WorldWideScience

Sample records for diffraction xrd transmission

  1. Transmission X-ray Diffraction (XRD) Patterns Relevant to the MSL Chemin Amorphous Component: Sulfates And Silicates

    Science.gov (United States)

    Morris, R. V.; Rampe, E. B.; Graff, T. G.; Archer, P. D., Jr.; Le, L.; Ming, D. W.; Sutter, B.

    2015-01-01

    The Mars Science Laboratory (MSL) CheMin instrument on the Curiosity rover is a transmission X-ray diffractometer (Co-Kalpha radiation source and a approx.5deg to approx.52deg 2theta range) where the analyzed powder samples are constrained to have discrete particle diameters XRD amorphous component. Estimates of amorphous component abundance, based on the XRD data itself and on mass-balance calculations using APXS data crystalline component chemistry derived from XRD data, martian meteorites, and/or stoichiometry [e.g., 6-9], range from approx.20 wt.% to approx.50 wt.% of bulk sample. The APXSbased calculations show that the amorphous component is rich in volatile elements (esp. SO3) and is not simply primary basaltic glass, which was used as a surrogate to model the broad band in the RN CheMin pattern. For RN, the entire volatile inventory (except minor anhydrite) is assigned to the amorphous component because no volatile-bearing crystalline phases were reported within detection limits [2]. For JK and CB, Fesaponite, basanite, and akaganeite are volatile-bearing crystalline components. Here we report transmission XRD patterns for sulfate and silicate phases relevant to interpretation of MSL-CheMin XRD amorphous components.

  2. Determination of equilibrium humidities using temperature and humidity controlled X-ray diffraction (RH-XRD)

    International Nuclear Information System (INIS)

    Linnow, Kirsten; Steiger, Michael

    2007-01-01

    Confined growth of crystals in porous building materials is generally considered to be a major cause of damage. We report on the use of X-ray diffraction under controlled conditions of temperature and relative humidity (RH-XRD) for the investigation of potentially deleterious phase transition reactions. An improved procedure based on rate measurements is used for the accurate and reproducible determination of equilibrium humidities of deliquescence and hydration reactions. The deliquescence humidities of NaCl (75.4 ± 0.5% RH) and Ca(NO 3 ) 2 .4H 2 O (50.8 ± 0.7% RH) at 25 deg. C determined with this improved RH-XRD technique are in excellent agreement with available literature data. Measurement of the hydration of anhydrous Ca(NO 3 ) 2 to form Ca(NO 3 ) 2 .2H 2 O revealed an equilibrium humidity of 10.2 ± 0.3%, which is also in reasonable agreement with available data. In conclusion, dynamic X-ray diffraction measurements are an appropriate method for the accurate and precise determination of equilibrium humidities with a number of interesting future applications

  3. S tudies on the phase transitions and properties of tungsten (VI oxide nanoparticles by X - Ray diffraction (XRD and thermal analysis

    Directory of Open Access Journals (Sweden)

    S.F. Abdullah

    2017-11-01

    Full Text Available Tungsten (VI oxide, WO3nanoparticles were synthesized by colloidal gas aphrons(CGAs technique.The resultant WO3nanoparticleswere characterized by thermogravimetric-differential thermal analysis (TG-DTA and X-Ray diffraction (XRD measurements in order to determine the phase transitions, the crystallinity and the size of theWO3nanoparticles. As a comparison, transmission electron microscope (TEM was used to investigate the size of the WO3nanoparticles. The result from XRD and DTA show that the formation of polymorphsWO3nanoparticles have the following sequence: orthorhombic (b-WO3®monoclinic (g-WO3 ®triclinic (d-WO3 ®monoclinic (e-WO3 with respect to the calcination temperature of 400, 500, 600 and 700°C. No diffraction peaks were found in the X-Ray diffraction measurements for the sample heat treated at 300°C (as-prepared, suggesting that an amorphous structure was obtained at this temperature whereas the crystallinity had been obtained by the other samples of theWO3nanoparticles at the calcination temperatures of 400, 500, 600 and 700°C. It is also found that the X-Ray diffraction measurements produced an average diameter of (30 ±5, (50 ±5, (150 ±10 and (200 ±10 nm at calcination temperatures of 400, 500, 600 and 700°C respectively by using Debye-Scherrer formula. The TG curve revealed that the WO3nanoparticles is purely anhydrous since the weight loss is insignificant (0.3 –1.4 % from 30 until 600°C for the WO3nanoparticles calcined at 400°C. Finally, the composition and the purity of the WO3nanoparticleshave been examined by X-Ray photoelectron spectroscopy (XPS. Theresults indicate no significant changes to the composition and the purity of the WO3nanoparticle produced due to the temperature variations

  4. Characterization of CuCl quantum dots grown in NaCl single crystals via optical measurements, X-ray diffraction, and transmission electron microscopy

    Science.gov (United States)

    Miyajima, Kensuke; Akatsu, Tatsuro; Itoh, Ken

    2018-05-01

    We evaluated the crystal size, shape, and alignment of the lattice planes of CuCl quantum dots (QDs) embedded in NaCl single crystals by optical measurements, X-ray diffraction (XRD) patterns, and transmission electron microscopy (TEM). We obtained, for the first time, an XRD pattern and TEM images for CuCl QDs in NaCl crystals. The XRD pattern showed that the lattice planes of the CuCl QDs were parallel to those of the NaCl crystals. In addition, the size of the QDs was estimated from the diffraction width. It was apparent from the TEM images that almost all CuCl QDs were polygonal, although some cubic QDs were present. The mean size and size distribution of the QDs were also obtained. The dot size obtained from optical measurements, XRD, and TEM image were almost consistent. Our new findings can help to reveal the growth mechanism of semiconductor QDs embedded in a crystallite matrix. In addition, this work will play an important role in progressing the study of optical phenomena originating from assembled semiconductor QDs.

  5. Induced magnetic anisotropy in Si-free nanocrystalline soft magnetic materials: A transmission x-ray diffraction study

    International Nuclear Information System (INIS)

    Parsons, R.; Suzuki, K.; Yanai, T.; Kishimoto, H.; Kato, A.; Ohnuma, M.

    2015-01-01

    In order to better understand the origin of field-induced anisotropy (K u ) in Si-free nanocrystalline soft magnetic alloys, the lattice spacing of the bcc-Fe phase in nanocrystalline Fe 94−x Nb 6 B x (x = 10, 12, 14) alloys annealed under an applied magnetic field has been investigated by X-ray diffraction in transmission geometry (t-XRD) with the diffraction vector parallel and perpendicular to the field direction. The saturation magnetostriction (λ s ) of nanocrystalline Fe 94−x Nb 6 B x was found to increase linearly with the volume fraction of the residual amorphous phase and is well described by taking into account the volume-weighted average of two local λ s values for the bcc-Fe nanocrystallites (−5 ± 2 ppm) and the residual amorphous matrix (+8 ± 2 ppm). The lattice distortion required to produce the measured K u values (∼100 J/m 3 ) was estimated via the inverse magnetostrictive effect using the measured λ s values and was compared to the lattice spacing estimations made by t-XRD. The lattice strain required to produce K u under the magnetoelastic model was not observed by the t-XRD experiments and so the findings of this study suggest that the origin of magnetic field induced K u cannot be explained through the magnetoelastic effect

  6. Order-disorder phase transformations in quaternary pyrochlore oxide system: Investigated by X-ray diffraction, transmission electron microscopy and Raman spectroscopic techniques

    International Nuclear Information System (INIS)

    Radhakrishnan, A.N.; Prabhakar Rao, P.; Sibi, K.S.; Deepa, M.; Koshy, Peter

    2009-01-01

    Order-disorder transformations in a quaternary pyrochlore oxide system, Ca-Y-Zr-Ta-O, were studied by powder X-ray diffraction (XRD) method, transmission electron microscope (TEM) and FT-NIR Raman spectroscopic techniques. The solid solutions in different ratios, 4:1, 2:1, 1:1, 1:2, 1:4, 1:6, of CaTaO 3.5 and YZrO 3.5 were prepared by the conventional high temperature ceramic route. The XRD results and Rietveld analysis revealed that the crystal structure changed from an ordered pyrochlore structure to a disordered defect fluorite structure as the ratios of the solid solutions of CaTaO 3.5 and YZrO 3.5 were changed from 4:1 to 1:4. This structural transformation in the present system is attributed to the lowering of the average cation radius ratio, r A /r B as a result of progressive and simultaneous substitution of larger cation Ca 2+ for Y 3+ at A sites and smaller cation Ta 5+ for Zr 4+ at B sites. Raman spectroscopy and TEM analysis corroborated the XRD results. - Graphical abstract: Selected area electron diffraction (SAED) patterns showed highly ordered diffraction maxima with characteristic superlattice weak diffraction spots of the pyrochlore structure for (a) Ca 0.6 7Y 1.33 Zr 1.33 Ta 0.33 O 7 (C2YZT2) and bright diffraction maxima arranged in a ring pattern of the fluorite structure for (b) Ca 0.29 7Y 1.71 Zr 1.71 Ta 0.29 O 7 (CY6Z6T).

  7. X-ray diffraction (XRD) characterization of microstrain in some iron and uranium alloys

    International Nuclear Information System (INIS)

    Kimmel, G.; Dayan, D.; Frank, G.A.; Landau, A.

    1996-01-01

    The high linear attenuation coefficient of steel, uranium and uranium based alloys is associated with the small penetration depth of X-rays with the usual wavelength used for diffraction. Nevertheless, by using the proper surface preparation technique, it is possible of obtaining surfaces with bulk properties (free of residual mechanical microstrain). Taking advantage of the feasibility to obtain well prepared surfaces, extensive work has been conducted in studying XRD line broadening effects from flat polycrystalline samples of steel, uranium and uranium alloys

  8. Induced magnetic anisotropy in Si-free nanocrystalline soft magnetic materials: A transmission x-ray diffraction study

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, R., E-mail: rparsons01@gmail.com; Suzuki, K. [Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800 (Australia); Yanai, T. [Graduate School of Engineering, Nagasaki University, Nagasaki 852-8521 (Japan); Kishimoto, H.; Kato, A. [Toyota Motor Corporation, Mishuku, Susono, Shizuoka 410-1193 (Japan); Ohnuma, M. [Faculty and Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)

    2015-05-07

    In order to better understand the origin of field-induced anisotropy (K{sub u}) in Si-free nanocrystalline soft magnetic alloys, the lattice spacing of the bcc-Fe phase in nanocrystalline Fe{sub 94−x}Nb{sub 6}B{sub x} (x = 10, 12, 14) alloys annealed under an applied magnetic field has been investigated by X-ray diffraction in transmission geometry (t-XRD) with the diffraction vector parallel and perpendicular to the field direction. The saturation magnetostriction (λ{sub s}) of nanocrystalline Fe{sub 94−x}Nb{sub 6}B{sub x} was found to increase linearly with the volume fraction of the residual amorphous phase and is well described by taking into account the volume-weighted average of two local λ{sub s} values for the bcc-Fe nanocrystallites (−5 ± 2 ppm) and the residual amorphous matrix (+8 ± 2 ppm). The lattice distortion required to produce the measured K{sub u} values (∼100 J/m{sup 3}) was estimated via the inverse magnetostrictive effect using the measured λ{sub s} values and was compared to the lattice spacing estimations made by t-XRD. The lattice strain required to produce K{sub u} under the magnetoelastic model was not observed by the t-XRD experiments and so the findings of this study suggest that the origin of magnetic field induced K{sub u} cannot be explained through the magnetoelastic effect.

  9. Comparative investigation of Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) in the determination of cotton fiber crystallinity.

    Science.gov (United States)

    Liu, Yongliang; Thibodeaux, Devron; Gamble, Gary; Bauer, Philip; VanDerveer, Don

    2012-08-01

    Despite considerable efforts in developing curve-fitting protocols to evaluate the crystallinity index (CI) from X-ray diffraction (XRD) measurements, in its present state XRD can only provide a qualitative or semi-quantitative assessment of the amounts of crystalline or amorphous fraction in a sample. The greatest barrier to establishing quantitative XRD is the lack of appropriate cellulose standards, which are needed to calibrate the XRD measurements. In practice, samples with known CI are very difficult to prepare or determine. In a previous study, we reported the development of a simple algorithm for determining fiber crystallinity information from Fourier transform infrared (FT-IR) spectroscopy. Hence, in this study we not only compared the fiber crystallinity information between FT-IR and XRD measurements, by developing a simple XRD algorithm in place of a time-consuming and subjective curve-fitting process, but we also suggested a direct way of determining cotton cellulose CI by calibrating XRD with the use of CI(IR) as references.

  10. Analysis of the dislocation content in a deformed Co-based superalloy by transmission electron microscopy and X-ray diffraction

    International Nuclear Information System (INIS)

    Breuer, D.; Klimanek, P.; Muehle, U.; Martin, U.

    1997-01-01

    The present paper compares the dislocation densities as determined in a Co-based superalloy (CoNi22Cr22W14) after creep and tensile deformation by Transmission Electron Microscopy (TEM) and X-ray profile analysis (XRD). After creep tests the dislocation densities obtained by both methods are in good agreement, which is the result of a nearly homogeneous dislocation distribution. The relationship between the dislocation density and the flow stress meets the Taylor equation. After tensile deformation the dislocation densities determined by TEM and XRD differ systematically from each other, but in both cases also a Taylor relationship can be obtained. The constant α of the dislocation interaction derived by TEM is much larger than in the creep tests and also than that of the XRD, which agrees well with the creep data. The difference between the TEM and the XRD results is the consequence of the dislocation cell structure much more developed in the tensile specimens, which leads to an underestimation of the dislocation density in TEM because of overweighting the cell interior. By fitting the Fourier coefficients of the X-ray diffraction line shapes with a bimodal distribution of the defect content (composite model), dislocation densities of the cell interior can be estimated that correspond well to the TEM data. (orig.)

  11. Characterization of crystallite morphology for doped strontium fluoride nanophosphors by TEM and XRD

    Energy Technology Data Exchange (ETDEWEB)

    O' Connell, J.H. [Centre for HRTEM, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth ZA6031 (South Africa); Lee, M.E., E-mail: Michael.lee@nmmu.ac.za [Centre for HRTEM, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth ZA6031 (South Africa); Yagoub, M.Y.A.; Swart, H.C.; Coetsee, E. [Department of Physics, University of the Free State, PO Box 339, Bloemfontein ZA9300 (South Africa)

    2016-01-01

    Crystallite morphology for Eu-doped and undoped SrF{sub 2} nanophosphors have been determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The values for average crystallite size obtained by the application of the Scherrer equation and the full width at half maximum (FWHM) values for XRD peaks are compared to the results obtained using the hollow cone dark field (HCDF) TEM imaging technique. In the case of the TEM analysis, a bimodal crystallite size distribution was revealed with one of the distributions having a measured range of crystallite sizes which was in good agreement with the XRD data. HCDF in combination with FIB specimen preparation was found to be a promising technique for the determination of crystallite size distributions in nanophosphors which might facilitate a better understanding of their scintillation properties.

  12. Characterization of crystallite morphology for doped strontium fluoride nanophosphors by TEM and XRD

    International Nuclear Information System (INIS)

    O'Connell, J.H.; Lee, M.E.; Yagoub, M.Y.A.; Swart, H.C.; Coetsee, E.

    2016-01-01

    Crystallite morphology for Eu-doped and undoped SrF_2 nanophosphors have been determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The values for average crystallite size obtained by the application of the Scherrer equation and the full width at half maximum (FWHM) values for XRD peaks are compared to the results obtained using the hollow cone dark field (HCDF) TEM imaging technique. In the case of the TEM analysis, a bimodal crystallite size distribution was revealed with one of the distributions having a measured range of crystallite sizes which was in good agreement with the XRD data. HCDF in combination with FIB specimen preparation was found to be a promising technique for the determination of crystallite size distributions in nanophosphors which might facilitate a better understanding of their scintillation properties.

  13. XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite

    International Nuclear Information System (INIS)

    Reyes-Gasga, José; Martínez-Piñeiro, Esmeralda L.; Rodríguez-Álvarez, Galois; Tiznado-Orozco, Gaby E.; García-García, Ramiro

    2013-01-01

    The crystallinity index (CI) is a measure of the percentage of crystalline material in a given sample and it is also correlated to the degree of order within the crystals. In the literature two ways are reported to measure the CI: X-ray diffraction and infrared spectroscopy. Although the CI determined by these techniques has been adopted in the field of archeology as a structural order measure in the bone with the idea that it can help e.g. in the sequencing of the bones in chronological and/or stratigraphic order, some debate remains about the reliability of the CI values. To investigate similarities and differences between the two techniques, the CI of sound human tooth enamel and synthetic hydroxyapatite (HAP) was measured in this work by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), at room temperature and after heat treatment. Although the (CI) XRD index is related to the crystal structure of the samples and the (CI) FTIR index is related to the vibration modes of the molecular bonds, both indices showed similar qualitative behavior for heat-treated samples. At room temperature, the (CI) XRD value indicated that enamel is more crystalline than synthetic HAP, while (CI) FTIR indicated the opposite. Scanning (SEM) and transmission (TEM) images were also used to corroborate the measured CI values. - Highlights: • XRD and FTIR crystallinity indices for tooth enamel and synthetic HAP were obtained. • SEM and TEM images were more correlated with (CI) XRD than with (CI) FTIR . • Regardless of the temperature, (CI) XRD and (CI) FTIR showed similar behavior. • XRD and FTIR crystallinity indices resulted in a fast and qualitative measurement

  14. Combined XRD and XAS

    International Nuclear Information System (INIS)

    Ehrlich, S.N.; Hanson, J.C.; Lopez Camara, A.; Barrio, L.; Estrella, M.; Zhou, G.; Si, R.; Khalid, S.; Wang, Q.

    2011-01-01

    X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS) are complementary techniques for investigating the structure of materials. XRD probes long range order and XAFS probes short range order. We have combined the two techniques at one synchrotron beamline, X18A at the NSLS, allowing samples to be studied in a single experiment. This beamline will allow for coordinated measurements of local and long range structural changes in chemical transformations and phase transitions using both techniques.

  15. Opto-mechanical design and development of a 460mm diffractive transmissive telescope

    Science.gov (United States)

    Qi, Bo; Wang, Lihua; Cui, Zhangang; Bian, Jiang; Xiang, Sihua; Ma, Haotong; Fan, Bin

    2018-01-01

    Using lightweight, replicated diffractive optics, we can construct extremely large aperture telescopes in space.The transmissive primary significantly reduces the sensitivities to out of plane motion as compared to reflective systems while reducing the manufacturing time and costs. This paper focuses on the design, fabrication and ground demonstration of a 460mm diffractive transmissive telescope the primary F/# is 6, optical field of view is 0.2° imagine bandwidth is 486nm 656nm.The design method of diffractive optical system was verified, the ability to capture a high-quality image using diffractive telescope collection optics was tested.The results show that the limit resolution is 94lp/mm, the diffractive system has a good imagine performance with broad bandwidths. This technology is particularly promising as a means to achieve extremely large optical primaries from compact, lightweight packages.

  16. XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Gasga, José, E-mail: jreyes@fisica.unam.mx [Instituto de Física, UNAM, Circuito de la Investigación Científica s/n., Cd. Universitaria, Coyoacán 04510, México, D.F. (Mexico); Martínez-Piñeiro, Esmeralda L., E-mail: esmemapi@gmail.com [Instituto de Física, UNAM, Circuito de la Investigación Científica s/n., Cd. Universitaria, Coyoacán 04510, México, D.F. (Mexico); Rodríguez-Álvarez, Galois, E-mail: galoisborre@yahoo.com [Instituto de Física, UNAM, Circuito de la Investigación Científica s/n., Cd. Universitaria, Coyoacán 04510, México, D.F. (Mexico); Tiznado-Orozco, Gaby E., E-mail: gab0409@yahoo.com.mx [Unidad Académica de Odontología, Universidad Autónoma de Nayarit, Edificio E7, Ciudad de la Cultura “Amado Nervo”, C.P. 63190 Tepic, Nayarit (Mexico); García-García, Ramiro, E-mail: ramiro@fisica.unam.mx [Instituto de Física, UNAM, Circuito de la Investigación Científica s/n., Cd. Universitaria, Coyoacán 04510, México, D.F. (Mexico); and others

    2013-12-01

    The crystallinity index (CI) is a measure of the percentage of crystalline material in a given sample and it is also correlated to the degree of order within the crystals. In the literature two ways are reported to measure the CI: X-ray diffraction and infrared spectroscopy. Although the CI determined by these techniques has been adopted in the field of archeology as a structural order measure in the bone with the idea that it can help e.g. in the sequencing of the bones in chronological and/or stratigraphic order, some debate remains about the reliability of the CI values. To investigate similarities and differences between the two techniques, the CI of sound human tooth enamel and synthetic hydroxyapatite (HAP) was measured in this work by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), at room temperature and after heat treatment. Although the (CI){sub XRD} index is related to the crystal structure of the samples and the (CI){sub FTIR} index is related to the vibration modes of the molecular bonds, both indices showed similar qualitative behavior for heat-treated samples. At room temperature, the (CI){sub XRD} value indicated that enamel is more crystalline than synthetic HAP, while (CI){sub FTIR} indicated the opposite. Scanning (SEM) and transmission (TEM) images were also used to corroborate the measured CI values. - Highlights: • XRD and FTIR crystallinity indices for tooth enamel and synthetic HAP were obtained. • SEM and TEM images were more correlated with (CI){sub XRD} than with (CI){sub FTIR}. • Regardless of the temperature, (CI){sub XRD} and (CI){sub FTIR} showed similar behavior. • XRD and FTIR crystallinity indices resulted in a fast and qualitative measurement.

  17. Full-color, large area, transmissive holograms enabled by multi-level diffractive optics.

    Science.gov (United States)

    Mohammad, Nabil; Meem, Monjurul; Wan, Xiaowen; Menon, Rajesh

    2017-07-19

    We show that multi-level diffractive microstructures can enable broadband, on-axis transmissive holograms that can project complex full-color images, which are invariant to viewing angle. Compared to alternatives like metaholograms, diffractive holograms utilize much larger minimum features (>10 µm), much smaller aspect ratios (30 mm ×30 mm). We designed, fabricated and characterized holograms that encode various full-color images. Our devices demonstrate absolute transmission efficiencies of >86% across the visible spectrum from 405 nm to 633 nm (peak value of about 92%), and excellent color fidelity. Furthermore, these devices do not exhibit polarization dependence. Finally, we emphasize that our devices exhibit negligible absorption and are phase-only holograms with high diffraction efficiency.

  18. Moessbauer, TEM/SAED and XRD investigation on waste dumps of the Valea lui Stan gold mines

    Energy Technology Data Exchange (ETDEWEB)

    Constantinescu, Serban Grigore, E-mail: sconst@infim.ro [National Institute of Materials Physics, Bucharest-Magurele (Romania); Udubasa, Sorin S.; Udubasa, Gheorghe [University of Bucharest, Fac. of Geology and Geophysics (Romania); Kuncser, Victor; Popescu-Pogrion, Nicoleta; Mercioniu, Ionel; Feder, Marcel [National Institute of Materials Physics, Bucharest-Magurele (Romania)

    2012-03-15

    The complementary investigation techniques, Moessbauer spectroscopy, transmission electron microscopy with selected area electron diffraction (TEM/SAED), X-ray diffraction (XRD) have been used to investigate the fate of the Valea lui Stan, Romania, gold-ore nanoscale-minerals during the long time of residence in the waste dumps. The preliminary investigations showed such waste dumps to contain significant amount of metals which cannot be identified by conventional methods. An intense research activity started up in order to evaluate the possibilities to recycle Valea lui Stan waste dumps and to recover metals by chemical or phytoextraction procedures. The waste dumps naturally show different mineral constituents with clay minerals as major phases, observed by XRD-technique. Although the waste dumps materials have whitish-yellowish colours, MOeSSBAUER technique evidences the presence of the finely dispersed iron bearing minerals. The authors are focusing to inspect and analyze Fe-compounds in the samples collected from Valea lui Stan's waste dumps in order to identify the magnetic phases by Moessbauer technique.

  19. Origin of nondetectable x-ray diffraction peaks in nanocomposite CuTiZr alloys

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Kato, H.; Ohsuna, T.

    2003-01-01

    Microscopic structures of Cu60Ti10+xZr30-x (x=0 and 10) alloys have been investigated by transmission electron microscopy, x-ray diffraction (XRD) and differential scanning calorimeter (DSC). In the Cu60Ti10Zr30 samples annealed at 708 K for times ranging from 0 to 130 min, where the enthalpy...... of the first exothermic peak decreases by 80%, the corresponding XRD patterns still look similar to that for the as-prepared sample. However, the simulated XRD patterns for the pure Cu51Zr14 phase, which is the crystalline phase formed during the first exothermic reaction, with small grain sizes and defects...... clearly show a broadened amorphous-like feature. This might be the reason that no diffraction peaks from the nanocrystalline component were detected in the XRD patterns recorded for the as-cast or as-spun Cu60Ti10+xZr30-x (x=0 and 10) alloys and for the alloys annealed at lower temperatures, in which...

  20. XRD and FTIR crystallinity indices in sound human tooth enamel and synthetic hydroxyapatite.

    Science.gov (United States)

    Reyes-Gasga, José; Martínez-Piñeiro, Esmeralda L; Rodríguez-Álvarez, Galois; Tiznado-Orozco, Gaby E; García-García, Ramiro; Brès, Etienne F

    2013-12-01

    The crystallinity index (CI) is a measure of the percentage of crystalline material in a given sample and it is also correlated to the degree of order within the crystals. In the literature two ways are reported to measure the CI: X-ray diffraction and infrared spectroscopy. Although the CI determined by these techniques has been adopted in the field of archeology as a structural order measure in the bone with the idea that it can help e.g. in the sequencing of the bones in chronological and/or stratigraphic order, some debate remains about the reliability of the CI values. To investigate similarities and differences between the two techniques, the CI of sound human tooth enamel and synthetic hydroxyapatite (HAP) was measured in this work by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), at room temperature and after heat treatment. Although the (CI)XRD index is related to the crystal structure of the samples and the (CI)FTIR index is related to the vibration modes of the molecular bonds, both indices showed similar qualitative behavior for heat-treated samples. At room temperature, the (CI)XRD value indicated that enamel is more crystalline than synthetic HAP, while (CI)FTIR indicated the opposite. Scanning (SEM) and transmission (TEM) images were also used to corroborate the measured CI values. © 2013.

  1. Remote In-Situ Quantitative Mineralogical Analysis Using XRD/XRF

    Science.gov (United States)

    Blake, D. F.; Bish, D.; Vaniman, D.; Chipera, S.; Sarrazin, P.; Collins, S. A.; Elliott, S. T.

    2001-01-01

    X-Ray Diffraction (XRD) is the most direct and accurate method for determining mineralogy. The CHEMIN XRD/XRF instrument has shown promising results on a variety of mineral and rock samples. Additional information is contained in the original extended abstract.

  2. Clay pigment structure characterisation as a guide for provenance determination--a comparison between laboratory powder micro-XRD and synchrotron radiation XRD.

    Science.gov (United States)

    Švarcová, Silvie; Bezdička, Petr; Hradil, David; Hradilová, Janka; Žižak, Ivo

    2011-01-01

    Application of X-ray diffraction (XRD)-based techniques in the analysis of painted artworks is not only beneficial for indisputable identification of crystal constituents in colour layers, but it can also bring insight in material crystal structure, which can be affected by their geological formation, manufacturing procedure or secondary changes. This knowledge might be helpful for art historic evaluation of an artwork as well as for its conservation. By way of example of kaolinite, we show that classification of its crystal structure order based on XRD data is useful for estimation of its provenance. We found kaolinite in the preparation layer of a Gothic wall painting in a Czech church situated near Karlovy Vary, where there are important kaolin deposits. Comparing reference kaolin materials from eight various Czech deposits, we found that these can be differentiated just according to the kaolinite crystallinity. Within this study, we compared laboratory powder X-ray micro-diffraction (micro-XRD) with synchrotron radiation X-ray diffraction analysing the same real sample. We found that both techniques led to the same results.

  3. In situ observation of Cu-Ni alloy nanoparticle formation by X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy: Influence of Cu/Ni ratio

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Duchstein, Linus Daniel Leonhard; Chiarello, Gian Luca

    2014-01-01

    Silica-supported, bimetallic Cu-Ni nanomaterials were prepared with different ratios of Cu to Ni by incipient wetness impregnation without a specific calcination step before reduction. Different in situ characterization techniques, in particular transmission electron microscopy (TEM), X-ray...... diffraction (XRD), and X-ray absorption spectroscopy (XAS), were applied to follow the reduction and alloying process of Cu-Ni nanoparticles on silica. In situ reduction of Cu-Ni samples with structural characterization by combined synchrotron XRD and XAS reveals a strong interaction between Cu and Ni species......, which results in improved reducibility of the Ni species compared with monometallic Ni. At high Ni concentrations silica-supported Cu-Ni alloys form a homogeneous solid solution of Cu and Ni, whereas at lower Ni contents Cu and Ni are partly segregated and form metallic Cu and Cu-Ni alloy phases. Under...

  4. Highlighting material structure with transmission electron diffraction correlation coefficient maps

    International Nuclear Information System (INIS)

    Kiss, Ákos K.; Rauch, Edgar F.; Lábár, János L.

    2016-01-01

    Correlation coefficient maps are constructed by computing the differences between neighboring diffraction patterns collected in a transmission electron microscope in scanning mode. The maps are shown to highlight material structural features like grain boundaries, second phase particles or dislocations. The inclination of the inner crystal interfaces are directly deduced from the resulting contrast. - Highlights: • We propose a novel technique to image the structure of polycrystalline TEM-samples. • Correlation coefficients maps highlights the evolution of the diffracting signal. • 3D views of grain boundaries are provided for nano-particles or polycrystals.

  5. Three-dimensional x-ray diffraction detection and visualization

    International Nuclear Information System (INIS)

    Allahkarami, Masoud; Hanan, Jay C

    2014-01-01

    A new method of sensing and analyzing three-dimensional (3D) x-ray diffraction (XRD) cones was introduced. Using a two-dimensional area detector, a sequence of frames was collected while moving the detector away from the sample with small equally spaced steps and keeping all other parameters constant. A 3D dataset was created from the subsequent frames. The 3D x-ray diffraction (XRD 3 ) pattern contains far more information than a one-dimensional profile collected with the conventional diffractometer and 2D x-ray diffraction (XRD 2 ). The present work discusses some fundamentals about XRD 3 , such as the data collection method, 3D visualization, diffraction data interpretation and potential applications of XRD 3 . (paper)

  6. Evaluation of dislocation density in copper and brass α deformed by XRD peak width analysis

    International Nuclear Information System (INIS)

    Sousa, Talita Gama de

    2014-01-01

    The determination of dislocation density in metallic materials has been available for many years in scientific environment. This is due to the fact that the dislocations are the main responsible for plastic deformation, which, thereafter, markedly influences the mechanical properties. In this work, the dislocation density was analyzed through peak broadening of Xray diffraction (XRD) using Convolutional Multiple Whole Profile (CMWP) program. The measurements obtained by XRD were compared with those obtained from images observed by transmission electronic microscopy (TEM). The materials used in this study were pure copper and brass α as alloy 268 (6 % Cu and 34 % Zn), deformed by rolling and ECA (equal channel angular extrusion) processes. The results indicate that the XRD is a powerful tool for the characterization of the microstructure in relation to the dislocation density, as they were consistent to the TEM measurements, and also showed good relationship with measurements of hardness. Furthermore, through the dislocation density it was possible to verify the influence of stacking fault energy (SFE) in the evolution of the copper samples deformation process and its alloy, and that the presence of texture in rolled samples did not impair the measurements obtained by XRD technique. (author)

  7. Quantitative XRD analysis of {110} twin density in biotic aragonites.

    Science.gov (United States)

    Suzuki, Michio; Kim, Hyejin; Mukai, Hiroki; Nagasawa, Hiromichi; Kogure, Toshihiro

    2012-12-01

    {110} Twin densities in biotic aragonite have been estimated quantitatively from the peak widths of specific reflections in powder X-ray diffraction (XRD) patterns, as well as direct confirmation of the twins using transmission electron microscopy (TEM). Influence of the twin density on the peak widths in the XRD pattern was simulated using DIFFaX program, regarding (110) twin as interstratification of two types of aragonite unit layers with mirrored relationship. The simulation suggested that the twin density can be estimated from the difference of the peak widths between 111 and 021, or between 221 and 211 reflections. Biotic aragonite in the crossed-lamellar microstructure (three species) and nacreous microstructure (four species) of molluscan shells, fish otoliths (two species), and a coral were investigated. The XRD analyses indicated that aragonite crystals in the crossed-lamellar microstructure of the three species contain high density of the twins, which is consistent with the TEM examination. On the other hand, aragonite in the nacre of the four species showed almost no difference of the peak widths between the paired reflections, indicating low twin densities. The results for the fish otoliths were varied between the species. Such variation of the twin density in biotic aragonites may reflect different schemes of crystal growth in biomineralization. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Applications of the rotating orientation XRD method to oriented materials

    International Nuclear Information System (INIS)

    Guo Zhenqi; Li Fei; Jin Li; Bai Yu

    2009-01-01

    The rotating orientation x-ray diffraction (RO-XRD) method, based on conventional XRD instruments by a modification of the sample stage, was introduced to investigate the orientation-related issues of such materials. In this paper, we show its applications including the determination of single crystal orientation, assistance in crystal cutting and evaluation of crystal quality. The interpretation of scanning patterns by RO-XRD on polycrystals with large grains, bulk material with several grains and oriented thin film is also presented. These results will hopefully expand the applications of the RO-XRD method and also benefit the conventional XRD techniques. (fast track communication)

  9. Highlighting material structure with transmission electron diffraction correlation coefficient maps.

    Science.gov (United States)

    Kiss, Ákos K; Rauch, Edgar F; Lábár, János L

    2016-04-01

    Correlation coefficient maps are constructed by computing the differences between neighboring diffraction patterns collected in a transmission electron microscope in scanning mode. The maps are shown to highlight material structural features like grain boundaries, second phase particles or dislocations. The inclination of the inner crystal interfaces are directly deduced from the resulting contrast. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Determination of grain size by XRD profile analysis and TEM counting in nano-structured Cu

    International Nuclear Information System (INIS)

    Zhong Yong; Ping Dehai; Song Xiaoyan; Yin Fuxing

    2009-01-01

    In this work, a serial of pure copper sample with different grain sizes from nano- to micro-scale were prepared by sparkle plasma sintering (SPS) and following anneal treatment at 873 K and 1073 K, respectively. The grain size distributions of these samples were determined by both X-ray diffraction (XRD) profile analysis and transmission electronic microscope (TEM) micrograph counting. Although these two methods give similar distributions of grain size in the case of as-SPS sample with nano-scale grain size (around 10 nm), there are apparent discrepancies between the grain size distributions of the annealed samples obtained from XRD and TEM, especially for the sample annealed at 1073 K after SPS with micro-scale grain size (around 2 μm), which TEM counting provides much higher values of grain sizes than XRD analysis does. It indicates that for large grain-sized material, XRD analysis lost its validity for determination of grain size. It might be due to some small sized substructures possibly existed in even annealed (large grain-sized) samples, whereas there is no substructures in as-SPS (nanocrystalline) sample. Moreover, it has been found that the effective outer cut-off radius R e derived from XRD analysis coincides with the grain sizes given by TEM counting. The potential relationship between grain size and R e was discussed in the present work. These results might provide some new hints for deeper understanding of the physical meaning of XRD analysis and the parameters derived.

  11. miniPixD : a compact sample analysis system which combines X-ray imaging and diffraction

    International Nuclear Information System (INIS)

    Moss, Robert; Crews, Chiaki; Speller, Robert; Wilson, Matthew

    2017-01-01

    This paper introduces miniPixD : a new, compact system that utilises transmission X-ray imaging and X-ray diffraction (XRD) to locate and identify materials of interest within an otherwise opaque volume. The system and the embodied techniques have utility in security screening, medical diagnostics, non-destructive testing (NDT) and quality assurance (QA). This paper outlines the design of the system including discussion on the choice of components and presents some data from relevant samples which are compared to other energy dispersive and angular dispersive XRD techniques.

  12. Microstructural changes in CdSe-coated ZnO nanowires evaluated by in situ annealing in transmission electron microscopy and x-ray diffraction

    International Nuclear Information System (INIS)

    Majidi, Hasti; Baxter, Jason B; Winkler, Christopher R; Taheri, Mitra L

    2012-01-01

    We report on the crystallite growth and phase change of electrodeposited CdSe coatings on ZnO nanowires during annealing. Both in situ transmission electron microscopy (TEM) and x-ray diffraction (XRD) reveal that the nanocrystal size increases from ∼3 to ∼10 nm upon annealing at 350 °C for 1 h and then to more than 30 nm during another 1 h at 400 °C, exhibiting two distinct growth regimes. Nanocrystal growth occurs together with a structural change from zinc blende to wurtzite. The structural transition begins at 350 °C, which results in the formation of stacking faults. Increased crystallite size, comparable to the coating thickness, can improve charge separation in extremely thin absorber solar cells. We demonstrate a nearly two-fold improvement in power conversion efficiency upon annealing. (paper)

  13. Microstructural changes in CdSe-coated ZnO nanowires evaluated by in situ annealing in transmission electron microscopy and x-ray diffraction

    Science.gov (United States)

    Majidi, Hasti; Winkler, Christopher R.; Taheri, Mitra L.; Baxter, Jason B.

    2012-07-01

    We report on the crystallite growth and phase change of electrodeposited CdSe coatings on ZnO nanowires during annealing. Both in situ transmission electron microscopy (TEM) and x-ray diffraction (XRD) reveal that the nanocrystal size increases from ˜3 to ˜10 nm upon annealing at 350 °C for 1 h and then to more than 30 nm during another 1 h at 400 °C, exhibiting two distinct growth regimes. Nanocrystal growth occurs together with a structural change from zinc blende to wurtzite. The structural transition begins at 350 °C, which results in the formation of stacking faults. Increased crystallite size, comparable to the coating thickness, can improve charge separation in extremely thin absorber solar cells. We demonstrate a nearly two-fold improvement in power conversion efficiency upon annealing.

  14. Novel Sample-handling Approach for XRD Analysis with Minimal Sample Preparation

    Science.gov (United States)

    Sarrazin, P.; Chipera, S.; Bish, D.; Blake, D.; Feldman, S.; Vaniman, D.; Bryson, C.

    2004-01-01

    Sample preparation and sample handling are among the most critical operations associated with X-ray diffraction (XRD) analysis. These operations require attention in a laboratory environment, but they become a major constraint in the deployment of XRD instruments for robotic planetary exploration. We are developing a novel sample handling system that dramatically relaxes the constraints on sample preparation by allowing characterization of coarse-grained material that would normally be impossible to analyze with conventional powder-XRD techniques.

  15. Nondestructive mapping of chemical composition and structural qualities of group III-nitride nanowires using submicron beam synchrotron-based X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Bonanno, P.L., E-mail: plb2@njit.edu [Georgia Institute of Technology/GTL, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Gautier, S. [LMOPS + UMI: Laboratoire Matériaux Optiques, Photonique et micro-nano Systèmes, UMR CNRS 7132, Université de Metz et SUPELEC, 2 rue E. Belin, 57070 Metz, France, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Gmili, Y.El.; Moudakir, T. [UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Sirenko, A.A. [Department of Physics, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Kazimirov, A. [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States); Cai, Z.-H. [Advanced Photon Source, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Martin, J. [LMOPS + UMI: Laboratoire Matériaux Optiques, Photonique et micro-nano Systèmes, UMR CNRS 7132, Université de Metz et SUPELEC, 2 rue E. Belin, 57070 Metz, France, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Goh, W.H. [Georgia Institute of Technology/GTL, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France); Martinez, A.; Ramdane, A.; Le Gratiet, L. [Laboratoire de Photonique et de Nanostructures, UPR CNRS 20, Route de Nozay, 91460 Marcoussis (France); Maloufi, N. [Laboratoire d' Etude des Textures et Application aux Matériaux UMR CNRS 7078 Ile du Saulcy 57045 METZ cedex 1 (France); Assouar, M.B. [Laboratoire de Physique des Milieux Ionisés et Applications, Nancy University, CNRS, BP 239, F-54506 Vandoeuvre-lès-Nancy Cédex (France); Ougazzaden, A. [Georgia Institute of Technology/GTL, UMI 2958 Georgia Tech-CNRS, 57070 Metz (France)

    2013-08-31

    Submicron beam synchrotron-based X-ray diffraction (XRD) techniques have been developed and used to accurately and nondestructively map chemical composition and material quality of selectively grown group III-nitride nanowires. GaN, AlGaN, and InGaN multi-quantum-well nanowires have been selectively grown on lattice matched and mismatched substrates, and the challenges associated with obtaining and interpreting submicron beam XRD results are addressed and solved. Nanoscale cathodoluminescence is used to examine exciton behavior, and energy-dispersive X-ray spectroscopy is used to verify chemical composition. Scanning transmission electron microscopy is later used to paint a more complete picture. The advantages of submicron beam XRD over other techniques are discussed in the context of this challenging material system. - Highlights: ► We used nano selective area growth to create nanowires of GaN, AlGaN and InGaN/GaN. ► We characterized them by synchrotron-based submicron beam X-ray diffraction (XRD). ► This technique accurately determined chemical and crystallographic properties. ► Challenges of XRD are addressed in the context of this challenging material system. ► Advantages of XRD over other characterization methods are discussed.

  16. Strain mapping under spherical indentations using transmission Kikuchi diffraction

    International Nuclear Information System (INIS)

    Cackett, A.; Hardie, C.; Wilkinson, A.; Dicks, K.

    2015-01-01

    Due to restrictions on both the specimen volumes available and the activity levels research facilities can handle, testing techniques on the micron-scale are very attractive for the study of irradiated material. However, the results of such small tests are convoluted by plasticity size-effects. Spherical nano-indentation is increasingly used to probe irradiated material, but to characterise the area of plastic deformation surrounding indentations a method capable of providing crystallographic information at extremely high spatial resolution is required. Transmission Kikuchi Diffraction (TKD) is a novel diffraction technique that can be performed in a scanning electron microscope. Using this technique, spatial resolutions below 10 nm have been achieved. Initial results, shown here, demonstrate the use of TKD in mapping the lattice rotations caused by indentation produced with a spherical diamond tip. With the addition of strain mapping software the plastic zone size was also evaluated for the first time using diffraction patterns generated via TKD. For a tip of radius 15 μm, inserted into Fe to a strain of 0.07, the plastic zone was observed to extend 1.3 μm to either side of the incident location of indentation and the deformation depth was approximately 0.5 μm. (authors)

  17. Characterisation of nano-grains in MgB2 superconductors by transmission Kikuchi diffraction

    International Nuclear Information System (INIS)

    Wong, D.C.K.; Yeoh, W.K.; Trimby, P.W.; De Silva, K.S.B.; Bao, P.; Li, W.X.; Xu, X.; Dou, S.X.; Ringer, S.P.; Zheng, R.K.

    2015-01-01

    We report the first application of the emerging transmission Kikuchi diffraction technique in the scanning electron microscope to investigate nano-grain structures in polycrystalline MgB 2 superconductors. Two sintering conditions were considered, and the resulting differences in superconducting properties are correlated to differences in grain structure. A brief comparison to X-ray diffraction results is presented and discussed. This work focusses more on the application of this technique to reveal grain structure, rather than on the detailed differences between the two sintering temperatures

  18. Structural studies of glasses by transmission electron microscopy and electron diffraction

    International Nuclear Information System (INIS)

    Kashchieva, E.P.

    1997-01-01

    The purpose of this work is to present information about the applications of transmission electron microscopy (TEM) and electron diffraction (ED) for structural investigations of glasses. TEM investigations have been carried out on some binary and on a large number of ternary borate-telluride systems where glass-forming oxides, oxides of transitional elements and modified oxides of elements from I, II and III groups in the periodic table, are used as third component. The large experimental data given by TEM method allows the fine classification of the micro-heterogeneities. A special case of micro-heterogeneous structure with technological origin occurs near the boundary between the 2 immiscible liquids obtained at macro-phase separation. TEM was also used for the direct observation of the glass structure and we have studied the nano-scale structure of borate glasses obtained at slow and fast cooling of the melts. The ED possesses advantages for analysis of amorphous thin films or micro-pastilles and it is a very useful technique for study in materials containing simultaneously light and heavy elements. A comparison between the possibilities of the 3 diffraction techniques (X-ray diffraction, neutron diffraction and ED) is presented

  19. Transmission Electron Microscopy and Diffractometry of Materials

    CERN Document Server

    Fultz, Brent

    2013-01-01

    This book explains concepts of transmission electron microscopy (TEM) and x-ray diffractometry (XRD) that are important for the characterization of materials. The fourth edition adds important new techniques of TEM such as electron tomography, nanobeam diffraction, and geometric phase analysis. A new chapter on neutron scattering completes the trio of x-ray, electron and neutron diffraction. All chapters were updated and revised for clarity. The book explains the fundamentals of how waves and wavefunctions interact with atoms in solids, and the similarities and differences of using x-rays, electrons, or neutrons for diffraction measurements. Diffraction effects of crystalline order, defects, and disorder in materials are explained in detail. Both practical and theoretical issues are covered. The book can be used in an introductory-level or advanced-level course, since sections are identified by difficulty. Each chapter includes a set of problems to illustrate principles, and the extensive Appendix includes la...

  20. Precise rotational alignment of x-ray transmission diffraction gratings

    International Nuclear Information System (INIS)

    Hill, S.L.

    1988-01-01

    Gold transmission diffraction gratings used for x-ray spectroscopy must sometimes be rotationally aligned to the axis of a diagnostic instrument to within sub-milliradian accuracy. We have fabricated transmission diffraction gratings with high line-densities (grating period of 200 and 300 nm) using uv holographic and x-ray lithography. Since the submicron features of the gratings are not optically visible, precision alignment is time consuming and difficult to verify in situ. We have developed a technique to write an optically visible alignment pattern onto these gratings using a scanning electron microscope (SEM). At high magnification (15000 X) several submicron lines of the grating are observable in the SEM, making it possible to write an alignment pattern parallel to the grating lines in an electron-beam-sensitive coating that overlays the grating. We create an alignment pattern by following a 1-cm-long grating line using the SEM's joystick-controlled translation stage. By following the same grating line we are assured the traveled direction of the SEM electron beam is parallel to the grating to better than 10 μradian. The electron-beam-exposed line-width can be large (5 to 15 μm wide) depending on the SEM magnification, and is therefore optically visible. The exposed pattern is eventually made a permanent feature of the grating by ion beam etching or gold electroplating. The pattern can be used to accurately align the grating to the axis of a diagnostic instrument. More importantly, the alignment of the grating can be quickly verified in situ

  1. X-ray diffraction analysis of a severely plastically deformed aluminum alloy

    International Nuclear Information System (INIS)

    Ortiz, A.L.; Shaw, L.

    2004-01-01

    The crystallite size, lattice microstrain, lattice parameter, and formation of solid solutions of a nanocrystalline Al 93 Fe 3 Cr 2 Ti 2 alloy prepared via mechanical alloying (MA) starting from elemental powders have been investigated using the Rietveld method of X-ray diffraction (XRD) in conjunction with line-broadening analyses through the variance, Warren-Averbach, and Stokes and Wilson methods. Detailed analyses using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and inductively coupled plasma-optical emission spectroscopy (ICP) have also been conducted in order to corroborate the formation of solid solutions and the grain size measurement determined from the XRD analyses. The results from the exhaustive XRD analyses are in excellent agreement with those derived from the investigation of TEM, SEM, and ICP. The lattice microstrains of the nanocrystalline Al solid solution determined from the XRD analyses are isotropic along different crystallographic directions and high, exhibiting the same order of magnitude as the ratio of the tensile strength to the elastic modulus of the Al crystal. Implications resulting from the comparison between the present study and the simplified XRD analyses are discussed

  2. Polycrystalline oxides formation during transient oxidation of (001) Cu-Ni binary alloys studied by in situ TEM and XRD

    International Nuclear Information System (INIS)

    Yang, J.C.; Li, Z.Q.; Sun, L.; Zhou, G.W.; Eastman, J.A.; Fong, D.D.; Fuoss, P.H.; Baldo, P.M.; Rehn, L.E.; Thompson, L.J.

    2009-01-01

    The nucleation and growth of Cu 2 O and NiO islands due to oxidation of Cu x Ni 1-x (001) films were monitored, at various temperatures, by in situ ultra-high vacuum (UHV) transmission electron microscopy (TEM) and in situ synchrotron X-ray diffraction (XRD). In remarkable contrast to our previous observations of Cu and Cu-Au oxidation, irregular-shaped polycrystalline oxide islands formed with respect to the Cu-Ni alloy film, and an unusual second oxide nucleation stage was noted. In situ XRD experiments revealed that NiO formed first epitaxially, then other orientations appeared, and finally polycrystalline Cu 2 O developed as the oxidation pressure was increased. The segregation of Ni and Cu towards or away, respectively, from the alloy surface during oxidation could disrupt the surface and cause polycrystalline oxide formation.

  3. [Identification of Dens Draconis and Os Draconis by XRD method].

    Science.gov (United States)

    Chen, Guang-Yun; Wu, Qi-Nan; Shen, Bei; Chen, Rong

    2012-04-01

    To establish an XRD method for evaluating the quality of Os Draconis and Dens Draconis and applying in judgement of the counterfeit. Dens Draconis, Os Draconis and the counterfeit of Os Draconis were analyzed by XRD. Their diffraction patterns were clustered analysis and evaluated their similarity degree. Established the analytical method of Dens Draconis and Os Draconis basing the features fingerprint information of the 10 common peaks by XRD pattern. Obtained the XRD pattern of the counterfeit of Os Draconis. The similarity degree of separate sources of Dens Draconis was high,while the similarity degree of separate sources of Os Draconis was significant different from each other. This method can be used for identification and evaluation of Os Draconis and Dens Draconis. It also can be used for identification the counterfeit of Os Draconis effectively.

  4. Two-dimensional X-ray diffraction and transmission electron microscopy study on the effect of magnetron sputtering atmosphere on GaN/SiC interface and gallium nitride thin film crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Huaxiang, E-mail: shenhuaxiang@gmail.com [Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L7 (Canada); Zhu, Guo-Zhen; Botton, Gianluigi A. [Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L7 (Canada); Canadian Centre for Electron Microscopy, McMaster University, Hamilton, Ontario L8S 4L7 (Canada); Kitai, Adrian [Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L7 (Canada); Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7 (Canada)

    2015-03-21

    The growth mechanisms of high quality GaN thin films on 6H-SiC by sputtering were investigated by X-ray diffraction (XRD) and scanning transmission electron microscopy (STEM). The XRD θ-2θ scans show that high quality (0002) oriented GaN was deposited on 6H-SiC by reactive magnetron sputtering. Pole figures obtained by 2D-XRD clarify that GaN thin films are dominated by (0002) oriented wurtzite GaN and (111) oriented zinc-blende GaN. A thin amorphous silicon oxide layer on SiC surfaces observed by STEM plays a critical role in terms of the orientation information transfer from the substrate to the GaN epilayer. The addition of H{sub 2} into Ar and/or N{sub 2} during sputtering can reduce the thickness of the amorphous layer. Moreover, adding 5% H{sub 2} into Ar can facilitate a phase transformation from amorphous to crystalline in the silicon oxide layer and eliminate the unwanted (33{sup ¯}02) orientation in the GaN thin film. Fiber texture GaN thin films can be grown by adding 10% H{sub 2} into N{sub 2} due to the complex reaction between H{sub 2} and N{sub 2}.

  5. The effect of size-selective samplers (cyclones) on XRD response

    CSIR Research Space (South Africa)

    Pretorius, CJ

    2011-07-01

    Full Text Available The study evaluated five size-selective samplers used in the South African mining industry to determine how their performance affects the X-ray powder diffraction (XRD) response when respirable dust samples are analysed for quartz using direct...

  6. Definitive Mineralogical Analysis of Mars Analog Rocks Using the CheMin XRD/XRF Instrument

    Science.gov (United States)

    Blake, D. F.; Sarrazin, P.; Bish, D. L.; Feldman, S.; Chipera, S. J.; Vaniman, D. T.; Collins, S.

    2004-01-01

    Mineral identification is a critical component of Mars Astrobiological missions. Chemical or elemental data alone are not definitive because a single elemental or chemical composition or even a single bonding type can represent a range of substances or mineral assemblages. Minerals are defined as unique structural and compositional phases that occur naturally. There are about 15,000 minerals that have been described on Earth, all uniquely identifiable via diffraction methods. There are likely many minerals yet undiscovered on Earth, and likewise on Mars. If an unknown phase is identified on Mars, it can be fully characterized by structural (X-ray Diffraction, XRD) and elemental analysis (X-ray Fluorescence, XRF) without recourse to other data because XRD relies on the principles of atomic arrangement for its determinations. XRD is the principal means of identification and characterization of minerals on Earth.

  7. XRD and neutron diffraction analyses of heat treated U-Mo/Al dispersion fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ji Min; Kim, Woo Jeong; Ryu, Ho Jin; Lee, Kyu Hong; Park, Jong Man [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    High density U Mo alloys are regarded as promising candidates for advanced research reactor fuel because they have shown stable irradiation performance when compared to other uranium alloys and compounds. However, interaction layer formation between the U Mo alloys and Al matrix degrades the irradiation performance of U Mo dispersion fuel. Therefore, addition of Ti in U Mo alloys, addition of Si in Al matrix and silicide or nitride coating on the surface of U Mo particles have been proposed in order to inhibit the interaction layer growth. In order to analyze the mechanisms of interaction layer growth inhibition by adding Ti in U Mo alloys or Si in Al matrix, accurate phase characterization of the interaction layers is required. While previous studies using X ray diffraction have been reported, laboratory X ray diffraction method has limitations such as low resolution and small measurement volume. Neutron diffraction method can be a more accurate analysis when compared with X ray diffraction method due to the large penetration depth of neutron. In this study, X ray diffraction and neutron diffraction experiments have been performed by using the laboratory X ray diffractometer and high resolution powder diffractometer (HRPD) of the HANARO research reactor in KAERI.

  8. Strain fields in crystalline solids: prediction and measurement of X- ray diffraction patterns and electron diffraction contrast images

    NARCIS (Netherlands)

    Bor, Teunis Cornelis

    2000-01-01

    Lattice imperfections, such as dislocations and misfitting particles, shift and/or broaden X-ray diffraction (XRD) line profiles. Most of the present analysis methods of the shift and broadening of XRD line profiles do not provide the characteristics of lattice imperfections. The main part of this

  9. Modeling and measurements of XRD spectra of extended solids under high pressure

    Science.gov (United States)

    Batyrev, I. G.; Coleman, S. P.; Stavrou, E.; Zaug, J. M.; Ciezak-Jenkins, J. A.

    2017-06-01

    We present results of evolutionary simulations based on density functional calculations of various extended solids: N-Si and N-H using variable and fixed concentration methods of USPEX. Predicted from the evolutionary simulations structures were analyzed in terms of thermo-dynamical stability and agreement with experimental X-ray diffraction spectra. Stability of the predicted system was estimated from convex-hull plots. X-ray diffraction spectra were calculated using a virtual diffraction algorithm which computes kinematic diffraction intensity in three-dimensional reciprocal space before being reduced to a two-theta line profile. Calculations of thousands of XRD spectra were used to search for a structure of extended solids at certain pressures with best fits to experimental data according to experimental XRD peak position, peak intensity and theoretically calculated enthalpy. Comparison of Raman and IR spectra calculated for best fitted structures with available experimental data shows reasonable agreement for certain vibration modes. Part of this work was performed by LLNL, Contract DE-AC52-07NA27344. We thank the Joint DoD / DOE Munitions Technology Development Program, the HE C-II research program at LLNL and Advanced Light Source, supported by BES DOE, Contract No. DE-AC02-05CH112.

  10. Effect of interparticle interactions on size determination of zirconia and silica based systems – A comparison of SAXS, DLS, BET, XRD and TEM

    Science.gov (United States)

    Pabisch, Silvia; Feichtenschlager, Bernhard; Kickelbick, Guido; Peterlik, Herwig

    2012-01-01

    The aim of this work is a systematic comparison of size characterisation methods for two completely different model systems of oxide nanoparticles, i.e. amorphous spherical silica and anisotropic facet-shaped crystalline zirconia. Size and/or size distribution were determined in a wide range from 5 to 70 nm using small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), nitrogen sorption (BET), X-ray diffraction (XRD) and transmission electron microscopy (TEM). A nearly perfect coincidence was observed only for SAXS and TEM for both types of particles. For zirconia nanoparticles considerable differences between different measurement methods were observed. PMID:22347721

  11. Phase analysis of nano-phase materials using selected area electron diffraction in the TEM

    International Nuclear Information System (INIS)

    Labar, J. L.

    2002-01-01

    In analogy to X-ray power diffraction (XRD), we are developing a method to help phase identification when examining a large number of grains simultaneously by electron diffraction. Although XRD is well established, it can not be used for small quantities of materials (volumes below 1 mm 3 ). Examining a usual TEM sample with thickness of 100 nm and using a selected area of 1 mm in diameter, the selected area electron diffraction pattern (SAED) carries information about several thousands of grains from a material with an average grain size of about 10 nm. The accuracy of XRD can not be attained by electron diffraction (ED). However, simultaneous visual observation of the nanostructure is an additional benefit of TEM (beside the small amount of needed material). The first step of the development project was the development of a computer program ('ProcessDiffraction') that processes digital versions of SAED patterns and presents them in an XRD-like form (intensity vs. scattering vector). In the present version (V2.0.3) phase identification is carried out by comparing the measured distribution to 'Markers', i.e. data of known phases. XRD data cards are used if the detailed structure of a phase is not known. Kinematic electron diffraction intensities are calculated for phases with known atomic positions (Author)

  12. The thermal behaviour of cuprite: An XRD-EXAFS combined approach

    International Nuclear Information System (INIS)

    Dapiaggi, M.; Tiano, W.; Artioli, G.; Sanson, A.; Fornasini, P.

    2003-01-01

    Cuprite (Cu 2 O) is a low thermal expansion material with a negative thermal expansion coefficient below room temperature. Its peculiar thermal behaviour encompasses the increase of the shear modulus with increasing temperature, and the presence of rather intense symmetry-forbidden eeo reflections below room temperature. The thermal expansion of cuprite was studied at low temperature (between 5 and 298 K) by means of high-resolution (10 -5 A) X-ray powder diffraction at European Synchrotron Radiation Facility (Grenoble, BM16) and extended X-ray absorption fine structure (EXAFS) (BM29). Negative thermal expansion is confirmed up to 200 K, by EXAFS as well as by XRD measurements, and no sign of transition was found in XRD data. The comparison between EXAFS and XRD results provides a valuable insight into vibrational behaviour of cuprite at low temperature

  13. In-situ X-ray diffraction : a useful tool to investigate hydride-formation reactions

    NARCIS (Netherlands)

    Notten, P.H.L.; Daams, J.L.C.; Veirman, de A.E.M.; Staals, A.A.

    1994-01-01

    A high-pressure X-ray diffraction (XRD) cell has been designed which allowed us to study simultaneously hydrogen absorption/desorption isotherms and XRD powder diffraction patterns on (de)hydrided intermetallic compounds. The hydride formation reaction was investigated in the case of LaNi5 under

  14. XRD, TEM, and thermal analysis of Arizona Ca-montmorillonites modified with didodecyldimethylammonium bromide.

    Science.gov (United States)

    Sun, Zhiming; Park, Yuri; Zheng, Shuilin; Ayoko, Godwin A; Frost, Ray L

    2013-10-15

    An Arizona SAz-2 calcium montmorillonite was modified by a typical dialkyl cationic surfactant (didodecyldimethylammonium bromide, abbreviated to DDDMA) through direct ion exchange. The obtained organoclays were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), high-resolution thermogravimetric analysis (HR-TG), and infrared emission spectroscopy (IES). The intercalation of surfactants greatly increased the basal spacing of the interlayers and the conformation arrangement of the loaded surfactant were assessed based on the XRD and TEM measurements. This work shows that the dialkyl surfactant can be directly intercalated into the montmorillonite without first undergoing Na(+) exchange. Moreover, the thermal stability of organoclays and the different arrangements of the surfactant molecules intercalated in the SAz-2 Ca-montmorillonite were determined by a combination of TG and IES techniques. The detailed conformational ordering of different intercalated surfactants under different conditions was also studied. The surfactant molecule DDDMA has proved to be thermally stable even at 400°C which indicates that the prepared organoclay is stable to significantly high temperatures. This study offers new insights into the structure and thermal stabilities of SAz-2 Ca-montmorillonite modified with DDDMA. The experimental results also confirm the potential applications of organic SAz-2 Ca-montmorillonites as adsorbents and polymer-clay nanocomposites. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. X-Ray diffraction Investigation of Electrochemically Deposited Copper

    DEFF Research Database (Denmark)

    Pantleon, Karen; Jensen, Jens Dahl; Somers, Marcel A.J.

    2004-01-01

    by the determination of X-ray diffraction (XRD) pole figures and the calculation of the orientation distribution functions. XRD results are discussed in relation to the morphologies of the electrodeposits as investigated with light optical microscopy and correlated with the process parameters during electrodeposition....

  16. High quality transmission Kikuchi diffraction analysis of deformed alloys - Case study

    International Nuclear Information System (INIS)

    Tokarski, Tomasz; Cios, Grzegorz; Kula, Anna; Bała, Piotr

    2016-01-01

    Modern scanning electron microscopes (SEM) equipped with thermally assisted field emission guns (Schottky FEG) are capable of imaging with a resolution in the range of several nanometers or better. Simultaneously, the high electron beam current can be used, which enables fast chemical and crystallographic analysis with a higher resolution than is normally offered by SEM with a tungsten cathode. The current resolution that limits the EDS and EBSD analysis is related to materials' physics, particularly to the electron-specimen interaction volume. The application of thin, electron-transparent specimens, instead of bulk samples, improves the resolution and allows for the detailed analysis of very fine microstructural features. Beside the typical imaging mode, it is possible to use a standard EBSD camera in such a configuration that only transmitted and scattered electrons are detected. This modern approach was successfully applied to various materials giving rise to significant resolution improvement, especially for the light element magnesium based alloys. This paper presents an insight into the application of the transmission Kikuchi diffraction (TKD) technique applied to the most troublesome, heavily-deformed materials. In particular, the values of the highest possible acquisition rates for high resolution and high quality mapping were estimated within typical imaging conditions of stainless steel and magnesium-yttrium alloy. - Highlights: •Monte Carlo simulations were used to simulate EBSD camera intensity for various measuring conditions. •Transmission Kikuchi diffraction parameters were evaluated for highly deformed, light and heavy elements based alloys. •High quality maps with 20 nm spatial resolution were acquired for Mg and Fe based alloys. •High speed TKD measurements were performed at acquisition rates comparable to the reflection EBSD.

  17. Lattice constant measurement from electron backscatter diffraction patterns

    DEFF Research Database (Denmark)

    Saowadee, Nath; Agersted, Karsten; Bowen, Jacob R.

    2017-01-01

    Kikuchi bands in election backscattered diffraction patterns (EBSP) contain information about lattice constants of crystallographic samples that can be extracted via the Bragg equation. An advantage of lattice constant measurement from EBSPs over diffraction (XRD) is the ability to perform local ...

  18. Using of XRD in Industrial Sample Analysis and TENORM in Nuclear Malaysia

    International Nuclear Information System (INIS)

    Paulus, W.; Nurhaslinda Ee Abdullah; Meor Yusoff Meor Sulaiman

    2011-01-01

    Industrial waste such as aluminium dross and TENORM waste, oil sludge has been used as sample in this research. Determination of main elements by using X-Ray Diffraction (XRD) in Material Technology Group, Malaysian Nuclear Agency. Results shows that main elements in these samples, aluminium hydroxide (gibbsite) and quartz low, respectively. Thereby, this research shows that XRD can be considered as one of the techniques that can be used in waste characterization and furthermore, it can help researchers and engineer in the research related to waste treatment especially radioactive waste. (author)

  19. X-ray powder diffraction camera for high-field experiments

    International Nuclear Information System (INIS)

    Koyama, K; Mitsui, Y; Takahashi, K; Watanabe, K

    2009-01-01

    We have designed a high-field X-ray diffraction (HF-XRD) camera which will be inserted into an experimental room temperature bore (100 mm) of a conventional solenoid-type cryocooled superconducting magnet (10T-CSM). Using the prototype camera that is same size of the HF-XRD camera, a XRD pattern of Si is taken at room temperature in a zero magnetic field. From the obtained results, the expected ability of the designed HF-XRD camera is presented.

  20. Evaluation of laboratory powder X-ray micro-diffraction for applications in the fields of cultural heritage and forensic science.

    Science.gov (United States)

    Svarcová, Silvie; Kocí, Eva; Bezdicka, Petr; Hradil, David; Hradilová, Janka

    2010-09-01

    The uniqueness and limited amounts of forensic samples and samples from objects of cultural heritage together with the complexity of their composition requires the application of a wide range of micro-analytical methods, which are non-destructive to the samples, because these must be preserved for potential late revision. Laboratory powder X-ray micro-diffraction (micro-XRD) is a very effective non-destructive technique for direct phase analysis of samples smaller than 1 mm containing crystal constituents. It compliments optical and electron microscopy with elemental micro-analysis, especially in cases of complicated mixtures containing phases with similar chemical composition. However, modification of X-ray diffraction to the micro-scale together with its application for very heterogeneous real samples leads to deviations from the standard procedure. Knowledge of both the limits and the phenomena which can arise during the analysis is crucial for the meaningful and proper application of the method. We evaluated basic limits of micro-XRD equipped with a mono-capillary with an exit diameter of 0.1 mm, for example the size of irradiated area, appropriate grain size, and detection limits allowing identification of given phases. We tested the reliability and accuracy of quantitative phase analysis based on micro-XRD data in comparison with conventional XRD (reflection and transmission), carrying out experiments with two-phase model mixtures simulating historic colour layers. Furthermore, we demonstrate the wide use of micro-XRD for investigation of various types of micro-samples (contact traces, powder traps, colour layers) and we show how to enhance data quality by proper choice of experiment geometry and conditions.

  1. A transmission Kikuchi diffraction study of cementite in a quenched and tempered steel

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, Ahmed A., E-mail: asaleh@uow.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Casillas, Gilberto [Electron Microscopy Centre, University of Wollongong, NSW 2500 (Australia); Pereloma, Elena V. [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Electron Microscopy Centre, University of Wollongong, NSW 2500 (Australia); Carpenter, Kristin R. [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Plate Mill: Manufacturing, BlueScope Steel Ltd., Port Kembla, NSW 2505 (Australia); Killmore, Christopher R. [Research & Development: Sales & Marketing, BlueScope Steel Ltd., Port Kembla, NSW 2505 (Australia); Gazder, Azdiar A. [Electron Microscopy Centre, University of Wollongong, NSW 2500 (Australia)

    2016-04-15

    This is the first transmission Kikuchi diffraction (TKD) study to report the indexing of nano-sized cementite as distinct structures and its orientation relationship with the body-centered cubic matrix in a quenched and tempered steel. Crystallographic analysis via TKD and selected area diffraction returned the well-known Bagaryatskii and Isaichev orientation relationships. However, the indexing of nano-sized cementite via TKD was sensitive to the thickness of the electron transparent region such that TEM remains the most precise method to characterise such precipitates. - Highlights: • Nano-sized cementite in a QT steel has been investigated by TKD and TEM. • Cementite has been indexed as distinct structures via TKD. • Crystallographic analysis returned the Bagaryatskii and Isaichev ORs. • Success of TKD is sensitive to the thickness of the electron transparent region. • TEM remains the most precise technique to characterise nano-sized precipitates.

  2. A transmission Kikuchi diffraction study of cementite in a quenched and tempered steel

    International Nuclear Information System (INIS)

    Saleh, Ahmed A.; Casillas, Gilberto; Pereloma, Elena V.; Carpenter, Kristin R.; Killmore, Christopher R.; Gazder, Azdiar A.

    2016-01-01

    This is the first transmission Kikuchi diffraction (TKD) study to report the indexing of nano-sized cementite as distinct structures and its orientation relationship with the body-centered cubic matrix in a quenched and tempered steel. Crystallographic analysis via TKD and selected area diffraction returned the well-known Bagaryatskii and Isaichev orientation relationships. However, the indexing of nano-sized cementite via TKD was sensitive to the thickness of the electron transparent region such that TEM remains the most precise method to characterise such precipitates. - Highlights: • Nano-sized cementite in a QT steel has been investigated by TKD and TEM. • Cementite has been indexed as distinct structures via TKD. • Crystallographic analysis returned the Bagaryatskii and Isaichev ORs. • Success of TKD is sensitive to the thickness of the electron transparent region. • TEM remains the most precise technique to characterise nano-sized precipitates.

  3. XRD and HREM studies of nanocrystalline Cu and Pd

    International Nuclear Information System (INIS)

    Nieman, G.W.; Weertmen, J.R.; Siegel, R.W.

    1991-01-01

    Consolidated powders of nanocrystalline Cu and Pd have been studied by x-ray diffraction (XRD) and high resolution electron microscopy (HREM) as part of an investigation of the mechanical behavior of nanocrystalline pure metals. XRD line broadening measurements were made to estimate rain size, qualitative grain size distribution and average long range strains in a number of samples. Mean grain sized range from 4-60 nm and have qualitatively narrow grain size distributions. Long range lattice strains are of the order of 0.2-3% in consolidated samples. These strains apparently persist and even increase in Cu samples after annealing at 0.35 Tm (498K) for 2h, accompanied by an apparent increase in grain size of ≥2x. Grain size, grain size distribution width and internal strains vary somewhat among samples produced under apparently identical processing conditions. HREM studies show that twins, stacking faults and low-index facets are abundant in as-consolidated nanocrystalline Cu samples. In this paper methodology, results and analysis of XRD and HREM experiments are presented

  4. Orientation and phase mapping in the transmission electron microscope using precession-assisted diffraction spot recognition: state-of-the-art results.

    Science.gov (United States)

    Viladot, D; Véron, M; Gemmi, M; Peiró, F; Portillo, J; Estradé, S; Mendoza, J; Llorca-Isern, N; Nicolopoulos, S

    2013-10-01

    A recently developed technique based on the transmission electron microscope, which makes use of electron beam precession together with spot diffraction pattern recognition now offers the possibility to acquire reliable orientation/phase maps with a spatial resolution down to 2 nm on a field emission gun transmission electron microscope. The technique may be described as precession-assisted crystal orientation mapping in the transmission electron microscope, precession-assisted crystal orientation mapping technique-transmission electron microscope, also known by its product name, ASTAR, and consists in scanning the precessed electron beam in nanoprobe mode over the specimen area, thus producing a collection of precession electron diffraction spot patterns, to be thereafter indexed automatically through template matching. We present a review on several application examples relative to the characterization of microstructure/microtexture of nanocrystalline metals, ceramics, nanoparticles, minerals and organics. The strengths and limitations of the technique are also discussed using several application examples. ©2013 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.

  5. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods

    International Nuclear Information System (INIS)

    Stobinski, L.; Lesiak, B.; Malolepszy, A.; Mazurkiewicz, M.; Mierzwa, B.; Zemek, J.; Jiricek, P.; Bieloshapka, I.

    2014-01-01

    Highlights: • Graphene oxide (FL-GOc) and reduced graphene oxide (FL-RGOc): XRD, TEM, XPS, REELS. • FL-GOc: stacking nanostructure—22 × 6 nm (DxH), 0.9 nm layers separation (XRD). • FL-RGOc: stacking nanostructure—8 × 1 nm (DxH), 0.4 nm layers separation (XRD). • Reduction: oxygen group degradation, decreasing distance between graphene layers. • Number of graphene layers in stacking nanostructure: 6–7 (FL-GOc), 2–3 (FL-RGOc). - Abstract: The commercial and synthesised few-layer graphene oxide, prepared using oxidation reactions, and few-layer reduced graphene oxide samples were structurally and chemically investigated by the X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron spectroscopy methods, i.e. X-ray photoelectron spectroscopy (XPS) and reflection electron energy loss spectroscopy (REELS). The commercial graphene oxide (FL-GOc) shows a stacking nanostructure of about 22 × 6 nm average diameter by height with the distance of 0.9 nm between 6-7 graphene layers, whereas the respective reduced graphene oxide (FL-RGOc)—about 8 × 1 nm average diameter by height stacking nanostructure with the distance of 0.4 nm between 2-3 graphene layers (XRD). The REELS results are consistent with those by the XRD indicating 8 (FL-GOc) and 4 layers (FL-RGOc). In graphene oxide and reduced graphene oxide prepared from the graphite the REELS indicates 8–11 and 7–10 layers. All graphene oxide samples show the C/O ratio of 2.1–2.3, 26.5–32.1 at% of C sp 3 bonds and high content of functional oxygen groups (hydroxyl—C-OH, epoxy—C-O-C, carbonyl—C=O, carboxyl—C-OOH, water) (XPS). Reduction increases the C/O ratio to 2.8–10.3, decreases C sp 3 content to 11.4–20.3 at% and also the content of C-O-C and C=O groups, accompanied by increasing content of C-OH and C-OOH groups. Formation of additional amount of water due to functional oxygen group reduction leads to layer delamination. Removing of functional oxygen groups

  6. Electronic structure of nanoscale Cu/Pt alloys: A combined X-ray diffraction and X-ray absorption investigations

    International Nuclear Information System (INIS)

    Chen Xing; Chu Wangsheng; Cai Quan; Xia Dingguo; Wu Zhonghua; Wu Ziyu

    2006-01-01

    PVP-protected Cu/Pt clusters were prepared by glycol/water reduction method and characterized with transmission electron microscopy (TEM), X-ray diffraction (XRD) and absorption spectra. TEM and XRD analysis show that the Cu/Pt clusters with different molar ratio have fcc structure with particle size of about 4 nm, while the lattice parameters in these clusters reduce with increasing Cu concentration. From the X-ray absorption near edge structure (XANES) at Cu-K edge and Pt-L 2,3 edge, we demonstrate that the d-electronic states of Cu and Pt are affected by the local environment as a function of Cu/Pt molar ratio. With increasing Cu concentration, Pt loses a fraction of 5d electrons and the hybridization between p- and d-states at Cu sites is enhanced

  7. Electronic structure of nanoscale Cu/Pt alloys: A combined X-ray diffraction and X-ray absorption investigations

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xing [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Graduate School of the Chinese Academy of Sciences, 100864 Beijing (China); Chu Wangsheng [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); University of Science and Technology of China, Hefei, 230036 (China); Cai Quan [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Graduate School of the Chinese Academy of Sciences, 100864 Beijing (China); Xia Dingguo [College of Environmental and Energy Engineering, Beijing University of Technology, 100022 Beijing (China); Wu Zhonghua [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China) and National Center for Nanoscience and Technology (China)]. E-mail: wuzy@ihep.ac.cn

    2006-11-15

    PVP-protected Cu/Pt clusters were prepared by glycol/water reduction method and characterized with transmission electron microscopy (TEM), X-ray diffraction (XRD) and absorption spectra. TEM and XRD analysis show that the Cu/Pt clusters with different molar ratio have fcc structure with particle size of about 4 nm, while the lattice parameters in these clusters reduce with increasing Cu concentration. From the X-ray absorption near edge structure (XANES) at Cu-K edge and Pt-L{sub 2,3} edge, we demonstrate that the d-electronic states of Cu and Pt are affected by the local environment as a function of Cu/Pt molar ratio. With increasing Cu concentration, Pt loses a fraction of 5d electrons and the hybridization between p- and d-states at Cu sites is enhanced.

  8. Characterization of wet precipitation by X-ray diffraction (XRD) and scanning electron microscopy (SEM) in the metropolitan area of Porto Alegre, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Montanari Migliavacca, Daniela [Instituto de Biociencias, Programa de Pos-Graduacao em Ecologia, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91509-900 Porto Alegre, RS (Brazil); Fundacao Estadual de Protecao Ambiental Henrique Luis Roessler, RS. Rua Carlos Chagas 55/802, 90030-020 Porto Alegre, RS (Brazil); Calesso Teixeira, Elba, E-mail: gerpro.pesquisa@fepam.rs.gov.br [Fundacao Estadual de Protecao Ambiental Henrique Luis Roessler, RS. Rua Carlos Chagas 55/802, 90030-020 Porto Alegre, RS (Brazil); Gervasoni, Fernanda; Vieira Conceicao, Rommulo [Instituto de Geociencias, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91509-900 Porto Alegre, RS (Brazil); Raya Rodriguez, Maria Teresa [Instituto de Biociencias, Programa de Pos-Graduacao em Ecologia, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91509-900 Porto Alegre, RS (Brazil)

    2009-11-15

    The purpose of this study is to assess the composition of wet precipitation in three sites of the metropolitan area of Porto Alegre. Besides the variables usually considered, such as pH, conductivity, major ions (Cl{sup -}, NO{sub 3}{sup -}, F{sup -}, SO{sub 4}{sup 2-}, Na{sup +}, K{sup +}, Mg{sup 2+}, NH{sub 4}{sup +} and Ca{sup 2+}) and metallic elements (Cd, Co, Cr, Cu, Fe, Mn and Ni), the suspended matter was examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), with energy dispersive system (EDS), for better identification of possible anthropogenic material in this wet precipitation. Results showed an alkaline pH in the samples analyzed and higher concentrations for Na{sup +}, Cl{sup -} and SO{sub 4}{sup 2-}. The acidification and neutralization potential between anions (SO{sub 4}{sup 2-} + NO{sub 3}{sup -}) and cations (Ca{sup 2+} + Mg{sup 2+} + K{sup +} + NH{sub 4}{sup +}) showed a good correlation (0.922). The metallic elements with highest values were Zn, Fe and Mn. Results of XRD identified the presence of some minerals such as quartz, feldspar, mica, clay, carbonates and sulfates. In samples analyzed with SEM, we detected pyroxene, biotite, amphibole and oxides. Cluster analysis (CA) was applied to the data matrix to identify potential pollution sources of metals (natural or anthropogenic) and the association with minerals found in the analysis of SEM.

  9. Moessbauer and XRD Characterization of the Mineral Matter of Coal from the Guachinte Mine in Colombia

    International Nuclear Information System (INIS)

    Reyes, F.; Perez Alcazar, G. A.; Barraza, J. M.; Bohorquez, A.; Tabares, J. A.; Speziali, N. L.

    2003-01-01

    The aim of this work was the characterization and differentiation, using Moessbauer spectroscopy (MS) and X-ray diffraction (XRD), of coal samples with different ash and sulfur contents obtained in three places corresponding at cuts in different seams from the Guachinte mine, Valle, Colombia. The mineral phases identified by XRD were in general kaolinite, quartz, pyrite and gypsum, and in particular dolomite and calcite. MS confirms the presence of pyrite and kaolinite, besides evidences the additional presence of jarosite which was not detected by the XRD results due their low amounts. In the high mineral matter ash sample quartz and hematite was identified by XRD, the last one confirmed by MS results. A second phase in this sample was detected by Moessbauer spectroscopy, which could be superparamagnetic hematite. Rietveld refinement for XRD pattern from a sample is reported.

  10. X-ray diffraction studies of Pompeian wall paintings using synchrotron radiation and dedicated laboratory made systems

    International Nuclear Information System (INIS)

    Duran, A.; Castaing, J.; Walter, P.

    2010-01-01

    The full identification of artwork materials requires not only elemental analysis but also structural information of the compounds as provided by X-ray diffraction (XRD). This is easily done when taking samples (or micro-samples) from artworks. However, there is an increasing interest in performing non-destructive studies that require adapted XRD systems. Comparative study of synchrotron high-resolution X-ray powder diffraction (SR-HRPD) and laboratory non-destructive systems (portable XRD and micro-XRD) is the main objective of this work. There are no qualitative differences among the three systems as for detected phases in the Pompeian wall paintings that were studied, except in the case of minority phases which only were detected by SR-HRPD. The identified pigments were goethite, hematite, cinnabar, glauconite, Pompeian blue, together with calcite, dolomite and aragonite. Synchrotron XRD diagrams show better resolution than the others. In general, the peak widths in the diagrams obtained with the portable XRD system are similar to those obtained by micro-diffraction equipment. Factors such as residual divergence of X-ray sources, incidence angle and slit or collimator size are discussed in relation with the quality of XRD diagrams. (orig.)

  11. Green synthesis of silver nanoparticles and their characterization by XRD

    Science.gov (United States)

    Mehta, B. K.; Chhajlani, Meenal; Shrivastava, B. D.

    2017-05-01

    A cost effective and environment friendly technique for green synthesis of silver nanoparticles has been reported. Silver nanoparticles have been synthesized using ethanol extract of fruits of Santalum album (Family Santalaceae), commonly known as East Indian sandalwood. Fruits of S.album were collected and crushed. Ethanol was added to the crushed fruits and mixture was exposed to microwave for few minutes. Extract was concentrated by Buchi rotavaporator. To this extract, 1mM aqueous solution of silver nitrate (AgNO3) was added. After about 24 hr incubation Ag+ ions in AgNO3 solution were reduced to Ag atoms by the extract. Silver nanoparticles were obtained in powder form. X-ray diffraction (XRD) pattern of the prepared sample of silver nanoparticles was recorded The diffractogram has been compared with the standard powder diffraction card of JCPDS silver file. Four peaks have been identified corresponding to (hkl) values of silver. The XRD study confirms that the resultant particles are silver nanoparticles having FCC structure. The average crystalline size D, the value of the interplanar spacing between the atoms, d, lattice constant and cell volume have been estimated. Thus, silver nanoparticles with well-defined dimensions could be synthesized by reduction of metal ions due to fruit extract of S.album.

  12. Identification and characterization of historical pigments with x-ray diffraction analysis (XRD), x-ray fluorescence analysis (XRA) and Fourier transformed infrared spectroscopy (FTIR)

    International Nuclear Information System (INIS)

    Hochleitner, B.

    2002-11-01

    This thesis presents a systematic characterization of historical inorganic pigments with respect to their crystallographic structure, main components, and trade elements, utilizing three complementary methods. The results are compiled in a computer-database containing the experimentally obtained information. The specimens examined in this study originate from a collection of 19th and 20th century pigments, dyes and binders with a wide variety of colors and materials at the Institute of Natural Sciences and Technologies in Art of the Academy of Fine Arts in Vienna. Approximately 400 different inorganic pigments were analysed for this first study of its kind by combining the experimental techniques explained in the next paragraph. For analyzing the inorganic pigments three different methods were applied: x-ray diffraction (XRD), x-ray fluorescence (XRF) and fourier-transformed infrared spectroscopy (FTIR) proved to be suitable techniques to identify and characterize the composition of the materials. The experimental work was focused on x-ray diffraction to detect the main components and to perform phase analysis for the identification of the crystallographic structure. To facilitate the analysis of the diffractograms and investigate differences in the elemental composition, XRF-measurements were carried out and complemented by FTIR-spectroscopy. The latter technique supports the identification of organic components of the samples and both ease phase analysis. In some cases, the obtained results show remarkable differences in composition for pigments having the same trade name. These differences consist either with respect to the identified elements or added components, such as pure white pigments. However, in most cases the chemical structure of the phase determining the color of the relevant pigment group was similar. Knowledge of the composition of the originally used pigments is of great importance for the restoration and conservation of art objects. In order to

  13. Diffraction contrast as a sensitive indicator of femtosecond sub-nanoscale motion in ultrafast transmission electron microscopy

    Science.gov (United States)

    Cremons, Daniel R.; Schliep, Karl B.; Flannigan, David J.

    2013-09-01

    With ultrafast transmission electron microscopy (UTEM), access can be gained to the spatiotemporal scales required to directly visualize rapid, non-equilibrium structural dynamics of materials. This is achieved by operating a transmission electron microscope (TEM) in a stroboscopic pump-probe fashion by photoelectrically generating coherent, well-timed electron packets in the gun region of the TEM. These probe photoelectrons are accelerated down the TEM column where they travel through the specimen before reaching a standard, commercially-available CCD detector. A second laser pulse is used to excite (pump) the specimen in situ. Structural changes are visualized by varying the arrival time of the pump laser pulse relative to the probe electron packet at the specimen. Here, we discuss how ultrafast nanoscale motions of crystalline materials can be visualized and precisely quantified using diffraction contrast in UTEM. Because diffraction contrast sensitively depends upon both crystal lattice orientation as well as incoming electron wavevector, minor spatial/directional variations in either will produce dynamic and often complex patterns in real-space images. This is because sections of the crystalline material that satisfy the Laue conditions may be heterogeneously distributed such that electron scattering vectors vary over nanoscale regions. Thus, minor changes in either crystal grain orientation, as occurs during specimen tilting, warping, or anisotropic expansion, or in the electron wavevector result in dramatic changes in the observed diffraction contrast. In this way, dynamic contrast patterns observed in UTEM images can be used as sensitive indicators of ultrafast specimen motion. Further, these motions can be spatiotemporally mapped such that direction and amplitude can be determined.

  14. Digital Image Correlation of 2D X-ray Powder Diffraction Data for Lattice Strain Evaluation

    Science.gov (United States)

    Zhang, Hongjia; Sui, Tan; Daisenberger, Dominik; Fong, Kai Soon

    2018-01-01

    High energy 2D X-ray powder diffraction experiments are widely used for lattice strain measurement. The 2D to 1D conversion of diffraction patterns is a necessary step used to prepare the data for full pattern refinement, but is inefficient when only peak centre position information is required for lattice strain evaluation. The multi-step conversion process is likely to lead to increased errors associated with the ‘caking’ (radial binning) or fitting procedures. A new method is proposed here that relies on direct Digital Image Correlation analysis of 2D X-ray powder diffraction patterns (XRD-DIC, for short). As an example of using XRD-DIC, residual strain values along the central line in a Mg AZ31B alloy bar after 3-point bending are calculated by using both XRD-DIC and the conventional ‘caking’ with fitting procedures. Comparison of the results for strain values in different azimuthal angles demonstrates excellent agreement between the two methods. The principal strains and directions are calculated using multiple direction strain data, leading to full in-plane strain evaluation. It is therefore concluded that XRD-DIC provides a reliable and robust method for strain evaluation from 2D powder diffraction data. The XRD-DIC approach simplifies the analysis process by skipping 2D to 1D conversion, and opens new possibilities for robust 2D powder diffraction data analysis for full in-plane strain evaluation. PMID:29543728

  15. Digital Image Correlation of 2D X-ray Powder Diffraction Data for Lattice Strain Evaluation

    Directory of Open Access Journals (Sweden)

    Hongjia Zhang

    2018-03-01

    Full Text Available High energy 2D X-ray powder diffraction experiments are widely used for lattice strain measurement. The 2D to 1D conversion of diffraction patterns is a necessary step used to prepare the data for full pattern refinement, but is inefficient when only peak centre position information is required for lattice strain evaluation. The multi-step conversion process is likely to lead to increased errors associated with the ‘caking’ (radial binning or fitting procedures. A new method is proposed here that relies on direct Digital Image Correlation analysis of 2D X-ray powder diffraction patterns (XRD-DIC, for short. As an example of using XRD-DIC, residual strain values along the central line in a Mg AZ31B alloy bar after 3-point bending are calculated by using both XRD-DIC and the conventional ‘caking’ with fitting procedures. Comparison of the results for strain values in different azimuthal angles demonstrates excellent agreement between the two methods. The principal strains and directions are calculated using multiple direction strain data, leading to full in-plane strain evaluation. It is therefore concluded that XRD-DIC provides a reliable and robust method for strain evaluation from 2D powder diffraction data. The XRD-DIC approach simplifies the analysis process by skipping 2D to 1D conversion, and opens new possibilities for robust 2D powder diffraction data analysis for full in-plane strain evaluation.

  16. Use of an Ultrasonic/Sonic Driller/Corer to Obtain Sample Powder for CHEMIN, a Combined XRD/XRF Instrument

    Science.gov (United States)

    Chipera, S. J.; Bish, D. L.; Vaniman, D. T.; Sherrit, S.; Bar-Cohen, Y.; Sarrazin, P.; Blake, D. F.

    2003-01-01

    A miniature CHEMIN XRD/XRF (X-Ray Diffraction/X-Ray Fluourescence) instrument is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed in order to enable XRD analysis on an extraterrestrial body is how best to obtain a representative sample powder for analysis. For XRD powder diffraction analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a 2-dimensional detector as used in the CHEMIN instrument will produce good results with poorly prepared powders, the quality of the data will improve if the sample is fine-grained and randomly oriented. An Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL is an effective mechanism of sampling rock to produce cores and powdered cuttings. It requires low axial load (XRD/XRF spectrometer such as CHEMIN, powders obtained from the JPL ultrasonic drill were analyzed and the results were compared to carefully prepared powders obtained using a laboratory bench scale Retsch mill.

  17. Study of caprine bones after moist and dry heat processes by X-ray diffraction

    International Nuclear Information System (INIS)

    Barbosa, Caroline M.; Azeredo, Soraia R.; Lopes, Ricardo T.; Souza, Sheila M.F.M de

    2013-01-01

    Bone tissue is a biological material composed of hydroxyapatite (HAp) and collagen matrix. The bone X-ray diffraction (XRD) pattern presents characteristics of the hydroxyapatite crystallography planes. This paper presents the characterization by X-ray diffraction of caprine bone powder pattern and the comparison of this pattern with moist or dry heat cooked bone patterns. The parameters chosen to characterize the X-ray diffraction peaks were: angular position (2θ), full width at half maximumt (FWHM), and relative intensity (I rel ). The X-ray diffraction patterns were obtained with a Shimadzu XRD-6000 diffractometer. The caprine bone XRD pattern revealed a significant correlation of several crystallographic parameters (lattice data) with hydroxyapatite. The profiles of the three bone types analyzed presented differences. The study showed as small angular displacement (decrease of the 2θ angle) of some peaks was observed after moist and dry heat cooking processes. The characterization of bone tissue aimed to contribute to future analysis in the field of archeology. (author)

  18. Study of caprine bones after moist and dry heat processes by X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Caroline M., E-mail: carolmattosb@yahoo.com.br [Instituto de Arqueologia Brasileira (IAB), Belford Roxo, RJ (Brazil); Azeredo, Soraia R.; Lopes, Ricardo T., E-mail: soraia@lin.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/LIN/UFRJ), Rio de Janeiro, RJ (Brazil). Laboratorio de Instrumentacao Nuclear; Souza, Sheila M.F.M de, E-mail: sferraz@ensp.fiocruz.br [Fundacao Oswaldo Cruz (ENSP/FIOCRUZ), Rio de Janeiro, RJ (Brazil). Escola Nacional de Saude Publica Sergio Arouca

    2013-07-01

    Bone tissue is a biological material composed of hydroxyapatite (HAp) and collagen matrix. The bone X-ray diffraction (XRD) pattern presents characteristics of the hydroxyapatite crystallography planes. This paper presents the characterization by X-ray diffraction of caprine bone powder pattern and the comparison of this pattern with moist or dry heat cooked bone patterns. The parameters chosen to characterize the X-ray diffraction peaks were: angular position (2θ), full width at half maximumt (FWHM), and relative intensity (I{sub rel}). The X-ray diffraction patterns were obtained with a Shimadzu XRD-6000 diffractometer. The caprine bone XRD pattern revealed a significant correlation of several crystallographic parameters (lattice data) with hydroxyapatite. The profiles of the three bone types analyzed presented differences. The study showed as small angular displacement (decrease of the 2θ angle) of some peaks was observed after moist and dry heat cooking processes. The characterization of bone tissue aimed to contribute to future analysis in the field of archeology. (author)

  19. Transmission electron microscopy analysis of hydroxyapatite nanocrystals from cattle bones

    International Nuclear Information System (INIS)

    Patel, Sangeeta; Wei, Shanghai; Han, Jie; Gao, Wei

    2015-01-01

    In this present study, hydroxyapatite which was obtained from cattle bones has been heat treated at temperature 400 °C and 600 °C. The microstructure after the treatment has been studied in detail using Transmission electron microscopy (TEM) and X-ray diffraction techniques. The TEM results indicate that natural bone consists of collagen and hydroxyapatite nano-crystals which are needle shaped. The heat treatment influences the crystallinity and growth of these hydroxyapatite nano-crystals known as ‘crystal maturation’ or ‘crystal ageing’. - Highlights: • Hydroxyapatite is obtained from cattle bones. • Material has been characterised using XRD and TEM. • Crystal growth and orientation has been studied in detail.

  20. Transmission electron microscopy analysis of hydroxyapatite nanocrystals from cattle bones

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Sangeeta, E-mail: spt658@aucklanduni.ac.nz [Department of Chemical and Materials Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010 (New Zealand); Wei, Shanghai [Department of Chemical and Materials Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010 (New Zealand); Han, Jie [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL (United States); Gao, Wei [Department of Chemical and Materials Engineering, The University of Auckland, 20 Symonds Street, Auckland 1010 (New Zealand)

    2015-11-15

    In this present study, hydroxyapatite which was obtained from cattle bones has been heat treated at temperature 400 °C and 600 °C. The microstructure after the treatment has been studied in detail using Transmission electron microscopy (TEM) and X-ray diffraction techniques. The TEM results indicate that natural bone consists of collagen and hydroxyapatite nano-crystals which are needle shaped. The heat treatment influences the crystallinity and growth of these hydroxyapatite nano-crystals known as ‘crystal maturation’ or ‘crystal ageing’. - Highlights: • Hydroxyapatite is obtained from cattle bones. • Material has been characterised using XRD and TEM. • Crystal growth and orientation has been studied in detail.

  1. Quantitative description of microstructure defects in hexagonal boron nitrides using X-ray diffraction analysis

    International Nuclear Information System (INIS)

    Schimpf, C.; Motylenko, M.; Rafaja, D.

    2013-01-01

    A routine for simultaneous quantification of turbostratic disorder, amount of puckering and the dislocation and stacking fault density in hexagonal materials was proposed and tested on boron nitride powder samples that were synthesised using different methods. The routine allows the individual microstructure defects to be recognised according to their effect on the anisotropy of the X-ray diffraction line broadening. For quantification of the microstructure defects, the total line broadening is regarded as a linear combination of the contributions from the particular defects. The total line broadening is obtained from the line profile fitting. As testing material, graphitic boron nitride (h-BN) was employed in the form of hot-isostatically pressed h-BN, pyrolytic h-BN or a h-BN, which was chemically vapour deposited at a low temperature. The kind of the dominant microstructure defects determined from the broadening of the X-ray diffraction lines was verified by high resolution transmission electron microscopy. Their amount was attempted to be verified by alternative methods. - Highlights: • Reliable method for quantification of microstructure defects in BN was suggested. • The method is based on the analysis of anisotropic XRD line broadening. • This XRD line broadening is unique and characteristic of the respective defect. • Thus, the quantification of coexistent microstructure defects is possible. • The method was tested on hexagonal BN, which was produced by different techniques

  2. [X-ray diffraction (XRD) and near infrared spectrum (NIR) analysis of the soil overlying the Bairendaba deposit of the Inner Mongolia Grassland].

    Science.gov (United States)

    Luo, Song-ying; Cao, Jian-jin; Wu, Zheng-quan

    2014-08-01

    The soil samples uniformly overlying the Bairendaba deposit of the Inner Mongolia grassland were collected, and ana- lyzed with X-ray diffraction (XRD) and near infrared spectrum (NIR), for exploring the origins of the soil from the, grassland mining area and the relationship with the underground rock. The results show that the samp]s consist of quartz, graphite, carbonate, hornblende, mica, chlorite, montmorillonite, illite, berlinite, diaspore, azurite, hen tite, etc. These indicate that the soil samples were not only from the weathering products of the surface rock, but also from the underground rock mass and the alteration of the wall rock. The azurite and the hematite contained in the soil, mainly coming from the oxidation zone of the orebodies, can be used as the prospecting marks. The alteration mineral assemblage is mainly chlorite-illite-montmorillonite and it experienced the alteration process of potassic alteration-->silicification-->carbonatization-->silk greisenization-->clayization. Also, the wall rock alteration and the physical weathering processes can be accurately restored by analyzing the combination of the alteration minerals, which can provide important reference information for the deep ore prospecting and the ore deposit genesis study, improving the rate of the prospecting. The XRD and NIR with the characteristics of the economy and quickness can be used for the identification of mineral composition of soil, and in the study of mineral and mineral deposits. Especially, NIR has its unique superiority, that is, its sample request is low, and it can analyze a batch of samples quickly. With the development of INR, it will be more and more widely applied in geological field, and can play an important role in the ore exploration.

  3. X-Ray Diffraction (XRD) Characterization Methods for Sigma=3 Twin Defects in Cubic Semiconductor (100) Wafers

    Science.gov (United States)

    Park, Yeonjoon (Inventor); Kim, Hyun Jung (Inventor); Skuza, Jonathan R. (Inventor); Lee, Kunik (Inventor); King, Glen C. (Inventor); Choi, Sang Hyouk (Inventor)

    2017-01-01

    An X-ray defraction (XRD) characterization method for sigma=3 twin defects in cubic semiconductor (100) wafers includes a concentration measurement method and a wafer mapping method for any cubic tetrahedral semiconductor wafers including GaAs (100) wafers and Si (100) wafers. The methods use the cubic semiconductor's (004) pole figure in order to detect sigma=3/{111} twin defects. The XRD methods are applicable to any (100) wafers of tetrahedral cubic semiconductors in the diamond structure (Si, Ge, C) and cubic zinc-blend structure (InP, InGaAs, CdTe, ZnSe, and so on) with various growth methods such as Liquid Encapsulated Czochralski (LEC) growth, Molecular Beam Epitaxy (MBE), Organometallic Vapor Phase Epitaxy (OMVPE), Czochralski growth and Metal Organic Chemical Vapor Deposition (MOCVD) growth.

  4. In-situ XRD study of alloyed Cu2ZnSnSe4-CuInSe2 thin films for solar cells

    International Nuclear Information System (INIS)

    Hartnauer, Stefan; Wägele, Leonard A.; Jarzembowski, Enrico; Scheer, Roland

    2015-01-01

    We investigate the growth of Cu 2 ZnSnSe 4 -CuInSe 2 (CZTISe) thin films using a 2-stage (Cu-rich/Cu-free) co-evaporation process under simultaneous application of in-situ angle dispersive X-ray diffraction (XRD). In-situ XRD allows monitoring the phase formation during preparation. A variation of the content of indium in CZTISe leads to a change in the lattice constant. Single phase CZTISe is formed in a wide range, while at high In contents a phase separation is detected. Because of different thermal expansion coefficients, the X-ray diffraction peaks of ZnSe and CZTISe can be distinguished at elevated substrate temperatures. The formation of ZnSe appears to be inhibited even for low indium content. In-situ XRD shows no detectable sign for the formation of ZnSe. First solar cells of CZTISe have been prepared and show comparable performance to CZTSe. - Highlights: • In-situ XRD study of two-stage co-evaporated Cu 2 ZnSnSe 4 -CuInSe 2 alloyed thin films. • No detection of ZnSe with in-situ XRD due to Indium incorporation • Comparable efficiency of alloyed solar cells

  5. Fine structure characterization of martensite/austenite constituent in low-carbon low-alloy steel by transmission electron forward scatter diffraction.

    Science.gov (United States)

    Li, C W; Han, L Z; Luo, X M; Liu, Q D; Gu, J F

    2016-11-01

    Transmission electron forward scatter diffraction and other characterization techniques were used to investigate the fine structure and the variant relationship of the martensite/austenite (M/A) constituent of the granular bainite in low-carbon low-alloy steel. The results demonstrated that the M/A constituents were distributed in clusters throughout the bainitic ferrite. Lath martensite was the main component of the M/A constituent, where the relationship between the martensite variants was consistent with the Nishiyama-Wassermann orientation relationship and only three variants were found in the M/A constituent, suggesting that the variants had formed in the M/A constituent according to a specific mechanism. Furthermore, the Σ3 boundaries in the M/A constituent were much longer than their counterparts in the bainitic ferrite region. The results indicate that transmission electron forward scatter diffraction is an effective method of crystallographic analysis for nanolaths in M/A constituents. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  6. Determination of Stress Profiles in Expanded Austenite by Combining Successive Layer Removal and GI-XRD

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2014-01-01

    The present work deals with the evaluation of the residual-stress profile in expanded-austenite by successive removal steps using GI-XRD. Preliminary results indicate stresses of several GPa's from 111 and 200 diffraction lines. These stresses appear largest for the 200 reflection. The strain......-free lattice parameter decayed smoothly with depth, while for the compressive stress a maximum value is observed at some depth below the surface. Additionally a good agreement was found between the nitrogen profile determined with GDOES analysis and the strain-free lattice parameter from XRD....

  7. Study the oxidation kinetics of uranium using XRD and Rietveld method

    Science.gov (United States)

    Zhang, Yanzhi; Guan, Weijun; Wang, Qinguo; Wang, Xiaolin; Lai, Xinchun; Shuai, Maobing

    2010-03-01

    The surface oxidation of uranium metal has been studied by X-ray diffraction (XRD) and Rietveld method in the range of 50~300°C in air. The oxidation processes are analyzed by XRD to determine the extent of surface oxidation and the oxide structure. The dynamics expression for the formation of UO2 was derived. At the beginning, the dynamic expression was nonlinear, but switched to linear subsequently for uranium in air and humid oxygen. That is, the growth kinetics of UO2 can be divided into two stages: nonlinear portion and linear portion. Using the kinetic data of linear portion, the activation energy of reaction between uranium and air was calculated about 46.0 kJ/mol. However the content of oxide as a function of time was linear in humid helium ambience. Contrast the dynamics results, it prove that the absence of oxygen would accelerate the corrosion rate of uranium in the humid gas. We can find that the XRD and Rietveld method are a useful convenient method to estimate the kinetics and thermodynamics of solid-gas reaction.

  8. Characterization of explosives by x-ray diffraction and neutron scattering techniques: phase transformation study by synchrotron radiation XRD of forensically sourced ammonium nitrate pills

    International Nuclear Information System (INIS)

    Connor, B.O.; Blagojevic, N.

    2009-01-01

    Under direction of the Australian Department of Prime Minister and Cabinet ANSTO has commenced a three-year project with the title Characterisation of Explosives by XRD and Neutron Scattering Techniques. The initial focus is on Ammonium Nitrate (AN) based explosives with the intention to investigate all important energetic materials currently used in improvised explosives devices (IED) by various combative groups. The principal objective of the project is to use laboratory x-ray, synchrotron radiation (SR) and neutron scattering fingerprinting to establish associations between the diffraction pattern information and the manufacturing sources of AN and other energetic materials. Laboratory and SR experiments, at room temperature, of commercial AN show that the phase structure is principally AN-IV. Our earlier work observed other phases such as previously unreported transformation of AN-IV to AN-II, again at room temperature. Our interest is to also characterise added phase stabiliser material, solid-solution altered AN as well as desiccant and moisture barrier coatings. This prospect points strongly to the possibility of fingerprinting the materials for inferring source-association relations. The enhanced pattern definition achievable using powder SR diffraction is expected to improve the crystal structure characterisation of the materials. Other properties such as temperature dependent phase transformation and strain anisotropy as well as trace elemental impurities will provide information to further define association linkages. (Author)

  9. EPXMA survey of shelf sediments (Southern Bight, North Sea): A glance beyond the XRD-invisible

    NARCIS (Netherlands)

    De Maeyer-Worobiec, A.; Dekov, V.M.; Laane, R.W.P.M.; van Grieken, R.

    2009-01-01

    Shelf sediments of the southern North Sea, were studied with a microanalytical [electron probe X-ray microanalysis (EPXMA)] and two bulk [X-ray diffraction (XRD) and X-ray fluorescence (XRF)] techniques. The investigation proved that the promptness of the microanalytical method is combined with a

  10. Quantitative microstructure characterization of self-annealed copper films with electron backscatter diffraction

    DEFF Research Database (Denmark)

    Pantleon, Karen; Gholinia, A.; Somers, Marcel A. J.

    2008-01-01

    Electron backscatter diffraction (EBSD) was applied to analyze cross sections of self-annealed copper electrodeposits, for which earlier the kinetics of self-annealing had been investigated by in-situ X-ray diffraction (XRD). The EBSD investigations on the grain size, grain boundary character...... and crystallographic texture of copper films with different thicknesses essentially supplement results from in-situ XRD. Twin relations between neighboring grains were identified from the orientation maps and the observed twin chains confirm multiple twinning in copper electrodeposits as the mechanism...

  11. Nanostructure characterisation of flow-formed Cr–Mo–V steel using transmission Kikuchi diffraction technique

    International Nuclear Information System (INIS)

    Birosca, S.; Ding, R.; Ooi, S.; Buckingham, R.; Coleman, C.; Dicks, K.

    2015-01-01

    Nowadays flow-forming has become a desired near net shape manufacturing method as it provides excellent mechanical properties with improved surface finish and significant manufacturing cost reduction. However, the material is subjected to excessive plastic deformation during flow-forming process, generating a very fine and complex microstructure. In addition, the intense dislocation density and residual stress that is generated in the component during processing makes the microstructure characterisation using conventional micro-analytical tools challenging. Thus, the microstructure/property relationship study in such a material is rather difficult. In the present study a flow-formed Cr–Mo–V steel nanostructure and crystallographic texture were characterised by means of Transmission Kikuchi Diffraction (TKD). Here, TKD is shown to be a powerful technique in revealing very fine martensite laths within an austenite matrix. Moreover, fine precipitates in the order of 20–70 nm on the martensite lath boundaries were clearly imaged and characterised. This greatly assisted in understanding the preferable site formation of the carbides in such a complex microstructure. The results showed that the actual TKD spatial resolution was in the range of 5–10 nm using 25 kV for flow-formed Cr–Mo–V steel. - Highlights: • Optimum Transmission Kikuchi Diffraction (TKD) technique's configuration is reported. • TKD could reveal detailed nanostructural features and the microtexture of martensite laths. • Actual TKD spatial resolution was in the range of 5–10 nm using 25 kV for flow-formed Cr-Mo-V steel. • At nano scale the sub-structure morphology of martensite lath were determined using TKD

  12. Nanostructure characterisation of flow-formed Cr–Mo–V steel using transmission Kikuchi diffraction technique

    Energy Technology Data Exchange (ETDEWEB)

    Birosca, S., E-mail: s.birosca@swansea.ac.uk [Materials Research Centre, College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom); Ding, R. [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Ooi, S. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Buckingham, R.; Coleman, C. [Materials Research Centre, College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP (United Kingdom); Dicks, K. [Oxford Instruments NanoAnalysis, Halifax Road, High Wycombe, Buckinghamshire HP12 3SE (United Kingdom)

    2015-06-15

    Nowadays flow-forming has become a desired near net shape manufacturing method as it provides excellent mechanical properties with improved surface finish and significant manufacturing cost reduction. However, the material is subjected to excessive plastic deformation during flow-forming process, generating a very fine and complex microstructure. In addition, the intense dislocation density and residual stress that is generated in the component during processing makes the microstructure characterisation using conventional micro-analytical tools challenging. Thus, the microstructure/property relationship study in such a material is rather difficult. In the present study a flow-formed Cr–Mo–V steel nanostructure and crystallographic texture were characterised by means of Transmission Kikuchi Diffraction (TKD). Here, TKD is shown to be a powerful technique in revealing very fine martensite laths within an austenite matrix. Moreover, fine precipitates in the order of 20–70 nm on the martensite lath boundaries were clearly imaged and characterised. This greatly assisted in understanding the preferable site formation of the carbides in such a complex microstructure. The results showed that the actual TKD spatial resolution was in the range of 5–10 nm using 25 kV for flow-formed Cr–Mo–V steel. - Highlights: • Optimum Transmission Kikuchi Diffraction (TKD) technique's configuration is reported. • TKD could reveal detailed nanostructural features and the microtexture of martensite laths. • Actual TKD spatial resolution was in the range of 5–10 nm using 25 kV for flow-formed Cr-Mo-V steel. • At nano scale the sub-structure morphology of martensite lath were determined using TKD.

  13. Crystallography of refractory metal nuggets in carbonaceous chondrites: A transmission Kikuchi diffraction approach

    Science.gov (United States)

    Daly, Luke; Bland, Phil A.; Dyl, Kathryn A.; Forman, Lucy V.; Saxey, David W.; Reddy, Steven M.; Fougerouse, Denis; Rickard, William D. A.; Trimby, Patrick W.; Moody, Steve; Yang, Limei; Liu, Hongwei; Ringer, Simon P.; Saunders, Martin; Piazolo, Sandra

    2017-11-01

    Transmission Kikuchi diffraction (TKD) is a relatively new technique that is currently being developed for geological sample analysis. This technique utilises the transmission capabilities of a scanning electron microscope (SEM) to rapidly and accurately map the crystallographic and geochemical features of an electron transparent sample. TKD uses a similar methodology to traditional electron backscatter diffraction (EBSD), but is capable of achieving a much higher spatial resolution (5-10 nm) (Trimby, 2012; Trimby et al., 2014). Here we apply TKD to refractory metal nuggets (RMNs) which are micrometre to sub-micrometre metal alloys composed of highly siderophile elements (HSEs) found in primitive carbonaceous chondrite meteorites. TKD allows us to analyse RMNs in situ, enabling the characterisation of nanometre-scale variations in chemistry and crystallography, whilst preserving their spatial and crystallographic context. This provides a complete representation of each RMN, permitting detailed interpretation of their formation history. We present TKD analysis of five transmission electron microscopy (TEM) lamellae containing RMNs coupled with EBSD and TEM analyses. These analyses revealed textures and relationships not previously observed in RMNs. These textures indicate some RMNs experienced annealing, forming twins. Some RMNs also acted as nucleation centres, and formed immiscible metal-silicate fluids. In fact, each RMN analysed in this study had different crystallographic textures. These RMNs also had heterogeneous compositions, even between RMNs contained within the same inclusion, host phase and even separated by only a few nanometres. Some RMNs are also affected by secondary processes at low temperature causing exsolution of molybdenite. However, most RMNs had crystallographic textures indicating that the RMN formed prior to their host inclusion. TKD analyses reveal most RMNs have been affected by processing in the protoplanetary disk. Despite this

  14. XRD measurement of mean crystallite thickness of illite and illite/smectite: Reappraisal of the Kubler index and the Scherrer equation

    Science.gov (United States)

    Drits, Victor A.; Środoń, Jan; Eberl, D.D.

    1997-01-01

    The standard form of the Scherrer equation, which has been used to calculate the mean thickness of the coherent scattering domain (CSD) of illite crystals from X-ray diffraction (XRD) full width data at half maximum (FWHM) intensity, employs a constant, Ksh, of 0.89. Use of this constant is unjustified, even if swelling has no effect on peak broadening, because this constant is valid only if all CSDs have a single thickness. For different thickness distributions, the Scherrer “constant” has very different values.Analysis of fundamental particle thickness data (transmission electron microscopy, TEM) for samples of authigenic illite and illite/smectite from diagenetically altered pyroclastics and filamentous illites from sandstones reveals a unique family of lognormal thickness distributions for these clays. Experimental relations between the distributions' lognormal parameters and mean thicknesses are established. These relations then are used to calculate the mean thickness of CSDs for illitic samples from XRD FWHM, or from integral XRD peak widths (integrated intensity/maximum intensity).For mixed-layer illite/smectite, the measured thickness of the CSD corresponds to the mean thickness of the mixed-layer crystal. Using this measurement, the mean thickness of the fundamental particles that compose the mixed-layer crystals can be calculated after XRD determination of percent smectitic interlayers. The effect of mixed layering (swelling) on XRD peak width for these samples is eliminated by using the 003 reflection for glycolated samples, and the 001, 002 or 003 reflection for dehydrated, K-saturated samples. If this technique is applied to the 001 reflection of air-dried samples (Kubler index measurement), mean CSD thicknesses are underestimated due to the mixed-layering effect.The technique was calibrated using NEW MOD©-simulated XRD profiles of illite, and then tested on well-characterized illite and illite/smectite samples. The XRD measurements are in good

  15. X-ray diffraction without sample preparation: Proof-of-principle experiments

    International Nuclear Information System (INIS)

    Hansford, Graeme M.

    2013-01-01

    The properties of a novel X-ray diffraction (XRD) technique having very low sensitivity to the sample morphology were previously elucidated through theoretical considerations and model simulations (Hansford, 2011). This technique opens up the possibility of mineralogical analysis by XRD without sample preparation. Here, the results of proof-of-principle experimental tests are presented. Two sets of experiments were performed using a vacuum chamber equipped with an X-ray tube source, sample holder and charge-coupled detector. Firstly, a pressed-powder pellet of α-quartz was placed in three different positions relative to the X-ray source and detector. The changes in position represent gross sample movements which would be inconceivable in conventional XRD analysis. The resulting back-reflection energy-dispersive spectra show a very high degree of correspondence other than an overall intensity factor dependent on the distance between the sample and detector. Secondly, the back-reflection spectrum of an unprepared limestone hand specimen, having mm-scale surface morphology, was compared to the spectrum of a calcite pressed-powder pellet. The correspondence of the diffraction peaks in the spectra demonstrate that the limestone is comprised dominantly of calcite. In both cases, the claims of the earlier paper are fully supported by the results of these experimental tests. -- Highlights: • Proof-of-principle tests of a novel X-ray diffraction (XRD) method were conducted. • Very low sensitivity to sample position and orientation was demonstrated. • Insensitivity to sample morphology is inferred. • A simple analysis of an unprepared limestone hand specimen was performed. • This technique enables mineralogical analysis by XRD without sample preparation

  16. Automated grain mapping using wide angle convergent beam electron diffraction in transmission electron microscope for nanomaterials.

    Science.gov (United States)

    Kumar, Vineet

    2011-12-01

    The grain size statistics, commonly derived from the grain map of a material sample, are important microstructure characteristics that greatly influence its properties. The grain map for nanomaterials is usually obtained manually by visual inspection of the transmission electron microscope (TEM) micrographs because automated methods do not perform satisfactorily. While the visual inspection method provides reliable results, it is a labor intensive process and is often prone to human errors. In this article, an automated grain mapping method is developed using TEM diffraction patterns. The presented method uses wide angle convergent beam diffraction in the TEM. The automated technique was applied on a platinum thin film sample to obtain the grain map and subsequently derive grain size statistics from it. The grain size statistics obtained with the automated method were found in good agreement with the visual inspection method.

  17. Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size

    Science.gov (United States)

    Umesh P. Agarwal; Sally A. Ralph; Carlos Baez; Richard S. Reiner; Steve P. Verrill

    2017-01-01

    Although X-ray diffraction (XRD) has been the most widely used technique to investigate crystallinity index (CrI) and crystallite size (L200) of cellulose materials, there are not many studies that have taken into account the role of sample moisture on these measurements. The present investigation focuses on a variety of celluloses and cellulose...

  18. Stress-strain relationship and XRD line broadening in [0001] textured hexagonal polycrystalline materials

    International Nuclear Information System (INIS)

    Yokoyama, Ryouichi

    2011-01-01

    Stress analysis with X-ray diffraction (XRD) for hexagonal polycrystalline materials in the Laue classes 6/mmm and 6/m has been studied on the basis of the crystal symmetry of the constituent crystallites which was proposed by R. Yokoyama and J. Harada ['Re-evaluation of formulae for X-ray stress analysis in polycrystalline specimens with fibre texture', Journal of Applied Crystallography, Vol.42, pp.185-191 (2009)]. The relationship between the stress and strain observable by XRD in a hexagonal polycrystalline material with [0001] fibre texture was formulated in terms of the elastic compliance defined for its single crystal. As a result, it was shown that the average strains obtained in the crystallites for both symmetries of 6/mmm and 6/m are different from each other under the triaxial or biaxial stress field. Then, it turned out that the line width of XRD changes depending on the measurement direction. (author)

  19. Matching 4.7-Å XRD spacing in amelogenin nanoribbons and enamel matrix.

    Science.gov (United States)

    Sanii, B; Martinez-Avila, O; Simpliciano, C; Zuckermann, R N; Habelitz, S

    2014-09-01

    The recent discovery of conditions that induce nanoribbon structures of amelogenin protein in vitro raises questions about their role in enamel formation. Nanoribbons of recombinant human full-length amelogenin (rH174) are about 17 nm wide and self-align into parallel bundles; thus, they could act as templates for crystallization of nanofibrous apatite comprising dental enamel. Here we analyzed the secondary structures of nanoribbon amelogenin by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) and tested if the structural motif matches previous data on the organic matrix of enamel. XRD analysis showed that a peak corresponding to 4.7 Å is present in nanoribbons of amelogenin. In addition, FTIR analysis showed that amelogenin in the form of nanoribbons was comprised of β-sheets by up to 75%, while amelogenin nanospheres had predominantly random-coil structure. The observation of a 4.7-Å XRD spacing confirms the presence of β-sheets and illustrates structural parallels between the in vitro assemblies and structural motifs in developing enamel. © International & American Associations for Dental Research.

  20. Study the oxidation kinetics of uranium using XRD and Rietveld method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yanzhi; Guan Weijun; Wang Qinguo; Wang Xiaolin; Lai Xinchun; Shuai Maobing, E-mail: yanzhizh@163.com [China Academy of Engineering Physics, PO Box 919-71, Mianyang, Sichuan, 621900 (China)

    2010-03-15

    The surface oxidation of uranium metal has been studied by X-ray diffraction (XRD) and Rietveld method in the range of 50{approx}300deg. C in air. The oxidation processes are analyzed by XRD to determine the extent of surface oxidation and the oxide structure. The dynamics expression for the formation of UO{sub 2} was derived. At the beginning, the dynamic expression was nonlinear, but switched to linear subsequently for uranium in air and humid oxygen. That is, the growth kinetics of UO{sub 2} can be divided into two stages: nonlinear portion and linear portion. Using the kinetic data of linear portion, the activation energy of reaction between uranium and air was calculated about 46.0 kJ/mol. However the content of oxide as a function of time was linear in humid helium ambience. Contrast the dynamics results, it prove that the absence of oxygen would accelerate the corrosion rate of uranium in the humid gas. We can find that the XRD and Rietveld method are a useful convenient method to estimate the kinetics and thermodynamics of solid-gas reaction.

  1. X-ray diffraction study of low-temperature phase transformations in nickel-titanium orthodontic wires.

    Science.gov (United States)

    Iijima, M; Brantley, W A; Guo, W H; Clark, W A T; Yuasa, T; Mizoguchi, I

    2008-11-01

    Employ conventional X-ray diffraction (XRD) to analyze three clinically important nickel-titanium orthodontic wire alloys over a range of temperatures between 25 and -110 degrees C, for comparison with previous results from temperature-modulated differential scanning calorimetry (TMDSC) studies. The archwires selected were 35 degrees C Copper Ni-Ti (Ormco), Neo Sentalloy (GAC International), and Nitinol SE (3M Unitek). Neo Sentalloy, which exhibits superelastic behavior, is marketed as having shape memory in the oral environment, and Nitinol SE and 35 degrees C Copper Ni-Ti also exhibit superelastic behavior. All archwires had dimensions of 0.016in.x0.022in. (0.41 mm x 0.56 mm). Straight segments cut with a water-cooled diamond saw were placed side-by-side to yield a 1 cm x 1cm test sample of each wire product for XRD analysis (Rint-Ultima(+), Rigaku) over a 2theta range from 30 degrees to 130 degrees and at successive temperatures of 25, -110, -60, -20, 0 and 25 degrees C. The phases revealed by XRD at the different analysis temperatures were in good agreement with those found in previous TMDSC studies of transformations in these alloys, in particular verifying the presence of R-phase at 25 degrees C. Precise comparisons are not possible because of the approximate nature of the transformation temperatures determined by TMDSC and the preferred crystallographic orientation present in the wires. New XRD peaks appear to result from low-temperature transformation in martensite, which a recent transmission electron microscopy (TEM) study has shown to arise from twinning. While XRD is a useful technique to study phases in nickel-titanium orthodontic wires and their transformations as a function of temperature, optimum insight is obtained when XRD analyses are combined with complementary TMDSC and TEM study of the wires.

  2. Qualitative soil mineral analysis by EDXRF, XRD and AAS probes

    International Nuclear Information System (INIS)

    Singh, Virendra; Agrawal, H.M.

    2012-01-01

    Soil minerals study is vital in terms of investigating the major soil forming compounds and to find out the fate of minor and trace elements, essential for the soil–plant interaction purpose. X-ray diffraction (XRD) has been a popular technique to search out the phases for different types of samples. For the soil samples, however, employing XRD is not so straightforward due to many practical problems. In the current approach, principal component analysis (PCA) has been used to have an idea of the minerals present, in qualitative manner, in the soil under study. PCA was used on the elemental concentrations data of 17 elements, determined by the energy dispersive X-ray fluorescence (EDXRF) technique. XRD analysis of soil samples has been done also to identify the minerals of major elements. Some prior treatments, like removal of silica by polytetrafluoroethylene (PTFE) slurry and grinding with alcohol, were given to samples to overcome the peak overlapping problems and to attain fine particle size which is important to minimize micro-absorption corrections, to give reproducible peak intensities and to minimize preferred orientation. A 2θ step of 0.05°/min and a longer dwell time than normal were used to reduce interferences from background noise and to increase the counting statistics. Finally, the sequential extraction procedure for metal speciation study has been applied on soil samples. Atomic absorption spectroscopy (AAS) was used to find the concentrations of metal fractions bound to various forms. Applying all the three probes, the minerals in the soils can be studied and identified, successfully. - Highlights: ► Qualitative soil minerals analysis by EDXRF, AAS and XRD methods. ► There is a requirement of other means and methods due to inadequacy of XRD. ► Principal component analysis (PCA) provides an idea of minerals present in soil. ► Trace elements complexes can be determined by AAS probe. ► EDXRF, AAS and XRD, in combination, enable

  3. X-Ray Diffraction for In-Situ Mineralogical Analysis of Planetesimals.

    Science.gov (United States)

    Sarrazin, P.; Blake, D. F.; Dera, P.; Downs, R. T.; Taylor, J.

    2017-12-01

    X-ray diffraction (XRD) is a general purpose technique for definitive, quantitative mineralogical analysis. When combined with XRF data for sample chemistry, XRD analyses yield as complete a characterization as is possible by any spacecraft-capable techniques. The MSL CheMin instrument, the first XRD instrument flown in space, has been used to establish the quantitative mineralogy of the Mars global soil, to discover the first habitable environment on another planet, and to provide the first in-situ evidence of silicic volcanism on Mars. CheMin is now used to characterize the depositional and diagenetic environments associated with the mudstone sediments of lower strata of Mt. Sharp. Conventional powder XRD requires samples comprised of small grains presented in random orientations. In CheMin, sample cells are vibrated to cause loose powder to flow within the cell, driven by granular convection, which relaxes the requirement for fine grained samples. Nevertheless, CheMin still requires mechanisms to collect, crush, sieve and deliver samples before analysis. XTRA (Extraterrestrial Regolith Analyzer) is an evolution of CheMin intended to analyze fines in as-delivered surface regolith, without sample preparation. Fine-grained regolith coats the surfaces of most airless bodies in the solar system, and because this fraction is typically comminuted from the rocky regolith, it can often be used as a proxy for the surface as a whole. HXRD (Hybrid-XRD) is concept under development to analyze rocks or soils without sample preparation. Like in CheMin, the diffracted signal is collected with direct illumination CCD's. If the material is sufficiently fine-grained, a powder XRD pattern of the characteristic X-ray tube emission is obtained, similar to CheMin or XTRA. With coarse grained crystals, the white bremsstrahlung radiation of the tube is diffracted into Laue patterns. Unlike typical Laue applications, HXRD uses the CCD's capability to distinguish energy and analyze the

  4. Inverse scattering theory foundations of tomography with diffracting wavefields

    International Nuclear Information System (INIS)

    Devaney, A.J.

    1987-01-01

    The underlying mathematical models employed in reflection and transmission computed tomography using diffracting wavefields (called diffraction tomography) are reviewed and shown to have a rigorous basis in inverse scattering theory. In transmission diffraction tomography the underlying wave model is shown to be the Rytov approximation to the complex phase of the wavefield transmitted by the object being probed while in reflection diffraction tomography the underlying wave model is shown to be the Born approximation to the backscattered wavefield from the object. In both cases the goal of the reconstruction process is the determination of the objects's complex index of refraction as a function of position r/sup →/ and, possibly, the frequency ω of the probing wavefield. By use of these approximations the reconstruction problem for both transmission and reflection diffraction tomography can be cast into the simple and elegant form of linearized inverse scattering theory. Linearized inverse scattering theory is shown to lead directly to generalized projection-slice theorems for both reflection and transmission diffraction tomography that provide a simple mathematical relationship between the object's complex index of refraction (the unknown) and the data (the complex phase of the transmitted wave or the complex amplitude of the reflected wave). The conventional projection-slice theorem of X-ray CT is shown to result from the generalized projection-slice theorem for transmission diffraction tomography in the limit of vanishing wavelength (in the absence of wave effects). Fourier based and back-projection type reconstruction algorithms are shown to be directly derivable from the generalized projection-slice theorems

  5. Correlating Atom Probe Crystallographic Measurements with Transmission Kikuchi Diffraction Data.

    Science.gov (United States)

    Breen, Andrew J; Babinsky, Katharina; Day, Alec C; Eder, K; Oakman, Connor J; Trimby, Patrick W; Primig, Sophie; Cairney, Julie M; Ringer, Simon P

    2017-04-01

    Correlative microscopy approaches offer synergistic solutions to many research problems. One such combination, that has been studied in limited detail, is the use of atom probe tomography (APT) and transmission Kikuchi diffraction (TKD) on the same tip specimen. By combining these two powerful microscopy techniques, the microstructure of important engineering alloys can be studied in greater detail. For the first time, the accuracy of crystallographic measurements made using APT will be independently verified using TKD. Experimental data from two atom probe tips, one a nanocrystalline Al-0.5Ag alloy specimen collected on a straight flight-path atom probe and the other a high purity Mo specimen collected on a reflectron-fitted instrument, will be compared. We find that the average minimum misorientation angle, calculated from calibrated atom probe reconstructions with two different pole combinations, deviate 0.7° and 1.4°, respectively, from the TKD results. The type of atom probe and experimental conditions appear to have some impact on this accuracy and the reconstruction and measurement procedures are likely to contribute further to degradation in angular resolution. The challenges and implications of this correlative approach will also be discussed.

  6. Hybrid Powder - Single Crystal X-Ray Diffraction Instrument for Planetary Mineralogical Analysis of Unprepared Samples, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a planetary exploration XRD/XRF instrument based on a hybrid diffraction approach that complements powder XRD analysis, similar to that of the...

  7. Characterizing deformed ultrafine-grained and nanocrystalline materials using transmission Kikuchi diffraction in a scanning electron microscope

    International Nuclear Information System (INIS)

    Trimby, Patrick W.; Cao, Yang; Chen, Zibin; Han, Shuang; Hemker, Kevin J.; Lian, Jianshe; Liao, Xiaozhou; Rottmann, Paul; Samudrala, Saritha; Sun, Jingli; Wang, Jing Tao; Wheeler, John; Cairney, Julie M.

    2014-01-01

    Graphical abstract: -- Abstract: The recent development of transmission Kikuchi diffraction (TKD) in a scanning electron microscope enables fast, automated orientation mapping of electron transparent samples using standard electron backscatter diffraction (EBSD) hardware. TKD in a scanning electron microscope has significantly better spatial resolution than conventional EBSD, enabling routine characterization of nanocrystalline materials and allowing effective measurement of samples that have undergone severe plastic deformation. Combining TKD with energy dispersive X-ray spectroscopy (EDS) provides complementary chemical information, while a standard forescatter detector system below the EBSD detector can be used to generate dark field and oriented dark field images. Here we illustrate the application of this exciting new approach to a range of deformed, ultrafine grained and nanocrystalline samples, including duplex stainless steel, nanocrystalline copper and highly deformed titanium and nickel–cobalt. The results show that TKD combined with EDS is a highly effective and widely accessible tool for measuring key microstructural parameters at resolutions that are inaccessible using conventional EBSD

  8. Chemical Species, Micromorphology, and XRD Fingerprint Analysis of Tibetan Medicine Zuotai Containing Mercury.

    Science.gov (United States)

    Li, Cen; Yang, Hongxia; Du, Yuzhi; Xiao, Yuancan; Zhandui; Sanglao; Wang, Zhang; Ladan, Duojie; Bi, Hongtao; Wei, Lixin

    2016-01-01

    Zuotai ( gTso thal ) is one of the famous drugs containing mercury in Tibetan medicine. However, little is known about the chemical substance basis of its pharmacodynamics and the intrinsic link of different samples sources so far. Given this, energy dispersive spectrometry of X-ray (EDX), scanning electron microscopy (SEM), atomic force microscopy (AFM), and powder X-ray diffraction (XRD) were used to assay the elements, micromorphology, and phase composition of nine Zuotai samples from different regions, respectively; the XRD fingerprint features of Zuotai were analyzed by multivariate statistical analysis. EDX result shows that Zuotai contains Hg, S, O, Fe, Al, Cu, and other elements. SEM and AFM observations suggest that Zuotai is a kind of ancient nanodrug. Its particles are mainly in the range of 100-800 nm, which commonly further aggregate into 1-30  μ m loosely amorphous particles. XRD test shows that β -HgS, S 8 , and α -HgS are its main phase compositions. XRD fingerprint analysis indicates that the similarity degrees of nine samples are very high, and the results of multivariate statistical analysis are broadly consistent with sample sources. The present research has revealed the physicochemical characteristics of Zuotai , and it would play a positive role in interpreting this mysterious Tibetan drug.

  9. XRD Investigation of the relaxation of InAsP layers grown by CBE on (100) InP

    NARCIS (Netherlands)

    Marschner, T.H.; Leijs, M.R.; Vonk, H.; Wolter, J.H.

    1998-01-01

    We present X-ray diffraction (XRD) investigations of the influence of the substrate off-orientation on the relaxation of InAsP layers grown on InP by chemical beam epitaxy (CBE). Our measurements show that with beginning relaxation the As-concentration increases drastically and stays constant if the

  10. Studies of deformation-induced texture development in sheet materials using diffraction techniques

    International Nuclear Information System (INIS)

    Banovic, S.W.; Vaudin, M.D.; Gnaeupel-Herold, T.H.; Saylor, D.M.; Rodbell, K.P

    2004-01-01

    Crystallographic texture measurements were made on a series of rolled aluminum sheet specimens deformed in equi-biaxial tension up to a strain level of 0.11. The measurement techniques used were neutron diffraction with a 4-circle goniometer, electron backscatter diffraction, conventional powder X-ray diffraction (XRD), and XRD using an area detector. Results indicated a complex texture orientation distribution function which altered in response to the applied plastic deformation. Increased deformation caused the {1 1 0} planes, to align parallel to the plane of the sheet. The different techniques produced results that were very consistent with each other. The advantages and disadvantages of the various methods are discussed, with particular consideration of the time taken for each method, the range of orientation space accessible, the density of data that can be obtained, and the statistical significance of each data set with respect to rolled sheet product

  11. Structure refinement using precession electron diffraction tomography and dynamical diffraction: tests on experimental data

    Czech Academy of Sciences Publication Activity Database

    Palatinus, Lukáš; Correa, Cinthia Antunes; Steciuk, G.; Jacob, D.; Roussel, P.; Boullay, P.; Klementová, Mariana; Gemmi, M.; Kopeček, Jaromír; Domeneghetti, C.; Cámara, F.; Petříček, Václav

    2015-01-01

    Roč. 71, č. 6 (2015), 740-751 ISSN 2052-5206 R&D Projects: GA MŠk(CZ) LM2011029; GA ČR GA13-25747S; GA MŠk LO1409 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132; FUNBIO(XE) CZ.2.16/3.1.00/21568 Keywords : XRD * structure refinement * precession electron diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.892, year: 2015

  12. Liquid contrabands classification based on energy dispersive X-ray diffraction and hybrid discriminant analysis

    International Nuclear Information System (INIS)

    YangDai, Tianyi; Zhang, Li

    2016-01-01

    Energy dispersive X-ray diffraction (EDXRD) combined with hybrid discriminant analysis (HDA) has been utilized for classifying the liquid materials for the first time. The XRD spectra of 37 kinds of liquid contrabands and daily supplies were obtained using an EDXRD test bed facility. The unique spectra of different samples reveal XRD's capability to distinguish liquid contrabands from daily supplies. In order to create a system to detect liquid contrabands, the diffraction spectra were subjected to HDA which is the combination of principal components analysis (PCA) and linear discriminant analysis (LDA). Experiments based on the leave-one-out method demonstrate that HDA is a practical method with higher classification accuracy and lower noise sensitivity than the other methods in this application. The study shows the great capability and potential of the combination of XRD and HDA for liquid contrabands classification.

  13. Liquid contrabands classification based on energy dispersive X-ray diffraction and hybrid discriminant analysis

    Energy Technology Data Exchange (ETDEWEB)

    YangDai, Tianyi [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China); Zhang, Li, E-mail: zhangli@nuctech.com [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education (China)

    2016-02-01

    Energy dispersive X-ray diffraction (EDXRD) combined with hybrid discriminant analysis (HDA) has been utilized for classifying the liquid materials for the first time. The XRD spectra of 37 kinds of liquid contrabands and daily supplies were obtained using an EDXRD test bed facility. The unique spectra of different samples reveal XRD's capability to distinguish liquid contrabands from daily supplies. In order to create a system to detect liquid contrabands, the diffraction spectra were subjected to HDA which is the combination of principal components analysis (PCA) and linear discriminant analysis (LDA). Experiments based on the leave-one-out method demonstrate that HDA is a practical method with higher classification accuracy and lower noise sensitivity than the other methods in this application. The study shows the great capability and potential of the combination of XRD and HDA for liquid contrabands classification.

  14. Liquid contrabands classification based on energy dispersive X-ray diffraction and hybrid discriminant analysis

    Science.gov (United States)

    YangDai, Tianyi; Zhang, Li

    2016-02-01

    Energy dispersive X-ray diffraction (EDXRD) combined with hybrid discriminant analysis (HDA) has been utilized for classifying the liquid materials for the first time. The XRD spectra of 37 kinds of liquid contrabands and daily supplies were obtained using an EDXRD test bed facility. The unique spectra of different samples reveal XRD's capability to distinguish liquid contrabands from daily supplies. In order to create a system to detect liquid contrabands, the diffraction spectra were subjected to HDA which is the combination of principal components analysis (PCA) and linear discriminant analysis (LDA). Experiments based on the leave-one-out method demonstrate that HDA is a practical method with higher classification accuracy and lower noise sensitivity than the other methods in this application. The study shows the great capability and potential of the combination of XRD and HDA for liquid contrabands classification.

  15. Analysis of the diffraction peaks in the ZrCr2 system

    International Nuclear Information System (INIS)

    Quiroga, A.A.; Esquivel, M.R.

    2009-01-01

    In this work, the crystalline structures of Cr and Zr are characterized by X-ray Diffraction (XRD). The diffraction peaks are simulated using a numerical convolution of the Gauss and Lorentz functions. The simulation of the model is verified using empirical measurements of the diffraction peaks. From these results, the microstructure parameters of Zr and Cr are obtained: crystallite size (d) and strain (s). The advances obtained are used in the design of the synthesis of AB 2 intermetallics applied to thermal compression of hydrogen (Tch). (author)

  16. Nickel oxide reduction studied by environmental TEM and in situ XRD

    DEFF Research Database (Denmark)

    Jeangros, Q.; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2012-01-01

    Paar furnace and a mass spectrometer to complement and extrapolate the ETEM data to higher pressures and gas flows. Diffraction peak intensities, crystallite sizes (obtained using the Scherrer formula) and H2/H2O mass spectrometer signals are monitored. The recorded images and diffraction patterns show...... that the presence and stagnation of H2O vapour created upon reduction blocks H2 access to the reactive sites, decreasing the reaction rate at a high conversion fraction. The gas flow is low and may not evacuate the product gas efficiently around the Ni(O) particles. Complementary XRD experiments point towards...... the same conclusion and underline the impact of the pressure and gas flow on the kinetics. It is possible to determine an approximate activation energy for NiO reduction inside the ETEM using the Kissinger method [8], which is based on measurements of the shift in the temperature at which the reaction rate...

  17. submitter Digital Image Correlation of 2D X-ray Powder Diffraction Data for Lattice Strain Evaluation

    CERN Document Server

    Zhang, Hongjia; Salvati, Enrico; Daisenberger, Dominik; Lunt, Alexander J G; Fong, Kai Soon; Song, Xu; Korsunsky, Alexander M

    2018-01-01

    High energy 2D X-ray powder diffraction experiments are widely used for lattice strain measurement. The 2D to 1D conversion of diffraction patterns is a necessary step used to prepare the data for full pattern refinement, but is inefficient when only peak centre position information is required for lattice strain evaluation. The multi-step conversion process is likely to lead to increased errors associated with the ‘caking’ (radial binning) or fitting procedures. A new method is proposed here that relies on direct Digital Image Correlation analysis of 2D X-ray powder diffraction patterns (XRD-DIC, for short). As an example of using XRD-DIC, residual strain values along the central line in a Mg AZ31B alloy bar after 3-point bending are calculated by using both XRD-DIC and the conventional ‘caking’ with fitting procedures. Comparison of the results for strain values in different azimuthal angles demonstrates excellent agreement between the two methods. The principal strains and directions are calculated...

  18. Non-destructive micro-X-ray diffraction analysis of painted artefacts: Determination of detection limits for the chromium oxide-zinc oxide matrix

    International Nuclear Information System (INIS)

    Nel, P.; Lau, D.; Hay, D.; Wright, N.

    2006-01-01

    The development of micro-X-ray diffraction (micro-XRD) enables non-destructive, in situ analysis of crystalline pigments on artworks and archaeological objects. Pigments with X-ray diffraction patterns with large peak intensities may complicate the identification of other components with lower absorption coefficients, especially if present in low concentrations in the paint sample. Investigation of this issue involved: (1) micro-XRD examination and analysis of the amorphous and crystalline phases of fifteen pigment films and (2) micro-XRD examination and semi-quantitative analysis of various chromium oxide-zinc oxide mixtures, which established detection limits as low as 5 ± 2%

  19. Final Report for X-ray Diffraction Sample Preparation Method Development

    Energy Technology Data Exchange (ETDEWEB)

    Ely, T. M. [Hanford Site (HNF), Richland, WA (United States); Meznarich, H. K. [Hanford Site (HNF), Richland, WA (United States); Valero, T. [Hanford Site (HNF), Richland, WA (United States)

    2018-01-30

    WRPS-1500790, “X-ray Diffraction Saltcake Sample Preparation Method Development Plan/Procedure,” was originally prepared with the intent of improving the specimen preparation methodology used to generate saltcake specimens suitable for XRD-based solid phase characterization. At the time that this test plan document was originally developed, packed powder in cavity supports with collodion binder was the established XRD specimen preparation method. An alternate specimen preparation method less vulnerable, if not completely invulnerable to preferred orientation effects, was desired as a replacement for the method.

  20. Characterization of Brazilian asphalt using X-ray diffraction

    International Nuclear Information System (INIS)

    Cardoso, Edson R.; Pinto, Nivia G.V.; Almeida, Ana P.G.; Braz, Delson; Lopes, Ricardo T.; Barroso, Regina C.; Motta, Laura M.G.

    2007-01-01

    Asphalt is a sticky, black and highly viscous liquid or semi-solid that is presented in most crude petroleum and in some natural deposits. The X ray diffraction can give valuable information over the characteristics of a material. Thus, the X-ray diffraction (XRD) method was employed to investigate parameters that characterize and differentiate asphalt groups (Boscan, CAP20, CAP40, CAP50/60, CAP50/70 and CAP85/100). The scattering measurements were carried out in θ-2θ reflection geometry using a powder diffractometer Shimadzu XRD-6000 at the Nuclear Instrumentation Laboratory, Brazil. Scans were typically done from 8 deg to 28 deg every 0.05. The parameters analyzed were: FWHM, peak area, peak center, peak height, left half width and right half width. Thus, in this study, scattering profiles from different asphalt groups were carefully measured in order to establish characteristic signatures of these materials. The results indicate that by using three parameters (peak centroid, peak area and peak intensity) it is possible to characterize and differentiate the asphalt. (author)

  1. High-energy electron diffraction and microscopy

    CERN Document Server

    Peng, L M; Whelan, M J

    2011-01-01

    This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using ageneral matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to f

  2. Evaluation of Rock Powdering Methods to Obtain Fine-grained Samples for CHEMIN, a Combined XRD/XRF Instrument

    Science.gov (United States)

    Chipera, S. J.; Vaniman, D. T.; Bish, D. L.; Sarrazin, P.; Feldman, S.; Blake, D. F.; Bearman, G.; Bar-Cohen, Y.

    2004-01-01

    A miniature XRD/XRF (X-ray diffraction / X-ray fluorescence) instrument, CHEMIN, is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed to enable remote XRD analysis is how best to obtain a representative sample powder for analysis. For powder XRD analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a two-dimensional detector as used in the CHEMIN instrument will produce good results even with poorly prepared powder, the quality of the data will improve and the time required for data collection will be reduced if the sample is fine-grained and randomly oriented. A variety of methods have been proposed for XRD sample preparation. Chipera et al. presented grain size distributions and XRD results from powders generated with an Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL. The USDC was shown to be an effective instrument for sampling rock to produce powder suitable for XRD. In this paper, we compare powder prepared using the USDC with powder obtained with a miniaturized rock crusher developed at JPL and with powder obtained with a rotary tungsten carbide bit to powders obtained from a laboratory bench-scale Retsch mill (provides benchmark mineralogical data). These comparisons will allow assessment of the suitability of these methods for analysis by an XRD/XRF instrument such as CHEMIN.

  3. XRD measurement of mean thickness, thickness distribution and strain for illite and illite-smectite crystallites by the Bertaut-Warren-Averbach technique

    Science.gov (United States)

    Drits, Victor A.; Eberl, Dennis D.; Środoń, Jan

    1998-01-01

    A modified version of the Bertaut-Warren-Averbach (BWA) technique (Bertaut 1949, 1950; Warren and Averbach 1950) has been developed to measure coherent scattering domain (CSD) sizes and strains in minerals by analysis of X-ray diffraction (XRD) data. This method is used to measure CSD thickness distributions for calculated and experimental XRD patterns of illites and illite-smectites (I-S). The method almost exactly recovers CSD thickness distributions for calculated illite XRD patterns. Natural I-S samples contain swelling layers that lead to nonperiodic structures in the c* direction and to XRD peaks that are broadened and made asymmetric by mixed layering. Therefore, these peaks cannot be analyzed by the BWA method. These difficulties are overcome by K-saturation and heating prior to X-ray analysis in order to form 10-Å periodic structures. BWA analysis yields the thickness distribution of mixed-layer crystals (coherently diffracting stacks of fundamental illite particles). For most I-S samples, CSD thickness distributions can be approximated by lognormal functions. Mixed-layer crystal mean thickness and expandability then can be used to calculate fundamental illite particle mean thickness. Analyses of the dehydrated, K-saturated samples indicate that basal XRD reflections are broadened by symmetrical strain that may be related to local variations in smectite interlayers caused by dehydration, and that the standard deviation of the strain increases regularly with expandability. The 001 and 002 reflections are affected only slightly by this strain and therefore are suited for CSD thickness analysis. Mean mixed-layer crystal thicknesses for dehydrated I-S measured by the BWA method are very close to those measured by an integral peak width method.

  4. Time-dependent Bragg diffraction by multilayer gratings

    International Nuclear Information System (INIS)

    André, Jean-Michel; Jonnard, Philippe

    2016-01-01

    Time-dependent Bragg diffraction by multilayer gratings working by reflection or by transmission is investigated. The study is performed by generalizing the time-dependent coupled-wave theory previously developed for one-dimensional photonic crystals (André J-M and Jonnard P 2015 J. Opt. 17 085609) and also by extending the Takagi–Taupin approach of the dynamical theory of diffraction. The indicial response is calculated. It presents a time delay with a transient time that is a function of the extinction length for reflection geometry and of the extinction length combined with the thickness of the grating for transmission geometry. (paper)

  5. Mineralogical applications of electron diffraction. 1. Theory and techniques

    Science.gov (United States)

    Ross, Malcolm; Christ, C.L.

    1958-01-01

    The small wavelengths used in electron-diffraction experiments and the thinness of the crystals necessary for the transmission of the electron beam combine to require a somewhat different diffraction geometry for the interpretation of electron-diffraction patterns than is used in the interpretation of X-ray diffraction patterns. This geometry, based on the reciprocal lattice concept and geometrical construction of Ewald, needed for the interpretation.

  6. Micro-X-ray diffraction assessment of shock stage in enstatite chondrites

    Science.gov (United States)

    Izawa, Matthew R. M.; Flemming, Roberta L.; Banerjee, Neil R.; McCausland, Philip J. A.

    2011-05-01

    A new method for assessing the shock stage of enstatite chondrites has been developed, using in situ micro-X-ray diffractionXRD) to measure the full width at half maximum (FWHMχ) of peak intensity distributed along the direction of the Debye rings, or chi angle (χ), corresponding to individual lattice reflections in two-dimensional XRD patterns. This μXRD technique differs from previous XRD shock characterization methods: it does not require single crystals or powders. In situ μXRD has been applied to polished thin sections and whole-rock meteorite samples. Three frequently observed orthoenstatite reflections were measured: (020), (610), and (131); these were selected as they did not overlap with diffraction lines from other phases. Enstatite chondrites are commonly fine grained, stained or darkened by weathering, shock-induced oxidation, and metal/sulfide inclusions; furthermore, most E chondrites have little olivine or plagioclase. These characteristics inhibit transmitted-light petrography, nevertheless, shock stages have been assigned MacAlpine Hills (MAC) 02837 (EL3) S3, Pecora Escarpment (PCA) 91020 (EL3) S5, MAC 02747 (EL4) S4, Thiel Mountains (TIL) 91714 (EL5) S2, Allan Hills (ALHA) 81021 (EL6) S2, Elephant Moraine (EET) 87746 (EH3) S3, Meteorite Hills (MET) 00783 (EH4) S4, EET 96135 (EH4-5) S2, Lewis Cliff (LEW) 88180 (EH5) S2, Queen Alexandra Range (QUE) 94204 (EH7) S2, LaPaz Icefield (LAP) 02225 (EH impact melt) S1; for the six with published shock stages, there is agreement with the published classification. FWHMχ plotted against petrographic shock stage demonstrates positive linear correlation. FWHMχ ranges corresponding to shock stages were assigned as follows: S1 3.5°, S6—not measured. Slabs of Abee (EH impact-melt breccia), and Northwest Africa (NWA) 2212 (EL6) were examined using μXRD alone; FWHMχ values place both in the S2 range, consistent with literature values. Micro-XRD analysis may be applicable to other shocked orthopyroxene

  7. Identification of a deleterious phase in photocatalyst based on Cd1 - xZnxS/Zn(OH)2 by simulated XRD patterns.

    Science.gov (United States)

    Cherepanova, Svetlana; Markovskaya, Dina; Kozlova, Ekaterina

    2017-06-01

    The X-ray diffraction (XRD) pattern of a deleterious phase in the photocatalyst based on Cd 1 - x Zn x S/Zn(OH) 2 contains two relatively intense asymmetric peaks with d-spacings of 2.72 and 1.56 Å. Very small diffraction peaks with interplanar distances of (d) ≃ 8.01, 5.40, 4.09, 3.15, 2.49 and 1.35 Å are characteristic of this phase but not always observed. To identify this phase, the XRD patterns for sheet-like hydroxide β-Zn(OH) 2 and sheet-like hydrozincite Zn 5 (CO 3 ) 2 (OH) 6 as well as for turbostratic hydrozincite were simulated. It is shown that the XRD pattern calculated on the basis of the last model gives the best correspondence with experimental data. Distances between layers in the turbostratically disordered hydrozincite fluctuate around d ≃ 8.01 Å. This average layer-to-layer distance is significantly higher than the interlayer distance 6.77 Å in the ordered Zn 5 (CO 3 ) 2 (OH) 6 probably due to a deficiency of CO 3 2- anions, excess OH - and the presence of water molecules in the interlayers. It is shown by variable-temperature XRD and thermogravimetric analysis (TGA) that the nanocrystalline turbostratic nonstoichiometric hydrozincite-like phase is quite thermostable. It decomposes into ZnO in air above 473 K.

  8. Single-pulse x-ray diffraction using polycapillary optics for in situ dynamic diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Maddox, B. R., E-mail: maddox3@llnl.gov; Akin, M. C., E-mail: akin1@llnl.gov; Teruya, A.; Hunt, D.; Hahn, D.; Cradick, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Morgan, D. V. [National Security Technologies LLC, Los Alamos, New Mexico 87544 (United States)

    2016-08-15

    Diagnostic use of single-pulse x-ray diffraction (XRD) at pulsed power facilities can be challenging due to factors such as the high flux and brightness requirements for diffraction and the geometric constraints of experimental platforms. By necessity, the x-ray source is usually positioned very close, within a few inches of the sample. On dynamic compression platforms, this puts the x-ray source in the debris field. We coupled x-ray polycapillary optics to a single-shot needle-and-washer x-ray diode source using a laser-based alignment scheme to obtain high-quality x-ray diffraction using a single 16 ns x-ray pulse with the source >1 m from the sample. The system was tested on a Mo sample in reflection geometry using 17 keV x-rays from a Mo anode. We also identified an anode conditioning effect that increased the x-ray intensity by 180%. Quantitative measurements of the x-ray focal spot produced by the polycapillary yielded a total x-ray flux on the sample of 3.3 ± 0.5 × 10{sup 7} molybdenum Kα photons.

  9. Note: Application of a pixel-array area detector to simultaneous single crystal x-ray diffraction and x-ray absorption spectroscopy measurements

    International Nuclear Information System (INIS)

    Sun, Cheng-Jun; Brewe, Dale L.; Heald, Steve M.; Zhang, Bangmin; Chen, Jing-Sheng; Chow, G. M.; Venkatesan, T.

    2014-01-01

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr 0.67 Sr 0.33 MnO 3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam

  10. X-ray diffraction patterns and diffracted intensity of Kα spectral lines of He-like ions

    Science.gov (United States)

    Goyal, Arun; Khatri, Indu; Singh, A. K.; Sharma, Rinku; Mohan, Man

    2017-09-01

    In the present paper, we have calculated fine-structure energy levels related to the configurations 1s2s, 1s2p, 1s3s and 1s3p by employing GRASP2K code. We have also computed radiative data for transitions from 1s2p 1 P1o, 1s2p 3 P2o, 1s2p 3 P1o and 1s2s 3S1 to the ground state 1s2. We have made comparisons of our presented energy levels and transition wavelengths with available results compiled by NIST and good agreement is achieved. We have also provided X-ray diffraction (XRD) patterns of Kα spectral lines, namely w, x, y and z of Cu XXVIII, Kr XXXV and Mo with diffraction angle and maximum diffracted intensity which is not published elsewhere in the literature. We believe that our presented results may be beneficial in determination of the order parameter, X-ray crystallography, solid-state drug analysis, forensic science, geological and medical applications.

  11. Thioglycolic acid (TGA) assisted hydrothermal synthesis of SnS nanorods and nanosheets

    International Nuclear Information System (INIS)

    Biswas, Subhajit; Kar, Soumitra; Chaudhuri, Subhadra

    2007-01-01

    Nanorods and nanosheets of tin sulfide (SnS) were synthesized by a novel thioglycolic acid (TGA) assisted hydrothermal process. The as prepared nanostructures were characterized by X-ray diffraction (XRD) study, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). XRD study reveals the formation of well-crystallized orthorhombic structure of SnS. Diameter of the SnS nanorods varied within 30-100 nm. High-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) patterns identify the single crystalline nature for the SnS nanocrystals. The mechanism for the TGA assisted growth for the nanosheets and nanorods have been discussed

  12. The chaotic points and XRD analysis of Hg-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Aslan, Oe [Anatuerkler Educational Consultancy and Trading Company, Orhan Veli Kanik Cad., 6/1, Kavacik 34810 Beykoz, Istanbul (Turkey); Oezdemir, Z Gueven [Physics Department, Yildiz Technical University, Davutpasa Campus, Esenler 34210, Istanbul (Turkey); Keskin, S S [Department of Environmental Eng., University of Marmara, Ziverbey, 34722, Istanbul (Turkey); Onbasli, Ue, E-mail: ozdenaslan@yahoo.co [Physics Department, University of Marmara, Ridvan Pasa Cad. 3. Sok. 85/12 Goztepe, Istanbul (Turkey)

    2009-03-01

    In this article, high T{sub c} mercury based cuprate superconductors with different oxygen doping rates have been examined by means of magnetic susceptibility (magnetization) versus temperature data and X-ray diffraction pattern analysis. The under, optimally and over oxygen doping procedures have been defined from the magnetic susceptibility versus temperature data of the superconducting sample by extracting the Meissner critical transition temperature, T{sub c} and the paramagnetic Meissner temperature, T{sub PME}, so called as the critical quantum chaos points. Moreover, the optimally oxygen doped samples have been investigated under both a.c. and d.c. magnetic fields. The related a.c. data for virgin(uncut) and cut samples with optimal doping have been obtained under a.c. magnetic field of 1 Gauss. For the cut sample with the rectangular shape, the chaotic points have been found to occur at 122 and 140 K, respectively. The Meissner critical temperature of 140 K is the new world record for the high temperature oxide superconductors under normal atmospheric pressure. Moreover, the crystallographic lattice parameters of superconducting samples have a crucial importance in calculating Josephson penetration depth determined by the XRD patterns. From the XRD data obtained for under and optimally doped samples, the crystal symmetries have been found in tetragonal structure.

  13. Sol-gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study

    International Nuclear Information System (INIS)

    Pradeep, A.; Priyadharsini, P.; Chandrasekaran, G.

    2008-01-01

    Nanoparticles of MgFe 2 O 4 are synthesized using sol-gel autocombustion method. Structural studies are carried out using X-ray diffraction (XRD). The XRD pattern of MgFe 2 O 4 provides information about single-phase formation of spinel structure with cubic symmetry. The grain size and lattice constant are obtained using XRD data. The cation distribution is also proposed theoretically. The change in site preference of cations in nano-MgFe 2 O 4 is compared with its bulk counterpart. The structural morphology of the nanoparticles is studied using Scanning Electron Microscopy (SEM). Formation of spinel structure is conformed using Fourier transform infrared spectroscopy (FTIR), which also lends support for the cation distribution proposed using XRD data. The effect of nanoregime on parameters such as bond length, vibration frequency and force constant are discussed with the help of FTIR data. The M-H loop of MgFe 2 O 4 has been traced using the Vibrating Sample Magnetometer (VSM) and magnetic parameters such as saturation magnetization (M S ), coercivity (H C ) and retentivity (M R ) are obtained from VSM data

  14. Detectors for X-ray diffraction and scattering: current technology and future challenges

    International Nuclear Information System (INIS)

    Bahr, D.; Brugemann, L.; Gerndt, E.

    2003-01-01

    Full text: Detectors are crucial devices determining the quality, the reliability and the throughput of x-ray diffraction (XRD) and scattering investigations. This is of utmost importance in an industrial environment where in many cases untrained personnel or even without human intervention the experiments and data evaluations are running. The currently used technology of 0-dimensional to 2-dim XRD detectors is presented using selected examples. The application specific requirements on e.g. energy range and resolution, count rate limit, background and dynamic range, and size versus price are discussed. Due to the fact that x-ray diffraction investigations are becoming increasingly attractive in science, research and industry the advance in detector technology is pushed beyond existing limits. The discussion of the resultant market opportunities versus the cost of ownership and market entrance barrier is the final section of the presentation

  15. In-situ XRD and EDS method study on the oxidation behaviour of Ni-Cu sulphide ore.

    Science.gov (United States)

    Li, Guangshi; Cheng, Hongwei; Xiong, Xiaolu; Lu, Xionggang; Xu, Cong; Lu, Changyuan; Zou, Xingli; Xu, Qian

    2017-06-12

    The oxidation mechanism of sulfides is the key issue during the sulphide-metallurgy process. In this study, the phase transformation and element migration were clearly demonstrated by in-situ laboratory-based X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS), respectively. The reaction sequence and a four-step oxidation mechanism were proposed and identified. The elemental distribution demonstrated that at a low temperature, the Fe atoms diffused outward and the Ni/Cu atoms migrated toward the inner core, whereas the opposite diffusion processes were observed at a higher temperature. Importantly, the unique visual presentation of the oxidation behaviour provided by the combination of in-situ XRD and EDS might be useful for optimising the process parameters to improve the Ni/Cu extraction efficiency during Ni-Cu sulphide metallurgy.

  16. Facile synthesis of the Li-rich layered oxide Li1.23Ni0.09Co0.12Mn0.56O2 with superior lithium storage performance and new insights into structural transformation of the layered oxide material during charge-discharge cycle: in situ XRD characterization.

    Science.gov (United States)

    Shen, Chong-Heng; Wang, Qin; Fu, Fang; Huang, Ling; Lin, Zhou; Shen, Shou-Yu; Su, Hang; Zheng, Xiao-Mei; Xu, Bin-Bin; Li, Jun-Tao; Sun, Shi-Gang

    2014-04-23

    In this work, the Li-rich oxide Li1.23Ni0.09Co0.12Mn0.56O2 was synthesized through a facile route called aqueous solution-evaporation route that is simple and without waste water. The as-prepared Li1.23Ni0.09Co0.12Mn0.56O2 oxide was confirmed to be a layered LiMO2-Li2MnO3 solid solution through ex situ X-ray diffraction (ex situ XRD) and transmission electron microscopy (TEM). Electrochemical results showed that the Li-rich oxide Li1.23Ni0.09Co0.12Mn0.56O2 material can deliver a discharge capacity of 250.8 mAhg(-1) in the 1st cycle at 0.1 C and capacity retention of 86.0% in 81 cycles. In situ X-ray diffraction technique (in situ XRD) and ex situ TEM were applied to study structural changes of the Li-rich oxide Li1.23Ni0.09Co0.12Mn0.56O2 material during charge-discharge cycles. The study allowed observing experimentally, for the first time, the existence of β-MnO2 phase that is appeared near 4.54 V in the first charge process, and a phase transformation of the β-MnO2 to layered Li0.9MnO2 is occurred in the initial discharge process by evidence of in situ XRD pattrens and selected area electron diffraction (SAED) patterns at different states of the initial charge and discharge process. The results illustrated also that the variation of the in situ X-ray reflections during charge-discharge cycling are clearly related to the changes of lattice parameters of the as-prepared Li-rich oxide during the charge-discharge cycles.

  17. Structural studies of metal nanoparticles using high-energy x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Kumara, L. S. R., E-mail: KUMARA.Rosantha@nims.go.jp; Yang, Anli; Song, Chulho [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS) 1-1-1 Kouto, Sayo, Hyogo, 679-5148 (Japan); Sakata, Osami, E-mail: SAKATA.Osami@nims.go.jp [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS) 1-1-1 Kouto, Sayo, Hyogo, 679-5148 (Japan); Synchrotron X-ray Group, Quantum Beam Unit, NIMS, 1-1-1 Kouto, Sayo, Hyogo, 679-5148 (Japan); Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259-J3-16, Nagatsuta, Midori, Yokohama 226-8502 (Japan); Kohara, Shinji [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS) 1-1-1 Kouto, Sayo, Hyogo, 679-5148 (Japan); Synchrotron X-ray Group, Quantum Beam Unit, NIMS, 1-1-1 Kouto, Sayo, Hyogo, 679-5148 (Japan); Japan Synchrotron Radiation Research Institute (SPring-8/JASRI), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Kusada, Kohei; Kobayashi, Hirokazu [Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 Japan (Japan); Kitagawa, Hiroshi [Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 Japan (Japan); INAMORI Frontier Research Center, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 Japan (Japan); Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501 Japan (Japan)

    2016-07-27

    The XRD patterns of nanoparticles exhibit broad Bragg peaks because of small size, where the contribution of diffuse component provides us with inherent structural information. Therefore, pair distribution function obtained from a Fourier transformation of high-energy XRD data and structure modeling on the basis of diffraction data becomes an essential tool to understand the structure of nanoparticles. This promising tool was utilized to obtain structural information of Pd/Pt bimetallic core/shell and solid-solution nanoparticles, which show much attention due to their improved hydrogen storage capacity and catalytic activity.

  18. X-ray diffraction studies of NbTe 2 single crystal

    Indian Academy of Sciences (India)

    The composition of the grown crystals was confirmed on the basis of energy dispersive analysis by X-ray (EDAX) and remaining structural characterization was also accomplished by X-ray diffraction (XRD) studies. Lattice parameters, volume and X-ray density have been carried out for the grown crystals. The particle size ...

  19. X-ray diffraction studies of NbTe2 single crystal

    Indian Academy of Sciences (India)

    Unknown

    X-ray (EDAX) and remaining structural characterization was also accomplished by X-ray diffraction (XRD) studies. Lattice parameters, volume and ... The layered structure compound, NbTe2, is one of the typical materials which lead to charge .... financial assistance to carry out this work. References. Brown B E 1966 Acta ...

  20. About some practical aspects of X-ray diffraction : From powder to thin film

    Energy Technology Data Exchange (ETDEWEB)

    Valvoda, V [Charles Univ. Prague (Czech Republic). Faculty of Mathematics and Physics

    1996-09-01

    Structure of thin films can be amorphous, polycrystalline or epitaxial, and the films can be prepared as a single layer films, multilayers or as graded films. A complete structure analysis of thin films by means of X-ray diffraction (XRD) usually needs more than one diffraction geometry to be used. Their principles, advantages and disadvantages will be shortly described, especially with respect to their different sampling depth and different response to orientation of diffracting crystallographic planes. Main differences in structure of thin films with respect to powder samples are given by a singular direction of their growth, by their adhesion to a substrate and often also by a simultaneous bombardment by atomic species during the growth. It means that a thermodynamically unstable atomic structures can be found too. These special features of growth of thin polycrystalline films are reflected in often found strong preferred orientation of grains and in residual stresses conserved in the films. The methods of structure analysis of thin films by XRD will be compared with other techniques which can supply structure images on different scales.

  1. The primary extinction and static Debye-Waller factor in the characterization of textured nickel by X-ray diffraction

    International Nuclear Information System (INIS)

    Kryshtab, T.; Palacios G, J.; Cadena A, A.; Kryvko, A.

    2015-01-01

    The texture analysis using X-ray diffraction (XRD) implies measurement of pole figures (Pf) from the diffracted intensities considering the model of kinematical dispersion. The extinction phenomenon results in a decrease of diffracted intensity and that in turn in a decrease of pole densities (Pds). The phenomenon appears in the kinematical theory of XRD as the primary extinction and the secondary extinction to characterize the loss of intensity of kinematical dispersion. In turn, the static Debye-Waller factor is an integral characteristic of defects in crystals that is introduced in the kinematical theory of XRD and also is used in dynamical theory of XRD. In this work the correlation between the primary extinction coefficient and the static Debye-Waller factor in the case of textured nickel was determined. The value of static Debye-Waller factor was determined from the value of the calculated primary extinction coefficient. For the evaluation there were used Pds in the maxima of Pf obtained for 111 and 200 reflections with Mo Kα radiation, and the Pds in the maxima of Pf obtained for the first and second orders of these reflections with Cu Kα and Co Kα radiations. There were calculated the dislocation densities in grains using values of static Debye-Waller factor and the extinction coefficients. The dislocation densities calculated from these two characteristics are practically equal. (Author)

  2. Karakteristik mineralisasi epitermal di Daerah Taran, Hulu Kahayan, Kalimantan Tengah berdasarkan studi mikroskopis, X-Ray Diffraction (XRD, dan inklusi fluida

    Directory of Open Access Journals (Sweden)

    Danny Zulkifli Herman

    2014-06-01

    Full Text Available http://dx.doi.org/10.17014/ijog.vol1no3.20064Taran area is occupied predominantly by piroclastic rocks and locally intercalations of lenticular claystones and sandstones. The pyroclastic rocks are intruded by diorite, dacite and andesite, leading alteration and mineralization within the host rocks. Mineralization occurs as a vein type and is associated with a number of pervasive alteration types named respectively: quartz-illite- montmorillonite-kaolinite ± pyrite, quartz-illite ± pyrite, quartz-illite-chlorite ± pyrite and quartz- kaolinite-illite ± pyrite. On the other hand, a propylitic alteration also occurs within the andesite intrusion composed of calcite-epidote-chlorite-sericite-quartz ± pyrite. The mineralization is characterized by several zones of quartz stockwork containing gold and associated ore minerals of chalcopyrite, sphalerite, galena, pyrite and argentite. The quartz veins occurs as fi llings of structural openings in the form of milky quartz and amethyst with textures of sugary, comb, and dogteeth. Evaluation work on results of microscopic (petrography and mineragraphy, X-Ray Diffraction (XRD, and fl uid inclusion studies, and chemical analysis of entirely altered rock/quartz vein samples shows that the alteration and mineralization process were closely related to a change of hydrothermal fl uids, from near neutral into acid conditions at a temperature range of >290o – 100oC. The appearances of quartz variation indicate a relationship with repeated episodes of boiling in an epithermal system, as ground water mixed with hot vapor originated from a remained post-magmatic solution. Corresponding to a salinity of average 1,388 equiv.wt.% NaCl, it indicates that the ore minerals bearing quartz veins were deposited at a depth range of 640 – 1020 m beneath paleosurface.  

  3. Synthesis, XRD, TEM, EPR, and Optical Absorption Spectral Studies of CuZnO2 Nanocompound

    Directory of Open Access Journals (Sweden)

    T. Ravindra Reddy

    2014-01-01

    Full Text Available Synthesis of nano CuZnO2 compound is carried out by thermal decomposition method. The crystalline phase of the material is characterized by XRD. The calculated unit cell constants are a=3.1 Å and c=3.4786 Å and are of tetragonal structure. The unit cell constants are different from wurtzite (hexagonal which indicate that a nanocompound is formed. Further TEM images reveal that the metal ion is in tetragonal structure with oxygen ligands. The prepared CuZnO2 is then characterized for crystallite size analysis by employing transmission electron microscopy (TEM. The size is found to be 100 nm. Uniform bright rings are noticed in the TEM picture suggesting that the nanocrystals have preferential instead of random orientations. The selected-area electron diffraction (SAED pattern clearly indicates the formation of CuO-ZnO nanocompound. The nature of bonding is studied by electron paramagnetic resonance (EPR. The covalency character is about 0.74 and thus the compound is electrically less conductive. Optical absorption spectral studies suggest that Cu(II is placed in tetragonal elongation crystal field. The spin-orbit coupling constant, λ, is calculated using the EPR and optical absorption spectral results suggest some covalent bond between metal and ligand. Near infrared (NIR spectra are due to hydroxyl and water fundamentals.

  4. Experimental determination of spin-dependent electron density by joint refinement of X-ray and polarized neutron diffraction data.

    Science.gov (United States)

    Deutsch, Maxime; Claiser, Nicolas; Pillet, Sébastien; Chumakov, Yurii; Becker, Pierre; Gillet, Jean Michel; Gillon, Béatrice; Lecomte, Claude; Souhassou, Mohamed

    2012-11-01

    New crystallographic tools were developed to access a more precise description of the spin-dependent electron density of magnetic crystals. The method combines experimental information coming from high-resolution X-ray diffraction (XRD) and polarized neutron diffraction (PND) in a unified model. A new algorithm that allows for a simultaneous refinement of the charge- and spin-density parameters against XRD and PND data is described. The resulting software MOLLYNX is based on the well known Hansen-Coppens multipolar model, and makes it possible to differentiate the electron spins. This algorithm is validated and demonstrated with a molecular crystal formed by a bimetallic chain, MnCu(pba)(H(2)O)(3)·2H(2)O, for which XRD and PND data are available. The joint refinement provides a more detailed description of the spin density than the refinement from PND data alone.

  5. XRD, SEM and infrared study into the intercalation of sodium hexadecyl sulfate (SHS) into hydrocalumite.

    Science.gov (United States)

    Zhang, Ping; Wang, Tianqi; Zhang, Longlong; Wu, Daishe; Frost, Ray L

    2015-12-05

    Hydrocalumite (CaAl-LDH-Cl) interacted with a natural anionic surfactant, sodium hexadecyl sulfate (SHS), was performed using an intercalation method. To understand the intercalation behavior and characterize the resulting products, powder X-ray diffraction (XRD), scan electron microscopy (SEM) and mid-infrared (MIR) spectroscopy combined with near-infrared (NIR) spectroscopy technique were used. The XRD analysis indicated that SHS was intercalated into CaAl-LDH-Cl successfully, resulting in an expansion of the interlayer (from 0.78 nm to 2.74 nm). The bands of C-H stretching vibrations of SHS were observed in the near-infrared spectra, which indicated that the resulting products were indeed CaAl-LDH-SHS. In addition, the bands of water stretching vibrations and OH groups shifted to higher wavenumbers when SHS was intercalated into CaAl-LDH-Cl interlayer space. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. X-Ray Diffraction and Fluorescence Instrument for Mineralogical Analysis at the Lunar Surface, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop LUNA, a compact and lightweight X-Ray Diffraction (XRD) / X-Ray Fluorescence (XRF) instrument for mineralogical analysis of regolith, rock...

  7. X-Ray Diffraction and Fluorescence Instrument for Mineralogical Analysis at the Lunar Surface, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a compact and lightweight X-Ray Diffraction (XRD) / X-Ray Fluorescence (XRF) instrument for analysis of mineralogical composition of regolith,...

  8. X-ray diffraction of mineralogical composition of mudstones from eastern Gadaref area, Sudan

    International Nuclear Information System (INIS)

    Karimeldin, Yassin Ahmed A.

    1996-09-01

    This study reviews the theoretical and experimental aspects of X-ray diffraction (XRD) technique. Moreover, the mineralogical composition of some mudstones from Gadarif region has been investigated using DIFFRAC-AT software package, by means of searching and matching procedure in the standard XRD patterns edited by International Center for Diffraction Data (ICDD). The X-ray diffraction analysis of the Gadarif mudstones revealed that quartz, kaolinite and tridymite are the major mineral constitutes of these rocks. Whereas other minerals like alunite, coalingate, cristabolite, gutsvechite, hematite, meta-alungen, minamite, monteponite, samarskite, chlorie, illite and smectite represent minor constituents in some samples. Most of the mudstone samples investigated have kaolinite content between 71-100%. This most properly indicates that these rocks were subjected to intense weathering and leaching under warm humid climate. These conditions seems to be less favourable for the formation of clay minerals chlorite, illite and smectite. Generally, the clay mineral types, abundances and distribution appear to be influenced mainly by source rock geology, local environment and climate. Moreover, the high silica content of mudstones reflects the influence of both hydrothermal and weathering process. The high haolinite of these mudstone might suggest a good potential for economic exploitation of the kaoline deposits. Further studies, however, might be needed to investigate other technical properties. Suggestions for further work by XRD are given, and include further additions to the refinement procedures and the purchasing of new computer facilities.(Author)

  9. Synchrotron-based XRD from rat bone of different age groups.

    Science.gov (United States)

    Rao, D V; Gigante, G E; Cesareo, R; Brunetti, A; Schiavon, N; Akatsuka, T; Yuasa, T; Takeda, T

    2017-05-01

    Synchrotron-based XRD spectra from rat bone of different age groups (w, 56 w and 78w), lumber vertebra at early stages of bone formation, Calcium hydroxyapatite (HAp) [Ca 10 (PO 4 ) 6 (OH) 2 ] bone fill with varying composition (60% and 70%) and bone cream (35-48%), has been acquired with 15keV synchrotron X-rays. Experiments were performed at Desy, Hamburg, Germany, utilizing the Resonant and Diffraction beamline (P9), with 15keV X-rays (λ=0.82666 A 0 ). Diffraction data were quantitatively analyzed using the Rietveld refinement approach, which allowed us to characterize the structure of these samples in their early stages. Hydroxyapatite, received considerable attention in medical and materials sciences, since these materials are the hard tissues, such as bone and teeth. Higher bioactivity of these samples gained reasonable interest for biological application and for bone tissue repair in oral surgery and orthopedics. The results obtained from these samples, such as phase data, crystalline size of the phases, as well as the degree of crystallinity, confirm the apatite family crystallizing in a hexagonal system, space group P6 3 /m with the lattice parameters of a=9.4328Å and c=6.8842Å (JCPDS card #09-0432). Synchrotron-based XRD patterns are relatively sharp and well resolved and can be attributed to the hexagonal crystal form of hydroxyapatite. All the samples were examined with scanning electron microscope at an accelerating voltage of 15kV. The presence of large globules of different sizes is observed, in small age groups of the rat bone (8w) and lumber vertebra (LV), as distinguished from, large age groups (56 and 78w) in all samples with different magnification, reflects an amorphous phase without significant traces of crystalline phases. Scanning electron microscopy (SEM) was used to characterize the morphology and crystalline properties of Hap, for all the samples, from 2 to 100μm resolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Accelerated Synchrotron X-ray Diffraction Data Analysis on a Heterogeneous High Performance Computing System

    Energy Technology Data Exchange (ETDEWEB)

    Qin, J; Bauer, M A, E-mail: qin.jinhui@gmail.com, E-mail: bauer@uwo.ca [Computer Science Department, University of Western Ontario, London, ON N6A 5B7 (Canada)

    2010-11-01

    The analysis of synchrotron X-ray Diffraction (XRD) data has been used by scientists and engineers to understand and predict properties of materials. However, the large volume of XRD image data and the intensive computations involved in the data analysis makes it hard for researchers to quickly reach any conclusions about the images from an experiment when using conventional XRD data analysis software. Synchrotron time is valuable and delays in XRD data analysis can impact decisions about subsequent experiments or about materials that they are investigating. In order to improve the data analysis performance, ideally to achieve near real time data analysis during an XRD experiment, we designed and implemented software for accelerated XRD data analysis. The software has been developed for a heterogeneous high performance computing (HPC) system, comprised of IBM PowerXCell 8i processors and Intel quad-core Xeon processors. This paper describes the software and reports on the improved performance. The results indicate that it is possible for XRD data to be analyzed at the rate it is being produced.

  11. Accelerated Synchrotron X-ray Diffraction Data Analysis on a Heterogeneous High Performance Computing System

    International Nuclear Information System (INIS)

    Qin, J; Bauer, M A

    2010-01-01

    The analysis of synchrotron X-ray Diffraction (XRD) data has been used by scientists and engineers to understand and predict properties of materials. However, the large volume of XRD image data and the intensive computations involved in the data analysis makes it hard for researchers to quickly reach any conclusions about the images from an experiment when using conventional XRD data analysis software. Synchrotron time is valuable and delays in XRD data analysis can impact decisions about subsequent experiments or about materials that they are investigating. In order to improve the data analysis performance, ideally to achieve near real time data analysis during an XRD experiment, we designed and implemented software for accelerated XRD data analysis. The software has been developed for a heterogeneous high performance computing (HPC) system, comprised of IBM PowerXCell 8i processors and Intel quad-core Xeon processors. This paper describes the software and reports on the improved performance. The results indicate that it is possible for XRD data to be analyzed at the rate it is being produced.

  12. Combined XRD and XANES studies of a Re-promoted Co/γ-Al2O3 catalyst at Fischer–Tropsch synthesis conditions

    DEFF Research Database (Denmark)

    Rønning, Magnus; Tsakoumis, Nikolaos E.; Voronov, Alexey

    2010-01-01

    A cobalt based Fischer–Tropsch catalyst was studied during the initial stages of the reaction at industrially relevant conditions. The catalyst consists of 20wt% cobalt supported on γ-Al2O3 and promoted by 1wt% of rhenium. X-ray diffraction (XRD) in combination with X-ray absorption near edge...

  13. Size effect in X-ray and electron diffraction patterns from hydroxyapatite particles

    International Nuclear Information System (INIS)

    Suvorova, E.I.; Buffat, P.-A.

    2001-01-01

    High-resolution transmission electron microscopy (HRTEM), electron microdiffraction, and X-ray diffraction were used to study hydroxyapatite specimens with particle sizes from a few nanometers to several hundreds of nanometers. Diffuse scattering (without clear reflections in transmission diffraction patterns) or strongly broadened peaks in X-ray diffraction patterns are characteristic for agglomerated hydroxyapatite nanocrystals. However, HRTEM and microdiffraction showed that this cannot be considered as an indication of the amorphous state of the matter but rather as the demonstration of size effect and the morphological and structural features of hydroxyapatite nanocrystals

  14. Aerogel as a Sample Collector and Sample Mount for Transmission XRD Analysis

    Science.gov (United States)

    Bish, D. L.; Vaniman, D. T.; Chipera, S. J.; Yen, A. S.; Jones, S. M.

    2001-01-01

    Silica aerogel can be used for dust collection and in situ X-ray analysis. Aerogels can be less absorbing than Be, and it is feasible to obtain X-ray transmission factors >50% using typical aerogels together with a 100-micrometer Be backing foil. Additional information is contained in the original extended abstract.

  15. Performances for confocal X-ray diffraction technology based on polycapillary slightly focusing X-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hehe; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stxbeijing@163.com [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Peng, Song [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Sun, Weiyuan; Li, Yude; Lin, Xiaoyan; Zhao, Weigang; Zhao, Guangcui; Luo, Ping; Pan, Qiuli; Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2013-09-21

    The confocal X-ray diffraction (XRD) technology based on a polycapillary slightly focusing X-ray lens (PSFXRL) in excitation channel and a polycapillary parallel X-ray lens (PPXRL) with a long input focal distance in detection channel was developed. The output focal spot of the PSFXRL and the input focal spot of the PPXRL were adjusted in confocal configuration, and only the X-rays from the volume overlapped by these foci could be accordingly detected. This confocal configuration was helpful in decreasing background. The convergence of the beam focused by the PSFXRL and divergence of the beam which could be collected by the PPXRL with a long input focal distance were both about 9 mrad at 8 keV. This was helpful in improving the resolution of lattice spacing of this confocal XRD technology. The gain in power density of such PSFXRL and PPXRL was about 120 and 7 at 11 keV, respectively, which was helpful in using the low power source to perform XRD analysis efficiently. The performances of this confocal XRD technology were provided, and some common plastics were analyzed. The experimental results demonstrated that the confocal diffraction technology base on polycapillary slightly focusing X-ray optics had wide potential applications.

  16. XRD analysis of undoped and Fe doped TiO2 nanoparticles by Williamson Hall method

    International Nuclear Information System (INIS)

    Bharti, Bandna; Barman, P. B.; Kumar, Rajesh

    2015-01-01

    Undoped and Fe doped titanium dioxide (TiO 2 ) nanoparticles were synthesized by sol-gel method at room temperature. The synthesized samples were annealed at 500°C. For structural analysis, the prepared samples were characterized by X-ray diffraction (XRD). The crystallite size of TiO 2 and Fe doped TiO 2 nanoparticles were calculated by Scherer’s formula, and was found to be 15 nm and 11 nm, respectively. Reduction in crystallite size of TiO 2 with Fe doping was observed. The anatase phase of Fe-doped TiO 2 nanoparticles was also confirmed by X-ray diffraction. By using Williamson-Hall method, lattice strain and crystallite size were also calculated. Williamson–Hall plot indicates the presence of compressive strain for TiO 2 and tensile strain for Fe-TiO 2 nanoparticles annealed at 500°C

  17. A measurement of electron-wall interactions using transmission diffraction from nanofabricated gratings

    International Nuclear Information System (INIS)

    Barwick, Brett; Gronniger, Glen; Yuan, Lu; Liou, Sy-Hwang; Batelaan, Herman

    2006-01-01

    Electron diffraction from metal coated freestanding nanofabricated gratings is presented, with a quantitative path integral analysis of the electron-grating interactions. Electron diffraction out to the 20th order was observed indicating the high quality of our nanofabricated gratings. The electron beam is collimated to its diffraction limit with ion-milled material slits. Our path integral analysis is first tested against single slit electron diffraction, and then further expanded with the same theoretical approach to describe grating diffraction. Rotation of the grating with respect to the incident electron beam varies the effective distance between the electron and grating bars. This allows the measurement of the image charge potential between the electron and the grating bars. Image charge potentials that were about 15% of the value for that of a pure electron-metal wall interaction were found. We varied the electron energy from 50 to 900 eV. The interaction time is of the order of typical metal image charge response times and in principle allows the investigation of image charge formation. In addition to the image charge interaction there is a dephasing process reducing the transverse coherence length of the electron wave. The dephasing process causes broadening of the diffraction peaks and is consistent with a model that ascribes the dephasing process to microscopic contact potentials. Surface structures with length scales of about 200 nm observed with a scanning tunneling microscope, and dephasing interaction strength typical of contact potentials of 0.35 eV support this claim. Such a dephasing model motivated the investigation of different metallic coatings, in particular Ni, Ti, Al, and different thickness Au-Pd coatings. Improved quality of diffraction patterns was found for Ni. This coating made electron diffraction possible at energies as low as 50 eV. This energy was limited by our electron gun design. These results are particularly relevant for the

  18. Validation of enhanced stabilization of municipal solid waste under controlled leachate recirculation using FTIR and XRD.

    Science.gov (United States)

    Sethi, Sapna; Kothiyal, N C; Nema, Arvind K

    2012-07-01

    Leachate recirculation at neutral PH accompanied with buffer/nutrients addition has been used successfully in earlier stabilization of municipal solid waste in bioreactor landfills. In the present study, efforts were made to enhance the stabilization rate of municipal solid waste (MSW) and organic solid waste (OSW) in simulated landfill bioreactors by controlling the pH of recirculated leachate towards slightly alkaline side in absence of additional buffer and nutrients addition. Enhanced stabilization in waste samples was monitored with the help of analytical tools like Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD). Predominance of bands assigned to inorganic compounds and comparatively lower intensities of bands for organic compounds in the FTIR spectra of waste samples degraded with leachate recirculation under controlled pH confirmed higher rate of biodegradation and mineralization of waste than the samples degraded without controlled leachate recirculation. XRD spectra also confirmed to a greater extent of mineralization in the waste samples degraded under leachate recirculation with controlled pH. Comparison of XRD spectra of two types of wastes pointed out higher degree of mineralization in organic solid waste as compared to municipal solid waste.

  19. [Study on the vibrational spectra and XRD characters of Huanglong jade from Longling County, Yunnan Province].

    Science.gov (United States)

    Pei, Jing-cheng; Fan, Lu-wei; Xie, Hao

    2014-12-01

    Based on the conventional test methods, the infrared absorption spectrum, Raman spectrum and X-ray diffraction (XRD) were employed to study the characters of the vibration spectrum and mineral composition of Huanglong jade. The testing results show that Huanglong jade shows typical vibrational spectrum characteristics of quartziferous jade. The main infrared absorption bands at 1162, 1076, 800, 779, 691, 530 and 466 cm(-1) were induced by the asymmetric stretching vibration, symmetrical stretching vibration and bending vibration of Si-O-Si separately. Especially the absorption band near 800 cm(-1) is split, which indicates that Huanglong jade has good crystallinity. In Raman spectrum, the main strong vibration bands at 463 and 355 cm(-1) were attributed to bending vibration of Si-O-Si. XRD test confirmed that Quartz is main mineral composition of Huanglong jade and there is a small amount of hematite in red color samples which induced the red color of Huanglong jade. This is the first report on the infrared, Raman and XRD spectra feature of Huanglong jade. It will provide a scientific basis for the identification, naming and other research for huanglong jade.

  20. XRD, DRS, and SEM stundies of the effects of metal dopants (Pt and Au) on the structural and optical properties of TiO2

    CSIR Research Space (South Africa)

    Moloantoa, JR

    2011-07-01

    Full Text Available Au and Pt doped TiO2 nanocrystlas were prepared using the sol gel method. Diffuse Reflectance Spectroscopy (DRS) was used to study the characteristics of these precious metals and X-ray diffraction (XRD) with calculated lattice parameters was used...

  1. An Integrated XRF/XRD Instrument for Mars Exobiology and Geology Experiments

    Science.gov (United States)

    Koppel, L. N.; Franco, E. D.; Kerner, J. A.; Fonda, M. L.; Schwartz, D. E.; Marshall, J. R.

    1993-01-01

    By employing an integrated x-ray instrument on a future Mars mission, data obtained will greatly augment those returned by Viking; details characterizing the past and present environment on Mars and those relevant to the possibility of the origin and evolution of life will be acquired. A combined x-ray fluorescence/x-ray diffraction (XRF/XRD) instrument was breadboarded and demonstrated to accommodate important exobiology and geology experiment objectives outlined for MESUR and future Mars missions. Among others, primary objectives for the exploration of Mars include the intense study of local areas on Mars to establish the chemical, mineralogical, and petrological character of different components of the surface material; to determine the distribution, abundance, and sources and sinks of volatile materials, including an assessment of the biologic potential, now and during past epoches; and to establish the global chemical and physical characteristics of the Martian surface. The XRF/XRD breadboard instrument identifies and quantifies soil surface elemental, mineralogical, and petrological characteristics and acquires data necessary to address questions on volatile abundance and distribution. Additionally, the breadboard is able to characterize the biogenic element constituents of soil samples providing information on the biologic potential of the Mars environment. Preliminary breadboard experiments confirmed the fundamental instrument design approach and measurement performance.

  2. A new device for X-ray Diffraction analyses of irradiated materials

    International Nuclear Information System (INIS)

    Valot, Christophe; Blay, Thierry; Caillot, Laurent; Ferroud-Plattet, Marie Pierre

    2008-01-01

    A new X-Ray Diffraction (XRD) equipment is being implemented in the LECA (Cea - Cadarache) hot laboratory. The device will be dedicated to structural characterization on irradiated fuels, as PWR fuels, transmutation targets and innovative fuels. The paper will present the specific design that was decided in order to reduce the number of components in contaminated volume and to make servicing easier. The analytical performances of this new equipment will be illustrated on some model samples: -) micro-diffraction capabilities will be detailed on heterogeneous material; -) strain and stress analyses on fresh uranium oxide pellets. (authors)

  3. On screening for Special Nuclear Materials (SNMs) with X-ray diffraction

    International Nuclear Information System (INIS)

    Harding, G.

    2010-01-01

    A novel detection technique employing X-ray diffraction (XRD) to screen for Special Nuclear Materials (SNMs), in particular for uranium, has been recently proposed. It is based on the interesting fact that uranium (and incidentally, plutonium) has a non-cubic lattice structure, in contrast to all other non-SNM, high-density elements of the Periodic Table. The principle of this screening technique is briefly elucidated by comparing the XRD lines of uranium with those of lead, a material of high atomic number (Z) commonly found in container traffic. Several physical conditions that must be satisfied to enable XRD for SNM screening are considered. To achieve adequate penetration, both of suspicious high-Z materials and their containers, photon energies of 1 MeV and above must be employed. Implications from partial coherence theory for the XRD measurement geometry at such photon energies are presented. The question of multiple scatter degradation of the coherent scatter signal is addressed. Technological considerations relevant to performing XRD at 1 MeV, particularly regarding the radiation source and detector, are discussed. A novel secondary aperture scheme permitting high energy XRD is presented. It is concluded that the importance of the application and the prospect of its feasibility are sufficient to warrant experimental verification.

  4. A Combined XRD/XRF Instrument for Lunar Resource Assessment

    Science.gov (United States)

    Vaniman, D. T.; Bish, D. L.; Chipera, S. J.; Blacic, J. D.

    1992-01-01

    Robotic surface missions to the Moon should be capable of measuring mineral as well as chemical abundances in regolith samples. Although much is already known about the lunar regolith, our data are far from comprehensive. Most of the regolith samples returned to Earth for analysis had lost the upper surface, or it was intermixed with deeper regolith. This upper surface is the part of the regolith most recently exposed to the solar wind; as such it will be important to resource assessment. In addition, it may be far easier to mine and process the uppermost few centimeters of regolith over a broad area than to engage in deep excavation of a smaller area. The most direct means of analyzing the regolith surface will be by studies in situ. In addition, the analysis of the impact-origin regolith surfaces, the Fe-rich glasses of mare pyroclastic deposits, are of resource interest, but are inadequately known; none of the extensive surface-exposed pyroclastic deposits of the Moon have been systematically sampled, although we know something about such deposits from the Apollo 17 site. Because of the potential importance of pyroclastic deposits, methods to quantify glass as well as mineral abundances will be important to resource evaluation. Combined x ray diffraction (XRD) and x ray fluorescence (XRF) analysis will address many resource characterization problems on the Moon. XRF methods are valuable for obtaining full major-element abundances with high precision. Such data, collected in parallel with quantitative mineralogy, permit unambiguous determination of both mineral and chemical abundances where concentrations are high enough to be of resource grade. Collection of both XRD and XRF data from a single sample provides simultaneous chemical and mineralogic information. These data can be used to correlate quantitative chemistry and mineralogy as a set of simultaneous linear equations, the solution of which can lead to full characterization of the sample. The use of

  5. Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD.

    Science.gov (United States)

    Zhang, Jiafu; Wang, Yixun; Zhang, Liye; Zhang, Ruihong; Liu, Guangqing; Cheng, Gang

    2014-01-01

    X-ray diffraction (XRD) was used to understand the interactions of cellulose in lignocellulosic biomass with ionic liquids (ILs). The experiment was designed in such a way that the process of swelling and solubilization of crystalline cellulose in plant cell walls was followed by XRD. Three different feedstocks, switchgrass, corn stover and rice husk, were pretreated using 1-butyl-3-methylimidazolium acetate ([C4mim][OAc]) at temperatures of 50-130°C for 6h. At a 5 wt.% biomass loading, increasing pretreatment temperature led to a drop in biomass crystallinity index (CrI), which was due to swelling of crystalline cellulose. After most of the crystalline cellulose was swollen with IL molecules, a low-order structure was found in the pretreated samples. Upon further increasing temperature, cellulose II structure started to form in the pretreated biomass samples as a result of solubilization of cellulose in [C4mim][OAc] and subsequent regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. On the optimum resolution of transmission-electron backscattered diffraction (t-EBSD)

    Energy Technology Data Exchange (ETDEWEB)

    Bremen, R. van; Ribas Gomes, D.; Jeer, L.T.H. de; Ocelík, V., E-mail: v.ocelik@rug.nl; De Hosson, J.Th.M.

    2016-01-15

    The work presented aims at determining the optimum physical resolution of the transmission-electron backscattered diffraction (t-EBSD) technique. The resolution depends critically on intrinsic factors such as the density, atomic number and thickness of the specimen but also on the extrinsic experimental set-up of the electron beam voltage, specimen tilt and detector position. In the present study, the so-called physical resolution of a typical t-EBSD set-up was determined with the use of Monte Carlo simulations and confronted to experimental findings. In the case of a thin Au film of 20 nm, the best resolution obtained was 9 nm whereas for a 100 nm Au film the best resolution was 66 nm. The precise dependence of resolution on thickness was found to vary differently depending on the specific elements involved. This means that the resolution of each specimen should be determined individually. Experimentally the median probe size of the t-EBSD for a 140 nm thick AuAg specimen was measured to be 87 nm. The first and third quartiles of the probe size measurements were found to be 60 nm and 118 nm. Simulation of this specimen resulted in a resolution of 94 nm which fits between these quartiles. - Highlights: • Intrinsic and extrinsic factors affecting resolution of t-EBSD are determined and characterized. • Distinction between resolutions of transmitted and detected electrons is determined. • The simulated results are confirmed experimentally on 140 nm thick AuAg foil.

  7. Spectral studies of 2-pyrazoline derivatives: structural elucidation through single crystal XRD and DFT calculations.

    Science.gov (United States)

    Chinnaraja, D; Rajalakshmi, R; Srinivasan, T; Velmurugan, D; Jayabharathi, J

    2014-04-24

    A series of biologically active N-thiocarbamoyl pyrazoline derivatives have been synthesized using anhydrous potassium carbonate as the catalyst. All the synthesized compounds were characterized by FT-IR, (1)H NMR, (13)C NMR spectral studies, LCMS, CHN Analysis and X-ray diffraction analysis (compound 7). In order to supplement the XRD parameters, molecular modelling was carried out by Gaussian 03W. From the optimized structure, the energy, dipolemoment and HOMO-LUMO energies of all the systems were calculated. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. XRD, lead equivalent and UV-VIS properties study of Ce and Pr lead silicate glasses

    International Nuclear Information System (INIS)

    Alias, Nor Hayati; Abdullah, Wan Shafie Wan; Isa, Norriza Mohd; Isa, Muhammad Jamal Md; Zali, Nurazila Mat; Abdullah, Nuhaslinda Ee; Muhammad, Azali

    2014-01-01

    In this work, Cerium (Ce) and Praseodymium (Pr) containing lead silicate glasses were produced with 2 different molar ratios low (0.2 wt%) and high (0.4wt%). These types of glasses can satisfy the characteristics required for radiation shielding glasses and minimize the lead composition in glass. The radiation shielding properties of the synthesized glasses is explained in the form of lead equivalent study. The XRD diffraction and UV-VIS analysis were performed to observe the structural changes of the synthesis glasses at 1.5 Gy gamma radiation exposures

  9. Non-conventional applications of a noninvasive portable X-ray diffraction/fluorescence instrument

    International Nuclear Information System (INIS)

    Chiari, Giacomo; Sarrazin, Philippe; Heginbotham, Arlen

    2016-01-01

    Noninvasive techniques have become widespread in the cultural heritage analytical domain. The popular handheld X-ray fluorescence (XRF) devices give the elemental composition of all the layers that X-rays can penetrate, but no information on how atoms are bound together or at which depth they are located. A noninvasive portable X-ray powder diffraction/X-ray fluorescence (XRD/XRF) device may offer a solution to these limitations, since it can provide information on the composition of crystalline materials. This paper introduces applications of XRD beyond simple phase recognition. The two fundamental principles for XRD are: (1) the crystallites should be randomly oriented, to ensure proper intensity to all the diffraction peaks, and (2) the material should be positioned exactly in the focal plane of the instrument, respecting its geometry, as any displacement of the sample would results in 2θ shifts of the diffraction peaks. In conventional XRD, the sample is ground and set on the properly positioned sample holder. Using a noninvasive portable instrument, these two requirements are seldom fulfilled. The position, size and orientation of a given crystallite within a layered structure depend on the object itself. Equation correlating the displacement (distance from the focal plane) versus peak shift (angular difference in 2θ from the standard value) is derived and used to determine the depth at which a given substance is located. The quantitative composition of two binary Cu/Zn alloys, simultaneously present, was determined measuring the cell volume and using Vegard's law. The analysis of the whole object gives information on the texture and possible preferred orientations of the crystallites, which influences the peak intensity. This allows for the distinction between clad and electroplated daguerreotypes in the case of silver and between ancient and modern gilding for gold. Analyses of cross sections can be carried out successfully. Finally, beeswax, used in Roman

  10. High-pressure X-ray diffraction studies of potassium chlorate

    Energy Technology Data Exchange (ETDEWEB)

    Pravica, Michael; Bai, Ligang; Bhattacharya, Neelanjan (UNLV)

    2012-03-15

    Two static high-pressure X-ray diffraction (XRD) studies of potassium chlorate have been performed at pressures of up to {approx}14.3 GPa in a diamond anvil cell at ambient temperature using the 16 ID-B undulator beamline at the Advanced Photon Source for the X-ray source. The first experiment was conducted to ascertain decomposition rates of potassium chlorate as a function of pressure. Below 2 GPa, the sample was observed to decompose rapidly in the presence of the X-ray beam and release oxygen. Above 2 GPa (near the phase I phase II transition), the decomposition rate dramatically slowed so that good quality XRD patterns could be acquired. This suggests a phase-dependent decomposition rate. In the second study, X-ray diffraction spectra were collected at pressures from 2 to 14.3 GPa by aligning virgin portions of the sample into the focused X-ray beam at each pressure. The results suggest the co-existence of mixed monoclinic (I) and rhombohedral (II) phases of potassium chlorate near 2 GPa. At pressures beyond 4 GPa, the XRD patterns show a very good fit to KClO{sub 3} in the rhombohedral phase with space group R3m, in agreement with earlier studies. No further phase transitions were observed with pressure. Decompression of the sample to ambient pressure indicated mixed phases I and II coupled with a small amount of synchrotron X-ray-induced decomposition product. The equation of state within this pressure regime has been determined.

  11. Residual stress state in an induction hardened steel bar determined by synchrotron- and neutron diffraction compared to results from lab-XRD

    International Nuclear Information System (INIS)

    Holmberg, Jonas; Steuwer, Axel; Stormvinter, Albin; Kristoffersen, Hans; Haakanen, Merja; Berglund, Johan

    2016-01-01

    Induction hardening is a relatively rapid heat treatment method to increase mechanical properties of steel components. However, results from FE-simulation of the induction hardening process show that a tensile stress peak will build up in the transition zone in order to balance the high compressive stresses close to the surface. This tensile stress peak is located in the transition zone between the hardened zone and the core material. The main objective with this investigation has been to non-destructively validate the residual stress state throughout an induction hardened component. Thereby, allowing to experimentally confirming the existence and magnitude of the tensile stress peak arising from rapid heat treatment. For this purpose a cylindrical steel bar of grade C45 was induction hardened and characterised regarding the microstructure, hardness, hardening depth and residual stresses. This investigation shows that a combined measurement with synchrotron/neutron diffraction is well suited to non-destructively measure the strains through the steel bar of a diameter of 20 mm and thereby making it possible to calculate the residual stress profile. The result verified the high compressive stresses at the surface which rapidly changes to tensile stresses in the transition zone resulting in a large tensile stress peak. Measured stresses by conventional lab-XRD showed however that at depths below 1.5 mm the stresses were lower compared to the synchrotron and neutron data. This is believed to be an effect of stress relaxation from the layer removal. The FE-simulation predicts the depth of the tensile stress peak well but exaggerates the magnitude compared to the measured results by synchrotron/neutron measurements. This is an important knowledge when designing the component and the heat treatment process since this tensile stress peak will have great impact on the mechanical properties of the final component.

  12. Residual stress state in an induction hardened steel bar determined by synchrotron- and neutron diffraction compared to results from lab-XRD

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg, Jonas, E-mail: jonas.holmberg@swerea.se [Swerea IVF AB, Argongatan 30, 431 22 Mölndal (Sweden); University West, 461 86 Trollhättan (Sweden); Steuwer, Axel [Nelson Mandela Metropolitan University, Gardham Avenue, 6031 Port Elizabeth (South Africa); Stormvinter, Albin; Kristoffersen, Hans [Swerea IVF AB, Argongatan 30, 431 22 Mölndal (Sweden); Haakanen, Merja [Stresstech OY, Tikkutehtaantie 1, 40 800 Vaajakoski (Finland); Berglund, Johan [Swerea IVF AB, Argongatan 30, 431 22 Mölndal (Sweden)

    2016-06-14

    Induction hardening is a relatively rapid heat treatment method to increase mechanical properties of steel components. However, results from FE-simulation of the induction hardening process show that a tensile stress peak will build up in the transition zone in order to balance the high compressive stresses close to the surface. This tensile stress peak is located in the transition zone between the hardened zone and the core material. The main objective with this investigation has been to non-destructively validate the residual stress state throughout an induction hardened component. Thereby, allowing to experimentally confirming the existence and magnitude of the tensile stress peak arising from rapid heat treatment. For this purpose a cylindrical steel bar of grade C45 was induction hardened and characterised regarding the microstructure, hardness, hardening depth and residual stresses. This investigation shows that a combined measurement with synchrotron/neutron diffraction is well suited to non-destructively measure the strains through the steel bar of a diameter of 20 mm and thereby making it possible to calculate the residual stress profile. The result verified the high compressive stresses at the surface which rapidly changes to tensile stresses in the transition zone resulting in a large tensile stress peak. Measured stresses by conventional lab-XRD showed however that at depths below 1.5 mm the stresses were lower compared to the synchrotron and neutron data. This is believed to be an effect of stress relaxation from the layer removal. The FE-simulation predicts the depth of the tensile stress peak well but exaggerates the magnitude compared to the measured results by synchrotron/neutron measurements. This is an important knowledge when designing the component and the heat treatment process since this tensile stress peak will have great impact on the mechanical properties of the final component.

  13. Evaluated Plan Stress Of Weld In Pressure Tube Using X Ray Diffraction Technique

    International Nuclear Information System (INIS)

    Phan Trong Phuc; Nguyen Duc Thanh; Luu Anh Tuyen

    2011-01-01

    X ray diffraction is a fundamental technique measuring stress, this technique has determined crystal strain in materials, from that determined stress in materials. This paper presents study of evaluating plane stress of weld in pressure tube, using modern XRD apparatus: X Pert Pro. (author)

  14. XRD total scattering of the CZTS nanoparticle absorber layer for the thin film solar cells

    DEFF Research Database (Denmark)

    Symonowicz, Joanna; Jensen, Kirsten M. Ø.; Engberg, Sara Lena Josefin

    Cu2ZnSnS4 (CZTS) thin film solar cells are cheap, non-toxic and present an efficiency up to 9,2% [1]. They can be easily manufactured by the deposition of the nanoparticle ink as a thin film followed by a thermal treatment to obtain large grains [2]. Therefore, CZTS has the potential...... to revolutionize the solar energy market. However, to commercialize CZTS nanoparticle thin films, the efficiency issues must yet be resolved. In order to do so, it is vital to understand in detail their nanoscale atomic structure. CZTS crystallize in the kesterite structure, where Cu and Zn is distributed between......-ray Diffraction data with X-ray total scattering with Pair Distribution Function analysis. Powder neutron diffraction will furthermore allow characterization of the cation disorder on the metal sites in the kesterite structure. The nanoparticle ink is also characterized by XRD, EDS, and Raman spectroscopy...

  15. X-ray diffraction and molecular-dynamics studies: Structural analysis of phases in diglyceride monolayers

    DEFF Research Database (Denmark)

    Peters, Günther H.J.; Larsen, Niels Bent; Bjørnholm, T.

    1998-01-01

    We report a detailed structural analysis of the phases of 1,2-sn-dipalmitoylglycerol Langmuir monolayers at room temperature. Pressure-induced transitions have been investigated by combination of molecular-dynamics simulations and grazing-incidence x-ray diffraction (XRD). The diglyceride film...... undergoes two phase transitions occurring at 38.3 and 39.8 Angstrom(2)/molecule. Simulation indicates that the first transition involves a reorientation of the headgroups while simulation and XRD show that in the second transition the order parameter is the tilt angle of the alkyl chains. A methodology......; At the lowest pressure the tilt angle reaches approximate to 14 degrees in a direction close to a nearest neighbor direction. Both arrangements of the alkyl chains are confirmed by XRD. For higher order and fractional order Bragg peaks, simulations predict higher intensities than observed with XRD. This may...

  16. Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods

    International Nuclear Information System (INIS)

    Scrivener, K.L.; Fuellmann, T.; Gallucci, E.; Walenta, G.; Bermejo, E.

    2004-01-01

    X-ray diffraction (XRD) is a powerful technique for the study of crystalline materials. The technique of Rietveld refinement now enables the amounts of different phases in anhydrous cementitious materials to be determined to a good degree of precision. This paper describes the extension of this technique to a pilot study of the hydration of a typical Portland cement. To validate this XRD-Rietveld analysis technique, its results were compared with independent measures of the same materials by the analysis of backscattered electron images (BSE/IA) and thermogravimetric analysis (TGA). In addition, the internal consistency of the measurements was studied by comparing the XRD estimates of the amounts of hydrates formed with the amounts expected to form from the XRD estimates of the amounts of anhydrous materials reacted

  17. Identification of unknown sample using NAA, EDXRF, XRD techniques

    International Nuclear Information System (INIS)

    Dalvi, Aditi A.; Swain, K.K.; Chavan, Trupti; Remya Devi, P.S.; Wagh, D.N.; Verma, R.

    2015-01-01

    Analytical Chemistry Division (ACD), Bhabha Atomic Research Centre (BARC) receives samples from law enforcement agencies such as Directorate of Revenue Intelligence, Customs for analysis. Five unknown grey powdered samples were received for identification and were suspected to be Iridium (Ir). Identification of unknown sample is always a challenging task and suitable analytical techniques have to be judiciously utilized for arriving at the conclusion. Qualitative analysis was carried out using Jordan Valley, EX-3600 M Energy dispersive X-ray fluorescence (EDXRF) spectrometer at ACD, BARC. A SLP series LEO Si (Li) detector (active area: 30 mm 2 ; thickness: 3.5 mm; resolution: 140 eV at 5.9 keV of Mn K X-ray) was used during the measurement and only characteristic X-rays of Ir (Lα: 9.17 keV and Lβ: 10.70 keV) was seen in the X-ray spectrum. X-ray diffraction (XRD) measurement results indicated that the Ir was in the form of metal. To confirm the XRD data, neutron activation analysis (NAA) was carried out by irradiating samples and elemental standards (as comparator) in graphite reflector position of Advanced Heavy Water Reactor Critical Facility (AHWR CF) reactor, BARC, Mumbai. After suitable decay period, gamma activity measurements were carried out using 45% HPGe detector coupled to 8 k multi channel analyzer. Characteristic gamma line at 328.4 keV of the activation product 194 Ir was used for quantification of iridium and relative method of NAA was used for concentration calculations. NAA results confirmed that all the samples were Iridium metal. (author)

  18. Characterization of uranium silicide powder using XRD

    International Nuclear Information System (INIS)

    Garcia, Rafael H.L.; Saliba-Silva, Adonis M.; Carvalho, Elita F.U.; Lima, Nelson B.; Ichikawa, Rodrigo U.; Martinez, Luiz G.

    2013-01-01

    Uranium silicide (U 3 Si 2 ) is an intermetallic used as nuclear fuel in most modern MTR - Materials Test Reactor. Dispersed in aluminum, this fuel allows high uranium densities, up to 4.8 gU/cm 3 . At IPEN, the fabrication of fuel elements based on U 3 Si 2 for the IEA-R1 reactor is carried out in the Nuclear Fuel Center (CCN), by vacuum induction melting of uranium and silicon, followed by grinding. Before employed in a nuclear reactor, U 3 Si 2 must be submitted to a strict quality control, which includes granulometry, density, X-ray radiography for dispersion homogeneity, chemical and crystallographic characterization. Concerning phase composition for a qualified fuel, the fraction of U 3 Si 2 should be higher than 80wt.%. Aiming at the development of a routine methodology for quantification of phases via analysis of XRD data using the Rietved method, six samples from two production baths of CCN were submitted to X-ray diffraction. The data were analyzed using software GSAS and line profile analysis methods. The results suggest that fusion product have preferred orientation and grinding step is important for a better refinement. (author)

  19. Facile hydrothermal synthesis of CeO 2 nanopebbles

    Indian Academy of Sciences (India)

    Cerium oxide (CeO2) nanopebbles have been synthesized using a facile hydrothermal method. X-ray diffraction pattern (XRD) and transmission electron microscopy analyses confirm the presence of CeO2 nanopebbles. XRD shows the formation of cubic fluorite CeO2 and the average particle size estimated from the ...

  20. Band gap narrowing and photocatalytic studies of Nd 3+ ion-doped

    Indian Academy of Sciences (India)

    Pure and Nd3+-doped tin oxide (SnO2) nanoparticles have been prepared by the sol–gel method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM, energydispersive spectroscopy and UV–visible spectroscopy. The XRD patterns of all the samples are identified as ...

  1. Three-dimensional Bragg diffraction in growth-disordered opals

    Science.gov (United States)

    Baryshev, A. V.; Kaplyanskii, Alexander A.; Kosobukin, Vladimir A.; Limonov, M. F.; Samusev, K. B.; Usvyat, D. E.

    2003-06-01

    After artificial opals as well as opal-based infilled and inverted composites are considered to be promising representatives of photonic crystal materials. Earlier, photonic stop gaps in opals were studied mainly in transmission or specular reflection geometries corresponding to "one-dimensional" Bragg diffraction. On the contrary, this work was aimed at observing the typical patterns of optical Bragg diffraction in which phenomenon opal crystal structure acts as a three-dimensional diffraction grating. Although our experiments were performed for artificial opals possessing unavoidable imperfections a well-pronounced diffraction peaks were observed characteristic of a crystal structure. Each of the diffraction maxima reveals a photonic stop gap in the specified direction, while the spectral width of the peak is a measure of the photonic stop gap width.

  2. Magnetic separation as a method to assist mineralogical characterization of rocks by X-ray diffraction

    International Nuclear Information System (INIS)

    Silva, Amanda Luzia da; Oliveira, Arno Heeren de; Fernandes, Maria Lourdes Souza

    2013-01-01

    The X-ray diffraction (XRD) corresponds to one of the main techniques for characterization of structures in crystalline materials widely used in the identification of minerals in samples of geological materials such as rocks. However, the large number of mineral phases present in a rock sample can generate excess peaks in the diffractogram, and it can promote overlapping peaks and induce erroneous identification. The purpose of this study was to perform magnetic separation of minerals from rock samples in order to enable the identification of the minerals by XRD. For this magnetic separation, two samples of rock were selected: a sample of high silica content and a sample with low silica content. The magnetic separation of minerals from each sample was performed using the magnetic separator isodynamic Frantz. Posteriorly, the fractions obtained in magnetic separations were analyzed by XRD. In the sample with high silica content, it was obtained a fraction where was identified the accessory mineral epidote, which had not been identified in the total sample diffractogram. In the sample with low silica content, the magnetic separation into several mineral fractions made possible to obtain diffraction patterns with fewer peaks and peaks with higher relative intensities, which allowed its mineralogical characterization. The results showed that the mineral separation by the magnetic separator Frantz made the identification of accessory minerals by XRD and the characterization of samples which have many mineral phases possible, which proves that magnetic separation by Frantz is a method which can assist analyses by XRD. (author)

  3. Magnetic separation as a method to assist mineralogical characterization of rocks by X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Amanda Luzia da; Oliveira, Arno Heeren de; Fernandes, Maria Lourdes Souza, E-mail: amanda@igc.ufmg.br, E-mail: heeren@nuclear.ufmg.br, E-mail: amanda@igc.ufmg.br, E-mail: lurdesfernandes@ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horionte, MG (Brazil)

    2013-07-01

    The X-ray diffraction (XRD) corresponds to one of the main techniques for characterization of structures in crystalline materials widely used in the identification of minerals in samples of geological materials such as rocks. However, the large number of mineral phases present in a rock sample can generate excess peaks in the diffractogram, and it can promote overlapping peaks and induce erroneous identification. The purpose of this study was to perform magnetic separation of minerals from rock samples in order to enable the identification of the minerals by XRD. For this magnetic separation, two samples of rock were selected: a sample of high silica content and a sample with low silica content. The magnetic separation of minerals from each sample was performed using the magnetic separator isodynamic Frantz. Posteriorly, the fractions obtained in magnetic separations were analyzed by XRD. In the sample with high silica content, it was obtained a fraction where was identified the accessory mineral epidote, which had not been identified in the total sample diffractogram. In the sample with low silica content, the magnetic separation into several mineral fractions made possible to obtain diffraction patterns with fewer peaks and peaks with higher relative intensities, which allowed its mineralogical characterization. The results showed that the mineral separation by the magnetic separator Frantz made the identification of accessory minerals by XRD and the characterization of samples which have many mineral phases possible, which proves that magnetic separation by Frantz is a method which can assist analyses by XRD. (author)

  4. Trace elemental analysis of Indian natural moonstone gems by PIXE and XRD techniques.

    Science.gov (United States)

    Venkateswara Rao, R; Venkateswarulu, P; Kasipathi, C; Sivajyothi, S

    2013-12-01

    A selected number of Indian Eastern Ghats natural moonstone gems were studied with a powerful nuclear analytical and non-destructive Proton Induced X-ray Emission (PIXE) technique. Thirteen elements, including V, Co, Ni, Zn, Ga, Ba and Pb, were identified in these moonstones and may be useful in interpreting the various geochemical conditions and the probable cause of their inceptions in the moonstone gemstone matrix. Furthermore, preliminary XRD studies of different moonstone patterns were performed. The PIXE technique is a powerful method for quickly determining the elemental concentration of a substance. A 3MeV proton beam was employed to excite the samples. The chemical constituents of moonstones from parts of the Eastern Ghats geological formations of Andhra Pradesh, India were determined, and gemological studies were performed on those gems. The crystal structure and the lattice parameters of the moonstones were estimated using X-Ray Diffraction studies, trace and minor elements were determined using the PIXE technique, and major compositional elements were confirmed by XRD. In the present work, the usefulness and versatility of the PIXE technique for research in geo-scientific methodology is established. © 2013 Elsevier Ltd. All rights reserved.

  5. Conservation of Moroccan manuscript papers aged 150, 200 and 800 years. Analysis by infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and scanning electron microscopy energy dispersive spectrometry (SEM-EDS).

    Science.gov (United States)

    Hajji, Latifa; Boukir, Abdellatif; Assouik, Jamal; Lakhiari, Hamid; Kerbal, Abdelali; Doumenq, Pierre; Mille, Gilbert; De Carvalho, Maria Luisa

    2015-02-05

    The preservation of manuscripts and archive materials is a serious problem for librarians and restorers. Paper manuscript is subjected to numerous degradation factors affecting their conservation state. This research represents an attempt to evaluate the conservation restoration process applied in Moroccan libraries, especially the alkaline treatment for strengthening weakened paper. In this study, we focused on six samples of degraded and restored paper taken from three different Moroccan manuscripts aged 150, 200 and 800 years. In addition, the Japanese paper used in restoration has been characterized. A modern paper was also analyzed as reference. A three-step analytical methodology based on infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD) and scanning electron microscopy coupled to energy dispersive spectrometry (SEM-EDS) analysis was developed before and after restoration in order to determine the effect of the consolidation treatment on the paper structure. The results obtained by XRD and ATR-FTIR disclosed the presence of barium sulfate (BaSO4) in all restored paper manuscripts. The presence of calcium carbonate (CaCO3) in all considered samples was confirmed by FTIR spectroscopy. The application of de-acidification treatment causes significant changes connected with the increase of intensity mostly in the region 1426 cm(-1), assigned to the asymmetric and symmetric CO stretching mode of calcite, indicating the effectiveness of de-acidification procedure proved by the rise of the alkaline reserve content allowing the long term preservation of paper. Observations performed by SEM magnify the typical paper morphology and the structure of fibbers, highlighting the effect of the restoration process, manifested by the reduction of impurities. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Setup for in situ x-ray diffraction study of swift heavy ion irradiated materials

    Science.gov (United States)

    Kulriya, P. K.; Singh, F.; Tripathi, A.; Ahuja, R.; Kothari, A.; Dutt, R. N.; Mishra, Y. K.; Kumar, Amit; Avasthi, D. K.

    2007-11-01

    An in situ x-ray diffraction (XRD) setup is designed and installed in the materials science beam line of the Pelletron accelerator at the Inter-University Accelerator Centre for in situ studies of phase change in swift heavy ion irradiated materials. A high vacuum chamber with suitable windows for incident and diffracted X-rays is integrated with the goniometer and the beamline. Indigenously made liquid nitrogen (LN2) temperature sample cooling unit is installed. The snapshots of growth of particles with fluence of 90MeV Ni ions were recorded using in situ XRD experiment, illustrating the potential of this in situ facility. A thin film of C60 was used to test the sample cooling unit. It shows that the phase of the C60 film transforms from a cubic lattice (at room temperature) to a fcc lattice at around T =255K.

  7. Setup for in situ x-ray diffraction study of swift heavy ion irradiated materials.

    Science.gov (United States)

    Kulriya, P K; Singh, F; Tripathi, A; Ahuja, R; Kothari, A; Dutt, R N; Mishra, Y K; Kumar, Amit; Avasthi, D K

    2007-11-01

    An in situ x-ray diffraction (XRD) setup is designed and installed in the materials science beam line of the Pelletron accelerator at the Inter-University Accelerator Centre for in situ studies of phase change in swift heavy ion irradiated materials. A high vacuum chamber with suitable windows for incident and diffracted X-rays is integrated with the goniometer and the beamline. Indigenously made liquid nitrogen (LN2) temperature sample cooling unit is installed. The snapshots of growth of particles with fluence of 90 MeV Ni ions were recorded using in situ XRD experiment, illustrating the potential of this in situ facility. A thin film of C60 was used to test the sample cooling unit. It shows that the phase of the C60 film transforms from a cubic lattice (at room temperature) to a fcc lattice at around T=255 K.

  8. X-ray diffraction analysis of mudstone from nw sudan

    International Nuclear Information System (INIS)

    Salih, Suad Z.Elabdeen

    1997-03-01

    This study deals with the theoretical and experimental aspects of the x-ray diffraction technique (XRD). The XRD technique is used to investigate fine structure of matter, and it is most efficient method for the determination of the mineralogical composition of rocks. The XRD technique is used also to investigate the clay mineralogical of mud-stones of the Nubian sandstones of north western Sudan. The XRD results revealed that the mud-stone samples are composed, in decreasing abundance's of kaolinite, smectite, chlorite and illite. Non-clay minerals reported include quartz, feldspars and geothite. Kaolinite dominates in most of samples with percentages ranging between 78-96%. Smectite comes second in abundance and ranges between 10-24%, followed by chlorite and illite which showed the lowest abundance's. The dominance of kaolinite over smectite indicates that intense chemical weathering and leaching occurred under warm humid climate interrupted by dry periods. Most probably these clay minerals were produced by inheritance and partly by neo formation. The variation of the chemical composition of these mud stones is due basically to differences in clay mineralogy which was controlled by source rock geology, weathering physicochemical behavior of elements, local environment and climatic condition in the past. (Author)

  9. X-ray diffraction analysis of clay stones, Muglad Sedimentary Basin, Sudan

    International Nuclear Information System (INIS)

    Ali, A. E.

    1997-01-01

    This study deals with the theoretical and experimental aspects of X-ray diffraction (XRD) technique. Moreover the XRD technique has been used to investigate the clay mineral types and their distribution for samples obtained from exploration wells in the Mugald Sedimentary Basin in Western Sudan. The studied samples range in depth from 1524 m to 4572 m. The XRD analysis of samples shows that they consist of kaolinite, smectite, illite, chlorite and the mixed-layer smectite/illite. Kaolinite has higher abundance (15 - 72 %) followed by illite (7 - 34 %), smectite (11 - 76 %) and the less abundance of chlorite and the mixed-layer smectite/illite. Non-clay minerals found include quartz and cristabolite. The clay mineral types and their vertical distribution reflect various controls such as environmental, burial diagenesis, source rocks and climatic influences in the Muglad Sedimentary Basin. (author). 19 refs., 11 figs., 3 tabs

  10. In-field X-ray and neutron diffraction studies of re-entrant charge-ordering and field induced metastability in La0.175Pr0.45Ca0.375MnO3-δ

    Science.gov (United States)

    Sharma, Shivani; Shahee, Aga; Yadav, Poonam; da Silva, Ivan; Lalla, N. P.

    2017-11-01

    Low-temperature high-magnetic field (2 K, 8 T) (LTHM) powder X-ray diffraction (XRD) and time of flight powder neutron diffraction (NPD), low-temperature transmission electron microscopic (TEM), and resistivity and magnetization measurements have been carried out to investigate the re-entrant charge ordering (CO), field induced structural phase transitions, and metastability in phase-separated La0.175Pr0.45Ca0.375MnO3-δ (LPCMO). Low-temperature TEM and XRD studies reveal that on cooling under zero-field, paramagnetic Pnma phase transforms to P21/m CO antiferromagnetic (AFM) insulating phase below ˜233 K. Unlike reported literature, no structural signature of CO AFM P21/m to ferromagnetic (FM) Pnma phase-transition during cooling down to 2 K under zero-field was observed. However, the CO phase was found to undergo a re-entrant transition at ˜40 K. Neutron diffraction studies revealed a pseudo CE type spin arrangement of the observed CO phase. The low-temperature resistance, while cooled under zero-field, shows insulator to metal like transition below ˜105 K with minima at ˜25 K. On application of field, the CO P21/m phase was found to undergo field-induced transition to FM Pnma phase, which shows irreversibility on field removal below ˜40 K. Zero-field warming XRD and NPD studies reveal that field-induced FM Pnma phase is a metastable phase, which arise due to the arrest of kinetics of the first-order phase transition of FM Pnma to CO-AFM P21/m phase, below 40 K. Thus, a strong magneto-structural coupling is observed for this system. A field-temperature (H-T) phase-diagram has been constructed based on the LTHM-XRD, which matches very nicely with the reported H-T phase-diagram constructed based on magnetic measurements. Due to the occurrence of gradual growth of the re-entrant CO phase and the absence of a clear structural signature of phase-separation of CO-AFM P21/m and FM Pnma phases, the H-T minima in the phase-diagram of the present LPCMO sample has been

  11. Status of the Neutron Imaging and Diffraction Instrument IMAT

    Science.gov (United States)

    Kockelmann, Winfried; Burca, Genoveva; Kelleher, Joe F.; Kabra, Saurabh; Zhang, Shu-Yan; Rhodes, Nigel J.; Schooneveld, Erik M.; Sykora, Jeff; Pooley, Daniel E.; Nightingale, Jim B.; Aliotta, Francesco; Ponterio, Rosa C.; Salvato, Gabriele; Tresoldi, Dario; Vasi, Cirino; McPhate, Jason B.; Tremsin, Anton S.

    A cold neutron imaging and diffraction instrument, IMAT, is currently being constructed at the ISIS second target station. IMAT will capitalize on time-of-flight transmission and diffraction techniques available at a pulsed neutron source. Analytical techniques will include neutron radiography, neutron tomography, energy-selective neutron imaging, and spatially resolved diffraction scans for residual strain and texture determination. Commissioning of the instrument will start in 2015, with time-resolving imaging detectors and two diffraction detector prototype modules. IMAT will be operated as a user facility for material science applications and will be open for developments of time-of-flight imaging methods.

  12. Diffractive interference optical analyzer (DiOPTER)

    Science.gov (United States)

    Sasikumar, Harish; Prasad, Vishnu; Pal, Parama; Varma, Manoj M.

    2016-03-01

    This report demonstrates a method for high-resolution refractometric measurements using, what we have termed as, a Diffractive Interference Optical Analyzer (DiOpter). The setup consists of a laser, polarizer, a transparent diffraction grating and Si-photodetectors. The sensor is based on the differential response of diffracted orders to bulk refractive index changes. In these setups, the differential read-out of the diffracted orders suppresses signal drifts and enables time-resolved determination of refractive index changes in the sample cell. A remarkable feature of this device is that under appropriate conditions, the measurement sensitivity of the sensor can be enhanced by more than two orders of magnitude due to interference between multiply reflected diffracted orders. A noise-equivalent limit of detection (LoD) of 6x10-7 RIU was achieved in glass. This work focuses on devices with integrated sample well, made on low-cost PDMS. As the detection methodology is experimentally straightforward, it can be used across a wide array of applications, ranging from detecting changes in surface adsorbates via binding reactions to estimating refractive index (and hence concentration) variations in bulk samples. An exciting prospect of this technique is the potential integration of this device to smartphones using a simple interface based on transmission mode configuration. In a transmission configuration, we were able to achieve an LoD of 4x10-4 RIU which is sufficient to explore several applications in food quality testing and related fields. We are envisioning the future of this platform as a personal handheld optical analyzer for applications ranging from environmental sensing to healthcare and quality testing of food products.

  13. Murillo's paintings revealed by spectroscopic techniques and dedicated laboratory-made micro X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Duran, A., E-mail: adrian@icmse.csic.es [Materials Science Institute of Seville, Avda Americo Vespucio 49, 41092 Seville (Spain); Centre de Recherche et de Restauration des Musees de France (C2RMF-CNRS), Palais du Louvre, 14 quai Francois Mitterrand, 75001 Paris (France); Siguenza, M.B.; Franquelo, M.L.; Haro, M.C. Jimenez de; Justo, A.; Perez-Rodriguez, J.L. [Materials Science Institute of Seville, Avda Americo Vespucio 49, 41092 Seville (Spain)

    2010-06-25

    This paper describes one of the first case studies using micro-diffraction laboratory-made systems to analyse painting cross-sections. Pigments, such as lead white, vermilion, red ochre, red lac, lapis lazuli, smalt, lead tin yellow type I, massicot, ivory black, lamp black and malachite, were detected in cross-sections prepared from six Bartolome Esteban Murillo paintings by micro-Raman and micro-XRD combined with complementary techniques (optical microscopy, SEM-EDS, and FT-IR). The use of micro-XRD was necessary due to the poor results obtained with conventional XRD. In some cases, pigment identification was only possible by combining results from the different analytical techniques utilised in this study.

  14. [NIR and XRD analysis of drill-hole samples from Zhamuaobao iron-graphite deposit, Inner Mongolia].

    Science.gov (United States)

    Li, Ying-kui; Cao, Jian-jin; Wu, Zheng-quan; Dai, Dong-le; Lin, Zu-xu

    2015-01-01

    The author analyzed the 4202 drill-hole samples from Zhamuaobao iron-graphite deposit by using near infrared spectroscopy(NIR) and X-ray diffraction(XRD) measuring and testing techniques, and then compared and summarized the results of two kinds of testing technology. The results indicate that some difference of the mineral composition exists among different layers, the lithology from upper to deeper is the clay gravel layer of tertiary and quaternary, mudstone, mica quartz schist, quartz actinolite scarn, skarnization marble, iron ore deposits, graphite deposits and mica quartz schist. The petrogenesis in different depth also shows difference, which may indicate the geological characteristic to some extent. The samples had mainly undergone such processes as oxidization, carbonation, chloritization and skarn alteration. The research results can not only improve the geological feature of the mining area, but also have great importance in ore exploration, mining, mineral processing and so on. What's more, as XRD can provide preliminary information about the mineral composition, NIR can make further judgement on the existence of the minerals. The research integrated the advantages of both NIR and XRD measuring and testing techniques, put forward a method with two kinds of modern testing technology combined with each other, which may improve the accuracy of the mineral composition identification. In the meantime, the NIR will be more wildly used in geography on the basis of mineral spectroscopy.

  15. Structural studies of carbon nanotubes by powder x-ray diffraction at SPring-8 and KEK PF

    CERN Document Server

    Maniwa, Y; Fujiwara, A

    2003-01-01

    Powder X-ray diffraction (XRD) studies on carbon nanotubes (CNTs) using synchrotron radiation are reported. In spite of the observed broad XRD peak profiles of two-dimensional triangular (hexagonal) lattice of single-wall carbon nanotubes (SWNTs), it was shown that useful structural information, such as the tube diameter and its distribution, can be deduced from detailed analysis of the characteristic XRD patterns. In particular, powder-XRD measurements were performed to study the phase transition of encapsulated materials inside SWNTs. In the C sub 7 sub 0 -one dimensional (1D) crystals formed inside SWNTs, importance of one-dimensionality in the C sub 7 sub 0 -molecular dynamics was suggested. It was also shown that water inside SWNTs undergoes a phase transition from liquid to an ice-nanotube structure below -38degC. Conversion process from SWNT to double-wall carbon nanotube (DWNT) was also studied by XRD.

  16. A Study on Factors Affecting Strength of Solidified Peat through XRD and FESEM Analysis

    Science.gov (United States)

    Rahman, J. A.; Napia, A. M. A.; Nazri, M. A. A.; Mohamed, R. M. S. R.; Al-Geethi, A. S.

    2018-04-01

    Peat is soft soil that often causes multiple problems to construction. Peat has low shear strength and high deformation characteristics. Thus, peat soil needs to be stabilized or treated. Study on peat stabilization has been conducted for decades with various admixtures and mixing formulations. This project intends to provide an overview of the solidification of peat soil and the factors that affecting the strength of solidified peat soil. Three types of peats which are fabric, hemic and sapric were used in this study to understand the differences on the effect. The understanding of the factors affecting strength of solidified peat in this study is limited to XRD and FESEM analysis only. Peat samples were collected at Pontian, Johor and Parit Raja, Johor. Peat soil was solidified using fly ash, bottom ash and Portland cement with two mixing formulation following literature review. The solidified peat were cured for 7 days, 14 days, 28 days and 56 days. All samples were tested using Unconfined Compressive Strength Test (UCS), X-ray diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM). The compressive strength test of solidified peat had shown consistently increase of sheer strength, qu for Mixing 1 while decrease of its compressive strength value for Mixing 2. All samples were tested and compared for each curing days. Through XRD, it is found that all solidified peat are dominated with pargasite and richterite. The highest qu is Fabric Mixing 1(FM1) with the value of 105.94 kPa. This sample were proven contain pargasite. Samples with high qu were observed to be having fly ash and bottom ash bound together with the help of pargasite. Sample with decreasing strength showed less amount of pargasite in it. In can be concluded that XRD and FESEM findings are in line with UCS values.

  17. High-pressure synchrotron x-ray diffraction and infrared microspectroscopy: applications to dense hydrous phases

    CERN Document Server

    Liu, Z; Yang, H; Mao Ho Kwang; Hemley, R J

    2002-01-01

    Synchrotron x-ray diffraction (XRD) and infrared (IR) absorption spectra of hydrous and 'anhydrous' forms of phase X were measured to 30 GPa at room temperature. Three OH stretching modes were found in the hydrous phase, and surprisingly one sharp OH mode was observed in the previously characterized anhydrous phase. All OH stretching modes soften and broaden with increasing pressure and become very weak above approx 20 GPa. XRD indicates that the crystal structure remains stable up to 30 GPa. Combining IR absorption and XRD results, the behaviour is attributed to pressure-induced distortion of the Si sub 2 O sub 7 groups and disorder of the hydrogen atoms. The bulk moduli of the hydrous and 'anhydrous' phases are in the region of 74 GPa.

  18. X-ray diffraction analysis of synthesized silver nanohexagon for the study of their mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Das, Ratan, E-mail: dasratanphy@gmail.com; Sarkar, Sumit, E-mail: sarkarsumit07phy@gmail.com

    2015-11-01

    Silver nanohexagons have been prepared through the chemical reduction method using poly(vinyl pyrrolidone) (PVP) as a capping agent. High Resolution Transmission Electron Microscopic (HRTEM) study shows that average size of the prepared silver nanoparticles is 45 nm approximately with nearly hexagon shape. The peaks in the X-Ray Diffraction (XRD) pattern are in good agreement with that of face centered cubic structure. Williamson–Hall plots (W–H plot) have been analyzed to study the crystalline size and lattice strain considering the peak broadening of the AgNHs. The mechanical properties such as strain, stress and energy density of prepared nanohexagon have been calculated assuming uniform deformation model (UDM), uniform stress deformation model (USDM), and uniform deformation energy density model (UDEDM) and size–strain plot method (SSP). From all these results, it is found that the size and strain estimated from W–H analysis and SSP method are in good agreement. - Highlights: • PVP capped silver nanohexagons have been synthesized by chemical reduction method. • HRTEM images show that the average size of the prepared nanohexagons is 45 nm. • X-ray diffraction study confirms the crystallinity of silver nanohexagons. • Elastic properties have been calculated by W–H analysis using different models. • Further, the results from UDM, USDM, and UDEDM matches with SSP method.

  19. In situ and ex situ electron microscopy and X-ray diffraction characterization of the evolution of a catalytic system - from synthesis to deactivation

    DEFF Research Database (Denmark)

    Gardini, Diego

    Heterogeneous catalysis represents a research field of undeniable importance for a multitude of technological and industrial processes. Supported catalysts are nowadays at the base of the large-scale production of most chemicals and are used for the removal of air pollutants from automotive engines...... the understanding of the structural properties and mechanisms at the origin of catalytic activity. This thesis presents the potential and uniqueness of ex situ and in situ transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques in the characterization of several supported material systems...... TEM (HRTEM) and electron energy loss spectroscopy (EELS) revealed the degradation of the supported carbide particles probably due to the formation of volatile molybdenum hydroxide species. The activity of silver nanoparticles as catalyst for soot oxidation was studied in operative conditions...

  20. Load transfer in bovine plexiform bone determined by synchrotron x-ray diffraction

    International Nuclear Information System (INIS)

    Akhtar, R.; Daymond, M.; Almer, J.; Mummery, P.; The Univ. of Manchester; Queen's Univ.

    2008-01-01

    High-energy synchrotron x-ray diffraction (XRD) has been used to quantify load transfer in bovine plexiform bone. By using both wide-angle and small-angle XRD, strains in the mineral as well as the collagen phase of bone were measured as a function of applied compressive stress. We suggest that a greater proportion of the load is borne by the more mineralized woven bone than the lamellar bone as the applied stress increases. With a further increase in stress, load is shed back to the lamellar regions until macroscopic failure occurs. The reported data fit well with reported mechanisms of microdamage accumulation in bovine plexiform bone

  1. Multivariate analysis of DSC-XRD simultaneous measurement data: a study of multistage crystalline structure changes in a linear poly(ethylene imine) thin film.

    Science.gov (United States)

    Kakuda, Hiroyuki; Okada, Tetsuo; Otsuka, Makoto; Katsumoto, Yukiteru; Hasegawa, Takeshi

    2009-01-01

    A multivariate analytical technique has been applied to the analysis of simultaneous measurement data from differential scanning calorimetry (DSC) and X-ray diffraction (XRD) in order to study thermal changes in crystalline structure of a linear poly(ethylene imine) (LPEI) film. A large number of XRD patterns generated from the simultaneous measurements were subjected to an augmented alternative least-squares (ALS) regression analysis, and the XRD patterns were readily decomposed into chemically independent XRD patterns and their thermal profiles were also obtained at the same time. The decomposed XRD patterns and the profiles were useful in discussing the minute peaks in the DSC. The analytical results revealed the following changes of polymorphisms in detail: An LPEI film prepared by casting an aqueous solution was composed of sesquihydrate and hemihydrate crystals. The sesquihydrate one was lost at an early stage of heating, and the film changed into an amorphous state. Once the sesquihydrate was lost by heating, it was not recovered even when it was cooled back to room temperature. When the sample was heated again, structural changes were found between the hemihydrate and the amorphous components. In this manner, the simultaneous DSC-XRD measurements combined with ALS analysis proved to be powerful for obtaining a better understanding of the thermally induced changes of the crystalline structure in a polymer film.

  2. Effects of uniformities of deposition of respirable particles on filters on determining their quartz contents by using the direct on-filter X-ray diffraction (DOF XRD) method

    International Nuclear Information System (INIS)

    Chen, Ching-Hwa; Tsaia, Perng-Jy; Lai, Chane-Yu; Peng, Ya-Lian; Soo, Jhy-Charm; Chen, Cheng-Yao; Shih, Tung-Sheng

    2010-01-01

    In this study, field samplings were conducted in three workplaces of a foundry plant, including the molding, demolding, and bead blasting, respectively. Three respirable aerosol samplers (including a 25-mm aluminum cyclone, nylon cyclone, and IOSH cyclone) were used side-by-side to collect samples from each selected workplace. For each collected sample, the uniformity of the deposition of respirable dusts on the filter was measured and its free silica content was determined by both the DOF XRD method and NIOSH 7500 XRD method (i.e., the reference method). A same trend in measured uniformities can be found in all selected workplaces: 25-mm aluminum cyclone > nylon cyclone > IOSH cyclone. Even for samples collected by the sampler with the highest uniformity (i.e., 25-mm aluminum cyclone), the use of the DOF XRD method would lead to the measured free silica concentrations 1.15-2.89 times in magnitude higher than that of the reference method. A new filter holder should be developed with the minimum uniformity comparable to that of NIOSH 7500 XRD method (=0.78) in the future. The use of conversion factors for correcting quartz concentrations obtained from the DOF XRD method based on the measured uniformities could be suitable for the foundry industry at this stage.

  3. In Situ X-Ray Diffraction Study on Surface Melting of Bi Nanoparticles Embedded in a SiO2 Matrix

    International Nuclear Information System (INIS)

    Chen Xiao-Ming; Huo Kai-Tuo; Liu Peng

    2014-01-01

    Bi nanoparticles embedded in a SiO 2 matrix were prepared via the high energy ball milling method. The melting behavior of Bi nanoparticles was studied by means of differential scanning calorimetry (DSC) and high-temperature in situ X-ray diffraction (XRD). DSC cannot distinguish the surface melting from ‘bulk’ melting of the Bi nanoparticles. The XRD intensity of the Bi nanoparticles decreases progressively during the in situ heating process. The variation in the normalized integrated XRD intensity versus temperature is related to the average grain size of Bi nanoparticles. Considering the effects of temperature on Debye—Waller factor and Lorentz-polarization factor, we discuss the XRD results in accordance with surface melting. Our results show that the in situ XRD technique is effective to explore the surface melting of nanoparticles

  4. Structural refinement of artificial superlattices by the X-ray diffraction method

    CERN Document Server

    Ishibashi, Y; Tsurumi, T

    1999-01-01

    This paper reports a structural refinement of BaTiO sub 3 (BTO)/SrTiO sub 3 (STO) artificially superstructured thin films. The refinement was achieved by taking into account the effect of interdiffusion between BTO and STO. The samples were prepared by a molecular-beam epitaxy method on SrTiO sub 3 (001) substrate at 600 .deg. C. The phonon model was employed to simulate the X-ray diffraction (XRD) profiles. A discrepancy was observed in the intensities of the satellite peaks when the effect of the interdiffusion between BTO and STO was not incorporated in the simulation. In successive simulations, the concentration profile due to the interdiffusion was first calculated according to Fick's second law, and then the coefficients of the Fourier series describing the lattice distortion and the modulation of the structure factor were determined. The XRD profiles thus simulated almost completely agreed with those observed. This indicates that XRD analysis with the calculation process proposed in this study will ena...

  5. Electronic structure and photocatalytic activity of wurtzite Cu–Ga–S nanocrystals and their Zn substitution

    KAUST Repository

    Kandiel, Tarek; Anjum, Dalaver H.; Sautet, Philippe; Le Bahers, Tangui; Takanabe, Kazuhiro

    2015-01-01

    by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), photoluminescence (PL), and inductively coupled plasma atomic emission spectroscopy (ICP-OES). Electronic

  6. Moessbauer and XRD study of pulse plated Fe-P and Fe-Ni thin layers

    International Nuclear Information System (INIS)

    Miko, Annamaria; Kuzmann, Erno; Lakatos-Varsanyi, Magda; Kakay, Attila; Nagy, Ferenc; Varga, Lajos Karoly

    2005-01-01

    57 Fe conversion electron Moessbauer spectroscopy, X-ray diffraction, electrochemical and magnetic measurements were used to study pulse electroplated Fe-P and Ni-Fe coatings. XRD and 57 Fe CEMS measurements revealed the amorphous character of the novel pulse plated Fe-P alloys. CEM spectra indicated significant differences in the short range order and in the magnetic anisotropy between the Fe-P deposits pulse plated at medium long deposition time (t on = 2 ms), with short relaxation time (t off = 9 ms) and low current density (I p = 0.05 Acm -2 ) or at short deposition time (t on = 1 ms) with long relaxation time (t off = 250 ms) and high current density (I p = 1.0 Acm -2 ). The broad peaks centred around the fcc reflections in XRD of the pulse plated Ni-22 wt.% Fe deposit reflected a microcrystalline Ni-Fe alloy with a very fine, 5-8 nm, grain size. The CEM spectrum of the pulse plated Ni-22 wt.% Fe coating corresponded to a highly disordered solid solution alloy containing a minute amount of ferrihydrite. Extreme favourable soft magnetic properties were observed with these Ni-Fe and Fe-P pulse plated thin layers.

  7. Electron diffraction and high-resolution transmission electron microscopy of the high temperature crystal structures of GexSb2Te3+x (x=1,2,3) phase change material

    NARCIS (Netherlands)

    Kooi, B.J.; de Hosson, J.T.M.

    2002-01-01

    The crystal structures of GeSb2Te4, Ge2Sb2Te5, and Ge3Sb2Te6 were determined using electron diffraction and high-resolution transmission electron microscopy. The structure determined for the former two crystals deviates from the ones proposed in the literature. These crystal structures were

  8. Investigation of composition and structure of spongy and hard bone tissue using FTIR spectroscopy, XRD and SEM

    Science.gov (United States)

    Al-Akhras, M.-Ali H.; Hasan Qaseer, M. K.; Albiss, B. A.; Alebrhim, M. Anwar; Gezawa, Umar S.

    2018-02-01

    Valuable structural and chemical features can be obtained for spongy and hard bone by infrared spectroscopy and X-ray diffraction. A better understanding of chemical and structural differences between spongy and hard bone is a very important contributor to bone quality. Our data according to IR data showed that the collagen cross-links occurred to be higher in spongy bone, and crystallinity was lower in spongy bone. Deconvolution of the infrared band near 870 cm-1 reveals evidence for A2-type carbonate substitution on hydroxyapatite of spongy bone in addition to the A and B type carbonate substitution that are also found in hard bone. IR and XRD data confirmed the results of each other since full width at half maximum of 002-apatite pattern of XRD showed that the crystallinity was lower in spongy bone. The microstructure was examined by using scanning electron microscope and the result showed that the lattice of thin threads in spongy bone and is less dense than hard bone.

  9. X-ray diffraction studies of the structure and orientations of thiophene and fluorenone based molecule

    International Nuclear Information System (INIS)

    Porzio, William; Pasini, Mariacecilia; Destri, Silvia; Giovanella, Umberto; Fontaine, Philippe

    2006-01-01

    The crystal structure of a conjugated molecule containing thiophene and fluorenone residues has been determined from powder X-ray diffraction (XRD). Thin films ( -5 Pa) onto oxidized silicon substrates, are oriented along with different crystallographic directions. A comparison of XRD in both Grazing Incidence and Bragg-Brentano geometries allowed to perform a quantitative analysis of the various orientations. This approach is generally applicable in the case of multi-oriented films. The results fully account for the poor performance of this molecule in p-type field effect transistor devices

  10. Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature

    Science.gov (United States)

    Kern, Jan; Alonso-Mori, Roberto; Tran, Rosalie; Hattne, Johan; Gildea, Richard J.; Echols, Nathaniel; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G.; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Miahnahri, Alan; Schafer, Donald W.; Messerschmidt, Marc; Seibert, M. Marvin; Koglin, Jason E.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J.; Grosse-Kunstleve, Ralf W.; Zwart, Petrus H.; White, William E.; Glatzel, Pieter; Adams, Paul D.; Bogan, Michael J.; Williams, Garth J.; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Sauter, Nicholas K.; Yachandra, Vittal K.; Bergmann, Uwe; Yano, Junko

    2013-01-01

    Intense femtosecond X-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous X-ray diffraction (XRD) and X-ray emission spectroscopy (XES) of microcrystals of Photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD/XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies. PMID:23413188

  11. Study of archaeological objects by neutron imaging, xrd and xrf

    International Nuclear Information System (INIS)

    Dinca, M.; Dinu, A. D.; Stanciulescu, M. G.; Mandescu, D.

    2015-01-01

    Archaeological objects were borrowed from Arges County History Museum (ACHM) and investigated at the Institute for Nuclear Research (INR). Metallic objects made in iron, copper alloys and silver discovered in southern part of Romania, mostly Dacian and Roman origin, were investigated. For imaging was used the neutron and gamma imaging facility from tangential channel of the TRIGA ACPR to put in evidence the internal structure of the objects. For elemental and chemical composition, concentration levels in objects were performed investigations by X-ray fluorescence (XRF) and X-ray diffraction (XRD). These investigations offer valuable information in archaeological research about composition, structure of the bulk, presence of alteration, inclusions, typology of the location of material extraction, manufacturing techniques etc. This work is an example of application of neutron imaging and other radiation-based analytical methods for cultural heritage research that had the aim to involve some of the non-destructive investigation methods available at INR. (authors)

  12. Optimization of an X-ray diffraction imaging system for medical and security applications

    International Nuclear Information System (INIS)

    Marticke, Fanny

    2016-01-01

    X-ray diffraction imaging is a powerful noninvasive technique to identify or characterize different materials. Compared to traditional techniques using X-ray transmission, it allows to extract more material characteristic information, such as the Bragg peak positions for crystalline materials as well as the molecular form factor for amorphous materials. The potential of this technique has been recognized by many researchers and numerous applications such as luggage inspection, nondestructive testing, drug detection and biological tissue characterization have been proposed. The method of energy dispersive X-ray diffraction (EDXRD) is particularly suited for this type of applications as it allows the use of a conventional X-ray tube, the acquisition of the whole spectrum at the same time and parallelized architectures to inspect an entire object in a reasonable time. The purpose of the present work is to optimize the whole material characterization chain. Optimization comprises two aspects: optimization of the acquisition system and of data processing. The last one concerns especially the correction of diffraction pattern degraded by acquisition process. Reconstruction methods are proposed and validated on simulated and experimental spectra. System optimization is realized using figures of merit such as detective quantum efficiency (DQE), contrast to noise ratio (CNR) and receiver operating characteristic (ROC) curves.The first chosen application is XRD based breast imaging which aims to distinguish cancerous tissues from healthy tissues. Two non-multiplexed collimation configurations combining EDXRD and ADXRD are proposed after optimization procedure. A simulation study of the whole system and a breast phantom was realized to determine the required dose to detect a 4 mm carcinoma nodule. The second application concerns detection of illicit materials during security check. The possible benefit of a multiplexed collimation system was examined. (author) [fr

  13. Role of Carboxylate ligands in the Synthesis of AuNPs: Size Control, Molecular Interaction and Catalytic Activity

    KAUST Repository

    Aljohani, Hind Abdullah

    2016-01-01

    characterization techniques such as UV-visible spectroscopy, Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Nuclear Magnetic resonance spectroscopy (NMR) and Fourier transform infrared spectroscopy (FTIR

  14. Effects of uniformities of deposition of respirable particles on filters on determining their quartz contents by using the direct on-filter X-ray diffraction (DOF XRD) method.

    Science.gov (United States)

    Chen, Ching-Hwa; Tsaia, Perng-Jy; Lai, Chane-Yu; Peng, Ya-Lian; Soo, Jhy-Charm; Chen, Cheng-Yao; Shih, Tung-Sheng

    2010-04-15

    In this study, field samplings were conducted in three workplaces of a foundry plant, including the molding, demolding, and bead blasting, respectively. Three respirable aerosol samplers (including a 25-mm aluminum cyclone, nylon cyclone, and IOSH cyclone) were used side-by-side to collect samples from each selected workplace. For each collected sample, the uniformity of the deposition of respirable dusts on the filter was measured and its free silica content was determined by both the DOF XRD method and NIOSH 7500 XRD method (i.e., the reference method). A same trend in measured uniformities can be found in all selected workplaces: 25-mm aluminum cyclone>nylon cyclone>IOSH cyclone. Even for samples collected by the sampler with the highest uniformity (i.e., 25-mm aluminum cyclone), the use of the DOF XRD method would lead to the measured free silica concentrations 1.15-2.89 times in magnitude higher than that of the reference method. A new filter holder should be developed with the minimum uniformity comparable to that of NIOSH 7500 XRD method (=0.78) in the future. The use of conversion factors for correcting quartz concentrations obtained from the DOF XRD method based on the measured uniformities could be suitable for the foundry industry at this stage. 2009 Elsevier B.V. All rights reserved.

  15. INVESTIGATIONS THE EFFECT OF EOSIN B DYE ON X- RAY DIFFRACTION PATTERN OF SILVER NITRATE DOPED PVP FILMS

    Directory of Open Access Journals (Sweden)

    Mahasin F. Hadi Al-Kadhemy

    2017-07-01

    Full Text Available In this research, X-ray diffraction of the powder (PVP polymer, Eosin B dye, and silver nitrate and (EB/PVP, AgNO3/PVP, EB/AgNO3/PVP films have been studied. Casting method is used to prepare homogeneous films on plastic petri dishes. All parameters accounted for the X-ray diffraction; full width half maximum (FWHM, Miller indices (hkl, size of crystalline (D, Specific Surface Area (S and Dislocation Density (δ.The nature of the structural of materials and films will be investigated. The XRD pattern of PVP polymer was amorphous structure with two broader peaks and the Eosin B dye and silver nitrate have crystalline structure. While the mixture between these materials led to appearing some crystalline peaks into XRD pattern of PVP polymer.

  16. Coherent 3D nanostructure of γ-Al{sub 2}O{sub 3}: Simulation of whole X-ray powder diffraction pattern

    Energy Technology Data Exchange (ETDEWEB)

    Pakharukova, V.P., E-mail: verapakh@catalysis.ru [Boreskov Institute of Catalysis SB RAS, Pr. Lavrentieva 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk (Russian Federation); Research and Educational Center for Energy Efficient Catalysis, Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Yatsenko, D.A. [Boreskov Institute of Catalysis SB RAS, Pr. Lavrentieva 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk (Russian Federation); Gerasimov, E. Yu.; Shalygin, A.S.; Martyanov, O.N.; Tsybulya, S.V. [Boreskov Institute of Catalysis SB RAS, Pr. Lavrentieva 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova Street 2, 630090 Novosibirsk (Russian Federation); Research and Educational Center for Energy Efficient Catalysis, Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2017-02-15

    The structure and nanostructure features of nanocrystalline γ-Al{sub 2}O{sub 3} obtained by dehydration of boehmite with anisotropic platelet-shaped particles were investigated. The original models of 3D coherent nanostructure of γ-Al{sub 2}O{sub 3} were constructed. The models of nanostructured γ-Al{sub 2}O{sub 3} particles were first confirmed by a direct simulation of powder X–Ray diffraction (XRD) patterns using the Debye Scattering Equation (DSE) with assistance of high-resolution transmission electron microscopy (HRTEM) study. The average crystal structure of γ-Al{sub 2}O{sub 3} was shown to be tetragonally distorted. The experimental results revealed that thin γ-Al{sub 2}O{sub 3} platelets were heterogeneous on a nanometer scale and nanometer-sized building blocks were separated by partially coherent interfaces. The XRD simulation results showed that a specific packing of the primary crystalline blocks in the nanostructured γ-Al{sub 2}O{sub 3} particles with formation of planar defects on (001), (100), and (101) planes nicely accounted for pronounced diffuse scattering, anisotropic peak broadening and peak shifts in the experimental XRD pattern. The identified planar defects in cation sublattice seem to be described as filling cation non-spinel sites in existing crystallographic models of γ-Al{sub 2}O{sub 3} structure. The overall findings provided an insight into the complex nanostructure, which is intrinsic to the metastable γ-Al{sub 2}O{sub 3} oxide. - Highlights: • Thin plate-like crystallites of γ-Al{sub 2}O{sub 3} were obtained. • Models of 3D coherent nanostructure of γ-Al{sub 2}O{sub 3} were constructed. • Models were verified by simulating XRD patterns using the Debye Scattering Equation. • Specific broadening of XRD peaks was explained in terms of planar defects. • Primary crystalline blocks in γ-Al{sub 2}O{sub 3} are separated by partially coherent interfaces.

  17. [Analysis of XRD spectral characteristics of soil clay mineral in two typical cultivated soils].

    Science.gov (United States)

    Zhang, Zhi-Dan; Luo, Xiang-Li; Jiang, Hai-Chao; Li, Qiao; Shen, Cong-Ying; Liu, Hang; Zhou, Ya-Juan; Zhao, Lan-Po; Wang, Ji-Hong

    2014-07-01

    The present paper took black soil and chernozem, the typical cultivated soil in major grain producing area of Northeast, as the study object, and determinated the soil particle composition characteristics of two cultivated soils under the same climate and location. Then XRD was used to study the composition and difference of clay mineral in two kinds of soil and the evolutionary mechanism was explored. The results showed that the two kinds of soil particles were composed mainly of the sand, followed by clay and silt. When the particle accumulation rate reached 50%, the central particle size was in the 15-130 microm interval. Except for black soil profile of Shengli Xiang, the content of clay showed converse sequence to the central particle in two soils. Clay accumulated under upper layer (18.82%) in black soil profile while under caliche layer (17.41%) in chernozem profile. Clay content was the least in parent material horizon except in black profile of Quanyanling. Analysis of clay XRD atlas showed that the difference lied in not only the strength of diffraction peak, but also in the mineral composition. The main contents of black soil and chernozem were both 2 : 1 clay, the composition of black soil was smectite/illite mixed layer-illite-vermiculite and that of chernozem was S/I mixture-illite-montmorillonite, and both of them contained little kaolinite, chlorite, quartz and other primary mineral. This paper used XRD to determine the characteristics of clay minerals comprehensively, and analyzed two kinds of typical cultivated soil comparatively, and it was a new perspective of soil minerals study.

  18. Combining µXANES and µXRD mapping to analyse the heterogeneity in calcium carbonate granules excreted by the earthworm Lumbricus terrestris

    International Nuclear Information System (INIS)

    Brinza, Loredana; Schofield, Paul F.; Hodson, Mark E.; Weller, Sophie; Ignatyev, Konstantin; Geraki, Kalotina; Quinn, Paul D.; Mosselmans, J. Frederick W.

    2014-01-01

    A new experimental set-up enabling microfocus fluorescence XANES mapping and microfocus XRD mapping on the same sample at beamline I18 at Diamond Light Source is described. To demonstrate this set-up the heterogeneous mineralogy in calcium carbonate granules excreted by the earthworm Lumbricus terrestris has been analysed. Data analysis methods have been developed which enable µXRD and µXANES two-dimensional maps to be compared. The use of fluorescence full spectral micro-X-ray absorption near-edge structure (µXANES) mapping is becoming more widespread in the hard energy regime. This experimental method using the Ca K-edge combined with micro-X-ray diffractionXRD) mapping of the same sample has been enabled on beamline I18 at Diamond Light Source. This combined approach has been used to probe both long- and short-range order in calcium carbonate granules produced by the earthworm Lumbricus terrestris. In granules produced by earthworms cultured in a control artificial soil, calcite and vaterite are observed in the granules. However, granules produced by earthworms cultivated in the same artificial soil amended with 500 p.p.m. Mg also contain an aragonite. The two techniques, µXRD and µXANES, probe different sample volumes but there is good agreement in the phase maps produced

  19. Combining µXANES and µXRD mapping to analyse the heterogeneity in calcium carbonate granules excreted by the earthworm Lumbricus terrestris

    Energy Technology Data Exchange (ETDEWEB)

    Brinza, Loredana [Diamond Light Source, Harwell Campus, Didcot, Oxon OX11 0DE (United Kingdom); Schofield, Paul F. [Natural History Museum, Cromwell Road, London SW7 5BD (United Kingdom); Hodson, Mark E. [University of York, York YO10 5DD (United Kingdom); Weller, Sophie [University of Oxford, South Parks Road, Oxford OX1 3QR (United Kingdom); Ignatyev, Konstantin; Geraki, Kalotina; Quinn, Paul D.; Mosselmans, J. Frederick W., E-mail: fred.mosselmans@diamond.ac.uk [Diamond Light Source, Harwell Campus, Didcot, Oxon OX11 0DE (United Kingdom)

    2014-01-01

    A new experimental set-up enabling microfocus fluorescence XANES mapping and microfocus XRD mapping on the same sample at beamline I18 at Diamond Light Source is described. To demonstrate this set-up the heterogeneous mineralogy in calcium carbonate granules excreted by the earthworm Lumbricus terrestris has been analysed. Data analysis methods have been developed which enable µXRD and µXANES two-dimensional maps to be compared. The use of fluorescence full spectral micro-X-ray absorption near-edge structure (µXANES) mapping is becoming more widespread in the hard energy regime. This experimental method using the Ca K-edge combined with micro-X-ray diffractionXRD) mapping of the same sample has been enabled on beamline I18 at Diamond Light Source. This combined approach has been used to probe both long- and short-range order in calcium carbonate granules produced by the earthworm Lumbricus terrestris. In granules produced by earthworms cultured in a control artificial soil, calcite and vaterite are observed in the granules. However, granules produced by earthworms cultivated in the same artificial soil amended with 500 p.p.m. Mg also contain an aragonite. The two techniques, µXRD and µXANES, probe different sample volumes but there is good agreement in the phase maps produced.

  20. Data from the Mars Science Laboratory CheMin XRD/XRF Instrument

    Science.gov (United States)

    Vaniman, David; Blake, David; Bristow, Tom; DesMarais, David; Achilles, Cherie; Anderson, Robert; Crips, Joy; Morookian, John Michael; Spanovich, Nicole; Vasavada, Ashwin; hide

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity uses a Co tube source and a CCD detector to acquire mineralogy from diffracted primary X-rays and chemical information from fluoresced X-rays. CheMin has been operating at the MSL Gale Crater field site since August 5, 2012 and has provided the first X-ray diffraction (XRD) analyses in situ on a body beyond Earth. Data from the first sample collected, the Rocknest eolian soil, identify a basaltic mineral suite, predominantly plagioclase (approx.An50), forsteritic olivine (approx.Fo58), augite and pigeonite, consistent with expectation that detrital grains on Mars would reflect widespread basaltic sources. Minor phases (each XRD. This amorphous component is attested to by a broad rise in background centered at approx.27deg 2(theta) (Co K(alpha)) and may include volcanic glass, impact glass, and poorly crystalline phases including iron oxyhydroxides; a rise at lower 2(theta) may indicate allophane or hisingerite. Constraints from phase chemistry of the crystalline components, compared with a Rocknest bulk composition from the APXS instrument on Curiosity, indicate that in sum the amorphous or poorly crystalline components are relatively Si, Al, Mg-poor and enriched in Ti, Cr, Fe, K, P, S, and Cl. All of the identified crystalline phases are volatile-free; H2O, SO2 and CO2 volatile releases from a split of this sample analyzed by the SAM instrument on Curiosity are associated with the amorphous or poorly ordered materials. The Rocknest eolian soil may be a mixture of local detritus, mostly crystalline, with a regional or global set of dominantly amorphous or poorly ordered components. The Rocknest sample was targeted by MSL for "first time analysis" to demonstrate that a loose deposit could be scooped, sieved to <150 microns, and delivered to instruments in the body of the rover. A drilled sample of sediment in outcrop is anticipated. At the time of writing this abstract, promising outcrops are

  1. X-ray diffraction on nanoparticles chromium and nickel oxides obtained by gelatin using synchrotron radiation

    International Nuclear Information System (INIS)

    Menezes, Alan Silva de; Medeiros, Angela Maria de Lemos; Miranda, Marcus Aurelio Ribeiro; Almeida, Juliana Marcela Abraao; Remedios, Claudio Marcio Rocha; Silva, Lindomar R.D. da; Gouveia, S.T.; Sasaki, Jose Marcos; Jardim, P.M.

    2003-01-01

    Full text: Cr 2 O 3 nanoparticles has many applications like green pigments, wear resistance, and coating materials for thermal protection. Several methods to produce chromium oxide nanoparticles have already been studied, gas condensation, laser induced pyrolysis, microwave plasma, sol-gel and gamma radiation methods. Many applications for this kind of material can be provide concerning the particle size. For instance, particle size approximately of 200 nm are preferable as pigment due to its opacity and below 50 nm can be used as transparent pigment. In this work we have demonstrated that chromium and nickel oxide nanoparticles can be prepared by gelatin method. X-Ray diffraction (XRD) show that mean particle size for chromium oxide of 15-150 nm and nickel oxide of 90 nm were obtained for several temperature of sintering. The X-Ray powder diffraction pattern were performed using Synchrotron Radiation X-Ray source at XRD1 beamline in National Laboratory of Light Synchrotron (LNLS). (author)

  2. Evidence of localized wave transmission

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    LLNL [Lawrence Livermore National Lab.] experiments to test the feasibility of launching an acoustic, directed-energy pulse train (ADEPT) in water have demonstrated localized transmission of wave energy far beyond the classical Rayleigh length that defines the boundary between near-field and far-field transmission for Gaussian (diffraction-limited) pulses. The results of the experiments are in excellent agreement with computer simulations

  3. Aluminium incorporation in AlxGa1-xN/GaN heterostructures: A comparative study by ion beam analysis and X-ray diffraction

    International Nuclear Information System (INIS)

    Redondo-Cubero, A.; Gago, R.; Gonzalez-Posada, F.; Kreissig, U.; Di Forte Poisson, M.-A.; Brana, A.F.; Munoz, E.

    2008-01-01

    The Al content in Al x Ga 1-x N/GaN heterostructures has been determined by X-ray diffraction (XRD) and contrasted with absolute measurements from ion beam analysis (IBA) methods. For this purpose, samples with 0.1 0.2. The assessment of Al incorporation by XRD is quite reliable regarding the average value along the sample thickness. However, XRD analysis tends to overestimate the Al fraction at low contents, which is attributed to the presence of strain within the layer. For the highest Al incorporation, IBA detects a certain Al in-depth compositional profile that should be considered for better XRD data analysis

  4. A facile synthesis of ZnS nanocrystallites by pyrolysis of single

    Indian Academy of Sciences (India)

    )2 and ZnCl2 (cinnamtsczH)2 (cinnamtsczH = cinnamaldehyde thiosemicarbazone) as single source precursors. The prepared ZnS nanocrystallites were characterized by powder X-ray diffraction (XRD), transmission electron microscopy ...

  5. Thermally stimulated discharge conductivity study of zinc oxide ...

    Indian Academy of Sciences (India)

    Administrator

    The present work deals with transmission electron microscopy (TEM), X-ray diffraction (XRD), differential ... and is explained on the basis of variable range hopping mechanism. ... detectors, solar cells and surface acoustic wave devices.

  6. The structure of ZrO2 phases and deviltrification processes in a Ca-Zr-Si-O-based glass ceramic: a combined a-XRD and XAS study

    International Nuclear Information System (INIS)

    Meneghini, C.; Mobilio, S.

    2004-01-01

    The structure of Zr atomic environment in a CaO-ZrO 2 -Si 2 glass ceramic as a function of thermal treatments has been studied, combining X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD) and anomalous XRD (a-XRD) techniques. The analysis of XRD patterns demonstrates that the devitrification process proceeds through the partial segregation of Zr-depleted phases (wollastonite-like) and Zr-rich phases (Zr oxides). The XAS and a-XRD measurements at the Zr K-edge have been exploited in order to obtain a closer insight into the atomic structure around the Zr atoms. In the as-quenched glass the Zr atom is sixfold coordinated to O atoms in an amorphous environment rich in Ca and Si. Thermal treatment firstly (T=1273-1323 K) causes partial segragation of Zr in the form of an oxide with a tetragonal zirconia (t-ZrO 2 ) crystalline structure. Raising the temperature (T=1373 K) causes the formation of ZrO 2 crystallites in the monoclinic crystallographic phase (baddeleyite, m-ZrO 2 ). Analysis of the XAS data shows that a considerable amount of Zr remains in an amorphous calcium silicate phase. (orig.)

  7. Electron diffraction from carbon nanotubes

    International Nuclear Information System (INIS)

    Qin, L-C

    2006-01-01

    The properties of a carbon nanotube are dependent on its atomic structure. The atomic structure of a carbon nanotube can be defined by specifying its chiral indices (u, v), that specify its perimeter vector (chiral vector), with which the diameter and helicity are also determined. The fine electron beam available in a modern transmission electron microscope (TEM) offers a unique probe to reveal the atomic structure of individual nanotubes. This review covers two aspects related to the use of the electron probe in the TEM for the study of carbon nanotubes: (a) to understand the electron diffraction phenomena for inter-pretation of the electron diffraction patterns of carbon nanotubes and (b) to obtain the chiral indices (u, v), of the carbon nanotubes from the electron diffraction patterns. For a nanotube of a given structure, the electron scattering amplitude from the carbon nanotube is first described analytically in closed form using the helical diffraction theory. From a known structure as given by the chiral indices (u, v), its electron diffraction pattern can be calculated and understood. The reverse problem, i.e. assignment of the chiral indices from an electron diffraction pattern of a carbon nanotube, is approached from the relationship between the electron scattering intensity distribution and the chiral indices (u, v). We show that electron diffraction patterns can provide an accurate and unambiguous assignment of the chiral indices of carbon nanotubes. The chiral indices (u, v) can be read indiscriminately with a high accuracy from the intensity distribution on the principal layer lines in an electron diffraction pattern. The symmetry properties of electron diffraction from carbon nanotubes and the electron diffraction from deformed carbon nanotubes are also discussed in detail. It is shown that 2mm symmetry is always preserved for single-walled carbon nanotubes, but it can break down for multiwalled carbon nanotubes under some special circumstances

  8. Synchrotron-based XRD from rat bone of different age groups

    Energy Technology Data Exchange (ETDEWEB)

    Rao, D.V., E-mail: dvrao_9@yahoo.com [Science Based Applications to Engineering (SBAI), Physics Division, University of Rome “La Sapienza”, Via Scarpa 10, 00161 Roma (Italy); Gigante, G.E. [Science Based Applications to Engineering (SBAI), Physics Division, University of Rome “La Sapienza”, Via Scarpa 10, 00161 Roma (Italy); Cesareo, R.; Brunetti, A. [Istituto di Matematica e Fisica, Università di Sassari, Via Vienna 2, 07100 Sassari (Italy); Schiavon, N. [Hercules Laboratory, University of Evora (Portugal); Akatsuka, T.; Yuasa, T. [Department of Bio-System Engineering, Faculty of Engineering, Yamagata University, Yonezawa-shi, Yamagata 992-8510 (Japan); Takeda, T. [Allied Health Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555 (Japan)

    2017-05-01

    Synchrotron-based XRD spectra from rat bone of different age groups (w, 56 w and 78w), lumber vertebra at early stages of bone formation, Calcium hydroxyapatite (HAp) [Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}] bone fill with varying composition (60% and 70%) and bone cream (35–48%), has been acquired with 15 keV synchrotron X-rays. Experiments were performed at Desy, Hamburg, Germany, utilizing the Resonant and Diffraction beamline (P9), with 15 keV X-rays (λ = 0.82666 A{sup 0}). Diffraction data were quantitatively analyzed using the Rietveld refinement approach, which allowed us to characterize the structure of these samples in their early stages. Hydroxyapatite, received considerable attention in medical and materials sciences, since these materials are the hard tissues, such as bone and teeth. Higher bioactivity of these samples gained reasonable interest for biological application and for bone tissue repair in oral surgery and orthopedics. The results obtained from these samples, such as phase data, crystalline size of the phases, as well as the degree of crystallinity, confirm the apatite family crystallizing in a hexagonal system, space group P6{sub 3}/m with the lattice parameters of a = 9.4328 Å and c = 6.8842 Å (JCPDS card #09-0432). Synchrotron-based XRD patterns are relatively sharp and well resolved and can be attributed to the hexagonal crystal form of hydroxyapatite. All the samples were examined with scanning electron microscope at an accelerating voltage of 15 kV. The presence of large globules of different sizes is observed, in small age groups of the rat bone (8w) and lumber vertebra (LV), as distinguished from, large age groups (56 and 78w) in all samples with different magnification, reflects an amorphous phase without significant traces of crystalline phases. Scanning electron microscopy (SEM) was used to characterize the morphology and crystalline properties of Hap, for all the samples, from 2 to 100 μm resolution. - Highlights: • For

  9. Some critical aspects of FT-IR, TGA, powder XRD, EDAX and SEM studies of calcium oxalate urinary calculi.

    Science.gov (United States)

    Joshi, Vimal S; Vasant, Sonal R; Bhatt, J G; Joshi, Mihir J

    2014-06-01

    Urinary calculi constitute one of the oldest afflictions of humans as well as animals, which are occurring globally. The calculi vary in shape, size and composition, which influence their clinical course. They are usually of the mixed-type with varying percentages of the ingredients. In medical management of urinary calculi, either the nature of calculi is to be known or the exact composition of calculi is required. In the present study, two selected calculi were recovered after surgery from two different patients for detailed examination and investigated by using Fourier-Transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TGA), powder X-ray diffraction (XRD), scanning electron microscopy and energy dispersive analysis of X-rays (EDAX) techniques. The study demonstrated that the nature of urinary calculi and presence of major phase in mixed calculi could be identified by FT-IR, TGA and powder XRD, however, the exact content of various elements could be found by EDAX only.

  10. Transmission electron microscope studies of extraterrestrial materials

    Science.gov (United States)

    Keller, Lindsay P.

    1995-01-01

    Transmission Electron Microscopy, X-Ray spectrometry and electron-energy-loss spectroscopy are used to analyse carbon in interplanetary dust particles. Optical micrographs are shown depicting cross sections of the dust particles embedded in sulphur. Selected-area electron diffraction patterns are shown. Transmission Electron Microscope specimens of lunar soil were prepared using two methods: ion-milling and ultramicrotomy. A combination of high resolution TEM imaging and electron diffraction is used to characterize the opaque assemblages. The opaque assemblages analyzed in this study are dominated by ilmenite with lesser rutile and spinel exsolutions, and traces of Fe metal.

  11. Quantitative mineralogical analysis of sandstones using x-ray diffraction techniques

    International Nuclear Information System (INIS)

    Ward, C.R.; Taylor, J.C.

    1999-01-01

    Full text: X-ray diffraction has long been used as a definitive technique for mineral identification based on the measuring the internal atomic or crystal structures present in powdered rocks; soils and other mineral mixtures. Recent developments in data gathering and processing, however, have provided an improved basis for its use as a quantitative tool, determining not only the nature of the minerals but also the relative proportions of the different minerals present. The mineralogy of a series of sandstone samples from the Sydney and Bowen Basins of eastern Australia has been evaluated by X-ray diffraction (XRD) on a quantitative basis using the Australian-developed SIROQUANT data processing technique. Based on Rietveld principles, this technique generates a synthetic X-ray diffractogram by adjusting and combining full-profile patterns of minerals nominated as being present in the sample and interactively matches the synthetic diffractogram under operator instructions to the observed diffractogram of the sample being analysed. The individual mineral patterns may be refined in the process, to allow for variations in crystal structure of individual components or for factors such as preferred orientation in the sample mount. The resulting output provides mass percentages of the different minerals in the mixture, and an estimate of the error associated with each individual percentage determination. The chemical composition of the mineral mixtures indicated by SIROQUANT for each individual sandstone studied was estimated using a spreadsheet routine, and the indicated proportion of each oxide in each sample compared to the actual chemical analysis of the same sandstone as determined independently by X-ray fluorescence spectrometry. The results show a high level of agreement for all major chemical constituents, indicating consistency between the SIROQUANT XRD data and the whole-rock chemical composition. Supplementary testing with a synthetic corundum spike further

  12. Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements

    International Nuclear Information System (INIS)

    Yeh, J.-W.; Chang, S.-Y.; Hong, Y.-D.; Chen, S.-K.; Lin, S.-J.

    2007-01-01

    With an aim to understand the great reduction in the X-ray diffraction (XRD) intensities of high-entropy alloys, a series of Cu-Ni-Al-Co-Cr-Fe-Si alloys with systematic addition of principal elements from pure element to seven elements was investigated for quantitative analysis of XRD intensities. The variation of XRD peak intensities of the alloy system is similar to that caused by thermal effect, but the intensities further drop beyond the thermal effect with increasing number of incorporated principal elements. An intrinsic lattice distortion effect caused by the addition of multi-principal elements with different atomic sizes is expected for the anomalous decrease in XRD intensities. The mathematical factor of this distortion effect for the modification of XRD structure factor is formulated analogue to that of thermal effect

  13. Nanostructured diffractive optical devices for soft X-ray microscopes

    CERN Document Server

    Hambach, D; Schneider, G

    2001-01-01

    The new transmission X-ray microscope (TXM) installed at the BESSY II electron storage ring uses an off-axis transmission zone plate (OTZ) as diffractive and focusing element of the condenser-monochromator setup. A high resolution micro-zone plate (MZP) forms a magnified image on a CCD-detector. Both, the OTZ with an active area of up to 24 mm sup 2 and the MZP with zone widths as small as 25 nm are generated by a process including electron beam lithography (EBL), dry etching and subsequent electroplating of nickel on top of silicon membrane substrates with about 100-150 nm thickness. The combination of a larger zone width and the usage of nickel zone structures allows to increase the diffraction efficiency of the condenser element at least by a factor of 3 compared to the earlier used KZP7 condenser zone plate in the TXM at BESSY I. Groove diffraction efficiencies of 21.6% and 14.7% were measured for MZP objectives with 40 and 25 nm outermost zone width, respectively.

  14. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    ray diffraction (XRD), thermogravimetric analysis (TGA) and Fourier transmission ... Investigation of electroluminescence properties of CdTe@CdS core-shell ... Analysis of Li-related defects in ZnO thin films influenced by annealing ambient.

  15. Facile Synthesis of Yolk/Core-Shell Structured TS-1@Mesosilica Composites for Enhanced Hydroxylation of Phenol

    KAUST Repository

    Zou, Houbing; Sun, Qingli; Fan, Dongyu; Fu, Weiwei; Liu, Lijia; Wang, Runwei

    2015-01-01

    characterized by X-ray diffraction (XRD), N2 sorption, Fourier transform infrared spectoscopy (FT-IR) UV-Visible spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The characterization results showed that these samples

  16. Electron diffraction patterns with thermal diffuse scattering maxima around Kikuchi lines

    International Nuclear Information System (INIS)

    Karakhanyan, R. K.; Karakhanyan, K. R.

    2011-01-01

    Transmission electron diffraction patterns of silicon with thermal diffuse maxima around Kikuchi lines, which are analogs of the maxima of thermal diffuse electron scattering around point reflections, have been recorded. Diffuse maxima are observed only around Kikuchi lines with indices that are forbidden for the silicon structure. The diffraction conditions for forming these maxima are discussed.

  17. ESR and X-ray diffraction studies on thin films of poly-3-hexylthiophene: Molecular orientation and magnetic interactions

    International Nuclear Information System (INIS)

    Sugiyama, Keisuke; Kojima, Takashi; Fukuda, Hisashi; Yashiro, Hisashi; Matsuura, Toshihiko; Shimoyama, Yuhei

    2008-01-01

    Poly-3-hexylthiophene (P3HT) thin films were investigated by X-ray diffraction (XRD) and electron spin resonance (ESR) to reveal the film structure and molecular organization. The XRD data showed a diffraction pattern with a plane separation between the planes containing thiophene rings of 16.0 A. Comparison between the XRD patterns of powder and thin films of P3HT suggests that the main chains are folded on the substrate. Angular variation of the line position (g-value) of ESR spectra revealed that thiophene ring of P3HT orients along the substrate normal axis. The ESR linewidth varied by the angular rotation, indicating the one-dimensional spin-chain interactions in the P3HT thin films with a linear network of spin-chains. An organic thin-film transistor (OTFT) with P3HT film as a channel layer was then demonstrated. The P3HT films showed conducting characteristics with holes as carriers. The OTFTs indicated a field-effect mobility of 4.93 x 10 -3 cm 2 /Vs and an on/off ratio of 73 in the accumulation mode

  18. A novel method to remove the background from x-ray diffraction signal

    DEFF Research Database (Denmark)

    Zheng, Yi; Speller, Robert; Griffiths, Jennifer

    2018-01-01

    The first step that is required to extract the correct information from a two-dimensional (2D) diffraction signature is to remove the background accurately. However, direct background subtraction inevitably overcorrects the signal as it does not take into account the attenuation by the sample. Ot...... proposes a novel method that combines peak fitting and experimental results to estimate the background for 2D XRD signals....

  19. Astrobiological Significance of Definitive Mineralogical Analysis of Martian Surface Samples Using the CheMin XRD/XRF Instrument

    Science.gov (United States)

    Feldman, S. M.; Blake, D. F.; Sarrazin, P.; Bish, D. L.; Chipera, S. J.; Vaniman, D. T.; Collins, S.

    2004-01-01

    The search for evidence of habitability, or of extant or extinct life on Mars, will initially be a search for evidence of past or present conditions supportive of life. The three key requirements for the emergence of life are thought to be liquid water; a suitable energy source; and chemical building blocks. CheMin is a miniaturized XRD/XRF (X-Ray diffraction / X-ray fluorescence) instrument which has been developed for definitive mineralogic analysis of soils and rocks on the Martian surface. The CheMin instrument can provide information that is highly relevant to each of these habitability requirements as summarized below.

  20. Micro-XRD and temperature-modulated DSC investigation of nickel-titanium rotary endodontic instruments.

    Science.gov (United States)

    Alapati, Satish B; Brantley, William A; Iijima, Masahiro; Schricker, Scott R; Nusstein, John M; Li, Uei-Ming; Svec, Timothy A

    2009-10-01

    Employ Micro-X-ray diffraction and temperature-modulated differential scanning calorimetry to investigate microstructural phases, phase transformations, and effects of heat treatment for rotary nickel-titanium instruments. Representative as-received and clinically used ProFile GT and ProTaper instruments were principally studied. Micro-XRD analyses (Cu Kalpha X-rays) were performed at 25 degrees C on areas of approximately 50 microm diameter near the tip and up to 9 mm from the tip. TMDSC analyses were performed from -80 to 100 degrees C and back to -80 degrees C on segments cut from instruments, using a linear heating and cooling rate of 2 degrees C/min, sinusoidal oscillation of 0.318 degrees C, and period of 60s. Instruments were also heat treated 15 min in a nitrogen atmosphere at 400, 500, 600 and 850 degrees C, and analyzed. At all Micro-XRD analysis regions the strongest peak occurred near 42 degrees , indicating that instruments were mostly austenite, with perhaps some R-phase and martensite. Tip and adjacent regions had smallest peak intensities, indicative of greater work hardening, and the intensity at other sites depended on the instrument. TMDSC heating and cooling curves had single peaks for transformations between martensite and austenite. Austenite-finish (A(f)) temperatures and enthalpy changes were similar for as-received and used instruments. Heat treatments at 400, 500 and 600 degrees C raised the A(f) temperature to 45-50 degrees C, and heat treatment at 850 degrees C caused drastic changes in transformation behavior. Micro-XRD provides novel information about NiTi phases at different positions on instruments. TMDSC indicates that heat treatment might yield instruments with substantial martensite and improved clinical performance.

  1. Selective synthesis of clinoatacamite Cu2(OH)3Cl and tenorite CuO nanoparticles by pH control

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Malcho, Phillip; Andersen, Jonas

    2014-01-01

    , it directed the growth of Cu2(OH)3Cl to provide pure clinoatacamite without the presence of related poly- morphs. The products were characterized by transmission electron microscopy, infrared spectroscopy, ultraviolet–visible light spectroscopy, X-ray powder diffraction (XRD), scanning transmission X......-ray microscopy and atomic force microscopy. Infrared spectroscopy was essential for characterization of closely related polymorphs of Cu2(OH)3Cl indistinguishable by XRD. A plausible mechanism has been proposed and discussed for the formation of the CuO and Cu2(OH)3Cl nanostructures....

  2. Encapsulation process for diffraction gratings.

    Science.gov (United States)

    Ratzsch, Stephan; Kley, Ernst-Bernhard; Tünnermann, Andreas; Szeghalmi, Adriana

    2015-07-13

    Encapsulation of grating structures facilitates an improvement of the optical functionality and/or adds mechanical stability to the fragile structure. Here, we introduce novel encapsulation process of nanoscale patterns based on atomic layer deposition and micro structuring. The overall size of the encapsulated structured surface area is only restricted by the size of the available microstructuring and coating devices; thus, overcoming inherent limitations of existing bonding processes concerning cleanliness, roughness, and curvature of the components. Finally, the process is demonstrated for a transmission grating. The encapsulated grating has 97.5% transmission efficiency in the -1st diffraction order for TM-polarized light, and is being limited by the experimental grating parameters as confirmed by rigorous coupled wave analysis.

  3. High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software

    Science.gov (United States)

    Dera, Przemyslaw; Zhuravlev, Kirill; Prakapenka, Vitali; Rivers, Mark L.; Finkelstein, Gregory J.; Grubor-Urosevic, Ognjen; Tschauner, Oliver; Clark, Simon M.; Downs, Robert T.

    2013-08-01

    GSE_ADA/RSV is a free software package for custom analysis of single-crystal micro X-ray diffraction (SCμXRD) data, developed with particular emphasis on data from samples enclosed in diamond anvil cells and subject to high pressure conditions. The package has been in extensive use at the high pressure beamlines of Advanced Photon Source (APS), Argonne National Laboratory and Advanced Light Source (ALS), Lawrence Berkeley National Laboratory. The software is optimized for processing of wide-rotation images and includes a variety of peak intensity corrections and peak filtering features, which are custom-designed to make processing of high pressure SCμXRD easier and more reliable.

  4. A Pipelining Implementation for Parsing X-ray Diffraction Source Data and Removing the Background Noise

    International Nuclear Information System (INIS)

    Bauer, Michael A; Biem, Alain; McIntyre, Stewart; Xie Yuzhen

    2010-01-01

    Synchrotrons can be used to generate X-rays in order to probe materials at the atomic level. One approach is to use X-ray diffraction (XRD) to do this. The data from an XRD experiment consists of a sequence of digital image files which for a single scan could consist of hundreds or even thousands of digital images. Existing analysis software processes these images individually sequentially and is usually used after the experiment is completed. The results from an XRD detector can be thought of as a sequence of images, generated during the scan by the X-ray beam. If these images could be analyzed in near real-time, the results could be sent to the researcher running the experiment and used to improve the overall experimental process and results. In this paper, we report on a stream processing application to remove background from XRD images using a pipelining implementation. We describe our implementation techniques of using IBM Infosphere Streams for parsing XRD source data and removing the background. We present experimental results showing the super-linear speedup attained over a purely sequential version of the algorithm on a quad-core machine. These results demonstrate the potential of making good use of multi-cores for high-performance stream processing of XRD images.

  5. Powder-XRD and (14) N magic angle-spinning solid-state NMR spectroscopy of some metal nitrides.

    Science.gov (United States)

    Kempgens, Pierre; Britton, Jonathan

    2016-05-01

    Some metal nitrides (TiN, ZrN, InN, GaN, Ca3 N2 , Mg3 N2 , and Ge3 N4 ) have been studied by powder X-ray diffraction (XRD) and (14) N magic angle-spinning (MAS) solid-state NMR spectroscopy. For Ca3 N2 , Mg3 N2 , and Ge3 N4 , no (14) N NMR signal was observed. Low speed (νr  = 2 kHz for TiN, ZrN, and GaN; νr  = 1 kHz for InN) and 'high speed' (νr  = 15 kHz for TiN; νr  = 5 kHz for ZrN; νr  = 10 kHz for InN and GaN) MAS NMR experiments were performed. For TiN, ZrN, InN, and GaN, powder-XRD was used to identify the phases present in each sample. The number of peaks observed for each sample in their (14) N MAS solid-state NMR spectrum matches perfectly well with the number of nitrogen-containing phases identified by powder-XRD. The (14) N MAS solid-state NMR spectra are symmetric and dominated by the quadrupolar interaction. The envelopes of the spinning sidebands manifold are Lorentzian, and it is concluded that there is a distribution of the quadrupolar coupling constants Qcc 's arising from structural defects in the compounds studied. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Moessbauer and XRD study of pulse plated Fe-P and Fe-Ni thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Miko, Annamaria [Bay Zoltan Institute for Material Science (Hungary); Kuzmann, Erno, E-mail: kuzmann@para.chem.elte.hu [Eoetvoes Lorand University, Research Group for Nuclear Methods in Structural Chemistry, Hungarian Academy of Sciences, Department of Nuclear Chemistry (Hungary); Lakatos-Varsanyi, Magda [Bay Zoltan Institute for Material Science (Hungary); Kakay, Attila [Research Institute for Solid State Physics and Optics (Hungary); Nagy, Ferenc [Eoetvoes Lorand University, Research Group for Nuclear Methods in Structural Chemistry, Hungarian Academy of Sciences, Department of Nuclear Chemistry (Hungary); Varga, Lajos Karoly [Research Institute for Solid State Physics and Optics (Hungary)

    2005-09-15

    {sup 57}Fe conversion electron Moessbauer spectroscopy, X-ray diffraction, electrochemical and magnetic measurements were used to study pulse electroplated Fe-P and Ni-Fe coatings. XRD and {sup 57}Fe CEMS measurements revealed the amorphous character of the novel pulse plated Fe-P alloys. CEM spectra indicated significant differences in the short range order and in the magnetic anisotropy between the Fe-P deposits pulse plated at medium long deposition time (t{sub on} = 2 ms), with short relaxation time (t{sub off} = 9 ms) and low current density (I{sub p} = 0.05 Acm{sup -2}) or at short deposition time (t{sub on} = 1 ms) with long relaxation time (t{sub off} = 250 ms) and high current density (I{sub p} = 1.0 Acm{sup -2}). The broad peaks centred around the fcc reflections in XRD of the pulse plated Ni-22 wt.% Fe deposit reflected a microcrystalline Ni-Fe alloy with a very fine, 5-8 nm, grain size. The CEM spectrum of the pulse plated Ni-22 wt.% Fe coating corresponded to a highly disordered solid solution alloy containing a minute amount of ferrihydrite. Extreme favourable soft magnetic properties were observed with these Ni-Fe and Fe-P pulse plated thin layers.

  7. Facile charge transport in FeN x /Mo₂N/CNT nanocomposites for ...

    Indian Academy of Sciences (India)

    The nanocomposites were characterized using powder XRD, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), ElectronDiffraction, ThermogravimetricAnalysis and FTIRSpectroscopy. The electrochemical investigations suggest that the electrocatalytic activity of the composite increases with ...

  8. X-ray diffraction and X-ray K absorption near edge studies of copper (II) complexes with amino acids

    Science.gov (United States)

    Sharma, P. K.; Mishra, Ashutosh; Malviya, Varsha; Kame, Rashmi; Malviya, P. K.

    2017-05-01

    Synthesis of copper (II) complexes [CuL1L2X].nH2O, where n=1, 2,3 (X=Cl,Br,NO3) (L1is 2,2’-bipyridine and L2 is L-tyrosine) by the chemical root method. The XRD data for the samples have been recorded. EXAFS spectra have also been recorded at the K-edge of Cu using the dispersive beam line BL-8 at 2.5 Gev Indus-2 Synchrotron radiation source at RRCAT, Indore, India. XRD and EXAFS data have been analysed using the computer software. X-ray diffraction studies of all complexes indicate their crystalline nature. Lattice parameter, bond length, particle size have been determined from XRD data.

  9. High-resolution transmission electron microscopy studies of graphite materials prepared by high-temperature treatment of unburned carbon concentrates from combustion fly ashes

    Energy Technology Data Exchange (ETDEWEB)

    Miguel Cabielles; Jean-Nol Rouzaud; Ana B. Garcia [Instituto Nacional del Carbn (INCAR), Oviedo (Spain)

    2009-01-15

    High-resolution transmission electron microscopy (HRTEM) has been used in this work to study the microstructural (structure and microtexture) changes occurring during the high-temperature treatment of the unburned carbon concentrates from coal combustion fly ashes. Emphasis was placed on two aspects: (i) the development of graphitic carbon structures and (ii) the disordered carbon forms remaining in the graphitized samples. In addition, by coupling HRTEM with energy-dispersive spectroscopy, the transformations with the temperature of the inorganic matter (mainly iron- and silicon-based phases) of the unburned carbon concentrates were evidenced. The HRTEM results were compared to the averaged structural order of the materials as evaluated by X-ray diffraction (XRD) and Raman spectroscopy. As indicated by XRD and Raman parameters, more-ordered materials were obtained from the unburned carbon concentrates with higher mineral/inorganic matter, thus inferring the catalytic effect of some of their components. However, the average character of the information provided by these instrumental techniques seems to be inconclusive in discriminating between carbon structures with different degrees of order (stricto sensu graphite, graphitic, turbostratic, etc.) in a given graphitized unburned carbon. Unlike XRD and Raman, HRTEM is a useful tool for imaging directly the profile of the polyaromatic layers (graphene planes), thus allowing the sample heterogeneity to be looked at, specifically the presence of disordered carbon phases. 49 refs., 9 figs., 3 tabs.

  10. A rotated transmission grating spectrometer for detecting spectral separation of doublet Na

    Energy Technology Data Exchange (ETDEWEB)

    Santosa, Ignatius Edi [Department of Physics Education, Sanata Dharma University, Paingan Maguwohardjo Depok Sleman, Yogyakarta 55281, Indonesia edi@usd.ac.id (Indonesia)

    2015-04-16

    Transmission gratings are usually used in a spectrometer for measuring the wavelength of light. In the common design, the position of the grating is perpendicular to the incident light. In order to increase the angular dispersion, in contrary to the common design, in this experiment the transmission grating was rotated. Due to the non-zero incident angle, the diffracted light was shifted. This rotated transmission grating spectrometer has been used to determine the separation of doublet Na. In this experiment, the diffraction angle was measured at various incident angles. The spectral separation of doublet Na was identified from the difference in the diffraction angle of two spectral lines. This spectral separation depends on the incident angle, the grating constant and the order of diffraction. As the effect of increasing the incident angle, a significant increase of the spectral separation can be achieved up to three fold.

  11. A rotated transmission grating spectrometer for detecting spectral separation of doublet Na

    International Nuclear Information System (INIS)

    Santosa, Ignatius Edi

    2015-01-01

    Transmission gratings are usually used in a spectrometer for measuring the wavelength of light. In the common design, the position of the grating is perpendicular to the incident light. In order to increase the angular dispersion, in contrary to the common design, in this experiment the transmission grating was rotated. Due to the non-zero incident angle, the diffracted light was shifted. This rotated transmission grating spectrometer has been used to determine the separation of doublet Na. In this experiment, the diffraction angle was measured at various incident angles. The spectral separation of doublet Na was identified from the difference in the diffraction angle of two spectral lines. This spectral separation depends on the incident angle, the grating constant and the order of diffraction. As the effect of increasing the incident angle, a significant increase of the spectral separation can be achieved up to three fold

  12. The use of micro-XRD for the study of glaze color decorations

    Energy Technology Data Exchange (ETDEWEB)

    Pradell, T.; Molina, G. [Universitat Politecnica de Catalunya, Dpt. Fisica i Enginyeria Nuclear, Castelldefels (Spain); Molera, J.; Pla, J. [Universitat de Vic, GRTD, Escola Politecnica Superior, Vic (Spain); Labrador, A. [BM16-ESRF, LLS, BP 220, Grenoble Cedex (France); Lund University, MAX IV Laboratory, Lund (Sweden)

    2013-04-15

    The compounds responsible for the colors and decorations in glass and glazed ceramics include: coloring agents (transition-metal ions), pigments (micro- and nanoprecipitates of compounds that either do not dissolve or recrystallize in the glassy matrix) and opacifiers (microcrystalline compounds with high light scattering capability). Their composition, structure and range of stability are highly dependent not only on the composition but also on the procedures followed to obtain them. Chemical composition of the colorants and crystallites may be obtained by means of SEM-EDX and WDX. Synchrotron radiation micro-X-ray diffraction (SR-micro-XRD) has a small beam size adequate (10 to 50 microns footprint size) to obtain the structural information of crystalline compounds and high brilliance, optimal for determining the crystallites even when present in low amounts. In addition, in glass decorations the crystallites often appear forming thin layers (from 10 to 100 micrometers thick) and they show a depth-dependent composition and crystal structure. Their nature and distribution across the glass/glaze decorations gives direct information on the technology of production and stability and may be related to the color and appearance. A selection of glass and glaze coloring agents and decorations are studied by means of SR-micro-XRD and SEM-EDX including: manganese brown, antimony yellow, red copper lusters and cobalt blue. The selection includes Medieval (Islamic, and Hispano Moresque) and Renaissance tin-glazed ceramics from the 10th to the 17th century AD. (orig.)

  13. Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders

    Directory of Open Access Journals (Sweden)

    Yifeng Yun

    2015-03-01

    Full Text Available Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED data collection, namely automated diffraction tomography (ADT and rotation electron diffraction (RED, have been developed. Compared with X-ray diffraction (XRD and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni–Se–O–Cl crystals, zeolites, germanates, metal–organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three

  14. Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders.

    Science.gov (United States)

    Yun, Yifeng; Zou, Xiaodong; Hovmöller, Sven; Wan, Wei

    2015-03-01

    Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED) data collection, namely automated diffraction tomography (ADT) and rotation electron diffraction (RED), have been developed. Compared with X-ray diffraction (XRD) and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD) provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni-Se-O-Cl crystals, zeolites, germanates, metal-organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three-dimensional ED methods

  15. AFM and XRD characterization of silver nanoparticles films deposited on the surface of DGEBA epoxy resin by ion sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Jose Elisandro de; Machado, Rogerio; Macedo, Marcelo Andrade; Cunha, Frederico Guilherme Carvalho [Clinica de Medicina Nuclear e Radiologia de Maceio (MedRadiUS), Radiology and Imaging Diagnosis at Universidade Federal de Alagoas (UFAL), Maceio, AL (Brazil)

    2012-07-01

    In this work, silver atoms were deposited by ion sputtering on the surface of diglycidyl ether of bisphenol A (DGEBA) epoxy resin cured at 150 deg C for 6 hours in air. The films of DGEBA and its precursors were characterized by Raman spectroscopy to identify the main functional groups and their relationship with the deposited silver atoms. Silver thin films of 5, 10, 15 and 20 nm were deposited on the epoxy resin at room temperature. Both the initial film of DGEBA and the subsequent silver thin film were analyzed by Atomic Force Microscopy (AFM) in the non-contact mode. Silver thin films were also analyzed using X-ray diffraction (XRD) at room temperature. The AFM results showed the formation of silver crystallites on the surface of DGEBA at very low coverage whereas XRD indicated that most of them had their main axis aligned to the normal of the surface. An increase in the coverage led to an increase in the grain size as indicated by AFM. However, XRD results indicated that the crystallite size remained almost constant while the appearance of peaks corresponding to other crystalline orientations suggests the coalescence of the original crystallites and an increase in size of the more dense planes, namely [111]. (author)

  16. AFM and XRD characterization of silver nanoparticles films deposited on the surface of DGEBA epoxy resin by ion sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Jose Elisandro de; Machado, Rogerio; Macedo, Marcelo Andrade [Universidade Federal de Sergipe (UFSE), Aracaju, SE (Brazil). Programa de Pos-graduacao em Fisica; Cunha, Frederico Guilherme Carvalho [Universidade Federal de Sergipe (UFSE), Aracaju, SE (Brazil). Programa de Pos-graduacao em Ciencia e Engenharia de Materiais

    2012-07-01

    In this work, silver atoms were deposited by ion sputtering on the surface of diglycidyl ether of bisphenol A (DGEBA) epoxy resin cured at 150 Degree-Sign C for 6 hours in air. The films of DGEBA and its precursors were characterized by Raman spectroscopy to identify the main functional groups and their relationship with the deposited silver atoms. Silver thin films of 5, 10, 15 and 20 nm were deposited on the epoxy resin at room temperature. Both the initial film of DGEBA and the subsequent silver thin film were analyzed by Atomic Force Microscopy (AFM) in the non-contact mode. Silver thin films were also analyzed using X-ray diffraction (XRD) at room temperature. The AFM results showed the formation of silver crystallites on the surface of DGEBA at very low coverage whereas XRD indicated that most of them had their main axis aligned to the normal of the surface. An increase in the coverage led to an increase in the grain size as indicated by AFM. However, XRD results indicated that the crystallite size remained almost constant while the appearance of peaks corresponding to other crystalline orientations suggests the coalescence of the original crystallites and an increase in size of the more dense planes, namely [111]. (author)

  17. AFM and XRD characterization of silver nanoparticles films deposited on the surface of DGEBA epoxy resin by ion sputtering

    Directory of Open Access Journals (Sweden)

    José Elisandro de Andrade

    2013-01-01

    Full Text Available In this work, silver atoms were deposited by ion sputtering on the surface of diglycidyl ether of bisphenol A (DGEBA epoxy resin cured at 150 °C for 6 hours in air. The films of DGEBA and its precursors were characterized by Raman spectroscopy to identify the main functional groups and their relationship with the deposited silver atoms. Silver thin films of 5, 10, 15 and 20 nm were deposited on the epoxy resin at room temperature. Both the initial film of DGEBA and the subsequent silver thin film were analyzed by Atomic Force Microscopy (AFM in the non-contact mode. Silver thin films were also analyzed using X-ray diffraction (XRD at room temperature. The AFM results showed the formation of silver crystallites on the surface of DGEBA at very low coverage whereas XRD indicated that most of them had their main axis aligned to the normal of the surface. An increase in the coverage led to an increase in the grain size as indicated by AFM. However, XRD results indicated that the crystallite size remained almost constant while the appearance of peaks corresponding to other crystalline orientations suggests the coalescence of the original crystallites and an increase in size of the more dense planes, namely [111].

  18. Synthesis of Silver and Gold Nanoparticles Using Antioxidants from Blackberry, Blueberry, Pomegranate, and Turmeric Extracts

    Science.gov (United States)

    Greener synthesis of Ag and Au nanoparticles is described using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. The synthesized particles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution TEM (HR...

  19. Proton diffraction

    International Nuclear Information System (INIS)

    Den Besten, J.L.; Jamieson, D.N.; Allen, L.J.

    1998-01-01

    The Lindhard theory on ion channeling in crystals has been widely accepted throughout ion beam analysis for use in simulating such experiments. The simulations use a Monte Carlo method developed by Barret, which utilises the classical 'billiard ball' theory of ions 'bouncing' between planes or tubes of atoms in the crystal. This theory is not valid for 'thin' crystals where the planes or strings of atoms can no longer be assumed to be of infinite proportions. We propose that a theory similar to that used for high energy electron diffraction can be applied to MeV ions, especially protons, in thin crystals to simulate the intensities of transmission channeling and of RBS spectra. The diffraction theory is based on a Bloch wave solution of the Schroedinger equation for an ion passing through the periodic crystal potential. The widely used universal potential for proton-nucleus scattering is used to construct the crystal potential. Absorption due to thermal diffuse scattering is included. Experimental parameters such as convergence angle, beam tilt and scanning directions are considered in our calculations. Comparison between theory and experiment is encouraging and suggests that further work is justified. (authors)

  20. Investigations into the Surface Strain/Stress State in a Single-Crystal Superalloy via XRD Characterization

    Directory of Open Access Journals (Sweden)

    Haodong Duan

    2018-05-01

    Full Text Available The present study was aimed at determining the surface strain/stress state in an Ni-based single-crystal (SC superalloy that was subjected to two different cooling rates from solid solution temperature through using the X-ray diffraction (XRD method. The normal stresses σ 11 s and σ 22 s were determined, then the Von Mises stresses ( σ V M s were derived from them. Field emission gun scanning electron microscope (FEG-SEM and transmission electron microscope (TEM micrographs were taken to illustrate the strain/stress state change. The precipitation of the secondary γ′ phases in the γ phase and the formation of the dislocation in the interphase upon a slower cooling rate caused the γ phase lattice distortion to increase, so a larger σ V M s of the γ phase was realized in comparison to the faster cooling sample. For both of the two cooling modes, we found that the σ V M s of the γ′ phase increased due to the growth of the γ′ phase during the aging process. Also, the aging process led to pronouncedly anisotropic lattice mismatches in the {331} and {004} planes. In addition, the surface strain/stress states of a cylinder sample and a tetragonal sample were also studied using a faster cooling rate, and σ 11 s and σ 22 s were analyzed to explain the influence of the shape factor on the stress anisotropy in the [001] and [ 1 1 ¯ 0 ] orientations. The strain in the [001] orientation of the γ phase is more sensitive to the shape change.

  1. Structural, optical investigations of graphene from graphene oxide using green method

    International Nuclear Information System (INIS)

    Kumar, Dinesh; Shukla, Shobha; Saxena, Sumit

    2015-01-01

    Graphene nano sheets (GNS) are synthesized from Graphene Oxide (GO) using commercial sugar as a reducing agent. A green and facile approach is followed to synthesize chemically converted GNS using exfoliated GO as precursor. The merit of this method is that both the reducing agents themselves and the oxidized products are environmentally friendly. The prepared materials are characterized with X-ray diffraction (XRD), UV-Visible absorption spectroscopy, High resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). The results of XRD, UV-vis analysis provide a clear indication of removal of oxygen-containing groups from GO and the formation of GNS

  2. Synthesis and characteristics of sword-like GaN nanorods clusters through ammoniating Ga2O3 thin films

    International Nuclear Information System (INIS)

    Xue Chengshane; Tian Deheng; Zhuang Huizhao; Zhang Xiaokai; Wu Yuxin; Liu Yi'an; He Jianting; Ai Yujie

    2006-01-01

    Sword-like GaN nanorods have been successfully synthesized by ammoniating Ga 2 O 3 thin films deposited on Si substrate by magnetron sputtering. The GaN nanorods have been characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). SEM images show that sword-like GaN nanorods take on radial structure. The XRD and SAED analyses have identified that the nanorods are pure hexagonal GaN with single crystalline wurtzite structure. The HRTEM images indicate that the nanorods are well crystallized and nearly free from defects

  3. Synchrotron Radiation XRD Analysis of Indialite in Y-82094 Ungrouped Carbonaceous Chondrite

    Science.gov (United States)

    Mikouchi, T.; Hagiya, K.; Sawa, N.; Kimura, M.; Ohsumi, K.; Komatsu, M.; Zolensky, M.

    2016-01-01

    Y-82094 is an ungrouped type 3.2 carbonaceous chondrite, with abundant chondrules making 78 vol.% of the rock. Among these chondrules, an unusual porphyritic Al-rich magnesian chondrule is reported that consists of a cordierite-like phase, Al-rich orthopyroxene, cristobalite, and spinel surrounded by an anorthitic mesostasis. The reported chemical formula of the cordierite-like phase is Na(0.19)Mg(1.95)Fe(0.02)Al(3.66)Si(5.19)O18, which is close to stoichiometric cordierite (Mg2Al3[AlSi5O18]). Although cordierite can be present in Al-rich chondrules, it has a high temperature polymorph (indialite) and it is therefore necessary to determine whether it is cordierite or indialite in order to better constrain its formation conditions. In this abstract we report on our synchrotron radiation X-ray diffraction (SR-XRD) study of the cordierite-like phase in Y-82094.

  4. Study the microstructure of three and four component phases in Al-Ni-Fe-La alloys

    KAUST Repository

    Kolobylina, Natalia; Vasiliev, Alexander; Lopatin, Sergei; Presniakov, Mikhail; Bakhteeva, Natalia; Ivanova, Anna; Todorova, Elena

    2016-01-01

    in air were studied by scanning/transmission electron microscopy (STEM), energy dispersive X-ray (EDX) microanalysis and X-ray diffraction (XRD). The microstructural analyses were performed in a aberration corrected TITAN 80-300 TEM/STEM (FEI, USA

  5. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The heterogeneous nanocatalyst was characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), Fourier transform infrared spectra (FT-IR), atomic absorption spectroscopy (AAS), vibrating sample magnetometer (VSM) and nitrogen adsorption–desorption isotherm ...

  6. Role of organically modified layered silicate both as an active interfacial modifier and nanofiller for immiscible polymer blends.

    CSIR Research Space (South Africa)

    Ray, SS

    2007-05-01

    Full Text Available ) revealed efficient mixing of the polymers in the presence of organically modified layered silicate. X-ray diffraction (XRD) patterns and transmission electron microscopic (TEM) observations showed that silicate layers were either intercalated or exfoliated...

  7. Unified Theory for Decoding the Signals from X-Ray Florescence and X-Ray Diffraction of Mixtures.

    Science.gov (United States)

    Chung, Frank H

    2017-05-01

    For research and development or for solving technical problems, we often need to know the chemical composition of an unknown mixture, which is coded and stored in the signals of its X-ray fluorescence (XRF) and X-ray diffraction (XRD). X-ray fluorescence gives chemical elements, whereas XRD gives chemical compounds. The major problem in XRF and XRD analyses is the complex matrix effect. The conventional technique to deal with the matrix effect is to construct empirical calibration lines with standards for each element or compound sought, which is tedious and time-consuming. A unified theory of quantitative XRF analysis is presented here. The idea is to cancel the matrix effect mathematically. It turns out that the decoding equation for quantitative XRF analysis is identical to that for quantitative XRD analysis although the physics of XRD and XRF are fundamentally different. The XRD work has been published and practiced worldwide. The unified theory derives a new intensity-concentration equation of XRF, which is free from the matrix effect and valid for a wide range of concentrations. The linear decoding equation establishes a constant slope for each element sought, hence eliminating the work on calibration lines. The simple linear decoding equation has been verified by 18 experiments.

  8. Influence of preferred orientation of minerals in the mineralogical identification process by X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Amanda Luzia da; Oliveira, Arno H. de [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Fernandes, Maria Lourdes Souza, E-mail: lourdesfernandes@ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Inst. de GeoCiencias. Centro de Pesquisa Professor Manoel Teixeira da Costa

    2011-07-01

    The X-ray diffraction corresponds to one of the main techniques for characterization of microstructures in crystalline materials, widely used in the identification of minerals in samples of geological materials. Some minerals have a property called preferred orientation which corresponds to the orientation tendency of the crystals of ground minerals to orient themselves in certain directions according to a preferred crystallographic plane. This property affects the analysis by X-ray diffraction and this fact can generates erroneous results in the characterization. The purpose of this study is to identify the negative influence of the preferred orientation of a mineral in the generation of diffraction patterns obtained in the X-ray diffraction analysis. For this, a sample of muscovite, a mineral of mica group, was prepared by two different methods: the frontal method and the back loading method. In the analysis using the frontal method there was displacement of the XRD pattern in the abscissa axis, where it was observed changes in interplanar distance and angle 2{theta} values, which are essential information for characterization and identification of a mineral. In the analysis using the back loading method, the generated XRD pattern showed no displacement in the axis of abscissas and showed interplanar distance and angle 2{theta} values closer to the real values for the muscovite. The results showed that one can only make improvements to the process of sample preparation minimizing the effect of preferred orientation in the analysis. There is no need to change conditions of diffractometer measurements. (author)

  9. Influence of preferred orientation of minerals in the mineralogical identification process by X-ray diffraction

    International Nuclear Information System (INIS)

    Silva, Amanda Luzia da; Oliveira, Arno H. de; Fernandes, Maria Lourdes Souza

    2011-01-01

    The X-ray diffraction corresponds to one of the main techniques for characterization of microstructures in crystalline materials, widely used in the identification of minerals in samples of geological materials. Some minerals have a property called preferred orientation which corresponds to the orientation tendency of the crystals of ground minerals to orient themselves in certain directions according to a preferred crystallographic plane. This property affects the analysis by X-ray diffraction and this fact can generates erroneous results in the characterization. The purpose of this study is to identify the negative influence of the preferred orientation of a mineral in the generation of diffraction patterns obtained in the X-ray diffraction analysis. For this, a sample of muscovite, a mineral of mica group, was prepared by two different methods: the frontal method and the back loading method. In the analysis using the frontal method there was displacement of the XRD pattern in the abscissa axis, where it was observed changes in interplanar distance and angle 2θ values, which are essential information for characterization and identification of a mineral. In the analysis using the back loading method, the generated XRD pattern showed no displacement in the axis of abscissas and showed interplanar distance and angle 2θ values closer to the real values for the muscovite. The results showed that one can only make improvements to the process of sample preparation minimizing the effect of preferred orientation in the analysis. There is no need to change conditions of diffractometer measurements. (author)

  10. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Pure and Co-doped CdSe nanoparticles have been synthesized by hydrothermal technique. The synthesized nanoparticles have been characterized using X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV–Visible), photoluminescence spectroscopy (PL), energy dispersive spectroscopy (EDS), transmission ...

  11. On the determination of stress profiles in expanded austenite by grazing incidence X-ray diffraction and successive layer removal

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas L.; Winther, Grethe

    2015-01-01

    Surface layers of expanded austenite resulting from nitriding typically exhibit large gradients in residual stress and composition. Evaluation of residual-stress profiles is explored by means of grazing incidence X-ray diffraction (GI-XRD), probing shallow depths, combined with successive layer...... removal. Several factors complicating the stress determination are analysed and discussed: (1) ghost stresses arising from a small variation in the shallow information depths probed with GI-XRD, (2) selection of the grain interaction model used to calculate the X-ray elastic constants for conversion...

  12. Thermoluminescence and X-ray diffraction studies on sliced ancient porcelain samples

    International Nuclear Information System (INIS)

    Leung, P.L.; Yang, B.

    1999-01-01

    The thermal activation characteristics (TACs) of the sensitivity of the '110 deg. C' peak in 14 sliced ancient Chinese porcelain samples are studied. Comparing with the TACs of natural quartz and synthetic mullite, the relation between the TACs and the composition of the sample is discussed with reference to the X-ray diffraction (XRD) spectra. It is suggested that in some cases, contribution of the porcelain components other than quartz to the TACs is not negligible

  13. Thermoluminescence and X-ray diffraction studies on sliced ancient porcelain samples

    Energy Technology Data Exchange (ETDEWEB)

    Leung, P.L.; Yang, B. E-mail: yangbr@bnu.edu.cn

    1999-09-01

    The thermal activation characteristics (TACs) of the sensitivity of the '110 deg. C' peak in 14 sliced ancient Chinese porcelain samples are studied. Comparing with the TACs of natural quartz and synthetic mullite, the relation between the TACs and the composition of the sample is discussed with reference to the X-ray diffraction (XRD) spectra. It is suggested that in some cases, contribution of the porcelain components other than quartz to the TACs is not negligible.

  14. Thermoluminescence and X-ray diffraction studies on sliced ancient porcelain samples

    Science.gov (United States)

    Leung, P. L.; Yang, B.

    1999-09-01

    The thermal activation characteristics (TACs) of the sensitivity of the '110°C' peak in 14 sliced ancient Chinese porcelain samples are studied. Comparing with the TACs of natural quartz and synthetic mullite, the relation between the TACs and the composition of the sample is discussed with reference to the X-ray diffraction (XRD) spectra. It is suggested that in some cases, contribution of the porcelain components other than quartz to the TACs is not negligible.

  15. Bone mineral change during experimental calcination: an X-ray diffraction study.

    Science.gov (United States)

    Galeano, Sergio; García-Lorenzo, Mari Luz

    2014-11-01

    The effects of calcination (400-1200°C) on pig bones have been studied using powder X-ray diffraction (XRD) and secondary modifications, such as color change and weight loss. The characterisation by powder XRD confirmed the presence of the crystalline phase of hydroxyapatite, and comparison of the results obtained at different temperatures suggested that at 650°C, all the organic components and carbonate substitutions were completely removed. Accordingly, these samples were white. In addition, the crystallinity degree and the crystallite size progressively increased with the calcination temperature until 650°C, remaining stable until 1200°C. Below 650°C, bone samples presented organic compounds, resulting in background noise in the diffractogram and gray or black color. In addition, impurities in the lattice correspond to low crystallite sizes. © 2014 American Academy of Forensic Sciences.

  16. Femtosecond X-ray diffraction from two-dimensional protein crystals

    Directory of Open Access Journals (Sweden)

    Matthias Frank

    2014-03-01

    Full Text Available X-ray diffraction patterns from two-dimensional (2-D protein crystals obtained using femtosecond X-ray pulses from an X-ray free-electron laser (XFEL are presented. To date, it has not been possible to acquire transmission X-ray diffraction patterns from individual 2-D protein crystals due to radiation damage. However, the intense and ultrafast pulses generated by an XFEL permit a new method of collecting diffraction data before the sample is destroyed. Utilizing a diffract-before-destroy approach at the Linac Coherent Light Source, Bragg diffraction was acquired to better than 8.5 Å resolution for two different 2-D protein crystal samples each less than 10 nm thick and maintained at room temperature. These proof-of-principle results show promise for structural analysis of both soluble and membrane proteins arranged as 2-D crystals without requiring cryogenic conditions or the formation of three-dimensional crystals.

  17. Composition and microstructure of MTA and Aureoseal Plus: XRF, EDS, XRD and FESEM evaluation.

    Science.gov (United States)

    Cianconi, L; Palopoli, P; Campanella, V; Mancini, M

    2016-12-01

    The aim of this study was to determine the chemical composition and the phases' microstructure of Aureoseal Plus (OGNA, Italy) and ProRoot MTA (Dentsply Tulsa Dental, USA) and to compare their characteristics. Study Design: Comparing Aureoseal Plus and ProRoot MTA microstructure by means of several analyses type. The chemical analysis of the two cements was assessed following the UNI EN ISO 196-2 norm. X-Ray fluorescence (XRF) was used to determine the element composition. The crystalline structure was analysed quantitatively using x-ray diffraction (XRD). Powders morphology was evaluated using a scanning electron microscope (SEM) with backscattering detectors, and a field emission scanning electron microscope (FESEM). Elemental analysis was performed by energy dispersive x-ray analysis (EDS). The semi-quantitative XRF analysis showed the presence of heavy metal oxides in both cements. The XRD spectra of the two cements reported the presence of dicalcium silicate, tricalcium silicate, tricalcium aluminate, tetracalcium aluminoferrite, bismuth oxide and gypsum. SEM analysis showed that ProRoot MTA powder is less coarse and more homogeneous than Aureoseal. Both powders are formed by particles of different shapes: round, prismatic and oblong. The EDS analysis showed that some ProRoot MTA particles, differently from Aureoseal, contain Ca, Si, Al and Fe. Oblong particles in ProRoot and Aureoseal are rich of bismuth. The strong interest in developing new Portland cement-based endodontic sealers will create materials with increased handling characteristics and physicochemical properties. A thorough investigation on two cement powders was carried out by using XRF, XRD, SEM and EDS analysis. To date there was a lack of studies on Aureoseal Plus. This cement is similar in composition to ProRoot MTA. Despite that it has distinctive elements that could improve its characteristics, resulting in a good alternative to MTA.

  18. Effect of Young's modulus evolution on residual stress measurement of thermal barrier coatings by X-ray diffraction

    International Nuclear Information System (INIS)

    Chen, Q.; Mao, W.G.; Zhou, Y.C.; Lu, C.

    2010-01-01

    Subjected to thermal cycling, the apparent Young's modulus of air plasma-sprayed (APS) 8 wt.% Y 2 O 3 -stabilized ZrO 2 (8YSZ) thermal barrier coatings (TBCs) was measured by nanoindentation. Owing to the effects of sintering and porous microstructure, the apparent Young's modulus follows a Weibull distribution and changes from 50 to 93 GPa with an increase of thermal cycling. The evolution of residual stresses in the top coating of an 8YSZ TBC system was determined by X-ray diffraction (XRD). The residual stresses derived from the XRD data are well consistent with that obtained by the Vickers indention. It is shown that the evolution of Young's modulus plays an important role in improving the measurement precision of residual stresses in TBCs by XRD.

  19. Laboratory Detection and Analysis of Organic Compounds in Rocks Using HPLC and XRD Methods

    Science.gov (United States)

    Dragoi, D.; Kanik, I.; Bar-Cohen, Y.; Sherrit, S.; Tsapin, A.; Kulleck, J.

    2004-01-01

    In this work we describe an analytical method for determining the presence of organic compounds in rocks, limestone, and other composite materials. Our preliminary laboratory experiments on different rocks/limestone show that the organic component in mineralogical matrices is a minor phase on order of hundreds of ppm and can be better detected using high precision liquid chromatography (HPLC). The matrix, which is the major phase, plays an important role in embedding and protecting the organic molecules from the harsh Martian environment. Some rocks bear significant amounts of amino acids therefore, it is possible to identify these phases using powder x-ray diffraction (XRD) by crystallizing the organic. The method of detection/analysis of organics, in particular amino acids, that have been associated with life will be shown in the next section.

  20. Acquisition parameters optimization of a transmission electron forward scatter diffraction system in a cold-field emission scanning electron microscope for nanomaterials characterization.

    Science.gov (United States)

    Brodusch, Nicolas; Demers, Hendrix; Trudeau, Michel; Gauvin, Raynald

    2013-01-01

    Transmission electron forward scatter diffraction (t-EFSD) is a new technique providing crystallographic information with high resolution on thin specimens by using a conventional electron backscatter diffraction (EBSD) system in a scanning electron microscope. In this study, the impact of tilt angle, working distance, and detector distance on the Kikuchi pattern quality were investigated in a cold-field emission scanning electron microscope (CFE-SEM). We demonstrated that t-EFSD is applicable for tilt angles ranging from -20° to -40°. Working distance (WD) should be optimized for each material by choosing the WD for which the EBSD camera screen illumination is the highest, as the number of detected electrons on the screen is directly dependent on the scattering angle. To take advantage of the best performances of the CFE-SEM, the EBSD camera should be close to the sample and oriented towards the bottom to increase forward scattered electron collection efficiency. However, specimen chamber cluttering and beam/mechanical drift are important limitations in the CFE-SEM used in this work. Finally, the importance of t-EFSD in materials science characterization was illustrated through three examples of phase identification and orientation mapping. © Wiley Periodicals, Inc.

  1. Combining µXANES and µXRD mapping to analyse the heterogeneity in calcium carbonate granules excreted by the earthworm Lumbricus terrestris.

    Science.gov (United States)

    Brinza, Loredana; Schofield, Paul F; Hodson, Mark E; Weller, Sophie; Ignatyev, Konstantin; Geraki, Kalotina; Quinn, Paul D; Mosselmans, J Frederick W

    2014-01-01

    The use of fluorescence full spectral micro-X-ray absorption near-edge structure (µXANES) mapping is becoming more widespread in the hard energy regime. This experimental method using the Ca K-edge combined with micro-X-ray diffractionXRD) mapping of the same sample has been enabled on beamline I18 at Diamond Light Source. This combined approach has been used to probe both long- and short-range order in calcium carbonate granules produced by the earthworm Lumbricus terrestris. In granules produced by earthworms cultured in a control artificial soil, calcite and vaterite are observed in the granules. However, granules produced by earthworms cultivated in the same artificial soil amended with 500 p.p.m. Mg also contain an aragonite. The two techniques, µXRD and µXANES, probe different sample volumes but there is good agreement in the phase maps produced.

  2. XRD and SEM study on the phase separation and crystallization behavior for an amorphous Cu+ conductor

    International Nuclear Information System (INIS)

    Yang Yuan; Hou Jianguo; Yu Wenhai

    1990-01-01

    The X-ray diffraction (XRD) and scanning electron microscopy (SEM) study was carried out for an amorphous Cu + conductor 0.4 CuI-0.3 Cu 2 O-0.3 P 2 O 5 with the simultaneous conductivity measurement in the isothermal heat treament process. The results indicated that the initial amorphous material was phase-separated. In the course of time the separated amorphous phase disappeared, the crystalline γ-CuI and Cu 2 P 2 O 7 formed in sequence and grew up gradually. The correlation of the phase separation and crystallization behavior with the conductivity anomaly confirmed again the interface effect between different phases in amorphous fast ionic conductors and its universality

  3. Degradation of periodic multilayers as seen by small-angle x-ray scattering and x-ray diffraction

    CERN Document Server

    Rafaja, D; Simek, D; Zdeborova, L; Valvoda, V

    2002-01-01

    The capabilities of small-angle x-ray scattering (SAXS) and wide-angle x-ray diffraction (XRD) to recognize structural changes in periodic multilayers were compared on Fe/Au multilayers with different degrees of structural degradation. Experimental results have shown that both methods are equally sensitive to the multilayer degradation, i.e., to the occurrence of non-continuous interfaces, to short-circuits in the multilayer structure and to the multilayer precipitation. XRD yielded additional information on the multilayer crystallinity, whilst SAXS could better recognize fragments of a long-range periodicity (remnants of the original multilayer structure). Changes in the multilayer structure were initiated by successive annealing at 200 and 300 deg. C. Experimental data were complemented by numerical simulations performed using a combination of optical theory and the distorted wave Born approximation for SAXS or the kinematical Born approximation for XRD.

  4. Unsupported NiPt alloy metal catalysts prepared by water-in-oil (W/O) microemulsion method for methane cracking

    KAUST Repository

    Zhou, Lu; Basset, Jean-Marie

    2016-01-01

    for methane cracking. By XRD (X-ray powder diffraction), XPS (X-ray photoelectron spectroscopy) and TEM (Transmission electron microscopy) analyses, the formation of Ni(0)Pt(0) alloy is believed to be the main reason for the reactivity improvement

  5. Friction stir processed Al–TiO2 surface composites: Anodising behaviour and optical appearance

    DEFF Research Database (Denmark)

    Gudla, Visweswara Chakravarthy; Jensen, Flemming; Simar, Aude

    2015-01-01

    was investigated. Microstructural and morphological characterization was performed using scanning (SEM) and transmission electron microscopy (TEM), and X-ray diffraction (XRD). The surface appearance was analysed using an integrating sphere-spectrophotometer setup which measures the diffuse and total reflectance...

  6. Dedicated software for diffractive optics design and simulation

    International Nuclear Information System (INIS)

    Firsov, A; Brzhezinskaya, M; Erko, A; Firsov, A; Svintsov, A

    2013-01-01

    An efficient software package for the structure design and simulation of imaging properties of diffraction optical elements has been developed. It operates with point source and consists of: the ZON software, to calculate the structure of an optical element in transmission and reflection; the KRGF software, to simulate the diffraction properties of an ideal optical element with point source; the DS software, to calculate the diffraction properties by taking into consideration material and shadowing effects. Optional software allows simulation with a real non-point source. Zone plate thickness profile, source shape as well as substrate curvature are considered in this calculation. This is especially important for the diffractive focusing elements and gratings at a total external reflection, given that the lateral size of the structure can be up to 1 m. The program package can be used in combination with the Nanomaker software to prepare data for ion and e-beam surface modifications and corrections.

  7. The use of X-ray diffraction as a tool for bio polymer junction studies

    Energy Technology Data Exchange (ETDEWEB)

    Burgardt, Vania C.F.; Oliveira, Debora F. de; Evseev, Ivan G., E-mail: evseev@utfpr.edu.br [Universidade Tecnologica Federal do Parana (UTFPR), Francisco Beltrao, PR (Brazil); Waszczynskyj, Nina, E-mail: ninawas@ufpr.br [Departamento de Engenharia Quimica. Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil)

    2011-07-01

    In this work, we illustrate the efficiency of x-ray diffraction (XRD) in analysis of bio polymer junctions under the presence of proteins. Although XRD is a common technique for the characterization of different polymeric materials, it is still little explored for the matrices containing mixed biopolymers, such as proteins and carbohydrates. At the same time, the interaction between carbohydrates and proteins is of a great interest for industry because it is responsible for several physical and sensory properties of food, and may (or may not) result in system thermal stability. Thus, it was attractive to compare the observations obtained with such traditional for the food industry methods as Fourier transform spectroscopy (FTIR) and scanning electron microscopy (SEM), with XRD results. We used these three methods to evaluate the gels formed by 12.0% of casein glyco macropeptide (CMP) at pH 3,5. During the gel production, carboxymethylcellulose (CMC) was added in the proportions of 0.00%, 0.25%, and 0.50%. The XRD study shows that the gel with 0.25% CMC addition presents minor crystallinity, and, thus, major interactions between CMC and CMP biopolymers. It is in perfect agreement with FTIR and SEM interpretations. (author)

  8. The use of X-ray diffraction as a tool for bio polymer junction studies

    International Nuclear Information System (INIS)

    Burgardt, Vania C.F.; Oliveira, Debora F. de; Evseev, Ivan G.; Waszczynskyj, Nina

    2011-01-01

    In this work, we illustrate the efficiency of x-ray diffraction (XRD) in analysis of bio polymer junctions under the presence of proteins. Although XRD is a common technique for the characterization of different polymeric materials, it is still little explored for the matrices containing mixed biopolymers, such as proteins and carbohydrates. At the same time, the interaction between carbohydrates and proteins is of a great interest for industry because it is responsible for several physical and sensory properties of food, and may (or may not) result in system thermal stability. Thus, it was attractive to compare the observations obtained with such traditional for the food industry methods as Fourier transform spectroscopy (FTIR) and scanning electron microscopy (SEM), with XRD results. We used these three methods to evaluate the gels formed by 12.0% of casein glyco macropeptide (CMP) at pH 3,5. During the gel production, carboxymethylcellulose (CMC) was added in the proportions of 0.00%, 0.25%, and 0.50%. The XRD study shows that the gel with 0.25% CMC addition presents minor crystallinity, and, thus, major interactions between CMC and CMP biopolymers. It is in perfect agreement with FTIR and SEM interpretations. (author)

  9. Synthesis of Lead Sulfide Nanoparticles by Chemical Precipitation Method

    International Nuclear Information System (INIS)

    Chongad, L S; Sharma, A; Banerjee, M; Jain, A

    2016-01-01

    Lead sulfide (PbS) nanoparticles were prepared by chemical precipitation method (CPM) with the assistance of H 2 S gas. The microstructure and morphology of the synthesized nanoparticles have been investigated using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the PbS nanoparticles reveal formation of cubic phase. To investigate the quality of prepared nanoparticles, the particles size, lattice constant, strain, dislocation density etc. have been determined using XRD. TEM images reveal formation of cubic nanoparticles and the particle size determined from TEM images agree well with those from XRD. (paper)

  10. Calculated efficiencies of three-material low stress coatings for diffractive x-ray transmission optics

    International Nuclear Information System (INIS)

    Kubec, Adam; Braun, Stefan; Gawlitza, Peter; Menzel, Maik; Leson, Andreas

    2016-01-01

    Diffractive X-ray optical elements made by thin film coating techniques such as multilayer Laue lenses (MLL) and multilayer zone plates (MZP) are promising approaches to achieve resolutions in hard X-ray microscopy applications of less than 10 nm. The challenge is to make a lens with a large numerical aperture on the one hand and a decent working distance on the other hand. One of the limiting factors with the coated structures is the internal stress in the films, which can lead to significant bending of the substrate and various types of unwanted diffraction effects. Several approaches have been discussed to overcome this challenge. One of these is a three-material combination such as Mo/MoSi_2/Si, where four single layers per period are deposited. Mo and Si represent the absorber and spacer in this case while MoSi_2 forms a diffusion barrier; in addition the thicknesses of absorber and spacer are chosen to minimize residual stress of the overall coating. Here the diffraction efficiency as well as the profile of the beam in the focal plane are discussed in order to find a tradeoff between lowest residual stress and best diffraction properties.

  11. Mineralogical analysis of clays in hardsetting soil horizons, by X-ray fluorescence and X-ray diffraction using Rietveld method

    International Nuclear Information System (INIS)

    Prandel, L.V.; Saab, S.C.; Brinatti, A.M.; Giarola, N.F.B.; Leite, W.C.; Cassaro, F.A.M.

    2014-01-01

    Diffraction and spectroscopic techniques have been shown to be suitable for obtaining physical and mineralogical properties in polycrystalline soil samples, and also in their precursor compounds. For instance, the X-ray fluorescence (XRF) spectroscopy allows obtaining the elemental composition of an investigated sample, while the X-ray diffraction (XRD) technique permits obtaining qualitative and quantitative composition of the soil minerals through the Rietveld method (RM). In this study Yellow Latosol (Oxisol), Yellow Argisol (Ultisol) and Gray Argisol (Ultisol) soil samples, classified as “hardsetting soils”, extracted from areas located at Northeast and Southeast of Brazilian coast were investigated. The soils and their fractions were analyzed in an EDX-700 and an XRD-6000 (Cu K α radiation). XRF results indicate high percentages of Si and Al, and small percentage of Fe and Ti in the investigated samples. The DRX data and RM indicate that there was a predominance of kaolinite and halloysite minerals (kaolin group minerals) in the clay fractions, which are presumably responsible for the formation of kaolinitic plasma in these soils. Also, the obtained results showed that the XRF, XRD techniques and RM were very helpful for investigating the mineralogical composition of a hardsetting soil. - Highlights: ► Elemental composition of soil samples through X-Ray fluorescence. ► Mineralogical quantification through X-ray diffraction and Rietveld method. ► Oxisol and Ultisol, Brazil ‘Barreiras’ formation. ► High amounts of Si and Al oxides and low amounts of Fe and Ti oxides. ► Predominance of kaolinite in the clay fraction

  12. Direct solution-phase synthesis of Se submicrotubes using Se powder as selenium source

    International Nuclear Information System (INIS)

    Yan Shancheng; Wang Haitao; Zhang Yuping; Li Shuchun; Xiao Zhongdang

    2009-01-01

    The selenium submicrotubes were directly prepared using Se powder as selenium source by microwave-assisted method. Field-emission scan electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were adopted to characterize the as-prepared products. The results of high-resolution transmission electron microscopy (HRTEM) and XRD pattern proved that the selenium submicrotubes were single crystalline in nature and [0 0 1] oriented. A possible growth mechanism of the selenium submicrotubes was proposed. The effects of the experimental conditions, such as alkaline concentration and solvent properties, on the morphology and dimension of the products have also been discussed

  13. Multiscale phase mapping of LiFePO4-based electrodes by transmission electron microscopy and electron forward scattering diffraction.

    Science.gov (United States)

    Robert, Donatien; Douillard, Thierry; Boulineau, Adrien; Brunetti, Guillaume; Nowakowski, Pawel; Venet, Denis; Bayle-Guillemaud, Pascale; Cayron, Cyril

    2013-12-23

    LiFePO4 and FePO4 phase distributions of entire cross-sectioned electrodes with various Li content are investigated from nanoscale to mesoscale, by transmission electron microscopy and by the new electron forward scattering diffraction technique. The distributions of the fully delithiated (FePO4) or lithiated particles (LiFePO4) are mapped on large fields of view (>100 × 100 μm(2)). Heterogeneities in thin and thick electrodes are highlighted at different scales. At the nanoscale, the statistical analysis of 64 000 particles unambiguously shows that the small particles delithiate first. At the mesoscale, the phase maps reveal a core-shell mechanism at the scale of the agglomerates with a preferential pathway along the electrode porosities. At larger scale, lithiation occurs in thick electrodes "stratum by stratum" from the surface in contact with electrolyte toward the current collector.

  14. Methods for the performance enhancement and the error characterization of large diameter ground-based diffractive telescopes.

    Science.gov (United States)

    Zhang, Haolin; Liu, Hua; Lizana, Angel; Xu, Wenbin; Caompos, Juan; Lu, Zhenwu

    2017-10-30

    This paper is devoted to the improvement of ground-based telescopes based on diffractive primary lenses, which provide larger aperture and relaxed surface tolerance compared to non-diffractive telescopes. We performed two different studies devised to thoroughly characterize and improve the performance of ground-based diffractive telescopes. On the one hand, we experimentally validated the suitability of the stitching error theory, useful to characterize the error performance of subaperture diffractive telescopes. On the other hand, we proposed a novel ground-based telescope incorporated in a Cassegrain architecture, leading to a telescope with enhanced performance. To test the stitching error theory, a 300 mm diameter, 2000 mm focal length transmissive stitching diffractive telescope, based on a three-belt subaperture primary lens, was designed and implemented. The telescope achieves a 78 cy/mm resolution within 0.15 degree field of view while the working wavelength ranges from 582.8 nm to 682.8 nm without any stitching error. However, the long optical track (35.49 m) introduces air turbulence that reduces the final images contrast in the ground-based test. To enhance this result, a same diameter compacted Cassegrain ground-based diffractive (CGD) telescope with the total track distance of 1.267 m, was implemented within the same wavelength. The ground-based CGD telescope provides higher resolution and better contrast than the transmissive configuration. Star and resolution tests were experimentally performed to compare the CGD and the transmissive configurations, providing the suitability of the proposed ground-based CGD telescope.

  15. Size distribution of magnetic iron oxide nanoparticles using Warren-Averbach XRD analysis

    Science.gov (United States)

    Mahadevan, S.; Behera, S. P.; Gnanaprakash, G.; Jayakumar, T.; Philip, J.; Rao, B. P. C.

    2012-07-01

    We use the Fourier transform based Warren-Averbach (WA) analysis to separate the contributions of X-ray diffraction (XRD) profile broadening due to crystallite size and microstrain for magnetic iron oxide nanoparticles. The profile shape of the column length distribution, obtained from WA analysis, is used to analyze the shape of the magnetic iron oxide nanoparticles. From the column length distribution, the crystallite size and its distribution are estimated for these nanoparticles which are compared with size distribution obtained from dynamic light scattering measurements. The crystallite size and size distribution of crystallites obtained from WA analysis are explained based on the experimental parameters employed in preparation of these magnetic iron oxide nanoparticles. The variation of volume weighted diameter (Dv, from WA analysis) with saturation magnetization (Ms) fits well to a core shell model wherein it is known that Ms=Mbulk(1-6g/Dv) with Mbulk as bulk magnetization of iron oxide and g as magnetic shell disorder thickness.

  16. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    An ultrasonication based green synthesis approach was used to prepare curcumin-stabilized silver nanoparticles (c-AgNPs). Nanoparticles thus obtained were characterized by UV-Visible spectroscopy, X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR).

  17. Novel fabrication of silica nanotubes using multi-walled carbon ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Silica nanotubes were synthesized using multi-walled carbon nanotubes (MWCNTs) as template. The as-obtained samples were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscope (FE–SEM) and photo-.

  18. In situ synchrotron X-ray diffraction study on epitaxial-growth dynamics of III–V semiconductors

    Science.gov (United States)

    Takahasi, Masamitu

    2018-05-01

    The application of in situ synchrotron X-ray diffraction (XRD) to the molecular-beam epitaxial (MBE) growth of III–V semiconductors is overviewed along with backgrounds of the diffraction theory and instrumentation. X-rays are sensitive not only to the surface of growing films but also to buried interfacial structures because of their large penetration depth. Moreover, a spatial coherence length up to µm order makes X-rays widely applicable to the characterization of low-dimensional structures, such as quantum dots and wires. In situ XRD studies during growth were performed using an X-ray diffractometer, which was combined with an MBE chamber. X-ray reciprocal space mapping at a speed matching a typical growth rate was achieved using intense X-rays available from a synchrotron light source and an area detector. The importance of measuring the three-dimensional distribution of XRD intensity in a reciprocal space map is demonstrated for the MBE growth of two-, one-, and zero-dimensional structures. A large amount of information about the growth process of two-dimensional InGaAs/GaAs(001) epitaxial films has been provided by three-dimensional X-ray reciprocal mappings, including the anisotropic strain relaxation, the compositional inhomogeneity, and the evolution of surface and interfacial roughness. For one-dimensional GaAs nanowires grown in a Au-catalyzed vapor-liquid–solid mode, the relationship between the diameter of the nanowires and the formation of polytypes has been suggested on the basis of in situ XRD measurements. In situ three-dimensional X-ray reciprocal space mapping is also shown to be useful for determining the lateral and vertical sizes of self-assembled InAs/GaAs(001) quantum dots as well as their internal strain distributions during growth.

  19. Cooperative use of VCD and XRD for the determination of tetrahydrobenzoisoquinolines absolute configuration: a reliable proof of memory of chirality and retention of configuration in enediyne rearrangements.

    Science.gov (United States)

    Mondal, Shovan; Naubron, Jean-Valère; Campolo, Damien; Giorgi, Michel; Bertrand, Michéle P; Nechab, Malek

    2013-12-01

    The absolute configurations (AC) of azaheterocylic compounds resulting from the cascade rearrangement of enediynes involving only light atoms were unambiguously assigned by the joint use of vibrational circular dichroism (VCD) and copper radiation single crystal X-ray diffraction (XRD). These AC determinations proved that the rearrangements of enediynes proceeded with memory of chirality and retention of configuration. © 2013 Wiley Periodicals, Inc.

  20. Powder X-ray diffraction laboratory, Reston, Virginia

    Science.gov (United States)

    Piatak, Nadine M.; Dulong, Frank T.; Jackson, John C.; Folger, Helen W.

    2014-01-01

    The powder x-ray diffraction (XRD) laboratory is managed jointly by the Eastern Mineral and Environmental Resources and Eastern Energy Resources Science Centers. Laboratory scientists collaborate on a wide variety of research problems involving other U.S. Geological Survey (USGS) science centers and government agencies, universities, and industry. Capabilities include identification and quantification of crystalline and amorphous phases, and crystallographic and atomic structure analysis for a wide variety of sample media. Customized laboratory procedures and analyses commonly are used to characterize non-routine samples including, but not limited to, organic and inorganic components in petroleum source rocks, ore and mine waste, clay minerals, and glassy phases. Procedures can be adapted to meet a variety of research objectives.

  1. X-ray diffraction study of A- plane non-polar InN epilayer grown by MOCVD

    Science.gov (United States)

    Moret, Matthieu; Briot, Olivier; Gil, Bernard

    2015-03-01

    Strong polarisation-induced electric fields in C-plane oriented nitrides semiconductor layers reduce the performance of devices. Eliminating the polarization fields can be achieved by growing nitrides along non polar direction. We have grown non polar A-plane oriented InN on R-plane (1‾102) nitridated sapphire substrate by MOCVD. We have studied the structural anisotropy observed in these layers by analyzing High Resolution XRay Diffraction rocking curve (RC) experiments as a function of the in-plane beam orientation. A-plane InN epilayer have a unique epitaxial relationship on R-Plane sapphire and show a strong structural anisotropy. Full width at half maximum (FWHM) of the InN(11‾20) XRD RC values are contained between 44 and 81 Arcmin. FWHM is smaller when the diffraction occurs along the [0001] and the largest FWHM values, of the (11‾20) RC, are obtained when the diffraction occurs along the [1‾100] in-plane direction. Atomic Force Microscopy imaging revealed morphologies with well organized crystallites. The grains are structured along a unique crystallographic orientation of InN, leading to larger domains in this direction. This structural anisotropy can be, in first approximation, attributed to the difference in the domain sizes observed. XRD reciprocal space mappings (RSM) were performed in asymmetrical configuration on (13‾40) and (2‾202) diffraction plane. RSM are measured with a beam orientation corresponding to a maximal and a minimal width of the (11‾20) Rocking curves, respectively. A simple theoretical model is exposed to interpret the RSM. We concluded that the dominant contribution to the anisotropy is due to the scattering coherence length anisotropy present in our samples.

  2. Analyze of phase's mechanical behaviour of a multiphase polycrystalline alloy by X-ray and neutron diffraction; Analyse du comportement mecanique des constituants d'un alliage polycristallin multiphase par diffraction des rayons X et neutronique

    Energy Technology Data Exchange (ETDEWEB)

    Dakhlaoui, R

    2006-12-15

    The aim of this work is to propose a methodology using diffraction methods and theoretical approaches of self-consistent modeling in order to analyze and better understand the mechanical behavior of each phase of hot-rolled duplex stainless steel. The purpose of the experimental study is to characterize the local mechanical behavior of phases under uniaxial loading. X-ray and neutron diffraction which enable to measure strains in each phase separately were used in this aim. Austenitic and ferritic phase stresses are determined by X-ray diffraction during tensile tests. Evolution of the elastic strains in each phase was measured by neutron diffraction using 'time-of-flight' method during tensile and compression tests. Elastic constants were given using the self-consistent model for a purely elastic deformation. To reproduce the mechanical behaviour of the studied material, self-consistent polycrystalline micro-mechanical model for elastoplastic deformation has been adapted and confronted to experimental results. Crystallographic texture and initial residual stresses were considered in this analysis. Critical shear stresses and hardening parameters of each phase of the studied duplex steel have been identified. Results of this study showed that the austenitic phase represents the softest and the most hardenable phase. Taking into account in calculations the initial residual stresses in the non deformed sample leads to the conclusion that the initial stresses modify considerably the values of phase's yield stresses. Good agreement has been noted comparing results obtained by XRD to those obtained by neutron diffraction. The problem of relaxation of normal stresses in the analysed layer by X-rays was analysed and discussed. Using XRD and self-consistent modelling, the effect of the chemical composition of the duplex stainless steel and the influence of ageing at 400 C degrees for 1000 h on the mechanical behaviour of austenitic and ferritic phases have

  3. Design and fabrication of micro X-ray diffraction system

    International Nuclear Information System (INIS)

    Park, Yang Soon; Han, Sun Ho; Kim, Jong Goo; Jee, Kwang Yong

    2006-10-01

    It has been observed that microstructure changes occur at the pellet periphery(rim) of the fuel at very high burn-up. Despite its narrow range (below some hundreds microns in depth), this peripheral region(rim) determines the behaviour of nuclear fuel. To determine lattice parameter with XRD at intervals as small as 30-50 μ m in radial direction of irradiated fuel samples, a micro X-ray diffraction system was designed and fabricated. This report describes the micro X-ray diffraction system consisted of an X-ray microbeam alignment system and a sample micro translation system, its characterization, and its performance test through the analysis for the micro region of some specimens. This system will be set in a radiation shielded glove box, and then used for analysis of lattice parameter change and the phase change at intervals as small as 30-50 μ m in radial direction of the rim of an irradiated fuel sample and a fuel cladding

  4. Design and fabrication of micro X-ray diffraction system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yang Soon; Han, Sun Ho; Kim, Jong Goo; Jee, Kwang Yong

    2006-10-15

    It has been observed that microstructure changes occur at the pellet periphery(rim) of the fuel at very high burn-up. Despite its narrow range (below some hundreds microns in depth), this peripheral region(rim) determines the behaviour of nuclear fuel. To determine lattice parameter with XRD at intervals as small as 30-50 {mu} m in radial direction of irradiated fuel samples, a micro X-ray diffraction system was designed and fabricated. This report describes the micro X-ray diffraction system consisted of an X-ray microbeam alignment system and a sample micro translation system, its characterization, and its performance test through the analysis for the micro region of some specimens. This system will be set in a radiation shielded glove box, and then used for analysis of lattice parameter change and the phase change at intervals as small as 30-50 {mu} m in radial direction of the rim of an irradiated fuel sample and a fuel cladding.

  5. Direct observation of strain in bulk subgrains and dislocation walls by high angular resolution three-dimensional X-ray diffraction

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Lienert, U.; Almer, J.

    2008-01-01

    The X-ray diffraction (XRD) method "high angular resolution 3DXRD" is briefly introduced, and results are presented for a single bulk grain in a polycrystalline copper sample deformed in tension. It is found that the three-dimensional reciprocal-space intensity distribution of a 400 reflection...

  6. Characterization of North American lignite fly ashes. II. XRD Mineralogy

    International Nuclear Information System (INIS)

    McCarthy, G.J.; Johansen, D.M.; Thedchanamoorthy, A.; Steinwand, S.J.; Swanson, K.D.

    1988-01-01

    X-ray powder diffraction has been used to determine the crystalline phase mineralogy in samples of fly ash from each of the lignite mining areas of North America. The characteristic phases of North Dakota lignite fly ashes were periclase, lime, merwinite and the sulfate phases anhydrite, thenardite and a sodalite-structure phase. Mullite was absent in these low-Al/sub 2/O/sub 3/ ashes. Montana lignite ash mineralogy had characteristics of ND lignite and MT subbituminous coal fly ashes; mullite and C/sub 3/A were present and the alkali sulfates were absent. Texas and Louisiana lignite fly ashes had the characteristic mineralogy of bituminous coal fly ash: quartz, mullite, ferrite-spinel (magnetite) and minor hematite. Even though their analytical CaO contents were 7-14%, all but one lacked crystalline CaO-containing phases. Lignite fly ashes from Saskatchewan were generally the least crystalline of those studied and had a mineralogy consisting of quartz, mullite, ferrite spinel and periclase. Quantitative XRD data were obtained. The position of the diffuse scattering maximum in the x-ray diffractograms was indicative of the glass composition of the lignite fly ash

  7. X-ray diffraction using the time structure of the SRS

    International Nuclear Information System (INIS)

    Tanner, B.K.

    1983-01-01

    The subject is discussed under the headings: introduction (advances in the techniques of X-ray topography; comparison with transmission electron microscopy); stroboscopic X-ray topography; stroboscopic X-ray topography of travelling surface acoustic waves; possible general diffraction experiments. (U.K.)

  8. On the preparation of as-produced and purified single-walled carbon nanotube samples for standardized X-ray diffraction characterization

    International Nuclear Information System (INIS)

    Allaf, Rula M.; Rivero, Iris V.; Spearman, Shayla S.; Hope-Weeks, Louisa J.

    2011-01-01

    The aim of this research was to specify proper sample conditioning for acquiring representative X-ray diffraction (XRD) profiles for single-walled carbon nanotube (SWCNT) samples. In doing so, a specimen preparation method for quantitative XRD characterization of as-produced and purified arc-discharge SWCNT samples has been identified. Series of powder XRD profiles were collected at different temperatures, states, and points of time to establish appropriate conditions for acquiring XRD profiles without inducing much change to the specimen. It was concluded that heating in the 300-450 deg. C range for 20 minutes, preferably vacuum-assisted, and then sealing the sample is an appropriate XRD specimen preparation technique for purified arc-discharge SWCNT samples, while raw samples do not require preconditioning for characterization. - Graphical Abstract: A sample preparation method for XRD characterization of as-produced and purified arc-discharge SWCNT samples is identified. The preparation technique seeks to acquire representative XRD profiles without inducing changes to the samples. Purified samples required 20 minutes of heating at (300-450)deg. C, while raw samples did not require preconditioning for characterization. Highlights: → Purification routines may induce adsorption onto the SWCNT samples. → Heating a SWCNT sample may result in material loss, desorption, and SWCNTs closing. → Raw arc-discharge samples do not require preparation for XRD characterization. → Heating is appropriate specimen preparation for purified and heat-treated samples. → XRD data fitting is required for structural analysis of SWCNT bundles.

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Mechanical alloying (MA) was used to produce Ti5Si3 intermetallic compound with nanocrystalline structure from elemental powders. The structural changes and characterization of powder particles during milling were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron ...

  10. Electrical and optical studies in polyaniline nanofibre–SnO 2 ...

    Indian Academy of Sciences (India)

    Polyaniline nanofibre–tin oxide (PAni-SnO2) nanocomposites are synthesized and mixed with polyvinyl alcohol (PVA) as stabilizer to cast free-standing films. Composite films are characterized by X-ray diffraction studies (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ...

  11. Synthesis, characterization and photocatalytic activity of WO3/TiO2 for NO removal under UV and visible light irradiation

    NARCIS (Netherlands)

    Luevano Hipolito, E.; Martínez-de la Cruz, A.; López-Cuellar, E.; Yu, Q.L.; Brouwers, H.J.H.

    2014-01-01

    Samples with different proportions WO3/TiO2 were prepared by co-precipitation method followed by a heat treatment. The samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), and

  12. [Research on characteristics of soil clay mineral evolution in paddy field and dry land by XRD spectrum].

    Science.gov (United States)

    Zhang, Zhi-dan; Li, Qiao; Luo, Xiang-li; Jiang, Hai-chao; Zheng, Qing-fu; Zhao, Lan-po; Wang, Ji-hong

    2014-08-01

    The present paper took the typical saline-alkali soil in Jilin province as study object, and determinated the soil clay mineral composition characteristics of soil in paddy field and dry land. Then XRD spectrum was used to analyze the evolutionary mechanism of clay mineral in the two kinds of soil. The results showed that the physical and chemical properties of soil in paddy field were better than those in dry land, and paddy field would promote the weathering of mineral particles in saline-alkali soil and enhance the silt content. Paddy field soil showed a strong potassium-removal process, with a higher degree of clay mineral hydration and lower degree of illite crystallinity. Analysis of XRD spectrum showed that the clay mineral composition was similar in two kinds of soil, while the intensity and position of diffraction peak showed difference. The evolution process of clay mineral in dry land was S/I mixture-->vermiculite, while in paddy field it was S/I mixture-->vermiculite-->kaolinite. One kind of hydroxylated 'chlorite' mineral would appear in saline-alkali soil in long-term cultivated paddy field. Taking into account that the physical and chemical properties of soil in paddy field were better then those in dry land, we could know that paddy field could help much improve soil structure, cultivate high-fertility soil and improve saline-alkali soil. This paper used XRD spectrum to determine the characteristics of clay minerals comprehensively, and analyzed two'kinds of land use comparatively, and was a new perspective of soil minerals study.

  13. Study of the oxygen and substrate bias effects on the defect structure of reactive sputter-deposited SnOx films

    International Nuclear Information System (INIS)

    Misheva, M.; Nancheva, N.; Docheva, P.; Hadjijska, P.; Djourelov, N.; Elenkov, D.

    1999-01-01

    The effects of oxygen and substrate bias on the defect structure of reactive sputter-deposited SnOx films were investigated. Samples were analysed using transmission electron microscopy (TEM), transmission electron diffraction (TED), X-ray diffraction (XRD) and positron annihilation spectroscopy (PAS). The oxygen played an important role in the film growth and surface morphology. TEM, TED and XRD showed that increasing of the oxygen partial pressure leads to the formation of films with different crystal phases. The void sizes also depended on oxygen partial pressure. The positron lifetimes and their relative intensities depended on the void concentration, the partial annealing of the vacancies and oxidation of SnO to SnOx. This investigation also showed that the mechanical strength of the films obtained at negative substrate bias is higher and the concentration of vacancy defects is smaller, than in the films, prepared without substrate bias. (author)

  14. Suspended DNA structural characterization by TEM diffraction

    KAUST Repository

    Marini, Monica

    2017-12-01

    In this work, micro-fabrication, super-hydrophobic properties and a physiologically compatible preparation step are combined and tailored to obtain background free biological samples to be investigated by Transmission Electron Microscopy (TEM) diffraction technique. The validation was performed evaluating a well-known parameter such as the DNA interbases value. The diffraction spacing measured is in good agreement with those obtained by HRTEM direct metrology and by traditional X-Ray diffraction. This approach addresses single molecule studies in a simplified and reproducible straightforward way with respect to more conventional and widely used techniques. In addition, it overcomes the need of long and elaborated samples preparations: the sample is in its physiological environment and the HRTEM data acquisition occurs without any background interference, coating, staining or additional manipulation. The congruence in the results reported in this paper makes the application of this approach extremely promising towards those molecules for which crystallization remains a hurdle, such as cell membrane proteins and fibrillar proteins.

  15. Suspended DNA structural characterization by TEM diffraction

    KAUST Repository

    Marini, Monica; Allione, Marco; Lopatin, Sergei; Moretti, Manola; Giugni, Andrea; Torre, Bruno; Di Fabrizio, Enzo M.

    2017-01-01

    In this work, micro-fabrication, super-hydrophobic properties and a physiologically compatible preparation step are combined and tailored to obtain background free biological samples to be investigated by Transmission Electron Microscopy (TEM) diffraction technique. The validation was performed evaluating a well-known parameter such as the DNA interbases value. The diffraction spacing measured is in good agreement with those obtained by HRTEM direct metrology and by traditional X-Ray diffraction. This approach addresses single molecule studies in a simplified and reproducible straightforward way with respect to more conventional and widely used techniques. In addition, it overcomes the need of long and elaborated samples preparations: the sample is in its physiological environment and the HRTEM data acquisition occurs without any background interference, coating, staining or additional manipulation. The congruence in the results reported in this paper makes the application of this approach extremely promising towards those molecules for which crystallization remains a hurdle, such as cell membrane proteins and fibrillar proteins.

  16. Microstructure and morphology of SiOx film deposited by APCVD

    International Nuclear Information System (INIS)

    Zhang Jiliang; Li Jian; Luo Laima; Wo Yinhua

    2009-01-01

    A kind of silicon rich oxide (SiO x ) film deposited on aluminum substrate by atmospheric pressure chemical vapor deposition (APCVD) was reported. The morphology and microstructure of the film were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction (XRD) and transmission electron diffraction (TED). The deposition process is proposed to be a series of nucleation, growth and close stacking of non-uniform SiO x cells, which are stacked up by lots of SiO x laminae. A growth mechanism of the film according to the Stranski-Krastanov model is presented. In the growth process, the SiO x molecules incline to cluster like an island and merge into a layer and, then, form a laminar structure of SiO x cell. High resolution transmission electronic microscopy (TEM) picture shows that the film is basically amorphous with a little micro crystalline zone in it, which is certified by the XRD and TED results. The differences between this SiO x film and the common polycrystalline SiO 2 are also discussed in this paper

  17. Puzzling Intergrowth in Cerium Nitridophosphate Unraveled by Joint Venture of Aberration-Corrected Scanning Transmission Electron Microscopy and Synchrotron Diffraction.

    Science.gov (United States)

    Kloß, Simon D; Neudert, Lukas; Döblinger, Markus; Nentwig, Markus; Oeckler, Oliver; Schnick, Wolfgang

    2017-09-13

    Thorough investigation of nitridophosphates has rapidly accelerated through development of new synthesis strategies. Here we used the recently developed high-pressure metathesis to prepare the first rare-earth metal nitridophosphate, Ce 4 Li 3 P 18 N 35 , with a high degree of condensation >1/2. Ce 4 Li 3 P 18 N 35 consists of an unprecedented hexagonal framework of PN 4 tetrahedra and exhibits blue luminescence peaking at 455 nm. Transmission electron microscopy (TEM) revealed two intergrown domains with slight structural and compositional variations. One domain type shows extremely weak superstructure phenomena revealed by atomic-resolution scanning TEM (STEM) and single-crystal diffraction using synchrotron radiation. The corresponding superstructure involves a modulated displacement of Ce atoms in channels of tetrahedra 6-rings. The displacement model was refined in a supercell as well as in an equivalent commensurate (3 + 2)-dimensional description in superspace group P6 3 (α, β, 0)0(-α - β, α, 0)0. In the second domain type, STEM revealed disordered vacancies of the same Ce atoms that were modulated in the first domain type, leading to sum formula Ce 4-0.5x Li 3 P 18 N 35-1.5x O 1.5x (x ≈ 0.72) of the average structure. The examination of these structural intricacies may indicate the detection limit of synchrotron diffraction and TEM. We discuss the occurrence of either Ce displacements or Ce vacancies that induce the incorporation of O as necessary stabilization of the crystal structure.

  18. Combining X-ray Absorption and X-ray Diffraction Techniques for in Situ Studies of Chemical Transformations in Heterogeneous Catalysis: Advantages and Limitations

    International Nuclear Information System (INIS)

    Frenkel, A.I.; Hanson, J.; Wang, Q.; Marinkovic, N.; Chen, J.G.; Barrio, L.; Si, R.; Lopez Camara, A.; Estrella, A.M.; Rodriguez, J.A.

    2011-01-01

    Recent advances in catalysis instrumentations include synchrotron-based facilities where time-resolved X-ray scattering and absorption techniques are combined in the same in situ or operando experiment to study catalysts at work. To evaluate the advances and limitations of this method, we performed a series of experiments at the new XAFS/XRD instrument in the National Synchrotron Light Source. Nearly simultaneous X-ray diffraction (XRD) and X-ray absorption fine-structure (XAFS) measurements of structure and kinetics of several catalysts under reducing or oxidizing conditions have been performed and carefully analyzed. For CuFe 2 O 4 under reducing conditions, the combined use of the two techniques allowed us to obtain accurate data on kinetics of nucleation and growth of metallic Cu. For the inverse catalyst CuO/CeO 2 that underwent isothermal reduction (with CO) and oxidation (with O 2 ), the XAFS data measured in the same experiment with XRD revealed strongly disordered Cu species that went undetected by diffraction. These and other examples emphasize the unique sensitivity of these two complementary methods to follow catalytic processes in the broad ranges of length and time scales.

  19. Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors

    OpenAIRE

    Kumaresa P S Prasad, Dattatray S Dhawale, Thiripuranthagan Sivakumar, Salem S Aldeyab, Javaid S M Zaidi, Katsuhiko Ariga and Ajayan Vinu

    2011-01-01

    We introduce a novel strategy of fabricating nanoporous carbons loaded with different amounts of CuO nanoparticles via a hard templating approach, using copper-containing mesoporous silica as the template and sucrose as the carbon source. The nature and dispersion of the CuO nanoparticles on the surface of the nanoporous carbons were investigated by x-ray diffraction (XRD), high-resolution scanning electron microscopy (HRSEM) and high-resolution transmission electron microscopy (HRTEM). XRD r...

  20. Nano-fabrication of diffractive optics for soft X-ray and atom beam focusing

    International Nuclear Information System (INIS)

    Rehbein, S.

    2002-01-01

    Nano-structuring processes are described for manufacturing diffractive optics for the condenser-monochromator set-up of the transmission X-ray microscope (TXM) and for the scanning transmission X-ray microscope (STXM) at the BESSY II electron storage ring in Berlin. Furthermore, a process for manufacturing free-standing nickel zone plates for helium atom beam focusing experiments is presented. (author)

  1. Morphological, chemical and structural characterisation of deciduous enamel: SEM, EDS, XRD, FTIR and XPS analysis.

    Science.gov (United States)

    Zamudio-Ortega, C M; Contreras-Bulnes, R; Scougall-Vilchis, R J; Morales-Luckie, R A; Olea-Mejía, O F; Rodríguez-Vilchis, L E

    2014-09-01

    The purpose of this study was to characterise the enamel surface of sound deciduous teeth in terms of morphology, chemical composition, structure and crystalline phases. The enamel of 30 human deciduous teeth was examined by: Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), X-ray Powder Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Photoelectron Spectroscopy (XPS). Chemical differences between incisors and canines were statistically evaluated using the Mann-Whitney U test (p ≤ 0.05). Three enamel patterns were observed by SEM: 'mostly smooth with some groves', 'abundant microporosities' and 'exposed prisms'. The average Ca/P molar ratios were 1.37 and 1.03 by EDS and XPS, respectively. The crystallite size determined by XRD was 210.82 ± 16.78 Å. The mean ratio between Ca bonded to phosphate and Ca bonded to hydroxyl was approximately 10:1. The enamel of sound deciduous teeth showed two main patterns: 'mostly smooth with some groves' and 'abundant microporosities'. 'Exposed prisms' was a secondary pattern. There were slight variations among the Ca/P molar ratios found by EDS and XPS, suggesting differences in the mineral content from the enamel surface to the interior. The crystalline phases found in enamel were hydroxyapatite and carbonate apatite, with major type B than type A carbonate incorporation.

  2. Diffraction contrast STEM of dislocations: Imaging and simulations

    International Nuclear Information System (INIS)

    Phillips, P.J.; Brandes, M.C.; Mills, M.J.; De Graef, M.

    2011-01-01

    The application of scanning transmission electron microscopy (STEM) to crystalline defect analysis has been extended to dislocations. The present contribution highlights the use of STEM on two oppositely signed sets of near-screw dislocations in hcp α-Ti with 6 wt% Al in solid solution. In addition to common systematic row diffraction conditions, other configurations such as zone axis and 3g imaging are explored, and appear to be very useful not only for defect analysis, but for general defect observation. It is demonstrated that conventional TEM rules for diffraction contrast such as g.b and g.R are applicable in STEM. Experimental and computational micrographs of dislocations imaged in the aforementioned modes are presented. -- Highlights: → STEM defect analysis has been extended to include dislocations. → Systematic row, zone axis and 3g diffraction conditions are all found to be useful for general defect observations in STEM mode. → Conventional contrast visibility rules for diffraction contrast are found to remain valid for STEM observations. → Multi-beam dynamical scattering matrix simulations provide excellent agreement with experimental images.

  3. Reduction of mixed Mn-Zr oxides: in situ XPS and XRD studies.

    Science.gov (United States)

    Bulavchenko, O A; Vinokurov, Z S; Afonasenko, T N; Tsyrul'nikov, P G; Tsybulya, S V; Saraev, A A; Kaichev, V V

    2015-09-21

    A series of mixed Mn-Zr oxides with different molar ratios Mn/Zr (0.1-9) have been prepared by coprecipitation of manganese and zirconium nitrates and characterized by X-ray diffraction (XRD) and BET methods. It has been found that at concentrations of Mn below 30 at%, the samples are single-phase solid solutions (MnxZr1-xO2-δ) based on a ZrO2 structure. X-ray photoelectron spectroscopy (XPS) measurements showed that manganese in these solutions exists mainly in the Mn(4+) state on the surface. An increase in Mn content mostly leads to an increase in the number of Mn cations in the structure of solid solutions; however, a part of the manganese cations form Mn2O3 and Mn3O4 in the crystalline and amorphous states. The reduction of these oxides with hydrogen was studied by a temperature-programmed reduction technique, in situ XRD, and near ambient pressure XPS in the temperature range from 100 to 650 °C. It was shown that the reduction of the solid solutions MnxZr1-xO2-δ proceeds via two stages. During the first stage, at temperatures between 100 and 500 °C, the Mn cations incorporated into the solid solutions MnxZr1-xO2-δ undergo partial reduction. During the second stage, at temperatures between 500 and 700 °C, Mn cations segregate on the surface of the solid solution. In the samples with more than 30 at% Mn, the reduction of manganese oxides was observed: Mn2O3 → Mn3O4 → MnO.

  4. Identification of cellulose fibres belonging to Spanish cultural heritage using synchrotron high resolution X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, L.K.; Justo, A.; Duran, A.; Haro, M.C.J. de; Franquelo, M.L.; Perez Rodriguez, J.L. [CSIC-Seville University, Materials Science Institute of Seville, Seville (Spain)

    2010-05-15

    A complete characterisation of fibres used in Spanish artwork is necessary to provide a complete knowledge of these natural fibres and their stage of degradation. Textile samples employed as painting supports on canvas and one sample of unprocessed plant material were chosen for this study. All the samples were investigated by synchrotron radiation X-ray diffraction (SR-XRD). Flax and cotton have the Cellulose I structure. The values of the crystalline index (CI) were calculated for both types of fibres. The structure of Cellulose IV was associated with the unprocessed plant material. The information obtained by SR-XRD was confirmed by laboratory techniques including scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). (orig.)

  5. In situ environmental transmission electron microscope investigation of NiGa nanoparticle synthesis

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad; Duchstein, Linus Daniel Leonhard; Elkjær, Christian Fink

    2011-01-01

    . Both Ni and Ga edges are observed in the spectra. Quantification of Ni:Ga ratio is hampered by the presence of the Ni L1 edge. The ETEM experiments have been supported by complementary in situ X-Ray Diffraction (XRD) measurements on synthesis of Ni5Ga3 catalyst on a high surface area silica support...... prepared by wet impregnation [2]. Although the in situ XRD was performed at significantly higher H2 flow (40 Nml/min) and pressure (100 kPa) the complimentary data correlates with the main temperature dependence of phase and structure and shows formation of the Ni5Ga3 phase for temperatures higher than 300...

  6. On the determination of stress profiles in expanded austenite by grazing incidence X-ray diffraction and successive layer removal

    International Nuclear Information System (INIS)

    Fernandes, Frederico A.P.; Christiansen, Thomas L.; Winther, Grethe; Somers, Marcel A.J.

    2015-01-01

    Surface layers of expanded austenite resulting from nitriding typically exhibit large gradients in residual stress and composition. Evaluation of residual-stress profiles is explored by means of grazing incidence X-ray diffraction (GI-XRD), probing shallow depths, combined with successive layer removal. Several factors complicating the stress determination are analysed and discussed: (1) ghost stresses arising from a small variation in the shallow information depths probed with GI-XRD, (2) selection of the grain interaction model used to calculate the X-ray elastic constants for conversion of lattice strains into residual stress and (3) the composition dependence of these elastic constants

  7. Study on photocatalysis of TiO2 nanotubes prepared by methanol ...

    Indian Academy of Sciences (India)

    TiO2 nanotubes were synthesized by the solvothermal process at low temperature in a highly alkaline water–methanol mixed solution. Their characteristics were identified by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), specific surface area (BET), Fourier transform infrared spectroscopy (FTIR) ...

  8. Structural transformation of biochar black carbon by C60 superstructure: Environmental implications

    Science.gov (United States)

    Aqueous fullerene C60 nanoparticles (nC60) are frequently considered within the environmental engineering community as the aggregate of 60-carbon molecules. This study employed transmission electron microscopy (TEM) and x-ray diffraction (XRD) to demonstrate that nC60 formed via prolonged stirring ...

  9. Synthesis of poly(furfuryl alcohol)/montmorillonite nanocomposites ...

    Indian Academy of Sciences (India)

    The purpose of this study was to obtain poly(furfuryl alcohol) nanocomposites with Algerian organically modified clay (termed 12-montmorillonite). The formation of poly(furfuryl alcohol) was confirmed by infrared spectroscopy (IR); the prepared nanocomposites were characterized by X-ray diffraction (XRD), transmission ...

  10. Physicochemical properties of nanoparticles titania from alcohol ...

    African Journals Online (AJOL)

    The synthesized TiO2 were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermal analysis (thermogravimetric analysis, TGA, and differential scanning calorimetry, DSC), and surface area Brunauer–Emmett–Teller (BET) method. The photocatalytic activity of TiO2 nanoparticles was ...

  11. Structural characterization and properties of YCrO3 nanoparticles ...

    Indian Academy of Sciences (India)

    2018-02-05

    Feb 5, 2018 ... C. As-prepared YCrO3 nanoparticles were characterized by various sophisticated techniques like. X-ray diffraction (XRD), transmission electron microscope, Brunauer–Emmett–Teller surface area analyzer, high frequency. LCR-meter, superconducting quantum interface device magnetometer and P–E loop ...

  12. In situ visualization of Ni-Nb bulk metallic glasses phase transition

    OpenAIRE

    Oreshkin, A. I.; Mantsevich, V. N.; Savinov, S. V.; Oreshkin, S. I.; Panov, V. I.; Yavari, A. R.; Miracle, D. B.; Louzguine-Luzgin, D. V.

    2013-01-01

    We report the results of the Ni-based bulk metallic glass structural evolution and crystallization behavior in situ investigation. The X-ray diffraction (XRD), transmission electron microscopy (TEM), nano-beam diffraction (NBD), differential scanning calorimetry (DSC), radial distribution function (RDF) and scanning probe microscopy/spectroscopy (STM/STS) techniques were applied to analyze the structure and electronic properties of Ni63.5Nb36.5 glasses before and after crystallization. It was...

  13. Thermal dehydration of cobalt and zinc formate dihydrates by controlled-rate thermogravimetry (CRTG) and simultaneous X-ray diffractometry-differential scanning calorimetry (XRD-DSC)

    International Nuclear Information System (INIS)

    Arii, T.; Kishi, A.

    1999-01-01

    The thermal dehydration study of the similar hydrated salts, cobalt and zinc formate dihydrates, have been carried out successfully by means of X-ray diffractometry-differential scanning calorimetry (XRD-DSC) and controlled-rate thermogravimetry (CRTG). X-ray diffraction analysis recorded simultaneously indicates that the resulting anhydrous product, Zn(HCO 2 ) 2 , was crystalline, while Co(HCO 2 ) 2 was amorphous.The XRD-DSC data are proven to be invaluable in verifying the interpretation of overlapping processes in thermal events. In addition, these differences in the resulting anhydrous products can be explained from kinetic analysis results based on the CRTG data. The kinetic mechanism governing the dehydration of zinc formate dihydrate is a nucleation and growth process, while in the case of cobalt formate dihydrate a phase boundary controlled reaction is the governing mechanism. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. ray diffraction

    African Journals Online (AJOL)

    Mgina

    Chemistry Department, University of Dar es Salaam,. P.O. Box 35061 ... XRD analysis. XRD analysis identified kaolinite, illite and montmorillonite ..... Skoog DA and West DM 1980 Principles of. Instrumental Analysis 2nd Edn, Holt –. Saunders ...

  15. PIXE and X-ray diffraction studies in ceramics of the Cuitzeo basin

    International Nuclear Information System (INIS)

    Bucio, L.; Ruvalcaba, J.L.; Filini, A.

    2005-01-01

    The methodology used to carry out the characterization of the ceramic material is based on the employment of two analytical techniques. The first one, X-ray diffraction (XRD), it is used to determine the composition of the present minerals and the general composition of the pastes. The second, X-ray emission induced by protons (PIXE), it is used to determine the composition of trace elements and bigger elements. The combined use of these techniques even allows to differ among ceramic pastes of very similar compositions. Although these techniques can be used in a non destructive way, in the case of ceramic studies it is required of taking a small quantity of sample of the potsherd, this is pulverized to homogenize the material and to carry out the XRD analysis. The same powder can be used to prepare a pellet and to carry out the PIXE analysis. (Author)

  16. High-pressure phase transition in silicon carbide under shock loading using ultrafast x-ray diffraction

    Science.gov (United States)

    Tracy, S. J.; Smith, R. F.; Wicks, J. K.; Fratanduono, D. E.; Gleason, A. E.; Bolme, C.; Speziale, S.; Appel, K.; Prakapenka, V. B.; Fernandez Panella, A.; Lee, H. J.; MacKinnon, A.; Eggert, J.; Duffy, T. S.

    2017-12-01

    The behavior of silicon carbide (SiC) under shock loading was investigated through a series of time-resolved pump-probe x-ray diffraction (XRD) measurements. SiC is found at impact sites and has been put forward as a possible constituent in the proposed class of extra-solar planets known as carbon planets. Previous studies have used wave profile measurements to identify a phase transition under shock loading near 1 Mbar, but crystal structure information was not obtained. We have carried out an in situ XRD study of shock-compressed SiC using the Matter in Extreme Conditions instrument of the Linac Coherent Light Source. The femtosecond time resolution of the x-ray free electron laser allows for the determination of time-dependent atomic arrangements during shock loading and release. Two high-powered lasers were used to generate ablation-driven compression waves in the samples. Time scans were performed using the same drive conditions and nominally identical targets. For each shot in a scan, XRD data was collected at a different probe time after the shock had entered the SiC. Probe times extended up to 40 ns after release. Scans were carried out for peak pressures of 120 and 185 GPa. Our results demonstrate that SiC transforms directly from the ambient tetrahedrally-coordinated phase to the octahedral B1 structure on the nanosecond timescale of laser-drive experiments and reverts to the tetrahedrally coordinated ambient phase within nanoseconds of release. The data collected at 120 GPa exhibit diffraction peaks from both compressed ambient phase and transformed B1 phase, while the data at 185 GPa show a complete transformation to the B1 phase. Densities determined from XRD peaks are in agreement with an extrapolation of previous continuum data as well as theoretical predictions. Additionally, a high degree of texture was retained in both the high-pressure phase as well as on back transformation. Two-dimensional fits to the XRD data reveal details of the

  17. An In-situ method for the study of strain broadening usingsynchrotronx-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chiu C.; Lynch, Peter A.; Cheary, Robert W.; Clark, Simon M.

    2006-12-15

    A tensonometer for stretching metal foils has beenconstructed for the study of strain broadening in x-ray diffraction lineprofiles. This device, which is designed for use on the powderdiffractometer in Station 2.3 at Daresbury Laboratory, allows in-situmeasurements to be performed on samples under stress. It can be used fordata collection in either transmission or reflection modes using eithersymmetric or asymmetric diffraction geometries. As a test case,measurements were carried out on a 18mum thick copper foil experiencingstrain levels of up to 5 percent using both symmetric reflection andsymmetric transmission diffraction. All the diffraction profilesdisplayed peak broadening and asymmetry which increased with strain. Themeasured profiles were analysed by the fundamental parameters approachusing the TOPAS peak fitting software. All the observed broadenedprofiles were modelled by convoluting a refineable diffraction profile,representing the dislocation and crystallite size broadening, with afixed instrumental profile pre-determined usinghigh quality LaB6reference powder. The de-convolution process yielded "pure" sampleintegral breadths and asymmetry results which displayed a strongdependence on applied strain and increased almost linearly with appliedstrain. Assuming crystallite size broadening in combination withdislocation broadening arising from fcc a/2<110>111 dislocations,we have extracted the variation of mechanic al property with strain. Theobservation of both peak asymmetry and broadening has been interpreted asa manifestation of a cellular structure with cell walls and cellinteriors possessing high and low dislocation densities.

  18. Synthesis, structural and vibrational investigation on 2-phenyl-N-(pyrazin-2-yl)acetamide combining XRD diffraction, FT-IR and NMR spectroscopies with DFT calculations.

    Science.gov (United States)

    Lukose, Jilu; Yohannan Panicker, C; Nayak, Prakash S; Narayana, B; Sarojini, B K; Van Alsenoy, C; Al-Saadi, Abdulaziz A

    2015-01-25

    The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of 2-phenyl-N-(pyrazin-2-yl)acetamide have been investigated experimentally and theoretically using Gaussian09 software package. The title compound was optimized by using the HF/6-31G(6D,7F) and B3LYP/6-31G(6D,7F) calculations. The geometrical parameters are in agreement with the XRD data. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. Gauge-including atomic orbital (1)H-NMR chemical shifts calculations were carried out and compared with experimental data. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. Molecular electrostatic potential was performed by the DFT method. First hyperpolarizability is calculated in order to find its role in non linear optics. From the XRD data, in the crystal, molecules are held together by strong C-H⋯O and N-H⋯O intermolecular interactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Non-destructive Quantitative Phase Analysis and Microstructural Characterization of Zirconium Coated U-10Mo Fuel Foils via Neutron Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, Dustin Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hollis, Kendall Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Donald William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dombrowski, David E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-18

    This report uses neutron diffraction to investigate the crystal phase composition of uranium-molybdenum alloy foils (U-10Mo) for the CONVERT MP-1 Reactor Conversion Project, and determines the effect on alpha-uranium contamination following the deposition of a Zr metal diffusion layer by various methods: plasma spray deposition of Zr powders at LANL and hot co-rolling with Zr foils at BWXT. In summary, there is minimal decomposition of the gamma phase U-10Mo foil to alpha phase contamination following both plasma spraying and hot co-rolling. The average unit cell volume, i.e. lattice spacing, of the Zr layer can be mathematically extracted from the diffraction data; co-rolled Zr matches well with literature values of bulk Zr, while plasma sprayed Zr shows a slight increase in the lattice spacing, indicative of interstitial oxygen in the lattice. Neutron diffraction is a beneficial alternative to conventional methods of phase composition, i.e. x ray diffraction (XRD) and destructive metallography. XRD has minimal penetration depth in high atomic number materials, particularly uranium, and can only probe the first few microns of the fuel plate; neutrons pass completely through the foil, allowing for bulk analysis of the foil composition and no issues with addition of cladding layers, as in the final, aluminum-clad reactor fuel plates. Destructive metallography requires skilled technicians, cutting of the foil into small sections, hazardous etching conditions, long polishing and microscopy times, etc.; the neutron diffraction system has an automated sample loader and can fit larger foils, so there is minimal analysis preparation; the total spectrum acquisition time is ~ 1 hour per sample. The neutron diffraction results are limited by spectra refinement/calculation times and the availability of the neutron beam source. In the case of LANSCE at Los Alamos, the beam operates ~50% of the year. Following the lessons learned from these preliminary results, optimizations to

  20. Non-destructive Quantitative Phase Analysis and Microstructural Characterization of Zirconium Coated U-10Mo Fuel Foils via Neutron Diffraction

    International Nuclear Information System (INIS)

    Cummins, Dustin Ray; Vogel, Sven C.; Hollis, Kendall Jon; Brown, Donald William; Dombrowski, David E.

    2016-01-01

    This report uses neutron diffraction to investigate the crystal phase composition of uranium-molybdenum alloy foils (U-10Mo) for the CONVERT MP-1 Reactor Conversion Project, and determines the effect on alpha-uranium contamination following the deposition of a Zr metal diffusion layer by various methods: plasma spray deposition of Zr powders at LANL and hot co-rolling with Zr foils at BWXT. In summary, there is minimal decomposition of the gamma phase U-10Mo foil to alpha phase contamination following both plasma spraying and hot co-rolling. The average unit cell volume, i.e. lattice spacing, of the Zr layer can be mathematically extracted from the diffraction data; co-rolled Zr matches well with literature values of bulk Zr, while plasma sprayed Zr shows a slight increase in the lattice spacing, indicative of interstitial oxygen in the lattice. Neutron diffraction is a beneficial alternative to conventional methods of phase composition, i.e. x ray diffraction (XRD) and destructive metallography. XRD has minimal penetration depth in high atomic number materials, particularly uranium, and can only probe the first few microns of the fuel plate; neutrons pass completely through the foil, allowing for bulk analysis of the foil composition and no issues with addition of cladding layers, as in the final, aluminum-clad reactor fuel plates. Destructive metallography requires skilled technicians, cutting of the foil into small sections, hazardous etching conditions, long polishing and microscopy times, etc.; the neutron diffraction system has an automated sample loader and can fit larger foils, so there is minimal analysis preparation; the total spectrum acquisition time is ~ 1 hour per sample. The neutron diffraction results are limited by spectra refinement/calculation times and the availability of the neutron beam source. In the case of LANSCE at Los Alamos, the beam operates ~50% of the year. Following the lessons learned from these preliminary results, optimizations to

  1. Evaluation of the charge-sharing effects on spot intensity in XRD setup using photon-counting pixel detectors

    International Nuclear Information System (INIS)

    Nilsson, H.-E.; Mattsson, C.G.; Norlin, B.; Froejdh, C.; Bethke, K.; Vries, R. de

    2006-01-01

    In this study, we examine how charge loss due to charge sharing in photon-counting pixels detectors affects the recording of spot intensity in an X-ray diffraction (XRD) setup. In the photon-counting configuration, the charge from photons that are absorbed at the boarder of a pixel will be shared between two pixels. If the threshold is high enough, these photons will not be counted whereas if it is low enough, they will be counted twice. In an XRD setup, the intensity and position of various spots should be recorded. Thus, the intensity measure will be affected by the setting of the threshold. In this study, we used a system level Monte Carlo simulator to evaluate the variations in the intensity signals for different threshold settings and spot sizes. The simulated setup included an 8keV mono-chromatic source (providing a Gaussian shaped spot) and the MEDIPIX2 photon-counting pixel detector (55 μm x 55 μm pixel size with 300μm silicon) at various detector biases. Our study shows that the charge-sharing distortion can be compensated by numerical post processing and that high resolution in both charge distribution and position can be achieved

  2. Synthesis of Mn-doped CeO 2 nanorods and their application as ...

    Indian Academy of Sciences (India)

    Mn-doped CeO2 nanorods have been prepared from CeO2 particles through a facile compositehydroxide-mediated (CHM) approach. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The analysis from the X-ray photoelectron ...

  3. Identification of reaction compounds in micrometric layers from gothic paintings using combined SR-XRD and SR-FTIR.

    Science.gov (United States)

    Salvadó, Nati; Butí, Salvador; Nicholson, James; Emerich, Hermann; Labrador, Ana; Pradell, Trinitat

    2009-07-15

    Synchrotron radiation X-ray diffraction (micro-SR-XRD) and Fourier transform infrared spectroscopy (micro-SR-FTIR) are used in the non-destructive identification of reaction and aging compounds from micrometric ancient painting layers. The combination of the micrometer size and non-destructive nature of the techniques together with the high resolution and brilliance of the synchrotron radiation has proved to be a procedure most advantageous for the study of reaction, aging and degradation processes. Copper, lead and calcium carboxylates and oxalates are determined in the chromatic, preparation and alteration layers from 15th century egg tempera and oil paintings. Their nature and crystallinity have been assessed. Some hypothesis about the mechanisms of development of both carboxylates and oxalates are presented.

  4. Characterization by Raman scattering, x-ray diffraction, and transmission electron microscopy of (AlAs)m(InAs)m short period superlattices grown by migration enhanced epitaxy

    DEFF Research Database (Denmark)

    Bradshaw, J.; Song, X.J.; Shealy, J.R.

    1992-01-01

    We report growth of (InAs)1(AlAs)1 and (InAs)2(AlAs)2 strained layer superlattices by migration enhanced epitaxy. The samples were grown on InP (001) substrates and characterized by Raman spectroscopy, x-ray diffraction, and transmission electron microscopy. Satellite peaks in the x-ray data...... confirm the intended periodicity and indicate the presence of some disorder in the monolayer sample. The energies of the zone folded and quantum confined optic phonons are in reasonable agreement with calculations based on one-dimensional elastic continuum and linear chain models. Journal of Applied...

  5. Green synthesis of gold nanoparticles using aqueous extract of Dillenia indica

    Science.gov (United States)

    Sett, Arghya; Gadewar, Manoj; Sharma, Pragya; Deka, Manab; Bora, Utpal

    2016-06-01

    In this study, we report a novel method of gold nanoparticle (AuNP) synthesis using aqueous fruit extract of Dillenia indica. The phytochemicals present in the fruit extract act as an effective reducing and capping agent to synthesize AuNPs. The synthesized AuNPs were characterized by spectrophotometry, transmission electron microscopy (TEM), x-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. TEM studies revealed the particles of various sizes and mainly spherical in shape. Selected-area electron diffraction (SAED) patterns and high-resolution transmission electron microscopy (HRTEM) images confirmed the crystallinity of the particles. The XRD patterns showed peaks at (111), (200), (220) which exhibited preferential orientation of the AuNPs as face-centered cubic crystal. FTIR measurements confirmed the coating of phenolic compounds on the AuNPs indicating a possible role of biomolecules for the capping and efficient stabilization of the AuNPs. The synthesized AuNPs did not show any form of cytotoxicity in the normal fibroblast cell line L929.

  6. Synthesis and characterization of semiconductor zinc sulfide nanotubes by soft-template method

    Institute of Scientific and Technical Information of China (English)

    Lü Ruitao; CAO Chuanbao; ZHAI Huazhang; ZHU Hesun

    2004-01-01

    ZnS nanotubes have been successfully synthesized from solutions containing a surfactant, Triton X-100 (t-octyl-(OCH2CH2)xOH, x=9, 10). X-ray diffraction (XRD), transmission electron microscope (TEM) and selected area electron diffraction (SAED) are employed to characterize the structure and morphology of as-synthesized product. XRD and SAED pattern indicate that as-obtained products consist of pure polycrystalline cubic-phase ZnS structures. TEM images reveal that most of the products are tubular structures, with diameters ranging between 37-52 nm and lengths up to 3 μm. The wall thickness of as-obtained ZnS nanotube is around 9 nm. The growth mechanism of ZnS nanotubes has also be proposed.

  7. Materials identification using a small-scale pixellated x-ray diffraction system

    International Nuclear Information System (INIS)

    O’Flynn, D; Crews, C; Drakos, I; Christodoulou, C; Speller, R D; Wilson, M D; Veale, M C; Seller, P

    2016-01-01

    A transmission x-ray diffraction system has been developed using a pixellated, energy-resolving detector (HEXITEC) and a small-scale, mains operated x-ray source (Amptek Mini-X). HEXITEC enables diffraction to be measured without the requirement of incident spectrum filtration, or collimation of the scatter from the sample, preserving a large proportion of the useful signal compared with other diffraction techniques. Due to this efficiency, sufficient molecular information for material identification can be obtained within 5 s despite the relatively low x-ray source power. Diffraction data are presented from caffeine, hexamine, paracetamol, plastic explosives and narcotics. The capability to determine molecular information from aspirin tablets inside their packaging is demonstrated. Material selectivity and the potential for a sample classification model is shown with principal component analysis, through which each different material can be clearly resolved. (paper)

  8. Characterization of mineral phases of agricultural soil samples of Colombian coffee using Moessbauer spectroscopy and X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Humberto Bustos, E-mail: hbustos@ut.edu.co; Lozano, Dagoberto Oyola; Martinez, Yebrayl Antonio Rojas; Pinilla, Marlene Rivera [Universidad del Tolima, Grupo Ciencia de Materiales y Tecnologia en Plasma (Colombia); Alcazar, German Antonio Perez [Universidad del Valle, Grupo Metalurgia Fisica y Teoria de las Transiciones de Fase (Colombia)

    2012-03-15

    Soil chemical analysis, X-ray diffraction (XRD) and Moessbauer spectrometry (MS) of {sup 57}Fe were used to characterize mineral phases of samples taken from the productive layer (horizon A) of agricultural coffee soil from Tolima (Colombia). Chemical analysis shows the chemical and textural parameters of samples from two different regions of Tolima, i.e., Ibague and Santa Isabel. By XRD phases like illite (I), andesine (A) and quartz (Q) in both samples were identified. The quantity of these phases is different for the two samples. The MS spectra taken at room temperature were adjusted by using five doublets, three of them associated to Fe{sup + 3} type sites and the other two to Fe{sup + 2} type sites. According to their isomer shift and quadrupole splitting the presence of phases like illite (detected by DRX), nontronite and biotite (not detected by XRD) can be postulated.

  9. XRD and HREM studies from the decomposition of icosahedral AlCuFe single-phase by high-energy ball milling

    International Nuclear Information System (INIS)

    Patino-Carachure, C.; Tellez-Vazquez, O.; Rosas, G.

    2011-01-01

    Highlights: → Point defects induced during milling leading to an order-disorder quasicrystal transition. → Nanoquasicrystalline regions of 12 nm are obtained. → Highly ordered i-phase with high symmetry transforms to a crystalline phase of intermetallic character and lower symmetry. - Abstract: In this investigation the Al 64 Cu 24 Fe 12 alloy was melted in an induction furnace and solidified under normal casting conditions. In order to obtain the icosahedral phase (i-phase) in a single-phase region, the as-cast sample was subject to a heat treatment at 700 deg. C under argon atmosphere. Subsequently, the i-phase was milled for different times in order to evaluate phase stability under heavy deformation. X-ray diffraction (XRD) and high-resolution electron microscopy (HREM) analysis were conducted to the structural characterization of ball-milled powders. XRD results indicated a reduction in quasicrystal size during mechanical ball milling to about 30 h. HREM analysis revealed the presence of aperiodic nano-domains, for example, with apparent fivefold symmetry axis. Therefore, the i-phase remains stable over the first 30 h of ball-milling time. However, among 30-50 h of mechanical milling the i-phase transforms progressively into β-cubic phase.

  10. XRD and HREM studies from the decomposition of icosahedral AlCuFe single-phase by high-energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Patino-Carachure, C.; Tellez-Vazquez, O. [Instituto de Investigaciones Metalurgicas, UMSNH, Edificio U, Ciudad Universitaria, Morelia, Michoacan 58000 (Mexico); Rosas, G., E-mail: grtrejo@umich.mx [Instituto de Investigaciones Metalurgicas, UMSNH, Edificio U, Ciudad Universitaria, Morelia, Michoacan 58000 (Mexico)

    2011-10-13

    Highlights: > Point defects induced during milling leading to an order-disorder quasicrystal transition. > Nanoquasicrystalline regions of 12 nm are obtained. > Highly ordered i-phase with high symmetry transforms to a crystalline phase of intermetallic character and lower symmetry. - Abstract: In this investigation the Al{sub 64}Cu{sub 24}Fe{sub 12} alloy was melted in an induction furnace and solidified under normal casting conditions. In order to obtain the icosahedral phase (i-phase) in a single-phase region, the as-cast sample was subject to a heat treatment at 700 deg. C under argon atmosphere. Subsequently, the i-phase was milled for different times in order to evaluate phase stability under heavy deformation. X-ray diffraction (XRD) and high-resolution electron microscopy (HREM) analysis were conducted to the structural characterization of ball-milled powders. XRD results indicated a reduction in quasicrystal size during mechanical ball milling to about 30 h. HREM analysis revealed the presence of aperiodic nano-domains, for example, with apparent fivefold symmetry axis. Therefore, the i-phase remains stable over the first 30 h of ball-milling time. However, among 30-50 h of mechanical milling the i-phase transforms progressively into {beta}-cubic phase.

  11. Quantitative assessment of alkali-reactive aggregate mineral content through XRD using polished sections as a supplementary tool to RILEM AAR-1 (petrographic method)

    International Nuclear Information System (INIS)

    Castro, Nélia; Sorensen, Bjørn E.; Broekmans, Maarten A.T.M.

    2012-01-01

    The mineral content of 5 aggregate samples from 4 different countries, including reactive and non-reactive aggregate types, was assessed quantitatively by X-ray diffraction (XRD) using polished sections. Additionally, electron probe microanalyzer (EPMA) mapping and cathodoluminescence (CL) were used to characterize the opal-CT identified in one of the aggregate samples. Critical review of results from polished sections against traditionally powdered specimen has demonstrated that for fine-grained rocks without preferred orientation the assessment of mineral content by XRD using polished sections may represent an advantage over traditional powder specimens. Comparison of data on mineral content and silica speciation with expansion data from PARTNER project confirmed that the presence of opal-CT plays an important role in the reactivity of one of the studied aggregates. Used as a complementary tool to RILEM AAR-1, the methodology suggested in this paper has the potential to improve the strength of the petrographic method.

  12. A novel solution-phase route for the synthesis of crystalline silver nanowires

    International Nuclear Information System (INIS)

    Liu Yang; Chu Ying; Yang Likun; Han Dongxue; Lue Zhongxian

    2005-01-01

    A unique solution-phase route was devised to synthesize crystal Ag nanowires with high aspect-ratio (8-10 nm in diameter and length up to 10 μm) by the reduction of AgNO 3 with Vitamin C in SDS/ethanol solution. The resultant nanoproducts were characterized by transmission electron microscope (TEM), X-ray diffraction (XRD) and electron diffraction (ED). A soft template mechanism was put forward to interpret the formation of metal Ag nanowires

  13. Test and Delivery of the Chemin Mineralogical Instrument for Mars Science Laboratory

    Science.gov (United States)

    Blake, D. F.; Vaniman, D.; Anderson, R.; Bish, D.; Chipera, S.; Chemtob, S.; Crisp, J.; DesMarais, D. J.; Downs, R.; Feldman, S.; hide

    2010-01-01

    The CheMin mineralogical instrument on MSL will return quantitative powder X-ray diffraction data (XRD) and qualitative X-ray fluorescence data (XRF; 14transmission geometry was chosen so that diffracted intensities in the low-20 region (5-15 deg), important for phyllosilicate identification, could be detected.

  14. In situ 2D diffraction as a tool to characterize ferroelectric and piezoelectric thin films

    Science.gov (United States)

    Khamidy, N. I.; Kovacova, V.; Bernasconi, A.; Le Rhun, G.; Vaxelaire, N.

    2017-08-01

    In this paper the application of 2D x-ray diffraction (XRD2) as a technique to characterize in situ during electrical cycling the properties of a ferroelectric and piezoelectric thin film is discussed. XRD2 is one type of XRD on which a 2D detector is used instead of a point detector. This technique enables simultaneous recording of many sample information in a much shorter time compared to conventional XRD. The discussion is focused especially on the data processing technique of the huge data acquired. The methodology to calculate an effective piezoelectric coefficient, analyze the phase and texture, and estimate the domain size and shape is described in this paper. This methodology is then applied to a lead zirconate titanate (PZT) thin film at the morphotropic phase boundary (MPB) composition (i.e. Pb[Zr0.52Ti0.48]O3) with a preferred orientation of (1 0 0). The in situ XRD2 characterization was conducted in the European synchrotron radiation facility (ESRF) in Grenoble, France. Since a high-energy beam with vertical resolution as small as 100 nm was used, a cross-sectional scan of the sample was performed over the entire thickness of the film. From these experimental results, a better understanding on the piezoelectricity phenomena in PZT thin film at MPB composition were achieved, providing original feedback between the elaboration processes and functional properties of the film.

  15. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources.

    Science.gov (United States)

    Tang, M X; Zhang, Y Y; E, J C; Luo, S N

    2018-05-01

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic-plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.

  16. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources

    Energy Technology Data Exchange (ETDEWEB)

    Tang, M. X.; Zhang, Y. Y.; E, J. C.; Luo, S. N.

    2018-04-24

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic–plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.

  17. X-ray diffraction analysis of cubic zincblende III-nitrides

    International Nuclear Information System (INIS)

    Frentrup, Martin; Lee, Lok Yi; Sahonta, Suman-Lata; Kappers, Menno J; Massabuau, Fabien; Gupta, Priti; Oliver, Rachel A; Humphreys, Colin J; Wallis, David J

    2017-01-01

    Solving the green gap problem is a key challenge for the development of future LED-based light systems. A promising approach to achieve higher LED efficiencies in the green spectral region is the growth of III-nitrides in the cubic zincblende phase. However, the metastability of zincblende GaN along with the crystal growth process often lead to a phase mixture with the wurtzite phase, high mosaicity, high densities of extended defects and point defects, and strain, which can all impair the performance of light emitting devices. X-ray diffraction (XRD) is the main characterization technique to analyze these device-relevant structural properties, as it is very cheap in comparison to other techniques and enables fast feedback times. In this review, we will describe and apply various XRD techniques to identify the phase purity in predominantly zincblende GaN thin films, to analyze their mosaicity, strain state, and wafer curvature. The different techniques will be illustrated on samples grown by metalorganic vapor phase epitaxy on pieces of 4″ SiC/Si wafers. We will discuss possible issues, which may arise during experimentation, and provide a critical view on the common theories. (topical review)

  18. Extraordinary optical transmission with tapered slits: effect of higher diffraction and slit resonance orders

    DEFF Research Database (Denmark)

    Sondergaard, T.; Bozhevolnyi, S. I.; Beermann, J.

    2012-01-01

    Transmission through thin metal films with a periodic arrangement of tapered slits is considered. Transmission maps covering a wide range of periods, film thicknesses, and taper angles are presented. The maps show resonant transmission when fundamental and higher-order slit resonances are excited...... to be in the range of 6 degrees-10 degrees. Both theory and experiments show split-peak spectra and shifted-peak spectra due to interference between a slit resonance and Rayleigh-Wood anomalies. (C) 2011 Optical Society of America...

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    It is demonstrated that the use of methanol as solvent leads to a strong enhancement of PL intensity of CdS quantum dots for use in optoelectronic devices.These products were characterized by X-ray powder diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and scanning electron microscopy ...

  20. In-vitro cytotoxicity of biosynthesized gold nanoparticles against ...

    African Journals Online (AJOL)

    The AuNPs were evaluated by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV–Vis) spectroscopy and transmission electron microscopy (TEM). They were also assessed for cytotoxicity against SW579 cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide ...

  1. X-ray Diffraction System for Advanced Materials Analysis in Research and Education

    Science.gov (United States)

    2016-05-27

    polycrystallinity and concomitant effects on thermal conductivity (κ) and thermal boundary resistance (TBR), as well as mitigating in-plane stress...important in correlating electric and magnetic transport properties with strain and oxygen deficiency. High-­‐Resolution  XRD  of  CdTe-­‐CdMgTe...directly measured by transmission electron microscopy and the barrier composition measured using atom probe tomography in partnership with Dr. Brian

  2. Study of deformation and fracture micro mechanisms of titanium alloy Ti-6Al-4V using electron microscopy and and X-ray diffraction techniques

    International Nuclear Information System (INIS)

    Morcelli, Aparecido Edilson

    2009-01-01

    This present work allowed the study of deformation and fracture micro mechanisms of titanium alloy Ti-6Al-4V, used commercially for the manufacture of metallic biomaterials. The techniques employed for the analysis of the material under study were: scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The study of the influence and behavior of the phases present in titanium alloys is important to evaluate the behavior of cracks in titanium alloys with high mechanical strength, which have fine alpha (α), beta (β) and (α±β) microstructure, linking the presence of the phases with the strength of the material. The evaluation in situ of deformation and fracture micro mechanisms were performed by TEM and was also a study of phase transformations during cooling in titanium alloys, using the techniques of bright field, dark field and diffraction of electrons in the selected area. After heat treatment differences were observed between the amount of in relation to the original microstructure of the β and α phases material for different conditions used in heat treatment applied to the alloy. The presence of lamellar microstructure formed during cooling in the β field was observed, promoting the conversion of part of the secondary alpha structure in β phase, which was trapped between the lamellar of alpha. (author)

  3. One-way optical transmission in silicon photonic crystal heterojunction with circular and square scatterers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dan, E-mail: liudanhu725@126.com [School of Physics and Mechanical & Electrical Engineering, Hubei University of Education, Wuhan, 430205 (China); Hu, Sen [School of Physics and Mechanical & Electrical Engineering, Hubei University of Education, Wuhan, 430205 (China); Gao, Yihua [Wuhan National Laboratory for Optoelectronics (WNLO), School of Physics, Huazhong University of Science and Technology (HUST), Wuhan, 430074 (China)

    2017-07-12

    A 2D orthogonal square-lattice photonic crystal (PC) heterojunction consisting of circular and square air holes in silicon is presented. Band structures are calculated using the plane wave expansion method, and the transmission properties are investigated by the finite-different time-domain simulations. Thanks to the higher diffraction orders excited when the circular and square holes are interlaced along the interface, one-way transmission phenomena can exist within wide frequency regions. The higher order diffraction is further enhanced through two different interface optimization designs proposed by modifying the PC structure of the hetero-interface. An orthogonal PC heterojunction for wide-band and efficient one-way transmission is constructed, and the maximum transmissivity is up to 78%. - Highlights: • Photonic crystal heterojunction with circular and square scatterers is first studied. • One-way transmission efficiency is closely related to the hetero-interface. • Wide-band and efficient one-way transmission is realized.

  4. Determination of Size Distributions in Nanocrystalline Powders by TEM, XRD and SAXS

    DEFF Research Database (Denmark)

    Jensen, Henrik; Pedersen, Jørgen Houe; Jørgensen, Jens Erik

    2006-01-01

    Crystallite size distributions and particle size distributions were determined by TEM, XRD, and SAXS for three commercially available TiO2 samples and one homemade. The theoretical Guinier Model was fitted to the experimental data and compared to analytical expressions. Modeling of the XRD spectra...... the size distribution obtained from the XRD experiments; however, a good agreement was obtained between the two techniques. Electron microscopy, SEM and TEM, confirmed the primary particle sizes, the size distributions, and the shapes obtained by XRD and SAXS. The SSEC78 powder and the commercially...

  5. Development of a transmission positron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Matsuya, M., E-mail: matsuya@jeol.co.jp [JEOL Ltd., 1-2 Musashino, 3-Chome, Akishima, Tokyo 196-8558 (Japan); Jinno, S. [Department of Applied Chemistry, Chiba University, Yayoi, Inage, Chiba, Chiba 263-8552 (Japan); Ootsuka, T.; Inoue, M. [JEOL Ltd., 1-2 Musashino, 3-Chome, Akishima, Tokyo 196-8558 (Japan); Kurihara, T. [High Energy Accelerator Research Organization, Oho, Tsukuba, Ibaraki 305-0801 (Japan); Doyama, M.; Inoue, M. [Teikyo University of Science and Technology, Uenohara, Yamanashi 409-0913 (Japan); Fujinami, M. [Department of Applied Chemistry, Chiba University, Yayoi, Inage, Chiba, Chiba 263-8552 (Japan)

    2011-07-21

    A practical transmission positron microscope (TPM) JEM-1011B has been developed to survey differences in the interaction of positron and electron beams with materials, and is installed in the Slow Positron Facility of High Energy Accelerator Research Organization (KEK). The TPM can share positron and electron beams, and can also be used as a transmission electron microscope (TEM). Positron transmission images up to magnification 10,000x (resolution: 50 nm) and positron diffraction patterns up to 044 family were successfully obtained by the TPM comparing them with those of electrons. The differences in material transmittances for both beams have been measured, and can be explained by the calculated results of the Monte Carlo simulation code PENELOPE-2008.

  6. Application of in situ x-ray diffraction techniques in heterogenous catalytic systems

    International Nuclear Information System (INIS)

    Sharifah Bee Abd Hamid

    2002-01-01

    A broad range of techniques is available today for the characterisation of catalysts and the investigation of catalyst reaction mechanisms. However, only a limited number of those are suitable for in situ studies, i.e experiments performed in conditions mimicking or close as possible to real operating conditions. Various commercially and in-house developed in situ X-Ray diffraction (XRD) cells have been used to obtain information on the phase and structure of materials at the initial formation stage, activation methodology, calcination, reduction and carburization. A major advantage of the in situ X-ray cells is that it allows direct observations on the decomposition of precursors leading to various phases in a controlled environment, i.e. controlled temperature and pressure under specified gases. The cells can be operated both at high temperatures and high pressures, equipped with Position Sensitive Detector (PSD), feature which was used to study phase transformation occurring during the activation of various solids. In MoO 3 , XRD results provide detailed information on the hydrogen insertion into its lattice, followed by carburization providing good understanding on the mechanism in the solid transformation leading to the metastable MoC 1 -x phase. For the Bi-SnO x systems, the environmental cell coupled with XRD and PSD allow the design of activation procedure to obtain the active Bi 2 Sn 2 O 7 . The in situ XRD technique reveals crucial information on the initial stage of oxides formations prior to condensation reaction shown in MCM-41 and titania systems. In this presentation, discussions on general achievements and problems relating to the use of in situ XRD techniques as well as of specific examples selected to illustrate the use and potential of in situ XRD are made. It is not intended to be a review of the art but a highlight of the challenges which the catalytic and material scientists face when entering the avenue. (Author)

  7. Diffraction by DNA, carbon nanotubes and other helical nanostructures

    International Nuclear Information System (INIS)

    Lucas, Amand A; Lambin, Philippe

    2005-01-01

    This review discusses the diffraction patterns of x-rays or electrons scattered by fibres of helical biological molecules and by carbon nanotubes (CNTs) from the unified point of view of the Fourier-Bessel transform of an atomic helix. This paper is intended for scientists who are not professional crystallographers. X-ray fibre diffraction patterns of Pauling's protein α-helix and of Crick and Pauling's protein coiled-coil are revisited. This is followed by a non-technical comparison between the historic x-ray diffraction patterns of the A and B conformations of DNA, which were crucial for the discovery of the double helix. The qualitative analysis of the diffraction images is supported by novel optical simulation experiments designed to pinpoint the gross structural informational content of the patterns. The spectacular helical structure of the tobacco mosaic virus determined by Rosalind Franklin and co-workers will then be described as an early example of the great power of x-ray crystallography in determining the structure of a large biomolecular edifice. After these mostly historical and didactic case studies, this paper will consider electron diffraction and transmission electron microscopy of CNTs of great current interest, focusing particularly on recent data obtained for single-wall, double-wall and scrolled nanotubes. Several points of convergence between the interpretations of the diffraction patterns of biological helices and CNTs will be emphasized

  8. Synchrotron X-ray Scattering of ZnO Nanorods: Periodic Ordering and Lattice Size

    International Nuclear Information System (INIS)

    Zhu, Z.; Andelman, T.; Yin, M.; Chen, T.; Ehrlich, S.; O'Brien, S.; Osgood, Jr. R.

    2005-01-01

    We demonstrate that synchrotron x-ray powder diffraction (XRD) is a powerful technique for studying the structure and self-organization of zinc-oxide nanostructures. Zinc-oxide nanorods were prepared by a solution-growth method that resulted in uniform nanorods with 2-nm diameter and lengths in the range 10-50 nm. These nanorods were structurally characterized by a combination of small-angle and wide-angle synchrotron XRD and transmission electron microscopy (TEM). Small-angle XRD and TEM were used to investigate nanorod self-assembly and the influence of surfactant/precursor ratio on self-assembly. Wide-angle XRD was used to study the evolution of nanorod growth as a function of synthesis time and surfactant/precursor ratio

  9. NMR determination of solvent dependent behavior and XRD structural properties of 4-carboxy phenylboronic acid: A DFT supported study

    Science.gov (United States)

    Dikmen, Gökhan; Alver, Özgür; Parlak, Cemal

    2018-04-01

    Solvent dependent structural properties of 4-carboxy phenylboronic acid (4-cpba) were investigated by X-ray diffraction (XRD) and nuclear magnetic resonance (NMR) spectroscopic methods. The molecular structure and geometric parameters were determined by some computational methods such as B3LYP/6-31 + G(3df,p), HF/aug-cc-pvtz and MP2/6-31G(d). Detailed elucidation of the structural and spectroscopic properties of 4-cpba was carried out with 1H, HETCOR and DOSY NMR experiments. Solvent effects on the structural properties were monitored on the changes of 1H NMR spectra by using various solvents and it was observed that 4-cpba shows serious structural preferences depending on the solvent used.

  10. Topology-optimized broadband surface relief transmission grating

    DEFF Research Database (Denmark)

    Andkjær, Jacob; Ryder, Christian P.; Nielsen, Peter C.

    2014-01-01

    We propose a design methodology for systematic design of surface relief transmission gratings with optimized diffraction efficiency. The methodology is based on a gradient-based topology optimization formulation along with 2D frequency domain finite element simulations for TE and TM polarized plane...

  11. X-ray diffraction patterns of thermally-reduced graphenes

    International Nuclear Information System (INIS)

    Ju, Hae-Mi; Choi, Sung-Ho; Huh, Seung-Hun

    2010-01-01

    Thermally-reduced graphenes (GPs) from graphene oxides (GOs) in the range of 200 - 800 .deg. C have been investigated by using X-ray diffraction (XRD). The temperature-dependent evolutions of the (002) peaks show that exfoliation of GO sheets occurs, along with wrinkling, at ∼200 .deg. C and that high-quality GPs are produced at ∼ 600 .deg. C (GP 600 ). These phenomena are explained by the vaporization of intercalated water molecules and the effective removal of the oxide groups of GO by thermal annealing, respectively. GP 600 exhibited a clean and sharp (002) peak corresponding to an interlayer distance of 3.392 A, which is close to that of conventional graphene (∼3.4 A). The structure of GP 600 is further discussed.

  12. Novel XRD technique and equipment for in-situ monitoring of phase transformations in lithium batteries during cycling

    International Nuclear Information System (INIS)

    Nikolov, J.; Howlett, P.

    2002-01-01

    Full text: Safe, rechargeable batteries utilising a lithium metal electrode have not been realised due to phenomena, which occur on the lithium surface during the cycling of a battery. Lithium ion conduction inhomogeneities through the surface film give rise to uneven deposition of lithium, which can result in short circuits. The large potential increase in energy density that the use of the lithium electrode represents makes the nature of the surface film of interest to battery researchers. The lithium surface is highly reactive, particularly in the case of electrodes with a rough surface deposit. This presents difficulties to researchers hoping to obtain representative measurements of the lithium surface and requires the use of environmental sample chambers and in-situ techniques. X-ray diffraction techniques have been used to probe changes in cathode materials (typically transition metal oxides) for lithium batteries, but to our knowledge has not been successfully used to study changes taking place on the lithium surface during cycling. We present early results from work we have undertaken to develop a technique for characterising the surface film on lithium battery electrodes. The instrumentation was set-up as follows. An XRD was fitted with an INEL CPS 120 position sensitive detector (PSD), multilayer mirror and environmental chamber. The latter was specially developed in our laboratory for the purpose of these experiments. The lithium cells were sealed in laminated foil. Cycled and uncycled cells were investigated. Different radiation sources were used (Cu, Co and Cr). The in-situ measurements aiming at monitoring the phase transitions of cycled/uncycled cells at different angles (including grazing angles) in time were carried out in both transmission and reflection mode. Copyright (2002) Australian X-ray Analytical Association Inc

  13. Behavior of BaCe0.9−x Zrx Y0.1O3−δ in water and ethanol suspensions

    DEFF Research Database (Denmark)

    Della Negra, Michela; Zhang, Wei; Bonanos, Nikolaos

    2014-01-01

    spectrometry. With water, leaching of barium continued for over 200 days, the duration of the test. There was no systematic difference in leaching with solutions of native pH or alkalified with NH4OH. The powders, before and after treatment, were investigated by X-ray diffraction (XRD) and transmission...... days, and XRD patterns before and after treatment did not show any structural degradation. It is concluded that ethanol is an appropriate choice as a processing solvent for tapecasting BCZY powders....

  14. Characterization of mineral phases of agricultural soil samples of Colombian coffee using Mössbauer spectroscopy and X-ray diffraction

    Science.gov (United States)

    Rodríguez, Humberto Bustos; Lozano, Dagoberto Oyola; Martínez, Yebrayl Antonio Rojas; Pinilla, Marlene Rivera; Alcázar, German Antonio Pérez

    2012-03-01

    Soil chemical analysis, X-ray diffraction (XRD) and Mössbauer spectrometry (MS) of 57Fe were used to characterize mineral phases of samples taken from the productive layer (horizon A) of agricultural coffee soil from Tolima (Colombia). Chemical analysis shows the chemical and textural parameters of samples from two different regions of Tolima, i.e., Ibagué and Santa Isabel. By XRD phases like illite (I), andesine (A) and quartz (Q) in both samples were identified. The quantity of these phases is different for the two samples. The MS spectra taken at room temperature were adjusted by using five doublets, three of them associated to Fe + 3 type sites and the other two to Fe + 2 type sites. According to their isomer shift and quadrupole splitting the presence of phases like illite (detected by DRX), nontronite and biotite (not detected by XRD) can be postulated.

  15. Characterization of mineral phases of agricultural soil samples of Colombian coffee using Mössbauer spectroscopy and X-ray diffraction

    International Nuclear Information System (INIS)

    Rodríguez, Humberto Bustos; Lozano, Dagoberto Oyola; Martínez, Yebrayl Antonio Rojas; Pinilla, Marlene Rivera; Alcázar, German Antonio Pérez

    2012-01-01

    Soil chemical analysis, X-ray diffraction (XRD) and Mössbauer spectrometry (MS) of 57 Fe were used to characterize mineral phases of samples taken from the productive layer (horizon A) of agricultural coffee soil from Tolima (Colombia). Chemical analysis shows the chemical and textural parameters of samples from two different regions of Tolima, i.e., Ibagué and Santa Isabel. By XRD phases like illite (I), andesine (A) and quartz (Q) in both samples were identified. The quantity of these phases is different for the two samples. The MS spectra taken at room temperature were adjusted by using five doublets, three of them associated to Fe  + 3 type sites and the other two to Fe  + 2 type sites. According to their isomer shift and quadrupole splitting the presence of phases like illite (detected by DRX), nontronite and biotite (not detected by XRD) can be postulated.

  16. Fe K-Edge X-ray absorption near-edge spectroscopy (XANES) and X-ray diffraction (XRD) analyses of LiFePO4 and its base materials

    Science.gov (United States)

    Latif, C.; Negara, V. S. I.; Wongtepa, W.; Thamatkeng, P.; Zainuri, M.; Pratapa, S.

    2018-03-01

    XANES analysis has been performed with the aim of knowing the Fe oxidation state in a synthesized LiFePO4 and its base materials. XANES measurements were performed at SLRI on energy around Fe K-edge. An XRD analysis has also been performed with the aim of knowing the phase composition, lattice parameters and crystallite size of the LiFePO4 as well as the base materials. From the XRD analysis, it was found that the dominating phase in the iron sand sample was Fe3O4 and the only phase found after calcination was LiFePO4. The latter phase exhibited crystallite size of 100 nm and lattice parameters a = 10.169916 Å, b = 5.919674 Å, c = 4.627893 Å. Qualitative analysis of XANES data revealed that the oxidation number of Fe in the sample before calcination was greater than that after calcination and Fe in the natural iron sand, indicated by the E0 values of 7129.2 eV, 7120.6 eV and 7124.4 eV respectively.

  17. Room temperature chemical synthesis of lead selenide thin films with preferred orientation

    Science.gov (United States)

    Kale, R. B.; Sartale, S. D.; Ganesan, V.; Lokhande, C. D.; Lin, Yi-Feng; Lu, Shih-Yuan

    2006-11-01

    Room temperature chemical synthesis of PbSe thin films was carried out from aqueous ammoniacal solution using Pb(CH3COO)2 as Pb2+ and Na2SeSO3 as Se2- ion sources. The films were characterized by a various techniques including, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), Fast Fourier transform (FFT) and UV-vis-NIR techniques. The study revealed that the PbSe thin film consists of preferentially oriented nanocubes with energy band gap of 0.5 eV.

  18. Room temperature chemical synthesis of lead selenide thin films with preferred orientation

    International Nuclear Information System (INIS)

    Kale, R.B.; Sartale, S.D.; Ganesan, V.; Lokhande, C.D.; Lin, Y.-F.; Lu, S.-Y.

    2006-01-01

    Room temperature chemical synthesis of PbSe thin films was carried out from aqueous ammoniacal solution using Pb(CH 3 COO) 2 as Pb 2+ and Na 2 SeSO 3 as Se 2- ion sources. The films were characterized by a various techniques including, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), Fast Fourier transform (FFT) and UV-vis-NIR techniques. The study revealed that the PbSe thin film consists of preferentially oriented nanocubes with energy band gap of 0.5 eV

  19. The XRD Amorphous Component in John Klein Drill Fines at Yellowknife Bay, Gale Crater, Mars

    Science.gov (United States)

    Morris, Richard V.; Ming,, Douglas W.; Blake, David; Vaniman, David; Bish, David L; Chipera, Steve; Downs, Robert; Morrison, Shaunna; Gellert, Ralf; Campbell, Iain; hide

    2013-01-01

    the position of its 021 diffraction peak is similar to that reported for John Klein. In both cases, the amorphous component has low SiO2 and MgO and high FeO + Fe2O3, P2O5, and SO3 concentrations relative to bulk sample. The chemical composition of the bulk drill fines and XRD crystalline, smectite, and amorphous components implies alteration of an initially basaltic material under near neutral conditions (not acid sulfate), with the sulfate incorporated later as veins of CaSO4 injected into the mudstone.

  20. XRD characterisation of nanoparticle size and shape distributions

    International Nuclear Information System (INIS)

    Armstrong, N.; Kalceff, W.; Cline, J.P.; Bonevich, J.

    2004-01-01

    Full text: The form of XRD lines and the extent of their broadening provide useful structural information about the shape, size distribution, and modal characteristics of the nanoparticles comprising the specimen. Also, the defect content of the nanoparticles can be determined, including the type, dislocation density, and stacking faults/twinning. This information is convoluted together and can be grouped into 'size' and 'defect' broadening contributions. Modern X-ray diffraction analysis techniques have concentrated on quantifying the broadening arising from the size and defect contributions, while accounting for overlapping of profiles, instrumental broadening, background scattering and noise components. We report on a combined Bayesian/Maximum Entropy (MaxEnt) technique developed for use in the certification of a NIST Standard Reference Material (SRM) for size-broadened line profiles. The approach used was chosen because of its generality in removing instrumental broadening from the observed line profiles, and its ability to determine not only the average crystallite size, but also the distribution of sizes and the average shape of crystallites. Moverover, this Bayesian/MaxEnt technique is fully quantitative, in that it also determines uncertainties in the crystallite-size distribution and other parameters. Both experimental and numerical simulations of size broadened line-profiles modelled on a range of specimens with spherical and non-spherical morphologies are presented to demonstrate how this information can be retrieved from the line profile data. The sensitivity of the Bayesian/MaxEnt method to determining the size distribution using varying a priori information are emphasised and discussed

  1. A simple route to synthesize multiform structures of tin oxide nanobelts and optical properties investigation

    International Nuclear Information System (INIS)

    Cheng Chuanwei; Xu Guoyue; Zhang Haiqian; Li Yingying; Luo Yan; Zhang Peigen

    2008-01-01

    Multiform structures of SnO 2 nanobelts including of zigzag, branching and straight structures have been synthesized by a simple molten-salt assisted route. The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and high resolution transmission electron microscope (HRTEM). The growth mechanism of zigzag nanobelts was proposed. A strong blue emission band centered in 425 nm was observed in the photoluminescence spectrum

  2. Compositional and quantitative microtextural characterization of historic paintings by micro-X-ray diffraction and Raman microscopy.

    Science.gov (United States)

    Romero-Pastor, Julia; Duran, Adrian; Rodríguez-Navarro, Alejandro Basilio; Van Grieken, René; Cardell, Carolina

    2011-11-15

    This work shows the benefits of characterizing historic paintings via compositional and microtextural data from micro-X-ray diffraction (μ-XRD) combined with molecular information acquired with Raman microscopy (RM) along depth profiles in paint stratigraphies. The novel approach was applied to identify inorganic and organic components from paintings placed at the 14th century Islamic University-Madrasah Yusufiyya-in Granada (Spain), the only Islamic University still standing from the time of Al-Andalus (Islamic Spain). The use of μ-XRD to obtain quantitative microtextural information of crystalline phases provided by two-dimensional diffraction patterns to recognize pigments nature and manufacture, and decay processes in complex paint cross sections, has not been reported yet. A simple Nasrid (14th century) palette made of gypsum, vermilion, and azurite mixed with glue was identified in polychromed stuccos. Here also a Christian intervention was found via the use of smalt, barite, hematite, Brunswick green and gold; oil was the binding media employed. On mural paintings and wood ceilings, more complex palettes dated to the 19th century were found, made of gypsum, anhydrite, barite, dolomite, calcite, lead white, hematite, minium, synthetic ultramarine blue, and black carbon. The identified binders were glue, egg yolk, and oil.

  3. Multielemental analyses of isomorphous Indian garnet gemstones by XRD and external pixe techniques.

    Science.gov (United States)

    Venkateswarulu, P; Srinivasa Rao, K; Kasipathi, C; Ramakrishna, Y

    2012-12-01

    Garnet gemstones were collected from parts of Eastern Ghats geological formations of Andhra Pradesh, India and their gemological studies were carried out. Their study of chemistry is not possible as they represent mixtures of isomorphism nature, and none of the individual specimens indicate independent chemistry. Hence, non-destructive instrumental methodology of external PIXE technique was employed to understand their chemistry and identity. A 3 MeV proton beam was employed to excite the samples. In the present study geochemical characteristics of garnet gemstones were studied by proton induced X-ray emission. Almandine variety of garnet is found to be abundant in the present study by means of their chemical contents. The crystal structure and the lattice parameters were estimated using X-Ray Diffraction studies. The trace and minor elements are estimated using PIXE technique and major compositional elements are confirmed by XRD studies. The technique is found very useful in characterizing the garnet gemstones. The present work, thus establishes usefulness and versatility of the PIXE technique with external beam for research in Geo-scientific methodology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Time-of-Flight Three Dimensional Neutron Diffraction in Transmission Mode for Mapping Crystal Grain Structures

    DEFF Research Database (Denmark)

    Cereser, Alberto; Strobl, Markus; Hall, Stephen A.

    2017-01-01

    constituting the material. This article presents a new non-destructive 3D technique to study centimeter-sized bulk samples with a spatial resolution of hundred micrometers: time-of-flight three-dimensional neutron diffraction (ToF 3DND). Compared to existing analogous X-ray diffraction techniques, ToF 3DND......-of-flight neutron beamline. The technique was developed and tested with data collected at the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Complex (J-PARC) for an iron sample. We successfully reconstructed the shape of 108 grains and developed an indexing procedure...

  5. Lens transmission measurement for an absolute radiation thermometer

    International Nuclear Information System (INIS)

    Hao, X.; Yuan, Z.; Lu, X.

    2013-01-01

    The lens transmission for the National Institute of Metrology of China absolute radiation thermometer is measured by a hybrid method. The results of the lens transmission measurements are 99.002% and 86.792% for filter radiometers with center wavelengths 633 nm and 900 nm, respectively. These results, after correcting for diffraction factors and the size-of-source effect when the lens is incorporated within the radiometer, can be used for measurement of thermodynamic temperature. The expanded uncertainty of the lens transmission measurement system has been evaluated. It is 1.3×10 −3 at 633 nm and 900 nm, respectively

  6. Time-of-flight neutron Bragg-edge transmission imaging of microstructures in bent steel plates

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yuhua, E-mail: yuhua.su@j-parc.jp [J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195 (Japan); Oikawa, Kenichi; Harjo, Stefanus; Shinohara, Takenao; Kai, Tetsuya; Harada, Masahide; Hiroi, Kosuke [J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195 (Japan); Zhang, Shuoyuan; Parker, Joseph Don [Neutron R& D Division, CROSS-Tokai, 162-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan); Sato, Hirotaka [Faculty of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Shiota, Yoshinori; Kiyanagi, Yoshiaki [Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603 (Japan); Tomota, Yo [Research Center for Strategic Materials, National Institute for Materials Science, Tsukuba 305-0047 (Japan)

    2016-10-15

    Neutron Bragg-edge transmission imaging makes it possible to quantitatively visualize the two-dimensional distribution of microstructure within a sample. In order to examine its application to engineering products, time-of-flight Bragg-edge transmission imaging experiments using a pulsed neutron source were performed for plastically bent plates composed of a ferritic steel and a duplex stainless steel. The non-homogeneous microstructure distributions, such as texture, crystalline size, phase volume fraction and residual elastic strain, were evaluated for the cross sections of the bent plates. The obtained results were compared with those by neutron diffraction and electron back scatter diffraction, showing that the Bragg-edge transmission imaging is powerful for engineering use.

  7. Characterization of the structural and optical properties of CuIn{sub 1−x}Ga{sub x}Se{sub 2} QJ;thin films by X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ya-Fen, E-mail: yfwu@mail.mcut.edu.tw [Department of Electronic Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan (China); Hsu, Hung-Pin [Department of Electronic Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan (China); Chen, Hung-Ing [Department of Electronic Engineering, Chang Gung University, Taoyuan 333, Taiwan (China)

    2013-10-15

    The structural and optical properties of Cu-poor CuIn{sub 1−x}Ga{sub x}Se{sub 2} thin films with different gallium contents grown using the co-evaporated technique were studied. Measurements of X-ray diffraction (XRD), temperature-dependent photoluminescence (PL), and photoreflectance (PR) were performed on the samples. The emission peaks in the PL spectra and PR spectra observed around 1.0–1.2 eV are attributed to donor–acceptor pairs and defect-related luminescence. With increasing gallium content, the linewidths of the luminescence spectra for the samples become wider, which we attribute to greater statistical disordering between indium and gallium. The structural properties of the CuIn{sub 1−x}Ga{sub x}Se{sub 2} thin films are further characterized by simulation of the XRD spectra with a theoretical model. It is found that the sample with higher gallium content exhibits less uniformity of microstructure size. The X-ray diffraction line profile analysis also shows a stronger internal strain in the sample with the higher gallium content, which is consistent with its broader microstructure size distribution. The conversion efficiency of the CuIn{sub 1−x}Ga{sub x}Se{sub 2}-based solar cells is also obtained and investigated through theoretical analysis. The experimental results coincide with the inferences given by the X-ray diffraction line profile analysis. -- Highlights: • Co-evaporated CuIn{sub 1−x}Ga{sub x}Se{sub 2} thin films with different gallium contents were studied. • XRD line profiles from the samples are analyzed by a theoretical model. • Less size uniformity and higher internal strain are obtained for high gallium sample. • The efficiency of CIGS solar cells is investigated through theoretical analysis. • The inferences from XRD spectra analysis coincide with experimental measurements.

  8. Re-examination of the crystal structure of the β-pyrochlore oxide superconductor KOs 2O 6 by X-ray and convergent-beam electron diffraction analyses

    Science.gov (United States)

    Yamaura, Jun-Ichi; Hiroi, Zenji; Tsuda, Kenji; Izawa, Koichi; Ohishi, Yasuo; Tsutsui, Satoshi

    2009-01-01

    The crystal structure of the β-pyrochlore oxide superconductor KOs 2O 6 is re-examined. A single-crystal X-ray diffraction (XRD) analysis at room temperature first revealed that the compound crystallizes in a cubic structure with the centrosymmetric space group Fd3¯m, as in conventional pyrochlore oxides. Later, however, Schuck et al. claimed a different non-centrosymmetric F4¯3m structure based on their single-crystal XRD analysis. To unambiguously determine the true crystal structure of KOs 2O 6, we carried out high-resolution synchrotron powder X-ray and convergent-beam electron diffraction measurements at room temperature. The space group was determined with high reliability to be centrosymmetric Fd3¯m, not F4¯3m. This confirms the importance of the K atom location in a high-symmetry site, which causes unusually large rattling of the K atom.

  9. Characterization of cubic ceria?zirconia powders by X-ray diffraction and vibrational and electronic spectroscopy

    Science.gov (United States)

    Sánchez Escribano, Vicente; Fernández López, Enrique; Panizza, Marta; Resini, Carlo; Gallardo Amores, José Manuel; Busca, Guido

    2003-10-01

    The X-ray diffraction (XRD) patterns and the Infrared, Raman and UV-visible spectra of CeO 2ZrO 2 powders prepared by co-precipitation are presented. Raman spectra provide evidence for the largely predominant cubic structure of the powders with CeO 2 molar composition higher than 25%. Also skeletal IR spectra allow to distinguish cubic from tetragonal phases which are instead not easily distinguished on the basis of the XRD patterns. All mixed oxides including pure ceria are strong UV absorbers although also absorb in the violet visible region. By carefully selecting their composition and treatment temperature, the onset of the radiation that they cut off can be chosen in the 425-475 nm interval. Although they are likely metastable, the cubic phases are still pure even after heating at 1173 K for 4 h.

  10. Direct synthesis and structure characterization of ultrafine CeO2 nanoparticles

    International Nuclear Information System (INIS)

    Hu Chenguo; Zhang Zuwei; Liu Hong; Gao Puxian; Wang Zhonglin

    2006-01-01

    A new method to directly synthesize single-crystalline CeO 2 nanoparticles has been developed. The advantages of the method are rapid synthesis, at normal atmosphere, 100% productive ratio and low cost, with a great potential for scale-up. X-ray diffraction (XRD) spectra showed unusual peak width versus particle size, compared with Scherrer equation predictions. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), electron diffraction and ultraviolet (UV) absorption were used to examine the particle size and microstructure to find out the cause. As a result, ultrafine particles with a size less than 6 nm were found to be self-assembled into a 'coherent interface', so that a large group of particles behave like a large single particle in XRD

  11. Controllable asymmetric transmission via gap-tunable acoustic metasurface

    Science.gov (United States)

    Liu, Bingyi; Jiang, Yongyuan

    2018-04-01

    In this work, we utilize the acoustic gradient metasurface (AGM) of a bilayer configuration to realize the controllable asymmetric transmission. Relying on the adjustable gap between the two composing layers, the metasurface could switch from symmetric transmission to asymmetric transmission at a certain gap value. The underlying mechanism is attributed to the interference between the forward diffracted waves scattered by the surface bound waves at two air-AGM interfaces, which is apparently influenced by the interlayer distance. We further utilize the hybrid acoustic elements to construct the desired gradient metasurface with a tunable gap and validate the controllable asymmetric transmission with full-wave simulations. Our work provides the solution for actively controlling the transmission property of an acoustic element, which shows potential application in acoustic communication as a dynamic tunable acoustic diode.

  12. Analysis of synchrotron X-ray diffraction patterns from fluorotic enamel samples

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Ana P.G.; Braz, Delson, E-mail: anapaulagalmeida@gmail.co [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentacao Nuclear; Colaco, Marcos V.; Barroso, Regina C., E-mail: cely@uerj.b [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Fisica; Porto, Isabel M., E-mail: belporto@ig.com.b [Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP (Brazil). Faculdade de Odontologia; Gerlach, Raquel F., E-mail: rfgerlach@forp.usp.b [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Odontologia; Droppa Junior, Roosevelt, E-mail: rdroppa@lnls.b [Associacao Brasileira de Tecnologia de Luz Sincrotron (ABTLuS), Campinas, SP (Brazil)

    2009-07-01

    With the introduction of fluoride as the main anticaries agent used in preventive dentistry, and perhaps an increase in fluoride in our food chain, dental fluorosis has become an increasing world-wide problem. Visible signs of fluorosis begin to become obvious on the enamel surface as opacities, implying some porosity in the tissue. The mechanisms that conduct the formation of fluorotic enamel are unknown, but should involve modifications in the basics physical-chemistry reactions of demineralisation and remineralisation of the enamel of the teeth, which is the same reaction of formation of the enamel's hydroxyapatite (HAp) in the maturation phase. The increase of the amount of fluoride inside of the apatite will result in gradual increase of the lattice parameters. The hexagonal symmetry seems to work well with the powder diffraction data, and the crystal structure of HAp is usually described in space group P63/m. The aim of this work is to characterize the healthy and fluorotic enamel in human tooth using technique Synchrotron X-ray diffraction in order to determine the crystal structure and crystallinity of on fluoroapatite (FAp) crystal present in fluoritic enamel. All the scattering profile measurements was carried out at the X-ray diffraction beamline (XRD1) at the National Synchrotron Light Laboratory - LNLS, Campinas, Brazil. (author)

  13. Analysis of synchrotron X-ray diffraction patterns from fluorotic enamel samples

    International Nuclear Information System (INIS)

    Almeida, Ana P.G.; Braz, Delson

    2009-01-01

    With the introduction of fluoride as the main anticaries agent used in preventive dentistry, and perhaps an increase in fluoride in our food chain, dental fluorosis has become an increasing world-wide problem. Visible signs of fluorosis begin to become obvious on the enamel surface as opacities, implying some porosity in the tissue. The mechanisms that conduct the formation of fluorotic enamel are unknown, but should involve modifications in the basics physical-chemistry reactions of demineralisation and remineralisation of the enamel of the teeth, which is the same reaction of formation of the enamel's hydroxyapatite (HAp) in the maturation phase. The increase of the amount of fluoride inside of the apatite will result in gradual increase of the lattice parameters. The hexagonal symmetry seems to work well with the powder diffraction data, and the crystal structure of HAp is usually described in space group P63/m. The aim of this work is to characterize the healthy and fluorotic enamel in human tooth using technique Synchrotron X-ray diffraction in order to determine the crystal structure and crystallinity of on fluoroapatite (FAp) crystal present in fluoritic enamel. All the scattering profile measurements was carried out at the X-ray diffraction beamline (XRD1) at the National Synchrotron Light Laboratory - LNLS, Campinas, Brazil. (author)

  14. Transmission electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1997-01-01

    Transmission Electron Microscopy presents the theory of image and contrast formation, and the analytical modes in transmission electron microscopy. The principles of particle and wave optics of electrons are described. Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast. Also discussed are the kinematical and dynamical theories of electron diffraction and their applications for crystal-structure analysis and imaging of lattices and their defects. X-ray micronanalysis and electron energy-loss spectroscopy are treated as analytical methods. Specimen damage and contamination by electron irradiation limits the resolution for biological and some inorganic specimens. This fourth edition includes discussion of recent progress, especially in the area of Schottky emission guns, convergent-beam electron diffraction, electron tomography, holography and the high resolution of crystal lattices.

  15. Deactivation of Zeolite Catalyst H-ZSM-5 during Conversion of Methanol to Gasoline: Operando Time- and Space-Resolved X-ray Diffraction.

    Science.gov (United States)

    Rojo-Gama, Daniel; Mentel, Lukasz; Kalantzopoulos, Georgios N; Pappas, Dimitrios K; Dovgaliuk, Iurii; Olsbye, Unni; Lillerud, Karl Petter; Beato, Pablo; Lundegaard, Lars F; Wragg, David S; Svelle, Stian

    2018-03-15

    The deactivation of zeolite catalyst H-ZSM-5 by coking during the conversion of methanol to hydrocarbons was monitored by high-energy space- and time-resolved operando X-ray diffraction (XRD) . Space resolution was achieved by continuous scanning along the axial length of a capillary fixed bed reactor with a time resolution of 10 s per scan. Using real structural parameters obtained from XRD, we can track the development of coke at different points in the reactor and link this to a kinetic model to correlate catalyst deactivation with structural changes occurring in the material. The "burning cigar" model of catalyst bed deactivation is directly observed in real time.

  16. Nanomechanical study of amorphous and polycrystalline ALD HfO2 thin films

    Science.gov (United States)

    K. Tapily; J.E. Jakes; D. Gu; H. Baumgart; A.A. Elmustafa

    2011-01-01

    Thin films of hafnium oxide (HfO2) were deposited by atomic layer deposition (ALD). The structural properties of the deposited films were characterised by transmission electron microscopy (TEM) and X-ray diffraction (XRD). We investigated the effect of phase transformations induced by thermal treatments on the mechanical properties of ALD HfO

  17. Transmission Electron Microscopy (TEM) Sample Preparation of Si(1-x)Gex in c-Plane Sapphire Substrate

    Science.gov (United States)

    Kim, Hyun Jung; Choi, Sang H.; Bae, Hyung-Bin; Lee, Tae Woo

    2012-01-01

    The National Aeronautics and Space Administration-invented X-ray diffraction (XRD) methods, including the total defect density measurement method and the spatial wafer mapping method, have confirmed super hetero epitaxy growth for rhombohedral single crystalline silicon germanium (Si1-xGex) on a c-plane sapphire substrate. However, the XRD method cannot observe the surface morphology or roughness because of the method s limited resolution. Therefore the authors used transmission electron microscopy (TEM) with samples prepared in two ways, the focused ion beam (FIB) method and the tripod method to study the structure between Si1-xGex and sapphire substrate and Si1?xGex itself. The sample preparation for TEM should be as fast as possible so that the sample should contain few or no artifacts induced by the preparation. The standard sample preparation method of mechanical polishing often requires a relatively long ion milling time (several hours), which increases the probability of inducing defects into the sample. The TEM sampling of the Si1-xGex on sapphire is also difficult because of the sapphire s high hardness and mechanical instability. The FIB method and the tripod method eliminate both problems when performing a cross-section TEM sampling of Si1-xGex on c-plane sapphire, which shows the surface morphology, the interface between film and substrate, and the crystal structure of the film. This paper explains the FIB sampling method and the tripod sampling method, and why sampling Si1-xGex, on a sapphire substrate with TEM, is necessary.

  18. Thermal decomposition of dolomite under CO2: insights from TGA and in situ XRD analysis.

    Science.gov (United States)

    Valverde, Jose Manuel; Perejon, Antonio; Medina, Santiago; Perez-Maqueda, Luis A

    2015-11-28

    Thermal decomposition of dolomite in the presence of CO2 in a calcination environment is investigated by means of in situ X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The in situ XRD results suggest that dolomite decomposes directly at a temperature around 700 °C into MgO and CaO. Immediate carbonation of nascent CaO crystals leads to the formation of calcite as an intermediate product of decomposition. Subsequently, decarbonation of this poorly crystalline calcite occurs when the reaction is thermodynamically favorable and sufficiently fast at a temperature depending on the CO2 partial pressure in the calcination atmosphere. Decarbonation of this dolomitic calcite occurs at a lower temperature than limestone decarbonation due to the relatively low crystallinity of the former. Full decomposition of dolomite leads also to a relatively low crystalline CaO, which exhibits a high reactivity as compared to limestone derived CaO. Under CO2 capture conditions in the Calcium-Looping (CaL) process, MgO grains remain inert yet favor the carbonation reactivity of dolomitic CaO especially in the solid-state diffusion controlled phase. The fundamental mechanism that drives the crystallographic transformation of dolomite in the presence of CO2 is thus responsible for its fast calcination kinetics and the high carbonation reactivity of dolomitic CaO, which makes natural dolomite a potentially advantageous alternative to limestone for CO2 capture in the CaL technology as well as SO2in situ removal in oxy-combustion fluidized bed reactors.

  19. Microstructural characterization of copper based alloys produced by reactive milling; caracterizacion microestructural de aleaciones base cobre obtenidas mediante molienda reactiva

    Energy Technology Data Exchange (ETDEWEB)

    Palma, R.; Sepulveda, A.; Zuniga, A.; Donoso, E.; Dianez, M. J.; Criado, J. M.

    2010-07-01

    The micro and nano structure of Cu-Al, Cu-V and Cu-Ti alloys produced by reactive milling were analyzed using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Samples with different milling times (t= 0, 10, 20 and 30 h) were considered. The grain size, dislocation density and residual micro strain were evaluated form the XRD data using the Williamson-Hall and Klug-Alexander methods. The evolution of texture as a function of milling time was also studied using XRD. It was found, using TEM, that the grain size and dispersoid size were nano metric in all three alloys considered. (Author) 12 refs.

  20. The transmission diffraction patterns of silicon implanted with high-energy α-particles

    International Nuclear Information System (INIS)

    Wieteska, K.; Wierzchowski, W.

    1995-01-01

    2 mm thick silicon wafers, implanted with 4.8 MeV α-particles are studied by means of transmission section topography and additionally by Lang and double-crystal methods. It was found that all three methods produced a negligible contrast in the symmetric transmission reflection apart from some fragments of the implanted area's boundaries. The interference fringes were observed in the case of asymmetric reflections. The asymmetric section topographs revealed distinct interference fringes, which cannot be explained in terms of simple bicrystal models. In particular, the curvature of these fringes may be interpreted as being due to the change in the implanted ion dose along the beam intersecting the crystal. Some features of the fringe pattern were reproduced by numerical integration of Takagi-Taupin equations. (author)

  1. XRD is the main key to the mechanochemical processing

    International Nuclear Information System (INIS)

    Mozaffari, M.; Amighian, J.

    2000-01-01

    Mechanochemical processing is a process that makes use of chemical reactions mechanically activated by high-energy ball milling (HEBM). This technique has been the subject of great interest in recent years due to its promise for producing improved novel materials. Ultra fine powders in the range 10-100 nm can be obtained by mixing the right ratio of the components, appropriate for a desired phase. These raw materials together with several hardened-steel vial and milled for an optimum time using Spex or Planetary mills. In this process 2 factors, milling time and the ball to powder mass ratio, should carefully be optimized. These will be checked by successive XRD patterns. To see the ability of XRD in this technique, some single phase Ni-Al and Mn ferrites were prepared. The main key to the formation of different phases at any stage of processing was XRD patterns. Also by using Scherrer formula it was possible to measure the particle size of the milled powders. (Author)

  2. Real time neutron diffraction and NMR of the Empress II glass-ceramic system.

    Science.gov (United States)

    O'Donnell, M D; Hill, R G; Karpukhina, N; Law, R V

    2011-10-01

    This study reports real time neutron diffraction on the Empress II glass-ceramic system. The commercial glass-ceramics was characterized by real time neutron diffraction, ³¹P and ²⁹Si solid-state MAS-NMR, DSC and XRD. On heating, the as-received glass ceramic contained lithium disilicate (Li₂Si₂O₅), which melted with increasing temperature. This was revealed by neutron diffraction which showed the Bragg peaks for this phase had disappeared by 958°C in agreement with thermal analysis. On cooling lithium metasilicate (Li₂SiO₃) started to form at around 916°C and a minor phase of cristobalite at around 852°C. The unit cell volume of both Li-silicate phases increased linearly with temperature at a rate of +17×10⁻³ ų.°C⁻¹. Room temperature powder X-ray diffraction (XRD) of the material after cooling confirms presence of the lithium metasilicate and cristobalite as the main phases and shows, in addition, small amount of lithium disilicate and orthophosphate. ³¹P MAS-NMR reveals presence of the lithiorthophosphate (Li₃PO₄) before and after heat treatment. The melting of lithium disilicate on heating and crystallisation of lithium metasilicate on cooling agree with endothermic and exotermic features respectively observed by DSC. ²⁹Si MAS-NMR shows presence of lithium disilicate phase in the as-received glass-ceramic, though not in the major proportion, and lithium metasilicate in the material after heat treatment. Both phases have significantly long T₁ relaxation time, especially the lithium metasilicate, therefore, a quantitative analysis of the ²⁹Si MAS-NMR spectra was not attempted. Significance. The findings of the present work demonstrate importance of the commercially designed processing parameters in order to preserve desired characteristics of the material. Processing the Empress II at a rate slower than recommended 60°C min⁻¹ or long isothermal hold at the maximal processing temperature 920°C can cause

  3. Tolerance analysis on diffraction efficiency and polychromatic integral diffraction efficiency for harmonic diffractive optics

    Science.gov (United States)

    Shan, Mao

    2016-10-01

    In this dissertation, the mathematical model of effect of manufacturing errors including microstructure relative height error and relative width error on diffraction efficiency for the harmonic diffractive optical elements (HDEs) is set up. According to the expression of the phase delay and diffraction efficiency of the HDEs, the expression of diffraction efficiency of refraction and diffractive optical element with the microstructure height and periodic width errors in fabrication process is presented in this paper. Furthermore, the effect of manufacturing errors on diffraction efficiency for the harmonic diffractive optical elements is studied, and diffraction efficiency change is analyzed as the relative microstructure height-error in the same and in the opposite sign as well as relative width-error in the same and in the opposite sign. Example including infrared wavelength with materials GE has been discussed in this paper. Two kinds of manufacturing errors applied in 3.7 4.3um middle infrared and 8.7-11.5um far infrared optical system which results in diffraction efficiency and PIDE of HDEs are studied. The analysis results can be used for manufacturing error control in micro-structure height and periodic width. Results can be used for HDEs processing.

  4. The application of x-ray fluorescence and diffraction to the characterization of environmental assessment samples

    International Nuclear Information System (INIS)

    Censullo, A.C.; Briden, F.E.

    1982-01-01

    Some of the results of tests on environmental assessment samples are reported on. The utility of the J.W. Criss fundamental parameters computer program is evaluated for samples in which only one standard per element was used and where the standard matrix did not strictly resemble the unknown matrix. The environmental significance of a sample is dependent not only on its elemental composition, but also on the species or phases which the elements comprise. X-ray powder diffraction may be used to advantage for speciation. Multi-phase environmental assessment samples are amenable to XRD interpretation. Some results of the application of the Joint Committee on Power Diffraction Standards computer interpretatin of typical environmental samples are discussed. They were shown to contribute to the specification of the complex samples that are encountered in environmental assessments

  5. The primary extinction and static Debye-Waller factor in the characterization of textured nickel by X-ray diffraction; La extincion primaria y el factor estatico de Debye-Waller en la caracterizacion de niquel con textura mediante difraccion de rayos X

    Energy Technology Data Exchange (ETDEWEB)

    Kryshtab, T.; Palacios G, J. [Instituto Politecnico Nacional, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, 07738 Mexico D. F. (Mexico); Cadena A, A. [Instituto Politecnico Nacional, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Av. IPN s/n, 07738 Mexico D. F. (Mexico); Kryvko, A., E-mail: kryshtab@gmail.com [Instituto Politecnico Nacional, Escuela Superior de Ingenieria Mecanica y Electrica, Unidad Zacatenco, 07360 Mexico D. F. (Mexico)

    2015-07-01

    The texture analysis using X-ray diffraction (XRD) implies measurement of pole figures (Pf) from the diffracted intensities considering the model of kinematical dispersion. The extinction phenomenon results in a decrease of diffracted intensity and that in turn in a decrease of pole densities (Pds). The phenomenon appears in the kinematical theory of XRD as the primary extinction and the secondary extinction to characterize the loss of intensity of kinematical dispersion. In turn, the static Debye-Waller factor is an integral characteristic of defects in crystals that is introduced in the kinematical theory of XRD and also is used in dynamical theory of XRD. In this work the correlation between the primary extinction coefficient and the static Debye-Waller factor in the case of textured nickel was determined. The value of static Debye-Waller factor was determined from the value of the calculated primary extinction coefficient. For the evaluation there were used Pds in the maxima of Pf obtained for 111 and 200 reflections with Mo Kα radiation, and the Pds in the maxima of Pf obtained for the first and second orders of these reflections with Cu Kα and Co Kα radiations. There were calculated the dislocation densities in grains using values of static Debye-Waller factor and the extinction coefficients. The dislocation densities calculated from these two characteristics are practically equal. (Author)

  6. Thermal expansion studies on Inconel-600[reg] by high temperature X-ray diffraction

    International Nuclear Information System (INIS)

    Raju, S.; Sivasubramanian, K.; Divakar, R.; Panneerselvam, G.; Banerjee, A.; Mohandas, E.; Antony, M.P.

    2004-01-01

    The lattice thermal expansion characteristics of Inconel-600[reg] have been studied by high temperature X-ray diffraction (HT-XRD) technique in the temperature range 298-1200 K. Altogether four experimental runs were conducted on thin foils of about 75-100 μm thickness. The diffraction profiles have been accurately calibrated to offset the shift in 2θ values introduced by sample buckling at elevated temperatures. The corrected lattice parameter data have been used to estimate the instantaneous and mean linear thermal expansion coefficients as a function of temperature. The thermal expansion values estimated in the present study show a fair degree of agreement with other existing dilatometer based bulk thermal expansion estimates. The lattice parameter for this alloy at 300 K is found to be 0.3549(1) nm. The mean linear thermal expansivity is found to be 11.4 x 10 -6 K -1

  7. X-ray diffraction study of the mineralogy of microinclusions in fibrous diamond

    Science.gov (United States)

    Smith, Evan; Kopylova, Maya; Dubrovinksy, Leonid

    2010-05-01

    Fibrous diamond, occurring both as cuboids and as coatings over non-fibrous diamond nuclei, is translucent due to the presence of millions of sub-micron-sized mineral and fluid inclusions. Diamond is strong and relatively inert, making it an excellent vessel to preserve trapped materials. These microinclusions represent direct samples of natural diamond-forming mantle fluids, and are critical for our understanding of diamond genesis. Traditionally, infrared spectroscopy, Raman spectroscopy, secondary ion mass spectrometry, electron microprobe, and FIB-TEM techniques have proven to be effective for the study of microinclusions in diamond. The abundance and random orientation of included minerals in fibrous diamond make them amenable to a powder-type X-ray diffraction (XRD) technique. This technique provides an accurate way to identify included minerals. It also has the advantage of analyzing thousands of inclusions simultaneously, rather than analyzing one inclusion at a time, as with common FIB-TEM techniques. XRD provides a bulk analysis, giving a superior measure of relative abundances of included minerals, as well as potentially accounting for small quantities of minerals that might otherwise be overlooked. We studied fibrous cuboid diamonds with microinclusions from the Democratic Republic of Congo (DRC) (23 samples), Brazil (4 samples), Jericho (1 sample), and Wawa conglomerates (9 samples). XRD analysis was performed at the Bayerisches Geoinstitut (BGI), University of Bayreuth, Germany. The unique XRD setup consists of a RIGAKU FR-D high-brilliance source, OSMIC Inc. Confocal Max-Flux optics, and a SMART APEX 4K CCD area detector. Preliminary XRD studies of microinclusions 8 fibrous diamonds from the DRC showed a prevalence of silicates with structural and coordinated H2O. Sheet silicates constituted 9 out of 13 detected minerals, with phlogopite-biotite micas being present in 4 out of 8 samples. Other detected minerals were 2 chlorite minerals, 2 clay

  8. Heat treatment evaluation of steel ASTM A-131 grade A by X-Ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira Junior, Francisco; Feio, Luciana Gaspar; Costa, Ednelson Silva; Rodrigues, Lino Alberto Soares; Braga, Eduardo Magalhaes, E-mail: juniorferrer93@gmail.com [Universidade Federal do Pará (UFPA), Belém, PA (Brazil)

    2016-07-01

    Full text: This study evaluates the residual stress of naval steel ASTM A-131 grade A before and after heat treatment. Residual stresses were determined by the technique of X-ray diffraction (XRD). Before heat treatment the residual stress measurements were made at 36 (thirty six) points distributed in a specimen with dimensions of 400 mm long, 200 mm wide and 95 mm thick, then the plate under analysis was brought to the oven for the implementation of heat treatment. To check the performance of the heat treatment, the plate was again subjected to XRD measurements of the same points previously measured in order to compare the residual stresses. As result, there was a reduction of residual stresses with the application of heat treatment. References: [1] COLPAERT, H. Metalografia dos Produtos Siderurgicos Comuns. 4 Edição. Editora Blucher. Saõ Paulo, SP, 2008. [2] HILL, R. Princípios de Metalurgia Física, 1992. (author)

  9. Synthesis and Cell Seeding Assessment of Novel Biphasic Nano Powder in the CaO–MgO–SiO2 System for Bone Implant Application

    Directory of Open Access Journals (Sweden)

    Kazem Marzban

    2017-02-01

    Full Text Available Objective(s: CaO–MgO–SiO2 system bioceramics possess good characteristics for hard tissue engineering applications. The aim of the study was to synthesize the nano powder by using a sol-gel method and evaluate of bioactivity in the cells culture. Methods: To characterize of powder X-ray diffraction (XRD, transmission electron microscopy (TEM and to evaluate the bioactivity sample cell seeding and methylthiazol tetrazolium (MTT assay were performed. Results: X-ray diffraction (XRD analysis showed that the biphasic powder was obtained at 1300°C for 2 h by using a sol-gel method. Transmission electron microscopy (TEM image showed that powder particle size was about 45 nm. Besides, cell culture results indicated that the percentage of viability values was increased by the extension of period. Conclusions: found that the sample is cytocompatible and has cell proliferation potential in culture medium. The present study demonstrates that, the biphasic CaO–MgO–SiO2 system can be used to achieve novel bioactive materials for bone implant application.

  10. Ni@Fe2O3 heterodimers: controlled synthesis and magnetically recyclable catalytic application for dehalogenation reactions

    Science.gov (United States)

    Nakhjavan, Bahar; Tahir, Muhammad Nawaz; Natalio, Filipe; Panthöfer, Martin; Gao, Haitao; Dietzsch, Michael; Andre, Rute; Gasi, Teuta; Ksenofontov, Vadim; Branscheid, Robert; Kolb, Ute; Tremel, Wolfgang

    2012-07-01

    Ni@Fe2O3 heterodimer nanoparticles (NPs) were synthesized by thermal decomposition of organometallic reactants. After functionalization, these Ni@Fe2O3 heterodimers became water soluble. The pristine heterodimeric NPs were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Mössbauer spectroscopy and magnetic susceptibility measurements. A special advantage of the heterodimers lies in the fact that nanodomains of different composition can be used as catalysts for the removal of environmentally hazardous halogenated pollutants.Ni@Fe2O3 heterodimer nanoparticles (NPs) were synthesized by thermal decomposition of organometallic reactants. After functionalization, these Ni@Fe2O3 heterodimers became water soluble. The pristine heterodimeric NPs were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Mössbauer spectroscopy and magnetic susceptibility measurements. A special advantage of the heterodimers lies in the fact that nanodomains of different composition can be used as catalysts for the removal of environmentally hazardous halogenated pollutants. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr12121b

  11. Synthesis and characterization of Ce, Cu co-doped ZnS nanoparticles

    International Nuclear Information System (INIS)

    Harish, G.S.; Sreedhara Reddy, P.

    2015-01-01

    Ce, Cu co-doped ZnS nanoparticles were prepared at room temperature using a chemical co-precipitation method. The prepared nanoparticles were characterized by X- ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and high resolution Raman spectroscopic techniques. Transmission electron microscopy (TEM) and X-ray diffraction studies showed that the diameter of the particles was around 2–3 nm. Broadened XRD peaks revealed the formation of nanoparticles with a face centered cubic (fcc) structure. DRS studies confirmed that the band gap increased with an increase in the dopant concentration. The Raman spectra of undoped and Ce, Cu ions co-doped ZnS nanoparticles showed longitudinal optical mode and transverse optical mode. Compared with the Raman modes (276 and 351 cm −1 ) of undoped ZnS nanoparticles, the Raman modes of Ce, Cu co- doped ZnS nanoparticles were slightly shifted towards lower frequency. PL spectra of the samples showed remarkable enhancement in the intensity upon doping

  12. Synthesis and optical properties of Mg-Al layered double hydroxides precursor powders

    Directory of Open Access Journals (Sweden)

    Chia-Hsuan Lin

    2017-12-01

    Full Text Available The synthesis and optical properties of Mg-Al layered double hydroxide (LDH precursor powders were investigated using X-ray diffraction (XRD, Fourier transform-infrared (FT-IR spectroscopy, transmission electron microscopy (TEM, selected area electron diffraction (SAED, high-resolution TEM (HRTEM, UV-transmission spectrometer, and fluorescence spectrophotometer. The FT-IR results show that the intense absorption at around 1363–1377 cm-1 can be assigned to the antisymmetric ν3 mode of interlayer carbonate anions because the LDH phase contains some CO32-. The XRD results show that all of the Mg-Al LDH precursor powders contain only a single phase of [Mg0.833Al0.167(OH2](CO30.083·(H2O0.75 but have broad and weak intensities of peaks. All of Mg-Al LDHs precursor powders before calcination have the same photoluminescence (PL spectra. Moreover, these spectra were excited at λex = 235 nm, and the broad emission band was in the range 325-650 nm. In the range, there were relatively strong intensity at around 360, 407 and 510 nm, respectively.

  13. Room temperature chemical synthesis of lead selenide thin films with preferred orientation

    Energy Technology Data Exchange (ETDEWEB)

    Kale, R.B. [Department of Chemical Engineering, National Tsing-Hua University, Hsin-Chu, Taiwan 30043 (China)]. E-mail: rb_kale@yahoo.co.in; Sartale, S.D. [Hahn Meitner Institute, Glienicker Strasse-100, D-14109 Berlin (Germany); Ganesan, V. [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452017 (India); Lokhande, C.D. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416004 (India); Lin, Y.-F. [Department of Chemical Engineering, National Tsing-Hua University, Hsin-Chu, Taiwan 30043 (China); Lu, S.-Y. [Department of Chemical Engineering, National Tsing-Hua University, Hsin-Chu, Taiwan 30043 (China)]. E-mail: sylu@mx.nthu.edu.tw

    2006-11-15

    Room temperature chemical synthesis of PbSe thin films was carried out from aqueous ammoniacal solution using Pb(CH{sub 3}COO){sub 2} as Pb{sup 2+} and Na{sub 2}SeSO{sub 3} as Se{sup 2-} ion sources. The films were characterized by a various techniques including, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), Fast Fourier transform (FFT) and UV-vis-NIR techniques. The study revealed that the PbSe thin film consists of preferentially oriented nanocubes with energy band gap of 0.5 eV.

  14. Angularly-selective transmission imaging in a scanning electron microscope.

    Science.gov (United States)

    Holm, Jason; Keller, Robert R

    2016-08-01

    This work presents recent advances in transmission scanning electron microscopy (t-SEM) imaging control capabilities. A modular aperture system and a cantilever-style sample holder that enable comprehensive angular selectivity of forward-scattered electrons are described. When combined with a commercially available solid-state transmission detector having only basic bright-field and dark-field imaging capabilities, the advances described here enable numerous transmission imaging modes. Several examples are provided that demonstrate how contrast arising from diffraction to mass-thickness can be obtained. Unanticipated image contrast at some imaging conditions is also observed and addressed. Published by Elsevier B.V.

  15. Development of an Innovative XRD-DRIFTS Prototype Allowing Operando Characterizations during Fischer-Tropsch Synthesis over Cobalt-Based Catalysts under Representative Conditions

    Directory of Open Access Journals (Sweden)

    Scalbert Julien

    2015-03-01

    Full Text Available An original system combining both X-Ray Diffraction and diffuse reflectance infrared Fourier transform spectroscopy was developed with the aim to characterize Fischer-Tropsch catalysts in relevant reaction conditions. The catalytic properties of a model PtCo/silica catalyst tested with this prototype have shown to be in the same range of those obtained in similar conditions with classical fixed-bed reactors. No bulk cobalt oxidation nor sintering were observed on operando XRD patterns. The formation of linear carbonyls and adsorbed hydrocarbons species at the surface of the catalyst was observed on operando DRIFT spectra. The surface of the catalyst was also suspected to be covered with carbon species inducing unfavorable changes in selectivity.

  16. Characterization of nanocomposite NdFeB permanent magnetic materials

    International Nuclear Information System (INIS)

    Mat Husin Salleh; Hussain, P.; Mohammad, M.; Abd Aziz Mohamed

    2005-01-01

    The following topics were discussed: Introduction to NdFeB magnet, grain size measurement using XRD (X-ray diffraction), FESEM , TEM (Transmission Electron Microscopy) and SANS (Small-angle Neutron Scattering). The objective of the project are to analyze the structure of nano-crystallite formed in the melt spun ribbons after annealing by XRD, FESEM,TEM and SANS, to study the magnetic properties of nano-composite NdFeB melt spun ribbons and their bonded magnet and possible usage in small motor to replace the conventional NdFeB bonded magnet

  17. Study of the mechanisms involved in reactive silica

    International Nuclear Information System (INIS)

    Boinski, Frederic; Khouchaf, Lahcen; Tuilier, Marie-Helene

    2010-01-01

    The microstructure of a heterogeneous SiO 2 submitted to a depolymerisation process is studied using Transmission Electron Microscope (TEM), Environmental SEM (ESEM), and X-ray diffraction (XRD). With ESEM the formation of micro domain induced by the dissolution phenomena is shown. XRD shows the formation of a halo that is associated with the formation of amorphous phase. The parameters 'position and FWHM' of the halo, enabled us to show the evolution of the disorderly phase when the reaction progresses. The hypothesis of formation of nanoparticles with different structural states was confirmed by the TEM.

  18. Characterization of calcium crystals in Abelia using x-ray diffraction and electron microscopes

    Science.gov (United States)

    Localization, chemical composition, and morphology of calcium crystals in leaves and stems of Abelia mosanensis and A. ×grandiflora were analyzed with a variable pressure scanning electron microscope (VP-SEM) equipped with an X-ray diffraction system, low temperature SEM (LT-SEM) and a transmission ...

  19. X-Ray Diffraction Profile Analysis for Characterizing Isothermal Aging Behavior of M250 Grade Maraging Steel

    Science.gov (United States)

    Mahadevan, S.; Jayakumar, T.; Rao, B. P. C.; Kumar, Anish; Rajkumar, K. V.; Raj, Baldev

    2008-08-01

    X-ray diffraction (XRD) studies were carried out to characterize aging behavior of M250 grade maraging steel samples subjected to isothermal aging at 755 K for varying durations of 0.25, 1, 3, 10, 40, 70, and 100 hours. Earlier studies had shown typical features of precipitation hardening, wherein the hardness increased to a peak value due to precipitation of intermetallics and decreased upon further aging (overaging) due to reversion of martensite to austenite. Intermetallic precipitates, while coherent, are expected to increase the microstrain in the matrix. Hence, an attempt has been made in the present study to understand the microstructural changes in these samples using XRD line profile analysis. The anisotropic broadening with diffraction angle observed in the simple Williamson Hall (WH) plot has been addressed using the modified WH (mWH) approach, which takes into account the contrast caused by dislocations on line profiles, leading to new scaling factors in the WH plot. The normalized mean square strain and crystallite size estimated from mWH have been used to infer early precipitation and to characterize aging behavior. The normalized mean square strain has been used to determine the Avrami exponent in the Johnson Mehl Avrami (JMA) equation, which deals with the kinetics of precipitation. The Avrami exponent thus determined has matched well with values found by other methods, as reported in literature.

  20. Strain/size analysis in ternary compounds AgIn{sub 5} VI{sub 8} (Vi = S, Se, Te) by X-ray diffraction; Analisis de tension/tamano en compuestos ternarios AgIn{sub 5} VI{sub 8} (VI = S, Se, Te) mediante difraccion de rayos X

    Energy Technology Data Exchange (ETDEWEB)

    Fermin, J. R.; Salcedo, D. Y.; Durante R, C.; Castro, J. A. [Universidad del Zulia, Facultad Experimental de Ciencias, Departamento de Fisica, Maracaibo, Zulia (Venezuela, Bolivarian Republic of)

    2017-11-01

    In this work, we have study the microstructural properties of the ternary compounds AgIn{sub 5} VI{sub 8} (Vi = S, Se, Te) by X-ray diffraction technique (XRD). The linewidth of the XRD profile is measured as function of the diffraction angle. Structural parameters such as, average grain size, micro strains, and crystalline dislocation density, are obtained on the framework of a strain/size analysis based on the modified Scherrer equation for Gaussian profiles. The crystalline dislocation arrange according to a Gaussian distribution function, indicating that these dislocations are randomly distributed within the grains. (Author)

  1. XRD and SEM/EDS characterization of coconut fibers in raw and treated forms used in the treatment of strontium in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, Heverton C.O.; Garcia, Rafael H.L.; Ferreira, Robson J.; Silva, Flavia R.O.; Potiens Junior, Ademar J.; Sakata, Solange K., E-mail: sksakata@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    {sup 90}Sr, a radioactive isotope of strontium, is one of the fission products and quite often present in the radioactive waste produced by nuclear power plants. Recently, the removal efficiency of strontium by treated coconut fibers was evaluated and reached up to 95% in an aqueous solution. This work presents the characterization of raw and treated coconut fibers with different concentrations of hydrogen peroxide in basic medium using X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive spectroscopy (SEM / EDS). The analysis of X-ray diffraction shows a crystallinity of 37.6% for raw coconut fiber and crystallinity of 45.4% and 50.6% for coconut fibers 1 and 2, respectively. These results showed that the different degrees of degradation of organic matter can affect the crystallinity of the treated. This study of morphology and crystallinity of theses biosorbent materials with strontium will help in comprehension of the effects of alkaline hydrogen peroxide treatment and it will demonstrate the potential of strontium uptake by coconut fibers. (author)

  2. XRD and SEM/EDS characterization of coconut fibers in raw and treated forms used in the treatment of strontium in aqueous solution

    International Nuclear Information System (INIS)

    Fonseca, Heverton C.O.; Garcia, Rafael H.L.; Ferreira, Robson J.; Silva, Flavia R.O.; Potiens Junior, Ademar J.; Sakata, Solange K.

    2015-01-01

    90 Sr, a radioactive isotope of strontium, is one of the fission products and quite often present in the radioactive waste produced by nuclear power plants. Recently, the removal efficiency of strontium by treated coconut fibers was evaluated and reached up to 95% in an aqueous solution. This work presents the characterization of raw and treated coconut fibers with different concentrations of hydrogen peroxide in basic medium using X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive spectroscopy (SEM / EDS). The analysis of X-ray diffraction shows a crystallinity of 37.6% for raw coconut fiber and crystallinity of 45.4% and 50.6% for coconut fibers 1 and 2, respectively. These results showed that the different degrees of degradation of organic matter can affect the crystallinity of the treated. This study of morphology and crystallinity of theses biosorbent materials with strontium will help in comprehension of the effects of alkaline hydrogen peroxide treatment and it will demonstrate the potential of strontium uptake by coconut fibers. (author)

  3. Thermal expansion coefficient measurement from electron diffraction of amorphous films in a TEM.

    Science.gov (United States)

    Hayashida, Misa; Cui, Kai; Malac, Marek; Egerton, Ray

    2018-05-01

    We measured the linear thermal expansion coefficients of amorphous 5-30 nm thick SiN and 17 nm thick Formvar/Carbon (F/C) films using electron diffraction in a transmission electron microscope. Positive thermal expansion coefficient (TEC) was observed in SiN but negative coefficients in the F/C films. In case of amorphous carbon (aC) films, we could not measure TEC because the diffraction radii required several hours to stabilize at a fixed temperature. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  4. Effect of microwave treatment on structure of binders based on sodium carboxymethyl starch: FT-IR, FT-Raman and XRD investigations.

    Science.gov (United States)

    Kaczmarska, Karolina; Grabowska, Beata; Spychaj, Tadeusz; Zdanowicz, Magdalena; Sitarz, Maciej; Bobrowski, Artur; Cukrowicz, Sylwia

    2018-06-15

    The paper deals with the influence of the microwave treatment on sodium carboxymethyl starch (CMS-Na) applied as a binder for moulding sands. The Fourier transformation infrared spectrometry (FT-IR), Raman spectroscopy (FT-Raman) and XRD analysis data of native potato starch and three different carboxymethyl starches (CMS-Na) with various degree of substitution (DS) before and after exposition to microwave radiation have been compared. FT-IR studies showed that polar groups present in CMS-Na structure take part in the formation of new hydrogen bonds network after water evaporation. However, these changes depend on DS value of the modified starch. The FT-Raman study confirmed that due to the impact on the samples by microwave, the changes of intensity in the characteristic bands associated with the crystalline regions in the sample were noticed. The X-ray diffraction data for microwave treated CMS-Na samples have been compared with the diffractograms of initial materials and analysis of XRD patterns confirmed that microwave-treated samples exhibit completely amorphous structure. Analysis of structural changes allows to state that the binding of sand grains in moulding sand with CMS-Na polymeric binder consists in the formation of hydrogen bonds networks (physical cross-linking). Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Effect of microwave treatment on structure of binders based on sodium carboxymethyl starch: FT-IR, FT-Raman and XRD investigations

    Science.gov (United States)

    Kaczmarska, Karolina; Grabowska, Beata; Spychaj, Tadeusz; Zdanowicz, Magdalena; Sitarz, Maciej; Bobrowski, Artur; Cukrowicz, Sylwia

    2018-06-01

    The paper deals with the influence of the microwave treatment on sodium carboxymethyl starch (CMS-Na) applied as a binder for moulding sands. The Fourier transformation infrared spectrometry (FT-IR), Raman spectroscopy (FT-Raman) and XRD analysis data of native potato starch and three different carboxymethyl starches (CMS-Na) with various degree of substitution (DS) before and after exposition to microwave radiation have been compared. FT-IR studies showed that polar groups present in CMS-Na structure take part in the formation of new hydrogen bonds network after water evaporation. However, these changes depend on DS value of the modified starch. The FT-Raman study confirmed that due to the impact on the samples by microwave, the changes of intensity in the characteristic bands associated with the crystalline regions in the sample were noticed. The X-ray diffraction data for microwave treated CMS-Na samples have been compared with the diffractograms of initial materials and analysis of XRD patterns confirmed that microwave-treated samples exhibit completely amorphous structure. Analysis of structural changes allows to state that the binding of sand grains in moulding sand with CMS-Na polymeric binder consists in the formation of hydrogen bonds networks (physical cross-linking).

  6. Observation of diffraction effects in positron channeling

    International Nuclear Information System (INIS)

    Palathingal, J.C.; Peng, J.P.; Lynn, K.G.; Wu, X.Y.; Schultz, P.J.

    1994-01-01

    An experimental investigation of positron channeling was made with a high-angular resolution apparatus, employing positrons of kinetic energy 1 MeV, derived from the Brookhaven National Laboratory Dynamitron. The pattern of transmission through a Si (100) single crystal of thickness 0.245 μm was investigated for a number of major planes. The authors have observed for the first time, in excellent detail, the fine structure of the channeling pattern expected to arise from the particle diffraction effects, theoretically explainable in terms of the quantum-mechanical many-beam calculations

  7. Overview of diffraction gratings technologies for space-flight satellites and astronomy

    Science.gov (United States)

    Cotel, Arnaud; Liard, Audrey; Desserouer, Frédéric; Bonnemason, Francis; Pichon, Pierre

    2014-09-01

    The diffraction gratings are widely used in Space-flight satellites for spectrograph instruments or in ground-based telescopes in astronomy. The diffraction gratings are one of the key optical components of such systems and have to exhibit very high optical performances. HORIBA Jobin Yvon S.A.S. (part of HORIBA Group) is in the forefront of such gratings development for more than 40 years. During the past decades, HORIBA Jobin Yvon (HJY) has developed a unique expertise in diffraction grating design and manufacturing processes for holographic, ruled or etched gratings. We will present in this paper an overview of diffraction grating technologies especially designed for space and astronomy applications. We will firstly review the heritage of the company in this field with the space qualification of different grating types. Then, we will describe several key grating technologies developed for specific space or astronomy projects: ruled blazed low groove density plane reflection grating, holographic blazed replica plane grating, high-groove density holographic toroidal and spherical grating and transmission Fused Silica Etched (FSE) grismassembled grating.

  8. X-ray diffraction, Raman, and photoacoustic studies of ZnTe nanocrystals

    Science.gov (United States)

    Ersching, K.; Campos, C. E. M.; de Lima, J. C.; Grandi, T. A.; Souza, S. M.; da Silva, D. L.; Pizani, P. S.

    2009-06-01

    Nanocrystalline ZnTe was prepared by mechanical alloying. X-ray diffraction (XRD), energy dispersive spectroscopy, Raman spectroscopy, and photoacoustic absorption spectroscopy techniques were used to study the structural, chemical, optical, and thermal properties of the as-milled powder. An annealing of the mechanical alloyed sample at 590 °C for 6 h was done to investigate the optical properties in a defect-free sample (close to bulk form). The main crystalline phase formed was the zinc-blende ZnTe, but residual trigonal tellurium and hexagonal ZnO phases were also observed for both as-milled and annealed samples. The structural parameters, phase fractions, average crystallite sizes, and microstrains of all crystalline phases were obtained from Rietveld analyses of the X-ray patterns. Raman results corroborate the XRD results, showing the longitudinal optical phonons of ZnTe (even at third order) and those modes of trigonal Te. Nonradiative surface recombination and thermal bending heat transfer mechanisms were proposed from photoacoustic analysis. An increase in effective thermal diffusivity coefficient was observed after annealing and the carrier diffusion coefficient, the surface recombination velocity, and the recombination time parameters remained the same.

  9. A facile soft template synthesis and characterization of PbHAsO4 nanocrystals

    International Nuclear Information System (INIS)

    Xiu Zhiliang; Lue Mengkai; Zhou Guangjun; Gu Feng; Zhang Haiping; Xu Dong; Yuan Duorong

    2004-01-01

    Monoclinic lead hydrogen arsenate (LHA) nanocrystals with different crystallization morphologies and crystallite sizes were prepared successfully by a soft template synthesis method in the presence of sodium dodecylbenzenesulfonate (SDBS) or polyvinylpyrrolidone (PVP). The products were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The possible mechanism of SDBS and PVP in the experiment was briefly illustrated

  10. Fabrication and optical properties of TiO sub 2 nanowire arrays made by sol-gel electrophoresis deposition into anodic alumina membranes

    CERN Document Server

    Lin, Y; Yuan, X Y; Xie, T; Zhang, L D

    2003-01-01

    Ordered TiO sub 2 nanowire arrays have been successfully fabricated into the nanochannels of a porous anodic alumina membrane by sol-gel electrophoretic deposition. After annealing at 500 deg. C, the TiO sub 2 nanowire arrays and the individual nanowires were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and x-ray diffraction (XRD). SEM and TEM images show that these nanowires are dense and continuous with a uniform diameter throughout their entire length. XRD and SAED analysis together indicate that these TiO sub 2 nanowires crystallize in the anatase polycrystalline structure. The optical absorption band edge of TiO sub 2 nanowire arrays exhibits a blue shift with respect of that of the bulk TiO sub 2 owing to the quantum size effect.

  11. Synthesis and crystal kinetics of cerium oxide nanocrystallites prepared by co-precipitation process

    International Nuclear Information System (INIS)

    Shih, C.J.; Chen, Y.J.; Hon, M.H.

    2010-01-01

    Cerium oxide nanocrystallites were synthesized at a relatively low temperature using cerium nitrate as starting materials in a water solution by a co-precipitation process. Effect of calcination temperature on the crystallite growth of cerium oxide nano-powders was investigated by X-ray diffraction, transmission electron microscopy and electron diffraction. The crystallization temperature of the cerium oxide powders was estimated to be about 273 K by XRD analysis. When calcined from 473 to 1273 K, the crystallization of the face-centered cubic phase was observed by XRD. The crystallite size of the cerium oxide increased from 10.0 to 43.8 nm with calcining temperature increasing from 673 to 1273 K. The activation energy for growth of cerium oxide nanoparticles was found to be 16.0 kJ mol -1 .

  12. Synthesis and crystal kinetics of cerium oxide nanocrystallites prepared by co-precipitation process

    Energy Technology Data Exchange (ETDEWEB)

    Shih, C.J., E-mail: cjshih@kmu.edu.tw [Department of Fragrance and Cosmetics Science, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Chen, Y.J. [Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Hon, M.H. [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2010-05-15

    Cerium oxide nanocrystallites were synthesized at a relatively low temperature using cerium nitrate as starting materials in a water solution by a co-precipitation process. Effect of calcination temperature on the crystallite growth of cerium oxide nano-powders was investigated by X-ray diffraction, transmission electron microscopy and electron diffraction. The crystallization temperature of the cerium oxide powders was estimated to be about 273 K by XRD analysis. When calcined from 473 to 1273 K, the crystallization of the face-centered cubic phase was observed by XRD. The crystallite size of the cerium oxide increased from 10.0 to 43.8 nm with calcining temperature increasing from 673 to 1273 K. The activation energy for growth of cerium oxide nanoparticles was found to be 16.0 kJ mol{sup -1}.

  13. C-Ni-Pd and CNT-Ni-Pd film's molecular and crystalline structure investigations by FTIR spectroscopy and XRD diffraction

    Science.gov (United States)

    Stepińska, Izabela; Czerwosz, ElŻbieta; Diduszko, Ryszard; Kozłowski, Mirosław; Wronka, Halina

    2017-08-01

    In this work molecular and crystalline structure of new type of nanocomposite films were investigated. These films compose of CNT decorated with palladium nanograins. They were prepared on a base of C-Ni films modified in CVD process. C-Ni nanocomposite films were obtained by PVD process and their modification by CVD leads to a growth of CNT film. CNTs-Ni or C-Ni films were treated with additional PVD process with palladium. Nickel and palladium acetate and fulleren C60 are precursors of films in PVD process. FTIR spectroscopy was used to studied the molecular structure of film in every stage of preparation . The crystalline structure of these films was studied by X-ray diffraction. SEM (scanning electron microscopy) was applied to investigate film's surface topography.

  14. Determination of the Projected Atomic Potential by Deconvolution of the Auto-Correlation Function of TEM Electron Nano-Diffraction Patterns

    Directory of Open Access Journals (Sweden)

    Liberato De Caro

    2016-11-01

    Full Text Available We present a novel method to determine the projected atomic potential of a specimen directly from transmission electron microscopy coherent electron nano-diffraction patterns, overcoming common limitations encountered so far due to the dynamical nature of electron-matter interaction. The projected potential is obtained by deconvolution of the inverse Fourier transform of experimental diffraction patterns rescaled in intensity by using theoretical values of the kinematical atomic scattering factors. This novelty enables the compensation of dynamical effects typical of transmission electron microscopy (TEM experiments on standard specimens with thicknesses up to a few tens of nm. The projected atomic potentials so obtained are averaged on sample regions illuminated by nano-sized electron probes and are in good quantitative agreement with theoretical expectations. Contrary to lens-based microscopy, here the spatial resolution in the retrieved projected atomic potential profiles is related to the finer lattice spacing measured in the electron diffraction pattern. The method has been successfully applied to experimental nano-diffraction data of crystalline centrosymmetric and non-centrosymmetric specimens achieving a resolution of 65 pm.

  15. Analysis of x-ray diffraction pattern and complex plane impedance plot of polypyrrole/titanium dioxide nanocomposite: A simulation study

    Science.gov (United States)

    Ravikiran, Y. T.; Vijaya Kumari, S. C.

    2013-06-01

    To innovate the properties of Polypyrrole/Titanium dioxide (PPy/TiO2) nanocomposite further, it has been synthesized by chemical polymerization technique. The nanostructure and monoclinic phase of the prepared composite have been confirmed by simulating the X-ray diffraction pattern (XRD). Also, complex plane impedance plot of the composite has been simulated to find equivalent resistance capacitance circuit (RC circuit) and numerical values of R and C have been predicted.

  16. XRD monitoring of α self-irradiation in uranium-americium mixed oxides.

    Science.gov (United States)

    Horlait, Denis; Lebreton, Florent; Roussel, Pascal; Delahaye, Thibaud

    2013-12-16

    The structural evolution under (241)Am self-irradiation of U(1-x)Am(x)O(2±δ) transmutation fuels (with x ≤ 0.5) was studied by X-ray diffraction (XRD). Samples first underwent a preliminary heat treatment performed under a reducing atmosphere (Ar/H2(4%)) aiming to recover the previously accumulated structural defects. Over all measurements (carried out over up to a full year and for integrated doses up to 1.5 × 10(18) α-decay events·g(-1)), only fluorite U(1-x)Am(x)O(2±δ) solid solutions were observed. Within a few days after the end of the heat treatment, each of the five studied samples was slowly oxidized as a consequence of their move to air atmosphere, which is evidenced by XRD by an initial sharp decrease of the unit cell parameter. For the compounds with x ≤ 0.15, this oxidation occurred without any phase transitions, but for U0.6Am0.4O(2±δ) and U0.5Am0.5O(2±δ), this process is accompanied by a transition from a first fluorite solid solution to a second oxidized one, as the latter is thermodynamically stable in ambient conditions. In the meantime and after the oxidation process, (241)Am α self-irradiation caused a structural swelling up to ∼0.8 vol %, independently of the sample composition. The kinetic constants of swelling were also determined by regression of experimental data and are, as expected, dependent on x and thus on the dose rate. The normalization of these kinetic constants by sample α-activity, however, leads to very close swelling rates among the samples. Finally, evolutions of microstrain and crystallite size were also monitored, but for the considered dose rates and cumulated doses, α self-irradiation was found, within the limits of the diffractometer used, to have almost no impact on these characteristics. Microstrain was found to be influenced instead by the americium content in the materials (i.e., by the impurities associated with americium starting material and the increase of cationic charge heterogeneity with

  17. Cu nanoparticles induced structural, optical and electrical modification in PVA

    DEFF Research Database (Denmark)

    Rozra, J.; Saini, I.; Sharma, A.

    2012-01-01

    Cu nanoparticles were synthesized in PVA matrix by chemical reduction of cupric nitrate with hydrazine hydrate. Structural characterization of synthesized Cu-PVA nanocomposite was carried out using UV-Visible Spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission...... are in agreement with the size obtained using X-ray diffraction. Morphology of Cu-PVA nanocomposite was further confirmed using SEM. Analysis of UV-Visible absorption and reflection data indicates towards the reduction in optical band gap and increase in refractive index of the resulting nanocomposite...

  18. Combined XRD and Raman studies of coke types found in SAPO-34 after methanol and propene conversion

    DEFF Research Database (Denmark)

    Wragg, David S.; Grønvold, Arne; Voronov, Alexey

    2013-01-01

    oligomerisation (PO) reactions. The coke caused by MTO leads to two distinct sets of HRPD peaks which can be indexed by two SAPO-34 unit cells with different lattice parameters and coke contents. We believe that these unit cells represent different zones of the catalyst filled with different coke types. PO coking...... does not lead to splitting of the diffraction peaks. Raman spectra show differences between the coke types produced by MTO and PO with the same overall trend of increasingly polyaromatic coke with increasing coke mass. The intensity of the monocyclic and polyaromatic peaks in the MTO Raman spectra...... correspond to the phase fractions of the two cell types used in the Rietveld refinement, suggesting a link between the two phases and the two coke types. The PO Raman spectra have a stronger polyaromatic band at low coke, suggesting that polyaromatics form faster. In situ powder XRD studies suggest...

  19. ADVANTAGES OF DIFFRACTIVE OPTICAL ELEMENTS APPLICATION IN SIMPLE OPTICAL IMAGING SYSTEMS

    Directory of Open Access Journals (Sweden)

    N. D. Zoric

    2015-01-01

    Full Text Available The paper deals with the influence of diffractive optical elements on the optical aberrations. The correction of optical aberrations was investigated in the simple optical systems with one and two lenses (singlet and doublet. The advantages of diffractive optical elements are their ability to generate arbitrary complex wave fronts from a piece of optical material that is essentially flat. The optical systems consisting of the standard surfaces were designed and optimized by using the same starting points. Further, the diffractive and aspheric surfaces were introduced into the developed systems. The resulting hybrid systems were optimized. To compare the complicity of the development of narrow field systems and wide field optical systems, the optimization has been done separately for these two types of the instruments. The optical systems were designed by using special Optical Design Software. Тhe characteristics of designed diffractive surfaces were controlled in Software DIFSYS 2.30. Due to the application of diffractive optical elements the longitudinal chromatic aberration was 5 times reduced for the narrow field systems. The absolute value of Seidel coefficient related to the spherical aberration was reduced in the range of 0.03. Considering that diffractive optical elements have the known disadvantages, like possible parasitic diffraction orders and probable decrease of the transmission, we also developed and analyzed the optical systems with combined aspheric and diffractive surfaces. A combination of the aspheric and diffractive surfaces in the optical disk system of the disk reading lens, gave cutting down of the longitudinal color aberrations almost 15 times on-axis, comparing to the lens consisting of the aspherical and standard surfaces. All of the designed diffractive optical elements possess the parameters within the fabrication limits.

  20. Application of XRF and XRD in the study of ceramics and pottery

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman

    2004-01-01

    Ceramic artefacts are made from clay-based mineral and their elemental and mineral compositions tend to vary from one locality to another. The elemental and mineral composition data's besides able to verify the originality of the artifact also helps in regard to provenance, fabrication technology and also manufacturing technique. X-ray fluorescence XRF is a non-destructive technique to identify and quantify elements ranging from sodium (atomic number = 11 to uranium atomic number = 92). The paper also looks into recent advances of this technique in the study of ceramics and pottery. Microfocus XRF, besides able to do qualitative and quantitative elemental analysis, it also can perform accurate elemental mapping. Another aspect there is important in this study is the capability to do in-situ analysis. With the recent introduction of the peltiered-cooled silicon detector, in-situ analysis had become more easily available. X-ray diffraction (XRD) analysis on the other hand, helps to identify correctly the different mineral composition present in the ceramic artifact. This could also help in identifying the type of clay that is used in the manufacturing of these ceramic artifacts as well as its origin. Both x-ray techniques complement each other and are very important tool in the archaeological study of ceramic and pottery samples. (Author)

  1. Asymmetric acoustic transmission in multiple frequency bands

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hong-xiang, E-mail: jsdxshx@ujs.edu.cn [Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013 (China); Laboratory of Modern Acoustics, Institute of Acoustics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China); Yuan, Shou-qi, E-mail: Shouqiy@ujs.edu.cn [Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013 (China); Zhang, Shu-yi [Laboratory of Modern Acoustics, Institute of Acoustics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-11-23

    We report both experimentally and numerically that the multi-band device of the asymmetric acoustic transmission is realized by placing two periodic gratings with different periods on both sides of two brass plates immersed in water. The asymmetric acoustic transmission can exist in four frequency bands below 1500 kHz, which arises from the interaction between various diffractions from the two gratings and Lamb modes in the brass plates immersed in water. The results indicate that the device has the advantages of multiple band, broader bandwidth, and simpler structure. Our finding should have great potential applications in ultrasonic devices.

  2. Asymmetric acoustic transmission in multiple frequency bands

    International Nuclear Information System (INIS)

    Sun, Hong-xiang; Yuan, Shou-qi; Zhang, Shu-yi

    2015-01-01

    We report both experimentally and numerically that the multi-band device of the asymmetric acoustic transmission is realized by placing two periodic gratings with different periods on both sides of two brass plates immersed in water. The asymmetric acoustic transmission can exist in four frequency bands below 1500 kHz, which arises from the interaction between various diffractions from the two gratings and Lamb modes in the brass plates immersed in water. The results indicate that the device has the advantages of multiple band, broader bandwidth, and simpler structure. Our finding should have great potential applications in ultrasonic devices

  3. Detection of electron magnetic circular dichroism signals under zone axial diffraction geometry

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dongsheng [National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials (MOE) and The State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Rusz, Jan [Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala (Sweden); Cai, Jianwang [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zhu, Jing, E-mail: jzhu@mail.tsinghua.edu.cn [National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials (MOE) and The State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2016-10-15

    EMCD (electron magnetic circular dichroism) technique provides us a new opportunity to explore magnetic properties in the transmission electron microscope. However, specific diffraction geometry is the major limitation. Only the two-beam and three-beam case are demonstrated in the experiments until now. Here, we present the more general case of zone axial (ZA) diffraction geometry through which the EMCD signals can be detected even with the very strong sensitivity to dynamical diffraction conditions. Our detailed calculations and well-controlled diffraction conditions lead to experiments in agreement with theory. The effect of dynamical diffraction conditions on EMCD signals are discussed both in theory and experiments. Moreover, with the detailed analysis of dynamical diffraction effects, we experimentally obtain the separate EMCD signals for each crystallographic site in Y{sub 3}Fe{sub 5}O{sub 12}, which is also applicable for other materials and cannot be achieved by site-specific EMCD and XMCD technique directly. Our work extends application of more general diffraction geometries and will further promote the development of EMCD technique. - Highlights: • The zone axial (ZA) diffraction geometry is presented for EMCD technique. • The detailed calculations for EMCD signals under ZA case are conducted. • The EMCD signals are obtained under the ZA case in the experiments. • The effect of dynamical effect on EMCD signals under ZA case is discussed. • Site-specific EMCD signals of Fe in Y{sub 3}Fe{sub 5}O{sub 12} are obtained by specific ZA conditions.

  4. High resolution transmission imaging without lenses

    International Nuclear Information System (INIS)

    Rodenburg, J M; Hurst, A C; Maiden, A

    2010-01-01

    The whole history of transmission imaging has been dominated by the lens, whether used in visible-light optics, electron optics or X-ray optics. Lenses can be thought of as a very efficient method of processing a wave front scattered from an object into an image of that object. An alternative approach is to undertake this image-formation process using a computational technique. The crudest scattering experiment is to simply record the intensity of a diffraction pattern. Recent progress in so-called diffractive imaging has shown that it is possible to recover the phase of a scattered wavefield from its diffraction pattern alone, as long as the object (or the illumination on the object) is of finite extent. In this paper we present results from a very efficient phase retrieval method which can image infinitely large fields of view. It may have important applications in improving resolution in electron microscopy, or at least allowing low specification microscopes to achieve resolution comparable to state-of-the-art machines.

  5. 'Green' synthesis of starch capped CdSe nanoparticles at room temperature

    International Nuclear Information System (INIS)

    Li Jinhua; Ren Cuiling; Liu Xiaoyan; Hu Zhide; Xue Desheng

    2007-01-01

    The nearly monodisperse starch capped CdSe nanoparticles were successfully synthesized by a simple and 'green' route at room temperature. The as-prepared nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), UV-vis absorption and photoluminescence (PL) spectra. The XRD analysis showed that the starch capped CdSe nanoparticles were of the cubic structure, the average particle size was calculated to be about 3 nm according to the Debye-Scherrer equation. TEM micrographs exhibited that the starch capped CdSe nanoparticles were well dispersed than the uncapped CdSe nanoparticles, the mean particles size of the capped CdSe was about 3 nm in the TEM image, which was in good agreement with the XRD

  6. Raman and X-ray diffraction study of (Ba,Sr)TiO3/(Bi,Nd)FeO3 multilayer heterostructures

    International Nuclear Information System (INIS)

    Anokhin, A.S.; Bunina, O.A.; Golovko, Yu I.; Mukhortov, V.M.; Yuzyuk, Yu I.; Simon, P.

    2013-01-01

    We report synthesis, X-ray diffraction (XRD) and Raman scattering characterisation of epitaxial heterostructures containing alternating (Bi 0.98 Nd 0.02 )FeO 3 (BNFO) and (Ba 0.8 Sr 0.2 TiO 3 ) (BST) layers deposited on (100) MgO substrates. A significant shift of the BST soft mode and partial depolarisation in the Raman spectra of multilayer heterostructures caused by epitaxial strains were observed. Satellite peaks typical for superlattices were observed in the XRD patterns of multilayer heterostructures with layer thicknesses below 30 nm. Raman spectra of the BNFO/BST superlattice with a modulation period of 10 nm revealed hardening of the soft mode and a dominating symmetric-stretching mode at 705 cm −1 due to distortion in FeO 6 octahedra enforced by the epitaxial strain in the superlattice. - Highlights: • BNFO and BST multilayers and superlattices on (100) MgO. • Raman spectra of superlattices exhibit features not observed in bulk BFO. • Satellites in XRD patterns when layer thickness below 30 nm

  7. In-situ X-ray diffraction reveals the degradation of crystalline CH3NH3PbI3 by water-molecule collisions at room temperature

    Science.gov (United States)

    Hada, Masaki; Hasegawa, Yoichi; Nagaoka, Ryota; Miyake, Tomoya; Abdullaev, Ulugbek; Ota, Hiromi; Nishikawa, Takeshi; Yamashita, Yoshifumi; Hayashi, Yasuhiko

    2018-02-01

    We have developed a vacuum-compatible chamber for in-situ X-ray diffraction (XRD) studies and have used it to characterize the changing crystal structure of an inorganic-organic hybrid perovskite material, CH3NH3PbI3 (MAPbI3), during interactions with water vapor at room temperature. In the XRD spectra, we have observed the degradation of MAPbI3 and the creation of MAPbI3 hydrates, which follow simple rate equations. The time constant for the degradation of MAPbI3 during accelerated aging suggests that multiple collisions of water molecules with the MAPbI3 crystal trigger the degradation of the crystal.

  8. Direct observations of the MOF (UiO-66) structure by transmission electron microscopy

    KAUST Repository

    Zhu, Liangkui

    2013-01-01

    As a demonstration of ab initio structure characterizations of nano metal organic framework (MOF) crystals by high resolution transmission electron microscopy (HRTEM) and electron diffraction tomography methods, a Zr-MOF (UiO-66) structure was determined and further confirmed by Rietveld refinements of powder X-ray diffraction. HRTEM gave direct imaging of the channels. © 2013 The Royal Society of Chemistry.

  9. Ultrasonic-assisted synthesis of nano lead(II) coordination polymer as precursors for preparation of lead(II) oxide nano-structures: Thermal, optical properties and XRD studies.

    Science.gov (United States)

    Ghavidelaghdam, Elham; Shahverdizadeh, Gholam Hossein; Motameni Tabatabai, Javad; Mirtamizdoust, Babak

    2018-04-01

    Nano structure of a lead (II) coordination polymer [Pb 2 (C 2 Cl 3 O 2 ) 2 (NO 3 ) 2 (C l2 H 8 N 2 ) 2 ] n (1), has been synthesized by a sonochemical method in different concentrations. The nano particles were characterized by scanning electron microscopy (SEM) X-ray powder diffraction (XRD), FT-IR spectroscopy and elemental analyses. The thermal stability of nano structure is closely investigated via thermal gravimetric (TGA), and compared with crystalline structure. The compounds are then heated to 600 °C to produce PbO nano particles. The resulting PbO is characterized through XRD and SEM analyses. Concentration of initial reagents effects on size and morphology of nano-structured compound 1 have been studied and show that low concentrations of initial reagents decreased particles size and leaded to uniform nano particles morphology. The photoluminescence properties of the prepared compound, as crystalline and as nanoparticles, have been investigated. The result showed a good correlation between the size and emission wavelength. Copyright © 2017. Published by Elsevier B.V.

  10. X-ray diffraction study of stress relaxation in cubic boron nitride films grown with simultaneous medium-energy ion bombardment

    International Nuclear Information System (INIS)

    Abendroth, B.; Gago, R.; Eichhorn, F.; Moeller, W.

    2004-01-01

    Relaxation of the intrinsic stress of cubic boron nitride (cBN) thin films has been studied by x-ray diffraction (XRD) using synchrotron light. The stress relaxation has been attained by simultaneous medium-energy ion bombardment (2-10 keV) during magnetron sputter deposition, and was confirmed macroscopically by substrate curvature measurements. In order to investigate the stress-release mechanisms, XRD measurements were performed in in-plane and out-of-plane geometry. The analysis shows a pronounced biaxial state of compressive stress in the cBN films grown without medium-energy ion bombardment. This stress is partially released during the medium-energy ion bombardment. It is suggested that the main path for stress relaxation is the elimination of strain within the cBN grains due to annealing of interstitials

  11. Kinetics and structural changes of Li-rich layered oxide 0.5Li2MnO3·0.5LiNi(0.292)Co(0.375)Mn(0.333)O2 material investigated by a novel technique combining in situ XRD and a multipotential step.

    Science.gov (United States)

    Shen, Chong-Heng; Huang, Ling; Lin, Zhou; Shen, Shou-Yu; Wang, Qin; Su, Hang; Fu, Fang; Zheng, Xiao-Mei

    2014-08-13

    Li-rich layered oxide 0.5Li2MnO3·0.5LiNi0.292Co0.375Mn0.333O2 was prepared by an aqueous solution-evaporation route. X-ray powder diffraction (XRD) showed that the as-synthesized material was a solid solution consisting of layered α-NaFeO2-type LiMO2 (M = Ni, Co, Mn) and monoclinic Li2MnO3. The superlattice spots in the selected area electron diffraction pattern indicated the ordering of lithium ions with transition metal (TM) ions in TM layers in this Li-rich layered oxide. Electrochemical performance testing showed that the as-synthesized material could deliver an initial discharge capacity of 267.7 mAh/g, with a capacity retention of 88.5% after 33 cycles. A new combination technique, multipotential step in situ XRD (MPS in situ XRD) measurement, was applied for the first time to investigate the Li-rich layered oxide. Using this approach, the relationships between kinetics and structural variations can be obtained simutaneously. In situ XRD results showed that the c parameter decreased from 3.70 to 4.30 V and increased from 4.30 to 4.70 V, whereas the a parameter underwent a decrease above 4.30 V during the first charge process. Below 3.90 V during the first discharge process, a slight decrease in the c parameter was found along with an increase in the a parameter. During the first charge process, the value of the coefficient of diffusion for lithium ions (DLi+) decreased to its mininum at 4.55 V, which might be associated with Ni(2+) migration, as indicated by both Ni occupancy in 3b sites (Ni3b%) in the Li(+) layers and complicated chemical reactions. Remarkably, a lattice distortion might occur within the local domain in the host stucture during the first discharge process, indicated by a slight splitting of the (003) diffraction peak at 3.20 V.

  12. Residual stress evaluation by X-Ray diffraction and hole-drilling in an API 5L X70 steel pipe bent by hot induction

    International Nuclear Information System (INIS)

    Ceglias, Rodrigo Braga; Alves, Juciane Maria; Botelho, Ramon Alves; Baeta Junior, Eustaquio de Souza; Santos, Igor Cuzzuol dos; Moraes, Nicki Robbers Darciano Cajueiro de; Oliveira, Rebeca Vieira de; Diniz, Saulo Brinco; Brandao, Luiz Paulo

    2016-01-01

    The API 5L X70 steel is used in high-pressure gas transmission pipelines. Because of this, knowledge of presence of residual stress and their magnitude is important to assess the material integrity in service. For the pipeline manufacturing, tubes need to be curved which is often made using the hot induction bending process. This process can introduce different residual stress depending of tube position. For this research, in order to evaluate the residual stress, was used an API 5L X70 tube that was previously curved by hot induction process. Samples were taken from the extrados, intrados, neutral line and straight section of the curved tube. Residual stresses were studied by two conventional methods: X-Ray Diffraction (XRD) and Hole-Drilling, which are destructive and non-destructive methods, respectively, in order to assess their qualitative responses. Each of these methods presents particular methodologies in sample preparation and material analysis, but also they differ in factors such time consumption and cost of the analysis. The qualitative responses obtained by the two different methods were comparable and satisfactory and pointed out the existence of a compressive residual stress state in steel pipe. (author)

  13. Residual stress evaluation by X-Ray diffraction and hole-drilling in an API 5L X70 steel pipe bent by hot induction

    Energy Technology Data Exchange (ETDEWEB)

    Ceglias, Rodrigo Braga; Alves, Juciane Maria; Botelho, Ramon Alves; Baeta Junior, Eustaquio de Souza; Santos, Igor Cuzzuol dos; Moraes, Nicki Robbers Darciano Cajueiro de; Oliveira, Rebeca Vieira de; Diniz, Saulo Brinco; Brandao, Luiz Paulo, E-mail: brandao@ime.eb.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Engenharia Mecanica e de Materiais

    2016-09-15

    The API 5L X70 steel is used in high-pressure gas transmission pipelines. Because of this, knowledge of presence of residual stress and their magnitude is important to assess the material integrity in service. For the pipeline manufacturing, tubes need to be curved which is often made using the hot induction bending process. This process can introduce different residual stress depending of tube position. For this research, in order to evaluate the residual stress, was used an API 5L X70 tube that was previously curved by hot induction process. Samples were taken from the extrados, intrados, neutral line and straight section of the curved tube. Residual stresses were studied by two conventional methods: X-Ray Diffraction (XRD) and Hole-Drilling, which are destructive and non-destructive methods, respectively, in order to assess their qualitative responses. Each of these methods presents particular methodologies in sample preparation and material analysis, but also they differ in factors such time consumption and cost of the analysis. The qualitative responses obtained by the two different methods were comparable and satisfactory and pointed out the existence of a compressive residual stress state in steel pipe. (author)

  14. A 4-(o-chlorophenyl)-2-aminothiazole: Microwave assisted synthesis, spectral, thermal, XRD and biological studies

    Science.gov (United States)

    Rajmane, S. V.; Ubale, V. P.; Lawand, A. S.; Nalawade, A. M.; Karale, N. N.; More, P. G.

    2013-11-01

    A 4-(o-chlorophenyl)-2-aminothiazole (CPAT) has been synthesized by reacting o-chloroacetophenone, iodine and thiourea under microwave irradiation as a green chemistry approach. The reactions proceed selectively and within a couple of minutes giving high yields of the products. The compound was characterized by elemental, spectral (UV-visible, IR, NMR and GC-MS), XRD and thermal analyses. The TG curve of the compound was analyzed to calculate various kinetic parameters (n, E, Z, ΔS and ΔG) by using Coats-Redfern (C.R.), MacCallum-Tanner (M.T.) and Horowitz-Metzger (H.M.) method. The compound was tested for the evaluation of antibacterial activity against B. subtilis and E. coli and antifungal activity against A. niger and C. albicans. The compound was evaluated for their in vitro nematicidal activity on plant parasitic nematode Meloidogyne javanica and molluscicidal activity on fresh water helminthiasis vector snail Lymnea auricularia. The compound is biologically active in very low concentration. X-ray diffraction study suggests a triclinic crystal system for the compound.

  15. Holographic diffraction gratings as laser radiation protection filters

    International Nuclear Information System (INIS)

    Pantelic, D.; Pantelic, G.

    2006-01-01

    Holographic volume diffraction gratings are used as attenuation filters, due to their selective spectral transmission. They can be tailored to reflect or transmit narrow spectral ranges by adjusting spatial frequency of Bragg grating in carefully chosen photosensitive materials, like silver-halide emulsion or di-chromated gelatin layers. If properly recorded and chemically processed, resulting gratings can significantly attenuate light at wavelengths corresponding to various laser spectral lines. Thus, they can be used as filters in laser protection goggles. We analyze the characteristics of Bragg gratings necessary to obtain high attenuation coefficients. Also, their angular selectivity is taken into account and corresponding experimental conditions are investigated. Although di-chromated gelatin seems to be almost ideal material, due to its almost 100% diffraction efficiency, environmental stability is poor (degradation under humid environment), thus making its practical usage difficult. Thus, we have analyzed alternative materials like di-chromated pullulan, which is stable under normal environmental conditions (without drop in diffraction efficiency after prolonged exposure to humidity). Pullulan is polymer (polysaccharide) of biologic origin produced by certain bacteria. If doped with chromium ions it becomes photosensitive, enabling recording of diffraction gratings with spatial frequency of more than 3000 lines/mm. Material is chemically processed by mixture of isopropyl alcohol and water. Both thick and thin layers can be produced by gravity settling. Spectral properties of resulting gratings are analyzed, showing that they can significantly attenuate laser light of particular wavelength, depending of grating period and its slant angle. (authors)

  16. Overview - XRF and XRD

    International Nuclear Information System (INIS)

    Jenkins, R.

    1999-01-01

    Full text: While the roots of both X-ray Fluorescence Spectrometry (XRF) and X-ray Powder Diffractometry (XRD) go back 80 years or so, it is only in the last 30 years or so that both techniques have become widely used in the industrial and research environments. It is the experience of the author that all instrumental techniques go through four basic stages: 1. Innovation - someone has a bright idea 2. Application - people start to apply the bright idea 3. Frustration - the bright idea is found to have complications 4. Consolidation - the complications are understood and resolved. XRF went through these four stages by the mid 1980s. This means that, today, if one understands what one is doing, applies the correct (and generally well known) analytical strategy, there is a high probability that one will obtain the correct result. XRD, on the other hand, is still hovering between 3 and 4 on the list. Problems such as the effect of preferred orientation on intensities, difficulties in obtaining accurate data for larger d-spacings, etc., although better understood today, still pose significant challenges to those involved in both routine and research analysis. The development of low-cost computers has made a dramatic impact in both techniques and it is estimated that today, about 90% of all new spectrometer and diffractometer systems sold, are fully automated. There are about 30,000 X-ray spectrometers and about 25,000 diffractometers in use in the world today. Of these about one half are automated. The process of automation has brought its rewards as well as its consequences. In general, the automation of the two techniques has resulted in a poorer understanding of the instrumentation and methodology, on the part of the typical user. Many laboratories employ both techniques, since they are largely complimentary. This workshop will cover the basics of the two methods, highlighting the advantages and shortcomings of both. Copyright (1999) Australian X-ray Analytical

  17. Potassium Disorder in the Defect Pyrochlore KSbTeO6: A Neutron Diffraction Study

    Directory of Open Access Journals (Sweden)

    José Antonio Alonso

    2017-01-01

    Full Text Available KSbTeO6 defect pyrochlore has been prepared from K2C2O4, Sb2O3, and 15% excess TeO2 by solid-state reaction at 850 °C. Direct methods implemented in the software EXPO2013 allowed establishing the basic structural framework. This was followed by a combined Rietveld refinement from X-ray powder diffraction (XRD and neutron powder diffraction (NPD data, which unveiled additional structural features. KSbTeO6 is cubic, a = 10.1226(7 Å, space group F d 3 ¯ m , Z = 8 and it is made of a mainly covalent framework of corner-sharing (Sb,TeO6 octahedra, with weakly bonded K+ ions located within large cages. The large K-O distances, 3.05(3–3.07(3 Å, and quite large anisotropic atomic displacement parameters account for the easiness of K+ exchange for other cations of technological importance.

  18. Use of tourmaline as a potential petrogenetic indicator in the determination of host magma: CRS, XRD and PED-XRF methods.

    Science.gov (United States)

    Gullu, Bahattin; Kadioglu, Yusuf Kagan

    2017-08-05

    Tourmaline defines a group of complex borosilicate forms as accessory mineral in igneous and metamorphic rocks and they act an important role in the interpretation of the chemical composition changes of the composition of the host fluid of the magma. The variety of tourmaline can be identified by using optical microscopy, X-Ray Diffraction (XRD) and by determining its chemical composition through Polarized Energy Dispersive X-Ray Fluorescence (PED-XRF) methods. However, microscopic investigations and XRD analyses are not quite adequate for detailed determination of tourmaline sub-groups. In addition, the use of chemical composition of tourmaline as a strict indicator of geochemical processes might be a misleading method. In this study, variable tourmaline crystals were collected from three different pegmatitic occurrences in Behrekdag, Yozgat and Karakaya granitic bodies of Central Anatolia to identify their chemical properties through Confocal Raman Spectroscopy (CRS), PED-XRF and XRD analyses. The confocal Raman spectrometry of collected tourmalines from the Behrekdag, Yozgat and Karakaya granites are in the compositions of schorl, schorl and elbaite respectively. The dominant compositional groups of these tourmalines are in the form of schorl. Raman shift values of tourmalines revealed four bands centered at almost 1050, 750, 400 and 300cm -1 . The first group of the band arises from SiO stretching, the second from BO stretching and the other two belong to bending modes of OBO and BOAl with symmetrical deformation of SiOSi. The strongest spectra near 360cm -1 should belong to the bonding of AlO. As a result, the confocal Raman studies are more sensitive for identification of tourmaline subgroup compositions and have a quite important in the explaining source of the magma. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Use of tourmaline as a potential petrogenetic indicator in the determination of host magma: CRS, XRD and PED-XRF methods

    Science.gov (United States)

    Gullu, Bahattin; Kadioglu, Yusuf Kagan

    2017-08-01

    Tourmaline defines a group of complex borosilicate forms as accessory mineral in igneous and metamorphic rocks and they act an important role in the interpretation of the chemical composition changes of the composition of the host fluid of the magma. The variety of tourmaline can be identified by using optical microscopy, X-Ray Diffraction (XRD) and by determining its chemical composition through Polarized Energy Dispersive X-Ray Fluorescence (PED-XRF) methods. However, microscopic investigations and XRD analyses are not quite adequate for detailed determination of tourmaline sub-groups. In addition, the use of chemical composition of tourmaline as a strict indicator of geochemical processes might be a misleading method. In this study, variable tourmaline crystals were collected from three different pegmatitic occurrences in Behrekdag, Yozgat and Karakaya granitic bodies of Central Anatolia to identify their chemical properties through Confocal Raman Spectroscopy (CRS), PED-XRF and XRD analyses. The confocal Raman spectrometry of collected tourmalines from the Behrekdag, Yozgat and Karakaya granites are in the compositions of schorl, schorl and elbaite respectively. The dominant compositional groups of these tourmalines are in the form of schorl. Raman shift values of tourmalines revealed four bands centered at almost 1050, 750, 400 and 300 cm- 1. The first group of the band arises from SiO stretching, the second from Bsbnd O stretching and the other two belong to bending modes of Osbnd Bsbnd O and Bsbnd Osbnd Al with symmetrical deformation of Sisbnd Osbnd Si. The strongest spectra near 360 cm- 1 should belong to the bonding of Alsbnd O. As a result, the confocal Raman studies are more sensitive for identification of tourmaline subgroup compositions and have a quite important in the explaining source of the magma.

  20. In Situ Neutron Diffraction of Rare-Earth Phosphate Proton Conductors Sr/Ca-doped LaPO4 at Elevated Temperatures

    Science.gov (United States)

    Al-Wahish, Amal; Al-Binni, Usama; Bridges, C. A.; Huq, A.; Bi, Z.; Paranthaman, M. P.; Tang, S.; Kaiser, H.; Mandrus, D.

    Acceptor-doped lanthanum orthophosphates are potential candidate electrolytes for proton ceramic fuel cells. We combined neutron powder diffraction (NPD) at elevated temperatures up to 800° C , X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) to investigate the crystal structure, defect structure, thermal stability and surface topography. NPD shows an average bond length distortion in the hydrated samples. We employed Quasi-Elastic Neutron Scattering (QENS) and electrochemical impedance spectroscopy (EIS) to study the proton dynamics of the rare-earth phosphate proton conductors 4.2% Sr/Ca-doped LaPO4. We determined the bulk diffusion and the self-diffusion coefficients. Our results show that QENS and EIS are probing fundamentally different proton diffusion processes. Supported by the U.S. Department of Energy.

  1. Characterisation of 1,3-diammonium propylselenate monohydrate by XRD, FT-IR, FT-Raman, DSC and DFT studies

    Science.gov (United States)

    Thirunarayanan, S.; Arjunan, V.; Marchewka, M. K.; Mohan, S.; Atalay, Yusuf

    2016-03-01

    The crystals of 1,3-diammonium propylselenate monohydrate (DAPS) were prepared and characterised X-ray diffraction (XRD), FT-IR, FT-Raman spectroscopy, and DFT/B3LYP methods. It comprises protonated propyl ammonium moieties (diammonium propyl cations), selenate anions and water molecule which are held together by a number of hydrogen bonds and form infinite chains. The XRD data confirm the transfer of two protons from selenic acid to 1,3-diaminopropane molecule. The DAPS complex is stabilised by the presence of O-H···O and N-H···O hydrogen bonds and the electrostatic interactions as well. The N···O and O···O bond distances are 2.82-2.91 and 2.77 Å, respectively. The FT-IR and FT-Raman spectra of 1,3-diammonium propyl selenate monohydrate are recorded and the complete vibrational assignments have been discussed. The geometry is optimised by B3LYP method using 6-311G, 6-311+G and 6-311+G* basis sets and the energy, structural parameters, vibrational frequencies, IR and Raman intensities are determined. Differential scanning colorimetry (DSC) data were also presented to analyse the possibility of the phase transition. Complete natural bonding orbital (NBO) analysis is carried out to analyse the intramolecular electronic interactions and their stabilisation energies. The electrostatic potential of the complex lies in the range +1.902e × 10-2 to -1.902e × 10-2. The limits of total electron density of the complex is +8.43e × 10-2 to -8.43e × 10-2.

  2. Experimental study of the synthesis and characterisation of silica nanoparticles via the sol-gel method

    International Nuclear Information System (INIS)

    Tabatabaei, S; Shukohfar, A; Aghababazadeh, R; Mirhabibi, A

    2006-01-01

    Silica nano-particles were synthesised by chemical methods from tetraethylorthosilicate (TEOS), ethanol (C 2 H 5 OH) and deionized water in the presence of ammonia as catalyst at room temperature. The morphology and structure of colloidal silica particles formed depend on the molar ratio of reagents. The formation of silica particles has been investigated using different solvents: ethanol and ethanol-glycerol. The nature and morphology of particles was investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD)

  3. ZnO nanorod arrays grown under different pressures and their photoluminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Meng Xiuqing [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic ZoneChangchun 130033 (China); Graduate School of the Chinese Academy of Sciences (China); Zhao Dongxu [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic ZoneChangchun 130033 (China)]. E-mail: dxzhao2000@yahoo.com.cn; Shen Dezhen [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic ZoneChangchun 130033 (China); Zhang Jiying [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic ZoneChangchun 130033 (China); Li Binghui [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic ZoneChangchun 130033 (China); Wang Xiaohua [National Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and technology, 7089 Weixing Road Changchun (China); Fan Xiwu [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic ZoneChangchun 130033 (China)

    2007-01-15

    The ZnO nanorod arrays were synthesized via a simple vapor deposition method on Si (1 1 1) substrates at a low growth temperature of 520 deg. C. By selecting different source materials under different growth pressures, well-aligned hexagonal-shaped ZnO nanorod arrays were obtained under both conditions. X-ray diffraction (XRD) analysis confirmed the nanorods are c-axis orientated. Selected area electron diffraction (SAED) and transmission electron microscopy (TEM) analysis demonstrated the individual nanorod is single crystal. Photoluminescence (PL) analyses show the superior optical properties of the nanorod arrays.

  4. ZnO nanorod arrays grown under different pressures and their photoluminescence properties

    International Nuclear Information System (INIS)

    Meng Xiuqing; Zhao Dongxu; Shen Dezhen; Zhang Jiying; Li Binghui; Wang Xiaohua; Fan Xiwu

    2007-01-01

    The ZnO nanorod arrays were synthesized via a simple vapor deposition method on Si (1 1 1) substrates at a low growth temperature of 520 deg. C. By selecting different source materials under different growth pressures, well-aligned hexagonal-shaped ZnO nanorod arrays were obtained under both conditions. X-ray diffraction (XRD) analysis confirmed the nanorods are c-axis orientated. Selected area electron diffraction (SAED) and transmission electron microscopy (TEM) analysis demonstrated the individual nanorod is single crystal. Photoluminescence (PL) analyses show the superior optical properties of the nanorod arrays

  5. Preparation of silver nanocrystals in microemulsion by the γ-radiation method

    International Nuclear Information System (INIS)

    Hongkai Wu; Xiangling Xu; Xuewu Ge; Zhicheng Zhang

    1997-01-01

    Silver colloids of well-defined shape, size were synthesized by γ-ray irradiating silver salt in reversed microemulsions, and then pure silver dry powders were obtained. The sols were studied by absorption spectroscopy, and the silver powders were characterized by Transmission Electron Micrographs (TEM) and X-ray Diffraction (XRD). The effect of radiation dose and aging time was discussed. (Author)

  6. Metallic and Ceramic Material Development Research

    Science.gov (United States)

    2010-05-01

    and (3) Meta- Kaolin ................94 38. Thermal Expansion Properties of the Cr2O3-ZrW2O8 Composite...were evaluated using X-ray diffraction (XRD), X-ray Fluorescence (XRF), SEM, and Energy Dispersive Spectroscopy (EDS) [16]. 3.1.5. Elastic and...oxidation product could be detected between uncoated and coated fibers using transmission electron microscopy and energy- dispersive spectroscopy

  7. Hydroxyapatite-Functionalized Graphene: A New Hybrid Nanomaterial

    OpenAIRE

    Rodríguez-González, C.; Cid-Luna, H. E.; Salas, P.; Castaño, V. M.

    2014-01-01

    Graphene oxide sheets (GO) were functionalized with hydroxyapatite nanoparticles (nHAp) through a simple and effective hydrothermal treatment and a novel physicochemical process. Microstructure and crystallinity were investigated by Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction (XRD), ultraviolet-visible (UV-Vis) absorption spectroscopy, and thermogravimetric analysis (TGA). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) ...

  8. Use of X-ray diffraction to quantify amorphous supplementary cementitious materials in anhydrous and hydrated blended cements

    International Nuclear Information System (INIS)

    Snellings, R.; Salze, A.; Scrivener, K.L.

    2014-01-01

    The content of individual amorphous supplementary cementitious materials (SCMs) in anhydrous and hydrated blended cements was quantified by the PONKCS [1] X-ray diffraction (XRD) method. The analytical precision and accuracy of the method were assessed through comparison to a series of mixes of known phase composition and of increasing complexity. A 2σ precision smaller than 2–3 wt.% and an accuracy better than 2 wt.% were achieved for SCMs in mixes with quartz, anhydrous Portland cement, and hydrated Portland cement. The extent of reaction of SCMs in hydrating binders measured by XRD was 1) internally consistent as confirmed through the standard addition method and 2) showed a linear correlation to the cumulative heat release as measured independently by isothermal conduction calorimetry. The advantages, limitations and applicability of the method are discussed with reference to existing methods that measure the degree of reaction of SCMs in blended cements

  9. Energy-weighted dynamical scattering simulations of electron diffraction modalities in the scanning electron microscope.

    Science.gov (United States)

    Pascal, Elena; Singh, Saransh; Callahan, Patrick G; Hourahine, Ben; Trager-Cowan, Carol; Graef, Marc De

    2018-04-01

    Transmission Kikuchi diffraction (TKD) has been gaining momentum as a high resolution alternative to electron back-scattered diffraction (EBSD), adding to the existing electron diffraction modalities in the scanning electron microscope (SEM). The image simulation of any of these measurement techniques requires an energy dependent diffraction model for which, in turn, knowledge of electron energies and diffraction distances distributions is required. We identify the sample-detector geometry and the effect of inelastic events on the diffracting electron beam as the important factors to be considered when predicting these distributions. However, tractable models taking into account inelastic scattering explicitly are lacking. In this study, we expand the Monte Carlo (MC) energy-weighting dynamical simulations models used for EBSD [1] and ECP [2] to the TKD case. We show that the foil thickness in TKD can be used as a means of energy filtering and compare band sharpness in the different modalities. The current model is shown to correctly predict TKD patterns and, through the dictionary indexing approach, to produce higher quality indexed TKD maps than conventional Hough transform approach, especially close to grain boundaries. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Diffraction theory

    NARCIS (Netherlands)

    Bouwkamp, C.J.

    1954-01-01

    A critical review is presented of recent progress in classical diffraction theory. Both scalar and electromagnetic problems are discussed. The report may serve as an introduction to general diffraction theory although the main emphasis is on diffraction by plane obstacles. Various modifications of

  11. Structural and Electronic Properties Study of Colombian Aurifer Soils by Moessbauer Spectroscopy and X-ray Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Bustos Rodriguez, H., E-mail: hbustos@ut.edu.co; Rojas Martinez, Y.; Oyola Lozano, D. [Universidad del Tolima, Departamento de Fisica (Colombia); Perez Alcazar, G. A.; Fajardo, M. [Universidad del Valle, Departamento de Fisica (Colombia); Mojica, J. [Ingeominas Valle, Departamento de Geologia (Colombia); Molano, Y. J. C. [Universidad Nacional, Departamento de Geologia (Colombia)

    2005-02-15

    In this work a study on gold mineral samples is reported, using optical microscopy, X-ray diffraction (XRD) and Moessbauer spectroscopy (MS). The auriferous samples are from the El Diamante mine, located in Guachavez-Narino (Colombia) and were prepared by means of polished thin sections. The petrography analysis registered the presence, in different percentages that depend on the sample, of pyrite, quartz, arsenopyirite, sphalerite, chalcopyrite and galena. The XRD analysis confirmed these findings through the calculated cell parameters. One typical Rietveld analysis showed the following weight percent of phases: 85.0% quartz, 14.5% pyrite and 0.5% sphalerite. In this sample, MS demonstrated the presence of two types of pyrite whose hyperfine parameters are {delta}{sub 1} = 0.280 {+-} 0.002 mm/s and {Delta}{sub 1} = 0.642 {+-} 0.002 mm/s, {delta}{sub 2} = 0.379 {+-} 0.002 mm/s and {Delta}{sub 2} = 0.613 {+-} 0.002 mm/s.

  12. Structural and Electronic Properties Study of Colombian Aurifer Soils by Moessbauer Spectroscopy and X-ray Diffraction

    International Nuclear Information System (INIS)

    Bustos Rodriguez, H.; Rojas Martinez, Y.; Oyola Lozano, D.; Perez Alcazar, G. A.; Fajardo, M.; Mojica, J.; Molano, Y. J. C.

    2005-01-01

    In this work a study on gold mineral samples is reported, using optical microscopy, X-ray diffraction (XRD) and Moessbauer spectroscopy (MS). The auriferous samples are from the El Diamante mine, located in Guachavez-Narino (Colombia) and were prepared by means of polished thin sections. The petrography analysis registered the presence, in different percentages that depend on the sample, of pyrite, quartz, arsenopyirite, sphalerite, chalcopyrite and galena. The XRD analysis confirmed these findings through the calculated cell parameters. One typical Rietveld analysis showed the following weight percent of phases: 85.0% quartz, 14.5% pyrite and 0.5% sphalerite. In this sample, MS demonstrated the presence of two types of pyrite whose hyperfine parameters are δ 1 = 0.280 ± 0.002 mm/s and Δ 1 = 0.642 ± 0.002 mm/s, δ 2 = 0.379 ± 0.002 mm/s and Δ 2 = 0.613 ± 0.002 mm/s.

  13. Aspherical-atom modeling of coordination compounds by single-crystal X-ray diffraction allows the correct metal atom to be identified.

    Science.gov (United States)

    Dittrich, Birger; Wandtke, Claudia M; Meents, Alke; Pröpper, Kevin; Mondal, Kartik Chandra; Samuel, Prinson P; Amin Sk, Nurul; Singh, Amit Pratap; Roesky, Herbert W; Sidhu, Navdeep

    2015-02-02

    Single-crystal X-ray diffraction (XRD) is often considered the gold standard in analytical chemistry, as it allows element identification as well as determination of atom connectivity and the solid-state structure of completely unknown samples. Element assignment is based on the number of electrons of an atom, so that a distinction of neighboring heavier elements in the periodic table by XRD is often difficult. A computationally efficient procedure for aspherical-atom least-squares refinement of conventional diffraction data of organometallic compounds is proposed. The iterative procedure is conceptually similar to Hirshfeld-atom refinement (Acta Crystallogr. Sect. A- 2008, 64, 383-393; IUCrJ. 2014, 1,61-79), but it relies on tabulated invariom scattering factors (Acta Crystallogr. Sect. B- 2013, 69, 91-104) and the Hansen/Coppens multipole model; disordered structures can be handled as well. Five linear-coordinate 3d metal complexes, for which the wrong element is found if standard independent-atom model scattering factors are relied upon, are studied, and it is shown that only aspherical-atom scattering factors allow a reliable assignment. The influence of anomalous dispersion in identifying the correct element is investigated and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Karakteristik Beberapa Jenis Antibiotik Berdasarkan Pola Difraksi Sinar-X (XRD Dan Spektrum FTIR

    Directory of Open Access Journals (Sweden)

    Mirzan T Razzak

    2017-03-01

    Full Text Available Telah dilakukan pengukuran karakteristik difraksi sinar-x (XRD terhadap beberapa jenisantibiotik. Penelitian ini bertujuan untuk memahami karakteristik difraksi sinar-x suatuantibiotik sebagai upaya untuk identifikasi antibiotik secara cepat. Dalam penelitian ini diamatikarakteristik difraksi sinar-x dari 15 (lima belas antibiotik yang tersedia di pasaran. SpektrumXRD diukur pada sudut 2 antara 5 – 75 untuk dibandingkan dan dievaluasi mengenai bentukkristalnya. Selanjutnya diukur pula spektrum XRD dari pencampuran antibiotik dengan tepungtapioka. Pengukuran spektrum infrared dengan FTIR juga dilakukan untuk menguji konsistensihasil evaluasi spektrum XRD. Hasil penelitian menunjukkan bahwa amoxicillin dan ampicillinmempunyai struktur kristal yang sama, yaitu orthorombic primitif. Sayangnya baik XRDmaupun FTIR, tidak memberikan nilai kuantitatif pada antibiotik. Oleh sebab itu, perbedaankonsentrasi dengan pencampuran tepung tapioka tidak dapat dideteksi. Walaupun demikian,metode ini terbukti dapat digunakan untuk membedakan komposisi zat penyusun antibiotiksecara cepat dan akurat.

  15. Microstructural evolution and mechanical properties on an ARB processed IF steel studied by X-ray diffraction and EBSD

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Gandarilla, Francisco, E-mail: fcruz@ipn.mx [Instituto Politécnico Nacional, Escuela Superior de Física y Matemáticas, Edificio 9, U.P.A.L.M., Zacatenco, Del. G. A. Madero, México, D.F. C.P. 07738, México (Mexico); Salcedo-Garrido, Ana María, E-mail: salcedo_marya@yahoo.com.mx [Instituto Politécnico Nacional, Escuela Superior de Física y Matemáticas, Edificio 9, U.P.A.L.M., Zacatenco, Del. G. A. Madero, México, D.F. C.P. 07738, México (Mexico); Bolmaro, Raúl E., E-mail: bolmaro@ifir-conicet.gov.ar [Instituto de Física Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas-CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda, 2000 Rosario (Argentina); Baudin, Thierry, E-mail: thierry.baudin@u-psud.fr [CNRS, UMR 8182, ICMMO, Lab. de Synthèse, Propriétés et Modélisation des Matériaux, Université de Paris-Sud, Orsay F-91405 (France); De Vincentis, Natalia S., E-mail: devincentis@ifir-conicet.gov.ar [Instituto de Física Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas-CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda, 2000 Rosario (Argentina); and others

    2016-08-15

    Accumulative Roll Bonding (ARB) is one of the so-called severe plastic deformation (SPD) processes, allowing the production of metals and alloys with ultrafine (micro-nano) structures. Materials with ultrafine grains present attractive properties like the simultaneous increase in strength and ductility. Our interest in these materials is focused on their microstructural evolution during ARB processing, eventually responsible for the enhancement of those mechanical properties. In the current work we follow the evolution of the microstructure in an interstitial-free (IF) steel deformed by ARB after consecutive processing cycles, by means of Electron BackScatter Diffraction (EBSD) and X-ray diffraction (XRD). Particularly, we present results related to texture, grain (GS) and domain sizes, grain boundary character, density of Geometrically Necessary Dislocations (GND), Grain Orientation Spread (GOS), lattice parameters, microstrain, dislocation density and their spatial arrangement. After 5 ARB cycles the system shows a microstructure constituted mainly by submicrometric grains with high angle boundaries and low presence of dislocations inside the grains. - Highlights: •The evolution of microstructure is followed simultaneously by using GAM, GOS and GND (EBSD) and XRD. •LAGBs and subgrains disappear after few cycles SSDs and HAGBs persist at the end. •Dynamic recrystallization counterbalances dislocation arrays and diminishes hardening rate. •Grain size stabilization is revealed as a mechanism for increasing ductility after few ARB cycles.

  16. Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts

    Energy Technology Data Exchange (ETDEWEB)

    Stan, Manuela, E-mail: manuela.stan@itim-cj.ro; Popa, Adriana; Toloman, Dana; Silipas, Teofil-Danut [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca (Romania); Vodnar, Dan Cristian [University of Agricultural Sciences and Veterinary Medicine, Department of Food Science and Technology, 3-5 Manastur Street, 400372 Cluj-Napoca (Romania); Katona, Gabriel [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, 400028 Cluj-Napoca (Romania)

    2015-12-23

    The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn{sup 2+} ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes and oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs.

  17. Enhanced antibacterial activity of zinc oxide nanoparticles synthesized using Petroselinum crispum extracts

    International Nuclear Information System (INIS)

    Stan, Manuela; Popa, Adriana; Toloman, Dana; Silipas, Teofil-Danut; Vodnar, Dan Cristian; Katona, Gabriel

    2015-01-01

    The present contribution reports the synthesis of zinc oxide nanoparticles (ZnO NPs) using aqueous leaf and root extracts of Petroselinum crispum (parsley) and characterization of as-prepared samples. ZnO NPs are subjected to X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) studies. The XRD studies reveal a hexagonal wurtzite structure without supplementary diffraction lines for all ZnO samples. TEM analysis shows that the particle size is influenced by the type of plant extract. The EPR spectra indicate the presence of Mn 2+ ions in ZnO sample synthesized using P. crispum leaf extract, while zinc vacancy complexes and oxygen vacancies are evidenced in all analyzed samples. ZnO NPs synthesized using P. crispum extracts exhibit increased (2-16 times) antibacterial activity as compared to chemically synthesized ZnO NPs

  18. Stable tetragonal phase and magnetic properties of Fe-doped HfO2 nanoparticles

    Science.gov (United States)

    Sales, T. S. N.; Cavalcante, F. H. M.; Bosch-Santos, B.; Pereira, L. F. D.; Cabrera-Pasca, G. A.; Freitas, R. S.; Saxena, R. N.; Carbonari, A. W.

    2017-05-01

    In this paper, the effect in structural and magnetic properties of iron doping with concentration of 20% in hafnium dioxide (HfO2) nanoparticles is investigated. HfO2 is a wide band gap oxide with great potential to be used as high-permittivity gate dielectrics, which can be improved by doping. Nanoparticle samples were prepared by sol-gel chemical method and had their structure, morphology, and magnetic properties, respectively, investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) with electron back scattering diffraction (EBSD), and magnetization measurements. TEM and SEM results show size distribution of particles in the range from 30 nm to 40 nm with small dispersion. Magnetization measurements show the blocking temperature at around 90 K with a strong paramagnetic contribution. XRD results show a major tetragonal phase (94%).

  19. Stable tetragonal phase and magnetic properties of Fe-doped HfO2 nanoparticles

    Directory of Open Access Journals (Sweden)

    T. S. N. Sales

    2017-05-01

    Full Text Available In this paper, the effect in structural and magnetic properties of iron doping with concentration of 20% in hafnium dioxide (HfO2 nanoparticles is investigated. HfO2 is a wide band gap oxide with great potential to be used as high-permittivity gate dielectrics, which can be improved by doping. Nanoparticle samples were prepared by sol-gel chemical method and had their structure, morphology, and magnetic properties, respectively, investigated by X-ray diffraction (XRD, transmission electron microscopy (TEM and scanning electron microscopy (SEM with electron back scattering diffraction (EBSD, and magnetization measurements. TEM and SEM results show size distribution of particles in the range from 30 nm to 40 nm with small dispersion. Magnetization measurements show the blocking temperature at around 90 K with a strong paramagnetic contribution. XRD results show a major tetragonal phase (94%.

  20. Disruption of crystalline structure of Sn3.5Ag induced by electric current

    International Nuclear Information System (INIS)

    Huang, Han-Chie; Lin, Kwang-Lung; Wu, Albert T.

    2016-01-01

    This study presented the disruption of the Sn and Ag_3Sn lattice structures of Sn3.5Ag solder induced by electric current at 5–7 × 10"3 A/cm"2 with a high resolution transmission electron microscope investigation and electron diffraction analysis. The electric current stressing induced a high degree of strain on the alloy, as estimated from the X-ray diffraction (XRD) peak shift of the current stressed specimen. The XRD peak intensity of the Sn matrix and the Ag_3Sn intermetallic compound diminished to nearly undetectable after 2 h of current stressing. The electric current stressing gave rise to a high dislocation density of up to 10"1"7/m"2. The grain morphology of the Sn matrix became invisible after prolonged current stressing as a result of the coalescence of dislocations.

  1. Direct observation of strain in InAs quantum dots and cap layer during molecular beam epitaxial growth using in situ X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, Kenichi; Ohshita, Yoshio; Kamiya, Itaru, E-mail: kamiya@toyota-ti.ac.jp [Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Suzuki, Hidetoshi [Faculty of Engineering, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192 (Japan); Sasaki, Takuo; Takahasi, Masamitu [Quantum Beam Science Center, Japan Atomic Energy Agency, Koto 1-1-1, Sayo-cho, Hyogo 679-5148 (Japan)

    2015-11-14

    Direct measurements on the growth of InAs quantum dots (QDs) and various cap layers during molecular beam epitaxy are performed by in situ X-ray diffraction (XRD). The evolution of strain induced both in the QDs and cap layers during capping is discussed based on the XRD intensity transients obtained at various lattice constants. Transients with different features are observed from those obtained during InGaAs and GaAs capping. The difference observed is attributed to In-Ga intermixing between the QDs and the cap layer under limited supply of In. Photoluminescence (PL) wavelength can be tuned by controlling the intermixing, which affects both the strain induced in the QDs and the barrier heights. The PL wavelength also varies with the cap layer thickness. A large redshift occurs by reducing the cap thickness. The in situ XRD observation reveals that this is a result of reduced strain. We demonstrate how such information about strain can be applied for designing and preparing novel device structures.

  2. Direct observation of strain in InAs quantum dots and cap layer during molecular beam epitaxial growth using in situ X-ray diffraction

    International Nuclear Information System (INIS)

    Shimomura, Kenichi; Ohshita, Yoshio; Kamiya, Itaru; Suzuki, Hidetoshi; Sasaki, Takuo; Takahasi, Masamitu

    2015-01-01

    Direct measurements on the growth of InAs quantum dots (QDs) and various cap layers during molecular beam epitaxy are performed by in situ X-ray diffraction (XRD). The evolution of strain induced both in the QDs and cap layers during capping is discussed based on the XRD intensity transients obtained at various lattice constants. Transients with different features are observed from those obtained during InGaAs and GaAs capping. The difference observed is attributed to In-Ga intermixing between the QDs and the cap layer under limited supply of In. Photoluminescence (PL) wavelength can be tuned by controlling the intermixing, which affects both the strain induced in the QDs and the barrier heights. The PL wavelength also varies with the cap layer thickness. A large redshift occurs by reducing the cap thickness. The in situ XRD observation reveals that this is a result of reduced strain. We demonstrate how such information about strain can be applied for designing and preparing novel device structures

  3. Study of the mechanisms involved in reactive silica

    Energy Technology Data Exchange (ETDEWEB)

    Boinski, Frederic [Univ Lille Nord of France, Ecole des Mines, 941, rue Charles Bourseul, BP 838, 59508 Douai (France); Khouchaf, Lahcen, E-mail: lahcenkho@live.fr [Univ Lille Nord of France, Ecole des Mines, 941, rue Charles Bourseul, BP 838, 59508 Douai (France); Tuilier, Marie-Helene [Universite de Haute-Alsace, LPMT (EA CNRS 4365), Universite de Haute Alsace, 61 rue Albert Camus, F-68093 Mulhouse (France)

    2010-07-01

    The microstructure of a heterogeneous SiO{sub 2} submitted to a depolymerisation process is studied using Transmission Electron Microscope (TEM), Environmental SEM (ESEM), and X-ray diffraction (XRD). With ESEM the formation of micro domain induced by the dissolution phenomena is shown. XRD shows the formation of a halo that is associated with the formation of amorphous phase. The parameters 'position and FWHM' of the halo, enabled us to show the evolution of the disorderly phase when the reaction progresses. The hypothesis of formation of nanoparticles with different structural states was confirmed by the TEM.

  4. Polymethacrylic acid as a new precursor of CuO nanoparticles

    Science.gov (United States)

    Hosny, Nasser Mohammed; Zoromba, Mohamed Shafick

    2012-11-01

    Polymethacrylic acid and its copper complexes have been synthesized and characterized. These complexes have been used as precursors to produce CuO nanoparticles by thermal decomposition in air. The stages of decompositions and the calcination temperature of the precursors have been determined from thermal analyses (TGA). The obtained CuO nanoparticles have been characterized by X-ray diffraction (XRD), scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). XRD showed a monoclinic structure with particle size 8-20 nm for the synthesized copper oxide nanoparticles. These nanoparticles are catalytically active in decomposing hydrogen peroxide and a mechanism of decomposition has been suggested.

  5. Optical and surface morphological properties of triethylamine passivated lead sulphide nanoparticles

    International Nuclear Information System (INIS)

    Navaneethan, M.; Nisha, K.D.; Ponnusamy, S.; Muthamizhchelvan, C.

    2009-01-01

    The triethylamine capped lead sulphide (PbS) nanoparticles were successfully synthesized by simple wet chemical method. The synthesized product has been characterized by powder X-ray diffraction (XRD), UV-vis spectrophotometry, FTIR spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM) and photoluminescence studies. The size of the PbS nanoparticles was determined from AFM, TEM, XRD and from these studies it is found that the size of the particles of the order of 10-15 nm. Significant 'blue shift' from bulk material was observed on the PbS nanoparticles using UV-vis and photoluminescence spectrum.

  6. X-ray diffraction pattern and relative crystallinity of irradiated arrowroot starch

    Energy Technology Data Exchange (ETDEWEB)

    Barroso, Aline G.; Garcia, Rafael H.L.; Del Mastro, Nelida L., E-mail: nlmastro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    After cereals, tubers and roots are the major source of starch for food and industrial uses. Arrowroot refers to any plant of the genus Marantha, but the term is most commonly used to describe the easily digested starch obtained from the rhizomes of Marantha arundinacae. The rhizomes of this herbaceous plant contain about 20% of starch. As few studies exist on arrowroot starch, the objective of this preliminary work was to study the X-ray diffraction patterns (XRD) patterns of arrowroot starch when treated by γ-radiation with doses up to 15 kGy in a {sup 60}Co source. The XRD patterns of the arrowroot starch exhibited A-type crystalline arrangements with strong peaks at approximately 15º, 17º, 18º and 23º (2θ). A slight increase of diffractogram peaks intensity was noticed after the irradiation process. The crystallinity index was calculated using Bruker DIFFRAC.EVA version 4.2 software. Relative crystallinity seems to increase with radiation doses, and this effect is more noticeable at low doses. That can be attributed to different radiation sensitivity among the amorphous and crystalline regions of the arrowroot starch molecule. Present results will contribute to elucidate the behavior under radiation treatment of this starchy component increasingly employed by the food industry. (author)

  7. X-ray diffraction pattern and relative crystallinity of irradiated arrowroot starch

    International Nuclear Information System (INIS)

    Barroso, Aline G.; Garcia, Rafael H.L.; Del Mastro, Nelida L.

    2017-01-01

    After cereals, tubers and roots are the major source of starch for food and industrial uses. Arrowroot refers to any plant of the genus Marantha, but the term is most commonly used to describe the easily digested starch obtained from the rhizomes of Marantha arundinacae. The rhizomes of this herbaceous plant contain about 20% of starch. As few studies exist on arrowroot starch, the objective of this preliminary work was to study the X-ray diffraction patterns (XRD) patterns of arrowroot starch when treated by γ-radiation with doses up to 15 kGy in a "6"0Co source. The XRD patterns of the arrowroot starch exhibited A-type crystalline arrangements with strong peaks at approximately 15º, 17º, 18º and 23º (2θ). A slight increase of diffractogram peaks intensity was noticed after the irradiation process. The crystallinity index was calculated using Bruker DIFFRAC.EVA version 4.2 software. Relative crystallinity seems to increase with radiation doses, and this effect is more noticeable at low doses. That can be attributed to different radiation sensitivity among the amorphous and crystalline regions of the arrowroot starch molecule. Present results will contribute to elucidate the behavior under radiation treatment of this starchy component increasingly employed by the food industry. (author)

  8. Optical transmission theory for metal-insulator-metal periodic nanostructures

    Directory of Open Access Journals (Sweden)

    Blanchard-Dionne Andre-Pierre

    2016-11-01

    Full Text Available A semi-analytical formalism for the optical properties of a metal-insulator-metal periodic nanostructure using coupled-mode theory is presented. This structure consists in a dielectric layer in between two metallic layers with periodic one-dimensional nanoslit corrugation. The model is developed using multiple-scattering formalism, which defines transmission and reflection coefficients for each of the interface as a semi-infinite medium. Total transmission is then calculated using a summation of the multiple paths of light inside the structure. This method allows finding an exact solution for the transmission problem in every dimension regime, as long as a sufficient number of diffraction orders and guided modes are considered for the structure. The resonant modes of the structure are found to be related to the metallic slab only and to a combination of both the metallic slab and dielectric layer. This model also allows describing the resonant behavior of the system in the limit of a small dielectric layer, for which discontinuities in the dispersion curves are found. These discontinuities result from the out-of-phase interference of the different diffraction orders of the system, which account for field interaction for both inner interfaces of the structure.

  9. Transmission Electron Microscopy Physics of Image Formation

    CERN Document Server

    Kohl, Helmut

    2008-01-01

    Transmission Electron Microscopy: Physics of Image Formation presents the theory of image and contrast formation, and the analytical modes in transmission electron microscopy. The principles of particle and wave optics of electrons are described. Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast. Also discussed are the kinematical and dynamical theories of electron diffraction and their applications for crystal-structure analysis and imaging of lattices and their defects. X-ray microanalysis and electron energy-loss spectroscopy are treated as analytical methods. Specimen damage and contamination by electron irradiation limits the resolution for biological and some inorganic specimens. This fifth edition includes discussion of recent progress, especially in the area of aberration correction and energy filtering; moreover, the topics introduced in the fourth edition have been updated. Transmission Electron Microscopy: Physics of Image Formation is written f...

  10. XRD spectra of new YBaCuO superconductors

    Indian Academy of Sciences (India)

    superconductors of YBaCuO materials by solid state reac- tion. They used the ... The XRD spectra and critical temperatures are shown to be the same as that of ... samples were synthesized by solid state reaction using raw materials Y2O3 ...

  11. Low-kilovolt coherent electron diffractive imaging instrument based on a single-atom electron source

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Yueh [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Chang, Wei-Tse; Chen, Yi-Sheng; Hwu, En-Te; Chang, Chia-Seng; Hwang, Ing-Shouh, E-mail: ishwang@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Hsu, Wei-Hao [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2016-03-15

    In this work, a transmission-type, low-kilovolt coherent electron diffractive imaging instrument was constructed. It comprised a single-atom field emitter, a triple-element electrostatic lens, a sample holder, and a retractable delay line detector to record the diffraction patterns at different positions behind the sample. It was designed to image materials thinner than 3 nm. The authors analyzed the asymmetric triple-element electrostatic lens for focusing the electron beams and achieved a focused beam spot of 87 nm on the sample plane at the electron energy of 2 kV. High-angle coherent diffraction patterns of a suspended graphene sample corresponding to (0.62 Å){sup −1} were recorded. This work demonstrated the potential of coherent diffractive imaging of thin two-dimensional materials, biological molecules, and nano-objects at a voltage between 1 and 10 kV. The ultimate goal of this instrument is to achieve atomic resolution of these materials with high contrast and little radiation damage.

  12. A X-ray diffraction analysis on constituent distribution of heavy rust layer formed on weathering steel using synchrotron radiation

    International Nuclear Information System (INIS)

    Hara, Shuichi

    2008-01-01

    A local structural analysis of heavy rust layers with large swelling and laminated layers formed on weathering steel bridges using synchrotron radiation X-ray diffraction (SR-XRD) in SPring-8 have been performed. The main constituent in average composition of the whole layer was spinel-type iron oxide [mainly Magnetite (Fe 3 O 4 )] and the mass ratio was 30-40 mass%. In contrast the mass ratio of spinel in its local parts, i.e., outer layer, inter-layer and inner layer position was not higher in common but the mass ratio of β-FeOOH was higher. Therefore it indicates that these heavy rust layers have been composed of many layers of spinel poor, rich and poor - cell (SPRaP-cell). Thus SR-XRD is useful for the analysis of the constituent distribution in the rust layer. (author)

  13. Temperature-Induced Desorption of Methyl tert-Butyl Ether Confined on ZSM-5: An In Situ Synchrotron XRD Powder Diffraction Study

    Directory of Open Access Journals (Sweden)

    Elisa Rodeghero

    2017-02-01

    Full Text Available The temperature-induced desorption of methyl tert-butyl ether (MTBE from aqueous solutions onto hydrophobic ZSM-5 was studied by in situ synchrotron powder diffraction and chromatographic techniques. This kind of information is crucial for designing and optimizing the regeneration treatment of such zeolite. The evolution of the structural features monitored by full profile Rietveld refinements revealed that a monoclinic (P21/n to orthorhombic (Pnma phase transition occurred at about 100 °C. The MTBE desorption process caused a remarkable change in the unit-cell parameters. Complete MTBE desorption was achieved upon heating at about 250 °C. Rietveld analysis demonstrated that the desorption process occurred without any significant zeolite crystallinity loss, but with slight deformations in the channel apertures.

  14. Nondestructive strain depth profiling with high energy X-ray diffraction: System capabilities and limitations

    Science.gov (United States)

    Zhang, Zhan; Wendt, Scott; Cosentino, Nicholas; Bond, Leonard J.

    2018-04-01

    Limited by photon energy, and penetration capability, traditional X-ray diffraction (XRD) strain measurements are only capable of achieving a few microns depth due to the use of copper (Cu Kα1) or molybdenum (Mo Kα1) characteristic radiation. For deeper strain depth profiling, destructive methods are commonly necessary to access layers of interest by removing material. To investigate deeper depth profiles nondestructively, a laboratory bench-top high-energy X-ray diffraction (HEXRD) system was previously developed. This HEXRD method uses an industrial 320 kVp X-Ray tube and the Kα1 characteristic peak of tungsten, to produces a higher intensity X-ray beam which enables depth profiling measurement of lattice strain. An aluminum sample was investigated with deformation/load provided using a bending rig. It was shown that the HEXRD method is capable of strain depth profiling to 2.5 mm. The method was validated using an aluminum sample where both the HEXRD method and the traditional X-ray diffraction method gave data compared with that obtained using destructive etching layer removal, performed by a commercial provider. The results demonstrate comparable accuracy up to 0.8 mm depth. Nevertheless, higher attenuation capabilities in heavier metals limit the applications in other materials. Simulations predict that HEXRD works for steel and nickel in material up to 200 µm, but experiment results indicate that the HEXRD strain profile is not practical for steel and nickel material, and the measured diffraction signals are undetectable when compared to the noise.

  15. Simultaneous X-ray imaging and diffraction study of shock propagation and phase transition in silicon

    Science.gov (United States)

    Galtier, Eric

    2017-06-01

    X-ray phase contrast imaging technique using a free electron laser have observed the propagation of laser-driven shock waves directly inside materials. While providing images with few hundred nanometers spatial resolution, access to more quantitative information like the material density and the various shock front speeds remain challenging due to imperfections in the images limiting the convergence in the reconstruction algorithm. Alternatively, pump-probe X-ray diffraction (XRD) is a robust technique to extract atomic crystalline structure of compressed matter, providing insight into the kinetics of phase transformation and material response to stress. However, XRD by itself is not sufficient to extract the equation of state of the material under study. Here we report on the use of the LCLS free electron laser as a source of a high-resolution X-ray microscopy enabling the direct imaging of shock waves and phase transitions in optically opaque silicon. In this configuration, no algorithm is necessary to extract the material density and the position of the shock fronts. Simultaneously, we probed the crystalline structure via XRD of the various phases in laser compressed silicon. E. Galtier, B. Nagler, H. J. Lee, S. Brown, E. Granados, A. Hashim, E. McBride, A. Mackinnon, I. Nam, J. Zimmerman (SLAC) A. Gleason (Stanford, LANL) A. Higginbotham (University of York) A. Schropp, F. Seiboth (DESY).

  16. Heteroepitaxial growth of SiC films by carbonization of polyimide Langmuir-Blodgett films on Si

    Directory of Open Access Journals (Sweden)

    Goloudina S.I.

    2017-01-01

    Full Text Available High quality single crystal SiC films were prepared by carbonization of polyimide Langmuir-Blodgett films on Si substrate. The films formed after annealing of the polyimide films at 1000°C, 1100°C, 1200°C were studied by Fourier transform-infrared (FTIR spectroscopy, X-ray diffraction (XRD, Raman spectroscopy, transmission electon microscopy (TEM, transmission electron diffraction (TED, and scanning electron microscopy (SEM. XRD study and HRTEM cross-section revealed that the crystalline SiC film begins to grow on Si (111 substrate at 1000°C. According to the HRTEM cross-section image five planes in 3C-SiC (111 film are aligned with four Si(111 planes at the SiC/Si interface. It was shown the SiC films (35 nm grown on Si(111 at 1200°C have mainly cubic 3C-SiC structure with a little presence of hexagonal polytypes. Only 3C-SiC films (30 nm were formed on Si (100 substrate at the same temperature. It was shown the SiC films (30-35 nm are able to cover the voids in Si substrate with size up to 10 μm.

  17. Microstructures of GaN1-xPx layers grown on (0001) GaN substrates by gas source molecular beam epitaxy

    Science.gov (United States)

    Seong, Tae-Yeon; Bae, In-Tae; Choi, Chel-Jong; Noh, D. Y.; Zhao, Y.; Tu, C. W.

    1999-03-01

    Transmission electron microscope (TEM), transmission electron diffraction (TED), and synchrotron x-ray diffraction (XRD) studies have been performed to investigate microstructural behavior of gas source molecular beam epitaxial GaN1-xPx layers grown on (0001) GaN/sapphire at temperatures (Tg) in the range 500-760 °C. TEM, TED, and XRD results indicate that the samples grown at Tg⩽600 °C undergo phase separation resulting in a mixture of GaN-rich and GaP-rich GaNP with zinc-blende structure. However, the samples grown at Tg⩾730 °C are found to be binary zinc-blende GaN(P) single crystalline materials. As for the 500 °C layer, the two phases are randomly oriented and distributed, whereas the 600 °C layer consists of phases that are elongated and inclined by 60°-70° clockwise from the [0001]α-GaN direction. The samples grown at Tg⩾730 °C are found to consist of two types of microdomains, namely, GaN(P)I and GaN(P)II; the former having twin relation to the latter.

  18. Single order soft X-ray diffraction with quasi-random radius pinhole array spectroscopic photon sieves

    International Nuclear Information System (INIS)

    Zhang Qiang-Qiang; Wei Lai; Yang Zu-Hua; Qian Feng; Fan Quan-Ping; Zhang Bo; Gu Yu-Qiu; Cao Lei-Feng

    2014-01-01

    A novel single order diffraction grating in the soft X-ray region, called quasi-random radius pinhole array spectroscopic photon sieves (QRSPS), is proposed in this paper. This new grating is composed of pinholes on a substrate, whose radii are quasi-random, while their centers are regular. Analysis proves that its transmittance function across the grating bar is similar to that of sinusoidal transmission gratings. Simulation results show that the QRSPS can suppress higher-order diffraction effectively. And the QRSPS would still retain its characteristic of single order diffraction when we take the effect of X-ray penetration into account. These properties indicate that the QRSPS can be used in the soft X-ray spectra measurement. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  19. Characterizing the Phyllosilicates and Amorphous Phases Found by MSL Using Laboratory XRD and EGA Measurements of Natural and Synthetic Materials

    Science.gov (United States)

    Rampe, Elizabeth B.; Morris, Richard V.; Chipera, Steve; Bish, David L.; Bristow, Thomas; Archer, Paul Douglas; Blake, David; Achilles, Cherie; Ming, Douglas W.; Vaniman, David; hide

    2013-01-01

    The Curiosity Rover landed on the Peace Vallis alluvial fan in Gale crater on August 5, 2012. A primary mission science objective is to search for past habitable environments, and, in particular, to assess the role of past water. Identifying the minerals and mineraloids that result from aqueous alteration at Gale crater is essential for understanding past aqueous processes at the MSL landing site and hence for interpreting the site's potential habitability. X-ray diffraction (XRD) data from the CheMin instrument and evolved gas analyses (EGA) from the SAM instrument have helped the MSL science team identify phases that resulted from aqueous processes: phyllosilicates and amorphous phases were measure in two drill samples (John Klein and Cumberland) obtained from the Sheepbed Member, Yellowknife Bay Fm., which is believed to represent a fluvial-lacustrine environment. A third set of analyses was obtained from scoop samples from the Rocknest sand shadow. Chemical data from the APXS instrument have helped constrain the chemical compositions of these secondary phases and suggest that the phyllosilicate component is Mg-enriched and the amorphous component is Fe-enriched, relatively Si-poor, and S- and H-bearing. To refine the phyllosilicate and amorphous components in the samples measured by MSL, we measured XRD and EGA data for a variety of relevant natural terrestrial phyllosilicates and synthetic mineraloids in laboratory testbeds of the CheMin and SAM instruments. Specifically, Mg-saturated smectites and vermiculites were measured with XRD at low relative humidity to understand the behavior of the 001 reflections under Mars-like conditions. Our laboratory XRD measurements suggest that interlayer cation composition affects the hydration state of swelling clays at low RH and, thus, the 001 peak positions. XRD patterns of synthetic amorphous materials, including allophane, ferrihydrite, and hisingerite were used in full-pattern fitting (FULLPAT) models to help

  20. Microwave-assisted aqueous synthesis of ultralong ZnO nanowires: photoluminescence and photovoltaic performance for dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Min, C.; Shen, X.; Sheng, W. [Jiangsu University, School of Materials Science and Engineering, Zhenjiang (China)

    2009-09-15

    Ultralong ZnO nanowires were successfully prepared on a large scale by a microwave-assisted aqueous route without using any surfactant or template at relatively low temperature of 120 C. The obtained nanowires were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectrum (EDX). The growth mechanism and photoluminescence of the one-dimensional nanostructure, and photovoltaic performances for dye-sensitized solar cell (DSSC) of the nanowires were discussed in detail. (orig.)