WorldWideScience

Sample records for diffraction limited nanometer

  1. Nanometer-scale displacement sensor based on phase-sensitive diffraction grating.

    Science.gov (United States)

    Zhao, Shuangshuang; Hou, Changlun; Bai, Jian; Yang, Guoguang; Tian, Feng

    2011-04-01

    In this paper, a nanometer-scale displacement sensor based on a phase-sensitive diffraction grating with interferometeric detection is described and experimentally demonstrated. The proposed displacement sensor consists of a coherent light source, a microstepping motor controller, an integrated grating, a mirror, and a differential circuit. Experimental results show that the displacement sensor has a sensitivity of about 6 mV/nm and a resolution of less than 1 nm. This displacement measurement is an attractive technology with high sensitivity, broad dynamic range, good reliability, and immunity to electromagnetic interference. © 2011 Optical Society of America

  2. Diffraction limit of refractive compound lens

    International Nuclear Information System (INIS)

    Kolchevsky, N.N.; Petrov, P.V.

    2015-01-01

    A compound X-ray and neutron lenses is an array of lenses with a common axis. The resolution limited by aberration and by diffraction. Diffraction limit comes from theory based on absorption aperture of the compound refractive lenses. Beam passing through transparent lenses form Airy pattern. Results of calculation of diffraction resolution limit for non-transparent X-ray and neutron lenses are discussed. (authors)

  3. Diffractive optics and nanophotonics resolution below the diffraction limit

    CERN Document Server

    Minin, Igor

    2016-01-01

    In this book the authors present several examples of techniques used to overcome the Abby diffraction limit using flat and 3D diffractive optical elements, photonic crystal lenses, photonic jets, and surface plasmon diffractive optics. The structures discussed can be used in the microwave and THz range and also as scaled models for optical frequencies. Such nano-optical microlenses can be integrated, for example, into existing semiconductor heterostructure platforms for next-generation optoelectronic applications. Chapter 1 considers flat diffractive lenses and innovative 3D radiating structures including a conical millimeter-wave Fresnel zone plate (FZP) lens proposed for subwavelength focusing. In chapter 2 the subwavelength focusing properties of diffractive photonic crystal lenses are considered and it is shown that at least three different types of photonic crystal lens are possible.  With the aim of achieving subwavelength focusing, in chapter 3 an alternative mechanism to produce photonic jets at Tera...

  4. X-ray diffraction and high resolution transmission electron microscopy characterization of intermetallics formed in Fe/Ti nanometer-scale multilayers during thermal annealing

    International Nuclear Information System (INIS)

    Wu, Z.L.; Peng, T.X.; Cao, B.S.; Lei, M.K.

    2009-01-01

    Intermetallics formation in the Fe/Ti nanometer-scale multilayers magnetron-sputtering deposited on Si(100) substrate during thermal annealing at 623-873 K was investigated by using small and wide angle X-ray diffraction and cross-sectional high-resolution transmission electron microscopy. The Fe/Ti nanometer-scale multilayers were constructed with bilayer thickness of 16.2 nm and the sublayer thickness ratio of 1:1. At the annealing temperature of 623 K, intermetallics FeTi were formed by nucleation at the triple joins of α-Fe(Ti)/α-Ti interface and α-Ti grain boundary with an orientational correlation of FeTi(110)//α-Ti(100) and FeTi[001]//α-Ti[001] to adjacent α-Ti grains. The lateral growth of intermetallics FeTi which is dependent on the diffusion path of Ti led to a coalescence into an intermetallic layer. With an increase in the annealing temperature, intermetallics Fe 2 Ti were formed between the intermetallics FeTi and the excess Fe due to the limitation of Fe and Ti atomic concentrations, resulting in the coexistence of intermetallics FeTi and Fe 2 Ti. It was found that the low energy interface as well as the dominant diffusion path constrained the nucleation and growth of intermetallics during interfacial reaction in the nanometer-scale metallic multilayers.

  5. Immobilizing Biomolecules Near the Diffraction Limit

    DEFF Research Database (Denmark)

    Skovsen, Esben; Petersen, Maria Teresa Neves; Gennaro, Ane Kold Di

    2009-01-01

    be used to print arrays of biomolecules and to immobilize biomolecules according to any specific pattern on a planar substrates with micrometer scale resolution. In this paper we show that we can immobilize proteins according to diffraction patterns of UV light. We also show that the feature size...... of the immobilized patterns can be as small as the diffraction limit for the excitation light, and that the immobilized patterns correspond to the diffraction pattern used to generate it. The flexibility of this new technology will in principle make it possible to create any pattern of biomolecules onto a substrate......, which can be generated by a UV diffraction pattern. Such patterns can have sub-micron feature sizes and could therefore be of great relevance for present and future nanotechnological applications....

  6. Fast, inexpensive, diffraction limited cylindrical microlenses

    International Nuclear Information System (INIS)

    Synder, J.J.; Reichert, P.

    1991-01-01

    We have developed a technique for fabricating fast, well corrected cylindrical microlenses. With this technique we have made a number of different microlenses with dimensions and focal lengths in the range of few hundred μm, and diffraction limited numerical apertures as high as 0.9. The microlenses are specifically designed for applications where they can increase the radiance or otherwise enhance the optical characteristics of laser diode light. The fabrication method we use is very versatile, and the microlenses produced this way would be very inexpensive in production quantities. 6 refs., 4 figs

  7. Beating the diffraction limit in astronomy via quantum cloning

    Science.gov (United States)

    Kellerer, A.

    2014-01-01

    Context. The diffraction limit is considered as the absolute boundary for the angular resolution of a telescope. Non-linear optical processes, however, allow the diffraction limit to be beaten non-deterministically. Aims: We examine the possibility of overcoming the diffraction limit of a telescope through photon cloning processes, heralded by trigger events. Whilst perfect cloning is ruled out by quantum mechanics, imperfect cloning is attainable and can beat the diffraction limit on a reduced fraction of photons. Methods: We suggest to insert a layer of excited atoms in a pupil plane of the telescope. When a photon from the astronomical source passes the pupil, it stimulates the emission of identical photons by the excited atoms. The set of photons arrives on a coincidence detector, and the average position of simultaneously arriving photons is recorded. The contribution of spontaneous emissions is minimized by use of a trigger signal, implemented via a quantum-non-demolition measurement. Results: The proposed set-up - an optical amplifier triggered by a quantum-non-demolition measurement - allows to beat the diffraction limit of a telescope, at the price of a loss in efficiency. The efficiency may, however, be compensated for through increased exposure times. Conclusions: The main conclusion is the possibility in principle to improve the angular resolution of a telescope beyond the diffraction limit and thus to achieve high-angular resolutions with moderately sized telescopes.

  8. Limited Diffraction Maps for Pulsed Wave Annular Arrays

    DEFF Research Database (Denmark)

    Fox, Paul D.

    2002-01-01

    A procedure is provided for decomposing the linear field of flat pulsed wave annular arrays into an equivalent set of known limited diffraction Bessel beams. Each Bessel beam propagates with known characteristics, enabling good insight into the propagation of annular fields to be obtained...

  9. Experimental coherent X-ray diffractive imaging: capabilities and limitations of the technique

    International Nuclear Information System (INIS)

    Schropp, Andreas

    2008-08-01

    The investigations pursued during this work were focused on the testing of the applicability of the coherent X-ray diffractive imaging(CXDI)-method in the hard X-ray regime and different measurements were carried out at photon energies between 7 keV and 10 keV. The samples investigated were lithographically prepared two-dimensional gold structures with a size ranging from 3 μm to 10 μm as well as a cluster of gold spheres with a lateral extension of about 3.5 μm. Continuous diffraction patterns were recorded in small angle scattering geometry. In some of the measurements a scattering signal up to the edge of the detector could be measured which corresponds to a lateral resolution of about 30 nm. For certain samples it was possible to reconstruct the object from the measured diffraction data. Since the scattered intensity of non-periodic objects is weak at large scattering angles, the available photon flux is finally the main limitation of the method with regard to the achievable resolution. The experimental data were used to get an estimate of photon flux required for sub-nanometer resolution. The ptychographic iterative phase retrieval algorithm proposed by J. M. Rodenburg et al. (2004) was implemented and tested on simulated diffraction data. Additionally, a genetic algorithm has been developed and implemented for phase retrieval. This algorithm is very different from state-of-the-art algorithms and allows to introduce further experimentally important parameters such as a certain illumination function and partial coherence of the X-ray light. (orig.)

  10. Limited-diffraction solutions to Maxwell and Schroedinger equations

    International Nuclear Information System (INIS)

    Lu, Jian-yu; Greenleaf, J.F.

    1996-10-01

    The authors have developed a new family of limited diffraction electromagnetic X-shaped waves based on the scalar X-shaped waves discovered previously. These waves are diffraction-free in theory and particle-like (wave packets), in that they maintain their shape as they propagate to an infinite distance. The 'X waves' possess (theoretically) infinitely extended 'arms' and - at least, the ones studied in this paper - have an infinite total energy: therefore, they are not physically realizable. However, they can be truncated in both space and time and 'approximated' by means of a finite aperture radiator so to get a large enough depth of interest (depth of field). In addition to the Maxwell equations, X wave solutions to the free Schroedinger equation are also obtained. Possible applications of these new waves are discussed. Finally, the authors discuss the appearance of the X-shaped solutions from the purely geometric point of view of the special relativity theory

  11. The dentin organic matrix - limitations of restorative dentistry hidden on the nanometer scale

    Energy Technology Data Exchange (ETDEWEB)

    Bertassoni, Luiz E; Orgel, Joseph P.R.; Antipova, Olga; Swain, Michael V [IIT; (Sydney)

    2012-07-25

    The prevention and treatment of dental caries are major challenges occurring in dentistry. The foundations for modern management of this dental disease, estimated to affect 90% of adults in Western countries, rest upon the dependence of ultrafine interactions between synthetic polymeric biomaterials and nanostructured supramolecular assemblies that compose the tooth organic substrate. Research has shown, however, that this interaction imposes less than desirable long-term prospects for current resin-based dental restorations. Here we review progress in the identification of the nanostructural organization of the organic matrix of dentin, the largest component of the tooth structure, and highlight aspects relevant to understating the interaction of restorative biomaterials with the dentin substrate. We offer novel insights into the influence of the hierarchically assembled supramolecular structure of dentin collagen fibrils and their structural dependence on water molecules. Secondly, we review recent evidence for the participation of proteoglycans in composing the dentin organic network. Finally, we discuss the relation of these complexly assembled nanostructures with the protease degradative processes driving the low durability of current resin-based dental restorations. We argue in favour of the structural limitations that these complexly organized and inherently hydrated organic structures may impose on the clinical prospects of current hydrophobic and hydrolyzable dental polymers that establish ultrafine contact with the tooth substrate.

  12. Atmospheric Dispersion Effects at the Diffraction Limit of TMT

    Science.gov (United States)

    Niehaus, Cyndie; Phillips, A.; Larkin, J.; Moore, A.; Barton, B.; IRIS Team

    2010-01-01

    As part of the design study of the InfraRed Imaging Spectrograph (IRIS) for Thirty Meter Telescope (TMT) we've undertaken an analysis of the effects of atmospheric dispersion at the diffraction limit of the telescope. While dispersion in the near infrared is often only marginally important in seeing limited observations, there are many effects that must be understood in order to achieve astrometric accuracies well below the 0.1 milliarcsecond level. Even with precision dispersion correction, residuals at the level of a few milliarcseconds often remain even for single stars. Field dependent distortion can further limit performance and are also dynamic in orientation and magnitude. We'll present simulations of observed stellar fields based on our expected exposure times. Effects due to stellar color, variable atmospheric conditions and other factors will also be presented.

  13. Genetic algorithm for chromaticity correction in diffraction limited storage rings

    Directory of Open Access Journals (Sweden)

    M. P. Ehrlichman

    2016-04-01

    Full Text Available A multiobjective genetic algorithm is developed for optimizing nonlinearities in diffraction limited storage rings. This algorithm determines sextupole and octupole strengths for chromaticity correction that deliver optimized dynamic aperture and beam lifetime. The algorithm makes use of dominance constraints to breed desirable properties into the early generations. The momentum aperture is optimized indirectly by constraining the chromatic tune footprint and optimizing the off-energy dynamic aperture. The result is an effective and computationally efficient technique for correcting chromaticity in a storage ring while maintaining optimal dynamic aperture and beam lifetime.

  14. Elettra 2.0 - The diffraction limited successor of Elettra

    Science.gov (United States)

    Karantzoulis, Emanuel

    2018-02-01

    Elettra has been operating for users for 23 years; to stay competitive for world-class photon science in the future a massive upgrade of the storage ring is needed. An analysis of possible magnet lattice configurations has been performed with the aim of transforming Elettra into a diffraction limited storage ring. The optimum solution is based on certain design constraints and user requirements and their implications for beam dynamics and for practical considerations regarding certain accelerator components. The new proposed design will have a bare emittance of 250 pm-rad and coherent flux about two orders of magnitude higher than that of the present machine.

  15. Wide field and diffraction limited array camera for SIRTF

    International Nuclear Information System (INIS)

    Fazio, G.G.; Koch, D.G.; Melnick, G.J.

    1986-01-01

    The Infrared Array Camera for the Space Infrared Telescope Facility (SIRTF/IRAC) is capable of two-dimensional photometry in either a wide field or diffraction-limited mode over the wavelength interval from 2 to 30 microns. Three different two-dimensional direct readout (DRO) array detectors are being considered: Band 1-InSb or Si:In (2-5 microns) 128 x 128 pixels, Band 2-Si:Ga (5-18 microns) 64 x 64 pixels, and Band 3-Si:Sb (18-30 microns) 64 x 64 pixels. The hybrid DRO readout architecture has the advantages of low read noise, random pixel access with individual readout rates, and nondestructive readout. The scientific goals of IRAC are discussed, which are the basis for several important requirements and capabilities of the array camera: (1) diffraction-limited resolution from 2-30 microns, (2) use of the maximum unvignetted field of view of SIRTF, (3) simultaneous observations within the three infrared spectral bands, and (4) the capability for broad and narrow bandwidth spectral resolution. A strategy has been developed to minimize the total electronic and environmental noise sources to satisfy the scientific requirements. 7 references

  16. Three-dimensional live microscopy beyond the diffraction limit

    International Nuclear Information System (INIS)

    Fiolka, Reto

    2013-01-01

    In fluorescence microscopy it has become possible to fundamentally overcome the diffraction limited resolution in all three spatial dimensions. However, to have the most impact in biological sciences, new optical microscopy techniques need to be compatible with live cell imaging: image acquisition has to be fast enough to capture cellular dynamics at the new resolution limit while light exposure needs to be minimized to prevent photo-toxic effects. With increasing spatial resolution, these requirements become more difficult to meet, even more so when volumetric imaging is performed. In this review, techniques that have been successfully applied to three-dimensional, super-resolution live microscopy are presented and their relative strengths and weaknesses are discussed. (special issue article)

  17. Shaping the spatial and spectral emissivity at the diffraction limit

    International Nuclear Information System (INIS)

    Makhsiyan, Mathilde; Bouchon, Patrick; Jaeck, Julien; Pelouard, Jean-Luc; Haïdar, Riad

    2015-01-01

    Metasurfaces have attracted a growing interest for their ability to artificially tailor an electromagnetic response on various spectral ranges. In particular, thermal sources with unprecedented abilities, such as directionality or monochromaticity, have been achieved. However, these metasurfaces exhibit homogeneous optical properties whereas the spatial modulation of the emissivity up to the wavelength scale is at the crux of the design of original emitters. In this letter, we study an inhomogeneous metasurface made of a nonperiodic set of optical nano-antennas that spatially and spectrally control the emitted light up to the diffraction limit. Each antenna acts as an independent deep subwavelength emitter for given polarization and wavelength. Their juxtaposition at the subwavelength scale encodes far field multispectral and polarized images. This opens up promising breakthroughs for applications such as optical storage, anti-counterfeit devices, and multispectral emitters for biochemical sensing

  18. Near diffraction limited mid-IR spectromicroscopy using frequency upconversion

    DEFF Research Database (Denmark)

    Sanders, Nicolai Højer; Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter

    2014-01-01

    Mid-infrared microscopy and spectroscopy is interesting due to its medical, biological and chemical applications. Spectromicroscopy can be used for histopathology, sample analysis and diagnosis. The ability to do spectromicroscopy in the 2.5 to 4.5 μm wavelength range where many organic molecules...... technologies. With these applications in mind, we have incorporated microscopy optics into an image upconversion system, achieving near diffraction limited spatial resolution in the 3 μm range. Spectroscopic information is further acquired by appropriate control of the phase match condition of the upconversion...... have their fundamental vibrations, with the addition of sufficient spectroscopic resolution to resolve these bands, cane.g.potentially allow for diagnostics without the need for staining of the sample. On a longer timeframe, mid-IR spectromicroscopy has the potential for in-vivo diagnostics, combining...

  19. Lower nanometer-scale size limit for the deformation of a metallic glass by shear transformations revealed by quantitative AFM indentation

    Directory of Open Access Journals (Sweden)

    Arnaud Caron

    2015-08-01

    Full Text Available We combine non-contact atomic force microscopy (AFM imaging and AFM indentation in ultra-high vacuum to quantitatively and reproducibly determine the hardness and deformation mechanisms of Pt(111 and a Pt57.5Cu14.7Ni5.3P22.5 metallic glass with unprecedented spatial resolution. Our results on plastic deformation mechanisms of crystalline Pt(111 are consistent with the discrete mechanisms established for larger scales: Plasticity is mediated by dislocation gliding and no rate dependence is observed. For the metallic glass we have discovered that plastic deformation at the nanometer scale is not discrete but continuous and localized around the indenter, and does not exhibit rate dependence. This contrasts with the observation of serrated, rate-dependent flow of metallic glasses at larger scales. Our results reveal a lower size limit for metallic glasses below which shear transformation mechanisms are not activated by indentation. In the case of metallic glass, we conclude that the energy stored in the stressed volume during nanometer-scale indentation is insufficient to account for the interfacial energy of a shear band in the glassy matrix.

  20. Design and Optimisation Strategies of Nonlinear Dynamics for Diffraction Limited Synchrotron Light Source

    CERN Document Server

    Bartolini, R.

    2016-01-01

    This paper introduces the most recent achievements in the control of nonlinear dynamics in electron synchrotron light sources, with special attention to diffraction limited storage rings. Guidelines for the design and optimization of the magnetic lattice are reviewed and discussed.

  1. Coherent Rabi oscillations in a molecular system and sub-diffraction-limited pattern generation

    International Nuclear Information System (INIS)

    Liao, Zeyang; Al-Amri, M; Zubairy, M Suhail

    2015-01-01

    The resolution of a photolithography and optical imaging system is restricted by the diffraction limit. Coherent Rabi oscillations have been shown to be able to overcome the diffraction limit in a simple two-level atomic system (Z Liao, M Al-amri, and M S Zubairy 2010 Phys. Rev. Lett. 105 183601). In this paper, we numerically calculate the wave packet dynamics of a molecular system interacting with an ultrashort laser pulse and show that coherent Rabi oscillations in a molecular system are also possible. Moreover, a sub-diffraction-limited pattern can be generated in this system by introducing spatially modulated Rabi oscillations. We also discuss several techniques to improve the visibility of the sub-diffraction-limited pattern. Our result may have important applications in super-resolution optical lithography and optical imaging. (paper)

  2. A note on the limitations of the magnetic axis direction determination by neutron powder diffraction

    International Nuclear Information System (INIS)

    Shaked, Hagai

    2004-01-01

    Rotation crystal symmetry analysis of the magnetic intensities in neutron powder diffraction from magnetically ordered, collinear structures is performed. This analysis, making no reference to a specific crystal system, leads to the well-known limitations on the direction of magnetic axis determination by neutron powder diffraction. It shows that due to the second-order dependence of the magnetic intensity on the magnetic axis components, these limitations result solely from the crystal rotation symmetry in the magnetically ordered state

  3. Review of near-field optics and superlenses for sub-diffraction-limited nano-imaging

    Directory of Open Access Journals (Sweden)

    Wyatt Adams

    2016-10-01

    Full Text Available Near-field optics and superlenses for imaging beyond Abbe’s diffraction limit are reviewed. A comprehensive and contemporary background is given on scanning near-field microscopy and superlensing. Attention is brought to recent research leveraging scanning near-field optical microscopy with superlenses for new nano-imaging capabilities. Future research directions are explored for realizing the goal of low-cost and high-performance sub-diffraction-limited imaging systems.

  4. Overcoming the acoustic diffraction limit in photoacoustic imaging by the localization of flowing absorbers.

    Science.gov (United States)

    Vilov, Sergey; Arnal, Bastien; Bossy, Emmanuel

    2017-11-01

    The resolution of photoacoustic imaging deep inside scattering media is limited by the acoustic diffraction limit. In this Letter, taking inspiration from super-resolution imaging techniques developed to beat the optical diffraction limit, we demonstrate that the localization of individual optical absorbers can provide super-resolution photoacoustic imaging well beyond the acoustic diffraction limit. As a proof-of-principle experiment, photoacoustic cross-sectional images of microfluidic channels were obtained with a 15 MHz linear capacitive micromachined ultrasonic transducer array, while absorbing beads were flown through the channels. The localization of individual absorbers allowed us to obtain a super-resolved cross-sectional image of the channels by reconstructing both the channel width and position with an accuracy better than λ/10. Given the discrete nature of endogenous absorbers such as red blood cells, or that of exogenous particular contrast agents, localization is a promising approach to push the current resolution limits of photoacoustic imaging.

  5. Probing local order in glasses from limited-volume electron and x-ray diffraction

    Science.gov (United States)

    Liu, A. C. Y.; Tabor, R. F.; Bourgeois, L.; de Jonge, M. D.; Mudie, S. T.; Petersen, T. C.

    2016-05-01

    It has long been recognised that spatial fluctuations in local order in disordered assemblies of particles can be probed using limited-volume diffraction measurements. These measurements have unique advantages over broad-beam diffraction experiments that isotropically average over many structural configurations and result in one-dimensional intensity curves, requiring modelling to interpret. Despite the advantages of limiting illumination to a low number of particle configurations, obtaining quantitative measurements of local order from such experiments remains a challenge. The effects on the diffraction pattern of changing the beam energy, lateral size, aberrations and coherence and the specimen thickness have only recently been clarified. We review theoretical and experimental efforts in this direction in the fields of both electron and x-ray diffraction and identify promising areas of future development.

  6. Overcoming of the 1/2 reflectivity limit in Laue neutron diffraction

    International Nuclear Information System (INIS)

    Boeuf, A.; Rustichelli, F.; Melone, S.; Puliti, P.

    1978-01-01

    Experimental evidence for the overcoming of the 50% peak reflectivity limit in neutron diffraction in the Laue geometry is presented. Peak reflectivity up to 75%, in spite of the neutron absorption, has been obtained with a bent germanium crystal. This effect has been explained by a simple model based in the dynamical theory of neutron diffraction and appears as a consequence of the elimination, due to a proper curvature, of the Pendelloesung effect. (author)

  7. Iterative deconvolution technique for measurements of diffraction-limited images on optical microscopes.

    Science.gov (United States)

    Lu, Wenlong; Chang, Ming; Chen, Po-Cheng; Luo, Wun-Mao

    2014-12-12

    Diffraction limit is usually a thorny problem in an optical inspection system. In this investigation, a model-based deconvolution technique was developed to recover diffraction-limited images, where images with sizes smaller than the diffraction limit could be recognized. Experiments were carried out with a traditional microscope at 200× magnification coupled with a halogen light source for a series of line width samples. The point spread function of the imaging optics was first obtained from an estimated model and then combined with a nonlinear deconvolution algorithm to calculate the full width at half maximum and reconstruct the line widths. Experimental results indicate that a measurement error below one pixel size of the measurement system is achievable. Accordingly, the target of nanoscale line width inspection based on a low cost and real-time image processing technique can be fulfilled, which greatly increases the ability of nanoscaling on optical microscopes.

  8. Limitations on the strain tensor determination by neutron diffraction using a position-sensitive detector

    International Nuclear Information System (INIS)

    Lorentzen, T.; Christoffersen, J.

    1990-01-01

    Diffraction techniques such as neutron diffraction allow strain components to be measured in arbitrarily chosen directions in structural components, and hence complete strain tensors can in principle be calculated from any six measured normal strain components. However, in a newly developed technique, whereby a position-sensitive detector is used for simultaneous measurements of chosen strain components at several points along a line through the specimen, there appear to be some limitations on the choice of strain components for strain tensor determination. This note verifies the nature of these limitations. (author)

  9. Stimulated Emission Pumping Enablling Sub-Diffraction-Limited Spatial Resolution in CARS Microscopy

    NARCIS (Netherlands)

    Cleff, C.; Gross, P.; Fallnich, C.; Offerhaus, Herman L.; Herek, Jennifer Lynn; Kruse, K.; Beeker, W.P; Beeker, W.P.; Lee, Christopher James; Boller, Klaus J.; Dobner, S.

    2012-01-01

    Suppression of CARS signal generation is demonstrated by equalization of the ground and Raman states via a control state in a theoretical investigation. Using donut-shaped control light fields for population transfer results in sub-diffraction-limited spatial resolution CARS microscopy.

  10. Breaking the diffraction limit of light-sheet fluorescence microscopy by RESOLFT.

    Science.gov (United States)

    Hoyer, Patrick; de Medeiros, Gustavo; Balázs, Bálint; Norlin, Nils; Besir, Christina; Hanne, Janina; Kräusslich, Hans-Georg; Engelhardt, Johann; Sahl, Steffen J; Hell, Stefan W; Hufnagel, Lars

    2016-03-29

    We present a plane-scanning RESOLFT [reversible saturable/switchable optical (fluorescence) transitions] light-sheet (LS) nanoscope, which fundamentally overcomes the diffraction barrier in the axial direction via confinement of the fluorescent molecular state to a sheet of subdiffraction thickness around the focal plane. To this end, reversibly switchable fluorophores located right above and below the focal plane are transferred to a nonfluorescent state at each scanning step. LS-RESOLFT nanoscopy offers wide-field 3D imaging of living biological specimens with low light dose and axial resolution far beyond the diffraction barrier. We demonstrate optical sections that are thinner by 5-12-fold compared with their conventional diffraction-limited LS analogs.

  11. Modified Linnik microscopic interferometry for quantitative depth evaluation of diffraction-limited microgroove

    Science.gov (United States)

    Ye, Shiwei; Takahashi, Satoru; Michihata, Masaki; Takamasu, Kiyoshi

    2018-05-01

    The quality control of microgrooves is extremely crucial to ensure the performance and stability of microstructures and improve their fabrication efficiency. This paper introduces a novel optical inspection method and a modified Linnik microscopic interferometer measurement system to detect the depth of microgrooves with a width less than the diffraction limit. Using this optical method, the depth of diffraction-limited microgrooves can be related to the near-field optical phase difference, which cannot be practically observed but can be computed from practical far-field observations. Thus, a modified Linnik microscopic interferometer system based on three identical objective lenses and an optical path reversibility principle were developed. In addition, experiments for standard grating microgrooves on the silicon surface were carried out to demonstrate the feasibility and repeatability of the proposed method and developed measurement system.

  12. Field computation for two-dimensional array transducers with limited diffraction array beams.

    Science.gov (United States)

    Lu, Jian-Yu; Cheng, Jiqi

    2005-10-01

    A method is developed for calculating fields produced with a two-dimensional (2D) array transducer. This method decomposes an arbitrary 2D aperture weighting function into a set of limited diffraction array beams. Using the analytical expressions of limited diffraction beams, arbitrary continuous wave (cw) or pulse wave (pw) fields of 2D arrays can be obtained with a simple superposition of these beams. In addition, this method can be simplified and applied to a 1D array transducer of a finite or infinite elevation height. For beams produced with axially symmetric aperture weighting functions, this method can be reduced to the Fourier-Bessel method studied previously where an annular array transducer can be used. The advantage of the method is that it is accurate and computationally efficient, especially in regions that are not far from the surface of the transducer (near field), where it is important for medical imaging. Both computer simulations and a synthetic array experiment are carried out to verify the method. Results (Bessel beam, focused Gaussian beam, X wave and asymmetric array beams) show that the method is accurate as compared to that using the Rayleigh-Sommerfeld diffraction formula and agrees well with the experiment.

  13. Definition and measurement of the times-diffraction-limit number of high-power laser beams

    Science.gov (United States)

    Bollanti, Sarah; Di Lazzaro, Paolo; Murra, Daniele

    1998-07-01

    A novel definition of the times-diffraction-limit (TDL) number of a laser beam is given. A comparison is made with the commonly used beam-propagation parameter M2, which is unreliable for hard-edge beams, like those produced by unstable resonators with diffraction output coupling. The new suggested TDL number definition doesn't rely on the real beam comparison to a Gaussian beam, but on the comparison of the far-field performances of the real beam with respect to those of a uniphase beam with the same amplitude profile in the near field. A practical method is also given for the estimation of the TDL number of real beams. Finally, this procedure is applied to the high-peak-power laser beams generated by two excimer laser systems developed in ENEA.

  14. Imaging cold atoms with shot-noise and diffraction limited holography

    International Nuclear Information System (INIS)

    Sobol, J P; Wu, Saijun

    2014-01-01

    We theoretically develop and experimentally demonstrate a holographic method for imaging cold atoms at the diffraction and photon shot noise limits. Aided by a double point source reference field, a simple iterative algorithm robustly removes the twin image of an 87 Rb cold atom sample during the image reconstruction. Shot-noise limited phase shift and absorption images are consistently retrieved at various probe detunings, and during the laser cooling process. We consistently resolve less than 2 mrad phase shift (0.4% attenuation) of the probe light, outperforming shot-noise limited phase-contrast (absorption) imaging by a factor of 4 or more if the same camera is used without pixel saturation. We discuss the possible extension of this work for precise phase imaging of dense atomic gases, and for off-resonant probing of multiple atoms in optical lattices. (paper)

  15. Optoelectronic circuits in nanometer CMOS technology

    CERN Document Server

    Atef, Mohamed

    2016-01-01

    This book describes the newest implementations of integrated photodiodes fabricated in nanometer standard CMOS technologies. It also includes the required fundamentals, the state-of-the-art, and the design of high-performance laser drivers, transimpedance amplifiers, equalizers, and limiting amplifiers fabricated in nanometer CMOS technologies. This book shows the newest results for the performance of integrated optical receivers, laser drivers, modulator drivers and optical sensors in nanometer standard CMOS technologies. Nanometer CMOS technologies rapidly advanced, enabling the implementation of integrated optical receivers for high data rates of several Giga-bits per second and of high-pixel count optical imagers and sensors. In particular, low cost silicon CMOS optoelectronic integrated circuits became very attractive because they can be extensively applied to short-distance optical communications, such as local area network, chip-to-chip and board-to-board interconnects as well as to imaging and medical...

  16. 70-Watt green laser with near diffraction-limited beam quality

    Science.gov (United States)

    Hu, Dan; Eisenberg, Eric; Madasamy, Pratheepan; Mead, Roy; Honea, Eric

    2009-02-01

    A 70-Watt green laser with M2green laser consists of an all-fiber-based IR pump laser at 1064 nm and a frequency-conversion module in a compact and flexible configuration. The IR laser produces up to 150 Watts in a polarized diffraction-limited output beam with high spectral brightness for frequency conversion. The IR laser is operating under QCW mode, e.g. 10 MHz with 3~5 ns pulse width or 700 MHz with 50 ps pulse width, to generate sufficient peak power for frequency doubling in the converter module. The IR laser and conversion module are connected via a 5-mm stainless-steel protected delivery fiber for optical beam delivery and an electrical cable harness for electrical power delivery and system control. Both the IR laser and converter module are run through embedded software that controls laser operations such as warm up and shut down. System overview and full characterization results will be presented. Such a high power green laser with near diffraction-limited output in a compact configuration will enable various scientific as well as industrial applications.

  17. 100-watt fiber-based green laser with near diffraction-limited beam quality

    Science.gov (United States)

    Hu, Dan; Eisenberg, Eric; Brar, Khush; Yilmaz, Tolga; Honea, Eric

    2010-02-01

    An air-cooled, light-weight, fiber-based, high power green laser has been prototyped. The system consists of an all-fibercoupled IR pump laser at 1064 nm and a frequency-conversion module in a compact and flexible configuration. The IR laser operates in QCW mode, with 10 MHz pulse repetition frequency and 3-5 ns pulse width, to generate sufficient peak power for frequency doubling in the converter module. The IR laser can produce more than 200 W in a linearlypolarized diffraction-limited output beam with high spectral brightness for frequency conversion. The converter module has an input telescope and an oven with a nonlinear crystal to efficiently convert the 1064-nm IR fiber laser output to 532-nm green output. The IR laser and conversion module are connected via a stainless-steel protected delivery fiber for optical beam delivery and an electrical cable harness for electrical power delivery and system control. The beam quality of the 532 nm output remains near diffraction-limited, with M2green laser sources are expected to enable various scientific, defense and industrial applications.

  18. Single-pulse Conduction Limited Laser Welding Using A Diffractive Optical Element

    Science.gov (United States)

    Kong, C. Y.; Bolut, M.; Sundqvist, J.; Kaplan, A. F. H.; Assunção, E.; Quintino, L.; Blackburn, J.

    Conduction limited laser welding is commonly used in electronic and battery applications, where a high width-to-depth ratio weld is desirable. A laser beam with Gaussian or top-hat distributions is often used to produce conduction limited spot welds. Both these energy distributions result in a higher proportion of the laser beam energy being introduced towards the centre of the welded spot and consequently, a reduced penetration weld towards the circumference of the beam spot. The use of diffractive optical elements to tailor the energy distribution of the laser beam has been evaluated. An incident laser beam with an energy distribution in the shape of a ring or C-shape was projected onto the material, which results in heat propagating towards the centre, producing a shallow weld with a consistent depth of penetration across the entire overlapped joint. The results confirmed a corresponding thermal model which predicted an even distribution of heat at the joint interface.

  19. Ultra-high accuracy optical testing: creating diffraction-limited short-wavelength optical systems

    International Nuclear Information System (INIS)

    Goldberg, Kenneth A.; Naulleau, Patrick P.; Rekawa, Senajith B.; Denham, Paul E.; Liddle, J. Alexander; Gullikson, Eric M.; Jackson, KeithH.; Anderson, Erik H.; Taylor, John S.; Sommargren, Gary E.; Chapman, Henry N.; Phillion, Donald W.; Johnson, Michael; Barty, Anton; Soufli, Regina; Spiller, Eberhard A.; Walton, Christopher C.; Bajt, Sasa

    2005-01-01

    Since 1993, research in the fabrication of extreme ultraviolet (EUV) optical imaging systems, conducted at Lawrence Berkeley National Laboratory (LBNL) and Lawrence Livermore National Laboratory (LLNL), has produced the highest resolution optical systems ever made. We have pioneered the development of ultra-high-accuracy optical testing and alignment methods, working at extreme ultraviolet wavelengths, and pushing wavefront-measuring interferometry into the 2-20-nm wavelength range (60-600 eV). These coherent measurement techniques, including lateral shearing interferometry and phase-shifting point-diffraction interferometry (PS/PDI) have achieved RMS wavefront measurement accuracies of 0.5-1-(angstrom) and better for primary aberration terms, enabling the creation of diffraction-limited EUV optics. The measurement accuracy is established using careful null-testing procedures, and has been verified repeatedly through high-resolution imaging. We believe these methods are broadly applicable to the advancement of short-wavelength optical systems including space telescopes, microscope objectives, projection lenses, synchrotron beamline optics, diffractive and holographic optics, and more. Measurements have been performed on a tunable undulator beamline at LBNL's Advanced Light Source (ALS), optimized for high coherent flux; although many of these techniques should be adaptable to alternative ultraviolet, EUV, and soft x-ray light sources. To date, we have measured nine prototype all-reflective EUV optical systems with NA values between 0.08 and 0.30 (f/6.25 to f/1.67). These projection-imaging lenses were created for the semiconductor industry's advanced research in EUV photolithography, a technology slated for introduction in 2009-13. This paper reviews the methods used and our program's accomplishments to date

  20. Nanometals - Status and perspective

    International Nuclear Information System (INIS)

    Faester, S.; Hansen, N.; Huang, X.; Juul Jensen, D.; Ralph, B.

    2012-01-01

    Nanometals and nanotechnology have over the years been covered in papers, books and conferences - also in many Risoe International Symposia, where the 30th in 2009 dealt solely with nanostructured metals. Since then, rapid progress has been made in synthesis, characterization and modeling, and it is timely to discuss status and perspective also with a view on applications in an international forum such as the Risoe Symposium. Both keynote and contributed papers address important current problems illustrating global research and development in this field. Examples are the development of new synthesis techniques followed by characterization and modeling of microstructures both in 2D and 3D now starting to bridge the micrometer scales. The vital area of mechanical behavior is addressed by the development of new testing techniques and a broad effort to characterize and model mechanical properties of metals strengthened by dislocations and twins. This research has now led to new understanding of both strengthening mechanisms and strengh structure relationships based on experiments in combination with analytical and numerical modeling. The holistic approach to research on nanometals demonstrated by these proceedings can guide both scientists and technologists in their future work also with the aim of introducing into society this new group of advanced materials. Such an effort is important, as science and technology today is significantly affected by politics of governments and international institutions, and therefore a new initiative in the pressent is to include a discussion of research and development in the area of nanometals i USA, China and Japan. (Author)

  1. Pulse shape and spectrum of coherent diffraction-limited transition radiation from electron beams

    Energy Technology Data Exchange (ETDEWEB)

    van Tilborg, J.; Schroeder, C.B.; Esarey, E.; Leemans, W.P.

    2003-12-20

    The electric field in the temporal and spectral domain of coherent diffraction-limited transition radiation is studied. An electron bunch, with arbitrary longitudinal momentum distribution, propagating at normal incidence to a sharp metal-vacuum boundary with finite transverse dimension is considered. A general expression for the spatiotemporal electric field of the transition radiation is derived, and closed-form solutions for several special cases are given. The influence of parameters such as radial boundary size, electron momentum distribution, and angle of observation on the waveform (e.g., radiation pulse length and amplitude) are discussed. For a Gaussian electron bunch, the coherent radiation waveform is shown to have a single-cycle profile. Application to a novel THz source based on a laser-driven accelerator is discussed.

  2. Inexpensive Demonstration of Diffraction-Limited Telescope from NASA Stratospheric Balloons

    Science.gov (United States)

    Young, Elliot

    NASA s Balloon Program often flies payloads to altitudes of 120,000 ft or higher, above 99.5% of the atmosphere. At those altitudes, the imaging degradation due to atmospheric- induced wavefront errors is virtually zero. In 2009, the SUNRISE balloon mission quantified the wavefront errors with a Shack-Hartmann array and found no evidence of wavefront errors. This means that a large telescope on a balloon should be able to achieve diffraction-limited performance, provided it can be stabilized at a level that is finer than the diffraction limit. At visible wavelengths, the diffraction limit of a 1 or 2 m telescope is 0.1 arcsec or 0.05 arcsec, respectively. NASA recently demonstrated WASP (the Wallops Arc-Second Pointing system) on a balloon flight in October 2011, a coarse pointing system that kept a dummy telescope (24 ft long, 1500 lbs) stabilized at the 0.25 arcsec level. We propose to use an orthogonal transfer CCD (OTCCD) from MIT Lincoln Laboratory to improve the pointing to 0.05 arcsec, an order of magnitude better than the coarse pointing alone and sufficient to provide long integrations at the diffraction limit of a 2-m telescope. Imaging in visible wavelengths is an important new capability. Ground-based adaptive optics (AO) systems on 8-m and 10-m class telescope cannot effectively correct for atmospheric turbulence at wavelengths shorter than 1 μm; the atmospheric wavefront errors are larger at these wavelengths than in the infrared J-H-K bands. At present, only the Hubble Space Telescope can achieve 0.05 arcsec resolution images in visible wavelengths, a capability that is dramatically oversubscribed. With a camera based on an MIT/LL OTCCD, a 2-m balloon-borne telescope could match the spatial resolution of HST. Under this project (and in conjunction with a SWRI Internal Research proposal), we will perform ground tests of a motion-compensation camera based on an MIT/LL Orthogonal Transfer CCD (OTCCD). This device can shift charge in four directions

  3. Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam

    Science.gov (United States)

    Lin, Han; Gu, Min

    2013-02-01

    Diffraction-limited non-Airy multifocal arrays are created by focusing a phase-modulated vortex beam through a high numerical-aperture objective. The modulated phase at the back aperture of the objective resulting from the superposition of two concentric phase-modulated vortex beams allows for the generation of a multifocal array of cylindrically polarized non-Airy patterns. Furthermore, we shift the spatial positions of the phase vortices to manipulate the intensity distribution at each focal spot, leading to the creation of a multifocal array of split-ring patterns. Our method is experimentally validated by generating the predicted phase modulation through a spatial light modulator. Consequently, the spatially shifted circularly polarized vortex beam adopted in a dynamic laser direct writing system facilitates the fabrication of a split-ring microstructure array in a polymer material by a single exposure of a femtosecond laser beam.

  4. X-ray diffraction measurements of polycrystalline diamond near the Hugoniot elastic limit under shock compression

    Science.gov (United States)

    MacDonald, M. J.; McBride, E. E.; Sun, P.; Gauthier, M.; Gamboa, E. J.; Kraus, D.; Schumaker, W.; Vorberger, J.; Galtier, E.; van Driel, T. B.; Zhou, X.; Granados, E.; Nam, I.; Drake, R. P.; Glenzer, S. H.; Fletcher, L. B.

    2016-10-01

    Direct measurements of the crystal structure under dynamic compression can be made using angularly resolved x-ray scattering at the MEC instrument at LCLS. Diffraction from several lattice planes using the x-ray beam at LCLS enabled time resolved measurements of elastic and plastic waves in polycrystalline diamond near the Hugoniot elastic limit. The behavior of diamond in these conditions is important to the understanding of the early stages of compression in inertial confinement fusion targets, meteorite impact events, and planetary interiors. Data were analyzed in the Reuss limit as described in a recent publication [M. J. MacDonald et al., J. Appl. Phys. 119, 215902 (2016)] to model the stresses near the Hugoniot elastic limit. This material is based upon work supported by the NSF under Grant No. 2013155705. This work was supported by the DOE Office of Science, FES under FWP 100182, by the NNSA-DS and SC-OFES Joint Program in HED Laboratory Plasmas, Grant No. DE-NA0002956, and used resources of the NERSC under Contract No. DE-AC02-05CH11231.

  5. microARPES and nanoARPES at diffraction-limited light sources: opportunities and performance gains.

    Science.gov (United States)

    Rotenberg, Eli; Bostwick, Aaron

    2014-09-01

    The scientific opportunities for microARPES and nanoARPES techniques are discussed, and the benefits to these techniques at diffraction-limited light sources are presented, in particular the impact on spectromicroscopic ARPES (angle-resolved photoemission spectroscopy) of upgrading the Advanced Light Source to diffraction-limited performance. The most important consideration is whether the space-charge broadening, impacting the energy and momentum resolution, will limit the possible benefits for ARPES. Calculations of energy broadening due to space-charge effects will be presented over a wide range of parameters, and optimum conditions for ARPES will be discussed. The conclusion is that spectromicroscopic ARPES will greatly benefit from the advent of diffraction-limited light sources; space-charge broadening effects will not be a limiting factor.

  6. An optical super-microscope for far-field, real-time imaging beyond the diffraction limit.

    Science.gov (United States)

    Wong, Alex M H; Eleftheriades, George V

    2013-01-01

    Optical microscopy suffers from a fundamental resolution limitation arising from the diffractive nature of light. While current solutions to sub-diffraction optical microscopy involve combinations of near-field, non-linear and fine scanning operations, we hereby propose and demonstrate the optical super-microscope (OSM) - a superoscillation-based linear imaging system with far-field working and observation distances - which can image an object in real-time and with sub-diffraction resolution. With our proof-of-principle prototype we report a point spread function with a spot size clearly reduced from the diffraction limit, and demonstrate corresponding improvements in two-point resolution experiments. Harnessing a new understanding of superoscillations, based on antenna array theory, our OSM achieves far-field, sub-diffraction optical imaging of an object without the need for fine scanning, data post-processing or object pre-treatment. Hence the OSM can be used in a wide variety of imaging applications beyond the diffraction limit, including real-time imaging of moving objects.

  7. An experimental apparatus for diffraction-limites soft x-ray nanofocusing

    Energy Technology Data Exchange (ETDEWEB)

    Merthe, Daniel; Goldberg, Kenneth; Yashchuk, Valeriy; Yuan, Sheng; McKinney, Wayne; Celestre, Richard; Mochi, Iacopo; Macdougall, James; Morrison, Gregory; Rakawa, Senajith; Anderson, Erik; Smith, Brian; Domning, Edward; Warwick, Tony; Padmore, Howard

    2011-10-21

    Realizing the experimental potential of high-brightness, next generation synchrotron and free-electron laser light sources requires the development of reflecting x-ray optics capable of wavefront preservation and high-resolution nano-focusing. At the Advanced Light Source (ALS) beamline 5.3.1, we are developing broadly applicable, high-accuracy, in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad slope measurement accuracy for diffraction-limited Kirkpatrick-Baez (KB) mirrors. The at-wavelength methodology we are developing relies on a series of wavefront-sensing tests with increasing accuracy and sensitivity, including scanning-slit Hartmann tests, grating-based lateral shearing interferometry, and quantitative knife-edge testing. We describe the original experimental techniques and alignment methodology that have enabled us to optimally set a bendable KB mirror to achieve a focused, FWHM spot size of 150 nm, with 1 nm (1.24 keV) photons at 3.7 mrad numerical aperture. The predictions of wavefront measurement are confirmed by the knife-edge testing.The side-profiled elliptically bent mirror used in these one-dimensional focusing experiments was originally designed for a much different glancing angle and conjugate distances. This work demonstrates that high-accuracy, at-wavelength wavefront-slope feedback can be used to optimize the pitch, roll, and mirror-bending forces in situ, using procedures that are deterministic and repeatable.

  8. Advances in design and testing of limited angle optical diffraction tomographysystem for biological applications

    Science.gov (United States)

    Kuś, A.; Makowski, P.; Kujawińska, M.

    2016-03-01

    Optical diffraction tomography has been steadily proving its potential to study one of the hot topics in modern cell biology -- 3D dynamic changes in cells' morphology represented with refractive index values. In this technique digital holography is combined with tomographic reconstruction and thus it is necessary to provide projections acquired at different viewing directions. Usually the Mach-Zehnder interferometer configuration is used and while the object beam performs scanning, the reference beam is in most cases stationary. This approach either limits possible scanning strategies or requires additional mechanical movement to be introduced in the reference beam. On the other hand, spiral or grid scanning is possible in alternative common-path or Michelson configurations. However, in this case there is no guarantee that a specimen is sparse enough for the object to interfere with an object-free part of the beam. In this paper we present a modified version of Mach-Zehnder interferometer-based tomographic microscope, in which both object and reference beam are subject to scanning using one scanning device only thus making any scanning scenario possible. This concept is realized with a custom-built optical system in the reference beam and is appropriate for mechanical as well as optical scanning. Usually, the tomographic reconstruction setups and algorithms are verified using a microsphere phantom, which is not enough to test the influence of the distribution of the projections. In this work we propose a more complex calibration object created using two-photon polymerization.

  9. Diffraction investigation of titanium carbohydride at lower limit of homogeneity range

    International Nuclear Information System (INIS)

    Khidirov, I.; Mirzaev, B.B.; Mukhtarova, N.N.; Getmanskiy, V.V.

    2003-01-01

    Full text: Hydrides both of the transient metals and intermetallic compounds are widely used in nuclear and hydrogen power engineering and also in a number of branches of industry. But these materials have low thermostability (T 0.47 C 0.22 was synthesized and studied using X-ray (λ=0.15418 nm) and neutron (λ=0.1085 nm) diffraction technique. It is shown that disordered carbohydride Ti 0.47 C 0.21 is prepared by means of quenching from 1000 Deg.C followed by heat treatment. The special regime of treatment was chosen to prevent from the exit of hydrogen out of the lattice. The disordered phase is cubic, space group of Fm3m; carbon atoms occupy statistically the octahedral sites 4(b) and hydrogen atoms - the tetrahedral interstices 8(c). It corresponds to the Hegg rule: it is advantageous for interstitial atoms to occupy the octahedral interstices on condition: 0.4 1≤ R x /R Me ≤0.75 and the tetrahedral ones - if 0.22≤R x /R Me ≤0.41, where R x and R Me are atomic radii of interstitial and metal atoms, correspondingly. But when ordering, deviation from this rule is observed. The ordered carbohydride was prepared by annealing of a sample in evacuated and sealed ampoule at temperature of 900-800 Deg.C during 24 h. After annealing, a number of superstructure maxima were observed in neutron diffraction pattern of the sample. The ordered phase of Ti 0.47 C 0.22 is described within the framework of space group Fd3m where carbon atoms occupy orderingly the octahedral interstices 16 (c) and hydrogen atoms - another type of octahedral interstices: 16 (d) which are free or almost free from carbon atoms. Thus, with decreasing of annealing temperature at the lower limit of homogeneity range on carbon, a type of interstices occupied by hydrogen was changed, with the change not corresponding to Hegg rule. It may be explained by effect of blocking: when the carbon atoms are ordered over octahedral interstices, they block all neighboring tetrahedral sites, probably, due to

  10. Nanometer Characterization/Manipulation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Characterizes the nanometer scale of biological, chemical, physical, electronic, and mechanical properties of surfaces and thin films using scanning probe...

  11. Suppression of resonance Raman scattering via ground state depletion towards sub-diffraction-limited label-free microscopy

    NARCIS (Netherlands)

    Rieger, S.; Fischedick, M.; Boller, Klaus J.; Fallnich, Carsten

    2016-01-01

    We report on the first experimental demonstration of the suppression of spontaneous Raman scattering via ground state depletion. The concept of Raman suppression can be used to achieve sub-diffraction-limited resolution in label-free microscopy by exploiting spatially selective signal suppression

  12. Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy

    NARCIS (Netherlands)

    Cleff, C.; Gross, P.; Fallnich, C.; Offerhaus, Herman L.; Herek, Jennifer Lynn; Kruse, K.; Beeker, W.P.; Lee, Christopher James; Boller, Klaus J.

    2013-01-01

    We present a theoretical investigation of stimulated emission pumping to achieve sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering (CARS) microscopy. A pair of control light fields is used to prepopulate the Raman state involved in the CARS process prior to the CARS

  13. Near-diffraction-limited and low-haze electro-optical tunable liquid crystal lens with floating electrodes.

    Science.gov (United States)

    Li, Liwei; Bryant, Doug; Van Heugten, Tony; Bos, Philip J

    2013-04-08

    A near-diffraction-limited, low-haze and tunable liquid crystal (LC) lens is presented. Building on an understanding of the key factors that have limited the performance of lenses based on liquid crystals, we show a simple design whose optical quality is similar to a high quality glass lens. It uses 'floating' electrodes to provide a smooth, controllable applied potential profile across the aperture to manage the phase profile.

  14. Breaking Abbe's diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes.

    Science.gov (United States)

    Klar, T A; Engel, E; Hell, S W

    2001-12-01

    We report on the generation of various hole-centered beams in the focal region of a lens and investigate their effectiveness to break the diffraction barrier in fluorescence microscopy by stimulated emission. Patterning of the phase of the stimulating beam across the entrance pupil of the objective lens produces point-spread-functions with twofold, fourfold, and circular symmetry, which narrow down the focal spot to 65-100 nm. Comparison with high-resolution confocal images exhibits a resolution much beyond the diffraction barrier. Particles that are only 65-nm apart are resolved with focused light.

  15. Dynamic diffraction-limited light-coupling of 3D-maneuvered wave-guided optical waveguides.

    Science.gov (United States)

    Villangca, Mark; Bañas, Andrew; Palima, Darwin; Glückstad, Jesper

    2014-07-28

    We have previously proposed and demonstrated the targeted-light delivery capability of wave-guided optical waveguides (WOWs). As the WOWs are maneuvered in 3D space, it is important to maintain efficient light coupling through the waveguides within their operating volume. We propose the use of dynamic diffractive techniques to create diffraction-limited spots that will track and couple to the WOWs during operation. This is done by using a spatial light modulator to encode the necessary diffractive phase patterns to generate the multiple and dynamic coupling spots. The method is initially tested for a single WOW and we have experimentally demonstrated dynamic tracking and coupling for both lateral and axial displacements.

  16. Dynamic diffraction-limited light-coupling of 3D-maneuvered wave-guided optical waveguides

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Bañas, Andrew Rafael; Palima, Darwin

    2014-01-01

    We have previously proposed and demonstrated the targeted-light delivery capability of wave-guided optical waveguides (WOWs). As the WOWs are maneuvered in 3D space, it is important to maintain efficient light coupling through the waveguides within their operating volume. We propose the use...... of dynamic diffractive techniques to create diffraction-limited spots that will track and couple to the WOWs during operation. This is done by using a spatial light modulator to encode the necessary diffractive phase patterns to generate the multiple and dynamic coupling spots. The method is initially tested...... for a single WOW and we have experimentally demonstrated dynamic tracking and coupling for both lateral and axial displacements....

  17. X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens.

    Science.gov (United States)

    de Jonge, Martin D; Ryan, Christopher G; Jacobsen, Chris J

    2014-09-01

    X-ray nanoprobes require coherent illumination to achieve optic-limited resolution, and so will benefit directly from diffraction-limited storage rings. Here, the example of high-resolution X-ray fluorescence tomography is focused on as one of the most voracious demanders of coherent photons, since the detected signal is only a small fraction of the incident flux. Alternative schemes are considered for beam delivery, sample scanning and detectors. One must consider as well the steps before and after the X-ray experiment: sample preparation and examination conditions, and analysis complexity due to minimum dose requirements and self-absorption. By understanding the requirements and opportunities for nanoscale fluorescence tomography, one gains insight into the R&D challenges in optics and instrumentation needed to fully exploit the source advances that diffraction-limited storage rings offer.

  18. Limits on diffractive scattering by woven radome membranes to 900 GHz

    Science.gov (United States)

    Afsar, Mohammed N.; Tkachov, Igor I.; Wells, Tom

    1996-12-01

    Transmittance of 'Gore-Tex' woven radome membranes with various diameter of threads and thickness of the laminate has been studied as a continuous function of frequency over the range 90-900 GHz by utilizing Fourier transform spectroscopy. For the first time the transmittance has been measured with various angles of incidence of the incident wave. Strong diffractive scattering has been found above the frequency with wavelength comparable with period of the fabrics. Gore-Tex woven membrane materials are suitable for radome applications up to 1000 GHz.

  19. Matter-wave diffraction approaching limits predicted by Feynman path integrals for multipath interference

    Science.gov (United States)

    Barnea, A. Ronny; Cheshnovsky, Ori; Even, Uzi

    2018-02-01

    Interference experiments have been paramount in our understanding of quantum mechanics and are frequently the basis of testing the superposition principle in the framework of quantum theory. In recent years, several studies have challenged the nature of wave-function interference from the perspective of Born's rule—namely, the manifestation of so-called high-order interference terms in a superposition generated by diffraction of the wave functions. Here we present an experimental test of multipath interference in the diffraction of metastable helium atoms, with large-number counting statistics, comparable to photon-based experiments. We use a variation of the original triple-slit experiment and accurate single-event counting techniques to provide a new experimental bound of 2.9 ×10-5 on the statistical deviation from the commonly approximated null third-order interference term in Born's rule for matter waves. Our value is on the order of the maximal contribution predicted for multipath trajectories by Feynman path integrals.

  20. Real-time dynamic coupling of GPC-enhanced diffraction-limited focal spots

    Science.gov (United States)

    Villangca, Mark; Bañas, Andrew; Kopylov, Oleksii; Palima, Darwin; Glückstad, Jesper

    2015-03-01

    We have previously demonstrated on-demand dynamic coupling of an optically manipulated wave-guided optical waveguide (WOW) using diffractive techniques on a "point and shoot" approach. In this work, the generation of the coupling focal spots is done in real-time following the position of the WOW. Object-tracking routine has been added in the trapping program to get the position of the WOW. This approach allows continuous coupling of light through the WOWs which may be useful in some application. In addition, we include a GPC light shaper module in the holography setup to efficiently illuminate the spatial light modulator (SLM). The ability to switch from on-demand to continuous addressing with efficient illumination leverages our WOWs for potential applications in stimulation and nonlinear optics.

  1. Real-time Dynamic Coupling of GPC-enhanced Diffraction-limited Focal Spots

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Bañas, Andrew Rafael; Kopylov, Oleksii

    2015-01-01

    We have previously demonstrated on-demand dynamic coupling of an optically manipulated wave-guided optical waveguide (WOW) using diffractive techniques on a “point and shoot” approach. In this work, the generation of the coupling focal spots is done in real-time following the position of the WOW....... Object-tracking routine has been added in the trapping program to get the position of the WOW. This approach allows continuous coupling of light through the WOWs which may be useful in some application. In addition, we include a GPC light shaper module in the holography setup to efficiently illuminate...... the spatial light modulator (SLM). The ability to switch from on-demand to continuous addressing with efficient illumination leverages our WOWs for potential applications in stimulation and nonlinear optics....

  2. Comparators in nanometer CMOS technology

    CERN Document Server

    Goll, Bernhard

    2015-01-01

    This book covers the complete spectrum of the fundamentals of clocked, regenerative comparators, their state-of-the-art, advanced CMOS technologies, innovative comparators inclusive circuit aspects, their characterization and properties. Starting from the basics of comparators and the transistor characteristics in nanometer CMOS, seven high-performance comparators developed by the authors in 120nm and 65nm CMOS are described extensively. Methods and measurement circuits for the characterization of advanced comparators are introduced. A synthesis of the largely differing aspects of demands on modern comparators and the properties of devices being available in nanometer CMOS, which are posed by the so-called nanometer hell of physics, is accomplished. The book summarizes the state of the art in integrated comparators. Advanced measurement circuits for characterization will be introduced as well as the method of characterization by bit-error analysis usually being used for characterization of optical receivers. ...

  3. Reconstruction from limited single-particle diffraction data via simultaneous determination of state, orientation, intensity, and phase.

    Science.gov (United States)

    Donatelli, Jeffrey J; Sethian, James A; Zwart, Peter H

    2017-07-11

    Free-electron lasers now have the ability to collect X-ray diffraction patterns from individual molecules; however, each sample is delivered at unknown orientation and may be in one of several conformational states, each with a different molecular structure. Hit rates are often low, typically around 0.1%, limiting the number of useful images that can be collected. Determining accurate structural information requires classifying and orienting each image, accurately assembling them into a 3D diffraction intensity function, and determining missing phase information. Additionally, single particles typically scatter very few photons, leading to high image noise levels. We develop a multitiered iterative phasing algorithm to reconstruct structural information from single-particle diffraction data by simultaneously determining the states, orientations, intensities, phases, and underlying structure in a single iterative procedure. We leverage real-space constraints on the structure to help guide optimization and reconstruct underlying structure from very few images with excellent global convergence properties. We show that this approach can determine structural resolution beyond what is suggested by standard Shannon sampling arguments for ideal images and is also robust to noise.

  4. Synchrotron infrared microspectroscopy imaging using a multi-element detector (IRMSI-MED) for diffraction-limited chemical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nasse, Michael J. [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States); Synchrotron Radiation Center, University of Wisconsin-Madison, Stoughton, WI 53589 (United States); Reininger, Ruben [Synchrotron Radiation Center, University of Wisconsin-Madison, Stoughton, WI 53589 (United States); Scientific Answers and Solutions, Madison, WI 53711 (United States); Kubala, Tim; Janowski, Sebastian [Synchrotron Radiation Center, University of Wisconsin-Madison, Stoughton, WI 53589 (United States); Hirschmugl, Carol [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 (United States)], E-mail: cjhirsch@uwm.edu

    2007-11-11

    University of Wisconsin-Milwaukee is designing and installing a mid-infrared beamline, IRMSI-MED, that will extract 320(h)x25(v) mrad{sup 2} from a bending magnet (BM) at the Synchrotron Radiation Center. The BM radiation, collected with 12 toroidal mirrors and collimated with paraboloidal mirrors, illuminates a spot of 60x40 {mu}m{sup 2} at the sample plane of a commercial IR microscope. The microscope is equipped with a multi-element detector (MED) that will provide the opportunity to obtain chemical images with diffraction-limited resolution of the illuminated area in under a minute.

  5. Accessing the long-time limit in diffusion NMR: The case of singlet assisted diffusive diffraction q-space

    Science.gov (United States)

    Pileio, Giuseppe; Ostrowska, Sylwia

    2017-12-01

    The latest developments in the field of long-lived spin states are merged with pulsed-field gradient techniques to extend the diffusion time beyond what is currently achievable in standard q-space diffusive-diffraction studies. The method uses nearly-equivalent spin-1/2 pairs that let diffusion times of the order of many minutes to be measured allowing access to the long-time limit in cavities of macroscopic size (millimeters). A pulse sequence suitable to exploit this regime has been developed and validated with the use of numerical simulations and experiments.

  6. Efficient generation of 3.9 W of diffraction-limited green light with spectrally combined tapered diode lasers

    DEFF Research Database (Denmark)

    Müller, André; Jensen, Ole Bjarlin; Andersen, Peter E.

    We propose an efficient concept increasing the power of diode laser systems in the visible spectral range. In comparison with second harmonic generation of single emitters, spectral beam combining with subsequent sum-frequency generation enhances the available power significantly. Combining two...... 1060 nm tapered diode lasers, we achieve a 2.5-3.2 fold increase of green light with a maximum power of 3.9 Watts in a diffraction-limited beam. At this level, diode lasers have a high application potential, for example, within the biomedical field. In order to enhance the power even further, our...

  7. Efficient concept generating 3.9 W of diffraction-limited green light with spectrally combined tapered diode lasers

    DEFF Research Database (Denmark)

    Müller, André; Jensen, Ole Bjarlin; Hasler, Karl-Heinz

    2013-01-01

    We propose an efficient concept increasing the power of diode laser systems in the visible spectral range. In comparison with second harmonic generation of single emitters, we show that spectral beam combining with subsequent sumfrequency generation enhances the available power significantly....... Combining two 1060 nm distributed Bragg reflector tapered diode lasers (M 24σ ≤ 5.2), we achieve a 2.5-3.2 fold increase of green light with a maximum power of 3.9 Watts in a diffraction-limited beam (M 24σ ≤ 1.3). Without any further stabilization the obtained power stability is within ± 2.6 %. The electro...

  8. Modeling and verification of the diffraction-limited visible light telescope aboard the solar observing satellite HINODE

    Science.gov (United States)

    Katsukawa, Y.; Suematsu, Y.; Tsuneta, S.; Ichimoto, K.; Shimizu, T.

    2011-09-01

    HINODE, Japanese for "sunrise", is a spacecraft dedicated for observations of the Sun, and was launched in 2006 to study the Sun's magnetic fields and how their explosive energies propagate through the different atmospheric layers. The spacecraft carries the Solar Optical Telescope (SOT), which has a 50 cm diameter clear aperture and provides a continuous series of diffraction-limited visible light images from space. The telescope was developed through international collaboration between Japan and US. In order to achieve the diffraction-limited performance, thermal and structural modeling of the telescope was extensively used in its development phase to predict how the optical performance changes dependent on the thermal condition in orbit. Not only the modeling, we devoted many efforts to verify the optical performance in ground tests before the launch. The verification in the ground tests helped us to find many issues, such as temperature dependent focus shifts, which were not identified only through the thermal-structural modeling. Another critical issue was micro-vibrations induced by internal disturbances of mechanical gyroscopes and momentum wheels for attitude control of the spacecraft. Because the structural modeling was not accurate enough to predict how much the image quality was degraded by the micro-vibrations, we measured their transmission in a spacecraft-level test.

  9. [Spectral analysis in nanometer material science].

    Science.gov (United States)

    Chen, Wei; Sun, Shi-gang

    2002-06-01

    Spectral analysis is an important means in studies of nanometer scale systems, and is essential for deep understanding the structure and properties of nanometer materials. This paper reviews the recent progresses made in studies of nanometer materials using spectral analysis methods such as UV-Visible spectroscopy, FTIR spectroscopy, Raman spectroscopy, Mössbauer spectroscopy, positron annihilation and photoacoustic spectroscopy. The principle, characteristics and applications of most frequently employed spectral methods are introduced briefly and illustrated with typical examples. Future perspectives of spectral analysis in nanometer field are discussed. New directions of establishing spectral analysis methods at nanometer scale resolution and developing new spectroscopy technology in nanometer material studies are also emphasized.

  10. Diffraction limit of the theory of multiple small-angle neutron scattering by a dense system of scatterers

    Science.gov (United States)

    Dzheparov, F. S.; Lvov, D. V.

    2016-02-01

    Multiple small-angle neutron scattering by a high-density system of inhomogeneities has been considered. A combined approach to the analysis of multiple small-angle neutron scattering has been proposed on the basis of the synthesis of the Zernike-Prince and Moliére formulas. This approach has been compared to the existing multiple small-angle neutron scattering theory based on the eikonal approximation. This comparison has shown that the results in the diffraction limit coincide, whereas differences exist in the refraction limit because the latter theory includes correlations between successive scattering events. It has been shown analytically that the existence of correlations in the spatial position of scatterers results in an increase in the number of unscattered neutrons. Thus, the narrowing of spectra of multiple small-angle neutron scattering observed experimentally and in numerical simulation has been explained.

  11. Neutron diffraction study of cubic titanium carbohydride at the homogeneity lower limit

    International Nuclear Information System (INIS)

    Khidirov, I.; Mirzaev, B.B.; Mukhtarova, N.N.

    2004-01-01

    Cubic carbohydride TiC 0.47H0.22 was prepared by means of quenching from 1200 deg.C followed by the heat treatment using special regime for preventing the hydrogen yield out the lattice. It is shown that at the lower limit of homogeneity range of the cubic carbohydride, hydrogen atoms occupy the tetrahedral interstices 8(c) of the disordered cubic structure with space group of Fm3m. It is found that carbon and hydrogen atoms are partially ordered by annealing at 900-700 deg.C. The ordered structure is face-centred cubic lattice with the parameter a ≅2a 0 , where a 0 is the lattice parameter in disordered structure. The crystal structure of the disordered phase is described within the framework of space group Fd3m, where the carbon atoms occupy mainly (70%) octahedral interstices 16(c) and another ones of carbon and all hydrogen atoms occupy the octahedral interstices 16(d). (author)

  12. Optical Design of COATLI: A Diffraction-Limited Visible Imager with Fast Guiding and Active Optics Correction

    Science.gov (United States)

    Fuentes-Fernández, J.; Cuevas, S.; Watson, A. M.

    2018-04-01

    We present the optical design of COATLI, a two channel visible imager for a comercial 50 cm robotic telescope. COATLI will deliver diffraction-limited images (approximately 0.3 arcsec FWHM) in the riz bands, inside a 4.2 arcmin field, and seeing limited images (approximately 0.6 arcsec FWHM) in the B and g bands, inside a 5 arcmin field, by means of a tip-tilt mirror for fast guiding, and a deformable mirror for active optics, both located on two optically transferred pupil planes. The optical design is based on two collimator-camera systems plus a pupil transfer relay, using achromatic doublets of CaF2 and S-FTM16 and one triplet of N-BK7 and CaF2. We discuss the effciency, tolerancing, thermal behavior and ghosts. COATLI will be installed at the Observatorio Astronómico Nacional in Sierra San Pedro Mártir, Baja California, Mexico, in 2018.

  13. Warm dense matter in extremely small volume - hydrodynamics of nanofilms triggered by laser irradiation at diffraction limit

    Science.gov (United States)

    Inogamov, Nail; Zhakhovsky, Vasily; Khokhlov, Viktor

    2017-06-01

    Modern laser techniques combine sophisticated manipulations with photon bunch and refined target design together with ultrafast isochoric transfer of solid into WDM state. Photon bunch is just 10s micron long and one micron thick when it is focused in the diffraction limited regime onto a thin film of 10-100 nm thick. While the spherical or cylindrical lenses produces a hot spot with maximum in the central point, a spiral phase plate produces the illumination field with a hole in the center and also bears angular momentum to the target. To study the evolution of the targets a simulation package including two-temperature (immediately during and for some time after a fs pulse the electrons are much hotter than lattice) 2D hydrodynamics and MD code combined with Monte Carlo method for strong thermal conductivity in metal are utilized. The observed processes, including absorption, melting, capillary dynamics of hot melt and its freezing into solitary nanostructures, produced by such laser fields are discussed.

  14. Analog filters in nanometer CMOS

    CERN Document Server

    Uhrmann, Heimo; Zimmermann, Horst

    2014-01-01

    Starting from the basics of analog filters and the poor transistor characteristics in nanometer CMOS 10 high-performance analog filters developed by the authors in 120 nm and 65 nm CMOS are described extensively. Among them are gm-C filters, current-mode filters, and active filters for system-on-chip realization for Bluetooth, WCDMA, UWB, DVB-H, and LTE applications. For the active filters several operational amplifier designs are described. The book, furthermore, contains a review of the newest state of research on low-voltage low-power analog filters. To cover the topic of the book comprehensively, linearization issues and measurement methods for the characterization of advanced analog filters are introduced in addition. Numerous elaborate illustrations promote an easy comprehension. This book will be of value to engineers and researchers in industry as well as scientists and Ph.D students at universities. The book is also recommendable to graduate students specializing on nanoelectronics, microelectronics ...

  15. Classifying and assembling two-dimensional X-ray laser diffraction patterns of a single particle to reconstruct the three-dimensional diffraction intensity function: resolution limit due to the quantum noise

    International Nuclear Information System (INIS)

    Tokuhisa, Atsushi; Taka, Junichiro; Kono, Hidetoshi; Go, Nobuhiro

    2012-01-01

    A new algorithm is developed for reconstructing the high-resolution three-dimensional diffraction intensity function of a globular biological macromolecule from many quantum-noise-limited two-dimensional X-ray laser diffraction patterns, each for an unknown orientation. The structural resolution is expressed as a function of the incident X-ray intensity and quantities characterizing the target molecule. A new two-step algorithm is developed for reconstructing the three-dimensional diffraction intensity of a globular biological macromolecule from many experimentally measured quantum-noise-limited two-dimensional X-ray laser diffraction patterns, each for an unknown orientation. The first step is classification of the two-dimensional patterns into groups according to the similarity of direction of the incident X-rays with respect to the molecule and an averaging within each group to reduce the noise. The second step is detection of common intersecting circles between the signal-enhanced two-dimensional patterns to identify their mutual location in the three-dimensional wavenumber space. The newly developed algorithm enables one to detect a signal for classification in noisy experimental photon-count data with as low as ∼0.1 photons per effective pixel. The wavenumber of such a limiting pixel determines the attainable structural resolution. From this fact, the resolution limit due to the quantum noise attainable by this new method of analysis as well as two important experimental parameters, the number of two-dimensional patterns to be measured (the load for the detector) and the number of pairs of two-dimensional patterns to be analysed (the load for the computer), are derived as a function of the incident X-ray intensity and quantities characterizing the target molecule

  16. Sub-diffraction limit localization of proteins in volumetric space using Bayesian restoration of fluorescence images from ultrathin specimens.

    Directory of Open Access Journals (Sweden)

    Gordon Wang

    Full Text Available Photon diffraction limits the resolution of conventional light microscopy at the lateral focal plane to 0.61λ/NA (λ = wavelength of light, NA = numerical aperture of the objective and at the axial plane to 1.4nλ/NA(2 (n = refractive index of the imaging medium, 1.51 for oil immersion, which with visible wavelengths and a 1.4NA oil immersion objective is -220 nm and -600 nm in the lateral plane and axial plane respectively. This volumetric resolution is too large for the proper localization of protein clustering in subcellular structures. Here we combine the newly developed proteomic imaging technique, Array Tomography (AT, with its native 50-100 nm axial resolution achieved by physical sectioning of resin embedded tissue, and a 2D maximum likelihood deconvolution method, based on Bayes' rule, which significantly improves the resolution of protein puncta in the lateral plane to allow accurate and fast computational segmentation and analysis of labeled proteins. The physical sectioning of AT allows tissue specimens to be imaged at the physical optimum of modern high NA plan-apochormatic objectives. This translates to images that have little out of focus light, minimal aberrations and wave-front distortions. Thus, AT is able to provide images with truly invariant point spread functions (PSF, a property critical for accurate deconvolution. We show that AT with deconvolution increases the volumetric analytical fidelity of protein localization by significantly improving the modulation of high spatial frequencies up to and potentially beyond the spatial frequency cut-off of the objective. Moreover, we are able to achieve this improvement with no noticeable introduction of noise or artifacts and arrive at object segmentation and localization accuracies on par with image volumes captured using commercial implementations of super-resolution microscopes.

  17. 3.5 W of diffraction-limited green light at 515 nm from SHG of a single-frequency tapered diode laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Hansen, Anders Kragh; Müller, André

    2017-01-01

    Multi-Watt efficient compact green laser sources are required for a number of applications e.g. within biophotonics, laser pumping and laser displays. We present generation of 3.5 W of diffraction-limited green light at 515 nm by second harmonic generation (SHG) of a tapered diode laser, itself...

  18. Pharmacological Properties of Nanometals (Silver, Copper, Iron)

    OpenAIRE

    Chekman, I.S.

    2015-01-01

    The article summarizes the results of studies on the pharmacological, toxicological and specific properties of nanometals (silver, iron, copper). It is established that nanoparticles of silver, copper, iron exhibit antimicrobial action. Acute toxicity of nanometals depends on their nature, administration route and animal sex. Effects on heart activity and hemodynamic status as well as erythrocyte osmotic fragility have dose-dependent nature.

  19. A super-high angular resolution principle for coded-mask X-ray imaging beyond the diffraction limit of a single pinhole

    International Nuclear Information System (INIS)

    Zhang Chen; Zhang Shuangnan

    2009-01-01

    High angular resolution X-ray imaging is always useful in astrophysics and solar physics. In principle, it can be performed by using coded-mask imaging with a very long mask-detector distance. Previously, the diffraction-interference effect was thought to degrade coded-mask imaging performance dramatically at the low energy end with its very long mask-detector distance. The diffraction-interference effect is described with numerical calculations, and the diffraction-interference cross correlation reconstruction method (DICC) is developed in order to overcome the imaging performance degradation. Based on the DICC, a super-high angular resolution principle (SHARP) for coded-mask X-ray imaging is proposed. The feasibility of coded mask imaging beyond the diffraction limit of a single pinhole is demonstrated with simulations. With the specification that the mask element size is 50 x 50 μm 2 and the mask-detector distance is 50 m, the achieved angular resolution is 0.32 arcsec above about 10 keV and 0.36 arcsec at 1.24 keV (λ = 1 nm), where diffraction cannot be neglected. The on-axis source location accuracy is better than 0.02 arcsec. Potential applications for solar observations and wide-field X-ray monitors are also briefly discussed. (invited reviews)

  20. Classifying and assembling two-dimensional X-ray laser diffraction patterns of a single particle to reconstruct the three-dimensional diffraction intensity function: resolution limit due to the quantum noise.

    Science.gov (United States)

    Tokuhisa, Atsushi; Taka, Junichiro; Kono, Hidetoshi; Go, Nobuhiro

    2012-05-01

    A new two-step algorithm is developed for reconstructing the three-dimensional diffraction intensity of a globular biological macromolecule from many experimentally measured quantum-noise-limited two-dimensional X-ray laser diffraction patterns, each for an unknown orientation. The first step is classification of the two-dimensional patterns into groups according to the similarity of direction of the incident X-rays with respect to the molecule and an averaging within each group to reduce the noise. The second step is detection of common intersecting circles between the signal-enhanced two-dimensional patterns to identify their mutual location in the three-dimensional wavenumber space. The newly developed algorithm enables one to detect a signal for classification in noisy experimental photon-count data with as low as ~0.1 photons per effective pixel. The wavenumber of such a limiting pixel determines the attainable structural resolution. From this fact, the resolution limit due to the quantum noise attainable by this new method of analysis as well as two important experimental parameters, the number of two-dimensional patterns to be measured (the load for the detector) and the number of pairs of two-dimensional patterns to be analysed (the load for the computer), are derived as a function of the incident X-ray intensity and quantities characterizing the target molecule. © 2012 International Union of Crystallography

  1. Introduction to the application and limits of anomalous X-ray diffraction in the determination of partial structure factors

    International Nuclear Information System (INIS)

    Bienenstock, A.

    1993-01-01

    The use of anomalous X-ray scattering to obtain the first differences and partial structure factors normally obtained with isotopic substitution neutron diffraction is described and compared with the neutron technique. Both the problems associated with the X-ray technique (low-Z problems, scattering factor problems, Compton scattering problems, fluorescence problems, storage ring stability problems) and the situations in which it is highly valuable are discussed. 12 refs

  2. Pharmacological Properties of Nanometals (Silver, Copper, Iron

    Directory of Open Access Journals (Sweden)

    Chekman, I.S.

    2015-01-01

    Full Text Available The article summarizes the results of studies on the pharmacological, toxicological and specific properties of nanometals (silver, iron, copper. It is established that nanoparticles of silver, copper, iron exhibit antimicrobial action. Acute toxicity of nanometals depends on their nature, administration route and animal sex. Effects on heart activity and hemodynamic status as well as erythrocyte osmotic fragility have dose-dependent nature.

  3. Preparation and Characterization of Some Nanometal Oxides Using Microwave Technique and Their Application to Cotton Fabrics

    Directory of Open Access Journals (Sweden)

    M. Gouda

    2015-01-01

    Full Text Available The objective of this paper is the synthesis of some nanometal oxides via microwave irradiation technique and their application to augment multifunctional properties of cotton fabric. Cotton fabrics containing nanometal oxides were prepared via a thiol-modification of cotton fabric samples and then dipped into the metal salt solutions precursors and transferred to the microwave oven. The surface morphology and quantitative analysis of the obtained modified cotton fabrics containing nanometal oxides were studied by scanning electron microscopy coupled with high energy dispersive X-ray (SEM-EDX. The shape and distribution of nanometal oxide inside the fabric samples were analyzed by transmission electron microscopy of cross-section fabric samples. The iron oxide nanoparticles had a nanosphere with particle size diameter 15–20 nm, copper oxide nanoparticles had a nanosphere with particle size diameter 25–30 nm, and cobalt oxide nanoparticles had a nanotube-like shape with a length of 100–150 nanometer and a diameter of ~58 nanometer, whereas the manganese oxide nanoparticles had a linear structure forming nanorods with a diameter of 50–55 nanometer and a length of 70–80 nanometers. Antibacterial activity was evaluated quantitatively against gram-positive bacteria such as Staphylococcus aureus and gram-negative bacteria such as Escherichia coli, UV-protection activity was analyzed using UV-DRS spectroscopy, and flame retardation of prepared fabric samples was evaluated according to the limiting oxygen index (LOI. Results revealed that the prepared fabric sample containing nanometal oxide possesses improved antibacterial, LOI, and UV-absorbing efficiency. Moreover, the metal oxide nanoparticles did not leach out the fabrics by washing even after 30 laundering washing cycles.

  4. 2D surface optical lattice formed by plasmon polaritons with application to nanometer-scale molecular deposition.

    Science.gov (United States)

    Yin, Yanning; Xu, Supeng; Li, Tao; Yin, Yaling; Xia, Yong; Yin, Jianping

    2017-08-10

    Surface plasmon polaritons, due to their tight spatial confinement and high local intensity, hold great promises in nanofabrication which is beyond the diffraction limit of conventional lithography. Here, we demonstrate theoretically the 2D surface optical lattices based on the surface plasmon polariton interference field, and the potential application to nanometer-scale molecular deposition. We present the different topologies of lattices generated by simple configurations on the substrate. By explicit theoretical derivations, we explain their formation and characteristics including field distribution, periodicity and phase dependence. We conclude that the topologies can not only possess a high stability, but also be dynamically manipulated via changing the polarization of the excitation laser. Nanometer-scale molecular deposition is simulated with these 2D lattices and discussed for improving the deposition resolution. The periodic lattice point with a width resolution of 33.2 nm can be obtained when the fullerene molecular beam is well-collimated. Our study can offer a superior alternative method to fabricate the spatially complicated 2D nanostructures, with the deposition array pitch serving as a reference standard for accurate and traceable metrology of the SI length standard.

  5. Generation of 3.5 W of diffraction-limited green light from SHG of a single tapered diode laser in a cascade of nonlinear crystals

    DEFF Research Database (Denmark)

    Hansen, Anders Kragh; Jensen, Ole Bjarlin; Sumpf, Bernd

    2014-01-01

    frequency conversion of infrared tapered diode lasers. Here, we describe the generation of 3.5 W of diffraction-limited green light from SHG of a single tapered diode laser, itself yielding 10 W at 1063 nm. This SHG is performed in single pass through a cascade of two PPMgO:LN crystals with re...... power of 3.5 W corresponds to a power enhancement greater than 2 compared to SHG in each of the crystals individually and is the highest visible output power generated by frequency conversion of a single diode laser. Such laser sources provide the necessary pump power for biophotonics applications...

  6. Microscopic structure of nanometer-sized silica particles

    International Nuclear Information System (INIS)

    Uchino, T.; Aboshi, A.; Kohara, S.; Ohishi, Y.; Sakashita, M.; Aoki, K.

    2004-01-01

    We have studied the structure of nanometer-sized silica particles called fumed silica, which is a synthetic amorphous silicon dioxide produced by burning silicon tetrachloride in an oxygen-hydrogen flame, using infrared and Raman spectroscopies and a high-energy x-ray diffraction method. It has been demonstrated that the structure of fumed silica is not identical to that of the normal bulk silica glass in terms especially of the distribution of the size of silica rings. Three- and four-membered rings are more frequent in fumed silica than in the bulk silica glass. It has also been shown that the network structure of fumed silica is more flexible than that of the bulk one, probably explaining the reason why fumed silica can accommodate a large number of three- and four-membered rings in the structure

  7. [Adsorption behavior of immobilized nanometer barium-strontium titanate for cadmium ion in water].

    Science.gov (United States)

    Zhang, Dong; Zhang, Wen-Jie; Guan, Xin; Gao, Hong; He, Hong-Bo

    2009-03-01

    Nanometer barium-strontium titanate immobilized on silica gel G was successfully prepared by the citrate acid sol-gel method and characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) and Fourier transform infrared spectrophotometer (FTIR). By means of the determination of flame atomic absorption spectrometry (FAAS), the adsorption behavior of immobilized nanometer-barium strontium titanate for cadmium ion was investigated. The results showed that the nanometer barium-strontium titanate was immobilized on the silica gel G firmly, gaining a new sort of adsorbent. And the cadmium ion studied could be quantitatively retained in the pH value range of 4-7. The adsorption behavior followed a Freundlich adsorption isotherm and a pseudo-second-order kinetic model. The thermodynamic constants of the adsorption process, such as enthalpy changes (deltaH), Gibbs free energy changes (deltaG) and entropy changes (deltaS), were evaluated. These showed that the adsorption of cadmium ion by immobilized nanometer barium-strontium titanate was endothermic and spontaneous physical process. The cadmium ion adsorbed could be completely eluted using 1 mol x L(-1) HNO3. A new method for the determination of trace cadmium ion in water based on this immobilized nanometer barium-strontium titanate preconcentration and FAAS determination was proposed. The method has been applied to the determination of trace cadmium ion in tap water and river water with satisfactory results.

  8. RF Circuit Design in Nanometer CMOS

    NARCIS (Netherlands)

    Nauta, Bram

    2007-01-01

    With CMOS technology entering the nanometer regime, the design of analog and RF circuits is complicated by low supply voltages, very non-linear (and nonquadratic) devices and large 1/f noise. At the same time, circuits are required to operate over increasingly wide bandwidths to implement modern

  9. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors.

    Science.gov (United States)

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-04-21

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick-Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions.

  10. Neutron diffraction

    International Nuclear Information System (INIS)

    James, M.; Howard, C.J.; Kennedy, S.

    1999-01-01

    Diffraction methods, especially X-ray diffraction, are widely used in materials science. Neutron diffraction is in many ways similar to X-ray diffraction, but is also complementary to the X-ray technique so that in some cases it yields information not accessible using X-rays. Successes of neutron diffraction include the elucidation of the crystal structures of high temperature superconductors and materials that display colossal magnetoresistance, the phase analysis of zirconia engineering ceramics, in depth stress determination in composites, successful determination of the structures of metal hydrides, transition metal polymer complexes and the determination of magnetic structure. A brief description of current studies, using neutron diffraction is given

  11. Possibilities and limitations of synchrotron X-ray powder diffraction with double crystal and double multilayer monochromators for microscopic speciation studies

    Energy Technology Data Exchange (ETDEWEB)

    De Nolf, Wout [Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerpen (Wilrijk) (Belgium)], E-mail: wout.denolf@ua.ac.be; Jaroszewicz, Jakub [Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerpen (Wilrijk) (Belgium); Terzano, Roberto [Dipartimento di Biologia e Chimica Agro-forestale ed Ambientale, Via Amendola 165/A, I-70126, University of Bari, Bari (Italy); Lind, Ole Christian; Salbu, Brit [Isotope Laboratory, Norwegian University of Life Sciences, PO Box 5003, N-1432 As (Norway); Vekemans, Bart [Department of Analytical Chemistry, Ghent University, Krijgslaan 281 S12, B-9000 Gent (Belgium); Janssens, Koen [Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerpen (Wilrijk) (Belgium); Falkenberg, Gerald [HASYLAB at DESY, Beamline L, Notkestraat 85, D-22603, Hamburg (Germany)

    2009-08-15

    The performance of a combined microbeam X-ray fluorescence/X-ray powder diffraction (XRF/XRPD) measurement station at Hamburger Synchrotronstrahlungslabor (HASYLAB) Beamline L is discussed in comparison to that at European Synchrotron Radiation Facility (ESRF) ID18F/ID22. The angular resolution in the X-ray diffractograms is documented when different combinations of X-ray source, optics and X-ray diffraction detectors are employed. Typical angular resolution values in the range 0.3-0.5 deg. are obtained at the bending magnet source when a 'pink' beam form of excitation is employed. A similar setup at European Synchrotron Radiation Facility beamlines ID18F and ID22 allows to reach angular resolution values of 0.1-0.15 deg. In order to document the possibilities and limitations for speciation of metals in environmental materials by means of Hamburger Synchrotronstrahlungslabor Beamline L X-ray fluorescence/X-ray powder diffraction setup, two case studies are discussed, one involved in the identification of the crystal phases in which heavy metals such as chromium, iron, barium and lead are present in polluted soils of an industrial site (Val Basento, Italy) and another involved in the speciation of uranium in depleted uranium particles (Ceja Mountains, Kosovo). In the former case, the angular resolution is sufficient to allow identification of most crystalline phases present while in the latter case, it is necessary to dispose of an angular resolution of ca. 0.2 deg. to distinguish between different forms of oxidized uranium.

  12. Comparison between XAS, AWAXS and DAFS applied to nanometer scale supported metallic clusters. Pt.1; monometallic clusters

    International Nuclear Information System (INIS)

    Bazin, D.C.; Sayers, D.A.

    1993-01-01

    The structural information found using three techniques related to synchrotron radiation are compared. XAS (X-ray Absorption Spectroscopy), AWAXS (Anomalous Wide Angle X-ray Scattering) and DAFS (Diffraction Anomalous Fine Structure) are applied to nanometer scale metallic clusters. (author)

  13. Comparison between XAS, AWAXS and DAFS applied to nanometer scale supported metallic clusters. Pt.2; bimetallic clusters

    International Nuclear Information System (INIS)

    Bazin, D.; Sayers, D.

    1993-01-01

    The structural information obtained using three techniques related to synchrotron radiation are compared. XAS (X-ray Absorption Spectroscopy), AWAXS (Anomalous Wide Angle X-ray Scattering) and DAFS (Diffraction Anomalous Fine Structure) are applied to the study of nanometer scale bimetallic clusters. (author)

  14. Nanometer CMOS ICs from basics to ASICs

    CERN Document Server

    J M Veendrick, Harry

    2017-01-01

    This textbook provides a comprehensive, fully-updated introduction to the essentials of nanometer CMOS integrated circuits. It includes aspects of scaling to even beyond 12nm CMOS technologies and designs. It clearly describes the fundamental CMOS operating principles and presents substantial insight into the various aspects of design implementation and application. Coverage includes all associated disciplines of nanometer CMOS ICs, including physics, lithography, technology, design, memories, VLSI, power consumption, variability, reliability and signal integrity, testing, yield, failure analysis, packaging, scaling trends and road blocks. The text is based upon in-house Philips, NXP Semiconductors, Applied Materials, ASML, IMEC, ST-Ericsson, TSMC, etc., courseware, which, to date, has been completed by more than 4500 engineers working in a large variety of related disciplines: architecture, design, test, fabrication process, packaging, failure analysis and software.

  15. Coherence and diffraction limited resolution in microscopic OCT by a unified approach for the correction of dispersion and aberrations

    Science.gov (United States)

    Schulz-Hildebrandt, H.; Münter, Michael; Ahrens, M.; Spahr, H.; Hillmann, D.; König, P.; Hüttmann, G.

    2018-03-01

    Optical coherence tomography (OCT) images scattering tissues with 5 to 15 μm resolution. This is usually not sufficient for a distinction of cellular and subcellular structures. Increasing axial and lateral resolution and compensation of artifacts caused by dispersion and aberrations is required to achieve cellular and subcellular resolution. This includes defocus which limit the usable depth of field at high lateral resolution. OCT gives access the phase of the scattered light and hence correction of dispersion and aberrations is possible by numerical algorithms. Here we present a unified dispersion/aberration correction which is based on a polynomial parameterization of the phase error and an optimization of the image quality using Shannon's entropy. For validation, a supercontinuum light sources and a costume-made spectrometer with 400 nm bandwidth were combined with a high NA microscope objective in a setup for tissue and small animal imaging. Using this setup and computation corrections, volumetric imaging at 1.5 μm resolution is possible. Cellular and near cellular resolution is demonstrated in porcine cornea and the drosophila larva, when computational correction of dispersion and aberrations is used. Due to the excellent correction of the used microscope objective, defocus was the main contribution to the aberrations. In addition, higher aberrations caused by the sample itself were successfully corrected. Dispersion and aberrations are closely related artifacts in microscopic OCT imaging. Hence they can be corrected in the same way by optimization of the image quality. This way microscopic resolution is easily achieved in OCT imaging of static biological tissues.

  16. Moiré method for nanometer instability investigation of scanning hard x-ray microscopes.

    Science.gov (United States)

    Vogt, Ulrich; Köhler, Daniel; Dickmann, Jannis; Rahomäki, Jussi; Parfeniukas, Karolis; Kubsky, Stefan; Alves, Filipe; Langlois, Florent; Engblom, Christer; Stankevič, Tomaš

    2017-05-29

    We present a Moiré method that can be used to investigate positional instabilities in a scanning hard x-ray microscope with nanometer precision. The development of diffraction-limited storage rings offering highly-brilliant synchrotron radiation and improvements of nanofocusing x-ray optics paves the way towards 3D nanotomography with 10 nm resolution or below. However, this trend demands improved designs of x-ray microscope instruments which should offer few-nm beam stabilities with respect to the sample. Our technique can measure the position of optics and sample stage relative to each other in the two directions perpendicular to the beam propagation in a scanning x-ray microscope using simple optical components and visible light. The usefulness of the method was proven by measuring short and long term instabilities of a zone-plate-optics-based prototype microscope. We think it can become an important tool for the characterization of scanning x-ray microscopes, especially prior to experiments with an actual x-ray beam.

  17. Transistor Aging Prediction in Nanometer Digital Circuits

    OpenAIRE

    Kyung Ki Kim

    2013-01-01

    In nanometer technology, accurate aging prediction of MOSFET digital circuits is one of the most critical issues for more reliable adaptive system design. This paper proposes a new on-chip aging prediction circuit to monitor BTI and HCI aging effects on digital circuits. The proposed circuit deploys a flip-flop based delay detector for monitoring a guardband violation of sequential logics. The outputs of the proposed circuit can be used as a control signal in reliable self-adaptive systems. A...

  18. [Nanometer silver dressing alleviates pain after circumcision].

    Science.gov (United States)

    Chen, Cheng; Zhang, Qian; Xi, Zhi-jun; Li, Ning-chen; Jin, Jie; Zhang, Kai

    2011-03-01

    Postoperative pain is a common problem in male circumcision. We investigated the effect of nanometer silver dressing (Shenzhen AGT Pharm. Co. Ltd.) in relieving pain following male circumcision. Sixty patients undergoing circumcision in the outpatient department were randomized into an experimental and a control group, the incision covered with nanometer silver dressing in the former and with vaseline dressing in the latter. None of the patients received any analgesics or other pain-killing therapies after surgery. The postoperative pain intensity was accessed using the modified numeric pain intensity assessment scale at 1, 2, 3, 5 and 7 days after the operation, and statistical analyses were performed using SPSS 12.0 software. The patients averaged (31.13 +/- 13.94) years in age, and had no significant differences in age and body mass index (BMI) between the two groups. At 1, 2, 3 and 5 days, postoperative pain intensity was significantly lower in the experimental than in the control group (P > 0.05). Multiple regression analysis revealed that postoperative pain score was not correlated with patients' age, BMI and types of disease, but with the types of dressing. Nanometer silver dressing can significantly alleviate postoperative pain of circumcision, and is particularly applicable to such moist parts as the perineum, genitals, and urethra.

  19. Efficient concept for generation of diffraction-limited green light by sum-frequency generation of spectrally combined tapered diode lasers.

    Science.gov (United States)

    Müller, André; Jensen, Ole Bjarlin; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael

    2012-09-15

    In order to increase the power of visible diode laser systems in an efficient manner, we propose spectral beam combining with subsequent sum-frequency generation. We show that this approach, in comparison with second harmonic generation of single emitters, can enhance the available power significantly. By combining two distributed Bragg reflector tapered diode lasers we achieve a 2.5-3.2 fold increase in power and a maximum of 3.9 W of diffraction-limited green light. At this power level, green diode laser systems have a high application potential, e.g., within the biomedical field. Our concept can be expanded combining multiple diode lasers to increase the power even further.

  20. Efficient concept for generation of diffraction-limited green light by sum-frequency generation of spectrally combined tapered diode lasers

    DEFF Research Database (Denmark)

    Müller, André; Jensen, Ole Bjarlin; Hasler, Karl-Heinz

    2012-01-01

    In order to increase the power of visible diode laser systems in an efficient manner, we propose spectral beam combining with subsequent sum-frequency generation. We show that this approach, in comparison with second harmonic generation of single emitters, can enhance the available power signific......In order to increase the power of visible diode laser systems in an efficient manner, we propose spectral beam combining with subsequent sum-frequency generation. We show that this approach, in comparison with second harmonic generation of single emitters, can enhance the available power...... significantly. By combining two distributed Bragg reflector tapered diode lasers we achieve a 2.5–3.2 fold increase in power and a maximum of 3.9 W of diffraction-limited green light. At this power level, green diode laser systems have a high application potential, e.g., within the biomedical field. Our concept...

  1. Fundamental science of nanometer-size clusters

    Energy Technology Data Exchange (ETDEWEB)

    Wilcoxon, J.P.; Newcomer, P.P.; Samara, G.A.; Venturini, E.L.; Williamson, R.L.

    1995-10-01

    This research has produced a variety of monodisperse, nanometer-size clusters (nanoclusters for short), characterized their size and crystal structure and developed a scientific understanding of the size dependence of their physical properties. Of specific interest were the influence of quantum electronic confinement on the optical properties, magnetic properties, and dielectric properties. These properties were chosen both for their potential practical impact on various applications identified in the National Critical Technologies list (e.g., catalysis, information storage, sensors, environmental remediation, ...) as well as for their importance to the fundamental science of clusters. An Executive Summary provides a description of the major highlights.

  2. Imaging Action Potential in Single Mammalian Neurons by Tracking the Accompanying Sub-Nanometer Mechanical Motion.

    Science.gov (United States)

    Yang, Yunze; Liu, Xian-Wei; Wang, Hui; Yu, Hui; Guan, Yan; Wang, Shaopeng; Tao, Nongjian

    2018-03-28

    Action potentials in neurons have been studied traditionally by intracellular electrophysiological recordings and more recently by the fluorescence detection methods. Here we describe a label-free optical imaging method that can measure mechanical motion in single cells with a sub-nanometer detection limit. Using the method, we have observed sub-nanometer mechanical motion accompanying the action potential in single mammalian neurons by averaging the repeated action potential spikes. The shape and width of the transient displacement are similar to those of the electrically recorded action potential, but the amplitude varies from neuron to neuron, and from one region of a neuron to another, ranging from 0.2-0.4 nm. The work indicates that action potentials may be studied noninvasively in single mammalian neurons by label-free imaging of the accompanying sub-nanometer mechanical motion.

  3. Size analysis of nanometer titanium carbide in steel by using small-angle neutron scattering

    International Nuclear Information System (INIS)

    Yasuhara, Hisao; Sato, Kaoru; Toji, Yuki; Ohnuma, Masato; Suzuki, Jun-ichi; Tomota, Yo

    2010-01-01

    Utilization of nanometer size precipitates in steel is a promising technology for the developing high tensile strength steels, and it is important to analyze the size of the precipitates. Electron microscopy is a powerful method in directly determining the precipitates size, but the area observed is limited and statistical procedure is tedious. Therefore, size analysis of precipitates in steel was conducted by using small-angle neutron scattering method (SANS). Sample (0.045%C-1.8%Mn-0.2%Ti-0.004%N) with different heat treatment was used for the experiments. Size of nanometer size TiC calculated by SANS profiles agreed with that obtained by direct observation of precipitates by transmission electron microscope (TEM). We have succeeded in macroscopic and non-destructive determination of the size of nanometer-sized TiC. (author)

  4. Laser diode end-pumped continuous-wave laser operation at 1339 nm in Nd : GGG with nearly diffraction-limited beam quality

    Science.gov (United States)

    Lin, Zhi; Wang, Yi; Xu, Bin; Cheng, Yongjie; Chen, Nan; Xu, Huiying; Cai, Zhiping

    2015-08-01

    We report on the laser diode end-pumped continuous-wave laser operation of a Nd : GGG single crystal at 1339 nm in a plane parallel laser cavity configuration, for the first time to our knowledge. A simultaneous tri-wavelength laser at 1324, 1331 and 1337 nm is obtained at first with a maximum output power up to 1.66 W in a free-running laser operation with a slope efficiency of about 27.6% with respect to the absorbed pump power. By inserting a 0.1 mm glass etalon into the laser cavity and finely tilting it to a suitable angle, a single wavelength lasing at 1339 nm can be realized with a maximum output power of 0.58 W and slope efficiency of about 12.9%. The output power stability is simply estimated to be about 4.1% and the output beam quality is measured to be as near the diffraction limit as 1.33 and 1.16 in x and y directions, respectively.

  5. Efficient near diffraction limited blue light source by sum-frequency mixing of a BAL and a solid-state laser

    DEFF Research Database (Denmark)

    Sørensen, Knud Palmelund; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2011-01-01

    Sum-frequency mixing of an 808 nm broad area laser (BAL) with a build-in grating structure for spectral control and a 1064 nm solid-state laser is experimentally investigated. The spectrally improved 20 mu m wide BAL can deliver up to 700 mW of output power with an M-2 of 1.4 and 5.3 in the fast...... and slow axis of the diode, respectively. The BAL output beam is single-passed through a periodically poled KTiOPO4 (PPKTP) crystal placed in an intra-cavity beam waist of a 1064 nm Nd:YVO4 laser, resulting in 100 mW of sum-frequency generated blue output power. This corresponds to a power conversion...... efficiency of 15%. The near diffraction limited blue output beam is measured to have an M-2 of 1.2 and 1.7 in the directions corresponding to the fast and slow axis of the BAL diode, respectively....

  6. Research on long-range grating interferometry with nanometer resolution

    International Nuclear Information System (INIS)

    Chu, Xingchun; Zhao, Shanghong; Lü, Haibao

    2008-01-01

    Grating interferometry that features long range and nanometer resolution is presented. The optical system was established based on a single long metrology grating. The large fringe multiplication was achieved by properly selecting two high-order diffraction beams to form a fringe pattern. The fringe pattern collected by a linear array was first tailored to a few multiples of fringes in order to suppress the effect of the energy leakage on phase-extracting precision when the fast Fourier transform (FFT) algorithm was used to calculate its phase. Thus, the phase-extracting precision of a tailored fringe pattern by FFT was greatly improved. Based on this, a novel subdividing method, which exploited the time-shift property of FFT, was developed to subdivide the fringe with large multiple and high accuracy. Numerical results show that the system resolution reaches 1 nm. The experimental results obtained against a capacitive sensor in the sub-mm range show that the measurement precision of the system is less than 10 nm. (technical design note)

  7. From nanometer aggregates to micrometer crystals

    DEFF Research Database (Denmark)

    Schultz, Logan Nicholas; Dideriksen, Knud; Lakshtanov, Leonid

    2014-01-01

    and crystal shapes. Grain coarsening of calcite, CaCO3, is relevant for biomineralization and commercial products and is an important process in diagenesis of sediments to rock during geological time. We investigated coarsening of pure, synthetic calcite powder of sub-micrometer diameter crystals and aged......Grain size increases when crystals respond to dynamic equilibrium in a saturated solution. The pathway to coarsening is generally thought to be driven by Ostwald ripening, that is, simultaneous dissolution and reprecipitation, but models to describe Ostwald ripening neglect solid-solid interactions...... demonstrated steady growth of nanometer crystallites. The results can be described by theory where grains coarsen preferentially by aggregation at early times and high temperatures and by Ostwald ripening at later stages. Crystal form and dimension are influenced by the transition from one growth mechanism...

  8. Examination of Short- and Long-Range Atomic Order Nanocrystalline SiC and Diamond by Powder Diffraction Methods

    Science.gov (United States)

    Palosz, B.; Grzanka, E.; Stelmakh, S.; Gierlotka, S.; Weber, H.-P.; Proffen, T.; Palosz, W.

    2002-01-01

    The real atomic structure of nanocrystals determines unique, key properties of the materials. Determination of the structure presents a challenge due to inherent limitations of standard powder diffraction techniques when applied to nanocrystals. Alternate methodology of the structural analysis of nanocrystals (several nanometers in size) based on Bragg-like scattering and called the "apparent lattice parameter" (alp) is proposed. Application of the alp methodology to examination of the core-shell model of nanocrystals will be presented. The results of application of the alp method to structural analysis of several nanopowders were complemented by those obtained by determination of the Atomic Pair Distribution Function, PDF. Based on synchrotron and neutron diffraction data measured in a large diffraction vector of up to Q = 25 Angstroms(exp -1), the surface stresses in nanocrystalline diamond and SiC were evaluated.

  9. Limiter

    Science.gov (United States)

    Cohen, S.A.; Hosea, J.C.; Timberlake, J.R.

    1984-10-19

    A limiter with a specially contoured front face is provided. The front face of the limiter (the plasma-side face) is flat with a central indentation. In addition, the limiter shape is cylindrically symmetric so that the limiter can be rotated for greater heat distribution. This limiter shape accommodates the various power scrape-off distances lambda p, which depend on the parallel velocity, V/sub parallel/, of the impacting particles.

  10. Diffraction dissociation

    International Nuclear Information System (INIS)

    Abarbanel, H.

    1972-01-01

    An attempt is made to analyse the present theoretical situation in the field of diffraction scattering. Two not yet fully answered questions related with a typical diffraction process AB→CD, namely: what is the structure of the transition matrix elements, and what is the structure of the exchange mechanism responsible for the scattering, are formulated and various proposals for answers are reviewed. Interesting general statement that the products (-1)sup(J)P, where J and P are respectively spin and parity, is conserved at each vertex has been discussed. The exchange mechanism in diffractive scattering has been considered using the language of the complex J-plane as the most appropriate. The known facts about the exchange mechanism are recalled and several routs to way out are proposed. The idea to consider the moving pole and associated branch points as like a particle and the associated two and many particle unitarity cuts is described in more details. (S.B.)

  11. Neutron diffraction

    International Nuclear Information System (INIS)

    Heger, G.

    1996-01-01

    X-ray diffraction using conventional laboratory equipment and/or synchrotron installations is the most important method for structure analyses. The purpose of this paper is to discuss special cases, for which, in addition to this indispensable part, neutrons are required to solve structural problems. Even though the huge intensity of modern synchrotron sources allows in principle the study of magnetic X-ray scattering the investigation of magnetic structures is still one of the most important applications of neutron diffraction. (author) 15 figs., 1 tab., 10 refs

  12. Neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Heger, G. [Rheinisch-Westfaelische Technische Hochschule Aachen, Inst. fuer Kristallographie, Aachen (Germany)

    1996-12-31

    X-ray diffraction using conventional laboratory equipment and/or synchrotron installations is the most important method for structure analyses. The purpose of this paper is to discuss special cases, for which, in addition to this indispensable part, neutrons are required to solve structural problems. Even though the huge intensity of modern synchrotron sources allows in principle the study of magnetic X-ray scattering the investigation of magnetic structures is still one of the most important applications of neutron diffraction. (author) 15 figs., 1 tab., 10 refs.

  13. Dispersion effect and auto-reconditioning performance of nanometer ...

    Indian Academy of Sciences (India)

    This paper reported on dispersion effect and dispersing techniques of nanometer WS2 particles in the green lubricant concocted by us. And it also researched on auto-reconditioning performance of nanometer WS2 particles to the abrasive surfaces of steel ball from four-ball tribology test and piston ring from engine ...

  14. Dispersion effect and auto-reconditioning performance of nanometer ...

    Indian Academy of Sciences (India)

    The results showed that the combinative method of ultrasonic dispersion, mechanical agitation and surface modification could improve the dispersion uniformity and stability of nanometer WS2 particles in the green lubricant effectively. And the optimal ratio of the mass between surface modifier and nanometer WS2 particles ...

  15. NANOMETER SUPERSTRUCTURE IN LIQUID ALKALI THALLIUM ALLOYS

    NARCIS (Netherlands)

    XU, R; VERKERK, P; HOWELLS, WS; DEWIJS, GA; VANDERHORST, F; VANDERLUGT, W

    1993-01-01

    Structure factors obtained from neutron diffraction measurements on liquid K-Tl and Cs-Tl alloys exhibit large prepeaks at approximately 0.77 angstrom-1 and 0.70 angstrom-1, respectively. It is concluded that the liquid contains large units of thallium atoms, possibly bearing some resemblance to

  16. Obtaining of iron particles of nanometer size in a natural zeolite

    International Nuclear Information System (INIS)

    Xingu C, E. G.

    2013-01-01

    The zeolites are aluminosilicates with cavities that can act as molecular sieve. Their crystalline structure is formed by tetrahedrons that get together giving place to a three-dimensional net, in which each oxygen is shared by two silicon atoms, being this way part of the tecto silicate minerals, its external and internal areas reach the hundred square meters for gram, they are located in a natural way in a large part of earth crust and also exist in a synthetic way. In Mexico there are different locations of zeolitic material whose important component is the clinoptilolite. In this work the results of three zeolitic materials coming from San Luis Potosi are shown, the samples were milled and sieved for its initial characterization, to know its chemical composition, crystalline phases, morphology, topology and thermal behavior before and after its homo-ionization with sodium chloride, its use as support of iron particles of nanometer size. The description of the synthesis of iron particles of nanometer size is also presented, as well as the comparison with the particles of nanometer size synthesized without support after its characterization. The characterization techniques used during the experimental work were: Scanning electron microscopy, X-ray diffraction, Infrared spectroscopy, specific area by means of BET and thermogravimetry analysis. (Author)

  17. Neutron diffraction

    International Nuclear Information System (INIS)

    Bacon, G.E.

    1983-01-01

    The paper reviews neutron diffraction work from the early studies to the present-day development of the subject. Direct structural investigations were described, including chemical applications associated with single crystal techniques, and magnetic applications identified with powder techniques. The properties of the neutron beams are discussed, as well as the use of polarised beams. (UK)

  18. NANOMETER PRECISION IN LARGE SURFACE PROFILOMETRY

    International Nuclear Information System (INIS)

    TAKACS, P.Z.

    1999-01-01

    The Long Trace Profiler (LTP) is in use at many synchrotron radiation (SR) laboratories throughout the world and by a number of manufacturers who specialize in fabricating grazing incidence mirrors for SR and x-ray telescope applications. Recent improvements in the design and operation of the LTP system have reduced the statistical error in slope profile measurement to the 1 standard deviation level of 0.3 microradian for 0.5 meter long mirrors. This corresponds to a height error on the order of 10-20 nanometers. This level of performance allows one to measure with confidence the absolute shape of large cylindrical aspheres and spheres that have kilometer radii of curvature in the axial direction. The LTP is versatile enough to make measurements of a mirror in the face up, sideways, and face down configurations. We will illustrate the versatility of the current version of the instrument, the LTP II, and present results from two new versions of the instrument: the in situ LTP (ISLTP) and the Vertical Scan LTP (VSLTP). Both of them are based on the penta prism LTP (ppLTP) principle that utilizes a stationary optical head and moving penta prism. The ISLTP is designed to measure the distortion of high heat load mirrors during actual operation in SR beam lines. The VSLTP is designed to measure the complete 3-dimensional shape of x-ray telescope cylinder mirrors and mandrels in a vertical configuration. Scans are done both in the axial direction and in the azimuthal direction

  19. Nanometer scale thermometry in a living cell

    Science.gov (United States)

    Kucsko, G.; Maurer, P. C.; Yao, N. Y.; Kubo, M.; Noh, H. J.; Lo, P. K.; Park, H.; Lukin, M. D.

    2014-01-01

    Sensitive probing of temperature variations on nanometer scales represents an outstanding challenge in many areas of modern science and technology1. In particular, a thermometer capable of sub-degree temperature resolution over a large range of temperatures as well as integration within a living system could provide a powerful new tool for many areas of biological, physical and chemical research; possibilities range from the temperature-induced control of gene expression2–5 and tumor metabolism6 to the cell-selective treatment of disease7,8 and the study of heat dissipation in integrated circuits1. By combining local light-induced heat sources with sensitive nanoscale thermometry, it may also be possible to engineer biological processes at the sub-cellular level2–5. Here, we demonstrate a new approach to nanoscale thermometry that utilizes coherent manipulation of the electronic spin associated with nitrogen-vacancy (NV) color centers in diamond. We show the ability to detect temperature variations down to 1.8 mK (sensitivity of 9mK/Hz) in an ultra-pure bulk diamond sample. Using NV centers in diamond nanocrystals (nanodiamonds, NDs), we directly measure the local thermal environment at length scales down to 200 nm. Finally, by introducing both nanodiamonds and gold nanoparticles into a single human embryonic fibroblast, we demonstrate temperature-gradient control and mapping at the sub-cellular level, enabling unique potential applications in life sciences. PMID:23903748

  20. A model based approach to reference-free straightness measurement at the Nanometer Comparator

    Science.gov (United States)

    Weichert, C.; Stavridis, M.; Walzel, M.; Elster, C.; Wiegmann, A.; Schulz, M.; Köning, R.; Flügge, J.; Tutsch, R.

    2009-06-01

    The Nanometer Comparator is the PTB reference length measuring machine for high precision calibrations of line scales and encoder systems. Up to now the Nanometer Comparator allows to measure the position of line structures in one dimension only. For high precision characterisations of masks, scales and incremental encoders, the measurement of the straightness of graduations is a requirement from emerging lithography techniques. Therefore the Nanometer Comparator will be equipped with an additional short range measurement system in the Y-direction, realized as a single path plane mirror interferometer and supposed to achieve sub-nm uncertainties. To compensate the topography of the Y-mirror, the Traceable Multi Sensor (TMS) method will be implemented to achieve a reference-free straightness measurement. Virtual experiments are used to estimate the lower accuracy limit and to determine the sensitive parameters. The virtual experiments contain the influence of the positioning devices, interferometer errors as well as non-perfect adjustment and fabrication of the machine geometry. The whole dynamic measurement process of the Nanometer Comparator including its influence on the TMS analysis, e.g. non-equally spaced measurement points, is simulated. We will present the results of these virtual experiments as well as the most relevant error sources for straightness measurement, incorporating the low uncertainties of the existing and planned measurement systems.

  1. Powder Diffraction

    Science.gov (United States)

    Hart, Michael

    The importance of x-ray powder diffraction as an analytical tool for phase identification of materials was first pointed out by Debye and Scherrer1,2 in Germany and, quite independently, by Hull3,4 in the United States of America. Three distinct periods of evolution lead to ubiquitous application in many fields of science and technology. In the, first period, until the- mid-1940's. applications were and developed covering broad categories of materials including inorganic materials, minerals, cerarffics, metals, alloys, organic materials and polymers. During this formative period, the concept of quantitative phase analysis was demonstrated5. In the second period there followed the blossoming of technology and commercial instruments became widely used. The history is well summarized by Parrish6 and by Langford and Loudr7. By 1980 there were probably 10000 powder diffractometers in routine use, making it the most widely used of all x-ray crystallographic instruments. In the third, present, period data bases became firmly established and sophisticated pattern fitting and recognition software made many aspects of powder diffraction analysis routine. High resolution, tunable powder diffractometers were developed at sources of synchrotron radiation8-10. The tunability of the spectrum made it possible to exploit all the subtleties of x-ray spectroscopy in diffraction experiments11.

  2. Neutron diffraction

    International Nuclear Information System (INIS)

    Howard, C.J.; Kennedy, S.J.

    1994-01-01

    A brief account is given of neutron diffraction techniques. Similarities and differences compared with the more familiar X-ray counterparts are discussed. In certain applications, neutron diffraction can be used to obtain information about materials which would be difficult or even impossible to obtain using other techniques. One spectacular success has been the elucidation, from neutron powder diffraction, of the crystal structures of high critical temperature oxide superconductors. There have been substantial contributions in other fields, and these are illustrated by Australian work. The ability of the neutron to penetrate deeply into most materials has been invoked for in-depth determination of stresses in composites and of phase composition in zirconia ceramics. The unique properties of the neutron have been successfully exploited in studies of metal hydrides, to determine where hydrogen is located, and in magnetic structure determination. There is much interest in studying materials under different conditions of temperature and pressure, and kinetic studies under such conditions are now becoming possible. The article includes information on the principles, the instrumentation with particular reference to the instruments installed around the HIFAR reactor at Lucas Heights, and methods for the interpretation of data. 59 refs., 3 tabs., 16 figs

  3. Powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Hart, M.

    1995-12-31

    the importance of x-ray powder diffraction as an analytical tool for phase identification of materials was first pointed out by Debye and Scherrer in Germany and, quite independently, by Hull in the US. Three distinct periods of evolution lead to ubiquitous application in many fields of science and technology. In the first period, until the mid-1940`s, applications were and developed covering broad categories of materials including inorganic materials, minerals, ceramics, metals, alloys, organic materials and polymers. During this formative period, the concept of quantitative phase analysis was demonstrated. In the second period there followed the blossoming of technology and commercial instruments became widely used. The history is well summarized by Parrish and by Langford and Loueer. By 1980 there were probably 10,000 powder diffractometers in routine use, making it the most widely used of all x-ray crystallographic instruments. In the third, present, period data bases became firmly established and sophisticated pattern fitting and recognition software made many aspects of powder diffraction analysis routine. High resolution, tunable powder diffractometers were developed at sources of synchrotron radiation. The tunability of the spectrum made it possible to exploit all the subtleties of x-ray spectroscopy in diffraction experiments.

  4. Powder diffraction

    International Nuclear Information System (INIS)

    Hart, M.

    1995-01-01

    The importance of x-ray powder diffraction as an analytical tool for phase identification of materials was first pointed out by Debye and Scherrer in Germany and, quite independently, by Hull in the US. Three distinct periods of evolution lead to ubiquitous application in many fields of science and technology. In the first period, until the mid-1940's, applications were and developed covering broad categories of materials including inorganic materials, minerals, ceramics, metals, alloys, organic materials and polymers. During this formative period, the concept of quantitative phase analysis was demonstrated. In the second period there followed the blossoming of technology and commercial instruments became widely used. The history is well summarized by Parrish and by Langford and Loueer. By 1980 there were probably 10,000 powder diffractometers in routine use, making it the most widely used of all x-ray crystallographic instruments. In the third, present, period data bases became firmly established and sophisticated pattern fitting and recognition software made many aspects of powder diffraction analysis routine. High resolution, tunable powder diffractometers were developed at sources of synchrotron radiation. The tunability of the spectrum made it possible to exploit all the subtleties of x-ray spectroscopy in diffraction experiments

  5. Easy-DHPSF open-source software for three-dimensional localization of single molecules with precision beyond the optical diffraction limit.

    Science.gov (United States)

    Lew, Matthew D; von Diezmann, Alexander R S; Moerner, W E

    2013-02-25

    Automated processing of double-helix (DH) microscope images of single molecules (SMs) streamlines the protocol required to obtain super-resolved three-dimensional (3D) reconstructions of ultrastructures in biological samples by single-molecule active control microscopy. Here, we present a suite of MATLAB subroutines, bundled with an easy-to-use graphical user interface (GUI), that facilitates 3D localization of single emitters (e.g. SMs, fluorescent beads, or quantum dots) with precisions of tens of nanometers in multi-frame movies acquired using a wide-field DH epifluorescence microscope. The algorithmic approach is based upon template matching for SM recognition and least-squares fitting for 3D position measurement, both of which are computationally expedient and precise. Overlapping images of SMs are ignored, and the precision of least-squares fitting is not as high as maximum likelihood-based methods. However, once calibrated, the algorithm can fit 15-30 molecules per second on a 3 GHz Intel Core 2 Duo workstation, thereby producing a 3D super-resolution reconstruction of 100,000 molecules over a 20×20×2 μm field of view (processing 128×128 pixels × 20000 frames) in 75 min.

  6. Nanometer sized structures grown by pulsed laser deposition

    KAUST Repository

    ElZein, Basma

    2015-10-01

    Nanometer sized materials can be produced by exposing a target to a laser source to remove material from the target and deposit the removed material onto a surface of a substrate to grow a thin film in a vacuum chamber

  7. Thermo-plasmonics : controlling and probing temperature on the nanometer scale

    OpenAIRE

    Donner, Jon Sean

    2014-01-01

    In the last decades, optics has become central in many applications in modern society. Nano-optics, which studies the behavior of light at the nanoscale, holds promise to do the same. However, when using traditional optical elements such as mirrors and lenses to control light propagation, there is a fundamental limit on the localization of the field which could a priori impinge on the ability to use optics at the nanometer scale. One way to improve the confinement of electromagnetic waves is...

  8. Cell biology of the future: Nanometer-scale cellular cartography.

    Science.gov (United States)

    Taraska, Justin W

    2015-10-26

    Understanding cellular structure is key to understanding cellular regulation. New developments in super-resolution fluorescence imaging, electron microscopy, and quantitative image analysis methods are now providing some of the first three-dimensional dynamic maps of biomolecules at the nanometer scale. These new maps--comprehensive nanometer-scale cellular cartographies--will reveal how the molecular organization of cells influences their diverse and changeable activities. Copyright © 2015 Taraska.

  9. Diffraction gauging

    International Nuclear Information System (INIS)

    Wilkens, P.H.

    1978-01-01

    This system of gauging is now being designed to fit on an Excello NC lathe to measure the form, accuracy, and size of external contoured surfaces as they approach the finish machined size. A template profile of the finished workpiece, but 0.003 in. bigger on radius, will be aligned with the workpiece using a reference diameter and face on the machining fixture to leave a gap between the profile of the template and workpiece. A helium--neon laser beam will be projected through this gap using a rotating retroreflector and a fixed laser. The resulting diffraction pattern produced by the laser beam passing through the template to workpiece gap will be reflected and focused on a fixed diode array via a second retroreflector which moves and remains in optical alignment with the first. These retroreflectors will be rotated about a center that will enable the laser beam, which is shaped in a long slit, to scan the template workpiece gap from the pole to the equator of the workpiece. The characteristic diffraction pattern will be detected by the fixed diode array, and the signal levels from this array will be processed in a mini-computer programmed to produce a best fit through the two minima of the diode signals. The separation of the two minima will yield the size of the workpiece to template gap and this information will be presented to the machine tool operator

  10. Photon diffraction

    Science.gov (United States)

    Hodge, John

    2009-11-01

    In current light models, a particle-like model of light is inconsistent with diffraction observations. A model of light is proposed wherein photon inferences are combined with the cosmological scalar potential model (SPM). That the photon is a surface with zero surface area in the travel direction is inferred from the Michelson-Morley experiment. That the photons in slits are mathematically treated as a linear antenna array (LAA) is inferred from the comparison of the transmission grating interference pattern and the single slit diffraction pattern. That photons induce a LAA wave into the plenum is inferred from the fractal model. Similarly, the component of the photon (the hod) is treated as a single antenna radiating a potential wave into the plenum. That photons are guided by action on the surface of the hod is inferred from the SPM. The plenum potential waves are a real field (not complex) that forms valleys, consistent with the pilot waves of the Bohm interpretation of quantum mechanics. Therefore, the Afshar experiment result is explained, supports Bohm, and falsifies Copenhagen. The papers may be viewed at http://web.citcom.net/˜scjh/.

  11. Nanometer-sized emissions from municipal waste incinerators: A qualitative risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, David R., E-mail: david.r.johnson@ghd.com

    2016-12-15

    Municipal waste incinerators (MWI) are beneficial alternatives to landfills for waste management. A recent constituent of concern in emissions from these facilities is incidental nanometer-sized particles (INP{sub MWI}), i.e., particles smaller than 1 micrometer in size that may deposit in the deepest parts of the lungs, cross into the bloodstream, and affect different regions of the body. With limited data, the public may fear INP{sub MWI} due to uncertainty, which may affect public acceptance, regulatory permitting, and the increased lowering of air quality standards. Despite limited data, a qualitative risk assessment paradigm can be applied to determine the relative risk due to INP{sub MWI} emissions. This review compiles existing data on nanometer-sized particle generation by MWIs, emissions control technologies used at MWIs, emission releases into the atmosphere, human population exposure, and adverse health effects of nanometer-sized particles to generate a qualitative risk assessment and identify data gaps. The qualitative risk assessment conservatively concludes that INP{sub MWI} pose a low to moderate risk to individuals, primarily due to the lack of relevant toxicological data on INP{sub MWI} mixtures in ambient particulate matter.

  12. Dynamical theory of diffraction

    International Nuclear Information System (INIS)

    Dederichs, P.H.

    1978-01-01

    The paper is concerned with 1. the limits of the kinematical theory 2. basic equations for diffraction 3. Bloch waves 4. band structure and dispersion surfaces of free electrons 5. Weak potential: The two-beam case 6. a modification for X-ray scattering 7. absorption mechanisms and Bormann effect 8. k-selection and boundary conditions 9. the symmetrical laue case 10. the symmetrical Bragg case. (orig.) [de

  13. DNA Translocation in Nanometer Thick Silicon Nanopores.

    Science.gov (United States)

    Rodríguez-Manzo, Julio A; Puster, Matthew; Nicolaï, Adrien; Meunier, Vincent; Drndić, Marija

    2015-06-23

    Solid-state nanopores are single-molecule sensors that detect changes in ionic conductance (ΔG) when individual molecules pass through them. Producing high signal-to-noise ratio for the measurement of molecular structure in applications such as DNA sequencing requires low noise and large ΔG. The latter is achieved by reducing the nanopore diameter and membrane thickness. While the minimum diameter is limited by the molecule size, the membrane thickness is constrained by material properties. We use molecular dynamics simulations to determine the theoretical thickness limit of amorphous Si membranes to be ∼1 nm, and we designed an electron-irradiation-based thinning method to reach that limit and drill nanopores in the thinned regions. Double-stranded DNA translocations through these nanopores (down to 1.4 nm in thickness and 2.5 nm in diameter) provide the intrinsic ionic conductance detection limit in Si-based nanopores. In this regime, where the access resistance is comparable to the nanopore resistance, we observe the appearance of two conductance levels during molecule translocation. Considering the overall performance of Si-based nanopores, our work highlights their potential as a leading material for sequencing applications.

  14. Spinel Li2CoTi3O8 nanometer obtained for application as pigment

    International Nuclear Information System (INIS)

    Costa de Camara, M. S.; Alves Pimentel, L.; Longo, E.; Nobrega Azevedo, L. da; Araujo Melo, D. M. de

    2016-01-01

    Pigments are used in ceramics, cosmetics, inks, and other applications widely materials. To this must be single and easily reproducible. Moreover, the pigments obtained in the nanoscale are more stable, reproducible and highlight color in small amounts compared with those obtained in micrometer scale. The mixed oxides with spinel structures AB 2 O 4 have important applications, including: pigments, refractories, catalytic and electronic ceramics. In this context, the aim of this work was the preparation of powder Li 2 CoTi 3 O 8 spinel phase with nanometer particle size of the polymeric precursor method (Pechini) and characterization by means of thermal analysis (TG/DTA) X-ray diffraction (XRD), refined by the Rietveld method, BET, transmission electron microscopy (TEM), Raman and colorimetric coordinates. The pigment was obtained by heat treatment of 400 degree centigrade to 1000 degree centigrade after pyrolysis at 300 degree centigrade/1 h for removing the organic material. Li 2 CoTi 3 O 8 desired spinel phase was obtained from 500 degree centigrade, and presenting stability nanometer to about 1.300 degree centigrade. Spinel green phase introduced at temperatures in the range of 400 degree centigrade and 500 degree centigrade, and 600 degree centigrade at temperatures between blue and 1000 degree centigrade. (Author)

  15. Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation

    Science.gov (United States)

    Fuchs, Silvio; Rödel, Christian; Blinne, Alexander; Zastrau, Ulf; Wünsche, Martin; Hilbert, Vinzenz; Glaser, Leif; Viefhaus, Jens; Frumker, Eugene; Corkum, Paul; Förster, Eckhart; Paulus, Gerhard G.

    2016-01-01

    Optical coherence tomography (OCT) is a non-invasive technique for cross-sectional imaging. It is particularly advantageous for applications where conventional microscopy is not able to image deeper layers of samples in a reasonable time, e.g. in fast moving, deeper lying structures. However, at infrared and optical wavelengths, which are commonly used, the axial resolution of OCT is limited to about 1 μm, even if the bandwidth of the light covers a wide spectral range. Here, we present extreme ultraviolet coherence tomography (XCT) and thus introduce a new technique for non-invasive cross-sectional imaging of nanometer structures. XCT exploits the nanometerscale coherence lengths corresponding to the spectral transmission windows of, e.g., silicon samples. The axial resolution of coherence tomography is thus improved from micrometers to a few nanometers. Tomographic imaging with an axial resolution better than 18 nm is demonstrated for layer-type nanostructures buried in a silicon substrate. Using wavelengths in the water transmission window, nanometer-scale layers of platinum are retrieved with a resolution better than 8 nm. XCT as a nondestructive method for sub-surface tomographic imaging holds promise for several applications in semiconductor metrology and imaging in the water window. PMID:26860894

  16. Study on the neotype zirconia's implant coated nanometer hydroxyapatite ceramics

    Science.gov (United States)

    Zhu, J. W.; Yang, D. W.

    2007-07-01

    In recent years, biologic ceramics is a popular material of implants and bioactive surface modification of dental implant became a research emphasis, which aims to improve bioactivity of implants materials and acquire firmer implants-bone interface. The zirconia ceramic has excellent mechanical properties and nanometer HA ceramics is a bioceramic well known for its bioactivity, therefore, nanometer HA ceramics coating on zirconia, allows combining the excellent mechanical properties of zirconia substrates with its bioactivity. This paper shows a new method for implant shape design and bioactive modification of dental implants surface. Zirconia's implant substrate was prepared by sintered method, central and lateral tunnels were drilled in the zirconia hollow porous cylindrical implants by laser processing. The HA powders and needle-like HA crystals were made by a wet precipitation and calcining method. Its surface was coated with nanometer HA ceramics which was used brush HA slurry and vacuum sintering. Mechanical testing results revealed that the attachment strength of nanometer HA ceramics coated zirconia samples is high. SEM and interface observation after inserted experiment indicated that calcium and phosphor content increased and symmetrically around coated implant-bone tissue interface. A significantly higher affinity index was demonstrated in vivo by histomorphometric evaluation in coated versus uncoated implants. SEM analysis demonstrated better bone adhesion to the material in coated implant at any situation. In addition, the hollow porous cylindrical implant coated with nanometer HA ceramics increase the interaction of bone and implant, the new bone induced into the surface of hollow porous cylindrical implant and through the most tunnels filled into central hole. The branch-like structure makes the implant and bone a body, which increased the contact area and decreased elastic ratio. Therefore, the macroscopical and microcosmic nested structure of

  17. Nanometer measurement with a dual Fabry-Perot interferometer

    International Nuclear Information System (INIS)

    Chen Benyong; Li Dacheng; Guo Songling; Zhu Ruogu; Wu Zhaotong

    2001-01-01

    On the basis of analyzing sinusoidal phase-modulating Fabry-Perot interferometry, a method, believed to be novel, is proposed for achieving nanometer measurement accuracy by measuring the time interval between equal amplitudes of the two elementary frequency signals of the transmitted intensities of a dual Fabry-Perot interferometer. A nanometer measurement system based on the method was designed and tested. The experimental results show that the displacement resolution of the system is 0.32 nm at a 1-kHz modulating signal

  18. Simple method for formation of nanometer scale holes in membranes

    International Nuclear Information System (INIS)

    Schenkel, T.; Stach, E.A.; Radmilovic, V.; Park, S.-J.; Persaud, A.

    2003-01-01

    When nanometer scale holes (diameters of 50 to a few hundred nm) are imaged in a scanning electron microscope (SEM) at pressures in the 10 -5 to 10 -6 torr range, hydrocarbon deposits built up and result in the closing of holes within minutes of imaging. Additionally, electron beam deposition of material from a gas source allows the closing of holes with films of platinum or TEOS oxide. In an instrument equipped both with a focused ion beam (FIB), and an SEM, holes can be formed and then covered with a thin film to form nanopores with controlled openings, ranging down to only a few nanometers

  19. Polychromatic diffraction contrast tomography

    International Nuclear Information System (INIS)

    King, A.; Reischig, P.; Adrien, J.; Peetermans, S.; Ludwig, W.

    2014-01-01

    This tutorial review introduces the use of polychromatic radiation for 3D grain mapping using X-ray diffraction contrast tomography. The objective is to produce a 3D map of the grain shapes and orientations within a bulk, millimeter-sized polycrystalline sample. The use of polychromatic radiation enables the standard synchrotron X-ray technique to be applied in a wider range of contexts: 1) Using laboratory X-ray sources allows a much wider application of the diffraction contrast tomography technique. 2) Neutron sources allow large samples, or samples containing high Z elements to be studied. 3) Applied to synchrotron sources, smaller samples may be treated, or faster measurements may be possible. Challenges and particularities in the data acquisition and processing, and the limitations of the different variants, are discussed. - Highlights: • We present a tutorial review of polychromatic diffraction contrast tomography techniques. • The use of polychromatic radiation allows the standard synchrotron DCT technique to be extended to a range of other sources. • The characteristics and limitations of all variants of the techniques are derived, discussed and compared. • Examples using laboratory X-ray and cold neutron radiation are presented. • Suggestions for the future development of these techniques are presented

  20. Shearing Nanometer-Thick Confined Hydrocarbon Films: Friction and Adhesion

    DEFF Research Database (Denmark)

    Sivebæk, I. M.; Persson, B. N. J.

    2016-01-01

    We present molecular dynamics (MD) friction and adhesion calculations for nanometer-thick confined hydrocarbon films with molecular lengths 20, 100 and 1400 carbon atoms. We study the dependency of the frictional shear stress on the confining pressure and sliding speed. We present results...

  1. Small angle neutron scattering from nanometer grain sized materials

    Science.gov (United States)

    Epperson, J. E.; Siegel, R. W.

    1991-11-01

    Small angle neutron scattering has been utilized, along with a number of complementary characterization methods suitable to the nanometer size scale, to investigate the structures of cluster-assembled nanophase materials. Results of these investigations are described and problems and opportunities in using small angle scattering for elucidating nanostructures are discussed.

  2. Substrate comprising a nanometer-scale projection array

    Science.gov (United States)

    Cui, Yi; Zhu, Jia; Hsu, Ching-Mei; Connor, Stephen T; Yu, Zongfu; Fan, Shanhui; Burkhard, George

    2012-11-27

    A method for forming a substrate comprising nanometer-scale pillars or cones that project from the surface of the substrate is disclosed. The method enables control over physical characteristics of the projections including diameter, sidewall angle, and tip shape. The method further enables control over the arrangement of the projections including characteristics such as center-to-center spacing and separation distance.

  3. Mismatch of dielectric constants at the interface of nanometer metal ...

    Indian Academy of Sciences (India)

    Abstract. The comparison of the inversion electron density between a nanometer metal-oxide- semiconductor (MOS) device with high-K gate dielectric and a SiO2 MOS device with the same equivalent oxide thickness has been discussed. A fully self-consistent solution of the coupled. Schrödinger–Poisson equations ...

  4. Dispersion effect and auto-reconditioning performance of nanometer ...

    Indian Academy of Sciences (India)

    Administrator

    ash were used in this work. 2.2 Dispersion experiment. A combinative method of ultrasonic dispersion, mechani- cal agitation and surface modification was adopted to disperse nanometer WS2 particles in green lubricant in this study. And to realize this method, we designed a dispersing equipment and figure 2 gives the ...

  5. Properties of antibacterial polypropylene/nanometal composite fibers

    Science.gov (United States)

    Melt spinning of polypropylene fibers containing silver and zinc nanoparticles was investigated. The nanometals were generally uniformly dispersed in polypropylene, but aggregation of these materials was observed on fiber surface and in fiber cross-sections. The mechanical properties of the resulted...

  6. Machining oxide thin films with an atomic force microscope: pattern and object formation on the nanometer scale.

    Science.gov (United States)

    Kim, Y; Lieber, C M

    1992-07-17

    An atomic force microscope (AFM) has been used to machine complex patterns and to form free structural objects in thin layers of MoO(3) grown on the surface of MoS(2). The AFM tip can pattern lines with structure without perturbation by controlling the applied load. Distinct MoO(3) structures can also be defined by AFM machining, and furthermore these objects can be manipulated on the MoS(2) substrate surface with the AFM tip. These results suggest application to nanometer-scale diffraction gratings, high-resolution lithography masks, and possibly the assembly of nanostructures with novel properties.

  7. Contribution to diffraction theory

    International Nuclear Information System (INIS)

    Chako, N.

    1966-11-01

    In a first part, we have given a general and detailed treatment of the modern theory of diffraction. The rigorous theory is formulated as a boundary value problem of the wave equation or Maxwell equations. However, up to the present time, such a program of treating diffraction by optical systems, even for simple optical instruments, has not been realized due to the complicated character of the boundary conditions. The recent developments show clearly the nature of the approximation of the classical theories originally due to Fresnel and Young, later formulated in a rigorous manner by Kirchhoff and Rubinowicz, respectively and, at the same time the insufficiency of these theories in explaining a number of diffraction phenomena. Furthermore, we have made a study of the limitations of the approximate theories and the recent attempts to improve these. The second part is devoted to a general mathematical treatment of the theory of diffraction of optical systems including aberrations. After a general and specific analysis of geometrical and wave aberrations along classical and modern (Nijboer) lines, we have been able to evaluate the diffraction integrals representing the image field at any point in image space explicitly, when the aberrations are small. Our formulas are the generalisations of all anterior results obtained by previous investigators. Moreover, we have discussed the Zernike-Nijboer theory of aberration and generalised it not only for rotational systems, but also for non-symmetric systems as well, including the case of non circular apertures. The extension to non-circular apertures is done by introducing orthogonal functions or polynomials over such aperture shapes. So far the results are valid for small aberrations, that is to say, where the deformation of the real wave front emerging from the optical system is less than a wave length of light or of the electromagnetic wave from the ideal wave front. If the aberrations are large, then one must employ the

  8. Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy.

    Science.gov (United States)

    Jiang, Huaidong; Song, Changyong; Chen, Chien-Chun; Xu, Rui; Raines, Kevin S; Fahimian, Benjamin P; Lu, Chien-Hung; Lee, Ting-Kuo; Nakashima, Akio; Urano, Jun; Ishikawa, Tetsuya; Tamanoi, Fuyuhiko; Miao, Jianwei

    2010-06-22

    Microscopy has greatly advanced our understanding of biology. Although significant progress has recently been made in optical microscopy to break the diffraction-limit barrier, reliance of such techniques on fluorescent labeling technologies prohibits quantitative 3D imaging of the entire contents of cells. Cryoelectron microscopy can image pleomorphic structures at a resolution of 3-5 nm, but is only applicable to thin or sectioned specimens. Here, we report quantitative 3D imaging of a whole, unstained cell at a resolution of 50-60 nm by X-ray diffraction microscopy. We identified the 3D morphology and structure of cellular organelles including cell wall, vacuole, endoplasmic reticulum, mitochondria, granules, nucleus, and nucleolus inside a yeast spore cell. Furthermore, we observed a 3D structure protruding from the reconstructed yeast spore, suggesting the spore germination process. Using cryogenic technologies, a 3D resolution of 5-10 nm should be achievable by X-ray diffraction microscopy. This work hence paves a way for quantitative 3D imaging of a wide range of biological specimens at nanometer-scale resolutions that are too thick for electron microscopy.

  9. A computer program for calculation of parameters necessary for the computation of reliable pair distribution functions of non-crystalline materials from limited diffraction data. II

    International Nuclear Information System (INIS)

    Hansen, F.Y.

    1978-01-01

    The pair distribution function of non-crystalline materials may be obtained by a Fourier transform of the structure factor as calculated in part I of this series. The structure factor is often limited in the sense that it shows significant oscillations at the maximal wave vector transfers obtainable. The Fourier transform of such functions, therefore, introduces truncation errors in the transformed function. With this program a parametrization of the small distance part of the pair distribution function is obtained according to a method described which enables one to eliminate truncation error from the final pair distribution function. It is based on a least squares fit calculation of the small distance part of the pair distribution function obtained by a direct transform of the experimental structure factor and a model pair distribution function obtained from a model structure factor truncated at the same wave vector transfers as the experimental factor. The storage requirement depends on the number of structure factor data and the number of peaks used to resolve the small distance part of the pair distribution function. In the present set-up storage requirement is set to 15083 words, which is estimated to be satisfactory for a large number of cases. (Auth.)

  10. Membranes for nanometer-scale mass fast transport

    Science.gov (United States)

    Bakajin, Olgica [San Leandro, CA; Holt, Jason [Berkeley, CA; Noy, Aleksandr [Belmont, CA; Park, Hyung Gyu [Oakland, CA

    2011-10-18

    Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  11. Analysis of nano-meter structure in Ti implanted polymers

    International Nuclear Information System (INIS)

    Zhou Gu; Wu Yuguang; Zhang Tonghe; Zhao Xinrong

    2001-01-01

    Polyethylene terephthalate (PET) is modified with Ti ion implantation to a dose of 1x10 17 to 2 x 10 17 cm -2 by using a metal vapor vacuum arc(MEVVA)source. Nano-meter structures in the implanted sample are observed by means of transmission electron microscope (TEM). The influence of ion dose on the structure is indicated. The results show that dense nano-meter phases are dispersed uniformly in the implanted layer. TEM cross section indicates that there is a three-layer structure in the implanted PET. It is found that a metallurgical surface is formed. Therefore the hardness, wear resistance and conductive properties of PET are improved after metal ion implantation. The mechanism of electrical conduction will be discussed

  12. Diffractive dissociation and new quarks

    International Nuclear Information System (INIS)

    White, A.R.

    1983-04-01

    We argue that the chiral limit of QCD can be identified with the strong (diffractive dissociation) coupling limit of reggeon field theory. Critical Pomeron scaling at high energy must then be directly related to an infra-red fixed-point of massless QCD and so requires a large number of flavors. This gives a direct argument that the emergence of diffraction-peak scaling, KNO scaling etc. at anti p-p colliders are evidence of a substantial quark structure still to be discovered

  13. Dynamics of a nanometer-sized uranyl cluster in solution

    International Nuclear Information System (INIS)

    Johnson, Rene L.; Ohlin, C. Andre; Pellegrini, Kristi; Burns, Peter C.; Casey, William H.

    2013-01-01

    A class of uranyl peroxide clusters was discovered before as nanometer-sized ions that form spontaneously in aqueous solutions. The uranyl(VI) cluster investigated here is approximately 2 nm in diameter, contains 24 uranyl moieties, and 12 pyrophosphate units. NMR spectroscopy shows that the ion has two distinct forms that interconvert in milliseconds to seconds depending on the temperature and the size of the counterions. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Metal substrates with nanometer scale surface roughness for flexible electronics

    Science.gov (United States)

    Lee, Jong-Lam; Kim, Kisoo

    2012-09-01

    In this work, we present a novel way in fabricating a metal substrate with nanometer scale in surface roughness (Ra INVAR (Invariable alloy) one (20 cm × 20 cm, Ra = 1.40 nm) were demonstrated. The INVAR film was used as a substrate for fabricating organic light emitting diodes (OLED) and organic photovoltaic (OPV). The optical and electrical characteristics of OLEDs and OPVs using the INVAR were comparable to those using a conventional ITO glass substrate.

  15. Stochastic modelling in design of mechanical properties of nanometals

    International Nuclear Information System (INIS)

    Tengen, T.B.; Wejrzanowski, T.; Iwankiewicz, R.; Kurzydlowski, K.J.

    2010-01-01

    Polycrystalline nanometals are being fabricated through different processing routes and conditions. The consequence is that nanometals having the same mean grain size may have different grain size dispersion and, hence, may have different material properties. This has often led to conflicting reports from both theoretical and experimental findings about the evolutions of the mechanical properties of nanomaterials. The present paper employs stochastic model to study the impact of microstructure evolution during grain growth on the mechanical properties of polycrystalline nanometals. The stochastic model for grain growth and the stochastic model for changes in mechanical properties of nanomaterials are proposed. The model for the mechanical properties developed is tested on aluminium samples.Many salient features of the mechanical properties of the aluminium samples are revealed. The results show that the different mechanisms of grain growth impart different nature of response to the material mechanical properties. The conventional, homologous and anomalous temperature dependences of the yield stress have also been revealed to be due to different nature of interactions of the microstructures during evolution.

  16. Development and characterization of electron sources for diffraction applications

    International Nuclear Information System (INIS)

    Casandruc, Albert

    2015-12-01

    The dream to control chemical reactions that are essential to life is now closer than ever to gratify. Recent scientific progress has made it possible to investigate phenomena and processes which deploy at the angstroms scale and at rates on the order femtoseconds. Techniques such as Ultrafast Electron Diffraction (UED) are currently able to reveal the spatial atomic configuration of systems with unit cell sizes on the order of a few nanometers with about 100 femtosecond temporal resolution. Still, major advances are needed for structural interrogation of biological systems like protein crystals, which have unit cell sizes of 10 nanometers or larger, and sample sizes of less than one micrometer. For such samples, the performance of these electron-based techniques is now limited by the quality, in particular the brightness, of the electron source. The current Ph.D. work represents a contribution towards the development and the characterization of electron sources which are essential to static and time-resolved electron diffraction techniques. The focus was on electron source fabrication and electron beam characterization measurements, using the solenoid and the aperture scan techniques, but also on the development and maintenance of the relevant experimental setups. As a result, new experimental facilities are now available in the group and, at the same time, novel concepts for generating electron beams for electron diffraction applications have been developed. In terms of existing electron sources, the capability to trigger and detect field emission from single double-gated field emitter Mo tips was successfully proven. These sharp emitter tips promise high brightness electron beams, but for investigating individual such structures, new engineering was needed. Secondly, the influence of the surface electric field on electron beam properties has been systematically performed for flat Mo photocathodes. This study is very valuable especially for state

  17. The diffractive achromat full spectrum computational imaging with diffractive optics

    KAUST Repository

    Peng, Yifan

    2016-07-11

    Diffractive optical elements (DOEs) have recently drawn great attention in computational imaging because they can drastically reduce the size and weight of imaging devices compared to their refractive counterparts. However, the inherent strong dispersion is a tremendous obstacle that limits the use of DOEs in full spectrum imaging, causing unacceptable loss of color fidelity in the images. In particular, metamerism introduces a data dependency in the image blur, which has been neglected in computational imaging methods so far. We introduce both a diffractive achromat based on computational optimization, as well as a corresponding algorithm for correction of residual aberrations. Using this approach, we demonstrate high fidelity color diffractive-only imaging over the full visible spectrum. In the optical design, the height profile of a diffractive lens is optimized to balance the focusing contributions of different wavelengths for a specific focal length. The spectral point spread functions (PSFs) become nearly identical to each other, creating approximately spectrally invariant blur kernels. This property guarantees good color preservation in the captured image and facilitates the correction of residual aberrations in our fast two-step deconvolution without additional color priors. We demonstrate our design of diffractive achromat on a 0.5mm ultrathin substrate by photolithography techniques. Experimental results show that our achromatic diffractive lens produces high color fidelity and better image quality in the full visible spectrum. © 2016 ACM.

  18. Mesoporous TiO2 Micro-Nanometer Composite Structure: Synthesis, Optoelectric Properties, and Photocatalytic Selectivity

    Directory of Open Access Journals (Sweden)

    Kun Liu

    2012-01-01

    Full Text Available Mesoporous anatase TiO2 micro-nanometer composite structure was synthesized by solvothermal method at 180°C, followed by calcination at 400°C for 2 h. The as-prepared TiO2 was characterized by X-ray diffraction (XRD, scanning electron microscope (SEM, transmission electron microscope (TEM, and Fourier transform infrared spectrum (FT-IR. The specific surface area and pore size distribution were obtained from N2 adsorption-desorption isotherm, and the optoelectric property of the mesoporous TiO2 was studied by UV-Vis absorption spectrum and surface photovoltage spectra (SPS. The photocatalytic activity was evaluated by photodegradation of sole rhodamine B (RhB and sole phenol aqueous solutions under simulated sunlight irradiation and compared with that of Degussa P-25 (P25 under the same conditions. The photodegradation preference of this mesoporous TiO2 was also investigated for an RhB-phenol mixed solution. The results show that the TiO2 composite structure consists of microspheres (∼0.5–2 μm in diameter and irregular aggregates (several hundred nanometers with rough surfaces and the average primary particle size is 10.2 nm. The photodegradation activities of this mesoporous TiO2 on both RhB and phenol solutions are higher than those of P25. Moreover, this as-prepared TiO2 exhibits photodegradation preference on RhB in the RhB-phenol mixture solution.

  19. Diffraction-limited IR Microspectroscopy with IRENI

    Science.gov (United States)

    J. Sedlmair; B. Illman; M. Unger; C. Hirschmugl

    2012-01-01

    In a unique way, IRENI (Infrared environmental Imaging), operated at the Synchrotron Radiation Center in Madison, combines IR spectroscopy and IR imaging, revealing the chemical morphology of a sample. Most storage ring based IR confocal microscopes have to overcome a trade-off between spatial resolution versus...

  20. Diffraction coherence in optics

    CERN Document Server

    Françon, M; Green, L L

    2013-01-01

    Diffraction: Coherence in Optics presents a detailed account of the course on Fraunhofer diffraction phenomena, studied at the Faculty of Science in Paris. The publication first elaborates on Huygens' principle and diffraction phenomena for a monochromatic point source and diffraction by an aperture of simple form. Discussions focus on diffraction at infinity and at a finite distance, simplified expressions for the field, calculation of the path difference, diffraction by a rectangular aperture, narrow slit, and circular aperture, and distribution of luminous flux in the airy spot. The book th

  1. Diffraction at a Straight Edge

    Indian Academy of Sciences (India)

    IAS Admin

    integral is a complex number which is a function of the lower limit. We have named it ... (b) Straight edge diffraction according to Young: In this figure, the plane wave from the source simply continues with ... discontinuity in the amplitude at the shadow, which exactly compensates for the discontinuity in the plane wavefront ...

  2. Fabrication, characterization, and applications of nanometer-scale features within organomercaptan self- assembled monolayers

    Science.gov (United States)

    Schoer, Jonathan Kevin

    1997-10-01

    Nanometer-scale features in organomercaptan self- assembled monolayers (SAMs) on Au(111) substrates were prepared by three methods: electrochemical enhancement of adventitious defects, electrochemical enhancement of template-molecule-induced pores, and scanning tunneling microscopy (STM)-induced patterning. The resulting features were characterized by electrochemistry, scanning electron microscopy (STM), and electrochemical STM (ECSTM). Finally, we applied STM-induced patterning methods to lithographic fabrication of features with critical dimensions resists and barrier layers to electron and mass transfer. Further, the nanometer-scale features act as nanometer- size electrodes. Measurements of the physical dimensions of nanometer- scale features by STM can be combined with microelectrode theory to calculate a value for the limiting current. Comparison of this value with that obtained directly from conventional electrochemistry provides qualitative agreement. From in-depth studies of the mechanistic aspects of STM- induced patterning of organomercaptan SAMs we determined that this process is controlled by a complex combination of parameters defined by both the instrument and the chemical and physical properties of materials in the vicinity of the tip. In particular, the patterning is dependent on the magnitude and polarity of the gap bias, the Coulomb dose, and the composition of the gap. From this information we propose a detailed multi-step model for STM-induced removal of n-alkanethiol SAMs from Au surfaces. The model is partially based on our observation that high tip bias ([>]~[+]2.30 V) results in removal of SAMs by Faradaic electrochemical processes in which the n-octadecyl mercaptan monolayer is: (1) disrupted by the tip, (2) electrochemically desorbed, and (3) removed by the scanning action of the tip. Further, we determined that at biases above a second threshold (~[+]4.0 V) the patterning becomes irreproducible because the patterning mechanism changes to

  3. [Clinical study of nanometer calcium phosphate ceramic artificial bone].

    Science.gov (United States)

    Sun, Yong; Xiao, Jian-De; Xiong, Jian-Yi; Liu, Jian-Quan

    2009-11-01

    To study the clinical effects and security of nanometer ceramics artificial bone transplantation to treat the bone defect. From March 2005 to November 2007, 32 patients (artificial bone group) with extremity bone defects applied nanometer ceramics artificial bone transplantations, included 19 males and 13 females, aged from 17 to 63 years old (averaged 31.4 years). The other 36 patients (internal fixation group) with extremity bone defects were treated by the internal fixation in the same period, included 21 males and 15 females, aged from 16 to 65 years old (averaged 32.6 years). Ca, P, B-ALP, IgG, IgA, IgM, CIC, C3, SL-2R and CD4+/CD8+ in the peripheral venous blood were measured in the 1st and 2th week and 1st, 3rd, 6th month after operation. All patients were followed up and the limb function was evaluated according to Enneking standard. The wounds of all patients smoothly healed after operation. Every immunological indicators had no significant difference between two groups. Serum calcium and phosphorus content did not significantly increased. Serum B-ALP of all patients were increased after operation, fell to normal levels in the internal fixation group, but remained at a relatively high level in the artificial bone group. All patients were followed-up for from 9 to 24 months (averaged 15 months). All patients get the excellent physical function. The artificial bone has no immunogenicity, no rejection,does not affect the blood calcium and phosphorus content, and has higher osteogenic activity. It is affirmed that nanometer ceramics artificial bone is used to treat the smaller bone defect on clinical.

  4. Figuring large optics at the sub-nanometer level: compensation for coating and gravity distortions.

    Science.gov (United States)

    Gensemer, Stephen; Gross, Mark

    2015-11-30

    Large, precision optics can now be manufactured with surface figures specified at the sub-nanometer level. However, coatings and gravity deform large optics, and there are limits to what can be corrected by clever compensation. Instead, deformations caused by stress from optical mounts and deposited coatings must be incorporated into the optical design. We demonstrate compensation of coating stress on a 370mm substrate to λ/200 by a process of coating and annealing. We also model the same process and identify the leading effects that must be anticipated in fabrication of optics for future gravitational wave detectors and other applications of large, precisely figured optics, and identify the limitations inherent in using coatings to compensate for these deformations.

  5. Probing single nanometer-scale pores with polymeric molecular rulers

    Science.gov (United States)

    Henrickson, Sarah E.; DiMarzio, Edmund A.; Wang, Qian; Stanford, Vincent M.; Kasianowicz, John J.

    2010-04-01

    We previously demonstrated that individual molecules of single-stranded DNA can be driven electrophoretically through a single Staphylococcus aureus α-hemolysin ion channel. Polynucleotides thread through the channel as extended chains and the polymer-induced ionic current blockades exhibit stable modes during the interactions. We show here that polynucleotides can be used to probe structural features of the α-hemolysin channel itself. Specifically, both the pore length and channel aperture profile can be estimated. The results are consistent with the channel crystal structure and suggest that polymer-based "molecular rulers" may prove useful in deducing the structures of nanometer-scale pores in general.

  6. Dimensional crossover in fluids under nanometer-scale confinement.

    Science.gov (United States)

    Das, Amit; Chakrabarti, J

    2012-05-01

    Several earlier studies have shown signatures of crossover in various static and dynamics properties of a confined fluid when the confining dimension decreases to about a nanometer. The density fluctuations govern the majority of such properties of a fluid. Here, we illustrate the crossover in density fluctuation in a confined fluid, to provide a generic understanding of confinement-induced crossover of fluid properties, using computer simulations. The crossover can be understood as a manifestation of changes in the long-wavelength behavior of fluctuation in density due to geometrical constraints. We further show that the confining potential significantly affects the crossover behavior.

  7. Phase behavior in diffraction

    International Nuclear Information System (INIS)

    Checon, A.

    1983-01-01

    Theoretical formulation of a straight edge diffraction shows a phase difference of π/2 between the incoming and diffracted waves. Experiments using two straight edges do not confirm the π/2 difference but suggest that the incoming wave is in phase with the wave diffracted into the shadowed region of the edge and out of phase by a factor of π with the wave diffracted into the illuminated region. (Author) [pt

  8. Optical methods for characterization of surface structures on a nanometer scale

    DEFF Research Database (Denmark)

    Gregersen, Niels

    2007-01-01

    When studying a sample with subwavelength features using conventional microscopy, the diffraction limit sets a lower bound to the resolution achievable. In this work the possiblity of circumventing the diffraction limit by employing a scanning near-field optical microscope (SNOM) to perform...... the characterization is investigated. Experimental SNOM images of the optical field distribution above a deep grating are analyzed with the purpose of identifying the grating topography, and transfer functions describing the coupling of the free-space field to the guided mode of the SNOM fiber are determined...

  9. Neutron diffraction studies of amorphous solids

    International Nuclear Information System (INIS)

    Wright, A.C.

    1983-01-01

    A brief survey is presented of the role of neutron diffraction in structural studies of amorphous solids. The inherent limitations of the diffraction technique are discussed, together with modern instrumentation and methods for separating individual component correlation functions. An introduction is given to the use of modelling and the extraction of structural parameters from experimental data. (author)

  10. Nanometer-precision linear sorting with synchronized optofluidic dual barriers.

    Science.gov (United States)

    Shi, Yuzhi; Xiong, Sha; Chin, Lip Ket; Zhang, Jingbo; Ser, Wee; Wu, Jiuhui; Chen, Tianning; Yang, Zhenchuan; Hao, Yilong; Liedberg, Bo; Yap, Peng Huat; Tsai, Din Ping; Qiu, Cheng-Wei; Liu, Ai Qun

    2018-01-01

    The past two decades have witnessed the revolutionary development of optical trapping of nanoparticles, most of which deal with trapping stiffness larger than 10 -8 N/m. In this conventional regime, however, it remains a formidable challenge to sort out sub-50-nm nanoparticles with single-nanometer precision, isolating us from a rich flatland with advanced applications of micromanipulation. With an insightfully established roadmap of damping, the synchronization between optical force and flow drag force can be coordinated to attempt the loosely overdamped realm (stiffness, 10 -10 to 10 -8 N/m), which has been challenging. This paper intuitively demonstrates the remarkable functionality to sort out single gold nanoparticles with radii ranging from 30 to 50 nm, as well as 100- and 150-nm polystyrene nanoparticles, with single nanometer precision. The quasi-Bessel optical profile and the loosely overdamped potential wells in the microchannel enable those aforementioned nanoparticles to be separated, positioned, and microscopically oscillated. This work reveals an unprecedentedly meaningful damping scenario that enriches our fundamental understanding of particle kinetics in intriguing optical systems, and offers new opportunities for tumor targeting, intracellular imaging, and sorting small particles such as viruses and DNA.

  11. Digital image processing of nanometer-size metal particles on amorphous substrates

    Science.gov (United States)

    Soria, F.; Artal, P.; Bescos, J.; Heinemann, K.

    1989-01-01

    The task of differentiating very small metal aggregates supported on amorphous films from the phase contrast image features inherently stemming from the support is extremely difficult in the nanometer particle size range. Digital image processing was employed to overcome some of the ambiguities in evaluating such micrographs. It was demonstrated that such processing allowed positive particle detection and a limited degree of statistical size analysis even for micrographs where by bare eye examination the distribution between particles and erroneous substrate features would seem highly ambiguous. The smallest size class detected for Pd/C samples peaks at 0.8 nm. This size class was found in various samples prepared under different evaporation conditions and it is concluded that these particles consist of 'a magic number' of 13 atoms and have cubooctahedral or icosahedral crystal structure.

  12. 3D-SEM Metrology for Coordinate Measurements at the Nanometer Scale

    DEFF Research Database (Denmark)

    Carli, Lorenzo

    The present work deals with a study concerning 3D-SEM metrology as a tool for coordinate measurements at the nanometer scale. The relevance of 3D-SEM, based on stereophotogrammetry technique, has been highlighted with respect to the other measuring instruments nowadays available and the main issues...... to be addressed concerning uncertainty evaluation have been discussed. Most recent developments in the field of micro and nano-metrology, in terms of measuring machines and techniques, are described pointing out advantages and limitations. The importance of multi-sensor and multi-orientation strategy....... In the last part of the work, the development and application of two novel multiplestep heights artefacts, intended for 3D-SEM calibration, is addressed. Experimental results of the different step-height values, measured from 3D-SEM reconstructions, are compared with the calibrated ones obtained from...

  13. Real-time detection of antibiotic activity by measuring nanometer-scale bacterial deformation

    Science.gov (United States)

    Iriya, Rafael; Syal, Karan; Jing, Wenwen; Mo, Manni; Yu, Hui; Haydel, Shelley E.; Wang, Shaopeng; Tao, Nongjian

    2017-12-01

    Diagnosing antibiotic-resistant bacteria currently requires sensitive detection of phenotypic changes associated with antibiotic action on bacteria. Here, we present an optical imaging-based approach to quantify bacterial membrane deformation as a phenotypic feature in real-time with a nanometer scale (˜9 nm) detection limit. Using this approach, we found two types of antibiotic-induced membrane deformations in different bacterial strains: polymyxin B induced relatively uniform spatial deformation of Escherichia coli O157:H7 cells leading to change in cellular volume and ampicillin-induced localized spatial deformation leading to the formation of bulges or protrusions on uropathogenic E. coli CFT073 cells. We anticipate that the approach will contribute to understanding of antibiotic phenotypic effects on bacteria with a potential for applications in rapid antibiotic susceptibility testing.

  14. Long-Range Energy Propagation in Nanometer Arrays of Light Harvesting Antenna Complexes

    NARCIS (Netherlands)

    Escalantet, Maryana; Escalante Marun, M.; Lenferink, Aufrid T.M.; Zhao, Yiping; Tas, Niels Roelof; Huskens, Jurriaan; Hunter, C. Neil; Subramaniam, Vinod; Otto, Cornelis

    2010-01-01

    Here we report the first observation of long-range transport of excitation energy within a biomimetic molecular nanoarray constructed from LH2 antenna complexes from Rhodobacter sphaeroides. Fluorescence microscopy of the emission of light after local excitation with a diffraction-limited light beam

  15. Mixed Surfactant Template Method for Preparation of Nanometer Selenium

    Directory of Open Access Journals (Sweden)

    Zhi-Lin Li

    2009-01-01

    Full Text Available Selenium nanoparticles have been synthesized in an aqueous solution by using sodium dodecyl sulfate and polyvinyl alcohol as a soft template. The factors on synthesis, such as reaction time, concentration of reactants and ultrasonic irradiation were studied. The uniform stable selenium nanospheres were obstained in the conditions of 1.0 (mass fraction sodium dodecyl sulfate, 1.0 (mass fraction polyvinyl alcohol, n(Vc:n(H2SeO3=7:1 and 7 minutes after the initiation of the reaction at room temperature. The average particle size of selenium is about 30 nm. The product was characterized by UV and TEM. Finally the applications of the red element nanometer selenium in anti-older cosmetics are presented.

  16. Mechanical Properties of Materials with Nanometer Scale Microstructures

    Energy Technology Data Exchange (ETDEWEB)

    William D. Nix

    2004-10-31

    We have been engaged in research on the mechanical properties of materials with nanometer-scale microstructural dimensions. Our attention has been focused on studying the mechanical properties of thin films and interfaces and very small volumes of material. Because the dimensions of thin film samples are small (typically 1 mm in thickness, or less), specialized mechanical testing techniques based on nanoindentation, microbeam bending and dynamic vibration of micromachined structures have been developed and used. Here we report briefly on some of the results we have obtained over the past three years. We also give a summary of all of the dissertations, talks and publications completed on this grant during the past 15 years.

  17. Imaging nanometer-scale beamlets arrays of relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Li, R. K.; To, H.; Musumeci, P. [Department of Physics and Astronomy, UCLA, Los Angeles, California, 90095 (United States)

    2012-12-21

    In this paper we study the evolution of nanometer scale transverse density modulation of a high brightness electron beam through a drift and simple focusing channel. With the help of particle tracking simulations we analyze the effects of space charge forces, emittance and energy spread on the feasibility of recovering an initial nm-scale transverse modulation after transport through a magnifying optical system. These studies are relevant for applications such as time-resolved MeV transmission electron microscopy and in the high brightness electron beam community due to the recent developments of nano-structured cathodes and due to the possibility of taking advantage of nm-structures in the beam for coherent radiation generation.

  18. Nanometer CMOS Sigma-Delta Modulators for Software Defined Radio

    CERN Document Server

    Morgado, Alonso; Rosa, José M

    2012-01-01

    This book presents innovative solutions for the implementation of Sigma-Delta Modulation (SDM) based Analog-to-Digital Conversion (ADC), required for the next generation of wireless hand-held terminals. These devices will be based on the so-called multistandard transceiver chipsets, integrated in nanometer CMOS technologies. One of the most challenging and critical parts in such transceivers is the analog-digital interface, because of the assorted signal bandwidths and dynamic ranges that can be required to handle the A/D conversion for several operation modes.   This book describes new adaptive and reconfigurable SDM ADC topologies, circuit strategies and synthesis methods, specially suited for multi-standard wireless telecom systems and future Software-defined-radios (SDRs) integrated in nanoscale CMOS. It is a practical book, going from basic concepts to the frontiers of SDM architectures and circuit implementations, which are explained in a didactical and systematic way. It gives a comprehensive overview...

  19. Quantitative nanometer-scale mapping of dielectric tunability

    Energy Technology Data Exchange (ETDEWEB)

    Tselev, Alexander [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Klein, Andreas [Technische Univ. Darmstadt (Germany); Gassmann, Juergen [Technische Univ. Darmstadt (Germany); Jesse, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Li, Qian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kalinin, Sergei V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wisinger, Nina Balke [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-21

    Two scanning probe microscopy techniques—near-field scanning microwave microscopy (SMM) and piezoresponse force microscopy (PFM)—are used to characterize and image tunability in a thin (Ba,Sr)TiO3 film with nanometer scale spatial resolution. While sMIM allows direct probing of tunability by measurement of the change in the dielectric constant, in PFM, tunability can be extracted via electrostrictive response. The near-field microwave imaging and PFM provide similar information about dielectric tunability with PFM capable to deliver quantitative information on tunability with a higher spatial resolution close to 15 nm. This is the first time that information about the dielectric tunability is available on such length scales.

  20. Mass Spectrometry of Atmospheric Aerosol: 1 nanometer to 1 micron

    Science.gov (United States)

    Worsnop, D. R.; Ehn, M.; Junninen, H.; Kulmala, M. T.

    2010-12-01

    The role of aerosol particles remains the largest uncertainty in quantitatively assessing past, current and future climate change. The principal reason for that uncertainty arises from the need to characterize and model composition and size dependent aerosol processes, ranging from nanometer to micron scales. Aerosol mass spectrometry results have shown that about half the sub-micron aerosol composition is composed of highly oxygenated organics that are not well understood in terms of photochemical reaction mechanisms (Jimenez et al, 2009). This work has included application of high resolution time-of-flight mass spectrometry (ToFMS) in order to determine elemental and functional group composition of complex organic components. Recently, we have applied similar ToFMS to determine the composition of ambient ions, molecules and clusters, potentially involved in formation and growth of nano-particles (Junninen et al, 2010). Observed organic anions (molecular weight range 200-500 Th) have similar chemical composition as the least volatile secondary organics observed in fine particles; while organic cations are dominated by amines and pyridines. During nucleation events, anions are dominated by sulphuric acid cluster ions (Ehn et al, 2010). In both nanometer and micrometer size ranges, the goal to elucidate the roles of inorganic and organic species, particularly how particle evolution and physical properties depend on mixed compositions. Recent results will be discussed, including ambient and experimental chamber observations. Ehn et al, Atmos. Chem. Phys. Discuss., 10, 14897-14946, 2010 Jimenez et al, Science, 326, 1525-1529, 2009 Junninen et al, Atmos. Meas. Tech., 3, 1039-1053, 2010

  1. Neutron powder diffraction

    International Nuclear Information System (INIS)

    David, W.I.F.

    1990-01-01

    Neutron powder diffraction is a powerful technique that provides a detailed description of moderately complex crystal structures. This is nowhere more apparent than in the area of high temperature superconductors where neutron powder diffraction has provided precise structural and magnetic information, not only under ambient conditions but also at high and low temperatures and high pressures. Outside superconductor research, the variety of materials studied by neutron powder diffraction is equally impressive including zeolites, fast ionic conductors, permanent magnets and materials undergoing phase transitions. Recent advances that include high resolution studies and real-time crystallography are presented. Future possibilities of neutron powder diffraction are discussed

  2. Texture investigation by neutron diffraction

    International Nuclear Information System (INIS)

    Feldmann, K.

    1987-01-01

    In the conventional angle dispersive neutron diffraction a monochromatic neutron beam is used. The pole figures under investigation have to be scanned one after another. The commonly applied angle dispersive method is limited to the consideration of Bragg reflection being isolated in the diffraction pattern. The application of multidetectors or position sensitive detectors is discussed. In the neutron time-of-flight (TOF) diffraction a white pulsed neutron beam allows one to satisfy the Bragg law for all lattice spacing at a fixed scattering angle. The main charateristics of the TOF diffraction experiment are shortly outlined. In this method all non-forbidden Bragg reflections are recorded in one pattern simultaneously. The TOF technique is well-suited to study low symmetric or multiphased specimens, especially geological materials, requiring a large number of pole figures for mathematical texture analysis. Multidetector systems can be used to shorten the necessary time for experiments. The registration of all Bragg reflections of fixed scattering geometry is equivalent to the information of the inverse pole figure for the corresponding sample position. Having short exposition times this approach can be applied for in-situ investigations. The magnetic moments of neutrons can be used to study magnetic anisotropies in materials. Two different techniques are discussed

  3. The Use of Small-Angle X-Ray Diffraction Studies for the Analysis of Structural Features in Archaeological Samples

    DEFF Research Database (Denmark)

    Wess, T. J.; Drakopoulos, M.; Snigirev, A.

    2001-01-01

    the potential of a laboratory source is also described. Specific examples of analysis using X-ray diffraction of historic parchment, archaeological bone, a Central Mexico style pictograph and microdiffraction of calcified tissues are used to show the scope and versatility of the technique. Diffraction data......X-ray diffraction or scattering analysis provides a powerful non-destructive technique capable of providing important information about the state of archaeological samples in the nanometer length scale. Small-angle diffraction facilities are usually found at synchrotron sources, although...

  4. Deuteron diffractive dissociation

    International Nuclear Information System (INIS)

    Antunes, A.C.B.; Caruso, F.

    1984-01-01

    Deuteron diffractive dissociation is studied in the framework of the Three Components Deck Model. The applicability of this model to light nuclei diffractive dissociation is assumed. The existence of a slope-mass-cos theta correlation is pointed out. The relevant distributions are obtained. (Author) [pt

  5. Ultrafast X-Ray Diffraction of Heterogeneous Solid Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Levitan, Abraham [Olin College of Engineering, Needham, MA (United States)

    2015-08-19

    Angularly resolved x-ray diffraction at 5.5 keV establishes the structure of a 5 µm diameter solid hydrogen jet, providing a foundation for analysis of hydrogen in a warm dense matter state. The jet was composed of approximately 65 % ± 5% HCP and 35 % ± 5% FCC by volume with an average crystallite size on the order of hundreds of nanometers. Broadening in the angularly resolved spectrum provided strong evidence for anisotropic strain up to approximately 3 % in the HCP lattice. Finally, we found no evidence for orientational ordering of the crystal domains.

  6. First Beam Test of Nanometer Spot Size Monitor Using Laser Interferometry

    CERN Document Server

    Walz, D

    2003-01-01

    The nanometer spot size monitor based on the laser interferometry (Laser-Compton Spot Size Monitor) has been tested in FFTB beam line at SLAC. A low emittance beam of 46 GeV electrons, provided by the two-mile linear accelerator, was focused into nanometer spot in the FFTB line, and its transverse dimensions were precisely measured by the spot size monitor.

  7. Obtaining of iron particles of nanometer size in a natural zeolite; Obtencion de particulas de hierro de tamano nanometrico en una zeolita natural

    Energy Technology Data Exchange (ETDEWEB)

    Xingu C, E. G.

    2013-07-01

    The zeolites are aluminosilicates with cavities that can act as molecular sieve. Their crystalline structure is formed by tetrahedrons that get together giving place to a three-dimensional net, in which each oxygen is shared by two silicon atoms, being this way part of the tecto silicate minerals, its external and internal areas reach the hundred square meters for gram, they are located in a natural way in a large part of earth crust and also exist in a synthetic way. In Mexico there are different locations of zeolitic material whose important component is the clinoptilolite. In this work the results of three zeolitic materials coming from San Luis Potosi are shown, the samples were milled and sieved for its initial characterization, to know its chemical composition, crystalline phases, morphology, topology and thermal behavior before and after its homo-ionization with sodium chloride, its use as support of iron particles of nanometer size. The description of the synthesis of iron particles of nanometer size is also presented, as well as the comparison with the particles of nanometer size synthesized without support after its characterization. The characterization techniques used during the experimental work were: Scanning electron microscopy, X-ray diffraction, Infrared spectroscopy, specific area by means of BET and thermogravimetry analysis. (Author)

  8. Parametric Powder Diffraction

    Science.gov (United States)

    David, William I. F.; Evans, John S. O.

    The rapidity with which powder diffraction data may be collected, not only at neutron and X-ray synchrotron facilities but also in the laboratory, means that the collection of a single diffraction pattern is now the exception rather than the rule. Many experiments involve the collection of hundreds and perhaps many thousands of datasets where a parameter such as temperature or pressure is varied or where time is the variable and life-cycle, synthesis or decomposition processes are monitored or three-dimensional space is scanned and the three-dimensional internal structure of an object is elucidated. In this paper, the origins of parametric diffraction are discussed and the techniques and challenges of parametric powder diffraction analysis are presented. The first parametric measurements were performed around 50 years ago with the development of a modified Guinier camera but it was the automation afforded by neutron diffraction combined with increases in computer speed and memory that established parametric diffraction on a strong footing initially at the ILL, Grenoble in France. The theoretical parameterisation of quantities such as lattice constants and atomic displacement parameters will be discussed and selected examples of parametric diffraction over the past 20 years will be reviewed that highlight the power of the technique.

  9. Non-diffractive waves

    CERN Document Server

    Hernandez-Figueroa, Hugo E; Recami, Erasmo

    2013-01-01

    This continuation and extension of the successful book ""Localized Waves"" by the same editors brings together leading researchers in non-diffractive waves to cover the most important results in their field and as such is the first to present the current state.The well-balanced presentation of theory and experiments guides readers through the background of different types of non-diffractive waves, their generation, propagation, and possible applications. The authors include a historical account of the development of the field, and cover different types of non-diffractive waves, including Airy

  10. Diffraction. Powder, amorphous, liquid

    International Nuclear Information System (INIS)

    Sosnowska, I.M.

    1999-01-01

    Neutron powder diffraction is a unique tool to observe all possible diffraction effects appearing in crystal. High-resolution neutron diffractometers have to be used in this study. Analysis of the magnetic structure of polycrystalline materials requires the use of high-resolution neutron diffraction in the range of large interplanar distances. As distinguished from the double axis diffractometers (DAS), which show high resolution only at small interplanar distances, TOF (time-of-flight) diffractometry offers the best resolution at large interplanar distances. (K.A.)

  11. Coherent laser scanning diffraction microscopy

    International Nuclear Information System (INIS)

    Dierolf, Martin; Thibault, Pierre; Kewish, Cameron M; Menzel, Andreas; Bunk, Oliver; Pfeiffer, Franz

    2009-01-01

    Coherent diffractive imaging (CDI) is a promising approach to high-resolution x-ray microscopy. While CDI typically has a rather limited field of view, this problem can be solved by ptychography, a technique for which an extended object is raster scanned by a compact coherent illumination probe. Significant overlap of illumination for adjacent scan points allows then a self-consistent reconstruction from the entirety of collected coherent diffraction patterns. However, current reconstruction schemes require accurate a priori knowledge of the probe. Our recently developed new algorithm for ptychographic data sets allows us to simultaneously reconstruct both object and illuminating probe. We demonstrate the application of the new method in a test experiment with visible laser light showing that intricate illumination functions can be retrieved reliably.

  12. Comparative Analysis of Shift Registers in Different Nanometer Technologies

    Directory of Open Access Journals (Sweden)

    Rajesh MEHRA

    2017-06-01

    Full Text Available In this paper, power and speed efficient registers have been designed using different nanometer technologies. Serial in Serial out (SISO and Serial in Parallel out (SIPO shift registers are designed using 180 nm and 90 nm technologies. Both the design are analyzed and compared based on power, delay and power-delay-product (PDP. Present portable real time system demands high performance in terms of speed along with low power consumption. The concept of technology scale down has been used to optimize power and delay in booth designs. The schematic of SISO and SIPO has been developed using Cadence Virtuoso software and analysis has been performed using Analog Design Environment. It has been observed from simulation analysis that 90 nm based SISO design shows an improvement of 68.61 % in power and 54.92 % in delay as compared to 180 nm technology. Likewise SIPO design has shown an improvement of 67.75 % in power and 53.32 % in delay as compared to 180 nm technology.

  13. Sub-Nanometer Channels Embedded in Two-Dimensional Materials

    KAUST Repository

    Han, Yimo

    2017-07-31

    Two-dimensional (2D) materials are among the most promising candidates for next-generation electronics due to their atomic thinness, allowing for flexible transparent electronics and ultimate length scaling1. Thus far, atomically-thin p-n junctions2-7, metal-semiconductor contacts8-10, and metal-insulator barriers11-13 have been demonstrated. While 2D materials achieve the thinnest possible devices, precise nanoscale control over the lateral dimensions are also necessary. Although external one-dimensional (1D) carbon nanotubes14 can be used to locally gate 2D materials, this adds a non-trivial third dimension, complicating device integration and flexibility. Here, we report the direct synthesis of sub-nanometer 1D MoS2 channels embedded within WSe2 monolayers, using a dislocation-catalyzed approach. The 1D channels have edges free of misfit dislocations and dangling bonds, forming a coherent interface with the embedding 2D matrix. Periodic dislocation arrays produce 2D superlattices of coherent MoS2 1D channels in WSe2. Molecular dynamics (MD) simulations have identified other combinations of 2D materials that could form 1D channels. Density function theory (DFT) calculation predicts these 1D channels display type II band alignment needed for carrier confinement and charge separation to access the ultimate length scales necessary for future electronic applications.

  14. Sub-nanometer resolution XPS depth profiling: Sensing of atoms

    Energy Technology Data Exchange (ETDEWEB)

    Szklarczyk, Marek, E-mail: szklarcz@chem.uw.edu.pl [Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw (Poland); Shim-Pol, ul. Lubomirskiego 5, 05-080 Izabelin (Poland); Macak, Karol; Roberts, Adam J. [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom); Takahashi, Kazuhiro [Kratos XPS Section, Shimadzu Corp., 380-1 Horiyamashita, Hadano, Kanagawa 259-1304 (Japan); Hutton, Simon [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom); Głaszczka, Rafał [Shim-Pol, ul. Lubomirskiego 5, 05-080 Izabelin (Poland); Blomfield, Christopher [Kratos Analytical Ltd, Wharfside, Trafford Wharf Road, Manchester, M17 1GP (United Kingdom)

    2017-07-31

    Highlights: • Angle resolved photoelectron depth profiling of nano thin films. • Sensing atomic position in SAM films. • Detection of direction position of adsorbed molecules. - Abstract: The development of a method capable of distinguishing a single atom in a single molecule is important in many fields. The results reported herein demonstrate sub-nanometer resolution for angularly resolved X-ray photoelectron spectroscopy (ARXPS). This is made possible by the incorporation of a Maximum Entropy Method (MEM) model, which utilize density corrected electronic emission factors to the X-ray photoelectron spectroscopy (XPS) experimental results. In this paper we report on the comparison between experimental ARXPS results and reconstructed for both inorganic and organic thin film samples. Unexpected deviations between experimental data and calculated points are explained by the inaccuracy of the constants and standards used for the calculation, e.g. emission factors, scattering intensity and atomic density through the studied thickness. The positions of iron, nitrogen and fluorine atoms were determined in the molecules of the studied self-assembled monolayers. It has been shown that reconstruction of real spectroscopic data with 0.2 nm resolution is possible.

  15. Carbon nanotube transistors scaled to a 40-nanometer footprint.

    Science.gov (United States)

    Cao, Qing; Tersoff, Jerry; Farmer, Damon B; Zhu, Yu; Han, Shu-Jen

    2017-06-30

    The International Technology Roadmap for Semiconductors challenges the device research community to reduce the transistor footprint containing all components to 40 nanometers within the next decade. We report on a p-channel transistor scaled to such an extremely small dimension. Built on one semiconducting carbon nanotube, it occupies less than half the space of leading silicon technologies, while delivering a significantly higher pitch-normalized current density-above 0.9 milliampere per micrometer at a low supply voltage of 0.5 volts with a subthreshold swing of 85 millivolts per decade. Furthermore, we show transistors with the same small footprint built on actual high-density arrays of such nanotubes that deliver higher current than that of the best-competing silicon devices under the same overdrive, without any normalization. We achieve this using low-resistance end-bonded contacts, a high-purity semiconducting carbon nanotube source, and self-assembly to pack nanotubes into full surface-coverage aligned arrays. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  16. Nanometer-scale phase separation in colossal magnetoresistive manganite

    Energy Technology Data Exchange (ETDEWEB)

    Roessler, Sahana; Ernst, Stefan; Wirth, Steffen; Steglich, Frank [Max Planck Institute for Chemical Physics of Solids, Noethnizer Strasse 40, 01187, Dresden (Germany); Padmanabhan, B.; Elizabeth, Suja; Bhat, H.L. [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)

    2008-07-01

    In strongly correlated electron systems an intrinsic instability of the electronic state and competing long-range interactions may result in the formation of nanometer-sized regions of different phases. We have carried out scanning tunneling microscopy/spectroscopy on single crystals of a colossal magnetoresistive manganite Pr{sub 0.68}Pb{sub 0.32}MnO{sub 3} at different temperatures in order to probe their spatial homogeneity across the metal-insulator transition temperature T{sub M-I}. In this compound, the Curie temperature T{sub C} is lower than T{sub M-I}. Spectroscopic studies revealed inhomogeneous maps of the zero-bias conductance with small patches of metallic clusters on a length scale of 2-3 nm only within a narrow temperature range close to the metal-insulator transition. A detailed analysis of conductance histograms based on these maps gave direct evidence for phase separation into insulating and metallic regions in the paramagnetic metallic state, i.e. for T{sub C} T{sub M-I}.

  17. Sub-nanometer glass surface dynamics induced by illumination

    International Nuclear Information System (INIS)

    Nguyen, Duc; Nienhaus, Lea; Haasch, Richard T.; Lyding, Joseph; Gruebele, Martin

    2015-01-01

    Illumination is known to induce stress and morphology changes in opaque glasses. Amorphous silicon carbide (a-SiC) has a smaller bandgap than the crystal. Thus, we were able to excite with 532 nm light a 1 μm amorphous surface layer on a SiC crystal while recording time-lapse movies of glass surface dynamics by scanning tunneling microscopy (STM). Photoexcitation of the a-SiC surface layer through the transparent crystal avoids heating the STM tip. Up to 6 × 10 4 s, long movies of surface dynamics with 40 s time resolution and sub-nanometer spatial resolution were obtained. Clusters of ca. 3-5 glass forming units diameter are seen to cooperatively hop between two states at the surface. Photoexcitation with green laser light recruits immobile clusters to hop, rather than increasing the rate at which already mobile clusters hop. No significant laser heating was observed. Thus, we favor an athermal mechanism whereby electronic excitation of a-SiC directly controls glassy surface dynamics. This mechanism is supported by an exciton migration-relaxation-thermal diffusion model. Individual clusters take ∼1 h to populate states differently after the light intensity has changed. We believe the surrounding matrix rearranges slowly when it is stressed by a change in laser intensity, and clusters serve as a diagnostic. Such cluster hopping and matrix rearrangement could underlie the microscopic mechanism of photoinduced aging of opaque glasses

  18. Structure determination from powder diffraction data.

    Science.gov (United States)

    David, W I F; Shankland, K

    2008-01-01

    Advances made over the past decade in structure determination from powder diffraction data are reviewed with particular emphasis on algorithmic developments and the successes and limitations of the technique. While global optimization methods have been successful in the solution of molecular crystal structures, new methods are required to make the solution of inorganic crystal structures more routine. The use of complementary techniques such as NMR to assist structure solution is discussed and the potential for the combined use of X-ray and neutron diffraction data for structure verification is explored. Structures that have proved difficult to solve from powder diffraction data are reviewed and the limitations of structure determination from powder diffraction data are discussed. Furthermore, the prospects of solving small protein crystal structures over the next decade are assessed.

  19. Diffraction at TOTEM

    CERN Document Server

    Giani, S; Antchev, G; Aspell, P; Avati, V; Bagliesi, M G; Berardi, V; Berretti, M; Besta, M; Bozzo, M; Brücken, E; Buzzo, A; Cafagna, F; Calicchio, M; Catanesi, M G; Cecchi, R; Ciocci, M A; Dadel, P; Deile, M; Dimovasili, E; Eggert, K; Eremin, V; Ferro, F; Fiergolski, A; García, F; Greco, V; Grzanka, L; Heino, J; Hildén, T; Kaspar, J; Kopal, J; Kundrát, V; Kurvinen, K; Lami, S; Latino, G; Lauhakangas, R; Leszko, R; Lippmaa, E; Lokajícek, M; Lo Vetere, M; Lucas Rodriguez, F; Macrí, M; Magazzù, G; Meucci, M; Minutoli, S; Notarnicola, G; Oliveri, E; Oljemark, F; Orava, R; Oriunno, M; Österberg, K; Pedreschi, E; Petäjäjärvi, J; Prochazka, J; Quinto, M; Radermacher, E; Radicioni, E; Ravotti, F; Rella, G; Robutti, E; Ropelewski, L; Rostkowski, M; Ruggiero, G; Rummel, A; Saarikko, H; Sanguinetti, G; Santroni, A; Scribano, A; Sette, G; Snoeys, W; Spinella, F; Ster, A; Taylor, C; Trummal, A; Turini, N; Whitmore, J; Wu, J; Zalewski, M

    2010-01-01

    The primary objective of the TOTEM experiment at the LHC is the measurement of the total proton-proton cross section with the luminosity-independent method and the study of elastic proton-proton cross-section over a wide |t|-range. In addition TOTEM also performs a comprehensive study of diffraction, spanning from cross-section measurements of individual diffractive processes to the analysis of their event topologies. Hard diffraction will be studied in collaboration with CMS taking advantage of the large common rapidity coverage for charged and neutral particle detection and the large variety of trigger possibilities even at large luminosities. TOTEM will take data under all LHC beam conditions including standard high luminosity runs to maximise its physics reach. This contribution describes the main features of the TOTEM diffractive physics programme including measurements to be made in the early LHC runs.

  20. Diffraction at TOTEM

    CERN Document Server

    Antchev, G.; Avati, V.; Bagliesi, M.G.; Berardi, V.; Berretti, M.; Bottigli, U.; Bozzo, M.; Brucken, E.; Buzzo, A.; Cafagna, F.; Calicchio, M.; Catanesi, M.G.; Catastini, P.L.; Cecchi, R.; Ciocci, M.A.; Deile, M.; Dimovasili, E.; Eggert, K.; Eremin, V.; Ferro, F.; Garcia, F.; Giani, S.; Greco, V.; Heino, J.; Hilden, T.; Kaspar, J.; Kopal, J.; Kundrat, V.; Kurvinen, K.; Lami, S.; Latino, G.; Lauhakangas, R.; Lippmaa, E.; Lokajicek, M.; Lo Vetere, M.; Lucas Rodriguez, F.; Macri, M.; Magazzu, G.; Meucci, M.; Minutoli, S.; Niewiadomski, H.; Noschis, E.; Notarnicola, G.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Osterberg, K.; Palazzi, P.; Pedreschi, E.; Petajajarvi, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Rella, G.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Rummel, A.; Saarikko, H.; Sanguinetti, G.; Santroni, A.; Scribano, A.; Sette, G.; Snoeys, W.; Spinella, F.; Squillacioti, P.; Ster, A.; Taylor, C.; Trummal, A.; Turini, N.; Whitmore, J.; Wu, J.

    2009-01-01

    The TOTEM experiment at the LHC measures the total proton-proton cross section with the luminosity-independent method and the elastic proton-proton cross-section over a wide |t|-range. It also performs a comprehensive study of diffraction, spanning from cross-section measurements of individual diffractive processes to the analysis of their event topologies. Hard diffraction will be studied in collaboration with CMS taking advantage of the large common rapidity coverage for charged and neutral particle detection and the large variety of trigger possibilities even at large luminosities. TOTEM will take data under all LHC beam conditions including standard high luminosity runs to maximize its physics reach. This contribution describes the main features of the TOTEM physics programme including measurements to be made in the early LHC runs. In addition, a novel scheme to extend the diffractive proton acceptance for high luminosity runs by installing proton detectors at IP3 is described.

  1. X-ray diffraction 2 - diffraction principles

    International Nuclear Information System (INIS)

    O'Connor, B.

    1999-01-01

    Full text: The computation of powder diffraction intensities is based on the principle that the powder pattern comprises the summation of the intensity contributions from each of the crystallites (or single crystals) in the material. Therefore, it is of value for powder diffractionists to appreciate the form of the expression for calculating single crystal diffraction pattern intensities. This knowledge is especially important for Rietveld analysis practitioners in terms of the (i) mathematics of the method and (ii) retrieving single crystal structure data from the literature. We consider the integrated intensity from a small single crystal being rotated at velocity ω through the Bragg angle θ for reflection (hkl).... I(hkl) = [l o /ω]. [e 4 /m 2 c 4 ]. [λ 3 δV F(hkl) 2 /υ 2 ].[(1+cos 2 2θ)/2sin2θ] where e, m and c are the usual fundamental constants; λ is the x-ray wavelength, δV is the crystallite volume; F(hkl) is the structure factor; υ is the unit cell volume; and (1+cos 2 θ)/2sin2θ] is the Lorentz-polarisation factor for an unpolarised incident beam. The expression does not include a contribution for extinction. The influence of factors λ, δV, F(hkl) and υ on the intensities should be appreciated by powder diffractionists, especially the structure factor, F(hkl), which is responsible for the fingerprint nature of diffraction patterns, such as the rise and fall of intensity from peak to peak. The structure factor expression represents the summation of the scattered waves from each of the j scattering centres (i e atoms) in the unit cell: F(hkl) Σ f j exp[2πi (h.x j +k.y i +l. z i )] T j . Symbol f is the scattering factor (representing the atom-type scattering efficiency); (x, y, z) are the fractional position coordinates of atom j within the unit cell; and T is the thermal vibration factor for the atom given by: T j = 8π 2 2 > sin 2 θ/λ 2 with 2 > being the mean-square vibration amplitude of the atom (assumed to be isotropic). The

  2. Combining structural and chemical information at the nanometer scale by correlative transmission electron microscopy and atom probe tomography.

    Science.gov (United States)

    Herbig, M; Choi, P; Raabe, D

    2015-06-01

    In many cases, the three-dimensional reconstructions from atom probe tomography (APT) are not sufficiently accurate to resolve crystallographic features such as lattice planes, shear bands, stacking faults, dislocations or grain boundaries. Hence, correlative crystallographic characterization is required in addition to APT at the exact same location of the specimen. Also, for the site-specific preparation of APT tips containing regions of interest (e.g. grain boundaries) correlative electron microscopy is often inevitable. Here we present a versatile experimental setup that enables performing correlative focused ion beam milling, transmission electron microscopy (TEM), and APT under optimized characterization conditions. The setup was designed for high throughput, robustness and practicability. We demonstrate that atom probe tips can be characterized by TEM in the same way as a standard TEM sample. In particular, the use of scanning nanobeam diffraction provides valuable complementary crystallographic information when being performed on atom probe tips. This technique enables the measurement of orientation and phase maps as known from electron backscattering diffraction with a spatial resolution down to one nanometer. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Local mechanical spectroscopy with nanometer-scale lateral resolution

    Science.gov (United States)

    Oulevey, F.; Gremaud, G.; Sémoroz, A.; Kulik, A. J.; Burnham, N. A.; Dupas, E.; Gourdon, D.

    1998-05-01

    A new technique has been developed to probe the viscoelastic and anelastic properties of submicron phases of inhomogeneous materials. The measurement gives information related to the internal friction and to the variations of the dynamic modulus of nanometer-sized volumes. It is then the nanoscale equivalent to mechanical spectroscopy, a well-known macroscopic technique for materials studies, also sometimes called dynamic mechanical (thermal) analysis. The technique is based on a scanning force microscope, using the principle of scanning local-acceleration microscopy (SLAM), and allows the sample temperature to be changed. It is called variable-temperature SLAM, abbreviated T-SLAM. According to a recent proposition to systematize names of scanning probe microscope based methods, this technique should be included in the family of "mechanothermal analysis with scanning microscopy." It is suited for studying defect dynamics in nanomaterials and composites by locating the dissipative mechanisms in submicron phases. The primary and secondary relaxations, as well as the viscoplasticity, were observed in bulk PVC. The wide range of phenomena demonstrate the versatility of the technique. A still unexplained increase of the stiffness with increasing temperature was observed just below the glass transition. All of these observations, although their interpretation in terms of physical events is still tentative, are in agreement with global studies. This technique also permits one to image the variations of the local elasticity or of the local damping at a fixed temperature. This enables the study of, for instance, the homogeneity of phase transitions in multiphased materials, or of the interface morphologies and properties. As an illustration, the homogeneity of the glass transition temperature of PVC in a 50/50 wt % PVC/PB polymer blend has been demonstrated. Due to the small size of the probed volume, T-SLAM gives information on the mechanical properties of the near

  4. Texture and neutron diffraction

    International Nuclear Information System (INIS)

    Szpunar, J.

    1976-01-01

    The neutron diffraction method has only recently become a tool for studying the structure of polycrystalline materials. There are some fields such as texture studies where this method offers several advantages over other more common methods. Texture is the main subject of the review. The current status of the theory or deformation and recrystallization texture is discussed briefly. Texture is then described with the aid of the ODF function. Finally, applications of the neutron diffraction method are discussed using several examples of textures measured in metals and in non-metallic materials. Other, less known applications of neutron diffraction are also given, e.g. in stress measurements. The neutron diffraction method is extremely useful for studying the texture of coarse-grained materials. This method provides information on the average texture in a large volume. This enables one to measure texture in the same specimen in which anisotropy of the physical roperties has been measured. Selected examples are provided in which correlations between elastic, plastic and magnetic properties of polycrystalline materials and their texture are pointed out. Texture was measured in all these cases using the neutron diffraction method. (author)

  5. Diffraction contrast imaging using virtual apertures

    International Nuclear Information System (INIS)

    Gammer, Christoph; Burak Ozdol, V.; Liebscher, Christian H.; Minor, Andrew M.

    2015-01-01

    Two methods on how to obtain the full diffraction information from a sample region and the associated reconstruction of images or diffraction patterns using virtual apertures are demonstrated. In a STEM-based approach, diffraction patterns are recorded for each beam position using a small probe convergence angle. Similarly, a tilt series of TEM dark-field images is acquired. The resulting datasets allow the reconstruction of either electron diffraction patterns, or bright-, dark- or annular dark-field images using virtual apertures. The experimental procedures of both methods are presented in the paper and are applied to a precipitation strengthened and creep deformed ferritic alloy with a complex microstructure. The reconstructed virtual images are compared with conventional TEM images. The major advantage is that arbitrarily shaped virtual apertures generated with image processing software can be designed without facing any physical limitations. In addition, any virtual detector that is specifically designed according to the underlying crystal structure can be created to optimize image contrast. - Highlights: • A dataset containing all structural information of a given position is recorded. • The dataset allows reconstruction of virtual diffraction patterns or images. • Specific virtual apertures are designed to image precipitates in a complex alloy. • Virtual diffraction patterns from arbitrarily small regions can be established. • Using STEM diffraction to record the dataset is more efficient than TEM dark-field

  6. Diffraction. Single crystal, magnetic

    International Nuclear Information System (INIS)

    Heger, G.

    1999-01-01

    The analysis of crystal structure and magnetic ordering is usually based on diffraction phenomena caused by the interaction of matter with X-rays, neutrons, or electrons. Complementary information is achieved due to the different character of X-rays, neutrons and electrons, and hence their different interactions with matter and further practical aspects. X-ray diffraction using conventional laboratory equipment and/or synchrotron installations is the most important method for structure analyses. The purpose of this paper is to discuss special cases, for which, in addition to this indispensable part, neutrons are required to solve structural problems. Even though the huge intensity of modern synchrotron sources allows in principle the study of magnetic X-ray scattering the investigation of magnetic structures is still one of the most important applications of neutron diffraction. (K.A.)

  7. Dynamics from diffraction

    International Nuclear Information System (INIS)

    Goodwin, Andrew L.; Tucker, Matthew G.; Cope, Elizabeth R.; Dove, Martin T.; Keen, David A.

    2006-01-01

    We explore the possibility that detailed dynamical information might be extracted from powder diffraction data. Our focus is a recently reported technique that employs statistical analysis of atomistic configurations to calculate dynamical properties from neutron total scattering data. We show that it is possible to access the phonon dispersion of low-frequency modes using such an approach, without constraining the results in terms of some pre-defined dynamical model. The high-frequency regions of the phonon spectrum are found to be less well preserved in the diffraction data

  8. [Electronic and structural properties of individual nanometer-size supported metallic clusters

    International Nuclear Information System (INIS)

    Reifenberger, R.

    1993-01-01

    This report summarizes the work performed under contract DOE-FCO2-84ER45162. During the past ten years, our study of electron emission from laser-illuminated field emission tips has taken on a broader scope by addressing problems of direct interest to those concerned with the unique physical and chemical properties of nanometer-size clusters. The work performed has demonstrated that much needed data can be obtained on individual nanometer-size clusters supported on a wide-variety of different substrates. The work was performed in collaboration with R.P. Andres in the School of Chemical Engineering at Purdue University. The Multiple Expansion Cluster Source developed by Andres and his students was essential for producing the nanometer-size clusters studied. The following report features a discussion of these results. This report provides a motivation for studying the properties of nanometer-size clusters and summarizes the results obtained

  9. [Electronic and structural properties of individual nanometer-size supported metallic clusters]. Final performance report

    Energy Technology Data Exchange (ETDEWEB)

    Reifenberger, R.

    1993-09-01

    This report summarizes the work performed under contract DOE-FCO2-84ER45162. During the past ten years, our study of electron emission from laser-illuminated field emission tips has taken on a broader scope by addressing problems of direct interest to those concerned with the unique physical and chemical properties of nanometer-size clusters. The work performed has demonstrated that much needed data can be obtained on individual nanometer-size clusters supported on a wide-variety of different substrates. The work was performed in collaboration with R.P. Andres in the School of Chemical Engineering at Purdue University. The Multiple Expansion Cluster Source developed by Andres and his students was essential for producing the nanometer-size clusters studied. The following report features a discussion of these results. This report provides a motivation for studying the properties of nanometer-size clusters and summarizes the results obtained.

  10. Wideband waveguide loading impedance matching on the basis of photonic crystals with nanometer metal layers

    OpenAIRE

    Usanov, Dmitry A.; Skripal, A. V.; Abramov, A. V.; Bogolubov, A. S.; Skvortsov, V. S.; Merdanov, M. K.

    2009-01-01

    Theoretically shown and experimentally proven is the possibility of creating wideband matched loading on the basis of photonic crystals, composed of alternating nanometer metal and isolator layers with different electro-physical parameters.

  11. Diffractive processes in nuclear physics

    International Nuclear Information System (INIS)

    Frahn, W.E.

    1985-01-01

    The book reviews diffraction scattering in nuclear physics. The first part concerns nuclear diffraction models, and includes the basic concepts and theory of diffraction scattering, as well as diffraction in configuration space and in angular momentum space. The second part deals with closed formalism for strong absorption processes including: elastic scattering, inelastic scattering, transfer reactions and coupled-channel extensions. (U.K.)

  12. Diffraction at collider energies

    International Nuclear Information System (INIS)

    Frankfurt, L.L.

    1992-01-01

    Lessons with ''soft'' hadron physics to explain (a) feasibility to observe and to investigate color transparency, color opacity effects at colliders; (b) significant probability and specific features of hard diffractive processes; (c) feasibility to investigate components of parton wave functions of hadrons with minimal number of constituents. This new physics would be more important with increase of collision energy

  13. Diffraction through partial identity

    International Nuclear Information System (INIS)

    Blum, W.

    1981-06-01

    A model of diffraction dissociation is proposed in which the quantum-mechanical interference between the incoming and the outgoing wave determines the cross-section. This interference occurs due to the finite life-time of the excited state. (orig.)

  14. Simultaneous X-ray imaging and diffraction study of shock propagation and phase transition in silicon

    Science.gov (United States)

    Galtier, Eric

    2017-06-01

    X-ray phase contrast imaging technique using a free electron laser have observed the propagation of laser-driven shock waves directly inside materials. While providing images with few hundred nanometers spatial resolution, access to more quantitative information like the material density and the various shock front speeds remain challenging due to imperfections in the images limiting the convergence in the reconstruction algorithm. Alternatively, pump-probe X-ray diffraction (XRD) is a robust technique to extract atomic crystalline structure of compressed matter, providing insight into the kinetics of phase transformation and material response to stress. However, XRD by itself is not sufficient to extract the equation of state of the material under study. Here we report on the use of the LCLS free electron laser as a source of a high-resolution X-ray microscopy enabling the direct imaging of shock waves and phase transitions in optically opaque silicon. In this configuration, no algorithm is necessary to extract the material density and the position of the shock fronts. Simultaneously, we probed the crystalline structure via XRD of the various phases in laser compressed silicon. E. Galtier, B. Nagler, H. J. Lee, S. Brown, E. Granados, A. Hashim, E. McBride, A. Mackinnon, I. Nam, J. Zimmerman (SLAC) A. Gleason (Stanford, LANL) A. Higginbotham (University of York) A. Schropp, F. Seiboth (DESY).

  15. Full path compensation laser feedback interferometry for remote sensing with recovered nanometer resolutions

    Science.gov (United States)

    Xu, Ling; Tan, Yidong; Zhang, Shulian

    2018-03-01

    The accuracy of the existing laser feedback interferometry for measuring the remote target is limited to several microns due to environmental disturbances. A novel approach is presented in this paper based on the double-beam frequency-shift feedback of the laser, which can completely eliminate the dead path errors and measure the displacement or vibration with accuracy at nanometer scale even at a far measurement distance. The two beams emitted from one Nd:YVO4 crystal are incident on the measurement target and its adjacent reference surface, respectively. The reference surface could be taken from the nearby stationary object, without the need to put a reference mirror. The feedback paths and shift frequencies of the two beams are the same, so the air disturbances and the thermal effects in the way could be fully compensated. Under common room conditions, the displacement of a steel block at a distance of 10 m is measured, which proved that the system's stability is ±12 nm in 100 s and ±50 nm in 1000 s, the short-term resolution is better than 3 nm, and the linearity within the 300 mm range is 5 × 10-6 and within the 100 μm range is 1 × 10-4.

  16. Encapsulation process for diffraction gratings.

    Science.gov (United States)

    Ratzsch, Stephan; Kley, Ernst-Bernhard; Tünnermann, Andreas; Szeghalmi, Adriana

    2015-07-13

    Encapsulation of grating structures facilitates an improvement of the optical functionality and/or adds mechanical stability to the fragile structure. Here, we introduce novel encapsulation process of nanoscale patterns based on atomic layer deposition and micro structuring. The overall size of the encapsulated structured surface area is only restricted by the size of the available microstructuring and coating devices; thus, overcoming inherent limitations of existing bonding processes concerning cleanliness, roughness, and curvature of the components. Finally, the process is demonstrated for a transmission grating. The encapsulated grating has 97.5% transmission efficiency in the -1st diffraction order for TM-polarized light, and is being limited by the experimental grating parameters as confirmed by rigorous coupled wave analysis.

  17. New Computing Devices and the Drive toward Nanometer-scale Manufacturing

    Science.gov (United States)

    Theis, Thomas

    2013-03-01

    In recent decades, we have become used to the idea of exponentially compounding improvements in manufacturing precision. These improvements are driven in large part by the economic imperative to continuously shrink the devices of information technology, particularly the Complementary Metal Oxide Semiconductor (CMOS) field-effect transistor. However, CMOS technology is clearly approaching some important physical limits. Since roughly 2003, the inability to reduce supply voltages according to constant-field scaling rules, combined with economic constraints on areal power density and total power, has forced designers to limit clock frequencies even as devices have continued to shrink. New channel materials, new device structures, and novel circuits cannot fundamentally alter this new status quo. The device physics must change in a more fundamental way if we are to realize fast digital logic with very low power dissipation. The continued vitality of the information technology revolution and the continued push of manufacturing precision toward nanometer dimensions, will depend on it. Fortunately, there is no shortage of new digital switch concepts based on physical principles which avoid the fundamental voltage-scaling limit of the field-effect transistor. The Nanoelectronics Research Initiative (NRI) is a consortium of leading semiconductor companies established in 2005 to guide and fund fundamental research at U.S. universities with the goal of finding the ``next switch'' to replace the CMOS transistor for storing and manipulating digital information. The National Institute of Standards and Technology (NIST) and the National Science Foundation (NSF) have partnered with NRI to fund this research. To date, NRI has funded the exploration of many novel device concepts, and has guided research comparing the capabilities of these devices. Although no single device has yet emerged as a clear winner with the potential to eclipse the field-effect transistor, results are

  18. Front lines of structural analyses by pulsed Neutron Diffraction

    International Nuclear Information System (INIS)

    Shamoto, Shin-ichi; Kodama, Katsuaki; Suzuya, Kentaro; Kamiyama, Takashi; Otomo, Toshiya; Fukunaga, Toshiharu

    2008-01-01

    The neutron is a subatomic particle without electronic charge, but has a magnetic moment. This nature leads high permeability compared to x-rays, and therefore neutrons become the powerful nondestructive probe for measurements. Diffraction patterns for wide reciprocal space can be measured by pulsed neutrons, which have been exploited for the structural analyses from amorphous materials to crystalline solids. Further, the pulsed neutrons have been applied to the structural studies of highly disordered materials, and also nanometer size materials. The structural studies using pulsed neutrons are reviewed in this paper from pioneering researches to the latest results in comparison with those by synchrotron radiation x-rays. For the amorphous hydrogen storage material, TbFe 2 D 3.0 , the structure factor and atomic pair distribution function (PDF) by neutron diffraction are compared with those by x-ray diffraction. The local crystal structure of a multiferroic system has been studied by means of PDF analysis on neutron powder diffraction data. PDF analysis is employed in order to determine the precise lattice parameters of nano-structure materials. The three distinctive neutron diffractometers, super high resolution powder diffractometer, high intensity total diffractometer and iMATERIA (IBARAKI materials design diffractometer), under construction at Material and Life Science Facility in J-PARC are introduced. (Y.K.)

  19. High quality transmission Kikuchi diffraction analysis of deformed alloys - Case study

    International Nuclear Information System (INIS)

    Tokarski, Tomasz; Cios, Grzegorz; Kula, Anna; Bała, Piotr

    2016-01-01

    Modern scanning electron microscopes (SEM) equipped with thermally assisted field emission guns (Schottky FEG) are capable of imaging with a resolution in the range of several nanometers or better. Simultaneously, the high electron beam current can be used, which enables fast chemical and crystallographic analysis with a higher resolution than is normally offered by SEM with a tungsten cathode. The current resolution that limits the EDS and EBSD analysis is related to materials' physics, particularly to the electron-specimen interaction volume. The application of thin, electron-transparent specimens, instead of bulk samples, improves the resolution and allows for the detailed analysis of very fine microstructural features. Beside the typical imaging mode, it is possible to use a standard EBSD camera in such a configuration that only transmitted and scattered electrons are detected. This modern approach was successfully applied to various materials giving rise to significant resolution improvement, especially for the light element magnesium based alloys. This paper presents an insight into the application of the transmission Kikuchi diffraction (TKD) technique applied to the most troublesome, heavily-deformed materials. In particular, the values of the highest possible acquisition rates for high resolution and high quality mapping were estimated within typical imaging conditions of stainless steel and magnesium-yttrium alloy. - Highlights: •Monte Carlo simulations were used to simulate EBSD camera intensity for various measuring conditions. •Transmission Kikuchi diffraction parameters were evaluated for highly deformed, light and heavy elements based alloys. •High quality maps with 20 nm spatial resolution were acquired for Mg and Fe based alloys. •High speed TKD measurements were performed at acquisition rates comparable to the reflection EBSD.

  20. Central Diffraction at ALICE

    CERN Document Server

    Lämsä, Jerry W

    2011-01-01

    The ALICE experiment is shown to be well suited for studies of exclusive final states from central diffractive reactions. The gluon-rich environment of the central system allows detailed QCD studies and searches for exotic meson states, such as glueballs, hybrids and new charmonium-like states. It would also provide a good testing ground for detailed studies of heavy quarkonia. Due to its central barrel performance, ALICE can accurately measure the low-mass central systems with good purity. The efficiency of the Forward Multiplicity Detector (FMD) and the Forward Shower Counter (FSC) system for detecting rapidity gaps is shown to be adequate for the proposed studies. With this detector arrangement, valuable new data can be obtained by tagging central diffractive processes.

  1. Diffraction Studies of Multiferroics

    Science.gov (United States)

    Johnson, Roger D.; Radaelli, Paolo G.

    2014-07-01

    In multiferroics, magnetism is coupled to ferroelectricity so that the configuration of magnetic moments may be modified by an external electric field and, conversely, the electrically polar state may be magnetically switched. Such functionality has the potential for new technology such as energy-efficient, electrically written magnetic memories. Furthermore, multiferroics are of interest in fundamental research into quantum matter. Understanding the interplay between magnetism and ferroelectricity has posed a significant challenge to the scientific community. State-of-the-art diffraction experiments have played a unique role, as they are sensitive to both magnetic ordering and the atomic displacements associated with ferroelectricity. Exceptional insights have been gained from neutron polarimetry techniques complemented by X-ray magnetic scattering experiments, which, for the first time, have been applied to a large selection of related materials and problems. In this review, we discuss a broad selection of multiferroics and the diffraction experiments used to explain their phenomenology.

  2. Spectral and Diffraction Tomography

    OpenAIRE

    Lionheart, William

    2016-01-01

    We discuss several cases of what we call "Rich Tomography" problems in which more data is measured than a scalar for each ray. We give examples of infra red spectral tomography and Bragg edge neutron tomography in which the data is insufficient. For diffraction tomography of strain for polycrystaline materials we give an explicit reconstruction procedure. We go on to describe a way to find six independent rotation axes using Pascal's theorem of projective geometry

  3. X-ray diffraction

    International Nuclear Information System (INIS)

    Einstein, J.R.; Wei, C.H.

    1982-01-01

    We have been interested in structural elucidation by x-ray diffraction of compounds of biological interest. Understanding exactly how atoms are arranged in three-dimensional arrays as molecules can help explain the relationship between structure and functions. The species investigated may vary in size and shape; our recent studies included such diverse substances as antischistosomal drugs, a complex of cadmium with nucleic acid base, nitrate salts of adenine, and proteins

  4. Conical diffraction in honeycomb lattices

    International Nuclear Information System (INIS)

    Ablowitz, Mark J.; Nixon, Sean D.; Zhu Yi

    2009-01-01

    Conical diffraction in honeycomb lattices is analyzed. This phenomenon arises in nonlinear Schroedinger equations with honeycomb lattice potentials. In the tight-binding approximation the wave envelope is governed by a nonlinear classical Dirac equation. Numerical simulations show that the Dirac equation and the lattice equation have the same conical diffraction properties. Similar conical diffraction occurs in both the linear and nonlinear regimes. The Dirac system reveals the underlying mechanism for the existence of conical diffraction in honeycomb lattices.

  5. Diffractive X-Ray Telescopes

    International Nuclear Information System (INIS)

    Skinner, G.K.; Skinner, G.K

    2010-01-01

    Diffractive X-ray telescopes using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution several orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro arc seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the supermassive black holes in the center of active galaxies What then is precluding their immediate adoption Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed atmospheric absorption

  6. Strain measurement by diffraction at LANSCE

    Science.gov (United States)

    Bourke, M. A. M.; Goldstone, J. A.; Robinson, R. A.

    1994-07-01

    Residual strains affect the structural integrity of components during both fabrication and service and consequently industrial manufacturers routinely invest considerable effort in their characterization and control. Neutron diffraction has proved to be a unique technique for non-destructive strain measurement within crystalline solids. The technique is achieving recognition but is limited by lack of beam time and compromises involved in using instruments designed for powder diffraction. This paper summarizes its importance, lists the capabilities of the Los Alamos (pulsed) neutron scattering center (LANSCE) and briefly describes a concept for a dedicated instrument.

  7. X-ray diffraction

    International Nuclear Information System (INIS)

    Vries, J.L. de.

    1976-01-01

    The seventh edition of Philips' Review of literature on X-ray diffraction begins with a list of conference proceedings on the subject, organised by the Philips' organisation at regular intervals in various European countries. This is followed by a list of bulletins. The bibliography is divided according to the equipment (cameras, diffractometers, monochromators) and its applications. The applications are subdivided into sections for high/low temperature and pressure, effects due to the equipment, small angle scattering and a part for stress, texture and phase analyses of metals and quantitative analysis of minerals

  8. Flip-flop design in nanometer CMOS from high speed to low energy

    CERN Document Server

    Alioto, Massimo; Palumbo, Gaetano

    2015-01-01

    This book provides a unified treatment of Flip-Flop design and selection in nanometer CMOS VLSI systems. The design aspects related to the energy-delay tradeoff in Flip-Flops are discussed, including their energy-optimal selection according to the targeted application, and the detailed circuit design in nanometer CMOS VLSI systems. Design strategies are derived in a coherent framework that includes explicitly nanometer effects, including leakage, layout parasitics and process/voltage/temperature variations, as main advances over the existing body of work in the field. The related design tradeoffs are explored in a wide range of applications and the related energy-performance targets. A wide range of existing and recently proposed Flip-Flop topologies are discussed. Theoretical foundations are provided to set the stage for the derivation of design guidelines, and emphasis is given on practical aspects and consequences of the presented results. Analytical models and derivations are introduced when needed to gai...

  9. Quantum spill-out in few-nanometer metal gaps: Effect on gap plasmons and reflectance from ultrasharp groove arrays

    Science.gov (United States)

    Skjølstrup, Enok J. H.; Søndergaard, Thomas; Pedersen, Thomas G.

    2018-03-01

    Plasmons in ultranarrow metal gaps are highly sensitive to the electron density profile at the metal surfaces. Using a quantum mechanical approach and assuming local response, we study the effects of electron spill-out on gap plasmons and reflectance from ultrasharp metal grooves. We demonstrate that the mode index of ultranarrow gap plasmons converges to the bulk refractive index in the limit of vanishing gap and, thereby, rectify the unphysical divergence found in classical models. Surprisingly, spill-out also significantly increases the plasmonic absorption for few-nanometer gaps and lowers the reflectance from arrays of ultrasharp metal grooves. These findings are explained in terms of enhanced gap plasmon absorption taking place inside the gap 1-2 Å from the walls and delocalization near the groove bottom. Reflectance calculations taking spill-out into account are shown to be in much better agreement with measurements compared with classical models.

  10. Quantum spill-out in few-nanometer metal gaps: Effect on gap plasmons and reflectance from ultrasharp groove arrays

    DEFF Research Database (Denmark)

    Skjølstrup, Enok Johannes Haahr; Søndergaard, Thomas; Pedersen, Thomas Garm

    2018-01-01

    Plasmons in ultranarrow metal gaps are highly sensitive to the electron density profile at the metal surfaces. Using a quantum mechanical approach and assuming local response, we study the effects of electron spill-out on gap plasmons and reflectance from ultrasharp metal grooves.We demonstrate...... that the mode index of ultranarrow gap plasmons converges to the bulk refractive index in the limit of vanishing gap and, thereby, rectify the unphysical divergence found in classical models. Surprisingly, spill-out also significantly increases the plasmonic absorption for few-nanometer gaps and lowers...... the reflectance from arrays of ultrasharp metal grooves. These findings are explained in terms of enhanced gap plasmon absorption taking place inside the gap 1–2 °A from the walls and delocalization near the groove bottom. Reflectance calculations taking spill-out into account are shown to be in much better...

  11. Room temperature magnetism of few-nanometers-thick Fe3O4(111) films on Pt(111) and Ru(0001) studied in ambient conditions

    International Nuclear Information System (INIS)

    Lewandowski, M.; Miłosz, Z.; Michalak, N.; Ranecki, R.; Sveklo, I.; Kurant, Z.; Maziewski, A.; Mielcarek, S.; Luciński, T.; Jurga, S.

    2015-01-01

    Few-nanometers-thick Fe 3 O 4 (111) films were epitaxially grown on Pt(111) and Ru(0001) single crystal supports by sequential iron deposition and oxidation in an ultra-high vacuum chamber. The growth of well-ordered magnetite films was confirmed by low energy electron diffraction. The films were covered with a protective Au layer and subjected to magnetic and structural studies in ambient conditions. Magnetic hysteresis loops, recorded using magneto-optical Kerr effect apparatus, confirmed magnetic ordering in both films at room temperature. The Kerr measurements indicated in-plane orientation of magnetization, which was supported by the lack of magnetic contrast in magnetic force microscopy images. Atomic force microscopy revealed significant differences in morphology of the films, tentatively attributed to different lattice mismatch with Pt(111) and Ru(0001) single crystal supports. - Highlights: • Few-nanometers-thick Fe 3 O 4 (111) films were grown on Pt(111) and Ru(0001). • Magnetic properties were studied using MOKE and AFM/MFM in ambient conditions. • The films exhibited in-plane magnetic ordering at room temperature. • Differences in magnetic properties were tentatively assigned to structural differences.

  12. The phase problem in neutron diffraction

    International Nuclear Information System (INIS)

    Sikka, S.K.

    1983-01-01

    The structure of any crystal can now be determined ab initio from the neutron Bragg intensity data alone, without recourse to the x-ray structural analysis. This has been made possible by the reduction in data collection times due to the availability of increased neutron fluxes at the samples and the extensive development of the phase determining procedures for neutron diffraction in the last 15 years. In this review, the applications of direct methods, anomalous dispersion techniques and difference Patterson methods are reviewed and it is discussed why these methods are applicable in neutron diffraction. Their limitations are also discussed. Some newer methods like resonance-modulated diffraction and use of 'Renninger effect' to measure the structure invariants are also touched upon. (author)

  13. Neutron diffraction in materials science

    International Nuclear Information System (INIS)

    Howard, C.J.

    1996-01-01

    This article deals with applications of neutron diffraction in materials science. Most of the examples presented here involve the use of powder diffraction, which has been described earlier. In most of these, the Rietveld method has been used for neutron diffraction data, using the Rietveld method. This being an application which was largely pioneered at Lucas Heights. Examples involving single crystal diffraction and neutron polarization analysis are also included. Most of the examples are drawn from studies carried out at Lucas Heights where there is diffraction to the study of ceramics, and this will be reflected in the choice of examples to be considered here. (author)

  14. Passive micromechanical tags. An investigation into writing information at nanometer resolution on micrometer size objects

    International Nuclear Information System (INIS)

    Schmieder, R.W.; Bastasz, R.J.

    1995-01-01

    The authors have completed a 3-year study of the technology related to the development of micron-sized passive micromechanical tags. The project was motivated by the discovery in 1990 by the present authors that low energy, high charge state ions (e.g., Xe +44 ) can produce nanometer-size damage sites on solid surfaces, and the realization that a pattern of these sites represents information. It was envisioned that extremely small, chemically inert, mechanical tags carrying a large label could be fabricated for a variety of applications, including tracking of controlled substances, document verification, process control, research, and engineering. Potential applications exist in the data storage, chemical, food, security, and other industries. The goals of this project were fully accomplished, and they are fully documented here. The work was both experimental and developmental. Most of the experimental effort was a search for appropriate tag materials. Several good materials were found, and the upper limits of information density were determined (ca. 10 12 bit/cm 2 ). Most of the developmental work involved inventing systems and strategies for using these tags, and compiling available technologies for implementing them. The technology provided herein is application-specific: first, the application must be specified, then the tag can be developed for it. The project was not intended to develop a single tag for a single application or for all possible applications. Rather, it was meant to provide the enabling technology for fabricating tags for a range of applications. The results of this project provide sufficient information to proceed directly with such development

  15. Passive micromechanical tags. An investigation into writing information at nanometer resolution on micrometer size objects

    Energy Technology Data Exchange (ETDEWEB)

    Schmieder, R.W.; Bastasz, R.J.

    1995-01-01

    The authors have completed a 3-year study of the technology related to the development of micron-sized passive micromechanical tags. The project was motivated by the discovery in 1990 by the present authors that low energy, high charge state ions (e.g., Xe{sup +44}) can produce nanometer-size damage sites on solid surfaces, and the realization that a pattern of these sites represents information. It was envisioned that extremely small, chemically inert, mechanical tags carrying a large label could be fabricated for a variety of applications, including tracking of controlled substances, document verification, process control, research, and engineering. Potential applications exist in the data storage, chemical, food, security, and other industries. The goals of this project were fully accomplished, and they are fully documented here. The work was both experimental and developmental. Most of the experimental effort was a search for appropriate tag materials. Several good materials were found, and the upper limits of information density were determined (ca. 10{sup 12} bit/cm{sup 2}). Most of the developmental work involved inventing systems and strategies for using these tags, and compiling available technologies for implementing them. The technology provided herein is application-specific: first, the application must be specified, then the tag can be developed for it. The project was not intended to develop a single tag for a single application or for all possible applications. Rather, it was meant to provide the enabling technology for fabricating tags for a range of applications. The results of this project provide sufficient information to proceed directly with such development.

  16. Diffraction and Dirchlet problem for parameter-elliptic convolution ...

    African Journals Online (AJOL)

    In this paper we evaluate the difference between the inverse operators of a Dirichlet problem and of a diffraction problem for parameter-elliptic convolution operators with constant symbols. We prove that the inverse operator of a Dirichlet problem can be obtained as a limit case of such a diffraction problem. Quaestiones ...

  17. A new scattering method that combines roughness and diffraction effects

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge; Rindel, Jens Holger

    2005-01-01

    Most of today's room acoustics programs make use of scattering coefficients which are used in order to describe surface scattering (roughness of material) and scattering of reflected sound caused by limited surface size (diffraction). A method which combines scattering caused by diffraction due...

  18. High Pressure X-Ray Diffraction Studies on Nanocrystalline Materials

    Science.gov (United States)

    Palosz, B.; Stelmakh, S.; Grzanka, E.; Gierlotka, S.; Pielaszek, R.; Bismayer, U.; Werner, S.; Palosz, W.

    2003-01-01

    Application of in situ high pressure powder diffraction technique for examination of specific structural properties of nanocrystals based on the experimental data of SiC nanocrystalline powders of 2 to 30 nrn diameter in diameter is presented. Limitations and capabilities of the experimental techniques themselves and methods of diffraction data elaboration applied to nanocrystals with very small dimensions (nanoparticles of different grain size.

  19. Experiments of Nanometer Spot Size Monitor at FETB Using Laser Interferometry

    CERN Document Server

    Walz, D

    2003-01-01

    The nanometer spot size monitor based on the laser interferometry has been developed and installed in the final focus test beam (FFTB) line at SLAC. The beam experiments started in September 1993, the first fringe pattern from the monitor was observed in the beginning of April 1994, then the small vertical spot around 70 nm was observed in May 1994. The spot size monitor has been routinely used for tuning the beam optics in FFTB. Basic principle of this monitor has been well proved, and its high performance as a precise beam monitor in nanometer range has been demonstrated.

  20. Quantitative phase analysis by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hee; Song, Su Ho; Lee, Jin Ho; Shim, Hae Seop [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-06-01

    This study is to apply quantitative phase analysis (QPA) by neutron diffraction to the round robin samples provided by the International Union of Crystallography(IUCr). We measured neutron diffraction patterns for mixed samples which have several different weight percentages and their unique characteristic features. Neutron diffraction method has been known to be superior to its complementary methods such as X-ray or Synchrotron, but it is still accepted as highly reliable under limited conditions or samples. Neutron diffraction has strong capability especially on oxides due to its scattering cross-section of the oxygen and it can become a more strong tool for analysis on the industrial materials with this quantitative phase analysis techniques. By doing this study, we hope not only to do one of instrument performance tests on our HRPD but also to improve our ability on the analysis of neutron diffraction data by comparing our QPA results with others from any advanced reactor facilities. 14 refs., 4 figs., 6 tabs. (Author)

  1. Powder Diffraction in Zeolite Science

    Science.gov (United States)

    Burton, Allen W.

    This tutorial discusses the fundamental principles of X-ray diffraction and its applications in zeolite science. The early sections review the physics of diffraction, crystal symmetry, and reciprocal space. We discuss how the intensity of diffracted radiation is affected both by geometric effects involving detection (the Lorentz-polarization factor) and by the arrangement of atoms within the crystal (the structure factor). The differences between powder diffraction and single-crystal diffraction are then described, and differences between X-ray and neutron diffraction are also discussed. Later sections describe the effects of symmetry, lattice substitution, crystallite size, residual strain, preferred orientation, and X-ray absorption. Special emphasis is placed on the proper application of the Scherrer analysis in reporting crystalize size. The principles of structure solution from direct methods and Patterson methods are then introduced, and a description of Rietveld analysis is given. Finally the effects of stacking disorder on a powder diffraction pattern are presented.

  2. Structural behavior and microstructural hard metal sintered at 1350 deg C from the powder of nanometer WC with 10 wt% Co

    Energy Technology Data Exchange (ETDEWEB)

    Batista, A.C.; Perpetuo, G.J.; Leocadio, R.R.V., E-mail: adrianocorrea77@gmail.com [Rede Tematica de Engenharia de Materiais (REDEMAT), Ouro Preto, Minas Gerais (Brazil); Oliveira, H.C.P. de [Instituto Superior Tecnico (IST), Lisboa (Portugal). Departamento de Materiais

    2014-07-01

    The hard metal (WC-10%Co), processed via powder metallurgy, using powder of nanometer WC, were characterized from the point of view to the microstructural and structural techniques, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDS) for mapping and punctual. To analyze the behavior of hard metal after the sintering process performed in resistive furnace at 1350°C for 1 hour under vacuum of 10-2 mbar, the analysis identified the formation of WC grains, the pore distribution and behavior and evolution of the phases WC and Co, generating phases η (Co{sub 3}W{sub 3}C and Co{sub 6}W{sub 6}C). (author)

  3. Atomic resolution three-dimensional electron diffraction microscopy

    International Nuclear Information System (INIS)

    Miao Jianwei; Ohsuna, Tetsu; Terasaki, Osamu; Hodgson, Keith O.; O'Keefe, Michael A.

    2002-01-01

    We report the development of a novel form of diffraction-based 3D microscopy to overcome resolution barriers inherent in high-resolution electron microscopy and tomography. By combining coherent electron diffraction with the oversampling phasing method, we show that the 3D structure of a nanocrystal can be determined ab initio at a resolution of 1 Angstrom from 29 simulated noisy diffraction patterns. This new form of microscopy can be used to image the 3D structures of nanocrystals and noncrystalline samples, with resolution limited only by the quality of sample diffraction

  4. Chromatic confocal microscope using hybrid aspheric diffractive lenses

    Science.gov (United States)

    Rayer, Mathieu; Mansfield, Daniel

    2014-05-01

    A chromatic confocal microscope is a single point non-contact distance measurement sensor. For three decades the vast majority of the chromatic confocal microscope use refractive-based lenses to code the measurement axis chromatically. However, such an approach is limiting the range of applications. In this paper the performance of refractive, diffractive and Hybrid aspheric diffractive are compared. Hybrid aspheric diffractive lenses combine the low geometric aberration of a diffractive lens with the high optical power of an aspheric lens. Hybrid aspheric diffractive lenses can reduce the number of elements in an imaging system significantly or create large hyper- chromatic lenses for sensing applications. In addition, diffractive lenses can improve the resolution and the dynamic range of a chromatic confocal microscope. However, to be suitable for commercial applications, the diffractive optical power must be significant. Therefore, manufacturing such lenses is a challenge. We show in this paper how a theoretical manufacturing model can demonstrate that the hybrid aspheric diffractive configuration with the best performances is achieved by step diffractive surface. The high optical quality of step diffractive surface is then demonstrated experimentally. Publisher's Note: This paper, originally published on 5/10/14, was replaced with a corrected/revised version on 5/19/14. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance.

  5. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation.

    Science.gov (United States)

    Yuan, Zhe; Govind Rajan, Ananth; Misra, Rahul Prasanna; Drahushuk, Lee W; Agrawal, Kumar Varoon; Strano, Michael S; Blankschtein, Daniel

    2017-08-22

    Due to its atomic thickness, porous graphene with sub-nanometer pore sizes constitutes a promising candidate for gas separation membranes that exhibit ultrahigh permeances. While graphene pores can greatly facilitate gas mixture separation, there is currently no validated analytical framework with which one can predict gas permeation through a given graphene pore. In this work, we simulate the permeation of adsorptive gases, such as CO 2 and CH 4 , through sub-nanometer graphene pores using molecular dynamics simulations. We show that gas permeation can typically be decoupled into two steps: (1) adsorption of gas molecules to the pore mouth and (2) translocation of gas molecules from the pore mouth on one side of the graphene membrane to the pore mouth on the other side. We find that the translocation rate coefficient can be expressed using an Arrhenius-type equation, where the energy barrier and the pre-exponential factor can be theoretically predicted using the transition state theory for classical barrier crossing events. We propose a relation between the pre-exponential factor and the entropy penalty of a gas molecule crossing the pore. Furthermore, on the basis of the theory, we propose an efficient algorithm to calculate CO 2 and CH 4 permeances per pore for sub-nanometer graphene pores of any shape. For the CO 2 /CH 4 mixture, the graphene nanopores exhibit a trade-off between the CO 2 permeance and the CO 2 /CH 4 separation factor. This upper bound on a Robeson plot of selectivity versus permeance for a given pore density is predicted and described by the theory. Pores with CO 2 /CH 4 separation factors higher than 10 2 have CO 2 permeances per pore lower than 10 -22 mol s -1 Pa -1 , and pores with separation factors of ∼10 have CO 2 permeances per pore between 10 -22 and 10 -21 mol s -1 Pa -1 . Finally, we show that a pore density of 10 14 m -2 is required for a porous graphene membrane to exceed the permeance-selectivity upper bound of polymeric

  6. Nanometal particle reagents for sensitive, MEMS based fiber-optic, multi-analyte, immuno-biosensing

    Science.gov (United States)

    Hong, Bin

    Integration of nanotechnology to medical diagnostics has brought a new era to public health practice. An excellent example is the utilization of unique optoelectronic properties of nanoparticles to develop highly sensitive biosensing devices for point-of-care (POC) disease diagnosis/prognosis. Fluorophore mediated, immuno-biosensors are important disease detection tools. The property of intra-molecular fluorescence quenching of most fluorophores, however, limits the sensitivity of this type of sensors. A plasmon-rich nanometal particle (NMP) can transfer the lone pair electrons of a fluorophore, which normally participate in the fluorescence self-quenching, to its surface plasmon field, resulting in artificial fluorescence enhancement. The enhancement was found to depend on the metal type, the particle size, the distance between a particle and a fluorophore, and the quantum yield of a fluorophore. Some biocompatible solvents were also found to increase the fluorescence emission efficiency via effective dipole coupling between the fluorophore and the solvent molecule. The application of solvents in inmuno-sensing could additionally improve the fluorescence light retrieval by the conformational change of the protein complexes in solvent. The mixture of the NMP and the solvent, which we defined as nanometal particle reagent (NMPR), provided even higher enhancements. Cardiovascular diseases (CVDs) kill 1 person in every 6 seconds. Among the CVDs, acute myocardial infarction (AMI; commonly known as heart attack) is the most dangerous and time-sensitive killer. A rapid and accurate AMI diagnosis is crucial for saving many lives. For this purpose, a fluorophore mediated, immuno-reaction based, multi-cardiac-marker sensing device was developed, to quantify four myocardium-specific proteins simultaneously, accurately, rapidly, and user-friendly. The four cardiac markers of our choice were myoglobin (MG), C-reactive protein (CRP), cardiac troponin I (cTnI), and B

  7. 4D nanoscale diffraction observed by convergent-beam ultrafast electron microscopy.

    Science.gov (United States)

    Yurtsever, Aycan; Zewail, Ahmed H

    2009-10-30

    Diffraction with focused electron probes is among the most powerful tools for the study of time-averaged nanoscale structures in condensed matter. Here, we report four-dimensional (4D) nanoscale diffraction, probing specific site dynamics with 10 orders of magnitude improvement in time resolution, in convergent-beam ultrafast electron microscopy (CB-UEM). As an application, we measured the change of diffraction intensities in laser-heated crystalline silicon as a function of time and fluence. The structural dynamics (change in 7.3 +/- 3.5 picoseconds), the temperatures (up to 366 kelvin), and the amplitudes of atomic vibrations (up to 0.084 angstroms) are determined for atoms strictly localized within the confined probe area (10 to 300 nanometers in diameter). We anticipate a broad range of applications for CB-UEM and its variants, especially in the studies of single particles and heterogeneous structures.

  8. Growth of ω inclusions in Ti alloys: An X-ray diffraction study

    International Nuclear Information System (INIS)

    Šmilauerová, J.; Harcuba, P.; Pospíšil, J.; Matěj, Z.; Holý, V.

    2013-01-01

    We investigated the size and crystal structure of nanometer-sized ω inclusions in single crystals of β-Ti alloys by X-ray diffraction pole-figure measurements and reciprocal space mapping. We studied the topotactical relation of the β and ω crystal lattices, and from the positions and shapes of the diffraction maxima of the ω lattice determined the mean size of the ω inclusions and the misfit of the inclusion lattice with respect to the host lattice, as well as their changes during ageing. The lattice of the ω inclusions exhibits a large positive misfit already before ageing and the misfit is subsequently reduced during the ageing process. Using the theories of elasticity and X-ray scattering we simulated diffuse X-ray scattering around the β diffraction maxima and demonstrated that the diffuse scattering is caused mainly by local elastic strains in the β host phase around the ω inclusions

  9. Some applications of nanometer scale structures for current and future X-ray space research

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Abdali, S; Frederiksen, P K

    1994-01-01

    Nanometer scale structures such as multilayers, gratings and natural crystals are playing an increasing role in spectroscopic applications for X-ray astrophysics. A few examples are briefly described as an introduction to current and planned applications pursued at the Danish Space Research Insti...

  10. Effects of 810-nanometer diode laser as an adjunct to mechanical ...

    African Journals Online (AJOL)

    Effects of 810-nanometer diode laser as an adjunct to mechanical periodontal treatment on clinical periodontal parameters and gingival crevicular fluid ... Plaque index, gingival index (GI), bleeding on probing (BoP), probing depth (PD), clinical attachment level and gingival recession were assessed at baseline and 8 weeks ...

  11. Electromagnetic fields of Nanometer electromagnetic waves and X-ray. New frontiers of electromagnetic wave engineering

    International Nuclear Information System (INIS)

    2009-01-01

    The investigating committee aimed at research on electromagnetic fields in functional devices and X-ray fibers for efficient coherent X-ray generation and their material science, high-precision manufacturing, X-ray microscope, application to medical and information communication technologies, such as interaction between material and nanometer electromagnetic waves of radiated light and X-ray, interaction between microwaves and particle beams, theory and design of high-frequency waveguides for resonator and accelerator, from January 2003 to December 2005. In this report, we describe our research results, in particular, on the topics of synchrotron radiation and Cherenkov radiation, Kyushu synchrotron light source and its technology, nanometer electromagnetic fields in optical region, process of interaction between evanescent waves and near-field light, orthogonal relation of electromagnetic fields including evanescent waves in dispersive dielectrics, optical amplification using electron beam, nanometer electromagnetic fields in focusing waveguide lens device with curved facets, electromagnetic fields in nanometer photonic crystal waveguide consisting of atoms, X-ray scattering and absorption I bio-material for image diagnosis. (author)

  12. Green synthesis of noble nanometals (Au, Pt, Pd) using glycerol under microwave irradiation conditions

    Science.gov (United States)

    A newer application of glycerol in the field of nanomaterials synthesis has been developed from both the economic and environmental points of view. Glycerol can act as a reducing agent for the fabrication of noble nanometals, such as Au, Pt, and Pd, under microwave irradiation. T...

  13. Nanometer size wear debris generated from ultra high molecular weight polyethylene in vivo

    Czech Academy of Sciences Publication Activity Database

    Lapčíková, Monika; Šlouf, Miroslav; Dybal, Jiří; Zolotarevova, E.; Entlicher, G.; Pokorný, D.; Gallo, J.; Sosna, A.

    2009-01-01

    Roč. 266, 1-2 (2009), s. 349-355 ISSN 0043-1648 R&D Projects: GA MŠk 2B06096 Institutional research plan: CEZ:AV0Z40500505 Keywords : ultra high molecular weight polyethylene * nanometer size wear debris * morphology of wear particles Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.771, year: 2009

  14. Micrometer and nanometer-scale parallel patterning of ceramic and organic-inorganic hybrid materials

    NARCIS (Netherlands)

    ten Elshof, Johan E.; Khan, Sajid; Göbel, Ole

    2010-01-01

    This review gives an overview of the progress made in recent years in the development of low-cost parallel patterning techniques for ceramic materials, silica, and organic–inorganic silsesquioxane-based hybrids from wet-chemical solutions and suspensions on the micrometer and nanometer-scale. The

  15. Nanometer range closed-loop control of a stepper micro-motor for data storage

    NARCIS (Netherlands)

    Patrascu, M.; Stramigioli, Stefano; de Boer, Meint J.; Krijnen, Gijsbertus J.M.

    2007-01-01

    We present a nanometer range, closed-loop control study for MEMS stepper actuators. Although generically applicable to other types of stepper motors, the control design presented here was particularly intended for one dimensional shuffle actuators fabricated by surface micromachining technology. The

  16. On the long wavelength thermodynamic limit of a neutron diffraction experiment in the vicinity of a liquid-liquid critical point. Application to the concentration fluctuations in the Li-ND3 system

    International Nuclear Information System (INIS)

    Chieux, P.; Damay, P.

    1978-01-01

    A quantitative comparison is made between the thermodynamics as obtained from the long wavelength limit of a small angle neutron scattering experiment in the vicinity of a liquid-liquid critical point for the Li-ND 3 system and the data obtained from vapour pressure measurements. The agreement is fair. It is shown how the comparison always implies an underlying model of the interacting species leading to the liquid-liquid phase separation. (Auth.)

  17. Nondestructive determination of residual stresses by neutron diffraction

    International Nuclear Information System (INIS)

    Tello, H.; Barrera, E.V.

    1993-01-01

    Nondestructive determination of residual stresses and strains in engineering materials has been limited to analytical models and near-surface measurement techniques such as x-ray diffraction and ultrasonic testing. The use of neutron diffraction for residual stress determination is similar in methodology to x-ray diffraction but provides superior analysis capability because of the lower absorption of neutrons in most materials. Neutron diffraction measurements can be made from sampling depths of several millimeters in most materials as compared to micrometer sampling depth of x-rays. This paper will discuss the principles of neutron diffraction as well as the advantages and limitations of the technique. Specific examples of residual stress measurements using conventional and time-of flight techniques will be provided

  18. Diffraction radiation from relativistic particles

    International Nuclear Information System (INIS)

    Potylitsyn, Alexander Petrovich; Ryazanov, Mikhail Ivanovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results. (orig.)

  19. Diffraction radiation from relativistic particles

    CERN Document Server

    Potylitsyn, Alexander Petrovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.

  20. Decontamination of Chemical Agent Simulant by Nanometal Oxides

    Science.gov (United States)

    2007-06-01

    NanoActive CeO2 94.9 ± 0.7 1.1 ± 0.0 1.9 ± 0.3 107.9 ± 1.8 NanoActive CuO 90.5 ± 1.0 2.0 ± 0.1 6.0 ± 0.9 118.8 ± 0.5 NanoActive TiO2 75.1 ± 1.9 0.0...reactants, as the diffusion of CEES is a major limiting factor in decontamination. The solvent/metal oxide slurry procedure was attempted with...5.6 2 NanoActive CeO2 50 9.5 70 6.0 3 NanoActive CuO 65 6 85 5.7 4 NanoActive TiO2 500 5 32 3.7 4 Al2O3 (Aldrich) 155 — — — — TiO2 (Alfa Aesar) 45

  1. Nanometer emittance ultralow charge beams from rf photoinjectors

    Directory of Open Access Journals (Sweden)

    R. K. Li

    2012-09-01

    Full Text Available In this paper we discuss the generation of a new class of high brightness relativistic electron beams, characterized by ultralow charge (0.1–1 pC and ultralow normalized emittance (<50  nm. These beams are created in rf photoinjectors when the laser is focused on the cathode to very small transverse sizes (<30  μm rms. In this regime, the charge density at the cathode approaches the limit set by the extraction electric field. By shaping the laser pulse to have a cigarlike aspect ratio (the longitudinal dimension much larger than the transverse dimension and a parabolic temporal profile, the resulting space charge dominated dynamics creates a uniformly filled ellipsoidal distribution and the emittance can be nearly preserved to its thermal value. We also present a new method, based on a variation of the pepper-pot technique, for single shot measurements of the ultralow emittances for this new class of beams.

  2. Causal aspects of diffraction

    International Nuclear Information System (INIS)

    Crawford, G.N.

    1981-01-01

    The analysis is directed at a causal description of photon diffraction, which is explained in terms of a wave exerting real forces and providing actual guidance to each quantum of energy. An undulatory PSI wave is associated with each photon, and this wave is assumed to imply more than an informative probability function, so that it actually carries real energy, in much the same way as does an electro-magnetic wave. Whether or not it may be in some way related to the electromagnetic wave is left as a matter of on-going concern. A novel application of the concept of a minimum energy configuration is utilized; that is, a system of energy quanta seeks out relative positions and orientations of least mutual energy, much as an electron seeks its Bohr radius as a position of least mutual energy. Thus the concept implies more a guiding interaction of the PSI waves than an interfering cancellation of these waves. Similar concepts have been suggested by L. de Broglie and D. Bohm

  3. Generation of more than 300 mW diffraction-limited light at 405 nm by second-harmonic generation of a tapered diode laser with external cavity feedback

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Holm, J.; Sumpf, B.

    2007-01-01

    We have constructed a blue laser source consisting of a single-frequency tapered diode laser with external cavity feedback that is frequency doubled by a quasi-phase matched KTP (PPKTP) in a bowtie ring cavity and extract more than 360 mW of power at 405 nm. The conversion efficiency from fundame...... fundamental laser power to second harmonic power is 35 %, while it is 64 % from coupled fundamental power to extracted blue light. Thermal effects and gray tracking set an upper limit on the amount of generated blue light.......We have constructed a blue laser source consisting of a single-frequency tapered diode laser with external cavity feedback that is frequency doubled by a quasi-phase matched KTP (PPKTP) in a bowtie ring cavity and extract more than 360 mW of power at 405 nm. The conversion efficiency from...

  4. Tolerance analysis on diffraction efficiency and polychromatic integral diffraction efficiency for harmonic diffractive optics

    Science.gov (United States)

    Shan, Mao

    2016-10-01

    In this dissertation, the mathematical model of effect of manufacturing errors including microstructure relative height error and relative width error on diffraction efficiency for the harmonic diffractive optical elements (HDEs) is set up. According to the expression of the phase delay and diffraction efficiency of the HDEs, the expression of diffraction efficiency of refraction and diffractive optical element with the microstructure height and periodic width errors in fabrication process is presented in this paper. Furthermore, the effect of manufacturing errors on diffraction efficiency for the harmonic diffractive optical elements is studied, and diffraction efficiency change is analyzed as the relative microstructure height-error in the same and in the opposite sign as well as relative width-error in the same and in the opposite sign. Example including infrared wavelength with materials GE has been discussed in this paper. Two kinds of manufacturing errors applied in 3.7 4.3um middle infrared and 8.7-11.5um far infrared optical system which results in diffraction efficiency and PIDE of HDEs are studied. The analysis results can be used for manufacturing error control in micro-structure height and periodic width. Results can be used for HDEs processing.

  5. Intensity distributions in fiber diffraction

    International Nuclear Information System (INIS)

    Millane, R.P.

    1990-01-01

    The probability distribution of X-ray intensities in fiber diffraction are different from those for single crystals (Wilson statistics) because of the cylindrical averaging of the diffraction data. Stubbs has recently determined the intensity distributions on a fiber diffraction pattern for a fixed number of overlapping Fourier-Bessel terms. Some properties of the amplitude and intensity distributions are derived here. It is shown that the amplitudes and intensities are approximately normally distributed (the distributions being asymptotically normal with increasing number of Fourier-Bessel terms). Improved approximations using an Edgeworth series are derived. Other statistical properties and some asymptotic expansions are also derived, and normalization of fiber diffraction amplitudes is discussed. The accuracies of the normal approximations are illustrated for particular fiber structures, and possible applications of intensity statistics in fiber diffraction are discussed. (orig.)

  6. Tracing temperature in a nanometer size region in a picosecond time period.

    Science.gov (United States)

    Nakajima, Kaoru; Kitayama, Takumi; Hayashi, Hiroaki; Matsuda, Makoto; Sataka, Masao; Tsujimoto, Masahiko; Toulemonde, Marcel; Bouffard, Serge; Kimura, Kenji

    2015-08-21

    Irradiation of materials with either swift heavy ions or slow highly charged ions leads to ultrafast heating on a timescale of several picosecond in a region of several nanometer. This ultrafast local heating result in formation of nanostructures, which provide a number of potential applications in nanotechnologies. These nanostructures are believed to be formed when the local temperature rises beyond the melting or boiling point of the material. Conventional techniques, however, are not applicable to measure temperature in such a localized region in a short time period. Here, we propose a novel method for tracing temperature in a nanometer region in a picosecond time period by utilizing desorption of gold nanoparticles around the ion impact position. The feasibility is examined by comparing with the temperature evolution predicted by a theoretical model.

  7. Nanometer-scale patterning of high-Tc superconductors for Josephson junction-based digital circuits

    International Nuclear Information System (INIS)

    Wendt, J.R.; Plut, T.A.; Corless, R.F.; Martens, J.S.; Berkowitz, S.; Char, K.; Johansson, M.; Hou, S.Y.; Phillips, J.M.

    1994-01-01

    A straightforward method for nanometer-scale patterning of high-T c superconductor thin films is discussed. The technique combines direct-write electron beam lithography with well-controlled aqueous etches and is applied to the fabrication of Josephson junction nanobridges in high-quality, epitaxial thin-film YBa 2 Cu 3 O 7 . We present the results of our studies of the dimensions, yield, uniformity, and mechanism of the junctions along with the performance of a representative digital circuit based on these junctions. Direct current junction parameter statistics measured at 77 K show critical currents of 27.5 μA±13% for a sample set of 220 junctions. The Josephson behavior of the nanobridge is believed to arise from the aggregation of oxygen vacancies in the nanometer-scale bridge

  8. A differential Michelson interferometer with orthogonal single frequency laser for nanometer displacement measurement

    International Nuclear Information System (INIS)

    Yan, Liping; Chen, Benyong; Wang, Bin

    2017-01-01

    A novel differential Michelson laser interferometer is proposed to eliminate the influence of environmental fluctuations for nanometer displacement measurement. This differential interferometer consists of two homodyne interferometers in which two orthogonal single frequency beams share common reference arm and partial measurement arm. By modulating the displacement of the common reference arm with a piezoelectric transducer, the common-mode displacement drift resulting from the environmental disturbances can be well suppressed and the measured displacement as differential-mode displacement signal is achieved. In addition, a phase difference compensation method is proposed for accurately determining the phase difference between interference signals by correcting the time interval according to the average speed in one cycle of interference signal. The nanometer displacement measurement experiments were performed to demonstrate the effectiveness and feasibility of the proposed interferometer and show that precision displacement measurement with standard deviation less than 1 nm has been achieved. (paper)

  9. Nondestructive determination of materials parameters by neutron diffraction

    International Nuclear Information System (INIS)

    Brokmeier, H.G.; Bunge, H.J.

    1989-01-01

    Using the high transmission of neutron radiation, neutron diffraction is described to be an efficient tool for the analysis of various materials parameters of the bulk of a material in a nondestructive way. Sample sizes up to 40 mm in diameter have been used to determine the phase composition, texture and internal stresses of polycrystalline, polyphased materials. Additionally to well-known X-ray techniques which analyse the surface of a sample, neutron diffraction measurements are carried out to investigate the average behaviour of a bulk sample or the local behaviour within a compact sample. Further advantages of neutron diffraction are that small volume fractions (e.g. 0.05 Vol.% Cu in Al) can be determined. Moreover, in the case of X-ray diffraction the examination of coarse-grained materials and of complex multiphase materials is limited, and neutron diffraction has to be used. (orig./RHM)

  10. Nanometer-Scale Pores: Potential Applications for Analyte Detection and DNA Characterization

    Directory of Open Access Journals (Sweden)

    John J. Kasianowicz

    2002-01-01

    Full Text Available Several classes of transmembrane protein ion channels function in vivo as sensitive and selective detection elements for analytes. Recent studies on single channels reconstituted into planar lipid bilayer membranes suggest that nanometer-scale pores can be used to detect, quantitate and characterize a wide range of analytes that includes small ions and single stranded DNA. We briefly review here these studies and identify leaps in technology that, if realized, might lead to innovations for the early detection of cancer.

  11. Study of vibrations and stabilization of linear collider final doublets at the sub-nanometer scale

    International Nuclear Information System (INIS)

    Bolzon, B.

    2007-11-01

    CLIC is one of the current projects of high energy linear colliders. Vertical beam sizes of 0.7 nm at the time of the collision and fast ground motion of a few nanometers impose an active stabilization of the final doublets at a fifth of nanometer above 4 Hz. The majority of my work concerned vibrations and active stabilization study of cantilever and slim beams in order to be representative of the final doublets of CLIC. In a first part, measured performances of different types of vibration sensors associated to an appropriate instrumentation showed that accurate measurements of ground motion are possible from 0.1 Hz up to 2000 Hz on a quiet site. Also, electrochemical sensors answering a priori the specifications of CLIC can be incorporated in the active stabilization at a fifth of nanometer. In a second part, an experimental and numerical study of beam vibrations enabled to validate the efficiency of the numerical prediction incorporated then in the simulation of the active stabilization. Also, a study of the impact of ground motion and of acoustic noise on beam vibrations showed that an active stabilization is necessary at least up to 1000 Hz. In a third part, results on the active stabilization of a beam at its two first resonances are shown down to amplitudes of a tenth of nanometer above 4 Hz by using in parallel a commercial system performing passive and active stabilization of the clamping. The last part is related to a study of a support for the final doublets of a linear collider prototype in phase of finalization, the ATF2 prototype. This work showed that relative motion between this support and the ground is below imposed tolerances (6 nm above 0.1 Hz) with appropriate boundary conditions. (author)

  12. Micromechanics of pseudo-single-asperity friction: Effects of nanometer-scale roughness

    Science.gov (United States)

    Li, Qunyang

    Nanometer-scale roughness on a solid surface has significant effects on friction, since inter-surface forces operate predominantly within a nanometer-scale gap distance in frictional contact. This thesis presents two novel atomic force microscope friction experiments, each using a gold surface sliding against a flat mica surface as the representative friction system. A diamagnetic lateral force calibrator (D-LFC) was invented to enable the accurate quantitative force measurements. In one of the experiment, a disk-shaped single nano-asperity of gold was used to measure the molecular level frictional behavior. The adhesive friction stress was measured to be 264 MPa and the molecular friction factor 0.0108 for a direct gold-mica contact in 30% humid air. The capillary force from the condensed water meniscuses was found to play an important role in magnifying the contact pressure to plastically deform the nano-asperities leading to the dramatic evolution of frictional responses. In the second experiment, the frictional response of a micrometer-scale asperity with nanometer-scale roughness exhibited a pseudo-single-asperity frictional behavior. However, the apparent friction stress, 40.5 MPa, fell well below the Hurtado-Kim model prediction for a smooth-single-asperity friction, exhibiting an apparent size-scale dependence of the friction stress. An interfacial roughness (IR) layer model was then developed to investigate the effects of roughness on pseudo-single-asperity friction. The model calculation shows that the nanometer-scale surface roughness is the major mechanism that explains the apparent size-scale dependence of the friction observed in the experiments. Furthermore, the analysis shows that the apparent friction stress as well as the apparent pressure-dependent fiction factor relies on the surface roughness. Both experimental and theoretical results suggest that the evolution status of surface roughness is one of the important internal variables for the

  13. Promoting Junior High Students’ Situational Interests With Multiple Teaching Strategies in Informal Nanometer-Related Curricula

    OpenAIRE

    Jui-Chou Cheng; Jeng-Fung Hung; Tai-Chu Huang

    2013-01-01

    Student interest plays a vital role in science learning. In particular, junior high students in Taiwan showed higher interest in informal than formal science learning. Thus, this study investigated the relationship of junior high students’ situational interest and multiple teaching strategies in informal nanometer-related curricula and the source of situational interest. Two questionnaires were administered to 110 students and semi–structured interviews of selected students were conducted. Th...

  14. Optics of diffractive multifocal IOL

    Directory of Open Access Journals (Sweden)

    Fatahi B

    1994-04-01

    Full Text Available The diffractive multifocal IOL provides simultaneous bifocal imaging by utilizing both diffractive and refractive optics. In both distant and near vision, there is a clear highly focused image on the retina. The second image is highly defocused, providing only faint background illumination. A small amount of the light goes to the higher orders of diffraction which are not perceptible by eyes. The bright spot produced by a zone plate is so intense that the plate acts much like a converging lens. There are also fainter images corresponding to focal lengths f/3, f/5, f/7, ...

  15. Grazing incidence diffraction : A review

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, B. [LTPCM, ENSEEG. St. Martin d`Heres. (France)

    1996-09-01

    Different Grazing Incidence Diffraction (GID) methods for the analysis of thin films and multilayer structures are reviewed in three sections: the reflectivity is developed in the first one, which includes the non-specular diffuse scattering. The second one is devoted to the extremely asymmetric Bragg diffraction and the third one to the in-plane Bragg diffraction. Analytical formulations of the scattered intensities are developed for each geometry, in the framework of the kinetical analysis as well as the dynamical theory. Experimental examples are given to illustrate the quantitative possibility of the GID techniques.

  16. Time-resolved Neutron Powder Diffraction

    International Nuclear Information System (INIS)

    Pannetier, J.

    1986-01-01

    The use of a high-flux neutron source together with a large position sensitive detector (PSD) allows a powder diffraction pattern to be recorded at a time-scale of a few minutes so that crystalline systems under non-equilibrium conditions may now conveniently be investigated. This introduces a new dimension into powder diffraction (the time and transient phenomena like heterogeneous chemical reactions can now be easily studied. The instrumental parameters relevant for the design of such time-dependent experiments are briefly surveyed and the current limits of the method are discussed. The applications are illustrated by two kinds of experiment in the field of inorganic solid state chemistry: true kinetic studies of heterogeneous chemical reactions and thermodiffractometry experiments

  17. Neutron Powder Diffraction in Sweden

    International Nuclear Information System (INIS)

    Tellgren, R.

    1986-01-01

    Neutron powder diffraction in Sweden has developed around the research reactor R2 in Studsvik. The article describes this facility and presents a historical review of research results obtained. It also gives some ideas of plans for future development

  18. Neutron diffraction studies of glasses

    International Nuclear Information System (INIS)

    Wright, A.C.

    1987-01-01

    A survey is given of the application of neutron diffraction to structural studies of oxide and halide glasses. As with crystalline materials, neutron and X-ray diffraction are the major structural probes for glasses and other amorphous solids, particularly in respect of intermediate range order. The glasses discussed mostly have structures which are dominated by a network in which the bonding is predominantly covalent. The examples discussed demonstrate the power of the neutron diffraction technique in the investigation of the structures of inorganic glasses. The best modern diffraction experiments are capable of providing accurate data with high real space resolution, which if used correctly, are an extremely fine filter for the various structural models proposed in the literature. 42 refs

  19. Diffraction at a Straight Edge

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 5. Diffraction at a Straight Edge: A Gem from Sommerfeld's Work in Classical Physics. Rajaram Nityananda. General Article Volume 20 Issue 5 May 2015 pp 389-400 ...

  20. The Diffraction Response Interpolation Method

    DEFF Research Database (Denmark)

    Jespersen, Søren Kragh; Wilhjelm, Jens Erik; Pedersen, Peder C.

    1998-01-01

    Computer modeling of the output voltage in a pulse-echo system is computationally very demanding, particularly whenconsidering reflector surfaces of arbitrary geometry. A new, efficient computational tool, the diffraction response interpolationmethod (DRIM), for modeling of reflectors in a fluid ...

  1. Tomography with energy dispersive diffraction

    Science.gov (United States)

    Stock, S. R.; Okasinski, J. S.; Woods, R.; Baldwin, J.; Madden, T.; Quaranta, O.; Rumaiz, A.; Kuczewski, T.; Mead, J.; Krings, T.; Siddons, P.; Miceli, A.; Almer, J. D.

    2017-09-01

    X-ray diffraction can be used as the signal for tomographic reconstruction and provides a cross-sectional map of the crystallographic phases and related quantities. Diffraction tomography has been developed over the last decade using monochromatic x-radiation and an area detector. This paper reports tomographic reconstruction with polychromatic radiation and an energy sensitive detector array. The energy dispersive diffraction (EDD) geometry, the instrumentation and the reconstruction process are described and related to the expected resolution. Results of EDD tomography are presented for two samples containing hydroxyapatite (hAp). The first is a 3D-printed sample with an elliptical crosssection and contains synthetic hAp. The second is a human second metacarpal bone from the Roman-era cemetery at Ancaster, UK and contains bio-hAp which may have been altered by diagenesis. Reconstructions with different diffraction peaks are compared. Prospects for future EDD tomography are also discussed.

  2. Phonons from neutron powder diffraction

    Science.gov (United States)

    Dimitrov, D. A.; Louca, D.; Röder, H.

    1999-09-01

    The spherically averaged structure function S(\\|q\\|) obtained from pulsed neutron powder diffraction contains both elastic and inelastic scattering via an integral over energy. The Fourier transformation of S(\\|q\\|) to real space, as is done in the pair density function (PDF) analysis, regularizes the data, i.e., it accentuates the diffuse scattering. We present a technique which enables the extraction of off-center (\\|q\\|≠0) phonon information from powder diffraction experiments by comparing the experimental PDF with theoretical calculations based on standard interatomic potentials and the crystal symmetry. This procedure [dynamics from powder diffraction] has been successfully implemented as demonstrated here for two systems, a simple metal fcc Ni and an ionic crystal CaF2. Although computationally intensive, this data analysis allows for a phonon based modeling of the PDF, and additionally provides off-center phonon information from neutron powder diffraction.

  3. Experimental studies of diffractive phenomena

    International Nuclear Information System (INIS)

    Cool, R.L.

    1984-01-01

    The coherent inelastic scattering process, usually called inclusive diffraction dissociation, is discussed. Topics include: t and M/sub x/ dependence, factorization, finite mass sum rule and charged particle multiplicities. 6 references, 14 figures

  4. High-temperature chamber for study of neutron diffraction

    International Nuclear Information System (INIS)

    Gavrilenko, M.V.; Dvoeglazov, A.M.

    1992-01-01

    Design of a chamber designed to study neutron diffraction within 20-100 deg C temperature range, where the principle of specimen heating via electron bombardment is used, is described. Diameters of the screen and of the cover are selected so, that neutrons scattered at their walls can not be seen by the diffractometer regulating system. Absence of distortions of diffraction maxima within statistic error limits is pointed out. Intensities of diffraction maxima at setting of heater, screen and cover are not practically observed. There is no essential increase of background at chamber setting. Simplicity the design and long service life of the chamber is stressed

  5. The Diffraction Response Interpolation Method

    DEFF Research Database (Denmark)

    Jespersen, Søren Kragh; Wilhjelm, Jens Erik; Pedersen, Peder C.

    1998-01-01

    Computer modeling of the output voltage in a pulse-echo system is computationally very demanding, particularly whenconsidering reflector surfaces of arbitrary geometry. A new, efficient computational tool, the diffraction response interpolationmethod (DRIM), for modeling of reflectors in a fluid...... medium, is presented. The DRIM is based on the velocity potential impulseresponse method, adapted to pulse-echo applications by the use of acoustical reciprocity. Specifically, the DRIM operates bydividing the reflector surface into planar elements, finding the diffraction response at the corners...

  6. Theoretical review of diffractive phenomena

    International Nuclear Information System (INIS)

    Golec-Biernat, K.

    2005-01-01

    We review QCD based descriptions of diffractive deep inelastic scattering emphasising the role of models with parton saturation. These models provide natural explanation of such experimentally observed facts as the constant ratio of σ diff /σ tot as a function of the Bjorken variable x, and Regge factorization of diffractive parton distributions. The Ingelman-Schlein model and the soft color interaction model are also presented

  7. Texture determination by neutron diffraction

    International Nuclear Information System (INIS)

    Dervin, P.

    1981-02-01

    Application of neutron diffraction to crystallographic texture determination shows many advantages: possibility of an important grain size, the quantity of material contributing to diffraction is more important than with X rays, good accuracy and complete pole figures are obtained by transmission only eliminating corrections needed with X rays. Texture determination allows control and improvement of material quality. Texture studies give good informations on mechanisms occuring in deformation or recrystallization of polycrystals and on anisotropy of physical and mechanical properties [fr

  8. Performance limitations of imaging microscopes for soft x-ray applications

    International Nuclear Information System (INIS)

    Lewotsky, K.L.; Kotha, A.; Harvey, J.E.

    1993-01-01

    Recent advances in the fabrication of nanometer-scale multilayer structures have yielded high-reflectance mirrors operating at near-normal incidence for soft X-ray wavelengths. These developments have stimulated renewed interest in high-resolution soft X-ray microscopy. The design of a Schwarzschild imaging microscope for soft X-ray applications has been reported by Hoover and Shealy. Based upon a geometrical ray-trace analysis of the residual design errors, diffraction-limited performance at a wavelength of 100 angstrom was predicted over an object size (diameter) of 0.4 mm. In this paper the authors expand upon the previous analysis of the Schwarzschild X-ray microscope design by determining the total image degradation due to diffraction, geometrical aberrations, alignment errors, and realistic assumptions concerning optical fabrication errors. NASA's Optical Surface Analysis Code (OSAC) is used to model the image degradation effects of residual surface irregularities over the entire range of relevant spatial frequencies. This includes small angle scattering effects due to mid spatial frequency surface errors falling between the traditional figure and finish specifications. Performance predictions are presented parametrically to provide some insight into the optical fabrication and alignment tolerances necessary to meet a particular image quality requirement

  9. Theory of time-resolved inelastic x-ray diffraction

    DEFF Research Database (Denmark)

    Lorenz, Ulf; Møller, Klaus Braagaard; Henriksen, Niels Engholm

    2010-01-01

    Starting from a general theory of time-resolved x-ray scattering, we derive a convenient expression for the diffraction signal based on a careful analysis of the relevant inelastic scattering processes. We demonstrate that the resulting inelastic limit applies to a wider variety of experimental...... conditions than similar, previously derived formulas, and it directly allows the application of selection rules when interpreting diffraction signals. Furthermore, we present a simple extension to systems simultaneously illuminated by x rays and a laser beam....

  10. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission

    OpenAIRE

    Klar, Thomas A.; Jakobs, Stefan; Dyba, Marcus; Egner, Alexander; Hell, Stefan W.

    2000-01-01

    The diffraction barrier responsible for a finite focal spot size and limited resolution in far-field fluorescence microscopy has been fundamentally broken. This is accomplished by quenching excited organic molecules at the rim of the focal spot through stimulated emission. Along the optic axis, the spot size was reduced by up to 6 times beyond the diffraction barrier. The simultaneous 2-fold improvement in the radial direction rendered a nearly spherical fluorescence spot with a diameter of 9...

  11. Diffraction-Limited Lidars: the Impact of Refractive Turbulence

    DEFF Research Database (Denmark)

    Lading, Lars; Hanson, Steen Grüner; Jensen, Arne Skov

    1984-01-01

    The impact of refractive turbulence on monostatic and bistatic lidars is investigated; a phase screen model is used. Experimental verifications are given. For monostatic lidars perturbing lens effects dominate, for bistatic lidars tilt effects dominate. Monostatic systems are the least sensitive...

  12. Optical cloning of arbitrary images beyond the diffraction limits

    Science.gov (United States)

    Verma, Onkar N.; Zhang, Lida; Evers, Jörg; Dey, Tarak N.

    2013-07-01

    Cloning of arbitrary images from the spatial profile of a laser beam onto that of a second beam is theoretically investigated. The two fields couple to each other while propagating in an atomic Λ medium displaying coherent population trapping in the case where probe and control fields have comparable strength. Our method is suitable to clone arbitrary images as demonstrated in numerical simulations where the three letters “CPT” are encoded in the control field profile. The cloned structures have features reduced in size by about a factor of 2, when compared to the initial control images, and are consistent with a recent related experiment.

  13. Optimal diffraction-limited focusing through static aberrations

    Science.gov (United States)

    Patlan, Vsevolod; Soloviev, Oleg; Vdovin, Gleb V.

    2014-09-01

    Optimization of the point spread function by means of sensor-less adaptive optics, based on direct imaging of the focal spot, suffers from errors due to enormous dynamic range of the focal intensity. Also, optimization algorithms based on the focal spot metrics only, are insensitive to other system parameters and can converge to "rong" solutions. To improve the beam quality and the robustness of the global extremum, we have introduced dynamic feedback control of the camera sensitivity. To further increase the robustness of optimization, we introduced a regularization parameter in the form of some function of the system state, achieving its minimum together with the desired solution. Significant gain in achievable beam quality is shown in comparison with the implementation lacking those improvements. Proposed techniques are implemented in Beam Tuner software forne-tuning of laser and imaging systems with adaptive optics.

  14. Diffraction Limited 3.15 Microns Cascade Diode Lasers

    Science.gov (United States)

    2014-06-01

    moderately doped 25-nm-wide chirped AlSb /InAs superlattice. Conference Name: 2014 72nd Annual Device Research Conference (DRC) Conference Date...graded layer, 10-nm-thick GaSb layer and moderately doped 25-nm-wide chirped AlSb /InAs superlattice4. The laser heterostructure was grown by solid

  15. Thermal Design for a Diffraction-Limited Doppler Spectrometer

    Data.gov (United States)

    National Aeronautics and Space Administration — The Univ. of Notre Dame is building a new high-resolution spectrometer named “iLocater” to achieve unprecedented radial velocity (RV) precision for stellar Doppler...

  16. Radial distribution function imaging by STEM diffraction: Phase mapping and analysis of heterogeneous nanostructured glasses

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Xiaoke, E-mail: muxiaoke@gmail.com [Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Helmholtz-Institute Ulm for Electrochemical Energy Storage (HIU), Karlsruhe Institute of Technology (KIT), 89081 Ulm (Germany); Wang, Di [Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Feng, Tao [Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology (NJUST), 210094 Nanjing (China); Kübel, Christian [Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Helmholtz-Institute Ulm for Electrochemical Energy Storage (HIU), Karlsruhe Institute of Technology (KIT), 89081 Ulm (Germany); Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany)

    2016-09-15

    Characterizing heterogeneous nanostructured amorphous materials is a challenging topic, because of difficulty to solve disordered atomic arrangement in nanometer scale. We developed a new transmission electron microscopy (TEM) method to enable phase analysis and mapping of heterogeneous amorphous structures. That is to combine scanning TEM (STEM) diffraction mapping, radial distribution function (RDF) analysis, and hyperspectral analysis. This method was applied to an amorphous zirconium oxide and zirconium iron multilayer system, and showed extreme sensitivity to small atomic packing variations. This approach helps to understand local structure variations in glassy composite materials and provides new insights to correlate structure and properties of glasses. - Highlights: • A method for phase mapping of nanostructured amorphous materials was developed. • The phase mapping is purely based on structural information. • The method combines STEM diffraction with radial distribution function analysis. • The method was applied on an amorphous multilayer for demonstrating its sensitivity.

  17. Quantitative strain analysis of surfaces and interfaces using extremely asymmetric x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Akimoto, Koichi [Graduate School of Engineering, Nagoya University, Nagoya, 464-8603 (Japan); Emoto, Takashi, E-mail: akimoto@nagoya-u.j [Toyota National College of Technology, Toyota, Aichi 471-8525 (Japan)

    2010-12-01

    Strain can reduce carrier mobility and the reliability of electronic devices and affect the growth mode of thin films and the stability of nanometer-scale crystals. To control lattice strain, a technique for measuring the minute lattice strain at surfaces and interfaces is needed. Recently, an extremely asymmetric x-ray diffraction method has been developed for this purpose. By employing Darwin's dynamical x-ray diffraction theory, quantitative evaluation of strain at surfaces and interfaces becomes possible. In this paper, we review our quantitative strain analysis studies on native SiO{sub 2}/Si interfaces, reconstructed Si surfaces, Ni/Si(111)-H interfaces, sputtered III-V compound semiconductor surfaces, high-k/Si interfaces, and Au ion-implanted Si. (topical review)

  18. Neutron diffraction principles

    International Nuclear Information System (INIS)

    Granada, Jose R.

    1998-01-01

    Neutron as research element contributes at present to the understanding and development of almost all aspects related to basic and applied science, even with the relative inaccessibility of neutron sources and the fact that the most intense sources still provide relatively weak neutron beams. The initial discovery of these potentialities and the first works that allowed to convert the neutronic techniques into the actual powerful experimental tool, have been recognized by the adjudication of the Nobel Prize in Physics 1994 to Professors B. Brockhouse and C. Shull. Unfortunately, these tools have not been exploited neither in our country, nor in the Latin American area, with the exception of very limited applications in Materials Science. Although the theoretical principles of neutron scattering techniques have been treated in texts and review works, the aim of this work is to present a compact set of expressions, oriented to sustain and explain the basic forms or the most frequent use for the interpretation of experimental results. The formulation, mostly based on the initial chapters of the Ph.D. Thesis of G.J. Cuello (Instituto Balseiro, 1996), only considers nuclear scattering of neutrons for extension reasons, but it must be taken into account that the experiments designed for the study of the magnetic properties of materials currently play a rol of importance equal to those

  19. Photosensitizing effects of nanometer TiO2 on chlorothalonil photodegradation in aqueous solution and on the surface of pepper.

    Science.gov (United States)

    Tan, Yong Qiang; Xiong, Hai Xia; Shi, Tao Zhong; Hua, Ri Mao; Wu, Xiang Wei; Cao, Hai Qun; Li, Xue De; Tang, Jun

    2013-05-29

    The present study examined the effects of anatase nanometer TiO2 on photochemical degradation of chlorothalonil in aqueous solution and on the plant surface. Results showed that nanometer TiO2 exhibited a strong photosensitizing effect on the degradation of chlorothalonil both in aqueous solution and on the surface of green pepper. The photosensitization rate was the highest in the sunlight compared to illumination under high-pressure mercury and UV lamps. Use of distinct hydroxyl radical scavengers indicated that nanometer TiO2 acted by producing hydroxyl radicals with strong oxidizing capacity. Notably, nanometer TiO2 facilitated complete photodegradation of chlorothalonil with no detectable accumulation of the intermediate chlorothalonil-4-hydroxy. Nanometer TiO2 was also active on the surface of green pepper under natural sunlight both inside and outside of plastic greenhouse. These results together suggest that nanometer TiO2 can be used as a photosensitizer to accelerate degradation of the pesticides under greenhouse conditions.

  20. When holography meets coherent diffraction imaging.

    Science.gov (United States)

    Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Fink, Hans-Werner

    2012-12-17

    The phase problem is inherent to crystallographic, astronomical and optical imaging where only the intensity of the scattered signal is detected and the phase information is lost and must somehow be recovered to reconstruct the object's structure. Modern imaging techniques at the molecular scale rely on utilizing novel coherent light sources like X-ray free electron lasers for the ultimate goal of visualizing such objects as individual biomolecules rather than crystals. Here, unlike in the case of crystals where structures can be solved by model building and phase refinement, the phase distribution of the wave scattered by an individual molecule must directly be recovered. There are two well-known solutions to the phase problem: holography and coherent diffraction imaging (CDI). Both techniques have their pros and cons. In holography, the reconstruction of the scattered complex-valued object wave is directly provided by a well-defined reference wave that must cover the entire detector area which often is an experimental challenge. CDI provides the highest possible, only wavelength limited, resolution, but the phase recovery is an iterative process which requires some pre-defined information about the object and whose outcome is not always uniquely-defined. Moreover, the diffraction patterns must be recorded under oversampling conditions, a pre-requisite to be able to solve the phase problem. Here, we report how holography and CDI can be merged into one superior technique: holographic coherent diffraction imaging (HCDI). An inline hologram can be recorded by employing a modified CDI experimental scheme. We demonstrate that the amplitude of the Fourier transform of an inline hologram is related to the complex-valued visibility, thus providing information on both, the amplitude and the phase of the scattered wave in the plane of the diffraction pattern. With the phase information available, the condition of oversampling the diffraction patterns can be relaxed, and the

  1. Simple and rapid spectrophotometric determination of trace titanium (IV) enriched by nanometer size zirconium dioxide in natural water

    International Nuclear Information System (INIS)

    Zheng Fengying; Li Shunxing; Lin Luxiu; Cheng Liqing

    2009-01-01

    A novel method for preconcentration of Ti(IV) with nanometer size ZrO 2 and determination by spectrophotometry has been developed. Ti(IV) was selectively adsorbed on 300 mg ZrO 2 from 500 mL solution at pH 6.0, then eluted by 5 mL 11.3 mol L -1 HF. The eluent added was diantipyrylmethane (DAPM, as chromogenic reagent) and ascorbic acid (as masking agent), used for the analysis of Ti(IV) by measuring the absorbance at 390 nm with spectrophotometry, based on the chromogenic reaction between the Ti(IV) and DAPM. This method gave a concentration enhancement of 100 for 500 mL sample, eliminated the sizable interferences on direct determination with spectrophotometry. Detection limit (3σ, n = 11) of 0.1 μg L -1 was obtained. The method was applied to determine the concentration of Ti(IV) in river water and seawater and the analytical recoveries of Ti(IV) added to samples were 97.6-101.3%.

  2. Neutron diffraction and oxide research

    International Nuclear Information System (INIS)

    Hunter, B.; Howard, C.J.; Kennedy, B.J.

    1999-01-01

    Oxide compounds form a large class of interesting materials that have a diverse range of mechanical and electronic properties. This diversity and its commercial implications has had a significant impact on physics research. This is particularly evident in the fields of superconductivity magnetoresistivity and ferroelectricity, where discoveries in the last 15 years have given rise to significant shifts in research activities. Historically, oxides have been studied for many years, but it is only recently that significant effort has been diverted to the study of oxide materials for their application to mechanical and electronic devices. An important property of such materials is the atomic structure, for the determination of which diffraction techniques are ideally suited. Recent examples of structure determinations using neutron diffraction in oxide based systems are high temperature superconductors, where oxygen defects are a key factor. Here, neutron diffraction played a major role in determining the effect of oxygen on the superconducting properties. Similarly, neutron diffraction has enjoyed much success in the determination of the structures of the manganate based colossal magnetoresistive (CMR) materials. In both these cases the structure plays a pivotal role in determining theoretical models of the electronic properties. The neutron scattering group at ANSTO has investigated several oxide systems using neutron powder diffraction. Two such systems are presented in this paper; the zirconia-based materials that are used as engineering materials, and the perovskite-based oxides that include the well known cuprate superconductors and the manganate CMR materials

  3. Axial Colocalization of Single Molecules with Nanometer Accuracy Using Metal-Induced Energy Transfer.

    Science.gov (United States)

    Isbaner, Sebastian; Karedla, Narain; Kaminska, Izabela; Ruhlandt, Daja; Raab, Mario; Bohlen, Johann; Chizhik, Alexey; Gregor, Ingo; Tinnefeld, Philip; Enderlein, Jörg; Tsukanov, Roman

    2018-03-27

    Single-molecule localization based super-resolution microscopy has revolutionized optical microscopy and routinely allows for resolving structural details down to a few nanometers. However, there exists a rather large discrepancy between lateral and axial localization accuracy, the latter typically three to five times worse than the former. Here, we use single-molecule metal-induced energy transfer (smMIET) to localize single molecules along the optical axis, and to measure their axial distance with an accuracy of 5 nm. smMIET relies only on fluorescence lifetime measurements and does not require additional complex optical setups.

  4. Processes proceeding in high-energy systems comprising nanodimensional aluminum and other nanometals

    Science.gov (United States)

    Komarov, V. F.; Komarova, M. V.; Vorozhtsov, A. B.; Lerner, M. I.; Domashenko, V. V.

    2013-09-01

    Results of experimental investigations of nanodimensional titanium (Ti), aluminum (Al), nickel (Ni), iron (Fe), zinc (Zn), and copper (Cu) powder interaction in high-energy condensed systems (HECSs) comprising a tetrazole polymer solution in nitroethers are presented. The main structural changes in such HECSs during their production and implementation are demonstrated. It is demonstrated that structural transformations are due to electrochemical reactions in the composites. The probability of forming intermetallic compounds in the high-energy systems comprising nanoaluminum and others nanometals is discussed together with the influence of intermetallides on the combustion and detonation.

  5. Electron transport in nanometer GaAs structure under radiation exposure

    CERN Document Server

    Demarina, N V

    2002-01-01

    One investigates into effect of neutron and proton irradiation on electron transport in nanometer GaAs structures. Mathematical model takes account of radiation defects via introduction of additional mechanisms od scattering of carriers at point defects and disordered regions. To investigate experimentally into volt-ampere and volt-farad characteristics one used a structure based on a field-effect transistor with the Schottky gate and a built-in channel. Calculation results of electron mobility, drift rate of electrons, time of energy relaxation and electron pulse are compared with the experimental data

  6. Fluorescent gel particles in the nanometer range for detection of metabolites in living cells

    DEFF Research Database (Denmark)

    Almdal, K.; Sun, H.; Poulsen, A.K.

    2006-01-01

    In this present work a research program that aims at the development of sensor particles based on ratiometric detection of fluorescence from two dyes was embarked on. Such particles can in principle be used to achieve spatially and time resolved measurements of metabolite concentrations in living...... micelles in oil microemulsions. Typical sizes of the particles are tens of nanometers. Characterization methods for such particles based on size exclusion chromatography, photon correlation spectroscopy, scanning electron microscopy, and atomic force microscopy have been developed. The stability...

  7. A direct and at nanometer scale study of electrical charge distribution on membranes of alive cells

    Directory of Open Access Journals (Sweden)

    Marlière Christian

    2016-01-01

    Full Text Available In this paper is presented an innovative method to map in-vivo and at nanometer scale the electrical charge distribution on membranes of alive cells. It relies on a new atomic force microscopy (AFM mode based on an electro-mechanical coupling effect. Furthermore, an additional electrical signal detected by both the deflection of the AFM cantilever and simultaneous direct current measurements was detected at low scanning rates. It was attributed to the detection of the current stemming from ionic channels. It opens a new way to directly investigate in situ biological electrical surface processes involved in bacterial adhesion, biofilm formation, microbial fuel cells, etc.

  8. The nature of the Fe-graphene interface at the nanometer level

    Energy Technology Data Exchange (ETDEWEB)

    Cattelan, Mattia, E-mail: mattia.cattelan.1@studenti.unipd.it; Artiglia, Luca; Favaro, Marco; Agnoli, Stefano, E-mail: mattia.cattelan.1@studenti.unipd.it; Granozzi, Gaetano [Department of Chemical Sciences, University of Padova, via Marzolo 1, 35135, Padova (Italy); Peng, Guowen; Roling, Luke T.; Mavrikakis, Manos [Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States); Cavaliere, Emanuele; Gavioli, Luca [Interdisciplinary Laboratories for Advanced Materials Physics (i-LAMP) and Dipartimento di Matematica e Fisica, Università Cattolica, via dei Musei 41, I-25121 Brescia (Italy); Barinov, Alexey [Sincrotrone Trieste S.C.p.A., Area Science Park-Basovizza, Strada Statale 14 Km 163.5, I-34149 Trieste (Italy); Píš, Igor [Sincrotrone Trieste S.C.p.A., Area Science Park-Basovizza, Strada Statale 14 Km 163.5, I-34149 Trieste (Italy); Istituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC, Area Science Park-Basovizza, Strada Statale 14 Km 163.5, I-34149 Trieste (Italy); Nappini, Silvia; Magnano, Elena; Bondino, Federica [Istituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC, Area Science Park-Basovizza, Strada Statale 14 Km 163.5, I-34149 Trieste (Italy)

    2016-07-27

    The emerging fields of graphene-based magnetic and spintronic devices require a deep understanding of the interface between graphene and ferromagnetic metals. This work reports a detailed investigation at the nanometer level of the Fe–graphene interface carried out by angle-resolved photoemission, high-resolution photoemission from core levels, and scanning tunnelling microscopy. Quasi-freestanding graphene was grown on Pt(111), and the iron film was either deposited atop or intercalated beneath graphene. Calculations and experimental results show that iron strongly modifies the graphene band structure and lifts its π band spin degeneracy.

  9. Nanometer-scale metallic grains connected with atomic-scale conductors

    Science.gov (United States)

    Anaya, A.; Korotkov, A. L.; Bowman, M.; Waddell, J.; Davidovic, D.

    2003-03-01

    We describe a technique for connecting a nanometer-scale gold grain to leads by atomic-scale gold point contacts. These devices differ from previous metallic quantum dots in that the conducting channels are relatively well transmitting. We investigate the dependence of the Coulomb blockade on contact resistance. The high-resistance devices display Coulomb blockade and the low-resistance devices display a zero-bias conductance dip, both in quantitative agreement with theory. We find that in the intermediate regime, where the sample resistance is close to h/e2, the I-V curve displays a Coulomb staircase with symmetric contact capacitances.

  10. Self-assembled metallic nanoparticle template — a new approach of surface nanostructuring at nanometer scale

    Directory of Open Access Journals (Sweden)

    A. Taleb

    2017-09-01

    Full Text Available In the present work, the formation of silver and copper nanostructures on highly oriented pyrolytic graphite (HOPG modified with self-assembled gold nanoparticles (Au NPs is demonstrated. Surface patterning with nanometer resolution was achieved. Different methods such as field emission scanning electron microscopy (FEGSEM, energy dispersive spectrometry (EDS and X-ray photoelectron spectroscopy (XPS were used to illustrate a selective deposition of silver and copper on Au NPs. The mechanism of silver and copper ions reduction on Au NP with n-dodecanethiol coating is discussed.

  11. Diffraction of high energy electrons

    International Nuclear Information System (INIS)

    Bourret, A.

    1981-10-01

    The diffraction of electrons by a crystal is examined to study its structure. As the electron-substance interaction is strong, it must be treated in a dynamic manner. Using the N waves theory and physical optics the base equations giving the wave at the outlet are deduced for a perfect crystal and their equivalence is shown. The more complex case of an imperfect crystal is then envisaged in these two approaches. In both cases, only the diffraction of high energy electrons ( > 50 KeV) are considered since in the diffraction of slow electrons back scattering cannot be ignored. Taking into account an increasingly greater number of beams, through fast calculations computer techniques, enables images to be simulated in very varied conditions. The general use of the Fast Fourier Transform has given a clear cut practical advantage to the multi-layer method [fr

  12. Diffraction-grating neutron interferometers

    International Nuclear Information System (INIS)

    Ioffe, A.I.

    1988-01-01

    Aberration distortions of wavefronts in a very cold neutron interferometer using diffraction gratings are analyzed. Aberrations that considerably reduce the efficiency of a two-grating interferometer are shown to be fully compensable by adding a third diffraction grating, which also permits the interferometer to operate with a non-collimated and non-monochromatized illuminating beam thereby raising its efficiency. A fourth diffraction grating additionally permits compensation of effects of the terrestrial rotation that affect performance of a large interferometer in which the spatial separation of beams can be of the order of a few meters. It is demonstrated to be practically possible to implement an interferometer for neutrons having a wavelength λ = 20 A and to use it in experiments aimed at finding the electric charge of the neutron at the level of 10 -23 to 10 -22 of the electronic charge. (orig.)

  13. Texture studies using neutron diffraction

    International Nuclear Information System (INIS)

    Szpunar, J.A.

    1984-01-01

    Various aspects of the application of neutron scattering methods to texture studies are reviewed. The neutron method is compared with other methods of texture measurement and techniques of neutron diffraction registration of texture are discussed. Examples are presented of the use of neutron scattering for texture examination in materials having various grain sizes and degrees of structural inhomogeneity. It is also demonstrated that the information about texture can be used in the discussion of the deformation and recrystallization processes in metals. Neutron diffraction results are shown to be helpful in the examination of the influence of texture on the anisotropy of physical properties in materials. The possibility of neutron diffraction measurements of magnetic texture is reported. Finally the accuracy of texture measurements using the neutron method is discussed. (author)

  14. Light diffraction through a feather

    Directory of Open Access Journals (Sweden)

    Pérez García, Hugo;

    2012-01-01

    Full Text Available We have used a feather to study light diffraction, in a qualitative as well as in a quantitative manner. Experimental measurement of the separation between the bright spots obtained with a laser pointer allowed the determination of the space between feather's barbs and barbules. The results we have obtained agree satisfactorily with those corresponding to a typical feather. Due to the kind of materials, the related concepts and the experimental results, this activity becomes an excellent didactic resource suitable for studying diffraction, both in introductory undergraduate as well as in secondary school physics courses.

  15. Diffraction by a finite strip

    Science.gov (United States)

    Williams, M. H.

    1982-01-01

    A new approach is presented to diffraction problems involving plane strip barriers or slit apertures. These are problems that display the effects of multiple interacting edges. The approach taken here provides exact, compact solutions. The theory is introduced through a series of examples that are, in fact, the 'standard' problems of the subject, diffraction of a plane oblique wave by a slit, for example. In each case, the solutions are found to depend explicitly on a single 'special' function and its Fourier transform. These fundamental functions are described, with the emphasis placed on practical computational methods. The example problems are all couched in the language of acoustics.

  16. Dynamical theory of neutron diffraction

    International Nuclear Information System (INIS)

    Sears, V.F.

    1978-01-01

    We present a review of the dynamical theory of neutron diffraction by macroscopic bodies which provides the theoretical basis for the study of neutron optics. We consider both the theory of dispersion, in which it is shown that the coherent wave in the medium satisfies a macroscopic one-body Schroedinger equation, and the theory of reflection, refraction, and diffraction in which the above equation is solved for a number of special cases of interest. The theory is illustrated with the help of experimental results obtained over the past 10 years by a number of new techniques such as neutron gravity refractometry. Pendelloesung interference, and neutron interferometry. (author)

  17. Neutron diffraction on pulsed sources

    Science.gov (United States)

    Aksenov, V. L.; Balagurov, A. M.

    2016-03-01

    The current capabilities of and major scientific problems solved by time-of-flight neutron diffraction are reviewed. The reasons for the rapid development of the method over the last two decades have been mainly the emergence of third-generation pulsed sources with a megawatt time-averaged power and advances in neutron optical devices and detector systems. The paper discusses some historical aspects of time-of-flight neutron diffraction and examines the contribution to this method from F L Shapiro, the centennial of whose birth was celebrated in 2015. The state of the art with respect to neutron sources for studies on extracted beams is reviewed in a special section.

  18. CONFERENCE: Elastic and diffractive scattering

    International Nuclear Information System (INIS)

    White, Alan

    1989-01-01

    Elastic scattering, when particles appear to 'bounce' off each other, and the related phenomena of diffractive scattering are currently less fashionable than the study of hard scattering processes. However this could change rapidly if unexpected results from the UA4 experiment at the CERN Collider are confirmed and their implications tested. These questions were highlighted at the third 'Blois Workshop' on Elastic and Diffractive Scattering, held early in May on the Evanston campus of Northwestern University, near Chicago

  19. Computational imaging using lightweight diffractive-refractive optics.

    Science.gov (United States)

    Peng, Yifan; Fu, Qiang; Amata, Hadi; Su, Shuochen; Heide, Felix; Heidrich, Wolfgang

    2015-11-30

    Diffractive optical elements (DOE) show great promise for imaging optics that are thinner and more lightweight than conventional refractive lenses while preserving their light efficiency. Unfortunately, severe spectral dispersion currently limits the use of DOEs in consumer-level lens design. In this article, we jointly design lightweight diffractive-refractive optics and post-processing algorithms to enable imaging under white light illumination. Using the Fresnel lens as a general platform, we show three phase-plate designs, including a super-thin stacked plate design, a diffractive-refractive-hybrid lens, and a phase coded-aperture lens. Combined with cross-channel deconvolution algorithm, both spherical and chromatic aberrations are corrected. Experimental results indicate that using our computational imaging approach, diffractive-refractive optics is an alternative candidate to build light efficient and thin optics for white light imaging.

  20. Computational imaging using lightweight diffractive-refractive optics

    KAUST Repository

    Peng, Yifan

    2015-11-23

    Diffractive optical elements (DOE) show great promise for imaging optics that are thinner and more lightweight than conventional refractive lenses while preserving their light efficiency. Unfortunately, severe spectral dispersion currently limits the use of DOEs in consumer-level lens design. In this article, we jointly design lightweight diffractive-refractive optics and post-processing algorithms to enable imaging under white light illumination. Using the Fresnel lens as a general platform, we show three phase-plate designs, including a super-thin stacked plate design, a diffractive-refractive-hybrid lens, and a phase coded-aperture lens. Combined with cross-channel deconvolution algorithm, both spherical and chromatic aberrations are corrected. Experimental results indicate that using our computational imaging approach, diffractive-refractive optics is an alternative candidate to build light efficient and thin optics for white light imaging.

  1. A QCD analysis of ZEUS diffractive data

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2009-11-01

    ZEUS inclusive diffractive cross-section measurements have been used in a DGLAP next-to-leading-order QCD analysis to extract the diffractive parton distribution functions. Data on diffractive dijet production in deep inelastic scattering have also been included to constrain the gluon density. Predictions based on the extracted parton densities are compared to diffractive charm and dijet photoproduction data. (orig.)

  2. A QCD analysis of ZEUS diffractive data

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2009-11-15

    ZEUS inclusive diffractive cross-section measurements have been used in a DGLAP next-to-leading-order QCD analysis to extract the diffractive parton distribution functions. Data on diffractive dijet production in deep inelastic scattering have also been included to constrain the gluon density. Predictions based on the extracted parton densities are compared to diffractive charm and dijet photoproduction data. (orig.)

  3. Fresnel diffraction plates are simple and inexpensive

    Science.gov (United States)

    Hoover, R. B.

    1967-01-01

    Fresnel plate demonstrates diffraction phenomena simply and inexpensively. A large number of identical diffracting apertures are made in random orientation on photographic film. When a small source of light is viewed through the plate, the diffraction pattern typical of the diffracting aperture is readily seen.

  4. Nanometer polymer surface features: the influence on surface energy, protein adsorption and endothelial cell adhesion

    Science.gov (United States)

    Carpenter, Joseph; Khang, Dongwoo; Webster, Thomas J.

    2008-12-01

    Current small diameter (lactic-co-glycolic acid) (PLGA) surfaces elevated endothelial cell adhesion, proliferation, and extracellular matrix synthesis when compared to nanosmooth surfaces. Nonetheless, these studies failed to address the importance of lateral and vertical surface feature dimensionality coupled with surface free energy; nor did such studies elicit an optimum specific surface feature size for promoting endothelial cell adhesion. In this study, a series of highly ordered nanometer to submicron structured PLGA surfaces of identical chemistry were created using a technique employing polystyrene nanobeads and poly(dimethylsiloxane) (PDMS) molds. Results demonstrated increased endothelial cell adhesion on PLGA surfaces with vertical surface features of size less than 18.87 nm but greater than 0 nm due to increased surface energy and subsequently protein (fibronectin and collagen type IV) adsorption. Furthermore, this study provided evidence that the vertical dimension of nanometer surface features, rather than the lateral dimension, is largely responsible for these increases. In this manner, this study provides key design parameters that may promote vascular graft efficacy.

  5. Influence of nanometer scale particulate fillers on some properties of microfilled composite resin.

    Science.gov (United States)

    Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K

    2011-07-01

    The aim of this study was to evaluate the effect of different weight fractions of nanometer sized particulate filler on properties of microfilled composite resin. Composite resin was prepared by mixing 33 wt% of resin matrix to the 67 wt% of silane treated microfine silica particulate fillers with various fractions of nanometer sized fillers (0, 10, 15, 20, 30 wt%) using a high speed mixing machine. Test specimens made of the composites were tested with a three-point bending test with a speed of 1.0 mm/min until fracture. Surface microhardess (Vicker's microhardness) was also determined. The volumetric shrinkage in percent was calculated as a buoyancy change in distilled water by means of the Archimedes principle. The degree of monomer conversion (DC%) of the experimental composites containing different nanofiller fractions was measured using FTIR spectroscopy. Surface roughness (Ra) was determined using a surface profilometer. Nanowear measurements were carried out using a nanoindentation device. The water uptake of specimens was also measured. Parameters were statistically analysed by ANOVA (P < 0.05). The group without nanofillers showed the highest flexural strength and modulus, DC% and Ra value. The group with 30% nanofillers had the highest water uptake and volumetric shrinkage. No significant difference was found in Vicker's microhardness and the nanowear of the composites. The plain microfilled composite demonstrated superior properties compared to the composites loaded with nanofillers with the exception of surface roughness.

  6. Subnanometer and nanometer catalysts, method for preparing size-selected catalysts

    Science.gov (United States)

    Vajda, Stefan [Lisle, IL; Pellin, Michael J [Naperville, IL; Elam, Jeffrey W [Elmhurst, IL; Marshall, Christopher L [Naperville, IL; Winans, Randall A [Downers Grove, IL; Meiwes-Broer, Karl-Heinz [Roggentin, GR

    2012-03-27

    Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes. Invented size-selected cluster deposition provides a unique tool to tune material properties by atom-by-atom fashion, which can be stabilized by protective overcoats.

  7. Ultra-high vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry.

    Science.gov (United States)

    Kim, Kyeongtae; Jeong, Wonho; Lee, Woochul; Reddy, Pramod

    2012-05-22

    Understanding energy dissipation at the nanoscale requires the ability to probe temperature fields with nanometer resolution. Here, we describe an ultra-high vacuum (UHV)-based scanning thermal microscope (SThM) technique that is capable of quantitatively mapping temperature fields with ∼15 mK temperature resolution and ∼10 nm spatial resolution. In this technique, a custom fabricated atomic force microscope (AFM) cantilever, with a nanoscale Au-Cr thermocouple integrated into the tip of the probe, is used to measure temperature fields of surfaces. Operation in an UHV environment eliminates parasitic heat transport between the tip and the sample enabling quantitative measurement of temperature fields on metal and dielectric surfaces with nanoscale resolution. We demonstrate the capabilities of this technique by directly imaging thermal fields in the vicinity of a 200 nm wide, self-heated, Pt line. Our measurements are in excellent agreement with computational results-unambiguously demonstrating the quantitative capabilities of the technique. UHV-SThM techniques will play an important role in the study of energy dissipation in nanometer-sized electronic and photonic devices and the study of phonon and electron transport at the nanoscale.

  8. Mapping Thermal Expansion Coefficients in Freestanding 2D Materials at the Nanometer Scale

    Science.gov (United States)

    Hu, Xuan; Yasaei, Poya; Jokisaari, Jacob; Öǧüt, Serdar; Salehi-Khojin, Amin; Klie, Robert F.

    2018-02-01

    Two-dimensional materials, including graphene, transition metal dichalcogenides and their heterostructures, exhibit great potential for a variety of applications, such as transistors, spintronics, and photovoltaics. While the miniaturization offers remarkable improvements in electrical performance, heat dissipation and thermal mismatch can be a problem in designing electronic devices based on two-dimensional materials. Quantifying the thermal expansion coefficient of 2D materials requires temperature measurements at nanometer scale. Here, we introduce a novel nanometer-scale thermometry approach to measure temperature and quantify the thermal expansion coefficients in 2D materials based on scanning transmission electron microscopy combined with electron energy-loss spectroscopy to determine the energy shift of the plasmon resonance peak of 2D materials as a function of sample temperature. By combining these measurements with first-principles modeling, the thermal expansion coefficients (TECs) of single-layer and freestanding graphene and bulk, as well as monolayer MoS2 , MoSe2 , WS2 , or WSe2 , are directly determined and mapped.

  9. Nanometer-size surface modification produced by single, low energy, highly charged ions

    International Nuclear Information System (INIS)

    Stockli, M.P.

    1994-01-01

    Atomically flat surfaces of insulators have been bombarded with low energy, highly charged ions to search for nanometer-size surface modifications. It is expected that the high electron deficiency of highly charged ions will capture and/or remove many of the insulator's localized electrons when impacting on an insulating surface. The resulting local electron deficiency is expected to locally disintegrate the insulator through a open-quotes Coulomb explosionclose quotes forming nanometer-size craters. Xe ions with charge states between 10+ and 45+ and kinetic energies between 0 and 10 keV/q were obtained from the KSU-CRYEBIS, a CRYogenic Electron Beam Ion Source and directed onto various insulating materials. Mica was favored as target material as atomically flat surfaces can be obtained reliably through cleaving. However, the authors observations with an atomic force microscope have shown that mica tends to defoliate locally rather than disintegrate, most likely due to the small binding forces between adjacent layers. So far the authors measurements indicate that each ion produces one blister if the charge state is sufficiently high. The blistering does not seem to depend very much on the kinetic energy of the ions

  10. Transmission electron microscopical study of teenage crown dentin on the nanometer scale

    International Nuclear Information System (INIS)

    Panfilov, Peter; Kabanova, Anna; Guo, Jinming; Zhang, Zaoli

    2017-01-01

    Statement of significance: This is the first transmission electron microscopic study of teenage crown dentin on the nanometer scale. Samples for TEM were prepared by mechanical thinning and chemical polishing that allowed obtaining the electron transparent foils. It was firstly shown that human dentin possesses the layered morphology: the layers are oriented normally to the main axis of a tooth and have the thickness of ~ 50 nm. HA inorganic phase of teenage crown dentin is in the amorphous state. The cellular structure, which was formed from collagen fibers (diameter is ~ 5 nm), are observed near DEJ region in teenage dentin, whereas bioorganic phase of teenage crown dentin near the pulp camera does not contain the collagen fibers. Cracks in dentin thin foils have sharp tips, but big angles of opening (~ 30 ° ) with plastic zone ahead crack tip. It means that young crown human dentin exhibits ductile or viscous-elastic fracture behavior on the nanometer scale. - Highlights: • Dentin has layered morphology. • Mineral component of dentin is in amorphous state. • Collagen fibers form cellular structure in dentin. • Cracks in dentin behave by elastic-plastic manner.

  11. Surface effects on ionic Coulomb blockade in nanometer-size pores

    Science.gov (United States)

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V.; Di Ventra, Massimiliano

    2018-01-01

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying ‘crystal-like’ structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  12. Generating Sub-nanometer Displacement Using Reduction Mechanism Consisting of Torsional Leaf Spring Hinges

    Directory of Open Access Journals (Sweden)

    Fukuda Makoto

    2014-02-01

    Full Text Available Recent demand on the measurement resolution of precise positioning comes up to tens of picometers. Some distinguished researches have been performed to measure the displacement in picometer order, however, few of them can verify the measurement performance as available tools in industry. This is not only because the picometer displacement is not yet required for industrial use, but also due to the lack of standard tools to verify such precise displacement. We proposed a displacement reduction mechanism for generating precise displacement using torsional leaf spring hinges (TLSHs that consist of four leaf springs arranged radially. It has been demonstrated that a prototype of the reduction mechanism was able to provide one-nanometer displacement with 1/1000 reduction rate by a piezoelectric actuator. In order to clarify the potential of the reduction mechanism, a displacement reduction table that can be mounted on AFM stage was newly developed using TLSHs. This paper describes the design of the reduction mechanism and the sub-nanometer displacement performance of the table obtained from its dynamic and static characteristics measured by displacement sensors and from the AFM images

  13. Konference Diffractive Optics 2007 Barcelona

    Czech Academy of Sciences Publication Activity Database

    Pala, Jan

    2008-01-01

    Roč. 53, č. 2 (2008), s. 63-64 ISSN 0447-6441 R&D Projects: GA ČR(CZ) GP102/06/P448 Institutional research plan: CEZ:AV0Z20670512 Keywords : diffraction * holographic optical elements * laser beams Subject RIV: BH - Optics , Masers, Lasers

  14. 3D -Ray Diffraction Microscopy

    DEFF Research Database (Denmark)

    Poulsen, Henning Friis; Schmidt, Søren; Juul Jensen, Dorte

    2014-01-01

    Three-dimensional X-ray diffraction (3DXRD) microscopy is a fast and non-destructive structural characterization technique aimed at the study of individual crystalline elements (grains or subgrains) within mm-sized polycrystalline specimens. It is based on two principles: the use of highly...

  15. Neural-network-based depth-resolved multiscale structural optimization using density functional theory and electron diffraction data

    Science.gov (United States)

    Pennington, Robert S.; Coll, Catalina; Estradé, Sònia; Peiró, Francesca; Koch, Christoph T.

    2018-01-01

    Iterative neural-network-based three-dimensional structural optimization of atomic positions over tens of nanometers is performed using transmission electron microscope (TEM) diffraction data simulated from density functional theory (DFT) all-electron densities, thus retrieving parameter variations along the beam direction. We first use experimental data to show that the GPAW DFT code's all-electron densities are considerably more accurate for electron diffraction calculations compared to conventional isolated-atom scattering factors, and they also compare well to Wien2K DFT simulations. This DFT-TEM combination is then integrated into an iterative neural-network-optimization-based algorithm (PRIMES, parameter retrieval and inversion from multiple electron scattering) to retrieve nanometer-scale ferroelectric polarization domains and strain in theoretical bulklike specimens from TEM data. DFT and isolated-atom methods produce substantially different diffraction patterns and retrieved polarization domain parameters, and DFT is sufficient to retrieve strain properties from a silicon specimen simulated using experimentally derived structure factors. Thus, we show that the improved accuracy, fast computation, and intuitive integration make the GPAW DFT code well suited for three-dimensional materials characterization and demonstrate this using an iterative neural-network algorithm that is verifiable on the mesoscale and, with DFT integration, self-consistent on the nanoscale.

  16. X-ray diffraction from single GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Biermanns, Andreas

    2012-11-12

    In recent years, developments in X-ray focussing optics have allowed to produce highly intense, coherent X-ray beams with spot sizes in the range of 100 nm and below. Together with the development of new experimental stations, X-ray diffraction techniques can now be applied to study single nanometer-sized objects. In the present work, X-ray diffraction is applied to study different aspects of the epitaxial growth of GaAs nanowires. Besides conventional diffraction methods, which employ X-ray beams with dimensions of several tens of {mu}m, special emphasis lies on the use of nanodiffraction methods which allow to study single nanowires in their as-grown state without further preparation. In particular, coherent X-ray diffraction is applied to measure simultaneously the 3-dimensional shape and lattice parameters of GaAs nanowires grown by metal-organic vapor phase epitaxy. It is observed that due to a high density of zinc-blende rotational twins within the nanowires, their lattice parameter deviates systematically from the bulk zinc-blende phase. In a second step, the initial stage in the growth of GaAs nanowires on Si (1 1 1) surfaces is studied. This nanowires, obtained by Ga-assisted growth in molecular beam epitaxy, grow predominantly in the cubic zinc-blende structure, but contain inclusions of the hexagonal wurtzite phase close to their bottom interface. Using nanodiffraction methods, the position of the different structural units along the growth axis is determined. Because the GaAs lattice is 4% larger than silicon, these nanowires release their lattice mismatch by the inclusion of dislocations at the interface. Whereas NWs with diameters below 50 nm are free of strain, a rough interface structure in nanowires with diameters above 100 nm prevents a complete plastic relaxation, leading to a residual strain at the interface that decays elastically along the growth direction. Finally, measurements on GaAs-core/InAs-shell nanowire heterostructures are presented

  17. Sensitive SERS detection at the single-particle level based on nanometer-separated mushroom-shaped plasmonic dimers

    Science.gov (United States)

    Xiang, Quan; Li, Zhiqin; Zheng, Mengjie; Liu, Qing; Chen, Yiqin; Yang, Lan; Jiang, Tian; Duan, Huigao

    2018-03-01

    Elevated metallic nanostructures with nanogaps (process to reliably define elevated nanometer-separated mushroom-shaped dimers directly from 3D resist patterns based on the gap-narrowing effect during the metallic film deposition. By controlling the initial size of nanogaps in resist structures and the following deposited film thickness, metallic nanogaps could be tuned at the sub-10 nm scale with single-digit nanometer precision. Both experimental and simulated results revealed that gold dimer on mushroom-shaped pillars have the capability to achieve higher SERS enhancement factor comparing to those plasmonic dimers on cylindrical pillars or on a common SiO2/Si substrate, implying that the nanometer-gapped elevated dimer is an ideal platform to achieve the highest possible field enhancement for various plasmonic applications.

  18. Composition Analysis of III-Nitrides at the Nanometer Scale: Comparison of Energy Dispersive X-ray Spectroscopy and Atom Probe Tomography.

    Science.gov (United States)

    Bonef, Bastien; Lopez-Haro, Miguel; Amichi, Lynda; Beeler, Mark; Grenier, Adeline; Robin, Eric; Jouneau, Pierre-Henri; Mollard, Nicolas; Mouton, Isabelle; Monroy, Eva; Bougerol, Catherine

    2016-12-01

    The enhancement of the performance of advanced nitride-based optoelectronic devices requires the fine tuning of their composition, which has to be determined with a high accuracy and at the nanometer scale. For that purpose, we have evaluated and compared energy dispersive X-ray spectroscopy (EDX) in a scanning transmission electron microscope (STEM) and atom probe tomography (APT) in terms of composition analysis of AlGaN/GaN multilayers. Both techniques give comparable results with a composition accuracy better than 0.6 % even for layers as thin as 3 nm. In case of EDX, we show the relevance of correcting the X-ray absorption by simultaneous determination of the mass thickness and chemical composition at each point of the analysis. Limitations of both techniques are discussed when applied to specimens with different geometries or compositions.

  19. Room temperature magnetism of few-nanometers-thick Fe{sub 3}O{sub 4}(111) films on Pt(111) and Ru(0001) studied in ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, M., E-mail: lewandowski@amu.edu.pl [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań (Poland); Miłosz, Z.; Michalak, N.; Ranecki, R. [Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań (Poland); Sveklo, I.; Kurant, Z.; Maziewski, A. [Faculty of Physics, University of Białystok, Lipowa 41, 15-424 Białystok (Poland); Mielcarek, S. [Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Luciński, T. [Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań (Poland); Jurga, S. [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2015-09-30

    Few-nanometers-thick Fe{sub 3}O{sub 4}(111) films were epitaxially grown on Pt(111) and Ru(0001) single crystal supports by sequential iron deposition and oxidation in an ultra-high vacuum chamber. The growth of well-ordered magnetite films was confirmed by low energy electron diffraction. The films were covered with a protective Au layer and subjected to magnetic and structural studies in ambient conditions. Magnetic hysteresis loops, recorded using magneto-optical Kerr effect apparatus, confirmed magnetic ordering in both films at room temperature. The Kerr measurements indicated in-plane orientation of magnetization, which was supported by the lack of magnetic contrast in magnetic force microscopy images. Atomic force microscopy revealed significant differences in morphology of the films, tentatively attributed to different lattice mismatch with Pt(111) and Ru(0001) single crystal supports. - Highlights: • Few-nanometers-thick Fe{sub 3}O{sub 4}(111) films were grown on Pt(111) and Ru(0001). • Magnetic properties were studied using MOKE and AFM/MFM in ambient conditions. • The films exhibited in-plane magnetic ordering at room temperature. • Differences in magnetic properties were tentatively assigned to structural differences.

  20. Spinel Li{sub 2}CoTi{sub 3}O{sub 8} nanometer obtained for application as pigment; Espinela Li{sub 2}CoTi{sub 3}O{sub 8} nanometrica obtenida para aplicacion como pigmento

    Energy Technology Data Exchange (ETDEWEB)

    Costa de Camara, M. S.; Alves Pimentel, L.; Longo, E.; Nobrega Azevedo, L. da; Araujo Melo, D. M. de

    2016-05-01

    Pigments are used in ceramics, cosmetics, inks, and other applications widely materials. To this must be single and easily reproducible. Moreover, the pigments obtained in the nanoscale are more stable, reproducible and highlight color in small amounts compared with those obtained in micrometer scale. The mixed oxides with spinel structures AB{sub 2}O{sub 4} have important applications, including: pigments, refractories, catalytic and electronic ceramics. In this context, the aim of this work was the preparation of powder Li{sub 2}CoTi{sub 3}O{sub 8} spinel phase with nanometer particle size of the polymeric precursor method (Pechini) and characterization by means of thermal analysis (TG/DTA) X-ray diffraction (XRD), refined by the Rietveld method, BET, transmission electron microscopy (TEM), Raman and colorimetric coordinates. The pigment was obtained by heat treatment of 400 degree centigrade to 1000 degree centigrade after pyrolysis at 300 degree centigrade/1 h for removing the organic material. Li{sub 2}CoTi{sub 3}O{sub 8} desired spinel phase was obtained from 500 degree centigrade, and presenting stability nanometer to about 1.300 degree centigrade. Spinel green phase introduced at temperatures in the range of 400 degree centigrade and 500 degree centigrade, and 600 degree centigrade at temperatures between blue and 1000 degree centigrade. (Author)

  1. Neutron diffraction on pulsed sources

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Balagurov, A.M.

    2016-01-01

    The possibilities currently offered and major scientific problems solved by time-of-flight neutron diffraction are reviewed. The reasons for the rapid development of the method over the last two decades has been mainly the emergence of third generation pulsed sources with a MW time-averaged power and advances in neutron-optical devices and detector systems. The paper discusses some historical aspects of time-of-flight neutron diffraction and examines the contribution to this method by F.L.Shapiro whose 100th birth anniversary was celebrated in 2015. The state of the art with respect to neutron sources for studies on output beams is reviewed in a special section. [ru

  2. Deterministic Bragg Coherent Diffraction Imaging.

    Science.gov (United States)

    Pavlov, Konstantin M; Punegov, Vasily I; Morgan, Kaye S; Schmalz, Gerd; Paganin, David M

    2017-04-25

    A deterministic variant of Bragg Coherent Diffraction Imaging is introduced in its kinematical approximation, for X-ray scattering from an imperfect crystal whose imperfections span no more than half of the volume of the crystal. This approach provides a unique analytical reconstruction of the object's structure factor and displacement fields from the 3D diffracted intensity distribution centred around any particular reciprocal lattice vector. The simple closed-form reconstruction algorithm, which requires only one multiplication and one Fourier transformation, is not restricted by assumptions of smallness of the displacement field. The algorithm performs well in simulations incorporating a variety of conditions, including both realistic levels of noise and departures from ideality in the reference (i.e. imperfection-free) part of the crystal.

  3. Diffraction operators in paraxial approach

    Science.gov (United States)

    Lasso, William; Navas, Marianela; Añez, Liz; Urdaneta, Romer; Díaz, Leonardo; Torres, César O.

    2014-07-01

    Nowadays, research in the field of science education points to the creation of alternative ways of teaching contents encouraging the development of more elaborate reasoning, where a high degree of abstraction and generalization of scientific knowledge prevails. On that subject, this research shows a didactic alternative proposal for the construction of Fresnel and Fraunhoffer diffraction concepts applying the Fourier transform technique in the study of electromagnetic waves propagation in free space. Curvature transparency and Fourier sphere operators in paraxial approximation are used in order to make the usual laborious mathematical approach easier. The main result shows that the composition of optic metaxial operators results in the discovery of a simpler way out of the standard electromagnetic wave propagation in free space between a transmitter and a receptor separated from a given distance. This allows to state that the didactic proposal shown encourages the construction of Fresnel and Fraunhoffer diffraction concepts in a more effective and easier way than the traditional teaching.

  4. Neutron diffraction and Vitamin E

    Energy Technology Data Exchange (ETDEWEB)

    Harroun, T A; Marquardt, D; Katsaras, J; Atkinson, J, E-mail: tharroun@brocku.ca

    2010-11-01

    It is generally accepted that neutron diffraction from model membrane systems is an effective biophysical technique for determining membrane structure. Here we describe an example of how deuterium labelling can elucidate the location of specific membrane soluble molecules, including a brief discussion of the technique itself. We show that deuterium labelled {alpha}-tocopherol sits upright in the bilayer, as might be expected, but at very different locations within the bilayer, depending on the degree of lipid chain unsaturation.

  5. Industrial applications of neutron diffraction

    International Nuclear Information System (INIS)

    Felcher, G.P.

    1989-01-01

    Neutron diffraction (or, to be more general, neutron scattering) is a most versatile and universal tool, which has been widely employed to probe the structure, the dynamics and the magnetism of condensed matter. Traditionally used for fundamental research in solid state physics, this technique more recently has been applied to problems of immediate industrial interest, as illustrated in examples covering the main fields of endeavour. 14 refs., 14 figs

  6. Diffractive X-ray Telescopes

    OpenAIRE

    Skinner, Gerald K.

    2010-01-01

    Diffractive X-ray telescopes using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution several orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted space- time in the immediate vicinity of the super...

  7. Neutron diffraction - instrument and experiment

    International Nuclear Information System (INIS)

    Siruguri, Vasudeva

    2010-01-01

    I describe the basic concepts that go into the design of a neutron diffractometer at a reactor source. Recent developments undertaken at our centre in this regard will be highlighted. Importance of sample environment to carry out front-line research problems with be emphasized. The Rietveld method used for neutron diffraction data analysis will be discussed in some detail along with a short introduction to magnetic refinement. (author)

  8. Submicron X-ray diffraction

    International Nuclear Information System (INIS)

    MacDowell, Alastair; Celestre, Richard; Tamura, Nobumichi; Spolenak, Ralph; Valek, Bryan; Brown, Walter; Bravman, John; Padmore, Howard; Batterman, Boris; Patel, Jamshed

    2000-01-01

    At the Advanced Light Source in Berkeley the authors have instrumented a beam line that is devoted exclusively to x-ray micro diffraction problems. By micro diffraction they mean those classes of problems in Physics and Materials Science that require x-ray beam sizes in the sub-micron range. The instrument is for instance, capable of probing a sub-micron size volume inside micron sized aluminum metal grains buried under a silicon dioxide insulating layer. The resulting Laue pattern is collected on a large area CCD detector and automatically indexed to yield the grain orientation and deviatoric (distortional) strain tensor of this sub-micron volume. A four-crystal monochromator is then inserted into the beam, which allows monochromatic light to illuminate the same part of the sample. Measurement of diffracted photon energy allows for the determination of d spacings. The combination of white and monochromatic beam measurements allow for the determination of the total strain/stress tensor (6 components) inside each sub-micron sized illuminated volume of the sample

  9. Non-equilibrium Green function method: theory and application in simulation of nanometer electronic devices

    International Nuclear Information System (INIS)

    Do, Van-Nam

    2014-01-01

    We review fundamental aspects of the non-equilibrium Green function method in the simulation of nanometer electronic devices. The method is implemented into our recently developed computer package OPEDEVS to investigate transport properties of electrons in nano-scale devices and low-dimensional materials. Concretely, we present the definition of the four real-time Green functions, the retarded, advanced, lesser and greater functions. Basic relations among these functions and their equations of motion are also presented in detail as the basis for the performance of analytical and numerical calculations. In particular, we review in detail two recursive algorithms, which are implemented in OPEDEVS to solve the Green functions defined in finite-size opened systems and in the surface layer of semi-infinite homogeneous ones. Operation of the package is then illustrated through the simulation of the transport characteristics of a typical semiconductor device structure, the resonant tunneling diodes. (review)

  10. Bimetallic Ag-Pt Sub-nanometer Supported Clusters as Highly Efficient and Robust Oxidation Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Negreiros, Fabio R. [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Halder, Avik [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Yin, Chunrong [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Singh, Akansha [Harish-Chandra Research Institute, HBNI, Chhatnag Road Jhunsi Allahabad 211019 India; Barcaro, Giovanni [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Sementa, Luca [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Tyo, Eric C. [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Pellin, Michael J. [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Bartling, Stephan [Institut für Physik, Universität Rostock, Rostock Germany; Meiwes-Broer, Karl-Heinz [Institut für Physik, Universität Rostock, Rostock Germany; Seifert, Sönke [X-ray Science Division, Argonne National Laboratory, Lemont IL USA; Sen, Prasenjit [Harish-Chandra Research Institute, HBNI, Chhatnag Road Jhunsi Allahabad 211019 India; Nigam, Sandeep [Chemistry Division, Bhabha Atomic Research Centre, Trombay Mumbai- 400 085 India; Majumder, Chiranjib [Chemistry Division, Bhabha Atomic Research Centre, Trombay Mumbai- 400 085 India; Fukui, Nobuyuki [East Tokyo Laboratory, Genesis Research Institute, Inc., Ichikawa Chiba 272-0001 Japan; Yasumatsu, Hisato [Cluster Research Laboratory, Toyota Technological Institute: in, East Tokyo Laboratory, Genesis Research Institute, Inc. Ichikawa, Chiba 272-0001 Japan; Vajda, Stefan [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Nanoscience and Technology Division, Argonne National Laboratory, Lemont IL USA; Institute for Molecular Engineering, University of Chicago, Chicago IL USA; Fortunelli, Alessandro [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Materials and Process Simulation Center, California Institute of Technology, Pasadena CA USA

    2017-12-29

    A combined experimental and theoretical investigation of Ag-Pt sub-nanometer clusters as heterogeneous catalysts in the CO -> CO2 reaction (COox) is presented. Ag9Pt2 and Ag9Pt3 clusters are size-selected in the gas phase, deposited on an ultrathin amorphous alumina support, and tested as catalysts experimentally under realistic conditions and by first-principles simulations at realistic coverage. Insitu GISAXS/TPRx demonstrates that the clusters do not sinter or deactivate even after prolonged exposure to reactants at high temperature, and present comparable, extremely high COox catalytic efficiency. Such high activity and stability are ascribed to a synergic role of Ag and Pt in ultranano-aggregates, in which Pt anchors the clusters to the support and binds and activates two CO molecules, while Ag binds and activates O-2, and Ag/Pt surface proximity disfavors poisoning by CO or oxidized species.

  11. Nanometer-scale sharpening and surface roughening of ZnO nanorods by argon ion bombardment

    Science.gov (United States)

    Chatterjee, Shyamal; Behera, Akshaya K.; Banerjee, Amarabha; Tribedi, Lokesh C.; Som, Tapobrata; Ayyub, Pushan

    2012-07-01

    We report the effects of exposing a hydrothermally grown, single crystalline ZnO nanorod array to a beam of 50 keV argon ions at room temperature. High resolution electron microscopy reveals that the ion bombardment results in a nanometer-scale roughening of the nanorod sidewalls, which were almost atomically flat in the pristine sample. Ion bombardment further causes the flat, ≈100 nm diameter nanorod tips to get sharpened to ultrafine points less than 10 nm across. While tip sharpening is attributed to preferential sputtering, the formation of crystalline surface protuberances can be ascribed to surface instability due to curvature dependent sputtering and surface diffusion under argon-ion bombardment. Both the nanoscale roughening as well as the tip sharpening are expected to favorably impact a wide variety of applications, such as those involving catalysis, gas sensing, solar cells, field emission and gas discharge.

  12. Nanometer-scale sharpening and surface roughening of ZnO nanorods by argon ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Shyamal, E-mail: shyamal@iitbbs.ac.in [School of Basic Sciences, Indian Institute of Technology, Bhubaneswar 751013 (India); Behera, Akshaya K. [School of Basic Sciences, Indian Institute of Technology, Bhubaneswar 751013 (India); Banerjee, Amarabha; Tribedi, Lokesh C. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Som, Tapobrata [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Ayyub, Pushan, E-mail: pushan@tifr.res.in [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)

    2012-07-01

    We report the effects of exposing a hydrothermally grown, single crystalline ZnO nanorod array to a beam of 50 keV argon ions at room temperature. High resolution electron microscopy reveals that the ion bombardment results in a nanometer-scale roughening of the nanorod sidewalls, which were almost atomically flat in the pristine sample. Ion bombardment further causes the flat, Almost-Equal-To 100 nm diameter nanorod tips to get sharpened to ultrafine points less than 10 nm across. While tip sharpening is attributed to preferential sputtering, the formation of crystalline surface protuberances can be ascribed to surface instability due to curvature dependent sputtering and surface diffusion under argon-ion bombardment. Both the nanoscale roughening as well as the tip sharpening are expected to favorably impact a wide variety of applications, such as those involving catalysis, gas sensing, solar cells, field emission and gas discharge.

  13. Nanometer-Scale Chemistry of a Calcite Biomineralization Template: Implications for Skeletal Composition and Nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Branson, Oscar; Bonnin, Elisa A.; Perea, Daniel E.; Spero, Howard J.; Zhu, Zihua; Winters, Maria; Hönisch, Bärbel; Russell, Ann D.; Fehrenbacher, Jennifer S.; Gagnon, Alexander C.

    2016-10-28

    Biomineralizing organisms exhibit exquisite control over skeletal morphology and composition. The promise of understanding and harnessing this feat of natural engineering has motivated an intense search for the mechanisms that direct in vivo mineral self-assembly. We used atom probe tomography, a sub-nanometer 3D chemical mapping technique, to examine the chemistry of a buried organic-mineral interface in biomineral calcite from a marine foraminifer. The chemical patterns at this interface capture the processes of early biomineralization, when the shape, mineralogy, and orientation of skeletal growth are initially established. Sodium is enriched by a factor of nine on the organic side of the interface. Based on this pattern, we suggest that sodium plays an integral role in early biomineralization, potentially altering interfacial energy to promote crystal nucleation, and that interactions between organic surfaces and electrolytes other than calcium or carbonate could be a crucial aspect of CaCO3 biomineralization.

  14. Crystallographic, FTIR and optical property studies on Co doped ZnS nanometer-sized crystals

    Science.gov (United States)

    Mote, V. D.; Huse, V. R.; Dole, B. N.

    2013-02-01

    Cobalt doped ZnS Semiconductor nanometer-sized crystals were synthesized by coprecipitation method at room temperature. The effect of Co doping on the structural and optical properties was investigated. XRD investigation shows Cobalt doped ZnS samples have cubic structure. The value of lattice constant of Co doped ZnS sample is greater than the pure ZnS sample. The average crystallite size was calculated by Scherrer's formula. It is found that the average crystallite size of the samples is ranging from 2-4 nm. Optical characterization of pure ZnS as well as Cobalt doped ZnS samples was carried out by UV-Vis spectroscopy. It is evident that the optical band of pure ZnS sample is smaller than that of the Co doped ZnS sample. The chemical species of the grown crystals were identified by Fourier transform infrared spectroscopy (FTIR).

  15. Mechanism of the superior mechanical strength of nanometer-sized metal single crystals revealed

    KAUST Repository

    Afify, N. D.

    2013-10-01

    Clear understanding of the superior mechanical strength of nanometer-sized metal single crystals is required to derive advanced mechanical components retaining such superiority. Although high quality studies have been reported on nano-crystalline metals, the superiority of small single crystals has neither been fundamentally explained nor quantified to this date. Here we present a molecular dynamics study of aluminum single crystals in the size range from 4.1 nm to 40.5 nm. We show that the ultimate mechanical strength deteriorates exponentially as the single crystal size increases. The small crystals superiority is explained by their ability to continuously form vacancies and to recover them. © 2013 Published by Elsevier B.V.

  16. Strategies for Probing Nanometer-Scale Electrocatalysts: From Single Particles to Catalyst-Membrane Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Korzeniewski, Carol [Texas Tech Univ., Lubbock, TX (United States). Department of Chemistry & Biochemistry

    2014-01-20

    The project primary objectives are to prepare and elucidate the promoting properties of materials that possess high activity for the conversion of hydrogen and related small molecules (water, oxygen, carbon monoxide and methanol) in polymer electrolyte fuel cells. One area of research has focused on the study of catalyst materials. Protocols were developed for probing the structure and benchmarking the activity of Pt and Pt bimetallic nanometer-scale catalyst against Pt single crystal electrode standards. A second area has targeted fuel cell membrane and the advancement of simple methods mainly based on vibrational spectroscopy that can be applied broadly in the study of membrane structure and transport properties. Infrared and Raman methods combined with least-squares data modeling were applied to investigate and assist the design of robust, proton conductive membranes, which resist reactant crossover.

  17. Consolidation of nanometer-sized aluminum single crystals: Microstructure and defects evolutions

    KAUST Repository

    Afify, N. D.

    2014-04-01

    Deriving bulk materials with ultra-high mechanical strength from nanometer-sized single metalic crystals depends on the consolidation procedure. We present an accurate molecular dynamics study to quantify microstructure responses to consolidation. Aluminum single crystals with an average size up to 10.7 nm were hydrostatically compressed at temperatures up to 900 K and pressures up to 5 GPa. The consolidated material developed an average grain size that grew exponentially with the consolidation temperature, with a growth rate dependent on the starting average grain size and the consolidation pressure. The evolution of the microstructure was accompanied by a significant reduction in the concentration of defects. The ratio of vacancies to dislocation cores decreased with the average grain size and then increased after reaching a critical average grain size. The deformation mechanisms of poly-crystalline metals can be better understood in the light of the current findings. © 2013 Elsevier B.V. All rights reserved.

  18. Nanometer-scale lithography of ultrathin films with atomic force microscope

    CERN Document Server

    Kim, J C; Shin, Y W; Park, S W

    1998-01-01

    Ultrathin resist films have been prepared by both Langmuir-Blodgett (LB) and self-assembly (SA) techniques. Nanometer-scale patterning of these thin films has been performed by using the atomic force microscope (AFM) as the exposing tool. The poly (methylphenylmethacrylate) (PMPMA) LB films were prepared and fabricated by AFM lithography. When the exposure was carried out at the bias voltage of -25V, the protruding lines appeared in the exposed regions. The preoptimized LB films at various conditions exhibited 120 nm line resolution. An organosilane monolayer composed of octadecyldimethylsilyl groups was prepared on a Si substrate. It was then patterned through the localized degradation of the monolayer due to anodic reaction induced by an AFM tip. When the bias voltage was -30 V, the protruding lines appeared in the exposed regions.

  19. Electrospraying and ultraviolet light curing of nanometer-thin polydimethylsiloxane membranes for low-voltage dielectric elastomer transducers

    Science.gov (United States)

    Osmani, Bekim; Töpper, Tino; Siketanc, Matej; Kovacs, Gabor M.; Müller, Bert

    2017-04-01

    Dielectric elastomer transducers (DETs) have attracted interest as actuators, sensors, and even as self-sensing actuators for applications in medicine, soft robotics, and microfluidics. To reach strains of more than 10 %, they currently require operating voltages of several hundred volts. In medical applications for artificial muscles, however, their operation is limited to a very few tens of volts, which implies high permittivity materials and thin-film structures. Such micro- or nanostructures can be prepared using electro-spraying, a cost-effective technique that allows upscaling using multiple nozzles for the fabrication of silicone films down to nanometer thickness. Deposition rates of several micrometers per hour have already been reached. It has been recently demonstrated that such membranes can be fabricated by electro-spraying and subsequent ultraviolet light irradiation. Herein, we introduce a relatively fast deposition of a dimethyl silicone copolymer fluid that contains mercaptopropyl side chains in addition to the methyl groups. Its elastic modulus was tuned with the irradiation dose of the 200 W Hg-Xe lamp. We also investigated the formation of elastomer films, using polymer concentrations in ethyl acetate of 1, 2, 5 and 10 vol%. After curing, the surface roughness was measured by means of atomic force microscopy. This instrument also enabled us to determine the average elastic modulus out of, for example, 400 nanoindentation measurements, using a spherical tip with a radius of 500 nm. The elastomer films were cured for a period of less than one minute, a speed that makes it feasible to combine electro-spraying and in situ curing in a single process step for fabricating low-voltage, multilayer DETs.

  20. Surface enhanced Raman scattering of gold nanoparticles supported on copper foil with graphene as a nanometer gap.

    Science.gov (United States)

    Xiang, Quan; Zhu, Xupeng; Chen, Yiqin; Duan, Huigao

    2016-02-19

    Gaps with single-nanometer dimensions (foil. The Cu foil can serve as a low-loss plasmonically active metallic film that supports the imaginary charge oscillations, while the graphene can not only create a stable sub-nanometer gap for massive plasmonic field enhancements but also serve as a chemical enhancer. We obtained higher SERS enhancements in this graphene-gapped configuration compared to those in Au nanoparticles on Cu film or on graphene-SiO2-Si. Also, the Raman signals measured maintained their fine features and intensities over a long time period, indicating the stability of this Au-graphene-Cu hybrid configuration as an SERS substrate.

  1. Graphene nanoribbon field effect transistor for nanometer-size on-chip temperature sensor

    Science.gov (United States)

    Banadaki, Yaser M.; Srivastava, Ashok; Sharifi, Safura

    2016-04-01

    Graphene has been extensively investigated as a promising material for various types of high performance sensors due to its large surface-to-volume ratio, remarkably high carrier mobility, high carrier density, high thermal conductivity, extremely high mechanical strength and high signal-to-noise ratio. The power density and the corresponding die temperature can be tremendously high in scaled emerging technology designs, urging the on-chip sensing and controlling of the generated heat in nanometer dimensions. In this paper, we have explored the feasibility of a thin oxide graphene nanoribbon (GNR) as nanometer-size temperature sensor for detecting local on-chip temperature at scaled bias voltages of emerging technology. We have introduced an analytical model for GNR FET for 22nm technology node, which incorporates both thermionic emission of high-energy carriers and band-to-band-tunneling (BTBT) of carriers from drain to channel regions together with different scattering mechanisms due to intrinsic acoustic phonons and optical phonons and line-edge roughness in narrow GNRs. The temperature coefficient of resistivity (TCR) of GNR FET-based temperature sensor shows approximately an order of magnitude higher TCR than large-area graphene FET temperature sensor by accurately choosing of GNR width and bias condition for a temperature set point. At gate bias VGS = 0.55 V, TCR maximizes at room temperature to 2.1×10-2 /K, which is also independent of GNR width, allowing the design of width-free GNR FET for room temperature sensing applications.

  2. Semiclassical perturbation theory for diffraction in heavy atom surface scattering.

    Science.gov (United States)

    Miret-Artés, Salvador; Daon, Shauli; Pollak, Eli

    2012-05-28

    The semiclassical perturbation theory formalism of Hubbard and Miller [J. Chem. Phys. 78, 1801 (1983)] for atom surface scattering is used to explore the possibility of observation of heavy atom diffractive scattering. In the limit of vanishing ℏ the semiclassical theory is shown to reduce to the classical perturbation theory. The quantum diffraction pattern is sensitive to the characteristics of the beam of incoming particles. Necessary conditions for observation of quantum diffraction are derived for the angular width of the incoming beam. An analytic expression for the angular distribution as a function of the angular and momentum variance of the incoming beam is obtained. We show both analytically and through some numerical results that increasing the angular width of the incident beam leads to decoherence of the quantum diffraction peaks and one approaches the classical limit. However, the incoherence of the beam in the parallel direction does not destroy the diffraction pattern. We consider the specific example of Ar atoms scattered from a rigid LiF(100) surface.

  3. Single crystal neutron diffraction study of triglycine sulphate revisited

    Indian Academy of Sciences (India)

    Abstract. In order to get the exact hydrogen-bonding scheme in triglycine sulphate. (TGS), which is an important hydrogen bonded ferroelectric, a single crystal neutron diffraction study was undertaken. The structure was refined to an R-factor of R[F2] = 0.034. Earlier neutron structure of TGS was reported with a very limited ...

  4. Teaching Diffraction with Hands-On Optical Spectrometry

    Science.gov (United States)

    Fischer, Robert

    2012-01-01

    Although the observation of optical spectra is common practice in physics classes, students are usually limited to a passive, qualitative observation of nice colours. This paper discusses a diffraction-based spectrometer that allows students to take quantitative measurements of spectral bands. Students can build it within minutes from generic…

  5. An adjustable diaphragm/collimator for neutron diffraction experiments

    International Nuclear Information System (INIS)

    Simms, P.

    1981-01-01

    In single-crystal neutron diffraction experiments, the environment surrounding the specimen may produce unwanted scattering and this should be limited by a system of simple but easily adjustable diaphragms. Here a system is described which has been fitted to a number of neutron diffractometers at the Institut Laue-Langevin at Grenoble. (Auth.)

  6. Growing Larger Crystals for Neutron Diffraction

    Science.gov (United States)

    Pusey, Marc

    2003-01-01

    Obtaining crystals of suitable size and high quality has been a major bottleneck in macromolecular crystallography. With the advent of advanced X-ray sources and methods the question of size has rapidly dwindled, almost to the point where if one can see the crystal then it was big enough. Quality is another issue, and major national and commercial efforts were established to take advantage of the microgravity environment in an effort to obtain higher quality crystals. Studies of the macromolecule crystallization process were carried out in many labs in an effort to understand what affected the resultant crystal quality on Earth, and how microgravity improved the process. While technological improvements are resulting in a diminishing of the minimum crystal size required, neutron diffraction structural studies still require considerably larger crystals, by several orders of magnitude, than X-ray studies. From a crystal growth physics perspective there is no reason why these 'large' crystals cannot be obtained: the question is generally more one of supply than limitations mechanism. This talk will discuss our laboratory s current model for macromolecule crystal growth, with highlights pertaining to the growth of crystals suitable for neutron diffraction studies.

  7. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins

    OpenAIRE

    Hofmann, M.; Eggeling, C.; Jakobs, S.; Hell, S.

    2005-01-01

    Fluorescence microscopy is indispensable in many areas of science, but until recently, diffraction has limited the resolution of its lens-based variant. The diffraction barrier has been broken by a saturated depletion of the marker's fluorescent state by stimulated emission, but this approach requires picosecond laser pulses of GW/cm2 intensity. Here, we demonstrate the surpassing of the diffraction barrier in fluorescence microscopy with illumination intensities that are eight orders of magn...

  8. Diffraction structural biology – a new horizon

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, Takashi [Nagoya Industrial Science Research Institute, 1-13 Yotsuya-dori, Chikusa-ku, Nagoya 464-0819 (Japan); Helliwell, John R. [University of Manchester, Manchester M13 9PL (United Kingdom); Johnson, John E. [Scripps Research Institute, San Diego, CA (United States); Yasuoka, Noritake, E-mail: nori-yasuoka@nifty.com [AIST Kansai Center, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Sakabe, Noriyoshi [Photon Factory, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2013-11-01

    An introductory overview to the special issue papers on diffraction structural biology in this issue of the journal. An introductory overview to the special issue papers on diffraction structural biology in this issue of the journal.

  9. Diffractive dijet and W production in CDF

    International Nuclear Information System (INIS)

    Goulianos, K.

    1998-01-01

    Results on diffractive dijet and W-boson production from CDF are reviewed and compared with predictions based on factorization of the diffractive structure function of the proton measured in deep inelastic scattering at HERA

  10. Edge separation using diffraction anomalous fine structure

    International Nuclear Information System (INIS)

    Ravel, B.; Bouldin, C.E.; Renevier, H.; Hodeau, J.L.; Berar, J.F.

    1999-01-01

    We exploit the crystallographic sensitivity of the Diffraction Anomalous Fine-Structure (DAFS) measurement to separate the fine structure contributions of different atomic species with closely spaced resonant energies. In BaTiO 3 the Ti K edge and Ba Lm edges are separated by 281 eV, or about 8.2 Angstrom -1 ), thus severely limiting the information content of the Ti K edge signal. Using the site selectivity of DAFS we can separate the two fine structure spectra using an iterative Kramers-Kronig method, thus extending the range of the Ti K edge spectrum. This technique has application to many rare earth/transition metal compounds, including many magnetic materials of technological significance for which K and L edges overlap in energy. (au)

  11. Lattice constant measurement from electron backscatter diffraction patterns

    DEFF Research Database (Denmark)

    Saowadee, Nath; Agersted, Karsten; Bowen, Jacob R.

    2017-01-01

    Kikuchi bands in election backscattered diffraction patterns (EBSP) contain information about lattice constants of crystallographic samples that can be extracted via the Bragg equation. An advantage of lattice constant measurement from EBSPs over diffraction (XRD) is the ability to perform local...... is approximately 0.04 Å. Studying Kikuchi band size dependence of the measurement precision shows that the measurement error decays with increasing band size (i.e. decreasing lattice constant). However, in practice, the sharpness of wide bands tends to be low due to their low intensity, thus limiting...

  12. Dynamical effect in small-angle neutron diffraction from membranes

    International Nuclear Information System (INIS)

    Caspar, D.L.D.; Phillips, W.C.

    1976-01-01

    It has been suggested that multilayers with large repeat periods, fabricated by evaporating alternating thin films of two metals with high scattering-density contrast, could be used as efficient wide-band pass monochromators for x-rays and neutrons. In the limit of a large number of weakly reflecting, periodically arranged layers, the analysis gives results corresponding to those of the dynamical theory for diffraction of x-rays and neutrons from perfect crystals. Measurement of dynamical neutron diffraction effects from membrane arrays provides significant information about the order in the packing and the absolute scattering-density difference between layers

  13. Undergraduate Experiment with Fractal Diffraction Gratings

    Science.gov (United States)

    Monsoriu, Juan A.; Furlan, Walter D.; Pons, Amparo; Barreiro, Juan C.; Gimenez, Marcos H.

    2011-01-01

    We present a simple diffraction experiment with fractal gratings based on the triadic Cantor set. Diffraction by fractals is proposed as a motivating strategy for students of optics in the potential applications of optical processing. Fraunhofer diffraction patterns are obtained using standard equipment present in most undergraduate physics…

  14. A QCD analysis of ZEUS diffractive data

    NARCIS (Netherlands)

    Chekanov, S.; Derrick, M.; Magill, S.; Musgrave, B.; Nicholass, D.; Repond, J.; Yoshida, R.; Mattingly, M. C. K.; Antonioli, P.; Bari, G.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Cindolo, F.; Corradi, M.; Iacobucci, G.; Margotti, A.; Nania, R.; Polini, A.; Antonelli, S.; Basile, M.; Bindi, M.; Cifarelli, L.; Contin, A.; De Pasquale, S.; Sartorelli, G.; Zichichi, A.; Bartsch, D.; Brock, I.; Hartmann, H.; Hilger, E.; Jakob, H. -P.; Juengst, M.; Nuncio-Quiroz, A. E.; Samson, U.; Schoenberg, V.; Shehzadi, R.; Wlasenko, M.; Kaur, M.; Kaur, P.; Singh, I.; Capua, M.; Fazio, S.; Mastroberardino, A.; Schioppa, M.; Susinno, G.; Tassi, E.; Kim, J. Y.; Ibrahim, Z. A.; Idris, F. Mohamad; Kamaluddin, B.; Abdullah, W. A. T. Wan; Ning, Y.; Ren, Z.; Sciulli, F.; Chwastowski, J.; Eskreys, A.; Figiel, J.; Galas, A.; Olkiewicz, K.; Pawlik, B.; Stopa, P.; Zawiejski, L.; Adamczyk, L.; Bold, T.; Grabowska-Bold, I.; Kisielewska, D.; Lukasik, J.; Przybycien, M.; Suszycki, L.; Kotanski, A.; Slominski, W.; Bachynska, O.; Behnke, O.; Behr, J.; Behrens, U.; Blohm, C.; Borras, K.; Ciesielski, R.; Coppola, N.; Geiser, A.; Goettlicher, P.; Grebenyuk, J.; Gregor, I.; Haas, T.; Hain, W.; Huettmann, A.; Januschek, F.; Kahle, B.; Katkov, I. I.; Klein, U.; Koetz, U.; Kowalski, H.; Libov, V.; Lisovyi, M.; Lobodzinska, E.; Loehr, B.; Mankel, R.; Melzer-Pellmann, I. -A.; Miglioranzi, S.; Montanari, A.; Namsoo, T.; Notz, D.; Parenti, A.; Raval, A.; Roloff, P.; Rubinsky, I.; Schneekloth, U.; Spiridonov, A.; Szuba, D.; Szuba, J.; Theedt, T.; Tomaszewska, J.; Verbytskyi, A.; Wolf, G.; Wrona, K.; Yaguees-Molina, A. G.; Youngman, C.; Zeuner, W.; Drugakov, V.; Lohmann, W.; Schlenstedt, S.; Barbagli, G.; Gallo, E.; Pelfer, P. G.; Bamberger, A.; Dobur, D.; Karstens, F.; Vlasov, N. N.; Bussey, P. J.; Doyle, A. T.; Forrest, M.; Saxon, D. H.; Skillicorn, I. O.; Gialas, I.; Papageorgiu, K.; Holm, U.; Klanner, R.; Lohrmann, E.; Perrey, H.; Schleper, P.; Schoerner-Sadenius, T.; Sztuk, J.; Stadie, H.; Turcato, M.; Long, K. R.; Tapper, A. D.; Matsumoto, T.; Nagano, K.; Tokushuku, K.; Yamada, S.; Yamazaki, Y.; Barakbaev, A. N.; Boos, E. G.; Pokrovskiy, N. S.; Zhautykov, B. O.; Aushev, V.; Borodin, M.; Kadenko, I.; Korol, Ie.; Kuprash, O.; Lontkovskyi, D.; Makarenko, I.; Onishchuk, Yu.; Salii, A.; Sorokin, Iu.; Viazlo, V.; Volynets, O.; Zenaiev, O.; Zolko, M.; Son, D.; de Favereau, J.; Piotrzkowski, K.; Barreiro, F.; Glasman, C.; Jimenez, M.; del Peso, J.; Ron, E.; Terron, J.; Uribe-Estrada, C.; Corriveau, F.; Schwartz, J.; Tsurugai, T.; Antonov, A.; Dolgoshein, B. A.; Gladkov, D.; Sosnovtsev, V.; Stifutkin, A.; Suchkov, S.; Dementiev, R. K.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Khein, L. A.; Korzhavina, I. A.; Kuzmin, V. A.; Levchenko, B. B.; Lukina, O. Yu.; Proskuryakov, A. S.; Shcheglova, L. M.; Zotkin, D. S.; Abt, I.; Caldwell, A.; Kollar, D.; Reisert, B.; Schmidke, W. B.; Grigorescu, G.; Keramidas, A.; Kooijman, P.; Pellegrino, A.; Tiecke, H.; Vazquez, M.; Bruemmer, N.; Bylsma, B.; Durkin, L. S.; Lee, A.; Ling, T. Y.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Ferrando, J.; Foster, B.; Gwenlan, C.; Horton, K.; Oliver, K.; Robertson, A.; Walczak, R.; Bertolin, A.; Dal Corso, F.; Dusini, S.; Longhin, A.; Stanco, L.; Brugnera, R.; Carlin, R.; Garfagnini, A.; Limentani, S.; Oh, B. Y.; Whitmore, J. J.; Iga, Y.; D'Agostini, G.; Marini, G.; Nigro, A.; Hart, J. C.; Abramowicz, H.; Ingbir, R.; Kananov, S.; Stern, A.; Ishitsuka, M.; Kanno, T.; Kuze, M.; Maeda, J.; Hori, R.; Okazaki, N.; Hamatsu, R.; Kitamura, S.; Ota, O.; Ri, Y. D.; Costa, M.; Ferrero, M. I.; Monaco, V.; Sacchi, R.; Sola, V.; Solano, A.; Arneodo, M.; Ruspa, M.; Fourletov, S.; Stewart, T. P.; Boutle, S. K.; Butterworth, J. M.; Jones, T. W.; Loizides, J. H.; Wing, M.; Brzozowska, B.; Ciborowski, J.; Grzelak, G.; Kulinski, P.; Luzniak, P.; Malka, J.; Nowak, R. J.; Pawlak, J. M.; Perlanski, W.; Zarnecki, A. F.; Adamus, M.; Plucinski, P.; Tymieniecka, T.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Brownson, E.; Reeder, D. D.; Savin, A. A.; Smith, W. H.; Wolfe, H.; Bhadra, S.; Catterall, C. D.; Hartner, G.; Noor, U.; Whyte, J.

    2010-01-01

    ZEUS inclusive diffractive-cross-section measurements have been used in a DGLAP next-to-leading-order QCD analysis to extract the diffractive parton distribution functions. Data on diffractive dijet production in deep inelastic scattering have also been included to constrain the gluon density.

  15. Comparative study of different Schlieren diffracting elements

    Indian Academy of Sciences (India)

    This second type of diffraction degrades the quality of Schlieren results. Experimental results showing the effect of diffraction of light deflected from the test object at a phase knife-edge, corner of a square phase aperture and an optical fiber tip as Schlieren diffracting elements have been presented and discussed.

  16. Magnetic structures: neutron diffraction studies

    International Nuclear Information System (INIS)

    Bouree-Vigneron, F.

    1990-01-01

    Neutron diffraction is often an unequivocal method for determining magnetic structures. Here we present some typical examples, stressing the sequence through experiments, data analysis, interpretation and modelisation. Two series of compounds are chosen: Tb Ni 2 Ge 2 and RBe 13 (R = Gd, Tb, Dy, Ho, Er). Depending on the nature of the elements, the magnetic structures produced can be commensurate, incommensurate or even show a transition between two such phases as a function of temperature. A model, taking magnetic exchange and anisotropy into account, will be presented in the case of commensurate-incommensurate magnetic transitions in RBe 13

  17. X-ray diffraction apparatus

    International Nuclear Information System (INIS)

    Padini, F.R.

    1978-01-01

    The invention provides an x-ray diffraction apparatus permitting the rotation of the divergence sit in conjunction with the rotation of the x-ray irradiated specimen, whereby the dimensions of the x-ray irradiated portion of the specimen remain substantially constant during the rotation of the specimen. In a preferred embodiment, the divergence slit is connected to a structural element linked with a second structural element connected to the specimen such that the divergence slit rotates at a lower angular speed than the specimen

  18. Diffractive photoproduction at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, V.P. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-900, Pelotas, RS (Brazil); Machado, M.V.T. [Centro de Ciencias Exatas e Tecnologicas, Universidade Federal do Pampa, Campus de Bage, Rua Carlos Barbosa. CEP 96400-970. Bage, RS (Brazil)

    2008-08-15

    In this contribution we analyze the electromagnetic interactions present in hadron-hadron collisions at the LHC energy. In particular, we summarize our estimate for the total cross sections for the diffractive photoproduction of Z{sup 0} and vector mesons in the hh{yields}hXh process (X=Z{sup 0},J/{psi},Y), which are characterized by two rapidity gaps in the final state. The study of these processes is feasible considering the proton tagging detectors (Roman Pots) already planned for the initial start-up of the LHC.

  19. Neutron diffraction study of ilvaite

    International Nuclear Information System (INIS)

    Nobuhiko, Haga; Yoshio, Takeuchi

    1976-01-01

    The crystal structure of ilvaite (lievrite) has been investigated by means of neutron diffraction. The result of the investigation was the space group Pbnm. Of two nonequivalent octahedral positions, one is eightfold and the other fourfold, the former is occupied by Fe 3+ and Fe 2+ , and the latter by Fe 2+ . Mn is preferably distributed, substituting for Fe 2+ , over the fourfold position. The chemical formula for Mn-bearing ilvaite hence may best be expressed by Ca(Fe 3+ , Fe 2+ ) 2 (Fe 2+ , Mn)OSi 2 O 7 (OH). (orig./GSC) [de

  20. Chemical Vapor Deposition of ?-Boron Layers on Silicon for Controlled Nanometer-Deep p+n Junction Formation

    NARCIS (Netherlands)

    Sarubbi, F.; Scholtes, T.L.M.; Nanver, L.K.

    2009-01-01

    Nanometer-thick amorphous boron (?-B) layers were formed on (100) Si during exposure to diborane (B2H6) in a chemical vapor deposition (CVD) system, either at atmospheric or reduced pressures, at temperatures down to 500°C. The dependence of the growth mechanism on processing parameters was

  1. Long Dwell-Time Passage of DNA through Nanometer-Scale Pores : Kinetics and Sequence Dependence of Motion

    NARCIS (Netherlands)

    Jetha, N.N.; Feehan, C.; Wiggin, M.; Tabard-Cossa, V.; Marziali, A.

    2011-01-01

    A detailed understanding of the kinetics of DNA motion though nanometer-scale pores is important for the successful development of many of the proposed next-generation rapid DNA sequencing and analysis methods. Many of these approaches require DNA motion through nanopores to be slowed by several

  2. Surface enhanced Raman scattering of gold nanoparticles supported on copper foil with graphene as a nanometer gap

    International Nuclear Information System (INIS)

    Xiang, Quan; Zhu, Xupeng; Chen, Yiqin; Duan, Huigao

    2016-01-01

    Gaps with single-nanometer dimensions (<10 nm) between metallic nanostructures enable giant local field enhancements for surface enhanced Raman scattering (SERS). Monolayer graphene is an ideal candidate to obtain a sub-nanometer gap between plasmonic nanostructures. In this work, we demonstrate a simple method to achieve a sub-nanometer gap by dewetting a gold film supported on monolayer graphene grown on copper foil. The Cu foil can serve as a low-loss plasmonically active metallic film that supports the imaginary charge oscillations, while the graphene can not only create a stable sub-nanometer gap for massive plasmonic field enhancements but also serve as a chemical enhancer. We obtained higher SERS enhancements in this graphene-gapped configuration compared to those in Au nanoparticles on Cu film or on graphene–SiO 2 –Si. Also, the Raman signals measured maintained their fine features and intensities over a long time period, indicating the stability of this Au–graphene–Cu hybrid configuration as an SERS substrate. (paper)

  3. Contribution to diffraction theory; Contribution a la theorie de la diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Chako, N. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-11-01

    In a first part, we have given a general and detailed treatment of the modern theory of diffraction. The rigorous theory is formulated as a boundary value problem of the wave equation or Maxwell equations. However, up to the present time, such a program of treating diffraction by optical systems, even for simple optical instruments, has not been realized due to the complicated character of the boundary conditions. The recent developments show clearly the nature of the approximation of the classical theories originally due to Fresnel and Young, later formulated in a rigorous manner by Kirchhoff and Rubinowicz, respectively and, at the same time the insufficiency of these theories in explaining a number of diffraction phenomena. Furthermore, we have made a study of the limitations of the approximate theories and the recent attempts to improve these. The second part is devoted to a general mathematical treatment of the theory of diffraction of optical systems including aberrations. After a general and specific analysis of geometrical and wave aberrations along classical and modern (Nijboer) lines, we have been able to evaluate the diffraction integrals representing the image field at any point in image space explicitly, when the aberrations are small. Our formulas are the generalisations of all anterior results obtained by previous investigators. Moreover, we have discussed the Zernike-Nijboer theory of aberration and generalised it not only for rotational systems, but also for non-symmetric systems as well, including the case of non circular apertures. The extension to non-circular apertures is done by introducing orthogonal functions or polynomials over such aperture shapes. So far the results are valid for small aberrations, that is to say, where the deformation of the real wave front emerging from the optical system is less than a wave length of light or of the electromagnetic wave from the ideal wave front. If the aberrations are large, then one must employ the

  4. Inverse scattering theory foundations of tomography with diffracting wavefields

    International Nuclear Information System (INIS)

    Devaney, A.J.

    1987-01-01

    The underlying mathematical models employed in reflection and transmission computed tomography using diffracting wavefields (called diffraction tomography) are reviewed and shown to have a rigorous basis in inverse scattering theory. In transmission diffraction tomography the underlying wave model is shown to be the Rytov approximation to the complex phase of the wavefield transmitted by the object being probed while in reflection diffraction tomography the underlying wave model is shown to be the Born approximation to the backscattered wavefield from the object. In both cases the goal of the reconstruction process is the determination of the objects's complex index of refraction as a function of position r/sup →/ and, possibly, the frequency ω of the probing wavefield. By use of these approximations the reconstruction problem for both transmission and reflection diffraction tomography can be cast into the simple and elegant form of linearized inverse scattering theory. Linearized inverse scattering theory is shown to lead directly to generalized projection-slice theorems for both reflection and transmission diffraction tomography that provide a simple mathematical relationship between the object's complex index of refraction (the unknown) and the data (the complex phase of the transmitted wave or the complex amplitude of the reflected wave). The conventional projection-slice theorem of X-ray CT is shown to result from the generalized projection-slice theorem for transmission diffraction tomography in the limit of vanishing wavelength (in the absence of wave effects). Fourier based and back-projection type reconstruction algorithms are shown to be directly derivable from the generalized projection-slice theorems

  5. Application of Electron Backscatter Diffraction to Phase Identification

    Energy Technology Data Exchange (ETDEWEB)

    El-Dasher, B S; Deal, A

    2008-07-16

    The identification of crystalline phases in solids requires knowledge of two microstructural properties: crystallographic structure and chemical composition. Traditionally, this has been accomplished using X-ray diffraction techniques where the measured crystallographic information, in combination with separate chemical composition measurements for specimens of unknown pedigrees, is used to deduce the unknown phases. With the latest microstructural analysis tools for scanning electron microscopes, both the crystallography and composition can be determined in a single analysis utilizing electron backscatter diffraction and energy dispersive spectroscopy, respectively. In this chapter, we discuss the approach required to perform these experiments, elucidate the benefits and limitations of this technique, and detail via case studies how composition, crystallography, and diffraction contrast can be used as phase discriminators.

  6. High resolution powder diffraction by white source transmission measurements

    International Nuclear Information System (INIS)

    Johnson, R.G.; Bowman, C.D.

    1982-01-01

    Neutron powder diffraction has been studied by measuring the total neutron cross section using neutron time-of-flight in transmission geometry. This method is equivalent to measurements in scattering geometry of powder diffraction at 20 = 180 0 . Measurements on iron samples were conducted using the NBS 100 MeV electron linac as a pulsed neutron source and using flight paths of 20 and 60 meters. The resolution at 60 m for 25-MeV neutrons was limited to dlambda lambda=0.2% primarily by moderator hold-up. Although the change in cross section at the Bragg edges may be quite small, counting rates are high permitting the recording of data with a 0.1% statistical precision in about one day. For the Fe samples, diffraction edges were distinguished as high as n = 196 (where n is the sum of the squares of the Miller indicies) with all edges distinguishable below n = 90

  7. Flatland optics. III. Achromatic diffraction.

    Science.gov (United States)

    Lohmann, A W; Pe'er, A; Wang, D; Friesem, A A

    2001-09-01

    In the previous two sections of "Flatland optics" [J. Opt. Soc. Am. A 17, 1755 (2000); 18, 1056 (2001)] we described the basic principles of two-dimensional (2D) optics and showed that a wavelength lambda in three-dimensional (3D) space (x, y, z) may appear in Flatland (x, z) as a wave with another wavelength Lambda=lambda/cos alpha. The tilt angle alpha can be modified by a 3D-Spaceland individual, who then is able to influence the 2D optics in a way that must appear to be magical to 2D-Flatland individuals-in the spirit of E. A. Abbott's science fiction story of 1884 [Flatland, a Romance of Many Dimensions, 6th ed. (Dover, New York, 1952)]. Here we show how the light from a white source can be perceived in Flatland as perfectly monochromatic, so diffraction with white light will be free of color blurring and the contrast of interference fringes can be 100%. The basic considerations for perfectly achromatic diffraction are presented, along with experimental illustration of Talbot self-imaging performed with broadband illumination.

  8. Real-Time Imaging of Plant Cell Wall Structure at Nanometer Scale, with Respect to Cellulase Accessibility and Degradation Kinetics (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Ding, S. Y.

    2012-05-01

    Presentation on real-time imaging of plant cell wall structure at nanometer scale. Objectives are to develop tools to measure biomass at the nanometer scale; elucidate the molecular bases of biomass deconstruction; and identify factors that affect the conversion efficiency of biomass-to-biofuels.

  9. Advances in structure research by diffraction methods

    CERN Document Server

    Brill, R

    1970-01-01

    Advances in Structure Research by Diffraction Methods reviews advances in the use of diffraction methods in structure research. Topics covered include the dynamical theory of X-ray diffraction, with emphasis on Ewald waves in theory and experiment; dynamical theory of electron diffraction; small angle scattering; and molecular packing. This book is comprised of four chapters and begins with an overview of the dynamical theory of X-ray diffraction, especially in terms of how it explains all the absorption and propagation properties of X-rays at the Bragg setting in a perfect crystal. The next

  10. Advances in structure research by diffraction methods

    CERN Document Server

    Hoppe, W

    1974-01-01

    Advances in Structure Research by Diffraction Methods: Volume 5 presents discussions on application of diffraction methods in structure research. The book provides the aspects of structure research using various diffraction methods. The text contains 2 chapters. Chapter 1 reviews the general theory and experimental methods used in the study of all types of amorphous solid, by both X-ray and neutron diffraction, and the detailed bibliography of work on inorganic glasses. The second chapter discusses electron diffraction, one of the major methods of determining the structures of molecules in the

  11. Quantum transport and dielectric response of nanometer scale transistors using empirical pseudopotentials

    Science.gov (United States)

    Fang, Jingtian

    As transistors, the most basic component of central processing units (CPU) in all electronic products, are scaling down to the nanometer scale, quantum mechanical effects must be studied to investigate their performance. A formalism to treat quantum electronic transport at the nanometer scale based on empirical pseudopotentials is presented in this dissertation. We develop the transport equations and show the expressions to calculate the device characteristics, such as device current and charge density. We apply this formalism to study ballistic transport in a gate-all-around (GAA) silicon nanowire field-effect transistor (FET) with a body-size of 0.39 nm, a gate length of 6.52 nm, and an effective oxide thickness of 0.43 nm. Simulation results show that this device exhibits a subthreshold slope (SS) of ˜66 mV/decade and a drain-induced barrier-lowering of ~2.5 mV/V. This formalism is also applied to assess the ballistic performance of FETs with armchair-edge graphene nanoribbon (aGNRs) and silicon nanowire (SiNWs) channels and with gate lengths ranging from 5 nm to 15 nm. The device characteristics of the transistors with a 5 nm gate length are compared. Source-to-drain tunneling effects are investigated for SiNWFETs and GNRFETs by comparing the I-V characteristics of each respective transistor with different channel lengths. While a uniform dielectric constant is assumed in solving Poisson equation for the devices simulated above, the knowledge of the atomistic (i.e., local) dielectric permittivity that considers the atomistic electron distribution and quantum-confinement effect is necessary to treat the electrostatic properties accurately. The local permittivity can also provide information about the dielectric property at the interfaces. We use the random-phase approximation, first-order perturbation theory, and empirical pseudopotentials to calculate the static polarizability, susceptibility, and dielectric response function in graphene and GNRs. While the

  12. Probing Local Ionic Dynamics in Functional Oxides: From Nanometer to Atomic Scale

    Science.gov (United States)

    Kalinin, Sergei

    2014-03-01

    Vacancy-mediated electrochemical reactions in oxides underpin multiple applications ranging from electroresistive memories, to chemical sensors to energy conversion systems such as fuel cells. Understanding the functionality in these systems requires probing reversible (oxygen reduction/evolution reaction) and irreversible (cathode degradation and activation, formation of conductive filaments) electrochemical processes. In this talk, I summarize recent advances in probing and controlling these transformations locally on nanometer level using scanning probe microscopy. The localized tip concentrates the electric field in the nanometer scale volume of material, inducing local transition. Measured simultaneously electromechanical response (piezoresponse) or current (conductive AFM) provides the information on the bias-induced changes in material. Here, I illustrate how these methods can be extended to study local electrochemical transformations, including vacancy dynamics in oxides such as titanates, LaxSr1-xCoO3, BiFeO3, and YxZr1-xO2. The formation of electromechanical hysteresis loops and their bias-, temperature- and environment dependences provide insight into local electrochemical mechanisms. In materials such as lanthanum-strontium cobaltite, mapping both reversible vacancy motion and vacancy ordering and static deformation is possible, and can be corroborated by post mortem STEM/EELS studies. In ceria, a broad gamut of electrochemical behaviors is observed as a function of temperature and humidity. The possible strategies for elucidation ionic motion at the electroactive interfaces in oxides using high-resolution electron microscopy and combined ex-situ and in-situ STEM-SPM studies are discussed. In the second part of the talk, probing electrochemical phenomena on in-situ grown surfaces with atomic resolution is illustrated. I present an approach based on the multivariate statistical analysis of the coordination spheres of individual atoms to reveal

  13. Generalized diffraction-stack migration and filtering of coherent noise

    KAUST Repository

    Zhan, Ge

    2014-01-27

    We reformulate the equation of reverse-time migration so that it can be interpreted as summing data along a series of hyperbola-like curves, each one representing a different type of event such as a reflection or multiple. This is a generalization of the familiar diffraction-stack migration algorithm where the migration image at a point is computed by the sum of trace amplitudes along an appropriate hyperbola-like curve. Instead of summing along the curve associated with the primary reflection, the sum is over all scattering events and so this method is named generalized diffraction-stack migration. This formulation leads to filters that can be applied to the generalized diffraction-stack migration operator to mitigate coherent migration artefacts due to, e.g., crosstalk and aliasing. Results with both synthetic and field data show that generalized diffraction-stack migration images have fewer artefacts than those computed by the standard reverse-time migration algorithm. The main drawback is that generalized diffraction-stack migration is much more memory intensive and I/O limited than the standard reverse-time migration method. © 2014 European Association of Geoscientists & Engineers.

  14. Future directions in high-pressure neutron diffraction

    Science.gov (United States)

    Guthrie, M.

    2015-04-01

    The ability to manipulate structure and properties using pressure has been well known for many centuries. Diffraction provides the unique ability to observe these structural changes in fine detail on lengthscales spanning atomic to nanometre dimensions. Amongst the broad suite of diffraction tools available today, neutrons provide unique capabilities of fundamental importance. However, to date, the growth of neutron diffraction under extremes of pressure has been limited by the weakness of available sources. In recent years, substantial government investments have led to the construction of a new generation of neutron sources while existing facilities have been revitalized by upgrades. The timely convergence of these bright facilities with new pressure-cell technologies suggests that the field of high-pressure (HP) neutron science is on the cusp of substantial growth. Here, the history of HP neutron research is examined with the hope of gleaning an accurate prediction of where some of these revolutionary capabilities will lead in the near future. In particular, a dramatic expansion of current pressure-temperature range is likely, with corresponding increased scope for extreme-conditions science with neutron diffraction. This increase in coverage will be matched with improvements in data quality. Furthermore, we can also expect broad new capabilities beyond diffraction, including in neutron imaging, small angle scattering and inelastic spectroscopy.

  15. Future directions in high-pressure neutron diffraction.

    Science.gov (United States)

    Guthrie, M

    2015-04-22

    The ability to manipulate structure and properties using pressure has been well known for many centuries. Diffraction provides the unique ability to observe these structural changes in fine detail on lengthscales spanning atomic to nanometre dimensions. Amongst the broad suite of diffraction tools available today, neutrons provide unique capabilities of fundamental importance. However, to date, the growth of neutron diffraction under extremes of pressure has been limited by the weakness of available sources. In recent years, substantial government investments have led to the construction of a new generation of neutron sources while existing facilities have been revitalized by upgrades. The timely convergence of these bright facilities with new pressure-cell technologies suggests that the field of high-pressure (HP) neutron science is on the cusp of substantial growth. Here, the history of HP neutron research is examined with the hope of gleaning an accurate prediction of where some of these revolutionary capabilities will lead in the near future. In particular, a dramatic expansion of current pressure-temperature range is likely, with corresponding increased scope for extreme-conditions science with neutron diffraction. This increase in coverage will be matched with improvements in data quality. Furthermore, we can also expect broad new capabilities beyond diffraction, including in neutron imaging, small angle scattering and inelastic spectroscopy.

  16. Cold neutron diffraction contrast tomography of polycrystalline material.

    Science.gov (United States)

    Peetermans, S; King, A; Ludwig, W; Reischig, P; Lehmann, E H

    2014-11-21

    Traditional neutron imaging is based on the attenuation of a neutron beam through scattering and absorption upon traversing a sample of interest. It offers insight into the sample's material distribution at high spatial resolution in a non-destructive way. In this work, it is expanded to include the diffracted neutrons that were ignored so far and obtain a crystallographic distribution (grain mapping). Samples are rotated in a cold neutron beam of limited wavelength band. Projections of the crystallites formed by the neutrons they diffract are captured on a two dimensional imaging detector. Their positions on the detector reveal their orientation whereas the projections themselves are used to reconstruct the shape of the grains. Indebted to established synchrotron diffraction contrast tomography, this 'cold neutron diffraction contrast tomography' is performed on recrystallized aluminium for experimental comparison between both. Differences between set-up and method are discussed, followed by the application range in terms of sample properties (crystallite size and number, mosaicity and typical materials). Neutron diffraction contrast tomography allows to study large grains in bulky metallic structures.

  17. Future directions in high-pressure neutron diffraction

    International Nuclear Information System (INIS)

    Guthrie, M

    2015-01-01

    The ability to manipulate structure and properties using pressure has been well known for many centuries. Diffraction provides the unique ability to observe these structural changes in fine detail on lengthscales spanning atomic to nanometre dimensions. Amongst the broad suite of diffraction tools available today, neutrons provide unique capabilities of fundamental importance. However, to date, the growth of neutron diffraction under extremes of pressure has been limited by the weakness of available sources. In recent years, substantial government investments have led to the construction of a new generation of neutron sources while existing facilities have been revitalized by upgrades. The timely convergence of these bright facilities with new pressure-cell technologies suggests that the field of high-pressure (HP) neutron science is on the cusp of substantial growth. Here, the history of HP neutron research is examined with the hope of gleaning an accurate prediction of where some of these revolutionary capabilities will lead in the near future. In particular, a dramatic expansion of current pressure-temperature range is likely, with corresponding increased scope for extreme-conditions science with neutron diffraction. This increase in coverage will be matched with improvements in data quality. Furthermore, we can also expect broad new capabilities beyond diffraction, including in neutron imaging, small angle scattering and inelastic spectroscopy. (topical review)

  18. In situ structural studies with neutron diffraction

    International Nuclear Information System (INIS)

    Laversenne, L.; Hansen, T.C.

    2015-01-01

    The authors present the features of neutron diffraction in terms of necessary neutron sources, diffusion contrast, penetration and magnetism. In situ diffraction experiments consist in recording the diffraction signal of a sample when this sample undergoes a monitored change in one of the following parameters: temperature (thermo-diffraction), pressure, magnetic or electric field or gaseous atmosphere. Most in situ diffraction experiments are performed on powders and they required a more or less complex equipment according to the parameter that varies. Examples and results of in situ neutron diffraction experiments are detailed in the article: -) the electrochemical loading of electrodes, -) the absorption of hydrogen for energy storage, -) the study of materials under high pressure which has allowed the investigation of phase diagrams when the inter-atomic distance varies, and -) the study of magnetism through thermo-diffraction. (A.C.)

  19. Advancements in X-ray waveguides and their applications in coherent diffraction imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pelliccia, D. [Institut fuer Synchrotronstrahlung-ANKA Forschungszentrum Karlsruhe Herman-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)], E-mail: daniele.pelliccia@iss.fzk.de; Bukreeva, I. [Istituto di Fotonica e Nanotecnologie-CNR, Via Cineto Romano 42, 00156 Roma (Italy); Giannini, C.; De Caro, L. [Istituto di Cristallografia-CNR, Via Amendola 122/O, 70126 Bari (Italy); Cedola, A.; Scarinci, F.; Lagomarsino, S. [Istituto di Fotonica e Nanotecnologie-CNR, Via Cineto Romano 42, 00156 Roma (Italy)

    2009-10-15

    X-ray planar waveguides are currently used tools, in synchrotron radiation facilities, to produce a coherent beam with typical dimensions in the range of tens or hundreds of nanometers. The properties of waveguided beams such as divergence and coherence turns out to be very interesting for several applications both in synchrotron and in laboratory sources. These features will be reviewed in the present paper for different coupling methods of the radiation field with the waveguide channel. Details of fabrication procedures and experimental results concerning front coupling waveguide are reported. The waveguide properties can be estimated from the far-field diffracted beam by a Fourier analysis giving the autocorrelation function of the exit field. Due to the high degree of coherence of the exiting beam, X-ray waveguides can be successfully exploited in coherent diffraction imaging experiments. We review results concerning Fresnel coherent diffraction imaging experiments with hard X-rays, using planar waveguides as optical elements in one and two dimensions.

  20. Advancements in X-ray waveguides and their applications in coherent diffraction imaging

    International Nuclear Information System (INIS)

    Pelliccia, D.; Bukreeva, I.; Giannini, C.; De Caro, L.; Cedola, A.; Scarinci, F.; Lagomarsino, S.

    2009-01-01

    X-ray planar waveguides are currently used tools, in synchrotron radiation facilities, to produce a coherent beam with typical dimensions in the range of tens or hundreds of nanometers. The properties of waveguided beams such as divergence and coherence turns out to be very interesting for several applications both in synchrotron and in laboratory sources. These features will be reviewed in the present paper for different coupling methods of the radiation field with the waveguide channel. Details of fabrication procedures and experimental results concerning front coupling waveguide are reported. The waveguide properties can be estimated from the far-field diffracted beam by a Fourier analysis giving the autocorrelation function of the exit field. Due to the high degree of coherence of the exiting beam, X-ray waveguides can be successfully exploited in coherent diffraction imaging experiments. We review results concerning Fresnel coherent diffraction imaging experiments with hard X-rays, using planar waveguides as optical elements in one and two dimensions.

  1. Phase retrieval from diffraction data utilizing pre-determined partial information

    International Nuclear Information System (INIS)

    Kim, S.S.; Marathe, S.; Kim, S.N.; Kang, H.C.; Noh, D.Y.

    2007-01-01

    We developed a phase retrieval algorithm that utilizes pre-determined partial phase information to overcome insufficient oversampling ratio in diffraction data. Implementing the Fourier modulus projection and the modified support projection manifesting the pre-determined information, a generalized difference map and HIO (Hybrid Input-Output) algorithms are developed. Optical laser diffraction data as well as simulated X-ray diffraction data are used to illustrate the validity of the proposed algorithm, which revealed the strength and the limitations of the algorithm. The proposed algorithm can expand the applicability of the diffraction based image reconstruction

  2. Quantitative analysis of thoria phase in Th-U alloys using diffraction studies

    Science.gov (United States)

    Thakur, Shital; Krishna, P. S. R.; Shinde, A. B.; Kumar, Raj; Roy, S. B.

    2017-05-01

    In the present study the quantitative phase analysis of Th-U alloys in bulk form namely Th-52 wt% U and Th-3wt%U has been performed over the data obtained from both X ray diffraction and neutron diffraction technique using Rietveld method of FULLPROF software. Quantifying thoria (ThO2) phase present in bulk of the sample is limited due to surface oxidation and low penetration of x rays in high Z material. Neutron diffraction study probing bulk of the samples has been presented in comparison with x-ray diffraction study.

  3. A calculation model for X-ray diffraction by curved-graphene nanoparticles

    International Nuclear Information System (INIS)

    Chernozatonskii, L.A.; Neverov, V.S.; Kukushkin, A.B.

    2012-01-01

    An approximation of the positions of carbon atoms in a curved graphene sheet is suggested for calculation of X-ray diffraction (XRD) patterns of curved-graphene nanoparticles. The model is tested for carbon nanotubes and newly calculated carbon nanotoroids consisting of several hundreds of atoms. It is shown that the random distribution of carbon atoms with graphene surface-averaged density and the local graphene-like rearrangement of atoms in a curved lattice are sufficient for describing the XRD patterns of an ensemble of respective exact carbon nanoparticles of random isotropic orientation in the range of scattering wave vector's modulus q from several units to several tens of inverse nanometers. The model is of interest to a fast-routine identification of curved-graphene nanoparticles in carbonaceous materials.

  4. Virtual rough samples to test 3D nanometer-scale scanning electron microscopy stereo photogrammetry.

    Science.gov (United States)

    Villarrubia, J S; Tondare, V N; Vladár, A E

    2016-01-01

    The combination of scanning electron microscopy for high spatial resolution, images from multiple angles to provide 3D information, and commercially available stereo photogrammetry software for 3D reconstruction offers promise for nanometer-scale dimensional metrology in 3D. A method is described to test 3D photogrammetry software by the use of virtual samples-mathematical samples from which simulated images are made for use as inputs to the software under test. The virtual sample is constructed by wrapping a rough skin with any desired power spectral density around a smooth near-trapezoidal line with rounded top corners. Reconstruction is performed with images simulated from different angular viewpoints. The software's reconstructed 3D model is then compared to the known geometry of the virtual sample. Three commercial photogrammetry software packages were tested. Two of them produced results for line height and width that were within close to 1 nm of the correct values. All of the packages exhibited some difficulty in reconstructing details of the surface roughness.

  5. Effective nanometer airgap of NEMS devices using negative capacitance of ferroelectric materials.

    Science.gov (United States)

    Masuduzzaman, Muhammad; Alam, Muhammad Ashraful

    2014-06-11

    Nanoelectromechnical system (NEMS) is seen as one of the most promising candidates for next generation extreme low power electronics that can operate as a versatile switch/memory/sensor/display element. One of the main challenges toward this goal lies in the fabrication difficulties of ultrascaled NEMS required for high density integrated circuits. It is generally understood that fabricating and operating a NEMS with an airgap below a few nanometer will be extremely challenging due to surface roughness, nonideal forces, tunneling, etc. Here, we show that by cascading a NEMS with a ferroelectric capacitor, operating in the negative capacitance regime, the effective airgap can be reduced by almost an order of magnitude, without the need to reduce the airgap physically. This would not only reduce the pull-in voltage to sub-1 V regime, but also would offer a set of characteristics which are difficult/impossible to achieve otherwise. For example, one can reduce/increase the classical travel range, flip the traditional stable-unstable regime of the electrode, get a negative pull-out voltage, and thus, center the hysteresis around zero volt. Moreover, one can also operate the combination as an effective ferroelectric memory with much reduced switching voltages. These characteristics promise dramatic saving in power for NEMS-based switching, memory, and other related applications.

  6. Synthesis of nanometer-sized fayalite and magnesium-iron(II) mixture olivines

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Odeta; Ilton, Eugene S.; Bowden, Mark E.; Kovarik, Libor; Zhang, Xin; Kukkadapu, Ravi K.; Engelhard, Mark H.; Thompson, Christopher J.; Schaef, Herbert T.; McGrail, Bernard Peter; Rosso, Kevin M.; Loring, John S.

    2018-04-01

    Olivines are divalent orthosilicates with important geologic, biological, and industrial significance and are typically comprised of mixtures of Mg2+ and Fe2+ ranging from forsterite (Mg2SiO4) to fayalite (Fe2SiO4). Investigating the role of Fe(II) in olivine reactivity requires the ability to synthesize olivines that are nanometer-sized, have different percentages of Mg2+ and Fe2+, and have good bulk and surface purity. This article demonstrates a new method for synthesizing nanosized fayalite and Mg-Fe mixture olivines. First, carbonaceous precursors are generated from sucrose, PVA, colloidal silica, Mg2+, and Fe3+. Second, these precursors are calcined in air to burn carbon and create mixtures of Fe(III)-oxides, forsterite, and SiO2. Finally, calcination in reducing CO-CO2 gas buffer leads to Fe(II)-rich olivines. XRD, Mössbauer, and IR analyses verify good bulk purity and composition. XPS indicates that surface iron is in its reduced Fe(II) form, and surface Si is consistent with olivine. SEM shows particle sizes predominately between 50 and 450 nm, and BET surface areas are 2.8-4.2 m2/g. STEM HAADF analysis demonstrates even distributions of Mg and Fe among the available M1 and M2 sites of the olivine crystals. These nanosized Fe(II)-rich olivines are suitable for laboratory studies with in situ probes that require mineral samples with high reactivity at short timescales.

  7. Probing Rubber Cross-Linking Generation of Industrial Polymer Networks at Nanometer Scale.

    Science.gov (United States)

    Gabrielle, Brice; Gomez, Emmanuel; Korb, Jean-Pierre

    2016-06-23

    We present improved analyses of rheometric torque measurements as well as (1)H double-quantum (DQ) nuclear magnetic resonance (NMR) buildup data on polymer networks of industrial compounds. This latter DQ NMR analysis allows finding the distribution of an orientation order parameter (Dres) resulting from the noncomplete averaging of proton dipole-dipole couplings within the cross-linked polymer chains. We investigate the influence of the formulation (filler and vulcanization systems) as well as the process (curing temperature) ending to the final polymer network. We show that DQ NMR follows the generation of the polymer network during the vulcanization process from a heterogeneous network to a very homogeneous one. The time variations of microscopic Dres and macroscopic rheometric torques present power-law behaviors above a threshold time scale with characteristic exponents of the percolation theory. We observe also a very good linear correlation between the kinetics of Dres and rheometric data routinely performed in industry. All these observations confirm the description of the polymer network generation as a critical phenomenon. On the basis of all these results, we believe that DQ NMR could become a valuable tool for investigating in situ the cross-linking of industrial polymer networks at the nanometer scale.

  8. Nanometer-resolved chemical analyses of femtosecond laser-induced periodic surface structures on titanium

    Science.gov (United States)

    Kirner, Sabrina V.; Wirth, Thomas; Sturm, Heinz; Krüger, Jörg; Bonse, Jörn

    2017-09-01

    The chemical characteristics of two different types of laser-induced periodic surface structures (LIPSS), so-called high and low spatial frequency LIPSS (HSFL and LSFL), formed upon irradiation of titanium surfaces by multiple femtosecond laser pulses in air (30 fs, 790 nm, 1 kHz), are analyzed by various optical and electron beam based surface analytical techniques, including micro-Raman spectroscopy, energy dispersive X-ray analysis, X-ray photoelectron spectroscopy, and Auger electron spectroscopy. The latter method was employed in a high-resolution mode being capable of spatially resolving even the smallest HSFL structures featuring spatial periods below 100 nm. In combination with an ion sputtering technique, depths-resolved chemical information of superficial oxidation processes was obtained, revealing characteristic differences between the two different types of LIPSS. Our results indicate that a few tens of nanometer shallow HSFL are formed on top of a ˜150 nm thick graded superficial oxide layer without sharp interfaces, consisting of amorphous TiO2 and partially crystallized Ti2O3. The larger LSFL structures with periods close to the irradiation wavelength originate from the laser-interaction with metallic titanium. They are covered by a ˜200 nm thick amorphous oxide layer, which consists mainly of TiO2 (at the surface) and other titanium oxide species of lower oxidation states underneath.

  9. Nanometer scale titanium surface texturing are detected by signaling pathways involving transient FAK and Src activations.

    Directory of Open Access Journals (Sweden)

    Willian F Zambuzzi

    Full Text Available It is known that physico/chemical alterations on biomaterial surfaces have the capability to modulate cellular behavior, affecting early tissue repair. Such surface modifications are aimed to improve early healing response and, clinically, offer the possibility to shorten the time from implant placement to functional loading. Since FAK and Src are intracellular proteins able to predict the quality of osteoblast adhesion, this study evaluated the osteoblast behavior in response to nanometer scale titanium surface texturing by monitoring FAK and Src phosphorylations.Four engineered titanium surfaces were used for the study: machined (M, dual acid-etched (DAA, resorbable media microblasted and acid-etched (MBAA, and acid-etch microblasted (AAMB. Surfaces were characterized by scanning electron microscopy, interferometry, atomic force microscopy, x-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. Thereafter, those 4 samples were used to evaluate their cytotoxicity and interference on FAK and Src phosphorylations. Both Src and FAK were investigated by using specific antibody against specific phosphorylation sites.The results showed that both FAK and Src activations were differently modulated as a function of titanium surfaces physico/chemical configuration and protein adsorption.It can be suggested that signaling pathways involving both FAK and Src could provide biomarkers to predict osteoblast adhesion onto different surfaces.

  10. Significant enhancement of magnetoresistance with the reduction of particle size in nanometer scale

    Science.gov (United States)

    Das, Kalipada; Dasgupta, P.; Poddar, A.; Das, I.

    2016-01-01

    The Physics of materials with large magnetoresistance (MR), defined as the percentage change of electrical resistance with the application of external magnetic field, has been an active field of research for quite some times. In addition to the fundamental interest, large MR has widespread application that includes the field of magnetic field sensor technology. New materials with large MR is interesting. However it is more appealing to vast scientific community if a method describe to achieve many fold enhancement of MR of already known materials. Our study on several manganite samples [La1−xCaxMnO3 (x = 0.52, 0.54, 0.55)] illustrates the method of significant enhancement of MR with the reduction of the particle size in nanometer scale. Our experimentally observed results are explained by considering model consisted of a charge ordered antiferromagnetic core and a shell having short range ferromagnetic correlation between the uncompensated surface spins in nanoscale regime. The ferromagnetic fractions obtained theoretically in the nanoparticles has been shown to be in the good agreement with the experimental results. The method of several orders of magnitude improvement of the magnetoresistive property will have enormous potential for magnetic field sensor technology. PMID:26837285

  11. Fine and nanometer scaled particle behavior characterization and control for sustainable energy and environmental technology

    Energy Technology Data Exchange (ETDEWEB)

    Hidehiro Kamiya; Mayumi Tsukada; Wuled Lenggoro; Wladyslaw W. Szymanski [Tokyo University of Agriculture and Technology, Tokyo (Japan)

    2008-07-01

    Characterization and control of fine and nanometer scaled particles are essential technological fundamentals for understanding and development of various approaches concerned with sustainable energy and environmental technology, for example, PM10/PM2.5 and nanoparticle emission, clean and high efficiency power generation systems from biomass and solid waste combustion. The standard measuring methods for PM10/PM2.5 and nanoparticle emission behavior from stationary sources, such as coal-fired power plants and waste incinerators, have been discussed in ISO and numerous countries. However, it is difficult to evaluate the actual emission amount and particle size distribution, such as condensable suspended particulate matter, condensable SPM, which is nucleated and grow during cooling and diluting process from flue to atmosphere. High temperature gas cleaning using rigid ceramic filters is an important technology to develop high efficiency power generation system. In this paper, based on the review of background and recent research works of each subject, mass concentration measurement method of PM10/PM2.5 and size distribution of condensable SPM from stationary sources are introduced. Subsequently, research results with focus on ash adhesion behavior characterization and control for the development of dust collection and gas cleaning technology at high temperature conditions in high efficiency power generation systems by coal, biomass and solid waste combustion are presented. 12 refs., 7 figs., 3 tabs.

  12. Preparation and properties of nanometer silk fibroin peptide/polyvinyl alcohol blend films for cell growth.

    Science.gov (United States)

    Luo, Qin; Chen, Zhongmin; Hao, Xuefei; Zhu, Qiangsong; Zhou, Yucheng

    2013-10-01

    Nanometer silk fibroin peptide (Nano-SFP) was prepared from silkworm cocoons through the process of dissolution, dialysis and enzymolysis. For comparison, silk fibroin was decomposed with α-chymotrypsin, trypsin and neutrase, respectively. From the SEM and particle size analysis results, the Nano-SFP prepared by neutrase was found to be the most desirable at about 50-200 nm. Nano-SFP/polyvinyl alcohol films (Nano-SFP/PVA) were prepared by blending Nano-SFP and PVA in water with different weight ratios of 10/90, 20/80, 30/70, and 40/60. The films were characterized by IR, SEM, TG, DSC and tensile strength test for investigating their structure, surface morphology, thermostability, and mechanical property. The results showed that Nano-SFP inserted in the PVA films with small linear particles, and Nano-SFP/PVA films exhibited smooth surface, good thermostability and tensile strength. The growth of Chinese hamster ovary (CHO) cells on films with and without Nano-SFP was investigated with MTT colorimetric assay to assess the films' ability to promote cell growth. It was observed that the Nano-SFP improved cell adhesion on the film surface, and the ability of promoting cell growth increased with the increasing content of Nano-SFP in the blend films. Nano-SFP/PVA film with the ratio of 30/70 was concluded to have the best properties. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Decoupling electrochemical reaction and diffusion processes in ionically-conductive solids on the nanometer scale.

    Science.gov (United States)

    Balke, Nina; Jesse, Stephen; Kim, Yoongu; Adamczyk, Leslie; Ivanov, Ilia N; Dudney, Nancy J; Kalinin, Sergei V

    2010-12-28

    We have developed a scanning probe microscopy approach to explore voltage-controlled ion dynamics in ionically conductive solids and decouple transport and local electrochemical reactivity on the nanometer scale. Electrochemical strain microscopy allows detection of bias-induced ionic motion through the dynamic (0.1-1 MHz) local strain. Spectroscopic modes based on low-frequency (∼1 Hz) voltage sweeps allow local ion dynamics to be probed locally. The bias dependence of the hysteretic strain response accessed through first-order reversal curve (FORC) measurements demonstrates that the process is activated at a certain critical voltage and is linear above this voltage everywhere on the surface. This suggests that FORC spectroscopic ESM data separates local electrochemical reaction and transport processes. The relevant parameters such as critical voltage and effective mobility can be extracted for each location and correlated with the microstructure. The evolution of these behaviors with the charging of the amorphous Si anode in a thin-film Li-ion battery is explored. A broad applicability of this method to other ionically conductive systems is predicted.

  14. Polycapillary optics for powder diffraction

    Science.gov (United States)

    Huang, Huapeng; MacDonald, Carolyn A.; Gibson, Walter M.; Chik, John; Parsegian, Adrian; Ponomarev, Igor Y.

    2001-12-01

    In this paper, we describe a low power system using Polycapillary collimating and focusing optics that were designed to collect Cu Ka radiation from an Oxford Ultra-Bright micro-focus source for X-ray powder diffraction measurements. The characterizations of the source and polycapillary optics are presented. A collimator with two apertures was used to block high energy X-rays. An optic alignment system was designed to optimize coupling between the optics and the source, taking into account the maximum radiation direction from the source. Several powder sample data sets were collected with this system and their qualities are compared with data sets from the same samples taken with an Enraf-Nonius FR590 sealed-tube source system. Discussion is also presented for further improving the performance of this low power system.

  15. Exclusive diffractive processes in QCD

    Science.gov (United States)

    Pichowsky, M. A.; Lee, T.-S. H.

    1996-10-01

    We consider the role of nonperturbative, confined quarks in the Pomeron-exchange model of exclusive, diffractive processes. In our approach, mesons are treated as q-barq bound states and Pomeron-exchange mediates the quark-nucleon interaction. This interaction is modeled in terms of 4 parameters which are completely determined by examining π p and K p elastic scattering. The predicted ρ- and φ-meson electroproduction cross sections are in excellent agreement with the data. It is shown that the differences in the behavior of electroproduction cross sections for the different vector mesons (ρ, φ, J/ψ) arise from their quark substructures. Furthermore, several interesting features of vector meson electroproduction, recently observed at DESY, naturally arise in this approach. The model is also used to predict ρ p, φ p, ρ ρ, φ φ, and φ ρ elastic scattering cross sections necessary for investigations of QCD aspects of vector meson production from relativistic heavy ion collisions.

  16. Neutron interferometers with diffraction gratings

    International Nuclear Information System (INIS)

    Ioffe, A.I.

    1983-01-01

    A neutron interferometer is described in which the amplitude coherent division of the wave fronts is realized by means of neutron diffraction gratings. Photolithographic gratings on glass with a rectangular surface relief profile with a 58 Ni sprayed layer 2000 A thick are used as gratings. In contrast to perfect-crystal neutron interferometers the designed interferometer is capable of operating in the longwave neutron spectrum region. Variation of the value of spatial division of the interfering beams (up to 50 cm) and rather a high efficiency of the amergent beam together with the elemination of neutron beam passage through the interferometer coherent divosor material in such an interferometer permit to use it for solving problems of the solid-state physics and nuclear physics, for example, foA searching for the Yang Mills long-range field

  17. Single-crystal neutron diffraction analysis in chemistry

    International Nuclear Information System (INIS)

    Hosoya, Takaaki; Ohhara, Takashi

    2010-01-01

    Single-crystal neutron diffraction technique is a powerful method to analyze the reaction mechanism whose hydrogen atom or proton has a key role in the reaction. Especially hydrogen atom or proton transfer(HT/PT) is one of the most elemental phenomena and often observed in many organic, inorganic, enzymatic and catalytic reactions. We describe several applications in chemistry. At first, hydrogen atom in metal hydride complexes, which is quite difficult to do using X-ray diffraction because of the great cloud of electrons of central metal atom. Secondary, hydrogen atom in hydrogen-bonding network, e.g., low-barrier hydrogen bond(LBHB) system. Neutron diffraction can refine the thermal motion of hydrogen atom. Finally, our results, photo-induced HT/PTs using 'deuterium atom labeling' technique and 'crystalline-state reaction' technique, which are currently developing applications. Despite the success illustrated by the many studies presented here or many other studies, we have many problems in using single-crystal neutron diffraction technique. For example, extremely limited flux and the requirement for mm-size sample crystals. Now, these limitations are being solved by the operation of powerful instruments at a new generation of pulsed neutron sources, including iBIX diffractometer running at Japan Proton Accelerator Research Complex(J-PARC) in Japan. (author)

  18. Nuclear dynamical diffraction using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Dennis Eugene [Stanford Univ., CA (United States)

    1993-05-01

    The scattering of synchrotron radiation by nuclei is extensively explored in this thesis. From the multipole electric field expansion resulting from time-dependent nonrelativistic perturbation theory, a dynamical scattering theory is constructed. This theory is shown, in the many particle limit, to be equivalent to the semi-classical approach where a quantum mechanical scattering amplitude is used in the Maxwell inhomogeneous wave equation. The Moessbauer specimen whose low-lying energy levels were probed is a ferromagnetic lattice of 57Fe embedded in a yttrium iron garnet (YIG) crystal matrix. The hyperfine fields in YIG thin films were studied at low and room temperature using time-resolved quantum beat spectroscopy. Nuclear hyperfine structure quantum beats were measured using a fast plastic scintillator coincidence photodetector and associated electronics having a time resolution of 2.5 nsec. The variation of the quantum beat patterns near the Bragg [0 0 2] diffraction peak gave a Lamb-Moessbauer factor of 8.2±0.4. Exploring characteristic dynamical features in the higher order YIG [0 0 10] reflection revealed that one of the YIG crystals had bifurcated into two different layers. The dynamics of nuclear superradiance was explored. This phenomenon includes the radiative speedup exhibited by a collective state of particles, and, in striking concurrence, resonance frequency shifts. A speedup of a factor of 4 in the total decay rate and a beat frequency shift of 11/2 natural resonance linewidths were observed. Nuclear resonance scattering was also found to be a useful way of performing angular interferometry experiments, and it was used to observe the phase shift of a rotated quantum state. On the whole, nuclear dynamical diffraction theory has superbly explained many of the fascinating features of resonant magnetic dipole radiation scattered by a lattice of nuclei.

  19. Photon diffractive dissociation in deep inelastic scattering

    International Nuclear Information System (INIS)

    Wuesthoff, M.

    1995-09-01

    The cross section of the Photon Diffractive Dissociation in Deep Inelastic Scattering is calculated in the frame work of perturbative QCD. In the triple Regge region the BFKL-approximation is used to evaluate the leading contributions of the corresponding Feynman diagrams with a subsequent resummation in terms of integral equations. These equations are partly solved leading to an effective two to four gluons transition vertex. This exhibits remarkable properties like the total symmetry under the interchange of gluons, the conformal invariance and a simple colour structure. The presence of four interacting gluons in the t-channel does not support the simple triple Pomeron picture with solely a local vertex. A dimensional conservation law is found for zero momentum transfer with the consequence that a direct coupling of the three BFKL-singularities is absent. Another consequence is the dominance of small transverse momenta at the triple Pomeron vertex. Beyond the triple Regge limit a slightly different approach is used in which the diagrams are calculated with leading log(Q 2 ) accuracy. Higher twist contributions are neglected except for the longitudinal part of the cross section which dominates at small invariant masses M in accordance with QCD-predictions and measurements for the exclusive production of vector mesons. For the comparison with the recently measured Photon Diffractive Dissociation-data from H1 and ZEUS a model for the Pomeron is introduced based on the F 2 -data. In the spirit of the k t -factorization theorem this model is inserted in place of the BFKL-Pomeron. Considering the fact that this approach does not contain free parameters the agreement between the theoretical prediction and the data is found to be good. (orig.)

  20. Nuclear dynamical diffraction using synchrotron radiation

    International Nuclear Information System (INIS)

    Brown, D.E.

    1993-05-01

    The scattering of synchrotron radiation by nuclei is extensively explored in this thesis. From the multipole electric field expansion resulting from time-dependent nonrelativistic perturbation theory, a dynamical scattering theory is constructed. This theory is shown, in the many particle limit, to be equivalent to the semi-classical approach where a quantum mechanical scattering amplitude is used in the Maxwell inhomogeneous wave equation. The Moessbauer specimen whose low-lying energy levels were probed is a ferromagnetic lattice of 57 Fe embedded in a yttrium iron garnet (YIG) crystal matrix. The hyperfine fields in YIG thin films were studied at low and room temperature using time-resolved quantum beat spectroscopy. Nuclear hyperfine structure quantum beats were measured using a fast plastic scintillator coincidence photodetector and associated electronics having a time resolution of 2.5 nsec. The variation of the quantum beat patterns near the Bragg [0 0 2] diffraction peak gave a Lamb-Moessbauer factor of 8.2±0.4. Exploring characteristic dynamical features in the higher order YIG [0 0 10] reflection revealed that one of the YIG crystals had bifurcated into two different layers. The dynamics of nuclear superradiance was explored. This phenomenon includes the radiative speedup exhibited by a collective state of particles, and, in striking concurrence, resonance frequency shifts. A speedup of a factor of 4 in the total decay rate and a beat frequency shift of 1 1/2 natural resonance linewidths were observed. Nuclear resonance scattering was also found to be a useful way of performing angular interferometry experiments, and it was used to observe the phase shift of a rotated quantum state. On the whole, nuclear dynamical diffraction theory has superbly explained many of the fascinating features of resonant magnetic dipole radiation scattered by a lattice of nuclei

  1. Feasibility studies for high pressure neutron powder diffraction experiments

    International Nuclear Information System (INIS)

    Von Dreele, R.B.

    1991-01-01

    We recently performed two neutron powder diffraction experiments on very small samples on the High Intensity Powder Diffractometer (HIPD), to determine the feasibility of performing in situ high pressure/high temperature neutron diffraction experiments on HIPD at pressures which would exceed the previous limit of ∼50kbar achievable in a neutron diffraction experiment. The sample, which had been prepared at 65kbar and 1000degC, consisted of a small platinum capsule filled with CaGeO 3 perovskite. A diffraction experiment taking ∼8.6hrs at a LANSCE proton beam current of ∼53μA gave peaks of good intensity from both Pt and CaGeO 3 ; we could begin to see them after only 20min if beam time. The second experiment was to test the possibility of diffraction from a high pressure apparatus. We placed in the HIPD sample position the central assembly from a 100kbar octahedral press. Four tungsten carbide anvils and a copper block previously pressed to 65kbar were held in an aluminum frame. The sample consisted of a small bit of nickel foil placed in a 3 mm hole in the copper block. The active sample volume is defined by the gap (∼0.7mm) between the anvils and the length of the sample. A small portion of the copper block is also seen in this arrangement. This is viewed at 90deg 2Θ through a similar gap between the anvils by 4 1/2''x12'' 3 He counter tubes. This arrangement simulates the operating conditions of a high pressure run at 100kbar and takes advantage of the fixed instrument geometry possible in time-of-flight neutron diffraction experiments. We obtained a diffraction pattern in ∼7.1hrs and ∼57μA beam current which clearly showed peaks from both copper and nickel with no evidence of diffraction from the anvils or any other part of the assembly. These two experiments clearly demonstrate the feasibility of performing high pressure in situ diffraction experiments in excess of 100kbar on HIPD at LANSCE. (J.P.N.)

  2. Periodic oscillations of discrete NLS solitons in the presence of diffraction management

    International Nuclear Information System (INIS)

    Panayotaros, Panayotis; Pelinovsky, Dmitry

    2008-01-01

    We consider the discrete NLS equation with a small-amplitude time-periodic diffraction coefficient which models diffraction management in nonlinear lattices. In the space of one dimension and at the zero-amplitude diffraction management, multi-peak localized modes (called discrete solitons or discrete breathers) are stationary solutions of the discrete NLS equation which are uniquely continued from the anti-continuum limit, where they are compactly supported on finitely many non-zero nodes. We prove that the multi-peak localized modes are uniquely continued to the time-periodic space-localized solutions for small-amplitude diffraction management if the period of the diffraction coefficient is not multiple to the period of the stationary solution. The same result is extended to multi-peaked localized modes in the space of two and three dimensions (which include discrete vortices) under additional non-degeneracy assumptions on the stationary solutions in the anti-continuum limit

  3. The potential of diffraction grating for spatial applications

    Science.gov (United States)

    Jourlin, Y.; Parriaux, O.; Pigeon, F.; Tischenko, A. V.

    2017-11-01

    Diffraction gratings are know, and have been fabricated for more than one century. They are now making a come back for two reasons: first, because they are now better understood which leads to the efficient exploitation of what was then called their "anomalies"; secondly, because they are now fabricable by means of the modern manufacturing potential of planar technologies. Novel grating can now perform better than conventional gratings, and address new application fields which were not expected to be theirs. This is the case of spatial applications where they can offer multiple optical functions, low size, low weight and mechanical robustness. The proposed contribution will briefly discuss the use of gratings for spatial applications. One of the most important applications is in the measurement of displacement. Usual translation and rotation sensors are bulky devices, which impose a system breakdown leading to cumbersome and heavy assemblies. We are proposing a miniaturized version of the traditional moving grating technique using submicron gratings and a specific OptoASIC which enables the measurement function to be non-obtrusively inserted into light and compact electro-mechanical systems. Nanometer resolution is possible with no compromise on the length of the measurement range. Another family of spatial application is in the field of spectrometers where new grating types allow a more flexible processing of the optical spectrum. Another family of applications addresses the question of inter-satellite communications: the introduction of gratings in laser cavities or in the laser mirrors enables the stabilization of the emitted polarization, the stabilization of the frequency as well as wide range frequency sweeping without mobile parts.

  4. Inelastic nucleon diffraction at high energy

    International Nuclear Information System (INIS)

    Goggi, G.

    1975-01-01

    Experiments carried out at ISR and at FNAL which have yielded a substantial amount of data on double diffraction processes, which were unambiguously indentified and measured and which provide new tools to study the dynamical properties shared by different classes of diffractive reactions are identified. In this review interest is focused on the experimental aspects of inclusive and exclusive results both on single and double diffraction and on the problems arising from their comparison. Problems covered include; inclusive and semi-inclusive diffraction, multiparticle inclusive studies, single-particle inclusive studies, resonance region, high mass region, exclusive single diffractive reactions, mass spectra, cross sections, t-dependence, decay angular properties, and double diffraction. (U.K.)

  5. Diffraction of polarized light on periodic structures

    International Nuclear Information System (INIS)

    Bukanina, V; Divakov, D; Tyutyunnik, A; Hohlov, A

    2012-01-01

    Periodic structures as photonic crystals are widely used in modern laser devices, communication technologies and for creating various beam splitters and filters. Diffraction gratings are applied for creating 3D television sets, DVD and Blu-ray drives and reflective structures (Berkley mirror). It is important to simulate diffraction on such structures to design optical systems with predetermined properties based on photonic crystals and diffraction gratings. Methods of simulating diffraction on periodic structures uses theory of Floquet-Bloch and rigorous coupled-wave analysis (RCWA). Current work is dedicated to analysis of photonic band gaps and simulating diffraction on one-dimensional binary diffraction grating using RCWA. The Maxwell's equations for isotropic media and constitutive relations based on the cgs system were used as a model.

  6. Optimizing Crystal Volume for Neutron Diffraction

    Science.gov (United States)

    Snell, Edward H.; vanderWoerd, Mark; Damon, Michael; Judge, Russell, A.; Myles, Dean; Meilleur, F.

    2006-01-01

    Neutron diffraction is uniquely sensitive to hydrogen positions and protonation state. In that context structural information from neutron data is complementary to that provided through X-ray diffraction. However, there are practical obstacles to overcome in fully exploiting the potential of neutron diffraction, Le. low flux and weak scattering. Several approaches are available to overcome these obstacles and we have investigated the simplest: increasing the diffracting volume of the crystals. Volume is a quantifiable metric that is well suited for experiment design and optimization techniques. By using response surface methods we have optimized xylose isomerase crystal volume, enabling neutron diffraction while we determined the crystallization parameters with the minimum of experiments. Our results suggest a systematic means of enabling neutron diffraction studies for a larger number of samples that require information on hydrogen position and/or protonation state.

  7. Feasibility studies for high pressure neutron powder diffraction experiments

    International Nuclear Information System (INIS)

    Von Dreele, R.B.; Parise, J.

    1990-01-01

    We recently performed two neutron powder diffraction experiments on very small samples on the High Intensity Powder Diffractometer (HIPD). These were done to determine the feasibility of performing in situ high pressure/high temperature neutron diffraction experiments on HIPD at pressures which would exceed the previous limit of ∼50 kbar achievable in a neutron diffraction experiment. The first experiment consisted of examining the product from a high pressure preparation done at Stony Brook. The sample, which had been prepared at 65 kbar and 1000 degree C, consisted of a small platinum capsule filled with CaGeO 3 perovskite. The weights of the capsule included 225 mg of platinum and 49 mg of the germanate. A diffraction experiment taking ∼8.6 hrs at a LANSCE proton beam current of ∼53 μA gave peaks of good intensity from both Pt and CaGeO 3 ; we could begin to see them after only 20 min of beam time. The second experiment was to test the possibility of diffraction from a high pressure apparatus. We placed in the HIPD sample position the central assembly from a 100 kbar octahedral press. Four tungsten carbide anvils and a copper block previously pressed to 65 kbar were held in an aluminum frame. The sample consisted of a small bit of nickel foil (175 mg) placed in a 3 mm hole in the copper block. The active sample volume is defined by the gap between the anvils and the length of the sample. A small portion of the copper block is also seen in this arrangement. This is viewed at 90 degree 2Θ through a similar gap between the anvils by 4 1/2 in. x 12 in. 3 He counter tubes. This arrangement simulates the operating conditions of a high pressure run at 100 kbar and takes advantage of the fixed instrument geometry possible in time-of-flight neutron diffraction experiments

  8. Microarcsecond relative astrometry from the ground with a diffractive pupil

    Energy Technology Data Exchange (ETDEWEB)

    Ammons, S M; Bendek, E; Guyon, O

    2011-09-08

    The practical use of astrometry to detect exoplanets via the reflex motion of the parent star depends critically on the elimination of systematic floors in imaging systems. In the diffractive pupil technique proposed for space-based detection of exo-earths, extended diffraction spikes generated by a dotted primary mirror are referenced against a wide-field grid of background stars to calibrate changing optical distortion and achieve microarcsecond astrometric precision on bright targets (Guyon et al. 2010). We describe applications of this concept to ground-based uncrowded astrometry using a diffractive, monopupil telescope and a wide-field camera to image as many as {approx}4000 background reference stars. Final relative astrometric precision is limited by differential tip/tilt jitter caused by high altitude layers of turbulence. A diffractive 3-meter telescope is capable of reaching {approx}35 {micro}as relative astrometric error per coordinate perpendicular to the zenith vector in three hours on a bright target star (I < 10) in fields of moderate stellar density ({approx}40 stars arcmin{sup -2} with I < 23). Smaller diffractive apertures (D < 1 m) can achieve 100-200 {micro}as performance with the same stellar density and exposure time and a large telescope (6.5-10 m) could achieve as low as 10 {micro}as, nearly an order of magnitude better than current space-based facilities. The diffractive pupil enables the use of larger fields of view through calibration of changing optical distortion as well as brighter target stars (V < 6) by preventing star saturation. Permitting the sky to naturally roll to average signals over many thousands of pixels can mitigate the effects of detector imperfections.

  9. Theory of edge diffraction in electromagnetics

    CERN Document Server

    Ufimtsev, Pyotr

    2009-01-01

    This book is an essential resource for researchers involved in designing antennas and RCS calculations. It is also useful for students studying high frequency diffraction techniques. It contains basic original ideas of the Physical Theory of Diffraction (PTD), examples of its practical application, and its validation by the mathematical theory of diffraction. The derived analytic expressions are convenient for numerical calculations and clearly illustrate the physical structure of the scattered field.

  10. Nonlinear diffraction from a virtual beam

    DEFF Research Database (Denmark)

    Saltiel, Solomon M.; Neshev, Dragomir N.; Krolikowski, Wieslaw

    2010-01-01

    We observe experimentally a novel type of nonlinear diffraction in the process of two-wave mixing on a nonlinear quadratic grating.We demonstrate that when the nonlinear grating is illuminated simultaneously by two noncollinear beams, a second-harmonic diffraction pattern is generated by a virtual...... beam propagating along the bisector of the two pump beams. The observed iffraction phenomena is a purely nonlinear effect that has no analogue in linear diffraction...

  11. Theory of hard diffraction and rapidity gaps

    International Nuclear Information System (INIS)

    Del Duca, V.

    1995-06-01

    In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). (orig.)

  12. Diffraction Techniques in Steel Research: An Overview

    Science.gov (United States)

    Melzer, Stefan; Moerman, Jaap

    Acquiring knowledge about microstructures and textures is crucial for the improvement and development steel products, because these two characteristics are controlling factors for the properties of steel. Diffraction techniques using X-rays, electrons or neutrons are suitable to study microstructures (e.g. phase relationships) and textures (crystallographic orientations). X-ray diffraction (XRD) and electron backscatter diffraction (EBSD) are generally available techniques within an industrial research environment.

  13. Parity-violation effects in neutron diffraction

    International Nuclear Information System (INIS)

    Zaretskii, D.F.; Sirotkin, V.K.

    1984-01-01

    The effects of parity violation in polarized-neutron diffraction by nuclei are considered. It is shown that the case of dynamical Laue diffraction exhibits significantly enhanced parity-violation effects, and that this enhancement is due to a pendulum-type dependence of the diffracted-beam intensity on the thickness. The effects are estimated for a number of nuclei in the case of thermal neutrons

  14. Structural materials evaluation by neutron diffraction method

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi

    2010-01-01

    It is well known that neutron diffraction method enables us to measure residual stresses inside materials. It can also evaluate deformation behaviors and phase transformation of materials under loading at various environments such as high or low temperature and also evaluate microstructural factors such as dislocation density, cell size and texture by analyzing diffraction profile. This article reviews some topics of structural materials evaluation using neutron diffraction. (author)

  15. High-energy electron diffraction and microscopy

    CERN Document Server

    Peng, L M; Whelan, M J

    2011-01-01

    This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using ageneral matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to f

  16. Diffractive charm and jet production at HERA

    International Nuclear Information System (INIS)

    Savin, Alexander A.

    2003-01-01

    A new high precision inclusive measurement of the diffractive production of D* ± (2010) mesons in deep inelastic scattering (DIS) in the kinematic region Q 2 >1.5 GeV 2 , 0.02 IP 2 2 , 165 2 , χ IP < 0.03 are presented. Diffractive parton densities extracted using a NLO DGLAP QCD fit are used for comparisons with diffractive DIS and PHP dijet and open charm cross sections at HERA and the Tevatron, thus testing the factorization properties of hard diffraction

  17. Diffraction Testing for the Beach Ball Coronagraph

    Data.gov (United States)

    National Aeronautics and Space Administration — Objective #1: Quantify, both analytically and experimentally, the diffraction intensity around a spherical object as a function of distance. Two different...

  18. Characterization of nanowires by coherent X-ray diffractive imaging and ptychography

    International Nuclear Information System (INIS)

    Dzhigaev, Dmitry

    2017-03-01

    Imaging techniques are of paramount importance for our understanding of the universe. From galaxies and stars explored by huge telescopes down to micro and nanostructures studied by microscopes, imaging systems provide invaluable scientific information. When an object under investigation has a size of about 100 nanometers, X-rays become a perfect probe for non-destructive imaging. The manufacturing process of image forming lenses for X-rays becomes much more complicated comparing to optical ones. Therefore, ''lensless'' techniques which rely on the coherent properties of radiation were developed. With third generation of synchrotron sources highly coherent and intense X-ray beams became widely accessible. They are used in new imaging methods such as coherent X-ray diffractive imaging (CXDI) and X-ray ptychography. Modern nanotechnology opens a wide spectrum of possible applications in different branches of physics, chemistry, biology and engineering. At the nanoscale, matter has different physical and chemical properties compared to the macroscale bulk material. The continuing trend of miniaturization of functional components in semiconductor industry brings new challenges both in growth and characterization methods. This Thesis is focused on application of coherent diffractive imaging methods to reveal the structure of single semiconductor nanowires (NWs). They have been attracting significant attention for a couple of decades due to their efficient strain relaxation properties. And since the strain plays a significant role in NW performance the projects carried out in this work are oriented on Bragg CXDI approaches. Three distinct projects were carried out during my research activity at DESY research center of the Helmholtz Association. Experimental work was performed at P06 and P10 beamlines at PETRA III synchrotron. The first part of this Thesis extends the application of the three-dimensional (3D) Bragg CXDI to strain field mapping in a

  19. Characterization of nanowires by coherent X-ray diffractive imaging and ptychography

    Energy Technology Data Exchange (ETDEWEB)

    Dzhigaev, Dmitry

    2017-03-15

    Imaging techniques are of paramount importance for our understanding of the universe. From galaxies and stars explored by huge telescopes down to micro and nanostructures studied by microscopes, imaging systems provide invaluable scientific information. When an object under investigation has a size of about 100 nanometers, X-rays become a perfect probe for non-destructive imaging. The manufacturing process of image forming lenses for X-rays becomes much more complicated comparing to optical ones. Therefore, ''lensless'' techniques which rely on the coherent properties of radiation were developed. With third generation of synchrotron sources highly coherent and intense X-ray beams became widely accessible. They are used in new imaging methods such as coherent X-ray diffractive imaging (CXDI) and X-ray ptychography. Modern nanotechnology opens a wide spectrum of possible applications in different branches of physics, chemistry, biology and engineering. At the nanoscale, matter has different physical and chemical properties compared to the macroscale bulk material. The continuing trend of miniaturization of functional components in semiconductor industry brings new challenges both in growth and characterization methods. This Thesis is focused on application of coherent diffractive imaging methods to reveal the structure of single semiconductor nanowires (NWs). They have been attracting significant attention for a couple of decades due to their efficient strain relaxation properties. And since the strain plays a significant role in NW performance the projects carried out in this work are oriented on Bragg CXDI approaches. Three distinct projects were carried out during my research activity at DESY research center of the Helmholtz Association. Experimental work was performed at P06 and P10 beamlines at PETRA III synchrotron. The first part of this Thesis extends the application of the three-dimensional (3D) Bragg CXDI to strain field mapping in a

  20. Effects of Electric Field Gradient on Sub-nanometer Spatial Resolution of Tip-enhanced Raman Spectroscopy

    OpenAIRE

    Meng, Lingyan; Yang, Zhilin; Chen, Jianing; Sun, Mengtao

    2014-01-01

    Tip-enhanced Raman spectroscopy (TERS) with sub-nanometer spatial resolution has been recently demonstrated experimentally. However, the physical mechanism underlying is still under discussion. Here, we theoretically investigate the electric field gradient of a coupled tip-substrate system. Our calculations suggest that the ultra-high spatial resolution of TERS can be partially attributed to the electric field gradient effect owning to its tighter spatial confinement and sensitivity to the in...

  1. Nanometer and molecular materials: the greatness of the very tiny; Materiales manometricos y moleculares: la grandeza de lo infimo

    Energy Technology Data Exchange (ETDEWEB)

    Rincon, Marina [Centro de Investigacion en Energia (CIE) de la UNAM, Temixco, Morelos (Mexico)

    2010-07-01

    Some of the materials have been present in our lives for many years, and now appear with unique or improved properties by the fact that they can be manufactured in the nanometer scale; that is, a million times smaller than a millimeter and with geometries that include the nanodots, the nanotubes, the nanowires, to mention a few of them. The most popular is the titanium dioxide (Titania), known by many as the white pigment in paints, sunscreens, cosmetics and others for their null toxicity, low cost and high stability. Strictly speaking, these features are really applicable to the micrometric material (which is a thousand times larger than the nanometer) and it is still to be proven toxicity and stability of the nanometer materials; but it is a fact that the nanometer titania is very popular in a multitude of applications that have to do with catalysis, sensors, and energy conversion and storing. We will also deal with conductive polymers, which are molecular conjugated materials. [Spanish] Algunos de los materiales han estado presentes en nuestras vidas por muchos anos y ahora aparecen con propiedades unicas o mejoradas por el hecho de que se pueden fabricar en la escala de los nanometros; esto es, un millon de veces mas pequenos que un milimetro y con geometrias que comprenden los nanopuntos, los nanotubos, los nanoalambres, por mencionar algunas. El mas popular es el dioxido de titanio (titania), conocido por muchos como el pigmento blanco de las pinturas, filtros solares, cosmeticos y demas, por su nula toxicidad, bajo costo y gran estabilidad. Estrictamente hablando, estas caracteristicas son realmente aplicables al material micrometrico (que es mil veces mas grande que el nanometrico) y todavia esta por probarse la toxicidad y estabilidad de los nanomateriales; pero es un hecho que la titania nanometrica es muy popular en un sinfin de aplicaciones que tienen que ver con catalisis, sensores, y conversion y almacenamiento de energia. Hablaremos tambien de

  2. Numerical simulation of temperature field and thermal stress field in the new type of ladle with the nanometer adiabatic material

    Directory of Open Access Journals (Sweden)

    Gongfa Li

    2015-04-01

    Full Text Available With the development of metallurgical industry and the improvement of continuous casting technology, the processing properties of casting technology equipment are being paid more attention. Ladle is one of the most representatives of the furnace equipment; higher requirements of ladle are put forward in response to the call for national energy-saving and emission reduction. According to the requirements of actual operator and working condition, a lining structure of a new type of ladle with nanometer adiabatic material is put forward. Based on heat transfer theory and finite element technology, the three-dimensional finite element model of a new type of ladle is established. Temperature field and stress field of the new type of ladle with the nanometer adiabatic material in lining structure after baking are analyzed. The results indicate that the distributions of temperature and thermal stress level of working layer, permanent layer, and nanometer heat insulating layer are similar, and they are in the permissible stress and temperature range of each material for the new type of ladle. Especially heat preservation effect of nanometer adiabatic material is excellent. Furthermore, the maximum temperature of shell for the new type of ladle drops to 114°C than the traditional ladle, and the maximum stress of shell for the new type of ladle is lower than the traditional ladle, that is, 114 MPa. It can provide reliable theory for energy-saving and emission reduction of metallurgy industry, which also points out the right direction for the future development of the iron and steel industry.

  3. Sub-nanometer dimensions control of core/shell nanoparticles prepared by atomic layer deposition.

    Science.gov (United States)

    Weber, M J; Verheijen, M A; Bol, A A; Kessels, W M M

    2015-03-06

    Bimetallic core/shell nanoparticles (NPs) are the subject of intense research due to their unique electronic, optical and catalytic properties. Accurate and independent control over the dimensions of both core and shell would allow for unprecedented catalytic performance. Here, we demonstrate that both core and shell dimensions of Pd/Pt core/shell nanoparticles (NPs) supported on Al2O3 substrates can be controlled at the sub-nanometer level by using a novel strategy based on atomic layer deposition (ALD). From the results it is derived that the main conditions for accurate dimension control of these core/shell NPs are: (i) a difference in surface energy between the deposited core metal and the substrate to obtain island growth; (ii) a process yielding linear growth of the NP cores with ALD cycles to obtain monodispersed NPs with a narrow size distribution; (iii) a selective ALD process for the shell metal yielding a linearly increasing thickness to obtain controllable shell growth exclusively on the cores. For Pd/Pt core/shell NPs it is found that a minimum core diameter of 1 nm exists above which the NP cores are able to catalytically dissociate the precursor molecules for shell growth. In addition, initial studies on the stability of these core/shell NPs have been carried out, and it has been demonstrated that core/shell NPs can be deposited by ALD on high aspect ratio substrates such as nanowire arrays. These achievements show therefore that ALD has significant potential for the preparation of tuneable heterogeneous catalyst systems.

  4. Threading DNA Through a Nanometer-Scale Pore: Biophysical and Biotechnological Applications

    Science.gov (United States)

    Kasianowicz, John; Henrickson, Sarah; Misakian, Martin; Wang, Qian; Weetall, Howard; Roberston, Baldwin

    2001-03-01

    With the goal of developing technologies for biomedical applications (e.g. antiviral treatments, targeted genetic therapies, analyte sensing, and ultra-rapid DNA sequencing), we are studying the mechanism by which DNA is transported through a nanometer-scale pore. Individual molecules of single-stranded DNA (ssDNA) can be detected and characterized as they are driven electrophoretically through a single Staphylococcus aureus alpha-hemolysin (alpha-HL) ion channel. We recently demonstrated that the ability of ssDNA to partition into the pore depends on the side to which the polymer is added and on the magnitude of the applied potential. These results are consistent with the alpha-HL channel’s crystal structure and are providing insight into the physics of DNA transport through a nanopore. We are also researching methods for using ion channels as components of analyte sensors. Using the alpha-HL channel and ssDNA as a model system, we demonstrated an analyte sensing technology based on a single nanopore and pore-permeant polymers. Instead of affixing an analyte binding site to the channel, it is covalently attached to a polymer that is initially free in solution. The binding of analyte to the polymer alters the ability of the polymer to thread into or through the pore. This system can simultaneously quantitate multiple analytes in real-time. Finally, we demonstrate that the signal produced by the transport of individual ssDNA molecules through the alpha-HL channel depends on which end of the channel the polymer enters.

  5. Nanometer-scale characterization of exceptionally preserved bacterial fossils in Paleocene phosphorites from Ouled Abdoun (Morocco).

    Science.gov (United States)

    Cosmidis, J; Benzerara, K; Gheerbrant, E; Estève, I; Bouya, B; Amaghzaz, M

    2013-03-01

    Micrometer-sized spherical and rod-shaped forms have been reported in many phosphorites and often interpreted as microbes fossilized by apatite, based on their morphologic resemblance with modern bacteria inferred by scanning electron microscopy (SEM) observations. This interpretation supports models involving bacteria in the formation of phosphorites. Here, we studied a phosphatic coprolite of Paleocene age originating from the Ouled Abdoun phosphate basin (Morocco) down to the nanometer-scale using focused ion beam milling, transmission electron microscopy (TEM), and scanning transmission x-ray microscopy (STXM) coupled with x-ray absorption near-edge structure spectroscopy (XANES). The coprolite, exclusively composed of francolite (a carbonate-fluroapatite), is formed by the accumulation of spherical objects, delimited by a thin envelope, and whose apparent diameters are between 0.5 and 3 μm. The envelope of the spheres is composed of a continuous crown dense to electrons, which measures 20-40 nm in thickness. It is surrounded by two thinner layers that are more porous and transparent to electrons and enriched in organic carbon. The observed spherical objects are very similar with bacteria encrusting in hydroxyapatite as observed in laboratory experiments. We suggest that they are Gram-negative bacteria fossilized by francolite, the precipitation of which started within the periplasm of the cells. We discuss the role of bacteria in the fossilization mechanism and propose that they could have played an active role in the formation of francolite. This study shows that ancient phosphorites can contain fossil biological subcellular structures as fine as a bacterial periplasm. Moreover, we demonstrate that while morphological information provided by SEM analyses is valuable, the use of additional nanoscale analyses is a powerful approach to help inferring the biogenicity of biomorphs found in phosphorites. A more systematic use of this approach could considerably

  6. Wetting at the nanometer scale: effects of long-range forces and substrate heterogeneities

    International Nuclear Information System (INIS)

    Checco, Antonio

    2003-01-01

    Wetting phenomena on the nano-scale remain poorly understood in spite of their growing theoretical and practical interest. In this context, the present work aimed at studying partial wetting of nanometer-sized alkane droplets on 'model' surfaces build by self-assembly of organic monolayers. For this purpose a novel technique, based on 'noncontact' Atomic Force Microscopy (AFM), has been developed to image, with minimal artefacts, drops of adjustable size directly condensed on so- lid surfaces. We have thus shown that contact angle of alkanes, wetting a weakly heterogeneous, silanized substrate, noticeably decreases from its macroscopic value for droplets sizes in the submicron range. The line tension, arising in this case from purely dispersive long-range interactions between the liquid and the substrate, is theoretically too weak to be responsible for the observed effect. Therefore we have supposed that contact angle is affected by mesoscopic chemical heterogeneities of the substrate whenever the droplets size becomes sufficiently small. This scenario has been supported by numerical simulations based on a simplified model of the spatial distribution of surface defects. Similar experiments, performed on different substrates (monolayers made of alkane-thiols self-assembled on gold and of alkyl chains covalently bound onto a silicon surface), have also shown that wetting on small scales is strongly affected by minimal physical and chemical surface heterogeneities. Finally, to provide further examples of the potential of the above mentioned AFM technique, we have studied the wettability of nano-structured surfaces and the local wetting properties of hair. (author) [fr

  7. Quality of Irrigated Water with Nanometer Pottery Tray Treatment and Its Effects on Seed Soaking

    Directory of Open Access Journals (Sweden)

    Huang Jun-rong

    2016-03-01

    Full Text Available To study the impacts of nanometer pottery trays (NPTs on different rice varieties, three rice varieties, Zhongzheyou 1, Jinzao 47 and Xiushui 09, were treated with four NPTs (NPT-A, NPT-B, NPT-C and NPT-D with different energies, respectively. The results showed that when the same rice variety was treated with different NPTs or different rice varieties were treated with the same NPT, the impacts on seed germination rate, seedling growth, plant height, panicle length and weight, the number of filled grains, seed-setting rate and 1000-grain weight varied between different rice variety-NPT interaction groups. In general, high energy NPT-C and NPT-D treatments obviously enhanced the functions of most examined rice characters. For example, NPT-C and NPT-D treatments improved the germination rate of all the three rice varieties, and promoted the root growth of seedlings, and increased seedling fresh weight, single panicle weight, filled grain number per panicle, seed-setting rate and 1000-grain weight. On the contrary, low energy NPT-A treatment restrained the seed germination rate in Jinzao 47 and Zhongzheyou 1, and decreased the seedling fresh weight in Zhongzheyou 1. NPT-B treatment restrained the seedling growth in Jinzao 47 but increased the panicle length of Zhongzheyou 1. NPT-A and NPT-C treatments obviously decreased the 1000-grain weight in Xiushui 09. Therefore, when treating crop seeds or plants using nanomaterials or nanotechnologies, different types of crops/varieties should select the nanomaterials or nanotechnologies with suitable energies to reduce the negative effects.

  8. Phase sensitive diffraction sensor for high sensitivity refractive index measurement

    Science.gov (United States)

    Kumawat, Nityanand; Varma, Manoj; Kumar, Sunil

    2018-02-01

    In this study a diffraction based sensor has been developed for bio molecular sensing applications and performing assays in real time. A diffraction grating fabricated on a glass substrate produced diffraction patterns both in transmission and reflection when illuminated by a laser diode. We used zeroth order I(0,0) as reference and first order I(0,1) as signal channel and conducted ratiometric measurements that reduced noise by more than 50 times. The ratiometric approach resulted in a very simple instrumentation with very high sensitivity. In the past, we have shown refractive index measurements both for bulk and surface adsorption using the diffractive self-referencing approach. In the current work we extend the same concept to higher diffraction orders. We have considered order I(0,1) and I(1,1) and performed ratiometric measurements I(0,1)/I(1,1) to eliminate the common mode fluctuations. Since orders I(0,1) and I(1,1) behaved opposite to each other, the resulting ratio signal amplitude increased more than twice compared to our previous results. As a proof of concept we used different salt concentrations in DI water. Increased signal amplitude and improved fluid injection system resulted in more than 4 times improvement in detection limit, giving limit of detection 1.3×10-7 refractive index unit (RIU) compared to our previous results. The improved refractive index sensitivity will help significantly for high sensitivity label free bio sensing application in a very cost-effective and simple experimental set-up.

  9. Nanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices.

    Science.gov (United States)

    Grosse, Kyle L; Pop, Eric; King, William P

    2014-09-01

    This paper reports a technique for independent observation of nanometer-scale Joule heating and thermoelectric effects, using atomic force microscopy (AFM) based measurements of nanometer-scale temperature fields. When electrical current flows through nanoscale devices and contacts the temperature distribution is governed by both Joule and thermoelectric effects. When the device is driven by an electrical current that is both periodic and bipolar, the temperature rise due to the Joule effect is at a different harmonic than the temperature rise due to the Peltier effect. An AFM tip scanning over the device can simultaneously measure all of the relevant harmonic responses, such that the Joule effect and the Peltier effect can be independently measured. Here we demonstrate the efficacy of the technique by measuring Joule and Peltier effects in phase change memory devices. By comparing the observed temperature responses of these working devices, we measure the device thermopower, which is in the range of 30 ± 3 to 250 ± 10 μV K(-1). This technique could facilitate improved measurements of thermoelectric phenomena and properties at the nanometer-scale.

  10. Nanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, Kyle L. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Pop, Eric [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); King, William P., E-mail: wpk@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Departments of Electrical and Computer Engineering and Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2014-09-15

    This paper reports a technique for independent observation of nanometer-scale Joule heating and thermoelectric effects, using atomic force microscopy (AFM) based measurements of nanometer-scale temperature fields. When electrical current flows through nanoscale devices and contacts the temperature distribution is governed by both Joule and thermoelectric effects. When the device is driven by an electrical current that is both periodic and bipolar, the temperature rise due to the Joule effect is at a different harmonic than the temperature rise due to the Peltier effect. An AFM tip scanning over the device can simultaneously measure all of the relevant harmonic responses, such that the Joule effect and the Peltier effect can be independently measured. Here we demonstrate the efficacy of the technique by measuring Joule and Peltier effects in phase change memory devices. By comparing the observed temperature responses of these working devices, we measure the device thermopower, which is in the range of 30 ± 3 to 250 ± 10 μV K{sup −1}. This technique could facilitate improved measurements of thermoelectric phenomena and properties at the nanometer-scale.

  11. Super-resolved imaging geometrical and diffraction approaches

    CERN Document Server

    2011-01-01

    In this brief we review several approaches that provide super resolved imaging, overcoming the geometrical limitation of the detector as well as the diffraction effects set by the F number of the imaging lens. In order to obtain the super resolved enhancement, we use spatially non-uniform and/or random transmission structures to encode the image or the aperture planes. The desired resolution enhanced images are obtained by post-processing decoding of the captured data.

  12. Diffraction measurements using the LHC Beam Loss Monitoring System

    Science.gov (United States)

    Kalliokoski, Matti

    2017-03-01

    The Beam Loss Monitoring (BLM) system of the Large Hadron Collider protects the machine from beam induced damage by measuring the absorbed dose rates of beam losses, and by triggering beam dump if the rates increase above the allowed threshold limits. Although the detection time scales are optimized for multi-turn losses, information on fast losses can be recovered from the loss data. In this paper, methods in using the BLM system in diffraction studies are discussed.

  13. Structure determination of modulated structures by powder X-ray diffraction and electron diffraction

    Czech Academy of Sciences Publication Activity Database

    Zhou, Z.Y.; Palatinus, Lukáš; Sun, J.L.

    2016-01-01

    Roč. 3, č. 11 (2016), s. 1351-1362 ISSN 2052-1553 Institutional support: RVO:68378271 Keywords : electron diffraction * incommensurate structure * powder diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.036, year: 2016

  14. Generation of arbitrary complex quasi-non-diffracting optical patterns.

    Science.gov (United States)

    Ortiz-Ambriz, Antonio; Lopez-Aguayo, Servando; Kartashov, Yaroslav V; Vysloukh, Victor A; Petrov, Dmitri; Garcia-Gracia, Hipolito; Gutiérrez-Vega, Julio C; Torner, Lluis

    2013-09-23

    Due to their unique ability to maintain an intensity distribution upon propagation, non-diffracting light fields are used extensively in various areas of science, including optical tweezers, nonlinear optics and quantum optics, in applications where complex transverse field distributions are required. However, the number and type of rigorously non-diffracting beams is severely limited because their symmetry is dictated by one of the coordinate system where the Helmholtz equation governing beam propagation is separable. Here, we demonstrate a powerful technique that allows the generation of a rich variety of quasi-non-diffracting optical beams featuring nearly arbitrary intensity distributions in the transverse plane. These can be readily engineered via modifications of the angular spectrum of the beam in order to meet the requirements of particular applications. Such beams are not rigorously non-diffracting but they maintain their shape over large distances, which may be tuned by varying the width of the angular spectrum. We report the generation of unique spiral patterns and patterns involving arbitrary combinations of truncated harmonic, Bessel, Mathieu, or parabolic beams occupying different spatial domains. Optical trapping experiments illustrate the opto-mechanical properties of such beams.

  15. Nanometer-scale ablation using focused, coherent extreme ultraviolet/soft x-ray light

    Science.gov (United States)

    Menoni, Carmen S [Fort Collins, CO; Rocca, Jorge J [Fort Collins, CO; Vaschenko, Georgiy [San Diego, CA; Bloom, Scott [Encinitas, CA; Anderson, Erik H [El Cerrito, CA; Chao, Weilun [El Cerrito, CA; Hemberg, Oscar [Stockholm, SE

    2011-04-26

    Ablation of holes having diameters as small as 82 nm and having clean walls was obtained in a poly(methyl methacrylate) on a silicon substrate by focusing pulses from a Ne-like Ar, 46.9 nm wavelength, capillary-discharge laser using a freestanding Fresnel zone plate diffracting into third order is described. Spectroscopic analysis of light from the ablation has also been performed. These results demonstrate the use of focused coherent EUV/SXR light for the direct nanoscale patterning of materials.

  16. Structure refinement from precession electron diffraction data.

    Science.gov (United States)

    Palatinus, Lukáš; Jacob, Damien; Cuvillier, Priscille; Klementová, Mariana; Sinkler, Wharton; Marks, Laurence D

    2013-03-01

    Electron diffraction is a unique tool for analysing the crystal structures of very small crystals. In particular, precession electron diffraction has been shown to be a useful method for ab initio structure solution. In this work it is demonstrated that precession electron diffraction data can also be successfully used for structure refinement, if the dynamical theory of diffraction is used for the calculation of diffracted intensities. The method is demonstrated on data from three materials - silicon, orthopyroxene (Mg,Fe)(2)Si(2)O(6) and gallium-indium tin oxide (Ga,In)(4)Sn(2)O(10). In particular, it is shown that atomic occupancies of mixed crystallographic sites can be refined to an accuracy approaching X-ray or neutron diffraction methods. In comparison with conventional electron diffraction data, the refinement against precession diffraction data yields significantly lower figures of merit, higher accuracy of refined parameters, much broader radii of convergence, especially for the thickness and orientation of the sample, and significantly reduced correlations between the structure parameters. The full dynamical refinement is compared with refinement using kinematical and two-beam approximations, and is shown to be superior to the latter two.

  17. Accurate Charge Densities from Powder Diffraction

    DEFF Research Database (Denmark)

    Bindzus, Niels; Wahlberg, Nanna; Becker, Jacob

    Synchrotron powder X-ray diffraction has in recent years advanced to a level, where it has become realistic to probe extremely subtle electronic features. Compared to single-crystal diffraction, it may be superior for simple, high-symmetry crystals owing to negligible extinction effects and minimal...... of conventional and novel extraction methods....

  18. X-ray topography and multiple diffraction

    International Nuclear Information System (INIS)

    Chang, S.-L.

    1983-01-01

    A short summary on X-ray topography, which is based on the dynamical theory of X-ray diffraction, is made. The applications and properties related to the use of the multiple diffraction technique are analized and discussed. (L.C.) [pt

  19. Bragg diffraction optics in neutron diffractometry

    Czech Academy of Sciences Publication Activity Database

    Mikula, Pavol; Kulda, Jiří; Lukáš, Petr; Ono, M.; Šaroun, Jan; Vrána, Miroslav; Wagner, Vladimír

    2000-01-01

    Roč. 283, - (2000), s. 289-294 ISSN 0921-4526 R&D Projects: GA ČR GV202/97/K038 Institutional research plan: CEZ:AV0Z1048901 Keywords : neutron diffraction * bragg diffraction * focusing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.893, year: 2000

  20. Diffraction and Forward Physics at HERA

    Science.gov (United States)

    Yamazaki, Y.; H1 Collaboration; ZEUS Collaboration

    Measurements on diffractive processes atHERA are presented. The partonic contents of the diffractive exchange have been extracted, by QCD analysis, with decent precision, thanks to recent increase of data used in the analyses. Also reviewed are recent measurements on the leading neutron production.

  1. White-Light Diffraction with a CD

    Science.gov (United States)

    Ivanov, Dragia Trifonov; Nikolaev, Stefan

    2010-01-01

    Various wave optics experiments can be carried out using an ordinary compact disc. The CD is suitable for use as a diffraction grating. For instance, a standard CD (700 MB) has 625 lines/mm. In this article, the authors describe two white-light diffraction demonstrations for a large audience, realizable using a CD (as reflection or transmission…

  2. Neutron polarisers for diffraction experiments

    International Nuclear Information System (INIS)

    Cussen, L.D.; Goossens, D.J.; Hicks, T.J.

    2000-01-01

    Full text: Every neutron in a neutron beam has a spin which is either up or down. In an unpolarised beam, half the neutrons are up and half are down. A neutron polariser is a device which creates an imbalance in the number of up and down spin neutrons in the beam, thus giving a net beam polarisation. The three most common techniques for polarising neutron beams are supermirrors, Heusler alloy polarising monochromators and neutron spin filters. Supermirrors use the difference in refractive index for up and down spin neutrons at a magnetic/non-magnetic interface to selectively remove neutrons of one spin state from the beam. Heusler alloy polarisers give polarised beams through spin dependent Bragg reflection, and transmission filters work by preferentially absorbing the neutrons in one spin state. The most promising filter material is polarised gaseous 3 He, in which the lone neutron is polarised and then the atom will preferentially absorb a neutron of the opposite spin. All three techniques have different advantages. Here, we compare the three techniques by generating quality factors which relate closely to an instruments performance in an experiment and determining which polariser will give the best quality factor for a given type of experiment. We find that supermirrors give the best results when narrow angular divergence of the neutron beam is desired, while filters are best when short wavelengths and wide angular divergence is required. For a powder diffractometer, this implies that a supermirror would be used to polarise the incident beam, while a large array of supermirrors or a single curved transmission filter could be used to analyse the polarisation of the diffracted intensity. We note that while Heusler alloys have advantages in that they combine polarisation with monochromation, on purely performance based criteria, they are not competitive with supermirrors or well-developed transmission filter technology

  3. Femtosecond diffractive imaging of biological cells

    Energy Technology Data Exchange (ETDEWEB)

    Marvin Seibert, M; Boutet, Sebastien; Svenda, Martin; Ekeberg, Tomas; Maia, Filipe R N C; TImneanu, Nicusor; Caleman, Carl; Hajdu, Janos [Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-75124 Uppsala (Sweden); Bogan, Michael J [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Barty, Anton; Hau-Riege, Stefan; Frank, Matthias; Benner, Henry [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Lee, Joanna Y [Department of Biology, Stanford University, Stanford, CA 94305 (United States); Marchesini, Stefano [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Shaevitz, Joshua W [150 Carl Icahn Laboratory, Princeton University, Princeton, NJ 08544 (United States); Fletcher, Daniel A [Bioengineering and Biophysics, University of California, Berkeley, CA 94720 (United States); Bajt, Sasa [Photon Science, DESY, Notkestrasse 85, 22607 Hamburg (Germany); Andersson, Inger [Department of Molecular Biology, Swedish University of Agricultural Sciences, Husargatan 3, Box 590, SE-751 24 Uppsala (Sweden); Chapman, Henry N, E-mail: marvin@xray.bmc.uu.s, E-mail: janos@xray.bmc.uu.s [Center for Free-Electron Laser Science, University of Hamburg and DESY, Notkestrasse 85, Hamburg (Germany)

    2010-10-14

    In a flash diffraction experiment, a short and extremely intense x-ray pulse illuminates the sample to obtain a diffraction pattern before the onset of significant radiation damage. The over-sampled diffraction pattern permits phase retrieval by iterative phasing methods. Flash diffractive imaging was first demonstrated on an inorganic test object (Chapman et al 2006 Nat. Phys. 2 839-43). We report here experiments on biological systems where individual cells were imaged, using single, 10-15 fs soft x-ray pulses at 13.5 nm wavelength from the FLASH free-electron laser in Hamburg. Simulations show that the pulse heated the sample to about 160 000 K but not before an interpretable diffraction pattern could be obtained. The reconstructed projection images return the structures of the intact cells. The simulations suggest that the average displacement of ions and atoms in the hottest surface layers remained below 3 A during the pulse.

  4. Powder diffraction crystallography of molecular solids.

    Science.gov (United States)

    Harris, Kenneth D M

    2012-01-01

    Many important crystalline solids cannot be prepared as single crystals of suitable size and quality for structural characterization by conventional single-crystal X-ray diffraction techniques and can instead be prepared only as microcrystalline powders. However, recent advances in techniques for determining crystal structures directly from powder X-ray diffraction data have created a unique opportunity for establishing structural properties of such materials. This chapter surveys the applications of powder X-ray diffraction across various aspects of structural and materials chemistry, focusing mainly on the opportunities that have emerged in recent years for carrying out complete crystal structure determination from powder X-ray diffraction data and giving particular emphasis to the case of molecular crystal structures. The current scope and future potential of powder X-ray diffraction as a strategy for crystal structure determination are discussed, and examples of applications across several disciplines of materials chemistry are presented.

  5. Neutron diffraction texture analysis for industrial applications

    International Nuclear Information System (INIS)

    Brokmeier, H.G.

    1994-01-01

    Considering the high transmission of neutron radiation, neutron diffraction is an efficient tool for the analysis of various material parameters of bulk material in a non-destructive way. Industrial application of texture analysis by X-ray diffraction is well established, whereas neutron diffraction applications are seldom. Thus a brief description explains the main differences between X-ray and neutron diffraction regarding texture measurements such as the investigation of coarse-grained materials, of large sample volumes and of multi-phase materials. The investigation of average textures of large sample volumes allows directly a correlation to material properties (e.g. Young's modulus, electric conductivity, plastic deformability, strength), which were determined on a workpiece. Examples will be given to show some applications of neutron diffraction texture analysis for technological interests. (orig.)

  6. Uniting Electron Crystallography and Powder Diffraction

    CERN Document Server

    Shankland, Kenneth; Meshi, Louisa; Avilov, Anatoly; David, William

    2012-01-01

    The polycrystalline and nanocrystalline states play an increasingly important role in exploiting the properties of materials, encompassing applications as diverse as pharmaceuticals, catalysts, solar cells and energy storage. A knowledge of the three-dimensional atomic and molecular structure of materials is essential for understanding and controlling their properties, yet traditional single-crystal X-ray diffraction methods lose their power when only polycrystalline and nanocrystalline samples are available. It is here that powder diffraction and single-crystal electron diffraction techniques take over, substantially extending the range of applicability of the crystallographic principles of structure determination.  This volume, a collection of teaching contributions presented at the Crystallographic Course in Erice in 2011, clearly describes the fundamentals and the state-of-the-art of powder diffraction and electron diffraction methods in materials characterisation, encompassing a diverse range of discipl...

  7. Diffraction and σγ*p

    International Nuclear Information System (INIS)

    Schildknecht, D.; Tentyukov, M.; Kuroda, M.; Surrow, B.

    2002-01-01

    The empirical scaling law, wherein the total photo-absorption cross section depends on the single variable η = (Q 2 + m 2 0 )/Λ 2 (W 2 ) , provides empirical evidence for saturation in the sense of σ γ*p (W 2 , Q 2 ) /σ γp (W 2 ) → 1 for W 2 → ∞ at fixed Q 2 . The total photo-absorption cross section is related to elastic diffraction in terms of a sum rule. The excess of diffractive production over the elastic component is due to inelastic diffraction that contains the production of hadronic states of higher spins. Motivated by the diffractive mass spectrum, the Generalized Vector Dominance/Color Dipole Picture (GVD/CDP) is extended to successfully describe the DIS data in the full region of x ≤ 0.1, all Q 2 ≥ 0 , where the diffractive two-gluon exchange mechanism dominates. (author)

  8. Light by light diffraction in vacuum

    Science.gov (United States)

    Tommasini, Daniele; Michinel, Humberto

    2010-07-01

    We show that a laser beam can be diffracted by a more concentrated light pulse due to quantum vacuum effects. We compute analytically the intensity pattern in a realistic experimental configuration, and discuss how it can be used to measure the parameters describing photon-photon scattering in vacuum. In particular, we show that the quantum electrodynamics prediction can be detected in a single-shot experiment at future 100-PW lasers such as ELI or HIPER. On the other hand, if carried out at one of the present high-power facilities, such as OMEGA EP, this proposal can lead either to the discovery of nonstandard physics or to substantial improvement in the current limits by PVLAS collaboration on the photon-photon cross section at optical wavelengths. This example of manipulation of light by light is simpler to realize and more sensitive than existing, alternative proposals, and can also be used to test Born-Infeld theory or to search for axionlike or minicharged particles.

  9. Coherent X-ray diffraction from collagenous soft tissues

    Energy Technology Data Exchange (ETDEWEB)

    Berenguer de la Cuesta, Felisa; Wenger, Marco P.E.; Bean, Richard J.; Bozec, Laurent; Horton, Michael A.; Robinson, Ian K.; (UCL)

    2009-09-11

    Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60-70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the 'speckled' nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques.

  10. Long-term irradiation effects on reactor-pressure vessel steels. Investigations on the nanometer scale

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Arne

    2017-06-01

    The exposure of reactor pressure vessel (RPV) steels to neutron irradiation gives rise to irradiation-enhanced diffusion, a rearrangement of solute atoms and, consequently, a degradation of the mechanical properties. The increasing age of existing nuclear power plants raises new questions specific to long-term operation. Two of them are addressed in this thesis: flux effects and the late-blooming effect. Can low-flux irradiations up to a given fluence be reproduced by more rapid high-flux irradiations up to the same fluence? Can the irradiation response of RPV steels be extrapolated to higher fluences or are there unexpected ''late-blooming'' effects. Small-angle neutron scattering (SANS), atom-probe tomography (APT) and Vickers-hardness testing were applied. A novel Monte-Carlo based fitting algorithm for SANS data was implemented in order to derive statistically reliable characteristics of irradiation-induced solute-atom clusters. APT was applied in selected cases to gain additional information on the composition and the shape of clusters. Vickers hardness testing was performed on the SANS samples to link the nanometer-scale changes to irradiation hardening. The investigations on flux effects show that clusters forming upon high-flux irradiation are smaller and tend to have a higher number density compared to low-flux irradiations at a given neutron fluence. The measured flux dependence of the cluster-size distribution is consistent with the framework of deterministic growth (but not with coarsening) in combination with radiation-enhanced diffusion. Since the two effects on cluster-size and volume fraction partly cancel each other out, no significant effect on the hardening is observed. The investigations of a possible late-blooming effect indicate that the very existence (yes or no) of such an effect depends on the irradiation conditions. Irradiations at lower fluxes and a lower temperature (255 C) give rise to a significant increase of the

  11. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale.

    Science.gov (United States)

    Colliex, Christian; Kociak, Mathieu; Stéphan, Odile

    2016-03-01

    Since their first realization, electron microscopes have demonstrated their unique ability to map with highest spatial resolution (sub-atomic in most recent instruments) the position of atoms as a consequence of the strong scattering of the incident high energy electrons by the nuclei of the material under investigation. When interacting with the electron clouds either on atomic orbitals or delocalized over the specimen, the associated energy transfer, measured and analyzed as an energy loss (Electron Energy Loss Spectroscopy) gives access to analytical properties (atom identification, electron states symmetry and localization). In the moderate energy-loss domain (corresponding to an optical spectral domain from the infrared (IR) to the rather far ultra violet (UV), EELS spectra exhibit characteristic collective excitations of the rather-free electron gas, known as plasmons. Boundary conditions, such as surfaces and/or interfaces between metallic and dielectric media, generate localized surface charge oscillations, surface plasmons (SP), which are associated with confined electric fields. This domain of research has been extraordinarily revived over the past few years as a consequence of the burst of interest for structures and devices guiding, enhancing and controlling light at the sub-wavelength scale. The present review focuses on the study of these surface plasmons with an electron microscopy-based approach which associates spectroscopy and mapping at the level of a single and well-defined nano-object, typically at the nanometer scale i.e. much improved with respect to standard, and even near-field, optical techniques. After calling to mind some early studies, we will briefly mention a few basic aspects of the required instrumentation and associated theoretical tools to interpret the very rich data sets recorded with the latest generation of (Scanning)TEM microscopes. The following paragraphs will review in more detail the results obtained on simple planar and

  12. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale

    International Nuclear Information System (INIS)

    Colliex, Christian; Kociak, Mathieu; Stéphan, Odile

    2016-01-01

    Since their first realization, electron microscopes have demonstrated their unique ability to map with highest spatial resolution (sub-atomic in most recent instruments) the position of atoms as a consequence of the strong scattering of the incident high energy electrons by the nuclei of the material under investigation. When interacting with the electron clouds either on atomic orbitals or delocalized over the specimen, the associated energy transfer, measured and analyzed as an energy loss (Electron Energy Loss Spectroscopy) gives access to analytical properties (atom identification, electron states symmetry and localization). In the moderate energy-loss domain (corresponding to an optical spectral domain from the infrared (IR) to the rather far ultra violet (UV), EELS spectra exhibit characteristic collective excitations of the rather-free electron gas, known as plasmons. Boundary conditions, such as surfaces and/or interfaces between metallic and dielectric media, generate localized surface charge oscillations, surface plasmons (SP), which are associated with confined electric fields. This domain of research has been extraordinarily revived over the past few years as a consequence of the burst of interest for structures and devices guiding, enhancing and controlling light at the sub-wavelength scale. The present review focuses on the study of these surface plasmons with an electron microscopy-based approach which associates spectroscopy and mapping at the level of a single and well-defined nano-object, typically at the nanometer scale i.e. much improved with respect to standard, and even near-field, optical techniques. After calling to mind some early studies, we will briefly mention a few basic aspects of the required instrumentation and associated theoretical tools to interpret the very rich data sets recorded with the latest generation of (Scanning)TEM microscopes. The following paragraphs will review in more detail the results obtained on simple planar and

  13. Nanometer-long Ge-imogolite nanotubes cause sustained lung inflammation and fibrosis in rats.

    Science.gov (United States)

    van den Brule, Sybille; Beckers, Emilie; Chaurand, Perrine; Liu, Wei; Ibouraadaten, Saloua; Palmai-Pallag, Mihaly; Uwambayinema, Francine; Yakoub, Yousof; Avellan, Astrid; Levard, Clément; Haufroid, Vincent; Marbaix, Etienne; Thill, Antoine; Lison, Dominique; Rose, Jérôme

    2014-12-14

    Ge-imogolites are short aluminogermanate tubular nanomaterials with attractive prospected industrial applications. In view of their nano-scale dimensions and high aspect ratio, they should be examined for their potential to cause respiratory toxicity. Here, we evaluated the respiratory biopersistence and lung toxicity of 2 samples of nanometer-long Ge-imogolites. Rats were intra-tracheally instilled with single wall (SW, 70 nm length) or double wall (DW, 62 nm length) Ge-imogolites (0.02-2 mg/rat), as well as with crocidolite and the hard metal particles WC-Co, as positive controls. The biopersistence of Ge-imogolites and their localization in the lung were assessed by ICP-MS, X-ray fluorescence, absorption spectroscopy and computed micro-tomography. Acute inflammation and genotoxicity (micronuclei in isolated type II pneumocytes) was assessed 3 d post-exposure; chronic inflammation and fibrosis after 2 m. Cytotoxic and inflammatory responses were shown in bronchoalveolar lavage 3 d after instillation with Ge-imogolites. Sixty days after exposure, a persistent dose-dependent inflammation was still observed. Total lung collagen, reflected by hydroxyproline lung content, was increased after SW and DW Ge-imogolites. Histology revealed lung fibre reorganization and accumulation in granulomas with epithelioid cells and foamy macrophages and thickening of the alveolar walls. Overall, the inflammatory and fibrotic responses induced by SW and DW Ge-imogolites were more severe (on a mass dose basis) than those induced by crocidolite. A persistent fraction of Ge-imogolites (15% of initial dose) was mostly detected as intact structures in rat lungs 2 m after instillation and was localized in fibrotic alveolar areas. In vivo induction of micronuclei was significantly increased 3 d after SW and DW Ge-imogolite instillation at non-inflammatory doses, indicating the contribution of primary genotoxicity. We showed that nm-long Ge-imogolites persist in the lung and promote

  14. Opto-mechanical design and development of a 460mm diffractive transmissive telescope

    Science.gov (United States)

    Qi, Bo; Wang, Lihua; Cui, Zhangang; Bian, Jiang; Xiang, Sihua; Ma, Haotong; Fan, Bin

    2018-01-01

    Using lightweight, replicated diffractive optics, we can construct extremely large aperture telescopes in space.The transmissive primary significantly reduces the sensitivities to out of plane motion as compared to reflective systems while reducing the manufacturing time and costs. This paper focuses on the design, fabrication and ground demonstration of a 460mm diffractive transmissive telescope the primary F/# is 6, optical field of view is 0.2° imagine bandwidth is 486nm 656nm.The design method of diffractive optical system was verified, the ability to capture a high-quality image using diffractive telescope collection optics was tested.The results show that the limit resolution is 94lp/mm, the diffractive system has a good imagine performance with broad bandwidths. This technology is particularly promising as a means to achieve extremely large optical primaries from compact, lightweight packages.

  15. Novel diamond cells for neutron diffraction using multi-carat CVD anvils.

    Science.gov (United States)

    Boehler, R; Molaison, J J; Haberl, B

    2017-08-01

    Traditionally, neutron diffraction at high pressure has been severely limited in pressure because low neutron flux required large sample volumes and therefore large volume presses. At the high-flux Spallation Neutron Source at the Oak Ridge National Laboratory, we have developed new, large-volume diamond anvil cells for neutron diffraction. The main features of these cells are multi-carat, single crystal chemical vapor deposition diamonds, very large diffraction apertures, and gas membranes to accommodate pressure stability, especially upon cooling. A new cell has been tested for diffraction up to 40 GPa with an unprecedented sample volume of ∼0.15 mm 3 . High quality spectra were obtained in 1 h for crystalline Ni and in ∼8 h for disordered glassy carbon. These new techniques will open the way for routine megabar neutron diffraction experiments.

  16. Novel diamond cells for neutron diffraction using multi-carat CVD anvils

    Science.gov (United States)

    Boehler, R.; Molaison, J. J.; Haberl, B.

    2017-08-01

    Traditionally, neutron diffraction at high pressure has been severely limited in pressure because low neutron flux required large sample volumes and therefore large volume presses. At the high-flux Spallation Neutron Source at the Oak Ridge National Laboratory, we have developed new, large-volume diamond anvil cells for neutron diffraction. The main features of these cells are multi-carat, single crystal chemical vapor deposition diamonds, very large diffraction apertures, and gas membranes to accommodate pressure stability, especially upon cooling. A new cell has been tested for diffraction up to 40 GPa with an unprecedented sample volume of ˜0.15 mm3. High quality spectra were obtained in 1 h for crystalline Ni and in ˜8 h for disordered glassy carbon. These new techniques will open the way for routine megabar neutron diffraction experiments.

  17. Time-Resolved Soft X-ray Diffraction Reveals Transient Structural Distortions of Ternary Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Klaus Mann

    2009-11-01

    Full Text Available Home-based soft X-ray time-resolved scattering experiments with nanosecond time resolution (10 ns and nanometer spatial resolution were carried out at a table top soft X-ray plasma source (2.2–5.2 nm. The investigated system was the lyotropic liquid crystal C16E7/paraffin/glycerol/formamide/IR 5. Usually, major changes in physical, chemical, and/or optical properties of the sample occur as a result of structural changes and shrinking morphology. Here, these effects occur as a consequence of the energy absorption in the sample upon optical laser excitation in the IR regime. The liquid crystal shows changes in the structural response within few hundred nanoseconds showing a time decay of 182 ns. A decrease of the Bragg peak diffracted intensity of 30% and a coherent macroscopic movement of the Bragg reflection are found as a response to the optical pump. The Bragg reflection movement is established to be isotropic and diffusion controlled (1 μs. Structural processes are analyzed in the Patterson analysis framework of the time-varying diffraction peaks revealing that the inter-lamellar distance increases by 2.7 Å resulting in an elongation of the coherently expanding lamella crystallite. The present studies emphasize the possibility of applying TR-SXRD techniques for studying the mechanical dynamics of nanosystems.

  18. X-ray diffraction computed tomography

    International Nuclear Information System (INIS)

    Harding, G.; Kosanetzky, J.; Neitzel, U.

    1987-01-01

    Coherent scattering of x-ray photons leads to the phenomenon of x-ray diffraction, which is widely used for determining atomic structure in materials science. A technique [x-ray diffraction computed tomography (CT)] is described, analogous to conventional CT, in which the x-ray diffraction properties of a stack of two-dimensional object sections may be imaged. The technique has been investigated using a first generation (single pencil beam) CT scanner to measure small angle coherent scatter, in addition to the customary transmitted radiation. Diffraction data from a standard CT performance phantom obtained with this new technique and with an x-ray diffractometer are compared. The agreement is satisfactory bearing in mind the poor momentum resolution of our apparatus. The dose and sensitivity of x-ray diffraction CT are compared with those of conventional transmission CT. Diffraction patterns of some biological tissues and plastics presented in a companion paper indicate the potential of x-ray diffraction CT for tissue discrimination and material characterization. Finally, possibilities for refinement of the technique by improving the momentum resolution are discussed

  19. Flatland Photonics: Circumventing Diffraction with Planar Plasmonic Architectures

    Science.gov (United States)

    Dionne, Jennifer Anne

    On subwavelength scales, photon-matter interactions are limited by diffraction. The diffraction limit restricts the size of optical devices and the resolution of conventional microscopes to wavelength-scale dimensions, severely hampering our ability to control and probe subwavelength-scale optical phenomena. Circumventing diffraction is now a principle focus of integrated nanophotonics. Surface plasmons provide a particularly promising approach to sub-diffraction-limited photonics. Surface plasmons are hybrid electron-photon modes confined to the interface between conductors and transparent materials. Combining the high localization of electronic waves with the propagation properties of optical waves, plasmons can achieve extremely small mode wavelengths and large local electromagnetic field intensities. Through their unique dispersion, surface plasmons provide access to an enormous phase space of refractive indices and propagation constants that can be readily tuned with material or geometry. In this thesis, we explore both the theory and applications of dispersion in planar plasmonic architectures. Particular attention is given to the modes of metallic core and plasmon slot waveguides, which can span positive, near-zero, and even negative indices. We demonstrate how such basic plasmonic geometries can be used to develop a suite of passive and active plasmonic components, including subwavelength waveguides, color filters, negative index metamaterials, and optical MOS field effect modulators. Positive index modes are probed by near- and far-field techniques, revealing plasmon wavelengths as small as one-tenth of the excitation wavelength. Negative index modes are characterized through direct visualization of negative refraction. By fabricating prisms comprised of gold, silicon nitride, and silver multilayers, we achieve the first experimental demonstration of a negative index material at visible frequencies, with potential applications for sub-diffraction-limited

  20. Accurate Charge Densities from Powder Diffraction

    DEFF Research Database (Denmark)

    Bindzus, Niels; Wahlberg, Nanna; Becker, Jacob

    Synchrotron powder X-ray diffraction has in recent years advanced to a level, where it has become realistic to probe extremely subtle electronic features. Compared to single-crystal diffraction, it may be superior for simple, high-symmetry crystals owing to negligible extinction effects and minimal...... peak overlap. Additionally, it offers the opportunity for collecting data on a single scale. For charge densities studies, the critical task is to recover accurate and bias-free structure factors from the diffraction pattern. This is the focal point of the present study, scrutinizing the performance...

  1. Diffraction and diffusion in room acoustics

    DEFF Research Database (Denmark)

    Rindel, Jens Holger; Rasmussen, Birgit

    1996-01-01

    Diffraction and diffusion are two phenomena that are both related to the wave nature of sound. Diffraction due to the finite size of reflecting surfaces and the design of single reflectors and reflector arrays are discussed. Diffusion is the result of scattering of sound reflected from surfaces...... that are not plane but curved or irregular. The importance of diffusion has been demonstrated in concert halls. Methods for the design of diffusing surfaces and the development of new types of diffusers are reviewed. Finally, the importance of diffraction and diffusion in room acoustic computer models is discussed....

  2. Hard diffractive quarkonium hadroproduction at high energies

    Energy Technology Data Exchange (ETDEWEB)

    Machado, M.V.T. [Universidade Federal do Pampa Campus de Bage, Centro de Ciencias Exatas e Tecnologicas, Bage, RS (Brazil)

    2008-04-15

    We present a study of heavy quarkonium production in hard diffractive processes by pomeron exchange for Tevatron and LHC energies. The numerical results are computed using a recent experimental determination of the diffractive parton density functions in the pomeron and these are corrected by unitarity corrections through the gap survival probability factor. We give predictions for single as well as central diffractive ratios. These processes are sensitive to the gluon content of the pomeron at small Bjorken variable x and may be particularly useful in studying small-x physics. They may also be a good place to test the different available mechanisms for quarkonium production at hadron colliders. (orig.)

  3. Controlled double-slit electron diffraction

    International Nuclear Information System (INIS)

    Bach, Roger; Liou, Sy-Hwang; Batelaan, Herman; Pope, Damian

    2013-01-01

    Double-slit diffraction is a corner stone of quantum mechanics. It illustrates key features of quantum mechanics: interference and the particle-wave duality of matter. In 1965, Richard Feynman presented a thought experiment to show these features. Here we demonstrate the full realization of his famous thought experiment. By placing a movable mask in front of a double-slit to control the transmission through the individual slits, probability distributions for single- and double-slit arrangements were observed. Also, by recording single electron detection events diffracting through a double-slit, a diffraction pattern was built up from individual events. (paper)

  4. Diffraction tomography for plasma refractive index measurements

    International Nuclear Information System (INIS)

    Howard, J.; Nazikian, R.; Sharp, L.E.

    1989-01-01

    Measurement of the properties of probing beams of coherent electromagnetic radiation yields essential information about the line of sight integrated plasma refractive index. Presented is a scalar diffraction treatment of forward angle scattering plasma diagnostics based on the diffraction projection theorem first presented by E. Wolf in 1969. New results are obtained for near field scattering from probing Gaussian beams and it is demonstrated that the effects of diffraction need to be addressed for tomographic inversion of near field scattering and interferometry data. 33 refs., 10 figs

  5. Conventional high pressure techniques fro neutron diffraction

    International Nuclear Information System (INIS)

    Mizuki, Jun-ichiro; Endoh, Yasuo

    1981-01-01

    Conventional high pressure techniques using a clamped type pressure cell have been adapted for studies by neutron diffraction. Careful calibration of the pressure sensing apparatus and an appropriate choice of pressure transmitting medium enable accurate neutron diffraction measurements to be made at reduced temperature as low as 4 K. In the present studies we have demonstrated that using the clamped type microbomb neutron diffraction measurements can be easily made under the pressure up to 5 kbar within the temperature range 4 K - 350 K. (author)

  6. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  7. Breaking the diffraction barrier in fluorescence microscopy by optical shelving.

    Science.gov (United States)

    Bretschneider, Stefan; Eggeling, Christian; Hell, Stefan W

    2007-05-25

    We report the breaking of the diffraction resolution barrier in far-field fluorescence microscopy by transiently shelving the fluorophore in a metastable dark state. Using a relatively modest light intensity of several kW/cm(2) in a focal distribution featuring a local zero, we confine the fluorescence emission to a spot whose diameter is a fraction of the wavelength of light. Nanoscale far-field optical resolution down to 50 nm is demonstrated by imaging microtubules in a mammalian cell and proteins on the plasma membrane of a neuron. The presence of dark states in virtually any fluorescent molecule opens up a new venue for far-field microscopy with resolution that is no longer limited by diffraction.

  8. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission.

    Science.gov (United States)

    Klar, T A; Jakobs, S; Dyba, M; Egner, A; Hell, S W

    2000-07-18

    The diffraction barrier responsible for a finite focal spot size and limited resolution in far-field fluorescence microscopy has been fundamentally broken. This is accomplished by quenching excited organic molecules at the rim of the focal spot through stimulated emission. Along the optic axis, the spot size was reduced by up to 6 times beyond the diffraction barrier. The simultaneous 2-fold improvement in the radial direction rendered a nearly spherical fluorescence spot with a diameter of 90-110 nm. The spot volume of down to 0.67 attoliters is 18 times smaller than that of confocal microscopy, thus making our results also relevant to three-dimensional photochemistry and single molecule spectroscopy. Images of live cells reveal greater details.

  9. Refractive/diffractive optics: promise for the future

    Science.gov (United States)

    Bala, John L.

    1995-08-01

    Today's optical designers face new corporate cultures whose priorities include product performance as only one criteria for success. Designers must also address cost constraints, new and unfamiliar skill requirements, overhead containment, maintenance of profit margins, and staff reductions. Old skills must be applied in new ways. New diamond-turning machine technology has made it possible to construct injection molding tools which combine refraction and diffraction into a single lens element. New polymer materials render the designs to be technically and commercially feasible. The significance of combining refraction and diffraction in a single lens element should not be underestimated, as it will expand the capability of polymer optics beyond its refractive limitations. Use of this technology can restructure domestic optical manufacturing.

  10. Discussion of the finite element method in optical diffraction tomography

    Science.gov (United States)

    Lobera, Julia; Coupland, Jeremy

    2006-04-01

    In Optical Diffraction Tomography (ODT) the refractive index is reconstructed from images with different illuminating wavefronts. In most cases the Born approximation is assumed, although this limits the applicability of the technique to weak-scattering problems. In this work we examine the scattering problem from first principles beginning from the Helmholtz equation that governs scalar diffraction and wave propagation. We demonstrate the use of the Born approximation and show typical errors when it is applied in practice. Solution of the Helmholtz equation using a Finite Element Method (FEM) with an appropriate Absorbing Boundary Condition (ABC) is described, and a non-linear optimization technique, the Conjugate Gradient Method (CGM), previously proposed for microwave imaging, is applied to the inverse problem.

  11. Simulation and modeling of the powder diffraction pattern from nanoparticles: Studying the influence of surface strain

    Science.gov (United States)

    Beyerlein, Kenneth Roy

    Nanostructured materials are currently at the forefront of nearly every emerging industry, as they offer promising solutions to problems ranging from those facing energy technologies, to those concerning the structural integrity of materials. With all of these future applications, it is crucial that methods are developed which can offer accurate, and statistically reliable characterization of these materials in a reasonable amount of time. X-ray diffraction is one such method which is already widely available, and can offer further insight into the atomic structure, as well as, microstructure of nanomaterials. This thesis work is then focused on investigating how different structural features of nanoparticles influence the line profiles of the x-ray powder diffraction pattern. Due to their extremely small size, the contribution from crystallite size broadening becomes the dominating feature in an observed diffraction peak. Therefore, the theory of size broadening was critically reviewed concerning the considerations necessary when the crystallite size approaches a few nanometers. Furthermore, the analysis of synthesized shape controlled platinum nanoparticles was carried out using a developed line profile analysis routine, based on the Debye function analysis (DFA) approach, to determine the distribution of particle size and shape in the sample. The DFA method is based on the use of atomistic models to simulate the features in the powder diffraction pattern. The atomistic descriptions of molecular dynamics simulations was coupled with this approach, allowing for the further understanding of the pattern from nanoparticles. The techniques were developed to study how lattice dynamics, and the resulting thermal diffuse scattering, are affected by the small crystallite domains. Furthermore, the relaxation of structural models for nanoparticles by MD simulations allowed for the assessment of features which are a present in the powder pattern as a result of a strain

  12. Improved Resolution Optical Time Stretch Imaging Based on High Efficiency In-Fiber Diffraction.

    Science.gov (United States)

    Wang, Guoqing; Yan, Zhijun; Yang, Lei; Zhang, Lin; Wang, Chao

    2018-01-12

    Most overlooked challenges in ultrafast optical time stretch imaging (OTSI) are sacrificed spatial resolution and higher optical loss. These challenges are originated from optical diffraction devices used in OTSI, which encode image into spectra of ultrashort optical pulses. Conventional free-space diffraction gratings, as widely used in existing OTSI systems, suffer from several inherent drawbacks: limited diffraction efficiency in a non-Littrow configuration due to inherent zeroth-order reflection, high coupling loss between free-space gratings and optical fibers, bulky footprint, and more importantly, sacrificed imaging resolution due to non-full-aperture illumination for individual wavelengths. Here we report resolution-improved and diffraction-efficient OTSI using in-fiber diffraction for the first time to our knowledge. The key to overcome the existing challenges is a 45° tilted fiber grating (TFG), which serves as a compact in-fiber diffraction device offering improved diffraction efficiency (up to 97%), inherent compatibility with optical fibers, and improved imaging resolution owning to almost full-aperture illumination for all illumination wavelengths. 50 million frames per second imaging of fast moving object at 46 m/s with improved imaging resolution has been demonstrated. This conceptually new in-fiber diffraction design opens the way towards cost-effective, compact and high-resolution OTSI systems for image-based high-throughput detection and measurement.

  13. Low aberration monolithic diffraction gratings for high performance optical spectrometers

    Science.gov (United States)

    Triebel, Peter; Moeller, Tobias; Diehl, Torsten; Gatto, Alexandre; Pesch, Alexander; Erdmann, Lars E.; Burkhardt, Matthias; Kalies, Alexander

    2017-09-01

    Gratings are the core element of the spectrometer. For imaging spectrometers beside the polarization sensitivity and efficiency the imaging quality of the diffraction grating is essential. Lenses and mirrors can be produced with lowest wavefront aberrations. Low aberration imaging quality of the grating is required not to limit the overall imaging quality of the instrument. Different types of spectrometers will lead to different requirements on the wavefront aberrations for their specific diffraction gratings. The wavefront aberration of an optical grating is a combination of the substrate wavefront and the grating wavefront. During the manufacturing process of the grating substrate different processes can be applied in order to minimize the wavefront aberrations. The imaging performance of the grating is also optimized due to the recording setup of the holography. This technology of holographically manufactured gratings is used for transmission and reflection gratings on different types of substrates like prisms, convex and concave spherical and aspherical surface shapes, free-form elements. All the manufactured gratings are monolithic and can be coated with high reflection and anti-reflection coatings. Prism substrates were used to manufacture monolithic GRISM elements for the UV to IR spectral range preferably working in transmission. Besides of transmission gratings, numerous spectrometer setups (e.g. Offner, Rowland circle, Czerny-Turner system layout) working on the optical design principles of reflection gratings. The present approach can be applied to manufacture high quality reflection gratings for the EUV to the IR. In this paper we report our latest results on manufacturing lowest wavefront aberration gratings based on holographic processes in order to enable at least diffraction limited complex spectrometric setups over certain wavelength ranges. Beside the results of low aberration gratings the latest achievements on improving efficiency together with

  14. Robust reconstruction of time-resolved diffraction from ultrafast streak cameras

    Directory of Open Access Journals (Sweden)

    Daniel S. Badali

    2017-09-01

    Full Text Available In conjunction with ultrafast diffraction, streak cameras offer an unprecedented opportunity for recording an entire molecular movie with a single probe pulse. This is an attractive alternative to conventional pump-probe experiments and opens the door to studying irreversible dynamics. However, due to the “smearing” of the diffraction pattern across the detector, the streaking technique has thus far been limited to simple mono-crystalline samples and extreme care has been taken to avoid overlapping diffraction spots. In this article, this limitation is addressed by developing a general theory of streaking of time-dependent diffraction patterns. Understanding the underlying physics of this process leads to the development of an algorithm based on Bayesian analysis to reconstruct the time evolution of the two-dimensional diffraction pattern from a single streaked image. It is demonstrated that this approach works on diffraction peaks that overlap when streaked, which not only removes the necessity of carefully choosing the streaking direction but also extends the streaking technique to be able to study polycrystalline samples and materials with complex crystalline structures. Furthermore, it is shown that the conventional analysis of streaked diffraction can lead to erroneous interpretations of the data.

  15. Mapping the Diffusion Potential of a Reconstructed Au(111) Surface at Nanometer Scale with 2D Molecular Gas

    International Nuclear Information System (INIS)

    Yan Shi-Chao; Xie Nan; Gong Hui-Qi; Guo Yang; Shan Xin-Yan; Lu Xing-Hua; Sun Qian

    2012-01-01

    The adsorption and diffusion behaviors of benzene molecules on an Au(111) surface are investigated by low-temperature scanning tunneling microscopy. A herringbone surface reconstruction of the Au(111) surface is imaged with atomic resolution, and significantly different behaviors are observed for benzene molecules adsorbed on step edges and terraces. The electric field induced modification in the molecular diffusion potential is revealed with a 2D molecular gas model, and a new method is developed to map the diffusion potential over the reconstructed Au(111) surface at the nanometer scale. (condensed matter: structure, mechanical and thermal properties)

  16. SUN: A fully automated interferometric test bench aimed at measuring photolithographic grade lenses with a sub nanometer accuracy

    Science.gov (United States)

    Bourgois, R.; Hamy, A. L.; Pourcelot, P.

    2017-10-01

    SUN is a test bench developed by Safran Reosc to measure spherical or aspherical surface errors of litho-grade lenses with sub-nanometer accuracy. SUN provides full aperture high resolution interferometric measurements. Measurements are performed at the center of curvature using high precision transmission sphere (TS), and Computer Generated Holograms (CGH) for aspheres, in order to light the surface at normal incidence. SUN can measure lenses with diameter up to 350mm and a radius of curvature varying from 60 to 3000 mm.

  17. Luminescent Oxygen Gas Sensors Based on Nanometer-Thick Hybrid Films of Iridium Complexes and Clay Minerals

    Directory of Open Access Journals (Sweden)

    Hisako Sato

    2014-01-01

    Full Text Available The use of Ir(III complexes in photo-responsive molecular devices for oxygen gas sensing is reviewed. Attention is focused on the immobilization of Ir(III complexes in organic or inorganic host materials such as polymers, silica and clays in order to enhance robustness and reliability. Our recent works on constructing nanometer-thick films comprised of cyclometalated cationic Ir(III complexes and clay minerals are described. The achievement of multi-emitting properties in response to oxygen pressure is demonstrated.

  18. Diffraction by m-bonacci gratings

    International Nuclear Information System (INIS)

    Monsoriu, Juan A; Giménez, Marcos H; Furlan, Walter D; Barreiro, Juan C; Saavedra, Genaro

    2015-01-01

    We present a simple diffraction experiment with m-bonacci gratings as a new interesting generalization of the Fibonacci ones. Diffraction by these non-conventional structures is proposed as a motivational strategy to introduce students to basic research activities. The Fraunhofer diffraction patterns are obtained with the standard equipment present in most undergraduate physics labs and are compared with those obtained with regular periodic gratings. We show that m-bonacci gratings produce discrete Fraunhofer patterns characterized by a set of diffraction peaks which positions are related to the concept of a generalized golden mean. A very good agreement is obtained between experimental and numerical results and the students’ feedback is discussed. (paper)

  19. Diffraction studies of ion--water interactions

    International Nuclear Information System (INIS)

    Narten, A.H.; Triolo, R.

    1978-01-01

    Ionic solutions were among the first liquids to which x-ray diffraction was applied, and a large number of studies have been reported over the years. However, the interpretation of a single diffraction pattern is always difficult, often ambiguous, and never unique. This ambiguity of interpretation is greatly reduced if a solution is studied with several types of radiation (x-ray, neutron, electron), and a few such studies have been reported. The only currently feasible way of uniquely determining the correlations between water molecules and monatomic ions in solution is to vary the scattering factor of the ion; a simple difference measurement then yields the ion-water correlations. This has been done using the isotopic substitution method in neutron diffraction. It can also be done using synchrotron x-radiation and anomalous dispersion techniques. Diffraction studies of ion-water interactions have yielded detailed and unambiguous information for only a few concentrated solutions. 5 figures

  20. Diffraction physics with ALICE at the LHC

    CERN Document Server

    INSPIRE-00382834

    2015-01-01

    The ALICE experiment is equipped with a wide range of detectors providing excellent tracking and particle identification in the central region, as well as forward detectors with extended pseudorapidity coverage, which are well suited for studying diffractive processes. Cross section measurements of single and double diffractive processes performed by ALICE in pp collisions at $\\sqrt{s}=0.9,~2.76,~7$~TeV will be reported. Currently, ALICE is studying double-gap events in pp collisions at $\\sqrt{s}=7$~TeV, which give an insight into the central diffraction processes: current status and future perspectives will be discussed. The upgrade plans for diffraction studies, further extending the pseudorapidity acceptance of the ALICE setup for the forthcoming Run 2 of the LHC, will be outlined.