WorldWideScience

Sample records for diffraction tomography limits

  1. Polychromatic diffraction contrast tomography

    International Nuclear Information System (INIS)

    King, A.; Reischig, P.; Adrien, J.; Peetermans, S.; Ludwig, W.

    2014-01-01

    This tutorial review introduces the use of polychromatic radiation for 3D grain mapping using X-ray diffraction contrast tomography. The objective is to produce a 3D map of the grain shapes and orientations within a bulk, millimeter-sized polycrystalline sample. The use of polychromatic radiation enables the standard synchrotron X-ray technique to be applied in a wider range of contexts: 1) Using laboratory X-ray sources allows a much wider application of the diffraction contrast tomography technique. 2) Neutron sources allow large samples, or samples containing high Z elements to be studied. 3) Applied to synchrotron sources, smaller samples may be treated, or faster measurements may be possible. Challenges and particularities in the data acquisition and processing, and the limitations of the different variants, are discussed. - Highlights: • We present a tutorial review of polychromatic diffraction contrast tomography techniques. • The use of polychromatic radiation allows the standard synchrotron DCT technique to be extended to a range of other sources. • The characteristics and limitations of all variants of the techniques are derived, discussed and compared. • Examples using laboratory X-ray and cold neutron radiation are presented. • Suggestions for the future development of these techniques are presented

  2. Spectral and Diffraction Tomography

    OpenAIRE

    Lionheart, William

    2016-01-01

    We discuss several cases of what we call "Rich Tomography" problems in which more data is measured than a scalar for each ray. We give examples of infra red spectral tomography and Bragg edge neutron tomography in which the data is insufficient. For diffraction tomography of strain for polycrystaline materials we give an explicit reconstruction procedure. We go on to describe a way to find six independent rotation axes using Pascal's theorem of projective geometry

  3. X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens.

    Science.gov (United States)

    de Jonge, Martin D; Ryan, Christopher G; Jacobsen, Chris J

    2014-09-01

    X-ray nanoprobes require coherent illumination to achieve optic-limited resolution, and so will benefit directly from diffraction-limited storage rings. Here, the example of high-resolution X-ray fluorescence tomography is focused on as one of the most voracious demanders of coherent photons, since the detected signal is only a small fraction of the incident flux. Alternative schemes are considered for beam delivery, sample scanning and detectors. One must consider as well the steps before and after the X-ray experiment: sample preparation and examination conditions, and analysis complexity due to minimum dose requirements and self-absorption. By understanding the requirements and opportunities for nanoscale fluorescence tomography, one gains insight into the R&D challenges in optics and instrumentation needed to fully exploit the source advances that diffraction-limited storage rings offer.

  4. Tomography with energy dispersive diffraction

    Science.gov (United States)

    Stock, S. R.; Okasinski, J. S.; Woods, R.; Baldwin, J.; Madden, T.; Quaranta, O.; Rumaiz, A.; Kuczewski, T.; Mead, J.; Krings, T.; Siddons, P.; Miceli, A.; Almer, J. D.

    2017-09-01

    X-ray diffraction can be used as the signal for tomographic reconstruction and provides a cross-sectional map of the crystallographic phases and related quantities. Diffraction tomography has been developed over the last decade using monochromatic x-radiation and an area detector. This paper reports tomographic reconstruction with polychromatic radiation and an energy sensitive detector array. The energy dispersive diffraction (EDD) geometry, the instrumentation and the reconstruction process are described and related to the expected resolution. Results of EDD tomography are presented for two samples containing hydroxyapatite (hAp). The first is a 3D-printed sample with an elliptical crosssection and contains synthetic hAp. The second is a human second metacarpal bone from the Roman-era cemetery at Ancaster, UK and contains bio-hAp which may have been altered by diagenesis. Reconstructions with different diffraction peaks are compared. Prospects for future EDD tomography are also discussed.

  5. Inverse scattering theory foundations of tomography with diffracting wavefields

    International Nuclear Information System (INIS)

    Devaney, A.J.

    1987-01-01

    The underlying mathematical models employed in reflection and transmission computed tomography using diffracting wavefields (called diffraction tomography) are reviewed and shown to have a rigorous basis in inverse scattering theory. In transmission diffraction tomography the underlying wave model is shown to be the Rytov approximation to the complex phase of the wavefield transmitted by the object being probed while in reflection diffraction tomography the underlying wave model is shown to be the Born approximation to the backscattered wavefield from the object. In both cases the goal of the reconstruction process is the determination of the objects's complex index of refraction as a function of position r/sup →/ and, possibly, the frequency ω of the probing wavefield. By use of these approximations the reconstruction problem for both transmission and reflection diffraction tomography can be cast into the simple and elegant form of linearized inverse scattering theory. Linearized inverse scattering theory is shown to lead directly to generalized projection-slice theorems for both reflection and transmission diffraction tomography that provide a simple mathematical relationship between the object's complex index of refraction (the unknown) and the data (the complex phase of the transmitted wave or the complex amplitude of the reflected wave). The conventional projection-slice theorem of X-ray CT is shown to result from the generalized projection-slice theorem for transmission diffraction tomography in the limit of vanishing wavelength (in the absence of wave effects). Fourier based and back-projection type reconstruction algorithms are shown to be directly derivable from the generalized projection-slice theorems

  6. X-ray diffraction computed tomography

    International Nuclear Information System (INIS)

    Harding, G.; Kosanetzky, J.; Neitzel, U.

    1987-01-01

    Coherent scattering of x-ray photons leads to the phenomenon of x-ray diffraction, which is widely used for determining atomic structure in materials science. A technique [x-ray diffraction computed tomography (CT)] is described, analogous to conventional CT, in which the x-ray diffraction properties of a stack of two-dimensional object sections may be imaged. The technique has been investigated using a first generation (single pencil beam) CT scanner to measure small angle coherent scatter, in addition to the customary transmitted radiation. Diffraction data from a standard CT performance phantom obtained with this new technique and with an x-ray diffractometer are compared. The agreement is satisfactory bearing in mind the poor momentum resolution of our apparatus. The dose and sensitivity of x-ray diffraction CT are compared with those of conventional transmission CT. Diffraction patterns of some biological tissues and plastics presented in a companion paper indicate the potential of x-ray diffraction CT for tissue discrimination and material characterization. Finally, possibilities for refinement of the technique by improving the momentum resolution are discussed

  7. Cold neutron diffraction contrast tomography of polycrystalline material.

    Science.gov (United States)

    Peetermans, S; King, A; Ludwig, W; Reischig, P; Lehmann, E H

    2014-11-21

    Traditional neutron imaging is based on the attenuation of a neutron beam through scattering and absorption upon traversing a sample of interest. It offers insight into the sample's material distribution at high spatial resolution in a non-destructive way. In this work, it is expanded to include the diffracted neutrons that were ignored so far and obtain a crystallographic distribution (grain mapping). Samples are rotated in a cold neutron beam of limited wavelength band. Projections of the crystallites formed by the neutrons they diffract are captured on a two dimensional imaging detector. Their positions on the detector reveal their orientation whereas the projections themselves are used to reconstruct the shape of the grains. Indebted to established synchrotron diffraction contrast tomography, this 'cold neutron diffraction contrast tomography' is performed on recrystallized aluminium for experimental comparison between both. Differences between set-up and method are discussed, followed by the application range in terms of sample properties (crystallite size and number, mosaicity and typical materials). Neutron diffraction contrast tomography allows to study large grains in bulky metallic structures.

  8. Diffraction limit of refractive compound lens

    International Nuclear Information System (INIS)

    Kolchevsky, N.N.; Petrov, P.V.

    2015-01-01

    A compound X-ray and neutron lenses is an array of lenses with a common axis. The resolution limited by aberration and by diffraction. Diffraction limit comes from theory based on absorption aperture of the compound refractive lenses. Beam passing through transparent lenses form Airy pattern. Results of calculation of diffraction resolution limit for non-transparent X-ray and neutron lenses are discussed. (authors)

  9. Diffractive optics and nanophotonics resolution below the diffraction limit

    CERN Document Server

    Minin, Igor

    2016-01-01

    In this book the authors present several examples of techniques used to overcome the Abby diffraction limit using flat and 3D diffractive optical elements, photonic crystal lenses, photonic jets, and surface plasmon diffractive optics. The structures discussed can be used in the microwave and THz range and also as scaled models for optical frequencies. Such nano-optical microlenses can be integrated, for example, into existing semiconductor heterostructure platforms for next-generation optoelectronic applications. Chapter 1 considers flat diffractive lenses and innovative 3D radiating structures including a conical millimeter-wave Fresnel zone plate (FZP) lens proposed for subwavelength focusing. In chapter 2 the subwavelength focusing properties of diffractive photonic crystal lenses are considered and it is shown that at least three different types of photonic crystal lens are possible.  With the aim of achieving subwavelength focusing, in chapter 3 an alternative mechanism to produce photonic jets at Tera...

  10. Discussion of the finite element method in optical diffraction tomography

    Science.gov (United States)

    Lobera, Julia; Coupland, Jeremy

    2006-04-01

    In Optical Diffraction Tomography (ODT) the refractive index is reconstructed from images with different illuminating wavefronts. In most cases the Born approximation is assumed, although this limits the applicability of the technique to weak-scattering problems. In this work we examine the scattering problem from first principles beginning from the Helmholtz equation that governs scalar diffraction and wave propagation. We demonstrate the use of the Born approximation and show typical errors when it is applied in practice. Solution of the Helmholtz equation using a Finite Element Method (FEM) with an appropriate Absorbing Boundary Condition (ABC) is described, and a non-linear optimization technique, the Conjugate Gradient Method (CGM), previously proposed for microwave imaging, is applied to the inverse problem.

  11. Immobilizing Biomolecules Near the Diffraction Limit

    DEFF Research Database (Denmark)

    Skovsen, Esben; Petersen, Maria Teresa Neves; Gennaro, Ane Kold Di

    2009-01-01

    be used to print arrays of biomolecules and to immobilize biomolecules according to any specific pattern on a planar substrates with micrometer scale resolution. In this paper we show that we can immobilize proteins according to diffraction patterns of UV light. We also show that the feature size...... of the immobilized patterns can be as small as the diffraction limit for the excitation light, and that the immobilized patterns correspond to the diffraction pattern used to generate it. The flexibility of this new technology will in principle make it possible to create any pattern of biomolecules onto a substrate......, which can be generated by a UV diffraction pattern. Such patterns can have sub-micron feature sizes and could therefore be of great relevance for present and future nanotechnological applications....

  12. Diffraction tomography for plasma refractive index measurements

    International Nuclear Information System (INIS)

    Howard, J.; Nazikian, R.; Sharp, L.E.

    1989-01-01

    Measurement of the properties of probing beams of coherent electromagnetic radiation yields essential information about the line of sight integrated plasma refractive index. Presented is a scalar diffraction treatment of forward angle scattering plasma diagnostics based on the diffraction projection theorem first presented by E. Wolf in 1969. New results are obtained for near field scattering from probing Gaussian beams and it is demonstrated that the effects of diffraction need to be addressed for tomographic inversion of near field scattering and interferometry data. 33 refs., 10 figs

  13. Structure refinement using precession electron diffraction tomography and dynamical diffraction: theory and implementation

    Czech Academy of Sciences Publication Activity Database

    Palatinus, Lukáš; Petříček, Václav; Correa, Cinthia Antunes

    2015-01-01

    Roč. 71, Mar (2015), 235-244 ISSN 0108-7673 R&D Projects: GA ČR GA13-25747S Institutional support: RVO:68378271 Keywords : dynamical diffraction * electron diffraction tomography * electron crystallography Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.307, year: 2014

  14. Optical diffraction tomography: accuracy of an off-axis reconstruction

    Science.gov (United States)

    Kostencka, Julianna; Kozacki, Tomasz

    2014-05-01

    Optical diffraction tomography is an increasingly popular method that allows for reconstruction of three-dimensional refractive index distribution of semi-transparent samples using multiple measurements of an optical field transmitted through the sample for various illumination directions. The process of assembly of the angular measurements is usually performed with one of two methods: filtered backprojection (FBPJ) or filtered backpropagation (FBPP) tomographic reconstruction algorithm. The former approach, although conceptually very simple, provides an accurate reconstruction for the object regions located close to the plane of focus. However, since FBPJ ignores diffraction, its use for spatially extended structures is arguable. According to the theory of scattering, more precise restoration of a 3D structure shall be achieved with the FBPP algorithm, which unlike the former approach incorporates diffraction. It is believed that with this method one is allowed to obtain a high accuracy reconstruction in a large measurement volume exceeding depth of focus of an imaging system. However, some studies have suggested that a considerable improvement of the FBPP results can be achieved with prior propagation of the transmitted fields back to the centre of the object. This, supposedly, enables reduction of errors due to approximated diffraction formulas used in FBPP. In our view this finding casts doubt on quality of the FBPP reconstruction in the regions far from the rotation axis. The objective of this paper is to investigate limitation of the FBPP algorithm in terms of an off-axis reconstruction and compare its performance with the FBPJ approach. Moreover, in this work we propose some modifications to the FBPP algorithm that allow for more precise restoration of a sample structure in off-axis locations. The research is based on extensive numerical simulations supported with wave-propagation method.

  15. Fourier diffraction theorem for diffusion-based thermal tomography

    International Nuclear Information System (INIS)

    Baddour, Natalie

    2006-01-01

    There has been much recent interest in thermal imaging as a method of non-destructive testing and for non-invasive medical imaging. The basic idea of applying heat or cold to an area and observing the resulting temperature change with an infrared camera has led to the development of rapid and relatively inexpensive inspection systems. However, the main drawback to date has been that such an approach provides mainly qualitative results. In order to advance the quantitative results that are possible via thermal imaging, there is interest in applying techniques and algorithms from conventional tomography. Many tomography algorithms are based on the Fourier diffraction theorem, which is inapplicable to thermal imaging without suitable modification to account for the attenuative nature of thermal waves. In this paper, the Fourier diffraction theorem for thermal tomography is derived and discussed. The intent is for this thermal-diffusion based Fourier diffraction theorem to form the basis of tomographic reconstruction algorithms for quantitative thermal imaging

  16. Fast, inexpensive, diffraction limited cylindrical microlenses

    International Nuclear Information System (INIS)

    Synder, J.J.; Reichert, P.

    1991-01-01

    We have developed a technique for fabricating fast, well corrected cylindrical microlenses. With this technique we have made a number of different microlenses with dimensions and focal lengths in the range of few hundred μm, and diffraction limited numerical apertures as high as 0.9. The microlenses are specifically designed for applications where they can increase the radiance or otherwise enhance the optical characteristics of laser diode light. The fabrication method we use is very versatile, and the microlenses produced this way would be very inexpensive in production quantities. 6 refs., 4 figs

  17. Accurate Antenna Models in Ground Penetrating Radar Diffraction Tomography

    DEFF Research Database (Denmark)

    Meincke, Peter; Kim, Oleksiy S.

    2002-01-01

    Linear inversion schemes based on the concept of diffraction tomography have proven successful for ground penetrating radar (GPR) imaging. In many GPR surveys, the antennas of the GPR are located close to the air-soil interface and, therefore, it is important to incorporate the presence of this i......Linear inversion schemes based on the concept of diffraction tomography have proven successful for ground penetrating radar (GPR) imaging. In many GPR surveys, the antennas of the GPR are located close to the air-soil interface and, therefore, it is important to incorporate the presence...... to investigate the validity of this model. We extend that formulation to hold for arbitrary antennas. For simplicity, the 2.5D case is considered, that is, it is assumed that the scattering object in the soil is invariant in one direction, which, for instance, is the case for a pipe. The arbitrary antennas...

  18. Implementing Transmission Electron Backscatter Diffraction for Atom Probe Tomography.

    Science.gov (United States)

    Rice, Katherine P; Chen, Yimeng; Prosa, Ty J; Larson, David J

    2016-06-01

    There are advantages to performing transmission electron backscattering diffraction (tEBSD) in conjunction with focused ion beam-based specimen preparation for atom probe tomography (APT). Although tEBSD allows users to identify the position and character of grain boundaries, which can then be combined with APT to provide full chemical and orientation characterization of grain boundaries, tEBSD can also provide imaging information that improves the APT specimen preparation process by insuring proper placement of the targeted grain boundary within an APT specimen. In this report we discuss sample tilt angles, ion beam milling energies, and other considerations to optimize Kikuchi diffraction pattern quality for the APT specimen geometry. Coordinated specimen preparation and analysis of a grain boundary in a Ni-based Inconel 600 alloy is used to illustrate the approach revealing a 50° misorientation and trace element segregation to the grain boundary.

  19. Inherent limitations of hydraulic tomography.

    Science.gov (United States)

    Bohling, Geoffrey C; Butler, James J

    2010-01-01

    We offer a cautionary note in response to an increasing level of enthusiasm regarding high-resolution aquifer characterization with hydraulic tomography. We use synthetic examples based on two recent field experiments to demonstrate that a high degree of nonuniqueness remains in estimates of hydraulic parameter fields even when those estimates are based on simultaneous analysis of a number of carefully controlled hydraulic tests. We must, therefore, be careful not to oversell the technique to the community of practicing hydrogeologists, promising a degree of accuracy and resolution that, in many settings, will remain unattainable, regardless of the amount of effort invested in the field investigation. No practically feasible amount of hydraulic tomography data will ever remove the need to regularize or bias the inverse problem in some fashion in order to obtain a unique solution. Thus, along with improving the resolution of hydraulic tomography techniques, we must also strive to couple those techniques with procedures for experimental design and uncertainty assessment and with other more cost-effective field methods, such as geophysical surveying and, in unconsolidated formations, direct-push profiling, in order to develop methods for subsurface characterization with the resolution and accuracy needed for practical field applications. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.

  20. X-ray diffraction contrast tomography (DCT) system, and an X-ray diffraction contrast tomography (DCT) method

    DEFF Research Database (Denmark)

    2012-01-01

    Source: US2012008736A An X-ray diffraction contrast tomography system (DCT) comprising a laboratory X-ray source (2), a staging device (5) rotating a polycrystalline material sample in the direct path of the X-ray beam, a first X-ray detector (6) detecting the direct X-ray beam being transmitted ...... in the polycrystalline sample is determined based on the two-dimensional position of extinction spots and the associated angular position of the sample for a set of extinction spots pertaining to the individual grain....

  1. Beating the diffraction limit in astronomy via quantum cloning

    Science.gov (United States)

    Kellerer, A.

    2014-01-01

    Context. The diffraction limit is considered as the absolute boundary for the angular resolution of a telescope. Non-linear optical processes, however, allow the diffraction limit to be beaten non-deterministically. Aims: We examine the possibility of overcoming the diffraction limit of a telescope through photon cloning processes, heralded by trigger events. Whilst perfect cloning is ruled out by quantum mechanics, imperfect cloning is attainable and can beat the diffraction limit on a reduced fraction of photons. Methods: We suggest to insert a layer of excited atoms in a pupil plane of the telescope. When a photon from the astronomical source passes the pupil, it stimulates the emission of identical photons by the excited atoms. The set of photons arrives on a coincidence detector, and the average position of simultaneously arriving photons is recorded. The contribution of spontaneous emissions is minimized by use of a trigger signal, implemented via a quantum-non-demolition measurement. Results: The proposed set-up - an optical amplifier triggered by a quantum-non-demolition measurement - allows to beat the diffraction limit of a telescope, at the price of a loss in efficiency. The efficiency may, however, be compensated for through increased exposure times. Conclusions: The main conclusion is the possibility in principle to improve the angular resolution of a telescope beyond the diffraction limit and thus to achieve high-angular resolutions with moderately sized telescopes.

  2. Complex Subduction Imaged by Diffractional Tomography of USArray Receiver Functions

    Science.gov (United States)

    Zhou, Y.

    2016-12-01

    Subduction of a large oceanic plate beneath a continental plate is a complex process. In the Western United States, fragmentation of the Farallon slab has been reported in recent tomographic models. In this study, we measure finite-frequency travel times of P410s and P660s receiver functions recorded at USArray Transportable Array (TA) stations for teleseismic events occurred between 2015 and 2011. We calculate the finite-frequency sensitivities of receiver functions to depth perturbations of the 410-km and 660-km discontinuities to obtain high resolution mantle transition zone models based on diffractional tomography. The high-resolution discontinuity models reveal several interesting anomalies associated with complex subduction of the Farallon plate. In particular, we observe a linear feature in both the 410-km and 660-km discontinuity models. This mantle transition zone anomaly is roughly located in the western Snake River Plain and aligns with a major slab gap imaged in an earlier finite-frequency S-wave velocity model. We show that non-stationary upwellings generated by eastward propagation of a slab tearing event, together with a westward motion of the North American plate at a rate of about 1 to 1.5 centimeters per year (comparable to the half spreading rate of the Mid-Atlantic Ridge) in the past 16 million years can explain the age-progressive Snake River Plain / Yellowstone volcanic track. The slab to the west of the anomaly shows a near vertical subduction, it is heavily fragmented and the 410-km and 660-km discontinuity topography indicates that the southern fragment north of the Mendocino triple junction has subducted down to the mantle transition zone.

  3. Limited Diffraction Maps for Pulsed Wave Annular Arrays

    DEFF Research Database (Denmark)

    Fox, Paul D.

    2002-01-01

    A procedure is provided for decomposing the linear field of flat pulsed wave annular arrays into an equivalent set of known limited diffraction Bessel beams. Each Bessel beam propagates with known characteristics, enabling good insight into the propagation of annular fields to be obtained...

  4. ODTbrain: a Python library for full-view, dense diffraction tomography.

    Science.gov (United States)

    Müller, Paul; Schürmann, Mirjam; Guck, Jochen

    2015-11-04

    Analyzing the three-dimensional (3D) refractive index distribution of a single cell makes it possible to describe and characterize its inner structure in a marker-free manner. A dense, full-view tomographic data set is a set of images of a cell acquired for multiple rotational positions, densely distributed from 0 to 360 degrees. The reconstruction is commonly realized by projection tomography, which is based on the inversion of the Radon transform. The reconstruction quality of projection tomography is greatly improved when first order scattering, which becomes relevant when the imaging wavelength is comparable to the characteristic object size, is taken into account. This advanced reconstruction technique is called diffraction tomography. While many implementations of projection tomography are available today, there is no publicly available implementation of diffraction tomography so far. We present a Python library that implements the backpropagation algorithm for diffraction tomography in 3D. By establishing benchmarks based on finite-difference time-domain (FDTD) simulations, we showcase the superiority of the backpropagation algorithm over the backprojection algorithm. Furthermore, we discuss how measurment parameters influence the reconstructed refractive index distribution and we also give insights into the applicability of diffraction tomography to biological cells. The present software library contains a robust implementation of the backpropagation algorithm. The algorithm is ideally suited for the application to biological cells. Furthermore, the implementation is a drop-in replacement for the classical backprojection algorithm and is made available to the large user community of the Python programming language.

  5. Limited-diffraction solutions to Maxwell and Schroedinger equations

    International Nuclear Information System (INIS)

    Lu, Jian-yu; Greenleaf, J.F.

    1996-10-01

    The authors have developed a new family of limited diffraction electromagnetic X-shaped waves based on the scalar X-shaped waves discovered previously. These waves are diffraction-free in theory and particle-like (wave packets), in that they maintain their shape as they propagate to an infinite distance. The 'X waves' possess (theoretically) infinitely extended 'arms' and - at least, the ones studied in this paper - have an infinite total energy: therefore, they are not physically realizable. However, they can be truncated in both space and time and 'approximated' by means of a finite aperture radiator so to get a large enough depth of interest (depth of field). In addition to the Maxwell equations, X wave solutions to the free Schroedinger equation are also obtained. Possible applications of these new waves are discussed. Finally, the authors discuss the appearance of the X-shaped solutions from the purely geometric point of view of the special relativity theory

  6. Diffraction and coherence in breast ultrasound tomography: a study with a toroidal array

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lianjie [Los Alamos National Laboratory; Simonetti, Francesco [IMPERIAL COLL.; Duric, Neb [KCI; Littrup, Peter [KCI

    2008-01-01

    Ultrasound is commonly used as an adjunct to mammography for diagnostic evaluation of suspicions arising from breast cancer screening. As an alternative to conventional sonography that uses hand-held transducers, toroidal array probes that encircle the breast immersed in a water bath have been investigated for ultrasound tomography. In this paper, two sets of experiments performed with a prototype ultrasound scanner on a phantom and a human breast in vivo are used to investigate the effects of diffraction and coherence in ultrasound tomography. Reconstructions obtained with transmission diffraction tomography (TDT) are compared with conventional reflection imaging and computerized ultrasound tomography showing a substantial improvement. The in vivo tests demonstrate that TDT can image the complex boundary of a cancer mass and suggest that it can reveal the anatomy of milk ducts and Cooper's ligaments.

  7. Atmospheric Dispersion Effects at the Diffraction Limit of TMT

    Science.gov (United States)

    Niehaus, Cyndie; Phillips, A.; Larkin, J.; Moore, A.; Barton, B.; IRIS Team

    2010-01-01

    As part of the design study of the InfraRed Imaging Spectrograph (IRIS) for Thirty Meter Telescope (TMT) we've undertaken an analysis of the effects of atmospheric dispersion at the diffraction limit of the telescope. While dispersion in the near infrared is often only marginally important in seeing limited observations, there are many effects that must be understood in order to achieve astrometric accuracies well below the 0.1 milliarcsecond level. Even with precision dispersion correction, residuals at the level of a few milliarcseconds often remain even for single stars. Field dependent distortion can further limit performance and are also dynamic in orientation and magnitude. We'll present simulations of observed stellar fields based on our expected exposure times. Effects due to stellar color, variable atmospheric conditions and other factors will also be presented.

  8. Genetic algorithm for chromaticity correction in diffraction limited storage rings

    Directory of Open Access Journals (Sweden)

    M. P. Ehrlichman

    2016-04-01

    Full Text Available A multiobjective genetic algorithm is developed for optimizing nonlinearities in diffraction limited storage rings. This algorithm determines sextupole and octupole strengths for chromaticity correction that deliver optimized dynamic aperture and beam lifetime. The algorithm makes use of dominance constraints to breed desirable properties into the early generations. The momentum aperture is optimized indirectly by constraining the chromatic tune footprint and optimizing the off-energy dynamic aperture. The result is an effective and computationally efficient technique for correcting chromaticity in a storage ring while maintaining optimal dynamic aperture and beam lifetime.

  9. Elettra 2.0 - The diffraction limited successor of Elettra

    Science.gov (United States)

    Karantzoulis, Emanuel

    2018-02-01

    Elettra has been operating for users for 23 years; to stay competitive for world-class photon science in the future a massive upgrade of the storage ring is needed. An analysis of possible magnet lattice configurations has been performed with the aim of transforming Elettra into a diffraction limited storage ring. The optimum solution is based on certain design constraints and user requirements and their implications for beam dynamics and for practical considerations regarding certain accelerator components. The new proposed design will have a bare emittance of 250 pm-rad and coherent flux about two orders of magnitude higher than that of the present machine.

  10. Wide field and diffraction limited array camera for SIRTF

    International Nuclear Information System (INIS)

    Fazio, G.G.; Koch, D.G.; Melnick, G.J.

    1986-01-01

    The Infrared Array Camera for the Space Infrared Telescope Facility (SIRTF/IRAC) is capable of two-dimensional photometry in either a wide field or diffraction-limited mode over the wavelength interval from 2 to 30 microns. Three different two-dimensional direct readout (DRO) array detectors are being considered: Band 1-InSb or Si:In (2-5 microns) 128 x 128 pixels, Band 2-Si:Ga (5-18 microns) 64 x 64 pixels, and Band 3-Si:Sb (18-30 microns) 64 x 64 pixels. The hybrid DRO readout architecture has the advantages of low read noise, random pixel access with individual readout rates, and nondestructive readout. The scientific goals of IRAC are discussed, which are the basis for several important requirements and capabilities of the array camera: (1) diffraction-limited resolution from 2-30 microns, (2) use of the maximum unvignetted field of view of SIRTF, (3) simultaneous observations within the three infrared spectral bands, and (4) the capability for broad and narrow bandwidth spectral resolution. A strategy has been developed to minimize the total electronic and environmental noise sources to satisfy the scientific requirements. 7 references

  11. Three-dimensional live microscopy beyond the diffraction limit

    International Nuclear Information System (INIS)

    Fiolka, Reto

    2013-01-01

    In fluorescence microscopy it has become possible to fundamentally overcome the diffraction limited resolution in all three spatial dimensions. However, to have the most impact in biological sciences, new optical microscopy techniques need to be compatible with live cell imaging: image acquisition has to be fast enough to capture cellular dynamics at the new resolution limit while light exposure needs to be minimized to prevent photo-toxic effects. With increasing spatial resolution, these requirements become more difficult to meet, even more so when volumetric imaging is performed. In this review, techniques that have been successfully applied to three-dimensional, super-resolution live microscopy are presented and their relative strengths and weaknesses are discussed. (special issue article)

  12. Structure refinement using precession electron diffraction tomography and dynamical diffraction: tests on experimental data.

    Science.gov (United States)

    Palatinus, Lukáš; Corrêa, Cinthia Antunes; Steciuk, Gwladys; Jacob, Damien; Roussel, Pascal; Boullay, Philippe; Klementová, Mariana; Gemmi, Mauro; Kopeček, Jaromír; Domeneghetti, M Chiara; Cámara, Fernando; Petříček, Václav

    2015-12-01

    The recently published method for the structure refinement from three-dimensional precession electron diffraction data using dynamical diffraction theory [Palatinus et al. (2015). Acta Cryst. A71, 235-244] has been applied to a set of experimental data sets from five different samples - Ni2Si, PrVO3, kaolinite, orthopyroxene and mayenite. The data were measured on different instruments and with variable precession angles. For each sample a reliable reference structure was available. A large series of tests revealed that the method provides structure models with an average error in atomic positions typically between 0.01 and 0.02 Å. The obtained structure models are significantly more accurate than models obtained by refinement using kinematical approximation for the calculation of model intensities. The method also allows a reliable determination of site occupancies and determination of absolute structure. Based on the extensive tests, an optimal set of the parameters for the method is proposed.

  13. Concurrent determination of nanocrystal shape and amorphous phases in complex materials by diffraction scattering computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Birkbak, Mie Elholm; Nielsen, Ida Gjerlevsen; Frølich, Simon; Stock, Stuart R.; Kenesei, Peter; Almer, Jonathan D.; Birkedal, Henrik

    2017-02-01

    Advanced functional materials often contain multiple phases which are (nano)crystalline and/or amorphous. The spatial distribution of these phases and their properties, including nanocrystallite size and shape, often drives material function yet is difficult to obtain with current experimental techniques. This article describes the use of diffraction scattering computed tomography, which maps wide-angle scattering information onto sample space, to address this challenge. The wide-angle scattering signal contains information on both (nano)crystalline and amorphous phases. Rietveld refinement of reconstructed diffraction patterns is employed to determine anisotropic nanocrystal shapes. The background signal from refinements is used to identify contributing amorphous phases through multivariate curve resolution. Thus it is demonstrated that reciprocal space analysis in combination with diffraction scattering computed tomography is a very powerful tool for the complete analysis of complex multiphase materials such as energy devices.

  14. Shaping the spatial and spectral emissivity at the diffraction limit

    International Nuclear Information System (INIS)

    Makhsiyan, Mathilde; Bouchon, Patrick; Jaeck, Julien; Pelouard, Jean-Luc; Haïdar, Riad

    2015-01-01

    Metasurfaces have attracted a growing interest for their ability to artificially tailor an electromagnetic response on various spectral ranges. In particular, thermal sources with unprecedented abilities, such as directionality or monochromaticity, have been achieved. However, these metasurfaces exhibit homogeneous optical properties whereas the spatial modulation of the emissivity up to the wavelength scale is at the crux of the design of original emitters. In this letter, we study an inhomogeneous metasurface made of a nonperiodic set of optical nano-antennas that spatially and spectrally control the emitted light up to the diffraction limit. Each antenna acts as an independent deep subwavelength emitter for given polarization and wavelength. Their juxtaposition at the subwavelength scale encodes far field multispectral and polarized images. This opens up promising breakthroughs for applications such as optical storage, anti-counterfeit devices, and multispectral emitters for biochemical sensing

  15. Near diffraction limited mid-IR spectromicroscopy using frequency upconversion

    DEFF Research Database (Denmark)

    Sanders, Nicolai Højer; Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter

    2014-01-01

    Mid-infrared microscopy and spectroscopy is interesting due to its medical, biological and chemical applications. Spectromicroscopy can be used for histopathology, sample analysis and diagnosis. The ability to do spectromicroscopy in the 2.5 to 4.5 μm wavelength range where many organic molecules...... technologies. With these applications in mind, we have incorporated microscopy optics into an image upconversion system, achieving near diffraction limited spatial resolution in the 3 μm range. Spectroscopic information is further acquired by appropriate control of the phase match condition of the upconversion...... have their fundamental vibrations, with the addition of sufficient spectroscopic resolution to resolve these bands, cane.g.potentially allow for diagnostics without the need for staining of the sample. On a longer timeframe, mid-IR spectromicroscopy has the potential for in-vivo diagnostics, combining...

  16. Structure refinement using precession electron diffraction tomography and dynamical diffraction: tests on experimental data

    Czech Academy of Sciences Publication Activity Database

    Palatinus, Lukáš; Correa, Cinthia Antunes; Steciuk, G.; Jacob, D.; Roussel, P.; Boullay, P.; Klementová, Mariana; Gemmi, M.; Kopeček, Jaromír; Domeneghetti, C.; Cámara, F.; Petříček, Václav

    2015-01-01

    Roč. 71, č. 6 (2015), 740-751 ISSN 2052-5206 R&D Projects: GA MŠk(CZ) LM2011029; GA ČR GA13-25747S; GA MŠk LO1409 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132; FUNBIO(XE) CZ.2.16/3.1.00/21568 Keywords : XRD * structure refinement * precession electron diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.892, year: 2015

  17. Time-multiplexed structured illumination using a DMD for optical diffraction tomography

    Science.gov (United States)

    Lee, KyeoReh; Kim, Kyoohyun; Kim, Geon; Shin, Seungwoo; Park, YongKeun

    2017-03-01

    We present a novel illumination control technique for optical diffraction tomography (ODT). Various spatial frequencies of beam illumination were controlled by displaying time-averaged sinusoidal patterns using a digital micromirror device (DMD). Compared to the previous method using binary Lee holograms, the present method eliminates unwanted diffracted beams which may deteriorate the image quality of the ODT. We demonstrated the capability of the present method by reconstructing three-dimensional refractive index (RI) distributions of various samples, with high RI sensitivity (\\sigma_\\Delta n = 3.15 +/- 10-4), and reconstructing 3-D RI tomograms of biological samples, which provided quantitative biochemical and morphological information about the samples.

  18. Measurement of 3D refractive index distribution by optical diffraction tomography

    Science.gov (United States)

    Chi, Weining; Wang, Dayong; Wang, Yunxin; Zhao, Jie; Rong, Lu; Yuan, Yuanyuan

    2018-01-01

    Optical Diffraction Tomography (ODT), as a novel 3D imaging technique, can obtain a 3D refractive index (RI) distribution to reveal the important optical properties of transparent samples. According to the theory of ODT, an optical diffraction tomography setup is built based on the Mach-Zehnder interferometer. The propagation direction of object beam is controlled by a 2D translation stage, and 121 holograms based on different illumination angles are recorded by a Charge-coupled Device (CCD). In order to prove the validity and accuracy of the ODT, the 3D RI profile of microsphere with a known RI is firstly measured. An iterative constraint algorithm is employed to improve the imaging accuracy effectively. The 3D morphology and average RI of the microsphere are consistent with that of the actual situation, and the RI error is less than 0.0033. Then, an optical element fabricated by laser with a non-uniform RI is taken as the sample. Its 3D RI profile is obtained by the optical diffraction tomography system.

  19. Optical diffraction tomography microscopy with transport of intensity equation using a light-emitting diode array

    Science.gov (United States)

    Li, Jiaji; Chen, Qian; Zhang, Jialin; Zhang, Zhao; Zhang, Yan; Zuo, Chao

    2017-08-01

    Optical diffraction tomography (ODT) is an effective label-free technique for quantitatively refractive index imaging, which enables long-term monitoring of the internal three-dimensional (3D) structures and molecular composition of biological cells with minimal perturbation. However, existing optical tomographic methods generally rely on interferometric configuration for phase measurement and sophisticated mechanical systems for sample rotation or beam scanning. Thereby, the measurement is suspect to phase error coming from the coherent speckle, environmental vibrations, and mechanical error during data acquisition process. To overcome these limitations, we present a new ODT technique based on non-interferometric phase retrieval and programmable illumination emitting from a light-emitting diode (LED) array. The experimental system is built based on a traditional bright field microscope, with the light source replaced by a programmable LED array, which provides angle-variable quasi-monochromatic illumination with an angular coverage of ±37 degrees in both x and y directions (corresponding to an illumination numerical aperture of ∼0.6). Transport of intensity equation (TIE) is utilized to recover the phase at different illumination angles, and the refractive index distribution is reconstructed based on the ODT framework under first Rytov approximation. The missing-cone problem in ODT is addressed by using the iterative non-negative constraint algorithm, and the misalignment of the LED array is further numerically corrected to improve the accuracy of refractive index quantification. Experiments on polystyrene beads and thick biological specimens show that the proposed approach allows accurate refractive index reconstruction while greatly reduced the system complexity and environmental sensitivity compared to conventional interferometric ODT approaches.

  20. Three-dimensional grain mapping by x-ray diffraction contrast tomography and the use of Friedel pairs in diffraction data analysis

    DEFF Research Database (Denmark)

    Ludwig, W.; Reischig, P.; King, A.

    2009-01-01

    the use of improved algorithms for grain indexing (assigning diffraction spots to the grains from which they arise) and reconstruction. The accuracy of the resulting grain maps is quantified with reference to synchrotron microtomography data for a specimen made from a beta titanium system in which......X-ray diffraction contrast tomography (DCT) is a technique for mapping grain shape and orientation in plastically undeformed polycrystals. In this paper, we describe a modified DCT data acquisition strategy which permits the incorporation of an innovative Friedel pair method for analyzing...... diffraction data. Diffraction spots are acquired during a 360 degrees rotation of the sample and are analyzed in terms of the Friedel pairs ((hkl) and (hkl) reflections, observed 180 degrees apart in rotation). The resulting increase in the accuracy with which the diffraction vectors are determined allows...

  1. Investigation of biological microstructures by using diffraction-enhanced imaging computed tomography

    International Nuclear Information System (INIS)

    Shu Hang; Liu Bo; Zhu, Peiping; Gao Xin; Yin Hongxia; Yuan Qingxi; Wang Junyue; Huang Wanxia; Gao Xiulai; Luo Shuqian; Wu Ziyu; Fang Shouxian

    2006-01-01

    Diffraction-enhanced imaging computer tomography (DEI-CT) is a new method to provide the object's inner information. Previous reports demonstrated its applicability in soft and hard tissue imaging. Here, we provide further evidence for the improved overall image quality and for the option to distinguish the inner microstructures of the guinea pig's cochlea. Data has shown the details of the cochlea's inner microstructure such as vestibular membrane which only have 6 μm. A better knowledge of these microstructures may be relevant to achieve progress in the otology of clinical anatomization

  2. Investigation of biological microstructures by using diffraction-enhanced imaging computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Shu Hang [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Graudate School of the Chinese Academy of Sciences, 100864 Beijing (China); Liu Bo [Capital University of Medical Sciences (China); Zhu, Peiping [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China)]. E-mail: zhupp@ihep.ac.cn; Gao Xin [Capital University of Medical Sciences (China); Yin Hongxia [Capital University of Medical Sciences (China); Yuan Qingxi [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Wang Junyue [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Graudate School of the Chinese Academy of Sciences, 100864 Beijing (China); Huang Wanxia [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Gao Xiulai [Capital University of Medical Sciences (China); Luo Shuqian [Capital University of Medical Sciences (China); Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China) and National Center for NanoScience and Technology (China)]. E-mail: wuzy@mail.ihep.ac.cn; Fang Shouxian [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China)

    2006-11-15

    Diffraction-enhanced imaging computer tomography (DEI-CT) is a new method to provide the object's inner information. Previous reports demonstrated its applicability in soft and hard tissue imaging. Here, we provide further evidence for the improved overall image quality and for the option to distinguish the inner microstructures of the guinea pig's cochlea. Data has shown the details of the cochlea's inner microstructure such as vestibular membrane which only have 6 {mu}m. A better knowledge of these microstructures may be relevant to achieve progress in the otology of clinical anatomization.

  3. Investigation of biological microstructures by using diffraction-enhanced imaging computed tomography

    Science.gov (United States)

    Shu, Hang; Liu, Bo; Zhu, Peiping; Gao, Xin; Yin, Hongxia; Yuan, Qingxi; Wang, Junyue; Huang, Wanxia; Gao, Xiulai; Luo, Shuqian; Wu, Ziyu; Fang, Shouxian

    2006-11-01

    Diffraction-enhanced imaging computer tomography (DEI-CT) is a new method to provide the object's inner information. Previous reports demonstrated its applicability in soft and hard tissue imaging. Here, we provide further evidence for the improved overall image quality and for the option to distinguish the inner microstructures of the guinea pig's cochlea. Data has shown the details of the cochlea's inner microstructure such as vestibular membrane which only have 6 μm. A better knowledge of these microstructures may be relevant to achieve progress in the otology of clinical anatomization.

  4. Diffraction Contrast Tomography: A Novel 3D Polycrystalline Grain Imaging Technique

    Energy Technology Data Exchange (ETDEWEB)

    Kuettner, Lindsey Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-06

    Diffraction contrast tomography (DCT) is a non-destructive way of imaging microstructures of polycrystalline materials such as metals or crystalline organics. It is a useful technique to map 3D grain structures as well as providing crystallographic information such as crystal orientation, grain shape, and strain. Understanding the internal microstructure of a material is important in understanding the bulk material properties. This report gives a general overview of the similar techniques, DCT data acquisition, and analysis processes. Following the short literature review, potential work and research at Los Alamos National Laboratory (LANL) is discussed.

  5. Neutron diffraction tomography: a unique, 3D inspection technique for crystals using an intensifier TV system

    International Nuclear Information System (INIS)

    Davidson, J.B.; Case, A.L.

    1978-01-01

    The application of phosphor-intensifier-TV techniques to neutron topography and tomography of crystals is described. The older, analogous x-ray topography using wavelengths approximately 1.5A is widely used for surface inspection. However, the crystal must actually be cut in order to see diffraction anomalies beneath the surface. Because 1.5-A thermal neutrons are highly penetrating, much larger and thicker specimens can be used. Also, since neutrons have magnetic moments, they are diffracted by magnetic structures within crystals. In neutron volume topography, the entire crystal or a large part of it is irradiated, and the images obtained are superimposed reflections from the total volume. In neutron tomography (or section topography), a collimated beam irradiates a slice (0.5 to 10 mm) of the crystal. The diffracted image is a tomogram from this part only. A series of tomograms covering the crystal can be taken as the specimen is translated in steps across the narrow beam. Grains, voids, twinning, and other defects from regions down to 1 mm in size can be observed and isolated. Although at present poorer in resolution than the original neutron and film methods, the TV techniques are much faster and, in some cases, permit real-time viewing. Two camera systems are described: a counting camera having a 150 mm 6 Li-ZnS screen for low-intensity reflections which are integrated in a digital memory, and a 300-mm system using analog image storage. Topographs and tomograms of several crystals ranging in size from 4 mm to 80 mm are shown

  6. Ab initio structure determination and quantitative disorder analysis on nanoparticles by electron diffraction tomography.

    Science.gov (United States)

    Krysiak, Yaşar; Barton, Bastian; Marler, Bernd; Neder, Reinhard B; Kolb, Ute

    2018-03-01

    Nanoscaled porous materials such as zeolites have attracted substantial attention in industry due to their catalytic activity, and their performance in sorption and separation processes. In order to understand the properties of such materials, current research focuses increasingly on the determination of structural features beyond the averaged crystal structure. Small particle sizes, various types of disorder and intergrown structures render the description of structures at atomic level by standard crystallographic methods difficult. This paper reports the characterization of a strongly disordered zeolite structure, using a combination of electron exit-wave reconstruction, automated diffraction tomography (ADT), crystal disorder modelling and electron diffraction simulations. Zeolite beta was chosen for a proof-of-principle study of the techniques, because it consists of two different intergrown polymorphs that are built from identical layer types but with different stacking sequences. Imaging of the projected inner Coulomb potential of zeolite beta crystals shows the intergrowth of the polymorphs BEA and BEB. The structures of BEA as well as BEB could be extracted from one single ADT data set using direct methods. A ratio for BEA/BEB = 48:52 was determined by comparison of the reconstructed reciprocal space based on ADT data with simulated electron diffraction data for virtual nanocrystals, built with different ratios of BEA/BEB. In this way, it is demonstrated that this smart interplay of the above-mentioned techniques allows the elaboration of the real structures of functional materials in detail - even if they possess a severely disordered structure.

  7. Advances in design and testing of limited angle optical diffraction tomographysystem for biological applications

    Science.gov (United States)

    Kuś, A.; Makowski, P.; Kujawińska, M.

    2016-03-01

    Optical diffraction tomography has been steadily proving its potential to study one of the hot topics in modern cell biology -- 3D dynamic changes in cells' morphology represented with refractive index values. In this technique digital holography is combined with tomographic reconstruction and thus it is necessary to provide projections acquired at different viewing directions. Usually the Mach-Zehnder interferometer configuration is used and while the object beam performs scanning, the reference beam is in most cases stationary. This approach either limits possible scanning strategies or requires additional mechanical movement to be introduced in the reference beam. On the other hand, spiral or grid scanning is possible in alternative common-path or Michelson configurations. However, in this case there is no guarantee that a specimen is sparse enough for the object to interfere with an object-free part of the beam. In this paper we present a modified version of Mach-Zehnder interferometer-based tomographic microscope, in which both object and reference beam are subject to scanning using one scanning device only thus making any scanning scenario possible. This concept is realized with a custom-built optical system in the reference beam and is appropriate for mechanical as well as optical scanning. Usually, the tomographic reconstruction setups and algorithms are verified using a microsphere phantom, which is not enough to test the influence of the distribution of the projections. In this work we propose a more complex calibration object created using two-photon polymerization.

  8. Determination of Gamma-Prime Site Occupancies in Nickel Superalloys Using Atom Probe Tomography and X-Ray Diffraction (Preprint)

    Science.gov (United States)

    2012-08-01

    AFRL-RX-WP-TP-2012-0390 DETERMINATION OF γ’SITE OCCUPANCIES IN NICKEL SUPERALLOYS USING ATOM PROBE TOMOGRAPHY AND X-RAY DIFFRACTION...IN NICKEL SUPERALLOYS USING ATOM PROBE TOMOGRAPHY AND X-RAY DIFFRACTION (PREPRINT) 5a. CONTRACT NUMBER FA8650-08-C-5226 5b. GRANT NUMBER 5c...sublattice sites while cobalt is likely to occupy both the aluminum and nickel sublattice sites. The x-ray results on the chromium occupancy disagree with

  9. The different structural scales of the breast and their impact on time-of-flight and diffraction tomography

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lianjie [Los Alamos National Laboratory; Huthwaite, Peter [IMPERIAL COLLEGE LONDON; Simonetti, Francesco [IMPERIAL COLLEGE LONDON

    2010-02-11

    Ultrasound tomography is an attractive imaging method for the detection of breast cancer. The complex anatomy of the breast with its different spatial scales and material property contrasts make accurate reconstructions very challenging. This paper proposes a hybrid approach whereby Travel-of-Flight and Diffraction Tomography are combined together to achieve high-resolution and high-accuracy sound-speed reconstructions. The method is validated with several numerical phantoms.

  10. Reconstruction of the refractive index gradient by x-ray diffraction enhanced computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Wang Junyue [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Zhu Peiping [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Yuan Qingxi [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Huang Wanxia [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Shu Hang [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen Bo [Department of Physics, University of Science and Technology of China, Hefei 230026 (China); Hu Tiandou [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2006-07-21

    The computed tomography technique cannot easily be extended to diffraction enhanced imaging (DEI) because, while from DEI we may extract the refractive index gradient in one dimension, from the conventional CT reconstruction algorithm we may reconstruct only a scalar quantity. However, recently we showed that changing the direction of the scan axis, and collecting a set of data related to the three-dimensional distribution of the refractive index gradient of the sample, a CT image was obtained. The algorithm we used is based on the conventional CT algorithm but with a specific pre-processing of the projection data. The mathematical framework of the procedure and a simple CT experiment are presented and discussed.

  11. Reconstruction of the refractive index gradient by x-ray diffraction enhanced computed tomography

    International Nuclear Information System (INIS)

    Wang Junyue; Zhu Peiping; Yuan Qingxi; Huang Wanxia; Shu Hang; Chen Bo; Hu Tiandou; Wu Ziyu

    2006-01-01

    The computed tomography technique cannot easily be extended to diffraction enhanced imaging (DEI) because, while from DEI we may extract the refractive index gradient in one dimension, from the conventional CT reconstruction algorithm we may reconstruct only a scalar quantity. However, recently we showed that changing the direction of the scan axis, and collecting a set of data related to the three-dimensional distribution of the refractive index gradient of the sample, a CT image was obtained. The algorithm we used is based on the conventional CT algorithm but with a specific pre-processing of the projection data. The mathematical framework of the procedure and a simple CT experiment are presented and discussed

  12. Three-dimensional ground penetrating radar imaging using multi-frequency diffraction tomography

    Energy Technology Data Exchange (ETDEWEB)

    Mast, J.E.; Johansson, E.M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    In this talk we present results from a three-dimensional image reconstruction algorithm for impulse radar operating in monostatic pule-echo mode. The application of interest to us is the nondestructive evaluation of civil structures such as bridge decks. We use a multi-frequency diffraction tomography imaging technique in which coherent backward propagations of the received reflected wavefield form a spatial image of the scattering interfaces within the region of interest. This imaging technique provides high-resolution range and azimuthal visualization of the subsurface region. We incorporate the ability to image in planarly layered conductive media and apply the algorithm to experimental data from an offset radar system in which the radar antenna is not directly coupled to the surface of the region. We present a rendering in three-dimensions of the resulting image data which provides high-detail visualization.

  13. Sparse-View Ultrasound Diffraction Tomography Using Compressed Sensing with Nonuniform FFT

    Directory of Open Access Journals (Sweden)

    Shaoyan Hua

    2014-01-01

    Full Text Available Accurate reconstruction of the object from sparse-view sampling data is an appealing issue for ultrasound diffraction tomography (UDT. In this paper, we present a reconstruction method based on compressed sensing framework for sparse-view UDT. Due to the piecewise uniform characteristics of anatomy structures, the total variation is introduced into the cost function to find a more faithful sparse representation of the object. The inverse problem of UDT is iteratively resolved by conjugate gradient with nonuniform fast Fourier transform. Simulation results show the effectiveness of the proposed method that the main characteristics of the object can be properly presented with only 16 views. Compared to interpolation and multiband method, the proposed method can provide higher resolution and lower artifacts with the same view number. The robustness to noise and the computation complexity are also discussed.

  14. Design and Optimisation Strategies of Nonlinear Dynamics for Diffraction Limited Synchrotron Light Source

    CERN Document Server

    Bartolini, R.

    2016-01-01

    This paper introduces the most recent achievements in the control of nonlinear dynamics in electron synchrotron light sources, with special attention to diffraction limited storage rings. Guidelines for the design and optimization of the magnetic lattice are reviewed and discussed.

  15. Coherent Rabi oscillations in a molecular system and sub-diffraction-limited pattern generation

    International Nuclear Information System (INIS)

    Liao, Zeyang; Al-Amri, M; Zubairy, M Suhail

    2015-01-01

    The resolution of a photolithography and optical imaging system is restricted by the diffraction limit. Coherent Rabi oscillations have been shown to be able to overcome the diffraction limit in a simple two-level atomic system (Z Liao, M Al-amri, and M S Zubairy 2010 Phys. Rev. Lett. 105 183601). In this paper, we numerically calculate the wave packet dynamics of a molecular system interacting with an ultrashort laser pulse and show that coherent Rabi oscillations in a molecular system are also possible. Moreover, a sub-diffraction-limited pattern can be generated in this system by introducing spatially modulated Rabi oscillations. We also discuss several techniques to improve the visibility of the sub-diffraction-limited pattern. Our result may have important applications in super-resolution optical lithography and optical imaging. (paper)

  16. A note on the limitations of the magnetic axis direction determination by neutron powder diffraction

    International Nuclear Information System (INIS)

    Shaked, Hagai

    2004-01-01

    Rotation crystal symmetry analysis of the magnetic intensities in neutron powder diffraction from magnetically ordered, collinear structures is performed. This analysis, making no reference to a specific crystal system, leads to the well-known limitations on the direction of magnetic axis determination by neutron powder diffraction. It shows that due to the second-order dependence of the magnetic intensity on the magnetic axis components, these limitations result solely from the crystal rotation symmetry in the magnetically ordered state

  17. Review of near-field optics and superlenses for sub-diffraction-limited nano-imaging

    Directory of Open Access Journals (Sweden)

    Wyatt Adams

    2016-10-01

    Full Text Available Near-field optics and superlenses for imaging beyond Abbe’s diffraction limit are reviewed. A comprehensive and contemporary background is given on scanning near-field microscopy and superlensing. Attention is brought to recent research leveraging scanning near-field optical microscopy with superlenses for new nano-imaging capabilities. Future research directions are explored for realizing the goal of low-cost and high-performance sub-diffraction-limited imaging systems.

  18. Application of ray tracing towards a correction for refracting effects in computed tomography with diffracting sources

    International Nuclear Information System (INIS)

    Andersen, A.H.

    1983-01-01

    Ray tracing methods are investigated in forward and inverse processes and applied for image restoration and resolution enhancement in computed tomography with diffracting sources. Within the geometrical optics approximation for a given refractive field, a mathematical model for the forward propagation and inverse reconstruction process is presented. For a finite set of rays in a discrete image representation, an algebraic reconstruction technique is derived which is analogous to the inverse process for a continuum of rays. The geometrical theory of diffraction is invoked to describe ray patterns arising from the introduction of object discontinuity surfaces. We have compared the performance of existing recursive ray tracing techniques for the reconstruction of objects exhibiting discontinuity boundaries. A novel ray tracing and reconstruction technique is presented which enjoys significant computational savings over traditional implementations incorporating tedious ray linking procedures. Simulation studies illustrate the macro-structural distortion and loss of fine resolution when ray refraction is unaccounted for. Restoration and resolution enhancement is achieved with a recursive ray tracing approach. Successful experimental studies with tissue equivalent phantoms are presented. The comparison of simulation and experimental results demonstrated the reasonable assumption of the geometrical optics approximation. Simulation results for larger refractive deviations are encouraging

  19. Three-dimensional grain structure of sintered bulk strontium titanate from X-ray diffraction contrast tomography

    DEFF Research Database (Denmark)

    Syha, M.; Rheinheimer, W.; Bäurer, M.

    2012-01-01

    The three-dimensional grain boundary network of sintered bulk strontium titanate is reconstructed using X-ray diffraction contrast tomography, a non-destructive technique for determining the grain shape and crystallographic orientation in polycrystals that is ideally suited for detailed studies...

  20. An Incommensurately Modulated Structure of eta '-Phase of Cu3+xSi Determined by Quantitative Electron Diffraction Tomography

    Czech Academy of Sciences Publication Activity Database

    Palatinus, L.; Klementová, Mariana; Dřínek, V.; Jarošová, M.; Petříček, V.

    2011-01-01

    Roč. 50, č. 8 (2011), s. 3743-3751 ISSN 0020-1669 R&D Projects: GA ČR GA203/09/1088 Institutional research plan: CEZ:AV0Z40320502 Keywords : copper silicide * incommensurate structure * electron diffraction tomography * ab inition structure solution * superspace Subject RIV: CA - Inorganic Chemistry Impact factor: 4.601, year: 2011

  1. 4D Study of Grain Growth in Armco Iron Using Laboratory X-ray Diffraction Contrast Tomography

    DEFF Research Database (Denmark)

    Sun, Jun; Lyckegaard, Allan; Zhang, Yubin

    2017-01-01

    Using a novel laboratory diffraction contrast tomography (LabDCT) technique, a non-destructive 4D study was conducted to investigate the evolution in 3D of the grain structure during grain growth in an Armco iron sample. The 3D grain morphology and the crystallographic orientations of more than 3...

  2. Overcoming the acoustic diffraction limit in photoacoustic imaging by the localization of flowing absorbers.

    Science.gov (United States)

    Vilov, Sergey; Arnal, Bastien; Bossy, Emmanuel

    2017-11-01

    The resolution of photoacoustic imaging deep inside scattering media is limited by the acoustic diffraction limit. In this Letter, taking inspiration from super-resolution imaging techniques developed to beat the optical diffraction limit, we demonstrate that the localization of individual optical absorbers can provide super-resolution photoacoustic imaging well beyond the acoustic diffraction limit. As a proof-of-principle experiment, photoacoustic cross-sectional images of microfluidic channels were obtained with a 15 MHz linear capacitive micromachined ultrasonic transducer array, while absorbing beads were flown through the channels. The localization of individual absorbers allowed us to obtain a super-resolved cross-sectional image of the channels by reconstructing both the channel width and position with an accuracy better than λ/10. Given the discrete nature of endogenous absorbers such as red blood cells, or that of exogenous particular contrast agents, localization is a promising approach to push the current resolution limits of photoacoustic imaging.

  3. Probing local order in glasses from limited-volume electron and x-ray diffraction

    Science.gov (United States)

    Liu, A. C. Y.; Tabor, R. F.; Bourgeois, L.; de Jonge, M. D.; Mudie, S. T.; Petersen, T. C.

    2016-05-01

    It has long been recognised that spatial fluctuations in local order in disordered assemblies of particles can be probed using limited-volume diffraction measurements. These measurements have unique advantages over broad-beam diffraction experiments that isotropically average over many structural configurations and result in one-dimensional intensity curves, requiring modelling to interpret. Despite the advantages of limiting illumination to a low number of particle configurations, obtaining quantitative measurements of local order from such experiments remains a challenge. The effects on the diffraction pattern of changing the beam energy, lateral size, aberrations and coherence and the specimen thickness have only recently been clarified. We review theoretical and experimental efforts in this direction in the fields of both electron and x-ray diffraction and identify promising areas of future development.

  4. Overcoming of the 1/2 reflectivity limit in Laue neutron diffraction

    International Nuclear Information System (INIS)

    Boeuf, A.; Rustichelli, F.; Melone, S.; Puliti, P.

    1978-01-01

    Experimental evidence for the overcoming of the 50% peak reflectivity limit in neutron diffraction in the Laue geometry is presented. Peak reflectivity up to 75%, in spite of the neutron absorption, has been obtained with a bent germanium crystal. This effect has been explained by a simple model based in the dynamical theory of neutron diffraction and appears as a consequence of the elimination, due to a proper curvature, of the Pendelloesung effect. (author)

  5. In situ analysis of cracks in structural materials using synchrotron X-ray tomography and diffraction

    International Nuclear Information System (INIS)

    Steuwer, A.; Edwards, L.; Pratihar, S.; Ganguly, S.; Peel, M.; Fitzpatrick, M.E.; Marrow, T.J.; Withers, P.J.; Sinclair, I.; Singh, K.D.; Gao, N.; Buslaps, T.; Buffiere, J.-Y.

    2006-01-01

    The structural integrity and performance of many components and structures are dominated by cracks and hence the study of cracked bodies study is of major economical and social importance. Despite nearly 30 years of study, there is still no detailed consensus regarding either the fundamental parameters that drive cracks or the precise mechanisms of their growth in most materials. Thus, virtually all crack life prediction models currently in engineering use are largely phenomenological rather than physically based. Historically, a major hindrance to our understanding of crack initiation and propagation has been the inability to measure either the crack tip stresses or the crack morphology deep within materials. The development of very high-resolution strain and tomography mapping on third generation synchrotron sources such as the ESRF has opened up the possibility of developing complementary techniques to monitor the entire plastic/process zone growth mechanisms and the accompanying crack tip field and crack wake field around growing cracks. If realized, such techniques would produce unique information that would be invaluable both in validating present finite element simulations of fatigue crack growth and in developing the future high accuracy simulations necessary for the development of physically realistic fatigue life-prediction models. Recent technique developments at the ESRF, Grenoble, opens up the possibility of imaging cracks and crack tip stress/strain fields, and the ability to study the extend of crack closure and overload effects, even under in situ loading. In this paper, first results from synchrotron X-ray diffraction and tomography experiments performed on ID11 and ID19 (respectively) at the ESRF, Grenoble, are presented and discussed in comparison with predictions from finite element modeling

  6. Iterative deconvolution technique for measurements of diffraction-limited images on optical microscopes.

    Science.gov (United States)

    Lu, Wenlong; Chang, Ming; Chen, Po-Cheng; Luo, Wun-Mao

    2014-12-12

    Diffraction limit is usually a thorny problem in an optical inspection system. In this investigation, a model-based deconvolution technique was developed to recover diffraction-limited images, where images with sizes smaller than the diffraction limit could be recognized. Experiments were carried out with a traditional microscope at 200× magnification coupled with a halogen light source for a series of line width samples. The point spread function of the imaging optics was first obtained from an estimated model and then combined with a nonlinear deconvolution algorithm to calculate the full width at half maximum and reconstruct the line widths. Experimental results indicate that a measurement error below one pixel size of the measurement system is achievable. Accordingly, the target of nanoscale line width inspection based on a low cost and real-time image processing technique can be fulfilled, which greatly increases the ability of nanoscaling on optical microscopes.

  7. Label-free identification of white blood cell using optical diffraction tomography (Conference Presentation)

    Science.gov (United States)

    Yoon, Jonghee; Kim, Kyoohyun; Kim, Min-hyeok; Kang, Suk-Jo; Park, YongKeun

    2016-03-01

    White blood cells (WBC) have crucial roles in immune systems which defend the host against from disease conditions and harmful invaders. Various WBC subsets have been characterized and reported to be involved in many pathophysiologic conditions. It is crucial to isolate a specific WBC subset to study its pathophysiological roles in diseases. Identification methods for a specific WBC population are rely on invasive approaches, including Wright-Gimesa staining for observing cellular morphologies and fluorescence staining for specific protein markers. While these methods enable precise classification of WBC populations, they could disturb cellular viability or functions. In order to classify WBC populations in a non-invasive manner, we exploited optical diffraction tomography (ODT). ODT is a three-dimensional (3-D) quantitative phase imaging technique that measures 3-D refractive index (RI) distributions of individual WBCs. To test feasibility of label-free classification of WBC populations using ODT, we measured four subtypes of WBCs, including B cell, CD4 T cell, CD8 T cell, and natural killer (NK) cell. From measured 3-D RI tomograms of WBCs, we obtain quantitative structural and biochemical information and classify each WBC population using a machine learning algorithm.

  8. Impurity precipitation in atomized particles evidenced by nano x-ray diffraction computed tomography

    Science.gov (United States)

    Bonnin, Anne; Wright, Jonathan P.; Tucoulou, Rémi; Palancher, Hervé

    2014-08-01

    Performances and physical properties of high technology materials are influenced or even determined by their initial microstructure and by the behavior of impurity phases. Characterizing these impurities and their relations with the surrounding matrix is therefore of primary importance but it unfortunately often requires a destructive approach, with the risk of misinterpreting the observations. The improvement we have done in high resolution X-ray diffraction computed tomography combined with the use of an X-ray nanoprobe allows non-destructive crystallographic description of materials with microscopic heterogeneous microstructure (with a grain size between 10 nm and 10 μm). In this study, the grain localization in a 2D slice of a 20 μm solidified atomized γU-Mo particle is shown and a minority U(C,O) phase (1 wt. %) with sub-micrometer sized grains was characterized inside. Evidence is presented showing that the onset of U(C,O) grain crystallization can be described by a precipitation mechanism since one single U-Mo grain has direct orientation relationship with more than one surrounding U(C,O) grains.

  9. Optical diffraction tomography in fluid velocimetry: the use of a priori information

    Science.gov (United States)

    Lobera, J.; Coupland, J. M.

    2008-07-01

    Holographic particle image velocimetry (HPIV) has been used successfully to make three-dimensional, three-component flow measurements from holographic recordings of seeded fluid. It is clear that measurements can only be made in regions that contain particles, but simply adding more seeding results in poor quality images due to the effects of multiple scattering. In this paper, we describe optical diffraction tomography (ODT) techniques and consider its use as a means to overcome the problems of multiple scattering in HPIV. We consider several approaches to tomographic reconstruction that are essentially based on linear and nonlinear combinations of holographic reconstructions of the scattered fields observed under varied illuminating conditions. We show that linear reconstruction provides images of highest fidelity, but none of the methods properly accounts for the effects of multiple scattering. We go on to consider nonlinear optimization methods in ODT that attempt to minimize the error between the scattered field computed from an estimate of the particle distribution and that measured in practice. We describe an optimization procedure that is based on the conjugated gradient method (CGM) that makes use of a priori information (the size and refractive index of the seeding particles) to effectively reduce the problem to that of finding the set of particle locations. Some 2D numerical experiments are computed and some promising results are shown.

  10. Optical diffraction tomography in fluid velocimetry: the use of a priori information

    International Nuclear Information System (INIS)

    Lobera, J; Coupland, J M

    2008-01-01

    Holographic particle image velocimetry (HPIV) has been used successfully to make three-dimensional, three-component flow measurements from holographic recordings of seeded fluid. It is clear that measurements can only be made in regions that contain particles, but simply adding more seeding results in poor quality images due to the effects of multiple scattering. In this paper, we describe optical diffraction tomography (ODT) techniques and consider its use as a means to overcome the problems of multiple scattering in HPIV. We consider several approaches to tomographic reconstruction that are essentially based on linear and nonlinear combinations of holographic reconstructions of the scattered fields observed under varied illuminating conditions. We show that linear reconstruction provides images of highest fidelity, but none of the methods properly accounts for the effects of multiple scattering. We go on to consider nonlinear optimization methods in ODT that attempt to minimize the error between the scattered field computed from an estimate of the particle distribution and that measured in practice. We describe an optimization procedure that is based on the conjugated gradient method (CGM) that makes use of a priori information (the size and refractive index of the seeding particles) to effectively reduce the problem to that of finding the set of particle locations. Some 2D numerical experiments are computed and some promising results are shown

  11. Limitations on the strain tensor determination by neutron diffraction using a position-sensitive detector

    International Nuclear Information System (INIS)

    Lorentzen, T.; Christoffersen, J.

    1990-01-01

    Diffraction techniques such as neutron diffraction allow strain components to be measured in arbitrarily chosen directions in structural components, and hence complete strain tensors can in principle be calculated from any six measured normal strain components. However, in a newly developed technique, whereby a position-sensitive detector is used for simultaneous measurements of chosen strain components at several points along a line through the specimen, there appear to be some limitations on the choice of strain components for strain tensor determination. This note verifies the nature of these limitations. (author)

  12. Stimulated Emission Pumping Enablling Sub-Diffraction-Limited Spatial Resolution in CARS Microscopy

    NARCIS (Netherlands)

    Cleff, C.; Gross, P.; Fallnich, C.; Offerhaus, Herman L.; Herek, Jennifer Lynn; Kruse, K.; Beeker, W.P; Beeker, W.P.; Lee, Christopher James; Boller, Klaus J.; Dobner, S.

    2012-01-01

    Suppression of CARS signal generation is demonstrated by equalization of the ground and Raman states via a control state in a theoretical investigation. Using donut-shaped control light fields for population transfer results in sub-diffraction-limited spatial resolution CARS microscopy.

  13. Limiting factors in single particle cryo electron tomography

    Directory of Open Access Journals (Sweden)

    Mikhail Kudryashev

    2012-07-01

    Full Text Available Modern methods of cryo electron microscopy and tomography allow visualization of protein nanomachines in their native state at the nanometer scale. Image processing methods including sub-volume averaging applied to repeating macromolecular elements within tomograms allow exploring their structures within the native context of the cell, avoiding the need for protein isolation and purification. Today, many different data acquisition protocols and software solutions are available to researchers to determine average structures of macromolecular complexes and potentially to classify structural intermediates. Here, we list the density maps reported in the literature, and analyze each structure for the chosen instrumental settings, sample conditions, main processing steps, and obtained resolution. We present conclusions that identify factors currently limiting the resolution gained by this approach.

  14. Breaking the diffraction limit of light-sheet fluorescence microscopy by RESOLFT.

    Science.gov (United States)

    Hoyer, Patrick; de Medeiros, Gustavo; Balázs, Bálint; Norlin, Nils; Besir, Christina; Hanne, Janina; Kräusslich, Hans-Georg; Engelhardt, Johann; Sahl, Steffen J; Hell, Stefan W; Hufnagel, Lars

    2016-03-29

    We present a plane-scanning RESOLFT [reversible saturable/switchable optical (fluorescence) transitions] light-sheet (LS) nanoscope, which fundamentally overcomes the diffraction barrier in the axial direction via confinement of the fluorescent molecular state to a sheet of subdiffraction thickness around the focal plane. To this end, reversibly switchable fluorophores located right above and below the focal plane are transferred to a nonfluorescent state at each scanning step. LS-RESOLFT nanoscopy offers wide-field 3D imaging of living biological specimens with low light dose and axial resolution far beyond the diffraction barrier. We demonstrate optical sections that are thinner by 5-12-fold compared with their conventional diffraction-limited LS analogs.

  15. Modified Linnik microscopic interferometry for quantitative depth evaluation of diffraction-limited microgroove

    Science.gov (United States)

    Ye, Shiwei; Takahashi, Satoru; Michihata, Masaki; Takamasu, Kiyoshi

    2018-05-01

    The quality control of microgrooves is extremely crucial to ensure the performance and stability of microstructures and improve their fabrication efficiency. This paper introduces a novel optical inspection method and a modified Linnik microscopic interferometer measurement system to detect the depth of microgrooves with a width less than the diffraction limit. Using this optical method, the depth of diffraction-limited microgrooves can be related to the near-field optical phase difference, which cannot be practically observed but can be computed from practical far-field observations. Thus, a modified Linnik microscopic interferometer system based on three identical objective lenses and an optical path reversibility principle were developed. In addition, experiments for standard grating microgrooves on the silicon surface were carried out to demonstrate the feasibility and repeatability of the proposed method and developed measurement system.

  16. Processing of Bi-2212 and Nb$_3$Sn studied in situ by high energy synchrotron diffraction and micro-tomography

    CERN Document Server

    Kadar, Julian

    Next generation superconducting wires have been studied to obtain more information on the evolution of phase growth, crystallite size and strain state during wire processing. The high energy scattering beam line ID15 at the European Synchrotron Radiation Facility provides a very high flux of high energy photons for very fast in situ X-ray diffraction and micro-tomography studies of Bi-2212/Ag and Nb$_3$S/Cu wire samples. The typical wire processing conditions could be imitated in the X-ray transparent furnace at ID15 for diffraction and tomography studies. Efficient data analysis is mandatory in order to handle the very fast data acquisition rate. For this purpose an Excel-VBA based program was developed that allows a semi-automated fitting and tracking of peaks with pre-set constraints. With this method, more than one thousand diffraction patterns have been analysed to extract d-spacing, peak intensity and peak width values. X ray absorption micro tomograms were recorded simultaneously with the X-ray diffrac...

  17. Field computation for two-dimensional array transducers with limited diffraction array beams.

    Science.gov (United States)

    Lu, Jian-Yu; Cheng, Jiqi

    2005-10-01

    A method is developed for calculating fields produced with a two-dimensional (2D) array transducer. This method decomposes an arbitrary 2D aperture weighting function into a set of limited diffraction array beams. Using the analytical expressions of limited diffraction beams, arbitrary continuous wave (cw) or pulse wave (pw) fields of 2D arrays can be obtained with a simple superposition of these beams. In addition, this method can be simplified and applied to a 1D array transducer of a finite or infinite elevation height. For beams produced with axially symmetric aperture weighting functions, this method can be reduced to the Fourier-Bessel method studied previously where an annular array transducer can be used. The advantage of the method is that it is accurate and computationally efficient, especially in regions that are not far from the surface of the transducer (near field), where it is important for medical imaging. Both computer simulations and a synthetic array experiment are carried out to verify the method. Results (Bessel beam, focused Gaussian beam, X wave and asymmetric array beams) show that the method is accurate as compared to that using the Rayleigh-Sommerfeld diffraction formula and agrees well with the experiment.

  18. Definition and measurement of the times-diffraction-limit number of high-power laser beams

    Science.gov (United States)

    Bollanti, Sarah; Di Lazzaro, Paolo; Murra, Daniele

    1998-07-01

    A novel definition of the times-diffraction-limit (TDL) number of a laser beam is given. A comparison is made with the commonly used beam-propagation parameter M2, which is unreliable for hard-edge beams, like those produced by unstable resonators with diffraction output coupling. The new suggested TDL number definition doesn't rely on the real beam comparison to a Gaussian beam, but on the comparison of the far-field performances of the real beam with respect to those of a uniphase beam with the same amplitude profile in the near field. A practical method is also given for the estimation of the TDL number of real beams. Finally, this procedure is applied to the high-peak-power laser beams generated by two excimer laser systems developed in ENEA.

  19. Imaging cold atoms with shot-noise and diffraction limited holography

    International Nuclear Information System (INIS)

    Sobol, J P; Wu, Saijun

    2014-01-01

    We theoretically develop and experimentally demonstrate a holographic method for imaging cold atoms at the diffraction and photon shot noise limits. Aided by a double point source reference field, a simple iterative algorithm robustly removes the twin image of an 87 Rb cold atom sample during the image reconstruction. Shot-noise limited phase shift and absorption images are consistently retrieved at various probe detunings, and during the laser cooling process. We consistently resolve less than 2 mrad phase shift (0.4% attenuation) of the probe light, outperforming shot-noise limited phase-contrast (absorption) imaging by a factor of 4 or more if the same camera is used without pixel saturation. We discuss the possible extension of this work for precise phase imaging of dense atomic gases, and for off-resonant probing of multiple atoms in optical lattices. (paper)

  20. Experimental coherent X-ray diffractive imaging: capabilities and limitations of the technique

    International Nuclear Information System (INIS)

    Schropp, Andreas

    2008-08-01

    The investigations pursued during this work were focused on the testing of the applicability of the coherent X-ray diffractive imaging(CXDI)-method in the hard X-ray regime and different measurements were carried out at photon energies between 7 keV and 10 keV. The samples investigated were lithographically prepared two-dimensional gold structures with a size ranging from 3 μm to 10 μm as well as a cluster of gold spheres with a lateral extension of about 3.5 μm. Continuous diffraction patterns were recorded in small angle scattering geometry. In some of the measurements a scattering signal up to the edge of the detector could be measured which corresponds to a lateral resolution of about 30 nm. For certain samples it was possible to reconstruct the object from the measured diffraction data. Since the scattered intensity of non-periodic objects is weak at large scattering angles, the available photon flux is finally the main limitation of the method with regard to the achievable resolution. The experimental data were used to get an estimate of photon flux required for sub-nanometer resolution. The ptychographic iterative phase retrieval algorithm proposed by J. M. Rodenburg et al. (2004) was implemented and tested on simulated diffraction data. Additionally, a genetic algorithm has been developed and implemented for phase retrieval. This algorithm is very different from state-of-the-art algorithms and allows to introduce further experimentally important parameters such as a certain illumination function and partial coherence of the X-ray light. (orig.)

  1. Transmission diffraction-tomography system using a high-energy X-ray tube.

    Science.gov (United States)

    Garrity, D J; Jenneson, P M; Crook, R; Vincent, S M

    2010-01-01

    A high-energy bench-top energy dispersive X-ray diffraction (EDXRD) system for 3-dimensional mapping of the crystalline structure and phase transformations in steel is described, for which preliminary data and system development are presented here. The use of precision tungsten slit screens with up to 225 keV X-rays allows for diffraction through samples of 304 L austenitic stainless steel of thickness 3-10 mm, while sample positioning is carried out with a precision goniometer and translation stage system. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. 70-Watt green laser with near diffraction-limited beam quality

    Science.gov (United States)

    Hu, Dan; Eisenberg, Eric; Madasamy, Pratheepan; Mead, Roy; Honea, Eric

    2009-02-01

    A 70-Watt green laser with M2green laser consists of an all-fiber-based IR pump laser at 1064 nm and a frequency-conversion module in a compact and flexible configuration. The IR laser produces up to 150 Watts in a polarized diffraction-limited output beam with high spectral brightness for frequency conversion. The IR laser is operating under QCW mode, e.g. 10 MHz with 3~5 ns pulse width or 700 MHz with 50 ps pulse width, to generate sufficient peak power for frequency doubling in the converter module. The IR laser and conversion module are connected via a 5-mm stainless-steel protected delivery fiber for optical beam delivery and an electrical cable harness for electrical power delivery and system control. Both the IR laser and converter module are run through embedded software that controls laser operations such as warm up and shut down. System overview and full characterization results will be presented. Such a high power green laser with near diffraction-limited output in a compact configuration will enable various scientific as well as industrial applications.

  3. 100-watt fiber-based green laser with near diffraction-limited beam quality

    Science.gov (United States)

    Hu, Dan; Eisenberg, Eric; Brar, Khush; Yilmaz, Tolga; Honea, Eric

    2010-02-01

    An air-cooled, light-weight, fiber-based, high power green laser has been prototyped. The system consists of an all-fibercoupled IR pump laser at 1064 nm and a frequency-conversion module in a compact and flexible configuration. The IR laser operates in QCW mode, with 10 MHz pulse repetition frequency and 3-5 ns pulse width, to generate sufficient peak power for frequency doubling in the converter module. The IR laser can produce more than 200 W in a linearlypolarized diffraction-limited output beam with high spectral brightness for frequency conversion. The converter module has an input telescope and an oven with a nonlinear crystal to efficiently convert the 1064-nm IR fiber laser output to 532-nm green output. The IR laser and conversion module are connected via a stainless-steel protected delivery fiber for optical beam delivery and an electrical cable harness for electrical power delivery and system control. The beam quality of the 532 nm output remains near diffraction-limited, with M2green laser sources are expected to enable various scientific, defense and industrial applications.

  4. Single-pulse Conduction Limited Laser Welding Using A Diffractive Optical Element

    Science.gov (United States)

    Kong, C. Y.; Bolut, M.; Sundqvist, J.; Kaplan, A. F. H.; Assunção, E.; Quintino, L.; Blackburn, J.

    Conduction limited laser welding is commonly used in electronic and battery applications, where a high width-to-depth ratio weld is desirable. A laser beam with Gaussian or top-hat distributions is often used to produce conduction limited spot welds. Both these energy distributions result in a higher proportion of the laser beam energy being introduced towards the centre of the welded spot and consequently, a reduced penetration weld towards the circumference of the beam spot. The use of diffractive optical elements to tailor the energy distribution of the laser beam has been evaluated. An incident laser beam with an energy distribution in the shape of a ring or C-shape was projected onto the material, which results in heat propagating towards the centre, producing a shallow weld with a consistent depth of penetration across the entire overlapped joint. The results confirmed a corresponding thermal model which predicted an even distribution of heat at the joint interface.

  5. Ultra-high accuracy optical testing: creating diffraction-limited short-wavelength optical systems

    International Nuclear Information System (INIS)

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Rekawa, Senajith B.; Denham, Paul E.; Liddle, J. Alexander; Gullikson, Eric M.; Jackson, KeithH.; Anderson, Erik H.; Taylor, John S.; Sommargren, Gary E.; Chapman, Henry N.; Phillion, Donald W.; Johnson, Michael; Barty, Anton; Soufli, Regina; Spiller, Eberhard A.; Walton, Christopher C.; Bajt, Sasa

    2005-01-01

    Since 1993, research in the fabrication of extreme ultraviolet (EUV) optical imaging systems, conducted at Lawrence Berkeley National Laboratory (LBNL) and Lawrence Livermore National Laboratory (LLNL), has produced the highest resolution optical systems ever made. We have pioneered the development of ultra-high-accuracy optical testing and alignment methods, working at extreme ultraviolet wavelengths, and pushing wavefront-measuring interferometry into the 2-20-nm wavelength range (60-600 eV). These coherent measurement techniques, including lateral shearing interferometry and phase-shifting point-diffraction interferometry (PS/PDI) have achieved RMS wavefront measurement accuracies of 0.5-1-(angstrom) and better for primary aberration terms, enabling the creation of diffraction-limited EUV optics. The measurement accuracy is established using careful null-testing procedures, and has been verified repeatedly through high-resolution imaging. We believe these methods are broadly applicable to the advancement of short-wavelength optical systems including space telescopes, microscope objectives, projection lenses, synchrotron beamline optics, diffractive and holographic optics, and more. Measurements have been performed on a tunable undulator beamline at LBNL's Advanced Light Source (ALS), optimized for high coherent flux; although many of these techniques should be adaptable to alternative ultraviolet, EUV, and soft x-ray light sources. To date, we have measured nine prototype all-reflective EUV optical systems with NA values between 0.08 and 0.30 (f/6.25 to f/1.67). These projection-imaging lenses were created for the semiconductor industry's advanced research in EUV photolithography, a technology slated for introduction in 2009-13. This paper reviews the methods used and our program's accomplishments to date

  6. X-Ray Diffraction Contrast Tomography in micro-CT Lab Source Systems

    Science.gov (United States)

    2014-05-16

    best projection method is to sample the volume along the diffraction curve Eqn. 1.6 at a certain interval (see Fig. 1.7). With such methods, the...comparison is thus unfair. Overall, however, it is clear that for the best performance, GPU computing is the way to go. With features such as fast...grain volume. In practise , this condition is rarely fulfilled and already small deviations of order of a few tenths of a degree of intragranular

  7. 3-D growth of a short fatigue crack within a polycrystalline microstructure studied using combined diffraction and phase-contrast X-ray tomography

    DEFF Research Database (Denmark)

    Herbig, M.; King, Andrew; Reischig, Peter

    2011-01-01

    X-ray diffraction contrast tomography is a recently developed, non-destructive synchrotron imaging technique which characterizes microstructure and grain orientation in polycrystalline materials in three dimensions. By combining it with propagation-based phase-contrast tomography it is possible...... beta titanium alloy Ti 21S that allows for visualization and analysis of the growth rate and crystallographic orientation of the fracture surface....

  8. Pulse shape and spectrum of coherent diffraction-limited transition radiation from electron beams

    Energy Technology Data Exchange (ETDEWEB)

    van Tilborg, J.; Schroeder, C.B.; Esarey, E.; Leemans, W.P.

    2003-12-20

    The electric field in the temporal and spectral domain of coherent diffraction-limited transition radiation is studied. An electron bunch, with arbitrary longitudinal momentum distribution, propagating at normal incidence to a sharp metal-vacuum boundary with finite transverse dimension is considered. A general expression for the spatiotemporal electric field of the transition radiation is derived, and closed-form solutions for several special cases are given. The influence of parameters such as radial boundary size, electron momentum distribution, and angle of observation on the waveform (e.g., radiation pulse length and amplitude) are discussed. For a Gaussian electron bunch, the coherent radiation waveform is shown to have a single-cycle profile. Application to a novel THz source based on a laser-driven accelerator is discussed.

  9. Inexpensive Demonstration of Diffraction-Limited Telescope from NASA Stratospheric Balloons

    Science.gov (United States)

    Young, Elliot

    NASA s Balloon Program often flies payloads to altitudes of 120,000 ft or higher, above 99.5% of the atmosphere. At those altitudes, the imaging degradation due to atmospheric- induced wavefront errors is virtually zero. In 2009, the SUNRISE balloon mission quantified the wavefront errors with a Shack-Hartmann array and found no evidence of wavefront errors. This means that a large telescope on a balloon should be able to achieve diffraction-limited performance, provided it can be stabilized at a level that is finer than the diffraction limit. At visible wavelengths, the diffraction limit of a 1 or 2 m telescope is 0.1 arcsec or 0.05 arcsec, respectively. NASA recently demonstrated WASP (the Wallops Arc-Second Pointing system) on a balloon flight in October 2011, a coarse pointing system that kept a dummy telescope (24 ft long, 1500 lbs) stabilized at the 0.25 arcsec level. We propose to use an orthogonal transfer CCD (OTCCD) from MIT Lincoln Laboratory to improve the pointing to 0.05 arcsec, an order of magnitude better than the coarse pointing alone and sufficient to provide long integrations at the diffraction limit of a 2-m telescope. Imaging in visible wavelengths is an important new capability. Ground-based adaptive optics (AO) systems on 8-m and 10-m class telescope cannot effectively correct for atmospheric turbulence at wavelengths shorter than 1 μm; the atmospheric wavefront errors are larger at these wavelengths than in the infrared J-H-K bands. At present, only the Hubble Space Telescope can achieve 0.05 arcsec resolution images in visible wavelengths, a capability that is dramatically oversubscribed. With a camera based on an MIT/LL OTCCD, a 2-m balloon-borne telescope could match the spatial resolution of HST. Under this project (and in conjunction with a SWRI Internal Research proposal), we will perform ground tests of a motion-compensation camera based on an MIT/LL Orthogonal Transfer CCD (OTCCD). This device can shift charge in four directions

  10. Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam

    Science.gov (United States)

    Lin, Han; Gu, Min

    2013-02-01

    Diffraction-limited non-Airy multifocal arrays are created by focusing a phase-modulated vortex beam through a high numerical-aperture objective. The modulated phase at the back aperture of the objective resulting from the superposition of two concentric phase-modulated vortex beams allows for the generation of a multifocal array of cylindrically polarized non-Airy patterns. Furthermore, we shift the spatial positions of the phase vortices to manipulate the intensity distribution at each focal spot, leading to the creation of a multifocal array of split-ring patterns. Our method is experimentally validated by generating the predicted phase modulation through a spatial light modulator. Consequently, the spatially shifted circularly polarized vortex beam adopted in a dynamic laser direct writing system facilitates the fabrication of a split-ring microstructure array in a polymer material by a single exposure of a femtosecond laser beam.

  11. X-ray diffraction measurements of polycrystalline diamond near the Hugoniot elastic limit under shock compression

    Science.gov (United States)

    MacDonald, M. J.; McBride, E. E.; Sun, P.; Gauthier, M.; Gamboa, E. J.; Kraus, D.; Schumaker, W.; Vorberger, J.; Galtier, E.; van Driel, T. B.; Zhou, X.; Granados, E.; Nam, I.; Drake, R. P.; Glenzer, S. H.; Fletcher, L. B.

    2016-10-01

    Direct measurements of the crystal structure under dynamic compression can be made using angularly resolved x-ray scattering at the MEC instrument at LCLS. Diffraction from several lattice planes using the x-ray beam at LCLS enabled time resolved measurements of elastic and plastic waves in polycrystalline diamond near the Hugoniot elastic limit. The behavior of diamond in these conditions is important to the understanding of the early stages of compression in inertial confinement fusion targets, meteorite impact events, and planetary interiors. Data were analyzed in the Reuss limit as described in a recent publication [M. J. MacDonald et al., J. Appl. Phys. 119, 215902 (2016)] to model the stresses near the Hugoniot elastic limit. This material is based upon work supported by the NSF under Grant No. 2013155705. This work was supported by the DOE Office of Science, FES under FWP 100182, by the NNSA-DS and SC-OFES Joint Program in HED Laboratory Plasmas, Grant No. DE-NA0002956, and used resources of the NERSC under Contract No. DE-AC02-05CH11231.

  12. Limitations of four-slice multirow detector computed tomography in the detection of coronary stenosis.

    Science.gov (United States)

    Martuscelli, Eugenio; Razzini, Cinzia; D'Eliseo, Alessia; Marchei, Massimo; Pisani, Eliana; Romeo, Francesco

    2004-02-01

    Our aim was to compare 4-slice spiral computed tomography with conventional coronary angiography in the detection of significant (> 50%) coronary stenosis. Sixty-two patients (41 males, 21 females, mean age 60 +/- 8 years) with suspected coronary artery disease were submitted to coronary angiography and then to multislice spiral computed tomography (GE Light Speed 4 slice) performed 12 +/- 5 days later. We excluded 25% of the patients from analysis because of a heart rate > 70 b/min or because of frequent ectopic beats. We also excluded from analysis 23% of all the angiographic segments judged not evaluable at multislice spiral computed tomography. Within these limits, the sensitivity was 65%, the specificity 98%, the positive predictive value 88%, and the negative predictive value 92%. By considering the intrinsic limitations such as its low temporal and spatial resolution, 4-slice spiral computed tomography has a limited applicability and has to be used with caution in the evaluation of native coronary arteries.

  13. microARPES and nanoARPES at diffraction-limited light sources: opportunities and performance gains.

    Science.gov (United States)

    Rotenberg, Eli; Bostwick, Aaron

    2014-09-01

    The scientific opportunities for microARPES and nanoARPES techniques are discussed, and the benefits to these techniques at diffraction-limited light sources are presented, in particular the impact on spectromicroscopic ARPES (angle-resolved photoemission spectroscopy) of upgrading the Advanced Light Source to diffraction-limited performance. The most important consideration is whether the space-charge broadening, impacting the energy and momentum resolution, will limit the possible benefits for ARPES. Calculations of energy broadening due to space-charge effects will be presented over a wide range of parameters, and optimum conditions for ARPES will be discussed. The conclusion is that spectromicroscopic ARPES will greatly benefit from the advent of diffraction-limited light sources; space-charge broadening effects will not be a limiting factor.

  14. Sub-diffraction limit localization of proteins in volumetric space using Bayesian restoration of fluorescence images from ultrathin specimens.

    Directory of Open Access Journals (Sweden)

    Gordon Wang

    Full Text Available Photon diffraction limits the resolution of conventional light microscopy at the lateral focal plane to 0.61λ/NA (λ = wavelength of light, NA = numerical aperture of the objective and at the axial plane to 1.4nλ/NA(2 (n = refractive index of the imaging medium, 1.51 for oil immersion, which with visible wavelengths and a 1.4NA oil immersion objective is -220 nm and -600 nm in the lateral plane and axial plane respectively. This volumetric resolution is too large for the proper localization of protein clustering in subcellular structures. Here we combine the newly developed proteomic imaging technique, Array Tomography (AT, with its native 50-100 nm axial resolution achieved by physical sectioning of resin embedded tissue, and a 2D maximum likelihood deconvolution method, based on Bayes' rule, which significantly improves the resolution of protein puncta in the lateral plane to allow accurate and fast computational segmentation and analysis of labeled proteins. The physical sectioning of AT allows tissue specimens to be imaged at the physical optimum of modern high NA plan-apochormatic objectives. This translates to images that have little out of focus light, minimal aberrations and wave-front distortions. Thus, AT is able to provide images with truly invariant point spread functions (PSF, a property critical for accurate deconvolution. We show that AT with deconvolution increases the volumetric analytical fidelity of protein localization by significantly improving the modulation of high spatial frequencies up to and potentially beyond the spatial frequency cut-off of the objective. Moreover, we are able to achieve this improvement with no noticeable introduction of noise or artifacts and arrive at object segmentation and localization accuracies on par with image volumes captured using commercial implementations of super-resolution microscopes.

  15. Interface Orientation Distribution during Grain Growth in Bulk SrTiO3 Measured by Means of 3D X-Ray Diffraction Contrast Tomography

    DEFF Research Database (Denmark)

    Syha, Melanie; Rheinheimer, Wolfgang; Bäurer, Michael

    2012-01-01

    3D x-ray diffraction contrast tomography (DCT) is a non-destructive technique for the determination of grain shape and crystallography in polycrystalline bulk materials. Using this technique, a strontium titanate specimen was repeatedly measured between annealing steps.. A systematic analysis...

  16. Elucidating structural order and disorder phenomena in mullite-type Al{sub 4}B{sub 2}O{sub 9} by automated electron diffraction tomography

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haishuang; Krysiak, Yaşar [Institute of Inorganic Chemistry and Analytical Chemistry, Jakob-Welder-Weg 11, Johannes Gutenberg-University Mainz, 55128 Mainz (Germany); Hoffmann, Kristin [Crystallography, Department of Geosciences, Klagenfurter Str. 2, GEO, University of Bremen, 28359 Bremen (Germany); Institute of Inorganic Chemistry and Crystallography, Leobener Str. NW2, University of Bremen, 28359 Bremen (Germany); Barton, Bastian [Institute of Inorganic Chemistry and Analytical Chemistry, Jakob-Welder-Weg 11, Johannes Gutenberg-University Mainz, 55128 Mainz (Germany); Molina-Luna, Leopoldo [Department of Materials and Geoscience, Technische Universität Darmstadt, Petersenstr. 23, 64287 Darmstadt (Germany); Neder, Reinhard B. [Department of Physics, Lehrstuhl für Kristallographie und Strukturphysik, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstr.3, 91058 Erlangen (Germany); Kleebe, Hans-Joachim [Department of Materials and Geoscience, Technische Universität Darmstadt, Petersenstr. 23, 64287 Darmstadt (Germany); Gesing, Thorsten M. [Institute of Inorganic Chemistry and Crystallography, Leobener Str. NW2, University of Bremen, 28359 Bremen (Germany); MAPEX Center for Materials and Processes, Bibliothekstr.1, University of Bremen, 28359 Bremen (Germany); Schneider, Hartmut [Crystallography, Department of Geosciences, Klagenfurter Str. 2, GEO, University of Bremen, 28359 Bremen (Germany); Fischer, Reinhard X. [Crystallography, Department of Geosciences, Klagenfurter Str. 2, GEO, University of Bremen, 28359 Bremen (Germany); MAPEX Center for Materials and Processes, Bibliothekstr.1, University of Bremen, 28359 Bremen (Germany); and others

    2017-05-15

    The crystal structure and disorder phenomena of Al{sub 4}B{sub 2}O{sub 9}, an aluminum borate from the mullite-type family, were studied using automated diffraction tomography (ADT), a recently established method for collection and analysis of electron diffraction data. Al{sub 4}B{sub 2}O{sub 9}, prepared by sol-gel approach, crystallizes in the monoclinic space group C2/m. The ab initio structure determination based on three-dimensional electron diffraction data from single ordered crystals reveals that edge-connected AlO{sub 6} octahedra expanding along the b axis constitute the backbone. The ordered structure (A) was confirmed by TEM and HAADF-STEM images. Furthermore, disordered crystals with diffuse scattering along the b axis are observed. Analysis of the modulation pattern implies a mean superstructure (AAB) with a threefold b axis, where B corresponds to an A layer shifted by ½a and ½c. Diffraction patterns simulated for the AAB sequence including additional stacking disorder are in good agreement with experimental electron diffraction patterns. - Graphical abstract: Crystal structure and disorder phenomena of B-rich Al{sub 4}B{sub 2}O{sub 9} studied by automated electron diffraction tomography (ADT) and described by diffraction simulation using DISCUS. - Highlights: • Ab-initio structure solution by electron diffraction from single nanocrystals. • Detected modulation corresponding mainly to three-fold superstructure. • Diffuse diffraction streaks caused by stacking faults in disordered crystals. • Observed streaks explained by simulated electron diffraction patterns.

  17. An optical super-microscope for far-field, real-time imaging beyond the diffraction limit.

    Science.gov (United States)

    Wong, Alex M H; Eleftheriades, George V

    2013-01-01

    Optical microscopy suffers from a fundamental resolution limitation arising from the diffractive nature of light. While current solutions to sub-diffraction optical microscopy involve combinations of near-field, non-linear and fine scanning operations, we hereby propose and demonstrate the optical super-microscope (OSM) - a superoscillation-based linear imaging system with far-field working and observation distances - which can image an object in real-time and with sub-diffraction resolution. With our proof-of-principle prototype we report a point spread function with a spot size clearly reduced from the diffraction limit, and demonstrate corresponding improvements in two-point resolution experiments. Harnessing a new understanding of superoscillations, based on antenna array theory, our OSM achieves far-field, sub-diffraction optical imaging of an object without the need for fine scanning, data post-processing or object pre-treatment. Hence the OSM can be used in a wide variety of imaging applications beyond the diffraction limit, including real-time imaging of moving objects.

  18. Tomography

    International Nuclear Information System (INIS)

    Allan, C.J.; Keller, N.A.; Lupton, L.R.; Taylor, T.; Tonner, P.D.

    1984-10-01

    Tomography is a non-intrusive imaging technique being developed at CRNL as an industrial tool for generating quantitative cross-sectional density maps of objects. Of most interest is tomography's ability to: distinguish features within complex geometries where other NDT techniques fail because of the complexity of the geometry; detect/locate small density changes/defects within objects, e.g. void fraction measurements within thick-walled vessels, shrink cavities in castings, etc.; provide quantitative data that can be used in analyses, e.g. of complex processes, or fracture mechanics; and provide objective quantitative data that can be used for (computer-based) quality assurance decisions, thereby reducing and in some cases eliminating the present subjectivity often encountered in NDT. The CRNL program is reviewed and examples are presented to illustrate the potential and the limitations of the technology

  19. An experimental apparatus for diffraction-limites soft x-ray nanofocusing

    Energy Technology Data Exchange (ETDEWEB)

    Merthe, Daniel; Goldberg, Kenneth; Yashchuk, Valeriy; Yuan, Sheng; McKinney, Wayne; Celestre, Richard; Mochi, Iacopo; Macdougall, James; Morrison, Gregory; Rakawa, Senajith; Anderson, Erik; Smith, Brian; Domning, Edward; Warwick, Tony; Padmore, Howard

    2011-10-21

    Realizing the experimental potential of high-brightness, next generation synchrotron and free-electron laser light sources requires the development of reflecting x-ray optics capable of wavefront preservation and high-resolution nano-focusing. At the Advanced Light Source (ALS) beamline 5.3.1, we are developing broadly applicable, high-accuracy, in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad slope measurement accuracy for diffraction-limited Kirkpatrick-Baez (KB) mirrors. The at-wavelength methodology we are developing relies on a series of wavefront-sensing tests with increasing accuracy and sensitivity, including scanning-slit Hartmann tests, grating-based lateral shearing interferometry, and quantitative knife-edge testing. We describe the original experimental techniques and alignment methodology that have enabled us to optimally set a bendable KB mirror to achieve a focused, FWHM spot size of 150 nm, with 1 nm (1.24 keV) photons at 3.7 mrad numerical aperture. The predictions of wavefront measurement are confirmed by the knife-edge testing.The side-profiled elliptically bent mirror used in these one-dimensional focusing experiments was originally designed for a much different glancing angle and conjugate distances. This work demonstrates that high-accuracy, at-wavelength wavefront-slope feedback can be used to optimize the pitch, roll, and mirror-bending forces in situ, using procedures that are deterministic and repeatable.

  20. Diffraction investigation of titanium carbohydride at lower limit of homogeneity range

    International Nuclear Information System (INIS)

    Khidirov, I.; Mirzaev, B.B.; Mukhtarova, N.N.; Getmanskiy, V.V.

    2003-01-01

    Full text: Hydrides both of the transient metals and intermetallic compounds are widely used in nuclear and hydrogen power engineering and also in a number of branches of industry. But these materials have low thermostability (T 0.47 C 0.22 was synthesized and studied using X-ray (λ=0.15418 nm) and neutron (λ=0.1085 nm) diffraction technique. It is shown that disordered carbohydride Ti 0.47 C 0.21 is prepared by means of quenching from 1000 Deg.C followed by heat treatment. The special regime of treatment was chosen to prevent from the exit of hydrogen out of the lattice. The disordered phase is cubic, space group of Fm3m; carbon atoms occupy statistically the octahedral sites 4(b) and hydrogen atoms - the tetrahedral interstices 8(c). It corresponds to the Hegg rule: it is advantageous for interstitial atoms to occupy the octahedral interstices on condition: 0.4 1≤ R x /R Me ≤0.75 and the tetrahedral ones - if 0.22≤R x /R Me ≤0.41, where R x and R Me are atomic radii of interstitial and metal atoms, correspondingly. But when ordering, deviation from this rule is observed. The ordered carbohydride was prepared by annealing of a sample in evacuated and sealed ampoule at temperature of 900-800 Deg.C during 24 h. After annealing, a number of superstructure maxima were observed in neutron diffraction pattern of the sample. The ordered phase of Ti 0.47 C 0.22 is described within the framework of space group Fd3m where carbon atoms occupy orderingly the octahedral interstices 16 (c) and hydrogen atoms - another type of octahedral interstices: 16 (d) which are free or almost free from carbon atoms. Thus, with decreasing of annealing temperature at the lower limit of homogeneity range on carbon, a type of interstices occupied by hydrogen was changed, with the change not corresponding to Hegg rule. It may be explained by effect of blocking: when the carbon atoms are ordered over octahedral interstices, they block all neighboring tetrahedral sites, probably, due to

  1. Label-free high-resolution 3-D imaging of gold nanoparticles inside live cells using optical diffraction tomography.

    Science.gov (United States)

    Kim, Doyeon; Oh, Nuri; Kim, Kyoohyun; Lee, SangYun; Pack, Chan-Gi; Park, Ji-Ho; Park, YongKeun

    2018-03-01

    Delivery of gold nanoparticles (GNPs) into live cells has high potentials, ranging from molecular-specific imaging, photodiagnostics, to photothermal therapy. However, studying the long-term dynamics of cells with GNPs using conventional fluorescence techniques suffers from phototoxicity and photobleaching. Here, we present a method for 3-D imaging of GNPs inside live cells exploiting refractive index (RI) as imaging contrast. Employing optical diffraction tomography, 3-D RI tomograms of live cells with GNPs are precisely measured for an extended period with sub-micrometer resolution. The locations and contents of GNPs in live cells are precisely addressed and quantified due to their distinctly high RI values, which was validated by confocal fluorescence imaging of fluorescent dye conjugated GNPs. In addition, we perform quantitative imaging analysis including the segmentations of GNPs in the cytosol, the volume distributions of aggregated GNPs, and the temporal evolution of GNPs contents in HeLa and 4T1 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Suppression of resonance Raman scattering via ground state depletion towards sub-diffraction-limited label-free microscopy

    NARCIS (Netherlands)

    Rieger, S.; Fischedick, M.; Boller, Klaus J.; Fallnich, Carsten

    2016-01-01

    We report on the first experimental demonstration of the suppression of spontaneous Raman scattering via ground state depletion. The concept of Raman suppression can be used to achieve sub-diffraction-limited resolution in label-free microscopy by exploiting spatially selective signal suppression

  3. Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy

    NARCIS (Netherlands)

    Cleff, C.; Gross, P.; Fallnich, C.; Offerhaus, Herman L.; Herek, Jennifer Lynn; Kruse, K.; Beeker, W.P.; Lee, Christopher James; Boller, Klaus J.

    2013-01-01

    We present a theoretical investigation of stimulated emission pumping to achieve sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering (CARS) microscopy. A pair of control light fields is used to prepopulate the Raman state involved in the CARS process prior to the CARS

  4. Near-diffraction-limited and low-haze electro-optical tunable liquid crystal lens with floating electrodes.

    Science.gov (United States)

    Li, Liwei; Bryant, Doug; Van Heugten, Tony; Bos, Philip J

    2013-04-08

    A near-diffraction-limited, low-haze and tunable liquid crystal (LC) lens is presented. Building on an understanding of the key factors that have limited the performance of lenses based on liquid crystals, we show a simple design whose optical quality is similar to a high quality glass lens. It uses 'floating' electrodes to provide a smooth, controllable applied potential profile across the aperture to manage the phase profile.

  5. Combining x-ray diffraction contrast tomography and mesoscale grain growth simulations in strontium titanate: An integrated approach for the investigation of microstructure evolution

    DEFF Research Database (Denmark)

    Syha, Melanie; Baürer, Michael; Rheinheimer, Wolfgang

    2013-01-01

    Motivated by the recently reported a growth anomaly in strontium titatate bulk samples1, the microstructure of bulk strontium titanate has been investigated by an integrated approach comprising conventional metallography, three dimensional X-ray diffraction contrast tomography (DCT)2, and the obs......Motivated by the recently reported a growth anomaly in strontium titatate bulk samples1, the microstructure of bulk strontium titanate has been investigated by an integrated approach comprising conventional metallography, three dimensional X-ray diffraction contrast tomography (DCT)2......, and the observation of pore shapes in combination with mesoscale grain growth simulations. The microstructural evolution in strontium titanate has been characterized alternating ex-situ annealing and high energy X-ray DCT measurements, resulting in three dimensional microstructure reconstructions which...

  6. Practical limitations of cone-beam computed tomography in 3D cephalometry

    NARCIS (Netherlands)

    Damstra, Janalt; Fourie, Zacharias; Ren, Yijin

    2011-01-01

    3D cone beam computed tomography (CBCT) images offer a unique and new appreciation of the anatomical structures and underlying anomalies not possible with conventional radiographs. However, in almost all aspects of CBCT imaging, from utilization to application, inherent limitations and pitfalls

  7. An incommensurately modulated structure of eta '-phase of Cu.sub.3+x./sub.Si determined by quantitative electron diffraction tomography

    Czech Academy of Sciences Publication Activity Database

    Palatinus, Lukáš; Klementová, Mariana; Dřínek, Vladislav; Jarošová, Markéta; Petříček, Václav

    2011-01-01

    Roč. 50, č. 8 (2011), s. 3743-3751 ISSN 0020-1669 R&D Projects: GA ČR GA203/09/1088 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z40720504 Keywords : copper silicide * incommensurate structure * electron diffraction tomography * ab inition structure solution * superspace Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.601, year: 2011

  8. Simultaneous neutron transmission and diffraction contrast tomography as a non-destructive 3D method for bulk single crystal quality investigations

    OpenAIRE

    Peetermans Steven; Lehmann Eberhard

    2013-01-01

    Traditional neutron tomography allows to reconstruct the attenuation cross section a measure for the material distribution at high spatial resolution and non destructively. However it does not state anything about the ordering structure of the atoms inside this material. Extending the setup with a second neutron imaging detector diffracted neutrons from the ordered crystal lattice could be captured. Emerging iterative reconstruction techniques allow reconstructing the local Bragg reflectivity...

  9. Breaking Abbe's diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes.

    Science.gov (United States)

    Klar, T A; Engel, E; Hell, S W

    2001-12-01

    We report on the generation of various hole-centered beams in the focal region of a lens and investigate their effectiveness to break the diffraction barrier in fluorescence microscopy by stimulated emission. Patterning of the phase of the stimulating beam across the entrance pupil of the objective lens produces point-spread-functions with twofold, fourfold, and circular symmetry, which narrow down the focal spot to 65-100 nm. Comparison with high-resolution confocal images exhibits a resolution much beyond the diffraction barrier. Particles that are only 65-nm apart are resolved with focused light.

  10. Dynamic diffraction-limited light-coupling of 3D-maneuvered wave-guided optical waveguides.

    Science.gov (United States)

    Villangca, Mark; Bañas, Andrew; Palima, Darwin; Glückstad, Jesper

    2014-07-28

    We have previously proposed and demonstrated the targeted-light delivery capability of wave-guided optical waveguides (WOWs). As the WOWs are maneuvered in 3D space, it is important to maintain efficient light coupling through the waveguides within their operating volume. We propose the use of dynamic diffractive techniques to create diffraction-limited spots that will track and couple to the WOWs during operation. This is done by using a spatial light modulator to encode the necessary diffractive phase patterns to generate the multiple and dynamic coupling spots. The method is initially tested for a single WOW and we have experimentally demonstrated dynamic tracking and coupling for both lateral and axial displacements.

  11. Dynamic diffraction-limited light-coupling of 3D-maneuvered wave-guided optical waveguides

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Bañas, Andrew Rafael; Palima, Darwin

    2014-01-01

    We have previously proposed and demonstrated the targeted-light delivery capability of wave-guided optical waveguides (WOWs). As the WOWs are maneuvered in 3D space, it is important to maintain efficient light coupling through the waveguides within their operating volume. We propose the use...... of dynamic diffractive techniques to create diffraction-limited spots that will track and couple to the WOWs during operation. This is done by using a spatial light modulator to encode the necessary diffractive phase patterns to generate the multiple and dynamic coupling spots. The method is initially tested...... for a single WOW and we have experimentally demonstrated dynamic tracking and coupling for both lateral and axial displacements....

  12. Practical limitations of cone-beam computed tomography in 3D cephalometry.

    Science.gov (United States)

    Damstra, Janalt; Fourie, Zacharias; Ren, Yijin

    2011-12-01

    3D cone beam computed tomography (CBCT) images offer a unique and new appreciation of the anatomical structures and underlying anomalies not possible with conventional radiographs. However, in almost all aspects of CBCT imaging, from utilization to application, inherent limitations and pitfalls exist. Importantly, these inherent limitations and pitfalls have practical implications which need to be addressed before the potential of this technology can be fully realized. The purpose of this review was to explore the current limitations and pitfalls associated with CBCT imaging to allow for better and more accurate understanding of the possibilities this imaging modality could offer, particularly pertaining to 3D cephalometry.

  13. Limits on diffractive scattering by woven radome membranes to 900 GHz

    Science.gov (United States)

    Afsar, Mohammed N.; Tkachov, Igor I.; Wells, Tom

    1996-12-01

    Transmittance of 'Gore-Tex' woven radome membranes with various diameter of threads and thickness of the laminate has been studied as a continuous function of frequency over the range 90-900 GHz by utilizing Fourier transform spectroscopy. For the first time the transmittance has been measured with various angles of incidence of the incident wave. Strong diffractive scattering has been found above the frequency with wavelength comparable with period of the fabrics. Gore-Tex woven membrane materials are suitable for radome applications up to 1000 GHz.

  14. Matter-wave diffraction approaching limits predicted by Feynman path integrals for multipath interference

    Science.gov (United States)

    Barnea, A. Ronny; Cheshnovsky, Ori; Even, Uzi

    2018-02-01

    Interference experiments have been paramount in our understanding of quantum mechanics and are frequently the basis of testing the superposition principle in the framework of quantum theory. In recent years, several studies have challenged the nature of wave-function interference from the perspective of Born's rule—namely, the manifestation of so-called high-order interference terms in a superposition generated by diffraction of the wave functions. Here we present an experimental test of multipath interference in the diffraction of metastable helium atoms, with large-number counting statistics, comparable to photon-based experiments. We use a variation of the original triple-slit experiment and accurate single-event counting techniques to provide a new experimental bound of 2.9 ×10-5 on the statistical deviation from the commonly approximated null third-order interference term in Born's rule for matter waves. Our value is on the order of the maximal contribution predicted for multipath trajectories by Feynman path integrals.

  15. Routine positron emission tomography and positron emission tomography/computed tomography in melanoma staging with positive sentinel node biopsy is of limited benefit.

    Science.gov (United States)

    Constantinidou, Anastasia; Hofman, Michael; O'Doherty, Michael; Acland, Katharine M; Healy, Ciaran; Harries, Mark

    2008-02-01

    Positron emission tomography (PET) is increasingly used for the staging and management of melanoma. The aim of this study was to evaluate the role of PET or PET/ computed tomography (CT) as a routine procedure in patients with positive sentinel node biopsy (SNB). Thirty patients with melanoma of Breslow thickness greater than 1 mm who had PET or PET/CT scans performed within 100 days after a positive SNB were reviewed retrospectively. Two patients (6%) had a positive PET scan, none of which were melanoma related. The first patient had a synchronous neuroendocrine thyroid tumour and the second patient had increased uptake in the chest wall, which proved to be old trauma. Lymph node dissection was positive in five cases (16%). With a median follow-up of 24 months, 21 patients remained disease free. In none of the 30 cases did the early PET scan after a positive SNB alter subsequent melanoma management. The role of PET scanning soon after a positive sentinel node biopsy seems to be of limited benefit. It is questionable whether any imaging is beneficial at this stage. The results of this review suggest that PET scanning might not be indicated for this group of patients.

  16. Real-time dynamic coupling of GPC-enhanced diffraction-limited focal spots

    Science.gov (United States)

    Villangca, Mark; Bañas, Andrew; Kopylov, Oleksii; Palima, Darwin; Glückstad, Jesper

    2015-03-01

    We have previously demonstrated on-demand dynamic coupling of an optically manipulated wave-guided optical waveguide (WOW) using diffractive techniques on a "point and shoot" approach. In this work, the generation of the coupling focal spots is done in real-time following the position of the WOW. Object-tracking routine has been added in the trapping program to get the position of the WOW. This approach allows continuous coupling of light through the WOWs which may be useful in some application. In addition, we include a GPC light shaper module in the holography setup to efficiently illuminate the spatial light modulator (SLM). The ability to switch from on-demand to continuous addressing with efficient illumination leverages our WOWs for potential applications in stimulation and nonlinear optics.

  17. Real-time Dynamic Coupling of GPC-enhanced Diffraction-limited Focal Spots

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Bañas, Andrew Rafael; Kopylov, Oleksii

    2015-01-01

    We have previously demonstrated on-demand dynamic coupling of an optically manipulated wave-guided optical waveguide (WOW) using diffractive techniques on a “point and shoot” approach. In this work, the generation of the coupling focal spots is done in real-time following the position of the WOW....... Object-tracking routine has been added in the trapping program to get the position of the WOW. This approach allows continuous coupling of light through the WOWs which may be useful in some application. In addition, we include a GPC light shaper module in the holography setup to efficiently illuminate...... the spatial light modulator (SLM). The ability to switch from on-demand to continuous addressing with efficient illumination leverages our WOWs for potential applications in stimulation and nonlinear optics....

  18. High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography

    Science.gov (United States)

    Kim, Kyoohyun; Yoon, HyeOk; Diez-Silva, Monica; Dao, Ming; Dasari, Ramachandra R.; Park, YongKeun

    2014-01-01

    We present high-resolution optical tomographic images of human red blood cells (RBC) parasitized by malaria-inducing Plasmodium falciparum (Pf)-RBCs. Three-dimensional (3-D) refractive index (RI) tomograms are reconstructed by recourse to a diffraction algorithm from multiple two-dimensional holograms with various angles of illumination. These 3-D RI tomograms of Pf-RBCs show cellular and subcellular structures of host RBCs and invaded parasites in fine detail. Full asexual intraerythrocytic stages of parasite maturation (ring to trophozoite to schizont stages) are then systematically investigated using optical diffraction tomography algorithms. These analyses provide quantitative information on the structural and chemical characteristics of individual host Pf-RBCs, parasitophorous vacuole, and cytoplasm. The in situ structural evolution and chemical characteristics of subcellular hemozoin crystals are also elucidated.

  19. Theoretical limit of spatial resolution in diffuse optical tomography using a perturbation model

    International Nuclear Information System (INIS)

    Konovalov, A B; Vlasov, V V

    2014-01-01

    We have assessed the limit of spatial resolution of timedomain diffuse optical tomography (DOT) based on a perturbation reconstruction model. From the viewpoint of the structure reconstruction accuracy, three different approaches to solving the inverse DOT problem are compared. The first approach involves reconstruction of diffuse tomograms from straight lines, the second – from average curvilinear trajectories of photons and the third – from total banana-shaped distributions of photon trajectories. In order to obtain estimates of resolution, we have derived analytical expressions for the point spread function and modulation transfer function, as well as have performed a numerical experiment on reconstruction of rectangular scattering objects with circular absorbing inhomogeneities. It is shown that in passing from reconstruction from straight lines to reconstruction using distributions of photon trajectories we can improve resolution by almost an order of magnitude and exceed the accuracy of reconstruction of multi-step algorithms used in DOT. (optical tomography)

  20. Tomography

    International Nuclear Information System (INIS)

    1985-01-01

    Already widely accepted in medicine, tomography can also be useful in industry. The theory behind tomography and a demonstration of the technique to inspect a motorcycle carburetor is presented. To demonstrate the potential of computer assisted tomography (CAT) to accurately locate defects in three dimensions, a sectioned 5 cm gate valve with a shrink cavity made visible by the sectioning was tomographically imaged using a Co-60 source. The tomographic images revealed a larger cavity below the sectioned surface. The position of this cavity was located with an in-plane and axial precision of approximately +-1 mm. The volume of the cavity was estimated to be approximately 40 mm 3

  1. Reconstruction from limited single-particle diffraction data via simultaneous determination of state, orientation, intensity, and phase.

    Science.gov (United States)

    Donatelli, Jeffrey J; Sethian, James A; Zwart, Peter H

    2017-07-11

    Free-electron lasers now have the ability to collect X-ray diffraction patterns from individual molecules; however, each sample is delivered at unknown orientation and may be in one of several conformational states, each with a different molecular structure. Hit rates are often low, typically around 0.1%, limiting the number of useful images that can be collected. Determining accurate structural information requires classifying and orienting each image, accurately assembling them into a 3D diffraction intensity function, and determining missing phase information. Additionally, single particles typically scatter very few photons, leading to high image noise levels. We develop a multitiered iterative phasing algorithm to reconstruct structural information from single-particle diffraction data by simultaneously determining the states, orientations, intensities, phases, and underlying structure in a single iterative procedure. We leverage real-space constraints on the structure to help guide optimization and reconstruct underlying structure from very few images with excellent global convergence properties. We show that this approach can determine structural resolution beyond what is suggested by standard Shannon sampling arguments for ideal images and is also robust to noise.

  2. Synchrotron infrared microspectroscopy imaging using a multi-element detector (IRMSI-MED) for diffraction-limited chemical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nasse, Michael J. [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Synchrotron Radiation Center, University of Wisconsin-Madison, Stoughton, WI 53589 (United States); Reininger, Ruben [Synchrotron Radiation Center, University of Wisconsin-Madison, Stoughton, WI 53589 (United States); Scientific Answers and Solutions, Madison, WI 53711 (United States); Kubala, Tim; Janowski, Sebastian [Synchrotron Radiation Center, University of Wisconsin-Madison, Stoughton, WI 53589 (United States); Hirschmugl, Carol [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States)], E-mail: cjhirsch@uwm.edu

    2007-11-11

    University of Wisconsin-Milwaukee is designing and installing a mid-infrared beamline, IRMSI-MED, that will extract 320(h)x25(v) mrad{sup 2} from a bending magnet (BM) at the Synchrotron Radiation Center. The BM radiation, collected with 12 toroidal mirrors and collimated with paraboloidal mirrors, illuminates a spot of 60x40 {mu}m{sup 2} at the sample plane of a commercial IR microscope. The microscope is equipped with a multi-element detector (MED) that will provide the opportunity to obtain chemical images with diffraction-limited resolution of the illuminated area in under a minute.

  3. Accessing the long-time limit in diffusion NMR: The case of singlet assisted diffusive diffraction q-space

    Science.gov (United States)

    Pileio, Giuseppe; Ostrowska, Sylwia

    2017-12-01

    The latest developments in the field of long-lived spin states are merged with pulsed-field gradient techniques to extend the diffusion time beyond what is currently achievable in standard q-space diffusive-diffraction studies. The method uses nearly-equivalent spin-1/2 pairs that let diffusion times of the order of many minutes to be measured allowing access to the long-time limit in cavities of macroscopic size (millimeters). A pulse sequence suitable to exploit this regime has been developed and validated with the use of numerical simulations and experiments.

  4. Efficient generation of 3.9 W of diffraction-limited green light with spectrally combined tapered diode lasers

    DEFF Research Database (Denmark)

    Müller, André; Jensen, Ole Bjarlin; Andersen, Peter E.

    We propose an efficient concept increasing the power of diode laser systems in the visible spectral range. In comparison with second harmonic generation of single emitters, spectral beam combining with subsequent sum-frequency generation enhances the available power significantly. Combining two...... 1060 nm tapered diode lasers, we achieve a 2.5-3.2 fold increase of green light with a maximum power of 3.9 Watts in a diffraction-limited beam. At this level, diode lasers have a high application potential, for example, within the biomedical field. In order to enhance the power even further, our...

  5. Efficient concept generating 3.9 W of diffraction-limited green light with spectrally combined tapered diode lasers

    DEFF Research Database (Denmark)

    Müller, André; Jensen, Ole Bjarlin; Hasler, Karl-Heinz

    2013-01-01

    We propose an efficient concept increasing the power of diode laser systems in the visible spectral range. In comparison with second harmonic generation of single emitters, we show that spectral beam combining with subsequent sumfrequency generation enhances the available power significantly....... Combining two 1060 nm distributed Bragg reflector tapered diode lasers (M 24σ ≤ 5.2), we achieve a 2.5-3.2 fold increase of green light with a maximum power of 3.9 Watts in a diffraction-limited beam (M 24σ ≤ 1.3). Without any further stabilization the obtained power stability is within ± 2.6 %. The electro...

  6. Electron tomography based on highly limited data using a neural network reconstruction technique

    Energy Technology Data Exchange (ETDEWEB)

    Bladt, Eva [Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Pelt, Daniël M. [CWI, Science Park 123, 1098 XG Amsterdam (Netherlands); Bals, Sara, E-mail: sara.bals@uantwerpen.be [Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Batenburg, Kees Joost [CWI, Science Park 123, 1098 XG Amsterdam (Netherlands); Mathematical Institute, Leiden University, Niels Bohrweg 1, 2333 CA Leiden (Netherlands); iMinds-Visionlab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium)

    2015-11-15

    Gold nanoparticles are studied extensively due to their unique optical and catalytical properties. Their exact shape determines the properties and thereby the possible applications. Electron tomography is therefore often used to examine the three-dimensional (3D) shape of nanoparticles. However, since the acquisition of the experimental tilt series and the 3D reconstructions are very time consuming, it is difficult to obtain statistical results concerning the 3D shape of nanoparticles. Here, we propose a new approach for electron tomography that is based on artificial neural networks. The use of a new reconstruction approach enables us to reduce the number of projection images with a factor of 5 or more. The decrease in acquisition time of the tilt series and use of an efficient reconstruction algorithm allows us to examine a large amount of nanoparticles in order to retrieve statistical results concerning the 3D shape. - Highlights: • We propose a new approach for electron tomography based on artifical neural networks, which reduces the number of projection images with a factor of 5 or more. • This reconstruction algorithm allows us to examine the 3D shape of a broad range of nanostructures in a statistical manner. • NN-FBP reconstructions of highly limited data yield comparable quality to full data SIRT reconstructions.

  7. Analysis of diatomite sediments from a paleolake in central Mexico using PIXE, X-ray tomography and X-ray diffraction

    Science.gov (United States)

    Miranda, J.; Oliver, A.; Vilaclara, G.; Rico-Montiel, R.; Macías, V. M.; Ruvalcaba, J. L.; Zenteno, M. A.

    1994-03-01

    Diatomite samples from paleolake Tlaxcala, in Central Mexico, have been analyzed using proton induced X-ray emission (PIXE), X-ray tomography and X-ray diffraction. Chiseled blocks were scanned with a 0.7 MeV proton beam, 0.1 mm in diameter, in 0.25 mm steps across the sediments. X-ray tomography with the same step sizes was then applied, in order to compare the concentrations obtained with PIXE and the material density in the sediment layers. Three different kinds of layers were found, related to their colors: dark, white and gray. The composition of the layers is fairly uniform. The dark zone is enriched in Al, K, Ca, Ti, Mn, and Fe. This dark layer may be associated with eruptions of the Malitzin volcano. The white zone is found to contain diatomite of a high purity, with traces of K, Ca, and Fe, while the gray zones are also Al enriched, suggesting a clay contamination of the diatomite. X-ray diffraction of materials obtained from each main layer showed that the white and gray phases are highly amorphous, with a small component of cristobalite, as expected from the diatom sediment diagenesis, while the dark layer contains also important amounts of anorthite and orthoclase, supporting the volcanic origin of this layer.

  8. Singular value decomposition metrics show limitations of detector design in diffuse fluorescence tomography.

    Science.gov (United States)

    Leblond, Frederic; Tichauer, Kenneth M; Pogue, Brian W

    2010-11-29

    The spatial resolution and recovered contrast of images reconstructed from diffuse fluorescence tomography data are limited by the high scattering properties of light propagation in biological tissue. As a result, the image reconstruction process can be exceedingly vulnerable to inaccurate prior knowledge of tissue optical properties and stochastic noise. In light of these limitations, the optimal source-detector geometry for a fluorescence tomography system is non-trivial, requiring analytical methods to guide design. Analysis of the singular value decomposition of the matrix to be inverted for image reconstruction is one potential approach, providing key quantitative metrics, such as singular image mode spatial resolution and singular data mode frequency as a function of singular mode. In the present study, these metrics are used to analyze the effects of different sources of noise and model errors as related to image quality in the form of spatial resolution and contrast recovery. The image quality is demonstrated to be inherently noise-limited even when detection geometries were increased in complexity to allow maximal tissue sampling, suggesting that detection noise characteristics outweigh detection geometry for achieving optimal reconstructions.

  9. Using x-ray computed tomography in hydrology: Systems, resolutions, and limitations

    DEFF Research Database (Denmark)

    Wildenschild, Dorthe; Hopmans, J.W.; Vaz, C.M.P.

    2002-01-01

    media, obtained with different scanning systems and sample sizes, to illustrate advantages and limitations of these various systems, including topics of spatial resolution and contrast. In addition, we present examples of our most recent three-dimensional high-resolution images, for which......A combination of advances in experimental techniques and mathematical analysis has made it possible to characterize phase distribution and pore geometry in porous media using non-destructive X-ray computed tomography (CT). We present qualitative and quantitative CT results for partially saturated...

  10. Modeling and verification of the diffraction-limited visible light telescope aboard the solar observing satellite HINODE

    Science.gov (United States)

    Katsukawa, Y.; Suematsu, Y.; Tsuneta, S.; Ichimoto, K.; Shimizu, T.

    2011-09-01

    HINODE, Japanese for "sunrise", is a spacecraft dedicated for observations of the Sun, and was launched in 2006 to study the Sun's magnetic fields and how their explosive energies propagate through the different atmospheric layers. The spacecraft carries the Solar Optical Telescope (SOT), which has a 50 cm diameter clear aperture and provides a continuous series of diffraction-limited visible light images from space. The telescope was developed through international collaboration between Japan and US. In order to achieve the diffraction-limited performance, thermal and structural modeling of the telescope was extensively used in its development phase to predict how the optical performance changes dependent on the thermal condition in orbit. Not only the modeling, we devoted many efforts to verify the optical performance in ground tests before the launch. The verification in the ground tests helped us to find many issues, such as temperature dependent focus shifts, which were not identified only through the thermal-structural modeling. Another critical issue was micro-vibrations induced by internal disturbances of mechanical gyroscopes and momentum wheels for attitude control of the spacecraft. Because the structural modeling was not accurate enough to predict how much the image quality was degraded by the micro-vibrations, we measured their transmission in a spacecraft-level test.

  11. Diffraction limit of the theory of multiple small-angle neutron scattering by a dense system of scatterers

    Science.gov (United States)

    Dzheparov, F. S.; Lvov, D. V.

    2016-02-01

    Multiple small-angle neutron scattering by a high-density system of inhomogeneities has been considered. A combined approach to the analysis of multiple small-angle neutron scattering has been proposed on the basis of the synthesis of the Zernike-Prince and Moliére formulas. This approach has been compared to the existing multiple small-angle neutron scattering theory based on the eikonal approximation. This comparison has shown that the results in the diffraction limit coincide, whereas differences exist in the refraction limit because the latter theory includes correlations between successive scattering events. It has been shown analytically that the existence of correlations in the spatial position of scatterers results in an increase in the number of unscattered neutrons. Thus, the narrowing of spectra of multiple small-angle neutron scattering observed experimentally and in numerical simulation has been explained.

  12. Algorithms for limited-view computed tomography: an annotated bibliography and a challenge

    International Nuclear Information System (INIS)

    Rangayyan, R.; Dhawan, A.P.; Gordon, R.

    1985-01-01

    In many applications of computed tomography, it may not be possible to acquire projection data at all angles, as required by the most commonly used algorithm of convolution backprojection. In such a limited-data situation, we face an ill-posed problem in attempting to reconstruct an image from an incomplete set of projections. Many techniques have been proposed to tackle this situation, employing diverse theories such as signal recovery, image restoration, constrained deconvolution, and constrained optimization, as well as novel schemes such as iterative object-dependent algorithms incorporating a priori knowledge and use of multispectral radiation. The authors present an overview of such techniques and offer a challenge to all readers to reconstruct images from a set of limited-view data provided here

  13. Neutron diffraction study of cubic titanium carbohydride at the homogeneity lower limit

    International Nuclear Information System (INIS)

    Khidirov, I.; Mirzaev, B.B.; Mukhtarova, N.N.

    2004-01-01

    Cubic carbohydride TiC 0.47H0.22 was prepared by means of quenching from 1200 deg.C followed by the heat treatment using special regime for preventing the hydrogen yield out the lattice. It is shown that at the lower limit of homogeneity range of the cubic carbohydride, hydrogen atoms occupy the tetrahedral interstices 8(c) of the disordered cubic structure with space group of Fm3m. It is found that carbon and hydrogen atoms are partially ordered by annealing at 900-700 deg.C. The ordered structure is face-centred cubic lattice with the parameter a ≅2a 0 , where a 0 is the lattice parameter in disordered structure. The crystal structure of the disordered phase is described within the framework of space group Fd3m, where the carbon atoms occupy mainly (70%) octahedral interstices 16(c) and another ones of carbon and all hydrogen atoms occupy the octahedral interstices 16(d). (author)

  14. Structure determination of a new phase Ni.sub.8./sub.Ti.sub.5./sub. by electron diffraction tomography

    Czech Academy of Sciences Publication Activity Database

    Klementová, Mariana; Karlík, M.; Novák, P.; Palatinus, Lukáš

    2017-01-01

    Roč. 85, Jun (2017), s. 110-116 ISSN 0966-9795 R&D Projects: GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : shape-memory alloys * crystal chemistry * nanocrystalline structure * powder metallurgy * electron diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.140, year: 2016

  15. Optical Design of COATLI: A Diffraction-Limited Visible Imager with Fast Guiding and Active Optics Correction

    Science.gov (United States)

    Fuentes-Fernández, J.; Cuevas, S.; Watson, A. M.

    2018-04-01

    We present the optical design of COATLI, a two channel visible imager for a comercial 50 cm robotic telescope. COATLI will deliver diffraction-limited images (approximately 0.3 arcsec FWHM) in the riz bands, inside a 4.2 arcmin field, and seeing limited images (approximately 0.6 arcsec FWHM) in the B and g bands, inside a 5 arcmin field, by means of a tip-tilt mirror for fast guiding, and a deformable mirror for active optics, both located on two optically transferred pupil planes. The optical design is based on two collimator-camera systems plus a pupil transfer relay, using achromatic doublets of CaF2 and S-FTM16 and one triplet of N-BK7 and CaF2. We discuss the effciency, tolerancing, thermal behavior and ghosts. COATLI will be installed at the Observatorio Astronómico Nacional in Sierra San Pedro Mártir, Baja California, Mexico, in 2018.

  16. Improving visibility in limited-view scenarios with dynamic particle-enhanced optoacoustic tomography

    Science.gov (United States)

    Deán-Ben, X. Luís.; Ding, Lu; Razansky, Daniel

    2017-03-01

    Limited-view artefacts affect most optoacoustic (photoacoustic) imaging systems due to geometrical constraints that impede achieving full tomographic coverage as well as limited light penetration into scattering and absorbing objects. Indeed, it has been theoretically established and experimentally verified that accurate optoacoustic images can only be obtained if the imaged sample is fully enclosed (orientations is hampered. These effects are of particular relevance in the case of hand-held scanners with the imaged volume only accessible from one side. Herein, a new approach termed dynamic particle-enhanced optoacoustic tomography (DPOT) is described for accurate structural imaging in limited-view scenarios. The method is based on the non-linear combination of a sequence of tomographic reconstructions representing sparsely distributed moving particles. Good performance of the method is demonstrated in experiments consisting of dynamic visualization of flow of suspended microspheres in three-dimensions. The method is expected to be applicable for improving accuracy of angiographic optoacoustic imaging in living organisms.

  17. Rotational electrical impedance tomography using electrodes with limited surface coverage provides window for multimodal sensing

    Science.gov (United States)

    Lehti-Polojärvi, Mari; Koskela, Olli; Seppänen, Aku; Figueiras, Edite; Hyttinen, Jari

    2018-02-01

    Electrical impedance tomography (EIT) is an imaging method that could become a valuable tool in multimodal applications. One challenge in simultaneous multimodal imaging is that typically the EIT electrodes cover a large portion of the object surface. This paper investigates the feasibility of rotational EIT (rEIT) in applications where electrodes cover only a limited angle of the surface of the object. In the studied rEIT, the object is rotated a full 360° during a set of measurements to increase the information content of the data. We call this approach limited angle full revolution rEIT (LAFR-rEIT). We test LAFR-rEIT setups in two-dimensional geometries with computational and experimental data. We use up to 256 rotational measurement positions, which requires a new way to solve the forward and inverse problem of rEIT. For this, we provide a modification, available for EIDORS, in the supplementary material. The computational results demonstrate that LAFR-rEIT with eight electrodes produce the same image quality as conventional 16-electrode rEIT, when data from an adequate number of rotational measurement positions are used. Both computational and experimental results indicate that the novel LAFR-rEIT provides good EIT with setups with limited surface coverage and a small number of electrodes.

  18. Limitations in imaging common conjunctival and corneal pathologies with fourier-domain optical coherence tomography.

    Science.gov (United States)

    Demirci, Hakan; Steen, Daniel W

    2014-01-01

    To describe the limitations of Fourier-domain optical coherence tomography (OCT) in imaging common conjunctival and corneal pathology. Retrospective, single-center case series of 40 patients with conjunctival and cornea pathology. Fourier-domain OCT imaged laser in situ keratomileusis (LASIK) flaps in detail, including its relation to other corneal structures and abnormalities. Similarly, in infectious or degenerative corneal disorders, Fourier-domain OCT successfully showed the extent of infiltration or material deposition, which appeared as hyper-reflective areas. In cases with pterygium, the underlying cornea could not be imaged. All cases of common conjunctival pathologies, such as nevus or pinguecula, were successfully imaged in detail. Nevi, scleritis, pterygium, pinguecula, and subconjunctival hemorrhage were hyper-reflective lesions, while cysts and lymphangiectasia were hyporeflective. The details of the underlying sclera were not uniformly imaged in conjunctival pathologies. Fourier-domain OCT imaged the trabeculectomy bleb in detail, whereas the details of structures of the anterior chamber angle were not routinely visualized in all cases. Light scatter through vascularized, densely inflamed, or thick lesions limits the imaging capabilities of Fourier-domain anterior segment OCT.

  19. Warm dense matter in extremely small volume - hydrodynamics of nanofilms triggered by laser irradiation at diffraction limit

    Science.gov (United States)

    Inogamov, Nail; Zhakhovsky, Vasily; Khokhlov, Viktor

    2017-06-01

    Modern laser techniques combine sophisticated manipulations with photon bunch and refined target design together with ultrafast isochoric transfer of solid into WDM state. Photon bunch is just 10s micron long and one micron thick when it is focused in the diffraction limited regime onto a thin film of 10-100 nm thick. While the spherical or cylindrical lenses produces a hot spot with maximum in the central point, a spiral phase plate produces the illumination field with a hole in the center and also bears angular momentum to the target. To study the evolution of the targets a simulation package including two-temperature (immediately during and for some time after a fs pulse the electrons are much hotter than lattice) 2D hydrodynamics and MD code combined with Monte Carlo method for strong thermal conductivity in metal are utilized. The observed processes, including absorption, melting, capillary dynamics of hot melt and its freezing into solitary nanostructures, produced by such laser fields are discussed.

  20. Atomic resolution three-dimensional electron diffraction microscopy

    International Nuclear Information System (INIS)

    Miao Jianwei; Ohsuna, Tetsu; Terasaki, Osamu; Hodgson, Keith O.; O'Keefe, Michael A.

    2002-01-01

    We report the development of a novel form of diffraction-based 3D microscopy to overcome resolution barriers inherent in high-resolution electron microscopy and tomography. By combining coherent electron diffraction with the oversampling phasing method, we show that the 3D structure of a nanocrystal can be determined ab initio at a resolution of 1 Angstrom from 29 simulated noisy diffraction patterns. This new form of microscopy can be used to image the 3D structures of nanocrystals and noncrystalline samples, with resolution limited only by the quality of sample diffraction

  1. A promising limited angular computed tomography reconstruction via segmentation based regional enhancement and total variation minimization

    Science.gov (United States)

    Zhang, Wenkun; Zhang, Hanming; Li, Lei; Wang, Linyuan; Cai, Ailong; Li, Zhongguo; Yan, Bin

    2016-08-01

    X-ray computed tomography (CT) is a powerful and common inspection technique used for the industrial non-destructive testing. However, large-sized and heavily absorbing objects cause the formation of artifacts because of either the lack of specimen penetration in specific directions or the acquisition of data from only a limited angular range of views. Although the sparse optimization-based methods, such as the total variation (TV) minimization method, can suppress artifacts to some extent, reconstructing the images such that they converge to accurate values remains difficult because of the deficiency in continuous angular data and inconsistency in the projections. To address this problem, we use the idea of regional enhancement of the true values and suppression of the illusory artifacts outside the region to develop an efficient iterative algorithm. This algorithm is based on the combination of regional enhancement of the true values and TV minimization for the limited angular reconstruction. In this algorithm, the segmentation approach is introduced to distinguish the regions of different image knowledge and generate the support mask of the image. A new regularization term, which contains the support knowledge to enhance the true values of the image, is incorporated into the objective function. Then, the proposed optimization model is solved by variable splitting and the alternating direction method efficiently. A compensation approach is also designed to extract useful information from the initial projections and thus reduce false segmentation result and correct the segmentation support and the segmented image. The results obtained from comparing both simulation studies and real CT data set reconstructions indicate that the proposed algorithm generates a more accurate image than do the other reconstruction methods. The experimental results show that this algorithm can produce high-quality reconstructed images for the limited angular reconstruction and suppress

  2. An electron beam linear scanning mode for industrial limited-angle nano-computed tomography

    Science.gov (United States)

    Wang, Chengxiang; Zeng, Li; Yu, Wei; Zhang, Lingli; Guo, Yumeng; Gong, Changcheng

    2018-01-01

    Nano-computed tomography (nano-CT), which utilizes X-rays to research the inner structure of some small objects and has been widely utilized in biomedical research, electronic technology, geology, material sciences, etc., is a high spatial resolution and non-destructive research technique. A traditional nano-CT scanning model with a very high mechanical precision and stability of object manipulator, which is difficult to reach when the scanned object is continuously rotated, is required for high resolution imaging. To reduce the scanning time and attain a stable and high resolution imaging in industrial non-destructive testing, we study an electron beam linear scanning mode of nano-CT system that can avoid mechanical vibration and object movement caused by the continuously rotated object. Furthermore, to further save the scanning time and study how small the scanning range could be considered with acceptable spatial resolution, an alternating iterative algorithm based on ℓ0 minimization is utilized to limited-angle nano-CT reconstruction problem with the electron beam linear scanning mode. The experimental results confirm the feasibility of the electron beam linear scanning mode of nano-CT system.

  3. Coherence and diffraction limited resolution in microscopic OCT by a unified approach for the correction of dispersion and aberrations

    Science.gov (United States)

    Schulz-Hildebrandt, H.; Münter, Michael; Ahrens, M.; Spahr, H.; Hillmann, D.; König, P.; Hüttmann, G.

    2018-03-01

    Optical coherence tomography (OCT) images scattering tissues with 5 to 15 μm resolution. This is usually not sufficient for a distinction of cellular and subcellular structures. Increasing axial and lateral resolution and compensation of artifacts caused by dispersion and aberrations is required to achieve cellular and subcellular resolution. This includes defocus which limit the usable depth of field at high lateral resolution. OCT gives access the phase of the scattered light and hence correction of dispersion and aberrations is possible by numerical algorithms. Here we present a unified dispersion/aberration correction which is based on a polynomial parameterization of the phase error and an optimization of the image quality using Shannon's entropy. For validation, a supercontinuum light sources and a costume-made spectrometer with 400 nm bandwidth were combined with a high NA microscope objective in a setup for tissue and small animal imaging. Using this setup and computation corrections, volumetric imaging at 1.5 μm resolution is possible. Cellular and near cellular resolution is demonstrated in porcine cornea and the drosophila larva, when computational correction of dispersion and aberrations is used. Due to the excellent correction of the used microscope objective, defocus was the main contribution to the aberrations. In addition, higher aberrations caused by the sample itself were successfully corrected. Dispersion and aberrations are closely related artifacts in microscopic OCT imaging. Hence they can be corrected in the same way by optimization of the image quality. This way microscopic resolution is easily achieved in OCT imaging of static biological tissues.

  4. Classifying and assembling two-dimensional X-ray laser diffraction patterns of a single particle to reconstruct the three-dimensional diffraction intensity function: resolution limit due to the quantum noise

    International Nuclear Information System (INIS)

    Tokuhisa, Atsushi; Taka, Junichiro; Kono, Hidetoshi; Go, Nobuhiro

    2012-01-01

    A new algorithm is developed for reconstructing the high-resolution three-dimensional diffraction intensity function of a globular biological macromolecule from many quantum-noise-limited two-dimensional X-ray laser diffraction patterns, each for an unknown orientation. The structural resolution is expressed as a function of the incident X-ray intensity and quantities characterizing the target molecule. A new two-step algorithm is developed for reconstructing the three-dimensional diffraction intensity of a globular biological macromolecule from many experimentally measured quantum-noise-limited two-dimensional X-ray laser diffraction patterns, each for an unknown orientation. The first step is classification of the two-dimensional patterns into groups according to the similarity of direction of the incident X-rays with respect to the molecule and an averaging within each group to reduce the noise. The second step is detection of common intersecting circles between the signal-enhanced two-dimensional patterns to identify their mutual location in the three-dimensional wavenumber space. The newly developed algorithm enables one to detect a signal for classification in noisy experimental photon-count data with as low as ∼0.1 photons per effective pixel. The wavenumber of such a limiting pixel determines the attainable structural resolution. From this fact, the resolution limit due to the quantum noise attainable by this new method of analysis as well as two important experimental parameters, the number of two-dimensional patterns to be measured (the load for the detector) and the number of pairs of two-dimensional patterns to be analysed (the load for the computer), are derived as a function of the incident X-ray intensity and quantities characterizing the target molecule

  5. Limitations of airway dimension measurement on images obtained using multi-detector row computed tomography.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Oguma

    Full Text Available OBJECTIVES: (a To assess the effects of computed tomography (CT scanners, scanning conditions, airway size, and phantom composition on airway dimension measurement and (b to investigate the limitations of accurate quantitative assessment of small airways using CT images. METHODS: An airway phantom, which was constructed using various types of material and with various tube sizes, was scanned using four CT scanner types under different conditions to calculate airway dimensions, luminal area (Ai, and the wall area percentage (WA%. To investigate the limitations of accurate airway dimension measurement, we then developed a second airway phantom with a thinner tube wall, and compared the clinical CT images of healthy subjects with the phantom images scanned using the same CT scanner. The study using clinical CT images was approved by the local ethics committee, and written informed consent was obtained from all subjects. Data were statistically analyzed using one-way ANOVA. RESULTS: Errors noted in airway dimension measurement were greater in the tube of small inner radius made of material with a high CT density and on images reconstructed by body algorithm (p<0.001, and there was some variation in error among CT scanners under different fields of view. Airway wall thickness had the maximum effect on the accuracy of measurements with all CT scanners under all scanning conditions, and the magnitude of errors for WA% and Ai varied depending on wall thickness when airways of <1.0-mm wall thickness were measured. CONCLUSIONS: The parameters of airway dimensions measured were affected by airway size, reconstruction algorithm, composition of the airway phantom, and CT scanner types. In dimension measurement of small airways with wall thickness of <1.0 mm, the accuracy of measurement according to quantitative CT parameters can decrease as the walls become thinner.

  6. 3.5 W of diffraction-limited green light at 515 nm from SHG of a single-frequency tapered diode laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Müller, André

    2017-01-01

    Multi-Watt efficient compact green laser sources are required for a number of applications e.g. within biophotonics, laser pumping and laser displays. We present generation of 3.5 W of diffraction-limited green light at 515 nm by second harmonic generation (SHG) of a tapered diode laser, itself...

  7. A super-high angular resolution principle for coded-mask X-ray imaging beyond the diffraction limit of a single pinhole

    International Nuclear Information System (INIS)

    Zhang Chen; Zhang Shuangnan

    2009-01-01

    High angular resolution X-ray imaging is always useful in astrophysics and solar physics. In principle, it can be performed by using coded-mask imaging with a very long mask-detector distance. Previously, the diffraction-interference effect was thought to degrade coded-mask imaging performance dramatically at the low energy end with its very long mask-detector distance. The diffraction-interference effect is described with numerical calculations, and the diffraction-interference cross correlation reconstruction method (DICC) is developed in order to overcome the imaging performance degradation. Based on the DICC, a super-high angular resolution principle (SHARP) for coded-mask X-ray imaging is proposed. The feasibility of coded mask imaging beyond the diffraction limit of a single pinhole is demonstrated with simulations. With the specification that the mask element size is 50 x 50 μm 2 and the mask-detector distance is 50 m, the achieved angular resolution is 0.32 arcsec above about 10 keV and 0.36 arcsec at 1.24 keV (λ = 1 nm), where diffraction cannot be neglected. The on-axis source location accuracy is better than 0.02 arcsec. Potential applications for solar observations and wide-field X-ray monitors are also briefly discussed. (invited reviews)

  8. Use of cone beam computed tomography in implant dentistry: current concepts, indications and limitations for clinical practice and research.

    Science.gov (United States)

    Bornstein, Michael M; Horner, Keith; Jacobs, Reinhilde

    2017-02-01

    Diagnostic radiology is an essential component of treatment planning in the field of implant dentistry. This narrative review will present current concepts for the use of cone beam computed tomography imaging, before and after implant placement, in daily clinical practice and research. Guidelines for the selection of three-dimensional imaging will be discussed, and limitations will be highlighted. Current concepts of radiation dose optimization, including novel imaging modalities using low-dose protocols, will be presented. For preoperative cross-sectional imaging, data are still not available which demonstrate that cone beam computed tomography results in fewer intraoperative complications such as nerve damage or bleeding incidents, or that implants inserted using preoperative cone beam computed tomography data sets for planning purposes will exhibit higher survival or success rates. The use of cone beam computed tomography following the insertion of dental implants should be restricted to specific postoperative complications, such as damage of neurovascular structures or postoperative infections in relation to the maxillary sinus. Regarding peri-implantitis, the diagnosis and severity of the disease should be evaluated primarily based on clinical parameters and on radiological findings based on periapical radiographs (two dimensional). The use of cone beam computed tomography scans in clinical research might not yield any evident beneficial effect for the patient included. As many of the cone beam computed tomography scans performed for research have no direct therapeutic consequence, dose optimization measures should be implemented by using appropriate exposure parameters and by reducing the field of view to the actual region of interest. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Ultrasonic computerized tomography (CT) for temperature measurements with limited projection data based on extrapolated filtered back projection (FBP) method

    International Nuclear Information System (INIS)

    Zhu Ning; Jiang Yong; Kato, Seizo

    2005-01-01

    This study uses ultrasound in combination with tomography to obtain three-dimensional temperature measurements using projection data obtained from limited projection angle. The main feature of the new computerized tomography (CT) reconstruction algorithm is to employ extrapolation scheme to make up for the incomplete projection data, it is based on the conventional filtered back projection (FBP) method while on top of that taking into account the correlation between the projection data and Fourier transform-based extrapolation. Computer simulation is conducted to verify the above algorithm. An experimental 3D temperature distribution measurement is also carried out to validate the proposed algorithm. The simulation and experimental results demonstrate that the extrapolated FBP CT algorithm is highly effective in dealing with projection data from limited projection angle

  10. Classifying and assembling two-dimensional X-ray laser diffraction patterns of a single particle to reconstruct the three-dimensional diffraction intensity function: resolution limit due to the quantum noise.

    Science.gov (United States)

    Tokuhisa, Atsushi; Taka, Junichiro; Kono, Hidetoshi; Go, Nobuhiro

    2012-05-01

    A new two-step algorithm is developed for reconstructing the three-dimensional diffraction intensity of a globular biological macromolecule from many experimentally measured quantum-noise-limited two-dimensional X-ray laser diffraction patterns, each for an unknown orientation. The first step is classification of the two-dimensional patterns into groups according to the similarity of direction of the incident X-rays with respect to the molecule and an averaging within each group to reduce the noise. The second step is detection of common intersecting circles between the signal-enhanced two-dimensional patterns to identify their mutual location in the three-dimensional wavenumber space. The newly developed algorithm enables one to detect a signal for classification in noisy experimental photon-count data with as low as ~0.1 photons per effective pixel. The wavenumber of such a limiting pixel determines the attainable structural resolution. From this fact, the resolution limit due to the quantum noise attainable by this new method of analysis as well as two important experimental parameters, the number of two-dimensional patterns to be measured (the load for the detector) and the number of pairs of two-dimensional patterns to be analysed (the load for the computer), are derived as a function of the incident X-ray intensity and quantities characterizing the target molecule. © 2012 International Union of Crystallography

  11. Introduction to the application and limits of anomalous X-ray diffraction in the determination of partial structure factors

    International Nuclear Information System (INIS)

    Bienenstock, A.

    1993-01-01

    The use of anomalous X-ray scattering to obtain the first differences and partial structure factors normally obtained with isotopic substitution neutron diffraction is described and compared with the neutron technique. Both the problems associated with the X-ray technique (low-Z problems, scattering factor problems, Compton scattering problems, fluorescence problems, storage ring stability problems) and the situations in which it is highly valuable are discussed. 12 refs

  12. Image quality assessment of three limited field-of-view cone-beam computed tomography devices in endodontics

    International Nuclear Information System (INIS)

    Tran, Michel

    2015-01-01

    Since the beginning of Cone Beam Computed Tomography (CBCT) in dento-maxillo-facial radiology, many CBCT devices with different technical aspects and characteristics were produced. Technical variations between CBCT and acquisition settings could involve image quality differences. In order to compare the performance of three limited field-of-view CBCT devices, an objective and subjective evaluation of image quality was carried out using an ex-vivo phantom, which combines both diagnostic and technical features. A significant difference in image quality was found between the five acquisition protocols of the study. (author) [fr

  13. Void and Phase Evolution during the Processing of Bi-2212 Superconducting Wires monitored by combined fast Synchrotron Micro-tomography and X-Ray Diffraction

    CERN Document Server

    Scheuerlein, C; Scheel, M; Jiang, J; Kametani, F; Malagoli, A; Hellstrom, E E; Larbalestier, D C

    2011-01-01

    Recent study of the current-limiting mechanisms in Bi-2212 round wires has suggested that agglomeration of the residual Bi-2212 powder porosity into bubbles of filament-diameter size occurs on melting the Bi-2212 filaments. These pores introduce a major obstacle to current flow, which greatly reduces the critical current density (Jc). Here we present an in situ non-destructive tomographic and diffraction study of the changes occurring during the heat treatment of wires and starting powder, as well as a room temperature study of ex situ processed wires. The in situ through-process study shows that the agglomeration of residual porosity is more complex than previously seen. Filament changes start with coalescence of the quasi-uniform and finely divided powder porosity into lens-shaped defects at about 850 0C when the Bi-2201 impurity phase decomposes before the Bi-2212 starts to melt. These lens-shaped voids grow to bubbles of a filament diameter on melting of the Bi-2212 and continue to lengthen and then to ag...

  14. Generation of 3.5 W of diffraction-limited green light from SHG of a single tapered diode laser in a cascade of nonlinear crystals

    DEFF Research Database (Denmark)

    Hansen, Anders Kragh; Jensen, Ole Bjarlin; Sumpf, Bernd

    2014-01-01

    frequency conversion of infrared tapered diode lasers. Here, we describe the generation of 3.5 W of diffraction-limited green light from SHG of a single tapered diode laser, itself yielding 10 W at 1063 nm. This SHG is performed in single pass through a cascade of two PPMgO:LN crystals with re...... power of 3.5 W corresponds to a power enhancement greater than 2 compared to SHG in each of the crystals individually and is the highest visible output power generated by frequency conversion of a single diode laser. Such laser sources provide the necessary pump power for biophotonics applications...

  15. Artifacts and Visible Singularities in Limited Data X-Ray Tomography

    DEFF Research Database (Denmark)

    Quinto, Todd

    2017-01-01

    and the author explaining artifacts that can be added to limited angle reconstructions, and we provide an easy-to-implement method to decrease them. These ideas are justified using microlocal analysis, deep mathematics that involves Fourier theory. Reconstructions from simulated and real limited data are given...

  16. Breaking the Crowther limit: Combining depth-sectioning and tilt tomography for high-resolution, wide-field 3D reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Hovden, Robert, E-mail: rmh244@cornell.edu [School of Applied and Engineering Physics and Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853 (United States); Ercius, Peter [National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Jiang, Yi [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Wang, Deli; Yu, Yingchao; Abruña, Héctor D. [Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 (United States); Elser, Veit [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Muller, David A. [School of Applied and Engineering Physics and Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853 (United States)

    2014-05-01

    To date, high-resolution (<1 nm) imaging of extended objects in three-dimensions (3D) has not been possible. A restriction known as the Crowther criterion forces a tradeoff between object size and resolution for 3D reconstructions by tomography. Further, the sub-Angstrom resolution of aberration-corrected electron microscopes is accompanied by a greatly diminished depth of field, causing regions of larger specimens (>6 nm) to appear blurred or missing. Here we demonstrate a three-dimensional imaging method that overcomes both these limits by combining through-focal depth sectioning and traditional tilt-series tomography to reconstruct extended objects, with high-resolution, in all three dimensions. The large convergence angle in aberration corrected instruments now becomes a benefit and not a hindrance to higher quality reconstructions. A through-focal reconstruction over a 390 nm 3D carbon support containing over 100 dealloyed and nanoporous PtCu catalyst particles revealed with sub-nanometer detail the extensive and connected interior pore structure that is created by the dealloying instability. - Highlights: • Develop tomography technique for high-resolution and large field of view. • We combine depth sectioning with traditional tilt tomography. • Through-focal tomography reduces tilts and improves resolution. • Through-focal tomography overcomes the fundamental Crowther limit. • Aberration-corrected becomes a benefit and not a hindrance for tomography.

  17. Usefulness and limitations of dual-layer spectral detector computed tomography for diagnosing biliary stones not detected by conventional computed tomography: a report of three cases.

    Science.gov (United States)

    Saito, Hirokazu; Noda, Kana; Ogasawara, Koji; Atsuji, Shutaro; Takaoka, Hiroko; Kajihara, Hiroo; Nasu, Jiro; Morishita, Shoji; Matsushita, Ikuo; Katahira, Kazuhiro

    2017-12-08

    Computed tomography (CT) is useful for diagnosing biliary stones. However, the presence of stones not detected by conventional CT, such as iso-dense stones with CT numbers similar to those of bile or small stones, is problematic. Although conventional CT provides only 120-kVp images corresponding to CT numbers at approximately 70 keV, dual-layer spectral detector CT uses one X-ray source and dual-layer detectors to collect low- and high-energy data simultaneously; retrospective spectral analysis, including virtual monochromatic images with photon energy levels of 40-200 keV, material decomposition images, and spectral curves, can be immediately performed on demand. This technique can immediately discriminate between materials with similar conventional CT numbers. Therefore, prompt and accurate diagnosis of iso-dense stones can be performed. In two out of three of our cases, iso-dense stones were detected in virtual monochromatic images at 40 keV, but in the remaining case a common 4-mm bile duct stone was not detected on 120-kVp and 40-keV images by retrospective spectral analysis. However, this stone was detected by magnetic resonance cholangiopancreatography. Retrospective spectral analysis using dual-layer spectral detector CT was useful for prompt and accurate diagnosis of iso-dense stones, but detection of <5-mm stones may be a limitation of this technique and of conventional CT.

  18. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors.

    Science.gov (United States)

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-04-21

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick-Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions.

  19. Neutron diffraction

    International Nuclear Information System (INIS)

    James, M.; Howard, C.J.; Kennedy, S.

    1999-01-01

    Diffraction methods, especially X-ray diffraction, are widely used in materials science. Neutron diffraction is in many ways similar to X-ray diffraction, but is also complementary to the X-ray technique so that in some cases it yields information not accessible using X-rays. Successes of neutron diffraction include the elucidation of the crystal structures of high temperature superconductors and materials that display colossal magnetoresistance, the phase analysis of zirconia engineering ceramics, in depth stress determination in composites, successful determination of the structures of metal hydrides, transition metal polymer complexes and the determination of magnetic structure. A brief description of current studies, using neutron diffraction is given

  20. Possibilities and limitations of synchrotron X-ray powder diffraction with double crystal and double multilayer monochromators for microscopic speciation studies

    Energy Technology Data Exchange (ETDEWEB)

    De Nolf, Wout [Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerpen (Wilrijk) (Belgium)], E-mail: wout.denolf@ua.ac.be; Jaroszewicz, Jakub [Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerpen (Wilrijk) (Belgium); Terzano, Roberto [Dipartimento di Biologia e Chimica Agro-forestale ed Ambientale, Via Amendola 165/A, I-70126, University of Bari, Bari (Italy); Lind, Ole Christian; Salbu, Brit [Isotope Laboratory, Norwegian University of Life Sciences, PO Box 5003, N-1432 As (Norway); Vekemans, Bart [Department of Analytical Chemistry, Ghent University, Krijgslaan 281 S12, B-9000 Gent (Belgium); Janssens, Koen [Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerpen (Wilrijk) (Belgium); Falkenberg, Gerald [HASYLAB at DESY, Beamline L, Notkestraat 85, D-22603, Hamburg (Germany)

    2009-08-15

    The performance of a combined microbeam X-ray fluorescence/X-ray powder diffraction (XRF/XRPD) measurement station at Hamburger Synchrotronstrahlungslabor (HASYLAB) Beamline L is discussed in comparison to that at European Synchrotron Radiation Facility (ESRF) ID18F/ID22. The angular resolution in the X-ray diffractograms is documented when different combinations of X-ray source, optics and X-ray diffraction detectors are employed. Typical angular resolution values in the range 0.3-0.5 deg. are obtained at the bending magnet source when a 'pink' beam form of excitation is employed. A similar setup at European Synchrotron Radiation Facility beamlines ID18F and ID22 allows to reach angular resolution values of 0.1-0.15 deg. In order to document the possibilities and limitations for speciation of metals in environmental materials by means of Hamburger Synchrotronstrahlungslabor Beamline L X-ray fluorescence/X-ray powder diffraction setup, two case studies are discussed, one involved in the identification of the crystal phases in which heavy metals such as chromium, iron, barium and lead are present in polluted soils of an industrial site (Val Basento, Italy) and another involved in the speciation of uranium in depleted uranium particles (Ceja Mountains, Kosovo). In the former case, the angular resolution is sufficient to allow identification of most crystalline phases present while in the latter case, it is necessary to dispose of an angular resolution of ca. 0.2 deg. to distinguish between different forms of oxidized uranium.

  1. Breaking the Crowther limit: Combining depth-sectioning and tilt tomography for high-resolution, wide-field 3D reconstructions

    International Nuclear Information System (INIS)

    Hovden, Robert; Ercius, Peter; Jiang, Yi; Wang, Deli; Yu, Yingchao; Abruña, Héctor D.; Elser, Veit; Muller, David A.

    2014-01-01

    To date, high-resolution ( 6 nm) to appear blurred or missing. Here we demonstrate a three-dimensional imaging method that overcomes both these limits by combining through-focal depth sectioning and traditional tilt-series tomography to reconstruct extended objects, with high-resolution, in all three dimensions. The large convergence angle in aberration corrected instruments now becomes a benefit and not a hindrance to higher quality reconstructions. A through-focal reconstruction over a 390 nm 3D carbon support containing over 100 dealloyed and nanoporous PtCu catalyst particles revealed with sub-nanometer detail the extensive and connected interior pore structure that is created by the dealloying instability. - Highlights: • Develop tomography technique for high-resolution and large field of view. • We combine depth sectioning with traditional tilt tomography. • Through-focal tomography reduces tilts and improves resolution. • Through-focal tomography overcomes the fundamental Crowther limit. • Aberration-corrected becomes a benefit and not a hindrance for tomography

  2. Microstructural Quantification, Property Prediction, and Stochastic Reconstruction of Heterogeneous Materials Using Limited X-Ray Tomography Data

    Science.gov (United States)

    Li, Hechao

    An accurate knowledge of the complex microstructure of a heterogeneous material is crucial for quantitative structure-property relations establishment and its performance prediction and optimization. X-ray tomography has provided a non-destructive means for microstructure characterization in both 3D and 4D (i.e., structural evolution over time). Traditional reconstruction algorithms like filtered-back-projection (FBP) method or algebraic reconstruction techniques (ART) require huge number of tomographic projections and segmentation process before conducting microstructural quantification. This can be quite time consuming and computationally intensive. In this thesis, a novel procedure is first presented that allows one to directly extract key structural information in forms of spatial correlation functions from limited x-ray tomography data. The key component of the procedure is the computation of a "probability map", which provides the probability of an arbitrary point in the material system belonging to specific phase. The correlation functions of interest are then readily computed from the probability map. Using effective medium theory, accurate predictions of physical properties (e.g., elastic moduli) can be obtained. Secondly, a stochastic optimization procedure that enables one to accurately reconstruct material microstructure from a small number of x-ray tomographic projections (e.g., 20 - 40) is presented. Moreover, a stochastic procedure for multi-modal data fusion is proposed, where both X-ray projections and correlation functions computed from limited 2D optical images are fused to accurately reconstruct complex heterogeneous materials in 3D. This multi-modal reconstruction algorithm is proved to be able to integrate the complementary data to perform an excellent optimization procedure, which indicates its high efficiency in using limited structural information. Finally, the accuracy of the stochastic reconstruction procedure using limited X

  3. Efficient concept for generation of diffraction-limited green light by sum-frequency generation of spectrally combined tapered diode lasers.

    Science.gov (United States)

    Müller, André; Jensen, Ole Bjarlin; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael

    2012-09-15

    In order to increase the power of visible diode laser systems in an efficient manner, we propose spectral beam combining with subsequent sum-frequency generation. We show that this approach, in comparison with second harmonic generation of single emitters, can enhance the available power significantly. By combining two distributed Bragg reflector tapered diode lasers we achieve a 2.5-3.2 fold increase in power and a maximum of 3.9 W of diffraction-limited green light. At this power level, green diode laser systems have a high application potential, e.g., within the biomedical field. Our concept can be expanded combining multiple diode lasers to increase the power even further.

  4. Efficient concept for generation of diffraction-limited green light by sum-frequency generation of spectrally combined tapered diode lasers

    DEFF Research Database (Denmark)

    Müller, André; Jensen, Ole Bjarlin; Hasler, Karl-Heinz

    2012-01-01

    In order to increase the power of visible diode laser systems in an efficient manner, we propose spectral beam combining with subsequent sum-frequency generation. We show that this approach, in comparison with second harmonic generation of single emitters, can enhance the available power signific......In order to increase the power of visible diode laser systems in an efficient manner, we propose spectral beam combining with subsequent sum-frequency generation. We show that this approach, in comparison with second harmonic generation of single emitters, can enhance the available power...... significantly. By combining two distributed Bragg reflector tapered diode lasers we achieve a 2.5–3.2 fold increase in power and a maximum of 3.9 W of diffraction-limited green light. At this power level, green diode laser systems have a high application potential, e.g., within the biomedical field. Our concept...

  5. The Kimberley Hospital Rule (KHR) for urgent computed tomography of the brain in a resource-limited environment.

    Science.gov (United States)

    Bezuidenhout, A Fourie; Hurter, Delme; Maydell, Arthur T; van Niekerk, Francois; de Figueiredo, Sonia A B; Harvey, Justin; Vlok, Adriaan J; Pitcher, Richard D

    2013-07-29

    The indications for urgent computed tomography of the brain (CTB) in the acute setting are controversial. While guidelines have been proposed for CTB in well-resourced countries, these are not always appropriate for resource-limited environments. Furthermore, no unifying guideline exists for trauma-related and non-trauma-related acute intracranial pathology. Adoption by resource-limited countries of more conservative scanning protocols, with outcomes comparable to well-resourced countries, would have significant benefit. A multidisciplinary team from Kimberley Hospital in the Northern Cape Province of South Africa adopted the principles defined in the National Institute for Health and Care Excellence (NICE) guideline for the early management of head injury and drafted the Kimberley Hospital Rule (KHR), a proposed unifying guideline for the imaging of acute intracranial pathology in a resource-limited environment. To evaluate the sensitivity and specificity of the KHR. A prospective cohort study was conducted in the Northern Cape Province between 1 May 2010 and 30 April 2011. All patients older than 16 years presenting to emergency departments with acute intracranial symptoms were triaged according to the KHR into three groups, as follows: group 1 - immediate scan (within 1 hour); group 2 - urgent scan (within 8 hours); and group 3 - no scan required. Patients in groups 1 and 2 were studied. The primary outcome was CTB findings of clinically significant intracranial pathology requiring acute change in management. Seven hundred and three patients were included. The KHR achieved 90.3% sensitivity and 45.5% specificity, while reducing the number of immediate CTBs by 36.0%. The KHR is an accurate, unifying clinical guideline that appears to optimise the utilisation of CTB in a resource-limited environment.

  6. Level-set reconstruction algorithm for ultrafast limited-angle X-ray computed tomography of two-phase flows.

    Science.gov (United States)

    Bieberle, M; Hampel, U

    2015-06-13

    Tomographic image reconstruction is based on recovering an object distribution from its projections, which have been acquired from all angular views around the object. If the angular range is limited to less than 180° of parallel projections, typical reconstruction artefacts arise when using standard algorithms. To compensate for this, specialized algorithms using a priori information about the object need to be applied. The application behind this work is ultrafast limited-angle X-ray computed tomography of two-phase flows. Here, only a binary distribution of the two phases needs to be reconstructed, which reduces the complexity of the inverse problem. To solve it, a new reconstruction algorithm (LSR) based on the level-set method is proposed. It includes one force function term accounting for matching the projection data and one incorporating a curvature-dependent smoothing of the phase boundary. The algorithm has been validated using simulated as well as measured projections of known structures, and its performance has been compared to the algebraic reconstruction technique and a binary derivative of it. The validation as well as the application of the level-set reconstruction on a dynamic two-phase flow demonstrated its applicability and its advantages over other reconstruction algorithms. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. DETERMINATION OF RESOLUTION LIMITS OF ELECTRICAL TOMOGRAPHY ON THE BLOCK MODEL IN A HOMOGENOUS ENVIRONMENT BY MEANS OF ELECTRICAL MODELLING

    Directory of Open Access Journals (Sweden)

    Franjo Šumanovac

    2007-12-01

    Full Text Available The block model in a homogenous environment can generally serve for presentation of some geological models: changes of facies, changes of rock compactness-fragmentation, underground cavities, bauxite deposits, etc. Therefore, on the block model of increased resistivities in a homogenous environment of low resistivity, the potentials of the electrical tomography method were tested for the purpose of their detection. Regarding potentials of block detection, resolution methods depend on: depth of block location, ratio between block resistivity and the environment in which it is located as well as applied survey geometry, i.e. electrode array. Thus the analyses carried out for the most frequently used electrode arrays in the investigations are the following: the Wenner, Wenner-Schlumberger, dipole-dipole and pole-pole arrays. For each array, maximum depths at which a block can be detected relative to the ratio between block resistivity and parent rock environment were analyzed. The results are shown in the two-dimensional graphs, where the ratio between the block resistivity and the environment is shown on the X-axis, and the resolution depth on the Y-axis, after which the curves defining the resolution limits were drawn. These graphs have a practical use, since they enable a fast, simple determination of potentials of the method application on a specific geological model.

  8. Fifty Years of Technological Innovation: Potential and Limitations of Current Technologies in Abdominal Magnetic Resonance Imaging and Computed Tomography.

    Science.gov (United States)

    Attenberger, Ulrike I; Morelli, John; Budjan, Johannes; Henzler, Thomas; Sourbron, Steven; Bock, Michael; Riffel, Philipp; Hernando, Diego; Ong, Melissa M; Schoenberg, Stefan O

    2015-09-01

    Magnetic resonance imaging (MRI) has become an important modality for the diagnosis of intra-abdominal pathology. Hardware and pulse sequence developments have made it possible to derive not only morphologic but also functional information related to organ perfusion (dynamic contrast-enhanced MRI), oxygen saturation (blood oxygen level dependent), tissue cellularity (diffusion-weighted imaging), and tissue composition (spectroscopy). These techniques enable a more specific assessment of pathologic lesions and organ functionality. Magnetic resonance imaging has thus transitioned from a purely morphologic examination to a modality from which image-based disease biomarkers can be derived. This fits well with several emerging trends in radiology, such as the need to accurately assess response to costly treatment strategies and the need to improve lesion characterization to potentially avoid biopsy. Meanwhile, the cost-effectiveness, availability, and robustness of computed tomography (CT) ensure its place as the current workhorse for clinical imaging. Although the lower soft tissue contrast of CT relative to MRI is a long-standing limitation, other disadvantages such as ionizing radiation exposure have become a matter of public concern. Nevertheless, recent technical developments such as dual-energy CT or dynamic volume perfusion CT also provide more functional imaging beyond morphology.The aim of this article was to review and discuss the most important recent technical developments in abdominal MRI and state-of-the-art CT, with an eye toward the future, providing examples of their clinical utility for the evaluation of hepatic and renal pathologies.

  9. Imagerie 2D et 3D de matériaux monocristallins : topographie et tomographie en diffraction rayons X de très haute énergie

    Science.gov (United States)

    Hamelin, B.; Bastie, P.; Richard, D.; Eiaazzouzi, A.

    2004-11-01

    La caractérisation en volume de matériaux cristallins de forte épaisseur (plusieurs cm) n'est possible que par l'utilisation de sources de rayonnement X de forte énergie (diffractomètres gamma, lignes haute énergie du rayonnement synchrotron) ou encore par l'utilisation de faisceau de neutrons. L'Institut Laue Langevin a développé et construit, en coopération avec le Laboratoire de Spectrométrie Physique, un nouveau type d'instrument utilisant le spectre continu rayons X à très haute énergie (typiquement 100 à 400 keV) émis par un générateur rayons X à foyer fin utilisé pour des radiographies. Ce diffractomètre permet la caractérisation rapide, précise et en volume d'échantillons de forte épaisseur. Outre des applications variées dans différents domaines (structure cristalline, mesure de paramètre de maille, contraintes, textures,ldots), il est possible de caractériser complètement des échantillons cristallins à partir d'une série de mesures en diffraction. Il est en particulier possible de visualiser (localiser) les désorientations du réseau cristallin au sein d'un échantillon (topographie en transmission). Il est également possible de visualiser les volumes diffractants dans une section de l'échantillon en utilisant une reconstruction de type tomographique à partir d'une série d'acquisitions en diffraction. Ces nouvelles possibilités s'avèrent être particulièrement utiles pour le contrôle non destructif de matériaux cristallins.

  10. On the Stability of Reversely Formed Austenite and Related Mechanism of Transformation in an Fe-Ni-Mn Martensitic Steel Aided by Electron Backscattering Diffraction and Atom Probe Tomography

    Science.gov (United States)

    Koohdar, Hamidreza; Nili-Ahmadabadi, Mahmoud; Habibi-Parsa, Mohammad; Jafarian, Hamid Reza; Bhattacharjee, Tilak; Tsuji, Nobuhiro

    2017-11-01

    The stability of reversely formed austenite and related mechanism of transformation were investigated against temperature and time in an Fe-9.6Ni-7.1Mn (at. pct) martensitic steel during intercritical annealing at a dual-phase ( α + γ) region. Dilatometry, electron backscattering diffraction (EBSD), atom probe tomography (APT), and X-ray diffraction (XRD) were used to characterize the mechanism of reverse transformation. It was found that under intercritical annealing at 853 K (580 °C), when the heating rate is 20 K/s (20 °C/s), reverse transformation takes place through a mixed diffusion control mechanism, i.e., controlled by bulk diffusion and diffusion along the interface, where Ni controls the diffusion as its diffusivity is lower than that of Mn in the martensite and austenite. Increasing the intercritical annealing to 873 K (600 °C) at an identical heating rate of 20 K/s (20 °C/s) showed that reverse transformation occurs through a sequential combination of both martensitic and diffusional mechanisms. The transition temperature from diffusional to martensitic transformation was obtained close to 858 K (585 °C). Experimental results revealed that the austenite formed by the diffusional mechanism at 853 K (580 °C) mainly remains untransformed after cooling to ambient temperature due to the enrichment with Ni and Mn. It was also found that the stability of the reversely formed austenite by martensitic mechanism at 873 K (600 °C) is related to grain refinement.

  11. Laser diode end-pumped continuous-wave laser operation at 1339 nm in Nd : GGG with nearly diffraction-limited beam quality

    Science.gov (United States)

    Lin, Zhi; Wang, Yi; Xu, Bin; Cheng, Yongjie; Chen, Nan; Xu, Huiying; Cai, Zhiping

    2015-08-01

    We report on the laser diode end-pumped continuous-wave laser operation of a Nd : GGG single crystal at 1339 nm in a plane parallel laser cavity configuration, for the first time to our knowledge. A simultaneous tri-wavelength laser at 1324, 1331 and 1337 nm is obtained at first with a maximum output power up to 1.66 W in a free-running laser operation with a slope efficiency of about 27.6% with respect to the absorbed pump power. By inserting a 0.1 mm glass etalon into the laser cavity and finely tilting it to a suitable angle, a single wavelength lasing at 1339 nm can be realized with a maximum output power of 0.58 W and slope efficiency of about 12.9%. The output power stability is simply estimated to be about 4.1% and the output beam quality is measured to be as near the diffraction limit as 1.33 and 1.16 in x and y directions, respectively.

  12. Efficient near diffraction limited blue light source by sum-frequency mixing of a BAL and a solid-state laser

    DEFF Research Database (Denmark)

    Sørensen, Knud Palmelund; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2011-01-01

    Sum-frequency mixing of an 808 nm broad area laser (BAL) with a build-in grating structure for spectral control and a 1064 nm solid-state laser is experimentally investigated. The spectrally improved 20 mu m wide BAL can deliver up to 700 mW of output power with an M-2 of 1.4 and 5.3 in the fast...... and slow axis of the diode, respectively. The BAL output beam is single-passed through a periodically poled KTiOPO4 (PPKTP) crystal placed in an intra-cavity beam waist of a 1064 nm Nd:YVO4 laser, resulting in 100 mW of sum-frequency generated blue output power. This corresponds to a power conversion...... efficiency of 15%. The near diffraction limited blue output beam is measured to have an M-2 of 1.2 and 1.7 in the directions corresponding to the fast and slow axis of the BAL diode, respectively....

  13. Observation of positional relation between mandibular third molars and the mandibular canal on limited cone beam computed tomography

    International Nuclear Information System (INIS)

    Hashizume, Atsuko; Nakagawa, Yoichi; Ishii, Hisako; Kobayashi, Kaoru

    2004-01-01

    We describe the preoperative use of limited cone beam computed tomography (CT) with a dental CT scanner for the assessment of mandibular third molars before extraction. Cone beam CT provides 42.7-mm-high and 30-mm-wide rectangular solid images, with a resolution of less than 0.2 mm. The positional relationship between the mandibular third molars and the mandibular canal was examined by dental CT. Sixty-eight lower third molars of 62 patients whose teeth were superimposed on the mandibular canal on periapical or panoramic radiographs were studied. Dental CT scans clearly demonstrated the positional relationship between the mandibular canal and the teeth. The mandibular canal was located buccally to the roots of 16 teeth, lingually to the roots of 27 teeth, inferiorly to the roots of 23 teeth, and between the roots of 2 teeth. The presence of bone between the mandibular canal and the teeth was not noted in 7 of 16 buccal cases, 24 of 27 lingual cases, and 10 of 23 inferior cases on dental CT scans, suggesting that the canal was in contact with the teeth. Fifty-nine of the 68 mandibular third molars were surgically removed, and postoperative transient hypoesthesia occurred in 4 patients. Dental CT scans showed no bone between the mandibular canal and the teeth in all 4 patients. Hypoesthesia was not related to the bucco-lingual location of the mandibular canal or to the extent of bone loss between the canal and the teeth. However, hypoesthesia did not occur in patients with bone between the mandibular canal and the teeth. Thus, information on the distance between the canal and teeth on dental CT scans was useful for predicting the risk of inferior alveolar nerve damage. Because of its high resolution and low radiation dose, cone beam CT was useful for examination before mandibular third molar surgery. (author)

  14. Radiographic features of enostosis determined with limited cone-beam computed tomography in comparison with rotational panoramic radiography

    International Nuclear Information System (INIS)

    Araki, Masao; Hashimoto, Koji; Kawashima, Shoji; Matsumoto, Kunihumi; Akiyama, Yutaka

    2006-01-01

    Radiographic findings of enostosis often resemble those of focal condensing osteomyelitis of inflammatory origin, and the location and state of these lesions cannot be precisely diagnosed using rotational panoramic radiography. Consequently, a differential diagnosis approach is required. This study examined the situation and characteristics of mandibular enostosis using limited cone-beam computed tomography (CBCT) in comparison with rotational panoramic radiography. Forty-four radiopaque lesions were examined on rotational panoramic radiography and CBCT. The lesions were diagnosed as enostosis from radiographic features on CBCT that had been performed for other clinical diagnoses or dental treatments. For each lesion, the site, margin, density, and relationship to tooth roots were determined on rotational panoramic radiography, and the shape of the cortical bone was determined on CBCT. Enostosis occurred in the premolar region of the mandible in 25 cases (57%) and displayed numerous patterns of relationships to adjacent teeth on rotational panoramic radiography. All lesions displayed an ovoid external form on rotational panoramic radiography. On CBCT, enostosis arose from buccal cortical bone in 13 cases and from lingual cortical bone in 25 cases; a lingual origin was suspected in the remaining six cases. The periodontal ligament space of adjacent teeth near the lesion was clearly apparent on both rotational panoramic radiography and CBCT. Rotational panoramic radiography and occlusal radiography cannot diagnose exactly the location and state of enostosis. The diagnosis of enostosis can be difficult for lesions influenced by secondary infection in the roots of surrounding teeth; diagnosis in these cases may be facilitated by clarifying the manifestation involving the periodontal ligament space of adjacent teeth and confirming bone thickening arising from the inner surface of cortical bone. (author)

  15. Heterogeneous pattern of retinal nerve fiber layer in multiple sclerosis. High resolution optical coherence tomography: potential and limitations.

    Directory of Open Access Journals (Sweden)

    Nermin Serbecic

    Full Text Available BACKGROUND: Recently the reduction of the retinal nerve fibre layer (RNFL was suggested to be associated with diffuse axonal damage in the whole CNS of multiple sclerosis (MS patients. However, several points are still under discussion. (1 Is high resolution optical coherence tomography (OCT required to detect the partly very subtle RNFL changes seen in MS patients? (2 Can a reduction of RNFL be detected in all MS patients, even in early disease courses and in all MS subtypes? (3 Does an optic neuritis (ON or focal lesions along the visual pathways, which are both very common in MS, limit the predication of diffuse axonal degeneration in the whole CNS? The purpose of our study was to determine the baseline characteristics of clinical definite relapsing-remitting (RRMS and secondary progressive (SPMS MS patients with high resolution OCT technique. METHODOLOGY: Forty-two RRMS and 17 SPMS patients with and without history of uni- or bilateral ON, and 59 age- and sex-matched healthy controls were analysed prospectively with the high resolution spectral-domain OCT device (SD-OCT using the Spectralis 3.5mm circle scan protocol with locked reference images and eye tracking mode. Furthermore we performed tests for visual and contrast acuity and sensitivity (ETDRS, Sloan and Pelli-Robson-charts, for color vision (Lanthony D-15, the Humphrey visual field and visual evoked potential testing (VEP. PRINCIPAL FINDINGS: All 4 groups (RRMS and SPMS with or without ON showed significantly reduced RNFL globally, or at least in one of the peripapillary sectors compared to age-/sex-matched healthy controls. In patients with previous ON additional RNFL reduction was found. However, in many RRMS patients the RNFL was found within normal range. We found no correlation between RNFL reduction and disease duration (range 9-540 months. CONCLUSIONS: RNFL baseline characteristics of RRMS and SPMS are heterogeneous (range from normal to markedly reduced levels.

  16. Limiter

    Science.gov (United States)

    Cohen, S.A.; Hosea, J.C.; Timberlake, J.R.

    1984-10-19

    A limiter with a specially contoured front face is provided. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution. This limiter shape accommodates the various power scrape-off distances lambda p, which depend on the parallel velocity, V/sub parallel/, of the impacting particles.

  17. Diffraction dissociation

    International Nuclear Information System (INIS)

    Abarbanel, H.

    1972-01-01

    An attempt is made to analyse the present theoretical situation in the field of diffraction scattering. Two not yet fully answered questions related with a typical diffraction process AB→CD, namely: what is the structure of the transition matrix elements, and what is the structure of the exchange mechanism responsible for the scattering, are formulated and various proposals for answers are reviewed. Interesting general statement that the products (-1)sup(J)P, where J and P are respectively spin and parity, is conserved at each vertex has been discussed. The exchange mechanism in diffractive scattering has been considered using the language of the complex J-plane as the most appropriate. The known facts about the exchange mechanism are recalled and several routs to way out are proposed. The idea to consider the moving pole and associated branch points as like a particle and the associated two and many particle unitarity cuts is described in more details. (S.B.)

  18. Neutron diffraction

    International Nuclear Information System (INIS)

    Heger, G.

    1996-01-01

    X-ray diffraction using conventional laboratory equipment and/or synchrotron installations is the most important method for structure analyses. The purpose of this paper is to discuss special cases, for which, in addition to this indispensable part, neutrons are required to solve structural problems. Even though the huge intensity of modern synchrotron sources allows in principle the study of magnetic X-ray scattering the investigation of magnetic structures is still one of the most important applications of neutron diffraction. (author) 15 figs., 1 tab., 10 refs

  19. Neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Heger, G. [Rheinisch-Westfaelische Technische Hochschule Aachen, Inst. fuer Kristallographie, Aachen (Germany)

    1996-12-31

    X-ray diffraction using conventional laboratory equipment and/or synchrotron installations is the most important method for structure analyses. The purpose of this paper is to discuss special cases, for which, in addition to this indispensable part, neutrons are required to solve structural problems. Even though the huge intensity of modern synchrotron sources allows in principle the study of magnetic X-ray scattering the investigation of magnetic structures is still one of the most important applications of neutron diffraction. (author) 15 figs., 1 tab., 10 refs.

  20. Children's (Pediatric) CT (Computed Tomography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Children's (Pediatric) CT (Computed Tomography) Pediatric computed tomography (CT) ... are the limitations of Children's CT? What is Children's CT? Computed tomography, more commonly known as a ...

  1. Neutron diffraction

    International Nuclear Information System (INIS)

    Bacon, G.E.

    1983-01-01

    The paper reviews neutron diffraction work from the early studies to the present-day development of the subject. Direct structural investigations were described, including chemical applications associated with single crystal techniques, and magnetic applications identified with powder techniques. The properties of the neutron beams are discussed, as well as the use of polarised beams. (UK)

  2. Powder Diffraction

    Science.gov (United States)

    Hart, Michael

    The importance of x-ray powder diffraction as an analytical tool for phase identification of materials was first pointed out by Debye and Scherrer1,2 in Germany and, quite independently, by Hull3,4 in the United States of America. Three distinct periods of evolution lead to ubiquitous application in many fields of science and technology. In the, first period, until the- mid-1940's. applications were and developed covering broad categories of materials including inorganic materials, minerals, cerarffics, metals, alloys, organic materials and polymers. During this formative period, the concept of quantitative phase analysis was demonstrated5. In the second period there followed the blossoming of technology and commercial instruments became widely used. The history is well summarized by Parrish6 and by Langford and Loudr7. By 1980 there were probably 10000 powder diffractometers in routine use, making it the most widely used of all x-ray crystallographic instruments. In the third, present, period data bases became firmly established and sophisticated pattern fitting and recognition software made many aspects of powder diffraction analysis routine. High resolution, tunable powder diffractometers were developed at sources of synchrotron radiation8-10. The tunability of the spectrum made it possible to exploit all the subtleties of x-ray spectroscopy in diffraction experiments11.

  3. Neutron diffraction

    International Nuclear Information System (INIS)

    Howard, C.J.; Kennedy, S.J.

    1994-01-01

    A brief account is given of neutron diffraction techniques. Similarities and differences compared with the more familiar X-ray counterparts are discussed. In certain applications, neutron diffraction can be used to obtain information about materials which would be difficult or even impossible to obtain using other techniques. One spectacular success has been the elucidation, from neutron powder diffraction, of the crystal structures of high critical temperature oxide superconductors. There have been substantial contributions in other fields, and these are illustrated by Australian work. The ability of the neutron to penetrate deeply into most materials has been invoked for in-depth determination of stresses in composites and of phase composition in zirconia ceramics. The unique properties of the neutron have been successfully exploited in studies of metal hydrides, to determine where hydrogen is located, and in magnetic structure determination. There is much interest in studying materials under different conditions of temperature and pressure, and kinetic studies under such conditions are now becoming possible. The article includes information on the principles, the instrumentation with particular reference to the instruments installed around the HIFAR reactor at Lucas Heights, and methods for the interpretation of data. 59 refs., 3 tabs., 16 figs

  4. Powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Hart, M.

    1995-12-31

    the importance of x-ray powder diffraction as an analytical tool for phase identification of materials was first pointed out by Debye and Scherrer in Germany and, quite independently, by Hull in the US. Three distinct periods of evolution lead to ubiquitous application in many fields of science and technology. In the first period, until the mid-1940`s, applications were and developed covering broad categories of materials including inorganic materials, minerals, ceramics, metals, alloys, organic materials and polymers. During this formative period, the concept of quantitative phase analysis was demonstrated. In the second period there followed the blossoming of technology and commercial instruments became widely used. The history is well summarized by Parrish and by Langford and Loueer. By 1980 there were probably 10,000 powder diffractometers in routine use, making it the most widely used of all x-ray crystallographic instruments. In the third, present, period data bases became firmly established and sophisticated pattern fitting and recognition software made many aspects of powder diffraction analysis routine. High resolution, tunable powder diffractometers were developed at sources of synchrotron radiation. The tunability of the spectrum made it possible to exploit all the subtleties of x-ray spectroscopy in diffraction experiments.

  5. Powder diffraction

    International Nuclear Information System (INIS)

    Hart, M.

    1995-01-01

    The importance of x-ray powder diffraction as an analytical tool for phase identification of materials was first pointed out by Debye and Scherrer in Germany and, quite independently, by Hull in the US. Three distinct periods of evolution lead to ubiquitous application in many fields of science and technology. In the first period, until the mid-1940's, applications were and developed covering broad categories of materials including inorganic materials, minerals, ceramics, metals, alloys, organic materials and polymers. During this formative period, the concept of quantitative phase analysis was demonstrated. In the second period there followed the blossoming of technology and commercial instruments became widely used. The history is well summarized by Parrish and by Langford and Loueer. By 1980 there were probably 10,000 powder diffractometers in routine use, making it the most widely used of all x-ray crystallographic instruments. In the third, present, period data bases became firmly established and sophisticated pattern fitting and recognition software made many aspects of powder diffraction analysis routine. High resolution, tunable powder diffractometers were developed at sources of synchrotron radiation. The tunability of the spectrum made it possible to exploit all the subtleties of x-ray spectroscopy in diffraction experiments

  6. The utility and limitations of (18)F-fluorodeoxyglucose positron emission tomography with computed tomography in patients with primary mediastinal B-cell lymphoma: single institution experience and literature review.

    Science.gov (United States)

    Cheah, Chan Y; Hofman, Michael S; Seymour, John F; Ritchie, David S; Dickinson, Michael; Wirth, Andrew; Prince, H Miles; Wolf, Max; Januszcewicz, Elchanan H; Carney, Dennis A; Herbert, Kirsten E; Harrison, Simon J; Burbury, Kate L; Tam, Constantine S

    2015-01-01

    There are limited data regarding the role of (18)F-fluorodeoxyglucose positron emission tomography with computed tomography (FDG PET-CT) scanning in primary mediastinal B-cell lymphoma (PMBL). We analyzed 28 patients with PMBL treated with chemotherapy, of whom 25 (89%) also received rituximab and 17 (61%) radiotherapy. PET-CT scans were interpreted using visual analysis and a 5-point scale. After a median follow-up of 2.6 years, four patients relapsed and two died. The 2-year progression-free survival and overall survival were 86% and 94%. PET-CT has excellent negative predictive value (interim, 86-87%; end of treatment, 95%) but limited positive predictive value due to the high frequency of positive scans. Several patients with persistent metabolically active masses underwent biopsies, which showed necrosis but no lymphoma. Thus a negative PET-CT is an excellent predictor of subsequent outcome. However, residual metabolically active masses after treatment should be biopsied to confirm viable lymphoma prior to salvage therapy.

  7. Diffraction gauging

    International Nuclear Information System (INIS)

    Wilkens, P.H.

    1978-01-01

    This system of gauging is now being designed to fit on an Excello NC lathe to measure the form, accuracy, and size of external contoured surfaces as they approach the finish machined size. A template profile of the finished workpiece, but 0.003 in. bigger on radius, will be aligned with the workpiece using a reference diameter and face on the machining fixture to leave a gap between the profile of the template and workpiece. A helium--neon laser beam will be projected through this gap using a rotating retroreflector and a fixed laser. The resulting diffraction pattern produced by the laser beam passing through the template to workpiece gap will be reflected and focused on a fixed diode array via a second retroreflector which moves and remains in optical alignment with the first. These retroreflectors will be rotated about a center that will enable the laser beam, which is shaped in a long slit, to scan the template workpiece gap from the pole to the equator of the workpiece. The characteristic diffraction pattern will be detected by the fixed diode array, and the signal levels from this array will be processed in a mini-computer programmed to produce a best fit through the two minima of the diode signals. The separation of the two minima will yield the size of the workpiece to template gap and this information will be presented to the machine tool operator

  8. Photon diffraction

    Science.gov (United States)

    Hodge, John

    2009-11-01

    In current light models, a particle-like model of light is inconsistent with diffraction observations. A model of light is proposed wherein photon inferences are combined with the cosmological scalar potential model (SPM). That the photon is a surface with zero surface area in the travel direction is inferred from the Michelson-Morley experiment. That the photons in slits are mathematically treated as a linear antenna array (LAA) is inferred from the comparison of the transmission grating interference pattern and the single slit diffraction pattern. That photons induce a LAA wave into the plenum is inferred from the fractal model. Similarly, the component of the photon (the hod) is treated as a single antenna radiating a potential wave into the plenum. That photons are guided by action on the surface of the hod is inferred from the SPM. The plenum potential waves are a real field (not complex) that forms valleys, consistent with the pilot waves of the Bohm interpretation of quantum mechanics. Therefore, the Afshar experiment result is explained, supports Bohm, and falsifies Copenhagen. The papers may be viewed at http://web.citcom.net/˜scjh/.

  9. Comparison of periapical radiography and limited cone-beam tomography in posterior maxillary teeth referred for apical surgery.

    Science.gov (United States)

    Low, Kenneth M T; Dula, Karl; Bürgin, Walter; von Arx, Thomas

    2008-05-01

    This study compared periapical (PA) radiography and cone-beam tomography (CBT) for preoperative diagnosis in posterior maxillary teeth of consecutive patients referred for possible apical surgery. Images were concurrently analyzed by an oral radiologist and an endodontist to reach consensus in interpretation of the radiographic findings. The final material included 37 premolars and 37 molars with a total of 156 roots. CBT showed significantly more lesions (34%, p radiography. Detecting lesions with PA radiography alone was most difficult in second molars or in roots in close proximity to the maxillary sinus floor. Additional findings were seen significantly more frequently in CBT compared with PA radiography including expansion of lesions into the maxillary sinus (p < 0.001), sinus membrane thickening (p < 0.001), and missed canals (p < 0.05). The present study highlights the advantages of using CBT for preoperative treatment planning in maxillary posterior teeth with apical pathology.

  10. Assessment of CT numbers in limited and medium field-of-view scans taken using Accuitomo 170 and Veraviewepocs 3De cone-beam computed tomography scanners

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Matheus L. [Dept. of Oral Diagnosis, Piracicaba Dental School, State University of Campinas, Campinas (Brazil); Tosoni, Guilherme M. [Dept. of Oral Diagnosis and Surgery, Araraquara Dental School, Sao Paulo State University, Araraquara (Brazil); Lindsey, David H.; Mendoza, Kristopher; Tetradis, Sotirios; Mallya, Sanjay M. [Section of Oral and Maxillofacial Radiology, School of Dentistry, University of California, Los Angeles (United States)

    2014-12-15

    To assess the influence of anatomic location on the relationship between computed tomography (CT) number and X-ray attenuation in limited and medium field-of-view (FOV) scans. Tubes containing solutions with different concentrations of K2HPO4 were placed in the tooth sockets of a human head phantom. Cone-beam computed tomography (CBCT) scans were acquired, and CT numbers of the K{sub 2}HPO{sub 4} solutions were measured. The relationship between CT number and K{sub 2}HPO{sub 4} concentration was examined by linear regression analyses. Then, the variation in CT number according to anatomic location was examined. The relationship between K{sub 2}HPO{sub 4} concentration and CT number was strongly linear. The slopes of the linear regressions for the limited FOVs were almost 2-fold lower than those for the medium FOVs. The absolute CT number differed between imaging protocols and anatomic locations. There is a strong linear relationship between X-ray attenuation and CT number. The specific imaging protocol and anatomic location of the object strongly influence this relationship.

  11. LCD and CRT display of storage phosphor plate and limited cone beam computed tomography images for the evaluation of root canal fillings.

    Science.gov (United States)

    Baksi, B Güniz; Soğur, Elif; Gröndahl, Hans-Göran

    2009-03-01

    The aim was to compare quality of liquid crystal display (LCD) and high resolution cathode ray tube (CRT) screens for the evaluation of length and homogeneity of root canal fillings in storage phosphor plate (SPP) and limited cone beam computed tomography (LCBCT) images. Endodontic treatment was performed to 17 extracted permanent lower incisor teeth. Images of each tooth positioned in a dried mandible were obtained with Digora SPP and Accu-I-Tomo LCBCT systems. Six observers scored the quality of all images on CRT and LCD screens. Results were compared using McNemar's and Cochran's Q tests (p LCD displays (p > 0.05). Agreement among observers' scores was higher with CRT display. Within the limits of this ex vivo study, differences between LCD and CRT monitors for the evaluation of root canal fillings are clinically insignificant independent on whether conventional radiographs, captured by means of image plates, or cone beam images are being displayed.

  12. Dynamical theory of diffraction

    International Nuclear Information System (INIS)

    Dederichs, P.H.

    1978-01-01

    The paper is concerned with 1. the limits of the kinematical theory 2. basic equations for diffraction 3. Bloch waves 4. band structure and dispersion surfaces of free electrons 5. Weak potential: The two-beam case 6. a modification for X-ray scattering 7. absorption mechanisms and Bormann effect 8. k-selection and boundary conditions 9. the symmetrical laue case 10. the symmetrical Bragg case. (orig.) [de

  13. Remodeling of Autogenous Bone Grafts after Osteotome Sinus Floor Elevation Assessed by Limited Cone Beam Computed Tomography

    Directory of Open Access Journals (Sweden)

    Tetsuya Nishida

    2013-01-01

    Full Text Available This study assessed the radiographic appearance of bone graft domes longitudinally after osteotome sinus floor elevation using cone beam computed tomography (CBCT. This study presents the radiological findings of a 6-month follow-up CBCT study in maxillary osteotome sinus floor elevation. We examined 52 patients with a crestal bone height of less than 8 mm in the posterior maxilla who required sinus augmentation. Implants ( were subsequently placed in regenerated bone following osteotome sinus floor elevation; autogenous bone was used as the augmentation material. In all cases, the grafted augmentation material tended to be absorbed, but at least 1 mm of grafted augmentation material was recognized around the implant fixtures on CBCT at the second implant operation. The border between the grafted augmentation material and the existing bone was indistinct. The grafted area apical to the implants undergoes shrinkage and remodeling. It was suggested that sufficient grafted autogenous bone changes into bone to support an implant.

  14. Use of Micro-Computed Tomography for Dental Studies in Modern and Fossil Odontocetes: Potential Applications and Limitations

    Directory of Open Access Journals (Sweden)

    Carolina Loch

    2013-10-01

    Full Text Available Teeth are important elements in studies of modern and fossil Cetacea (whales, dolphins, providing information on feeding habits, estimations of age and phylogenetic relationships. The growth layer groups (GLGs recorded in dentine have demonstrated application for aging studies, but also have the potential to elucidate life history phenomena such as metabolic or physiologic events. Micro-Computed Tomography (Micro-CT is a non-invasive and non-destructive technique that allows 3-dimensional study of mineralized tissues, such as human teeth, and their physical properties. Teeth from extant dolphins (Cetacea: Odontoceti and some fossil odontocetes were scanned in a Skyscan 1172 Micro-CT desktop system. X-rays were generated at 100 kV and 100 µA for extant samples, and at 80kV and 124 µA for fossils. 0.5 mm thick aluminum and copper filters were used in the beam. Reconstructed images were informative for most extant species, showing a good resolution of the enamel layer, dentine and pulp cavity. Greyscale changes in the dentinal layers were not resolved enough to show GLGs. Visualization of the internal structure in fossil cetacean teeth depended on the degree of diagenetic alteration in the specimen; undifferentiated enamel and dentine regions probably reflect secondary mineralization. However, internal details were finely resolved for one fossil specimen, showing the enamel, internal layers of dentine and the pulp cavity. Micro-CT has been proven to be a useful tool for resolving the internal morphology of fossil and extant teeth of cetaceans before they are sectioned for other morphological analyses; however some methodological refinements are still necessary to allow better resolution of dentine for potential application in non-destructive age determination studies.

  15. Natural history of optical coherence tomography-detected non-flow-limiting edge dissections following drug-eluting stent implantation

    DEFF Research Database (Denmark)

    Radu, Maria D; Räber, Lorenz; Heo, Jungho

    2014-01-01

    history and clinical implications remain unclear. The objectives of the present study were to assess the morphology, healing response, and clinical outcomes of OCT-detected edge dissections using serial OCT imaging at baseline and at one year following drug-eluting stent (DES) implantation. METHODS......, and clinical outcomes were assessed. Sixty-three lesions (57 patients) were studied with OCT at baseline and one-year follow-up. Twenty-two non-flow-limiting edge dissections in 21 lesions (20 patients) were identified by OCT; only two (9%) were angiographically visible. Flaps were found in 96% of cases...

  16. On the link between the speckle free nature of optoacoustics and visibility of structures in limited-view tomography

    Directory of Open Access Journals (Sweden)

    Xosé Luís Deán-Ben

    2016-12-01

    Full Text Available Similar to pulse-echo ultrasound, optoacoustic imaging encodes the location of optical absorbers by the time-of-flight of ultrasound waves. Yet, signal generation mechanisms are fundamentally different for the two modalities, leading to significant distinction between the optimum image formation strategies. While interference of back-scattered ultrasound waves with random phases causes speckle noise in ultrasound images, speckle formation is hindered by the strong correlation between the optoacoustic responses corresponding to individual sources. However, visibility of structures is severely hampered when attempting to acquire optoacoustic images under limited-view tomographic geometries. In this tutorial article, we systematically describe the basic principles of optoacoustic signal generation and image formation for objects ranging from individual sub-resolution absorbers to a continuous absorption distribution. The results are of relevance for the proper interpretation of optoacoustic images acquired under limited-view scenarios and may also serve as a basis for optimal design of tomographic acquisition geometries and image formation strategies.

  17. Contribution to diffraction theory

    International Nuclear Information System (INIS)

    Chako, N.

    1966-11-01

    In a first part, we have given a general and detailed treatment of the modern theory of diffraction. The rigorous theory is formulated as a boundary value problem of the wave equation or Maxwell equations. However, up to the present time, such a program of treating diffraction by optical systems, even for simple optical instruments, has not been realized due to the complicated character of the boundary conditions. The recent developments show clearly the nature of the approximation of the classical theories originally due to Fresnel and Young, later formulated in a rigorous manner by Kirchhoff and Rubinowicz, respectively and, at the same time the insufficiency of these theories in explaining a number of diffraction phenomena. Furthermore, we have made a study of the limitations of the approximate theories and the recent attempts to improve these. The second part is devoted to a general mathematical treatment of the theory of diffraction of optical systems including aberrations. After a general and specific analysis of geometrical and wave aberrations along classical and modern (Nijboer) lines, we have been able to evaluate the diffraction integrals representing the image field at any point in image space explicitly, when the aberrations are small. Our formulas are the generalisations of all anterior results obtained by previous investigators. Moreover, we have discussed the Zernike-Nijboer theory of aberration and generalised it not only for rotational systems, but also for non-symmetric systems as well, including the case of non circular apertures. The extension to non-circular apertures is done by introducing orthogonal functions or polynomials over such aperture shapes. So far the results are valid for small aberrations, that is to say, where the deformation of the real wave front emerging from the optical system is less than a wave length of light or of the electromagnetic wave from the ideal wave front. If the aberrations are large, then one must employ the

  18. Detectability of chemically induced periapical lesions by limited cone beam computed tomography, intra-oral digital and conventional film radiography.

    Science.gov (United States)

    Sogur, E; Baksi, B G; Gröndahl, H-G; Lomcali, G; Sen, B H

    2009-10-01

    Our aim was to compare the Accu-I-Tomo (3DX), the Digora Optime image plate system and F-speed film in detecting chemically created apical lesions. Lesions were created by applying perchloric acid apical to extracted teeth in jaw specimens for 1, 1.5 or 2 h. After being repositioned, teeth were radiographed with Accu-I-Tomo limited cone beam CT (LCBCT), Digora Optime storage phosphor plates (SPP) and F-speed films. Six observers scored the presence of lesions using a five-grade scale. The accuracy of each observer and modality was assessed through receiver operating characteristic (ROC) analysis and A(z) values were compared using two-way ANOVA. Pairwise comparisons of imaging systems were carried out using the Mann-Whitney U-test. Differences in A(z) values were compared using Friedman and Dunn's tests. Kappa (kappa) was used to measure interobserver agreement. The A(z) values were larger for LCBCT than for SPP and film for all acid durations. For 1 h of acid duration a significant difference was found between LCBCT and film (P = 0.02) and between LCBCT and SPP (P = 0.0043), For 1.5 h a significant difference (P = 0.006) was found between LCBCT and SPP only. For 2 h acid duration, there was no significant difference between LCBCT and film or SPP (P>0.05). Between SPP and film no significant difference was found for any acid duration (P>0.05). kappa ranged between fair and moderate for LCBCT and between slight and fair for SPP and film. LCBCT images provided better than or similar detectability as film and SPP images of chemically created periapical lesions.

  19. A computer program for calculation of parameters necessary for the computation of reliable pair distribution functions of non-crystalline materials from limited diffraction data. II

    International Nuclear Information System (INIS)

    Hansen, F.Y.

    1978-01-01

    The pair distribution function of non-crystalline materials may be obtained by a Fourier transform of the structure factor as calculated in part I of this series. The structure factor is often limited in the sense that it shows significant oscillations at the maximal wave vector transfers obtainable. The Fourier transform of such functions, therefore, introduces truncation errors in the transformed function. With this program a parametrization of the small distance part of the pair distribution function is obtained according to a method described which enables one to eliminate truncation error from the final pair distribution function. It is based on a least squares fit calculation of the small distance part of the pair distribution function obtained by a direct transform of the experimental structure factor and a model pair distribution function obtained from a model structure factor truncated at the same wave vector transfers as the experimental factor. The storage requirement depends on the number of structure factor data and the number of peaks used to resolve the small distance part of the pair distribution function. In the present set-up storage requirement is set to 15083 words, which is estimated to be satisfactory for a large number of cases. (Auth.)

  20. Diffractive dissociation and new quarks

    International Nuclear Information System (INIS)

    White, A.R.

    1983-04-01

    We argue that the chiral limit of QCD can be identified with the strong (diffractive dissociation) coupling limit of reggeon field theory. Critical Pomeron scaling at high energy must then be directly related to an infra-red fixed-point of massless QCD and so requires a large number of flavors. This gives a direct argument that the emergence of diffraction-peak scaling, KNO scaling etc. at anti p-p colliders are evidence of a substantial quark structure still to be discovered

  1. Outcomes of microscope-integrated intraoperative optical coherence tomography-guided center-sparing internal limiting membrane peeling for myopic traction maculopathy: a novel technique.

    Science.gov (United States)

    Kumar, Atul; Ravani, Raghav; Mehta, Aditi; Simakurthy, Sriram; Dhull, Chirakshi

    2017-07-04

    To evaluate the outcomes of pars plana vitrectomy (PPV) with microscope-integrated intraoperative optical coherence tomography (I-OCT)-guided traction removal and center-sparing internal limiting membrane (cs-ILM) peeling. Nine eyes with myopic traction maculopathy as diagnosed on SD-OCT underwent PPV with I-OCT-guided cs-ILM peeling and were evaluated prospectively for resolution of central macular thickness (CMT) and improvement in best-corrected visual acuity (BCVA), and complications, if any, were noted. All patients were followed up for more than 9 months. Resolution of the macular retinoschisis was seen in all nine eyes on SD-OCT. At 36 weeks, there was a significant improvement in mean BCVA from the preoperative BCVA (P = 0.0089) along with a reduction in the CMT from 569.77 ± 263.19 to 166.0 ± 43.91 um (P = 0.0039). None of the eyes showed worsening of BCVA or development of full-thickness macular hole in the intraoperative or follow-up period. PPV with I-OCT-guided cs-ILM peeling helps in complete removal of traction, resolution of retinoschisis and good functional recovery with low intraoperative and postoperative complications.

  2. The diffractive achromat full spectrum computational imaging with diffractive optics

    KAUST Repository

    Peng, Yifan

    2016-07-11

    Diffractive optical elements (DOEs) have recently drawn great attention in computational imaging because they can drastically reduce the size and weight of imaging devices compared to their refractive counterparts. However, the inherent strong dispersion is a tremendous obstacle that limits the use of DOEs in full spectrum imaging, causing unacceptable loss of color fidelity in the images. In particular, metamerism introduces a data dependency in the image blur, which has been neglected in computational imaging methods so far. We introduce both a diffractive achromat based on computational optimization, as well as a corresponding algorithm for correction of residual aberrations. Using this approach, we demonstrate high fidelity color diffractive-only imaging over the full visible spectrum. In the optical design, the height profile of a diffractive lens is optimized to balance the focusing contributions of different wavelengths for a specific focal length. The spectral point spread functions (PSFs) become nearly identical to each other, creating approximately spectrally invariant blur kernels. This property guarantees good color preservation in the captured image and facilitates the correction of residual aberrations in our fast two-step deconvolution without additional color priors. We demonstrate our design of diffractive achromat on a 0.5mm ultrathin substrate by photolithography techniques. Experimental results show that our achromatic diffractive lens produces high color fidelity and better image quality in the full visible spectrum. © 2016 ACM.

  3. Comparison of periapical radiography and limited cone-beam computed tomography in mandibular molars for analysis of anatomical landmarks before apical surgery.

    Science.gov (United States)

    Bornstein, Michael M; Lauber, Roland; Sendi, Pedram; von Arx, Thomas

    2011-02-01

    The purpose of the present study was to evaluate the detectability and dimensions of periapical lesions, the relationship of the mandibular canal to the roots of the respective teeth, and the dimension of the buccal bone by using limited cone-beam computed tomography (CBCT) in comparison to conventional periapical (PA) radiographs for evaluation of mandibular molars before apical surgery. The study comprised 38 molars with 75 roots. The type of PA lesion as diagnosed on PA radiographs was compared with the type of lesion seen on sagittal and coronal CBCT sections. The distances of the apices of the first mandibular molars and basal border of the PA lesion to the coronal lining of the mandibular canal were assessed with PA radiographs and corresponding sagittal and coronal CBCT images. Furthermore, coronal CBCT images were used to measure the distance from the apices to the buccal bone surface and the corresponding width of the cortical bone plate. Of 58 detected PA lesions, 15 (25.9%) lesions diagnosed with sagittal CBCT slices were missed with PA radiography. The distance between the apices and the upper border of the mandibular canal was only measurable in 24 of 68 radiographs (35.3%) by using PA images. The cortical bone wall had a mean thickness of 1.7 mm, whereas the total buccal bone wall (cortical and spongious) measured 5.3 mm on average. The present study highlights the advantages of using limited CBCT for treatment planning in mandibular molars before apical surgery. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Initial limited three-level thin-section computed tomography scorings predict the prognosis of acute/subacute interstitial pneumonia in patients with dermatomyositis.

    Science.gov (United States)

    Kotani, Takuya; Takeuchi, Tohru; Yoshimatsu, Yuki; Ishida, Takaaki; Yamamoto, Naomune; Fujiki, Youhei; Oda, Katsuhiro; Isoda, Kentaro; Hata, Kenichiro; Kamimori, Takao; Fujiwara, Hiroshi; Makino, Shigeki; Hanafusa, Toshiaki

    2016-09-01

    We investigated the prediction of outcomes of patients with dermatomyositis with acute/subacute interstitial pneumonia (DM-A/SIP) on the basis of chest computed tomography (CT) images. In 20 patients with DM-A/SIP (13 survivors; seven deaths), the relationships between prognostic outcomes and chest high-resolution CT (HRCT) findings or limited three-level thin-section CT scoring on the first examination were retrospectively investigated. No significant difference was noted in chest HRCT findings between the survivor group and death group. The ground-glass opacity (GGO) scores of the right upper and middle lobes and left upper lobe, and the fibrosis score of the right middle lobe were significantly higher in the death group than in the survivor group (p = 0.01, 0.001, 0.02, and 0.02, respectively). The influence of the GGO score of the right middle lobe on death from IP was the strongest among the items examined, and it was independently significant (p = 0.01). A right middle lobe GGO score of ≥3 (GGO ≥ 25% of the lobe) was determined to be the best cut-off value for a poor prognosis (sensitivity: 85.7%, specificity: 85.7%), and the survival rate after 24 weeks was significantly lower in patients with a right middle lobe GGO score of ≥3 (survival rate: 0.0%) than in those with a score of< 3 (92.9%) (p < 0.0001). The prognosis of patients with DM-A/SIP was poor when the range of right middle lobe GGO was 25% or higher on limited three-level thin-section CT.

  5. Diffraction-limited IR Microspectroscopy with IRENI

    Science.gov (United States)

    J. Sedlmair; B. Illman; M. Unger; C. Hirschmugl

    2012-01-01

    In a unique way, IRENI (Infrared environmental Imaging), operated at the Synchrotron Radiation Center in Madison, combines IR spectroscopy and IR imaging, revealing the chemical morphology of a sample. Most storage ring based IR confocal microscopes have to overcome a trade-off between spatial resolution versus...

  6. Diffraction coherence in optics

    CERN Document Server

    Françon, M; Green, L L

    2013-01-01

    Diffraction: Coherence in Optics presents a detailed account of the course on Fraunhofer diffraction phenomena, studied at the Faculty of Science in Paris. The publication first elaborates on Huygens' principle and diffraction phenomena for a monochromatic point source and diffraction by an aperture of simple form. Discussions focus on diffraction at infinity and at a finite distance, simplified expressions for the field, calculation of the path difference, diffraction by a rectangular aperture, narrow slit, and circular aperture, and distribution of luminous flux in the airy spot. The book th

  7. Diffraction at a Straight Edge

    Indian Academy of Sciences (India)

    IAS Admin

    integral is a complex number which is a function of the lower limit. We have named it ... (b) Straight edge diffraction according to Young: In this figure, the plane wave from the source simply continues with ... discontinuity in the amplitude at the shadow, which exactly compensates for the discontinuity in the plane wavefront ...

  8. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... the limitations of CT Scanning of the Head? What is CT Scanning of the Head? Computed tomography, ... than regular radiographs (x-rays). top of page What are some common uses of the procedure? CT ...

  9. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... are the limitations of CT of the Sinuses? What is CT (Computed Tomography) of the Sinuses? Computed ... nasal cavity by small openings. top of page What are some common uses of the procedure? CT ...

  10. WE-H-206-01: Photoacoustic Tomography: Multiscale Imaging From Organelles to Patients by Ultrasonically Beating the Optical Diffusion Limit

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L. [Washington University (United States)

    2016-06-15

    Lihong V. Wang: Photoacoustic tomography (PAT), combining non-ionizing optical and ultrasonic waves via the photoacoustic effect, provides in vivo multiscale functional, metabolic, and molecular imaging. Broad applications include imaging of the breast, brain, skin, esophagus, colon, vascular system, and lymphatic system in humans or animals. Light offers rich contrast but does not penetrate biological tissue in straight paths as x-rays do. Consequently, high-resolution pure optical imaging (e.g., confocal microscopy, two-photon microscopy, and optical coherence tomography) is limited to penetration within the optical diffusion limit (∼1 mm in the skin). Ultrasonic imaging, on the contrary, provides fine spatial resolution but suffers from both poor contrast in early-stage tumors and strong speckle artifacts. In PAT, pulsed laser light penetrates tissue and generates a small but rapid temperature rise, which induces emission of ultrasonic waves due to thermoelastic expansion. The ultrasonic waves, orders of magnitude less scattering than optical waves, are then detected to form high-resolution images of optical absorption at depths up to 7 cm, conquering the optical diffusion limit. PAT is the only modality capable of imaging across the length scales of organelles, cells, tissues, and organs (up to whole-body small animals) with consistent contrast. This rapidly growing technology promises to enable multiscale biological research and accelerate translation from microscopic laboratory discoveries to macroscopic clinical practice. PAT may also hold the key to label-free early detection of cancer by in vivo quantification of hypermetabolism, the quintessential hallmark of malignancy. Learning Objectives: To understand the contrast mechanism of PAT To understand the multiscale applications of PAT Benjamin M. W. Tsui: Multi-modality molecular imaging instrumentation and techniques have been major developments in small animal imaging that has contributed significantly

  11. WE-H-206-01: Photoacoustic Tomography: Multiscale Imaging From Organelles to Patients by Ultrasonically Beating the Optical Diffusion Limit

    International Nuclear Information System (INIS)

    Wang, L.

    2016-01-01

    Lihong V. Wang: Photoacoustic tomography (PAT), combining non-ionizing optical and ultrasonic waves via the photoacoustic effect, provides in vivo multiscale functional, metabolic, and molecular imaging. Broad applications include imaging of the breast, brain, skin, esophagus, colon, vascular system, and lymphatic system in humans or animals. Light offers rich contrast but does not penetrate biological tissue in straight paths as x-rays do. Consequently, high-resolution pure optical imaging (e.g., confocal microscopy, two-photon microscopy, and optical coherence tomography) is limited to penetration within the optical diffusion limit (∼1 mm in the skin). Ultrasonic imaging, on the contrary, provides fine spatial resolution but suffers from both poor contrast in early-stage tumors and strong speckle artifacts. In PAT, pulsed laser light penetrates tissue and generates a small but rapid temperature rise, which induces emission of ultrasonic waves due to thermoelastic expansion. The ultrasonic waves, orders of magnitude less scattering than optical waves, are then detected to form high-resolution images of optical absorption at depths up to 7 cm, conquering the optical diffusion limit. PAT is the only modality capable of imaging across the length scales of organelles, cells, tissues, and organs (up to whole-body small animals) with consistent contrast. This rapidly growing technology promises to enable multiscale biological research and accelerate translation from microscopic laboratory discoveries to macroscopic clinical practice. PAT may also hold the key to label-free early detection of cancer by in vivo quantification of hypermetabolism, the quintessential hallmark of malignancy. Learning Objectives: To understand the contrast mechanism of PAT To understand the multiscale applications of PAT Benjamin M. W. Tsui: Multi-modality molecular imaging instrumentation and techniques have been major developments in small animal imaging that has contributed significantly

  12. An innovative technique for contrast enhancement of computed tomography images using normalized gamma-corrected contrast-limited adaptive histogram equalization

    Science.gov (United States)

    Al-Ameen, Zohair; Sulong, Ghazali; Rehman, Amjad; Al-Dhelaan, Abdullah; Saba, Tanzila; Al-Rodhaan, Mznah

    2015-12-01

    Image contrast is an essential visual feature that determines whether an image is of good quality. In computed tomography (CT), captured images tend to be low contrast, which is a prevalent artifact that reduces the image quality and hampers the process of extracting its useful information. A common tactic to process such artifact is by using histogram-based techniques. However, although these techniques may improve the contrast for different grayscale imaging applications, the results are mostly unacceptable for CT images due to the presentation of various faults, noise amplification, excess brightness, and imperfect contrast. Therefore, an ameliorated version of the contrast-limited adaptive histogram equalization (CLAHE) is introduced in this article to provide a good brightness with decent contrast for CT images. The novel modification to the aforesaid technique is done by adding an initial phase of a normalized gamma correction function that helps in adjusting the gamma of the processed image to avoid the common errors of the basic CLAHE of the excess brightness and imperfect contrast it produces. The newly developed technique is tested with synthetic and real-degraded low-contrast CT images, in which it highly contributed in producing better quality results. Moreover, a low intricacy technique for contrast enhancement is proposed, and its performance is also exhibited against various versions of histogram-based enhancement technique using three advanced image quality assessment metrics of Universal Image Quality Index (UIQI), Structural Similarity Index (SSIM), and Feature Similarity Index (FSIM). Finally, the proposed technique provided acceptable results with no visible artifacts and outperformed all the comparable techniques.

  13. Implications for high-precision dose radiation therapy planning or limited surgical resection after percutaneous computed tomography-guided lung nodule biopsy using a tract sealant

    Directory of Open Access Journals (Sweden)

    Patricia M. de Groot, MD

    2018-04-01

    Full Text Available Purpose: Precision radiation therapy such as stereotactic body radiation therapy and limited resection are being used more frequently to treat intrathoracic malignancies. Effective local control requires precise radiation target delineation or complete resection. Lung biopsy tracts (LBT on computed tomography (CT scans after the use of tract sealants can mimic malignant tract seeding (MTS and it is unclear whether these LBTs should be included in the calculated tumor volume or resected. This study evaluates the incidence, appearance, evolution, and malignant seeding of LBTs. Methods and materials: A total of 406 lung biopsies were performed in oncology patients using a tract sealant over 19 months. Of these patients, 326 had follow-up CT scans and were included in the study group. Four thoracic radiologists retrospectively analyzed the imaging, and a pathologist examined 10 resected LBTs. Results: A total of 234 of 326 biopsies (72%, including primary lung cancer [n = 98]; metastases [n = 81]; benign [n = 50]; and nondiagnostic [n = 5] showed an LBT on CT. LBTs were identified on imaging 0 to 3 months after biopsy. LBTs were typically straight or serpiginous with a thickness of 2 to 5 mm. Most LBTs were unchanged (92% or decreased (6.3% over time. An increase in LBT thickness/nodularity that was suspicious for MTS occurred in 4 of 234 biopsies (1.7%. MTS only occurred after biopsy of metastases from extrathoracic malignancies, and none occurred in patients with lung cancer. Conclusions: LBTs are common on CT after lung biopsy using a tract sealant. MTS is uncommon and only occurred in patients with extrathoracic malignancies. No MTS was found in patients with primary lung cancer. Accordingly, potential alteration in planned therapy should be considered only in patients with LBTs and extrathoracic malignancies being considered for stereotactic body radiation therapy or wedge resection.

  14. Phase behavior in diffraction

    International Nuclear Information System (INIS)

    Checon, A.

    1983-01-01

    Theoretical formulation of a straight edge diffraction shows a phase difference of π/2 between the incoming and diffracted waves. Experiments using two straight edges do not confirm the π/2 difference but suggest that the incoming wave is in phase with the wave diffracted into the shadowed region of the edge and out of phase by a factor of π with the wave diffracted into the illuminated region. (Author) [pt

  15. Neutron diffraction studies of amorphous solids

    International Nuclear Information System (INIS)

    Wright, A.C.

    1983-01-01

    A brief survey is presented of the role of neutron diffraction in structural studies of amorphous solids. The inherent limitations of the diffraction technique are discussed, together with modern instrumentation and methods for separating individual component correlation functions. An introduction is given to the use of modelling and the extraction of structural parameters from experimental data. (author)

  16. Computerized Tomography

    International Nuclear Information System (INIS)

    Mirell, S.G.

    1979-01-01

    The physical bases of computerized tomography are presented, the following items being discussed:attenuation of a photon beam by an absorbent material, reconstruction algorithms and detection systems. Image statistics is also presented. The emission computerized tomography is discussed. Clinical results of computerized tomography are presented. (M.A.) [pt

  17. Neutron powder diffraction

    International Nuclear Information System (INIS)

    David, W.I.F.

    1990-01-01

    Neutron powder diffraction is a powerful technique that provides a detailed description of moderately complex crystal structures. This is nowhere more apparent than in the area of high temperature superconductors where neutron powder diffraction has provided precise structural and magnetic information, not only under ambient conditions but also at high and low temperatures and high pressures. Outside superconductor research, the variety of materials studied by neutron powder diffraction is equally impressive including zeolites, fast ionic conductors, permanent magnets and materials undergoing phase transitions. Recent advances that include high resolution studies and real-time crystallography are presented. Future possibilities of neutron powder diffraction are discussed

  18. Texture investigation by neutron diffraction

    International Nuclear Information System (INIS)

    Feldmann, K.

    1987-01-01

    In the conventional angle dispersive neutron diffraction a monochromatic neutron beam is used. The pole figures under investigation have to be scanned one after another. The commonly applied angle dispersive method is limited to the consideration of Bragg reflection being isolated in the diffraction pattern. The application of multidetectors or position sensitive detectors is discussed. In the neutron time-of-flight (TOF) diffraction a white pulsed neutron beam allows one to satisfy the Bragg law for all lattice spacing at a fixed scattering angle. The main charateristics of the TOF diffraction experiment are shortly outlined. In this method all non-forbidden Bragg reflections are recorded in one pattern simultaneously. The TOF technique is well-suited to study low symmetric or multiphased specimens, especially geological materials, requiring a large number of pole figures for mathematical texture analysis. Multidetector systems can be used to shorten the necessary time for experiments. The registration of all Bragg reflections of fixed scattering geometry is equivalent to the information of the inverse pole figure for the corresponding sample position. Having short exposition times this approach can be applied for in-situ investigations. The magnetic moments of neutrons can be used to study magnetic anisotropies in materials. Two different techniques are discussed

  19. Deuteron diffractive dissociation

    International Nuclear Information System (INIS)

    Antunes, A.C.B.; Caruso, F.

    1984-01-01

    Deuteron diffractive dissociation is studied in the framework of the Three Components Deck Model. The applicability of this model to light nuclei diffractive dissociation is assumed. The existence of a slope-mass-cos theta correlation is pointed out. The relevant distributions are obtained. (Author) [pt

  20. Laser-Assisted Atom Probe Tomography of Deformed Minerals: A Zircon Case Study.

    Science.gov (United States)

    La Fontaine, Alexandre; Piazolo, Sandra; Trimby, Patrick; Yang, Limei; Cairney, Julie M

    2017-04-01

    The application of atom probe tomography to the study of minerals is a rapidly growing area. Picosecond-pulsed, ultraviolet laser (UV-355 nm) assisted atom probe tomography has been used to analyze trace element mobility within dislocations and low-angle boundaries in plastically deformed specimens of the nonconductive mineral zircon (ZrSiO4), a key material to date the earth's geological events. Here we discuss important experimental aspects inherent in the atom probe tomography investigation of this important mineral, providing insights into the challenges in atom probe tomography characterization of minerals as a whole. We studied the influence of atom probe tomography analysis parameters on features of the mass spectra, such as the thermal tail, as well as the overall data quality. Three zircon samples with different uranium and lead content were analyzed, and particular attention was paid to ion identification in the mass spectra and detection limits of the key trace elements, lead and uranium. We also discuss the correlative use of electron backscattered diffraction in a scanning electron microscope to map the deformation in the zircon grains, and the combined use of transmission Kikuchi diffraction and focused ion beam sample preparation to assist preparation of the final atom probe tip.

  1. X-ray diffraction microtomography using synchrotron radiation

    CERN Document Server

    Barroso, R C; Jesus, E F O; Oliveira, L F

    2001-01-01

    The X-ray diffraction computed tomography technique is based on the interference phenomena of the coherent scatter. For low-momentum transfer, it is most probable that the scattering interaction will be coherent. A selective discrimination of a given element in a scanned specimen can be realized by fixing the Bragg angle which produces an interference peak and then, to carry out the computed tomography in the standard mode. The image reconstructed exalts the presence of this element with respect to other ones in a sample. This work reports the feasibility of a non-destructive synchrotron radiation X-ray diffraction imaging technique. This research was performed at the X-ray Diffraction beam line of the National Synchrotron Light Laboratory (LNLS) in Brazil. The coherent scattering properties of different tissue and bone substitute materials were evaluated. Furthermore, diffraction patterns of some polycrystalline solids were studied due to industrial and environmental human exposure to these metals. The obtai...

  2. Parametric Powder Diffraction

    Science.gov (United States)

    David, William I. F.; Evans, John S. O.

    The rapidity with which powder diffraction data may be collected, not only at neutron and X-ray synchrotron facilities but also in the laboratory, means that the collection of a single diffraction pattern is now the exception rather than the rule. Many experiments involve the collection of hundreds and perhaps many thousands of datasets where a parameter such as temperature or pressure is varied or where time is the variable and life-cycle, synthesis or decomposition processes are monitored or three-dimensional space is scanned and the three-dimensional internal structure of an object is elucidated. In this paper, the origins of parametric diffraction are discussed and the techniques and challenges of parametric powder diffraction analysis are presented. The first parametric measurements were performed around 50 years ago with the development of a modified Guinier camera but it was the automation afforded by neutron diffraction combined with increases in computer speed and memory that established parametric diffraction on a strong footing initially at the ILL, Grenoble in France. The theoretical parameterisation of quantities such as lattice constants and atomic displacement parameters will be discussed and selected examples of parametric diffraction over the past 20 years will be reviewed that highlight the power of the technique.

  3. Informationally incomplete quantum tomography

    Science.gov (United States)

    Teo, Yong Siah; Řeháček, Jaroslav; Hradil, Zdenĕk

    2013-11-01

    In quantum-state tomography on sources with quantum degrees of freedom of large Hilbert spaces, inference of quantum states of light for instance, a complete characterization of the quantum states for these sources is often not feasible owing to limited resources. As such, the concepts of informationally incomplete state estimation becomes important. These concepts are ideal for applications to quantum channel/ process tomography, which typically requires a much larger number of measurement settings for a full characterization of a quantum channel. Some key aspects of both quantumstate and quantum-process tomography are arranged together in the form of a tutorial review article that is catered to students and researchers who are new to the field of quantum tomography, with focus on maximum-likelihood related techniques as instructive examples to illustrate these ideas.

  4. Mathematical Methods in Tomography

    CERN Document Server

    Louis, Alfred; Natterer, Frank

    1991-01-01

    The conference was devoted to the discussion of present and future techniques in medical imaging, including 3D x-ray CT, ultrasound and diffraction tomography, and biomagnetic ima- ging. The mathematical models, their theoretical aspects and the development of algorithms were treated. The proceedings contains surveys on reconstruction in inverse obstacle scat- tering, inversion in 3D, and constrained least squares pro- blems.Research papers include besides the mentioned imaging techniques presentations on image reconstruction in Hilbert spaces, singular value decompositions, 3D cone beam recon- struction, diffuse tomography, regularization of ill-posed problems, evaluation reconstruction algorithms and applica- tions in non-medical fields. Contents: Theoretical Aspects: J.Boman: Helgason' s support theorem for Radon transforms-a newproof and a generalization -P.Maass: Singular value de- compositions for Radon transforms- W.R.Madych: Image recon- struction in Hilbert space -R.G.Mukhometov: A problem of in- teg...

  5. Non-diffractive waves

    CERN Document Server

    Hernandez-Figueroa, Hugo E; Recami, Erasmo

    2013-01-01

    This continuation and extension of the successful book ""Localized Waves"" by the same editors brings together leading researchers in non-diffractive waves to cover the most important results in their field and as such is the first to present the current state.The well-balanced presentation of theory and experiments guides readers through the background of different types of non-diffractive waves, their generation, propagation, and possible applications. The authors include a historical account of the development of the field, and cover different types of non-diffractive waves, including Airy

  6. Diffraction. Powder, amorphous, liquid

    International Nuclear Information System (INIS)

    Sosnowska, I.M.

    1999-01-01

    Neutron powder diffraction is a unique tool to observe all possible diffraction effects appearing in crystal. High-resolution neutron diffractometers have to be used in this study. Analysis of the magnetic structure of polycrystalline materials requires the use of high-resolution neutron diffraction in the range of large interplanar distances. As distinguished from the double axis diffractometers (DAS), which show high resolution only at small interplanar distances, TOF (time-of-flight) diffractometry offers the best resolution at large interplanar distances. (K.A.)

  7. Coherent laser scanning diffraction microscopy

    International Nuclear Information System (INIS)

    Dierolf, Martin; Thibault, Pierre; Kewish, Cameron M; Menzel, Andreas; Bunk, Oliver; Pfeiffer, Franz

    2009-01-01

    Coherent diffractive imaging (CDI) is a promising approach to high-resolution x-ray microscopy. While CDI typically has a rather limited field of view, this problem can be solved by ptychography, a technique for which an extended object is raster scanned by a compact coherent illumination probe. Significant overlap of illumination for adjacent scan points allows then a self-consistent reconstruction from the entirety of collected coherent diffraction patterns. However, current reconstruction schemes require accurate a priori knowledge of the probe. Our recently developed new algorithm for ptychographic data sets allows us to simultaneously reconstruct both object and illuminating probe. We demonstrate the application of the new method in a test experiment with visible laser light showing that intricate illumination functions can be retrieved reliably.

  8. Computed Tomography

    Science.gov (United States)

    Castellano, Isabel; Geleijns, Jacob

    After its clinical introduction in 1973, computed tomography developed from an x-ray modality for axial imaging in neuroradiology into a versatile three dimensional imaging modality for a wide range of applications in for example oncology, vascular radiology, cardiology, traumatology and even in interventional radiology. Computed tomography is applied for diagnosis, follow-up studies and screening of healthy subpopulations with specific risk factors. This chapter provides a general introduction in computed tomography, covering a short history of computed tomography, technology, image quality, dosimetry, room shielding, quality control and quality criteria.

  9. Direct tomography with chemical-bond contrast.

    Science.gov (United States)

    Huotari, Simo; Pylkkänen, Tuomas; Verbeni, Roberto; Monaco, Giulio; Hämäläinen, Keijo

    2011-05-29

    Three-dimensional (3D) X-ray imaging methods have advanced tremendously during recent years. Traditional tomography uses absorption as the contrast mechanism, but for many purposes its sensitivity is limited. The introduction of diffraction, small-angle scattering, refraction, and phase contrasts has increased the sensitivity, especially in materials composed of light elements (for example, carbon and oxygen). X-ray spectroscopy, in principle, offers information on element composition and chemical environment. However, its application in 3D imaging over macroscopic length scales has not been possible for light elements. Here we introduce a new hard-X-ray spectroscopic tomography with a unique sensitivity to light elements. In this method, dark-field section images are obtained directly without any reconstruction algorithms. We apply the method to acquire the 3D structure and map the chemical bonding in selected samples relevant to materials science. The novel aspects make this technique a powerful new imaging tool, with an inherent access to the molecular-level chemical environment. © 2011 Macmillan Publishers Limited. All rights reserved

  10. Structure determination from powder diffraction data.

    Science.gov (United States)

    David, W I F; Shankland, K

    2008-01-01

    Advances made over the past decade in structure determination from powder diffraction data are reviewed with particular emphasis on algorithmic developments and the successes and limitations of the technique. While global optimization methods have been successful in the solution of molecular crystal structures, new methods are required to make the solution of inorganic crystal structures more routine. The use of complementary techniques such as NMR to assist structure solution is discussed and the potential for the combined use of X-ray and neutron diffraction data for structure verification is explored. Structures that have proved difficult to solve from powder diffraction data are reviewed and the limitations of structure determination from powder diffraction data are discussed. Furthermore, the prospects of solving small protein crystal structures over the next decade are assessed.

  11. Diffraction at TOTEM

    CERN Document Server

    Giani, S; Antchev, G; Aspell, P; Avati, V; Bagliesi, M G; Berardi, V; Berretti, M; Besta, M; Bozzo, M; Brücken, E; Buzzo, A; Cafagna, F; Calicchio, M; Catanesi, M G; Cecchi, R; Ciocci, M A; Dadel, P; Deile, M; Dimovasili, E; Eggert, K; Eremin, V; Ferro, F; Fiergolski, A; García, F; Greco, V; Grzanka, L; Heino, J; Hildén, T; Kaspar, J; Kopal, J; Kundrát, V; Kurvinen, K; Lami, S; Latino, G; Lauhakangas, R; Leszko, R; Lippmaa, E; Lokajícek, M; Lo Vetere, M; Lucas Rodriguez, F; Macrí, M; Magazzù, G; Meucci, M; Minutoli, S; Notarnicola, G; Oliveri, E; Oljemark, F; Orava, R; Oriunno, M; Österberg, K; Pedreschi, E; Petäjäjärvi, J; Prochazka, J; Quinto, M; Radermacher, E; Radicioni, E; Ravotti, F; Rella, G; Robutti, E; Ropelewski, L; Rostkowski, M; Ruggiero, G; Rummel, A; Saarikko, H; Sanguinetti, G; Santroni, A; Scribano, A; Sette, G; Snoeys, W; Spinella, F; Ster, A; Taylor, C; Trummal, A; Turini, N; Whitmore, J; Wu, J; Zalewski, M

    2010-01-01

    The primary objective of the TOTEM experiment at the LHC is the measurement of the total proton-proton cross section with the luminosity-independent method and the study of elastic proton-proton cross-section over a wide |t|-range. In addition TOTEM also performs a comprehensive study of diffraction, spanning from cross-section measurements of individual diffractive processes to the analysis of their event topologies. Hard diffraction will be studied in collaboration with CMS taking advantage of the large common rapidity coverage for charged and neutral particle detection and the large variety of trigger possibilities even at large luminosities. TOTEM will take data under all LHC beam conditions including standard high luminosity runs to maximise its physics reach. This contribution describes the main features of the TOTEM diffractive physics programme including measurements to be made in the early LHC runs.

  12. Diffraction at TOTEM

    CERN Document Server

    Antchev, G.; Avati, V.; Bagliesi, M.G.; Berardi, V.; Berretti, M.; Bottigli, U.; Bozzo, M.; Brucken, E.; Buzzo, A.; Cafagna, F.; Calicchio, M.; Catanesi, M.G.; Catastini, P.L.; Cecchi, R.; Ciocci, M.A.; Deile, M.; Dimovasili, E.; Eggert, K.; Eremin, V.; Ferro, F.; Garcia, F.; Giani, S.; Greco, V.; Heino, J.; Hilden, T.; Kaspar, J.; Kopal, J.; Kundrat, V.; Kurvinen, K.; Lami, S.; Latino, G.; Lauhakangas, R.; Lippmaa, E.; Lokajicek, M.; Lo Vetere, M.; Lucas Rodriguez, F.; Macri, M.; Magazzu, G.; Meucci, M.; Minutoli, S.; Niewiadomski, H.; Noschis, E.; Notarnicola, G.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Osterberg, K.; Palazzi, P.; Pedreschi, E.; Petajajarvi, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Rella, G.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Rummel, A.; Saarikko, H.; Sanguinetti, G.; Santroni, A.; Scribano, A.; Sette, G.; Snoeys, W.; Spinella, F.; Squillacioti, P.; Ster, A.; Taylor, C.; Trummal, A.; Turini, N.; Whitmore, J.; Wu, J.

    2009-01-01

    The TOTEM experiment at the LHC measures the total proton-proton cross section with the luminosity-independent method and the elastic proton-proton cross-section over a wide |t|-range. It also performs a comprehensive study of diffraction, spanning from cross-section measurements of individual diffractive processes to the analysis of their event topologies. Hard diffraction will be studied in collaboration with CMS taking advantage of the large common rapidity coverage for charged and neutral particle detection and the large variety of trigger possibilities even at large luminosities. TOTEM will take data under all LHC beam conditions including standard high luminosity runs to maximize its physics reach. This contribution describes the main features of the TOTEM physics programme including measurements to be made in the early LHC runs. In addition, a novel scheme to extend the diffractive proton acceptance for high luminosity runs by installing proton detectors at IP3 is described.

  13. X-ray diffraction 2 - diffraction principles

    International Nuclear Information System (INIS)

    O'Connor, B.

    1999-01-01

    Full text: The computation of powder diffraction intensities is based on the principle that the powder pattern comprises the summation of the intensity contributions from each of the crystallites (or single crystals) in the material. Therefore, it is of value for powder diffractionists to appreciate the form of the expression for calculating single crystal diffraction pattern intensities. This knowledge is especially important for Rietveld analysis practitioners in terms of the (i) mathematics of the method and (ii) retrieving single crystal structure data from the literature. We consider the integrated intensity from a small single crystal being rotated at velocity ω through the Bragg angle θ for reflection (hkl).... I(hkl) = [l o /ω]. [e 4 /m 2 c 4 ]. [λ 3 δV F(hkl) 2 /υ 2 ].[(1+cos 2 2θ)/2sin2θ] where e, m and c are the usual fundamental constants; λ is the x-ray wavelength, δV is the crystallite volume; F(hkl) is the structure factor; υ is the unit cell volume; and (1+cos 2 θ)/2sin2θ] is the Lorentz-polarisation factor for an unpolarised incident beam. The expression does not include a contribution for extinction. The influence of factors λ, δV, F(hkl) and υ on the intensities should be appreciated by powder diffractionists, especially the structure factor, F(hkl), which is responsible for the fingerprint nature of diffraction patterns, such as the rise and fall of intensity from peak to peak. The structure factor expression represents the summation of the scattered waves from each of the j scattering centres (i e atoms) in the unit cell: F(hkl) Σ f j exp[2πi (h.x j +k.y i +l. z i )] T j . Symbol f is the scattering factor (representing the atom-type scattering efficiency); (x, y, z) are the fractional position coordinates of atom j within the unit cell; and T is the thermal vibration factor for the atom given by: T j = 8π 2 2 > sin 2 θ/λ 2 with 2 > being the mean-square vibration amplitude of the atom (assumed to be isotropic). The

  14. Texture and neutron diffraction

    International Nuclear Information System (INIS)

    Szpunar, J.

    1976-01-01

    The neutron diffraction method has only recently become a tool for studying the structure of polycrystalline materials. There are some fields such as texture studies where this method offers several advantages over other more common methods. Texture is the main subject of the review. The current status of the theory or deformation and recrystallization texture is discussed briefly. Texture is then described with the aid of the ODF function. Finally, applications of the neutron diffraction method are discussed using several examples of textures measured in metals and in non-metallic materials. Other, less known applications of neutron diffraction are also given, e.g. in stress measurements. The neutron diffraction method is extremely useful for studying the texture of coarse-grained materials. This method provides information on the average texture in a large volume. This enables one to measure texture in the same specimen in which anisotropy of the physical roperties has been measured. Selected examples are provided in which correlations between elastic, plastic and magnetic properties of polycrystalline materials and their texture are pointed out. Texture was measured in all these cases using the neutron diffraction method. (author)

  15. Diffraction contrast imaging using virtual apertures

    International Nuclear Information System (INIS)

    Gammer, Christoph; Burak Ozdol, V.; Liebscher, Christian H.; Minor, Andrew M.

    2015-01-01

    Two methods on how to obtain the full diffraction information from a sample region and the associated reconstruction of images or diffraction patterns using virtual apertures are demonstrated. In a STEM-based approach, diffraction patterns are recorded for each beam position using a small probe convergence angle. Similarly, a tilt series of TEM dark-field images is acquired. The resulting datasets allow the reconstruction of either electron diffraction patterns, or bright-, dark- or annular dark-field images using virtual apertures. The experimental procedures of both methods are presented in the paper and are applied to a precipitation strengthened and creep deformed ferritic alloy with a complex microstructure. The reconstructed virtual images are compared with conventional TEM images. The major advantage is that arbitrarily shaped virtual apertures generated with image processing software can be designed without facing any physical limitations. In addition, any virtual detector that is specifically designed according to the underlying crystal structure can be created to optimize image contrast. - Highlights: • A dataset containing all structural information of a given position is recorded. • The dataset allows reconstruction of virtual diffraction patterns or images. • Specific virtual apertures are designed to image precipitates in a complex alloy. • Virtual diffraction patterns from arbitrarily small regions can be established. • Using STEM diffraction to record the dataset is more efficient than TEM dark-field

  16. Diffraction. Single crystal, magnetic

    International Nuclear Information System (INIS)

    Heger, G.

    1999-01-01

    The analysis of crystal structure and magnetic ordering is usually based on diffraction phenomena caused by the interaction of matter with X-rays, neutrons, or electrons. Complementary information is achieved due to the different character of X-rays, neutrons and electrons, and hence their different interactions with matter and further practical aspects. X-ray diffraction using conventional laboratory equipment and/or synchrotron installations is the most important method for structure analyses. The purpose of this paper is to discuss special cases, for which, in addition to this indispensable part, neutrons are required to solve structural problems. Even though the huge intensity of modern synchrotron sources allows in principle the study of magnetic X-ray scattering the investigation of magnetic structures is still one of the most important applications of neutron diffraction. (K.A.)

  17. Dynamics from diffraction

    International Nuclear Information System (INIS)

    Goodwin, Andrew L.; Tucker, Matthew G.; Cope, Elizabeth R.; Dove, Martin T.; Keen, David A.

    2006-01-01

    We explore the possibility that detailed dynamical information might be extracted from powder diffraction data. Our focus is a recently reported technique that employs statistical analysis of atomistic configurations to calculate dynamical properties from neutron total scattering data. We show that it is possible to access the phonon dispersion of low-frequency modes using such an approach, without constraining the results in terms of some pre-defined dynamical model. The high-frequency regions of the phonon spectrum are found to be less well preserved in the diffraction data

  18. Children's (Pediatric) CT (Computed Tomography)

    Medline Plus

    Full Text Available ... risks? What are the limitations of Children's CT? What is Children's CT? Computed tomography, more commonly known ... newborns, infants and older children. top of page What are some common uses of the procedure? CT ...

  19. FIB-SEM cathodoluminescence tomography: practical and theoretical considerations.

    Science.gov (United States)

    De Winter, D A M; Lebbink, M N; Wiggers De Vries, D F; Post, J A; Drury, M R

    2011-09-01

    Focused ion beam-scanning electron microscope (FIB-SEM) tomography is a powerful application in obtaining three-dimensional (3D) information. The FIB creates a cross section and subsequently removes thin slices. The SEM takes images using secondary or backscattered electrons, or maps every slice using X-rays and/or electron backscatter diffraction patterns. The objective of this study is to assess the possibilities of combining FIB-SEM tomography with cathodoluminescence (CL) imaging. The intensity of CL emission is related to variations in defect or impurity concentrations. A potential problem with FIB-SEM CL tomography is that ion milling may change the defect state of the material and the CL emission. In addition the conventional tilted sample geometry used in FIB-SEM tomography is not compatible with conventional CL detectors. Here we examine the influence of the FIB on CL emission in natural diamond and the feasibility of FIB-SEM CL tomography. A systematic investigation establishes that the ion beam influences CL emission of diamond, with a dependency on both the ion beam and electron beam acceleration voltage. CL emission in natural diamond is enhanced particularly at low ion beam and electron beam voltages. This enhancement of the CL emission can be partly explained by an increase in surface defects induced by ion milling. CL emission enhancement could be used to improve the CL image quality. To conduct FIB-SEM CL tomography, a recently developed novel specimen geometry is adopted to enable sequential ion milling and CL imaging on an untilted sample. We show that CL imaging can be manually combined with FIB-SEM tomography with a modified protocol for 3D microstructure reconstruction. In principle, automated FIB-SEM CL tomography should be feasible, provided that dedicated CL detectors are developed that allow subsequent milling and CL imaging without manual intervention, as the current CL detector needs to be manually retracted before a slice can be milled

  20. Diffractive processes in nuclear physics

    International Nuclear Information System (INIS)

    Frahn, W.E.

    1985-01-01

    The book reviews diffraction scattering in nuclear physics. The first part concerns nuclear diffraction models, and includes the basic concepts and theory of diffraction scattering, as well as diffraction in configuration space and in angular momentum space. The second part deals with closed formalism for strong absorption processes including: elastic scattering, inelastic scattering, transfer reactions and coupled-channel extensions. (U.K.)

  1. Quantitative cardiac computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Thelen, M.; Dueber, C.; Wolff, P.; Erbel, R.; Hoffmann, T.

    1985-06-01

    The scope and limitations of quantitative cardiac CT have been evaluated in a series of experimental and clinical studies. The left ventricular muscle mass was estimated by computed tomography in 19 dogs (using volumetric methods, measurements in two axes and planes and reference volume). There was good correlation with anatomical findings. The enddiastolic volume of the left ventricle was estimated in 22 patients with cardiomyopathies; using angiography as a reference, CT led to systematic under-estimation. It is also shown that ECG-triggered magnetic resonance tomography results in improved visualisation and may be expected to improve measurements of cardiac morphology.

  2. Diffraction at collider energies

    International Nuclear Information System (INIS)

    Frankfurt, L.L.

    1992-01-01

    Lessons with ''soft'' hadron physics to explain (a) feasibility to observe and to investigate color transparency, color opacity effects at colliders; (b) significant probability and specific features of hard diffractive processes; (c) feasibility to investigate components of parton wave functions of hadrons with minimal number of constituents. This new physics would be more important with increase of collision energy

  3. Diffraction through partial identity

    International Nuclear Information System (INIS)

    Blum, W.

    1981-06-01

    A model of diffraction dissociation is proposed in which the quantum-mechanical interference between the incoming and the outgoing wave determines the cross-section. This interference occurs due to the finite life-time of the excited state. (orig.)

  4. Encapsulation process for diffraction gratings.

    Science.gov (United States)

    Ratzsch, Stephan; Kley, Ernst-Bernhard; Tünnermann, Andreas; Szeghalmi, Adriana

    2015-07-13

    Encapsulation of grating structures facilitates an improvement of the optical functionality and/or adds mechanical stability to the fragile structure. Here, we introduce novel encapsulation process of nanoscale patterns based on atomic layer deposition and micro structuring. The overall size of the encapsulated structured surface area is only restricted by the size of the available microstructuring and coating devices; thus, overcoming inherent limitations of existing bonding processes concerning cleanliness, roughness, and curvature of the components. Finally, the process is demonstrated for a transmission grating. The encapsulated grating has 97.5% transmission efficiency in the -1st diffraction order for TM-polarized light, and is being limited by the experimental grating parameters as confirmed by rigorous coupled wave analysis.

  5. The limitations of tissue-oxygen measurement and positron emission tomography as additional methods for postoperative breast reconstruction free-flap monitoring.

    Science.gov (United States)

    Schrey, Aleksi; Niemi, Tarja; Kinnunen, Ilpo; Minn, Heikki; Vahlberg, Tero; Kalliokoski, Kari; Suominen, Erkki; Grénman, Reidar; Aitasalo, Kalle

    2010-02-01

    Twelve patients who underwent breast reconstruction with a microvascular flap were monitored postoperatively with continuous partial tissue oxygenation (p(ti)O(2)) measurement. The regional blood flow (BF) of the entire flap was evaluated with positron emission tomography (PET) using oxygen-15-labelled water on the first postoperative (POP) morning to achieve data of the perfusion of the entire flap. A re-exploration was carried out if the p(ti)O(2) value remained lower than 15 mmHg for over 30 min. The mean p(ti)O(2) value of the flaps was 52.9+/-5.5 mmHg, whereas the mean BF values were 3.3+/-1.0 ml per 100 g min(-1). One false-positive result was detected by p(ti)O(2) measurement, resulting in an unnecessary re-exploration. Another re-operation suggested by the low p(ti)O(2) results was avoided due to the normal BF results assessed with PET. Totally, three flaps were re-explored. This prospective study suggests that continuous tissue-oxygen measurement with a polarographic needle probe is reliable for monitoring free breast flaps from one part of the flap, but assessing perfusion of the entire flap requires more complex monitoring methods, for example, PET. Clinical examination by experienced personnel remains important in free-breast-flap monitoring. PET could be useful in assessing free-flap perfusion in selected high-risk patients as an alternative to a re-operation when clinical examination and evaluation by other means are unreliable or present controversial results. 2008 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. Central Diffraction at ALICE

    CERN Document Server

    Lämsä, Jerry W

    2011-01-01

    The ALICE experiment is shown to be well suited for studies of exclusive final states from central diffractive reactions. The gluon-rich environment of the central system allows detailed QCD studies and searches for exotic meson states, such as glueballs, hybrids and new charmonium-like states. It would also provide a good testing ground for detailed studies of heavy quarkonia. Due to its central barrel performance, ALICE can accurately measure the low-mass central systems with good purity. The efficiency of the Forward Multiplicity Detector (FMD) and the Forward Shower Counter (FSC) system for detecting rapidity gaps is shown to be adequate for the proposed studies. With this detector arrangement, valuable new data can be obtained by tagging central diffractive processes.

  7. Diffraction Studies of Multiferroics

    Science.gov (United States)

    Johnson, Roger D.; Radaelli, Paolo G.

    2014-07-01

    In multiferroics, magnetism is coupled to ferroelectricity so that the configuration of magnetic moments may be modified by an external electric field and, conversely, the electrically polar state may be magnetically switched. Such functionality has the potential for new technology such as energy-efficient, electrically written magnetic memories. Furthermore, multiferroics are of interest in fundamental research into quantum matter. Understanding the interplay between magnetism and ferroelectricity has posed a significant challenge to the scientific community. State-of-the-art diffraction experiments have played a unique role, as they are sensitive to both magnetic ordering and the atomic displacements associated with ferroelectricity. Exceptional insights have been gained from neutron polarimetry techniques complemented by X-ray magnetic scattering experiments, which, for the first time, have been applied to a large selection of related materials and problems. In this review, we discuss a broad selection of multiferroics and the diffraction experiments used to explain their phenomenology.

  8. X-ray diffraction

    International Nuclear Information System (INIS)

    Einstein, J.R.; Wei, C.H.

    1982-01-01

    We have been interested in structural elucidation by x-ray diffraction of compounds of biological interest. Understanding exactly how atoms are arranged in three-dimensional arrays as molecules can help explain the relationship between structure and functions. The species investigated may vary in size and shape; our recent studies included such diverse substances as antischistosomal drugs, a complex of cadmium with nucleic acid base, nitrate salts of adenine, and proteins

  9. Conical diffraction in honeycomb lattices

    International Nuclear Information System (INIS)

    Ablowitz, Mark J.; Nixon, Sean D.; Zhu Yi

    2009-01-01

    Conical diffraction in honeycomb lattices is analyzed. This phenomenon arises in nonlinear Schroedinger equations with honeycomb lattice potentials. In the tight-binding approximation the wave envelope is governed by a nonlinear classical Dirac equation. Numerical simulations show that the Dirac equation and the lattice equation have the same conical diffraction properties. Similar conical diffraction occurs in both the linear and nonlinear regimes. The Dirac system reveals the underlying mechanism for the existence of conical diffraction in honeycomb lattices.

  10. Diffractive X-Ray Telescopes

    International Nuclear Information System (INIS)

    Skinner, G.K.; Skinner, G.K

    2010-01-01

    Diffractive X-ray telescopes using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution several orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro arc seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the supermassive black holes in the center of active galaxies What then is precluding their immediate adoption Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed atmospheric absorption

  11. Strain measurement by diffraction at LANSCE

    Science.gov (United States)

    Bourke, M. A. M.; Goldstone, J. A.; Robinson, R. A.

    1994-07-01

    Residual strains affect the structural integrity of components during both fabrication and service and consequently industrial manufacturers routinely invest considerable effort in their characterization and control. Neutron diffraction has proved to be a unique technique for non-destructive strain measurement within crystalline solids. The technique is achieving recognition but is limited by lack of beam time and compromises involved in using instruments designed for powder diffraction. This paper summarizes its importance, lists the capabilities of the Los Alamos (pulsed) neutron scattering center (LANSCE) and briefly describes a concept for a dedicated instrument.

  12. Doppler Tomography

    Science.gov (United States)

    Marsh, T. R.

    I review the method of Doppler tomography which translates binary-star line profiles taken at a series of orbital phases into a distribution of emission over the binary. I begin with a discussion of the basic principles behind Doppler tomography, including a comparison of the relative merits of maximum entropy regularisation versus filtered back-projection for implementing the inversion. Following this I discuss the issue of noise in Doppler images and possible methods for coping with it. Then I move on to look at the results of Doppler Tomography applied to cataclysmic variable stars. Outstanding successes to date are the discovery of two-arm spiral shocks in cataclysmic variable accretion discs and the probing of the stream/magnetospheric interaction in magnetic cataclysmic variable stars. Doppler tomography has also told us much about the stream/disc interaction in non-magnetic systems and the irradiation of the secondary star in all systems. The latter indirectly reveals such effects as shadowing by the accretion disc or stream. I discuss all of these and finish with some musings on possible future directions for the method. At the end I include a tabulation of Doppler maps published in refereed journals.

  13. Imaging cellular and subcellular structure of human brain tissue using micro computed tomography

    Science.gov (United States)

    Khimchenko, Anna; Bikis, Christos; Schweighauser, Gabriel; Hench, Jürgen; Joita-Pacureanu, Alexandra-Teodora; Thalmann, Peter; Deyhle, Hans; Osmani, Bekim; Chicherova, Natalia; Hieber, Simone E.; Cloetens, Peter; Müller-Gerbl, Magdalena; Schulz, Georg; Müller, Bert

    2017-09-01

    Brain tissues have been an attractive subject for investigations in neuropathology, neuroscience, and neurobiol- ogy. Nevertheless, existing imaging methodologies have intrinsic limitations in three-dimensional (3D) label-free visualisation of extended tissue samples down to (sub)cellular level. For a long time, these morphological features were visualised by electron or light microscopies. In addition to being time-consuming, microscopic investigation includes specimen fixation, embedding, sectioning, staining, and imaging with the associated artefacts. More- over, optical microscopy remains hampered by a fundamental limit in the spatial resolution that is imposed by the diffraction of visible light wavefront. In contrast, various tomography approaches do not require a complex specimen preparation and can now reach a true (sub)cellular resolution. Even laboratory-based micro computed tomography in the absorption-contrast mode of formalin-fixed paraffin-embedded (FFPE) human cerebellum yields an image contrast comparable to conventional histological sections. Data of a superior image quality was obtained by means of synchrotron radiation-based single-distance X-ray phase-contrast tomography enabling the visualisation of non-stained Purkinje cells down to the subcellular level and automated cell counting. The question arises, whether the data quality of the hard X-ray tomography can be superior to optical microscopy. Herein, we discuss the label-free investigation of the human brain ultramorphology be means of synchrotron radiation-based hard X-ray magnified phase-contrast in-line tomography at the nano-imaging beamline ID16A (ESRF, Grenoble, France). As an example, we present images of FFPE human cerebellum block. Hard X-ray tomography can provide detailed information on human tissues in health and disease with a spatial resolution below the optical limit, improving understanding of the neuro-degenerative diseases.

  14. X-ray diffraction

    International Nuclear Information System (INIS)

    Vries, J.L. de.

    1976-01-01

    The seventh edition of Philips' Review of literature on X-ray diffraction begins with a list of conference proceedings on the subject, organised by the Philips' organisation at regular intervals in various European countries. This is followed by a list of bulletins. The bibliography is divided according to the equipment (cameras, diffractometers, monochromators) and its applications. The applications are subdivided into sections for high/low temperature and pressure, effects due to the equipment, small angle scattering and a part for stress, texture and phase analyses of metals and quantitative analysis of minerals

  15. Correlating Atom Probe Crystallographic Measurements with Transmission Kikuchi Diffraction Data.

    Science.gov (United States)

    Breen, Andrew J; Babinsky, Katharina; Day, Alec C; Eder, K; Oakman, Connor J; Trimby, Patrick W; Primig, Sophie; Cairney, Julie M; Ringer, Simon P

    2017-04-01

    Correlative microscopy approaches offer synergistic solutions to many research problems. One such combination, that has been studied in limited detail, is the use of atom probe tomography (APT) and transmission Kikuchi diffraction (TKD) on the same tip specimen. By combining these two powerful microscopy techniques, the microstructure of important engineering alloys can be studied in greater detail. For the first time, the accuracy of crystallographic measurements made using APT will be independently verified using TKD. Experimental data from two atom probe tips, one a nanocrystalline Al-0.5Ag alloy specimen collected on a straight flight-path atom probe and the other a high purity Mo specimen collected on a reflectron-fitted instrument, will be compared. We find that the average minimum misorientation angle, calculated from calibrated atom probe reconstructions with two different pole combinations, deviate 0.7° and 1.4°, respectively, from the TKD results. The type of atom probe and experimental conditions appear to have some impact on this accuracy and the reconstruction and measurement procedures are likely to contribute further to degradation in angular resolution. The challenges and implications of this correlative approach will also be discussed.

  16. The phase problem in neutron diffraction

    International Nuclear Information System (INIS)

    Sikka, S.K.

    1983-01-01

    The structure of any crystal can now be determined ab initio from the neutron Bragg intensity data alone, without recourse to the x-ray structural analysis. This has been made possible by the reduction in data collection times due to the availability of increased neutron fluxes at the samples and the extensive development of the phase determining procedures for neutron diffraction in the last 15 years. In this review, the applications of direct methods, anomalous dispersion techniques and difference Patterson methods are reviewed and it is discussed why these methods are applicable in neutron diffraction. Their limitations are also discussed. Some newer methods like resonance-modulated diffraction and use of 'Renninger effect' to measure the structure invariants are also touched upon. (author)

  17. Coded aperture tomography revisited

    International Nuclear Information System (INIS)

    Bizais, Y.; Rowe, R.W.; Zubal, I.G.; Bennett, G.W.; Brill, A.B.

    1983-01-01

    Coded aperture (CA) Tomography never achieved wide spread use in Nuclear Medicine, except for the degenerate case of Seven Pinhole tomagraphy (7PHT). However it enjoys several attractive features (high sensitivity and tomographic ability with a statis detector). On the other hand, resolution is usually poor especially along the depth axis and the reconstructed volume is rather limited. Arguments are presented justifying the position that CA tomography can be useful for imaging time-varying 3D structures, if its major drawbacks (poor longitudinal resolution and difficulty in quantification) are overcome. Poor results obtained with 7PHT can be explained by both a very limited angular range sampled and a crude modelling of the image formation process. Therefore improvements can be expected by the use of a dual-detector system, along with a better understanding of its sampling properties and the use of more powerful reconstruction algorithms. Non overlapping multipinhole plates, because they do not involve a decoding procedure, should be considered first for practical applications. Use of real CA should be considered for cases in which non overlapping multipinhole plates do not lead to satisfactory solutions. We have been and currently are carrying out theoretical and experimental works, in order to define the factors which limit CA imaging and to propose satisfactory solutions for Dynamic Emission Tomography

  18. Electron diffraction determination of 11.5 Å and HySo structures: candidate water carriers to the Upper Mantle

    Czech Academy of Sciences Publication Activity Database

    Gemmi, M.; Merlini, M.; Palatinus, Lukáš; Fumagalli, P.; Hanfland, M.

    2016-01-01

    Roč. 101, č. 12 (2016), s. 2645-2654 ISSN 0003-004X Institutional support: RVO:68378271 Keywords : subduction * MASH system * electron diffraction tomography Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.021, year: 2016

  19. Neutron diffraction in materials science

    International Nuclear Information System (INIS)

    Howard, C.J.

    1996-01-01

    This article deals with applications of neutron diffraction in materials science. Most of the examples presented here involve the use of powder diffraction, which has been described earlier. In most of these, the Rietveld method has been used for neutron diffraction data, using the Rietveld method. This being an application which was largely pioneered at Lucas Heights. Examples involving single crystal diffraction and neutron polarization analysis are also included. Most of the examples are drawn from studies carried out at Lucas Heights where there is diffraction to the study of ceramics, and this will be reflected in the choice of examples to be considered here. (author)

  20. Diffraction and Dirchlet problem for parameter-elliptic convolution ...

    African Journals Online (AJOL)

    In this paper we evaluate the difference between the inverse operators of a Dirichlet problem and of a diffraction problem for parameter-elliptic convolution operators with constant symbols. We prove that the inverse operator of a Dirichlet problem can be obtained as a limit case of such a diffraction problem. Quaestiones ...

  1. A new scattering method that combines roughness and diffraction effects

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge; Rindel, Jens Holger

    2005-01-01

    Most of today's room acoustics programs make use of scattering coefficients which are used in order to describe surface scattering (roughness of material) and scattering of reflected sound caused by limited surface size (diffraction). A method which combines scattering caused by diffraction due...

  2. High Pressure X-Ray Diffraction Studies on Nanocrystalline Materials

    Science.gov (United States)

    Palosz, B.; Stelmakh, S.; Grzanka, E.; Gierlotka, S.; Pielaszek, R.; Bismayer, U.; Werner, S.; Palosz, W.

    2003-01-01

    Application of in situ high pressure powder diffraction technique for examination of specific structural properties of nanocrystals based on the experimental data of SiC nanocrystalline powders of 2 to 30 nrn diameter in diameter is presented. Limitations and capabilities of the experimental techniques themselves and methods of diffraction data elaboration applied to nanocrystals with very small dimensions (nanoparticles of different grain size.

  3. Quantitative phase analysis by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hee; Song, Su Ho; Lee, Jin Ho; Shim, Hae Seop [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-06-01

    This study is to apply quantitative phase analysis (QPA) by neutron diffraction to the round robin samples provided by the International Union of Crystallography(IUCr). We measured neutron diffraction patterns for mixed samples which have several different weight percentages and their unique characteristic features. Neutron diffraction method has been known to be superior to its complementary methods such as X-ray or Synchrotron, but it is still accepted as highly reliable under limited conditions or samples. Neutron diffraction has strong capability especially on oxides due to its scattering cross-section of the oxygen and it can become a more strong tool for analysis on the industrial materials with this quantitative phase analysis techniques. By doing this study, we hope not only to do one of instrument performance tests on our HRPD but also to improve our ability on the analysis of neutron diffraction data by comparing our QPA results with others from any advanced reactor facilities. 14 refs., 4 figs., 6 tabs. (Author)

  4. Powder Diffraction in Zeolite Science

    Science.gov (United States)

    Burton, Allen W.

    This tutorial discusses the fundamental principles of X-ray diffraction and its applications in zeolite science. The early sections review the physics of diffraction, crystal symmetry, and reciprocal space. We discuss how the intensity of diffracted radiation is affected both by geometric effects involving detection (the Lorentz-polarization factor) and by the arrangement of atoms within the crystal (the structure factor). The differences between powder diffraction and single-crystal diffraction are then described, and differences between X-ray and neutron diffraction are also discussed. Later sections describe the effects of symmetry, lattice substitution, crystallite size, residual strain, preferred orientation, and X-ray absorption. Special emphasis is placed on the proper application of the Scherrer analysis in reporting crystalize size. The principles of structure solution from direct methods and Patterson methods are then introduced, and a description of Rietveld analysis is given. Finally the effects of stacking disorder on a powder diffraction pattern are presented.

  5. Projection correction for the pixel-by-pixel basis in diffraction enhanced imaging

    International Nuclear Information System (INIS)

    Huang Zhifeng; Kang Kejun; Li Zheng

    2006-01-01

    Theories and methods of x-ray diffraction enhanced imaging (DEI) and computed tomography of the DEI (DEI-CT) have been investigated recently. But the phenomenon of projection offsets which may affect the accuracy of the results of extraction methods of refraction-angle images and reconstruction algorithms of the DEI-CT is seldom of concern. This paper focuses on it. Projection offsets are revealed distinctly according to the equivalent rectilinear propagation model of the DEI. Then, an effective correction method using the equivalent positions of projection data is presented to eliminate the errors induced by projection offsets. The correction method is validated by a computer simulation experiment and extraction methods or reconstruction algorithms based on the corrected data can give more accurate results. The limitations of the correction method are discussed at the end

  6. Chromatic confocal microscope using hybrid aspheric diffractive lenses

    Science.gov (United States)

    Rayer, Mathieu; Mansfield, Daniel

    2014-05-01

    A chromatic confocal microscope is a single point non-contact distance measurement sensor. For three decades the vast majority of the chromatic confocal microscope use refractive-based lenses to code the measurement axis chromatically. However, such an approach is limiting the range of applications. In this paper the performance of refractive, diffractive and Hybrid aspheric diffractive are compared. Hybrid aspheric diffractive lenses combine the low geometric aberration of a diffractive lens with the high optical power of an aspheric lens. Hybrid aspheric diffractive lenses can reduce the number of elements in an imaging system significantly or create large hyper- chromatic lenses for sensing applications. In addition, diffractive lenses can improve the resolution and the dynamic range of a chromatic confocal microscope. However, to be suitable for commercial applications, the diffractive optical power must be significant. Therefore, manufacturing such lenses is a challenge. We show in this paper how a theoretical manufacturing model can demonstrate that the hybrid aspheric diffractive configuration with the best performances is achieved by step diffractive surface. The high optical quality of step diffractive surface is then demonstrated experimentally. Publisher's Note: This paper, originally published on 5/10/14, was replaced with a corrected/revised version on 5/19/14. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance.

  7. Future of Electron Scattering and Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Ernest [GE Global Research, Niskayuna, New York (United States); Stemmer, Susanne [Univ. of California, Santa Barbara, CA (United States); Zheng, Haimei [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhu, Yimei [Brookhaven National Lab. (BNL), Upton, NY (United States); Maracas, George [Dept. of Energy (DOE), Washington DC (United States). Office of Science

    2014-02-25

    The ability to correlate the atomic- and nanoscale-structure of condensed matter with physical properties (e.g., mechanical, electrical, catalytic, and optical) and functionality forms the core of many disciplines. Directing and controlling materials at the quantum-, atomic-, and molecular-levels creates enormous challenges and opportunities across a wide spectrum of critical technologies, including those involving the generation and use of energy. The workshop identified next generation electron scattering and diffraction instruments that are uniquely positioned to address these grand challenges. The workshop participants identified four key areas where the next generation of such instrumentation would have major impact: A – Multidimensional Visualization of Real Materials B – Atomic-scale Molecular Processes C – Photonic Control of Emergence in Quantum Materials D – Evolving Interfaces, Nucleation, and Mass Transport Real materials are comprised of complex three-dimensional arrangements of atoms and defects that directly determine their potential for energy applications. Understanding real materials requires new capabilities for three-dimensional atomic scale tomography and spectroscopy of atomic and electronic structures with unprecedented sensitivity, and with simultaneous spatial and energy resolution. Many molecules are able to selectively and efficiently convert sunlight into other forms of energy, like heat and electric current, or store it in altered chemical bonds. Understanding and controlling such process at the atomic scale require unprecedented time resolution. One of the grand challenges in condensed matter physics is to understand, and ultimately control, emergent phenomena in novel quantum materials that necessitate developing a new generation of instruments that probe the interplay among spin, charge, orbital, and lattice degrees of freedom with intrinsic time- and length-scale resolutions. Molecules and soft matter require imaging and

  8. On the long wavelength thermodynamic limit of a neutron diffraction experiment in the vicinity of a liquid-liquid critical point. Application to the concentration fluctuations in the Li-ND3 system

    International Nuclear Information System (INIS)

    Chieux, P.; Damay, P.

    1978-01-01

    A quantitative comparison is made between the thermodynamics as obtained from the long wavelength limit of a small angle neutron scattering experiment in the vicinity of a liquid-liquid critical point for the Li-ND 3 system and the data obtained from vapour pressure measurements. The agreement is fair. It is shown how the comparison always implies an underlying model of the interacting species leading to the liquid-liquid phase separation. (Auth.)

  9. Nondestructive determination of residual stresses by neutron diffraction

    International Nuclear Information System (INIS)

    Tello, H.; Barrera, E.V.

    1993-01-01

    Nondestructive determination of residual stresses and strains in engineering materials has been limited to analytical models and near-surface measurement techniques such as x-ray diffraction and ultrasonic testing. The use of neutron diffraction for residual stress determination is similar in methodology to x-ray diffraction but provides superior analysis capability because of the lower absorption of neutrons in most materials. Neutron diffraction measurements can be made from sampling depths of several millimeters in most materials as compared to micrometer sampling depth of x-rays. This paper will discuss the principles of neutron diffraction as well as the advantages and limitations of the technique. Specific examples of residual stress measurements using conventional and time-of flight techniques will be provided

  10. Diffraction radiation from relativistic particles

    International Nuclear Information System (INIS)

    Potylitsyn, Alexander Petrovich; Ryazanov, Mikhail Ivanovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results. (orig.)

  11. Diffraction radiation from relativistic particles

    CERN Document Server

    Potylitsyn, Alexander Petrovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.

  12. Ab-initio crystal structure analysis and refinement approaches of oligo p-benzamides based on electron diffraction data

    DEFF Research Database (Denmark)

    Gorelik, Tatiana E; van de Streek, Jacco; Kilbinger, Andreas F M

    2012-01-01

    Ab-initio crystal structure analysis of organic materials from electron diffraction data is presented. The data were collected using the automated electron diffraction tomography (ADT) technique. The structure solution and refinement route is first validated on the basis of the known crystal stru...

  13. Causal aspects of diffraction

    International Nuclear Information System (INIS)

    Crawford, G.N.

    1981-01-01

    The analysis is directed at a causal description of photon diffraction, which is explained in terms of a wave exerting real forces and providing actual guidance to each quantum of energy. An undulatory PSI wave is associated with each photon, and this wave is assumed to imply more than an informative probability function, so that it actually carries real energy, in much the same way as does an electro-magnetic wave. Whether or not it may be in some way related to the electromagnetic wave is left as a matter of on-going concern. A novel application of the concept of a minimum energy configuration is utilized; that is, a system of energy quanta seeks out relative positions and orientations of least mutual energy, much as an electron seeks its Bohr radius as a position of least mutual energy. Thus the concept implies more a guiding interaction of the PSI waves than an interfering cancellation of these waves. Similar concepts have been suggested by L. de Broglie and D. Bohm

  14. Generation of more than 300 mW diffraction-limited light at 405 nm by second-harmonic generation of a tapered diode laser with external cavity feedback

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Holm, J.; Sumpf, B.

    2007-01-01

    We have constructed a blue laser source consisting of a single-frequency tapered diode laser with external cavity feedback that is frequency doubled by a quasi-phase matched KTP (PPKTP) in a bowtie ring cavity and extract more than 360 mW of power at 405 nm. The conversion efficiency from fundame...... fundamental laser power to second harmonic power is 35 %, while it is 64 % from coupled fundamental power to extracted blue light. Thermal effects and gray tracking set an upper limit on the amount of generated blue light.......We have constructed a blue laser source consisting of a single-frequency tapered diode laser with external cavity feedback that is frequency doubled by a quasi-phase matched KTP (PPKTP) in a bowtie ring cavity and extract more than 360 mW of power at 405 nm. The conversion efficiency from...

  15. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... Professions Site Index A-Z Computed Tomography (CT) - Head Computed tomography (CT) of the head uses special ... the Head? What is CT Scanning of the Head? Computed tomography, more commonly known as a CT ...

  16. Positron Emission Tomography - Computed Tomography (PET/CT)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Positron Emission Tomography - Computed Tomography (PET/CT) Positron emission tomography (PET) ... Emission Tomography – Computed Tomography (PET/CT)? What is Positron Emission Tomography – Computed Tomography (PET/CT) Scanning? Positron emission tomography, ...

  17. Tolerance analysis on diffraction efficiency and polychromatic integral diffraction efficiency for harmonic diffractive optics

    Science.gov (United States)

    Shan, Mao

    2016-10-01

    In this dissertation, the mathematical model of effect of manufacturing errors including microstructure relative height error and relative width error on diffraction efficiency for the harmonic diffractive optical elements (HDEs) is set up. According to the expression of the phase delay and diffraction efficiency of the HDEs, the expression of diffraction efficiency of refraction and diffractive optical element with the microstructure height and periodic width errors in fabrication process is presented in this paper. Furthermore, the effect of manufacturing errors on diffraction efficiency for the harmonic diffractive optical elements is studied, and diffraction efficiency change is analyzed as the relative microstructure height-error in the same and in the opposite sign as well as relative width-error in the same and in the opposite sign. Example including infrared wavelength with materials GE has been discussed in this paper. Two kinds of manufacturing errors applied in 3.7 4.3um middle infrared and 8.7-11.5um far infrared optical system which results in diffraction efficiency and PIDE of HDEs are studied. The analysis results can be used for manufacturing error control in micro-structure height and periodic width. Results can be used for HDEs processing.

  18. RELIABILITY OF POSITRON EMISSION TOMOGRAPHY-COMPUTED TOMOGRAPHY IN EVALUATION OF TESTICULAR CARCINOMA PATIENTS.

    Science.gov (United States)

    Nikoletić, Katarina; Mihailović, Jasna; Matovina, Emil; Žeravica, Radmila; Srbovan, Dolores

    2015-01-01

    The study was aimed at assessing the reliability of 18F-fluorodeoxyglucose positron emission tomography-computed tomography scan in evaluation of testicular carcinoma patients. The study sample consisted of 26 scans performed in 23 patients with testicular carcinoma. According to the pathohistological finding, 14 patients had seminomas, 7 had nonseminomas and 2 patients had a mixed histological type. In 17 patients, the initial treatment was orchiectomy+chemotherapy, 2 patients had orchiectomy+chemotherapy+retroperitoneal lymph node dissection, 3 patients had orchiectomy only and one patient was treated with chemotherapy only. Abnormal computed tomography was the main cause for the oncologist to refer the patient to positron emission tomography-computed tomography scan (in 19 scans), magnetic resonance imaging abnormalities in 1 scan, high level oftumor markers in 3 and 3 scans were perforned for follow-up. Positron emission tomography-computed tomography imaging results were compared with histological results, other imaging modalities or the clinical follow-up of the patients. Positron emission tomography-computed tomography scans were positive in 6 and negative in 20 patients. In two patients, positron emission tomography-computed tomography was false positive. There were 20 negative positron emission omography-computed tomography scans perforned in 18 patients, one patient was lost for data analysis. Clinically stable disease was confirmed in 18 follow-up scans performed in 16 patients. The values of sensitivty, specificity, accuracy, and positive- and negative predictive value were 60%, 95%, 75%, 88% and 90.5%, respectively. A hgh negative predictive value obtained in our study (90.5%) suggests that there is a small possibility for a patient to have future relapse after normal positron emission tomography-computed tomography study. However, since the sensitivity and positive predictive value of the study ire rather low, there are limitations of positive

  19. Characterization of Polycrystalline Materials Using Synchrotron X-ray Imaging and Diffraction Techniques

    DEFF Research Database (Denmark)

    Ludwig, Wolfgang; King, A.; Herbig, M.

    2010-01-01

    propagation based phase contrast imaging, a 3-D imaging mode exploiting the coherence properties of third generation synchrotron beams. Furthermore, for some classes of polycrystalline materials, one may use a 3-D variant of x-ray diffraction imaging, termed x-ray diffraction contrast tomography. X-ray......The combination of synchrotron radiation x-ray imaging and diffraction techniques offers new possibilities for in-situ observation of deformation and damage mechanisms in the bulk of polycrystalline materials. Minute changes in electron density (i.e., cracks, porosities) can be detected using...... diffraction contrast tomography provides access to the 3-D shape, orientation, and elastic strain state of the individual grains from polycrystalline sample volumes containing up to thousand grains. Combining both imaging modalities, one obtains a comprehensive description of the materials microstructure...

  20. Characterization of Polycrystalline Materials Using Synchrotron X-ray Imaging and Diffraction Techniques

    DEFF Research Database (Denmark)

    Ludwig, Wolfgang; King, A.; Herbig, M.

    2010-01-01

    The combination of synchrotron radiation x-ray imaging and diffraction techniques offers new possibilities for in-situ observation of deformation and damage mechanisms in the bulk of polycrystalline materials. Minute changes in electron density (i.e., cracks, porosities) can be detected using...... propagation based phase contrast imaging, a 3-D imaging mode exploiting the coherence properties of third generation synchrotron beams. Furthermore, for some classes of polycrystalline materials, one may use a 3-D variant of x-ray diffraction imaging, termed x-ray diffraction contrast tomography. X......-ray diffraction contrast tomography provides access to the 3-D shape, orientation, and elastic strain state of the individual grains from polycrystalline sample volumes containing up to thousand grains. Combining both imaging modalities, one obtains a comprehensive description of the materials microstructure...

  1. Intensity distributions in fiber diffraction

    International Nuclear Information System (INIS)

    Millane, R.P.

    1990-01-01

    The probability distribution of X-ray intensities in fiber diffraction are different from those for single crystals (Wilson statistics) because of the cylindrical averaging of the diffraction data. Stubbs has recently determined the intensity distributions on a fiber diffraction pattern for a fixed number of overlapping Fourier-Bessel terms. Some properties of the amplitude and intensity distributions are derived here. It is shown that the amplitudes and intensities are approximately normally distributed (the distributions being asymptotically normal with increasing number of Fourier-Bessel terms). Improved approximations using an Edgeworth series are derived. Other statistical properties and some asymptotic expansions are also derived, and normalization of fiber diffraction amplitudes is discussed. The accuracies of the normal approximations are illustrated for particular fiber structures, and possible applications of intensity statistics in fiber diffraction are discussed. (orig.)

  2. Discrete Tomography and Imaging of Polycrystalline Structures

    DEFF Research Database (Denmark)

    Alpers, Andreas

    Laboratory for Sustainable Energy), for instance, we study polycrystalline materials via synchrotron X-ray diffraction. Several reconstruction problems arise, most of them exhibit inherently discrete aspects. In this talk I want to give a concise mathematical introduction to some of these reconstruction...... problems. Special focus is on their relationship to classical discrete tomography. Several open mathematical questions will be mentioned along the way.......High resolution transmission electron microscopy is commonly considered as the standard application for discrete tomography. While this has yet to be technically realized, new applications with a similar flavor have emerged in materials science. In our group at Ris� DTU (Denmark's National...

  3. A single photon emission computed tomograph based on a limited dumber of detectors for fluid flow visualization; Tomographie d'emission gamma a partir d'un nombre limite de detecteurs appliquee a la visualisation d'ecoulements

    Energy Technology Data Exchange (ETDEWEB)

    Legoupil, S

    1999-07-01

    We present in this work a method for fluid flow visualization in a system using radioactive tracers. The method is based on single photon emission computed tomography techniques, applied to a limited number of discrete detectors. We propose in this work a method for the estimation of the transport matrix of photons, associated to the acquisition system.This method is based on the modelization of profiles acquired for a set of point sources located in the imaged volume. Monte Carlo simulations allow to separate scattered photons from those directly collected by the system. The influence of the energy tracer is exposed. The reconstruction method is based on the maximum likelihood - expectation maximization algorithm. An experimental device, based on 36 detectors was realised for the visualization of water circulation in a vessel. A video monitoring allows to visualize the dye water tracer. Dye and radioactive tracers are injected simultaneously in a water flow circulating in the vessel. Reconstructed and video images are compared. Quantitative and qualitative analysis show that fluid flow visualization is feasible with a limited number of detectors. This method can be applied for system involving circulations of fluids. (author)

  4. Combined coronary angiography and myocardial perfusion by computed tomography in the identification of flow-limiting stenosis - The CORE320 study: An integrated analysis of CT coronary angiography and myocardial perfusion.

    Science.gov (United States)

    Magalhães, Tiago A; Kishi, Satoru; George, Richard T; Arbab-Zadeh, Armin; Vavere, Andrea L; Cox, Christopher; Matheson, Matthew B; Miller, Julie M; Brinker, Jeffrey; Di Carli, Marcelo; Rybicki, Frank J; Rochitte, Carlos E; Clouse, Melvin E; Lima, João A C

    2015-01-01

    The combination of coronary CT angiography (CTA) and myocardial CT perfusion (CTP) is gaining increasing acceptance, but a standardized approach to be implemented in the clinical setting is necessary. To investigate the accuracy of a combined coronary CTA and myocardial CTP comprehensive protocol compared to coronary CTA alone, using a combination of invasive coronary angiography and single photon emission CT as reference. Three hundred eighty-one patients included in the CORE320 trial were analyzed in this study. Flow-limiting stenosis was defined as the presence of ≥50% stenosis by invasive coronary angiography with a related perfusion defect by single photon emission CT. The combined CTA + CTP definition of disease was the presence of a ≥50% stenosis with a related perfusion defect. All data sets were analyzed by 2 experienced readers, aligning anatomic findings by CTA with perfusion defects by CTP. Mean patient age was 62 ± 6 years (66% male), 27% with prior history of myocardial infarction. In a per-patient analysis, sensitivity for CTA alone was 93%, specificity was 54%, positive predictive value was 55%, negative predictive value was 93%, and overall accuracy was 69%. After combining CTA and CTP, sensitivity was 78%, specificity was 73%, negative predictive value was 64%, positive predictive value was 0.85%, and overall accuracy was 75%. In a per-vessel analysis, overall accuracy of CTA alone was 73% compared to 79% for the combination of CTA and CTP (P perfusion defect. Copyright © 2015 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  5. Correlation Between En Face Optical Coherence Tomography Defects of the Inner Retinal Layers and Ganglion Cell Inner Plexiform Layer Analysis After Internal Limiting Membrane Peeling for Idiopathic Full-Thickness Macular Hole.

    Science.gov (United States)

    Sabry, Dalia; El-Kannishy, Amr; Kamel, Rania; Abou Samra, Waleed

    2016-07-01

    The purpose of this study was to report en face optical coherence tomography (OCT) inner retinal changes after internal limiting membrane (ILM) peeling for idiopathic full-thickness macular hole (IFTMH) and to correlate these findings with macular ganglion cell inner plexiform layer (GC-IPL) analysis. This prospective study included 20 patients with IFTMH treated using pars plana vitrectomy with ILM peeling. All patients were analyzed using en face OCT at 6 months after surgery to determinate the effect of ILM peeling on the inner retinal layers. Correlation between the GC-IPL en face OCT findings and that obtained by three-dimensional volumetric OCT scanning also was performed. Seven patients (35%) showed defects in the retinal nerve fiber layer (RNFL) that appeared as multiple dark dots with no visible defects at the GC-IPL, either with en face OCT or 3D volumetric OCT scanning. Thirteen patients (65%) showed a similar combination of RNFL defects and well-circumscribed defects in the underlying GC-IPL. These defects could be visualized on en face OCT display, and they correlated with areas of GC-IPL thinning detected in the 3D volumetric OCT scanning. With ILM peeling, en face OCT scanning showed two forms of inner retinal layers changes. The first form was the concentric macular dark spots (CMDS) with intact GC-IPL. The second form appeared in the CMDS with evident localized defects in the underlying GC-IPL. These defects correlate with the areas of GC-IPL thinning detected using 3D volumetric OCT scanning.

  6. Practical adaptive quantum tomography

    Science.gov (United States)

    Granade, Christopher; Ferrie, Christopher; Flammia, Steven T.

    2017-11-01

    We introduce a fast and accurate heuristic for adaptive tomography that addresses many of the limitations of prior methods. Previous approaches were either too computationally intensive or tailored to handle special cases such as single qubits or pure states. By contrast, our approach combines the efficiency of online optimization with generally applicable and well-motivated data-processing techniques. We numerically demonstrate these advantages in several scenarios including mixed states, higher-dimensional systems, and restricted measurements. http://cgranade.com complete data and source code for this work are available online [1], and can be previewed at https://goo.gl/koiWxR.

  7. Nondestructive determination of materials parameters by neutron diffraction

    International Nuclear Information System (INIS)

    Brokmeier, H.G.; Bunge, H.J.

    1989-01-01

    Using the high transmission of neutron radiation, neutron diffraction is described to be an efficient tool for the analysis of various materials parameters of the bulk of a material in a nondestructive way. Sample sizes up to 40 mm in diameter have been used to determine the phase composition, texture and internal stresses of polycrystalline, polyphased materials. Additionally to well-known X-ray techniques which analyse the surface of a sample, neutron diffraction measurements are carried out to investigate the average behaviour of a bulk sample or the local behaviour within a compact sample. Further advantages of neutron diffraction are that small volume fractions (e.g. 0.05 Vol.% Cu in Al) can be determined. Moreover, in the case of X-ray diffraction the examination of coarse-grained materials and of complex multiphase materials is limited, and neutron diffraction has to be used. (orig./RHM)

  8. Optics of diffractive multifocal IOL

    Directory of Open Access Journals (Sweden)

    Fatahi B

    1994-04-01

    Full Text Available The diffractive multifocal IOL provides simultaneous bifocal imaging by utilizing both diffractive and refractive optics. In both distant and near vision, there is a clear highly focused image on the retina. The second image is highly defocused, providing only faint background illumination. A small amount of the light goes to the higher orders of diffraction which are not perceptible by eyes. The bright spot produced by a zone plate is so intense that the plate acts much like a converging lens. There are also fainter images corresponding to focal lengths f/3, f/5, f/7, ...

  9. Grazing incidence diffraction : A review

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, B. [LTPCM, ENSEEG. St. Martin d`Heres. (France)

    1996-09-01

    Different Grazing Incidence Diffraction (GID) methods for the analysis of thin films and multilayer structures are reviewed in three sections: the reflectivity is developed in the first one, which includes the non-specular diffuse scattering. The second one is devoted to the extremely asymmetric Bragg diffraction and the third one to the in-plane Bragg diffraction. Analytical formulations of the scattered intensities are developed for each geometry, in the framework of the kinetical analysis as well as the dynamical theory. Experimental examples are given to illustrate the quantitative possibility of the GID techniques.

  10. Time-resolved Neutron Powder Diffraction

    International Nuclear Information System (INIS)

    Pannetier, J.

    1986-01-01

    The use of a high-flux neutron source together with a large position sensitive detector (PSD) allows a powder diffraction pattern to be recorded at a time-scale of a few minutes so that crystalline systems under non-equilibrium conditions may now conveniently be investigated. This introduces a new dimension into powder diffraction (the time and transient phenomena like heterogeneous chemical reactions can now be easily studied. The instrumental parameters relevant for the design of such time-dependent experiments are briefly surveyed and the current limits of the method are discussed. The applications are illustrated by two kinds of experiment in the field of inorganic solid state chemistry: true kinetic studies of heterogeneous chemical reactions and thermodiffractometry experiments

  11. Neutron Powder Diffraction in Sweden

    International Nuclear Information System (INIS)

    Tellgren, R.

    1986-01-01

    Neutron powder diffraction in Sweden has developed around the research reactor R2 in Studsvik. The article describes this facility and presents a historical review of research results obtained. It also gives some ideas of plans for future development

  12. Neutron diffraction studies of glasses

    International Nuclear Information System (INIS)

    Wright, A.C.

    1987-01-01

    A survey is given of the application of neutron diffraction to structural studies of oxide and halide glasses. As with crystalline materials, neutron and X-ray diffraction are the major structural probes for glasses and other amorphous solids, particularly in respect of intermediate range order. The glasses discussed mostly have structures which are dominated by a network in which the bonding is predominantly covalent. The examples discussed demonstrate the power of the neutron diffraction technique in the investigation of the structures of inorganic glasses. The best modern diffraction experiments are capable of providing accurate data with high real space resolution, which if used correctly, are an extremely fine filter for the various structural models proposed in the literature. 42 refs

  13. Diffraction at a Straight Edge

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 5. Diffraction at a Straight Edge: A Gem from Sommerfeld's Work in Classical Physics. Rajaram Nityananda. General Article Volume 20 Issue 5 May 2015 pp 389-400 ...

  14. The Diffraction Response Interpolation Method

    DEFF Research Database (Denmark)

    Jespersen, Søren Kragh; Wilhjelm, Jens Erik; Pedersen, Peder C.

    1998-01-01

    Computer modeling of the output voltage in a pulse-echo system is computationally very demanding, particularly whenconsidering reflector surfaces of arbitrary geometry. A new, efficient computational tool, the diffraction response interpolationmethod (DRIM), for modeling of reflectors in a fluid ...

  15. Phonons from neutron powder diffraction

    Science.gov (United States)

    Dimitrov, D. A.; Louca, D.; Röder, H.

    1999-09-01

    The spherically averaged structure function S(\\|q\\|) obtained from pulsed neutron powder diffraction contains both elastic and inelastic scattering via an integral over energy. The Fourier transformation of S(\\|q\\|) to real space, as is done in the pair density function (PDF) analysis, regularizes the data, i.e., it accentuates the diffuse scattering. We present a technique which enables the extraction of off-center (\\|q\\|≠0) phonon information from powder diffraction experiments by comparing the experimental PDF with theoretical calculations based on standard interatomic potentials and the crystal symmetry. This procedure [dynamics from powder diffraction] has been successfully implemented as demonstrated here for two systems, a simple metal fcc Ni and an ionic crystal CaF2. Although computationally intensive, this data analysis allows for a phonon based modeling of the PDF, and additionally provides off-center phonon information from neutron powder diffraction.

  16. Experimental studies of diffractive phenomena

    International Nuclear Information System (INIS)

    Cool, R.L.

    1984-01-01

    The coherent inelastic scattering process, usually called inclusive diffraction dissociation, is discussed. Topics include: t and M/sub x/ dependence, factorization, finite mass sum rule and charged particle multiplicities. 6 references, 14 figures

  17. High-temperature chamber for study of neutron diffraction

    International Nuclear Information System (INIS)

    Gavrilenko, M.V.; Dvoeglazov, A.M.

    1992-01-01

    Design of a chamber designed to study neutron diffraction within 20-100 deg C temperature range, where the principle of specimen heating via electron bombardment is used, is described. Diameters of the screen and of the cover are selected so, that neutrons scattered at their walls can not be seen by the diffractometer regulating system. Absence of distortions of diffraction maxima within statistic error limits is pointed out. Intensities of diffraction maxima at setting of heater, screen and cover are not practically observed. There is no essential increase of background at chamber setting. Simplicity the design and long service life of the chamber is stressed

  18. The Diffraction Response Interpolation Method

    DEFF Research Database (Denmark)

    Jespersen, Søren Kragh; Wilhjelm, Jens Erik; Pedersen, Peder C.

    1998-01-01

    Computer modeling of the output voltage in a pulse-echo system is computationally very demanding, particularly whenconsidering reflector surfaces of arbitrary geometry. A new, efficient computational tool, the diffraction response interpolationmethod (DRIM), for modeling of reflectors in a fluid...... medium, is presented. The DRIM is based on the velocity potential impulseresponse method, adapted to pulse-echo applications by the use of acoustical reciprocity. Specifically, the DRIM operates bydividing the reflector surface into planar elements, finding the diffraction response at the corners...

  19. Theoretical review of diffractive phenomena

    International Nuclear Information System (INIS)

    Golec-Biernat, K.

    2005-01-01

    We review QCD based descriptions of diffractive deep inelastic scattering emphasising the role of models with parton saturation. These models provide natural explanation of such experimentally observed facts as the constant ratio of σ diff /σ tot as a function of the Bjorken variable x, and Regge factorization of diffractive parton distributions. The Ingelman-Schlein model and the soft color interaction model are also presented

  20. Texture determination by neutron diffraction

    International Nuclear Information System (INIS)

    Dervin, P.

    1981-02-01

    Application of neutron diffraction to crystallographic texture determination shows many advantages: possibility of an important grain size, the quantity of material contributing to diffraction is more important than with X rays, good accuracy and complete pole figures are obtained by transmission only eliminating corrections needed with X rays. Texture determination allows control and improvement of material quality. Texture studies give good informations on mechanisms occuring in deformation or recrystallization of polycrystals and on anisotropy of physical and mechanical properties [fr

  1. X-ray diffraction analysis of residual stress in zirconia dental composites

    Science.gov (United States)

    Allahkarami, Masoud

    Dental restoration ceramic is a complex system to be characterized. Beside its essential biocompatibility, and pleasant appearance, it requires being mechanically strong in a catastrophic loading environment. Any design is restricted with geometry boundary and material property limits. Inspired by natural teeth, a multilayer ceramic is a smart way of achieving an enhanced restoration. Bi-layers of zirconia core covered by porcelain are known as one of the best multilayer restorations. Residual stresses may be introduced into a bi-layer dental ceramic restoration during its entire manufacturing process due to thermal expansion and elastic property mismatch. It is impossible to achieve a free of residual stresses bi-layer zirconia-porcelain restoration. The idea is to take the advantage of residual stress in design in such a way to prevent the crack initiation and progression. The hypothesis is a compressive residual stress at external contact surface would be enabling the restoration to endure a greater tensile stress. Optimizing the layers thickness, manufacturing process, and validating 3D simulations require development of new techniques of thickness, residual stresses and phase transformation measurement. In the present work, a combined mirco-tomography and finite element based method were adapted for thickness measurement. Two new 2D X-ray diffraction based techniques were adapted for phase transformation area mapping and combined phase transformation and residual stress measurement. Concerning the complex geometry of crown, an efficient method for X-ray diffraction data collection mapping on a given curved surface was developed. Finally a novel method for 3D dimensional x-ray diffraction data collection and visualization were introduced.

  2. Theory of time-resolved inelastic x-ray diffraction

    DEFF Research Database (Denmark)

    Lorenz, Ulf; Møller, Klaus Braagaard; Henriksen, Niels Engholm

    2010-01-01

    Starting from a general theory of time-resolved x-ray scattering, we derive a convenient expression for the diffraction signal based on a careful analysis of the relevant inelastic scattering processes. We demonstrate that the resulting inelastic limit applies to a wider variety of experimental...... conditions than similar, previously derived formulas, and it directly allows the application of selection rules when interpreting diffraction signals. Furthermore, we present a simple extension to systems simultaneously illuminated by x rays and a laser beam....

  3. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission

    OpenAIRE

    Klar, Thomas A.; Jakobs, Stefan; Dyba, Marcus; Egner, Alexander; Hell, Stefan W.

    2000-01-01

    The diffraction barrier responsible for a finite focal spot size and limited resolution in far-field fluorescence microscopy has been fundamentally broken. This is accomplished by quenching excited organic molecules at the rim of the focal spot through stimulated emission. Along the optic axis, the spot size was reduced by up to 6 times beyond the diffraction barrier. The simultaneous 2-fold improvement in the radial direction rendered a nearly spherical fluorescence spot with a diameter of 9...

  4. Diffraction-Limited Lidars: the Impact of Refractive Turbulence

    DEFF Research Database (Denmark)

    Lading, Lars; Hanson, Steen Grüner; Jensen, Arne Skov

    1984-01-01

    The impact of refractive turbulence on monostatic and bistatic lidars is investigated; a phase screen model is used. Experimental verifications are given. For monostatic lidars perturbing lens effects dominate, for bistatic lidars tilt effects dominate. Monostatic systems are the least sensitive...

  5. Optical cloning of arbitrary images beyond the diffraction limits

    Science.gov (United States)

    Verma, Onkar N.; Zhang, Lida; Evers, Jörg; Dey, Tarak N.

    2013-07-01

    Cloning of arbitrary images from the spatial profile of a laser beam onto that of a second beam is theoretically investigated. The two fields couple to each other while propagating in an atomic Λ medium displaying coherent population trapping in the case where probe and control fields have comparable strength. Our method is suitable to clone arbitrary images as demonstrated in numerical simulations where the three letters “CPT” are encoded in the control field profile. The cloned structures have features reduced in size by about a factor of 2, when compared to the initial control images, and are consistent with a recent related experiment.

  6. Optimal diffraction-limited focusing through static aberrations

    Science.gov (United States)

    Patlan, Vsevolod; Soloviev, Oleg; Vdovin, Gleb V.

    2014-09-01

    Optimization of the point spread function by means of sensor-less adaptive optics, based on direct imaging of the focal spot, suffers from errors due to enormous dynamic range of the focal intensity. Also, optimization algorithms based on the focal spot metrics only, are insensitive to other system parameters and can converge to "rong" solutions. To improve the beam quality and the robustness of the global extremum, we have introduced dynamic feedback control of the camera sensitivity. To further increase the robustness of optimization, we introduced a regularization parameter in the form of some function of the system state, achieving its minimum together with the desired solution. Significant gain in achievable beam quality is shown in comparison with the implementation lacking those improvements. Proposed techniques are implemented in Beam Tuner software forne-tuning of laser and imaging systems with adaptive optics.

  7. Diffraction Limited 3.15 Microns Cascade Diode Lasers

    Science.gov (United States)

    2014-06-01

    moderately doped 25-nm-wide chirped AlSb /InAs superlattice. Conference Name: 2014 72nd Annual Device Research Conference (DRC) Conference Date...graded layer, 10-nm-thick GaSb layer and moderately doped 25-nm-wide chirped AlSb /InAs superlattice4. The laser heterostructure was grown by solid

  8. Thermal Design for a Diffraction-Limited Doppler Spectrometer

    Data.gov (United States)

    National Aeronautics and Space Administration — The Univ. of Notre Dame is building a new high-resolution spectrometer named “iLocater” to achieve unprecedented radial velocity (RV) precision for stellar Doppler...

  9. Neutron diffraction principles

    International Nuclear Information System (INIS)

    Granada, Jose R.

    1998-01-01

    Neutron as research element contributes at present to the understanding and development of almost all aspects related to basic and applied science, even with the relative inaccessibility of neutron sources and the fact that the most intense sources still provide relatively weak neutron beams. The initial discovery of these potentialities and the first works that allowed to convert the neutronic techniques into the actual powerful experimental tool, have been recognized by the adjudication of the Nobel Prize in Physics 1994 to Professors B. Brockhouse and C. Shull. Unfortunately, these tools have not been exploited neither in our country, nor in the Latin American area, with the exception of very limited applications in Materials Science. Although the theoretical principles of neutron scattering techniques have been treated in texts and review works, the aim of this work is to present a compact set of expressions, oriented to sustain and explain the basic forms or the most frequent use for the interpretation of experimental results. The formulation, mostly based on the initial chapters of the Ph.D. Thesis of G.J. Cuello (Instituto Balseiro, 1996), only considers nuclear scattering of neutrons for extension reasons, but it must be taken into account that the experiments designed for the study of the magnetic properties of materials currently play a rol of importance equal to those

  10. When holography meets coherent diffraction imaging.

    Science.gov (United States)

    Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Fink, Hans-Werner

    2012-12-17

    The phase problem is inherent to crystallographic, astronomical and optical imaging where only the intensity of the scattered signal is detected and the phase information is lost and must somehow be recovered to reconstruct the object's structure. Modern imaging techniques at the molecular scale rely on utilizing novel coherent light sources like X-ray free electron lasers for the ultimate goal of visualizing such objects as individual biomolecules rather than crystals. Here, unlike in the case of crystals where structures can be solved by model building and phase refinement, the phase distribution of the wave scattered by an individual molecule must directly be recovered. There are two well-known solutions to the phase problem: holography and coherent diffraction imaging (CDI). Both techniques have their pros and cons. In holography, the reconstruction of the scattered complex-valued object wave is directly provided by a well-defined reference wave that must cover the entire detector area which often is an experimental challenge. CDI provides the highest possible, only wavelength limited, resolution, but the phase recovery is an iterative process which requires some pre-defined information about the object and whose outcome is not always uniquely-defined. Moreover, the diffraction patterns must be recorded under oversampling conditions, a pre-requisite to be able to solve the phase problem. Here, we report how holography and CDI can be merged into one superior technique: holographic coherent diffraction imaging (HCDI). An inline hologram can be recorded by employing a modified CDI experimental scheme. We demonstrate that the amplitude of the Fourier transform of an inline hologram is related to the complex-valued visibility, thus providing information on both, the amplitude and the phase of the scattered wave in the plane of the diffraction pattern. With the phase information available, the condition of oversampling the diffraction patterns can be relaxed, and the

  11. Neutron diffraction and oxide research

    International Nuclear Information System (INIS)

    Hunter, B.; Howard, C.J.; Kennedy, B.J.

    1999-01-01

    Oxide compounds form a large class of interesting materials that have a diverse range of mechanical and electronic properties. This diversity and its commercial implications has had a significant impact on physics research. This is particularly evident in the fields of superconductivity magnetoresistivity and ferroelectricity, where discoveries in the last 15 years have given rise to significant shifts in research activities. Historically, oxides have been studied for many years, but it is only recently that significant effort has been diverted to the study of oxide materials for their application to mechanical and electronic devices. An important property of such materials is the atomic structure, for the determination of which diffraction techniques are ideally suited. Recent examples of structure determinations using neutron diffraction in oxide based systems are high temperature superconductors, where oxygen defects are a key factor. Here, neutron diffraction played a major role in determining the effect of oxygen on the superconducting properties. Similarly, neutron diffraction has enjoyed much success in the determination of the structures of the manganate based colossal magnetoresistive (CMR) materials. In both these cases the structure plays a pivotal role in determining theoretical models of the electronic properties. The neutron scattering group at ANSTO has investigated several oxide systems using neutron powder diffraction. Two such systems are presented in this paper; the zirconia-based materials that are used as engineering materials, and the perovskite-based oxides that include the well known cuprate superconductors and the manganate CMR materials

  12. Hydrogen positions in single nanocrystals revealed by electron diffraction

    Czech Academy of Sciences Publication Activity Database

    Palatinus, Lukáš; Brázda, Petr; Boullay, P.; Pérez, O.; Klementová, Mariana; Petit, S.; Eigner, Václav; Zaarour, M.; Mintova, S.

    2017-01-01

    Roč. 355, č. 6321 (2017), s. 166-169 ISSN 0036-8075 R&D Projects: GA ČR GA16-10035S; GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : hydrogen atoms * crystal structure * electron diffraction tomography * nanocrystalline materials Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 37.205, year: 2016

  13. X-ray diffraction imaging of biological cells

    CERN Document Server

    Nakasako, Masayoshi

    2018-01-01

    In this book, the author describes the development of the experimental diffraction setup and structural analysis of non-crystalline particles from material science and biology. Recent advances in X-ray free electron laser (XFEL)-coherent X-ray diffraction imaging (CXDI) experiments allow for the structural analysis of non-crystalline particles to a resolution of 7 nm, and to a resolution of 20 nm for biological materials. Now XFEL-CXDI marks the dawn of a new era in structural analys of non-crystalline particles with dimensions larger than 100 nm, which was quite impossible in the 20th century. To conduct CXDI experiments in both synchrotron and XFEL facilities, the author has developed apparatuses, named KOTOBUKI-1 and TAKASAGO-6 for cryogenic diffraction experiments on frozen-hydrated non-crystalline particles at around 66 K. At the synchrotron facility, cryogenic diffraction experiments dramatically reduce radiation damage of specimen particles and allow tomography CXDI experiments. In addition, in XFEL ex...

  14. Diffraction of high energy electrons

    International Nuclear Information System (INIS)

    Bourret, A.

    1981-10-01

    The diffraction of electrons by a crystal is examined to study its structure. As the electron-substance interaction is strong, it must be treated in a dynamic manner. Using the N waves theory and physical optics the base equations giving the wave at the outlet are deduced for a perfect crystal and their equivalence is shown. The more complex case of an imperfect crystal is then envisaged in these two approaches. In both cases, only the diffraction of high energy electrons ( > 50 KeV) are considered since in the diffraction of slow electrons back scattering cannot be ignored. Taking into account an increasingly greater number of beams, through fast calculations computer techniques, enables images to be simulated in very varied conditions. The general use of the Fast Fourier Transform has given a clear cut practical advantage to the multi-layer method [fr

  15. Diffraction-grating neutron interferometers

    International Nuclear Information System (INIS)

    Ioffe, A.I.

    1988-01-01

    Aberration distortions of wavefronts in a very cold neutron interferometer using diffraction gratings are analyzed. Aberrations that considerably reduce the efficiency of a two-grating interferometer are shown to be fully compensable by adding a third diffraction grating, which also permits the interferometer to operate with a non-collimated and non-monochromatized illuminating beam thereby raising its efficiency. A fourth diffraction grating additionally permits compensation of effects of the terrestrial rotation that affect performance of a large interferometer in which the spatial separation of beams can be of the order of a few meters. It is demonstrated to be practically possible to implement an interferometer for neutrons having a wavelength λ = 20 A and to use it in experiments aimed at finding the electric charge of the neutron at the level of 10 -23 to 10 -22 of the electronic charge. (orig.)

  16. Texture studies using neutron diffraction

    International Nuclear Information System (INIS)

    Szpunar, J.A.

    1984-01-01

    Various aspects of the application of neutron scattering methods to texture studies are reviewed. The neutron method is compared with other methods of texture measurement and techniques of neutron diffraction registration of texture are discussed. Examples are presented of the use of neutron scattering for texture examination in materials having various grain sizes and degrees of structural inhomogeneity. It is also demonstrated that the information about texture can be used in the discussion of the deformation and recrystallization processes in metals. Neutron diffraction results are shown to be helpful in the examination of the influence of texture on the anisotropy of physical properties in materials. The possibility of neutron diffraction measurements of magnetic texture is reported. Finally the accuracy of texture measurements using the neutron method is discussed. (author)

  17. Transverse tomography and radiotherapy

    International Nuclear Information System (INIS)

    Leer, J.W.H.

    1982-01-01

    This study was intended to delineate the indications for radiotherapy treatment-planning with the help of computerized axial tomography (C.T.) and transverse analog tomography (T.A.T.). Radiotherapy localisation procedures with the conventional method (simulator), with the CT-scanner and with the transverse analog tomograph (T.A.T., Simtomix, Oldelft) were compared. As criterium for evaluation differences in reconstruction drawing based on these methods were used. A certain method was judged ''superior'' to another if the delineation of the target volume was more accurate, if a better impression was gained of the site of (for irradiation) organs at risk, or if the localisation could only be performed with that method. The selected group of patients consisted of 120 patients for whom a reconstruction drawing in the transverse plane was made according to the treatment philosophy. In this group CT-assisted localisation was judged on 68 occasions superior to the conventional method. In a number of cases it was found that a ''standard'' change in a standard target volume, on the base of augmented anatomical knowledge, made the conventional method sufficient. The use of CT-scanner for treatment planning was estimated. For ca. 270/1000 new patients a CT-scan is helpful (diagnostic scan), for 140 of them the scan is necessary (planning scan). The quality of the anatomical information obtained with the T.A.T. does not yet fall within acceptable limits, but progress has been made. (Auth.)

  18. Compressed sensing electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Leary, Rowan, E-mail: rkl26@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Saghi, Zineb; Midgley, Paul A. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Holland, Daniel J. [Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge CB2 3RA (United Kingdom)

    2013-08-15

    The recent mathematical concept of compressed sensing (CS) asserts that a small number of well-chosen measurements can suffice to reconstruct signals that are amenable to sparse or compressible representation. In addition to powerful theoretical results, the principles of CS are being exploited increasingly across a range of experiments to yield substantial performance gains relative to conventional approaches. In this work we describe the application of CS to electron tomography (ET) reconstruction and demonstrate the efficacy of CS–ET with several example studies. Artefacts present in conventional ET reconstructions such as streaking, blurring of object boundaries and elongation are markedly reduced, and robust reconstruction is shown to be possible from far fewer projections than are normally used. The CS–ET approach enables more reliable quantitative analysis of the reconstructions as well as novel 3D studies from extremely limited data. - Highlights: • Compressed sensing (CS) theory and its application to electron tomography (ET) is described. • The practical implementation of CS–ET is outlined and its efficacy demonstrated with examples. • High fidelity tomographic reconstruction is possible from a small number of images. • The CS–ET reconstructions can be more reliably segmented and analysed quantitatively. • CS–ET is applicable to different image content by choice of an appropriate sparsifying transform.

  19. EDITORIAL: Industrial Process Tomography

    Science.gov (United States)

    Anton Johansen, Geir; Wang, Mi

    2008-09-01

    There has been tremendous development within measurement science and technology over the past couple of decades. New sensor technologies and compact versatile signal recovery electronics are continuously expanding the limits of what can be measured and the accuracy with which this can be done. Miniaturization of sensors and the use of nanotechnology push these limits further. Also, thanks to powerful and cost-effective computer systems, sophisticated measurement and reconstruction algorithms previously only accessible in advanced laboratories are now available for in situ online measurement systems. The process industries increasingly require more process-related information, motivated by key issues such as improved process control, process utilization and process yields, ultimately driven by cost-effectiveness, quality assurance, environmental and safety demands. Industrial process tomography methods have taken advantage of the general progress in measurement science, and aim at providing more information, both quantitatively and qualitatively, on multiphase systems and their dynamics. The typical approach for such systems has been to carry out one local or bulk measurement and assume that this is representative of the whole system. In some cases, this is sufficient. However, there are many complex systems where the component distribution varies continuously and often unpredictably in space and time. The foundation of industrial tomography is to conduct several measurements around the periphery of a multiphase process, and use these measurements to unravel the cross-sectional distribution of the process components in time and space. This information is used in the design and optimization of industrial processes and process equipment, and also to improve the accuracy of multiphase system measurements in general. In this issue we are proud to present a selection of the 145 papers presented at the 5th World Congress on Industrial Process Tomography in Bergen

  20. Light diffraction through a feather

    Directory of Open Access Journals (Sweden)

    Pérez García, Hugo;

    2012-01-01

    Full Text Available We have used a feather to study light diffraction, in a qualitative as well as in a quantitative manner. Experimental measurement of the separation between the bright spots obtained with a laser pointer allowed the determination of the space between feather's barbs and barbules. The results we have obtained agree satisfactorily with those corresponding to a typical feather. Due to the kind of materials, the related concepts and the experimental results, this activity becomes an excellent didactic resource suitable for studying diffraction, both in introductory undergraduate as well as in secondary school physics courses.

  1. Diffraction by a finite strip

    Science.gov (United States)

    Williams, M. H.

    1982-01-01

    A new approach is presented to diffraction problems involving plane strip barriers or slit apertures. These are problems that display the effects of multiple interacting edges. The approach taken here provides exact, compact solutions. The theory is introduced through a series of examples that are, in fact, the 'standard' problems of the subject, diffraction of a plane oblique wave by a slit, for example. In each case, the solutions are found to depend explicitly on a single 'special' function and its Fourier transform. These fundamental functions are described, with the emphasis placed on practical computational methods. The example problems are all couched in the language of acoustics.

  2. Dynamical theory of neutron diffraction

    International Nuclear Information System (INIS)

    Sears, V.F.

    1978-01-01

    We present a review of the dynamical theory of neutron diffraction by macroscopic bodies which provides the theoretical basis for the study of neutron optics. We consider both the theory of dispersion, in which it is shown that the coherent wave in the medium satisfies a macroscopic one-body Schroedinger equation, and the theory of reflection, refraction, and diffraction in which the above equation is solved for a number of special cases of interest. The theory is illustrated with the help of experimental results obtained over the past 10 years by a number of new techniques such as neutron gravity refractometry. Pendelloesung interference, and neutron interferometry. (author)

  3. Neutron diffraction on pulsed sources

    Science.gov (United States)

    Aksenov, V. L.; Balagurov, A. M.

    2016-03-01

    The current capabilities of and major scientific problems solved by time-of-flight neutron diffraction are reviewed. The reasons for the rapid development of the method over the last two decades have been mainly the emergence of third-generation pulsed sources with a megawatt time-averaged power and advances in neutron optical devices and detector systems. The paper discusses some historical aspects of time-of-flight neutron diffraction and examines the contribution to this method from F L Shapiro, the centennial of whose birth was celebrated in 2015. The state of the art with respect to neutron sources for studies on extracted beams is reviewed in a special section.

  4. CONFERENCE: Elastic and diffractive scattering

    International Nuclear Information System (INIS)

    White, Alan

    1989-01-01

    Elastic scattering, when particles appear to 'bounce' off each other, and the related phenomena of diffractive scattering are currently less fashionable than the study of hard scattering processes. However this could change rapidly if unexpected results from the UA4 experiment at the CERN Collider are confirmed and their implications tested. These questions were highlighted at the third 'Blois Workshop' on Elastic and Diffractive Scattering, held early in May on the Evanston campus of Northwestern University, near Chicago

  5. Computational imaging using lightweight diffractive-refractive optics.

    Science.gov (United States)

    Peng, Yifan; Fu, Qiang; Amata, Hadi; Su, Shuochen; Heide, Felix; Heidrich, Wolfgang

    2015-11-30

    Diffractive optical elements (DOE) show great promise for imaging optics that are thinner and more lightweight than conventional refractive lenses while preserving their light efficiency. Unfortunately, severe spectral dispersion currently limits the use of DOEs in consumer-level lens design. In this article, we jointly design lightweight diffractive-refractive optics and post-processing algorithms to enable imaging under white light illumination. Using the Fresnel lens as a general platform, we show three phase-plate designs, including a super-thin stacked plate design, a diffractive-refractive-hybrid lens, and a phase coded-aperture lens. Combined with cross-channel deconvolution algorithm, both spherical and chromatic aberrations are corrected. Experimental results indicate that using our computational imaging approach, diffractive-refractive optics is an alternative candidate to build light efficient and thin optics for white light imaging.

  6. Computational imaging using lightweight diffractive-refractive optics

    KAUST Repository

    Peng, Yifan

    2015-11-23

    Diffractive optical elements (DOE) show great promise for imaging optics that are thinner and more lightweight than conventional refractive lenses while preserving their light efficiency. Unfortunately, severe spectral dispersion currently limits the use of DOEs in consumer-level lens design. In this article, we jointly design lightweight diffractive-refractive optics and post-processing algorithms to enable imaging under white light illumination. Using the Fresnel lens as a general platform, we show three phase-plate designs, including a super-thin stacked plate design, a diffractive-refractive-hybrid lens, and a phase coded-aperture lens. Combined with cross-channel deconvolution algorithm, both spherical and chromatic aberrations are corrected. Experimental results indicate that using our computational imaging approach, diffractive-refractive optics is an alternative candidate to build light efficient and thin optics for white light imaging.

  7. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... Videos About Us News Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Sinuses Computed tomography ( ... cross-sectional images generated during a CT scan can be reformatted in multiple planes, and can even ...

  8. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... the Sinuses? What is CT (Computed Tomography) of the Sinuses? Computed tomography, more commonly known as a ... of page What are some common uses of the procedure? CT of the sinuses is primarily used ...

  9. A constrained conjugate gradient algorithm for computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, S.G.; Goodman, D.M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Image reconstruction from projections of x-ray, gamma-ray, protons and other penetrating radiation is a well-known problem in a variety of fields, and is commonly referred to as computed tomography (CT). Various analytical and series expansion methods of reconstruction and been used in the past to provide three-dimensional (3D) views of some interior quantity. The difficulties of these approaches lie in the cases where (a) the number of views attainable is limited, (b) the Poisson (or other) uncertainties are significant, (c) quantifiable knowledge of the object is available, but not implementable, or (d) other limitations of the data exist. We have adapted a novel nonlinear optimization procedure developed at LLNL to address limited-data image reconstruction problems. The technique, known as nonlinear least squares with general constraints or constrained conjugate gradients (CCG), has been successfully applied to a number of signal and image processing problems, and is now of great interest to the image reconstruction community. Previous applications of this algorithm to deconvolution problems and x-ray diffraction images for crystallography have shown the great promise.

  10. A QCD analysis of ZEUS diffractive data

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2009-11-01

    ZEUS inclusive diffractive cross-section measurements have been used in a DGLAP next-to-leading-order QCD analysis to extract the diffractive parton distribution functions. Data on diffractive dijet production in deep inelastic scattering have also been included to constrain the gluon density. Predictions based on the extracted parton densities are compared to diffractive charm and dijet photoproduction data. (orig.)

  11. A QCD analysis of ZEUS diffractive data

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2009-11-15

    ZEUS inclusive diffractive cross-section measurements have been used in a DGLAP next-to-leading-order QCD analysis to extract the diffractive parton distribution functions. Data on diffractive dijet production in deep inelastic scattering have also been included to constrain the gluon density. Predictions based on the extracted parton densities are compared to diffractive charm and dijet photoproduction data. (orig.)

  12. Fresnel diffraction plates are simple and inexpensive

    Science.gov (United States)

    Hoover, R. B.

    1967-01-01

    Fresnel plate demonstrates diffraction phenomena simply and inexpensively. A large number of identical diffracting apertures are made in random orientation on photographic film. When a small source of light is viewed through the plate, the diffraction pattern typical of the diffracting aperture is readily seen.

  13. Resolving ambiguities in reconstructed grain maps using discrete tomography

    DEFF Research Database (Denmark)

    Alpers, A.; Knudsen, E.; Poulsen, H.F.

    2005-01-01

    reconstruct the image from diffraction data, but they are often unable to assign unambiguous values to all pixels. We present an approach that resolves these ambiguous pixels by using a Monte Carlo technique that exploits the discrete nature of the problem and utilizes proven methods of discrete tomography...

  14. Review of muon tomography

    International Nuclear Information System (INIS)

    Feng Hanliang; Jiao Xiaojing

    2010-01-01

    As a new detection technology, Muon tomography has some potential benefits, such as being able to form a three- dimensional image, without radiation, low cost, fast detecting etc. Especially, muon tomography will play an important role in detecting nuclear materials. It introduces the theory of Muon tomography, its advantages and the Muon tomography system developed by decision sciences corporation and Los Alamos national laboratory. (authors)

  15. Konference Diffractive Optics 2007 Barcelona

    Czech Academy of Sciences Publication Activity Database

    Pala, Jan

    2008-01-01

    Roč. 53, č. 2 (2008), s. 63-64 ISSN 0447-6441 R&D Projects: GA ČR(CZ) GP102/06/P448 Institutional research plan: CEZ:AV0Z20670512 Keywords : diffraction * holographic optical elements * laser beams Subject RIV: BH - Optics , Masers, Lasers

  16. 3D -Ray Diffraction Microscopy

    DEFF Research Database (Denmark)

    Poulsen, Henning Friis; Schmidt, Søren; Juul Jensen, Dorte

    2014-01-01

    Three-dimensional X-ray diffraction (3DXRD) microscopy is a fast and non-destructive structural characterization technique aimed at the study of individual crystalline elements (grains or subgrains) within mm-sized polycrystalline specimens. It is based on two principles: the use of highly...

  17. Positron emission tomography

    International Nuclear Information System (INIS)

    Reivich, M.; Alavi, A.

    1985-01-01

    This book contains 24 selections. Some of the titles are: Positron Emission Tomography Instrumentation, Generator Systems for Positron Emitters, Reconstruction Algorithms, Cerebral Glucose Consumption: Methodology and Validation, Cerebral Blood Flow Tomography Using Xenon-133 Inhalation: Methods and Clinical Applications, PET Studies of Stroke, Cardiac Positron Emission Tomography, and Use of PET in Oncology

  18. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... Perfusion of the Head CT Angiography (CTA) Stroke Brain Tumors Computer Tomography (CT) Safety During Pregnancy Head and Neck Cancer X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to Computed Tomography (CT) - Head Videos related to Computed Tomography ( ...

  19. Proton computed tomography

    International Nuclear Information System (INIS)

    Hanson, K.M.

    1978-01-01

    The use of protons or other heavy charged particles instead of x rays in computed tomography (CT) is explored. The results of an experimental implementation of proton CT are presented. High quality CT reconstructions are obtained at an average dose reduction factor compared with an EMI 5005 x-ray scanner of 10:1 for a 30-cm-diameter phantom and 3.5:1 for a 20-cm diameter. The spatial resolution is limited by multiple Coulomb scattering to about 3.7 mm FWHM. Further studies are planned in which proton and x-ray images of fresh human specimens will be compared. Design considerations indicate that a clinically useful proton CT scanner is eminently feasible

  20. Quantitative inspection by computerized tomography

    International Nuclear Information System (INIS)

    Lopes, R.T.; Assis, J.T. de; Jesus, E.F.O. de

    1989-01-01

    The computerized Tomography (CT) is a method of nondestructive testing, that furnish quantitative information, that permit the detection and accurate localization of defects, internal dimension measurement, and, measurement and chart of the density distribution. The CT technology is much versatile, not presenting restriction in relation to form, size or composition of the object. A tomographic system, projected and constructed in our laboratory is presented. The applications and limitation of this system, illustrated by tomographyc images, are shown. (V.R.B.)

  1. Dose optimization in computed tomography: ICRP 87

    International Nuclear Information System (INIS)

    2007-01-01

    The doses given in the use of computed tomography scans are studied, aiming to calibrate the limits of irradiation in patients who need these tests. Furthermore, a good value of computed tomography should be guaranteed by physicians and radiologists for people not being irradiated unfairly, reducing doses and unnecessary tests. A critical evaluation by an ethics committee is suggested for cases where the test is performed for medical research without a cause [es

  2. Neutron diffraction on pulsed sources

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Balagurov, A.M.

    2016-01-01

    The possibilities currently offered and major scientific problems solved by time-of-flight neutron diffraction are reviewed. The reasons for the rapid development of the method over the last two decades has been mainly the emergence of third generation pulsed sources with a MW time-averaged power and advances in neutron-optical devices and detector systems. The paper discusses some historical aspects of time-of-flight neutron diffraction and examines the contribution to this method by F.L.Shapiro whose 100th birth anniversary was celebrated in 2015. The state of the art with respect to neutron sources for studies on output beams is reviewed in a special section. [ru

  3. Deterministic Bragg Coherent Diffraction Imaging.

    Science.gov (United States)

    Pavlov, Konstantin M; Punegov, Vasily I; Morgan, Kaye S; Schmalz, Gerd; Paganin, David M

    2017-04-25

    A deterministic variant of Bragg Coherent Diffraction Imaging is introduced in its kinematical approximation, for X-ray scattering from an imperfect crystal whose imperfections span no more than half of the volume of the crystal. This approach provides a unique analytical reconstruction of the object's structure factor and displacement fields from the 3D diffracted intensity distribution centred around any particular reciprocal lattice vector. The simple closed-form reconstruction algorithm, which requires only one multiplication and one Fourier transformation, is not restricted by assumptions of smallness of the displacement field. The algorithm performs well in simulations incorporating a variety of conditions, including both realistic levels of noise and departures from ideality in the reference (i.e. imperfection-free) part of the crystal.

  4. Diffraction operators in paraxial approach

    Science.gov (United States)

    Lasso, William; Navas, Marianela; Añez, Liz; Urdaneta, Romer; Díaz, Leonardo; Torres, César O.

    2014-07-01

    Nowadays, research in the field of science education points to the creation of alternative ways of teaching contents encouraging the development of more elaborate reasoning, where a high degree of abstraction and generalization of scientific knowledge prevails. On that subject, this research shows a didactic alternative proposal for the construction of Fresnel and Fraunhoffer diffraction concepts applying the Fourier transform technique in the study of electromagnetic waves propagation in free space. Curvature transparency and Fourier sphere operators in paraxial approximation are used in order to make the usual laborious mathematical approach easier. The main result shows that the composition of optic metaxial operators results in the discovery of a simpler way out of the standard electromagnetic wave propagation in free space between a transmitter and a receptor separated from a given distance. This allows to state that the didactic proposal shown encourages the construction of Fresnel and Fraunhoffer diffraction concepts in a more effective and easier way than the traditional teaching.

  5. Neutron diffraction and Vitamin E

    Energy Technology Data Exchange (ETDEWEB)

    Harroun, T A; Marquardt, D; Katsaras, J; Atkinson, J, E-mail: tharroun@brocku.ca

    2010-11-01

    It is generally accepted that neutron diffraction from model membrane systems is an effective biophysical technique for determining membrane structure. Here we describe an example of how deuterium labelling can elucidate the location of specific membrane soluble molecules, including a brief discussion of the technique itself. We show that deuterium labelled {alpha}-tocopherol sits upright in the bilayer, as might be expected, but at very different locations within the bilayer, depending on the degree of lipid chain unsaturation.

  6. Industrial applications of neutron diffraction

    International Nuclear Information System (INIS)

    Felcher, G.P.

    1989-01-01

    Neutron diffraction (or, to be more general, neutron scattering) is a most versatile and universal tool, which has been widely employed to probe the structure, the dynamics and the magnetism of condensed matter. Traditionally used for fundamental research in solid state physics, this technique more recently has been applied to problems of immediate industrial interest, as illustrated in examples covering the main fields of endeavour. 14 refs., 14 figs

  7. Diffractive X-ray Telescopes

    OpenAIRE

    Skinner, Gerald K.

    2010-01-01

    Diffractive X-ray telescopes using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution several orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted space- time in the immediate vicinity of the super...

  8. Neutron diffraction - instrument and experiment

    International Nuclear Information System (INIS)

    Siruguri, Vasudeva

    2010-01-01

    I describe the basic concepts that go into the design of a neutron diffractometer at a reactor source. Recent developments undertaken at our centre in this regard will be highlighted. Importance of sample environment to carry out front-line research problems with be emphasized. The Rietveld method used for neutron diffraction data analysis will be discussed in some detail along with a short introduction to magnetic refinement. (author)

  9. Submicron X-ray diffraction

    International Nuclear Information System (INIS)

    MacDowell, Alastair; Celestre, Richard; Tamura, Nobumichi; Spolenak, Ralph; Valek, Bryan; Brown, Walter; Bravman, John; Padmore, Howard; Batterman, Boris; Patel, Jamshed

    2000-01-01

    At the Advanced Light Source in Berkeley the authors have instrumented a beam line that is devoted exclusively to x-ray micro diffraction problems. By micro diffraction they mean those classes of problems in Physics and Materials Science that require x-ray beam sizes in the sub-micron range. The instrument is for instance, capable of probing a sub-micron size volume inside micron sized aluminum metal grains buried under a silicon dioxide insulating layer. The resulting Laue pattern is collected on a large area CCD detector and automatically indexed to yield the grain orientation and deviatoric (distortional) strain tensor of this sub-micron volume. A four-crystal monochromator is then inserted into the beam, which allows monochromatic light to illuminate the same part of the sample. Measurement of diffracted photon energy allows for the determination of d spacings. The combination of white and monochromatic beam measurements allow for the determination of the total strain/stress tensor (6 components) inside each sub-micron sized illuminated volume of the sample

  10. Semiclassical perturbation theory for diffraction in heavy atom surface scattering.

    Science.gov (United States)

    Miret-Artés, Salvador; Daon, Shauli; Pollak, Eli

    2012-05-28

    The semiclassical perturbation theory formalism of Hubbard and Miller [J. Chem. Phys. 78, 1801 (1983)] for atom surface scattering is used to explore the possibility of observation of heavy atom diffractive scattering. In the limit of vanishing ℏ the semiclassical theory is shown to reduce to the classical perturbation theory. The quantum diffraction pattern is sensitive to the characteristics of the beam of incoming particles. Necessary conditions for observation of quantum diffraction are derived for the angular width of the incoming beam. An analytic expression for the angular distribution as a function of the angular and momentum variance of the incoming beam is obtained. We show both analytically and through some numerical results that increasing the angular width of the incident beam leads to decoherence of the quantum diffraction peaks and one approaches the classical limit. However, the incoherence of the beam in the parallel direction does not destroy the diffraction pattern. We consider the specific example of Ar atoms scattered from a rigid LiF(100) surface.

  11. Single crystal neutron diffraction study of triglycine sulphate revisited

    Indian Academy of Sciences (India)

    Abstract. In order to get the exact hydrogen-bonding scheme in triglycine sulphate. (TGS), which is an important hydrogen bonded ferroelectric, a single crystal neutron diffraction study was undertaken. The structure was refined to an R-factor of R[F2] = 0.034. Earlier neutron structure of TGS was reported with a very limited ...

  12. Teaching Diffraction with Hands-On Optical Spectrometry

    Science.gov (United States)

    Fischer, Robert

    2012-01-01

    Although the observation of optical spectra is common practice in physics classes, students are usually limited to a passive, qualitative observation of nice colours. This paper discusses a diffraction-based spectrometer that allows students to take quantitative measurements of spectral bands. Students can build it within minutes from generic…

  13. An adjustable diaphragm/collimator for neutron diffraction experiments

    International Nuclear Information System (INIS)

    Simms, P.

    1981-01-01

    In single-crystal neutron diffraction experiments, the environment surrounding the specimen may produce unwanted scattering and this should be limited by a system of simple but easily adjustable diaphragms. Here a system is described which has been fitted to a number of neutron diffractometers at the Institut Laue-Langevin at Grenoble. (Auth.)

  14. Morfologia alveolar sob a perspectiva da tomografia computadorizada: definindo os limites biológicos para a movimentação dentária Alveolar bone morphology under the perspective of the computed tomography: defining the biological limits of tooth movement

    Directory of Open Access Journals (Sweden)

    Daniela Gamba Garib

    2010-10-01

    Full Text Available INTRODUÇÃO: a tomografia computadorizada (TC permite a visualização do osso alveolar que recobre os dentes por vestibular e lingual. OBJETIVO: o propósito deste estudo foi expor e discutir as implicações da morfologia do osso alveolar, visualizado por meio da TC, sobre o diagnóstico e plano de tratamento ortodôntico. MÉTODOS: foram descritas as evidências sobre a inter-relação entre características dentofaciais e a morfologia das tábuas ósseas vestibular e lingual, assim como evidências sobre a repercussão da movimentação ortodôntica sobre o nível e espessura dessas estruturas periodontais. RESULTADOS: pacientes adultos podem apresentar deiscências ósseas previamente ao tratamento ortodôntico, principalmente na região dos incisivos inferiores. Os pacientes com padrão de crescimento vertical parecem apresentar menor espessura das tábuas ósseas vestibular e lingual no nível do ápice dos dentes permanentes, comparados a pacientes com padrão de crescimento horizontal. O movimento dentário vestibulolingual descentraliza os dentes do rebordo alveolar e ocasiona deiscências ósseas. CONCLUSÃO: a morfologia do rebordo alveolar constitui um fator limitante para a movimentação dentária e deve ser considerada, de forma individual, na realização do plano de tratamento ortodôntico.INTRODUCTION: Computed tomography (CT permits the visualization of the labial/buccal and lingual alveolar bone. OBJECTIVES: This study aimed at reporting and discussing the implications of alveolar bone morphology, visualized by means of CT, on the diagnosis and orthodontic treatment plan. METHODS: Evidences of the interrelationship between dentofacial features and labial/buccal and lingual alveolar bone morphology, as well as the evidences of the effects of the orthodontic movement on the thickness and level of these periodontal structures were described. RESULTS: Adult patients may present bone dehiscences previously to orthodontic

  15. Turbocharging Quantum Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Blume-Kohout, Robin J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Gamble, John King [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Nielsen, Erik [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Maunz, Peter Lukas Wilhelm [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Scholten, Travis L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Rudinger, Kenneth Michael [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Quantum tomography is used to characterize quantum operations implemented in quantum information processing (QIP) hardware. Traditionally, state tomography has been used to characterize the quantum state prepared in an initialization procedure, while quantum process tomography is used to characterize dynamical operations on a QIP system. As such, tomography is critical to the development of QIP hardware (since it is necessary both for debugging and validating as-built devices, and its results are used to influence the next generation of devices). But tomography suffers from several critical drawbacks. In this report, we present new research that resolves several of these flaws. We describe a new form of tomography called gate set tomography (GST), which unifies state and process tomography, avoids prior methods critical reliance on precalibrated operations that are not generally available, and can achieve unprecedented accuracies. We report on theory and experimental development of adaptive tomography protocols that achieve far higher fidelity in state reconstruction than non-adaptive methods. Finally, we present a new theoretical and experimental analysis of process tomography on multispin systems, and demonstrate how to more effectively detect and characterize quantum noise using carefully tailored ensembles of input states.

  16. Growing Larger Crystals for Neutron Diffraction

    Science.gov (United States)

    Pusey, Marc

    2003-01-01

    Obtaining crystals of suitable size and high quality has been a major bottleneck in macromolecular crystallography. With the advent of advanced X-ray sources and methods the question of size has rapidly dwindled, almost to the point where if one can see the crystal then it was big enough. Quality is another issue, and major national and commercial efforts were established to take advantage of the microgravity environment in an effort to obtain higher quality crystals. Studies of the macromolecule crystallization process were carried out in many labs in an effort to understand what affected the resultant crystal quality on Earth, and how microgravity improved the process. While technological improvements are resulting in a diminishing of the minimum crystal size required, neutron diffraction structural studies still require considerably larger crystals, by several orders of magnitude, than X-ray studies. From a crystal growth physics perspective there is no reason why these 'large' crystals cannot be obtained: the question is generally more one of supply than limitations mechanism. This talk will discuss our laboratory s current model for macromolecule crystal growth, with highlights pertaining to the growth of crystals suitable for neutron diffraction studies.

  17. F-18-fluorodeoxyglucose-positron emission tomography in colorectal cancer

    International Nuclear Information System (INIS)

    Joerg, L.; Langsteger, W.

    2002-01-01

    Whole-body positron emission tomography (PET) with the radiolabeled glucose analog F-18-fluorodeoxyglucose (F-18-FDG) is a sensitive diagnostic tool that images tumors based on increased uptake of glucose. Several recent publications have shown that F-18-fluorodeoxyglucose-positron emission tomography is more sensitive than computed-tomography (CT) in detecting colorectal cancer. In patients with increasing CEA (carcinoembryonic antigen) and no evidence of recurrent disease on CT F-18-fluorodeoxyglucose-positron emission tomography often detects recurrent cancer. In all, patient management seems to be changed in about 25 % of patients who undergo F-18-fluorodeoxyglucose-positron emission tomography in addition to standard staging procedure. Limited reports to date on both chemotherapy and radiotherapy support the role of F-18-fluorodeoxyglucose-positron emission tomography in assessing treatment response. Also regarding preoperative staging of primary colorectal cancer the literature is very limited. (author)

  18. High-pressure neutron diffraction studies at LANSCE

    International Nuclear Information System (INIS)

    Zhao, Yusheng; Zhang, Jianzhong; Xu, Hongwu; Lokshin, Konstantin A.; He, Duanwei; Qian, Jiang; Pantea, Cristian; Daemen, Luke L.; Vogel, Sven C.; Ding, Yang; Xu, Jian

    2010-01-01

    The development of neutron diffraction under extreme pressure (P) and temperature (T) conditions is highly valuable to condensed matter physics, crystal chemistry, materials science, and earth and planetary sciences. We have incorporated a 500-ton press TAP-98 into the HiPPO diffractometer at the Los Alamos Neutron Science Center (LANSCE) to conduct in situ high-P-T neutron diffraction experiments. We have developed a large gem-crystal anvil cell, ZAP, to conduct neutron diffraction experiments at high P. The ZAP cell can be used to integrate multiple experimental techniques such as neutron diffraction, laser spectroscopy, and ultrasonic interferometry. More recently, we have developed high-P low-T gas/liquid cells in conjunction with neutron diffraction. These techniques enable in situ and real-time examination of gas uptake/release processes and allow accurate, time-dependent determination of changes in crystal structure and related reaction kinetics. We have successfully used these techniques to study the equations of state, structural phase transitions, and thermo-mechanical properties of metals, ceramics, and minerals. We have conducted researches on the formation/decomposition kinetics of methane, CO 2 and hydrogen hydrate clathrates, and hydrogen/CO 2 adsorption of inclusion compounds such as metal-organic frameworks (MOFs). The aim of our research is to accurately map out phase relations and determine structural parameters (lattice constants, atomic positions, atomic thermal parameters, bond lengths, bond angles, etc.) in the P-T-X space. We are developing further high-P-T technology with a new 2000-ton press, TAPLUS-2000, and a ZIA (Deformation-DIA type) cubic anvil package to routinely achieve pressures up to 20 GPa and temperatures up to 2000 K. The design of a dedicated high-P neutron beamline, LAPTRON, is also underway for simultaneous high-P-T neutron diffraction, ultrasonic, calorimetry, radiography, and tomography studies. Studies based on high

  19. X-ray microimaging by diffractive techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kirz, Janos; Jacobsen, Chris

    2001-07-31

    The report summarizes the development of soft x-ray microscopes at the National Synchrotron Light Source X-1A beamline. We have developed a soft x-ray microscopy beamline (X-1A) at the National Synchrotron Light Source at Brookhaven National Laboratory. This beamline has been upgraded recently to provide two endstations dedicated to microscopy experiments. One endstation hosts a brand new copy of the redesigned room temperature scanning x-ray microscope (STXM), and the other end station hosts a cryo STXM and the original redesigned room temperature microscope, which has been commissioned and has started operation. Cryo STXM and the new microscope use the same new software package, running under the LINUX operating system. The new microscope is showing improved image resolution and extends spectromicroscopy to the nitrogen, oxygen and iron edges. These microscopes are used by us, and by users of the facility, to image hydrated specimens at 50 nm or better spatial resolution and with 0.1-0.5 eV energy resolution. This allows us to carry out chemical state mapping in biological, materials science, and environmental and colloidal science specimens. In the cryo microscope, we are able to do chemical state mapping and tomography of frozen hydrated specimens, and this is of special importance for radiation-sensitive biological specimens. for spectromicroscopic analysis, and methods for obtaining real-space images from the soft x-ray diffraction patterns of non-crystalline specimens. The user program provides opportunities for collaborators and other groups to exploit the techniques available and to develop them further. We have also developed new techniques such as an automated method for acquiring ''stacks'' of images.

  20. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins

    OpenAIRE

    Hofmann, M.; Eggeling, C.; Jakobs, S.; Hell, S.

    2005-01-01

    Fluorescence microscopy is indispensable in many areas of science, but until recently, diffraction has limited the resolution of its lens-based variant. The diffraction barrier has been broken by a saturated depletion of the marker's fluorescent state by stimulated emission, but this approach requires picosecond laser pulses of GW/cm2 intensity. Here, we demonstrate the surpassing of the diffraction barrier in fluorescence microscopy with illumination intensities that are eight orders of magn...

  1. Diffraction structural biology – a new horizon

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, Takashi [Nagoya Industrial Science Research Institute, 1-13 Yotsuya-dori, Chikusa-ku, Nagoya 464-0819 (Japan); Helliwell, John R. [University of Manchester, Manchester M13 9PL (United Kingdom); Johnson, John E. [Scripps Research Institute, San Diego, CA (United States); Yasuoka, Noritake, E-mail: nori-yasuoka@nifty.com [AIST Kansai Center, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Sakabe, Noriyoshi [Photon Factory, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2013-11-01

    An introductory overview to the special issue papers on diffraction structural biology in this issue of the journal. An introductory overview to the special issue papers on diffraction structural biology in this issue of the journal.

  2. Diffractive dijet and W production in CDF

    International Nuclear Information System (INIS)

    Goulianos, K.

    1998-01-01

    Results on diffractive dijet and W-boson production from CDF are reviewed and compared with predictions based on factorization of the diffractive structure function of the proton measured in deep inelastic scattering at HERA

  3. Edge separation using diffraction anomalous fine structure

    International Nuclear Information System (INIS)

    Ravel, B.; Bouldin, C.E.; Renevier, H.; Hodeau, J.L.; Berar, J.F.

    1999-01-01

    We exploit the crystallographic sensitivity of the Diffraction Anomalous Fine-Structure (DAFS) measurement to separate the fine structure contributions of different atomic species with closely spaced resonant energies. In BaTiO 3 the Ti K edge and Ba Lm edges are separated by 281 eV, or about 8.2 Angstrom -1 ), thus severely limiting the information content of the Ti K edge signal. Using the site selectivity of DAFS we can separate the two fine structure spectra using an iterative Kramers-Kronig method, thus extending the range of the Ti K edge spectrum. This technique has application to many rare earth/transition metal compounds, including many magnetic materials of technological significance for which K and L edges overlap in energy. (au)

  4. Computed tomography for radiographers

    International Nuclear Information System (INIS)

    Brooker, M.

    1986-01-01

    Computed tomography is regarded by many as a complicated union of sophisticated x-ray equipment and computer technology. This book overcomes these complexities. The rigid technicalities of the machinery and the clinical aspects of computed tomography are discussed including the preparation of patients, both physically and mentally, for scanning. Furthermore, the author also explains how to set up and run a computed tomography department, including advice on how the room should be designed

  5. Lattice constant measurement from electron backscatter diffraction patterns

    DEFF Research Database (Denmark)

    Saowadee, Nath; Agersted, Karsten; Bowen, Jacob R.

    2017-01-01

    Kikuchi bands in election backscattered diffraction patterns (EBSP) contain information about lattice constants of crystallographic samples that can be extracted via the Bragg equation. An advantage of lattice constant measurement from EBSPs over diffraction (XRD) is the ability to perform local...... is approximately 0.04 Å. Studying Kikuchi band size dependence of the measurement precision shows that the measurement error decays with increasing band size (i.e. decreasing lattice constant). However, in practice, the sharpness of wide bands tends to be low due to their low intensity, thus limiting...

  6. Dynamical effect in small-angle neutron diffraction from membranes

    International Nuclear Information System (INIS)

    Caspar, D.L.D.; Phillips, W.C.

    1976-01-01

    It has been suggested that multilayers with large repeat periods, fabricated by evaporating alternating thin films of two metals with high scattering-density contrast, could be used as efficient wide-band pass monochromators for x-rays and neutrons. In the limit of a large number of weakly reflecting, periodically arranged layers, the analysis gives results corresponding to those of the dynamical theory for diffraction of x-rays and neutrons from perfect crystals. Measurement of dynamical neutron diffraction effects from membrane arrays provides significant information about the order in the packing and the absolute scattering-density difference between layers

  7. The role of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in resectable pancreatic cancer.

    Science.gov (United States)

    Crippa, Stefano; Salgarello, Matteo; Laiti, Silvia; Partelli, Stefano; Castelli, Paola; Spinelli, Antonello E; Tamburrino, Domenico; Zamboni, Giuseppe; Falconi, Massimo

    2014-08-01

    The role of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in pancreatic ductal adenocarcinoma is debated. We retrospectively assessed the value of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in addition to conventional imaging as a staging modality in pancreatic cancer. (18)Fluoro-deoxyglucose positron emission tomography/computed tomography was performed in 72 patients with resectable pancreatic carcinoma after multi-detector computed tomography positron emission tomography was considered positive for a maximum standardized uptake value >3. Overall, 21% of patients had a maximum standardized uptake value ≤ 3, and 60% of those had undergone neoadjuvant treatment (P=0.0001). Furthermore, 11% of patients were spared unwarranted surgery since positron emission tomography/computed tomography detected metastatic disease. All liver metastases were subsequently identified with contrast-enhanced ultrasound. Sensitivity and specificity of positron emission tomography/computed tomography for distant metastases were 78% and 100%. The median CA19.9 concentration was 48.8 U/mL for the entire cohort and 292 U/mL for metastatic patients (P=0.112). The widespread application of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in patients with resectable pancreatic carcinoma seems not justified. It should be considered in selected patients at higher risk of metastatic disease (i.e. CA19.9>200 U/mL) after undergoing other imaging tests. Neoadjuvant treatment is significantly associated with low metabolic activity, limiting the value of positron emission tomography in this setting. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  8. Undergraduate Experiment with Fractal Diffraction Gratings

    Science.gov (United States)

    Monsoriu, Juan A.; Furlan, Walter D.; Pons, Amparo; Barreiro, Juan C.; Gimenez, Marcos H.

    2011-01-01

    We present a simple diffraction experiment with fractal gratings based on the triadic Cantor set. Diffraction by fractals is proposed as a motivating strategy for students of optics in the potential applications of optical processing. Fraunhofer diffraction patterns are obtained using standard equipment present in most undergraduate physics…

  9. A QCD analysis of ZEUS diffractive data

    NARCIS (Netherlands)

    Chekanov, S.; Derrick, M.; Magill, S.; Musgrave, B.; Nicholass, D.; Repond, J.; Yoshida, R.; Mattingly, M. C. K.; Antonioli, P.; Bari, G.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cindolo, F.; Corradi, M.; Iacobucci, G.; Margotti, A.; Nania, R.; Polini, A.; Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.; Bartsch, D.; Brock, I.; Hartmann, H.; Hilger, E.; Jakob, H. -P.; Juengst, M.; Nuncio-Quiroz, A. E.; Samson, U.; Schoenberg, V.; Shehzadi, R.; Wlasenko, M.; Kaur, M.; Kaur, P.; Singh, I.; Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.; Kim, J. Y.; Ibrahim, Z. A.; Idris, F. Mohamad; Kamaluddin, B.; Abdullah, W. A. T. Wan; Ning, Y.; Ren, Z.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Galas, A.; Olkiewicz, K.; Pawlik, B.; Stopa, P.; Zawiejski, L.; Adamczyk, L.; Bold, T.; Grabowska-Bold, I.; Kisielewska, D.; Lukasik, J.; Przybycien, M.; Suszycki, L.; Kotanski, A.; Slominski, W.; Bachynska, O.; Behnke, O.; Behr, J.; Behrens, U.; Blohm, C.; Borras, K.; Ciesielski, R.; Coppola, N.; Geiser, A.; Goettlicher, P.; Grebenyuk, J.; Gregor, I.; Haas, T.; Hain, W.; Huettmann, A.; Januschek, F.; Kahle, B.; Katkov, I. I.; Klein, U.; Koetz, U.; Kowalski, H.; Libov, V.; Lisovyi, M.; Lobodzinska, E.; Loehr, B.; Mankel, R.; Melzer-Pellmann, I. -A.; Miglioranzi, S.; Montanari, A.; Namsoo, T.; Notz, D.; Parenti, A.; Raval, A.; Roloff, P.; Rubinsky, I.; Schneekloth, U.; Spiridonov, A.; Szuba, D.; Szuba, J.; Theedt, T.; Tomaszewska, J.; Verbytskyi, A.; Wolf, G.; Wrona, K.; Yaguees-Molina, A. G.; Youngman, C.; Zeuner, W.; Drugakov, V.; Lohmann, W.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Pelfer, P. G.; Bamberger, A.; Dobur, D.; Karstens, F.; Vlasov, N. N.; Bussey, P. J.; Doyle, A. T.; Forrest, M.; Saxon, D. H.; Skillicorn, I. O.; Gialas, I.; Papageorgiu, K.; Holm, U.; Klanner, R.; Lohrmann, E.; Perrey, H.; Schleper, P.; Schoerner-Sadenius, T.; Sztuk, J.; Stadie, H.; Turcato, M.; Long, K. R.; Tapper, A. D.; Matsumoto, T.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.; Aushev, V.; Borodin, M.; Kadenko, I.; Korol, Ie.; Kuprash, O.; Lontkovskyi, D.; Makarenko, I.; Onishchuk, Yu.; Salii, A.; Sorokin, Iu.; Viazlo, V.; Volynets, O.; Zenaiev, O.; Zolko, M.; Son, D.; de Favereau, J.; Piotrzkowski, K.; Barreiro, F.; Glasman, C.; Jimenez, M.; del Peso, J.; Ron, E.; Terron, J.; Uribe-Estrada, C.; Corriveau, F.; Schwartz, J.; Tsurugai, T.; Antonov, A.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Stifutkin, A.; Suchkov, S.; Dementiev, R. K.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Khein, L. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Zotkin, D. S.; Abt, I.; Caldwell, A.; Kollar, D.; Reisert, B.; Schmidke, W. B.; Grigorescu, G.; Keramidas, A.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Bruemmer, N.; Bylsma, B.; Durkin, L. S.; Lee, A.; Ling, T. Y.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Foster, B.; Gwenlan, C.; Horton, K.; Oliver, K.; Robertson, A.; Walczak, R.; Bertolin, A.; Dal Corso, F.; Dusini, S.; Longhin, A.; Stanco, L.; Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.; Oh, B. Y.; Whitmore, J. J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Hart, J. C.; Abramowicz, H.; Ingbir, R.; Kananov, S.; Stern, A.; Ishitsuka, M.; Kanno, T.; Kuze, M.; Maeda, J.; Hori, R.; Okazaki, N.; Hamatsu, R.; Kitamura, S.; Ota, O.; Ri, Y. D.; Costa, M.; Ferrero, M. I.; Monaco, V.; Sacchi, R.; Sola, V.; Solano, A.; Arneodo, M.; Ruspa, M.; Fourletov, S.; Stewart, T. P.; Boutle, S. K.; Butterworth, J. M.; Jones, T. W.; Loizides, J. H.; Wing, M.; Brzozowska, B.; Ciborowski, J.; Grzelak, G.; Kulinski, P.; Luzniak, P.; Malka, J.; Nowak, R. J.; Pawlak, J. M.; Perlanski, W.; Zarnecki, A. F.; Adamus, M.; Plucinski, P.; Tymieniecka, T.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Brownson, E.; Reeder, D. D.; Savin, A. A.; Smith, W. H.; Wolfe, H.; Bhadra, S.; Catterall, C. D.; Hartner, G.; Noor, U.; Whyte, J.

    2010-01-01

    ZEUS inclusive diffractive-cross-section measurements have been used in a DGLAP next-to-leading-order QCD analysis to extract the diffractive parton distribution functions. Data on diffractive dijet production in deep inelastic scattering have also been included to constrain the gluon density.

  10. Comparative study of different Schlieren diffracting elements

    Indian Academy of Sciences (India)

    This second type of diffraction degrades the quality of Schlieren results. Experimental results showing the effect of diffraction of light deflected from the test object at a phase knife-edge, corner of a square phase aperture and an optical fiber tip as Schlieren diffracting elements have been presented and discussed.

  11. Magnetic structures: neutron diffraction studies

    International Nuclear Information System (INIS)

    Bouree-Vigneron, F.

    1990-01-01

    Neutron diffraction is often an unequivocal method for determining magnetic structures. Here we present some typical examples, stressing the sequence through experiments, data analysis, interpretation and modelisation. Two series of compounds are chosen: Tb Ni 2 Ge 2 and RBe 13 (R = Gd, Tb, Dy, Ho, Er). Depending on the nature of the elements, the magnetic structures produced can be commensurate, incommensurate or even show a transition between two such phases as a function of temperature. A model, taking magnetic exchange and anisotropy into account, will be presented in the case of commensurate-incommensurate magnetic transitions in RBe 13

  12. X-ray diffraction apparatus

    International Nuclear Information System (INIS)

    Padini, F.R.

    1978-01-01

    The invention provides an x-ray diffraction apparatus permitting the rotation of the divergence sit in conjunction with the rotation of the x-ray irradiated specimen, whereby the dimensions of the x-ray irradiated portion of the specimen remain substantially constant during the rotation of the specimen. In a preferred embodiment, the divergence slit is connected to a structural element linked with a second structural element connected to the specimen such that the divergence slit rotates at a lower angular speed than the specimen

  13. Diffractive photoproduction at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, V.P. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-900, Pelotas, RS (Brazil); Machado, M.V.T. [Centro de Ciencias Exatas e Tecnologicas, Universidade Federal do Pampa, Campus de Bage, Rua Carlos Barbosa. CEP 96400-970. Bage, RS (Brazil)

    2008-08-15

    In this contribution we analyze the electromagnetic interactions present in hadron-hadron collisions at the LHC energy. In particular, we summarize our estimate for the total cross sections for the diffractive photoproduction of Z{sup 0} and vector mesons in the hh{yields}hXh process (X=Z{sup 0},J/{psi},Y), which are characterized by two rapidity gaps in the final state. The study of these processes is feasible considering the proton tagging detectors (Roman Pots) already planned for the initial start-up of the LHC.

  14. Neutron diffraction study of ilvaite

    International Nuclear Information System (INIS)

    Nobuhiko, Haga; Yoshio, Takeuchi

    1976-01-01

    The crystal structure of ilvaite (lievrite) has been investigated by means of neutron diffraction. The result of the investigation was the space group Pbnm. Of two nonequivalent octahedral positions, one is eightfold and the other fourfold, the former is occupied by Fe 3+ and Fe 2+ , and the latter by Fe 2+ . Mn is preferably distributed, substituting for Fe 2+ , over the fourfold position. The chemical formula for Mn-bearing ilvaite hence may best be expressed by Ca(Fe 3+ , Fe 2+ ) 2 (Fe 2+ , Mn)OSi 2 O 7 (OH). (orig./GSC) [de

  15. Contribution to diffraction theory; Contribution a la theorie de la diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Chako, N. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-11-01

    In a first part, we have given a general and detailed treatment of the modern theory of diffraction. The rigorous theory is formulated as a boundary value problem of the wave equation or Maxwell equations. However, up to the present time, such a program of treating diffraction by optical systems, even for simple optical instruments, has not been realized due to the complicated character of the boundary conditions. The recent developments show clearly the nature of the approximation of the classical theories originally due to Fresnel and Young, later formulated in a rigorous manner by Kirchhoff and Rubinowicz, respectively and, at the same time the insufficiency of these theories in explaining a number of diffraction phenomena. Furthermore, we have made a study of the limitations of the approximate theories and the recent attempts to improve these. The second part is devoted to a general mathematical treatment of the theory of diffraction of optical systems including aberrations. After a general and specific analysis of geometrical and wave aberrations along classical and modern (Nijboer) lines, we have been able to evaluate the diffraction integrals representing the image field at any point in image space explicitly, when the aberrations are small. Our formulas are the generalisations of all anterior results obtained by previous investigators. Moreover, we have discussed the Zernike-Nijboer theory of aberration and generalised it not only for rotational systems, but also for non-symmetric systems as well, including the case of non circular apertures. The extension to non-circular apertures is done by introducing orthogonal functions or polynomials over such aperture shapes. So far the results are valid for small aberrations, that is to say, where the deformation of the real wave front emerging from the optical system is less than a wave length of light or of the electromagnetic wave from the ideal wave front. If the aberrations are large, then one must employ the

  16. Sound-speed and attenuation imaging of breast tissue using waveform tomography of transmission ultrasound data

    Science.gov (United States)

    Pratt, R. Gerhard; Huang, Lianjie; Duric, Neb; Littrup, Peter

    2007-03-01

    Waveform tomography results are presented from 800 kHz ultrasound transmission scans of a breast phantom, and from an in vivo ultrasound breast scan: significant improvements are demonstrated in resolution over time-of-flight reconstructions. Quantitative reconstructions of both sound-speed and inelastic attenuation are recovered. The data were acquired in the Computed Ultrasound Risk Evaluation (CURE) system, comprising a 20 cm diameter solid-state ultrasound ring array with 256 active, non-beamforming transducers. Waveform tomography is capable of resolving variations in acoustic properties at sub-wavelength scales. This was verified through comparison of the breast phantom reconstructions with x-ray CT results: the final images resolve variations in sound speed with a spatial resolution close to 2 mm. Waveform tomography overcomes the resolution limit of time-of-flight methods caused by finite frequency (diffraction) effects. The method is a combination of time-of-flight tomography, and 2-D acoustic waveform inversion of the transmission arrivals in ultrasonic data. For selected frequency components of the waveforms, a finite-difference simulation of the visco-acoustic wave equation is used to compute synthetic data in the current model, and the data residuals are formed by subtraction. The residuals are used in an iterative, gradient-based scheme to update the sound-speed and attenuation model to produce a reduced misfit to the data. Computational efficiency is achieved through the use of time-reversal of the data residuals to construct the model updates. Lower frequencies are used first, to establish the long wavelength components of the image, and higher frequencies are introduced later to provide increased resolution.

  17. SOUND-SPEED AND ATTENUATION IMAGING OF BREAST TISSUE USING WAVEFORM TOMOGRAPHY OF TRANSMISSION ULTRASOUND DATA

    Energy Technology Data Exchange (ETDEWEB)

    HUANG, LIANJIE [Los Alamos National Laboratory; PRATT, R. GERHARD [Los Alamos National Laboratory; DURIC, NEB [Los Alamos National Laboratory; LITTRUP, PETER [Los Alamos National Laboratory

    2007-01-25

    Waveform tomography results are presented from 800 kHz ultrasound transmission scans of a breast phantom, and from an in vivo ultrasound breast scan: significant improvements are demonstrated in resolution over time-of-flight reconstructions. Quantitative reconstructions of both sound-speed and inelastic attenuation are recovered. The data were acquired in the Computed Ultrasound Risk Evaluation (CURE) system, comprising a 20 cm diameter solid-state ultrasound ring array with 256 active, non-beamforming transducers. Waveform tomography is capable of resolving variations in acoustic properties at sub-wavelength scales. This was verified through comparison of the breast phantom reconstructions with x-ray CT results: the final images resolve variations in sound speed with a spatial resolution close to 2 mm. Waveform tomography overcomes the resolution limit of time-of-flight methods caused by finite frequency (diffraction) effects. The method is a combination of time-of-flight tomography, and 2-D acoustic waveform inversion of the transmission arrivals in ultrasonic data. For selected frequency components of the waveforms, a finite-difference simulation of the visco-acoustic wave equation is used to compute synthetic data in the current model, and the data residuals are formed by subtraction. The residuals are used in an iterative, gradient-based scheme to update the sound-speed and attenuation model to produce a reduced misfit to the data. Computational efficiency is achieved through the use of time-reversal of the data residuals to construct the model updates. Lower frequencies are used first, to establish the long wavelength components of the image, and higher frequencies are introduced later to provide increased resolution.

  18. Application of Electron Backscatter Diffraction to Phase Identification

    Energy Technology Data Exchange (ETDEWEB)

    El-Dasher, B S; Deal, A

    2008-07-16

    The identification of crystalline phases in solids requires knowledge of two microstructural properties: crystallographic structure and chemical composition. Traditionally, this has been accomplished using X-ray diffraction techniques where the measured crystallographic information, in combination with separate chemical composition measurements for specimens of unknown pedigrees, is used to deduce the unknown phases. With the latest microstructural analysis tools for scanning electron microscopes, both the crystallography and composition can be determined in a single analysis utilizing electron backscatter diffraction and energy dispersive spectroscopy, respectively. In this chapter, we discuss the approach required to perform these experiments, elucidate the benefits and limitations of this technique, and detail via case studies how composition, crystallography, and diffraction contrast can be used as phase discriminators.

  19. High resolution powder diffraction by white source transmission measurements

    International Nuclear Information System (INIS)

    Johnson, R.G.; Bowman, C.D.

    1982-01-01

    Neutron powder diffraction has been studied by measuring the total neutron cross section using neutron time-of-flight in transmission geometry. This method is equivalent to measurements in scattering geometry of powder diffraction at 20 = 180 0 . Measurements on iron samples were conducted using the NBS 100 MeV electron linac as a pulsed neutron source and using flight paths of 20 and 60 meters. The resolution at 60 m for 25-MeV neutrons was limited to dlambda lambda=0.2% primarily by moderator hold-up. Although the change in cross section at the Bragg edges may be quite small, counting rates are high permitting the recording of data with a 0.1% statistical precision in about one day. For the Fe samples, diffraction edges were distinguished as high as n = 196 (where n is the sum of the squares of the Miller indicies) with all edges distinguishable below n = 90

  20. Flatland optics. III. Achromatic diffraction.

    Science.gov (United States)

    Lohmann, A W; Pe'er, A; Wang, D; Friesem, A A

    2001-09-01

    In the previous two sections of "Flatland optics" [J. Opt. Soc. Am. A 17, 1755 (2000); 18, 1056 (2001)] we described the basic principles of two-dimensional (2D) optics and showed that a wavelength lambda in three-dimensional (3D) space (x, y, z) may appear in Flatland (x, z) as a wave with another wavelength Lambda=lambda/cos alpha. The tilt angle alpha can be modified by a 3D-Spaceland individual, who then is able to influence the 2D optics in a way that must appear to be magical to 2D-Flatland individuals-in the spirit of E. A. Abbott's science fiction story of 1884 [Flatland, a Romance of Many Dimensions, 6th ed. (Dover, New York, 1952)]. Here we show how the light from a white source can be perceived in Flatland as perfectly monochromatic, so diffraction with white light will be free of color blurring and the contrast of interference fringes can be 100%. The basic considerations for perfectly achromatic diffraction are presented, along with experimental illustration of Talbot self-imaging performed with broadband illumination.

  1. Advances in structure research by diffraction methods

    CERN Document Server

    Brill, R

    1970-01-01

    Advances in Structure Research by Diffraction Methods reviews advances in the use of diffraction methods in structure research. Topics covered include the dynamical theory of X-ray diffraction, with emphasis on Ewald waves in theory and experiment; dynamical theory of electron diffraction; small angle scattering; and molecular packing. This book is comprised of four chapters and begins with an overview of the dynamical theory of X-ray diffraction, especially in terms of how it explains all the absorption and propagation properties of X-rays at the Bragg setting in a perfect crystal. The next

  2. Advances in structure research by diffraction methods

    CERN Document Server

    Hoppe, W

    1974-01-01

    Advances in Structure Research by Diffraction Methods: Volume 5 presents discussions on application of diffraction methods in structure research. The book provides the aspects of structure research using various diffraction methods. The text contains 2 chapters. Chapter 1 reviews the general theory and experimental methods used in the study of all types of amorphous solid, by both X-ray and neutron diffraction, and the detailed bibliography of work on inorganic glasses. The second chapter discusses electron diffraction, one of the major methods of determining the structures of molecules in the

  3. Generalized diffraction-stack migration and filtering of coherent noise

    KAUST Repository

    Zhan, Ge

    2014-01-27

    We reformulate the equation of reverse-time migration so that it can be interpreted as summing data along a series of hyperbola-like curves, each one representing a different type of event such as a reflection or multiple. This is a generalization of the familiar diffraction-stack migration algorithm where the migration image at a point is computed by the sum of trace amplitudes along an appropriate hyperbola-like curve. Instead of summing along the curve associated with the primary reflection, the sum is over all scattering events and so this method is named generalized diffraction-stack migration. This formulation leads to filters that can be applied to the generalized diffraction-stack migration operator to mitigate coherent migration artefacts due to, e.g., crosstalk and aliasing. Results with both synthetic and field data show that generalized diffraction-stack migration images have fewer artefacts than those computed by the standard reverse-time migration algorithm. The main drawback is that generalized diffraction-stack migration is much more memory intensive and I/O limited than the standard reverse-time migration method. © 2014 European Association of Geoscientists & Engineers.

  4. Future directions in high-pressure neutron diffraction

    Science.gov (United States)

    Guthrie, M.

    2015-04-01

    The ability to manipulate structure and properties using pressure has been well known for many centuries. Diffraction provides the unique ability to observe these structural changes in fine detail on lengthscales spanning atomic to nanometre dimensions. Amongst the broad suite of diffraction tools available today, neutrons provide unique capabilities of fundamental importance. However, to date, the growth of neutron diffraction under extremes of pressure has been limited by the weakness of available sources. In recent years, substantial government investments have led to the construction of a new generation of neutron sources while existing facilities have been revitalized by upgrades. The timely convergence of these bright facilities with new pressure-cell technologies suggests that the field of high-pressure (HP) neutron science is on the cusp of substantial growth. Here, the history of HP neutron research is examined with the hope of gleaning an accurate prediction of where some of these revolutionary capabilities will lead in the near future. In particular, a dramatic expansion of current pressure-temperature range is likely, with corresponding increased scope for extreme-conditions science with neutron diffraction. This increase in coverage will be matched with improvements in data quality. Furthermore, we can also expect broad new capabilities beyond diffraction, including in neutron imaging, small angle scattering and inelastic spectroscopy.

  5. Future directions in high-pressure neutron diffraction.

    Science.gov (United States)

    Guthrie, M

    2015-04-22

    The ability to manipulate structure and properties using pressure has been well known for many centuries. Diffraction provides the unique ability to observe these structural changes in fine detail on lengthscales spanning atomic to nanometre dimensions. Amongst the broad suite of diffraction tools available today, neutrons provide unique capabilities of fundamental importance. However, to date, the growth of neutron diffraction under extremes of pressure has been limited by the weakness of available sources. In recent years, substantial government investments have led to the construction of a new generation of neutron sources while existing facilities have been revitalized by upgrades. The timely convergence of these bright facilities with new pressure-cell technologies suggests that the field of high-pressure (HP) neutron science is on the cusp of substantial growth. Here, the history of HP neutron research is examined with the hope of gleaning an accurate prediction of where some of these revolutionary capabilities will lead in the near future. In particular, a dramatic expansion of current pressure-temperature range is likely, with corresponding increased scope for extreme-conditions science with neutron diffraction. This increase in coverage will be matched with improvements in data quality. Furthermore, we can also expect broad new capabilities beyond diffraction, including in neutron imaging, small angle scattering and inelastic spectroscopy.

  6. Future directions in high-pressure neutron diffraction

    International Nuclear Information System (INIS)

    Guthrie, M

    2015-01-01

    The ability to manipulate structure and properties using pressure has been well known for many centuries. Diffraction provides the unique ability to observe these structural changes in fine detail on lengthscales spanning atomic to nanometre dimensions. Amongst the broad suite of diffraction tools available today, neutrons provide unique capabilities of fundamental importance. However, to date, the growth of neutron diffraction under extremes of pressure has been limited by the weakness of available sources. In recent years, substantial government investments have led to the construction of a new generation of neutron sources while existing facilities have been revitalized by upgrades. The timely convergence of these bright facilities with new pressure-cell technologies suggests that the field of high-pressure (HP) neutron science is on the cusp of substantial growth. Here, the history of HP neutron research is examined with the hope of gleaning an accurate prediction of where some of these revolutionary capabilities will lead in the near future. In particular, a dramatic expansion of current pressure-temperature range is likely, with corresponding increased scope for extreme-conditions science with neutron diffraction. This increase in coverage will be matched with improvements in data quality. Furthermore, we can also expect broad new capabilities beyond diffraction, including in neutron imaging, small angle scattering and inelastic spectroscopy. (topical review)

  7. In situ structural studies with neutron diffraction

    International Nuclear Information System (INIS)

    Laversenne, L.; Hansen, T.C.

    2015-01-01

    The authors present the features of neutron diffraction in terms of necessary neutron sources, diffusion contrast, penetration and magnetism. In situ diffraction experiments consist in recording the diffraction signal of a sample when this sample undergoes a monitored change in one of the following parameters: temperature (thermo-diffraction), pressure, magnetic or electric field or gaseous atmosphere. Most in situ diffraction experiments are performed on powders and they required a more or less complex equipment according to the parameter that varies. Examples and results of in situ neutron diffraction experiments are detailed in the article: -) the electrochemical loading of electrodes, -) the absorption of hydrogen for energy storage, -) the study of materials under high pressure which has allowed the investigation of phase diagrams when the inter-atomic distance varies, and -) the study of magnetism through thermo-diffraction. (A.C.)

  8. Phase retrieval from diffraction data utilizing pre-determined partial information

    International Nuclear Information System (INIS)

    Kim, S.S.; Marathe, S.; Kim, S.N.; Kang, H.C.; Noh, D.Y.

    2007-01-01

    We developed a phase retrieval algorithm that utilizes pre-determined partial phase information to overcome insufficient oversampling ratio in diffraction data. Implementing the Fourier modulus projection and the modified support projection manifesting the pre-determined information, a generalized difference map and HIO (Hybrid Input-Output) algorithms are developed. Optical laser diffraction data as well as simulated X-ray diffraction data are used to illustrate the validity of the proposed algorithm, which revealed the strength and the limitations of the algorithm. The proposed algorithm can expand the applicability of the diffraction based image reconstruction

  9. Quantitative analysis of thoria phase in Th-U alloys using diffraction studies

    Science.gov (United States)

    Thakur, Shital; Krishna, P. S. R.; Shinde, A. B.; Kumar, Raj; Roy, S. B.

    2017-05-01

    In the present study the quantitative phase analysis of Th-U alloys in bulk form namely Th-52 wt% U and Th-3wt%U has been performed over the data obtained from both X ray diffraction and neutron diffraction technique using Rietveld method of FULLPROF software. Quantifying thoria (ThO2) phase present in bulk of the sample is limited due to surface oxidation and low penetration of x rays in high Z material. Neutron diffraction study probing bulk of the samples has been presented in comparison with x-ray diffraction study.

  10. Solar tomography adaptive optics.

    Science.gov (United States)

    Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Dou, Jiangpei; Zhao, Gang

    2014-03-10

    Conventional solar adaptive optics uses one deformable mirror (DM) and one guide star for wave-front sensing, which seriously limits high-resolution imaging over a large field of view (FOV). Recent progress toward multiconjugate adaptive optics indicates that atmosphere turbulence induced wave-front distortion at different altitudes can be reconstructed by using multiple guide stars. To maximize the performance over a large FOV, we propose a solar tomography adaptive optics (TAO) system that uses tomographic wave-front information and uses one DM. We show that by fully taking advantage of the knowledge of three-dimensional wave-front distribution, a classical solar adaptive optics with one DM can provide an extra performance gain for high-resolution imaging over a large FOV in the near infrared. The TAO will allow existing one-deformable-mirror solar adaptive optics to deliver better performance over a large FOV for high-resolution magnetic field investigation, where solar activities occur in a two-dimensional field up to 60'', and where the near infrared is superior to the visible in terms of magnetic field sensitivity.

  11. Polycapillary optics for powder diffraction

    Science.gov (United States)

    Huang, Huapeng; MacDonald, Carolyn A.; Gibson, Walter M.; Chik, John; Parsegian, Adrian; Ponomarev, Igor Y.

    2001-12-01

    In this paper, we describe a low power system using Polycapillary collimating and focusing optics that were designed to collect Cu Ka radiation from an Oxford Ultra-Bright micro-focus source for X-ray powder diffraction measurements. The characterizations of the source and polycapillary optics are presented. A collimator with two apertures was used to block high energy X-rays. An optic alignment system was designed to optimize coupling between the optics and the source, taking into account the maximum radiation direction from the source. Several powder sample data sets were collected with this system and their qualities are compared with data sets from the same samples taken with an Enraf-Nonius FR590 sealed-tube source system. Discussion is also presented for further improving the performance of this low power system.

  12. Exclusive diffractive processes in QCD

    Science.gov (United States)

    Pichowsky, M. A.; Lee, T.-S. H.

    1996-10-01

    We consider the role of nonperturbative, confined quarks in the Pomeron-exchange model of exclusive, diffractive processes. In our approach, mesons are treated as q-barq bound states and Pomeron-exchange mediates the quark-nucleon interaction. This interaction is modeled in terms of 4 parameters which are completely determined by examining π p and K p elastic scattering. The predicted ρ- and φ-meson electroproduction cross sections are in excellent agreement with the data. It is shown that the differences in the behavior of electroproduction cross sections for the different vector mesons (ρ, φ, J/ψ) arise from their quark substructures. Furthermore, several interesting features of vector meson electroproduction, recently observed at DESY, naturally arise in this approach. The model is also used to predict ρ p, φ p, ρ ρ, φ φ, and φ ρ elastic scattering cross sections necessary for investigations of QCD aspects of vector meson production from relativistic heavy ion collisions.

  13. Neutron interferometers with diffraction gratings

    International Nuclear Information System (INIS)

    Ioffe, A.I.

    1983-01-01

    A neutron interferometer is described in which the amplitude coherent division of the wave fronts is realized by means of neutron diffraction gratings. Photolithographic gratings on glass with a rectangular surface relief profile with a 58 Ni sprayed layer 2000 A thick are used as gratings. In contrast to perfect-crystal neutron interferometers the designed interferometer is capable of operating in the longwave neutron spectrum region. Variation of the value of spatial division of the interfering beams (up to 50 cm) and rather a high efficiency of the amergent beam together with the elemination of neutron beam passage through the interferometer coherent divosor material in such an interferometer permit to use it for solving problems of the solid-state physics and nuclear physics, for example, foA searching for the Yang Mills long-range field

  14. The use of computed tomography to assess asthma severity.

    Science.gov (United States)

    Mitsunobu, Fumihiro; Tanizaki, Yoshiro

    2005-02-01

    Chronic inflammation in asthma can also lead to airway remodeling, which contributes to airway narrowing. It may be possible to assess and quantify the extent of airway remodeling in vivo using computed tomography. This review examines recent developments in the evaluation of asthma severity using computed tomography, and the effect of treatment assessed by computed tomography. Asthma patients have thicker airways on computed tomography scans than do healthy control individuals, and the degree of thickening is related to the severity of disease, airflow obstruction, and airway reactivity. Recent studies have indicated that patients with severe asthma and irreversible airflow obstruction had longer disease duration, a greater inflammatory process and more airway abnormalities, assessed by high-resolution computed tomography, suggestive of airway remodeling. Other studies have shown that high-resolution computed tomography lung density correlates with airflow limitation and lung volume (but not with lung transfer factor), and also correlates with patient age and severity of asthma. More recently, two publications demonstrated the effect of treatment on airway wall thickness and lung density assessed by computed tomography in patients with asthma. High-resolution computed tomography is one of the most useful tools for imaging airways and parenchyma. Computed tomography scanning may be useful in determining which patients might benefit from more or less treatment. With additional advances in technology, it is likely that quantitative assessment by computed tomography will ultimately be a valuable tool for the study and treatment of chronic airway diseases.

  15. Single-crystal neutron diffraction analysis in chemistry

    International Nuclear Information System (INIS)

    Hosoya, Takaaki; Ohhara, Takashi

    2010-01-01

    Single-crystal neutron diffraction technique is a powerful method to analyze the reaction mechanism whose hydrogen atom or proton has a key role in the reaction. Especially hydrogen atom or proton transfer(HT/PT) is one of the most elemental phenomena and often observed in many organic, inorganic, enzymatic and catalytic reactions. We describe several applications in chemistry. At first, hydrogen atom in metal hydride complexes, which is quite difficult to do using X-ray diffraction because of the great cloud of electrons of central metal atom. Secondary, hydrogen atom in hydrogen-bonding network, e.g., low-barrier hydrogen bond(LBHB) system. Neutron diffraction can refine the thermal motion of hydrogen atom. Finally, our results, photo-induced HT/PTs using 'deuterium atom labeling' technique and 'crystalline-state reaction' technique, which are currently developing applications. Despite the success illustrated by the many studies presented here or many other studies, we have many problems in using single-crystal neutron diffraction technique. For example, extremely limited flux and the requirement for mm-size sample crystals. Now, these limitations are being solved by the operation of powerful instruments at a new generation of pulsed neutron sources, including iBIX diffractometer running at Japan Proton Accelerator Research Complex(J-PARC) in Japan. (author)

  16. Nuclear dynamical diffraction using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Dennis Eugene [Stanford Univ., CA (United States)

    1993-05-01

    The scattering of synchrotron radiation by nuclei is extensively explored in this thesis. From the multipole electric field expansion resulting from time-dependent nonrelativistic perturbation theory, a dynamical scattering theory is constructed. This theory is shown, in the many particle limit, to be equivalent to the semi-classical approach where a quantum mechanical scattering amplitude is used in the Maxwell inhomogeneous wave equation. The Moessbauer specimen whose low-lying energy levels were probed is a ferromagnetic lattice of 57Fe embedded in a yttrium iron garnet (YIG) crystal matrix. The hyperfine fields in YIG thin films were studied at low and room temperature using time-resolved quantum beat spectroscopy. Nuclear hyperfine structure quantum beats were measured using a fast plastic scintillator coincidence photodetector and associated electronics having a time resolution of 2.5 nsec. The variation of the quantum beat patterns near the Bragg [0 0 2] diffraction peak gave a Lamb-Moessbauer factor of 8.2±0.4. Exploring characteristic dynamical features in the higher order YIG [0 0 10] reflection revealed that one of the YIG crystals had bifurcated into two different layers. The dynamics of nuclear superradiance was explored. This phenomenon includes the radiative speedup exhibited by a collective state of particles, and, in striking concurrence, resonance frequency shifts. A speedup of a factor of 4 in the total decay rate and a beat frequency shift of 11/2 natural resonance linewidths were observed. Nuclear resonance scattering was also found to be a useful way of performing angular interferometry experiments, and it was used to observe the phase shift of a rotated quantum state. On the whole, nuclear dynamical diffraction theory has superbly explained many of the fascinating features of resonant magnetic dipole radiation scattered by a lattice of nuclei.

  17. Photon diffractive dissociation in deep inelastic scattering

    International Nuclear Information System (INIS)

    Wuesthoff, M.

    1995-09-01

    The cross section of the Photon Diffractive Dissociation in Deep Inelastic Scattering is calculated in the frame work of perturbative QCD. In the triple Regge region the BFKL-approximation is used to evaluate the leading contributions of the corresponding Feynman diagrams with a subsequent resummation in terms of integral equations. These equations are partly solved leading to an effective two to four gluons transition vertex. This exhibits remarkable properties like the total symmetry under the interchange of gluons, the conformal invariance and a simple colour structure. The presence of four interacting gluons in the t-channel does not support the simple triple Pomeron picture with solely a local vertex. A dimensional conservation law is found for zero momentum transfer with the consequence that a direct coupling of the three BFKL-singularities is absent. Another consequence is the dominance of small transverse momenta at the triple Pomeron vertex. Beyond the triple Regge limit a slightly different approach is used in which the diagrams are calculated with leading log(Q 2 ) accuracy. Higher twist contributions are neglected except for the longitudinal part of the cross section which dominates at small invariant masses M in accordance with QCD-predictions and measurements for the exclusive production of vector mesons. For the comparison with the recently measured Photon Diffractive Dissociation-data from H1 and ZEUS a model for the Pomeron is introduced based on the F 2 -data. In the spirit of the k t -factorization theorem this model is inserted in place of the BFKL-Pomeron. Considering the fact that this approach does not contain free parameters the agreement between the theoretical prediction and the data is found to be good. (orig.)

  18. Nuclear dynamical diffraction using synchrotron radiation

    International Nuclear Information System (INIS)

    Brown, D.E.

    1993-05-01

    The scattering of synchrotron radiation by nuclei is extensively explored in this thesis. From the multipole electric field expansion resulting from time-dependent nonrelativistic perturbation theory, a dynamical scattering theory is constructed. This theory is shown, in the many particle limit, to be equivalent to the semi-classical approach where a quantum mechanical scattering amplitude is used in the Maxwell inhomogeneous wave equation. The Moessbauer specimen whose low-lying energy levels were probed is a ferromagnetic lattice of 57 Fe embedded in a yttrium iron garnet (YIG) crystal matrix. The hyperfine fields in YIG thin films were studied at low and room temperature using time-resolved quantum beat spectroscopy. Nuclear hyperfine structure quantum beats were measured using a fast plastic scintillator coincidence photodetector and associated electronics having a time resolution of 2.5 nsec. The variation of the quantum beat patterns near the Bragg [0 0 2] diffraction peak gave a Lamb-Moessbauer factor of 8.2±0.4. Exploring characteristic dynamical features in the higher order YIG [0 0 10] reflection revealed that one of the YIG crystals had bifurcated into two different layers. The dynamics of nuclear superradiance was explored. This phenomenon includes the radiative speedup exhibited by a collective state of particles, and, in striking concurrence, resonance frequency shifts. A speedup of a factor of 4 in the total decay rate and a beat frequency shift of 1 1/2 natural resonance linewidths were observed. Nuclear resonance scattering was also found to be a useful way of performing angular interferometry experiments, and it was used to observe the phase shift of a rotated quantum state. On the whole, nuclear dynamical diffraction theory has superbly explained many of the fascinating features of resonant magnetic dipole radiation scattered by a lattice of nuclei

  19. Feasibility studies for high pressure neutron powder diffraction experiments

    International Nuclear Information System (INIS)

    Von Dreele, R.B.

    1991-01-01

    We recently performed two neutron powder diffraction experiments on very small samples on the High Intensity Powder Diffractometer (HIPD), to determine the feasibility of performing in situ high pressure/high temperature neutron diffraction experiments on HIPD at pressures which would exceed the previous limit of ∼50kbar achievable in a neutron diffraction experiment. The sample, which had been prepared at 65kbar and 1000degC, consisted of a small platinum capsule filled with CaGeO 3 perovskite. A diffraction experiment taking ∼8.6hrs at a LANSCE proton beam current of ∼53μA gave peaks of good intensity from both Pt and CaGeO 3 ; we could begin to see them after only 20min if beam time. The second experiment was to test the possibility of diffraction from a high pressure apparatus. We placed in the HIPD sample position the central assembly from a 100kbar octahedral press. Four tungsten carbide anvils and a copper block previously pressed to 65kbar were held in an aluminum frame. The sample consisted of a small bit of nickel foil placed in a 3 mm hole in the copper block. The active sample volume is defined by the gap (∼0.7mm) between the anvils and the length of the sample. A small portion of the copper block is also seen in this arrangement. This is viewed at 90deg 2Θ through a similar gap between the anvils by 4 1/2''x12'' 3 He counter tubes. This arrangement simulates the operating conditions of a high pressure run at 100kbar and takes advantage of the fixed instrument geometry possible in time-of-flight neutron diffraction experiments. We obtained a diffraction pattern in ∼7.1hrs and ∼57μA beam current which clearly showed peaks from both copper and nickel with no evidence of diffraction from the anvils or any other part of the assembly. These two experiments clearly demonstrate the feasibility of performing high pressure in situ diffraction experiments in excess of 100kbar on HIPD at LANSCE. (J.P.N.)

  20. Computed tomography of oesophageal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Muehling, T.; Kuklinski, M.E.; Huebsch, T.; Witte, J.

    1985-08-01

    Between March, 1980 and January, 1984, computerized tomography (CT) was performed on 110 patients with proven esophageal carcinoma. In 26 patients, information obtained preoperatively by CT was compared with results of intraoperative exploration or histologic examination of resection specimen. Correlation analysis showed that accuracy of CT in assessing actual tumor size and mediastinal or abdominal lymphnode involvement is rather limited, while correct results were obtained in between 84 and 100 percent of patients as far as identification of invasion of adjacent organs is concerned. We thus advocate routine use of CT in the process of preoperative assessment of operability and staging.

  1. Reconstruction tomography from incomplete projections

    International Nuclear Information System (INIS)

    Oppenheim, B.E.

    1975-01-01

    In some instances, reconstruction radionuclide tomography must be carried out from projections that do not include projection values for all portions of the object to be reconstructed. This may occur, for example, when the field of view of the detector is limited, or when an opaque foreign body is present within the object. The effects of such incomplete projections upon reconstructions of computer-simulated phantoms were studied, using iterative and convolution methods. Several methods for reducing the resulting artifacts and inaccuracies are discussed

  2. Periodic oscillations of discrete NLS solitons in the presence of diffraction management

    International Nuclear Information System (INIS)

    Panayotaros, Panayotis; Pelinovsky, Dmitry

    2008-01-01

    We consider the discrete NLS equation with a small-amplitude time-periodic diffraction coefficient which models diffraction management in nonlinear lattices. In the space of one dimension and at the zero-amplitude diffraction management, multi-peak localized modes (called discrete solitons or discrete breathers) are stationary solutions of the discrete NLS equation which are uniquely continued from the anti-continuum limit, where they are compactly supported on finitely many non-zero nodes. We prove that the multi-peak localized modes are uniquely continued to the time-periodic space-localized solutions for small-amplitude diffraction management if the period of the diffraction coefficient is not multiple to the period of the stationary solution. The same result is extended to multi-peaked localized modes in the space of two and three dimensions (which include discrete vortices) under additional non-degeneracy assumptions on the stationary solutions in the anti-continuum limit

  3. Positron emission tomography/computed tomography surveillance in patients with Hodgkin lymphoma in first remission has a low positive predictive value and high costs.

    Science.gov (United States)

    El-Galaly, Tarec Christoffer; Mylam, Karen Juul; Brown, Peter; Specht, Lena; Christiansen, Ilse; Munksgaard, Lars; Johnsen, Hans Erik; Loft, Annika; Bukh, Anne; Iyer, Victor; Nielsen, Anne Lerberg; Hutchings, Martin

    2012-06-01

    The value of performing post-therapy routine surveillance imaging in patients with Hodgkin lymphoma is controversial. This study evaluates the utility of positron emission tomography/computed tomography using 2-[18F]fluoro-2-deoxyglucose for this purpose and in situations with suspected lymphoma relapse. We conducted a multicenter retrospective study. Patients with newly diagnosed Hodgkin lymphoma achieving at least a partial remission on first-line therapy were eligible if they received positron emission tomography/computed tomography surveillance during follow-up. Two types of imaging surveillance were analyzed: "routine" when patients showed no signs of relapse at referral to positron emission tomography/computed tomography, and "clinically indicated" when recurrence was suspected. A total of 211 routine and 88 clinically indicated positron emission tomography/computed tomography studies were performed in 161 patients. In ten of 22 patients with recurrence of Hodgkin lymphoma, routine imaging surveillance was the primary tool for the diagnosis of the relapse. Extranodal disease, interim positron emission tomography-positive lesions and positron emission tomography activity at response evaluation were all associated with a positron emission tomography/computed tomography-diagnosed preclinical relapse. The true positive rates of routine and clinically indicated imaging were 5% and 13%, respectively (P = 0.02). The overall positive predictive value and negative predictive value of positron emission tomography/computed tomography were 28% and 100%, respectively. The estimated cost per routine imaging diagnosed relapse was US$ 50,778. Negative positron emission tomography/computed tomography reliably rules out a relapse. The high false positive rate is, however, an important limitation and a confirmatory biopsy is mandatory for the diagnosis of a relapse. With no proven survival benefit for patients with a pre-clinically diagnosed relapse, the high costs and low

  4. Computed Tomography Analysis of NASA BSTRA Balls

    Energy Technology Data Exchange (ETDEWEB)

    Perry, R L; Schneberk, D J; Thompson, R R

    2004-10-12

    Fifteen 1.25 inch BSTRA balls were scanned with the high energy computed tomography system at LLNL. This system has a resolution limit of approximately 210 microns. A threshold of 238 microns (two voxels) was used, and no anomalies at or greater than this were observed.

  5. Inelastic nucleon diffraction at high energy

    International Nuclear Information System (INIS)

    Goggi, G.

    1975-01-01

    Experiments carried out at ISR and at FNAL which have yielded a substantial amount of data on double diffraction processes, which were unambiguously indentified and measured and which provide new tools to study the dynamical properties shared by different classes of diffractive reactions are identified. In this review interest is focused on the experimental aspects of inclusive and exclusive results both on single and double diffraction and on the problems arising from their comparison. Problems covered include; inclusive and semi-inclusive diffraction, multiparticle inclusive studies, single-particle inclusive studies, resonance region, high mass region, exclusive single diffractive reactions, mass spectra, cross sections, t-dependence, decay angular properties, and double diffraction. (U.K.)

  6. Diffraction of polarized light on periodic structures

    International Nuclear Information System (INIS)

    Bukanina, V; Divakov, D; Tyutyunnik, A; Hohlov, A

    2012-01-01

    Periodic structures as photonic crystals are widely used in modern laser devices, communication technologies and for creating various beam splitters and filters. Diffraction gratings are applied for creating 3D television sets, DVD and Blu-ray drives and reflective structures (Berkley mirror). It is important to simulate diffraction on such structures to design optical systems with predetermined properties based on photonic crystals and diffraction gratings. Methods of simulating diffraction on periodic structures uses theory of Floquet-Bloch and rigorous coupled-wave analysis (RCWA). Current work is dedicated to analysis of photonic band gaps and simulating diffraction on one-dimensional binary diffraction grating using RCWA. The Maxwell's equations for isotropic media and constitutive relations based on the cgs system were used as a model.

  7. Optimizing Crystal Volume for Neutron Diffraction

    Science.gov (United States)

    Snell, Edward H.; vanderWoerd, Mark; Damon, Michael; Judge, Russell, A.; Myles, Dean; Meilleur, F.

    2006-01-01

    Neutron diffraction is uniquely sensitive to hydrogen positions and protonation state. In that context structural information from neutron data is complementary to that provided through X-ray diffraction. However, there are practical obstacles to overcome in fully exploiting the potential of neutron diffraction, Le. low flux and weak scattering. Several approaches are available to overcome these obstacles and we have investigated the simplest: increasing the diffracting volume of the crystals. Volume is a quantifiable metric that is well suited for experiment design and optimization techniques. By using response surface methods we have optimized xylose isomerase crystal volume, enabling neutron diffraction while we determined the crystallization parameters with the minimum of experiments. Our results suggest a systematic means of enabling neutron diffraction studies for a larger number of samples that require information on hydrogen position and/or protonation state.

  8. Limitaciones de la tomografia axial computada en la localizacion de quistes hidatidicos abdominales en pacientes con confirmacion inmunodiagnostica Limitations of computerized axial tomography in the localization of abdominal hydatid cysts in patients with immunodiagnostic confirmation

    Directory of Open Access Journals (Sweden)

    E. A. Guarnera

    1984-12-01

    Full Text Available Se describe el aporte de la prueba de doble disfusión arco 5 (DD5 al diagnóstico de la hidatidosis en dos pacientes con operaciones previas. En una de ellas, asintomática, la reacción positiva a los cinco años de su última intervención quirúrgica por hidatidosis, permitió diagnosticar la presencia de quistes cuya localización abdominal fue establecida por la tomografía axial computada (TAC. En el otro caso, sintomático, aunque operado de hidatidosis nueve años antes, la positividad a la DD5 confirmó la etiología de la enfermedad que se había sospechado por centellografía, TAC y su historia clínica. En ambos casos, sin embargo, se hallaron en el acto quirúrgico otros quistes abdominales cuyas imágenes no habían sido reveladas en los estudios a los que se las había sometido.The contribution of the arc 5 double diffusion test (DD5 to the diagnosis of hydatidosis in two patients with previous surgery for this parasitic infection is described. In one of the patients, who was asymptomatic, the diagnosis was established on the basis of a positive DD5 reaction five years after her last surgical intervention. The abdominal location of cysts was revealed by computerized axial tomography (CAT. The other patient had been operated on for hydatidosis nine years earlier and showed symptoms. Positivity to the DD5 test confirmed the etiology of the disease, which had been suspected on the basis of her clinical history and the findings of scintillographic and CAT studies. In both cases, however, other abdominal cysts were found at surgery whose images had not been revealed in the previous studies.

  9. Large volume serial section tomography by Xe Plasma FIB dual beam microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, T.L. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); FEI Company, Achtseweg Noord 5, Bldg, 5651 GG, Eindhoven (Netherlands); Kelley, R. [FEI Company, 5350 NE Dawson Creek Drive, Hillsboro, OR 97124 (United States); Winiarski, B. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); FEI Company, Achtseweg Noord 5, Bldg, 5651 GG, Eindhoven (Netherlands); Contreras, L. [FEI Company, 5350 NE Dawson Creek Drive, Hillsboro, OR 97124 (United States); Daly, M.; Gholinia, A.; Burke, M.G. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Withers, P.J., E-mail: P.J.Withers@manchester.ac.uk [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); BP International Centre for Advanced Materials, University of Manchester, Manchester M13 9PL (United Kingdom)

    2016-02-15

    Ga{sup +} Focused Ion Beam-Scanning Electron Microscopes (FIB-SEM) have revolutionised the level of microstructural information that can be recovered in 3D by block face serial section tomography (SST), as well as enabling the site-specific removal of smaller regions for subsequent transmission electron microscope (TEM) examination. However, Ga{sup +} FIB material removal rates limit the volumes and depths that can be probed to dimensions in the tens of microns range. Emerging Xe{sup +} Plasma Focused Ion Beam-Scanning Electron Microscope (PFIB-SEM) systems promise faster removal rates. Here we examine the potential of the method for large volume serial section tomography as applied to bainitic steel and WC–Co hard metals. Our studies demonstrate that with careful control of milling parameters precise automated serial sectioning can be achieved with low levels of milling artefacts at removal rates some 60× faster. Volumes that are hundreds of microns in dimension have been collected using fully automated SST routines in feasible timescales (<24 h) showing good grain orientation contrast and capturing microstructural features at the tens of nanometres to the tens of microns scale. Accompanying electron back scattered diffraction (EBSD) maps show high indexing rates suggesting low levels of surface damage. Further, under high current Ga{sup +} FIB milling WC–Co is prone to amorphisation of WC surface layers and phase transformation of the Co phase, neither of which have been observed at PFIB currents as high as 60 nA at 30 kV. Xe{sup +} PFIB dual beam microscopes promise to radically extend our capability for 3D tomography, 3D EDX, 3D EBSD as well as correlative tomography. - Highlights: • The uptake of dual beam FIBs has been rapid but long milling times have limited imaged volumes to tens of micron dimensions. • Emerging plasma Xe{sup +} PFIB-SEM technology offers materials removal rates at least 60× greater than conventional Ga{sup +} FIB systems with

  10. Feasibility studies for high pressure neutron powder diffraction experiments

    International Nuclear Information System (INIS)

    Von Dreele, R.B.; Parise, J.

    1990-01-01

    We recently performed two neutron powder diffraction experiments on very small samples on the High Intensity Powder Diffractometer (HIPD). These were done to determine the feasibility of performing in situ high pressure/high temperature neutron diffraction experiments on HIPD at pressures which would exceed the previous limit of ∼50 kbar achievable in a neutron diffraction experiment. The first experiment consisted of examining the product from a high pressure preparation done at Stony Brook. The sample, which had been prepared at 65 kbar and 1000 degree C, consisted of a small platinum capsule filled with CaGeO 3 perovskite. The weights of the capsule included 225 mg of platinum and 49 mg of the germanate. A diffraction experiment taking ∼8.6 hrs at a LANSCE proton beam current of ∼53 μA gave peaks of good intensity from both Pt and CaGeO 3 ; we could begin to see them after only 20 min of beam time. The second experiment was to test the possibility of diffraction from a high pressure apparatus. We placed in the HIPD sample position the central assembly from a 100 kbar octahedral press. Four tungsten carbide anvils and a copper block previously pressed to 65 kbar were held in an aluminum frame. The sample consisted of a small bit of nickel foil (175 mg) placed in a 3 mm hole in the copper block. The active sample volume is defined by the gap between the anvils and the length of the sample. A small portion of the copper block is also seen in this arrangement. This is viewed at 90 degree 2Θ through a similar gap between the anvils by 4 1/2 in. x 12 in. 3 He counter tubes. This arrangement simulates the operating conditions of a high pressure run at 100 kbar and takes advantage of the fixed instrument geometry possible in time-of-flight neutron diffraction experiments

  11. Microarcsecond relative astrometry from the ground with a diffractive pupil

    Energy Technology Data Exchange (ETDEWEB)

    Ammons, S M; Bendek, E; Guyon, O

    2011-09-08

    The practical use of astrometry to detect exoplanets via the reflex motion of the parent star depends critically on the elimination of systematic floors in imaging systems. In the diffractive pupil technique proposed for space-based detection of exo-earths, extended diffraction spikes generated by a dotted primary mirror are referenced against a wide-field grid of background stars to calibrate changing optical distortion and achieve microarcsecond astrometric precision on bright targets (Guyon et al. 2010). We describe applications of this concept to ground-based uncrowded astrometry using a diffractive, monopupil telescope and a wide-field camera to image as many as {approx}4000 background reference stars. Final relative astrometric precision is limited by differential tip/tilt jitter caused by high altitude layers of turbulence. A diffractive 3-meter telescope is capable of reaching {approx}35 {micro}as relative astrometric error per coordinate perpendicular to the zenith vector in three hours on a bright target star (I < 10) in fields of moderate stellar density ({approx}40 stars arcmin{sup -2} with I < 23). Smaller diffractive apertures (D < 1 m) can achieve 100-200 {micro}as performance with the same stellar density and exposure time and a large telescope (6.5-10 m) could achieve as low as 10 {micro}as, nearly an order of magnitude better than current space-based facilities. The diffractive pupil enables the use of larger fields of view through calibration of changing optical distortion as well as brighter target stars (V < 6) by preventing star saturation. Permitting the sky to naturally roll to average signals over many thousands of pixels can mitigate the effects of detector imperfections.

  12. Theory of edge diffraction in electromagnetics

    CERN Document Server

    Ufimtsev, Pyotr

    2009-01-01

    This book is an essential resource for researchers involved in designing antennas and RCS calculations. It is also useful for students studying high frequency diffraction techniques. It contains basic original ideas of the Physical Theory of Diffraction (PTD), examples of its practical application, and its validation by the mathematical theory of diffraction. The derived analytic expressions are convenient for numerical calculations and clearly illustrate the physical structure of the scattered field.

  13. Nonlinear diffraction from a virtual beam

    DEFF Research Database (Denmark)

    Saltiel, Solomon M.; Neshev, Dragomir N.; Krolikowski, Wieslaw

    2010-01-01

    We observe experimentally a novel type of nonlinear diffraction in the process of two-wave mixing on a nonlinear quadratic grating.We demonstrate that when the nonlinear grating is illuminated simultaneously by two noncollinear beams, a second-harmonic diffraction pattern is generated by a virtual...... beam propagating along the bisector of the two pump beams. The observed iffraction phenomena is a purely nonlinear effect that has no analogue in linear diffraction...

  14. Theory of hard diffraction and rapidity gaps

    International Nuclear Information System (INIS)

    Del Duca, V.

    1995-06-01

    In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). (orig.)

  15. Diffraction Techniques in Steel Research: An Overview

    Science.gov (United States)

    Melzer, Stefan; Moerman, Jaap

    Acquiring knowledge about microstructures and textures is crucial for the improvement and development steel products, because these two characteristics are controlling factors for the properties of steel. Diffraction techniques using X-rays, electrons or neutrons are suitable to study microstructures (e.g. phase relationships) and textures (crystallographic orientations). X-ray diffraction (XRD) and electron backscatter diffraction (EBSD) are generally available techniques within an industrial research environment.

  16. Parity-violation effects in neutron diffraction

    International Nuclear Information System (INIS)

    Zaretskii, D.F.; Sirotkin, V.K.

    1984-01-01

    The effects of parity violation in polarized-neutron diffraction by nuclei are considered. It is shown that the case of dynamical Laue diffraction exhibits significantly enhanced parity-violation effects, and that this enhancement is due to a pendulum-type dependence of the diffracted-beam intensity on the thickness. The effects are estimated for a number of nuclei in the case of thermal neutrons

  17. Structural materials evaluation by neutron diffraction method

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi

    2010-01-01

    It is well known that neutron diffraction method enables us to measure residual stresses inside materials. It can also evaluate deformation behaviors and phase transformation of materials under loading at various environments such as high or low temperature and also evaluate microstructural factors such as dislocation density, cell size and texture by analyzing diffraction profile. This article reviews some topics of structural materials evaluation using neutron diffraction. (author)

  18. High-energy electron diffraction and microscopy

    CERN Document Server

    Peng, L M; Whelan, M J

    2011-01-01

    This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using ageneral matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to f

  19. Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders

    Directory of Open Access Journals (Sweden)

    Yifeng Yun

    2015-03-01

    Full Text Available Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED data collection, namely automated diffraction tomography (ADT and rotation electron diffraction (RED, have been developed. Compared with X-ray diffraction (XRD and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni–Se–O–Cl crystals, zeolites, germanates, metal–organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three

  20. Diffractive charm and jet production at HERA

    International Nuclear Information System (INIS)

    Savin, Alexander A.

    2003-01-01

    A new high precision inclusive measurement of the diffractive production of D* ± (2010) mesons in deep inelastic scattering (DIS) in the kinematic region Q 2 >1.5 GeV 2 , 0.02 IP 2 2 , 165 2 , χ IP < 0.03 are presented. Diffractive parton densities extracted using a NLO DGLAP QCD fit are used for comparisons with diffractive DIS and PHP dijet and open charm cross sections at HERA and the Tevatron, thus testing the factorization properties of hard diffraction

  1. Diffraction Testing for the Beach Ball Coronagraph

    Data.gov (United States)

    National Aeronautics and Space Administration — Objective #1: Quantify, both analytically and experimentally, the diffraction intensity around a spherical object as a function of distance. Two different...

  2. Diffraction enhanced imaging contrast mechanisms and applications to medicine

    Science.gov (United States)

    Hasnah, Moumen Omar

    X-rays are one of the most commonly used forms of radiation in medical diagnostic imaging because of their ability to penetrate the body and give morphological information. Although several interactions may occur, as the x-ray photons traverse the object being radiographed, all of the common x-ray imaging techniques are based on absorption contrast. The fact that the density variations of these tissues are small makes soft tissue imaging difficult with x-rays. A number of imaging modalities have been developed to address the problem of soft tissue imaging that are of clinical relevance. These modalities typically use alternate methods of visualization based on sound propagation (ultrasound), proton density (Magnetic Resonance Imaging-MRI), and others. In addition, enhancements to the x-ray technique include computed tomography (Computed Axial Tomography---CAT) that has more sensitivity to tissue density, phase contrast methods relying on the phase of the traversing x-rays, and refraction methods such as Diffraction Enhanced Imaging (DEI). Of these techniques, ultrasound, MRI and CAT scans are presently common clinical techniques that are used to assist in the diagnosis and isolation of lesions in tissue. DEI is experimental technique that may someday be clinical used due to the high soft tissue contrast.

  3. Phase sensitive diffraction sensor for high sensitivity refractive index measurement

    Science.gov (United States)

    Kumawat, Nityanand; Varma, Manoj; Kumar, Sunil

    2018-02-01

    In this study a diffraction based sensor has been developed for bio molecular sensing applications and performing assays in real time. A diffraction grating fabricated on a glass substrate produced diffraction patterns both in transmission and reflection when illuminated by a laser diode. We used zeroth order I(0,0) as reference and first order I(0,1) as signal channel and conducted ratiometric measurements that reduced noise by more than 50 times. The ratiometric approach resulted in a very simple instrumentation with very high sensitivity. In the past, we have shown refractive index measurements both for bulk and surface adsorption using the diffractive self-referencing approach. In the current work we extend the same concept to higher diffraction orders. We have considered order I(0,1) and I(1,1) and performed ratiometric measurements I(0,1)/I(1,1) to eliminate the common mode fluctuations. Since orders I(0,1) and I(1,1) behaved opposite to each other, the resulting ratio signal amplitude increased more than twice compared to our previous results. As a proof of concept we used different salt concentrations in DI water. Increased signal amplitude and improved fluid injection system resulted in more than 4 times improvement in detection limit, giving limit of detection 1.3×10-7 refractive index unit (RIU) compared to our previous results. The improved refractive index sensitivity will help significantly for high sensitivity label free bio sensing application in a very cost-effective and simple experimental set-up.

  4. Super-resolved imaging geometrical and diffraction approaches

    CERN Document Server

    2011-01-01

    In this brief we review several approaches that provide super resolved imaging, overcoming the geometrical limitation of the detector as well as the diffraction effects set by the F number of the imaging lens. In order to obtain the super resolved enhancement, we use spatially non-uniform and/or random transmission structures to encode the image or the aperture planes. The desired resolution enhanced images are obtained by post-processing decoding of the captured data.

  5. Diffraction measurements using the LHC Beam Loss Monitoring System

    Science.gov (United States)

    Kalliokoski, Matti

    2017-03-01

    The Beam Loss Monitoring (BLM) system of the Large Hadron Collider protects the machine from beam induced damage by measuring the absorbed dose rates of beam losses, and by triggering beam dump if the rates increase above the allowed threshold limits. Although the detection time scales are optimized for multi-turn losses, information on fast losses can be recovered from the loss data. In this paper, methods in using the BLM system in diffraction studies are discussed.

  6. Positron emission tomography

    International Nuclear Information System (INIS)

    Iio, Masahiro

    1982-01-01

    Utilization of positron emission tomography was reviewed in relation to construction and planned construction of small-size medical cyclotrons, planned construction of positron cameras and utilization of short-lived radionuclides. (Chiba, N.)

  7. Cardiac positron emission tomography

    International Nuclear Information System (INIS)

    Eftekhari, M.; Ejmalian, G.

    2003-01-01

    Positron emission tomography is an intrinsically tool that provide a unique and unparalleled approach for clinicians and researchers to interrogate the heart noninvasively. The ability to label substances of physiological interest with positron-emitting radioisotopes has permitted insight into normal blood flow and metabolism and the alterations that occur with disease states. Positron emission tomography of the heart has evolved as a unique, noninvasive approach for the assessment of myocardial perfusion, metabolism, and function. Because of the intrinsic quantitative nature of positron emission tomography measurements as well as the diverse compounds that can be labeled with positron- emitting radioisotopes, studies with positron emission tomography have provided rich insight into the physiology of the heart under diverse conditions

  8. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... tomography, more commonly known as a CT or CAT scan, is a diagnostic medical test that, like ... imaging provides real-time imaging, making it a good tool for guiding minimally invasive procedures such as ...

  9. Computed Tomography (CT) - Spine

    Science.gov (United States)

    ... the removal of fluid from a localized infection ( abscess ). In patients with narrowing ( stenosis ) of the spine ... Survey Images × Image Gallery Computed Tomography (CT or CAT scan) equipment View full size with caption Do ...

  10. Computer tomography in otolaryngology

    Energy Technology Data Exchange (ETDEWEB)

    Gradzki, J. (Akademia Medyczna, Poznan (Poland))

    1981-01-01

    The principles of design and the action of computer tomography which was applied also for the diagnosis of nose, ear and throat diseases are discussed. Computer tomography makes possible visualization of the structures of the nose, nasal sinuses and facial skeleton in transverse and eoronal planes. The method enables an accurate evaluation of the position and size of neoplasms in these regions and differentiation of inflammatory exudates against malignant masses. In otology computer tomography is used particularly in the diagnosis of pontocerebellar angle tumours and otogenic brain abscesses. Computer tomography of the larynx and pharynx provides new diagnostic data owing to the possibility of obtaining transverse sections and visualization of cartilage. Computer tomograms of some cases are presented.

  11. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... vessels. CT examinations are fast and simple; in emergency cases, they can reveal internal injuries and bleeding ... Neck Cancer X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to Computed Tomography (CT) - ...

  12. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... of a stroke. a stroke, especially with a new technique called Perfusion CT. brain tumors. enlarged brain ... Neck Cancer X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to Computed Tomography (CT) - ...

  13. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... for Brain Tumors Radiation Therapy for Head and Neck Cancer Others American Stroke Association National Stroke Association ... Computer Tomography (CT) Safety During Pregnancy Head and Neck Cancer X-ray, Interventional Radiology and Nuclear Medicine ...

  14. Intracoronary optical coherence tomography

    DEFF Research Database (Denmark)

    Tenekecioglu, Erhan; Albuquerque, Felipe N; Sotomi, Yohei

    2017-01-01

    By providing valuable information about the coronary artery wall and lumen, intravascular imaging may aid in optimizing interventional procedure results and thereby could improve clinical outcomes following percutaneous coronary intervention (PCI). Intravascular optical coherence tomography (OCT)...

  15. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... tomography (CT) scan. View full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy bear denotes child-specific content. ...

  16. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... tomography (CT) scan. View full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy bear denotes child-specific content. ...

  17. Electrical Impedance Tomography Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal for the Electrical Impedance Tomography Technology (EITT) project is to develop a reliable portable, lightweight device providing two-dimensional...

  18. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... of the Head? What is CT Scanning of the Head? Computed tomography, more commonly known as a ... of page What are some common uses of the procedure? CT scanning of the head is typically ...

  19. Geometric reconstruction methods for electron tomography

    International Nuclear Information System (INIS)

    Alpers, Andreas; Gardner, Richard J.; König, Stefan; Pennington, Robert S.; Boothroyd, Chris B.; Houben, Lothar; Dunin-Borkowski, Rafal E.; Joost Batenburg, Kees

    2013-01-01

    Electron tomography is becoming an increasingly important tool in materials science for studying the three-dimensional morphologies and chemical compositions of nanostructures. The image quality obtained by many current algorithms is seriously affected by the problems of missing wedge artefacts and non-linear projection intensities due to diffraction effects. The former refers to the fact that data cannot be acquired over the full 180° tilt range; the latter implies that for some orientations, crystalline structures can show strong contrast changes. To overcome these problems we introduce and discuss several algorithms from the mathematical fields of geometric and discrete tomography. The algorithms incorporate geometric prior knowledge (mainly convexity and homogeneity), which also in principle considerably reduces the number of tilt angles required. Results are discussed for the reconstruction of an InAs nanowire. - Highlights: ► Four algorithms for electron tomography are introduced that utilize prior knowledge. ► Objects are assumed to be homogeneous; convexity and regularity is also discussed. ► We are able to reconstruct slices of a nanowire from as few as four projections. ► Algorithms should be selected based on the specific reconstruction task at hand

  20. Positron emission tomography studies of brain receptors

    International Nuclear Information System (INIS)

    Maziere, B.; Maziere, M.

    1991-01-01

    Probing the regional distribution and affinity of receptors in the brain, in vivo, in human and non human primates has become possible with the use of selective ligands labelled with positron emitting radionuclides and positron emission tomography (PET). After describing the techniques used in positron emission tomography to characterize a ligand receptor binding and discussing the choice of the label and the limitations and complexities of the in vivo approach, the results obtained in the PET studies of various neurotransmission systems: dopaminergic, opiate, benzodiazepine, serotonin and cholinergic systems are reviewed

  1. Images of ameloblastoma: from radiography to tomography

    Directory of Open Access Journals (Sweden)

    Raúl Herrera-Mujica

    2015-07-01

    Full Text Available Odontogenic tumors are a group of lesions originated from odontogenesis course alterations. Within odontogenic tumors is ameloblastoma, its treatment probably is one of the most controversial, because its aggressive behavior, high recurrence and probably low malignancies. Radiographs play an important role in assessment from this tumor, but the limitation is they are in two dimensions exams. Cone beam computed tomography is a valuable tool because enable a comprehensive assessment of anatomical structures by multiple sections of the area. Therefore, evaluation of ameloblastoma is complete by cone beam computed tomography because bone structures do not show distortion neither magnification.

  2. Computerized tomography in the diagnosis of hyperparathyroidism

    International Nuclear Information System (INIS)

    Sobota, J.; Girl, J.; Sotornik, I.; Kocandrle, V.

    1990-01-01

    Long-term experience in the application of computerized tomography to the diagnosis of hyperparathyroidism is summarized. Based on a large number of examinations (164) of parathyroid glands associated with the possibility of verification and comparison with the results of ultrasonography and other imaging methods, the potential of computerized tomography in the diagnosis of hyperparathyroidism and its advantages and limitations are summarized. It is concluded that owing to its high diagnostic precision, this technique can be regarded reliable in detecting enlarged parathyroid glands. (author). 11 figs., 1 tab., 19 refs

  3. Optical projection tomography via phase retrieval algorithms for hidden three dimensional imaging

    Science.gov (United States)

    Ancora, Daniele; Di Battista, Diego; Giasafaki, Georgia; Psycharakis, Stylianos; Liapis, Evangelos; Zacharopoulos, Athanasios; Zacharakis, Giannis

    2017-02-01

    Optical tomography in biomedical imaging is a highly dynamic field in which non-invasive optical and computational techniques are combined to obtain a three dimensional representation of the specimen we are interested to image. Although at optical wavelengths scattering is the main obstacle to reach diffraction limited resolution, recently several studies have shown the possibility to image even objects fully hidden behind a turbid layer exploiting the information contained in the speckle autocorrelation via an iterative phase retrieval algorithm. In this work we explore the possibility of blind three dimensional reconstruction approach based on the Optical Projection Tomography principles, a widely used tool to image almost transparent model organism such as C. Elegans and D. Rerio. By using autocorrelation information rather than projections at each angle we prove, both numerically and experimentally, the possibility to perform exact three dimensional reconstructions via a specifically designed phase retrieval algorithm, extending the capability of the projection-based tomographic methods to image behind scattering curtains. The reconstruction scheme we propose is simple to implement, does not require post-processing data alignment and moreover can be trivially implemented in parallel to fully exploit the computing power offered by modern GPUs, further reducing the need for costly computational resources.

  4. Introduction to Seismic Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Charlotte Anne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-21

    Tomography is a method of obtaining an image of a 3d object by observing the behavior of energy transmissions through the object. The image is obtained by Interrogating the object with Energy sources at a variety of Locations and observing the Object’s effects on the energy at a Variety of sensors. Tomography was first Used to build 3-dimensional Scans through Human bodies. These Are called computed Tomographic (ct) scans.

  5. Structure determination of modulated structures by powder X-ray diffraction and electron diffraction

    Czech Academy of Sciences Publication Activity Database

    Zhou, Z.Y.; Palatinus, Lukáš; Sun, J.L.

    2016-01-01

    Roč. 3, č. 11 (2016), s. 1351-1362 ISSN 2052-1553 Institutional support: RVO:68378271 Keywords : electron diffraction * incommensurate structure * powder diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.036, year: 2016

  6. EDITORIAL: Optical tomography and digital holography

    Science.gov (United States)

    Coupland, Jeremy; Lobera, Julia

    2008-07-01

    the resolution now places a limit on the size of the object that can be recorded. Some 60 years after the pioneering work of Gabor, digital imaging and associated computer technology offers a step change in capability with which to further exploit holography. Modern image sensors are now available with almost 30 million photosensitive elements, which corresponds to a staggering 100-fold increase compared to standard television images. At the same time personal computers have been optimized for imaging and graphics applications and this allows more sophisticated algorithms to be used in the reconstruction process. Although resolution still falls short of the materials used for optical holography, the ability to process data numerically generally outweighs this drawback and presents us with a host of new opportunities. Faced with the ability to record and process holograms numerically, it is natural to ask the question 'what information is present within recordings of scattered light?'. In fact this question could be posed by anyone using light, or indeed any other wave disturbance, for measurement purposes. For the case of optical holography, Wolf published his answer in 1969 [6], showing that for the case of weak scattering (small perturbations) and plane wave illumination, the amplitude and phase of each plane wave within the scattered field are proportional to those of a periodic variation in the refractive index contrast (i.e. a Bragg grating). This Fourier decomposition of the object was published almost simultaneously by Dandliker and Weiss [7], who also provided a graphical illustration of the technique. These works are the basis of optical tomography and provide us with the link between holographic data and 3D form. Digital holographic reconstruction and optical tomography was the theme of an international workshop [8] held in Loughborough in 2007, and many of the topics debated at the workshop have become the subject of the papers in this issue. In general

  7. Generation of arbitrary complex quasi-non-diffracting optical patterns.

    Science.gov (United States)

    Ortiz-Ambriz, Antonio; Lopez-Aguayo, Servando; Kartashov, Yaroslav V; Vysloukh, Victor A; Petrov, Dmitri; Garcia-Gracia, Hipolito; Gutiérrez-Vega, Julio C; Torner, Lluis

    2013-09-23

    Due to their unique ability to maintain an intensity distribution upon propagation, non-diffracting light fields are used extensively in various areas of science, including optical tweezers, nonlinear optics and quantum optics, in applications where complex transverse field distributions are required. However, the number and type of rigorously non-diffracting beams is severely limited because their symmetry is dictated by one of the coordinate system where the Helmholtz equation governing beam propagation is separable. Here, we demonstrate a powerful technique that allows the generation of a rich variety of quasi-non-diffracting optical beams featuring nearly arbitrary intensity distributions in the transverse plane. These can be readily engineered via modifications of the angular spectrum of the beam in order to meet the requirements of particular applications. Such beams are not rigorously non-diffracting but they maintain their shape over large distances, which may be tuned by varying the width of the angular spectrum. We report the generation of unique spiral patterns and patterns involving arbitrary combinations of truncated harmonic, Bessel, Mathieu, or parabolic beams occupying different spatial domains. Optical trapping experiments illustrate the opto-mechanical properties of such beams.

  8. Structure refinement from precession electron diffraction data.

    Science.gov (United States)

    Palatinus, Lukáš; Jacob, Damien; Cuvillier, Priscille; Klementová, Mariana; Sinkler, Wharton; Marks, Laurence D

    2013-03-01

    Electron diffraction is a unique tool for analysing the crystal structures of very small crystals. In particular, precession electron diffraction has been shown to be a useful method for ab initio structure solution. In this work it is demonstrated that precession electron diffraction data can also be successfully used for structure refinement, if the dynamical theory of diffraction is used for the calculation of diffracted intensities. The method is demonstrated on data from three materials - silicon, orthopyroxene (Mg,Fe)(2)Si(2)O(6) and gallium-indium tin oxide (Ga,In)(4)Sn(2)O(10). In particular, it is shown that atomic occupancies of mixed crystallographic sites can be refined to an accuracy approaching X-ray or neutron diffraction methods. In comparison with conventional electron diffraction data, the refinement against precession diffraction data yields significantly lower figures of merit, higher accuracy of refined parameters, much broader radii of convergence, especially for the thickness and orientation of the sample, and significantly reduced correlations between the structure parameters. The full dynamical refinement is compared with refinement using kinematical and two-beam approximations, and is shown to be superior to the latter two.

  9. Accurate Charge Densities from Powder Diffraction

    DEFF Research Database (Denmark)

    Bindzus, Niels; Wahlberg, Nanna; Becker, Jacob

    Synchrotron powder X-ray diffraction has in recent years advanced to a level, where it has become realistic to probe extremely subtle electronic features. Compared to single-crystal diffraction, it may be superior for simple, high-symmetry crystals owing to negligible extinction effects and minimal...... of conventional and novel extraction methods....

  10. X-ray topography and multiple diffraction

    International Nuclear Information System (INIS)

    Chang, S.-L.

    1983-01-01

    A short summary on X-ray topography, which is based on the dynamical theory of X-ray diffraction, is made. The applications and properties related to the use of the multiple diffraction technique are analized and discussed. (L.C.) [pt

  11. Bragg diffraction optics in neutron diffractometry

    Czech Academy of Sciences Publication Activity Database

    Mikula, Pavol; Kulda, Jiří; Lukáš, Petr; Ono, M.; Šaroun, Jan; Vrána, Miroslav; Wagner, Vladimír

    2000-01-01

    Roč. 283, - (2000), s. 289-294 ISSN 0921-4526 R&D Projects: GA ČR GV202/97/K038 Institutional research plan: CEZ:AV0Z1048901 Keywords : neutron diffraction * bragg diffraction * focusing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.893, year: 2000

  12. Diffraction and Forward Physics at HERA

    Science.gov (United States)

    Yamazaki, Y.; H1 Collaboration; ZEUS Collaboration

    Measurements on diffractive processes atHERA are presented. The partonic contents of the diffractive exchange have been extracted, by QCD analysis, with decent precision, thanks to recent increase of data used in the analyses. Also reviewed are recent measurements on the leading neutron production.

  13. White-Light Diffraction with a CD

    Science.gov (United States)

    Ivanov, Dragia Trifonov; Nikolaev, Stefan

    2010-01-01

    Various wave optics experiments can be carried out using an ordinary compact disc. The CD is suitable for use as a diffraction grating. For instance, a standard CD (700 MB) has 625 lines/mm. In this article, the authors describe two white-light diffraction demonstrations for a large audience, realizable using a CD (as reflection or transmission…

  14. Neutron polarisers for diffraction experiments

    International Nuclear Information System (INIS)

    Cussen, L.D.; Goossens, D.J.; Hicks, T.J.

    2000-01-01

    Full text: Every neutron in a neutron beam has a spin which is either up or down. In an unpolarised beam, half the neutrons are up and half are down. A neutron polariser is a device which creates an imbalance in the number of up and down spin neutrons in the beam, thus giving a net beam polarisation. The three most common techniques for polarising neutron beams are supermirrors, Heusler alloy polarising monochromators and neutron spin filters. Supermirrors use the difference in refractive index for up and down spin neutrons at a magnetic/non-magnetic interface to selectively remove neutrons of one spin state from the beam. Heusler alloy polarisers give polarised beams through spin dependent Bragg reflection, and transmission filters work by preferentially absorbing the neutrons in one spin state. The most promising filter material is polarised gaseous 3 He, in which the lone neutron is polarised and then the atom will preferentially absorb a neutron of the opposite spin. All three techniques have different advantages. Here, we compare the three techniques by generating quality factors which relate closely to an instruments performance in an experiment and determining which polariser will give the best quality factor for a given type of experiment. We find that supermirrors give the best results when narrow angular divergence of the neutron beam is desired, while filters are best when short wavelengths and wide angular divergence is required. For a powder diffractometer, this implies that a supermirror would be used to polarise the incident beam, while a large array of supermirrors or a single curved transmission filter could be used to analyse the polarisation of the diffracted intensity. We note that while Heusler alloys have advantages in that they combine polarisation with monochromation, on purely performance based criteria, they are not competitive with supermirrors or well-developed transmission filter technology

  15. Modeling Atom Probe Tomography: A review

    Energy Technology Data Exchange (ETDEWEB)

    Vurpillot, F., E-mail: francois.vurpillot@univ-rouen.fr [Groupe de Physique des Matériaux, UMR CNRS 6634, Université de Rouen, Saint Etienne du Rouvray 76801 (France); Oberdorfer, C. [Institut für Materialwissenschaft, Lehrstuhl für Materialphysik, Universität Stuttgart, Heisenbergstr. 3, 70569 Stuttgart (Germany)

    2015-12-15

    Improving both the precision and the accuracy of Atom Probe Tomography reconstruction requires a correct understanding of the imaging process. In this aim, numerical modeling approaches have been developed for 15 years. The injected ingredients of these modeling tools are related to the basic physic of the field evaporation mechanism. The interplay between the sample nature and structure of the analyzed sample and the reconstructed image artefacts have pushed to gradually improve and make the model more and more sophisticated. This paper reviews the evolution of the modeling approach in Atom Probe Tomography and presents some future potential directions in order to improve the method. - Highlights: • The basics of field evaporation. • The main aspects of Atom Probe Tomography modeling. • The intrinsic limitations of the current method and future potential directions to improve the understanding of tip to image ion projection.

  16. Doppler tomography in fusion plasmas and astrophysics

    DEFF Research Database (Denmark)

    Salewski, Mirko; Geiger, B.; Heidbrink, W. W.

    2015-01-01

    Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion Dα (FIDA) spectroscopy measurements in magnetically confined plasma......, the Dα-photons are likewise Doppler-shifted ultimately due to gyration of the fast ions. In either case, spectra of Doppler-shifted line emission are sensitive to the velocity distribution of the emitters. Astrophysical Doppler tomography has lead to images of accretion discs of binaries revealing bright...... and limits, analogies and differences in astrophysical and fusion plasma Doppler tomography and what can be learned by comparison of these applications....

  17. Femtosecond diffractive imaging of biological cells

    Energy Technology Data Exchange (ETDEWEB)

    Marvin Seibert, M; Boutet, Sebastien; Svenda, Martin; Ekeberg, Tomas; Maia, Filipe R N C; TImneanu, Nicusor; Caleman, Carl; Hajdu, Janos [Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-75124 Uppsala (Sweden); Bogan, Michael J [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Barty, Anton; Hau-Riege, Stefan; Frank, Matthias; Benner, Henry [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Lee, Joanna Y [Department of Biology, Stanford University, Stanford, CA 94305 (United States); Marchesini, Stefano [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Shaevitz, Joshua W [150 Carl Icahn Laboratory, Princeton University, Princeton, NJ 08544 (United States); Fletcher, Daniel A [Bioengineering and Biophysics, University of California, Berkeley, CA 94720 (United States); Bajt, Sasa [Photon Science, DESY, Notkestrasse 85, 22607 Hamburg (Germany); Andersson, Inger [Department of Molecular Biology, Swedish University of Agricultural Sciences, Husargatan 3, Box 590, SE-751 24 Uppsala (Sweden); Chapman, Henry N, E-mail: marvin@xray.bmc.uu.s, E-mail: janos@xray.bmc.uu.s [Center for Free-Electron Laser Science, University of Hamburg and DESY, Notkestrasse 85, Hamburg (Germany)

    2010-10-14

    In a flash diffraction experiment, a short and extremely intense x-ray pulse illuminates the sample to obtain a diffraction pattern before the onset of significant radiation damage. The over-sampled diffraction pattern permits phase retrieval by iterative phasing methods. Flash diffractive imaging was first demonstrated on an inorganic test object (Chapman et al 2006 Nat. Phys. 2 839-43). We report here experiments on biological systems where individual cells were imaged, using single, 10-15 fs soft x-ray pulses at 13.5 nm wavelength from the FLASH free-electron laser in Hamburg. Simulations show that the pulse heated the sample to about 160 000 K but not before an interpretable diffraction pattern could be obtained. The reconstructed projection images return the structures of the intact cells. The simulations suggest that the average displacement of ions and atoms in the hottest surface layers remained below 3 A during the pulse.

  18. Powder diffraction crystallography of molecular solids.

    Science.gov (United States)

    Harris, Kenneth D M

    2012-01-01

    Many important crystalline solids cannot be prepared as single crystals of suitable size and quality for structural characterization by conventional single-crystal X-ray diffraction techniques and can instead be prepared only as microcrystalline powders. However, recent advances in techniques for determining crystal structures directly from powder X-ray diffraction data have created a unique opportunity for establishing structural properties of such materials. This chapter surveys the applications of powder X-ray diffraction across various aspects of structural and materials chemistry, focusing mainly on the opportunities that have emerged in recent years for carrying out complete crystal structure determination from powder X-ray diffraction data and giving particular emphasis to the case of molecular crystal structures. The current scope and future potential of powder X-ray diffraction as a strategy for crystal structure determination are discussed, and examples of applications across several disciplines of materials chemistry are presented.

  19. Neutron diffraction texture analysis for industrial applications

    International Nuclear Information System (INIS)

    Brokmeier, H.G.

    1994-01-01

    Considering the high transmission of neutron radiation, neutron diffraction is an efficient tool for the analysis of various material parameters of bulk material in a non-destructive way. Industrial application of texture analysis by X-ray diffraction is well established, whereas neutron diffraction applications are seldom. Thus a brief description explains the main differences between X-ray and neutron diffraction regarding texture measurements such as the investigation of coarse-grained materials, of large sample volumes and of multi-phase materials. The investigation of average textures of large sample volumes allows directly a correlation to material properties (e.g. Young's modulus, electric conductivity, plastic deformability, strength), which were determined on a workpiece. Examples will be given to show some applications of neutron diffraction texture analysis for technological interests. (orig.)

  20. Uniting Electron Crystallography and Powder Diffraction

    CERN Document Server

    Shankland, Kenneth; Meshi, Louisa; Avilov, Anatoly; David, William

    2012-01-01

    The polycrystalline and nanocrystalline states play an increasingly important role in exploiting the properties of materials, encompassing applications as diverse as pharmaceuticals, catalysts, solar cells and energy storage. A knowledge of the three-dimensional atomic and molecular structure of materials is essential for understanding and controlling their properties, yet traditional single-crystal X-ray diffraction methods lose their power when only polycrystalline and nanocrystalline samples are available. It is here that powder diffraction and single-crystal electron diffraction techniques take over, substantially extending the range of applicability of the crystallographic principles of structure determination.  This volume, a collection of teaching contributions presented at the Crystallographic Course in Erice in 2011, clearly describes the fundamentals and the state-of-the-art of powder diffraction and electron diffraction methods in materials characterisation, encompassing a diverse range of discipl...

  1. Diffraction and σγ*p

    International Nuclear Information System (INIS)

    Schildknecht, D.; Tentyukov, M.; Kuroda, M.; Surrow, B.

    2002-01-01

    The empirical scaling law, wherein the total photo-absorption cross section depends on the single variable η = (Q 2 + m 2 0 )/Λ 2 (W 2 ) , provides empirical evidence for saturation in the sense of σ γ*p (W 2 , Q 2 ) /σ γp (W 2 ) → 1 for W 2 → ∞ at fixed Q 2 . The total photo-absorption cross section is related to elastic diffraction in terms of a sum rule. The excess of diffractive production over the elastic component is due to inelastic diffraction that contains the production of hadronic states of higher spins. Motivated by the diffractive mass spectrum, the Generalized Vector Dominance/Color Dipole Picture (GVD/CDP) is extended to successfully describe the DIS data in the full region of x ≤ 0.1, all Q 2 ≥ 0 , where the diffractive two-gluon exchange mechanism dominates. (author)

  2. Light by light diffraction in vacuum

    Science.gov (United States)

    Tommasini, Daniele; Michinel, Humberto

    2010-07-01

    We show that a laser beam can be diffracted by a more concentrated light pulse due to quantum vacuum effects. We compute analytically the intensity pattern in a realistic experimental configuration, and discuss how it can be used to measure the parameters describing photon-photon scattering in vacuum. In particular, we show that the quantum electrodynamics prediction can be detected in a single-shot experiment at future 100-PW lasers such as ELI or HIPER. On the other hand, if carried out at one of the present high-power facilities, such as OMEGA EP, this proposal can lead either to the discovery of nonstandard physics or to substantial improvement in the current limits by PVLAS collaboration on the photon-photon cross section at optical wavelengths. This example of manipulation of light by light is simpler to realize and more sensitive than existing, alternative proposals, and can also be used to test Born-Infeld theory or to search for axionlike or minicharged particles.

  3. Coherent X-ray diffraction from collagenous soft tissues

    Energy Technology Data Exchange (ETDEWEB)

    Berenguer de la Cuesta, Felisa; Wenger, Marco P.E.; Bean, Richard J.; Bozec, Laurent; Horton, Michael A.; Robinson, Ian K.; (UCL)

    2009-09-11

    Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60-70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the 'speckled' nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques.

  4. Opto-mechanical design and development of a 460mm diffractive transmissive telescope

    Science.gov (United States)

    Qi, Bo; Wang, Lihua; Cui, Zhangang; Bian, Jiang; Xiang, Sihua; Ma, Haotong; Fan, Bin

    2018-01-01

    Using lightweight, replicated diffractive optics, we can construct extremely large aperture telescopes in space.The transmissive primary significantly reduces the sensitivities to out of plane motion as compared to reflective systems while reducing the manufacturing time and costs. This paper focuses on the design, fabrication and ground demonstration of a 460mm diffractive transmissive telescope the primary F/# is 6, optical field of view is 0.2° imagine bandwidth is 486nm 656nm.The design method of diffractive optical system was verified, the ability to capture a high-quality image using diffractive telescope collection optics was tested.The results show that the limit resolution is 94lp/mm, the diffractive system has a good imagine performance with broad bandwidths. This technology is particularly promising as a means to achieve extremely large optical primaries from compact, lightweight packages.

  5. Novel diamond cells for neutron diffraction using multi-carat CVD anvils.

    Science.gov (United States)

    Boehler, R; Molaison, J J; Haberl, B

    2017-08-01

    Traditionally, neutron diffraction at high pressure has been severely limited in pressure because low neutron flux required large sample volumes and therefore large volume presses. At the high-flux Spallation Neutron Source at the Oak Ridge National Laboratory, we have developed new, large-volume diamond anvil cells for neutron diffraction. The main features of these cells are multi-carat, single crystal chemical vapor deposition diamonds, very large diffraction apertures, and gas membranes to accommodate pressure stability, especially upon cooling. A new cell has been tested for diffraction up to 40 GPa with an unprecedented sample volume of ∼0.15 mm 3 . High quality spectra were obtained in 1 h for crystalline Ni and in ∼8 h for disordered glassy carbon. These new techniques will open the way for routine megabar neutron diffraction experiments.

  6. Novel diamond cells for neutron diffraction using multi-carat CVD anvils

    Science.gov (United States)

    Boehler, R.; Molaison, J. J.; Haberl, B.

    2017-08-01

    Traditionally, neutron diffraction at high pressure has been severely limited in pressure because low neutron flux required large sample volumes and therefore large volume presses. At the high-flux Spallation Neutron Source at the Oak Ridge National Laboratory, we have developed new, large-volume diamond anvil cells for neutron diffraction. The main features of these cells are multi-carat, single crystal chemical vapor deposition diamonds, very large diffraction apertures, and gas membranes to accommodate pressure stability, especially upon cooling. A new cell has been tested for diffraction up to 40 GPa with an unprecedented sample volume of ˜0.15 mm3. High quality spectra were obtained in 1 h for crystalline Ni and in ˜8 h for disordered glassy carbon. These new techniques will open the way for routine megabar neutron diffraction experiments.

  7. Terahertz Computed Tomography of NASA Thermal Protection System Materials

    Science.gov (United States)

    Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.

    2011-01-01

    A terahertz axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three-dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 cubic meters (1 cubic foot) with no safety concerns as for x-ray computed tomography. In this study, the system is evaluated for its ability to detect and characterize flat bottom holes, drilled holes, and embedded voids in foam materials utilized as thermal protection on the external fuel tanks for the Space Shuttle. X-ray micro-computed tomography was also performed on the samples to compare against the terahertz computed tomography results and better define embedded voids. Limits of detectability based on depth and size for the samples used in this study are loosely defined. Image sharpness and morphology characterization ability for terahertz computed tomography are qualitatively described.

  8. Integrated positron emission tomography/computed tomography for ...

    African Journals Online (AJOL)

    Integrated positron emission tomography/computed tomography for evaluation of mediastinal lymph node staging of non-small-cell lung cancer in a tuberculosisendemic area: A 5-year prospective observational study.

  9. Flatland Photonics: Circumventing Diffraction with Planar Plasmonic Architectures

    Science.gov (United States)

    Dionne, Jennifer Anne

    On subwavelength scales, photon-matter interactions are limited by diffraction. The diffraction limit restricts the size of optical devices and the resolution of conventional microscopes to wavelength-scale dimensions, severely hampering our ability to control and probe subwavelength-scale optical phenomena. Circumventing diffraction is now a principle focus of integrated nanophotonics. Surface plasmons provide a particularly promising approach to sub-diffraction-limited photonics. Surface plasmons are hybrid electron-photon modes confined to the interface between conductors and transparent materials. Combining the high localization of electronic waves with the propagation properties of optical waves, plasmons can achieve extremely small mode wavelengths and large local electromagnetic field intensities. Through their unique dispersion, surface plasmons provide access to an enormous phase space of refractive indices and propagation constants that can be readily tuned with material or geometry. In this thesis, we explore both the theory and applications of dispersion in planar plasmonic architectures. Particular attention is given to the modes of metallic core and plasmon slot waveguides, which can span positive, near-zero, and even negative indices. We demonstrate how such basic plasmonic geometries can be used to develop a suite of passive and active plasmonic components, including subwavelength waveguides, color filters, negative index metamaterials, and optical MOS field effect modulators. Positive index modes are probed by near- and far-field techniques, revealing plasmon wavelengths as small as one-tenth of the excitation wavelength. Negative index modes are characterized through direct visualization of negative refraction. By fabricating prisms comprised of gold, silicon nitride, and silver multilayers, we achieve the first experimental demonstration of a negative index material at visible frequencies, with potential applications for sub-diffraction-limited

  10. Accurate Charge Densities from Powder Diffraction

    DEFF Research Database (Denmark)

    Bindzus, Niels; Wahlberg, Nanna; Becker, Jacob

    Synchrotron powder X-ray diffraction has in recent years advanced to a level, where it has become realistic to probe extremely subtle electronic features. Compared to single-crystal diffraction, it may be superior for simple, high-symmetry crystals owing to negligible extinction effects and minimal...... peak overlap. Additionally, it offers the opportunity for collecting data on a single scale. For charge densities studies, the critical task is to recover accurate and bias-free structure factors from the diffraction pattern. This is the focal point of the present study, scrutinizing the performance...

  11. Diffraction and diffusion in room acoustics

    DEFF Research Database (Denmark)

    Rindel, Jens Holger; Rasmussen, Birgit

    1996-01-01

    Diffraction and diffusion are two phenomena that are both related to the wave nature of sound. Diffraction due to the finite size of reflecting surfaces and the design of single reflectors and reflector arrays are discussed. Diffusion is the result of scattering of sound reflected from surfaces...... that are not plane but curved or irregular. The importance of diffusion has been demonstrated in concert halls. Methods for the design of diffusing surfaces and the development of new types of diffusers are reviewed. Finally, the importance of diffraction and diffusion in room acoustic computer models is discussed....

  12. Hard diffractive quarkonium hadroproduction at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Machado, M.V.T. [Universidade Federal do Pampa Campus de Bage, Centro de Ciencias Exatas e Tecnologicas, Bage, RS (Brazil)

    2008-04-15

    We present a study of heavy quarkonium production in hard diffractive processes by pomeron exchange for Tevatron and LHC energies. The numerical results are computed using a recent experimental determination of the diffractive parton density functions in the pomeron and these are corrected by unitarity corrections through the gap survival probability factor. We give predictions for single as well as central diffractive ratios. These processes are sensitive to the gluon content of the pomeron at small Bjorken variable x and may be particularly useful in studying small-x physics. They may also be a good place to test the different available mechanisms for quarkonium production at hadron colliders. (orig.)

  13. Controlled double-slit electron diffraction

    International Nuclear Information System (INIS)

    Bach, Roger; Liou, Sy-Hwang; Batelaan, Herman; Pope, Damian

    2013-01-01

    Double-slit diffraction is a corner stone of quantum mechanics. It illustrates key features of quantum mechanics: interference and the particle-wave duality of matter. In 1965, Richard Feynman presented a thought experiment to show these features. Here we demonstrate the full realization of his famous thought experiment. By placing a movable mask in front of a double-slit to control the transmission through the individual slits, probability distributions for single- and double-slit arrangements were observed. Also, by recording single electron detection events diffracting through a double-slit, a diffraction pattern was built up from individual events. (paper)

  14. Conventional high pressure techniques fro neutron diffraction

    International Nuclear Information System (INIS)

    Mizuki, Jun-ichiro; Endoh, Yasuo

    1981-01-01

    Conventional high pressure techniques using a clamped type pressure cell have been adapted for studies by neutron diffraction. Careful calibration of the pressure sensing apparatus and an appropriate choice of pressure transmitting medium enable accurate neutron diffraction measurements to be made at reduced temperature as low as 4 K. In the present studies we have demonstrated that using the clamped type microbomb neutron diffraction measurements can be easily made under the pressure up to 5 kbar within the temperature range 4 K - 350 K. (author)

  15. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  16. Ocean acoustic reverberation tomography.

    Science.gov (United States)

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.

  17. Practical Bayesian tomography

    Science.gov (United States)

    Granade, Christopher; Combes, Joshua; Cory, D. G.

    2016-03-01

    In recent years, Bayesian methods have been proposed as a solution to a wide range of issues in quantum state and process tomography. State-of-the-art Bayesian tomography solutions suffer from three problems: numerical intractability, a lack of informative prior distributions, and an inability to track time-dependent processes. Here, we address all three problems. First, we use modern statistical methods, as pioneered by Huszár and Houlsby (2012 Phys. Rev. A 85 052120) and by Ferrie (2014 New J. Phys. 16 093035), to make Bayesian tomography numerically tractable. Our approach allows for practical computation of Bayesian point and region estimators for quantum states and channels. Second, we propose the first priors on quantum states and channels that allow for including useful experimental insight. Finally, we develop a method that allows tracking of time-dependent states and estimates the drift and diffusion processes affecting a state. We provide source code and animated visual examples for our methods.

  18. Breaking the diffraction barrier in fluorescence microscopy by optical shelving.

    Science.gov (United States)

    Bretschneider, Stefan; Eggeling, Christian; Hell, Stefan W

    2007-05-25

    We report the breaking of the diffraction resolution barrier in far-field fluorescence microscopy by transiently shelving the fluorophore in a metastable dark state. Using a relatively modest light intensity of several kW/cm(2) in a focal distribution featuring a local zero, we confine the fluorescence emission to a spot whose diameter is a fraction of the wavelength of light. Nanoscale far-field optical resolution down to 50 nm is demonstrated by imaging microtubules in a mammalian cell and proteins on the plasma membrane of a neuron. The presence of dark states in virtually any fluorescent molecule opens up a new venue for far-field microscopy with resolution that is no longer limited by diffraction.

  19. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission.

    Science.gov (United States)

    Klar, T A; Jakobs, S; Dyba, M; Egner, A; Hell, S W

    2000-07-18

    The diffraction barrier responsible for a finite focal spot size and limited resolution in far-field fluorescence microscopy has been fundamentally broken. This is accomplished by quenching excited organic molecules at the rim of the focal spot through stimulated emission. Along the optic axis, the spot size was reduced by up to 6 times beyond the diffraction barrier. The simultaneous 2-fold improvement in the radial direction rendered a nearly spherical fluorescence spot with a diameter of 90-110 nm. The spot volume of down to 0.67 attoliters is 18 times smaller than that of confocal microscopy, thus making our results also relevant to three-dimensional photochemistry and single molecule spectroscopy. Images of live cells reveal greater details.

  20. Refractive/diffractive optics: promise for the future

    Science.gov (United States)

    Bala, John L.

    1995-08-01

    Today's optical designers face new corporate cultures whose priorities include product performance as only one criteria for success. Designers must also address cost constraints, new and unfamiliar skill requirements, overhead containment, maintenance of profit margins, and staff reductions. Old skills must be applied in new ways. New diamond-turning machine technology has made it possible to construct injection molding tools which combine refraction and diffraction into a single lens element. New polymer materials render the designs to be technically and commercially feasible. The significance of combining refraction and diffraction in a single lens element should not be underestimated, as it will expand the capability of polymer optics beyond its refractive limitations. Use of this technology can restructure domestic optical manufacturing.

  1. Improved Resolution Optical Time Stretch Imaging Based on High Efficiency In-Fiber Diffraction.

    Science.gov (United States)

    Wang, Guoqing; Yan, Zhijun; Yang, Lei; Zhang, Lin; Wang, Chao

    2018-01-12

    Most overlooked challenges in ultrafast optical time stretch imaging (OTSI) are sacrificed spatial resolution and higher optical loss. These challenges are originated from optical diffraction devices used in OTSI, which encode image into spectra of ultrashort optical pulses. Conventional free-space diffraction gratings, as widely used in existing OTSI systems, suffer from several inherent drawbacks: limited diffraction efficiency in a non-Littrow configuration due to inherent zeroth-order reflection, high coupling loss between free-space gratings and optical fibers, bulky footprint, and more importantly, sacrificed imaging resolution due to non-full-aperture illumination for individual wavelengths. Here we report resolution-improved and diffraction-efficient OTSI using in-fiber diffraction for the first time to our knowledge. The key to overcome the existing challenges is a 45° tilted fiber grating (TFG), which serves as a compact in-fiber diffraction device offering improved diffraction efficiency (up to 97%), inherent compatibility with optical fibers, and improved imaging resolution owning to almost full-aperture illumination for all illumination wavelengths. 50 million frames per second imaging of fast moving object at 46 m/s with improved imaging resolution has been demonstrated. This conceptually new in-fiber diffraction design opens the way towards cost-effective, compact and high-resolution OTSI systems for image-based high-throughput detection and measurement.

  2. Digital multilayer tomography

    International Nuclear Information System (INIS)

    Dueber, C.; Klose, K.J.; Thelen, M.

    1991-01-01

    With digital multilayer tomography a sequence of projection images is recorded by an image intensifier television system and stored as digital data during a linear run of a layer sequence. Using this data record, tomograms of the examined body region can be computed for any layer thickness by shifts and superimposition of the single projections later at a digital workstation. The qualities of digital and conventional tomograms are basically comparable. A drawback of digital tomography is its lower local resolution (512 x 512 image matrix), advantages are a lower radiation exposure, a shorter patient examination time, and the facilities of digital image processing (later processing, archive setup, transmission). (orig.) [de

  3. Low aberration monolithic diffraction gratings for high performance optical spectrometers

    Science.gov (United States)

    Triebel, Peter; Moeller, Tobias; Diehl, Torsten; Gatto, Alexandre; Pesch, Alexander; Erdmann, Lars E.; Burkhardt, Matthias; Kalies, Alexander

    2017-09-01

    Gratings are the core element of the spectrometer. For imaging spectrometers beside the polarization sensitivity and efficiency the imaging quality of the diffraction grating is essential. Lenses and mirrors can be produced with lowest wavefront aberrations. Low aberration imaging quality of the grating is required not to limit the overall imaging quality of the instrument. Different types of spectrometers will lead to different requirements on the wavefront aberrations for their specific diffraction gratings. The wavefront aberration of an optical grating is a combination of the substrate wavefront and the grating wavefront. During the manufacturing process of the grating substrate different processes can be applied in order to minimize the wavefront aberrations. The imaging performance of the grating is also optimized due to the recording setup of the holography. This technology of holographically manufactured gratings is used for transmission and reflection gratings on different types of substrates like prisms, convex and concave spherical and aspherical surface shapes, free-form elements. All the manufactured gratings are monolithic and can be coated with high reflection and anti-reflection coatings. Prism substrates were used to manufacture monolithic GRISM elements for the UV to IR spectral range preferably working in transmission. Besides of transmission gratings, numerous spectrometer setups (e.g. Offner, Rowland circle, Czerny-Turner system layout) working on the optical design principles of reflection gratings. The present approach can be applied to manufacture high quality reflection gratings for the EUV to the IR. In this paper we report our latest results on manufacturing lowest wavefront aberration gratings based on holographic processes in order to enable at least diffraction limited complex spectrometric setups over certain wavelength ranges. Beside the results of low aberration gratings the latest achievements on improving efficiency together with

  4. Robust reconstruction of time-resolved diffraction from ultrafast streak cameras

    Directory of Open Access Journals (Sweden)

    Daniel S. Badali

    2017-09-01

    Full Text Available In conjunction with ultrafast diffraction, streak cameras offer an unprecedented opportunity for recording an entire molecular movie with a single probe pulse. This is an attractive alternative to conventional pump-probe experiments and opens the door to studying irreversible dynamics. However, due to the “smearing” of the diffraction pattern across the detector, the streaking technique has thus far been limited to simple mono-crystalline samples and extreme care has been taken to avoid overlapping diffraction spots. In this article, this limitation is addressed by developing a general theory of streaking of time-dependent diffraction patterns. Understanding the underlying physics of this process leads to the development of an algorithm based on Bayesian analysis to reconstruct the time evolution of the two-dimensional diffraction pattern from a single streaked image. It is demonstrated that this approach works on diffraction peaks that overlap when streaked, which not only removes the necessity of carefully choosing the streaking direction but also extends the streaking technique to be able to study polycrystalline samples and materials with complex crystalline structures. Furthermore, it is shown that the conventional analysis of streaked diffraction can lead to erroneous interpretations of the data.

  5. Children's (Pediatric) CT (Computed Tomography)

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Children's (Pediatric) CT (Computed Tomography) Pediatric computed tomography (CT) is ... a CT scan. View full size with caption Pediatric Content Some imaging tests and treatments have special ...

  6. Children's (Pediatric) CT (Computed Tomography)

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Children's (Pediatric) CT (Computed Tomography) Pediatric computed tomography (CT) is ... a CT scan. View full size with caption Pediatric Content Some imaging tests and treatments have special ...

  7. Diffraction by m-bonacci gratings

    International Nuclear Information System (INIS)

    Monsoriu, Juan A; Giménez, Marcos H; Furlan, Walter D; Barreiro, Juan C; Saavedra, Genaro

    2015-01-01

    We present a simple diffraction experiment with m-bonacci gratings as a new interesting generalization of the Fibonacci ones. Diffraction by these non-conventional structures is proposed as a motivational strategy to introduce students to basic research activities. The Fraunhofer diffraction patterns are obtained with the standard equipment present in most undergraduate physics labs and are compared with those obtained with regular periodic gratings. We show that m-bonacci gratings produce discrete Fraunhofer patterns characterized by a set of diffraction peaks which positions are related to the concept of a generalized golden mean. A very good agreement is obtained between experimental and numerical results and the students’ feedback is discussed. (paper)

  8. Diffraction studies of ion--water interactions

    International Nuclear Information System (INIS)

    Narten, A.H.; Triolo, R.

    1978-01-01

    Ionic solutions were among the first liquids to which x-ray diffraction was applied, and a large number of studies have been reported over the years. However, the interpretation of a single diffraction pattern is always difficult, often ambiguous, and never unique. This ambiguity of interpretation is greatly reduced if a solution is studied with several types of radiation (x-ray, neutron, electron), and a few such studies have been reported. The only currently feasible way of uniquely determining the correlations between water molecules and monatomic ions in solution is to vary the scattering factor of the ion; a simple difference measurement then yields the ion-water correlations. This has been done using the isotopic substitution method in neutron diffraction. It can also be done using synchrotron x-radiation and anomalous dispersion techniques. Diffraction studies of ion-water interactions have yielded detailed and unambiguous information for only a few concentrated solutions. 5 figures

  9. Diffraction physics with ALICE at the LHC

    CERN Document Server

    INSPIRE-00382834

    2015-01-01

    The ALICE experiment is equipped with a wide range of detectors providing excellent tracking and particle identification in the central region, as well as forward detectors with extended pseudorapidity coverage, which are well suited for studying diffractive processes. Cross section measurements of single and double diffractive processes performed by ALICE in pp collisions at $\\sqrt{s}=0.9,~2.76,~7$~TeV will be reported. Currently, ALICE is studying double-gap events in pp collisions at $\\sqrt{s}=7$~TeV, which give an insight into the central diffraction processes: current status and future perspectives will be discussed. The upgrade plans for diffraction studies, further extending the pseudorapidity acceptance of the ALICE setup for the forthcoming Run 2 of the LHC, will be outlined.

  10. Diffraction analysis of the microstructure of materials

    CERN Document Server

    Scardi, Paolo

    2004-01-01

    Diffraction Analysis of the Microstructure of Materials provides an overview of diffraction methods applied to the analysis of the microstructure of materials. Since crystallite size and the presence of lattice defects have a decisive influence on the properties of many engineering materials, information about this microstructure is of vital importance in developing and assessing materials for practical applications. The most powerful and usually non-destructive evaluation techniques available are X-ray and neutron diffraction. The book details, among other things, diffraction-line broadening methods for determining crystallite size and atomic-scale strain due, e.g. to dislocations, and methods for the analysis of residual (macroscale) stress. The book assumes only a basic knowledge of solid-state physics and supplies readers sufficient information to apply the methods themselves.

  11. Nonlinearity management and diffraction management for the ...

    Indian Academy of Sciences (India)

    Variational equations and partial differential equation have been simulated numerically. Analytical and numerical studies have shown that nonlinearity management and diffraction management stabilize the pulse against decay or collapse providing undisturbed propagation even for larger energies of the incident beam.

  12. Diffractive optics: design, fabrication, and test

    National Research Council Canada - National Science Library

    O'Shea, Donald C

    2004-01-01

    This book provides the reader with the broad range of materials that were discussed in a series of short courses presented at Georgia Tech on the design, fabrication, and testing of diffractive optical elements (DOEs...

  13. Nonlinearity management and diffraction management for the ...

    Indian Academy of Sciences (India)

    dimensional spatial solitons in Kerr media with periodically varying diffraction and nonlinearity has been analyzed in this paper using variational approach and numerical studies. Analytical expressions for soliton parameters have been derived using ...

  14. Transverse energy circulation and the edge diffraction of an optical vortex beam.

    Science.gov (United States)

    Bekshaev, Aleksandr Ya; Mohammed, Kadhim A; Kurka, Ivan A

    2014-04-01

    Edge diffraction of a circular Laguerre-Gaussian beam represents an example of the optical vortex symmetry breakdown in which the hidden "vortex" energy circulation is partially transformed into the visible "asymmetry" form. The diffracted beam evolution is studied in terms of the irradiance moments and the moment-based parameters. In spite of the limited applicability of the moment-based formalism, we show that the "vortex" and "asymmetry" parts of the orbital angular momentum can still be reasonably defined for the hard-edge diffracted beams and retain their physical role of quantifying the corresponding forms of the transverse energy circulation.

  15. Diffraction of slow neutrons by holographic SiO2 nanoparticle-polymer composite gratings

    Science.gov (United States)

    Klepp, J.; Pruner, C.; Tomita, Y.; Plonka-Spehr, C.; Geltenbort, P.; Ivanov, S.; Manzin, G.; Andersen, K. H.; Kohlbrecher, J.; Ellabban, M. A.; Fally, M.

    2011-07-01

    Diffraction experiments with holographic gratings recorded in SiO2 nanoparticle-polymer composites have been carried out with slow neutrons. The influence of parameters such as nanoparticle concentration, grating thickness, and grating spacing on the neutron-optical properties of such materials has been tested. Decay of the grating structure along the sample depth due to disturbance of the recording process becomes an issue at grating thicknesses of about 100 microns and larger. This limits the achievable diffraction efficiency for neutrons. As a solution to this problem, the Pendellösung interference effect in holographic gratings has been exploited to reach a diffraction efficiency of 83% for very cold neutrons.

  16. Neutron diffraction studies of the low-temperature magnetic structure of hexagonal FeGe

    DEFF Research Database (Denmark)

    Bernhard, J.; Lebech, Bente; Beckman, O.

    1984-01-01

    the critical field decreases and the anomaly becomes less pronounced. The cone structure is found to persist up at least 3.9 T, which was the upper limit of the applied field. The neutron diffraction data are discussed and related to previously published macroscopic data (e.g. magnetic susceptibility, torsion......The magnetic structure of the hexagonal polymorph of FeGe has been investigated by means of neutron diffraction on single crystals at low temperature and for magnetic fields applied perpendicular to the c axis. Between 410 and approximately 55K the magnetic structure is collinear c...... and Mossbauer data) as well as to earlier neutron diffraction results....

  17. Computational diffraction tomographic microscopy with transport of intensity equation using a light-emitting diode array

    Science.gov (United States)

    Li, Jiaji; Chen, Qian; Zhang, Jialin; Zuo, Chao

    2017-10-01

    Optical diffraction tomography (ODT) is an effective label-free technique for quantitatively refractive index imaging, which enables long-term monitoring of the internal three-dimensional (3D) structures and molecular composition of biological cells with minimal perturbation. However, existing optical tomographic methods generally rely on interferometric configuration for phase measurement and sophisticated mechanical systems for sample rotation or beam scanning. Thereby, the measurement is suspect to phase error coming from the coherent speckle, environmental vibrations, and mechanical error during data acquisition process. To overcome these limitations, we present a new ODT technique based on non-interferometric phase retrieval and programmable illumination emitting from a light-emitting diode (LED) array. The experimental system is built based on a traditional bright field microscope, with the light source replaced by a programmable LED array, which provides angle-variable quasi-monochromatic illumination with an angular coverage of +/-37 degrees in both x and y directions (corresponding to an illumination numerical aperture of ˜ 0.6). Transport of intensity equation (TIE) is utilized to recover the phase at different illumination angles, and the refractive index distribution is reconstructed based on the ODT framework under first Rytov approximation. The missing-cone problem in ODT is addressed by using the iterative non-negative constraint algorithm, and the misalignment of the LED array is further numerically corrected to improve the accuracy of refractive index quantification. Experiments on polystyrene beads and thick biological specimens show that the proposed approach allows accurate refractive index reconstruction while greatly reduced the system complexity and environmental sensitivity compared to conventional interferometric ODT approaches.

  18. Ab-initio crystal structure analysis and refinement approaches of oligo p-benzamides based on electron diffraction data.

    Science.gov (United States)

    Gorelik, Tatiana E; van de Streek, Jacco; Kilbinger, Andreas F M; Brunklaus, Gunther; Kolb, Ute

    2012-04-01

    Ab-initio crystal structure analysis of organic materials from electron diffraction data is presented. The data were collected using the automated electron diffraction tomography (ADT) technique. The structure solution and refinement route is first validated on the basis of the known crystal structure of tri-p-benzamide. The same procedure is then applied to solve the previously unknown crystal structure of tetra-p-benzamide. In the crystal structure of tetra-p-benzamide, an unusual hydrogen-bonding scheme is realised; the hydrogen-bonding scheme is, however, in perfect agreement with solid-state NMR data.

  19. Study of microbial growth I: by diffraction

    Science.gov (United States)

    Williams, Gareth T.; Bahuguna, Ramendra D.; Arteaga, Humberto; Le Joie, Elaine N.

    1991-01-01

    Yeast and bacteria growth has been detected by observing light diffracted from specially prepared diffracting screens upon which these organisms were grown. The screens were fabricated by impressing patterns on the surface of a growing medium. As the microbes metabolized, they caused severe changes in the lightdiffracting properties of the patterns as they ate into them. Such changes were detected within twenty minutes for bacteria and ten minutes for yeast.

  20. Current advances in neutron diffraction stress measurement

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi; Tomota, Yo

    2007-01-01

    Neutron diffraction has been employed for stress evaluation of various mechanical components. The hkl lattice plane spacings in a diffraction gauge volume are measured, then elastic strains are calculated and finally stresses are determined by using the Hooke's law. Since the real engineering mechanical parts are so complicated that more sophisticated method must be progressed to obtain stress distribution in the inside of a sample. Current advances on this issue are reviewed. (author)