of 1,000 to 6,000 (when blow-off occurs). Next, it was investigated a fixed central air jet Re of 4500, but with varied methane mass flux such that the global equivalence ratio spanned 0.5 to 4. It was observed that at Re smaller than 2000, the inner air jet promotes the establishment of an inverse diffusion flame surrounded by a normal diffusion flame. However, when the Re was increased to 2500, two distinct zones became apparent in the flame, a lower entrainment zone and an upper mixing and combustion zone. 10 kHz OH-PLIF images, and 2D PIV allow the identification of the fate and spatial flame structure. Many flame features were identified and further analyzed using simple but effective image processing methods, where three types of structure in all the flames investigated here: flame holes or breaks; closures; and growing kernels. Insights about the rate of evolution of these features, the dynamics of local extinction, and the sequence of events that lead to re-ignition are reported here. In the lower entrainment zone, the occurrence of the flame break events is counterbalanced by closure events, and the edge propagation appears to control the rate at which the flame holes and closures propagate. The rate of propagation of holes was found to be statistically faster than the rate of closure. As the flames approach blow-off, flame kernels become the main mechanism for flame re-ignition further downstream. The simultaneous OH-PLIF/Stereo PIV
Experimental study of the inverse diffusion flame using high repetition rate OH/acetone PLIF and PIV
Elbaz, Ayman M.
2015-10-29
Most previous work on inverse diffusion flames (IDFs) has focused on laminar IDF emissions and the soot formation characteristics. Here, we investigate the characteristics and structure of methane IDFs using high speed planar laser-induced fluorescence (PLIF) images of OH, particle image velocimetry (PIV), and acetone PLIF imaging for non-reacting cases. First, the flame appearance was investigated with fixed methane loading (mass flux) but with varying airflow rates, yielding a central air jet Reynolds number (Re) of 1,000 to 6,000 (when blow-off occurs). Next, it was investigated a fixed central air jet Re of 4500, but with varied methane mass flux such that the global equivalence ratio spanned 0.5 to 4. It was observed that at Re smaller than 2000, the inner air jet promotes the establishment of an inverse diffusion flame surrounded by a normal diffusion flame. However, when the Re was increased to 2500, two distinct zones became apparent in the flame, a lower entrainment zone and an upper mixing and combustion zone. 10 kHz OH-PLIF images, and 2D PIV allow the identification of the fate and spatial flame structure. Many flame features were identified and further analyzed using simple but effective image processing methods, where three types of structure in all the flames investigated here: flame holes or breaks; closures; and growing kernels. Insights about the rate of evolution of these features, the dynamics of local extinction, and the sequence of events that lead to re-ignition are reported here. In the lower entrainment zone, the occurrence of the flame break events is counterbalanced by closure events, and the edge propagation appears to control the rate at which the flame holes and closures propagate. The rate of propagation of holes was found to be statistically faster than the rate of closure. As the flames approach blow-off, flame kernels become the main mechanism for flame re-ignition further downstream. The simultaneous OH-PLIF/Stereo PIV
International Nuclear Information System (INIS)
Rehman, Nasir; Shashiashvili, Malkhaz
2009-01-01
The classical Garman-Kohlhagen model for the currency exchange assumes that the domestic and foreign currency risk-free interest rates are constant and the exchange rate follows a log-normal diffusion process.In this paper we consider the general case, when exchange rate evolves according to arbitrary one-dimensional diffusion process with local volatility that is the function of time and the current exchange rate and where the domestic and foreign currency risk-free interest rates may be arbitrary continuous functions of time. First non-trivial problem we encounter in time-dependent case is the continuity in time argument of the value function of the American put option and the regularity properties of the optimal exercise boundary. We establish these properties based on systematic use of the monotonicity in volatility for the value functions of the American as well as European options with convex payoffs together with the Dynamic Programming Principle and we obtain certain type of comparison result for the value functions and corresponding exercise boundaries for the American puts with different strikes, maturities and volatilities.Starting from the latter fact that the optimal exercise boundary curve is left continuous with right-hand limits we give a mathematically rigorous and transparent derivation of the significant early exercise premium representation for the value function of the American foreign exchange put option as the sum of the European put option value function and the early exercise premium.The proof essentially relies on the particular property of the stochastic integral with respect to arbitrary continuous semimartingale over the predictable subsets of its zeros. We derive from the latter the nonlinear integral equation for the optimal exercise boundary which can be studied by numerical methods
Hernandez-Perez, Ruth; García-Cordero, José L; Escobar, Juan V
2017-12-01
The evaporation of droplets can give rise to a wide range of interesting phenomena in which the dynamics of the evaporation are crucial. In this work, we find simple scaling laws for the evaporation dynamics of axisymmetric droplets pinned on millimeter-sized pillars. Different laws are found depending on whether evaporation is limited by the diffusion of vapor molecules or by the transfer rate across the liquid-vapor interface. For the diffusion-limited regime, we find that a mass-loss rate equal to 3/7 of that of a free-standing evaporating droplet brings a good balance between simplicity and physical correctness. We also find a scaling law for the evaporation of multicomponent solutions. The scaling laws found are validated against experiments of the evaporation of droplets of (1) water, (2) blood plasma, and (3) a mixture of water and polyethylene glycol, pinned on acrylic pillars of different diameters. These results shed light on the macroscopic dynamics of evaporation on pillars as a first step towards the understanding of other complex phenomena that may be taking place during the evaporation process, such as particle transport and chemical reactions.
Hernandez-Perez, Ruth; García-Cordero, José L.; Escobar, Juan V.
2017-12-01
The evaporation of droplets can give rise to a wide range of interesting phenomena in which the dynamics of the evaporation are crucial. In this work, we find simple scaling laws for the evaporation dynamics of axisymmetric droplets pinned on millimeter-sized pillars. Different laws are found depending on whether evaporation is limited by the diffusion of vapor molecules or by the transfer rate across the liquid-vapor interface. For the diffusion-limited regime, we find that a mass-loss rate equal to 3/7 of that of a free-standing evaporating droplet brings a good balance between simplicity and physical correctness. We also find a scaling law for the evaporation of multicomponent solutions. The scaling laws found are validated against experiments of the evaporation of droplets of (1) water, (2) blood plasma, and (3) a mixture of water and polyethylene glycol, pinned on acrylic pillars of different diameters. These results shed light on the macroscopic dynamics of evaporation on pillars as a first step towards the understanding of other complex phenomena that may be taking place during the evaporation process, such as particle transport and chemical reactions.
Role of hydraulic diffusivity in the decrease of weathering rates over time
Pacheco, F.A.L.; van der Weijden, C.H.
2014-01-01
Springs emerging within massifs of crystalline rocks were monitored for discharge rate (Q), and the Q values combined with geomorphic and hydrographic parameters in a hydrologic model to calculate hydraulic conductivity (K) and effective porosity (ne) of the spring watersheds. The spring waters,
On the rate of triplet excitation transfer in the diffuse limit
International Nuclear Information System (INIS)
Davidovich, M.A.; Knox, R.S.
1979-11-01
The usefulness of spectral data in estimating intermolecular triplet excitation transfer rates in found to be rather limited and to depend explicitly on the mechaisms which allow the optical transitions. Necessary conditions for the validity of such use of spectra are given, and the otherwise required correction factors are discussed and estimated. (Author) [pt
International Nuclear Information System (INIS)
BAKER, DR; STAEBLER, GM; PETTY, CC; GREENFIELD, CM; LUCE, TC
2003-01-01
OAK-B135 The gyrokinetic equations predict that various drift type waves or modes can be unstable in a tokamak. For some of these modes, such as the ion temperature gradient (ITG) mode and the electron temperature gradient mode, there exists a critical gradient, above which the mode is unstable. Since the existence of unstable modes can cause increased transport, plasmas which are centrally heated tend to increase in temperature gradient until the modes become unstable. Under some conditions the increased transport can fix the gradient at the critical value. here they present a comparison between the measured ion temperature gradients and the critical gradient as calculated by a gyrokinetic linear stability (GKS) code. They also present the maximum linear growth rate as calculated by this code for comparison to experimentally derived transport coefficients. The results show that for low confinement mode (L-mode) discharges, the measured ion temperature gradient is significantly greater than the GKS calculated critical gradient over a large region of the plasma. This is the same region of the plasma where the ion thermal diffusivity is large. For high confinement mode (H-mode) discharges the ion temperature gradient is closer to the critical gradient, but often still greater than the critical gradient over some region. For the best H-mode discharges, the ion temperature is less than or equal to the critical gradient over the whole plasma. In general they find that the position in the plasma where the ion thermal diffusivity starts to increase rapidly is where the maximum linear growth rate is greater than the E x B shearing rate
Tomkiewicz, Alex C; Tamimi, Mazin A; Huq, Ashfia; McIntosh, Steven
2015-01-01
The possible link between oxygen surface exchange rate and bulk oxygen anion diffusivity in mixed ionic and electronic conducting oxides is a topic of great interest and debate. While a large body of experimental evidence and theoretical analyses support a link, observed differences between bulk and surface composition of these materials are hard to reconcile with this observation. This is further compounded by potential problems with simultaneous measurement of both parameters. Here we utilize separate techniques, in situ neutron diffraction and pulsed isotopic surface exchange, to examine bulk ion mobility and surface oxygen exchange rates of three Ruddlesden-Popper phases, general form A(n-1)A(2)'B(n)O(3n+1), A(n-1)A(2)'B(n)X(3n+1); LaSrCo(0.5)Fe(0.5)O(4-δ) (n = 1), La(0.3)Sr(2.7)CoFeO(7-δ) (n = 2) and LaSr3Co(1.5)Fe(1.5)O(10-δ) (n = 3). These measurements are complemented by surface composition determination via high sensitivity-low energy ion scattering. We observe a correlation between bulk ion mobility and surface exchange rate between materials. The surface exchange rates vary by more than one order of magnitude with high anion mobility in the bulk of an oxygen vacancy-rich n = 2 Ruddlesden-Popper material correlating with rapid oxygen exchange. This is in contrast with the similar surface exchange rates which we may expect due to similar surface compositions across all three samples. We conclude that experimental limitations lead to inherent convolution of surface and bulk rates, and that surface exchange steps are not likely to be rate limiting in oxygen incorporation.
Directory of Open Access Journals (Sweden)
Ali Mohammad Rabea
2015-04-01
Full Text Available In high-conversion atom transfer radical polymerization (ATRP, all the reactions, such as radical termination, radical deactivation, dormant chain activation, monomer propagation, etc. could become diffusion controlled sooner or later, depending on relative diffusivities of the involved reacting species. These diffusion-controlled reactions directly affect the rate of polymerization and the control of polymer molecular weight. A model is developed to investigate the influence of diffusion-controlled reactions on the high conversion ATRP kinetics. Model simulation reveals that diffusion-controlled termination slightly increases the rate, but it is the diffusion-controlled deactivation that causes auto-acceleration in the rate (“gel effect” and loss of control. At high conversions, radical chains are “trapped” because of high molecular weight. However, radical centers can still migrate through (1 radical deactivation–activation cycles and (2 monomer propagation, which introduce “residual termination” reactions. It is found that the “residual termination” does not have much influence on the polymerization kinetics. The migration of radical centers through propagation can however facilitate catalytic deactivation of radicals, which improves the control of polymer molecular weight to some extent. Dormant chain activation and monomer propagation also become diffusion controlled and finally stop the polymerization when the system approaches its glass state.
Podladchikova, T.; Shprits, Y.; Kellerman, A. C.
2015-12-01
The Kalman filter technique combines the strengths of new physical models of the Earth's radiation belts with long-term spacecraft observations of electron fluxes and therefore provide an extremely useful method for the analysis of the state and evolution of the electron radiation belts. However, to get the reliable data assimilation output, the Kalman filter application is confronted with a set of fundamental problems. E.g., satellite measurements are usually limited to a single location in space, which confines the reconstruction of the global evolution of the radiation environment. The uncertainties arise from the imperfect description of the process dynamics and the presence of observation errors, which may cause the failure of data assimilation solution. The development of adaptive Kalman filter that combines the Van Allen Probes data and 3-D VERB code, its accurate customizations in the reconstruction of model describing the phase space density (PSD) evolution, extension of the possibilities to use measurement information, and the model adjustment by developing the identification techniques of model and measurement errors allowed us to reveal hidden and implicit regularities of the PSD dynamics and obtain quantitative and qualitative estimates of radial, energy and pitch angle diffusion characteristics from satellite observations. In this study we propose an approach to estimate radial, energy and pitch angle diffusion rates, as well as the direction of their propagation.
Diffusively cooled thin-sheath high-repetition-rate TEA and TEMA lasers
Yatsiv, Shaul; Gabay, Amnon; Sintov, Yoav
1993-05-01
Transverse electric atmospheric (TEA), or multi atmospheric (TEMA) lasers deliver intense short laser pulses of considerable energies. Recurrent high repetition rate pulse trains afford substantial average power levels. In a high rep-rate operation the gas flows across the cavity and is externally cooled to maintain a reasonably low temperature. The gas flow gear and heat exchanger are bulky and costly. In this work we present a repetitively pulsed TEA or TEMA laser that combines energy and peak power features in an individual pulse with the substantial average power levels of a pulse train in a thin layer of gas. Excess heat is disposed of, by conduction through the gas, to cooled enclosing walls. The gas does not flow. The method applies to vibrational transition molecular lasers in the infrared, where elevated temperatures are deleterious to the laser operation. The gist of the method draws on the law that heat conductivity in gases does not depend on their pressure. The fact lends unique operational flexibility and compactness, desirable for industrial and research purposes.
Influence of Ni Catalyst Layer and TiN Diffusion Barrier on Carbon Nanotube Growth Rate
Directory of Open Access Journals (Sweden)
Mérel Philippe
2010-01-01
Full Text Available Abstract Dense, vertically aligned multiwall carbon nanotubes were synthesized on TiN electrode layers for infrared sensing applications. Microwave plasma-enhanced chemical vapor deposition and Ni catalyst were used for the nanotubes synthesis. The resultant nanotubes were characterized by SEM, AFM, and TEM. Since the length of the nanotubes influences sensor characteristics, we study in details the effects of changing Ni and TiN thickness on the physical properties of the nanotubes. In this paper, we report the observation of a threshold Ni thickness of about 4 nm, when the average CNT growth rate switches from an increasing to a decreasing function of increasing Ni thickness, for a process temperature of 700°C. This behavior is likely related to a transition in the growth mode from a predominantly “base growth” to that of a “tip growth.” For Ni layer greater than 9 nm the growth rate, as well as the CNT diameter, variations become insignificant. We have also observed that a TiN barrier layer appears to favor the growth of thinner CNTs compared to a SiO2 layer.
Directory of Open Access Journals (Sweden)
M. Abo-Elmagd
2014-10-01
Full Text Available The natural radon decay, leakage and back diffusion are the main removal processes of radon from its container. Ignoring these processes leads to underestimate the measured value of radon related parameters like exhalation rate and radium content. This work is aimed to evaluate two different radon chambers through determining their leakage rate λv and evaluation of radon source by determine its back diffusion rate λb inside the evaluated radon chambers as well as a small sealed cup. Two different methods are adapted for measuring both the leakage rate and the back diffusion rate. The leakage rate can be determined from the initial slope of the radon decay curve or from the exponential fitting of the whole decay curve. This can be achieved if a continuous monitoring of radon concentration inside the chamber is available. Also, the back diffusion rate is measured by sealing the radon source in the chamber and used the initial slope of the buildup curve to determine λb and therefore the exhalation rate of the source. This method was compared with simple equation for λb based on the ratio of the source to the chamber volume. The obtained results are applied to ceramic tile as an important radon source in homes. The measurement is targeted the ceramic glaze before and after firing as well as the obtained tile after adhere the glaze on the tile main body. Also, six different tile brands from Egyptian market are subjected to the study for comparison.
Directory of Open Access Journals (Sweden)
Karima Schwab
2018-01-01
Full Text Available α-Synuclein (α-Syn aggregation is a pathological feature of synucleinopathies, neurodegenerative disorders that include Parkinson’s disease (PD. We have tested whether N,N,N′,N′-tetramethyl-10H-phenothiazine-3,7-diaminium bis(hydromethanesulfonate (leuco-methylthioninium bis(hydromethanesulfonate; LMTM, a tau aggregation inhibitor, affects α-Syn aggregation in vitro and in vivo. Both cellular and transgenic models in which the expression of full-length human α-Syn (h-α-Syn fused with a signal sequence peptide to promote α-Syn aggregation were used. Aggregated α-Syn was observed following differentiation of N1E-115 neuroblastoma cells transfected with h-α-Syn. The appearance of aggregated α-Syn was inhibited by LMTM, with an EC50 of 1.1 μM, with minimal effect on h-α-Syn mRNA levels being observed. Two independent lines of mice (L58 and L62 transgenic for the same fusion protein accumulated neuronal h-α-Syn that, with aging, developed into fibrillary inclusions characterized by both resistance to proteinase K (PK-cleavage and their ability to bind thiazin red. There was a significant decrease in α-Syn-positive neurons in multiple brain regions following oral treatment of male and female mice with LMTM administered daily for 6 weeks at 5 and 15 mg MT/kg. The early aggregates of α-Syn and the late-stage fibrillar inclusions were both susceptible to inhibition by LMTM, a treatment that also resulted in the rescue of movement and anxiety-related traits in these mice. The results suggest that LMTM may provide a potential disease modification therapy in PD and other synucleinopathies through the inhibition of α-Syn aggregation.
Kovtyukh, Alexander S.
2016-11-01
From the data on the fluxes and energy spectra of protons with an equatorial pitch angle of α0 ≈ 90° during quiet and slightly disturbed (Kp ≤ 2) periods, I directly calculated the value DLL, which is a measure of the rate of radial transport (diffusion) of trapped particles. This is done by successively solving the systems (chains) of integrodifferential equations which describe the balance of radial transport/acceleration and ionization losses of low-energy protons of the stationary belt. This was done for the first time. For these calculations, I used data of International Sun-Earth Explorer 1 (ISEE-1) for protons with an energy of 24 to 2081 keV at L = 2-10 and data of Explorer-45 for protons with an energy of 78.6 to 872 keV at L = 2-5. Ionization losses of protons (Coulomb losses and charge exchange) were calculated on the basis of modern models of the plasmasphere and the exosphere. It is shown that for protons with μ from ˜ 0.7 to ˜ 7 keV nT-1 at L ≈ 4.5-10, the functions of DLL can be approximated by the following equivalent expressions: DLL ≈ 4.9 × 10-14μ-4.1L8.2 or DLL ≈ 1.3 × 105(EL)-4.1 or DLL ≈ 1.2 × 10-9fd-4.1, where fd is the drift frequency of the protons (in mHz), DLL is measured in s-1, E is measured in kiloelectronvolt and μ is measured in kiloelectronvolt per nanotesla. These results are consistent with the radial diffusion of particles under the action of the electric field fluctuations (pulsations) in the range of Pc6 and contradict the mechanism of the radial diffusion of particles under the action of sudden impulses (SIs) of the magnetic field and also under the action of substorm impulses of the electric field. During magnetic storms DLL increases, and the expressions for DLL obtained here can change completely.
Directory of Open Access Journals (Sweden)
A. S. Kovtyukh
2016-11-01
Full Text Available From the data on the fluxes and energy spectra of protons with an equatorial pitch angle of α0 ≈ 90° during quiet and slightly disturbed (Kp ≤ 2 periods, I directly calculated the value DLL, which is a measure of the rate of radial transport (diffusion of trapped particles. This is done by successively solving the systems (chains of integrodifferential equations which describe the balance of radial transport/acceleration and ionization losses of low-energy protons of the stationary belt. This was done for the first time. For these calculations, I used data of International Sun–Earth Explorer 1 (ISEE-1 for protons with an energy of 24 to 2081 keV at L = 2–10 and data of Explorer-45 for protons with an energy of 78.6 to 872 keV at L = 2–5. Ionization losses of protons (Coulomb losses and charge exchange were calculated on the basis of modern models of the plasmasphere and the exosphere. It is shown that for protons with μ from ∼ 0.7 to ∼ 7 keV nT−1 at L ≈ 4.5–10, the functions of DLL can be approximated by the following equivalent expressions: DLL ≈ 4.9 × 10−14μ−4.1L8.2 or DLL ≈ 1.3 × 105(EL−4.1 or DLL ≈ 1.2 × 10−9fd−4.1, where fd is the drift frequency of the protons (in mHz, DLL is measured in s−1, E is measured in kiloelectronvolt and μ is measured in kiloelectronvolt per nanotesla. These results are consistent with the radial diffusion of particles under the action of the electric field fluctuations (pulsations in the range of Pc6 and contradict the mechanism of the radial diffusion of particles under the action of sudden impulses (SIs of the magnetic field and also under the action of substorm impulses of the electric field. During magnetic storms DLL increases, and the expressions for DLL obtained here can change completely.
Energy Technology Data Exchange (ETDEWEB)
Kovtyukh, Alexander S. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics
2016-07-01
From the data on the fluxes and energy spectra of protons with an equatorial pitch angle of α{sub 0} ∼ 90 during quiet and slightly disturbed (Kp≤2) periods, I directly calculated the value D{sub LL}, which is a measure of the rate of radial transport (diffusion) of trapped particles. This is done by successively solving the systems (chains) of integrodifferential equations which describe the balance of radial transport/acceleration and ionization losses of low-energy protons of the stationary belt. This was done for the first time. For these calculations, I used data of International Sun-Earth Explorer 1 (ISEE-1) for protons with an energy of 24 to 2081 keV at L = 2-10 and data of Explorer-45 for protons with an energy of 78.6 to 872 keV at L = 2-5. Ionization losses of protons (Coulomb losses and charge exchange) were calculated on the basis of modern models of the plasmasphere and the exosphere. It is shown that for protons with μ from ∝0.7 to ∝7 keV nT{sup -1} at L ∼ 4.5-10, the functions of D{sub LL} can be approximated by the following equivalent expressions: D{sub LL} ∼ 4.9 x 10{sup -14}μ{sup -4.1}L{sup 8.2} or D{sub LL} ∼ 1.3 x 10{sup 5}(EL){sup -4.1} or D{sub LL} ∼ 1.2 x 10{sup -9}f{sub d}{sup -4.1}, where f{sub d} is the drift frequency of the protons (in mHz), D{sub LL} is measured in s{sup -1}, E is measured in kiloelectronvolt and μ is measured in kiloelectronvolt per nanotesla. These results are consistent with the radial diffusion of particles under the action of the electric field fluctuations (pulsations) in the range of Pc6 and contradict the mechanism of the radial diffusion of particles under the action of sudden impulses (SIs) of the magnetic field and also under the action of substorm impulses of the electric field. During magnetic storms D{sub LL} increases, and the expressions for D{sub LL} obtained here can change completely.
Xu, Wen-Tao; Peng, Hong-Jie; Huang, Jia-Qi; Zhao, Chen-Zi; Cheng, Xin-Bing; Zhang, Qiang
2015-09-07
The self-discharge of a lithium-sulfur cell decreases the shelf-life of the battery and is one of the bottlenecks that hinders its practical applications. New insights into both the internal chemical reactions in a lithium-sulfur system and effective routes to retard self-discharge for highly stable batteries are crucial for the design of lithium-sulfur cells. Herein, a lithium-sulfur cell with a carbon nanotube/sulfur cathode and lithium-metal anode in lithium bis(trifluoromethanesulfonyl)imide/1,3-dioxolane/dimethyl ether electrolyte was selected as the model system to investigate the self-discharge behavior. Both lithium anode passivation and polysulfide anion diffusion suppression strategies are applied to reduce self-discharge of the lithium-sulfur cell. When the lithium-metal anode is protected by a high density passivation layer induced by LiNO3 , a very low shuttle constant of 0.017 h(-1) is achieved. The diffusion of the polysulfides is retarded by an ion-selective separator, and the shuttle constants decreased. The cell with LiNO3 additive maintained a discharge capacity of 97 % (961 mAh g(-1) ) of the initial capacity after 120 days at open circuit, which was around three times higher than the routine cell (32 % of initial capacity, corresponding to 320 mAh g(-1) ). It is expected that lithium-sulfur batteries with ultralow self-discharge rates may be fabricated through a combination of anode passivation and polysulfide shuttle control, as well as optimization of the lithium-sulfur cell configuration. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
International Nuclear Information System (INIS)
Arafa, Wafaa; Badran, Heba
2005-01-01
The variation of the adsorbed radon rate during the exposure time using charcoal canister was studied applying moving air environment inside the radon chamber and compared to the static air measurements. The air movement increases the accumulation time leading to more accurate results. Different types of membrane have been tested as diffusion barrier for activated charcoal canisters. The Makrofol and aluminized polycarbonate improve the adsorption/desorption rate more than the polyehylene membrane. The measured effective half-life time showed a remarkable correlation with the previously measured permeability constant for corresponding membranes. Different types of commercially available charcoal were investigated to develop a local version of charcoal canister for radon measurements. Applying static and moving air environments, the break point and radon collection efficiency were determined at different temperatures. Both of the temperature and air movement accelerate the appearance of the break point. Th efficiency of the locally developed charcoal is 87% and 84.5% of that Calgon PCB charcoal used by EPA. (author)
Yang, Mino
2007-06-07
Theoretical foundation of rate kernel equation approaches for diffusion-influenced chemical reactions is presented and applied to explain the kinetics of fluorescence quenching reactions. A many-body master equation is constructed by introducing stochastic terms, which characterize the rates of chemical reactions, into the many-body Smoluchowski equation. A Langevin-type of memory equation for the density fields of reactants evolving under the influence of time-independent perturbation is derived. This equation should be useful in predicting the time evolution of reactant concentrations approaching the steady state attained by the perturbation as well as the steady-state concentrations. The dynamics of fluctuation occurring in equilibrium state can be predicted by the memory equation by turning the perturbation off and consequently may be useful in obtaining the linear response to a time-dependent perturbation. It is found that unimolecular decay processes including the time-independent perturbation can be incorporated into bimolecular reaction kinetics as a Laplace transform variable. As a result, a theory for bimolecular reactions along with the unimolecular process turned off is sufficient to predict overall reaction kinetics including the effects of unimolecular reactions and perturbation. As the present formulation is applied to steady-state kinetics of fluorescence quenching reactions, the exact relation between fluorophore concentrations and the intensity of excitation light is derived.
Oxygen-induced high diffusion rate of magnesium dopants in GaN/AlGaN based UV LED heterostructures.
Michałowski, Paweł Piotr; Złotnik, Sebastian; Sitek, Jakub; Rosiński, Krzysztof; Rudziński, Mariusz
2018-05-23
Further development of GaN/AlGaN based optoelectronic devices requires optimization of the p-type material growth process. In particular, uncontrolled diffusion of Mg dopants may decrease the performance of a device. Thus it is meaningful to study the behavior of Mg and the origins of its diffusion in detail. In this work we have employed secondary ion mass spectrometry to study the diffusion of magnesium in GaN/AlGaN structures. We show that magnesium has a strong tendency to form Mg-H complexes which immobilize Mg atoms and restrain their diffusion. However, these complexes are not present in samples post-growth annealed in an oxygen atmosphere or Al-rich AlGaN structures which naturally have a high oxygen concentration. In these samples, more Mg atoms are free to diffuse and thus the average diffusion length is considerably larger than for a sample annealed in an inert atmosphere.
Singh, Ajay V; Gollner, Michael J
2016-06-01
Modeling the realistic burning behavior of condensed-phase fuels has remained out of reach, in part because of an inability to resolve the complex interactions occurring at the interface between gas-phase flames and condensed-phase fuels. The current research provides a technique to explore the dynamic relationship between a combustible condensed fuel surface and gas-phase flames in laminar boundary layers. Experiments have previously been conducted in both forced and free convective environments over both solid and liquid fuels. A unique methodology, based on the Reynolds Analogy, was used to estimate local mass burning rates and flame heat fluxes for these laminar boundary layer diffusion flames utilizing local temperature gradients at the fuel surface. Local mass burning rates and convective and radiative heat feedback from the flames were measured in both the pyrolysis and plume regions by using temperature gradients mapped near the wall by a two-axis traverse system. These experiments are time-consuming and can be challenging to design as the condensed fuel surface burns steadily for only a limited period of time following ignition. The temperature profiles near the fuel surface need to be mapped during steady burning of a condensed fuel surface at a very high spatial resolution in order to capture reasonable estimates of local temperature gradients. Careful corrections for radiative heat losses from the thermocouples are also essential for accurate measurements. For these reasons, the whole experimental setup needs to be automated with a computer-controlled traverse mechanism, eliminating most errors due to positioning of a micro-thermocouple. An outline of steps to reproducibly capture near-wall temperature gradients and use them to assess local burning rates and heat fluxes is provided.
Chen, Hua-Biao; Zhong, Zhi-Wei; Li, Chun-Sheng; Bai, Bo
2016-07-01
In lumbar spinal stenosis, correlating symptoms and physical examination findings with decompression levels based on common imaging is not reliable. Paraspinal mapping (PM) and diffusion tensor imaging (DTI) may be possible to prevent the false positive occurrences with MRI and show clear benefits to reduce the decompression levels of lumbar spinal stenosis than conventional magnetic resonance imaging (MRI) + neurogenic examination (NE). However, they must have enough positive rate with levels which should be decompressed at first. The study aimed to confirm that the positive of DTI and PM is enough in levels which should be decompressed in lumbar spinal stenosis. The study analyzed the positive of DTI and PM as well as compared the preoperation scores to the postoperation scores, which were assessed preoperatively and at 2 weeks, 3 months 6 months, and 12 months postoperatively. 96 patients underwent the single level decompression surgery. The positive rate among PM, DTI, and (PM or DTI) was 76%, 98%, 100%, respectively. All post-operative Oswestry Disability Index (ODI), visual analog scale for back pain (VAS-BP) and visual analog scale for leg pain (VAS-LP) scores at 2 weeks postoperatively were measured improvement than the preoperative ODI, VAS-BP and VAS-LP scores with statistically significance (p-value = 0.000, p-value = 0.000, p-value = 0.000, respectively). In degenetive lumbar spinal stenosis, the positive rate of (DTI or PM) is enough in levels which should be decompressed, thence using the PM and DTI to determine decompression levels will not miss the level which should be operated. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Paulo Alves de Lima Ferreira; Eduardo Siegle; Michel Michaelovitch de Mahiques; Rubens Cesar Lopes Figueira; Carlos Augusto Franca Schettini
2015-01-01
This study aimed the validation of the model of diffusion-convection (MDC) of 137 Cs for the calculation of recent sedimentation rates in 13 sedimentary cores of two Brazilian coastal systems, the Cananeia-Iguape and Santos-Sao Vicente estuarine systems. The MDC covers key factors responsible for 137 Cs vertical migration in sediments: its diffusion to the interstitial water and the vertical convection of this water through the sediments. This study successfully validated the MDC use to determine sedimentation rates, which was statistically validated not only with 210 Pb xs (unsupported 210 Pb) models, widely used in oceanographic studies, but also by literature values for those regions. (author)
International Nuclear Information System (INIS)
Pedersen, Torje V.; Olsen, Dag R.; Skretting, Arne
1997-01-01
A method has been developed to determine the diffusion coefficients of ferric ions in ferrous sulphate doped gels. A radiation induced edge was created in the gel, and two spin-echo sequences were used to acquire a pair of images of the gel at different points of time. For each of these image pairs, a longitudinal relaxation rate image was derived. From profiles through these images, the standard deviations of the Gaussian functions that characterize diffusion were determined. These data provided the basis for the determination of the ferric diffusion coefficients by two different methods. Simulations indicate that the use of single spin-echo images in this procedure may in some cases lead to a significant underestimation of the diffusion coefficient. The technique was applied to different agarose and gelatine gels that were prepared, irradiated and imaged simultaneously. The results indicate that the diffusion coefficient is lower in a gelatine gel than in an agarose gel. Addition of xylenol orange to a gelatine gel lowers the diffusion coefficient from 1.45 to 0.81 mm 2 h -1 , at the cost of significantly lower R 1 sensitivity. The addition of benzoic acid to the latter gel did not increase the R 1 sensitivity. (author) OK
Woźnica, Emilia; Mieczkowski, Józef; Michalska, Agata
2011-11-21
The origin and effect of surface accumulation of primary ions within the ion-selective poly(n-butyl acrylate)-based membrane, obtained by thermal polymerization, is discussed. Using a new method, based on the relation between the shape of a potentiometric plot and preconditioning time, the diffusion of copper ions in the membrane was found to be slow (the diffusion coefficient estimated to be close to 10(-11) cm(2) s(-1)), especially when compared to ion-exchanger counter ions--sodium cations diffusion (a diffusion coefficient above 10(-9) cm(2) s(-1)). The higher mobility of sodium ions than those of the copper-ionophore complex results in exposed ion-exchanger role leading to undesirably exposed sensitivity to sodium or potassium ions.
Beeler, N. M.; Thomas, Amanda; Bürgmann, Roland; Shelly, David
2018-01-01
Families of recurring low-frequency earthquakes (LFEs) within nonvolcanic tremor on the San Andreas Fault in central California are sensitive to tidal stresses. LFEs occur at all levels of the tides, are strongly correlated and in phase with the 200 Pa shear stresses, and weakly and not systematically correlated with the 2 kPa tidal normal stresses. We assume that LFEs are small sources that repeatedly fail during shear within a much larger scale, aseismically slipping fault zone and consider two different models of the fault slip: (1) modulation of the fault slip rate by the tidal stresses or (2) episodic slip, triggered by the tides. LFEs are strongly clustered with duration much shorter than the semidiurnal tide; they cannot be significantly modulated on that time scale. The recurrence times of clusters, however, are many times longer than the semidiurnal, leading to an appearance of tidal triggering. In this context we examine the predictions of laboratory-observed triggered frictional (dilatant) fault slip. The undrained end-member model produces no sensitivity to the tidal normal stress, and slip onsets are in phase with the tidal shear stress. The tidal correlation constrains the diffusivity to be less than 1 × 10-6/s and the product of the friction and dilatancy coefficients to be at most 5 × 10-7, orders of magnitude smaller than observed at room temperature. In the absence of dilatancy the effective normal stress at failure would be about 55 kPa. For this model the observations require intrinsic weakness, low dilatancy, and lithostatic pore fluid.
Jiang, Jing; Liu, Wanhua; Ye, Yuanyuan; Wang, Rui; Li, Fengfang; Peng, Chengyu
2014-06-17
To investigate the diagnostic efficiency of decline rate of signal intensity and apparent diffusion coefficient with different b values for differentiating benign and malignant breast lesions on diffusion-weighted 3.0 T magnetic resonance imaging. A total of 152 patients with 162 confirmed histopathologically breast lesions (85 malignant and 77 benign) underwent 3.0 T diffusion-weighted magnetic resonance imaging. Four b values (0, 400, 800 and 1 000 s/mm²) were used. The signal intensity and ADC values of breast lesions were measured respectively. The signal intensity decline rate (SIDR) and apparent diffusion coefficient decline rate (ADCDR) were calculated respectively. SIDR = (signal intensity of lesions with low b value-signal intensity of lesions with high b value)/signal intensity of lesions with low b value, ADCDR = (ADC value of lesions with low b value-ADC value of lesions with high b value) /ADC value of lesions with low b value. The independent sample t-test was employed for statistical analyses and the receiver operating characteristic (ROC) curve for evaluating the diagnosis efficiency of SIDR and ADCDR values. Significant differences were observed in SIDR between benign and malignant breast lesions with b values of 0-400, 400-800 and 800-1 000 s/mm². The sensitivities of SIDR for differentiating benign and malignant breast lesions were 61.2%, 68.2% and 67.1%, the specificities 74.0%, 85.7% and 67.5%, the diagnosis accordance rates 67.3%, 76.5% and 67.3%, the positive predictive values 72.2%, 84.1% and 69.5% and the negative predictive values 63.3%, 71.0% and 65.0% respectively. Significant differences were observed in ADCDR between benign and malignant breast lesions with b values of 400-800 s/mm² and 800-1 000 s/mm². The sensitivities of SDR for differentiating benign and malignant breast lesions were 80.0% and 65.9%, the specificities 72.7% and 65.0%, the diagnostic accordance rates 76.5% and 65.4%, the positive predictive values 76.4% and 67
International Nuclear Information System (INIS)
Lewis, A.C.; Baird, D.R.
2006-01-01
This paper describes applications of phyto-remediation at the Portsmouth Gaseous Diffusion Plant (PORTS), a Department of Energy (DOE) Facility that enriched uranium from the early 1950's until 2000. Phyto-remediation has been implemented to assist in the removal of TCE (trichloroethylene) in the groundwater at two locations at the PORTS facility: the X-740 area and the X-749/X-120 area. Phyto-remediation technology is based on the ability of certain plants species (in this case hybrid poplar trees) and their associated rhizo-spheric microorganisms to remove, degrade, or contain chemical contaminants located in the soil, sediment, surface water, groundwater, and possibly even the atmosphere. Phyto-remediation technology is a promising clean-up solution for a wide variety of pollutants and sites. Mature trees, such as the hybrid poplar, can consume up to 3,000 gallons of groundwater per acre per day. Organic compounds are captured in the trees' root systems. These organic compounds are degraded by ultraviolet light as they are transpired along with the water vapor through the leaves of the trees. The phyto-remediation system at the X-740 area encompasses 766 one-year old hybrid poplar trees (Populus nigra x nigra, Populus nigra x maximowiczii, and Populus deltoides x nigra) that were planted 10 feet apart in rows 10 feet to 20 feet apart, over an area of 2.6 acres. The system was installed to manage the VOC contaminant plume. At the X749/X-120 area, a phyto-remediation system of 2,640 hybrid poplar trees (Populus nigra x maximowiczii) was planted in seven areas/zones to manage the VOC contaminant plume. The objectives of these systems are to remove contamination from the groundwater and to prevent further migration of contaminants. The goal of these remediation procedures is to achieve completely mature and functional phyto-remediation systems within two years of the initial planting of the hybrid poplar trees at each planting location. There is a direct
Al-Mur, Bandar A; Quicksall, Andrew N; Kaste, James M
2017-09-15
The Red Sea is a unique ecosystem with high biodiversity in one of the warmest regions of the world. In the last five decades, Red Sea coastal development has rapidly increased. Sediments from continental margins are delivered to depths by advection and diffusion-like processes which are difficult to quantify yet provide invaluable data to researchers. Beryllium-7, lead-210 and ceseium-137 were analyzed from sediment cores from the near-coast Red Sea near Jeddah, Saudi Arabia. The results of this work are the first estimates of diffusion, mixing, and sedimentation rates of the Red Sea coastal sediments. Maximum chemical diffusion and particle mixing rates range from 69.1 to 380cm -2 y -1 and 2.54 to 6.80cm -2 y -1 , respectively. Sedimentation rate is constrained to approximately 0.6cm/yr via multiple methods. These data provide baselines for tracking changes in various environmental problems including erosion, marine benthic ecosystem silting, and particle-bound contaminant delivery to the seafloor. Copyright © 2017. Published by Elsevier Ltd.
Energy Technology Data Exchange (ETDEWEB)
Mangini, A; Segl, M; Kudrass, H
1986-01-01
Ages of two Mn encrustations estimated by their /sup 230/Th and /sup 10/Be distributions are compared with K-Ar ages and micropaleontological datings of their nuclei to discuss possible diffusion and supply effects of the radioisotope distribution and their influence on the reliability of age determinations. Based on comparable results obtained by the different methods the effective diffusion coefficient of /sup 10/Be can be calculated as D* <= 1.0 x 10/sup -8/ cm/sup 2//y. This coefficient is 3 to 8 times smaller than the best estimates available at present. In both nodules we observe lower /sup 10/Be concentrations in the uppermost 2 to 3 mm (1.3 m.y.), which suggests that /sup 10/Be uptake has been reduced since the middle Pleistocene. The 2.7-fold increase of the growth rate starting 3.2 m.y. ago coincides with the initiation of the northern hemisphere glaciation.
International Nuclear Information System (INIS)
Carter, J.G.; Hunter, S.R.; Christophorou, L.G.
1987-01-01
Measurements of the electron drift velocity, w, attachment coefficient, eta/N/sub a/, and ionization coefficient, α/N, have been made in C 2 F 6 /Ar and C 2 F 6 /CH 4 gas mixtures at gas temperatures, T, of 300 and 500 0 K over the concentration range of 0.1 to 100% of the C 2 F 6 . These measurements are useful for modeling the expected behavior of repetitively operated electron-beam sustained diffuse gas discharge opening switches where gas temperatures within the switch are anticipated to rise several hundred degrees during switch operation
International Nuclear Information System (INIS)
Larin, Kirill V; Ghosn, M G
2006-01-01
The passive diffusion of drugs through the epithelial surfaces of an eye (the most widespread method for medical treatment of various diseases) is considered. The permeability of water and drugs through rabbit cornea was measured in the isolated cornea (separate from an eye) and in the whole cornea. The permeability coefficients of water and dexamethasone were estimated by the method of optical coherence tomography (OCT). Because multiple photon scattering introduces noise and distortions to the OCT signal, measurements were performed at depths up to 500 μm where most likely single scattering of light occurs in cornea. It is shown that the permeability coefficients in the isolated and whole cornea strongly differ from each other. For example, the water permeability in the isolated and whole cornea is (7.09±0.12)x10 -5 and (1.71±0.51)x10 -5 cm s -1 , respectively. (special issue devoted to multiple radiation scattering in random media)
Gotch, Frank A; Panlilio, Froilan; Sergeyeva, Olga; Rosales, Laura; Folden, Tom; Kaysen, George; Levin, Nathan
2003-01-01
In vivo solute clearances can be estimated from dialyzer blood (Qb) and dialysate (Qd) flow rates and a solute- and dialyzer-specific overall permeability membrane area product (KoA). However, these calculations require knowledge of the flow rate of the effective solute distribution volume in the flowing bloodstream (Qe) in order to calculate in vivo clearances and KoAs. We have determined Qe for urea, creatinine, and inorganic phosphorus from changes in concentrations across the blood compartment and mass balance between the blood and dialysate streams. We made four serial measurements over one dialysis in 23 patients and found that Qeu equals the total blood water flow rate, Qecr equals the plasma water flow rate plus 61% of red cell water flow rate, and QeiP is limited to the plasma water flow rate. Equations are derived to calculate Qe for each of these solutes from Qb and hematocrit and in vivo KoAs for each solute were calculated.
Martellotta, Francesco; Álvarez-Morales, Lidia; Girón, Sara; Zamarreño, Teófilo
2018-05-01
Multi-rate sound decays are often found and studied in complex systems of coupled volumes where diffuse field conditions generally apply, although the openings connecting different sub-spaces are by themselves potential causes of non-diffuse behaviour. However, in presence of spaces in which curved surfaces clearly prevent diffuse field behaviour from being established, things become more complex and require more sophisticated tools (or, better, combinations of them) to be fully understood. As an example of such complexity, the crypt of the Cathedral of Cadiz is a relatively small space characterised by a central vaulted rotunda, with five radial galleries with flat and low ceiling. In addition, the crypt is connected to the main cathedral volume by means of several small openings. Acoustic measurements carried out in the crypt pointed out the existence of at least two decay processes combined, in some points, with flutter echoes. Application of conventional methods of analysis pointed out the existence of significant differences between early decay time and reverberation time, but was inconclusive in explaining the origin of the observed phenomena. The use of more robust Bayesian analysis permitted the conclusion that the late decay appearing in the crypt had a different rate than that observed in the cathedral, thus excluding the explanation based on acoustic coupling of different volumes. Finally, processing impulse responses collected by means of a B-format microphone to obtain directional intensity maps demonstrated that the late decay was originated from the rotunda where a repetitive reflection pattern appeared between the floor and the dome causing both flutter echoes and a longer reverberation time.
Directory of Open Access Journals (Sweden)
Simon Sven Ivan Kindvall
Full Text Available Oxygen enhanced pulmonary MRI is a promising modality for functional lung studies and has been applied to a wide range of pulmonary conditions. The purpose of this study was to characterize the oxygen enhancement effect in the lungs of healthy, never-smokers, in light of a previously established relationship between oxygen enhancement and diffusing capacity of carbon monoxide in the lung (DL,CO in patients with lung disease.In 30 healthy never-smoking volunteers, an inversion recovery with gradient echo read-out (Snapshot-FLASH was used to quantify the difference in longitudinal relaxation rate, while breathing air and 100% oxygen, ΔR1, at 1.5 Tesla. Measurements were performed under multiple tidal inspiration breath-holds.In single parameter linear models, ΔR1 exhibit a significant correlation with age (p = 0.003 and BMI (p = 0.0004, but not DL,CO (p = 0.33. Stepwise linear regression of ΔR1 yields an optimized model including an age-BMI interaction term.In this healthy, never-smoking cohort, age and BMI are both predictors of the change in MRI longitudinal relaxation rate when breathing oxygen. However, DL,CO does not show a significant correlation with the oxygen enhancement. This is possibly because oxygen transfer in the lung is not diffusion limited at rest in healthy individuals. This work stresses the importance of using a physiological model to understand results from oxygen enhanced MRI.
Energy Technology Data Exchange (ETDEWEB)
Indriolo, Nick; Neufeld, D. A. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Gerin, M. [LERMA, CNRS, Observatoire de Paris and ENS, F-75231 Paris Cedex 05 (France); Geballe, T. R. [Gemini Observatory, Hilo, HI 96720 (United States); Black, J. H. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-43992 Onsala (Sweden); Menten, K. M. [MPI fuer Radioastronomie, D-53121 Bonn (Germany); Goicoechea, J. R. [Departamento de Astrofisica, Centro de Astrobiologia (CSIC-INTA), E-28850 Madrid (Spain)
2012-10-20
Absorption lines from the molecules OH{sup +}, H{sub 2}O{sup +}, and H{sup +} {sub 3} have been observed in a diffuse molecular cloud along a line of sight near W51 IRS2. We present the first chemical analysis that combines the information provided by all three of these species. Together, OH{sup +} and H{sub 2}O{sup +} are used to determine the molecular hydrogen fraction in the outskirts of the observed cloud, as well as the cosmic-ray ionization rate of atomic hydrogen. H{sup +} {sub 3} is used to infer the cosmic-ray ionization rate of H{sub 2} in the molecular interior of the cloud, which we find to be {zeta}{sub 2} = (4.8 {+-} 3.4) Multiplication-Sign 10{sup -16} s{sup -1}. Combining the results from all three species we find an efficiency factor-defined as the ratio of the formation rate of OH{sup +} to the cosmic-ray ionization rate of H-of {epsilon} = 0.07 {+-} 0.04, much lower than predicted by chemical models. This is an important step in the future use of OH{sup +} and H{sub 2}O{sup +} on their own as tracers of the cosmic-ray ionization rate.
DEFF Research Database (Denmark)
Prehn, Jonas; Waul, Christopher Kevin; Pedersen, Lars-Flemming
2012-01-01
Total ammonia nitrogen (TAN) removal by microbial nitrification is an essential process in recirculating aquaculture systems (RAS). In order to protect the aquatic environment and fish health, it is important to be able to predict the nitrification rates in RAS’s. The aim of this study was to det...... biofilters. The results may thus have practical implications in relation to the design, operational strategy of RAS biofilters and how to optimize TAN removal in fixed film biofilter systems......Total ammonia nitrogen (TAN) removal by microbial nitrification is an essential process in recirculating aquaculture systems (RAS). In order to protect the aquatic environment and fish health, it is important to be able to predict the nitrification rates in RAS’s. The aim of this study...
Ribierre, J. C.; Ruseckas, A.; Samuel, I. D. W.; Staton, S. V.; Burn, P. L.
2008-02-01
We study photoluminescence and triplet-triplet exciton annihilation in a neat film of a fac-tris(2-phenylpyridyl)iridium(III) [Ir(ppy)3] -cored dendrimer and in its blend with a 4,4' -bis( N -carbazolyl)biphenyl host for the temperature range of 77-300K . The nearest neighbor hopping rate of triplet excitons is found to increase by a factor of 2 with temperature between 150 and 300K and is temperature independent at lower temperature. The intermolecular quenching rate follows the Arrhenius law with an activation energy of 7meV , which can be explained by stronger dipole-dipole interactions with the donor molecule in the higher triplet substate. The results indicate that energy disorder has no significant effect on triplet transport and quenching in these materials.
Planková, Barbora; Vinš, Václav; Hrubý, Jan
2017-10-28
Homogeneous droplet nucleation has been studied for almost a century but has not yet been fully understood. In this work, we used the density gradient theory (DGT) and considered the influence of capillary waves (CWs) on the predicted size-dependent surface tensions and nucleation rates for selected n-alkanes. The DGT model was completed by an equation of state (EoS) based on the perturbed-chain statistical associating fluid theory and compared to the classical nucleation theory and the Peng-Robinson EoS. It was found that the critical clusters are practically free of CWs because they are so small that even the smallest wavelengths of CWs do not fit into their finite dimensions. The CWs contribute to the entropy of the system and thus decrease the surface tension. A correction for the effect of CWs on the surface tension is presented. The effect of the different EoSs is relatively small because by a fortuitous coincidence their predictions are similar in the relevant range of critical cluster sizes. The difference of the DGT predictions to the classical nucleation theory computations is important but not decisive. Of the effects investigated, the most pronounced is the suppression of CWs which causes a sizable decrease of the predicted nucleation rates. The major difference between experimental nucleation rate data and theoretical predictions remains in the temperature dependence. For normal alkanes, this discrepancy is much stronger than observed, e.g., for water. Theoretical corrections developed here have a minor influence on the temperature dependency. We provide empirical equations correcting the predicted nucleation rates to values comparable with experiments.
Planková, Barbora; Vinš, Václav; Hrubý, Jan
2017-10-01
Homogeneous droplet nucleation has been studied for almost a century but has not yet been fully understood. In this work, we used the density gradient theory (DGT) and considered the influence of capillary waves (CWs) on the predicted size-dependent surface tensions and nucleation rates for selected n-alkanes. The DGT model was completed by an equation of state (EoS) based on the perturbed-chain statistical associating fluid theory and compared to the classical nucleation theory and the Peng-Robinson EoS. It was found that the critical clusters are practically free of CWs because they are so small that even the smallest wavelengths of CWs do not fit into their finite dimensions. The CWs contribute to the entropy of the system and thus decrease the surface tension. A correction for the effect of CWs on the surface tension is presented. The effect of the different EoSs is relatively small because by a fortuitous coincidence their predictions are similar in the relevant range of critical cluster sizes. The difference of the DGT predictions to the classical nucleation theory computations is important but not decisive. Of the effects investigated, the most pronounced is the suppression of CWs which causes a sizable decrease of the predicted nucleation rates. The major difference between experimental nucleation rate data and theoretical predictions remains in the temperature dependence. For normal alkanes, this discrepancy is much stronger than observed, e.g., for water. Theoretical corrections developed here have a minor influence on the temperature dependency. We provide empirical equations correcting the predicted nucleation rates to values comparable with experiments.
Wang, Yu
2014-05-01
The effect of the strain rate on the sooting limits in counterflow diffusion flames was investigated in various gaseous hydrocarbon fuels by varying the nitrogen dilution in the fuel and oxidizer streams. The sooting limit was defined as the critical fuel and oxygen mole fraction at which soot started to appear in the elastic light scattering signal. The sooting region for normal alkane fuels at a specified strain rate, in terms of the fuel and oxygen mole fraction, expanded as the number of carbon atoms increased. The alkene fuels (ethylene, propene) tested had a higher propensity for sooting as compared with alkane fuels with the same carbon numbers (ethane, propane). Branched iso-butane had a higher propensity for sooting than did n-butane. An increase in the strain rate reduced the tendency for sooting in all the fuels tested. The sensitivity of the sooting limit to the strain rate was more pronounced for less sooting fuels. When plotted in terms of calculated flame temperature, the critical oxygen mole fraction exhibited an Arrhenius form under sooting limit conditions, which can be utilized to significantly reduce the effort required to determine sooting limits at different strain rates. We found that the limiting temperatures of soot formation flames are viable sooting metrics for quantitatively rating the sooting tendency of various fuels, based on comparisons with threshold soot index and normalized smoke point data. We also introduce a sooting temperature index and a sooting sensitivity index, two quantitative measures to describe sooting propensity and its dependence on strain rate. © 2013 The Combustion Institute.
Mazzitello, Karina I.; Candia, Julián
2012-12-01
In every country, public and private agencies allocate extensive funding to collect large-scale statistical data, which in turn are studied and analyzed in order to determine local, regional, national, and international policies regarding all aspects relevant to the welfare of society. One important aspect of that process is the visualization of statistical data with embedded geographical information, which most often relies on archaic methods such as maps colored according to graded scales. In this work, we apply nonstandard visualization techniques based on physical principles. We illustrate the method with recent statistics on homicide rates in Brazil and their correlation to other publicly available data. This physics-based approach provides a novel tool that can be used by interdisciplinary teams investigating statistics and model projections in a variety of fields such as economics and gross domestic product research, public health and epidemiology, sociodemographics, political science, business and marketing, and many others.
International Nuclear Information System (INIS)
Ferreira, Paulo A.L.; Figueira, Rubens C.L.
2013-01-01
Under the perspective of knowing the results of the processes which moves the sedimentary dynamics in coastal environments and assisting works related to the historic of impacts generated in these systems by human occupation, this study shows a practical application of the mathematic-chemical model of diffusion-convection (MDC) of the radionuclide 137 Cs in sedimentary columns for the evaluation of recent sedimentation rates in a Brazilian coastal system. 137 Cs is an artificial radionuclide characterized by its high fission yield and half-life of about 30 years. It is already widely used in this kind of study by reason of its 1963's global peak. The MDC will improve the generated results as the levels of radioactivity of this nuclide are low in the Southern Hemisphere, where this element's main source is the atmospheric fallout from past nuclear explosions, and due to the fact that it is an element with non-negligible vertical mobility. (author)
Desjardins, Tyler D.; Gallagher, Sarah C.; Hornschemeier, Ann E.; Mulchaey, John S.; Walker, Lisa May; Brandt, Willian N.; Charlton, Jane C.; Johnson, Kelsey E.; Tzanavaris, Panayiotis
2014-01-01
We present an analysis of the diffuse X-ray emission in 19 compact groups (CGs) of galaxies observed with Chandra. The hottest, most X-ray luminous CGs agree well with the galaxy cluster X-ray scaling relations in L(x-T) and (L(x-sigma), even in CGs where the hot gas is associated with only the brightest galaxy. Using Spitzer photometry, we compute stellar masses and classify Hickson CGs 19, 22, 40, and 42, and RSCGs 32, 44, and 86 as fossil groups using a new definition for fossil systems that includes a broader range of masses. We find that CGs with total stellar and Hi masses are great than or equal to 10(sup (11.3) solar mass are often X-ray luminous, while lower-mass CGs only sometimes exhibit faint, localized X-ray emission. Additionally, we compare the diffuse X-ray luminosity against both the total UV and 24 micron star formation rates of each CG and optical colors of the most massive galaxy in each of the CGs. The most X-ray luminous CGs have the lowest star formation rates, likely because there is no cold gas available for star formation, either because the majority of the baryons in these CGs are in stars or the X-ray halo, or due togas stripping from the galaxies in CGs with hot halos. Finally, the optical colors that trace recent star formation histories of the most massive group galaxies do not correlate with the X-ray luminosities of the CGs, indicating that perhaps the current state of the X-ray halos is independent of the recent history of stellar mass assembly in the most massive galaxies.
Román-Román, Patricia; Román-Román, Sergio; Serrano-Pérez, Juan José; Torres-Ruiz, Francisco
2016-10-21
In experimental studies on tumor growth, whenever the time evolution of the relative volume of a tumor in an untreated (control) group can be fitted by a Gompertz diffusion process there is a possibility that an antiproliferative therapy, which modifies the growth rate of the process that fits the treated group, may also affect its variability. The present paper proposes several procedures for the estimation of the time function included in the infinitesimal variance of the new process, as well as the time function affecting the growth rate (which is included in the infinitesimal mean). Also, a hypothesis testing is designed to confirm or refute the need for including such a time-dependent function in the infinitesimal variance. In order to validate and compare the proposed procedures a simulation study has been carried out. In addition, a proposal is made for a strategy aimed at finding the optimal combination of procedures for each case. A real data application concerning the effects of cisplatin on a patient-derived xenograft (PDX) tumor model showcases the advantages of this model over others that have been used in the past. Copyright © 2016 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Na, Kyoung-Il; Kah, Dong-Ha; Kim, Sang-Gi; Koo, Jin-Gun; Kim, Jong-Dae; Yang, Yil-Suk; Lee, Jin-Ho [Electronics and Telecommunications Research Institute, Daejeon (Korea, Republic of)
2012-05-15
The vertical power metal-oxide semiconductor field-effect transistors (MOSFETs) with deep trench structures are the most promising candidates to overcome the trade-off relationship between the ON-resistance (R{sub ON}) and the blocking voltage (BV{sub DS}). Especially, 100 V/100 A rated trench power MOSFETs are used in components of many power systems, such as motors and LED lighting drive ICs, DC-DC converters in electric vehicles, and so on. In this work, we studied variations of the electrical characteristics, such as threshold voltage (V{sub TH}), BV{sub DS}, and drain current drivability, with p-well doping concentration via the SILVACO simulator. From simulation results, we found the BV{sub DS} and the drain current (I{sub D}) as functions of the p-well doping concentration at an ion implantation energy of 80 keV. With increasing of p-well doping concentration in the guard ring region, both V{sub TH} and BV{sub DS} slowly increased, but I{sub D} decreased, because the boron lateral diffusion during the fabrication process below gate trench region affected the doping concentration of the p-body at the active region. Additionally, 100 V/100 A rated trench double-diffused MOSFETs (TDMOSFETs) with meshes and stripes were successfully developed by using a silicon deep etching process. The variations in the electrical properties, such as V{sub TH}, BV{sub DS}, and drain current drivability, of the two different kinds of fabricated devices, with cell design and density in TDMOSFETs were also studied. The BV{sub DS} and the V{sub TH} in the stripe-type TDMOSFET were 110 and 3 V, respectively. However, the V{sub TH} of mesh-type device was smaller 0.5 V than that of stripe-type because of corner effect. The BV{sub DS} improved about 20 V compared to stripe-type TDMOSFET due to edge termination, and the maximum drain current (I{sub D.MAX}) was improved by about 10% due to an increase in the gate width at the same chip size. These effects were reflected in devices with
International Nuclear Information System (INIS)
Na, Kyoung-Il; Kah, Dong-Ha; Kim, Sang-Gi; Koo, Jin-Gun; Kim, Jong-Dae; Yang, Yil-Suk; Lee, Jin-Ho
2012-01-01
The vertical power metal-oxide semiconductor field-effect transistors (MOSFETs) with deep trench structures are the most promising candidates to overcome the trade-off relationship between the ON-resistance (R ON ) and the blocking voltage (BV DS ). Especially, 100 V/100 A rated trench power MOSFETs are used in components of many power systems, such as motors and LED lighting drive ICs, DC-DC converters in electric vehicles, and so on. In this work, we studied variations of the electrical characteristics, such as threshold voltage (V TH ), BV DS , and drain current drivability, with p-well doping concentration via the SILVACO simulator. From simulation results, we found the BV DS and the drain current (I D ) as functions of the p-well doping concentration at an ion implantation energy of 80 keV. With increasing of p-well doping concentration in the guard ring region, both V TH and BV DS slowly increased, but I D decreased, because the boron lateral diffusion during the fabrication process below gate trench region affected the doping concentration of the p-body at the active region. Additionally, 100 V/100 A rated trench double-diffused MOSFETs (TDMOSFETs) with meshes and stripes were successfully developed by using a silicon deep etching process. The variations in the electrical properties, such as V TH , BV DS , and drain current drivability, of the two different kinds of fabricated devices, with cell design and density in TDMOSFETs were also studied. The BV DS and the V TH in the stripe-type TDMOSFET were 110 and 3 V, respectively. However, the V TH of mesh-type device was smaller 0.5 V than that of stripe-type because of corner effect. The BV DS improved about 20 V compared to stripe-type TDMOSFET due to edge termination, and the maximum drain current (I D.MAX ) was improved by about 10% due to an increase in the gate width at the same chip size. These effects were reflected in devices with different cell densities. When the cell density was increased, however
Spin-diffusions and diffusive molecular dynamics
Farmer, Brittan; Luskin, Mitchell; Plecháč, Petr; Simpson, Gideon
2017-12-01
Metastable configurations in condensed matter typically fluctuate about local energy minima at the femtosecond time scale before transitioning between local minima after nanoseconds or microseconds. This vast scale separation limits the applicability of classical molecular dynamics (MD) methods and has spurned the development of a host of approximate algorithms. One recently proposed method is diffusive MD which aims at integrating a system of ordinary differential equations describing the likelihood of occupancy by one of two species, in the case of a binary alloy, while quasistatically evolving the locations of the atoms. While diffusive MD has shown itself to be efficient and provide agreement with observations, it is fundamentally a model, with unclear connections to classical MD. In this work, we formulate a spin-diffusion stochastic process and show how it can be connected to diffusive MD. The spin-diffusion model couples a classical overdamped Langevin equation to a kinetic Monte Carlo model for exchange amongst the species of a binary alloy. Under suitable assumptions and approximations, spin-diffusion can be shown to lead to diffusive MD type models. The key assumptions and approximations include a well-defined time scale separation, a choice of spin-exchange rates, a low temperature approximation, and a mean field type approximation. We derive several models from different assumptions and show their relationship to diffusive MD. Differences and similarities amongst the models are explored in a simple test problem.
Discrimination of thermal diffusivity
Bergmann Tiest, W.M.; Kappers, A.M.L.
2009-01-01
Materials such as wood or metal which are at equal temperatures are perceived to be of different ‘coldness’ due to differences in thermal properties, such as the thermal diffusivity. The thermal diffusivity of a material is a parameter that controls the rate with which heat is extracted from the
Surface diffusion of sorbed radionuclides
International Nuclear Information System (INIS)
Berry, J.A.; Bond, K.A.
1991-01-01
Surface diffusion has in the past been invoked to explain rates of radionuclide migration which were greater than those predicted. Results were generally open to interpretation but the possible existence of surface diffusion, whereby sorbed radionuclides could potentially migrate at much enhanced rates, necessitated investigation. In this work through-diffusion experiments have shown that although surface diffusion does exist for some nuclides, the magnitude of the phenomenon is not sufficient to affect repository safety assessment modelling. (author)
International Nuclear Information System (INIS)
Chang, Yunzhen; Han, Gaoyi; Fu, Dongying; Liu, Feifei; Li, Miaoyu; Li, Yanping; Liu, Cuixian
2014-01-01
An approach as “hydroxylamine diffusion induced assembly” has been developed to fabricate N-doped graphene paper-like films (NG-P) and composite films containing multiwalled carbon nanotubes (NG-MWCNT-P). The obtained films have been characterized by using X-ray photoelectron spectroscopy, X-ray diffraction spectroscopy and scanning electron microscopy. The results indicate that the N atoms have doped into the graphene sheets and the interplanar distance between the graphene sheets decreases with the increment of the thermally treated temperature. The films of NG-P prepared at 100 °C are flexible and exhibit a maximum tensile stress of about 70.5 MPa and a Young's modulus of about 17.7 GPa, and the films of NG-P thermally treated at 300 °C (NG-P300) have high thermal conductivity of about 3403 W m -1 K −1 . However, the NG-MWCNT-P film exhibits a relatively weaker tensile stress compared with NG-P. The electrochemical measurements show that the NG-P300 possesses excellent ultrahigh-rate capacitive properties, and that the specific capacitance and the impedance phase angle of the capacitor can reach to about 318 μF cm −2 and -77.1° respectively at frequency of 120 Hz. Simple measurements on NG-MWCNT-P show that it has specific capacitance of about 90 F g −1 based on one electrode and the capacitor possesses the high-rate capability
Directory of Open Access Journals (Sweden)
Matthew A. Brodsky
2012-08-01
Full Text Available Background: It is generally agreed that diffusion of botulinum toxin occurs, but the extent of the spread and its clinical importance are disputed. Many factors have been suggested to play a role but which have the most clinical relevance is a subject of much discussion.Methods: This review discusses the variables affecting diffusion, including protein composition and molecular size as well as injection factors (e.g., volume, dose, injection method. It also discusses data on diffusion from comparative studies in animal models and human clinical trials that illustrate differences between the available botulinum toxin products (onabotulinumtoxinA, abobotulinumtoxinA, incobotulinumtoxinA, and rimabotulinumtoxinB.Results: Neither molecular weight nor the presence of complexing proteins appears to affect diffusion; however, injection volume, concentration, and dose all play roles and are modifiable. Both animal and human studies show that botulinum toxin products are not interchangeable, and that some products are associated with greater diffusion and higher rates of diffusion-related adverse events than others.Discussion: Each of the botulinum toxins is a unique pharmacologic entity. A working knowledge of the different serotypes is essential to avoid unwanted diffusion-related adverse events. In addition, clinicians should be aware that the factors influencing diffusion may range from properties intrinsic to the drug to accurate muscle selection as well as dilution, volume, and dose injected.
A high 18F-FDOPA uptake is associated with a slow growth rate in diffuse Grade II-III gliomas.
Isal, Sibel; Gauchotte, Guillaume; Rech, Fabien; Blonski, Marie; Planel, Sophie; Chawki, Mohammad B; Karcher, Gilles; Marie, Pierre-Yves; Taillandier, Luc; Verger, Antoine
2018-04-01
In diffuse Grade II-III gliomas, a high 3,4-dihydroxy-6-( 18 F)-fluoro-L-phenylalanine ( 18 F-FDOPA) positron emission tomography (PET) uptake, with a standardized uptake value (SUV max )/contralateral brain tissue ratio greater than 1.8, was previously found to be consistently associated with the presence of an isocitrate dehydrogenase (IDH) mutation, whereas this mutation is typically associated with a better prognosis. This pilot study was aimed to ascertain the prognostic value of this high 18 F-FDOPA uptake in diffuse Grade II-III gliomas with regard to the velocity of diameter expansion (VDE), which represents an established landmark of better prognosis when below 4 mm per year. 20 patients (42 ± 10 years, 10 female) with newly-diagnosed diffuse Grade II-III gliomas (17 with IDH mutation) were retrospectively included. All had a 18 F-FDOPA PET, quantified with SUV max ratio, along with a serial MRI enabling VDE determination. SUV max ratio was above 1.8 in 5 patients (25%) all of whom had a VDE VDE <4 mm/year in the overall population (45 vs 0%, p = 0.04) and also in the subgroup of patients with IDH mutation (45 vs 0%, p = 0.10). This pilot study shows that in diffuse Grade II-III gliomas, a high 18 F-FDOPA uptake would be predictive of low tumour growth, with a different prognostic significance than IDH mutation. Advances in knowledge: 18 F-FDOPA PET in a single session imaging could have prognostic value in initial diagnosis of diffuse Grade II-III gliomas.
Rudno-Rudziński, W.; Biegańska, D.; Misiewicz, J.; Lelarge, F.; Rousseau, B.; Sek, G.
2018-01-01
We investigate the diffusion of photo-generated carriers (excitons) in hybrid two dimensional-zero dimensional tunnel injection structures, based on strongly elongated InAs quantum dots (called quantum dashes, QDashes) of various heights, designed for emission at around 1.5 μm, separated by a 3.5 nm wide barrier from an 8 nm wide In0.64Ga0.36As0.78P0.22 quantum well (QW). By measuring the spectrally filtered real space images of the photoluminescence patterns with high resolution, we probe the spatial extent of the emission from QDashes. Deconvolution with the exciting light spot shape allows us to extract the carrier/exciton diffusion lengths. For the non-resonant excitation case, the diffusion length depends strongly on excitation power, pointing at carrier interactions and phonons as its main driving mechanisms. For the case of excitation resonant with absorption in the adjacent QW, the diffusion length does not depend on excitation power for low excitation levels since the generated carriers do not have sufficient excess kinetic energy. It is also found that the diffusion length depends on the quantum-mechanical coupling strength between QW and QDashes, controlled by changing the dash size. It influences the energy difference between the QDash ground state of the system and the quantum well levels, which affects the tunneling rates. When that QW-QDash level separation decreases, the probability of capturing excitons generated in the QW by QDashes increases, which is reflected by the decreased diffusion length from approx. 5 down to 3 μm.
International Nuclear Information System (INIS)
Carlen, E.A.
1984-01-01
In Nelson's stochastic mechanics, quantum phenomena are described in terms of diffusions instead of wave functions. These diffusions are formally given by stochastic differential equations with extremely singular coefficients. Using PDE methods, we prove the existence of solutions. This reult provides a rigorous basis for stochastic mechanics. (orig.)
Cherniak, D. J.; Zhang, X. Y.; Nakamura, M.; Watson, E. B.
2004-09-01
We report measurements of oxygen diffusion in natural monazites under both dry, 1-atm conditions and hydrothermal conditions. For dry experiments, 18O-enriched CePO4 powder and monazite crystals were sealed in Ag-Pd capsules with a solid buffer (to buffer at NNO) and annealed in 1-atm furnaces. Hydrothermal runs were conducted in cold-seal pressure vessels, where monazite grains were encapsulated with 18O-enriched water. Following the diffusion anneals, oxygen concentration profiles were measured with Nuclear Reaction Analysis (NRA) using the reaction 18O(p,α)15N. Over the temperature range 850-1100 °C, the Arrhenius relation determined for dry diffusion experiments on monazite is given by: Under wet conditions at 100 MPa water pressure, over the temperature range 700-880 °C, oxygen diffusion can be described by the Arrhenius relationship: Oxygen diffusion under hydrothermal conditions has a significantly lower activation energy for diffusion than under dry conditions, as has been found the case for many other minerals, both silicate and nonsilicate. Given these differences in activation energies, the differences between dry and wet diffusion rates increase with lower temperatures; for example, at 600 °C, dry diffusion will be more than 4 orders of magnitude slower than diffusion under hydrothermal conditions. These disparate diffusivities will result in pronounced differences in the degree of retentivity of oxygen isotope signatures. For instance, under dry conditions (presumably rare in the crust) and high lower-crustal temperatures (∼800 °C), monazite cores of 70-μm radii will preserve O isotope ratios for about 500,000 years; by comparison, they would be retained at this temperature under wet conditions for about 15,000 years.
Fractional Diffusion Equations and Anomalous Diffusion
Evangelista, Luiz Roberto; Kaminski Lenzi, Ervin
2018-01-01
Preface; 1. Mathematical preliminaries; 2. A survey of the fractional calculus; 3. From normal to anomalous diffusion; 4. Fractional diffusion equations: elementary applications; 5. Fractional diffusion equations: surface effects; 6. Fractional nonlinear diffusion equation; 7. Anomalous diffusion: anisotropic case; 8. Fractional Schrödinger equations; 9. Anomalous diffusion and impedance spectroscopy; 10. The Poisson–Nernst–Planck anomalous (PNPA) models; References; Index.
Advanced manufacturing: Technology diffusion
Energy Technology Data Exchange (ETDEWEB)
Tesar, A.
1995-12-01
In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.
Long range diffusion of hydrogen in yttrium
International Nuclear Information System (INIS)
Anderson, I.S.; Scherrer, P.; Ross, D.K.
1989-01-01
The diffusion of H in single crystals of YH 0.2 is investigated by means of Quasielastic neutron scattering between 593 K and 695 K. Individual jump rates giving rise to long range and local diffusion are determined. (orig.)
Review of enhanced vapor diffusion in porous media
International Nuclear Information System (INIS)
Webb, S.W.; Ho, C.K.
1998-01-01
Vapor diffusion in porous media in the presence of its own liquid has often been treated similar to gas diffusion. The gas diffusion rate in porous media is much lower than in free space due to the presence of the porous medium and any liquid present. However, enhanced vapor diffusion has also been postulated such that the diffusion rate may approach free-space values. Existing data and models for enhanced vapor diffusion, including those in TOUGH2, are reviewed in this paper
International Nuclear Information System (INIS)
Gardes, E.
2006-06-01
Proper knowledge of the diffusion rates of lead in monazite is necessary to understand the U-Th-Pb age anomalies of this mineral, which is one of the most used in geochronology after zircon. Diffusion experiments were performed in NdPO 4 monocrystals and in Nd 0.66 Ca 0.17 Th 0.17 PO 4 polycrystals from Nd 0.66 Pb 0.17 Th 0.17 PO 4 thin films to investigate Pb 2+ + Th 4+ ↔ 2 Nd 3+ and Pb 2+ ↔ Ca 2+ exchanges. Diffusion annealings were run between 1200 and 1500 Celsius degrees, at room pressure, for durations ranging from one hour to one month. The diffusion profiles were analysed using TEM (transmission electronic microscopy) and RBS (Rutherford backscattering spectroscopy). The diffusivities extracted for Pb 2+ + Th 4+ ↔ 2 Nd 3+ exchange follow an Arrhenius law with parameters E equals 509 ± 24 kJ mol -1 and log(D 0 (m 2 s -1 )) equals -3.41 ± 0.77. Preliminary data for Pb 2+ ↔ Ca 2+ exchange are in agreement with this result. The extrapolation of our data to crustal temperatures yields very slow diffusivities. For instance, the time necessary for a 50 μm grain to lose all of its lead at 800 Celsius degrees is greater than the age of the Earth. From these results and other evidence from the literature, we conclude that most of the perturbations in U-Th-Pb ages of monazite cannot be attributed to lead diffusion, but rather to interactions with fluids. (author)
International Nuclear Information System (INIS)
Anderson, R.C.
1976-01-01
A method is described for joining beryllium to beryllium by diffusion bonding. At least one surface portion of at least two beryllium pieces is coated with nickel. A coated surface portion is positioned in a contiguous relationship with another surface portion and subjected to an environment having an atmosphere at a pressure lower than ambient pressure. A force is applied on the beryllium pieces for causing the contiguous surface portions to abut against each other. The contiguous surface portions are heated to a maximum temperature less than the melting temperature of the beryllium, and the applied force is decreased while increasing the temperature after attaining a temperature substantially above room temperature. A portion of the applied force is maintained at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions
Pellett, G. L.; Wilson, L. G.; Northam, G. B.; Guerra, Rosemary
1989-01-01
Coaxial tubular opposed jet burners (OJB) were used to form dish shaped counterflow diffusion flames (CFDF), centered by opposing laminar jets of H2, N2 and both clean and contaminated air (O2/N2 mixtures) in an argon bath at 1 atm. Jet velocities for flame extinction and restoration limits are shown versus wide ranges of contaminant and O2 concentrations in the air jet, and also input H2 concentration. Blowoff, a sudden breaking of CFDF to a stable ring shape, occurs in highly stretched stagnation flows and is generally believed to measure kinetically limited flame reactivity. Restore, a sudden restoration of central flame, is a relatively new phenomenon which exhibits a H2 dependent hysteresis from Blowoff. For 25 percent O2 air mixtures, mole for mole replacement of 25 percent N2 contaminant by steam increased U(air) or flame strength at Blowoff by about 5 percent. This result is consistent with laminar burning velocity results from analogous substitution of steam for N2 in a premixed stoichiometric H2-O2-N2 (or steam) flame, shown by Koroll and Mulpuru to promote a 10 percent increase in experimental and calculated laminar burning velocity, due to enhanced third body efficiency of water in: H + O2 + M yields HO2 + M. When the OJB results were compared with Liu and MacFarlane's experimental laminar burning velocity of premixed stoichiometric H2 + air + steam, a crossover occurred, i.e., steam enhanced OJB flame strength at extinction relative to laminar burning velocity.
International Nuclear Information System (INIS)
Lalis, A.; Rouviere, R.; Simon, G.
1976-01-01
A multipassage diffuser having 2p passages comprises a leak-tight cylindrical enclosure closed by a top cover and a bottom end-wall, parallel porous tubes which are rigidly assembled in sectors between tube plates and through which the gas mixture flows, the tube sectors being disposed at uniform intervals on the periphery of the enclosure. The top tube plates are rigidly fixed to an annular header having the shape of a half-torus and adapted to communicate with the tubes of the corresponding sector. Each passage is constituted by a plurality of juxtaposed sectors in which the mixture circulates in the same direction, the header being divided into p portions limited by radial partition-walls and each constituting two adjacent passages. The diffuser is provided beneath the bottom end-wall with p-1 leak-tight chambers each adapted to open into two different portions of the header, and with two collector-chambers each fitted with a nozzle for introducing the gas mixture and discharging the fraction of the undiffused mixture. By means of a central orifice formed in the bottom end-wall the enclosure communicates with a shaft for discharging the diffused fraction of the gas mixture
Song, Qing; Yanful, Ernest K
2010-05-20
Engineered soil covers provide an option to mitigate acid rock drainage through reduced water flow and gaseous oxygen influx to underlying mine waste. Channels such as fissures, cracks or fractures developed in the barrier may influence the long-term performance of the soil cover. However, limited published information is available on the extent to which soil cover performance is impacted by these fissures and cracks. This study was conducted to investigate the effect of channelling in a barrier layer on water flow and oxygen transport in a soil cover. Two inclined (a slope of 20%) multilayer soil covers were examined under laboratory conditions. One cover had a 10-cm wide sand-filled channel in a compacted barrier layer (silty clay) at the upslope section, while the other cover was a normal one without the channel pathway. The soil covers were installed in plastic boxes measuring 120 cm x 120 cm x 25 cm (width x height x thickness). The sand-filled channel was designed to represent the aggregate of fissures and cracks that may be present in the compacted barrier. The soil covers were subjected to controlled drying and wetting periods selected to simulate field situation at the Whistle mine site near Capreol, Ontario, Canada. The measured results indicated that interflow decreased from 72.8% of the total precipitation in the soil cover without channel flow to 35.3% in the cover with channel flow, and percolation increased from zero in the normal soil cover to 43.0% of the total precipitation in the cover with channel flow. Gaseous oxygen transfer into the waste rock below the cover soils was 1091 times greater in the cover with channel than in the soil cover without channel. The channel pathway present in the barrier layer acted as a major passage for water movement and gaseous oxygen diffusion into the waste rock layer, thus decreasing the performance of the soil cover. The spacing of the channel with respect to the length of the test box is similar to those found
Song, Qing; Yanful, Ernest K.
2010-05-01
Engineered soil covers provide an option to mitigate acid rock drainage through reduced water flow and gaseous oxygen influx to underlying mine waste. Channels such as fissures, cracks or fractures developed in the barrier may influence the long-term performance of the soil cover. However, limited published information is available on the extent to which soil cover performance is impacted by these fissures and cracks. This study was conducted to investigate the effect of channelling in a barrier layer on water flow and oxygen transport in a soil cover. Two inclined (a slope of 20%) multilayer soil covers were examined under laboratory conditions. One cover had a 10-cm wide sand-filled channel in a compacted barrier layer (silty clay) at the upslope section, while the other cover was a normal one without the channel pathway. The soil covers were installed in plastic boxes measuring 120 cm × 120 cm × 25 cm (width × height × thickness). The sand-filled channel was designed to represent the aggregate of fissures and cracks that may be present in the compacted barrier. The soil covers were subjected to controlled drying and wetting periods selected to simulate field situation at the Whistle mine site near Capreol, Ontario, Canada. The measured results indicated that interflow decreased from 72.8% of the total precipitation in the soil cover without channel flow to 35.3% in the cover with channel flow, and percolation increased from zero in the normal soil cover to 43.0% of the total precipitation in the cover with channel flow. Gaseous oxygen transfer into the waste rock below the cover soils was 1091 times greater in the cover with channel than in the soil cover without channel. The channel pathway present in the barrier layer acted as a major passage for water movement and gaseous oxygen diffusion into the waste rock layer, thus decreasing the performance of the soil cover. The spacing of the channel with respect to the length of the test box is similar to those
Diffusion of condenser water discharge
International Nuclear Information System (INIS)
Iwakiri, Toshio
1977-01-01
Thermal and nuclear power stations in Japan are mostly located in coastal area, and the cooling water is discharged into sea as warm water. Recently, large interest is taken in this matter, and it is desirable to predict the diffusion of warm discharge accurately and to take effective measures for lowering the temperature. As for the methods of predicting the diffusion of warm discharge, simplified estimation, mathematical analysis and hydrographical model experiment are used corresponding to objects and conditions. As for the measures to lower temperature, the method of discharging warm water into deep sea bottom was confirmed to be very effective. In this paper, the phenomena of diffusion of warm discharge in sea, the methods of predicting the diffusion of warm discharge, and the deep sea discharge as the measure for lowering temperature are outlined. The factors concerning the diffusion of warm discharge in sea are the conditions of discharge, topography and sea state, and the diffusion is roughly divided into mixing diffusion in the vicinity of warm water outlet and eddy diffusion in distant region. It is difficult to change artificially the conditions of diffusion in distant region, and the measures of raising the rate of dilution in near region are effective, therefore the deep sea discharge is adopted. (Kako, I.)
International Nuclear Information System (INIS)
Habib, S.
1994-01-01
We consider a simple quantum system subjected to a classical random force. Under certain conditions it is shown that the noise-averaged Wigner function of the system follows an integro-differential stochastic Liouville equation. In the simple case of polynomial noise-couplings this equation reduces to a generalized Fokker-Planck form. With nonlinear noise injection new ''quantum diffusion'' terms rise that have no counterpart in the classical case. Two special examples that are not of a Fokker-Planck form are discussed: the first with a localized noise source and the other with a spatially modulated noise source
Energy Technology Data Exchange (ETDEWEB)
Silverstein, R., E-mail: barrav@post.bgu.ac.il; Eliezer, D.
2016-09-30
Duplex stainless steels (DSS) alloys are high strength steels combined with ductility and excellent resistance to stress corrosion cracking, which makes them attractive for the pressure vessels or underwater pipelines industries. Hydrogen embrittlement (HE) is caused by the action of hydrogen in combination with residual or applied stress and can lead to the mechanical degradation of a material. Dynamic and quasi-static experiments were conducted at room temperature and strain rates of 10{sup 5} s{sup −1} and 10{sup −7} s{sup −1} on gas-phase hydrogen charged DSS. Hydrogen trapping in the various defects and its effect on the mechanical properties are discussed in details. A linear model of Lee and Lee was applied to calculate the trap activation energies. It was found that lower strain rates (~10{sup −7} s{sup −1}) will create less deep hydrogen trapping energies values; ~40% lower than in non-loaded sample. In addition, higher dynamic pressure will create higher trapping energy sites for hydrogen. Based on our experimental studies we developed an analytical model for hydrogen trapping. We have found that the strain rate has a direct influence on both hydrogen diffusion and hydrogen potential trapping sites. During deformation processes created at low strain rates (~10{sup −7} s{sup −1}) hydrogen has enough time to migrate with dislocations from deeper potential trapping sites to lower potential trapping sites.
Hereditary Diffuse Gastric Cancer
... Hereditary Diffuse Gastric Cancer Request Permissions Hereditary Diffuse Gastric Cancer Approved by the Cancer.Net Editorial Board , 10/2017 What is hereditary diffuse gastric cancer? Hereditary diffuse gastric cancer (HDGC) is a rare ...
International Nuclear Information System (INIS)
Abraham, P.M.; Chandra, D.; Mintz, J.M.; Elleman, T.S.; Verghese, K.
1976-01-01
Major results of tritium and rare gas diffusion research conducted under the contract are summarized. The materials studied were austenitic stainless steels, Zircaloy, and niobium. In all three of the metal systems investigated, tritium release rates were found to be inhibited by surface oxide films. The effective diffusion coefficients that control tritium release from surface films on Zircaloy and niobium were determined to be eight to ten orders of magnitude lower than the bulk diffusion coefficients. A rapid component of diffusion due to grain boundaries was identified in stainless steels. The grain boundary diffusion coefficient was determined to be about six orders of magnitude greater than the bulk diffusion coefficient for tritium in stainless steel. In Zircaloy clad fuel pins, the permeation rate of tritium through the cladding is rate-limited by the extremely slow diffusion rate in the surface films. Tritium diffusion rates through surface oxide films on niobium appear to be controlled by cracks in the surface films at temperatures up to 600 0 C. Beyond 600 0 C, the cracks appear to heal, thereby increasing the activation energy for diffusion through the oxide film. The steady-state diffusion of tritium in a fusion reactor blanket has been evaluated in order to calculate the equilibrium tritium transport rate, approximate time to equilibrium, and tritium inventory in various regions of the reactor blanket as a function of selected blanket parameters. Values for these quantities have been tabulated
Diffusion from cylindrical waste forms
International Nuclear Information System (INIS)
Thomas, G.F.
1985-05-01
The diffusion of a single component material from a finite cylindrical waste form, initially containing a uniform concentration of the material, is investigated. Under the condition that the cylinder is maintained in a well-stirred bath, expressions for the fractional inventory leached and the leach rate are derived with allowance for the possible permanent immobilization of the diffusant through its decay to a stable product and/or its irreversible reaction with the waste form matrix. The usefulness of the reported results in nuclear waste disposal applications is emphasized. The results reported herein are related to those previously derived at Oak Ridge National Laboratory by Bell and Nestor. A numerical scheme involving the partial decoupling of nested infinite summations and the use of rapidly converging rational approximants is recommended for the efficient implementation of the expressions derived to obtain reliable estimates of the bulk diffusion constant and the rate constant describing the diffusant-waste form interaction from laboratory data
Random-walk diffusion and drying of porous materials
Mehrafarin, M.; Faghihi, M.
2001-12-01
Based on random-walk diffusion, a microscopic model for drying is proposed to explain the characteristic features of the drying-rate curve of porous materials. The constant drying-rate period is considered as a normal diffusion process. The transition to the falling-rate regime is attributed to the fractal nature of porous materials which results in crossover to anomalous diffusion.
Energy Technology Data Exchange (ETDEWEB)
Dyk, Pawel; Jiang, Naomi; Sun, Baozhou; DeWees, Todd A. [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Fowler, Kathryn J.; Narra, Vamsi [Department of Diagnostic Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri (United States); Garcia-Ramirez, Jose L.; Schwarz, Julie K. [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Grigsby, Perry W., E-mail: pgrigsby@wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri (United States); Division of Gynecologic Oncology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri (United States); Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri (United States)
2014-11-15
Purpose: Magnetic resonance imaging/diffusion weighted-imaging (MRI/DWI)-guided high-dose-rate (HDR) brachytherapy and {sup 18}F-fluorodeoxyglucose (FDG) — positron emission tomography/computed tomography (PET/CT)-guided intensity modulated radiation therapy (IMRT) for the definitive treatment of cervical cancer is a novel treatment technique. The purpose of this study was to report our analysis of dose-volume parameters predicting gross tumor volume (GTV) control. Methods and Materials: We analyzed the records of 134 patients with International Federation of Gynecology and Obstetrics stages IB1-IVB cervical cancer treated with combined MRI-guided HDR and IMRT from July 2009 to July 2011. IMRT was targeted to the metabolic tumor volume and lymph nodes by use of FDG-PET/CT simulation. The GTV for each HDR fraction was delineated by use of T2-weighted or apparent diffusion coefficient maps from diffusion-weighted sequences. The D100, D90, and Dmean delivered to the GTV from HDR and IMRT were summed to EQD2. Results: One hundred twenty-five patients received all irradiation treatment as planned, and 9 did not complete treatment. All 134 patients are included in this analysis. Treatment failure in the cervix occurred in 24 patients (18.0%). Patients with cervix failures had a lower D100, D90, and Dmean than those who did not experience failure in the cervix. The respective doses to the GTV were 41, 58, and 136 Gy for failures compared with 67, 99, and 236 Gy for those who did not experience failure (P<.001). Probit analysis estimated the minimum D100, D90, and Dmean doses required for ≥90% local control to be 69, 98, and 260 Gy (P<.001). Conclusions: Total dose delivered to the GTV from combined MRI-guided HDR and PET/CT-guided IMRT is highly correlated with local tumor control. The findings can be directly applied in the clinic for dose adaptation to maximize local control.
Diffusion archeology for diffusion progression history reconstruction.
Sefer, Emre; Kingsford, Carl
2016-11-01
Diffusion through graphs can be used to model many real-world processes, such as the spread of diseases, social network memes, computer viruses, or water contaminants. Often, a real-world diffusion cannot be directly observed while it is occurring - perhaps it is not noticed until some time has passed, continuous monitoring is too costly, or privacy concerns limit data access. This leads to the need to reconstruct how the present state of the diffusion came to be from partial diffusion data. Here, we tackle the problem of reconstructing a diffusion history from one or more snapshots of the diffusion state. This ability can be invaluable to learn when certain computer nodes are infected or which people are the initial disease spreaders to control future diffusions. We formulate this problem over discrete-time SEIRS-type diffusion models in terms of maximum likelihood. We design methods that are based on submodularity and a novel prize-collecting dominating-set vertex cover (PCDSVC) relaxation that can identify likely diffusion steps with some provable performance guarantees. Our methods are the first to be able to reconstruct complete diffusion histories accurately in real and simulated situations. As a special case, they can also identify the initial spreaders better than the existing methods for that problem. Our results for both meme and contaminant diffusion show that the partial diffusion data problem can be overcome with proper modeling and methods, and that hidden temporal characteristics of diffusion can be predicted from limited data.
Quantum diffusion of light interstitials in metals
International Nuclear Information System (INIS)
McMullen, T.; Bergersen, B.
1978-01-01
A quantum theory of diffusion of self-trapped light interstitials in metals is presented. The theory encompasses both coherent and incoherent tunneling, but the approximation used neglects the dependence of the interstitial transfer matrix element on the vibrational state of the crystal. The coherent tunneling contribution is estimated by fitting the incoherent diffusion rate to experimental data for hydrogen and muon diffusion. It is predicted that coherent diffusion should be dominant below approximately 80 K for H in Nb and below approximately 190 K for μ + in Cu. Experimental verifications of these predictions would require high purity strain free samples and low concentrations of the diffusing species. (author)
Excess Entropy and Diffusivity
Indian Academy of Sciences (India)
First page Back Continue Last page Graphics. Excess Entropy and Diffusivity. Excess entropy scaling of diffusivity (Rosenfeld,1977). Analogous relationships also exist for viscosity and thermal conductivity.
Simulation of diffusion in concentrated lattice gases
International Nuclear Information System (INIS)
Kehr, K.W.
1986-01-01
Recently the diffusion of particles in lattice gases was studied extensively by theoretical methods and numerical simulations. This paper reviews work on collective and, in particular, on tracer diffusion. The diffusion of tagged particles is characterized by a correlation factor whose behavior as a function of concentration is now well understood. Also the detailed kinetics of the tracer transitions was investigated. A special case is the one-dimensional lattice gas where the tracer diffusion coefficient vanishes. An interesting extension is the case of tagged atoms with a different transition rate. This model allows to study various physical situations, including impurity diffusion, percolation, and diffusion in partially blocked lattices. Finally some recent work on diffusion in lattice gases under the influence of a drift field will be reported. (author)
Diffusion through statically compacted clay
International Nuclear Information System (INIS)
Ho, C.L.; Shebl, M.A.A.
1994-01-01
This paper presents experimental work on the effect of compaction on contaminant flow through clay liners. The experimental program included evaluation of soil properties, compaction, permeability and solute diffusion. A permeameter was built of non reactive materials to test samples compacted at different water contents and compactive efforts. The flow of a permeating solute, LiCl, was monitored. Effluent samples were collected for solute concentration measurements. The concentrations were measured by performing atomic adsorption tests. The analyzed results showed different diffusion characteristics when compaction conditions changed. At each compactive effort, permeability decreased as molding water content increased. Consequently, transit time (measured at relative concentration 50%) increased and diffusivity decreased. As compactive effort increased for soils compacted dry of optimum, permeability and diffusion decreased. On the other hand, as compactive effort increased for soils compacted wet of optimum, permeability and diffusivity increased. Tortuosity factor was indirectly measured from the diffusion and retardation rate. Tortuosity factor also decreased as placement water content was increased from dry of optimum to wet of optimum. Then decreases were more pronounced for low compactive effort tests. 27 refs., 7 figs., 5 tabs
Diffusing diffusivity: Rotational diffusion in two and three dimensions
Jain, Rohit; Sebastian, K. L.
2017-06-01
We consider the problem of calculating the probability distribution function (pdf) of angular displacement for rotational diffusion in a crowded, rearranging medium. We use the diffusing diffusivity model and following our previous work on translational diffusion [R. Jain and K. L. Sebastian, J. Phys. Chem. B 120, 3988 (2016)], we show that the problem can be reduced to that of calculating the survival probability of a particle undergoing Brownian motion, in the presence of a sink. We use the approach to calculate the pdf for the rotational motion in two and three dimensions. We also propose new dimensionless, time dependent parameters, αr o t ,2 D and αr o t ,3 D, which can be used to analyze the experimental/simulation data to find the extent of deviation from the normal behavior, i.e., constant diffusivity, and obtain explicit analytical expressions for them, within our model.
International Nuclear Information System (INIS)
Tiwari, G.P.; Kale, G.B.; Patil, R.V.
1999-01-01
The article presents a brief survey of process of diffusion in solids. It is emphasised that the essence of diffusion is the mass transfer through the atomic jumps. To begin with formal equations for diffusion coefficient are presented. This is followed by discussions on mechanisms of diffusion. Except for solutes which form interstitial solid solution, diffusion in majority of cases is mediated through exchange of sites between an atom and its neighbouring vacancy. Various vacancy parameters such as activation volume, correlation factor, mass effect etc are discussed and their role in establishing the mode of diffusion is delineated. The contribution of dislocations and grain boundaries in diffusion process is brought out. The experimental determination of different types of diffusion coefficients are described. Finally, the pervasive nature of diffusion process in number of commercial processes is outlined to show the importance of diffusion studies in materials science and technology. (author)
Diffusion of hydrogen in yttrium
International Nuclear Information System (INIS)
Vorobyov, V.V.; Ryabchikov, L.N.
1966-01-01
In this work the diffusion coefficients of hydrogen in yttrium were determined from the rate at which the hydrogen was released from yttrium samples under a vacuum at temperatures of 450 to 850 0 C and from the quantity of hydrogen retained by yttrium at hydrogen pressures below 5 x 10 - 4 mm Hg in the same temperature range
Diffusion archeology for diffusion progression history reconstruction
Sefer, Emre; Kingsford, Carl
2015-01-01
Diffusion through graphs can be used to model many real-world processes, such as the spread of diseases, social network memes, computer viruses, or water contaminants. Often, a real-world diffusion cannot be directly observed while it is occurring — perhaps it is not noticed until some time has passed, continuous monitoring is too costly, or privacy concerns limit data access. This leads to the need to reconstruct how the present state of the diffusion came to be from partial d...
Long range diffusion of hydrogen in yttrium
Energy Technology Data Exchange (ETDEWEB)
Anderson, I S; Scherrer, P [Paul Scherrer Inst., Villigen (Switzerland); Ross, D K [Birmingham Univ. (UK). Dept. of Physics; Bonnet, J E [Laboratoire pour l' Utilisation du Rayonnement Electromagnetique (LURE), Paris-11 Univ., 91 - Orsay (France)
1989-01-01
The diffusion of H in single crystals of YH{sub 0.2} is investigated by means of Quasielastic neutron scattering between 593 K and 695 K. Individual jump rates giving rise to long range and local diffusion are determined. (orig.).
Enhancing Rotational Diffusion Using Oscillatory Shear
Leahy, Brian D.
2013-05-29
Taylor dispersion - shear-induced enhancement of translational diffusion - is an important phenomenon with applications ranging from pharmacology to geology. Through experiments and simulations, we show that rotational diffusion is also enhanced for anisotropic particles in oscillatory shear. This enhancement arises from variations in the particle\\'s rotation (Jeffery orbit) and depends on the strain amplitude, rate, and particle aspect ratio in a manner that is distinct from the translational diffusion. This separate tunability of translational and rotational diffusion opens the door to new techniques for controlling positions and orientations of suspended anisotropic colloids. © 2013 American Physical Society.
Lead diffusion in monazite; Diffusion du plomb dans la monazite
Energy Technology Data Exchange (ETDEWEB)
Gardes, E
2006-06-15
Proper knowledge of the diffusion rates of lead in monazite is necessary to understand the U-Th-Pb age anomalies of this mineral, which is one of the most used in geochronology after zircon. Diffusion experiments were performed in NdPO{sub 4} monocrystals and in Nd{sub 0.66}Ca{sub 0.17}Th{sub 0.17}PO{sub 4} polycrystals from Nd{sub 0.66}Pb{sub 0.17}Th{sub 0.17}PO{sub 4} thin films to investigate Pb{sup 2+} + Th{sup 4+} {r_reversible} 2 Nd{sup 3+} and Pb{sup 2+} {r_reversible} Ca{sup 2+} exchanges. Diffusion annealings were run between 1200 and 1500 Celsius degrees, at room pressure, for durations ranging from one hour to one month. The diffusion profiles were analysed using TEM (transmission electronic microscopy) and RBS (Rutherford backscattering spectroscopy). The diffusivities extracted for Pb{sup 2+} + Th{sup 4+} {r_reversible} 2 Nd{sup 3+} exchange follow an Arrhenius law with parameters E equals 509 {+-} 24 kJ mol{sup -1} and log(D{sub 0} (m{sup 2}s{sup -1})) equals -3.41 {+-} 0.77. Preliminary data for Pb{sup 2+} {r_reversible} Ca{sup 2+} exchange are in agreement with this result. The extrapolation of our data to crustal temperatures yields very slow diffusivities. For instance, the time necessary for a 50 {mu}m grain to lose all of its lead at 800 Celsius degrees is greater than the age of the Earth. From these results and other evidence from the literature, we conclude that most of the perturbations in U-Th-Pb ages of monazite cannot be attributed to lead diffusion, but rather to interactions with fluids. (author)
Drug diffusion across skin with diffusivity spatially modulated
Montoya Arroyave, Isabel
2014-05-01
A diffusion and delivery model of a drug across the skin with diffusivity spatially modulated is formulated and solved analytically using computer algebra. The model is developed using one-dimensional diffusion equation with a diffusivity which is a function of position in the skin; with an initial condition which is describing that the drug is initially contained inside a therapeutic patch; with a boundary condition according to which the change in concentration in the patch is minimal, such that assumption of zero flux at the patch-skin interface is valid; and with other boundary condition according to which the microcirculation in the capillaries just below the dermis carries the drug molecules away from the site at a very fast rate, maintaining the inner concentration at 0. The model is solved analytically by the method of the Laplace transform, with Bromwich integral and residue theorem. The concentration profile of the drug in the skin is expressed as an infinite series of Bessel functions. The corresponding total amount of delivered drug is expressed as an infinite series of decreasing exponentials. Also, the corresponding effective time for the therapeutic patch is determined. All computations were performed using computer algebra software, specifically Maple. The analytical results obtained are important for understanding and improving currentapplications of therapeutic patches. For future research it is interesting to consider more general models of spatial modulation of the diffusivity and the possible application of other computer algebra software such as Mathematica and Maxima.
Directory of Open Access Journals (Sweden)
Nobumichi Fujisawa
2017-01-01
Full Text Available The transition process from a diffuser rotating stall to a stage stall in a centrifugal compressor with a vaned diffuser was investigated by experimental and numerical analyses. From the velocity measurements, it was found that the rotating stall existed on the shroud side of the diffuser passage in the off-design flow condition. The numerical results revealed the typical vortical structure of the diffuser stall. The diffuser stall cell was caused by the systematic vortical structure which consisted of the tornado-type vortex, the longitudinal vortex at the shroud/suction surface corner (i.e., leading edge vortex (LEV, and the vortex in the throat area of the diffuser passages. Furthermore, the stage stall, which rotated within both the impeller and diffuser passages, occurred instead of the diffuser stall as the mass flow rate was decreased. According to the velocity measurements at the diffuser inlet, the diffuser stall which rotated on the shroud side was shifted to the hub side. Then, the diffuser stall moved into the impeller passages and formed the stage stall. Therefore, the stage stall was caused by the development of the diffuser stall, which transferred from the shroud side to the hub side in the vaneless space and expanded to the impeller passages.
Diffusion in reactor materials
International Nuclear Information System (INIS)
Fedorov, G.B.; Smirnov, E.A.
1984-01-01
The monograph contains a brief description of the principles underlying the theory of diffusion, as well as modern methods of studying diffusion. Data on self-diffusion and diffusion of impurities in a nuclear fuel and fissionable materials (uranium, plutonium, thorium, zirconium, titanium, hafnium, niobium, molybdenum, tungsten, beryllium, etc.) is presented. Anomalous diffusion, diffusion of components, and interdiffusion in binary and ternary alloys were examined. The monograph presents the most recent reference material on diffusion. It is intended for a wide range of researchers working in the field of diffusion in metals and alloys and attempting to discover new materials for application in nuclear engineering. It will also be useful for teachers, research scholars and students of physical metallurgy
International Nuclear Information System (INIS)
Reus, K.W.
1979-01-01
This thesis is concerned with the back-diffusion method of calculating the mutual diffusion coefficient of two gases. The applicability of this method for measuring diffusion coefficients at temperatures up to 1300 K is considered. A further aim of the work was to make a contribution to the description of the interatomic potential energy of noble gases at higher energies as a function of the internuclear distance. This was achieved with the measured diffusion coefficients, especially with those for high temperatures. (Auth.)
Diffusion Under Geometrical Constraint
Ogawa, Naohisa
2014-01-01
Here we discus the diffusion of particles in a curved tube. This kind of transport phenomenon is observed in biological cells and porous media. To solve such a problem, we discuss the three dimensional diffusion equation with a confining wall forming a thinner tube. We find that the curvature appears in a effective diffusion coefficient for such a quasi-one-dimensional system. As an application to higher dimensional case, we discuss the diffusion in a curved surface with ...
DEFF Research Database (Denmark)
Zhang, Chen
Diffuse ceiling ventilation is an innovative ventilation concept where the suspended ceiling serves as air diffuser to supply fresh air into the room. Compared with conventional ventilation systems, diffuse ceiling ventilation can significantly reduce or even eliminate draught risk due to the low...
Savardekar, Amey R; Patra, Devi P; Thakur, Jai D; Narayan, Vinayak; Mohammed, Nasser; Bollam, Papireddy; Nanda, Anil
2018-03-01
OBJECTIVE Total tumor excision with the preservation of neurological function and quality of life is the goal of modern-day vestibular schwannoma (VS) surgery. Postoperative facial nerve (FN) paralysis is a devastating complication of VS surgery. Determining the course of the FN in relation to a VS preoperatively is invaluable to the neurosurgeon and is likely to enhance surgical safety with respect to FN function. Diffusion tensor imaging-fiber tracking (DTI-FT) technology is slowly gaining traction as a viable tool for preoperative FN visualization in patients with VS. METHODS A systematic review of the literature in the PubMed, Cochrane Library, and Web of Science databases was performed in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and those studies that preoperatively localized the FN in relation to a VS using the DTI-FT technique and verified those preoperative FN tracking results by using microscopic observation and electrophysiological monitoring during microsurgery were included. A pooled analysis of studies was performed to calculate the surgical concordance rate (accuracy) of DTI-FT technology for FN localization. RESULTS Fourteen studies included 234 VS patients (male/female ratio 1:1.4, age range 17-75 years) who had undergone preoperative DTI-FT for FN identification. The mean tumor size among the studies ranged from 29 to 41.3 mm. Preoperative DTI-FT could not visualize the FN tract in 8 patients (3.4%) and its findings could not be verified in 3 patients (1.2%), were verified but discordant in 18 patients (7.6%), and were verified and concordant in 205 patients (87.1%). CONCLUSIONS Preoperative DTI-FT for FN identification is a useful adjunct in the surgical planning for large VSs (> 2.5 cm). A pooled analysis showed that DTI-FT successfully identifies the complete FN course in 96.6% of VSs (226 of 234 cases) and that FN identification by DTI-FT is accurate in 90.6% of cases (205 of 226
Experimental and theoretical investigations on diffusion process for rare earth ores
Energy Technology Data Exchange (ETDEWEB)
He, Ye; Li, Wenzhi Z. [Changchun Univ. (China)
2013-06-01
The diffusion reaction kinetics of weathered crust elution-deposited rare earth with mixed ammonium salts was studied. The influence of concentration of reagents and particle size of ore on diffusion rate was investigated. The results showed that the diffusion process and diffusion rate could be improved by increasing reagents concentration and decreasing diffusion flowing rate and particle size. The diffusion process could be explained with the shrinking core Model, which could be controlled by the diffusion rate of reacting reagents in porous solid layer.
Lithium diffusion in silver vanadium oxide
International Nuclear Information System (INIS)
Takeuchi, E.S.; Thiebolt, W.C. III
1989-01-01
Lithium/silver vanadium oxide (SVO) batteries have been developed to power implantable devices. The voltage of Li/SVO cells decreases with discharge allowing state of charge assessment by accurate determination of the cells' open circuit voltage. The open circuit voltage recovery of Li/SVO cells was monitored during intermittent high rate discharge. It was found that the voltage does not recover at the same rate or magnitude at all depths of discharge. The authors describe lithium diffusion in SVO studied by low scan rate voltammetry where utilization of SVO at various scan rates was used to determine the diffusion rate of lithium. A pulse technique was also used where the rate of lithium diffusion was measured at various depths of discharge
Thermal diffusion (1963); Diffusion thermique (1963)
Energy Technology Data Exchange (ETDEWEB)
Lemarechal, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1963-07-01
This report brings together the essential principles of thermal diffusion in the liquid and gaseous phases. The macroscopic and molecular aspects of the thermal diffusion constant are reviewed, as well as the various measurement method; the most important developments however concern the operation of the CLUSIUS and DICKEL thermo-gravitational column and its applications. (author) [French] Ce rapport rassemble les principes essentiels de la diffusion thermique en phase liquide et en phase gazeuse. Les aspects macroscopique et moleculaire de la constante de diffusion thermique sont passes en revue ainsi que ses differentes methodes de mesure; mais les developpements les plus importants concernent le fonctionnement de ls colonne thermogravitationnelle de CLUSIUS et DICKEL et ses applications. (auteur)
Fractional diffusion equations and anomalous diffusion
Evangelista, Luiz Roberto
2018-01-01
Anomalous diffusion has been detected in a wide variety of scenarios, from fractal media, systems with memory, transport processes in porous media, to fluctuations of financial markets, tumour growth, and complex fluids. Providing a contemporary treatment of this process, this book examines the recent literature on anomalous diffusion and covers a rich class of problems in which surface effects are important, offering detailed mathematical tools of usual and fractional calculus for a wide audience of scientists and graduate students in physics, mathematics, chemistry and engineering. Including the basic mathematical tools needed to understand the rules for operating with the fractional derivatives and fractional differential equations, this self-contained text presents the possibility of using fractional diffusion equations with anomalous diffusion phenomena to propose powerful mathematical models for a large variety of fundamental and practical problems in a fast-growing field of research.
An introduction to visualization of diffusion tensor imaging and its applications
Vilanova, A.; Zhang, S.; Kindlmann, G.; Laidlaw, D.H.; Weickert, J.; Hagen, H.
2005-01-01
Summary. Water diffusion is anisotropic in organized tissues such as white matter and muscle. Diffusion tensor imaging (DTI), a non-invasive MR technique, measures water self-diffusion rates and thus gives an indication of the underlying tissue microstructure. The diffusion rate is often expressed
Moisture diffusivity in structure of random fractal fiber bed
Energy Technology Data Exchange (ETDEWEB)
Zhu, Fanglong, E-mail: zhufanglong_168@163.com [College of Textile, Zhongyuan University of Technology, Zhengzhou City (China); The Chinese People' s Armed Police Forces Academy, Langfan City (China); Zhou, Yu; Feng, Qianqian [College of Textile, Zhongyuan University of Technology, Zhengzhou City (China); Xia, Dehong [School of Mechanical Engineering, University of Science and Technology, Beijing (China)
2013-11-08
A theoretical expression related to effective moisture diffusivity to random fiber bed is derived by using fractal theory and considering both parallel and perpendicular channels to diffusion flow direction. In this Letter, macroporous structure of hydrophobic nonwoven material is investigated, and Knudsen diffusion and surface diffusion are neglected. The effective moisture diffusivity predicted by the present fractal model are compared with water vapor transfer rate (WVTR) experiment data and calculated values obtained from other theoretical models. This verifies the validity of the present fractal diffusivity of fibrous structural beds.
Electrolyte diffusion in compacted montmorillonite engineered barriers
International Nuclear Information System (INIS)
Jahnke, F.M.; Radke, C.J.
1985-09-01
The bentonite-based engineered barrier or packing is a proposed component of several designs conceived to dispose of high-level nuclear waste in geologic repositories. Once radionuclides escape the waste package, they must first diffuse through the highly impermeable clay-rich barrier before they reach the host repository. To determine the effectiveness of the packing as a sorption barrier in the transient release period and as a mass-transfer barrier in the steady release period over the geologic time scales involved in nuclear waste disposal, a fundamental understanding of the diffusion of electrolytes in compacted clays is required. We present, and compare with laboratory data, a model quantifying the diffusion rates of cationic cesium and uncharged tritium in compacted montmorillonite clay. Neutral tritium characterizes the geometry (i.e., tortuosity) of the particulate gel. After accounting for cation exchange, we find that surface diffusion is the dominant mechanism of cation transport, with an approximate surface diffusion coefficient of 2 x 10 -6 cm 2 /s for cesium. This value increases slightly with increasing background ionic strength. The implications of this work for the packing as a migration barrier are twofold. During the transient release period, K/sub d/ values are of little importance in retarding ion migration. This is because sorption also gives rise to a surface diffusion path, and it is surface diffusion which controls the diffusion rate of highly sorbing cations in compacted montmorillonite. During the steady release period, the presence of surface diffusion leads to a flux through the packing which is greatly enhanced. In either case, if surface diffusion is neglected, the appropriate diffusion coefficient of ions in compacted packing will be in considerable error relative to current design recommendations. 11 refs., 4 figs., 1 tab
I.C. van den Bos (Indra); S.M. Hussain (Shahid); G.P. Krestin (Gabriel); P.A. Wielopolski (Piotr)
2008-01-01
textabstractInstitutional Review Board approval and signed informed consent were obtained by all participants for an ongoing sequence optimization project at 3.0 T. The purpose of this study was to evaluate breath-hold diffusion-induced blackblood echo-planar imaging (BBEPI) as a potential
Diffusion in molybdenum disilicide
International Nuclear Information System (INIS)
Salamon, M.; Mehrer, H.
2005-01-01
The diffusion behaviour of the high-temperature material molybdenum disilicide (MoSi 2 ) was completely unknown until recently. In this paper we present studies of Mo self-diffusion and compare our present results with our already published studies of Si and Ge diffusion in MoSi 2 . Self-diffusion of molybdenum in monocrystalline MoSi 2 was studied by the radiotracer technique using the radioisotope 99 Mo. Deposition of the radiotracer and serial sectioning after the diffusion anneals to determine the concentration-depth profiles was performed using a sputtering device. Diffusion of Mo is a very slow process. In the entire temperature region investigated (1437 to 2173 K), the 99 Mo diffusivities in both principal directions of the tetragonal MoSi 2 crystals obey Arrhenius laws, where the diffusion perpendicular to the tetragonal axis is faster by two to three orders of magnitude than parallel to it. The activation enthalpies for diffusion perpendicular and parallel to the tetragonal axis are Q perpendicular to = 468 kJ mol -1 (4.85 eV) and Q parallel = 586 kJ mol -1 (6.07 eV), respectively. Diffusion of Si and its homologous element Ge is fast and is mediated by thermal vacancies of the Si sublattice of MoSi 2 . The diffusion of Mo is by several orders of magnitude slower than the diffusion of Si and Ge. This large difference suggests that Si and Mo diffusion are decoupled and that the diffusion of Mo likely takes place via vacancies on the Mo sublattice. (orig.)
Mechanism and kinetics of hydrated electron diffusion
International Nuclear Information System (INIS)
Tay, Kafui A.; Coudert, Francois-Xavier; Boutin, Anne
2008-01-01
Molecular dynamics simulations are used to study the mechanism and kinetics of hydrated electron diffusion. The electron center of mass is found to exhibit Brownian-type behavior with a diffusion coefficient considerably greater than that of the solvent. As previously postulated by both experimental and theoretical works, the instantaneous response of the electron to the librational motions of surrounding water molecules constitutes the principal mode of motion. The diffusive mechanism can be understood within the traditional framework of transfer diffusion processes, where the diffusive step is akin to the exchange of an extramolecular electron between neighboring water molecules. This is a second-order process with a computed rate constant of 5.0 ps -1 at 298 K. In agreement with experiment the electron diffusion exhibits Arrhenius behavior over the temperature range of 298-400 K. We compute an activation energy of 8.9 kJ mol -1 . Through analysis of Arrhenius plots and the application of a simple random walk model it is demonstrated that the computed rate constant for exchange of an excess electron is indeed the phenomenological rate constant associated with the diffusive process
Predicting the Diffusion of Improved Pastures in Uruguay
Lovell S. Jarvis
1981-01-01
Research suggests the logistic curve is the characteristic diffusion path for new technologies. Econometric analysis of fertilized grass-legume pastures in Uruguay indicated that their diffusion during the first years following introduction also followed a logistic path. Some departure from a simple logistic shape was explained by including beef and fertilizer prices within the diffusion framework. Both the rate and limit of diffusion were positively related to changes in the technology's pro...
Fathollahi, Mostafa; Rostamizadeh, Shahnaz; Amani, Ali M
2018-01-01
The present study has developed an efficient and eco-friendly protocol for the synthesis of aryl-14-H-dibenzo[a,j] xanthenes through a one-pot condensation reaction of 2-naphthol and arylaldehydes in aqueous media using the nanocatalytic MCM-41-SO3H under ultrasonic illumination. Using SEM and XRD analyses, MCM-41-SO3H nanoparticles were characterized. Therefore, for high magnification, taking the SEM image, the mesoporous surface of MCM-41-SO3H nanoparticles coated with gold for 2 minutes was characterized. Moreover, at a scan rate of 0.02° (2θ)/sec, XRD analysis from 1.5° (2θ) to 10.0° (2θ) was performed. For our considered sample, some well-ordered XRD patterns with one main peak as well as three minor peaks equal to those of MCM-41 materials were observed. The suggested route demonstrates very promising properties like higher yields, decrease in the time of reaction (5-10 min), mild and straightforward conditions, low level of toxicity, and inclusion of a cost-efficient and ecofriendly catalyst having considerable reusability. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Metric diffusion along foliations
Walczak, Szymon M
2017-01-01
Up-to-date research in metric diffusion along compact foliations is presented in this book. Beginning with fundamentals from the optimal transportation theory and the theory of foliations; this book moves on to cover Wasserstein distance, Kantorovich Duality Theorem, and the metrization of the weak topology by the Wasserstein distance. Metric diffusion is defined, the topology of the metric space is studied and the limits of diffused metrics along compact foliations are discussed. Essentials on foliations, holonomy, heat diffusion, and compact foliations are detailed and vital technical lemmas are proved to aide understanding. Graduate students and researchers in geometry, topology and dynamics of foliations and laminations will find this supplement useful as it presents facts about the metric diffusion along non-compact foliation and provides a full description of the limit for metrics diffused along foliation with at least one compact leaf on the two dimensions.
International Nuclear Information System (INIS)
Wong, Alexander; Glaister, Jeffrey; Cameron, Andrew; Haider, Masoom
2013-01-01
Prostate cancer is one of the leading causes of cancer death in the male population. Fortunately, the prognosis is excellent if detected at an early stage. Hence, the detection and localization of prostate cancer is crucial for diagnosis, as well as treatment via targeted focal therapy. New imaging techniques can potentially be invaluable tools for improving prostate cancer detection and localization. In this study, we introduce a new form of diffusion magnetic resonance imaging called correlated diffusion imaging, where the tissue being imaged is characterized by the joint correlation of diffusion signal attenuation across multiple gradient pulse strengths and timings. By taking into account signal attenuation at different water diffusion motion sensitivities, correlated diffusion imaging can provide improved delineation between cancerous tissue and healthy tissue when compared to existing diffusion imaging modalities. Quantitative evaluation using receiver operating characteristic (ROC) curve analysis, tissue class separability analysis, and visual assessment by an expert radiologist were performed to study correlated diffusion imaging for the task of prostate cancer diagnosis. These results are compared with that obtained using T2-weighted imaging and standard diffusion imaging (via the apparent diffusion coefficient (ADC)). Experimental results suggest that correlated diffusion imaging provide improved delineation between healthy and cancerous tissue and may have potential as a diagnostic tool for cancer detection and localization in the prostate gland. A new form of diffusion magnetic resonance imaging called correlated diffusion imaging (CDI) was developed for the purpose of aiding radiologists in cancer detection and localization in the prostate gland. Preliminary results show CDI shows considerable promise as a diagnostic aid for radiologists in the detection and localization of prostate cancer
International Nuclear Information System (INIS)
Garrett, G.A.; Shacter, J.
1978-01-01
A gaseous diffusion system is described comprising a plurality of diffusers connected in cascade to form a series of stages, each of the diffusers having a porous partition dividing it into a high pressure chamber and a low pressure chamber, and means for combining a portion of the enriched gas from a succeeding stage with a portion of the enriched gas from the low pressure chamber of each stage and feeding it into one extremity of the high pressure chamber thereof
Diffusion-limited mixing by incompressible flows
Miles, Christopher J.; Doering, Charles R.
2018-05-01
Incompressible flows can be effective mixers by appropriately advecting a passive tracer to produce small filamentation length scales. In addition, diffusion is generally perceived as beneficial to mixing due to its ability to homogenize a passive tracer. However we provide numerical evidence that, in cases where advection and diffusion are both actively present, diffusion may produce negative effects by limiting the mixing effectiveness of incompressible optimal flows. This limitation appears to be due to the presence of a limiting length scale given by a generalised Batchelor length (Batchelor 1959 J. Fluid Mech. 5 113–33). This length scale limitation may in turn affect long-term mixing rates. More specifically, we consider local-in-time flow optimisation under energy and enstrophy flow constraints with the objective of maximising the mixing rate. We observe that, for enstrophy-bounded optimal flows, the strength of diffusion may not impact the long-term mixing rate. For energy-constrained optimal flows, however, an increase in the strength of diffusion can decrease the mixing rate. We provide analytical lower bounds on mixing rates and length scales achievable under related constraints (point-wise bounded speed and rate-of-strain) by extending the work of Lin et al (2011 J. Fluid Mech. 675 465–76) and Poon (1996 Commun. PDE 21 521–39).
Diffusive epidemic process: theory and simulation
International Nuclear Information System (INIS)
Maia, Daniel Souza; Dickman, Ronald
2007-01-01
We study the continuous absorbing-state phase transition in the one-dimensional diffusive epidemic process via mean-field theory and Monte Carlo simulation. In this model, particles of two species (A and B) hop on a lattice and undergo reactions B → A and A+B → 2B; the total particle number is conserved. We formulate the model as a continuous-time Markov process described by a master equation. A phase transition between the (absorbing) B-free state and an active state is observed as the parameters (reaction and diffusion rates, and total particle density) are varied. Mean-field theory reveals a surprising, nonmonotonic dependence of the critical recovery rate on the diffusion rate of B particles. A computational realization of the process that is faithful to the transition rates defining the model is devised, allowing for direct comparison with theory. Using the quasi-stationary simulation method we determine the order parameter and the survival time in systems of up to 4000 sites. Due to strong finite-size effects, the results converge only for large system sizes. We find no evidence for a discontinuous transition. Our results are consistent with the existence of three distinct universality classes, depending on whether A particles diffusive more rapidly, less rapidly or at the same rate as B particles. We also perform quasi-stationary simulations of the triplet creation model, which yield results consistent with a discontinuous transition at high diffusion rates
Inpainting using airy diffusion
Lorduy Hernandez, Sara
2015-09-01
One inpainting procedure based on Airy diffusion is proposed, implemented via Maple and applied to some digital images. Airy diffusion is a partial differential equation with spatial derivatives of third order in contrast with the usual diffusion with spatial derivatives of second order. Airy diffusion generates the Airy semigroup in terms of the Airy functions which can be rewritten in terms of Bessel functions. The Airy diffusion can be used to smooth an image with the corresponding noise elimination via convolution. Also the Airy diffusion can be used to erase objects from an image. We build an algorithm using the Maple package ImageTools and such algorithm is tested using some images. Our results using Airy diffusion are compared with the similar results using standard diffusion. We observe that Airy diffusion generates powerful filters for image processing which could be incorporated in the usual packages for image processing such as ImageJ and Photoshop. Also is interesting to consider the possibility to incorporate the Airy filters as applications for smartphones and smart-glasses.
Diffusion in compacted betonite
International Nuclear Information System (INIS)
Muurinen, A.; Rantanen, J.
1985-01-01
The objective of this report is to collect the literature bearing on the diffusion in compacted betonite, which has been suggested as possible buffer material for the disposal of spent fuel. Diffusion in a porous, water-saturated material is usually described as diffusion in the pore-water where sorption on the solid matter can delay the migration in the instationary state. There are also models which take into consideration that the sorbed molecules can also move while being sorbed. Diffusion experiments in compacted bentonite have been reported by many authors. Gases, anions, cations and actinides have been used as diffusing molecules. The report collects the results and the information on the measurement methods. On the basis of the results can be concluded that different particles possibly follow different diffusion mechanisms. The parameters which affect the diffusion seem to be for example the size, the electric charge and the sorption properties of the diffusing molecule. The report also suggest the parameters to be used in the diffusion calculation of the safety analyses of spent fuel disposal. (author)
Water diffusion in phosphate-containing hydrogels
International Nuclear Information System (INIS)
George, K.A.; Wentrup-Byrne, E.; Hill, D.J.T.; Whittaker, A.K.
2003-01-01
An understanding of the kinetics and diffusion of liquids through polymeric hydrogels is critical for the successful design and application of these materials in biomedical field, particularly as controlled drug delivery systems. In this study, the mechanisms of water transport and parameters that describe the diffusion process in crosslinked poly(2-hydroxyethylmethacrylate-co-methyloxyethylene phosphate), poly(HEMA-co-MOEP) polymers were investigated. The copolymerisation of HEMA with MOEP was initiated by γ radiolysis with full conversion of monomer to polymer. The sorption of water into the polymers with 0 - 30 mol% MOEP was monitored gravimetrically over a period of 2 - 3 weeks. This study provided an insight into the diffusion mechanism and showed that the PHEMA hydrogel displayed concentration-independent Fickian diffusion. As the concentration of MOEP in the network increased, the diffusion rate and the rigidity of the network also increased in a linear fashion. NMR imaging was used in conjunction with the gravimetric study to elucidate the transport mechanisms, diffusion coefficients and proportionality constants governing the water diffusion in the phosphate-containing polymers. The hydrogels with 3 - 20 mol% MOEP exhibited exponential concentration-dependent Fickian diffusion and the transport mechanism in the system with 30 mol% MOEP was shown to be anomalous. The systems with greater concentrations of MOEP displayed a high degree of fracturing during water sorption and resulted in the ultimate destruction of the cylindrical geometry
Entropy as a measure of diffusion
International Nuclear Information System (INIS)
Aghamohammadi, Amir; Fatollahi, Amir H.; Khorrami, Mohammad; Shariati, Ahmad
2013-01-01
The time variation of entropy, as an alternative to the variance, is proposed as a measure of the diffusion rate. It is shown that for linear and time-translationally invariant systems having a large-time limit for the density, at large times the entropy tends exponentially to a constant. For systems with no stationary density, at large times the entropy is logarithmic with a coefficient specifying the speed of the diffusion. As an example, the large-time behaviors of the entropy and the variance are compared for various types of fractional-derivative diffusions.
Entropy as a measure of diffusion
Energy Technology Data Exchange (ETDEWEB)
Aghamohammadi, Amir, E-mail: mohamadi@alzahra.ac.ir; Fatollahi, Amir H., E-mail: fath@alzahra.ac.ir; Khorrami, Mohammad, E-mail: mamwad@mailaps.org; Shariati, Ahmad, E-mail: shariati@mailaps.org
2013-10-15
The time variation of entropy, as an alternative to the variance, is proposed as a measure of the diffusion rate. It is shown that for linear and time-translationally invariant systems having a large-time limit for the density, at large times the entropy tends exponentially to a constant. For systems with no stationary density, at large times the entropy is logarithmic with a coefficient specifying the speed of the diffusion. As an example, the large-time behaviors of the entropy and the variance are compared for various types of fractional-derivative diffusions.
Current limiting capability of diffused resistors
International Nuclear Information System (INIS)
Shedd, W.; Cappelli, J.
1979-01-01
An experimental evaluation of the current limiting capability of dielectrically isolated diffused resistors at transient ionizing dose rates up to 6*10 12 rads(Si)/sec is presented. Existing theoretical predictions of the transient response of diffused resistors are summarized and compared to the experimentally measured values. The test resistors used allow the effects of sheet resistance and geometry on the transient response to be determined. The experimental results show that typical dielectrically isolated diffused resistors maintain adequate current limiting capability for use in radiation hardened integrated circuits
Lequin, Sonia; Chassagne, David; Karbowiak, Thomas; Simon, Jean-Marc; Paulin, Christian; Bellat, Jean-Pierre
2012-04-04
This work reports measurements of effective oxygen diffusion coefficient in raw cork. Kinetics of oxygen transfer through cork is studied at 298 K thanks to a homemade manometric device composed of two gas compartments separated by a cork wafer sample. The first compartment contains oxygen, whereas the second one is kept under dynamic vacuum. The pressure decrease in the first compartment is recorded as a function of time. The effective diffusion coefficient D(eff) is obtained by applying Fick's law to transient state using a numerical method based on finite differences. An analytical model derived from Fick's law applied to steady state is also proposed. Results given by these two methods are in close agreement with each other. The harmonic average of the effective diffusion coefficients obtained from the distribution of 15 cork wafers of 3 mm thickness is 1.1 × 10(-9) m(2) s(-1) with a large distribution over four decades. The statistical analysis of the Gaussian distribution obtained on a 3 mm cork wafer is extrapolated to a 48 mm cork wafer, which length corresponds to a full cork stopper. In this case, the probability density distribution gives a mean value of D(eff) equal to 1.6 × 10(-9) m(2) s(-1). This result shows that it is possible to obtain the effective diffusion coefficient of oxygen through cork from short time (few days) measurements performed on a thin cork wafer, whereas months are required to obtain the diffusion coefficient for a full cork stopper. Permeability and oxygen transfer rate are also calculated for comparison with data from other studies.
Tiny Molybdenites Tell Diffusion Tales
Stein, H. J.; Hannah, J. L.
2014-12-01
Diffusion invokes micron-scale exchange during crystal growth and dissolution in magma chambers on short time-scales. Fundamental to interpreting such data are assumptions on magma-fluid dynamics at all scales. Nevertheless, elemental diffusion profiles are used to estimate time scales for magma storage, eruption, and recharge. An underutilized timepiece to evaluate diffusion and 3D mobility of magmatic fluids is high-precision Re-Os dating of molybdenite. With spatially unique molybdenite samples from a young ore system (e.g., 1 Ma) and a double Os spike, analytical errors of 1-3 ka unambiguously separate events in time. Re-Os ages show that hydrous shallow magma chambers locally recharge and expel Cu-Mo-Au-silica as superimposed stockwork vein networks at time scales less than a few thousand years [1]. Re-Os ages provide diffusion rates controlled by a dynamic crystal mush, accumulation and expulsion of metalliferous fluid, and magma reorganization after explosive crystallization events. Importantly, this approach has broad application far from ore deposits. Here, we use Re-Os dating of molybdenite to assess time scales for generating and diffusing metals through the deep crust. To maximize opportunity for chemical diffusion, we use a continental-scale Sveconorwegian mylonite zone for the study area. A geologically constrained suite of molybdenite samples was acquired from quarry exposures. Molybdenite, previously unreported, is extremely scarce. Tiny but telling molybdenites include samples from like occurrences to assure geologic accuracy in Re-Os ages. Ages range from mid-Mesoproterozoic to mid-Neoproterozoic, and correspond to early metamorphic dehydration of a regionally widespread biotite-rich gneiss, localized melting of gneiss to form cm-m-scale K-feldspar ± quartz pods, development of vapor-rich, vuggy mm stringers that serve as volatile collection surfaces in felsic leucosomes, and low-angle (relative to foliation) cross-cutting cm-scale quartz veins
Diffusion Based Photon Mapping
DEFF Research Database (Denmark)
Schjøth, Lars; Fogh Olsen, Ole; Sporring, Jon
2007-01-01
. To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination features......, while eliminating noise. We call our method diffusion based photon mapping....
Diffusion Based Photon Mapping
DEFF Research Database (Denmark)
Schjøth, Lars; Olsen, Ole Fogh; Sporring, Jon
2006-01-01
. To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination features......, while eliminating noise. We call our method diffusion based photon mapping....
Adaptation and Cultural Diffusion.
Ormrod, Richard K.
1992-01-01
Explores the role of adaptation in cultural diffusion. Explains that adaptation theory recognizes the lack of independence between innovations and their environmental settings. Discusses testing and selection, modification, motivation, and cognition. Suggests that adaptation effects are pervasive in cultural diffusion but require a broader, more…
Modelling of Innovation Diffusion
Directory of Open Access Journals (Sweden)
Arkadiusz Kijek
2010-01-01
Full Text Available Since the publication of the Bass model in 1969, research on the modelling of the diffusion of innovation resulted in a vast body of scientific literature consisting of articles, books, and studies of real-world applications of this model. The main objective of the diffusion model is to describe a pattern of spread of innovation among potential adopters in terms of a mathematical function of time. This paper assesses the state-of-the-art in mathematical models of innovation diffusion and procedures for estimating their parameters. Moreover, theoretical issues related to the models presented are supplemented with empirical research. The purpose of the research is to explore the extent to which the diffusion of broadband Internet users in 29 OECD countries can be adequately described by three diffusion models, i.e. the Bass model, logistic model and dynamic model. The results of this research are ambiguous and do not indicate which model best describes the diffusion pattern of broadband Internet users but in terms of the results presented, in most cases the dynamic model is inappropriate for describing the diffusion pattern. Issues related to the further development of innovation diffusion models are discussed and some recommendations are given. (original abstract
International Nuclear Information System (INIS)
Lemarechal, A.
1963-01-01
This report brings together the essential principles of thermal diffusion in the liquid and gaseous phases. The macroscopic and molecular aspects of the thermal diffusion constant are reviewed, as well as the various measurement method; the most important developments however concern the operation of the CLUSIUS and DICKEL thermo-gravitational column and its applications. (author) [fr
International Nuclear Information System (INIS)
Maillard, S.; Skorek, R.; Maugis, P.; Dumont, M.
2015-01-01
This chapter presents the basic principles of cluster dynamics as a particular case of mesoscopic rate theory models developed to investigate fuel behaviour under irradiation such as in UO 2 . It is shown that as this method simulates the evolution of the concentration of every type of point or aggregated defect in a grain of material. It produces rich information that sheds light on the mechanisms involved in microstructure evolution and gas behaviour that are not accessible through conventional models but yet can provide for improvements in those models. Cluster dynamics parameters are mainly the energetic values governing the basic evolution mechanisms of the material (diffusion, trapping and thermal resolution). In this sense, the model has a general applicability to very different operational situations (irradiation, ion-beam implantation, annealing) provided that they rely on the same basic mechanisms, without requiring additional data fitting, as is required for more empirical conventional models. This technique, when applied to krypton implanted and annealed samples, yields a precise interpretation of the release curves and helps assess migration mechanisms and the krypton diffusion coefficient, for which data is very difficult to obtain due to the low solubility of the gas. (authors)
Diffusion in Coulomb crystals.
Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K
2011-07-01
Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous.
Michaud, Georges; Richer, Jacques
2015-01-01
This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling. In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importanc...
Degenerate nonlinear diffusion equations
Favini, Angelo
2012-01-01
The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...
Excluded-volume effects in the diffusion of hard spheres
Bruna, Maria
2012-01-03
Excluded-volume effects can play an important role in determining transport properties in diffusion of particles. Here, the diffusion of finite-sized hard-core interacting particles in two or three dimensions is considered systematically using the method of matched asymptotic expansions. The result is a nonlinear diffusion equation for the one-particle distribution function, with excluded-volume effects enhancing the overall collective diffusion rate. An expression for the effective (collective) diffusion coefficient is obtained. Stochastic simulations of the full particle system are shown to compare well with the solution of this equation for two examples. © 2012 American Physical Society.
geology and tectonic implications of tourmaline bearing leuco
Indian Academy of Sciences (India)
52
Bastipadu is an important sector of the Bastipadu-Chetlamallapuram-. Manuscript ... Reddy (1994) reported consistent anomalous values of. W (up to ..... sources and evolution from boron isotopic compositions of tourmaline; Miner. Deposita ...
Intraparticle diffusion of rare earths in porous ion exchanger rounding by EDTA solution
International Nuclear Information System (INIS)
Ling Daren; Xie Weije
1991-01-01
The self-diffusion of rate earth (RE) isotopes in porous cation exchangers with various radii or different pore structures rounding by EDTA solution was studied. The intraparticle effective diffusivity De was calculated by Boyd's method and Kataoka's bi-disperse pore model, and through further calculation the solid phase diffusivity Dg and macropore diffusivity Dp were also obtained. (author)
International Nuclear Information System (INIS)
Black, J.H.
1987-01-01
The author defines and discusses the nature of diffuse interstellar clouds. He discusses how they contribute to the general extinction of starlight. The atomic and molecular species that have been identified in the ultraviolet, visible, and near infrared regions of the spectrum of a diffuse cloud are presented. The author illustrates some of the practical considerations that affect absorption line observations of interstellar atoms and molecules. Various aspects of the theoretical description of diffuse clouds required for a full interpretation of the observations are discussed
Infrared diffuse interstellar bands
Galazutdinov, G. A.; Lee, Jae-Joon; Han, Inwoo; Lee, Byeong-Cheol; Valyavin, G.; Krełowski, J.
2017-05-01
We present high-resolution (R ˜ 45 000) profiles of 14 diffuse interstellar bands in the ˜1.45 to ˜2.45 μm range based on spectra obtained with the Immersion Grating INfrared Spectrograph at the McDonald Observatory. The revised list of diffuse bands with accurately estimated rest wavelengths includes six new features. The diffuse band at 15 268.2 Å demonstrates a very symmetric profile shape and thus can serve as a reference for finding the 'interstellar correction' to the rest wavelength frame in the H range, which suffers from a lack of known atomic/molecular lines.
International Nuclear Information System (INIS)
Mundy, J.N.; Rothman, S.J.; Lam, N.Q.; Nowicki, L.J.; Hoff, H.A.
1978-01-01
The lack of understanding of self-diffusion in Group VI metals together with the wide scatter in the measured values of tungsten self-diffusion has prompted the present measurements to be made over a wide temperature range (1/2Tsub(m) to Tsub(m)). The diffusion coefficients have been measured in the temperature range 1430-2630 0 C. The present measurements show non-linear Arrhenius behavior but a reliable two-exponential fit of the data should await further measurements. (Auth.)
International Nuclear Information System (INIS)
Zhang, Tao; Guo, Zhansheng
2014-01-01
The effects of electrode properties and fabricated pressure on Li ion diffusion and diffusion-induced stress in a cylindrical Li-ion battery are studied. It is found that hydrostatic pressure or elastic modulus variation in the active layer have little effect on the distribution of Li ions for a higher diffusivity coefficient, but both can facilitate Li ion diffusion for a lower diffusivity coefficient. The elastic modulus variation has a significant effect on the distribution of stress and hydrostatic pressure can reduce the surface stress for the lower diffusivity coefficient. A higher charging rate causes a more transient response in the stress history, but a linear charging history is observed for slow charging rates. A higher charging rate would not inflict extra damage on the electrode for the higher diffusivity coefficient and the stress history becomes highly transient and charging rate dependent for the lower diffusivity coefficient. The effect of fabricated pressure can be neglected. (paper)
Helium diffusion in nickel at high temperatures
International Nuclear Information System (INIS)
Philipps, V.
1980-09-01
Helium has been implanted at certain temperatures between 800 and 1250 0 C into single and polycrystalline Ni-samples with implantation depths between 15 and 90 μm. Simultaneously the helium reemission from the sample is measured by a mass-spectrometer. It has been shown that the time dependence of the observed reemission rate is governed by volume diffusion of the helium. Measuring this time dependence as a function of temperature the helium diffusion constant has been determined. The He-diffusion is interpreted as a interstitial diffusion hindered by thermal vacancies. Depending on the implantation depth more or less of the implanted helium remains in the sample and forms large helium bubbles. (orig./GSCH)
Determination of oxygen diffusion kinetics during thin film ruthenium oxidation
Energy Technology Data Exchange (ETDEWEB)
Coloma Ribera, R., E-mail: r.colomaribera@utwente.nl; Kruijs, R. W. E. van de; Yakshin, A. E.; Bijkerk, F. [MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)
2015-08-07
In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO{sub 2} films were found to show Arrhenius behaviour. However, a gradual decrease in diffusion rates was observed with oxide growth, with the activation energy increasing from about 2.1 to 2.4 eV. Further exploration of the Arrhenius pre-exponential factor for diffusion process revealed that oxidation of polycrystalline ruthenium joins the class of materials that obey the Meyer-Neldel rule.
Diffusion quantum Monte Carlo for molecules
International Nuclear Information System (INIS)
Lester, W.A. Jr.
1986-07-01
A quantum mechanical Monte Carlo method has been used for the treatment of molecular problems. The imaginary-time Schroedinger equation written with a shift in zero energy [E/sub T/ - V(R)] can be interpreted as a generalized diffusion equation with a position-dependent rate or branching term. Since diffusion is the continuum limit of a random walk, one may simulate the Schroedinger equation with a function psi (note, not psi 2 ) as a density of ''walks.'' The walks undergo an exponential birth and death as given by the rate term. 16 refs., 2 tabs
International Nuclear Information System (INIS)
Brzoska, A.M.; Lenz, F.; Thies, M.; Negele, J.W.
2005-01-01
A phenomenological analysis of the distribution of Wilson loops in SU(2) Yang-Mills theory is presented in which Wilson loop distributions are described as the result of a diffusion process on the group manifold. It is shown that, in the absence of forces, diffusion implies Casimir scaling and, conversely, exact Casimir scaling implies free diffusion. Screening processes occur if diffusion takes place in a potential. The crucial distinction between screening of fundamental and adjoint loops is formulated as a symmetry property related to the center symmetry of the underlying gauge theory. The results are expressed in terms of an effective Wilson loop action and compared with various limits of SU(2) Yang-Mills theory
Diffusion between evolving interfaces
International Nuclear Information System (INIS)
Juntunen, Janne; Merikoski, Juha
2010-01-01
Diffusion in an evolving environment is studied by continuous-time Monte Carlo simulations. Diffusion is modeled by continuous-time random walkers on a lattice, in a dynamic environment provided by bubbles between two one-dimensional interfaces driven symmetrically towards each other. For one-dimensional random walkers constrained by the interfaces, the bubble size distribution dominates diffusion. For two-dimensional random walkers, it is also controlled by the topography and dynamics of the interfaces. The results of the one-dimensional case are recovered in the limit where the interfaces are strongly driven. Even with simple hard-core repulsion between the interfaces and the particles, diffusion is found to depend strongly on the details of the dynamical rules of particles close to the interfaces.
Peppin, Stephen S. L.
2009-01-01
concentrations they form a nearly rigid porous glass through which the fluid permeates. The theoretically determined pressure drop is nonlinear in the diffusion regime and linear in the permeation regime, in quantitative agreement with experimental measurements
DEFF Research Database (Denmark)
Pries-Heje, Jan; Baskerville, Richard
2014-01-01
approach. The study context is a design case in which an organization desires to diffuse its best practices across different groups. The design goal is embodied in organizational mechanisms to achieve this diffusion. The study used Theory of Planned Behavior (TPB) as a kernel theory. The artifacts...... resulting from the design were two-day training workshops conceptually anchored to TBP. The design theory was evaluated through execution of eight diffusion workshops involving three different groups in the same company. The findings indicate that the match between the practice and the context materialized...... that the behavior will be effective). These two factors were especially critical if the source context of the best practice is qualitatively different from the target context into which the organization is seeking to diffuse the best practice....
Detection of diffusible substances
Energy Technology Data Exchange (ETDEWEB)
Warembourg, M [Lille-1 Univ., 59 - Villeneuve-d' Ascq (France)
1976-12-01
The different steps of a radioautographic technique for the detection of diffusible substances are described. Using this radioautographic method, the topographic distribution of estradiol-concentrating neurons was studied in the nervous system and pituitary of the ovariectomized mouse and guinea-pig. A relatively good morphological preservation of structures can be ascertained on sections from unfixed, unembedded tissues prepared at low temperatures and kept-under relatively low humidity. The translocation or extraction of diffusible substances is avoided by directly mounting of frozen sections on dried photographic emulsion. Since no solvent is used, this technique excludes the major sources of diffusion artifacts and permits to be in favourable conditions for the localization of diffusible substances.
Peppin, Stephen S. L.
2009-01-01
Diffusion and permeation are discussed within the context of irreversible thermodynamics. A new expression for the generalized Stokes-Einstein equation is obtained which links the permeability to the diffusivity of a two-component solution and contains the poroelastic Biot-Willis coefficient. The theory is illustrated by predicting the concentration and pressure profiles during the filtration of a protein solution. At low concentrations the proteins diffuse independently while at higher concentrations they form a nearly rigid porous glass through which the fluid permeates. The theoretically determined pressure drop is nonlinear in the diffusion regime and linear in the permeation regime, in quantitative agreement with experimental measurements. © 2009 Walter de Gruyter, Berlin, New York.
Macrolides for diffuse panbronchiolitis.
Lin, Xiufang; Lu, Jing; Yang, Ming; Dong, Bi Rong; Wu, Hong Mei
2015-01-25
Diffuse panbronchiolitis (DPB) is a chronic airways disease predominantly affecting East Asians. Macrolides, a class of antibiotics, have been used as the main treatment for DPB, based on evidence from retrospective and non-randomised studies. To assess the efficacy and safety of macrolides for DPB. We searched CENTRAL (2014, Issue 6), MEDLINE (1966 to July week 1, 2014), EMBASE (1974 to July 2014), Chinese Biomedical Literature Database (CBM) (1978 to July 2014), China National Knowledge Infrastructure (CNKI) (1974 to July 2014), KoreaMed (1997 to July 2014) and Database of Japana Centra Revuo Medicina (1983 to July 2014). Randomised controlled trials (RCTs) or quasi-RCTs assessing the effect of macrolides for DPB. Two review authors independently assessed study quality and subsequent risk of bias according to The Cochrane Collaboration's tool for assessing risk of bias. The primary outcomes were five-year survival rate, lung function and clinical response. We used risk ratios (RR) for individual trial results in the data analysis and measured all outcomes with 95% confidence intervals (CI). Only one RCT (19 participants) with significant methodological limitations was included in this review. It found that the computerised tomography images of all participants treated with a long-term, low-dose macrolide (erythromycin) improved from baseline, while the images of 71.4% of participants in the control group (with no treatment) worsened and 28.6% remained unchanged. Adverse effects were not reported. This review was previously published in 2010 and 2013. For this 2014 update, we identified no new trials for inclusion or exclusion. There is little evidence for macrolides in the treatment of DPB. We are therefore unable to make any new recommendations. It may be reasonable to use low-dose macrolides soon after diagnosis is made and to continue this treatment for at least six months, according to current guidelines.
Directory of Open Access Journals (Sweden)
K. Banoo
1998-01-01
equation in the discrete momentum space. This is shown to be similar to the conventional drift-diffusion equation except that it is a more rigorous solution to the Boltzmann equation because the current and carrier densities are resolved into M×1 vectors, where M is the number of modes in the discrete momentum space. The mobility and diffusion coefficient become M×M matrices which connect the M momentum space modes. This approach is demonstrated by simulating electron transport in bulk silicon.
International Nuclear Information System (INIS)
Dungey, J.W.
1984-01-01
The authors want to talk about future work, but first he will reply to Stan Cowley's comment on his naivety in believing in the whole story to 99% confidence in '65, when he knew about Fairfield's results. Does it matter whether you make the right judgment about theories? Yes, it does, particularly for experimentalists perhaps, but also for theorists. The work you do later depends on the judgment you've made on previous work. People have wasted a lot of time developing on insecure or even wrong foundations. Now for future work. One mild surprise the authors have had is that they haven't heard more about diffusion, in two contexts. Gordon Rostoker is yet to come and he may talk about particles getting into the magnetosphere by diffusion. Lots of noise is observed and so diffusion must happen. If time had not been short, the authors were planning to discuss in a handwaving way what sort of diffusion mechanisms one might consider. The other aspect of diffusion he was going to talk about is at the other end of things and is velocity diffusion, which is involved in anomalous resistivity
Contribution to the study of the interfacial diffusion
International Nuclear Information System (INIS)
Perinet, Francois.
1975-07-01
The diffusion behaviour of matrix-precipitate boundaries is the same as that of interphase boundaries prepared by welding. Therefore the latter can be used to measure diffusivity along interphase boundaries. Diffusion rates of silver along copper-silver interfaces prepared by welding single crystals have been measured. The interfacial diffusion coefficients deduced through different analytical solutions of the diffusion equations, yield for the activation energy and the frequency factor values close to: Q(i)=65kcal/mole Dsub(i)sup(o) delta=100cm 3 .s -1 . These results seem to indicate that, in agreement with Bondy's and Job's previous results, the activation energies for interfacial diffusion are high. Furthermore it is shown that the misorientation between the two phases building the interface has an influence on the measured diffusion coefficients [fr
Global Diffusion of Interactive Networks. The Impact of Culture
Maitland, Carleen
1998-01-01
The Internet and other interactive networks are diffusing across the globe at rates that vary from country to country. Typically, economic and market structure variables are used to explain these differences. The addition of culture to these variables will provide a more robust understanding of the differences in Internet and interactive network diffusion. Existing analyses that identify culture as a predictor of diffusion do not adequately specificy the dimensions of culture and their imp...
Self-diffusion of plutonium in uranium-plutonium mononitride
International Nuclear Information System (INIS)
Bradbury, M.H.; Matzke, H.
1978-01-01
In the following, first data on the tracer diffusion of Pu-238 in (Usub(0.8)Pusub(0.2)N are reported and some aspects of the diffusion mechanism are discussed. Two sets of specimens with different non-metal to metal ratios were used, and on one of the materials the Pu diffusion rates were measured as a function of nitrogen partial pressure at three different temperatures
Safranyos, Richard G. A.; Caveney, Stanley; Miller, James G.; Petersen, Nils O.
1987-04-01
Intercellular (tissue) diffusion of molecules requires cytoplasmic diffusion and diffusion through gap junctional (or cell-to-cell) channels. The rates of tissue and cytoplasmic diffusion of fluorescent tracers, expressed as an effective diffusion coefficient, De, and a cytoplasmic diffusion coefficient, Dcyt, have been measured among the developing epidermal cells of a larval beetle, Tenebrio molitor L., to determine the contribution of the junctional channels to intercellular diffusion. Tracer diffusion was measured by injecting fluorescent tracers into cells and quantitating the rate of subsequent spread into adjacent cells. Cytoplasmic diffusion was determined by fluorescence photobleaching. These experiments show that gap junctional channels constitute approximately 70-80% of the total cell-to-cell resistance to the diffusion of organic tracers at high concentrations in this tissue. At low concentrations, however, the binding of tracer to cytoplasm slows down the cytoplasmic diffusion, which may limit intercellular diffusion.
Diffusion Influenced Adsorption Kinetics.
Miura, Toshiaki; Seki, Kazuhiko
2015-08-27
When the kinetics of adsorption is influenced by the diffusive flow of solutes, the solute concentration at the surface is influenced by the surface coverage of solutes, which is given by the Langmuir-Hinshelwood adsorption equation. The diffusion equation with the boundary condition given by the Langmuir-Hinshelwood adsorption equation leads to the nonlinear integro-differential equation for the surface coverage. In this paper, we solved the nonlinear integro-differential equation using the Grünwald-Letnikov formula developed to solve fractional kinetics. Guided by the numerical results, analytical expressions for the upper and lower bounds of the exact numerical results were obtained. The upper and lower bounds were close to the exact numerical results in the diffusion- and reaction-controlled limits, respectively. We examined the validity of the two simple analytical expressions obtained in the diffusion-controlled limit. The results were generalized to include the effect of dispersive diffusion. We also investigated the effect of molecular rearrangement of anisotropic molecules on surface coverage.
Bicarbonate diffusion through mucus.
Livingston, E H; Miller, J; Engel, E
1995-09-01
The mucus layer overlying duodenal epithelium maintains a pH gradient against high luminal acid concentrations. Despite these adverse conditions, epithelial surface pH remains close to neutrality. The exact nature of the gradient-forming barrier remains unknown. The barrier consists of mucus into which HCO3- is secreted. Quantification of the ability of HCO3- to establish and maintain the gradient depends on accurate measurement of this ion's diffusion coefficient through mucus. We describe new experimental and mathematical methods for diffusion measurement and report diffusion coefficients for HCO3- diffusion through saline, 5% mucin solutions, and rat duodenal mucus. The diffusion coefficients were 20.2 +/- 0.10, 3.02 +/- 0.31, and 1.81 +/- 0.12 x 10(-6) cm2/s, respectively. Modeling of the mucobicarbonate layer with this latter value suggests that for conditions of high luminal acid strength the neutralization of acid by HCO3- occurs just above the epithelial surface. Under these conditions the model predicts that fluid convection toward the lumen could be important in maintaining the pH gradient. In support of this hypothesis we were able to demonstrate a net luminal fluid flux of 5 microliters.min-1.cm-2 after perfusion of 0.15 N HCl in the rat duodenum.
Muonium quantum diffusion and localization in cryocrystals
Energy Technology Data Exchange (ETDEWEB)
Storchak, V. [Kurchatov Inst., Moscow (Russian Federation); Brewer, J.H.; Morris, G.D. [Univ. of British Columbia, Vancouver, British Columbia (Canada)
1995-08-01
The authors review their recent study of atomic muonium ({mu}{sup +}e{sup {minus}} or Mu, a light isotope of the hydrogen atom) diffusion in the simplest solids--Van der Walls cryocrystals. They give experimental evidence of the quantum-mechanical nature of the Mu diffusion in these solids. The results are compared with the current theories of quantum diffusion in insulators. The predicted T{sup {+-}7} power-law temperature dependence of the Mu hop rate is observed directly for the first time in solid nitrogen ({delta}-N{sub 2}) and is taken as confirmation of a two-phonon scattering mechanism. In solid xenon and krypton, by contrast, the one-phonon interaction is dominant in the whole temperature range under investigation due to the extremely low values of the Debye temperatures in those solids. Particular attention is devoted to processes of inhomogeneous quantum diffusion and Mu localization. It is shown that at low temperatures static crystal disorder results in an inhomogeneity of the Mu quantum diffusion which turns out to be inconsistent with diffusion models using a single correlation time {tau}{sub c}. Conventional trapping mechanisms are shown to be ineffective at low temperatures in insulators. Muonium localization effects are studied in detail in solid Kr. In all the cryocrystals studied, muonium atoms turn out to be localized at the lowest temperatures.
Ponzi scheme diffusion in complex networks
Zhu, Anding; Fu, Peihua; Zhang, Qinghe; Chen, Zhenyue
2017-08-01
Ponzi schemes taking the form of Internet-based financial schemes have been negatively affecting China's economy for the last two years. Because there is currently a lack of modeling research on Ponzi scheme diffusion within social networks yet, we develop a potential-investor-divestor (PID) model to investigate the diffusion dynamics of Ponzi scheme in both homogeneous and inhomogeneous networks. Our simulation study of artificial and real Facebook social networks shows that the structure of investor networks does indeed affect the characteristics of dynamics. Both the average degree of distribution and the power-law degree of distribution will reduce the spreading critical threshold and will speed up the rate of diffusion. A high speed of diffusion is the key to alleviating the interest burden and improving the financial outcomes for the Ponzi scheme operator. The zero-crossing point of fund flux function we introduce proves to be a feasible index for reflecting the fast-worsening situation of fiscal instability and predicting the forthcoming collapse. The faster the scheme diffuses, the higher a peak it will reach and the sooner it will collapse. We should keep a vigilant eye on the harm of Ponzi scheme diffusion through modern social networks.
Muonium quantum diffusion and localization in cryocrystals
International Nuclear Information System (INIS)
Storchak, V.; Brewer, J.H.; Morris, G.D.
1995-08-01
We review our recent study of atomic muonium (μ + e - or Mu, a light isotope of the hydrogen atom) diffusion in the simplest solids - Van der Waals cryocrystals. We give experimental evidence of the quantum-mechanical nature of the Mu diffusion in these solids. The results are compared with the current theories of quantum diffusion in insulators. The predicted T ±7 power-law temperature dependence of the Mu hop rate is observed directly for the first time in solid nitrogen (s-N 2 ) and is taken as confirmation of a two-phonon scattering mechanism. In solid xenon and krypton, by contrast, the one-phonon interaction is dominant in the whole temperature range under investigation due to the extremely low values of the Debye temperatures in those solids. Particular attention is devoted to processes of inhomogeneous quantum diffusion and Mu localization. It is shown that at low temperatures static crystal disorder results in an inhomogeneity of the Mu quantum diffusion which turns out to be inconsistent with diffusion models using a single correlation time t c . Conventional trapping mechanisms are shown to be ineffective at low temperatures in insulators. Muonium localization effects are studied in detail in solid Kr. In all the cryocrystals studied, muonium atoms turn out to be localized at the lowest temperatures. (author)
Diffusion and plasticity at high temperature
Philibert, J.
1991-06-01
High temperature plastic deformation requires atomic migration whatever the mechanism of deformation. The constitutive equations contain a diffusion coefficient and the deformation rate follows an Arrhenius law. This paper will only discuss the case of viscous creep in order to elucidate the nature of the diffusion processes and the expression of the diffusion coefficient involved in alloys or compounds. La déformation plastique à haute température met en jeu des migrations atomiques, quel que soit le mécanisme de déformation. Les lois de comportement contiennent donc un coefficient de diffusion et la vitesse de déformation obéit à une loi d'Arrhenius. Dans cet article, qui ne conceme qu'un seul type de déformation, lefluage visqueux, on s'efforce de préciser la nature des processus de diffusion et du coefficient de diffusion mis en jeu dans le cas des alliages et des composés.
Diffusion of protein through the human cornea.
Charalel, Resmi A; Engberg, Kristin; Noolandi, Jaan; Cochran, Jennifer R; Frank, Curtis; Ta, Christopher N
2012-01-01
To determine the rate of diffusion of myoglobin and bovine serum albumin (BSA) through the human cornea. These small proteins have hydrodynamic diameters of approximately 4.4 and 7.2 nm, and molecular weights of 16.7 and 66 kDa, for myoglobin and BSA, respectively. Diffusion coefficients were measured using a diffusion chamber where the protein of interest and balanced salt solution were in different chambers separated by an ex vivo human cornea. Protein concentrations in the balanced salt solution chamber were measured over time. Diffusion coefficients were calculated using equations derived from Fick's law and conservation of mass in a closed system. Our experiments demonstrate that the diffusion coefficient of myoglobin is 5.5 ± 0.9 × 10(-8) cm(2)/s (n = 8; SD = 1.3 × 10(-8) cm(2)/s; 95% CI: 4.6 × 10(-8) to 6.4 × 10(-8) cm(2)/s) and the diffusion coefficient of BSA is 3.1 ± 1.0 × 10(-8) cm(2)/s (n = 8; SD = 1.4 × 10(-8) cm(2)/s; 95% CI: 2.1 × 10(-8) to 4.1 × 10(-8) cm(2)/s). Our study suggests that molecules as large as 7.2 nm may be able to passively diffuse through the human cornea. With applications in pharmacotherapy and the development of an artificial cornea, further experiments are warranted to fully understand the limits of human corneal diffusion and its clinical relevance. Copyright © 2012 S. Karger AG, Basel.
Experimental characterization of methane inverse diffusion flame
Elbaz, Ayman M.; Roberts, William L.
2014-01-01
This article presents 10-kHz images of OH-PLIF simultaneously with 2-D PIV measurements in an inverse methane diffusion flame. Under a constant fuel flow rate, the central air jet Re was varied, leading to air to fuel velocity ratio, Vr, to vary
Diffusion of Mobile Phones in China
S. Sangwan (Sunanda); L-F. Pau (Louis-François)
2005-01-01
textabstractDiffusion of mobile communication has induced great societal changes in China. Factors at global market, communications industry and end-user market levels are driving the adoption at a high rate. Firstly, China’s economic emergence together with e.g. accession to WTO has led to foreign
International Nuclear Information System (INIS)
Evans, R.B. III; Davis, W. Jr.; Sutton, A.L. Jr.
1980-05-01
Experiments on diffusion of 137 Cs in five types of graphite were performed. The document provides a completion of the report that was started and includes a presentation of all of the diffusion data, previously unpublished. Except for data on mass transfer of 137 Cs in the Hawker-Siddeley graphite, analyses of experimental results were initiated but not completed. The mass transfer process of cesium in HS-1-1 graphite at 600 to 1000 0 C in a helium atmosphere is essentially pure diffusion wherein values of (E/epsilon) and ΔE of the equation D/epsilon = (D/epsilon) 0 exp [-ΔE/RT] are about 4 x 10 -2 cm 2 /s and 30 kcal/mole, respectively
Apparatus for diffusion separation
International Nuclear Information System (INIS)
Nierenberg, W.A.; Pontius, R.B.
1976-01-01
The method of testing the separation efficiency of porous permeable membranes is described which comprises causing a stream of a gaseous mixture to flow into contact with one face of a finely porous permeable membrane under such conditions that a major fraction of the mixture diffuses through the membrane, maintaining a rectangular cross section of the gaseous stream so flowing past said membrane, continuously recirculating the gas that diffuses through said membrane and continuously withdrawing the gas that does not diffuse through said membrane and maintaining the volume of said recirculating gas constant by continuously introducing into said continuously recirculating gas stream a mass of gas equivalent to that which is continuously withdrawn from said gas stream and comparing the concentrations of the light component in the entering gas, the withdrawn gas and the recirculated gas in order to determine the efficiency of said membrane
Energy Technology Data Exchange (ETDEWEB)
Brogaard Kristensen, S.
2000-06-01
This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)
DEFF Research Database (Denmark)
Schultz, Ulrik Pagh
2007-01-01
. Programming a modular, self-reconfigurable robot is however a complicated task: the robot is essentially a real-time, distributed embedded system, where control and communication paths often are tightly coupled to the current physical configuration of the robot. To facilitate the task of programming modular....... This approach allows the programmer to dynamically distribute behaviors throughout a robot and moreover provides a partial abstraction over the concrete physical shape of the robot. We have implemented a prototype of a distributed control diffusion system for the ATRON modular, self-reconfigurable robot......, self-reconfigurable robots, we present the concept of distributed control diffusion: distributed queries are used to identify modules that play a specific role in the robot, and behaviors that implement specific control strategies are diffused throughout the robot based on these role assignments...
DEFF Research Database (Denmark)
Zhang, Chen; Yu, Tao; Heiselberg, Per Kvols
cooling capacity, energy saving, low investment cost and low noise level; while the limitations include condensation risk and the limit on the room geometry. Furthermore, the crucial design parameters are summarized and their effects on the system performance are discussed. In addition to the stand...... is not well structured with this system. These become the motivations in developing the design guide. This design guide aims to establish a systematic understanding of diffuse ceiling ventilation and provide assistance in designing of such a system. The guide is targeted at design engineers, architects...... and manufacturers and the users of diffuse ceiling technology. The design guide introduces the principle and key characteristics of room air distribution with diffuse ceiling ventilation. It provides an overview of potential benefit and limitations of this technology. The benefits include high thermal comfort, high...
Vrentas, James S
2013-01-01
The book first covers the five elements necessary to formulate and solve mass transfer problems, that is, conservation laws and field equations, boundary conditions, constitutive equations, parameters in constitutive equations, and mathematical methods that can be used to solve the partial differential equations commonly encountered in mass transfer problems. Jump balances, Green’s function solution methods, and the free-volume theory for the prediction of self-diffusion coefficients for polymer–solvent systems are among the topics covered. The authors then use those elements to analyze a wide variety of mass transfer problems, including bubble dissolution, polymer sorption and desorption, dispersion, impurity migration in plastic containers, and utilization of polymers in drug delivery. The text offers detailed solutions, along with some theoretical aspects, for numerous processes including viscoelastic diffusion, moving boundary problems, diffusion and reaction, membrane transport, wave behavior, sedime...
Energy Technology Data Exchange (ETDEWEB)
Brogaard Kristensen, S
2000-06-01
This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)
Determination of Matrix Diffusion Properties of Granite
International Nuclear Information System (INIS)
Holtta, Pirkko; Siitari-Kauppi, Marja; Huittinen, Nina; Poteri, Antti
2007-01-01
Rock-core column experiments were introduced to estimate the diffusion and sorption properties of Kuru Grey granite used in block-scale experiments. The objective was to examine the processes causing retention in solute transport through rock fractures, especially matrix diffusion. The objective was also to estimate the importance of retention processes during transport in different scales and flow conditions. Rock-core columns were constructed from cores drilled into the fracture and were placed inside tubes to form flow channels in the 0.5 mm gap between the cores and the tube walls. Tracer experiments were performed using uranin, HTO, 36 Cl, 131 I, 22 Na and 85 Sr at flow rates of 1-50 μL.min -1 . Rock matrix was characterized using 14 C-PMMA method, scanning electron microscopy (SEM), energy dispersive X-ray micro analysis (EDX) and the B.E.T. method. Solute mass flux through a column was modelled by applying the assumption of a linear velocity profile and molecular diffusion. Coupling of the advection and diffusion processes was based on the model of generalised Taylor dispersion in the linear velocity profile. Experiments could be modelled applying a consistent parameterization and transport processes. The results provide evidence that it is possible to investigate matrix diffusion at the laboratory scale. The effects of matrix diffusion were demonstrated on the slightly-sorbing tracer breakthrough curves. Based on scoping calculations matrix diffusion begins to be clearly observable for non-sorbing tracer when the flow rate is 0.1 μL.min -1 . The experimental results presented here cannot be transferred directly to the spatial and temporal scales that prevail in an underground repository. However, the knowledge and understanding of transport and retention processes gained from this study is transferable to different scales from laboratory to in-situ conditions. (authors)
Directory of Open Access Journals (Sweden)
R.T. DeHoff
2002-09-01
Full Text Available The phenomenological formalism, which yields Fick's Laws for diffusion in single phase multicomponent systems, is widely accepted as the basis for the mathematical description of diffusion. This paper focuses on problems associated with this formalism. This mode of description of the process is cumbersome, defining as it does matrices of interdiffusion coefficients (the central material properties that require a large experimental investment for their evaluation in three component systems, and, indeed cannot be evaluated for systems with more than three components. It is also argued that the physical meaning of the numerical values of these properties with respect to the atom motions in the system remains unknown. The attempt to understand the physical content of the diffusion coefficients in the phenomenological formalism has been the central fundamental problem in the theory of diffusion in crystalline alloys. The observation by Kirkendall that the crystal lattice moves during diffusion led Darken to develop the concept of intrinsic diffusion, i.e., atom motion relative to the crystal lattice. Darken and his successors sought to relate the diffusion coefficients computed for intrinsic fluxes to those obtained from the motion of radioactive tracers in chemically homogeneous samples which directly report the jump frequencies of the atoms as a function of composition and temperature. This theoretical connection between tracer, intrinsic and interdiffusion behavior would provide the basis for understanding the physical content of interdiffusion coefficients. Definitive tests of the resulting theoretical connection have been carried out for a number of binary systems for which all three kinds of observations are available. In a number of systems predictions of intrinsic coefficients from tracer data do not agree with measured values although predictions of interdiffusion coefficients appear to give reasonable agreement. Thus, the complete
Wu Zhuo Qun; Li Hui Lai; Zhao Jun Ning
2001-01-01
Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which
Phase transformation and diffusion
Kale, G B; Dey, G K
2008-01-01
Given that the basic purpose of all research in materials science and technology is to tailor the properties of materials to suit specific applications, phase transformations are the natural key to the fine-tuning of the structural, mechanical and corrosion properties. A basic understanding of the kinetics and mechanisms of phase transformation is therefore of vital importance. Apart from a few cases involving crystallographic martensitic transformations, all phase transformations are mediated by diffusion. Thus, proper control and understanding of the process of diffusion during nucleation, g
International Nuclear Information System (INIS)
Silva, T.L. da.
1987-01-01
Is this thesis, a numerical method for the solution of the linear diffusion equation for a plasma containing two types of ions, with the possibility of charge exchange, has been developed. It has been shown that the decay time of the electron and ion densities is much smaller than that in a plasma containing only a single type of ion. A non-linear diffusion equation, which includes the effects of an external electric field varying linearly in time, to describe a slightly ionized plasma has also been developed. It has been verified that the decay of the electron density in the presence of such an electric field is very slow. (author)
International Nuclear Information System (INIS)
Chan, J.H.M.; Tsui, E.Y.K.; Yuen, M.K.; Peh, W.C.G.; Fong, D.; Fok, K.F.; Leung, K.M.; Fung, K.K.L.
2003-01-01
Myelinated axons of white matter demonstrate prominent directional differences in water diffusion. We performed diffusion-weighted imaging on ten patients with head injury to explore the feasibility of using water diffusion anisotropy for quantitating diffuse axonal injury. We showed significant decrease in diffusion anisotropy indices in areas with or without signal abnormality on T2 and T2*-weighted images. We conclude that the water diffusion anisotropy index a potentially useful, sensitive and quantitative way of diagnosing and assessing patients with diffuse axonal injury. (orig.)
Enhanced diffusion of Zn in Al under Ne irradiation
International Nuclear Information System (INIS)
Myers, S.M.
1975-01-01
The diffusion rate of Zn in Al has been enhanced by factors approximately 10 2 --10 4 under 80 keV Ne irradiation at 130 0 C. Diffusion couples were formed by ion implantation of Zn, and the concentration profiles were determined by ion backscattering. The data are analyzed by numerically solving the coupled diffusion equations for vacancies, interstitials and atoms, and by scaling the profiles of vacancy and interstitial production rates from the theoretical profile of Ne energy into atomic processes. The enhanced diffusion rate is linear in flux, indicating that the mobile point defects annihilate predominantly at fixed sinks. The average distance to annihilation is approximately 700 A, except for the first approximately 500 A of the solid where it is much less. Free vacancies and interstitials are found to be created by the Ne at a smaller rate than the atomic displacement rate, suggesting a high annihilation probability within the parent damage cascade
Nonlinear variational models for reaction and diffusion systems
International Nuclear Information System (INIS)
Tanyi, G.E.
1983-08-01
There exists a natural metric w.r.t. which the density dependent diffusion operator is harmonic in the sense of Eells and Sampson. A physical corollary of this statement is the property that any two regular points on the orbit of a reaction or diffusion operator can be connected by a path along which the reaction rate is constant. (author)
Determination of oxygen diffusion kinetics during thin film ruthenium oxidation
Coloma Ribera, R.; van de Kruijs, Robbert Wilhelmus Elisabeth; Yakshin, Andrey; Bijkerk, Frederik
2015-01-01
In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO2 films were found to show Arrhenius behaviour. However, a
Molecules in motion: influences of diffusion on metabolic structure and function in skeletal muscle.
Kinsey, Stephen T; Locke, Bruce R; Dillaman, Richard M
2011-01-15
Metabolic processes are often represented as a group of metabolites that interact through enzymatic reactions, thus forming a network of linked biochemical pathways. Implicit in this view is that diffusion of metabolites to and from enzymes is very fast compared with reaction rates, and metabolic fluxes are therefore almost exclusively dictated by catalytic properties. However, diffusion may exert greater control over the rates of reactions through: (1) an increase in reaction rates; (2) an increase in diffusion distances; or (3) a decrease in the relevant diffusion coefficients. It is therefore not surprising that skeletal muscle fibers have long been the focus of reaction-diffusion analyses because they have high and variable rates of ATP turnover, long diffusion distances, and hindered metabolite diffusion due to an abundance of intracellular barriers. Examination of the diversity of skeletal muscle fiber designs found in animals provides insights into the role that diffusion plays in governing both rates of metabolic fluxes and cellular organization. Experimental measurements of metabolic fluxes, diffusion distances and diffusion coefficients, coupled with reaction-diffusion mathematical models in a range of muscle types has started to reveal some general principles guiding muscle structure and metabolic function. Foremost among these is that metabolic processes in muscles do, in fact, appear to be largely reaction controlled and are not greatly limited by diffusion. However, the influence of diffusion is apparent in patterns of fiber growth and metabolic organization that appear to result from selective pressure to maintain reaction control of metabolism in muscle.
Coupled diffusion systems with localized nonlinear reactions
DEFF Research Database (Denmark)
Pedersen, M.; Lin, Zhigui
2001-01-01
This paper deals with the blowup rate and profile near the blowup time for the system of diffusion equations uit - Î´ui = ui+1Pi(x0, t), (i = 1,...,k, uk+1 := uu) in Î© Ã— (0, T) with boundary conditions ui = 0 on âˆ‚Î© Ã— [0, T). We show that the solution has a global blowup. The exact rate...
Anisotropy in "isotropic diffusion" measurements due to nongaussian diffusion
DEFF Research Database (Denmark)
Jespersen, Sune Nørhøj; Olesen, Jonas Lynge; Ianuş, Andrada
2017-01-01
Designing novel diffusion-weighted NMR and MRI pulse sequences aiming to probe tissue microstructure with techniques extending beyond the conventional Stejskal-Tanner family is currently of broad interest. One such technique, multidimensional diffusion MRI, has been recently proposed to afford...... model-free decomposition of diffusion signal kurtosis into terms originating from either ensemble variance of isotropic diffusivity or microscopic diffusion anisotropy. This ability rests on the assumption that diffusion can be described as a sum of multiple Gaussian compartments, but this is often...
International Nuclear Information System (INIS)
Ramsdell, J.V.
1988-03-01
Straight-line Gaussian models adequately describe atmospheric diffusion for many applications. They have been modified for use in estimating diffusion in building wakes by adding terms that include projected building area and by redefining the diffusion coefficients so that the coefficients have minimum values that are related to building dimensions. In a recent study, Ramsdell reviewed the building-wake dispersion models used by the Nuclear Regulatory Commission (NRC) in its control room habitability assessments. The review included comparison of model estimates of centerline concentrations with concentrations observed in experiments at seven nuclear reactors. In general, the models are conservative in that they tend to predict concentrations that are greater than those actually observed. However, the models show little skill in accounting for variations in the observed concentrations. Subsequently, the experimental data and multiples linear regression techniques have been used to develop a new building wake diffusion model. This paper describes the new building wake model and compares it with other models. 8 refs., 2 figs
Sack, Jeff
2005-01-01
OsmoBeaker is a CD-ROM designed to enhance the learning of diffusion and osmosis by presenting interactive experimentation to the student. The software provides several computer simulations that take the student through different scenarios with cells, having different concentrations of solutes in them.
Diffusion Based Photon Mapping
DEFF Research Database (Denmark)
Schjøth, Lars; Sporring, Jon; Fogh Olsen, Ole
2008-01-01
. To address this problem, we introduce a photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way, we preserve important illumination features, while...
Bronnen van diffuse bodembelasting
Lijzen JPA; Ekelenkamp A; LBG; DGM/BO
1995-01-01
The aim of this study was to support the policy on preventive soil protection with information on the diffuse (non-local) emissions to soil and the influence on future soil quality. This study is related to inventories on (potential) sources of local soil pollution (e.g. industrial areas,
Energy Technology Data Exchange (ETDEWEB)
Mubarak, A S
1991-12-31
Rutherford backscattering spectromertry technique (RBS) was used to characterize and investigate the depth distribution profiles of Ca-impurities of Ca-doped soda-time glass. The purposely added Ca-impurities were introduced inti the glass matrix by a normal ion exchange diffusion process. The measurements and analysis were performed using 2 MeV {sup 2}He{sup +} ions supplied from the University of Jordan Van de Graff acceierator (JOVAG). The normalized concetration versus depth profile distributions for the Ca-imourities were determined, both theoretically and experimentally. The theoretical treatment was carried out by setting up and soiving the diffusion equation under the conditions of the experiment. The resulting profiles are characterized by a compiementary error function. the theoretical treeatment was extended to include the various methods of enhancing the diffusion process, e.g. using an electric field. The diffusion coefficient, assumed constant, of the Ca-impurities exchanged in the soda-lime glass was determined to be 1.23 x 10{sup 13} cm{sup 2}/s. A comparison between theoretically and experimentally determined profiles is made and commented at, where several conclusions are drawn and suggestions for future work are mentioned. (author). 38 refs., 21 figs., 10 Tabs.
DEFF Research Database (Denmark)
Schulz, Alexander
2015-01-01
is currently matter of discussion, called passive symplasmic loading. Based on the limited material available, this review compares the different loading modes and suggests that diffusion is the driving force in apoplasmic loaders, while bulk flow plays an increasing role in plants having a continuous...
Multienergy anomalous diffuse scattering
Czech Academy of Sciences Publication Activity Database
Kopecký, Miloš; Fábry, Jan; Kub, Jiří; Lausi, A.; Busetto, E.
2008-01-01
Roč. 100, č. 19 (2008), 195504/1-195504/4 ISSN 0031-9007 R&D Projects: GA AV ČR IAA100100529 Institutional research plan: CEZ:AV0Z10100523 Keywords : diffuse scattering * x-rays * structure determination Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.180, year: 2008
DEFF Research Database (Denmark)
Zhang, Chen; Yu, Tao; Heiselberg, Per Kvols
with conventional ventilation systems (mixing or displacement ventilation), diffuse ceiling ventilation can significantly reduce or even eliminate draught risk in the occupied zone. Moreover, this ventilation system presents a promising opportunity for energy saving, because of the low pressure loss, extended free...
DEFF Research Database (Denmark)
Zhang, Chen; Heiselberg, Per; Nielsen, Peter V.
2014-01-01
As a novel air distribution system, diffuse ceiling ventilation combines the suspended acoustic ceiling with ventilation supply. Due to the low-impulse supply from the large ceiling area, the system does not generate draught when supplying cold air. However, heat sources play an important role...
Pelleg, Joshua
2016-01-01
This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...
Intranasal Fentanyl Intoxication Leading to Diffuse Alveolar Hemorrhage.
Ruzycki, Shannon; Yarema, Mark; Dunham, Michael; Sadrzadeh, Hossein; Tremblay, Alain
2016-06-01
Increasing rates of opioid abuse, particularly fentanyl, may lead to more presentations of unusual effects of opioid toxicity. Diffuse alveolar hemorrhage is a rare complication of fentanyl overdose. A 45-year-old male presented in hypoxic respiratory failure secondary to diffuse alveolar hemorrhage requiring intubation. Comprehensive drug screening detected fentanyl without exposure to cocaine. Further history upon the patient's recovery revealed exposure to snorted fentanyl powder immediately prior to presentation. Diffuse alveolar hemorrhage is a potential, though rare, presentation of opioid intoxication. Recognition of less common complications of opioid abuse such as diffuse alveolar hemorrhage is important in proper management of overdoses.
Extracting the diffusion tensor from molecular dynamics simulation with Milestoning
International Nuclear Information System (INIS)
Mugnai, Mauro L.; Elber, Ron
2015-01-01
We propose an algorithm to extract the diffusion tensor from Molecular Dynamics simulations with Milestoning. A Kramers-Moyal expansion of a discrete master equation, which is the Markovian limit of the Milestoning theory, determines the diffusion tensor. To test the algorithm, we analyze overdamped Langevin trajectories and recover a multidimensional Fokker-Planck equation. The recovery process determines the flux through a mesh and estimates local kinetic parameters. Rate coefficients are converted to the derivatives of the potential of mean force and to coordinate dependent diffusion tensor. We illustrate the computation on simple models and on an atomically detailed system—the diffusion along the backbone torsions of a solvated alanine dipeptide
Asymptotic solutions of diffusion models for risk reserves
Directory of Open Access Journals (Sweden)
S. Shao
2003-01-01
Full Text Available We study a family of diffusion models for risk reserves which account for the investment income earned and for the inflation experienced on claim amounts. After we defined the process of the conditional probability of ruin over finite time and imposed the appropriate boundary conditions, classical results from the theory of diffusion processes turn the stochastic differential equation to a special class of initial and boundary value problems defined by a linear diffusion equation. Armed with asymptotic analysis and perturbation theory, we obtain the asymptotic solutions of the diffusion models (possibly degenerate governing the conditional probability of ruin over a finite time in terms of interest rate.
Local carbon diffusion coefficient measurement in the S-1 spheromak
International Nuclear Information System (INIS)
Mayo, R.M.; Levinton, F.M.; Meyerhofer, D.D.; Chu, T.K.; Paul, S.F.; Yamada, M.
1988-10-01
The local carbon diffusion coefficient was measured in the S - 1 spheromak by detecting the radial spread of injected carbon impurity. The radial impurity density profile is determined by the balance of ionization and diffusion. Using measured local electron temperature T/sub e/ and density n/sub e/, the ionization rate is determined from which the particle diffusion coefficient is inferred. The results found in this work are consistent with Bohm diffusion. The absolute magnitude of D/sub /perpendicular// was determined to be (4/approximately/6) /times/ D/sub Bohm/. 25 refs., 13 figs., 2 tabs
Water vapor permeabilities through polymers: diffusivities from experiments and simulations
International Nuclear Information System (INIS)
Seethamraju, Sindhu; Ramamurthy, Praveen Chandrashekarapura; Madras, Giridhar
2014-01-01
This study experimentally determines water vapor permeabilities, which are subsequently correlated with the diffusivities obtained from simulations. Molecular dynamics (MD) simulations were used for determining the diffusion of water vapor in various polymeric systems such as polyethylene, polypropylene, poly (vinyl alcohol), poly (vinyl acetate), poly (vinyl butyral), poly (vinylidene chloride), poly (vinyl chloride) and poly (methyl methacrylate). Cavity ring down spectroscopy (CRDS) based methodology has been used to determine the water vapor transmission rates. These values were then used to calculate the diffusion coefficients for water vapor through these polymers. A comparative analysis is provided for diffusivities calculated from CRDS and MD based results by correlating the free volumes. (paper)
Chemical diffusion on solid surfaces. Final report
International Nuclear Information System (INIS)
Hudson, J.B.
1980-12-01
The techniques of surface science have been applied to the problem of the measurement of the surface diffusion rate of an adsorbed species over the surface of a chemically dissimilar material. Studies were carried out for hydrogen and nitrogen adatoms on a Ni(100) surface and for silver adatoms on a sapphire surface. Positive results were obtained only for the case of nitrogen on Ni(100). In this system the diffusivity is characterized by the expression D = D 0 exp (/sup -ΔH//RT), with D 0 = 0.25 cm 2 /sec and ΔH = 28kcal/mol
Benchmarks for multicomponent diffusion and electrochemical migration
DEFF Research Database (Denmark)
Rasouli, Pejman; Steefel, Carl I.; Mayer, K. Ulrich
2015-01-01
In multicomponent electrolyte solutions, the tendency of ions to diffuse at different rates results in a charge imbalance that is counteracted by the electrostatic coupling between charged species leading to a process called “electrochemical migration” or “electromigration.” Although not commonly...... not been published to date. This contribution provides a set of three benchmark problems that demonstrate the effect of electric coupling during multicomponent diffusion and electrochemical migration and at the same time facilitate the intercomparison of solutions from existing reactive transport codes...
Radiation enhanced diffusion in FCC alloys
International Nuclear Information System (INIS)
Schuele, W.
1982-01-01
In many alloys vacancies and interstitials can be identified in a straight forward way by measurements of radiation enhanced diffusion. In some alloys, however, quenching experiments are also necessary for the identification of these defects. Results for two characteristic alloys in which the transformation rate during high energy particle irradiation is determined by an interstitialcy and by a vacancy diffusion mechanism only, are discussed. It is also shown that a decrease of the migration energy of defects due to an interaction of the high energy particles with the lattice atoms must be taken into account in the interpretation of the results. (author)
Effective Diffusion Coefficients in Coal Chars
DEFF Research Database (Denmark)
Johnsson, Jan Erik; Jensen, Anker
2001-01-01
Knowledge of effective diffusion coefficients in char particles is important when interpreting experimental reactivity measurements and modeling char combustion or NO and N2O reduction. In this work, NO and N2O reaction with a bituminous coal char was studied in a fixed-bed quartz glass reactor....... In the case of strong pore diffusion limitations, the error in the interpretation of experimental results using the mean pore radius could be a factor of 5 on the intrinsic rate constant. For an average coal char reacting with oxygen at 1300 K, this would be the case for particle sizes larger than about 50...
Diffusion processes in the magnetopause boundary layer
International Nuclear Information System (INIS)
Tsurutani, B.T.; Thorne, R.M.
1982-01-01
Anomalous cross-field diffusion of magnetosheath ions and electrons is a direct consequence of cyclotron-resonant scattering by electrostatic and electromagnetic emissions which are continuously present within the magnetopause boundary layer. Expressions for the rate of cross-field diffusion involving either type of wave are developed and expressed in terms of the absolute upper limit referred to as Bohm diffusion. For the typical average intensity of waves observed in the boundary layer, resonant electron cross-field diffusion is always insignificant. However, magnetosheath ions, resonant with low frequency electrostatic waves, may be transported inward at a rate approaching one tenth the Bohm rate (D/sub perpendiculartsperpendicular/roughly-equal10 3 km 2 /s). While this is not the only mechanism capable of explaining the presence of the low latitude boundary layer it is adequate to account for the typical boundary layer thickness and it should occur at all local times and under all interplanetary conditions. It consequently provides a continuous mechanism for significant mass and momentum transfer across the magnetopause under conditions when field merging is inoperative
Evaluation of diffusion parameters of radon in porous material by flow-through diffusion experiment
International Nuclear Information System (INIS)
Chunnan Hsu; Shihchin Tsai; Shihming Liang
1994-01-01
The effectiveness of a material in reducing the fluence rate of Rn from soil was assessed in this study by using a flow-through diffusion experiment to evaluate the diffusion parameters -apparent diffusion coefficient and capacity factor - of radon (Rn) in a porous material. An improved method based on the nonlinear least-squares and Marquardt's method (NLSM method) was proposed to provide more reliable analyses of experimental data than the graphical method. The NLSM method was confirmed by the experimental results to be capable of estimating the diffusion parameters, even if the process was transient. This method was also demonstrated to correlate sufficiently with the results by the conventional method while the process had already reached steady-state. Natural mordenite was employed in this study as a testing material because it has more effective sorption for noble gas than any other earthen material. (author)
OH+ IN DIFFUSE MOLECULAR CLOUDS
International Nuclear Information System (INIS)
Porras, A. J.; Federman, S. R.; Welty, D. E.; Ritchey, A. M.
2014-01-01
Near ultraviolet observations of OH + and OH in diffuse molecular clouds reveal a preference for different environments. The dominant absorption feature in OH + arises from a main component seen in CH + (that with the highest CH + /CH column density ratio), while OH follows CN absorption. This distinction provides new constraints on OH chemistry in these clouds. Since CH + detections favor low-density gas with small fractions of molecular hydrogen, this must be true for OH + as well, confirming OH + and H 2 O + observations with the Herschel Space Telescope. Our observed correspondence indicates that the cosmic ray ionization rate derived from these measurements pertains to mainly atomic gas. The association of OH absorption with gas rich in CN is attributed to the need for a high enough density and molecular fraction before detectable amounts are seen. Thus, while OH + leads to OH production, chemical arguments suggest that their abundances are controlled by different sets of conditions and that they coexist with different sets of observed species. Of particular note is that non-thermal chemistry appears to play a limited role in the synthesis of OH in diffuse molecular clouds
Isotope Fractionation by Diffusion in Liquids (Final Technical Report)
Energy Technology Data Exchange (ETDEWEB)
Richter, Frank [Univ. of Chicago, IL (United States)
2016-11-09
The overall objective of the DOE-funded research by grant DE-FG02-01ER15254 was document and quantify kinetic isotope fractionations during chemical and thermal (i.e., Soret) diffusion in liquids (silicate melts and water) and in the later years to include alloys and major minerals such as olivine and pyroxene. The research involved both laboratory experiments and applications to natural settings. The key idea is that major element zoning on natural geologic materials is common and can arise for either changes in melt composition during cooling and crystallization or from diffusion. The isotope effects associated with diffusion that we have documented are the key for determining whether or not the zoning observed in a natural system was the result of diffusion. Only in those cases were the zoning is demonstrably due to diffusion can use independently measured rates of diffusion to constrain the thermal evolution of the system.
Diffusion in crystalline rocks of some sorbing and nonsorbing species
International Nuclear Information System (INIS)
Skagius, K.; Neretnieks, I.
1983-01-01
Laboratory experiments to determine the sorption and the rate of diffusion of cesium and strontium in pieces of granite have been performed. The effective diffusivity, D sub (p) x E sub (p) was found to be 1 - 2 x 10 - 12 m 2 /s for both cesium and strontium. The diffusion of non-sorbing species in granites and other rock materials have been studied in laboratory scale. The non-sorbing species were iodide, tritiated water, Cr-EDTA and Uranine. In granites the effective diffusivities were determined to be 0.7-1.3 x 10 - 13 m 2 /s for iodide and 1.3 - 1.8 x 10 - 13 m 2 /s for tritiated water. Electrical resistivity measurements in salt water saturated rock cores have been performed. The resistivity is measured in the saturated core and in the salt solution with which the core has been saturated. The ratio between these two resistivities has a direct relation to the ratio of the effective diffusivity for a component in the rock material and the diffusivity in free water for the same component. The results from the electrical resistivity measurements and the experiments with diffusion of non-sorbing species are in fair agreement. The effective diffusivity for cesium and strontium (sorbing species) are, however, more than ten times higher than expected from the results of diffusion of non-sorbing species and the electrical resistivity measurements. This is interpreted as an effect of surface diffusion. (Authors)
Analysis of current diffusive ballooning mode
International Nuclear Information System (INIS)
Yagi, M.; Azumi, M.; Itoh, K.; Itoh, S.; Fukuyama, A.
1993-04-01
The current diffusive ballooning mode is analysed in the tokamak plasma. This mode is destabilized by the current diffusivity (i.e., the electron viscosity) and stabilized by the thermal conductivity and ion viscosity. By use of the ballooning transformation, the eigenmode equation is solved. Analytic solution is obtained by the strong ballooning limit. Numerical calculation is also performed to confirm the analytic theory. The growth rate of the mode and the mode structure are analysed. The stability boundary is derived in terms of the current diffusivity, thermal conductivity, ion viscosity and the pressure gradient for the given shear parameter. This result is applied to express the thermal conductivity in terms of the pressure gradient, magnetic configurational parameters (such as the safety factor, shear and aspect ratio) and the Prandtl numbers. (author)
Water diffusion to assess meat microstructure.
Laghi, Luca; Venturi, Luca; Dellarosa, Nicolò; Petracci, Massimiliano
2017-12-01
In the quest for setting up rapid methods to evaluate water retention ability of meat microstructures, time domain nuclear magnetic resonance (TD-NMR) has gained a prominent role, due to the possibility to observe water located outside the myofibrils, easily lost upon storage or cooking. Diffusion weighted signals could be used to monitor the shape and dimension of the pores in which water is confined, thus boosting the information offered by TD-NMR. The work outlines a parsimonious model to describe relative abundance and diffusion coefficient of intra and extra myofibrillar water populations, exchange rate between them, diameter of the myofibrillar cells. To test our model, we registered diffusion and T 2 weighted NMR signals at 20MHz on fresh meat from pectoralis major muscle of 100days old female turkey. We then purposely altered water distribution and myofibrils shape by means of freezing. The model predicted nicely the consequences of the imposed modifications. Copyright © 2016. Published by Elsevier Ltd.
Efficient estimation of diffusion during dendritic solidification
Yeum, K. S.; Poirier, D. R.; Laxmanan, V.
1989-01-01
A very efficient finite difference method has been developed to estimate the solute redistribution during solidification with diffusion in the solid. This method is validated by comparing the computed results with the results of an analytical solution derived by Kobayashi (1988) for the assumptions of a constant diffusion coefficient, a constant equilibrium partition ratio, and a parabolic rate of the advancement of the solid/liquid interface. The flexibility of the method is demonstrated by applying it to the dendritic solidification of a Pb-15 wt pct Sn alloy, for which the equilibrium partition ratio and diffusion coefficient vary substantially during solidification. The fraction eutectic at the end of solidification is also obtained by estimating the fraction solid, in greater resolution, where the concentration of solute in the interdendritic liquid reaches the eutectic composition of the alloy.
Watson, E. B.; Cherniak, D. J.
1997-05-01
Oxygen diffusion in natural, non-metamict zircon was characterized under both dry and water-present conditions at temperatures ranging from 765°C to 1500°C. Dry experiments were performed at atmospheric pressure by encapsulating polished zircon samples with a fine powder of 18O-enriched quartz and annealing the sealed capsules in air. Hydrothermal runs were conducted in cold-seal pressure vessels (7-70 MPa) or a piston cylinder apparatus (400-1000 MPa) on zircon samples encapsulated with both 18O-enriched quartz and 18O water. Diffusive-uptake profiles of 18O were measured in all samples with a particle accelerator, using the 18O(p, α) 15N reaction. For dry experimental conditions at 1100-1500°C, the resulting oxygen diffusivities (24 in all) are well described by: D dry (m 2/s) = 1.33 × 10 -4exp(-53920/T) There is no suggestion of diffusive anisotropy. Under wet conditions at 925°C, oxygen diffusion shows little or no dependence upon P H 2O in the range 7-1000 MPa, and is insensitive to total pressure as well. The results of 27 wet experiments at 767-1160°C and 7-1000 MPa can be described a single Arrhenius relationship: D wet (m 2/s) = 5.5 × 10 -12exp(-25280/T) The insensitivity of oxygen diffusion to P H 2O means that applications to geologic problems can be pursued knowing only whether the system of interest was 'wet' (i.e., P H 2O > 7MPa ) or 'dry'. Under dry conditions (presumably rare in the crust), zircons are extremely retentive of their oxygen isotopic signatures, to the extent that δ 18O would be perturbed at the center of a 200 μm zircon only during an extraordinarily hot and protracted event (e.g., 65 Ma at 900°C). Under wet conditions, δ 18O may or may not be retained in the central regions of individual crystals, cores or overgrowth rims, depending upon the specific thermal history of the system.
The Pearson diffusions: A class of statistically tractable diffusion processes
DEFF Research Database (Denmark)
Forman, Julie Lyng; Sørensen, Michael
The Pearson diffusions is a flexible class of diffusions defined by having linear drift and quadratic squared diffusion coefficient. It is demonstrated that for this class explicit statistical inference is feasible. Explicit optimal martingale estimating func- tions are found, and the corresponding...
Gas dynamic analysis of the performance of diffuser augmented ...
Indian Academy of Sciences (India)
A diffuser augmented wind turbine (DAWT) is considered an ... Maximum power rating ± for a given blade technology ± can be extended substantially by ... twist angles in addition to design parameters such as tip speed ratio with minimum ...
Ha, Jiyeon; Engler, Cady R; Lee, Seung Jae
2008-07-01
Diffusion characteristics of chlorferon and diethylthiophosphate (DETP) in Ca-alginate gel beads were studied to assist in designing and operating bioreactor systems. Diffusion coefficients for chlorferon and DETP in Ca-alginate gel beads determined at conditions suitable for biodegradation studies were 2.70 x 10(-11) m(2)/s and 4.28 x 10(-11) m(2)/s, respectively. Diffusivities of chlorferon and DETP were influenced by several factors, including viscosity of the bulk solution, agitation speed, and the concentrations of diffusing substrate and immobilized cells. Diffusion coefficients increased with increasing agitation speed, probably due to poor mixing at low speed and some attrition of beads at high speeds. Diffusion coefficients also increased with decreasing substrate concentration. Increased cell concentration in the gel beads caused lower diffusivity. Theoretical models to predict diffusivities as a function of cell weight fraction overestimated the effective diffusivities for both chlorferon and DETP, but linear relations between effective diffusivity and cell weight fraction were derived from experimental data. Calcium-alginate gel beads with radii of 1.65-1.70 mm used in this study were not subject to diffusional limitations: external mass transfer resistances were negligible based on Biot number calculations and effectiveness factors indicated that internal mass transfer resistance was negligible. Therefore, the degradation rates of chlorferon and DETP inside Ca-alginate gel beads were reaction-limited. (c) 2007 Wiley Periodicals, Inc.
Intermittent Motion, Nonlinear Diffusion Equation and Tsallis Formalism
Directory of Open Access Journals (Sweden)
Ervin K. Lenzi
2017-01-01
Full Text Available We investigate an intermittent process obtained from the combination of a nonlinear diffusion equation and pauses. We consider the porous media equation with reaction terms related to the rate of switching the particles from the diffusive mode to the resting mode or switching them from the resting to the movement. The results show that in the asymptotic limit of small and long times, the spreading of the system is essentially governed by the diffusive term. The behavior exhibited for intermediate times depends on the rates present in the reaction terms. In this scenario, we show that, in the asymptotic limits, the distributions for this process are given by in terms of power laws which may be related to the q-exponential present in the Tsallis statistics. Furthermore, we also analyze a situation characterized by different diffusive regimes, which emerges when the diffusive term is a mixing of linear and nonlinear terms.
Radko, Timour
Fully developed two-dimensional salt-finger convection is characterized by the appearance of coherent dipolar eddies which carry relatively fresh and cold fluid upward and salty and warm fluid downward. Such structures are prevalent in the regime in which density stratification is close to neutral and the salt-finger instability is extremely vigorous. The structure and translation velocities of modons are discussed in terms of the asymptotic expansion in which the background density ratio approaches unity. It is argued that the vertical salt flux is driven primarily by double-diffusive modons, which makes it possible to derive explicit expressions for the mixing rates of temperature and salinity as a function of their background gradients. Predictions of the proposed mixing model are successfully tested by direct numerical simulations.
International Nuclear Information System (INIS)
Hanna, S.R.
1976-01-01
It is hoped that urban diffusion models of air pollutants can eventually confidently be used to make major decisions, such as in planning the layout of a new industrial park, determining the effects of a new highway on air quality, or estimating the results of a new automobile emissions exhaust system. The urban diffusion model itself should be able to account for point, line, and area sources, and the local aerodynamic effects of street canyons and building wakes. Removal or transformations due to dry or wet deposition and chemical reactions are often important. It would be best if the model included meteorological parameters such as wind speed and temperature as dependent variables, since these parameters vary significantly when air passes from rural surfaces over urban surfaces
Directory of Open Access Journals (Sweden)
Roberto Cipriani
2011-06-01
Full Text Available It is quite likely that the origins of prayer are to be found in ancient mourning and bereavement rites. Primeval ritual prayer was codified and handed down socially to become a deep-rooted feature of people’s cultural behavior, so much so, that it may surface again several years later, in the face of death, danger, need, even in the case of relapse from faith and religious practice. Modes of prayer depend on religious experience, on relations between personal prayer and political action, between prayer and forgiveness, and between prayer and approaches to religions. Various forms of prayer exist, from the covert-hidden to the overt-manifest kind. How can they be investigated? How can one, for instance, explore mental prayer? These issues regard the canon of diffused religion and, therefore, of diffused prayer.
International Nuclear Information System (INIS)
Cable, J.W.
1987-01-01
The diffuse scattering of neutrons from magnetic materials provides unique and important information regarding the spatial correlations of the atoms and the spins. Such measurements have been extensively applied to magnetically ordered systems, such as the ferromagnetic binary alloys, for which the observed correlations describe the magnetic moment fluctuations associated with local environment effects. With the advent of polarization analysis, these techniques are increasingly being applied to study disordered paramagnetic systems such as the spin-glasses and the diluted magnetic semiconductors. The spin-pair correlations obtained are essential in understanding the exchange interactions of such systems. In this paper, we describe recent neutron diffuse scattering results on the atom-pair and spin-pair correlations in some of these disordered magnetic systems. 56 refs
International Nuclear Information System (INIS)
Rao, K.A.; Pushpa, K.K.; Iyer, R.M.
1980-01-01
γ-irradiation of polymers results in further crosslinking in the polymer or breakdown of the polymer or a combination of both these phenomena depending on the type of polymer, the dose as well as the environment in which irradiation is carried out. The gas diffusion through polymer films is expected to vary depending on these changes. With a view to A evaluate the feasibility of effecting selective diffusion of specific gases and also to correlate the change in diffusion rates with the polymer characteristics these studies have been initiated. Hydrogen diffusion through mylar film γ-irradiated under varying conditions upto a dose of approximately 50 Mrads is reported in this paper. The results indicate negligible change in hydrogen diffusion rates on γ-irradiation. However, γ-irradiation induced crosslinking of acrylic acid on Mylar reduced the hydrogen diffusion rate. The hydrogen diffusion studies may also be useful in finding the glass transition temperature of polymer films as is apparent from the gas diffusion curves. (author)
Diffusion in heterogeneous lattices
Czech Academy of Sciences Publication Activity Database
Tarasenko, Alexander; Jastrabík, Lubomír
2010-01-01
Roč. 256, č. 17 (2010), s. 5137-5144 ISSN 0169-4332 R&D Projects: GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : lattice- gas systems * diffusion * Monte Carlo simulations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.795, year: 2010
International Nuclear Information System (INIS)
Peters, R.D.
1978-01-01
The applications of diffusion bonding at the General Electric Neutron Devices Department are briefly discussed, with particular emphasis on the gold/gold or gold/indium joints made between metallized alumina ceramic parts in the vacuum switch tube and the crystal resonator programs. Fixtures which use the differential expansion of dissimilar metals are described and compared to one that uses hydraulic pressure to apply the necessary bonding force
International Nuclear Information System (INIS)
Mezin, M.
1976-01-01
The report presents an introduction to general basic principles of the gaseous diffusion process for the separation of uranium isotopes. Dealt with are: a) theoretical background and basic considerations of separation work and production costs, b) construction of a single separation stage and a multistage plant, c) the components of a plant and the optimization factors, d) cost factors. The text is illustrated by instructive diagrammes and flow charts. (RB) [de
Diffusion in cladding materials
International Nuclear Information System (INIS)
Anand, M.S.; Pande, B.M.; Agarwala, R.P.
1992-01-01
Aluminium has been used as a cladding material in most research reactors because its low neutron absorption cross section and ease of fabrication. However, it is not suitable for cladding in power reactors and as such zircaloy-2 is normally used as a clad because it can withstand high temperature. It has low neutron absorption cross section, good oxidation, corrosion, creep properties and possesses good mechanical strength. With the passage of time, further development in this branch of science took place and designers started looking for better neutron economy and less hydrogen pickup in PHW reactors. The motion of fission products in the cladding material could pose a problem after long operation. In order to understand their behaviour under reactor environment, it is essential to study first the diffusion under normal conditions. These studies will throw light on the interaction of defects with impurities which would in turn help in understanding the mechanism of diffusion. In this article, it is intended to discuss the diffusion behaviour of impurities in cladding materials.(i.e. aluminium, zircaloy-2, zirconium-niobium alloy etc.). (author). 94 refs., 4 figs., 3 tabs
Solute diffusivity in undisturbed soil
DEFF Research Database (Denmark)
Lægdsmand, Mette; Møldrup, Per; Schjønning, Per
2012-01-01
Solute diffusivity in soil plays a major role in many important processes with relation to plant growth and environmental issues. Soil solute diffusivity is affected by the volumetric water content as well as the morphological characteristics of water-filled pores. The solute diffusivity in intact...
Diffusion of Zonal Variables Using Node-Centered Diffusion Solver
Energy Technology Data Exchange (ETDEWEB)
Yang, T B
2007-08-06
Tom Kaiser [1] has done some preliminary work to use the node-centered diffusion solver (originally developed by T. Palmer [2]) in Kull for diffusion of zonal variables such as electron temperature. To avoid numerical diffusion, Tom used a scheme developed by Shestakov et al. [3] and found their scheme could, in the vicinity of steep gradients, decouple nearest-neighbor zonal sub-meshes leading to 'alternating-zone' (red-black mode) errors. Tom extended their scheme to couple the sub-meshes with appropriate chosen artificial diffusion and thereby solved the 'alternating-zone' problem. Because the choice of the artificial diffusion coefficient could be very delicate, it is desirable to use a scheme that does not require the artificial diffusion but still able to avoid both numerical diffusion and the 'alternating-zone' problem. In this document we present such a scheme.
Studies about diffusion through grain boundary
International Nuclear Information System (INIS)
Allevato, C.E.
1983-01-01
Samples with layers of gold-silver and silver-chromium were deposited in high vacuum (10 -5 -10 -6 Torr) on glass and sodium chloride substrates. After deposition, these films were annealed at different temperatures and analysed by Rutherford Backscattering, Auger Spesctroscopy and Transmission Electron Microscopy. A simulated convolution was done using a computer in order to evalute the precision of the particle detector employed in the backscattering. The concentration profiles used to determine the diffusion coefficient were obtained by Auger electron spectroscopy. This technique demanded a study of sputtering rate to convert time of sputtering in thickness. This rate was determined by two methods. Analyses of the samples of silver-chromium, heated up to 250 0 C, by transmission electron microscopy and Auger electron spectroscopy, indicated the presence of oxide in small isolated regions, as crystallites. Values of the diffusion coefficient and activation energy related to the diffusion through the volume and by the grain boundary were determined by Suzuoka's method. The system Ag/Cr, due to its high grain boundary density, led to an increase of the diffusion coefficient so that this coefficient and the activation energy were obtained only from the grain boundary. (Author) [pt
Particle diffusion in a spheromak
International Nuclear Information System (INIS)
Meyerhofer, D.D.; Levinton, F.M.; Yamada, M.
1988-01-01
The local carbon particle diffusion coefficient was measured in the Proto S-1/C spheromak using a test particle injection scheme. When the plasma was not in a force-free Taylor state, and when there were pressure gradients in the plasma, the particle diffusion was five times that predicted by Bohm and was consistent with collisional drift wave diffusion. The diffusion appears to be driven by correlations of the fluctuating electric field and density. During the decay phase of the discharge when the plasma was in the Taylor state, the diffusion coefficient of the carbon was classical. 23 refs., 4 figs
Advanced diffusion processes and phenomena
Öchsner, Andreas; Belova, Irina
2014-01-01
This topical volume on Advanced Diffusion Processes and Phenomena addresses diffusion in a wider sense of not only mass diffusion but also heat diffusion in fluids and solids. Both diffusion phenomena play an important role in the characterization of engineering materials and corresponding structures. Understanding these different transport phenomena at many levels, from atomistic to macro, has therefore long attracted the attention of many researchers in materials science and engineering and related disciplines. The present topical volume captures a representative cross-section of some of the
Measuring methods of matrix diffusion
International Nuclear Information System (INIS)
Muurinen, A.; Valkiainen, M.
1988-03-01
In Finland the spent nuclear fuel is planned to be disposed of at large depths in crystalline bedrock. The radionuclides which are dissolved in the groundwater may be able to diffuse into the micropores of the porous rock matrix and thus be withdrawn from the flowing water in the fractures. This phenomenon is called matrix diffusion. A review over matrix diffusion is presented in the study. The main interest is directed to the diffusion of non-sorbing species. The review covers diffusion experiments and measurements of porosity, pore size, specific surface area and water permeability
Estimation and calibration of the water isotope differential diffusion length in ice core records
van der Wel, G.; Fischer, H.; Oerter, H.; Meyer, H.; Meijer, H. A. J.
2015-01-01
Palaeoclimatic information can be retrieved from the diffusion of the stable water isotope signal during firnification of snow. The diffusion length, a measure for the amount of diffusion a layer has experienced, depends on the firn temperature and the accumulation rate. We show that the estimation
International Nuclear Information System (INIS)
Kwiotek, A.; Grzywna, Z.J.
2005-01-01
Diffusion in a bounded region (or diffusive mass transport) can be seen from at least three platforms: - chemistry of he Fick's equation; - chemical engineering. To pose a particular problem we have to provide some additional conditions (initial conditions, boundary conditions and further). As we understood it in all cases diffusion is considered in an open region (in other words in one phase). Chemical engineering however brings an idea of 'diffusion' between phases. We claim that there isn't diffusion between phases. One can only consider mass transport between phases. Mass transport (or transfer in chemical engineering jargon) from one phase to another composes of: diffusion in first phase partition at an interface diffusion in second phase. (author)
Diffusion coefficients of decay products of radon and thoron
International Nuclear Information System (INIS)
Raghunath, B.; Kotrappa, P.
1979-01-01
The diffusion coefficients of the decay products of radon and thoron have relevance in the evaluation of inhalation hazards in uranium and thorium processing industries. A recently developed diffusion sampler, based on Mercer's theory of diffusional deposition between the concentric circular plates, has been used for determining the diffusion coefficients of the unattached decay products of radon and thoron (RaA, RaB, RaC and ThB). Experiments were conducted at different ventilation rates (6 and 60 changes/hr) at different relative humidities (10 and 90%) and both in air and argon atmospheres. Diffusion coefficients were found to increase with increasing ventilation rates and were found to decrease at higher relative humidities, the effect being more marked at lower ventilation rates. Both of these effects were less pronounced in argon than in air. Results are discussed in light of the known properties of these decay products. (author)
Multidimensional and memory effects on diffusion of a particle
International Nuclear Information System (INIS)
Bao, Jing-Dong
2001-01-01
The diffusion of an overdamped Brownian particle in the two-dimensional (2D) channel bounded periodically by a parabola is studied, where the particle is subject to an additive white or colored noise. The diffusion rate constant D * of the particle is evaluated by the quasi-2D approximation and the effective potential approach, and the theoretical result is compared with the Langevin simulation. The properties of the diffusion rate constant are stressed for weak and strong noise cases. It is shown that, in an entropy channel, the value of D * in units of Q decreases with increasing intensity of the colored noise. In the presence of energetic barriers, a nonmonotonic behavior of the reduced diffusion rate constant D * Q -1 as a function of the noise intensity is shown
Can molecular diffusion explain Space Shuttle plume spreading?
Meier, R. R.; Plane, John M. C.; Stevens, Michael H.; Paxton, L. J.; Christensen, A. B.; Crowley, G.
2010-04-01
The satellite-borne Global Ultraviolet Imager (GUVI) has produced more than 20 images of NASA Space Shuttle main engine plumes in the lower thermosphere. These reveal atomic hydrogen and, by inference, water vapor transport over hemispherical-scale distances with speeds much faster than expected from models of thermospheric wind motions. Furthermore, the hydrogen plumes expand rapidly. We find rates that exceed the horizontal diffusion speed at nominal plume altitudes of 104-112 km. Kelley et al. (2009) have proposed a 2-D turbulence mechanism to explain the observed spreading rates (and rapid advection) of the plumes. But upon further investigation, we conclude that H atom diffusion can indeed account for the observed expansion rates by recognizing that vertical diffusion quickly conveys atoms to higher altitudes where horizontal diffusion is much more rapid. We also find evidence for H atom production directly during the Shuttle's main engine burn.
Self-diffusion in dense granular shear flows.
Utter, Brian; Behringer, R P
2004-03-01
Diffusivity is a key quantity in describing velocity fluctuations in granular materials. These fluctuations are the basis of many thermodynamic and hydrodynamic models which aim to provide a statistical description of granular systems. We present experimental results on diffusivity in dense, granular shear flows in a two-dimensional Couette geometry. We find that self-diffusivities D are proportional to the local shear rate gamma; with diffusivities along the direction of the mean flow approximately twice as large as those in the perpendicular direction. The magnitude of the diffusivity is D approximately gamma;a(2), where a is the particle radius. However, the gradient in shear rate, coupling to the mean flow, and strong drag at the moving boundary lead to particle displacements that can appear subdiffusive or superdiffusive. In particular, diffusion appears to be superdiffusive along the mean flow direction due to Taylor dispersion effects and subdiffusive along the perpendicular direction due to the gradient in shear rate. The anisotropic force network leads to an additional anisotropy in the diffusivity that is a property of dense systems and has no obvious analog in rapid flows. Specifically, the diffusivity is suppressed along the direction of the strong force network. A simple random walk simulation reproduces the key features of the data, such as the apparent superdiffusive and subdiffusive behavior arising from the mean velocity field, confirming the underlying diffusive motion. The additional anisotropy is not observed in the simulation since the strong force network is not included. Examples of correlated motion, such as transient vortices, and Lévy flights are also observed. Although correlated motion creates velocity fields which are qualitatively different from collisional Brownian motion and can introduce nondiffusive effects, on average the system appears simply diffusive.
Iotov, Mihail S.
The goals of this research are twofold: First, to develop methods and tools for studying problems in chemistry, material science and biology, as well as accurate prediction of the properties of structures and materials of importance to those fields. Second, use those tools to apply the methods to practical problems. In terms of methodology development this thesis focuses on two topics: One: Development of a massively parallel computer program to perform electronic, atomic, molecular levels simulations of problems in chemistry, material science and biology. This computer program uses existing and emerging hardware platforms and parallel tools and is based on decades long research in computer modeling and algorithms. We report on that development in Chapter 3. Two: Development of tools for Molecular Dynamics simulation and methods and tools for course-grained meso-scale modeling of transport properties and especially diffusion of gas penetrants in polymers. We have formulated a new method for extracting coarse-grained information from short (0.2-0.5 nanoseconds [ns]) MD simulations and use this in a meso-scale simulation to calculate diffusion constants in polymer matrices. This is a grid-based method, which calculates the average probability of each grid point of being a void and performs constrained and biased Monte Carlo (MC) dynamics to reach much longer time regimes than possible in MD. The MC method mimics the three regimes of mean square deviation (MSD) behavior seen in MD, thus accounting for the proper mobility of the voids and the compressibility of the polymer matrix. Theoretical discussions and justification for the method is presented in chapter 6. Initial results on He diffusion in a low-density polyethylene (PE) matrix are presented in chapter 7. The behavior at different temperatures follows closely the trend observed from calibrating long term MD for this particular system.
Diffusion in silicon isotope heterostructures
Energy Technology Data Exchange (ETDEWEB)
Silvestri, Hughes Howland [Univ. of California, Berkeley, CA (United States)
2004-01-01
The simultaneous diffusion of Si and the dopants B, P, and As has been studied by the use of a multilayer structure of isotopically enriched Si. This structure, consisting of 5 pairs of 120 nm thick natural Si and ^{28}Si enriched layers, enables the observation of ^{30}Si self-diffusion from the natural layers into the ^{28}Si enriched layers, as well as dopant diffusion from an implanted source in an amorphous Si cap layer, via Secondary Ion Mass Spectrometry (SIMS). The dopant diffusion created regions of the multilayer structure that were extrinsic at the diffusion temperatures. In these regions, the Fermi level shift due to the extrinsic condition altered the concentration and charge state of the native defects involved in the diffusion process, which affected the dopant and self-diffusion. The simultaneously recorded diffusion profiles enabled the modeling of the coupled dopant and self-diffusion. From the modeling of the simultaneous diffusion, the dopant diffusion mechanisms, the native defect charge states, and the self- and dopant diffusion coefficients can be determined. This information is necessary to enhance the physical modeling of dopant diffusion in Si. It is of particular interest to the modeling of future electronic Si devices, where the nanometer-scale features have created the need for precise physical models of atomic diffusion in Si. The modeling of the experimental profiles of simultaneous diffusion of B and Si under p-type extrinsic conditions revealed that both species are mediated by neutral and singly, positively charged Si self-interstitials. The diffusion of As and Si under extrinsic n-type conditions yielded a model consisting of the interstitialcy and vacancy mechanisms of diffusion via singly negatively charged self-interstitials and neutral vacancies. The simultaneous diffusion of P and Si has been modeled on the basis of neutral and singly negatively charged self-interstitials and neutral and singly
Diffusion phenomenon for linear dissipative wave equations
Said-Houari, Belkacem
2012-01-01
In this paper we prove the diffusion phenomenon for the linear wave equation. To derive the diffusion phenomenon, a new method is used. In fact, for initial data in some weighted spaces, we prove that for {equation presented} decays with the rate {equation presented} [0,1] faster than that of either u or v, where u is the solution of the linear wave equation with initial data {equation presented} [0,1], and v is the solution of the related heat equation with initial data v 0 = u 0 + u 1. This result improves the result in H. Yang and A. Milani [Bull. Sci. Math. 124 (2000), 415-433] in the sense that, under the above restriction on the initial data, the decay rate given in that paper can be improved by t -γ/2. © European Mathematical Society.
International Nuclear Information System (INIS)
Leo, Stefano de; Rotelli, Pietro
2009-01-01
We present the results of the planar diffusion of a Dirac particle by step and barrier potentials, when the incoming wave impinges at an arbitrary angle with the potential. Except for right-angle incidence this process is characterized by the appearance of spin flip terms. For the step potential, spin flip occurs for both transmitted and reflected waves. However, we find no spin flip in the transmitted barrier result. This is surprising because the barrier result may be derived directly from a two-step calculation. We demonstrate that the spin flip cancellation indeed occurs for each ''particle'' (wave packet) contribution. (orig.)
International Nuclear Information System (INIS)
Pretzsch, G.; Boerner, E.; Lehmann, R.; Sarenio, O.
1986-01-01
The invention relates to the detection of radioactive gases emitting alpha particles like radon, thoron and their alpha-decaying daughters by means of a diffusion chamber with a passive detector, preferably with a solid state track detector. In the chamber above and towards the detector there is a single metallized electret with negative polarity. The distance between electret and detector corresponds to the range of the alpha particles of radon daughters in air at the most. The electret collects the positively charged daughters and functions as surface source. The electret increases the sensitivity by the factor 4
International Nuclear Information System (INIS)
Ott, D.J.; Chen, Y.M.; Hewson, E.G.; Richter, J.E.; Wu, W.C.; Gelfand, D.W.; Castell, D.O.
1988-01-01
Radiologic and manometric findings were correlated in 17 patients with diffuse esophageal spasm (DES). All patients initially had chest pain and/or dysphagia and had a manometric diagnosis of DES. Mean percentage of normal peristalsis manometrically was 46% (range, 20%-80%). Based on radiologic examination, an esophageal motor disorder consistent with DES was diagnosed in 12 of 17 patients, and there was one misinterpretation of achalasia. Radiologic detection was not related significantly to the percentage of peristalsis seen on manometric examination. Mean esophageal wall thickness as measured radiographically in patients with DES was 2.6 mm, compared with 2.5 mm in 17 individuals with normal results of manometry
International Nuclear Information System (INIS)
Michaud, Georges; Montmerle, Thierry
1977-01-01
This paper is dealing with the origin of the elements in the universe. The scheme of nucleosynthesis is kept to explain the stellar generation of helium, carbon, etc... from the initial hydrogen; but a nonlinear theory is then elaborated to account for the anomalous abundances which were observed. The chemical elements would diffuse throughout the outer layers of a star under the action of the opposite forces of gravitation and radiation. This theory, with completing the nucleosynthesis, would contribute to give a consistent scheme of the elemental origin and abundances [fr
Diffusion of aqueous solutions of ionic, zwitterionic, and polar solutes
Teng, Xiaojing; Huang, Qi; Dharmawardhana, Chamila Chathuranga; Ichiye, Toshiko
2018-06-01
The properties of aqueous solutions of ionic, zwitterionic, and polar solutes are of interest to many fields. For instance, one of the many anomalous properties of aqueous solutions is the behavior of water diffusion in different monovalent salt solutions. In addition, solutes can affect the stabilities of macromolecules such as proteins in aqueous solution. Here, the diffusivities of aqueous solutions of sodium chloride, potassium chloride, tri-methylamine oxide (TMAO), urea, and TMAO-urea are examined in molecular dynamics simulations. The decrease in the diffusivity of water with the concentration of simple ions and urea can be described by a simple model in which the water molecules hydrogen bonded to the solutes are considered to diffuse at the same rate as the solutes, while the remainder of the water molecules are considered to be bulk and diffuse at almost the same rate as pure water. On the other hand, the decrease in the diffusivity of water with the concentration of TMAO is apparently affected by a decrease in the diffusion rate of the bulk water molecules in addition to the decrease due to the water molecules hydrogen bonded to TMAO. In other words, TMAO enhances the viscosity of water, while urea barely affects it. Overall, this separation of water molecules into those that are hydrogen bonded to solute and those that are bulk can provide a useful means of understanding the short- and long-range effects of solutes on water.
Diffusion of Mobile Phones in China
Sangwan, Sunanda; Pau, Louis-François
2005-01-01
textabstractDiffusion of mobile communication has induced great societal changes in China. Factors at global market, communications industry and end-user market levels are driving the adoption at a high rate. Firstly, China’s economic emergence together with e.g. accession to WTO has led to foreign investment increase in telecom and communications industry. Secondly, a parallel deregulation and reengineering of the telecom industry ensured an introduction of competition in the domestic termin...
EURODIF: the uranium enrichment by gaseous diffusion
International Nuclear Information System (INIS)
Rougeau, J.P.
1981-01-01
During the seventies the nuclear power programme had an extremely rapid growth rate which entailed to increase the world uranium enrichment capacity. EURODIF is the largest undertaking in this field. This multinational joint venture built and now operates and enrichment plant using the gaseous diffusion process at Tricastin (France). This plant is delivering low enriched uranium since two years and has contracted about 110 million SWU's till 1990. Description, current activity and prospects are given in the paper. (Author) [pt
Product ion diffusion in flowing afterglows
Energy Technology Data Exchange (ETDEWEB)
Shaw, M J; Stock, H M.P. [University Coll. of Wales, Aberystwyth (UK). Dept. of Physics
1975-11-11
An analysis of the variation of product ion signals in flowing after-glow experiments is presented. It is shown that under certain conditions the relative variation of a single product ion yields not only the total reaction rate coefficients but also the ambipolar diffusion coefficient of the product ion in the buffer gas. Theory is compared with experiment for a number of ion-molecule and Penning reactions.
Weird muonium diffusion in solid xenon
International Nuclear Information System (INIS)
Storchak, V.G.; Kirillov, B.F.; Pirogov, A.V.
1992-09-01
Muon and muonium spin rotation and relaxation parameters were studied in liquid and solid xenon. The small diamagnetic fraction (∼ 10%) observed in condensed xenon is believed to be Xeμ + . The muonium hyperfine frequency was measured for the first time in liquid Xe and was found to be in agreement with the vacuum value. A nonmonotonic temperature dependence of the muonium relaxation rate probably indicates that muonium diffusion in solid Xe is of quantum nature. 16 refs., 3 figs
Diffusion in Solids Fundamentals, Methods, Materials, Diffusion-Controlled Processes
Mehrer, Helmut
2007-01-01
Diffusion is a vital topic in solid-state physics and chemistry, physical metallurgy and materials science. Diffusion processes are ubiquitous in solids at elevated temperatures. A thorough understanding of diffusion in materials is crucial for materials development and engineering. This book first gives an account of the central aspects of diffusion in solids, for which the necessary background is a course in solid state physics. It then provides easy access to important information about diffuson in metals, alloys, semiconductors, ion-conducting materials, glasses and nanomaterials. Several diffusion-controlled phenomena, including ionic conduction, grain-boundary and dislocation pipe diffusion, are considered as well. Graduate students in solid-state physics, physical metallurgy, materials science, physical and inorganic chemistry or geophysics will benefit from this book as will physicists, chemists, metallurgists, materials engineers in academic and industrial research laboratories.
Apparatus for diffusion separation
International Nuclear Information System (INIS)
Nierenberg, W.A.
1976-01-01
A diffuser separator apparatus is described which comprises a plurality of flow channels in a single stage. Each of said channels has an inlet port and an outlet port and a constant cross sectional area between said ports. At least a portion of the defining surface of each of said channels is a diffusion separation membrane, and each of said channels is a different cross sectional area. Means are provided for connecting said channels in series so that each successive channel of said series has a smaller cross sectional area than the previous channel of said series. Also provided are a source of gaseous mixture, individual means for flowing said gaseous mixture to the inlet port of each of said channels, gas receiving and analyzing means, individual means for flowing gas passing from each of said outlet ports and means for flowing gas passing through said membranes to said receiving and analyzing means, and individual means for connecting the outlet port of each channel with the inlet port of the channel having the next smaller cross sectional area
The diffusion of microfinance.
Banerjee, Abhijit; Chandrasekhar, Arun G; Duflo, Esther; Jackson, Matthew O
2013-07-26
To study the impact of the choice of injection points in the diffusion of a new product in a society, we developed a model of word-of-mouth diffusion and then applied it to data on social networks and participation in a newly available microfinance loan program in 43 Indian villages. Our model allows us to distinguish information passing among neighbors from direct influence of neighbors' participation decisions, as well as information passing by participants versus nonparticipants. The model estimates suggest that participants are seven times as likely to pass information compared to informed nonparticipants, but information passed by nonparticipants still accounts for roughly one-third of eventual participation. An informed household is not more likely to participate if its informed friends participate. We then propose two new measures of how effective a given household would be as an injection point. We show that the centrality of the injection points according to these measures constitutes a strong and significant predictor of eventual village-level participation.
Diffuse infiltrative lung disease
International Nuclear Information System (INIS)
Niden, A.H.; Mishkin, F.S.
1984-01-01
The authors discuss their approach to the diagnosis and management of patients with DILD. Gallium scans play a central role in this process. Not only do they help them decide whom to biopsy, but also where to biopsy. The scans can be used for the early detection of disease in a high-risk population, for following the progression and regression of disease, for the regulation of medication, and for the evaluation of therapy. Bronchoalveolar lung lavage appears to be equally sensitive. However, patients are less willing to undergo repeated fiberoptic bronchoscopies than lung scans. Both tests may prove useful, one complementing the other. Gallium imaging has also been utilized by the authors in select patients with questionable diffuse lung infiltrates roentgenographically or with a normal chest roentgenogram, chronic respiratory symptoms, and abnormal pulmonary function studies. An abnormal gallium lung scan in these clinical situations helps them select which patients have a diffuse active pulmonary process meriting transbronchial biopsies. This has proven to be of particular value in the management of older patients
The Diffusion Effect of MSW Recycling
Directory of Open Access Journals (Sweden)
Yi-Tui Chen
2017-12-01
Full Text Available The purpose of this paper is to compare the recycling performance for some waste fractions selected including food waste, bulk waste, paper, metal products, plastics/rubber and glass products and then to develop some directions for the future improvements. The priority of each waste fraction for recycling is also analyzed by using an importance-performance analysis. Traditionally, the recycling rate that is calculated by the ratio of waste recycled to waste collected is used as an indicator to measure recycling performance. Due to a large variation among waste fractions in municipal solid waste (MSW, the recycling rate cannot reflect the actual recycling performance. The ceiling of recycling rate for each waste fraction estimated from the diffusion models is incorporated into a model to calculate recycling performance. The results show that (1 the diffusion effect exists significantly for the recycling of most recyclables but no evidence is found to support the diffusion effect for the recycling of food waste and bulk waste; (2 the recycling performance of waste metal products ranks the top, compared to waste paper, waste glass and other waste fractions; (3 furthermore, an importance-performance analysis (IPA is employed to analyze the priority of recycling programs and thus this paper suggests that the recycling of food waste should be seen as the most priority item to recycle.
International Nuclear Information System (INIS)
Smirnova, E.S.; Chuvil'deev, V.N.
1998-01-01
The model is suggested which describes the influence of large-angle grain boundary migration on a diffusion controlled creep rate in polycrystalline materials (Coble creep). The model is based on the concept about changing the value of migrating boundary free volume when introducing dislocations distributed over the grain bulk into this boundary. Expressions are obtained to calculate the grain boundary diffusion coefficient under conditions of boundary migration and the parameter, which characterized the value of Coble creep acceleration. A comparison is made between calculated and experimental data for Cd, Co and Fe
Grain boundary and triple junction diffusion in nanocrystalline copper
Energy Technology Data Exchange (ETDEWEB)
Wegner, M., E-mail: m.wegner@uni-muenster.de; Leuthold, J.; Peterlechner, M.; Divinski, S. V., E-mail: divin@uni-muenster.de [Institut für Materialphysik, Universität Münster, Wilhelm-Klemm-Straße 10, D-48149, Münster (Germany); Song, X., E-mail: xysong@bjut.edu.cn [College of Materials Science and Engineering, Beijing University of Technology, 100124 Beijing (China); Wilde, G. [Institut für Materialphysik, Universität Münster, Wilhelm-Klemm-Straße 10, D-48149, Münster (Germany); Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, 200444 Shanghai (China)
2014-09-07
Grain boundary and triple junction diffusion in nanocrystalline Cu samples with grain sizes, 〈d〉, of ∼35 and ∼44 nm produced by spark plasma sintering were investigated by the radiotracer method using the {sup 63}Ni isotope. The measured diffusivities, D{sub eff}, are comparable with those determined previously for Ni grain boundary diffusion in well-annealed, high purity, coarse grained, polycrystalline copper, substantiating the absence of a grain size effect on the kinetic properties of grain boundaries in a nanocrystalline material at grain sizes d ≥ 35 nm. Simultaneously, the analysis predicts that if triple junction diffusion of Ni in Cu is enhanced with respect to the corresponding grain boundary diffusion rate, it is still less than 500⋅D{sub gb} within the temperature interval from 420 K to 470 K.
Multidimensional epidemic thresholds in diffusion processes over interdependent networks
International Nuclear Information System (INIS)
Salehi, Mostafa; Siyari, Payam; Magnani, Matteo; Montesi, Danilo
2015-01-01
Highlights: •We propose a new concept of multidimensional epidemic threshold for interdependent networks. •We analytically derive and numerically illustrate the conditions for multilayer epidemics. •We study the evolution of infection density and diffusion dynamics. -- Abstract: Several systems can be modeled as sets of interdependent networks where each network contains distinct nodes. Diffusion processes like the spreading of a disease or the propagation of information constitute fundamental phenomena occurring over such coupled networks. In this paper we propose a new concept of multidimensional epidemic threshold characterizing diffusion processes over interdependent networks, allowing different diffusion rates on the different networks and arbitrary degree distributions. We analytically derive and numerically illustrate the conditions for multilayer epidemics, i.e., the appearance of a giant connected component spanning all the networks. Furthermore, we study the evolution of infection density and diffusion dynamics with extensive simulation experiments on synthetic and real networks
A consistent transported PDF model for treating differential molecular diffusion
Wang, Haifeng; Zhang, Pei
2016-11-01
Differential molecular diffusion is a fundamentally significant phenomenon in all multi-component turbulent reacting or non-reacting flows caused by the different rates of molecular diffusion of energy and species concentrations. In the transported probability density function (PDF) method, the differential molecular diffusion can be treated by using a mean drift model developed by McDermott and Pope. This model correctly accounts for the differential molecular diffusion in the scalar mean transport and yields a correct DNS limit of the scalar variance production. The model, however, misses the molecular diffusion term in the scalar variance transport equation, which yields an inconsistent prediction of the scalar variance in the transported PDF method. In this work, a new model is introduced to remedy this problem that can yield a consistent scalar variance prediction. The model formulation along with its numerical implementation is discussed, and the model validation is conducted in a turbulent mixing layer problem.
Lattice cell diffusion coefficients. Definitions and comparisons
International Nuclear Information System (INIS)
Hughes, R.P.
1980-01-01
Definitions of equivalent diffusion coefficients for regular lattices of heterogeneous cells have been given by several authors. The paper begins by reviewing these different definitions and the unification of their derivation. This unification makes clear how accurately each definition (together with appropriate cross-section definitions to preserve the eigenvalue) represents the individual reaction rates within the cell. The approach can be extended to include asymmetric cells and whereas before, the buckling describing the macroscopic flux shape was real, here it is found to be complex. A neutron ''drift'' coefficient as well as a diffusion coefficient is necessary to produce the macroscopic flux shape. The numerical calculation of the various different diffusion coefficients requires the solutions of equations similar to the ordinary transport equation for an infinite lattice. Traditional reactor physics codes are not sufficiently flexible to solve these equations in general. However, calculations in certain simple cases are presented and the theoretical results quantified. In difficult geometries, Monte Carlo techniques can be used to calculate an effective diffusion coefficient. These methods relate to those already described provided that correlation effects between different generations of neutrons are included. Again, these effects are quantified in certain simple cases. (author)
Tritium diffusion in polycrystalline lithium tungstate
International Nuclear Information System (INIS)
Krutyakov, A.N.; Shadrin, A.A.; Saunin, E.I.; Gromov, V.V.; Shafiev, A.I.
1984-01-01
Using radiometric method the investigation of tritium separation from neutron irradiated (neutron flux density 1.2x10 13 n/cm 2 xs) polycrystalline Li 2 WO 4 in the temperature range 200-680 deg C has been carried out. It is established that the use of helium as gas-carrier of flow-type gas-discharge counter permits to conduct continuous stable measurements of concentrations of tritium extracted depending on its chemical state. It is shown that volume diffusion is the process, limiting tritiated particle separation rate from Li 2 WO 4 . It is found that the process of tritium volume diffusion in Li 2 WO 4 corresponds to two different mechanisms respectively in low- (200-300 deg C) and high-temperature (350-680 deg C) ranges. A supposition is made that in the low-temperature range the process of diffusion is conditioned by the dissociation of the radiation defect-tritiated particle complex, which is confirmed by the data on radiation defect annealing in Li 2 WO 4 . The value of activation energy of tritium separation process in the range 350-680 deg C, proved to be equal to 13.3 kJ/mol. Possible role of crystal structure peculiarities of Li 2 WO 4 for diffusion process is pointed out
Gyrya, V.; Lipnikov, K.
2017-11-01
We present the arbitrary order mimetic finite difference (MFD) discretization for the diffusion equation with non-symmetric tensorial diffusion coefficient in a mixed formulation on general polygonal meshes. The diffusion tensor is assumed to be positive definite. The asymmetry of the diffusion tensor requires changes to the standard MFD construction. We present new approach for the construction that guarantees positive definiteness of the non-symmetric mass matrix in the space of discrete velocities. The numerically observed convergence rate for the scalar quantity matches the predicted one in the case of the lowest order mimetic scheme. For higher orders schemes, we observed super-convergence by one order for the scalar variable which is consistent with the previously published result for a symmetric diffusion tensor. The new scheme was also tested on a time-dependent problem modeling the Hall effect in the resistive magnetohydrodynamics.
Confinement and diffusion in tokamaks
International Nuclear Information System (INIS)
McWilliams, R.
1988-01-01
The effect of electric field fluctuations on confinement and diffusion in tokamak is discussed. Based on the experimentally determined cross-field turbolent diffusion coefficient, D∼3.7*cT e /eB(δn i /n i ) rms which is also derived by a simple theory, the cross-field diffusion time, tp=a 2 /D, is calculated and compared to experimental results from 51 tokamak for standard Ohmic operation
Effects of Defects on Hydrogen Diffusion in NbC
Energy Technology Data Exchange (ETDEWEB)
Salehinia, Iman, E-mail: isalehinia@niu.edu [Department of Mechanical Engineering, Northern Illinois University, DeKalb, IL 60115 (United States); Mastorakos, Ioannis [Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY 13699 (United States); Zbib, Hussein M. [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 (United States)
2017-04-15
Highlights: • MD simulations are used to study the effects of defects on the H diffusion in NbC. • Buckingham potential is more accurate for diffusion of H atoms than LJ potential. • H diffusion coefficient (D) increases with carbon vacancy concentration. • H diffusion coefficient for 6 Å pore (radius = 6 Å) is as high as that for 20 Å pore. • For small pores, H diffusion coefficient drops notably at elevated temperatures. - Abstract: Exceptional mechanical and physical properties of transition metal carbides and nitrides make them good coating-material candidates for extreme corrosive environments such as oil and natural gas wells. However, existence of small pores, pinholes and columnar structures of these ceramics significantly affect their resistance to corrosion, as pore sites would accelerate the diffusion of corrosive media into the substrate. In this research, molecular dynamics atomistic simulations are employed to investigate the effects of the isolated vacancies and the columnar structure on the diffusion rate of H atoms in NbC single crystal at various temperatures. Diffusion coefficient (D) of H atoms in NbC increased with C vacancy concentration. At elevated temperatures, the trapping effect of Nb vacancies is less effective when C vacancies are also present, as H atoms gain enough energy to jump back and forth between the C vacancies. Atomistic simulations also showed a jump in diffusion coefficient for cylindrical pore size of larger than 3 Å radius. Furthermore, D increased monotonically with temperature up to 1000 K in the presence of cylindrical pores. Further increase in temperature resulted in a drop in the diffusion coefficient for small pores while the large pores only showed a lower increasing trend in diffusion coefficient with the temperature.
Factors affecting the diffusion of online end user literature searching.
Ash, J S
1999-01-01
The aim of this study was to identify factors that affect diffusion of usage of online end user literature searching. Fifteen factors clustered into three attribute sets (innovation attributes, organizational attributes, and marketing attributes) were measured to study their effect on the diffusion of online searching within institutions. A random sample of sixty-seven academic health sciences centers was selected and then 1,335 library and informatics staff members at those institutions were surveyed by mail with electronic mail follow-up. Multiple regression analysis was performed. The survey yielded a 41% response rate with electronic mail follow-up being particularly effective. Two dependent variables, internal diffusion (spread of diffusion) and infusion (depth of diffusion), were measured. There was little correlation between them, indicating they measured different things. Fifteen independent variables clustered into three attribute sets were measured. The innovation attributes set was significant for both internal diffusion and infusion. Significant individual variables were visibility for internal diffusion and image enhancement effects (negative relation) as well as visibility for infusion (depth of diffusion). Organizational attributes were also significant predictors for both dependent variables. No individual variables were significant for internal diffusion. Communication, management support (negative relation), rewards, and existence of champions were significant for infusion. Marketing attributes were not significant predictors. Successful diffusion of online end user literature searching is dependent on the visibility of the systems, communication among, rewards to, and peers of possible users who promote use (champions). Personal image enhancement effects have a negative relation to infusion, possibly because the use of intermediaries is still seen as the more luxurious way to have searches done. Management support also has a negative relation to
Conception of a target diffusible Pt. 3
International Nuclear Information System (INIS)
Peters, J.M.
1980-01-01
A new manufacturing self-replenishing target has been tested for the regeneration of deuteride titanium (γ) phase followed by the study of its behaviour under deuteron beam in the production of neutrons by the D(d,n) 3 He reaction. An interpretation of the self-replenishing mechanism is attempted here, based on diffusion and flow rate measurements through the target (Pd-Ag) (70%-30%), 0.5 mm of thickness, - Ti layer (522 μg cm -2 ). A general formula is proposed to describe the flow rate variations during the regeneration experiences. (author)
Diffuse scattering of neutrons
International Nuclear Information System (INIS)
Novion, C.H. de.
1981-02-01
The use of neutron scattering to study atomic disorder in metals and alloys is described. The diffuse elastic scattering of neutrons by a perfect crystal lattice leads to a diffraction spectrum with only Bragg spreads. the existence of disorder in the crystal results in intensity and position modifications to these spreads, and above all, to the appearance of a low intensity scatter between Bragg peaks. The elastic scattering of neutrons is treated in this text, i.e. by measuring the number of scattered neutrons having the same energy as the incident neutrons. Such measurements yield information on the static disorder in the crystal and time average fluctuations in composition and atomic displacements [fr
Diffuse lung disease: Pneumoconioses
International Nuclear Information System (INIS)
McLoud, T.C.
1987-01-01
This paper begins with a discussion of the 1980 International Labour Organization classification of the pneumoconioses. Emphasis is on the common pneumoconioses, that is, silicosis, coalworker's pneumoconiosis, and asbestos-related pleural and parenchymal disease. Examples of the five radiographic forms of silicosis-simple and complicated silicosis, Caplan syndrome, silicotuberculosis, and acute silicosis- are presented, and the differential diagnoses are discussed. Discussion of asbestos-related disease included pleural manifestations such as plaques, diffuse pleural thickening, and asbestos pleural effusion as well as asbestosis and malignancies associated with asbestos exposure, such as bronchogenic carcinoma and malignant mesothelioma. Although the standard radiographic findings are stressed, the use of CT in the diagnosis of pneumoconiosis and the staging of dust-related malignancies is also discussed
On Diffusive Climatological Models.
Griffel, D. H.; Drazin, P. G.
1981-11-01
A simple, zonally and annually averaged, energy-balance climatological model with diffusive heat transport and nonlinear albedo feedback is solved numerically. Some parameters of the model are varied, one by one, to find the resultant effects on the steady solution representing the climate. In particular, the outward radiation flux, the insulation distribution and the albedo parameterization are varied. We have found an accurate yet simple analytic expression for the mean annual insolation as a function of latitude and the obliquity of the Earth's rotation axis; this has enabled us to consider the effects of the oscillation of the obliquity. We have used a continuous albedo function which fits the observed values; it considerably reduces the sensitivity of the model. Climatic cycles, calculated by solving the time-dependent equation when parameters change slowly and periodically, are compared qualitatively with paleoclimatic records.
Diffuse parenchymal lung disease
Directory of Open Access Journals (Sweden)
Sara Tomassetti
2017-04-01
Full Text Available Between September 2015 and August 2016 there were >1500 publications in the field of diffuse parenchymal lung diseases (DPLDs. For the Clinical Year in Review session at the European Respiratory Society Congress that was held in London, UK, in September 2016, we selected only five articles. This selection, made from the enormous number of published papers, does not include all the relevant studies that will significantly impact our knowledge in the field of DPLDs in the near future. This review article provides our personal view on the following topics: early diagnosis of idiopathic pulmonary fibrosis, current knowledge on the multidisciplinary team diagnosis of DPLDs and the diagnostic role of transbronchial cryobiopsy in this diagnostic setting, insights on the new entity of interstitial pneumonia with autoimmune features, and new therapeutic approaches for scleroderma-related interstitial lung disease.
Convergence of Nelson diffusions
International Nuclear Information System (INIS)
Dell'Antonio, G.; Posilicano, A.
1991-01-01
Let ψ t , ψ t n , n≥1, be solutions of Schroedinger equations with potentials form-bounded by -1/2 Δ and initial data in H 1 (R d ). Let P, P n , n≥1, be the probability measures on the path space Ω=C(R + , R d ) given by the corresponding Nelson diffusions. We show that if {ψ t n } n≥1 converges to ψ t in H 2 (R d ), uniformly in t over compact intervals, then {P n } n≥1 converges to P in total variation. Moreover, if the potentials are in the Kato class K d , we show that the above result follows from H 1 -convergence of initial data, and K d -convergence of potentials. (orig.)
Hereditary diffuse gastric cancer
DEFF Research Database (Denmark)
van der Post, Rachel S; Vogelaar, Ingrid P; Carneiro, Fátima
2015-01-01
Germline CDH1 mutations confer a high lifetime risk of developing diffuse gastric (DGC) and lobular breast cancer (LBC). A multidisciplinary workshop was organised to discuss genetic testing, surgery, surveillance strategies, pathology reporting and the patient's perspective on multiple aspects......, including diet post gastrectomy. The updated guidelines include revised CDH1 testing criteria (taking into account first-degree and second-degree relatives): (1) families with two or more patients with gastric cancer at any age, one confirmed DGC; (2) individuals with DGC before the age of 40 and (3...... the high mortality associated with invasive disease, prophylactic total gastrectomy at a centre of expertise is advised for individuals with pathogenic CDH1 mutations. Breast cancer surveillance with annual breast MRI starting at age 30 for women with a CDH1 mutation is recommended. Standardised endoscopic...
The diffuse interstellar medium
Cox, Donald P.
1990-01-01
The last 20 years of the efforts to understand the diffuse ISM are reviewed, with recent changes of fundamental aspects being highlighted. Attention is given to the interstellar pressure and its components, the weight of the ISM, the midplane pressure contributions, and pressure contributions at 1 kpc. What velocity dispersions, cosmic ray pressure, and magnetic field pressure that can be expected for a gas in a high magnetic field environment is addressed. The intercloud medium is described, with reference to the work of Cox and Slavin (1989). Various caveats are discussed and a number of areas for future investigation are identified. Steps that could be taken toward a successful phase segregation model are discussed.
Nonlocal diffusion and applications
Bucur, Claudia
2016-01-01
Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrödinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.
MHD diffuser model test program
Energy Technology Data Exchange (ETDEWEB)
Idzorek, J J
1976-07-01
Experimental results of the aerodynamic performance of seven candidate diffusers are presented to assist in determining their suitability for joining an MHD channel to a steam generator at minimum spacing. The three dimensional diffusers varied in area ratio from 2 to 3.8 and wall half angle from 2 to 5 degrees. The program consisted of five phases: (1) tailoring a diffuser inlet nozzle to a 15 percent blockage; (2) comparison of isolated diffusers at enthalpy ratios 0.5 to 1.0 with respect to separation characteristics and pressure recovery coefficients; (3) recording the optimum diffuser exit flow distribution; (4) recording the internal flow distribution within the steam generator when attached to the diffuser; and (5) observing isolated diffuser exhaust dynamic characteristics. The 2 and 2-1/3 degree half angle rectangular diffusers showed recovery coefficients equal to 0.48 with no evidence of flow separation or instability. Diffusion at angles greater than these produced flow instabilities and with angles greater than 3 degrees random flow separation and reattachment.
MHD diffuser model test program
International Nuclear Information System (INIS)
Idzorek, J.J.
1976-07-01
Experimental results of the aerodynamic performance of seven candidate diffusers are presented to assist in determining their suitability for joining an MHD channel to a steam generator at minimum spacing. The three dimensional diffusers varied in area ratio from 2 to 3.8 and wall half angle from 2 to 5 degrees. The program consisted of five phases: (1) tailoring a diffuser inlet nozzle to a 15 percent blockage; (2) comparison of isolated diffusers at enthalpy ratios 0.5 to 1.0 with respect to separation characteristics and pressure recovery coefficients; (3) recording the optimum diffuser exit flow distribution; (4) recording the internal flow distribution within the steam generator when attached to the diffuser; and (5) observing isolated diffuser exhaust dynamic characteristics. The 2 and 2-1/3 degree half angle rectangular diffusers showed recovery coefficients equal to 0.48 with no evidence of flow separation or instability. Diffusion at angles greater than these produced flow instabilities and with angles greater than 3 degrees random flow separation and reattachment
International Nuclear Information System (INIS)
Wehinger, Björn; Krisch, Michael; Bosak, Alexeï; Chernyshov, Dmitry; Bulat, Sergey; Ezhov, Victor
2014-01-01
Single crystals of ice Ih, extracted from the subglacial Lake Vostok accretion ice layer (3621 m depth) were investigated by means of diffuse x-ray scattering and inelastic x-ray scattering. The diffuse scattering was identified as mainly inelastic and rationalized in the frame of ab initio calculations for the ordered ice XI approximant. Together with Monte-Carlo modelling, our data allowed reconsidering previously available neutron diffuse scattering data of heavy ice as the sum of thermal diffuse scattering and static disorder contribution. (paper)
Diffusion effects in undulator radiation
Directory of Open Access Journals (Sweden)
Ilya Agapov
2014-11-01
Full Text Available Quantum diffusion effects in undulator radiation in semiclassical approximation are considered. Short-term effects on the electron beam motion are discussed and it is shown that approaches based on diffusion approximation with drift-diffusion coefficients derived from undulator or bending magnet radiation spectrum, and on Poisson statistics with radiation spectrum defined by the local beding field, all lead to similar results in terms of electron energy spread for cases of practical interest. An analytical estimate of the influence of quantum diffusion on the undulator radiation spectrum is derived.
Sodium diffusion in boroaluminosilicate glasses
DEFF Research Database (Denmark)
Smedskjaer, Morten M.; Zheng, Qiuju; Mauro, John C.
2011-01-01
of isothermal sodium diffusion in BAS glasses by ion exchange, inward diffusion, and tracer diffusion experiments. By varying the [SiO2]/[Al2O3] ratio of the glasses, different structural regimes of sodium behavior are accessed. We show that the mobility of the sodium ions decreases with increasing [SiO2]/[Al2O......Understanding the fundamentals of alkali diffusion in boroaluminosilicate (BAS) glasses is of critical importance for advanced glass applications, e.g., the production of chemically strengthened glass covers for personal electronic devices. Here, we investigate the composition dependence...
Restrictive liquid-phase diffusion and reaction in bidispersed catalysts
International Nuclear Information System (INIS)
Lee, S.Y.; Seader, J.D.; Tsai, C.H.; Massoth, F.E.
1991-01-01
In this paper, the effect of bidispersed pore-size distribution on liquid-phase diffusion and reaction in NiMo/Al 2 O 3 catalysts is investigated by applying two bidispersed-pore-structure models, the random-pore model and a globular-structure model, to extensive experimental data, which were obtained from sorptive diffusion measurements at ambient conditions and catalytic reaction rate measurements on nitrogen-containing compounds. Transport of the molecules in the catalysts was found to be controlled by micropore diffusion, in accordance with the random-pore model, rather than macropore diffusion as predicted by the globular-structure model. A qualitative criterion for micropore-diffusion control is proposed: relatively small macroporosity and high catalyst pellet density. Since most hydrotreating catalysts have high density, diffusion in these types of catalysts may be controlled by micropore diffusion. Accordingly, it is believed in this case that increasing the size of micropores may be more effective to reduce intraparticle diffusion resistance than incorporating macropores alone
Anisotropic diffusion of volatile pollutants at air-water interface
Directory of Open Access Journals (Sweden)
Li-ping Chen
2013-04-01
Full Text Available The volatile pollutants that spill into natural waters cause water pollution. Air pollution arises from the water pollution because of volatilization. Mass exchange caused by turbulent fluctuation is stronger in the direction normal to the air-water interface than in other directions due to the large density difference between water and air. In order to explore the characteristics of anisotropic diffusion of the volatile pollutants at the air-water interface, the relationship between velocity gradient and mass transfer rate was established to calculate the turbulent mass diffusivity. A second-order accurate smooth transition differencing scheme (STDS was proposed to guarantee the boundedness for the flow and mass transfer at the air-water interface. Simulations and experiments were performed to study the trichloroethylene (C2HCl3 release. By comparing the anisotropic coupling diffusion model, isotropic coupling diffusion model, and non-coupling diffusion model, the features of the transport of volatile pollutants at the air-water interface were determined. The results show that the anisotropic coupling diffusion model is more accurate than the isotropic coupling diffusion model and non-coupling diffusion model. Mass transfer significantly increases with the increase of the air-water relative velocity at a low relative velocity. However, at a higher relative velocity, an increase in the relative velocity has no effect on mass transfer.
Wind Power in Europe. A Simultaneous Innovation-Diffusion Model
International Nuclear Information System (INIS)
Soederholm, P.; Klaassen, G.
2007-01-01
The purpose of this paper is to provide a quantitative analysis of innovation and diffusion in the European wind power sector. We derive a simultaneous model of wind power innovation and diffusion, which combines a rational choice model of technological diffusion and a learning curve model of dynamic cost reductions. These models are estimated using pooled annual time series data for four European countries (Denmark, Germany, Spain and the United Kingdom) over the time period 1986-2000. The empirical results indicate that reductions in investment costs have been important determinants of increased diffusion of wind power, and these cost reductions can in turn be explained by learning activities and public R and D support. Feed-in tariffs also play an important role in the innovation and diffusion processes. The higher the feed-in price the higher, ceteris paribus, the rate of diffusion, and we present some preliminary empirical support for the notion that the impact on diffusion of a marginal increase in the feed-in tariff will differ depending on the support system used. High feed-in tariffs, though, also have a negative effect on cost reductions as they induce wind generators to choose high-cost sites and provide fewer incentives for cost cuts. This illustrates the importance of designing an efficient wind energy support system, which not only promotes diffusion but also provides continuous incentives for cost-reducing innovations
Pressure recovery in a diffuser for gas centrifuge
International Nuclear Information System (INIS)
Hanzawa, Masatoshi; Takashima, Yoichi; Mikami, Hisashi
1977-01-01
The pressure recovery of supersonic flow at very low density was studied in a vane-island type diffuser for gas centrifuge. A tester of diffuser with a rapidly rotating cylinder was used in experiments. Wall static pressures were measured at many points in the diffuser to observe the static pressure distribution. The change of pressure distribution with back pressure and the effect of flow rate were investigated. Pressure distribution showed that the pressure recovery occurred in the converging section. The pressure ratio increased linearly with the back pressure in this experimental range and the effect of flow rate was not observed. A numerical analysis of the pressure recovery in the channel section of the diffuser was made by applying the finite difference method to the slender-channel equations. The pressure distribution obtained in experiments could be explained as a result of supersonic compression with reverse flow. (auth.)
Beam diffusion measurements using collimator scans in the LHC
Directory of Open Access Journals (Sweden)
Gianluca Valentino
2013-02-01
Full Text Available The time evolution of beam losses during a collimator scan provides information on halo diffusion and population. This is an essential input for machine performance characterization and for the design of collimation systems. Beam halo measurements in the CERN Large Hadron Collider were conducted through collimator scrapings in a dedicated beam study for the first time at 4 TeV. Four scans were performed with two collimators, in the vertical plane for beam 1 and horizontally for beam 2, before and after bringing the beams into collisions. Inward and outward steps were performed. A diffusion model was used to interpret the observed loss rate evolution in response to the collimator steps. With this technique, diffusion coefficients were estimated as a function of betatron oscillation amplitude from approximately 3 to 7 standard deviations of the transverse beam distribution. A comparison of halo diffusion and core emittance growth rates is also presented.
Feynman-Kac equations for reaction and diffusion processes
Hou, Ru; Deng, Weihua
2018-04-01
This paper provides a theoretical framework for deriving the forward and backward Feynman-Kac equations for the distribution of functionals of the path of a particle undergoing both diffusion and reaction processes. Once given the diffusion type and reaction rate, a specific forward or backward Feynman-Kac equation can be obtained. The results in this paper include those for normal/anomalous diffusions and reactions with linear/nonlinear rates. Using the derived equations, we apply our findings to compute some physical (experimentally measurable) statistics, including the occupation time in half-space, the first passage time, and the occupation time in half-interval with an absorbing or reflecting boundary, for the physical system with anomalous diffusion and spontaneous evanescence.
Beam diffusion measurements using collimator scans in the LHC
Valentino, Gianluca; Bruce, Roderik; Burkart, Florian; Previtali, Valentina; Redaelli, Stefano; Salvachua, Belen; Stancari, Giuliov; Valishev, Alexander
2013-01-01
The time evolution of beam losses during a collimator scan provides information on halo diffusion and population. This is an essential input for machine performance characterization and for the design of collimation systems. Beam halo measurements in the CERN Large Hadron Collider were conducted through collimator scrapings in a dedicated beam study for the first time at 4 TeV. Four scans were performed with two collimators, in the vertical plane for beam 1 and horizontally for beam 2, before and after bringing the beams into collisions. Inward and outward steps were performed. A diffusion model was used to interpret the observed loss rate evolution in response to the collimator steps. With this technique, diffusion coefficients were estimated as a function of betatron oscillation amplitude from approximately 3 to 7 standard deviations of the transverse beam distribution. A comparison of halo diffusion and core emittance growth rates is also presented.
Two Dimensional Drug Diffusion Between Nanoparticles and Fractal Tumors
Samioti, S. E.; Karamanos, K.; Tsiantis, A.; Papathanasiou, A.; Sarris, I.
2017-11-01
Drug delivery methods based on nanoparticles are some of the most promising medical applications in nanotechnology to treat cancer. It is observed that drug released by nanoparticles to the cancer tumors may be driven by diffusion. A fractal tumor boundary of triangular Von Koch shape is considered here and the diffusion mechanism is studied for different drug concentrations and increased fractality. A high order Finite Elements method based on the Fenics library is incorporated in fine meshes to fully resolve these irregular boundaries. Drug concentration, its transfer rates and entropy production are calculated in an up to forth order fractal iteration boundaries. We observed that diffusion rate diminishes for successive prefractal generations. Also, the entropy production around the system changes greatly as the order of the fractal curve increases. Results indicate with precision where the active sites are, in which most of the diffusion takes place and thus drug arrives to the tumor.
Apparent exchange rate imaging in anisotropic systems
DEFF Research Database (Denmark)
Sønderby, Casper Kaae; Lundell, Henrik M; Søgaard, Lise V
2014-01-01
Double-wave diffusion experiments offer the possibility of probing correlation between molecular diffusion at multiple time points. It has recently been shown that this technique is capable of measuring the exchange of water across cellular membranes. The aim of this study was to investigate...... the effect of macroscopic tissue anisotropy on the measurement of the apparent exchange rate (AXR) in multicompartment systems....
Turing instability in reaction-diffusion systems with nonlinear diffusion
Energy Technology Data Exchange (ETDEWEB)
Zemskov, E. P., E-mail: zemskov@ccas.ru [Russian Academy of Sciences, Dorodnicyn Computing Center (Russian Federation)
2013-10-15
The Turing instability is studied in two-component reaction-diffusion systems with nonlinear diffusion terms, and the regions in parametric space where Turing patterns can form are determined. The boundaries between super- and subcritical bifurcations are found. Calculations are performed for one-dimensional brusselator and oregonator models.
Numerical vs. turbulent diffusion in geophysical flow modelling
International Nuclear Information System (INIS)
D'Isidoro, M.; Maurizi, A.; Tampieri, F.
2008-01-01
Numerical advection schemes induce the spreading of passive tracers from localized sources. The effects of changing resolution and Courant number are investigated using the WAF advection scheme, which leads to a sub-diffusive process. The spreading rate from an instantaneous source is compared with the physical diffusion necessary to simulate unresolved turbulent motions. The time at which the physical diffusion process overpowers the numerical spreading is estimated, and is shown to reduce as the resolution increases, and to increase as the wind velocity increases.
Diffusion and flow of water vapours in chromatographic Alumina gel
International Nuclear Information System (INIS)
Khan, M.; Shah, H. U.
2005-01-01
The kinetics of sorption of water vapours in chromatographic alumina gel was studied. Water vapours are adsorbed on the gel at temperature (15 degree C) at different constant relative pressure from 0.1-0.93 p/p. Rate constant, Effective diffusivities, Knudsen diffusivities and bulk diffusivities were determined through Fick type equation. Total pore volume is 0.498 cc g-1 and specific surface area comes to be 465 m2 g-1 as obtained by Gurvitsch rule and Kieselve's quantities respectively. An average pore radius (hydraulic) is 1.1x10/sub -7/ cm. The study of these quantities provide a strong basis for evaluating surface properties. (author)
Oxide film assisted dopant diffusion in silicon carbide
Energy Technology Data Exchange (ETDEWEB)
Tin, Chin-Che, E-mail: cctin@physics.auburn.ed [Department of Physics, Auburn University, Alabama 36849 (United States); Mendis, Suwan [Department of Physics, Auburn University, Alabama 36849 (United States); Chew, Kerlit [Department of Electrical and Electronic Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kuala Lumpur (Malaysia); Atabaev, Ilkham; Saliev, Tojiddin; Bakhranov, Erkin [Physical Technical Institute, Uzbek Academy of Sciences, 700084 Tashkent (Uzbekistan); Atabaev, Bakhtiyar [Institute of Electronics, Uzbek Academy of Sciences, 700125 Tashkent (Uzbekistan); Adedeji, Victor [Department of Chemistry, Geology and Physics, Elizabeth City State University, North Carolina 27909 (United States); Rusli [School of Electrical and Electronic Engineering, Nanyang Technological University (Singapore)
2010-10-01
A process is described to enhance the diffusion rate of impurities in silicon carbide so that doping by thermal diffusion can be done at lower temperatures. This process involves depositing a thin film consisting of an oxide of the impurity followed by annealing in an oxidizing ambient. The process uses the lower formation energy of silicon dioxide relative to that of the impurity-oxide to create vacancies in silicon carbide and to promote dissociation of the impurity-oxide. The impurity atoms then diffuse from the thin film into the near-surface region of silicon carbide.
Oxide film assisted dopant diffusion in silicon carbide
International Nuclear Information System (INIS)
Tin, Chin-Che; Mendis, Suwan; Chew, Kerlit; Atabaev, Ilkham; Saliev, Tojiddin; Bakhranov, Erkin; Atabaev, Bakhtiyar; Adedeji, Victor; Rusli
2010-01-01
A process is described to enhance the diffusion rate of impurities in silicon carbide so that doping by thermal diffusion can be done at lower temperatures. This process involves depositing a thin film consisting of an oxide of the impurity followed by annealing in an oxidizing ambient. The process uses the lower formation energy of silicon dioxide relative to that of the impurity-oxide to create vacancies in silicon carbide and to promote dissociation of the impurity-oxide. The impurity atoms then diffuse from the thin film into the near-surface region of silicon carbide.
Collisional diffusion in a torus with imperfect magnetic surfaces
International Nuclear Information System (INIS)
White, R.B.
1983-03-01
A Hamiltonian forumlation of the guiding-center drift equations is used to investigate the modification of neoclassical diffusion for low collisonality in a toroidal magnetic field with partially destroyed magnetic surfaces. The magnetic field is assumed to be given by the small perturbation of an axisymmetric system. The results are applicable to particle diffusion in realistic confinement systems, midway between axisymmetric and purely stochastic ones. Significant enhancement of electron diffusion over neoclassical rates is found. This increase can be accounted for by the contributions due to the first few island chains in the Fibonacci sequence generated by the zero-order islands, and by associated stochastic domains
Turing Patterns in a Reaction-Diffusion System
International Nuclear Information System (INIS)
Wu Yanning; Wang Pingjian; Hou Chunju; Liu Changsong; Zhu Zhengang
2006-01-01
We have further investigated Turing patterns in a reaction-diffusion system by theoretical analysis and numerical simulations. Simple Turing patterns and complex superlattice structures are observed. We find that the shape and type of Turing patterns depend on dynamical parameters and external periodic forcing, and is independent of effective diffusivity rate σ in the Lengyel-Epstein model. Our numerical results provide additional insight into understanding the mechanism of development of Turing patterns and predicting new pattern formations.
Tracer gas diffusion sampling test plan
International Nuclear Information System (INIS)
Rohay, V.J.
1993-01-01
Efforts are under way to employ active and passive vapor extraction to remove carbon tetrachloride from the soil in the 200 West Area an the Hanford Site as part of the 200 West Area Carbon Tetrachloride Expedited Response Action. In the active approach, a vacuum is applied to a well, which causes soil gas surrounding the well to be drawn up to the surface. The contaminated air is cleaned by passage through a granular activated carbon bed. There are questions concerning the radius of influence associated with application of the vacuum system and related uncertainties about the soil-gas diffusion rates with and without the vacuum system present. To address these questions, a series of tracer gas diffusion sampling tests is proposed in which an inert, nontoxic tracer gas, sulfur hexafluoride (SF 6 ), will be injected into a well, and the rates of SF 6 diffusion through the surrounding soil horizon will be measured by sampling in nearby wells. Tracer gas tests will be conducted at sites very near the active vacuum extraction system and also at sites beyond the radius of influence of the active vacuum system. In the passive vapor extraction approach, barometric pressure fluctuations cause soil gas to be drawn to the surface through the well. At the passive sites, the effects of barometric ''pumping'' due to changes in atmospheric pressure will be investigated. Application of tracer gas testing to both the active and passive vapor extraction methods is described in the wellfield enhancement work plan (Rohay and Cameron 1993)
Studies of ionic diffusion in crystalline rock
International Nuclear Information System (INIS)
Ohlsson, Yvonne
2001-01-01
Matrix diffusion is of great importance in delaying radionuclides escaping from a deep geologic repository, on their way to the biosphere. There are, however, poorly understood mechanisms related to transport in pores with charged pore surfaces. Ions are affected by this charge and may be repelled or attracted by it. The rate of transport may be reduced, or even enhanced, as a result of this. Transport of ions is studied by traditional diffusion experiments, but mainly by a faster electrical conductivity method. With this method the pore connectivity, the formation factor variability and its relation to the porosity, as well as the surface conductivity are investigated. The method is compared. with traditional diffusion experiments, and an in-situ application is suggested and qualitatively tested. Furthermore, surface diffusion is studied by evaluating literature data and recently developed diffusion models. The pore connectivity reached to a depth of at least 15 cm in the rocks studied. The formation factor did not generally decrease with increasing sample length. It was also found that not only cations in the free pore water add to the electrical conductivity, but also at least part of those sorbed to the pore surfaces of the minerals. This surface conductivity influences the determination of the formation factor in low ionic strength pore waters, and was also found to be a function of the formation factor. It was furthermore dependent on the type of ion at the surface, giving for example a higher conductivity for Na + than for Cs + . It is not fully understood which part of the sorbed ions that are mobile. A simple model was developed assigning the mobile ions to the diffuse layer, and this model explained experimental data for diffusion of Cs + in clay well. This is contradicted by surface conductivity measurements that have shown that most mobile ions are found behind the Stern layer. The in-situ formation factor determination method seems promising. The most
Shear-limited test particle diffusion in 2-dimensional plasmas
International Nuclear Information System (INIS)
Anderegg, Francois; Driscoll, C. Fred; Dubin, Daniel H.E.
2002-01-01
Measurements of test-particle diffusion in pure ion plasmas show 2D enhancements over the 3D rates, limited by shear in the plasma rotation ω E (r). The diffusion is due to 'long-range' ion-ion collisions in the quiescent, steady-state Mg + plasma. For short plasma length L p and low shear S≡r∂ω E /∂r, thermal ions bounce axially many times before shear separates them in θ, so the ions move in (r,θ) as bounce averaged 'rods' of charge (i.e. 2D point vortices). Experimentally, we vary the number of bounces over the range 0.2≤N b ≤10,000. For long plasmas with N b ≤1, we observe diffusion in quantitative agreement with the 3D theory of long-range ExB drift collisions. For shorter plasmas or lower shear, with N b >1, we measure diffusion rates enhanced by up to 100x. For exceedingly small she0ar, i.e. N b ≥1000, we observe diffusion rates consistent with the Taylor-McNamara estimates for a shear-free thermal plasma. Overall, the data shows fair agreement with Dubin's new theory of 2D diffusion in shear, which predicts an enhancement of D 2D /D 3D ≅N b up to the Taylor-McNamara limit
Gan, Qintao; Lv, Tianshi; Fu, Zhenhua
2016-04-01
In this paper, the synchronization problem for a class of generalized neural networks with time-varying delays and reaction-diffusion terms is investigated concerning Neumann boundary conditions in terms of p-norm. The proposed generalized neural networks model includes reaction-diffusion local field neural networks and reaction-diffusion static neural networks as its special cases. By establishing a new inequality, some simple and useful conditions are obtained analytically to guarantee the global exponential synchronization of the addressed neural networks under the periodically intermittent control. According to the theoretical results, the influences of diffusion coefficients, diffusion space, and control rate on synchronization are analyzed. Finally, the feasibility and effectiveness of the proposed methods are shown by simulation examples, and by choosing different diffusion coefficients, diffusion spaces, and control rates, different controlled synchronization states can be obtained.
Models of diffuse solar radiation
Energy Technology Data Exchange (ETDEWEB)
Boland, John; Ridley, Barbara [Centre for Industrial and Applied Mathematics, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, SA 5095 (Australia); Brown, Bruce [Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546 (Singapore)
2008-04-15
For some locations both global and diffuse solar radiation are measured. However, for many locations, only global is measured, or inferred from satellite data. For modelling solar energy applications, the amount of radiation on a tilted surface is needed. Since only the direct component on a tilted surface can be calculated from trigonometry, we need to have diffuse on the horizontal available. There are regression relationships for estimating the diffuse on a tilted surface from diffuse on the horizontal. Models for estimating the diffuse radiation on the horizontal from horizontal global that have been developed in Europe or North America have proved to be inadequate for Australia [Spencer JW. A comparison of methods for estimating hourly diffuse solar radiation from global solar radiation. Sol Energy 1982; 29(1): 19-32]. Boland et al. [Modelling the diffuse fraction of global solar radiation on a horizontal surface. Environmetrics 2001; 12: 103-16] developed a validated model for Australian conditions. We detail our recent advances in developing the theoretical framework for the approach reported therein, particularly the use of the logistic function instead of piecewise linear or simple nonlinear functions. Additionally, we have also constructed a method, using quadratic programming, for identifying values that are likely to be erroneous. This allows us to eliminate outliers in diffuse radiation values, the data most prone to errors in measurement. (author)
Osmosis and Diffusion Conceptual Assessment
Fisher, Kathleen M.; Williams, Kathy S.; Lineback, Jennifer Evarts
2011-01-01
Biology student mastery regarding the mechanisms of diffusion and osmosis is difficult to achieve. To monitor comprehension of these processes among students at a large public university, we developed and validated an 18-item Osmosis and Diffusion Conceptual Assessment (ODCA). This assessment includes two-tiered items, some adopted or modified…
The diffusion of constitutional rights
Goderis, B.V.G.; Versteeg, M.
Constitutions are commonly regarded as uniquely national products, shaped by domestic ideals and politics. This paper develops and empirically investigates a novel hypothesis, which is that constitutions are also shaped by transnational influence, or “diffusion.” Constitutional rights can diffuse
Diffusion measurements by Raman spectroscopy
DEFF Research Database (Denmark)
Hansen, Susanne Brunsgaard; Shapiro, Alexander; Berg, Rolf W.
Poster "Diffusion measurements by Raman spectroscopy", See poster at http://www.kemi.dtu.dk/~ajo/rolf/petroday2004.ppt......Poster "Diffusion measurements by Raman spectroscopy", See poster at http://www.kemi.dtu.dk/~ajo/rolf/petroday2004.ppt...
Consequences of Diffusion of Innovations.
Goss, Kevin F.
1979-01-01
The article traces evolution of diffusion theory; illustrates undesirable consequences in a cross-cultural setting, reviews criticisms of several scholars; considers distributional effects and unanticipated consequences for potential ameliorative impact on diffusion theory; and codifies these factors into a framework for research into consequences…
Enhancement of diffusers BRDF accuracy
Otter, Gerard; Bazalgette Courrèges-Lacoste, Gregory; van Brug, Hedser; Schaarsberg, Jos Groote; Delwart, Steven; del Bello, Umberto
2017-11-01
This paper reports the result of an ESA study conducted at TNO to investigate properties of various diffusers. Diffusers are widely used in space instruments as part of the on-board absolute calibration. Knowledge of the behaviour of the diffuser is therefore most important. From measurements of launched instruments in-orbit it has been discovered that when a diffuser is used in the vacuum of space the BRDF can change with respect to the one in ambient conditions. This is called the air/vacuum effect and has been simulated in this study by measuring the BRDF in a laboratory in ambient as well as vacuum conditions. Another studied effect is related to the design parameters of the optical system and the scattering properties of the diffuser. The effect is called Spectral Features and is a noise like structure superimposed on the diffuser BRDF. Modern space spectrometers, which have high spectral resolution and/or a small field of view (high spatial resolution) are suffering from this effect. The choice of diffuser can be very critical with respect to the required absolute radiometric calibration of an instrument. Even if the Spectral Features are small it can influence the error budget of the retrieval algorithms for the level 2 products. in this presentation diffuser trade-off results are presented and the Spectral Features model applied to the optical configuration of the MERIS instrument is compared to in-flight measurements of MERIS.
Statistical mixing and aggregation in Feller diffusion
International Nuclear Information System (INIS)
Anteneodo, C; Duarte Queirós, S M
2009-01-01
We consider Feller mean-reverting square-root diffusion, which has been applied to model a wide variety of processes with linearly state-dependent diffusion, such as stochastic volatility and interest rates in finance, and neuronal and population dynamics in the natural sciences. We focus on the statistical mixing (or superstatistical) process in which the parameter related to the mean value can fluctuate—a plausible mechanism for the emergence of heavy-tailed distributions. We obtain analytical results for the associated probability density function (both stationary and time-dependent), its correlation structure and aggregation properties. Our results are applied to explain the statistics of stock traded volume at different aggregation scales
International Nuclear Information System (INIS)
Lee, Gun Do; Wang, C. Z.; Lu, Z. Y.; Ho, K. M.
1999-01-01
The diffusion pathways along the trough and between the trough and the dimer row on the Si(100) surface are investigated by tight-binding molecular dynamics calculations using the environment dependent tight-binding silicon potential and by ab initio calculations using the Car-Parrinello method. The studies discover new diffusion pathways consisting of rotation of addimer. The calculated energy barrier are in excellent agreement with experiment. The rotational diffusion pathway between the trough and the dimer row is much more energetically favorable than other diffusion pathways by parallel and perpendicular addimer. The new pathway along the trough is nearly same as the energy barrier of the diffusion pathway by dissociation of the addimer
Application of polycrystalline diffusion barriers
International Nuclear Information System (INIS)
Tsymbal, V.A.; Kolupaev, I.N.
2010-01-01
Degradation of contacts of the electronic equipment at the raised temperatures is connected with active diffusion redistribution of components contact - metalized systems (CMS) and phase production on interphase borders. One of systems diffusion barriers (DB) are polycrystalline silicide a film, in particular silicides of the titan. Reception disilicide the titan (TiSi 2 ) which on the parameters is demanded for conditions of microelectronics from known silicides of system Ti-Si, is possible as a result of direct reaction of a film of the titan and a substrate of silicon, and at sedimentation of layer Ti-Si demanded stoichiometric structure. Simultaneously there is specific problem polycrystalline diffusion a barrier (PDB): the polycrystalline provides structural balance and metastability film disilicide, but leaves in it borders of grains - easy local ways of diffusion. In clause the analysis diffusion permeability polycrystalline and polyphase DB is made and recommendations for practical methods of increase of blocking properties PDB are made.
Multicomponent Diffusion in Experimentally Cooled Melt Inclusions
Saper, L.; Stolper, E.
2017-12-01
Glassy olivine-hosted melt inclusions are compositionally zoned, characterized by a boundary layer depleted in olivine-compatible components that extends into the melt inclusion from its wall. The boundary layer forms in response to crystallization of olivine and relaxes with time due to diffusive exchange with the interior of the inclusion. At magmatic temperatures, the time scale for homogenization of inclusions is minutes to hours. Preservation of compositional gradients in natural inclusions results from rapid cooling upon eruption. A model of MgO concentration profiles that couples crystal growth and diffusive relaxation of a boundary layer can be used to solve for eruptive cooling rates [1]. Controlled cooling-rate experiments were conducted to test the accuracy of the model. Mauna Loa olivine containing >80 µm melt inclusions were equilibrated at 1225°C in a 1-atm furnace for 24 hours, followed by linear cooling at rates of 102 - 105 °C/hr. High-resolution concentration profiles of 40 inclusions were obtained using an electron microprobe. The model of [1] fits the experimental data with low residuals and the best-fit cooling rates are within 30% of experimental values. The initial temperature of 1225 °C is underestimated by 65°C. The model was modified using (i) MELTS to calculate the interface melt composition as a function of temperature, and (ii) a concentration-dependent MgO diffusion coefficient using the functional form of [2]. With this calibration the best-fit starting temperatures are within 5°C of the experimental values and the best-fit cooling rates are within 20% of experimental rates. The evolution of the CaO profile during cooling is evidence for strong diffusive coupling between melt components. Because CaO is incompatible in olivine, CaO concentrations are expected to be elevated in the boundary layer adjacent to the growing olivine. Although this is observed at short time scales, as the profile evolves the CaO concentration near the
[Clinicopathological study of diffuse carcinoma of stomach (author's transl)].
Shimoda, T
1978-11-01
The biological behavior of ulcer type gastric carcinoma was studied on 114 cases of diffuse carcinoma (Borrmann's 4 type) and 262 cases of early like advanced carcinoma (including superficial spreading type). In both types of gastric carcinoma, the age distribution, location, ulcer with cancer focus and prognosis differed greatly. The early like carcinoma was speculated to have advanced maintaining the groos findings of early gastric carcinoma, and its location and associated ulcer were the same as the early ulcer type of carcinoma. The prognosis of this type of carcinoma was good, showing a figure of 70% in 3 year survival rate. On the other hand, diffuse carcinoma demonstrated diffuse extensive infiltration of tumor cells along the gastric wall, resulting in poor prognosis with a 3 year survival rate of almost 0%. Histologically, diffuse type of carcinoma showed lymphatic infiltration of tumor cells, and this is probably the main reason for the diffuse infiltration in this type of carcinoma. Diffuse carcinoma is, therefore, considered to be one special type of carcinoma having different biological behavior compared with the other ulcer type of carcinoma, and diffuse carcinoma is not the terminal stage of early like advanced carcinoma. There are three stages in diffuse carcinoma: 1. Infiltrative stage: wide spread infiltration of cancer cells through lymphatic channels (lymphangiosis carcinomatosa) 2. Edematous stage: soluble collagen appearing in gastric wall 3. Sclerosing stage: soluble collagen changing into insoluble collagen leading to marked thickening and stiffness of the gastric wall. This is the end stage of gastric diffuse carcinoma. It is difficult to explain that the marked fibrosis of gastric wall is a result to stromal reaction from tumor cell infiltration, since extensive fibrosis is found in areas without tumor cells and stiffness of the gastric wall occurs in a too short period of time. The production of abundunt soluble collagen is probably
Diffusion in membranes: Toward a two-dimensional diffusion map
Directory of Open Access Journals (Sweden)
Toppozini Laura
2015-01-01
Full Text Available For decades, quasi-elastic neutron scattering has been the prime tool for studying molecular diffusion in membranes over relevant nanometer distances. These experiments are essential to our current understanding of molecular dynamics of lipids, proteins and membrane-active molecules. Recently, we presented experimental evidence from X-ray diffraction and quasi-elastic neutron scattering demonstrating that ethanol enhances the permeability of membranes. At the QENS 2014/WINS 2014 conference we presented a novel technique to measure diffusion across membranes employing 2-dimensional quasi-elastic neutron scattering. We present results from our preliminary analysis of an experiment on the cold neutron multi-chopper spectrometer LET at ISIS, where we studied the self-diffusion of water molecules along lipid membranes and have the possibility of studying the diffusion in membranes. By preparing highly oriented membrane stacks and aligning them horizontally in the spectrometer, our aim is to distinguish between lateral and transmembrane diffusion. Diffusion may also be measured at different locations in the membranes, such as the water layer and the hydrocarbon membrane core. With a complete analysis of the data, 2-dimensional mapping will enable us to determine diffusion channels of water and ethanol molecules to quantitatively determine nanoscale membrane permeability.
The magnetic diffusion of neutrons; La diffusion magnetique des neutrons
Energy Technology Data Exchange (ETDEWEB)
Koehler, W C [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires
1959-07-01
The purpose of this report is to examine briefly the diffusion of neutrons by substances, particularly by crystals containing permanent atomic or ionic magnetic moments. In other words we shall deal with ferromagnetic, antiferromagnetic, ferrimagnetic or paramagnetic crystals, but first it is necessary to touch on nuclear diffusion of neutrons. We shall start with the interaction of the neutron with a single diffusion centre; the results will then be applied to the magnetic interactions of the neutron with the satellite electrons of the atom; finally we shall discuss the diffusion of neutrons by crystals. (author) [French] Le but de ce rapport est d'examiner, brievement, la diffusion des neutrons par les substances, et surtout, par des cristaux qui contiennent des moments magnetiques atomiques ou ioniques permanents. C'est-a-dire que nous nous interesserons aux cristaux ferromagnetiques, antiferromagnetiques, ferrimagnetiques ou paramagnetiques; il nous faut cependant rappeler d'abord la diffusion nucleaire des neutrons. Nous commencerons par l'interaction du neutron avec un seul centre diffuseur; puis les resultats seront appliques aux interactions magnetiques du neutron avec les electrons satellites de l'atome; enfin nous discuterons la diffusion des neutrons par les cristaux. (auteur)
A critical discussion of the vacancy diffusion model of ion beam induced epitaxial crystallization
International Nuclear Information System (INIS)
Heera, V.
1989-01-01
A simple vacancy diffusion model of ion beam induced epitaxial crystallization of silicon including divacancy formation is developed. The model reproduces some of the experimental findings, as e.g. the dose rate dependence of the crystallization rate. However, the measured activation energy of the ion beam induced epitaxial crystallization cannot be accounted for by vacancy diffusion alone. (author)
Multidimensional diffusion processes
Stroock, Daniel W
1997-01-01
From the reviews: "… Both the Markov-process approach and the Itô approach … have been immensely successful in diffusion theory. The Stroock-Varadhan book, developed from the historic 1969 papers by its authors, presents the martingale-problem approach as a more powerful - and, in certain regards, more intrinsic-means of studying the foundations of the subject. […] … the authors make the uncompromising decision not "to proselytise by intimidating the reader with myriad examples demonstrating the full scope of the techniques", but rather to persuade the reader "with a careful treatment of just one problem to which they apply". […] Most of the main tools of stochastic-processes theory are used, ..but it is the formidable combination of probability theory with analysis … which is the core of the work. […] I have emphasized the great importance of the Stroock-Varadhan book. It contains a lot more than I have indicated; in particular, its many exercises conain much interesting material. For immediat...
Oxygen transport in waterlogged soils, Part II. Diffusion coefficients
International Nuclear Information System (INIS)
Obando Moncayo, F.H.
2004-01-01
Several equations are available for Oxygen Transport in Waterlogged Soils and have been used for soils and plants. All of them are some form of first Fick's law as given by dQ = - DA(dc/dx)/dt. This equation illustrates some important aspects of aeration in waterlogged soils; first, D is a property of the medium and the gas, and is affected by temperature T. Likewise, the amount of diffusing substance dQ in dt is a direct function of the cross sectional area A and inversely proportional to the distance x. In fact, increasing the water content of air-dry soil, drastically decreases A and creates a further resistance for the flow of oxygen through water films around root plants, soil micro organisms and soil aggregates. The solid phase is also limiting the cross-section of surface of the free gaseous diffusion and the length and tortuosity of diffusion path in soil. In most of cases, soil gas porosity and tortuosity of soil voids are expressed in the equations of diffusion as a broad 'diffusion coefficient' (apparent coefficient diffusion). The process of soil respiration is complicated, involves many parameters, and is difficult to realistically quantify. With regard to the oxygen supply, it is convenient to distinguish macro and micro models, and hence, the flux of oxygen is assumed to have two steps. The first step is related to oxygen diffusion from the atmosphere and the air-filled porosity. The second step is related to the oxygen diffusion through water-films in and around plant roots, soil micro organisms and aggregates. Because of these models we obtain coefficients of macro or micro diffusion, rates of macro or micro diffusion, etc. In the macro diffusion process oxygen is transferred in the soil profile, mainly from the soil surface to a certain depth of the root zone, while micro diffusion deals with the flux over very short distances. Both processes, macro and micro diffusion are highly influenced by soil water content. Of course, if water is added to
Diffusive instabilities in hyperbolic reaction-diffusion equations
Zemskov, Evgeny P.; Horsthemke, Werner
2016-03-01
We investigate two-variable reaction-diffusion systems of the hyperbolic type. A linear stability analysis is performed, and the conditions for diffusion-driven instabilities are derived. Two basic types of eigenvalues, real and complex, are described. Dispersion curves for both types of eigenvalues are plotted and their behavior is analyzed. The real case is related to the Turing instability, and the complex one corresponds to the wave instability. We emphasize the interesting feature that the wave instability in the hyperbolic equations occurs in two-variable systems, whereas in the parabolic case one needs three reaction-diffusion equations.
International Nuclear Information System (INIS)
Maleki Moghaddam, Nader; Afarideh, Hossein; Espinosa-Paredes, Gilberto
2015-01-01
Highlights: • The new version of neutron diffusion equation for simulating anomalous diffusion is presented. • Application of fractional calculus in the nuclear reactor is revealed. • A 3D-Multigroup program is developed based on the fractional operators. • The super-diffusion and sub-diffusion phenomena are modeled in the nuclear reactors core. - Abstract: The diffusion process is categorized in three parts, normal diffusion, super-diffusion and sub-diffusion. The classical neutron diffusion equation is used to model normal diffusion. A new scheme of derivatives is required to model anomalous diffusion phenomena. The fractional space derivatives are employed to model anomalous diffusion processes where a plume of particles spreads at an inconsistent rate with the classical Brownian motion model. In the fractional diffusion equation, the fractional Laplacians are used; therefore the statistical jump length of neutrons is unrestricted. It is clear that the fractional Laplacians are capable to model the anomalous phenomena in nuclear reactors. We have developed a NFDE-3D (neutron fractional diffusion equation) as a core calculation code to model normal and anomalous diffusion phenomena. The NFDE-3D is validated against the LMW-LWR reactor. The results demonstrate that reactors exhibit complex behavior versus order of the fractional derivatives which depends on the competition between neutron absorption and super-diffusion phenomenon
Diffusion tensor optical coherence tomography
Marks, Daniel L.; Blackmon, Richard L.; Oldenburg, Amy L.
2018-01-01
In situ measurements of diffusive particle transport provide insight into tissue architecture, drug delivery, and cellular function. Analogous to diffusion-tensor magnetic resonance imaging (DT-MRI), where the anisotropic diffusion of water molecules is mapped on the millimeter scale to elucidate the fibrous structure of tissue, here we propose diffusion-tensor optical coherence tomography (DT-OCT) for measuring directional diffusivity and flow of optically scattering particles within tissue. Because DT-OCT is sensitive to the sub-resolution motion of Brownian particles as they are constrained by tissue macromolecules, it has the potential to quantify nanoporous anisotropic tissue structure at micrometer resolution as relevant to extracellular matrices, neurons, and capillaries. Here we derive the principles of DT-OCT, relating the detected optical signal from a minimum of six probe beams with the six unique diffusion tensor and three flow vector components. The optimal geometry of the probe beams is determined given a finite numerical aperture, and a high-speed hardware implementation is proposed. Finally, Monte Carlo simulations are employed to assess the ability of the proposed DT-OCT system to quantify anisotropic diffusion of nanoparticles in a collagen matrix, an extracellular constituent that is known to become highly aligned during tumor development.
Internal Diffusion-Controlled Enzyme Reaction: The Acetylcholinesterase Kinetics.
Lee, Sangyun; Kim, Ji-Hyun; Lee, Sangyoub
2012-02-14
Acetylcholinesterase is an enzyme with a very high turnover rate; it quenches the neurotransmitter, acetylcholine, at the synapse. We have investigated the kinetics of the enzyme reaction by calculating the diffusion rate of the substrate molecule along an active site channel inside the enzyme from atomic-level molecular dynamics simulations. In contrast to the previous works, we have found that the internal substrate diffusion is the determinant of the acetylcholinesterase kinetics in the low substrate concentration limit. Our estimate of the overall bimolecular reaction rate constant for the enzyme is in good agreement with the experimental data. In addition, the present calculation provides a reasonable explanation for the effects of the ionic strength of solution and the mutation of surface residues of the enzyme. The study suggests that internal diffusion of the substrate could be a key factor in understanding the kinetics of enzymes of similar characteristics.
Moessbauer effect and vacancy diffusion
International Nuclear Information System (INIS)
Gunther, L.
1976-01-01
A dynamical theory of vacancy diffusion which was motivated by the need to explain recent experimental results for the Moessbauer spectra of Fe in Cu, Fe in Au and Fe in Al is presented. Diffusion in these systems is dominated by the vacancy mechanism, which involves strong correlations between successive jumps. The theory developed by Singwi and Sjoelander for the Moessbauer spectrum of a diffusing nucleus is therefore not applicable. The inverse of the normalized Moessbauer spectrum evaluated at zero frequency is introduced as a useful means of comparing experimental with theoretical spectral widths
Simulation of multivariate diffusion bridges
DEFF Research Database (Denmark)
Bladt, Mogens; Finch, Samuel; Sørensen, Michael
We propose simple methods for multivariate diffusion bridge simulation, which plays a fundamental role in simulation-based likelihood and Bayesian inference for stochastic differential equations. By a novel application of classical coupling methods, the new approach generalizes a previously...... proposed simulation method for one-dimensional bridges to the mulit-variate setting. First a method of simulating approzimate, but often very accurate, diffusion bridges is proposed. These approximate bridges are used as proposal for easily implementable MCMC algorithms that produce exact diffusion bridges...
Self diffusion in isotopic fluid
International Nuclear Information System (INIS)
Tankeshwar, K.
1991-01-01
Expressions for the second and fourth frequency sum rules of the velocity auto-correlation function have been obtained for an isotopic fluid. These expressions and Mori memory function formalism have been used to study the influence of the particle mass and mole fraction on the self diffusion coefficient. Our results confirm the weak mass dependence of the self diffusion. The influence of the mole fraction of the light particles on the self diffusion constant has been found to increase for the larger particle mass. (author). 17 refs, 1 fig., 2 tabs
Muon diffusion in noble metals
International Nuclear Information System (INIS)
Schillaci, M.E.; Bokema, C.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Olsen, C.E.; Dodds, S.A.; MacLaughlin, D.E.; Richards, P.M.
1983-01-01
Diffusion-induced muon depolarization in dilute AgGd and AgEr were measured in the temperature range 200-700 K and have thereby determined the muon diffusion parameters in Ag. The diffusion parameters for μ + in Cu, Ag, and Au are compared with those of hydrogen. For Ag and Au, the μ + parameters are similar to those of hydrogen, whereas for Cu, the μ + parameters are much smaller. Lattice-activated tunneling and over-barrier hopping are investigated with computational models. 15 references, 1 figure, 2 tables
Muon diffusion in noble metals
International Nuclear Information System (INIS)
Schillaci, M.E.; Boekema, C.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Olsen, C.E.; Dodds, S.A.; MacLaughlin, D.E.; Richards, P.M.
1982-01-01
Diffusion-induced muon depolarization was measured in dilute AgGd and AgEr in the temperature range 200 to 700 0 K and have thereby determined the muon diffusion parameters in Ag. The diffusion parameters for μ + in Cu, Ag, and Au are compared with those of hydrogen. For Ag and Au, the μ + parameters are similar to those of hydrogen, whereas for Cu, the μ + parameters are much smaller. Lattice-activated tunneling and over-barrier hopping are investigated with computational models
Genetics Home Reference: hereditary diffuse gastric cancer
... Health Conditions Hereditary diffuse gastric cancer Hereditary diffuse gastric cancer Printable PDF Open All Close All Enable Javascript ... Diffuse Gastric Cancer MedlinePlus Encyclopedia: Gastric Cancer National Cancer ... Option Overview General Information from MedlinePlus ( ...
Improved diffuser for augmenting a wind turbine
Foreman, K.M.; Gilbert, B.L.
A diffuser for augmenting a wind turbine having means for energizing the boundary layer at several locations along the diffuser walls is improved by the addition of a short collar extending radially outward from the outlet of the diffuser.
Correlation between information diffusion and opinion evolution on social media
Xiong, Fei; Liu, Yun; Zhang, Zhenjiang
2014-12-01
Information diffusion and opinion evolution are often treated as two independent processes. Opinion models assume the topic reaches each agent and agents initially have their own ideas. In fact, the processes of information diffusion and opinion evolution often intertwine with each other. Whether the influence between these two processes plays a role in the system state is unclear. In this paper, we collected more than one million real data from a well-known social platform, and analysed large-scale user diffusion behaviour and opinion formation. We found that user inter-event time follows a two-scaling power-law distribution with two different power exponents. Public opinion stabilizes quickly and evolves toward the direction of convergence, but the consensus state is prevented by a few opponents. We propose a three-state opinion model accompanied by information diffusion. Agents form and exchange their opinions during information diffusion. Conversely, agents' opinions also influence their diffusion actions. Simulations show that the model with a correlation of the two processes produces similar statistical characteristics as empirical results. A fast epidemic process drives individual opinions to converge more obviously. Unlike previous epidemic models, the number of infected agents does not always increase with the update rate, but has a peak with an intermediate value of the rate.
Correlation between information diffusion and opinion evolution on social media
International Nuclear Information System (INIS)
Xiong, Fei; Liu, Yun; Zhang, Zhenjiang
2014-01-01
Information diffusion and opinion evolution are often treated as two independent processes. Opinion models assume the topic reaches each agent and agents initially have their own ideas. In fact, the processes of information diffusion and opinion evolution often intertwine with each other. Whether the influence between these two processes plays a role in the system state is unclear. In this paper, we collected more than one million real data from a well-known social platform, and analysed large-scale user diffusion behaviour and opinion formation. We found that user inter-event time follows a two-scaling power-law distribution with two different power exponents. Public opinion stabilizes quickly and evolves toward the direction of convergence, but the consensus state is prevented by a few opponents. We propose a three-state opinion model accompanied by information diffusion. Agents form and exchange their opinions during information diffusion. Conversely, agents' opinions also influence their diffusion actions. Simulations show that the model with a correlation of the two processes produces similar statistical characteristics as empirical results. A fast epidemic process drives individual opinions to converge more obviously. Unlike previous epidemic models, the number of infected agents does not always increase with the update rate, but has a peak with an intermediate value of the rate. (paper)
Performance of a contact textile-based light diffuser for photodynamic therapy.
Khan, Tania; Unternährer, Merthan; Buchholz, Julia; Kaser-Hotz, Barbara; Selm, Bärbel; Rothmaier, Markus; Walt, Heinrich
2006-03-01
Medical textiles offer a unique contact opportunity that could provide value-added comfort, reliability, and safety for light or laser-based applications. We investigated a luminous textile diffuser for use in photodynamic therapy. Textile diffusers are produced by an embroidery process. Plastic optical fibers are bent and sewn into textile to release light by macrobending. A reflective backing is incorporated to improve surface homogeneity, intensity, and safety. Clonogenic assay (MCF-7 cells) and trypan blue exclusion (NuTu19 cells) tests were performed in vitro using 0.1μg/ml m-THPC with three textile diffusers and a standard front lens diffuser. Heating effects were studied in solution and on human skin. PDT application in vivo was performed with the textile diffuser on equine sarcoids (three animals, 50mW/cm(2), 10-20J) and eight research animals. Lastly, computer simulations were performed to see how the textile diffuser might work on a curved object. At low fluency rate, there is a trend for the textile diffuser to have lower survival rates than the front lens diffuser for both cell lines. The textile diffuser was observed to retain more heat over a long period (>1min). All animals tolerated the treatments well and showed similar initial reactions. The simulations showed a likely focusing effect in a curved geometry. The initial feasibility and application using a textile-based optical diffuser has been demonstrated. Possibilities that provide additional practical advantages of the textile diffuser are discussed.
Rapid innovation diffusion in social networks.
Kreindler, Gabriel E; Young, H Peyton
2014-07-22
Social and technological innovations often spread through social networks as people respond to what their neighbors are doing. Previous research has identified specific network structures, such as local clustering, that promote rapid diffusion. Here we derive bounds that are independent of network structure and size, such that diffusion is fast whenever the payoff gain from the innovation is sufficiently high and the agents' responses are sufficiently noisy. We also provide a simple method for computing an upper bound on the expected time it takes for the innovation to become established in any finite network. For example, if agents choose log-linear responses to what their neighbors are doing, it takes on average less than 80 revision periods for the innovation to diffuse widely in any network, provided that the error rate is at least 5% and the payoff gain (relative to the status quo) is at least 150%. Qualitatively similar results hold for other smoothed best-response functions and populations that experience heterogeneous payoff shocks.
Strain enhanced lithium adsorption and diffusion on silicene.
Wang, Xiao; Luo, Youhua; Yan, Ting; Cao, Wei; Zhang, Meng
2017-03-01
The performance of Li-ion batteries relies heavily on the capacity and stability of constituent electrodes. Recently synthesized 2D silicene has demonstrated excellent Li-ion capacity with high charging rates. To explore the external influences for battery performance, in this work, first-principles calculations are employed to investigate the effect of external strain on the adsorption and diffusion of Li on silicene monolayers. It was found that tensile strain could enhance Li binding on silicene. The diffusion barrier is also calculated and the results show that Li diffusion through silicene is facilitated by tensile strain, whereas the strain has a limited effect on the energy barrier of diffusion parallel to the plane of pristine silicene. Our results suggest that silicene could be a promising electrode material for lithium ion batteries.
Neutron spectroscopy of fast hydrogen diffusion in BCC transition metals
International Nuclear Information System (INIS)
Richter, D.; Lottner, V.
1979-01-01
Quasielastic neutron scattering reveals microscopic details of both the time and space development of the H-diffusion process on an atomic scale. After outlining the method on the example of PdH/sub x/, new results on the jump geometry in bcc metals are surveyed. In particular, the anomalous diffusion behavior of H in Nb, Ta, and V at elevated temperature is emphasized, where correlated jump processes are important. The influence of impurities on the H-diffusion process is demonstrated by experiments performed on NbH/sub x/ doped with nitrogen impurities, which act as trapping centers for the diffusing hydrogen. The results are discussed in terms of a two-state random walk model which includes multiple trapping and detrapping processes. The concentration and temperature dependence of the capture and escape rates of traps are obtained
Rotational and translational diffusions of fluorescent probes during gelation process
Hattori, Yusuke; Panizza, Pascal; Letamendia, Louis; Ushiki, Hideharu
2006-04-01
Gelation process has been investigated by using light scattering techniques in recent years. We measured both of rotational and translational motions of fluorescent probes during gelation process. The measurements were performed after the temperature quenched at 30 °C. As the results, rotational diffusion coefficient of fluorescein was decreased after 6.0 × 10 4 s and energy transfer rate was reduced after 2.0 × 10 4 s. We sorted the gelation process into the following three parts, (I) pre-gelation, (II) reduction of translational diffusion (aging), and (III) reduction of rotational diffusion with saturating translational diffusion (post-gelation). The time scale of the process was completely different from the results of other methods.
Diffusion in intermetallic compounds studied using short-lived radioisotopes
Diffusion – the long range movement of atoms – plays an important role in materials processing and in determining suitable applications for materials. Conventional radiotracer methods for measuring diffusion can determine readily how distributions of radioactive probe atoms in samples evolve under varying experimental conditions. It is possible to obtain limited information about atomic jump rates and pathways from these measurements; however, it is desirable to make more direct observations of the atomic jumps by using experimental methods that are sensitive to atomic scale processes. One such method is time-differential perturbed $\\gamma$–$\\gamma$-angular correlation spectroscopy (PAC). Two series of PAC experiments using $^{111m}$Cd are proposed to contribute to fundamental understanding of diffusion in intermetallic compounds. The goal of the first is to determine the dominant vacancy species in several Li$_{2}$-structured compounds and see if the previously observed change in diffusion mechanism th...
Convergence of surface diffusion parameters with model crystal size
Cohen, Jennifer M.; Voter, Arthur F.
1994-07-01
A study of the variation in the calculated quantities for adatom diffusion with respect to the size of the model crystal is presented. The reported quantities include surface diffusion barrier heights, pre-exponential factors, and dynamical correction factors. Embedded atom method (EAM) potentials were used throughout this effort. Both the layer size and the depth of the crystal were found to influence the values of the Arrhenius factors significantly. In particular, exchange type mechanisms required a significantly larger model than standard hopping mechanisms to determine adatom diffusion barriers of equivalent accuracy. The dynamical events that govern the corrections to transition state theory (TST) did not appear to be as sensitive to crystal depth. Suitable criteria for the convergence of the diffusion parameters with regard to the rate properties are illustrated.
Study of uranium-titanium diffusion; Etude de la diffusion uranium-titane
Energy Technology Data Exchange (ETDEWEB)
Adda, Y; Philibert, J [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires; Institut de Recherches de la Siderurgie Francaise (IRSID), 78 - Saint-Germain-en-Laye (France)
1959-07-01
In the overall scheme of research on the chemical diffusion of uranium and the transition metals we have studied the uranium-titanium system. The diffusion couples are prepared by welding together small plates of uranium and titanium under pressure, using a technique already described by us. After diffusion under vacuum, polished sections of the samples were micro-graphically examined. This inspection showed that intergranular diffusion occurred at temperatures below 650 deg. C. At higher temperatures, the diffusion occurred uniquely throughout the volume of the metal, and the diffusion zone appeared as a succession of micro-graphically distinguishable bands. Study of the rate of increase of these corresponding 'penetration coefficients'. In addition, we have observed important variations in microhardness within the diffusion zone, we have tried to relate these variations to the variation of concentration. This is measured with the Castaing microprobe. We have thus accurately established the concentration-penetration curves for temperatures between 950 and 1075 deg. C. From these curves, we have calculated the diffusion coefficient D as a function of the concentration using Matano's method. At all temperatures, D(c) curve has a U form as for the U-Zr system. The activation energy has a maximum value of 42 kcal/g atom at an atomic concentration of 0,5. Even though we have rarely seen pores in the diffusion zone, we have nevertheless observed an important Kirkendall-effect by studying the displacements x{sub i} of the interface using tungsten wires as markers. These displacements can be expressed as a function of time and temperature by the equation: x{sub i} = 0,9 t {sup 1/2} exp ( - 14600/(RT)). Finally, using Darken's equations we calculated the intrinsic diffusion coefficients Du and Dti as well as the corresponding activation energies. These energies are similar (QU = 38,5 and QTi = 40 kcal/at. g) and also almost the same as those found for the U-Zr system
Diffusion piecewise homogenization via flux discontinuity factors
International Nuclear Information System (INIS)
Sanchez, Richard; Zmijarevic, Igor
2011-01-01
We analyze the calculation of flux discontinuity factors (FDFs) for use with piecewise subdomain assembly homogenization. These coefficients depend on the numerical mesh used to compute the diffusion problem. When the mesh has a single degree of freedom on subdomain interfaces the solution is unique and can be computed independently per subdomain. For all other cases we have implemented an iterative calculation for the FDFs. Our numerical results show that there is no solution to this nonlinear problem but that the iterative algorithm converges towards FDFs values that reproduce subdomains reaction rates with a relatively high precision. In our test we have included both the GET and black-box FDFs. (author)
Atmospheric turbulence and diffusion research
International Nuclear Information System (INIS)
Hosker, R.P. Jr.
1993-01-01
The Atmospheric Turbulence and Diffusion Division (well known in the atmospheric dispersion community as the Atmospheric Turbulence and Diffusion Laboratory, ATDL) is one of several field facilities of NOAAs Air Resources Laboratory, headquartered in Silver Spring, Maryland. The laboratory conducts research on matters of atmospheric diffusion and turbulent exchange, concerning air quality. ATDD focuses attention on the physics of the lower atmosphere, with special emphasis on the processes contributing to atmospheric transport, dispersion, deposition, and air-surface exchange, and on the development of predictive capabilities using the results of this research. Research is directed toward issues of national and global importance related to the missions of DOE, to DOE's Oak Ridge Field Office, and to NOAA. The program is divided into four major projects: plume transport and diffusion in the planetary boundary layer, complex topography, canopy micrometeorology, and air-surface exchange
Diffusion mechanisms in intermetallic compounds
Energy Technology Data Exchange (ETDEWEB)
Larikov, L N [ANU, Inst. Metallofiziki, Kiev (Ukraine)
1992-08-01
Recent research aimed at the identification of the principal mechanisms of diffusion in intermetallics is reviewed. In particular, attention is given to the effect of the type of interatomic bond on the contribution of different mechanisms to diffusion in ordered metallic compounds. Results of an analysis of experimental determinations of diffusion coefficients D(A) and D(B) in binary intermetallics (CuZn, Cu3Sn, AuCd, AgZn, AgMg, InSb, GaSb, AlSb, Fe3Al, FeAl, FeAl3, Ni3Al, Ni3Nb, FeSn, FeSn2, Ni3Sn2, Ni3Sn4, Co3Sn2, CoSn, CoSn2, and CoGa) are presented, and it is shown that the D(A)/D(B) ratio differs substantially for different diffusion mechanisms. 60 refs.
Diffusion of single oxidation pond
Directory of Open Access Journals (Sweden)
Song Ruo-Yuan
2016-01-01
Full Text Available The hydraulic characteristic of an oxidation pond was studied by the tracer experiment, and an empirical formula of Peclet number was obtained, which can be well applied to the model of plug flow reactor with longitudinal diffusion.
Computational Diffusion MRI : MICCAI Workshop
Grussu, Francesco; Ning, Lipeng; Tax, Chantal; Veraart, Jelle
2018-01-01
This volume presents the latest developments in the highly active and rapidly growing field of diffusion MRI. The reader will find numerous contributions covering a broad range of topics, from the mathematical foundations of the diffusion process and signal generation, to new computational methods and estimation techniques for the in-vivo recovery of microstructural and connectivity features, as well as frontline applications in neuroscience research and clinical practice. These proceedings contain the papers presented at the 2017 MICCAI Workshop on Computational Diffusion MRI (CDMRI’17) held in Québec, Canada on September 10, 2017, sharing new perspectives on the most recent research challenges for those currently working in the field, but also offering a valuable starting point for anyone interested in learning computational techniques in diffusion MRI. This book includes rigorous mathematical derivations, a large number of rich, full-colour visualisations and clinically relevant results. As such, it wil...
Diffusion coefficient for anomalous transport
International Nuclear Information System (INIS)
1986-01-01
A report on the progress towards the goal of estimating the diffusion coefficient for anomalous transport is given. The gyrokinetic theory is used to identify different time and length scale inherent to the characteristics of plasmas which exhibit anomalous transport
Diffusion formation and psychiatric diseases
International Nuclear Information System (INIS)
Reith, W.; Kulikovski, J.
2015-01-01
The basic principle behind diffusion is Brownian motion. The diffusion parameters obtained in a clinical association provide information on the spatial distribution of water molecule mobility and, therefore, evidence of the morphological integrity of the white and grey matters of the brain. In recent years functional magnetic resonance imaging (fMRI) could contribute to obtaining a detailed understanding of the cortical and subcortical cerebral networks. Diffusion tensor imaging (DTI) investigations can demonstrate the extent of anisotropy and the fiber pathways in so-called parametric images. For example, in Alzheimer's disease DTI reveals a reduced structural connectivity between the posterior cingulum and the hippocampus. This article shows examples of the application of diffusion-weighted imaging (DWI) in psychiatric disorders. (orig.) [de
Two dimensional finite element modelling for dynamic water diffusion through stratum corneum.
Xiao, Perry; Imhof, Robert E
2012-10-01
Solvents penetration through in vivo human stratum corneum (SC) has always been an interesting research area for trans-dermal drug delivery studies, and the importance of intercellular routes (diffuse in between corneocytes) and transcellular routes (diffuse through corneocytes) during diffusion is often debatable. In this paper, we have developed a two dimensional finite element model to simulate the dynamic water diffusion through the SC. It is based on the brick-and-mortar model, with brick represents corneocytes and mortar represents lipids, respectively. It simulates the dynamic water diffusion process through the SC from pre-defined initial conditions and boundary conditions. Although the simulation is based on water diffusions, the principles can also be applied to the diffusions of other topical applied substances. The simulation results show that both intercellular routes and transcellular routes are important for water diffusion. Although intercellular routes have higher flux rates, most of the water still diffuse through transcellular routes because of the high cross area ratio of corneocytes and lipids. The diffusion water flux, or trans-epidermal water loss (TEWL), is reversely proportional to corneocyte size, i.e. the larger the corneocyte size, the lower the TEWL, and vice versa. There is also an effect of the SC thickness, external air conditions and diffusion coefficients on the water diffusion through SC on the resulting TEWL. Copyright © 2012 Elsevier B.V. All rights reserved.
Anomalous diffusion in chaotic scattering
International Nuclear Information System (INIS)
Srokowski, T.; Ploszajczak, M.
1994-01-01
The anomalous diffusion is found for peripheral collision of atomic nuclei described in the framework of the molecular dynamics. Similarly as for chaotic billiards, the long free paths are the source of the long-time correlations and the anomalous diffusion. Consequences of this finding for the energy dissipation in deep-inelastic collisions and the dynamics of fission in hot nuclei are discussed (authors). 30 refs., 2 figs
Diffusion processes and memory effects
International Nuclear Information System (INIS)
Mokshin, Anatolii V; Yulmetyev, Renat M; Haenggi, Peter
2005-01-01
We report the results of the numerical estimation of statistical memory effects in diffusion for two various systems: Lennard-Jones fluids and the model of the Brownian particle in a one-dimensional harmonic lattice. We have found the relation between the diffusion coefficient and the non-Markovity parameter, which is linear for the Lennard-Jones systems in liquid state. The relation between the memory measure and the excess entropy is also discussed here
Diffusion MRI findings in phenylketonuria
Energy Technology Data Exchange (ETDEWEB)
Sener, R.N. [Dept. of Radiology, Ege Univ. Hospital, Izmir (Turkey)
2003-12-01
Two patients with phenylketonuria were studied who were under dietary control since infancy, and who were mentally normal. Diffusion MRI was obtained using a spin-echo, echo-planar sequence with a gradient strength of 30 mT/m at 1.5 T. A trace sequence (TR=5700 ms, and TE=139 ms) was used, acquired in 22 s. Heavily diffusion-weighted (b=1000 mm{sup 2}/s) images, and the apparent diffusion coefficient (ADC) values from automatically generated ADC maps were studied. There were two different patterns in these two patients, restricted and increased diffusion patterns. Restricted diffusion pattern consisted of high-signal on b=1000 s/mm{sup 2} images with low ADC values ranging from 0.46 to 0.57 x 10{sup -3} mm{sup 2}/s. Increased diffusion pattern consisted of normal b=1000 s/mm{sup 2} images with high ADC values ranging from 1.37 to 1.63 x 10{sup -3} mm{sup 2}/s. It is likely that these values reflected presence of two different histopathological changes in phenylketonuria or reflected different stages of the same disease. (orig.)
Diffusion MRI findings in phenylketonuria
International Nuclear Information System (INIS)
Sener, R.N.
2003-01-01
Two patients with phenylketonuria were studied who were under dietary control since infancy, and who were mentally normal. Diffusion MRI was obtained using a spin-echo, echo-planar sequence with a gradient strength of 30 mT/m at 1.5 T. A trace sequence (TR=5700 ms, and TE=139 ms) was used, acquired in 22 s. Heavily diffusion-weighted (b=1000 mm 2 /s) images, and the apparent diffusion coefficient (ADC) values from automatically generated ADC maps were studied. There were two different patterns in these two patients, restricted and increased diffusion patterns. Restricted diffusion pattern consisted of high-signal on b=1000 s/mm 2 images with low ADC values ranging from 0.46 to 0.57 x 10 -3 mm 2 /s. Increased diffusion pattern consisted of normal b=1000 s/mm 2 images with high ADC values ranging from 1.37 to 1.63 x 10 -3 mm 2 /s. It is likely that these values reflected presence of two different histopathological changes in phenylketonuria or reflected different stages of the same disease. (orig.)
Atmospheric diffusion of large clouds
Energy Technology Data Exchange (ETDEWEB)
Crawford, T. V. [Univ. of California, Lawrence Radiation Lab., Livermore, California (United States)
1967-07-01
Clouds of pollutants travel within a coordinate system that is fixed to the earth's surface, and they diffuse and grow within a coordinate system fixed to the cloud's center. This paper discusses an approach to predicting the cloud's properties, within the latter coordinate system, on space scales of a few hundred meters to a few hundred kilometers and for time periods of a few days. A numerical cloud diffusion model is presented which starts with a cloud placed arbitrarily within the troposphere. Similarity theories of atmospheric turbulence are used to predict the horizontal diffusivity as a function of initial cloud size, turbulent atmospheric dissipation, and time. Vertical diffusivity is input as a function of time and height. Therefore, diurnal variations of turbulent diffusion in the boundary layer and effects of temperature inversions, etc. can be modeled. Nondiffusive cloud depletion mechanisms, such as dry deposition, washout, and radioactive decay, are also a part of this numerical model. An effluent cloud, produced by a reactor run at the Nuclear Rocket Development Station, Nevada, is discussed in this paper. Measurements on this cloud, for a period of two days, are compared to calculations with the above numerical cloud diffusion model. In general, there is agreement. within a factor of two, for airborne concentrations, cloud horizontal area, surface air concentrations, and dry deposition as airborne concentration decreased by seven orders of magnitude during the two-day period. (author)
Diffusion, confusion and functional MRI
International Nuclear Information System (INIS)
Le Bihan, Denis
2012-01-01
Diffusion MRI has been introduced in 1985 and has had a very successful life on its own. While it has become a standard for imaging stroke and white matter disorders, the borders between diffusion MRI and the general field of fMRI have always remained fuzzy. First, diffusion MRI has been used to obtain images of brain function, based on the idea that diffusion MRI could also be made sensitive to blood flow, through the intra-voxel incoherent motion (IVIM) concept. Second, the IVIM concept helped better understand the contribution from different vasculature components to the BOLD fMRI signal. Third, it has been shown recently that a genuine fMRI signal can be obtained with diffusion MRI. This 'DfMRI' signal is notably different from the BOLD fMRI signal, especially for its much faster response to brain activation both at onset and offset, which points out to structural changes in the neural tissues, perhaps such as cell swelling, occurring in activated neural tissue. This short article reviews the major steps which have paved the way for this exciting development, underlying how technical progress with MRI equipment has each time been instrumental to expand the horizon of diffusion MRI toward the field of fMRI. (authors)
Enhanced diffusion due to electrons, protons and quenching
International Nuclear Information System (INIS)
Schuele, W.
1987-01-01
Results of investigations of radiation enhanced diffusion in copper -30% zinc alloys using 17.65 MeV protons are reported and compared with results obtained for 2 MeV electrons. The activation energy of diffusion decreases considerably from 0.35 eV to 0.26 eV for displacement rates increasing from 3x10 -12 dpa.s -1 to 1.2x10 -8 dpa.s -1 , i.e. the migration activation energy of interstitials decreases for this dpa.s -1 range from 0.70 eV to 0.52 eV. Results of electron irradiations obtained for 0.050 and 0.10 mm thick specimens are compared. It is found that the diffusion rates increase considerably in the presence of dislocations and that the diffusion rates decrease for very low electron fluxes and high irradiation temperatures in the 0.050 mm thick specimens in comparison to the rates obtained in 0.10 mm thick specimens. A value of 0.95 eV was determined for the activation energy of the ordering rate after quenching from 250 0 C in water. This was attributed to the migration activation energy of vacancies
Ion diffusion in compacted bentonite
Energy Technology Data Exchange (ETDEWEB)
Lehikoinen, J. [VTT Chemical Technology, Espoo (Finland)
1999-03-01
In the study, a two-dimensional molecular-level diffusion model, based on a modified form of the Gouy-Chapman (GC) theory of the electrical double layers, for hydrated ionic species in compacted bentonite was developed. The modifications to the GC theory, which forms the very kernel of the diffusion model, stem from various non-conventional features: ionic hydration, dielectric saturation, finite ion-sizes and specific adsorption. The principal objectives of the study were met. With the aid of the consistent diffusion model, it is a relatively simple matter to explain the experimentally observed macroscopic exclusion for anions as well as the postulated, but greatly controversial, surface diffusion for cations. From purely theoretical grounds, it was possible to show that the apparent diffusivities of cations, anions and neutral molecules (i) do not exhibit order-or-magnitude differences, and (ii) are practically independent of the solution ionic strength used and, consequently, of the distribution coefficient, K{sub d}, unless they experience specific binding onto the substrate surface. It was also of interest to investigate the equilibrium anionic concentration distribution in the pore geometry of the GMM model as a function of the solution ionic strength, and to briefly speculate its consequences to diffusion. An explicit account of the filter-plate effect was taken by developing a computerised macroscopic diffusion model, which is based upon the very robust and efficient Laplace Transform Finite-Difference technique. Finally, the inherent limitations as well as the potential fields of applications of the models were addressed. (orig.) 45 refs.
Ion diffusion in compacted bentonite
International Nuclear Information System (INIS)
Lehikoinen, J.
1999-03-01
In the study, a two-dimensional molecular-level diffusion model, based on a modified form of the Gouy-Chapman (GC) theory of the electrical double layers, for hydrated ionic species in compacted bentonite was developed. The modifications to the GC theory, which forms the very kernel of the diffusion model, stem from various non-conventional features: ionic hydration, dielectric saturation, finite ion-sizes and specific adsorption. The principal objectives of the study were met. With the aid of the consistent diffusion model, it is a relatively simple matter to explain the experimentally observed macroscopic exclusion for anions as well as the postulated, but greatly controversial, surface diffusion for cations. From purely theoretical grounds, it was possible to show that the apparent diffusivities of cations, anions and neutral molecules (i) do not exhibit order-or-magnitude differences, and (ii) are practically independent of the solution ionic strength used and, consequently, of the distribution coefficient, K d , unless they experience specific binding onto the substrate surface. It was also of interest to investigate the equilibrium anionic concentration distribution in the pore geometry of the GMM model as a function of the solution ionic strength, and to briefly speculate its consequences to diffusion. An explicit account of the filter-plate effect was taken by developing a computerised macroscopic diffusion model, which is based upon the very robust and efficient Laplace Transform Finite-Difference technique. Finally, the inherent limitations as well as the potential fields of applications of the models were addressed. (orig.)
Experimental Investigation of Radio-Turbulence Induced Diffusion -- Final Report
Energy Technology Data Exchange (ETDEWEB)
Spitz, H. B.; Usman, S.
2005-07-07
The outcome of this research project suggests that the transport of radon in water is significantly greater than that predicted solely by molecular diffusion. The original study was related to the long term storage of {sup 226}Ra-bearing sand at the DOE Fernald site and determining whether a barrier of water covering the sand would be effective in reducing the emanation of {sup 222}Rn from the sand. Initial observations before this study found the transport of radon in water to be greater than that predicted solely by molecular diffusion. Fick's law on diffusion was used to model the transport of radon in water including the impact associated with radioactive decay. Initial measurements suggested that the deposition of energy in water associated with the radioactive decay process influences diffusion and enhances transport of radon. A multi-region, one-dimensional, steady-state transport model was used to analyze the movement of radon through a sequential column of air, water and air. An effective diffusion coefficient was determined by varying the thickness of the water column and measuring the time for transport of {sup 222}Rn through of the water barrier. A one-region, one-dimensional transient diffusion equation was developed to investigate the build up of radon at the end of the water column to the time when a steady-state, equilibrium condition was achieved. This build up with time is characteristic of the transport rate of radon in water and established the basis for estimating the effective diffusion coefficient for {sup 222}Rn in water. Several experiments were conducted using different types and physical arrangements of water barriers to examine how radon transport is influenced by the water barrier. Results of our measurements confirm our theoretical analyses which suggest that convective forces other than pure molecular diffusion impact the transport of {sup 222}Rn through the water barrier. An effective diffusion coefficient is defined that
Identification of the Diffusion Parameter in Nonlocal Steady Diffusion Problems
Energy Technology Data Exchange (ETDEWEB)
D’Elia, M., E-mail: mdelia@fsu.edu, E-mail: mdelia@sandia.gov [Sandia National Laboratories (United States); Gunzburger, M. [Florida State University (United States)
2016-04-15
The problem of identifying the diffusion parameter appearing in a nonlocal steady diffusion equation is considered. The identification problem is formulated as an optimal control problem having a matching functional as the objective of the control and the parameter function as the control variable. The analysis makes use of a nonlocal vector calculus that allows one to define a variational formulation of the nonlocal problem. In a manner analogous to the local partial differential equations counterpart, we demonstrate, for certain kernel functions, the existence of at least one optimal solution in the space of admissible parameters. We introduce a Galerkin finite element discretization of the optimal control problem and derive a priori error estimates for the approximate state and control variables. Using one-dimensional numerical experiments, we illustrate the theoretical results and show that by using nonlocal models it is possible to estimate non-smooth and discontinuous diffusion parameters.
Diffuse and vascular hepatic diseases; Diffuse und vaskulaere Lebererkrankungen
Energy Technology Data Exchange (ETDEWEB)
Kreimeyer, S.; Grenacher, L. [Universitaetsklinikum Heidelberg, Abteilung Diagnostische und Interventionelle Radiologie, Heidelberg (Germany)
2011-08-15
In addition to focal liver lesions, diffuse and vascular disorders of the liver represent a wide spectrum of liver diseases which are from the radiological point of view often difficult or nearly impossible to diagnose. Classical diagnostic methods are computed tomography and magnetic resonance imaging in addition to ultrasound. Diffuse parenchymal damage caused by diseases of various etiologies is therefore difficult to evaluate because it often lacks characteristic morphological features. For hepatic steatosis, hemochromatosis/siderosis as an example of a diffuse storage disease and sarcoidosis and candidiasis as infectious/inflammatory diseases, an image-based diagnosis is appropriate in some cases. For most diffuse liver diseases, however only nonspecific changes are visualized. Vascular pathologies of the liver, such as the Budd-Chiari syndrome and portal vein thrombosis, however, can usually be diagnosed very clearly using radiology and there is also a very effective interventional radiological treatment. Chronic diseases very often culminate in liver cirrhosis which is highly associated with an increased risk of liver cancer. (orig.) [German] Neben den fokalen Leberlaesionen stellen diffuse und vaskulaere Lebererkrankungen ein weites Spektrum an Erkrankungen der Leber dar, die radiologisch oft schwer oder gar nicht diagnostizierbar sind. Klassische diagnostische Verfahren sind dabei neben dem Ultraschall die Computertomographie und die Magnetresonanztomographie. Diffuse Parenchymschaeden, bedingt durch Erkrankungen unterschiedlichster Aetiologie, sind deshalb schwierig evaluierbar, weil haeufig charakteristische bildmorphologische Merkmale fehlen. Die Steatosis hepatis, die Haemochromatose/Siderose als Beispiel der Speicherkrankheiten sowie die Sarkoidose und die Candidose als infektioes-entzuendliche Erkrankungen sind einer bildbasierten Diagnosestellung z. T. zugaenglich, bei den meisten diffusen Lebererkrankungen jedoch zeigen sich lediglich unspezifische
Directory of Open Access Journals (Sweden)
Hongwei Liang
2016-01-01
Full Text Available Existence and stability of spatially periodic solutions for a delay prey-predator diffusion system are concerned in this work. We obtain that the system can generate the spatially nonhomogeneous periodic solutions when the diffusive rates are suitably small. This result demonstrates that the diffusion plays an important role on deriving the complex spatiotemporal dynamics. Meanwhile, the stability of the spatially periodic solutions is also studied. Finally, in order to verify our theoretical results, some numerical simulations are also included.
Directory of Open Access Journals (Sweden)
C. M. Hall
Full Text Available By measuring fading times of radar echoes from underdense meteor trails, it is possible to deduce the ambipolar diffusivities of the ions responsible for these radar echoes. It could be anticipated that these diffusivities increase monotonically with height akin to neutral viscosity. In practice, this is not always the case. Here, we investigate the capability of neutral turbulence to affect the meteor trail diffusion rate.
Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; turbulence
Directory of Open Access Journals (Sweden)
C. M. Hall
2002-11-01
Full Text Available By measuring fading times of radar echoes from underdense meteor trails, it is possible to deduce the ambipolar diffusivities of the ions responsible for these radar echoes. It could be anticipated that these diffusivities increase monotonically with height akin to neutral viscosity. In practice, this is not always the case. Here, we investigate the capability of neutral turbulence to affect the meteor trail diffusion rate.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; turbulence
Characteristics of diffusion flames with accelerated motion
Directory of Open Access Journals (Sweden)
Lou Bo
2016-01-01
Full Text Available The aim of this work is to present an experiment to study the characteristics of a laminar diffusion flame under acceleration. A Bunsen burner (nozzle diameter 8 mm, using liquefied petroleum gas as its fuel, was ignited under acceleration. The temperature field and the diffusion flame angle of inclination were visualised with the assistance of the visual display technology incorporated in MATLAB™. Results show that the 2-d temperature field under different accelerations matched the variation in average temperatures: they both experience three variations at different time and velocity stages. The greater acceleration has a faster change in average temperature with time, due to the accumulation of combustion heat: the smaller acceleration has a higher average temperature at the same speed. No matter what acceleration was used, in time, the flame angle of inclination increased, but the growth rate decreased until an angle of 90°: this could be explained by analysis of the force distribution within the flame. It is also found that, initially, the growth rate of angle with velocity under the greater acceleration was always smaller than that at lower accelerations; it was also different in flames with uniform velocity fire conditions.
Laser enhanced attachment in diffuse discharges
International Nuclear Information System (INIS)
Giesselmann, M.; Pashaie, B.; Kristiansen, M.; Schaefer, G.
1987-01-01
Measurements of the effect of laser enhanced attachment on externally sustained diffuse discharges are reported. Optical control of diffuse discharges is a promising way of upgrading the performance of e-beam controlled opening switches for repetitive operation. Ideal gases should exhibit a negligible attachment cross section for low E/N values (switch closed) in the ground state and strong attaching properties upon optical excitation in an E/N range between the conducting state and self breakdown of the switch. The ratio of resistivity change in these experiments is much higher than in previous investigations. In this investigation the attachment rate of an electronegative gas component, representing approximately 1% of the gas in the discharge volume, was increased by means of vibrational excitation with a pulsed IR-laser beam. Molecules exhibiting a strongly increased attachment rate upon IR-excitation are vinyl-chloride, vinyl flouride and trifluoroethylene, which has been verified in preliminary experiments. All experiments reported were performed with vinyl chloride and trifluoroethylene
Solid-state diffusion-controlled growth of the phases in the Au-Sn system
Baheti, Varun A.; Kashyap, Sanjay; Kumar, Praveen; Chattopadhyay, Kamanio; Paul, Aloke
2018-01-01
The solid state diffusion-controlled growth of the phases is studied for the Au-Sn system in the range of room temperature to 200 °C using bulk and electroplated diffusion couples. The number of product phases in the interdiffusion zone decreases with the decrease in annealing temperature. These phases grow with significantly high rates even at the room temperature. The growth rate of the AuSn4 phase is observed to be higher in the case of electroplated diffusion couple because of the relatively small grains and hence high contribution of the grain boundary diffusion when compared to the bulk diffusion couple. The diffraction pattern analysis indicates the same equilibrium crystal structure of the phases in these two types of diffusion couples. The analysis in the AuSn4 phase relating the estimated tracer diffusion coefficients with grain size, crystal structure, the homologous temperature of experiments and the concept of the sublattice diffusion mechanism in the intermetallic compounds indicate that Au diffuses mainly via the grain boundaries, whereas Sn diffuses via both the grain boundaries and the lattice.
Gaseous diffusion -- the enrichment workhorse
International Nuclear Information System (INIS)
Shoemaker, J.E. Jr.
1984-01-01
Construction of the first large-scale gaseous diffusion facility was started as part of the Manhattan Project in Oak Ridge, Tennessee, in 1943. This facility, code named ''K-25,'' began operation in January 1945 and was fully on stream by September 1945. Four additional process buildings were later added in Oak Ridge as the demand for enriched uranium escalated. New gaseous diffusion plants were constructed at Paducah, Kentucky, and Portsmouth, Ohio, during this period. The three gaseous diffusion plants were the ''workhorses'' which provided the entire enriched uranium demand for the United States during the 1950s and 1960s. As the demand for enriched uranium for military purposes decreased during the early 1960s, power to the diffusion plants was curtailed to reduce production. During the 1960s, as plans for the nuclear power industry were formulated, the role of the diffusion plants gradually changed from providing highly-enriched uranium for the military to providing low-enriched uranium for power reactors
Radionuclide diffusion in soils. III
International Nuclear Information System (INIS)
Cipakova, A.; Szabova, T.
1988-01-01
Samples were taken of five soil types for determining diffusion coefficients, namely chernozem, illimerized brown soil, degraded chernozem, gleizated brown soil and heavy loamy brown soil. 5 layers of soil having a thickness of 1 cm each were placed in diffusion columns. 20 ml of water with 0.45 MBq 85 Sr of distilled water was poured over the columns. 10 ml of distilled water was poured over the columns every 5 days for monitoring the effect of the amount of precipitation and its distribution - a similarity with rainfall in the driest month, 41 ml of distilled water was then poured over the column every 5 days or 82 ml of distilled water every 10 days - imitating the month with the highest rainfall level. The effect of salts and various concentrations of salt mixtures on the value of the diffusion coefficient were monitored in solutions of NaNO 3 , KNO 3 and Ca(NO 3 ) 2 with added activity 0.45 MGq of 85 SrCl 2 . Diffusion was monitored for 101 days. All measured values are tabulated. The smallest diffusion coefficient was found in chernozem in the presence of H 2 O and the highest value was found in illimerized brown soil in the presence of 0.15 M of KNO 3 . (E.S.). 2 tabs., 10 refs
Diffusion of gases in metal containing carbon aerogels
Energy Technology Data Exchange (ETDEWEB)
Marques, L.M.; Conceicao, F.L.; Carrott, M.M.L. Ribeiro; Carrott, P.J.M. [Evora Univ. (Portugal). Centro de Quimica de Evora
2011-02-15
Carbon aerogels containing Fe, Ni, Cu or no metal were prepared by carbonisation of polymer aerogels synthesised from 2,4-dihydroxybenzoic acid and formaldehyde and modified by CVD of benzene. Uptakes and diffusion coefficients of CO{sub 2}, CH{sub 4}, N{sub 2} and O{sub 2} were measured and the results compared with those obtained using a commercial carbon molecular sieve. The results indicated that the diffusion of light gas molecules in carbon aerogels cannot be interpreted solely on the basis of micropore diffusion, but that the very high mesopore volumes of the aerogel monoliths exert a strong influence on the kinetics of diffusion in these materials. The mesoporosity is decreased when the % solids used during synthesis of the polymer precursor increases and this resulted in kinetic behaviour which was more similar to that predicted by Fickian or LDF models. Increasing % solids was also accompanied by generally slower diffusion rates and generally lower uptakes. The single gas uptakes and diffusion coefficients could be altered by varying the % solids used during synthesis of the polymer precursor, by introducing different metals into the polymer hydrogel by ion exchange, or by CVD of benzene on the carbon aerogel. (author)
Diffusion of multiple species with excluded-volume effects
Bruna, Maria; Chapman, S. Jonathan
2012-01-01
Stochastic models of diffusion with excluded-volume effects are used to model many biological and physical systems at a discrete level. The average properties of the population may be described by a continuum model based on partial differential equations. In this paper we consider multiple interacting subpopulations/species and study how the inter-species competition emerges at the population level. Each individual is described as a finite-size hard core interacting particle undergoing Brownian motion. The link between the discrete stochastic equations of motion and the continuum model is considered systematically using the method of matched asymptotic expansions. The system for two species leads to a nonlinear cross-diffusion system for each subpopulation, which captures the enhancement of the effective diffusion rate due to excluded-volume interactions between particles of the same species, and the diminishment due to particles of the other species. This model can explain two alternative notions of the diffusion coefficient that are often confounded, namely collective diffusion and self-diffusion. Simulations of the discrete system show good agreement with the analytic results. © 2012 American Institute of Physics.
Product diffusion through on-demand information-seeking behaviour.
Riedl, Christoph; Bjelland, Johannes; Canright, Geoffrey; Iqbal, Asif; Engø-Monsen, Kenth; Qureshi, Taimur; Sundsøy, Pål Roe; Lazer, David
2018-02-01
Most models of product adoption predict S-shaped adoption curves. Here we report results from two country-scale experiments in which we find linear adoption curves. We show evidence that the observed linear pattern is the result of active information-seeking behaviour: individuals actively pulling information from several central sources facilitated by modern Internet searches. Thus, a constant baseline rate of interest sustains product diffusion, resulting in a linear diffusion process instead of the S-shaped curve of adoption predicted by many diffusion models. The main experiment seeded 70 000 (48 000 in Experiment 2) unique voucher codes for the same product with randomly sampled nodes in a social network of approximately 43 million individuals with about 567 million ties. We find that the experiment reached over 800 000 individuals with 80% of adopters adopting the same product-a winner-take-all dynamic consistent with search engine driven rankings that would not have emerged had the products spread only through a network of social contacts. We provide evidence for (and characterization of) this diffusion process driven by active information-seeking behaviour through analyses investigating (a) patterns of geographical spreading; (b) the branching process; and (c) diffusion heterogeneity. Using data on adopters' geolocation we show that social spreading is highly localized, while on-demand diffusion is geographically independent. We also show that cascades started by individuals who actively pull information from central sources are more effective at spreading the product among their peers. © 2018 The Authors.
Reactive solid surface morphology variation via ionic diffusion.
Sun, Zhenchao; Zhou, Qiang; Fan, Liang-Shih
2012-08-14
In gas-solid reactions, one of the most important factors that determine the overall reaction rate is the solid morphology, which can be characterized by a combination of smooth, convex and concave structures. Generally, the solid surface structure varies in the course of reactions, which is classically noted as being attributed to one or more of the following three mechanisms: mechanical interaction, molar volume change, and sintering. Here we show that if a gas-solid reaction involves the outward ionic diffusion of a solid-phase reactant then this outward ionic diffusion could eventually smooth the surface with an initial concave and/or convex structure. Specifically, the concave surface is filled via a larger outward diffusing surface pointing to the concave valley, whereas the height of the convex surface decreases via a lower outward diffusion flux in the vertical direction. A quantitative 2-D continuum diffusion model is established to analyze these two morphological variation processes, which shows consistent results with the experiments. This surface morphology variation by solid-phase ionic diffusion serves to provide a fourth mechanism that supplements the traditionally acknowledged solid morphology variation or, in general, porosity variation mechanisms in gas-solid reactions.
Investigating international new product diffusion speed: A semiparametric approach
Hartman, Brian M.
2012-06-01
Global marketing managers are interested in understanding the speed of the new product diffusion process and how the speed has changed in our ever more technologically advanced and global marketplace. Understanding the process allows firms to forecast the expected rate of return on their new products and develop effective marketing strategies. The most recent major study on this topic [Marketing Science 21 (2002) 97-114] investigated new product diffusions in the United States.We expand upon that study in three important ways. (1) Van den Bulte notes that a similar study is needed in the international context, especially in developing countries. Our study covers four new product diffusions across 31 developed and developing nations from 1980-2004. Our sample accounts for about 80% of the global economic output and 60% of the global population, allowing us to examine more general phenomena. (2) His model contains the implicit assumption that the diffusion speed parameter is constant throughout the diffusion life cycle of a product. Recognizing the likely effects on the speed parameter of recent changes in the marketplace, we model the parameter as a semiparametric function, allowing it the flexibility to change over time. (3) We perform a variable selection to determine that the number of internet users and the consumer price index are strongly associated with the speed of diffusion. © Institute of Mathematical Statistics, 2012.
Diffusion of gases in metal containing carbon aerogels
International Nuclear Information System (INIS)
Marques, L.M.; Conceicao, F.L.; Carrott, M.M.L. Ribeiro; Carrott, P.J.M.
2011-01-01
Carbon aerogels containing Fe, Ni, Cu or no metal were prepared by carbonisation of polymer aerogels synthesised from 2,4-dihydroxybenzoic acid and formaldehyde and modified by CVD of benzene. Uptakes and diffusion coefficients of CO 2 , CH 4 , N 2 and O 2 were measured and the results compared with those obtained using a commercial carbon molecular sieve. The results indicated that the diffusion of light gas molecules in carbon aerogels cannot be interpreted solely on the basis of micropore diffusion, but that the very high mesopore volumes of the aerogel monoliths exert a strong influence on the kinetics of diffusion in these materials. The mesoporosity is decreased when the % solids used during synthesis of the polymer precursor increases and this resulted in kinetic behaviour which was more similar to that predicted by Fickian or LDF models. Increasing % solids was also accompanied by generally slower diffusion rates and generally lower uptakes. The single gas uptakes and diffusion coefficients could be altered by varying the % solids used during synthesis of the polymer precursor, by introducing different metals into the polymer hydrogel by ion exchange, or by CVD of benzene on the carbon aerogel. (author)
Lung diffusion of soluble radioaerosols in scleroderma
International Nuclear Information System (INIS)
Chopra, S.K.; Taplin, G.V.; Tashkin, D.P.; Elam, D.
1978-01-01
Diffusion rates of soluble radioaerosols of sodium pertechnetate (/sup 99m/TcO 4 ; mol. wt. 163) and diethylentriaminepentaacetate (/sup 99m/Tc-DTPA; mol. wt. 492) were determined in ten normal subjects and ten patients with scleroderma having lung involvement. Twenty millicuries (mCi) each of /sup 99m/TcO 4 and /sup 99m/Tc-DTPA in 5 ml saline were aerosolized and inhaled on two different days. Initial lung retention after three minutes of administration was approximately 2 mCi. Two regions of interest over each posterior lung field were monitored with a scintillation camera and data were stored on magnetic tape. Decreasing levels of radioactivity were plotted semilogarithmically and half time (T 1 / 2 ) removal rates were calculated
Liang, Yingjie; Chen, Wen
2018-03-01
Ultraslow diffusion has been observed in numerous complicated systems. Its mean squared displacement (MSD) is not a power law function of time, but instead a logarithmic function, and in some cases grows even more slowly than the logarithmic rate. The distributed-order fractional diffusion equation model simply does not work for the general ultraslow diffusion. Recent study has used the local structural derivative to describe ultraslow diffusion dynamics by using the inverse Mittag-Leffler function as the structural function, in which the MSD is a function of inverse Mittag-Leffler function. In this study, a new stretched logarithmic diffusion law and its underlying non-local structural derivative diffusion model are proposed to characterize the ultraslow diffusion in aging dense colloidal glass at both the short and long waiting times. It is observed that the aging dynamics of dense colloids is a class of the stretched logarithmic ultraslow diffusion processes. Compared with the power, the logarithmic, and the inverse Mittag-Leffler diffusion laws, the stretched logarithmic diffusion law has better precision in fitting the MSD of the colloidal particles at high densities. The corresponding non-local structural derivative diffusion equation manifests clear physical mechanism, and its structural function is equivalent to the first-order derivative of the MSD.
Diffuse sound field: challenges and misconceptions
DEFF Research Database (Denmark)
Jeong, Cheol-Ho
2016-01-01
Diffuse sound field is a popular, yet widely misused concept. Although its definition is relatively well established, acousticians use this term for different meanings. The diffuse sound field is defined by a uniform sound pressure distribution (spatial diffusion or homogeneity) and uniform...... tremendously in different chambers because the chambers are non-diffuse in variously different ways. Therefore, good objective measures that can quantify the degree of diffusion and potentially indicate how to fix such problems in reverberation chambers are needed. Acousticians often blend the concept...... of mixing and diffuse sound field. Acousticians often refer diffuse reflections from surfaces to diffuseness in rooms, and vice versa. Subjective aspects of diffuseness have not been much investigated. Finally, ways to realize a diffuse sound field in a finite space are discussed....
Vestergaard-Poulsen, Peter; Hansen, Brian; Ostergaard, Leif; Jakobsen, Rikke
2007-09-01
To understand the diffusion attenuated MR signal from normal and ischemic brain tissue in order to extract structural and physiological information using mathematical modeling, taking into account the transverse relaxation rates in gray matter. We fit our diffusion model to the diffusion-weighted MR signal obtained from cortical gray matter in healthy subjects. Our model includes variable volume fractions, intracellular restriction effects, and exchange between compartments in addition to individual diffusion coefficients and transverse relaxation rates for each compartment. A global optimum was found from a wide range of parameter permutations using cluster computing. We also present simulations of cell swelling and changes of exchange rate and intracellular diffusion as possible cellular mechanisms in ischemia. Our model estimates an extracellular volume fraction of 0.19 in accordance with the accepted value from histology. The absolute apparent diffusion coefficient obtained from the model was similar to that of experiments. The model and the experimental results indicate significant differences in diffusion and transverse relaxation between the tissue compartments and slow water exchange. Our model reproduces the signal changes observed in ischemia via physiologically credible mechanisms. Our modeling suggests that transverse relaxation has a profound influence on the diffusion attenuated MR signal. Our simulations indicate cell swelling as the primary cause of the diffusion changes seen in the acute phase of brain ischemia. (c) 2007 Wiley-Liss, Inc.
Resolving Fast, Confined Diffusion in Bacteria with Image Correlation Spectroscopy.
Rowland, David J; Tuson, Hannah H; Biteen, Julie S
2016-05-24
By following single fluorescent molecules in a microscope, single-particle tracking (SPT) can measure diffusion and binding on the nanometer and millisecond scales. Still, although SPT can at its limits characterize the fastest biomolecules as they interact with subcellular environments, this measurement may require advanced illumination techniques such as stroboscopic illumination. Here, we address the challenge of measuring fast subcellular motion by instead analyzing single-molecule data with spatiotemporal image correlation spectroscopy (STICS) with a focus on measurements of confined motion. Our SPT and STICS analysis of simulations of the fast diffusion of confined molecules shows that image blur affects both STICS and SPT, and we find biased diffusion rate measurements for STICS analysis in the limits of fast diffusion and tight confinement due to fitting STICS correlation functions to a Gaussian approximation. However, we determine that with STICS, it is possible to correctly interpret the motion that blurs single-molecule images without advanced illumination techniques or fast cameras. In particular, we present a method to overcome the bias due to image blur by properly estimating the width of the correlation function by directly calculating the correlation function variance instead of using the typical Gaussian fitting procedure. Our simulation results are validated by applying the STICS method to experimental measurements of fast, confined motion: we measure the diffusion of cytosolic mMaple3 in living Escherichia coli cells at 25 frames/s under continuous illumination to illustrate the utility of STICS in an experimental parameter regime for which in-frame motion prevents SPT and tight confinement of fast diffusion precludes stroboscopic illumination. Overall, our application of STICS to freely diffusing cytosolic protein in small cells extends the utility of single-molecule experiments to the regime of fast confined diffusion without requiring advanced
Bounded fractional diffusion in geological media: Definition and Lagrangian approximation
Zhang, Yong; Green, Christopher T.; LaBolle, Eric M.; Neupauer, Roseanna M.; Sun, HongGuang
2016-01-01
Spatiotemporal Fractional-Derivative Models (FDMs) have been increasingly used to simulate non-Fickian diffusion, but methods have not been available to define boundary conditions for FDMs in bounded domains. This study defines boundary conditions and then develops a Lagrangian solver to approximate bounded, one-dimensional fractional diffusion. Both the zero-value and non-zero-value Dirichlet, Neumann, and mixed Robin boundary conditions are defined, where the sign of Riemann-Liouville fractional derivative (capturing non-zero-value spatial-nonlocal boundary conditions with directional super-diffusion) remains consistent with the sign of the fractional-diffusive flux term in the FDMs. New Lagrangian schemes are then proposed to track solute particles moving in bounded domains, where the solutions are checked against analytical or Eularian solutions available for simplified FDMs. Numerical experiments show that the particle-tracking algorithm for non-Fickian diffusion differs from Fickian diffusion in relocating the particle position around the reflective boundary, likely due to the non-local and non-symmetric fractional diffusion. For a non-zero-value Neumann or Robin boundary, a source cell with a reflective face can be applied to define the release rate of random-walking particles at the specified flux boundary. Mathematical definitions of physically meaningful nonlocal boundaries combined with bounded Lagrangian solvers in this study may provide the only viable techniques at present to quantify the impact of boundaries on anomalous diffusion, expanding the applicability of FDMs from infinite do mains to those with any size and boundary conditions.
Impurity diffusion activation energies in Al from first principles
Simonovic, D.; Sluiter, M.H.
2009-01-01
Activation energies for vacancy-mediated impurity diffusion in face-centered-cubic aluminum have been computed ab initio for all technologically important alloying elements, as well as for most of the lanthanides. The so-called five-frequency rate model is used to establish the limiting vacancy
Diffusion of a quality improvement programme among allied health professionals.
Sluijs, E.M.; Dekker, J.
1999-01-01
Objective: To assess the diffusion of a quality improvement (QI) programme among allied health professions in The Netherlands. Design: Descriptive study, based on a questionnaire distributed to allied health professionals; response rate, 63%. Settings and participants: All subsectors in health care
Diffusion of fish from a single release point
DEFF Research Database (Denmark)
Sparrevohn, Claus Reedtz; Nielsen, Anders; Støttrup, Josianne
2002-01-01
In a field experiment, 3529 turbot (Psetta maxima) were released in order to estimate and describe the movements of hatchery-reared fish by applying diffusion theory. After liberation, the development of the population density was estimated during the following 9 days, and from that, the rate of ...
On triply diffusive convection in completely confined fluids
Directory of Open Access Journals (Sweden)
Prakash Jyoti
2017-01-01
Full Text Available The present paper carries forward Prakash et al. [21] analysis for triple diffusive convection problem in completely confined fluids and derives upper bounds for the complex growth rate of an arbitrary oscillatory disturbance which may be neutral or unstable through the use of some non-trivial integral estimates obtained from the coupled system of governing equations of the problem.
Monitoring the development and diffusion of EHR systems in Denmark
DEFF Research Database (Denmark)
Nøhr, Christian; Andersen, Stig Kjær; Vingtoft, Søren
2003-01-01
The danish EHR Oberservatory has monitored Danish EHR projects for several years with respect to a number of parameters such as diffusion, diffusin rate, barriers and limitations, and experience gained. The results of the 2002 monitoring reveal that investment in IT is relatively low...
Diffusion model of delayed hydride cracking in zirconium alloys
Shmakov, AA; Kalin, BA; Matvienko, YG; Singh, RN; De, PK
2004-01-01
We develop a method for the evaluation of the rate of delayed hydride cracking in zirconium alloys. The model is based on the stationary solution of the phenomenological diffusion equation and the detailed analysis of the distribution of hydrostatic stresses in the plane of a sharp tensile crack.
Nonlinear Diffusion and Transient Osmosis
International Nuclear Information System (INIS)
Igarashi, Akira; Rondoni, Lamberto; Botrugno, Antonio; Pizzi, Marco
2011-01-01
We investigate both analytically and numerically the concentration dynamics of a solution in two containers connected by a narrow and short channel, in which diffusion obeys a porous medium equation. We also consider the variation of the pressure in the containers due to the flow of matter in the channel. In particular, we identify a phenomenon, which depends on the transport of matter across nano-porous membranes, which we call ''transient osmosis . We find that nonlinear diffusion of the porous medium equation type allows numerous different osmotic-like phenomena, which are not present in the case of ordinary Fickian diffusion. Experimental results suggest one possible candidate for transiently osmotic processes. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Nitrogen diffusion in zirconium nitride
International Nuclear Information System (INIS)
Desmaison, J.G.; Smeltzer, W.W.
1977-01-01
Nitrogen diffusion in polycrystalline ZrN/sub 0.71-0.79/ spheres, 60 and 90 μm diameter, was studied by the gas-solid exchange technique using 15 N as a tracer at a nitrogen pressure of 220 torr and 1000 to 1200 0 C. These specimens were characterized by chemical analyses, density, lattice parameter, and structural measurements. The tracer diffusion coefficient can be expressed as D* (cm 2 /S) = 3.0 x 10 -10 exp (-23,000/RT). This result, when compared to a previous determination obtained in the same conditions with 254 μm thick plates, confirms that nitrogen transport in this polycrystalline solid at temperatures less than 1200 0 C is associated with a short-circuit diffusion mechanism
Tracer diffusion in ternary alloys
International Nuclear Information System (INIS)
Tahir-Kheli, R.A.
1985-07-01
An intuitive extension of the theory for diffusion in dynamic binary alloys given in the preceding paper is presented. This theory has also received an independent derivation, based on more formal procedures, by Holdsworth and Elliott. We present Monte Carlo estimates for diffusion correlation factors, fsup(A), fsup(B), and fsup(C) and compare them with the theory. The agreement between the theoretical results and the Monte Carlo estimates for the correlation factors of the slow particles, i.e., fsup(C) and fsup(B), is found to be generally good. In contrast, for the correlation factor, fsup(A), referring to the diffusion coefficient of fast particles in the system, the theoretical results are found to be systematically lower by a small but resolvable margin. It is suggested that this is occasioned by the neglect of spatial constraints on the scattering of coupled tracer-background particle field pairs. (author)
Emissivity of discretized diffusion problems
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Davidson, Gregory; Carrington, David B.
2006-01-01
The numerical modeling of radiative transfer by the diffusion approximation can produce artificially damped radiation propagation if spatial cells are too optically thick. In this paper, we investigate this nonphysical behavior at external problem boundaries by examining the emissivity of the discretized diffusion approximation. We demonstrate that the standard cell-centered discretization produces an emissivity that is too low for optically thick cells, a situation that leads to the lack of radiation propagation. We then present a modified boundary condition that yields an accurate emissivity regardless of cell size. This modified boundary condition can be used with a deterministic calculation or as part of a hybrid transport-diffusion method for increasing the efficiency of Monte Carlo simulations. We also discuss the range of applicability, as a function of cell size and material properties, when this modified boundary condition is employed in a hybrid technique. With a set of numerical calculations, we demonstrate the accuracy and usefulness of this modified boundary condition
Diffusion in inhomogeneous polymer membranes
Kasargod, Sameer S.; Adib, Farhad; Neogi, P.
1995-10-01
The dual mode sorption solubility isotherms assume, and in instances Zimm-Lundberg analysis of the solubilities show, that glassy polymers are heterogeneous and that the distribution of the solute in the polymer is also inhomogeneous. Under some conditions, the heterogeneities cannot be represented as holes. A mathematical model describing diffusion in inhomogeneous polymer membranes is presented using Cahn and Hilliard's gradient theory. The fractional mass uptake is found to be proportional to the fourth root of time rather than the square root, predicted by Fickian diffusion. This type of diffusion is classified as pseudo-Fickian. The model is compared with one experimental result available. A negative value of the persistence factor is obtained and the results are interpreted.
Single Crystal Diffuse Neutron Scattering
Directory of Open Access Journals (Sweden)
Richard Welberry
2018-01-01
Full Text Available Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. In this paper, we compare three different instruments that have been used by us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.
Ion-exchange equilibria and diffusion in engineered backfill
International Nuclear Information System (INIS)
Soudek, A.; Jahnke, F.M.; Radke, C.J.
1984-01-01
Engineered backfill can add confidence to confinement times of high-level nuclear waste stored in geologic media. This paper discusses the design and operation of a unique radial-flow diffusion cell to determine ion migration rates in backfill material under realistic repository conditions. New experimental results were reported for diffusion of CsCl in a background of NaCl into compacted bentonite and bentonite/quartz mixtures. Representation of the measured diffusion rates by the traditional, homogeneous porous-medium model significantly underestimates cesium penetration distances into the backfill. Surface diffusion is suggested as an additional mechanism by which cations transport in swollen montmorillonite; the surface diffusion coefficients for cesium is determined to be approximately 10 -7 cm 2 /s. An electrostatic site-binding model is developed for ion-exchange equilibria on montmorillonite clay. The effect of pH, ionic strength, and specific adsorption are evaluated and compared favorably to new, experimental exchange isotherms measured on disaggregated clay. The electrostatic site-binding model permits a prediction of the influence of backfill compaction on K/sub d/ values. We find that for strongly adsorbing cations, compactions has little effect. However, anions exhibit significant Donnan exclusion with clay compaction. 40 references, 12 figures
Characterization of Phospholipid Mixed Micelles by Translational Diffusion
International Nuclear Information System (INIS)
Chou, James J.; Baber, James L.; Bax, Ad
2004-01-01
The concentration dependence of the translational self diffusion rate, D s , has been measured for a range of micelle and mixed micelle systems. Use of bipolar gradient pulse pairs in the longitudinal eddy current delay experiment minimizes NOE attenuation and is found critical for optimizing sensitivity of the translational diffusion measurement of macromolecules and aggregates. For low volume fractions Φ (Φ ≤ 15% v/v) of the micelles, experimental measurement of the concentration dependence, combined with use of the D s =D o (1-3.2λΦ) relationship, yields the hydrodynamic volume. For proteins, the hydrodynamic volume, derived from D s at infinitely dilute concentration, is found to be about 2.6 times the unhydrated molecular volume. Using the data collected for hen egg white lysozyme as a reference, diffusion data for dihexanoyl phosphatidylcholine (DHPC) micelles indicate approximately 27 molecules per micelle, and a critical micelle concentration of 14 mM. Differences in translational diffusion rates for detergent and long chain phospholipids in mixed micelles are attributed to rapid exchange between free and micelle-bound detergent. This difference permits determination of the free detergent concentration, which, for a high detergent to long chain phospholipid molar ratio, is found to depend strongly on this ratio. The hydrodynamic volume of DHPC/POPC bicelles, loaded with an M2 channel peptide homolog, derived from translational diffusion, predicts a rotational correlation time that slightly exceeds the value obtained from peptide 15 N relaxation data
Innovation Diffusion: Assessment of Strategies within the Diffusion Simulation Game
Enfield, Jacob; Myers, Rodney D.; Lara, Miguel; Frick, Theodore W.
2012-01-01
Educators increasingly view the high level of engagement and experiential learning offered by games as a means to promote learning. However, as with any designed learning experience, player experiences should provide an accurate representation of content to be learned. In this study, the authors investigated the DIFFUSION SIMULATION GAME (DSG) to…
Huang diffuse scattering of neutrons
International Nuclear Information System (INIS)
Burkel, E.; Guerard, B. v.; Metzger, H.; Peisl, J.
1979-01-01
Huang diffuse neutron scattering was measured for the first time on niobium with interstitially dissolved deuterium as well as on MgO after neutron irradiation and Li 7 F after γ-irradiation. With Huang diffuse scattering the strength and symmetry of the distortion field around lattice defects can be determined. Our results clearly demonstrate that this method is feasible with neutrons. The present results are compared with X-ray experiments and the advantages of using neutrons is discussed in some detail. (orig.)
In situ measurement of diffusivity
International Nuclear Information System (INIS)
Berne, F.; Pocachard, J.
2004-01-01
The mechanism of molecular diffusion controls the migration of contaminants in very low-permeability porous media, like underground facilities for the storage of hazardous waste. Determining of relevant diffusion coefficients is therefore of prime importance. A few techniques exist for in situ measurement of the quantity, but they suffer from many handicaps (duration, complexity and cost of the experiments). We propose here two innovative methods that have some potential to improve the situation. So far, we have found them feasible on the basis of design calculations and laboratory experiments. This work is presently protected by a patent. (author)
In situ measurement of diffusivity
International Nuclear Information System (INIS)
Berne, Ph.; Pocachard, J.
2005-01-01
The mechanism of molecular diffusion controls the migration of contaminants in very low-permeability porous media, like underground facilities for the storage of hazardous waste. Determining the relevant diffusion coefficients is, therefore, of prime importance. A few techniques exist for the in situ measurement of that quantity, but they suffer from many handicaps (duration, complexity and cost of the experiments). We propose here two innovative methods that have some potential to improve this situation. So far, we have found them feasible on the basis of design calculations and laboratory experiments. This work is presently protected by a patent. (author)
Oxygen diffusion in cuprate superconductors
International Nuclear Information System (INIS)
Routbort, J.L.; Rothman, S.J.
1995-01-01
Superconducting properties of the cuprate superconductors depend on the oxygen content of the material; the diffusion of oxygen is thus an important process in the fabrication and application of these materials. This article reviews studies of the diffusion of oxygen in La 2-x Sr x CuO 4 , YBa 2 Cu 3 O 7- δ, YBa 2 Cu 4 O 8 , and the Bi 2 Sr 2 Ca n-1 Cu n O 2+4 (n = 1, and 2) superconductors, and attempt to elucidate the atomic mechanisms responsible
Optimization of hydraulic turbine diffuser
Directory of Open Access Journals (Sweden)
Moravec Prokop
2016-01-01
Full Text Available Hydraulic turbine diffuser recovers pressure energy from residual kinetic energy on turbine runner outlet. Efficiency of this process is especially important for high specific speed turbines, where almost 50% of available head is utilized within diffuser. Magnitude of the coefficient of pressure recovery can be significantly influenced by designing its proper shape. Present paper focuses on mathematical shape optimization method coupled with CFD. First method is based on direct search Nelder-Mead algorithm, while the second method employs adjoint solver and morphing. Results obtained with both methods are discussed and their advantages/disadvantages summarized.
Langevin diffusions on the torus
DEFF Research Database (Denmark)
García-Portugués, Eduardo; Sørensen, Michael; Mardia, Kanti V.
2018-01-01
We introduce stochastic models for continuous-time evolution of angles and develop their estimation. We focus on studying Langevin diffusions with stationary distributions equal to well-known distributions from directional statistics, since such diffusions can be regarded as toroidal analogues......) a likelihood based on the stationary distribution; (ii) toroidal adaptations of the Euler and Shoji–Ozaki pseudo-likelihoods; (iii) a likelihood based on a specific approximation to the transition density of the wrapped normal process. A simulation study compares, in dimensions one and two, the approximate...
Slaved diffusion in phospholipid bilayers
Zhang, Liangfang; Granick, Steve
2005-01-01
The translational diffusion of phospholipids in supported fluid bilayers splits into two populations when polyelectrolytes adsorb at incomplete surface coverage. Spatially resolved measurements using fluorescence correlation spectroscopy show that a slow mode, whose magnitude scales inversely with the degree of polymerization of the adsorbate, coexists with a fast mode characteristic of naked lipid diffusion. Inner and outer leaflets of the bilayer are affected nearly equally. Mobility may vary from spot to spot on the membrane surface, despite the lipid composition being the same. This work offers a mechanism to explain how nanosized domains with reduced mobility arise in lipid membranes. PMID:15967988
Some Aspects of Diffusion Theory
Pignedoli, A
2011-01-01
This title includes: V.C.A. Ferraro: Diffusion of ions in a plasma with applications to the ionosphere; P.C. Kendall: On the diffusion in the atmosphere and ionosphere; F. Henin: Kinetic equations and Brownian motion; T. Kahan: Theorie des reacteurs nucleaires: methodes de resolution perturbationnelles, interactives et variationnelles; C. Cattaneo: Sulla conduzione del calore; C. Agostinelli: Formule di Green per la diffusione del campo magnetico in un fluido elettricamente conduttore; A. Pignedoli: Transformational methods applied to some one-dimensional problems concerning the equations of t
Subliminal mere exposure: specific, general, and diffuse effects.
Monahan, J L; Murphy, S T; Zajonc, R B
2000-11-01
The present research examined the possibility that repeated exposure may simultaneously produce specific and diffuse effects. In Study 1, participants were presented with 5-ms exposures of 25 stimuli each shown once (single-exposure condition) or with five repetitions of 5 stimuli (repeated-exposure condition). Participants in the repeated-exposure condition subsequently rated their own mood more positively than those in the single-exposure condition. Study 2 examined whether affect generated by subliminal repeated exposures transfers to unrelated stimuli. After a subliminal exposure phase, affective reactions to previously exposed stimuli, to new but similar stimuli, and to stimuli from a different category were obtained. Previously exposed stimuli were rated most positively and novel different stimuli least positively. All stimuli were rated more positively in the repeated-exposure condition than in the single-exposure condition. These findings suggest that affect generated by subliminal repeated exposure is sufficiently diffuse to influence ratings of unrelated stimuli and mood.
Shetty, Anil N; Chiang, Sharon; Maletic-Savatic, Mirjana; Kasprian, Gregor; Vannucci, Marina; Lee, Wesley
2014-01-01
In this article, we discuss the theoretical background for diffusion weighted imaging and diffusion tensor imaging. Molecular diffusion is a random process involving thermal Brownian motion. In biological tissues, the underlying microstructures restrict the diffusion of water molecules, making diffusion directionally dependent. Water diffusion in tissue is mathematically characterized by the diffusion tensor, the elements of which contain information about the magnitude and direction of diffusion and is a function of the coordinate system. Thus, it is possible to generate contrast in tissue based primarily on diffusion effects. Expressing diffusion in terms of the measured diffusion coefficient (eigenvalue) in any one direction can lead to errors. Nowhere is this more evident than in white matter, due to the preferential orientation of myelin fibers. The directional dependency is removed by diagonalization of the diffusion tensor, which then yields a set of three eigenvalues and eigenvectors, representing the magnitude and direction of the three orthogonal axes of the diffusion ellipsoid, respectively. For example, the eigenvalue corresponding to the eigenvector along the long axis of the fiber corresponds qualitatively to diffusion with least restriction. Determination of the principal values of the diffusion tensor and various anisotropic indices provides structural information. We review the use of diffusion measurements using the modified Stejskal-Tanner diffusion equation. The anisotropy is analyzed by decomposing the diffusion tensor based on symmetrical properties describing the geometry of diffusion tensor. We further describe diffusion tensor properties in visualizing fiber tract organization of the human brain.
DEFF Research Database (Denmark)
Lai, Signe Sophus
2015-01-01
tværs af medier og platforme, forskudt i tid og on-demand. This article focuses on audience ratings, which have functioned as the central ‘currency’ informing the media trade. It discusses changes to the production and accuracy of audience ratings at a time when established standards are being...
Plankton motility patterns and encounter rates
DEFF Research Database (Denmark)
Visser, Andre; Kiørboe, Thomas
2006-01-01
measure of run length to reaction distance determines whether the underlying encounter is ballistic or diffusive. Since ballistic interactions are intrinsically more efficient than diffusive, we predict that organisms will display motility with long correlation run lengths compared to their reaction...... distances to their prey, but short compared to the reaction distances of their predators. We show motility data for planktonic organisms ranging from bacteria to copepods that support this prediction. We also present simple ballistic and diffusive motility models for estimating encounter rates, which lead...
Fusion product measurements of the local ion thermal diffusivity in the PLT tokamak
International Nuclear Information System (INIS)
Heidbrink, W.W.; Lovberg, J.; Strachan, J.D.; Bell, R.E.
1986-03-01
Measurement of the gradient of the d-d fusion rate profile in an ohmic PLT plasma is used to deduce the gradient of the ion temperature and, thus, the local ion thermal diffusivity through an energy balance analysis. The inferred ion diffusivity is consistent with neoclassical theory
Diffusion limited reactions in crystalline solids
International Nuclear Information System (INIS)
Fastenau, R.
1982-01-01
Diffusion limited reactions in crystal lattices are studied with diffusion and random walk theory. First the random walk on a crystal lattice is studied. These results are used in a formal study of diffusion limited reactions in which the following simplified traps are discussed: planes, cylinders, spheres, disks and rings. The traps are either present at the start of the process (annealing) or fed into the crystal at a constant rate (continuous production). For the study of trapping processes occurring in real crystals it was necessary to investigate the interaction of the reacting species on the atomic level. Using lattice relaxation calculations, several reactions were studied. These calculations result in a model for the potential energy of the crystal versus the separation of the reaction partners. This model is used in Monte Carlo simulations of the trapping process, which are made at a high trap density, since the extrapolation to the low density regime can be made using the formal part of this work. The following reactions were studied: the trapping of interstitial helium atoms by vacancies, self interstitial vacancy recombination, the trapping of vacancies by immobile, helium filled, vacancies and the capture of self interstitials and vacancies by dislocations. A part of these results is used in two models for the low temperature nucleation and growth of bubbles due to helium bombardment. The models described give the right bubble density versus helium dose, but differ widely in the fraction of helium present in the bubbles found. A mechanism of blistering based on a percolation effect is also discussed. (Auth.)
Molecular Diffusion through Cyanobacterial Septal Junctions.
Nieves-Morión, Mercedes; Mullineaux, Conrad W; Flores, Enrique
2017-01-03
Heterocyst-forming cyanobacteria grow as filaments in which intercellular molecular exchange takes place. During the differentiation of N 2 -fixing heterocysts, regulators are transferred between cells. In the diazotrophic filament, vegetative cells that fix CO 2 through oxygenic photosynthesis provide the heterocysts with reduced carbon and heterocysts provide the vegetative cells with fixed nitrogen. Intercellular molecular transfer has been traced with fluorescent markers, including calcein, 5-carboxyfluorescein, and the sucrose analogue esculin, which are observed to move down their concentration gradient. In this work, we used fluorescence recovery after photobleaching (FRAP) assays in the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 to measure the temperature dependence of intercellular transfer of fluorescent markers. We find that the transfer rate constants are directly proportional to the absolute temperature. This indicates that the "septal junctions" (formerly known as "microplasmodesmata") linking the cells in the filament allow molecular exchange by simple diffusion, without any activated intermediate state. This constitutes a novel mechanism for molecular transfer across the bacterial cytoplasmic membrane, in addition to previously characterized mechanisms for active transport and facilitated diffusion. Cyanobacterial septal junctions are functionally analogous to the gap junctions of metazoans. Although bacteria are frequently considered just as unicellular organisms, there are bacteria that behave as true multicellular organisms. The heterocyst-forming cyanobacteria grow as filaments in which cells communicate. Intercellular molecular exchange is thought to be mediated by septal junctions. Here, we show that intercellular transfer of fluorescent markers in the cyanobacterial filament has the physical properties of simple diffusion. Thus, cyanobacterial septal junctions are functionally analogous to metazoan gap junctions