WorldWideScience

Sample records for differential equations dynamical

  1. Dynamics of partial differential equations

    CERN Document Server

    Wayne, C Eugene

    2015-01-01

    This book contains two review articles on the dynamics of partial differential equations that deal with closely related topics but can be read independently. Wayne reviews recent results on the global dynamics of the two-dimensional Navier-Stokes equations. This system exhibits stable vortex solutions: the topic of Wayne's contribution is how solutions that start from arbitrary initial conditions evolve towards stable vortices. Weinstein considers the dynamics of localized states in nonlinear Schrodinger and Gross-Pitaevskii equations that describe many optical and quantum systems. In this contribution, Weinstein reviews recent bifurcations results of solitary waves, their linear and nonlinear stability properties, and results about radiation damping where waves lose energy through radiation.   The articles, written independently, are combined into one volume to showcase the tools of dynamical systems theory at work in explaining qualitative phenomena associated with two classes of partial differential equ...

  2. Homogenizing atomic dynamics by fractional differential equations

    Science.gov (United States)

    Tang, Shaoqiang; Ying, Yuping

    2017-10-01

    In this paper, we propose two ways to construct fractional differential equations (FDE) for approximating atomic chain dynamics. Taking harmonic chain as an example, we add a power function of fractional order to Taylor expansion of the dispersion relation, and determine the parameters by matching two selected wave numbers. This approximate function leads to an FDE after considering both directions for wave propagation. As an alternative, we consider the symbol of the force term, and approximate it by a similar function. It also induces an FDE. Both approaches produce excellent agreement with the harmonic chain dynamics. The accuracy may be improved by optimizing the selected wave numbers, or starting with higher order Taylor expansions. When resolved in the lattice constant, the resulting FDE's faithfully reproduce the lattice dynamics. When resolved in a coarse grid instead, they systematically generate homogenized algorithms. Numerical tests are performed to verify the proposed approaches. Moreover, FDE's are also constructed for diatomic chain and anharmonic lattice, to illustrate the generality of the proposed approaches.

  3. First-order partial differential equations in classical dynamics

    Science.gov (United States)

    Smith, B. R.

    2009-12-01

    Carathèodory's classic work on the calculus of variations explores in depth the connection between ordinary differential equations and first-order partial differential equations. The n second-order ordinary differential equations of a classical dynamical system reduce to a single first-order differential equation in 2n independent variables. The general solution of first-order partial differential equations touches on many concepts central to graduate-level courses in analytical dynamics including the Hamiltonian, Lagrange and Poisson brackets, and the Hamilton-Jacobi equation. For all but the simplest dynamical systems the solution requires one or more of these techniques. Three elementary dynamical problems (uniform acceleration, harmonic motion, and cyclotron motion) can be solved directly from the appropriate first-order partial differential equation without the use of advanced methods. The process offers an unusual perspective on classical dynamics, which is readily accessible to intermediate students who are not yet fully conversant with advanced approaches.

  4. Fractal differential equations and fractal-time dynamical systems

    Indian Academy of Sciences (India)

    equations. Hence the latter can be used to model fractal-time processes or sublinear dynamical systems. ... for the treatment of diffusion, heat conduction, waves, etc., on self-similar fractals [25–28]. Harmonic ... differential equations offer possibilities of modeling dynamical behaviours naturally for which ordinary differential ...

  5. Dynamic data analysis modeling data with differential equations

    CERN Document Server

    Ramsay, James

    2017-01-01

    This text focuses on the use of smoothing methods for developing and estimating differential equations following recent developments in functional data analysis and building on techniques described in Ramsay and Silverman (2005) Functional Data Analysis. The central concept of a dynamical system as a buffer that translates sudden changes in input into smooth controlled output responses has led to applications of previously analyzed data, opening up entirely new opportunities for dynamical systems. The technical level has been kept low so that those with little or no exposure to differential equations as modeling objects can be brought into this data analysis landscape. There are already many texts on the mathematical properties of ordinary differential equations, or dynamic models, and there is a large literature distributed over many fields on models for real world processes consisting of differential equations. However, a researcher interested in fitting such a model to data, or a statistician interested in...

  6. Multiscale functions, scale dynamics, and applications to partial differential equations

    Science.gov (United States)

    Cresson, Jacky; Pierret, Frédéric

    2016-05-01

    Modeling phenomena from experimental data always begins with a choice of hypothesis on the observed dynamics such as determinism, randomness, and differentiability. Depending on these choices, different behaviors can be observed. The natural question associated to the modeling problem is the following: "With a finite set of data concerning a phenomenon, can we recover its underlying nature? From this problem, we introduce in this paper the definition of multi-scale functions, scale calculus, and scale dynamics based on the time scale calculus [see Bohner, M. and Peterson, A., Dynamic Equations on Time Scales: An Introduction with Applications (Springer Science & Business Media, 2001)] which is used to introduce the notion of scale equations. These definitions will be illustrated on the multi-scale Okamoto's functions. Scale equations are analysed using scale regimes and the notion of asymptotic model for a scale equation under a particular scale regime. The introduced formalism explains why a single scale equation can produce distinct continuous models even if the equation is scale invariant. Typical examples of such equations are given by the scale Euler-Lagrange equation. We illustrate our results using the scale Newton's equation which gives rise to a non-linear diffusion equation or a non-linear Schrödinger equation as asymptotic continuous models depending on the particular fractional scale regime which is considered.

  7. Differential equations, dynamical systems, and an introduction to chaos

    CERN Document Server

    Smale, Stephen; Devaney, Robert L

    2003-01-01

    Thirty years in the making, this revised text by three of the world''s leading mathematicians covers the dynamical aspects of ordinary differential equations. it explores the relations between dynamical systems and certain fields outside pure mathematics, and has become the standard textbook for graduate courses in this area. The Second Edition now brings students to the brink of contemporary research, starting from a background that includes only calculus and elementary linear algebra.The authors are tops in the field of advanced mathematics, including Steve Smale who is a recipient of the Field''s Medal for his work in dynamical systems.* Developed by award-winning researchers and authors* Provides a rigorous yet accessible introduction to differential equations and dynamical systems* Includes bifurcation theory throughout* Contains numerous explorations for students to embark uponNEW IN THIS EDITION* New contemporary material and updated applications* Revisions throughout the text, including simplification...

  8. Modeling tree crown dynamics with 3D partial differential equations.

    Science.gov (United States)

    Beyer, Robert; Letort, Véronique; Cournède, Paul-Henry

    2014-01-01

    We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth toward light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications.

  9. Modeling Tree Crown Dynamics with 3D Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Robert eBeyer

    2014-07-01

    Full Text Available We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth towards light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications.

  10. Modeling ion channel dynamics through reflected stochastic differential equations.

    Science.gov (United States)

    Dangerfield, Ciara E; Kay, David; Burrage, Kevin

    2012-05-01

    Ion channels are membrane proteins that open and close at random and play a vital role in the electrical dynamics of excitable cells. The stochastic nature of the conformational changes these proteins undergo can be significant, however current stochastic modeling methodologies limit the ability to study such systems. Discrete-state Markov chain models are seen as the "gold standard," but are computationally intensive, restricting investigation of stochastic effects to the single-cell level. Continuous stochastic methods that use stochastic differential equations (SDEs) to model the system are more efficient but can lead to simulations that have no biological meaning. In this paper we show that modeling the behavior of ion channel dynamics by a reflected SDE ensures biologically realistic simulations, and we argue that this model follows from the continuous approximation of the discrete-state Markov chain model. Open channel and action potential statistics from simulations of ion channel dynamics using the reflected SDE are compared with those of a discrete-state Markov chain method. Results show that the reflected SDE simulations are in good agreement with the discrete-state approach. The reflected SDE model therefore provides a computationally efficient method to simulate ion channel dynamics while preserving the distributional properties of the discrete-state Markov chain model and also ensuring biologically realistic solutions. This framework could easily be extended to other biochemical reaction networks.

  11. Differential equations

    CERN Document Server

    Tricomi, FG

    2013-01-01

    Based on his extensive experience as an educator, F. G. Tricomi wrote this practical and concise teaching text to offer a clear idea of the problems and methods of the theory of differential equations. The treatment is geared toward advanced undergraduates and graduate students and addresses only questions that can be resolved with rigor and simplicity.Starting with a consideration of the existence and uniqueness theorem, the text advances to the behavior of the characteristics of a first-order equation, boundary problems for second-order linear equations, asymptotic methods, and diff

  12. Fractal differential equations and fractal-time dynamical systems

    Indian Academy of Sciences (India)

    These sections are written in more intuitive fashion avoiding the jargon as far as possible. In §3, we discuss some examples of Fα-differential equations. ..... We emphasize the appearance of intersection F ∩ I in the definition of M and m, and also the use of (Sα. F (xi+1) − Sα. F (xi)) as in a Riemann–Stieltjes sum instead.

  13. Approximation of solutions to retarded differential equations with applications to population dynamics

    Directory of Open Access Journals (Sweden)

    D. Bahuguna

    2005-01-01

    Full Text Available We consider a retarded differential equation with applications to population dynamics. We establish the convergence of a finite-dimensional approximations of a unique solution, the existence and uniqueness of which are also proved in the process.

  14. Hyperbolic partial differential equations

    CERN Document Server

    Witten, Matthew

    1986-01-01

    Hyperbolic Partial Differential Equations III is a refereed journal issue that explores the applications, theory, and/or applied methods related to hyperbolic partial differential equations, or problems arising out of hyperbolic partial differential equations, in any area of research. This journal issue is interested in all types of articles in terms of review, mini-monograph, standard study, or short communication. Some studies presented in this journal include discretization of ideal fluid dynamics in the Eulerian representation; a Riemann problem in gas dynamics with bifurcation; periodic M

  15. A stochastic differential equation framework for the timewise dynamics of turbulent velocities

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Schmiegel, Jürgen

    2008-01-01

    We discuss a stochastic differential equation as a modeling framework for the timewise dynamics of turbulent velocities. The equation is capable of capturing basic stylized facts of the statistics of temporal velocity increments. In particular, we focus on the evolution of the probability density...

  16. Application of partial differential equation modeling of the control/structural dynamics of flexible spacecraft

    Science.gov (United States)

    Taylor, Lawrence W., Jr.; Rajiyah, H.

    1991-01-01

    Partial differential equations for modeling the structural dynamics and control systems of flexible spacecraft are applied here in order to facilitate systems analysis and optimization of these spacecraft. Example applications are given, including the structural dynamics of SCOLE, the Solar Array Flight Experiment, the Mini-MAST truss, and the LACE satellite. The development of related software is briefly addressed.

  17. Stochastic partial differential equations

    CERN Document Server

    Chow, Pao-Liu

    2014-01-01

    Preliminaries Introduction Some Examples Brownian Motions and Martingales Stochastic Integrals Stochastic Differential Equations of Itô Type Lévy Processes and Stochastic IntegralsStochastic Differential Equations of Lévy Type Comments Scalar Equations of First Order Introduction Generalized Itô's Formula Linear Stochastic Equations Quasilinear Equations General Remarks Stochastic Parabolic Equations Introduction Preliminaries Solution of Stochastic Heat EquationLinear Equations with Additive Noise Some Regularity Properties Stochastic Reaction-Diffusion Equations Parabolic Equations with Grad

  18. Cross Coursing in Mathematics: Physical Modelling in Differential Equations Crossing to Discrete Dynamical Systems

    Science.gov (United States)

    Winkel, Brian

    2012-01-01

    We give an example of cross coursing in which a subject or approach in one course in undergraduate mathematics is used in a completely different course. This situation crosses falling body modelling in an upper level differential equations course into a modest discrete dynamical systems unit of a first-year mathematics course. (Contains 1 figure.)

  19. Elliptic partial differential equations

    CERN Document Server

    Volpert, Vitaly

    If we had to formulate in one sentence what this book is about it might be "How partial differential equations can help to understand heat explosion, tumor growth or evolution of biological species". These and many other applications are described by reaction-diffusion equations. The theory of reaction-diffusion equations appeared in the first half of the last century. In the present time, it is widely used in population dynamics, chemical physics, biomedical modelling. The purpose of this book is to present the mathematical theory of reaction-diffusion equations in the context of their numerous applications. We will go from the general mathematical theory to specific equations and then to their applications. Mathematical anaylsis of reaction-diffusion equations will be based on the theory of Fredholm operators presented in the first volume. Existence, stability and bifurcations of solutions will be studied for bounded domains and in the case of travelling waves. The classical theory of reaction-diffusion equ...

  20. Partial Differential Equations

    CERN Document Server

    1988-01-01

    The volume contains a selection of papers presented at the 7th Symposium on differential geometry and differential equations (DD7) held at the Nankai Institute of Mathematics, Tianjin, China, in 1986. Most of the contributions are original research papers on topics including elliptic equations, hyperbolic equations, evolution equations, non-linear equations from differential geometry and mechanics, micro-local analysis.

  1. Periodic solutions of first-order functional differential equations in population dynamics

    CERN Document Server

    Padhi, Seshadev; Srinivasu, P D N

    2014-01-01

    This book provides cutting-edge results on the existence of multiple positive periodic solutions of first-order functional differential equations. It demonstrates how the Leggett-Williams fixed-point theorem can be applied to study the existence of two or three positive periodic solutions of functional differential equations with real-world applications, particularly with regard to the Lasota-Wazewska model, the Hematopoiesis model, the Nicholsons Blowflies model, and some models with Allee effects. Many interesting sufficient conditions are given for the dynamics that include nonlinear characteristics exhibited by population models. The last chapter provides results related to the global appeal of solutions to the models considered in the earlier chapters. The techniques used in this book can be easily understood by anyone with a basic knowledge of analysis. This book offers a valuable reference guide for students and researchers in the field of differential equations with applications to biology, ecology, a...

  2. Sparse Additive Ordinary Differential Equations for Dynamic Gene Regulatory Network Modeling.

    Science.gov (United States)

    Wu, Hulin; Lu, Tao; Xue, Hongqi; Liang, Hua

    2014-04-02

    The gene regulation network (GRN) is a high-dimensional complex system, which can be represented by various mathematical or statistical models. The ordinary differential equation (ODE) model is one of the popular dynamic GRN models. High-dimensional linear ODE models have been proposed to identify GRNs, but with a limitation of the linear regulation effect assumption. In this article, we propose a sparse additive ODE (SA-ODE) model, coupled with ODE estimation methods and adaptive group LASSO techniques, to model dynamic GRNs that could flexibly deal with nonlinear regulation effects. The asymptotic properties of the proposed method are established and simulation studies are performed to validate the proposed approach. An application example for identifying the nonlinear dynamic GRN of T-cell activation is used to illustrate the usefulness of the proposed method.

  3. Price dynamics of the financial markets using the stochastic differential equation for a potential double well

    Science.gov (United States)

    Lima, L. S.; Miranda, L. L. B.

    2018-01-01

    We have used the Itô's stochastic differential equation for the double well with additive white noise as a mathematical model for price dynamics of the financial market. We have presented a model which allows us to test within the same framework the comparative explanatory power of rational agents versus irrational agents, with respect to the facts of financial markets. We have obtained the mean price in terms of the β parameter that represents the force of the randomness term of the model.

  4. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2014-01-01

    A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible,combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger's equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is or

  5. Ordinary differential equations

    CERN Document Server

    Greenberg, Michael D

    2014-01-01

    Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory. Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology, the book anticipates potential difficulties in understanding the various solution steps

  6. Modeling Intraindividual Dynamics Using Stochastic Differential Equations: Age Differences in Affect Regulation.

    Science.gov (United States)

    Wood, Julie; Oravecz, Zita; Vogel, Nina; Benson, Lizbeth; Chow, Sy-Miin; Cole, Pamela; Conroy, David E; Pincus, Aaron L; Ram, Nilam

    2017-12-15

    Life-span theories of aging suggest improvements and decrements in individuals' ability to regulate affect. Dynamic process models, with intensive longitudinal data, provide new opportunities to articulate specific theories about individual differences in intraindividual dynamics. This paper illustrates a method for operationalizing affect dynamics using a multilevel stochastic differential equation (SDE) model, and examines how those dynamics differ with age and trait-level tendencies to deploy emotion regulation strategies (reappraisal and suppression). Univariate multilevel SDE models, estimated in a Bayesian framework, were fit to 21 days of ecological momentary assessments of affect valence and arousal (average 6.93/day, SD = 1.89) obtained from 150 adults (age 18-89 years)-specifically capturing temporal dynamics of individuals' core affect in terms of attractor point, reactivity to biopsychosocial (BPS) inputs, and attractor strength. Older age was associated with higher arousal attractor point and less BPS-related reactivity. Greater use of reappraisal was associated with lower valence attractor point. Intraindividual variability in regulation strategy use was associated with greater BPS-related reactivity and attractor strength, but in different ways for valence and arousal. The results highlight the utility of SDE models for studying affect dynamics and informing theoretical predictions about how intraindividual dynamics change over the life course. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Introduction to differential equations

    CERN Document Server

    Taylor, Michael E

    2011-01-01

    The mathematical formulations of problems in physics, economics, biology, and other sciences are usually embodied in differential equations. The analysis of the resulting equations then provides new insight into the original problems. This book describes the tools for performing that analysis. The first chapter treats single differential equations, emphasizing linear and nonlinear first order equations, linear second order equations, and a class of nonlinear second order equations arising from Newton's laws. The first order linear theory starts with a self-contained presentation of the exponen

  8. Differential equations for dummies

    CERN Document Server

    Holzner, Steven

    2008-01-01

    The fun and easy way to understand and solve complex equations Many of the fundamental laws of physics, chemistry, biology, and economics can be formulated as differential equations. This plain-English guide explores the many applications of this mathematical tool and shows how differential equations can help us understand the world around us. Differential Equations For Dummies is the perfect companion for a college differential equations course and is an ideal supplemental resource for other calculus classes as well as science and engineering courses. It offers step-by-step techniques, practical tips, numerous exercises, and clear, concise examples to help readers improve their differential equation-solving skills and boost their test scores.

  9. Modelling dynamics of plasmid-gene mediated antimicrobial resistance in enteric bacteria using stochastic differential equations.

    Science.gov (United States)

    Volkova, Victoriya V; Lu, Zhao; Lanzas, Cristina; Scott, H Morgan; Gröhn, Yrjö T

    2013-01-01

    The ubiquitous commensal bacteria harbour genes of antimicrobial resistance (AMR), often on conjugative plasmids. Antimicrobial use in food animals subjects their enteric commensals to antimicrobial pressure. A fraction of enteric Escherichia coli in cattle exhibit plasmid-gene mediated AMR to a third-generation cephalosporin ceftiofur. We adapted stochastic differential equations with diffusion approximation (a compartmental stochastic mathematical model) to research the sources and roles of stochasticity in the resistance dynamics, both during parenteral antimicrobial therapy and in its absence. The results demonstrated that demographic stochasticity among enteric E. coli in the occurrence of relevant events was important for the AMR dynamics only when bacterial numbers were depressed during therapy. However, stochasticity in the parameters of enteric E. coli ecology, whether externally or intrinsically driven, contributed to a wider distribution of the resistant E. coli fraction, both during therapy and in its absence, with stochasticities in individual parameters interacting in their contribution.

  10. Differential Equation of Equilibrium

    African Journals Online (AJOL)

    user

    differential equation of equilibrium, comparable to that of beam on elastic foundation, was derived from static principles on the ... tedious and more time saving than the classical method in the solution of the aforementioned differential equation. ... silos, pipelines, bridge arches or wind turbine towers [3]. The objective of this ...

  11. Equivalent construction of the infinitesimal time translation operator in algebraic dynamics algorithm for partial differential evolution equation

    Science.gov (United States)

    Liu, Chengshi

    2010-08-01

    We give an equivalent construction of the infinitesimal time translation operator for partial differential evolution equation in the algebraic dynamics algorithm proposed by Shun-Jin Wang and his students. Our construction involves only simple partial differentials and avoids the derivative terms of δ function which appear in the course of computation by means of Wang-Zhang operator. We prove Wang’s equivalent theorem which says that our construction and Wang-Zhang’s are equivalent. We use our construction to deal with several typical equations such as nonlinear advection equation, Burgers equation, nonlinear Schrodinger equation, KdV equation and sine-Gordon equation, and obtain at least second order approximate solutions to them. These equations include the cases of real and complex field variables and the cases of the first and the second order time derivatives.

  12. Ordinary differential equations

    CERN Document Server

    Pontryagin, Lev Semenovich

    1962-01-01

    Ordinary Differential Equations presents the study of the system of ordinary differential equations and its applications to engineering. The book is designed to serve as a first course in differential equations. Importance is given to the linear equation with constant coefficients; stability theory; use of matrices and linear algebra; and the introduction to the Lyapunov theory. Engineering problems such as the Watt regulator for a steam engine and the vacuum-tube circuit are also presented. Engineers, mathematicians, and engineering students will find the book invaluable.

  13. Partial differential equations

    CERN Document Server

    Evans, Lawrence C

    2010-01-01

    This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: representation formulas for solutions; theory for linear partial differential equations; and theory for nonlinear partial differential equations. Included are complete treatments of the method of characteristics; energy methods within Sobolev spaces; regularity for second-order elliptic, parabolic, and hyperbolic equations; maximum principles; the multidimensional calculus of variations; viscosity solutions of Hamilton-Jacobi equations; shock waves and entropy criteria for conservation laws; and, much more.The author summarizes the relevant mathematics required to understand current research in PDEs, especially nonlinear PDEs. While he has reworked and simplified much of the classical theory (particularly the method of characteristics), he primarily emphasizes the modern interplay between funct...

  14. Nonlinear differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.

  15. Ordinary differential equations

    CERN Document Server

    Ince, Edward Lindsay

    1956-01-01

    The theory of ordinary differential equations in real and complex domains is here clearly explained and analyzed. Not only classical theory, but also the main developments of modern times are covered. Exhaustive sections on the existence and nature of solutions, continuous transformation groups, the algebraic theory of linear differential systems, and the solution of differential equations by contour integration are as valuable to the pure mathematician as the fine treatment of the equations of Legendre, Bessel, and Mathieu, the conditions for the oscillatory character of solutions of a diffe

  16. Uncertain differential equations

    CERN Document Server

    Yao, Kai

    2016-01-01

    This book introduces readers to the basic concepts of and latest findings in the area of differential equations with uncertain factors. It covers the analytic method and numerical method for solving uncertain differential equations, as well as their applications in the field of finance. Furthermore, the book provides a number of new potential research directions for uncertain differential equation. It will be of interest to researchers, engineers and students in the fields of mathematics, information science, operations research, industrial engineering, computer science, artificial intelligence, automation, economics, and management science.

  17. Ordinary differential equations

    CERN Document Server

    Miller, Richard K

    1982-01-01

    Ordinary Differential Equations is an outgrowth of courses taught for a number of years at Iowa State University in the mathematics and the electrical engineering departments. It is intended as a text for a first graduate course in differential equations for students in mathematics, engineering, and the sciences. Although differential equations is an old, traditional, and well-established subject, the diverse backgrounds and interests of the students in a typical modern-day course cause problems in the selection and method of presentation of material. In order to compensate for this diversity,

  18. Differential equations problem solver

    CERN Document Server

    Arterburn, David R

    2012-01-01

    REA's Problem Solvers is a series of useful, practical, and informative study guides. Each title in the series is complete step-by-step solution guide. The Differential Equations Problem Solver enables students to solve difficult problems by showing them step-by-step solutions to Differential Equations problems. The Problem Solvers cover material ranging from the elementary to the advanced and make excellent review books and textbook companions. They're perfect for undergraduate and graduate studies.The Differential Equations Problem Solver is the perfect resource for any class, any exam, and

  19. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2011-01-01

    A rigorous, yet accessible, introduction to partial differential equations-updated in a valuable new edition Beginning Partial Differential Equations, Second Edition provides a comprehensive introduction to partial differential equations (PDEs) with a special focus on the significance of characteristics, solutions by Fourier series, integrals and transforms, properties and physical interpretations of solutions, and a transition to the modern function space approach to PDEs. With its breadth of coverage, this new edition continues to present a broad introduction to the field, while also addres

  20. Modelling the heat dynamics of a building using stochastic differential equations

    DEFF Research Database (Denmark)

    Andersen, Klaus Kaae; Madsen, Henrik; Hansen, Lars Henrik

    2000-01-01

    This paper describes the continuous time modelling of the heat dynamics of a building. The considered building is a residential like test house divided into two test rooms with a water based central heating. Each test room is divided into thermal zones in order to describe both short and long term...... variations. Besides modelling the heat transfer between thermal zones, attention is put on modelling the heat input from radiators and solar radiation. The applied modelling procedure is based on collected building performance data and statistical methods. The statistical methods are used in parameter...... estimation and model validation, while physical knowledge is used in forming the model structure. The suggested lumped parameter model is thus based on thermodynamics and formulated as a system of stochastic differential equations. Due to the continuous time formulation the parameters of the model...

  1. Dynamics of a delay differential equation model of hepatitis B virus infection.

    Science.gov (United States)

    Gourley, Stephen A; Kuang, Yang; Nagy, John D

    2008-04-01

    We formulate and systematically study the global dynamics of a simple model of hepatitis B virus in terms of delay differential equations. This model has two important and novel features compared to the well-known basic virus model in the literature. Specifically, it makes use of the more realistic standard incidence function and explicitly incorporates a time delay in virus production. As a result, the infection reproduction number is no longer dependent on the patient liver size (number of initial healthy liver cells). For this model, the existence and the component values of the endemic steady state are explicitly dependent on the time delay. In certain biologically interesting limiting scenarios, a globally attractive endemic equilibrium can exist regardless of the time delay length.

  2. Problems in differential equations

    CERN Document Server

    Brenner, J L

    2013-01-01

    More than 900 problems and answers explore applications of differential equations to vibrations, electrical engineering, mechanics, and physics. Problem types include both routine and nonroutine, and stars indicate advanced problems. 1963 edition.

  3. Partial differential equations

    Indian Academy of Sciences (India)

    been a regular stream of high quality work done in these areas. Talking of elliptic partial differen- tial equations, important contributions have been made in the ...... [6] Evans L C 1992 Periodic homogenisation of certain fully nonlinear partial differential equations; Proc. Roy. Soc. Edinburgh Sect. A 120 No. 3–4, 245–265.

  4. Differential equations I essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Differential Equations I covers first- and second-order equations, series solutions, higher-order linear equations, and the Laplace transform.

  5. Differential Equations as Actions

    DEFF Research Database (Denmark)

    Ronkko, Mauno; Ravn, Anders P.

    1997-01-01

    We extend a conventional action system with a primitive action consisting of a differential equation and an evolution invariant. The semantics is given by a predicate transformer. The weakest liberal precondition is chosen, because it is not always desirable that steps corresponding to differential...

  6. Ordinary differential equations.

    Science.gov (United States)

    Lebl, Jiří

    2013-01-01

    In this chapter we provide an overview of the basic theory of ordinary differential equations (ODE). We give the basics of analytical methods for their solutions and also review numerical methods. The chapter should serve as a primer for the basic application of ODEs and systems of ODEs in practice. As an example, we work out the equations arising in Michaelis-Menten kinetics and give a short introduction to using Matlab for their numerical solution.

  7. Partial differential equations

    CERN Document Server

    Friedman, Avner

    2008-01-01

    This three-part treatment of partial differential equations focuses on elliptic and evolution equations. Largely self-contained, it concludes with a series of independent topics directly related to the methods and results of the preceding sections that helps introduce readers to advanced topics for further study. Geared toward graduate and postgraduate students of mathematics, this volume also constitutes a valuable reference for mathematicians and mathematical theorists.Starting with the theory of elliptic equations and the solution of the Dirichlet problem, the text develops the theory of we

  8. Applied partial differential equations

    CERN Document Server

    Logan, J David

    2004-01-01

    This primer on elementary partial differential equations presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs. What makes this book unique is that it is a brief treatment, yet it covers all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. Mathematical ideas are motivated from physical problems, and the exposition is presented in a concise style accessible to science and engineering students; emphasis is on motivation, concepts, methods, and interpretation, rather than formal theory. This second edition contains new and additional exercises, and it includes a new chapter on the applications of PDEs to biology: age structured models, pattern formation; epidemic wave fronts, and advection-diffusion processes. The student who reads through this book and solves many of t...

  9. Stochastic differential equations for evolutionary dynamics with demographic noise and mutations.

    Science.gov (United States)

    Traulsen, Arne; Claussen, Jens Christian; Hauert, Christoph

    2012-04-01

    We present a general framework to describe the evolutionary dynamics of an arbitrary number of types in finite populations based on stochastic differential equations (SDEs). For large, but finite populations this allows us to include demographic noise without requiring explicit simulations. Instead, the population size only rescales the amplitude of the noise. Moreover, this framework admits the inclusion of mutations between different types, provided that mutation rates μ are not too small compared to the inverse population size 1/N. This ensures that all types are almost always represented in the population and that the occasional extinction of one type does not result in an extended absence of that type. For μN≪1 this limits the use of SDEs, but in this case there are well established alternative approximations based on time scale separation. We illustrate our approach by a rock-scissors-paper game with mutations, where we demonstrate excellent agreement with simulation based results for sufficiently large populations. In the absence of mutations the excellent agreement extends to small population sizes.

  10. Global dynamics for switching systems and their extensions by linear differential equations

    Science.gov (United States)

    Huttinga, Zane; Cummins, Bree; Gedeon, Tomáš; Mischaikow, Konstantin

    2018-03-01

    Switching systems use piecewise constant nonlinearities to model gene regulatory networks. This choice provides advantages in the analysis of behavior and allows the global description of dynamics in terms of Morse graphs associated to nodes of a parameter graph. The parameter graph captures spatial characteristics of a decomposition of parameter space into domains with identical Morse graphs. However, there are many cellular processes that do not exhibit threshold-like behavior and thus are not well described by a switching system. We consider a class of extensions of switching systems formed by a mixture of switching interactions and chains of variables governed by linear differential equations. We show that the parameter graphs associated to the switching system and any of its extensions are identical. For each parameter graph node, there is an order-preserving map from the Morse graph of the switching system to the Morse graph of any of its extensions. We provide counterexamples that show why possible stronger relationships between the Morse graphs are not valid.

  11. Differential Equation of Equilibrium

    African Journals Online (AJOL)

    user

    Department of Civil Engineering. University of Nigeria Nsukka. ABSTRACT. Analysis of underground circular cylindrical shell is carried out in this work. The forth order differential equation of equilibrium, comparable to that of beam on elastic foundation, was derived from static principles on the assumptions of P. L Pasternak.

  12. Partial differential equations for scientists and engineers

    CERN Document Server

    Farlow, Stanley J

    1993-01-01

    Most physical phenomena, whether in the domain of fluid dynamics, electricity, magnetism, mechanics, optics, or heat flow, can be described in general by partial differential equations. Indeed, such equations are crucial to mathematical physics. Although simplifications can be made that reduce these equations to ordinary differential equations, nevertheless the complete description of physical systems resides in the general area of partial differential equations.This highly useful text shows the reader how to formulate a partial differential equation from the physical problem (constructing th

  13. Stochastic partial differential fluid equations as a diffusive limit of deterministic Lagrangian multi-time dynamics.

    Science.gov (United States)

    Cotter, C J; Gottwald, G A; Holm, D D

    2017-09-01

    In Holm (Holm 2015 Proc. R. Soc. A 471 , 20140963. (doi:10.1098/rspa.2014.0963)), stochastic fluid equations were derived by employing a variational principle with an assumed stochastic Lagrangian particle dynamics. Here we show that the same stochastic Lagrangian dynamics naturally arises in a multi-scale decomposition of the deterministic Lagrangian flow map into a slow large-scale mean and a rapidly fluctuating small-scale map. We employ homogenization theory to derive effective slow stochastic particle dynamics for the resolved mean part, thereby obtaining stochastic fluid partial equations in the Eulerian formulation. To justify the application of rigorous homogenization theory, we assume mildly chaotic fast small-scale dynamics, as well as a centring condition. The latter requires that the mean of the fluctuating deviations is small, when pulled back to the mean flow.

  14. Partial differential equations

    CERN Document Server

    Agranovich, M S

    2002-01-01

    Mark Vishik's Partial Differential Equations seminar held at Moscow State University was one of the world's leading seminars in PDEs for over 40 years. This book celebrates Vishik's eightieth birthday. It comprises new results and survey papers written by many renowned specialists who actively participated over the years in Vishik's seminars. Contributions include original developments and methods in PDEs and related fields, such as mathematical physics, tomography, and symplectic geometry. Papers discuss linear and nonlinear equations, particularly linear elliptic problems in angles and gener

  15. Application of the quadratic logistic differential equation for the rationalization of methanol electrooxidation dynamics

    Directory of Open Access Journals (Sweden)

    Hossein Heli

    2016-12-01

    Full Text Available The electrooxidation of methanol in both acidic and alkaline media on poly-crystalline platinum under the regime of cyclic voltammetry is analyzed by application of quadratic logistic equation. The current-charge curves in the anodic cycles fit the logistic differential equation reasonably well and are accounted on the basis of the non-linearity of the kinetics and the effect of positive feedback. In the reverse cycle however, no fit is observed, presumably due to the lack of correlation between the net faradaic current and the surface charge of adsorbates.

  16. Anticipated backward stochastic differential equations

    OpenAIRE

    Peng, Shige; Yang, Zhe

    2007-01-01

    In this paper we discuss new types of differential equations which we call anticipated backward stochastic differential equations (anticipated BSDEs). In these equations the generator includes not only the values of solutions of the present but also the future. We show that these anticipated BSDEs have unique solutions, a comparison theorem for their solutions, and a duality between them and stochastic differential delay equations.

  17. Differential equations with Mathematica

    CERN Document Server

    Abell, Martha L

    2004-01-01

    The Third Edition of the Differential Equations with Mathematica integrates new applications from a variety of fields,especially biology, physics, and engineering. The new handbook is also completely compatible with recent versions of Mathematica and is a perfect introduction for Mathematica beginners.* Focuses on the most often used features of Mathematica for the beginning Mathematica user* New applications from a variety of fields, including engineering, biology, and physics* All applications were completed using recent versions of Mathematica

  18. Fun with Differential Equations

    Indian Academy of Sciences (India)

    IAS Admin

    tion of ® with ¼=2. One can use the uniqueness of solutions of differential equations to prove the addition formulae for sin(t1 +t2), etc. But instead of continuing with this thought process, let us do something more interesting. Now we shall consider another system. Fix 0 < < 1. I am looking for three real-valued functions x(t), ...

  19. Introduction to partial differential equations

    CERN Document Server

    Greenspan, Donald

    2000-01-01

    Designed for use in a one-semester course by seniors and beginning graduate students, this rigorous presentation explores practical methods of solving differential equations, plus the unifying theory underlying the mathematical superstructure. Topics include basic concepts, Fourier series, second-order partial differential equations, wave equation, potential equation, heat equation, approximate solution of partial differential equations, and more. Exercises appear at the ends of most chapters. 1961 edition.

  20. Applied analysis and differential equations

    CERN Document Server

    Cârj, Ovidiu

    2007-01-01

    This volume contains refereed research articles written by experts in the field of applied analysis, differential equations and related topics. Well-known leading mathematicians worldwide and prominent young scientists cover a diverse range of topics, including the most exciting recent developments. A broad range of topics of recent interest are treated: existence, uniqueness, viability, asymptotic stability, viscosity solutions, controllability and numerical analysis for ODE, PDE and stochastic equations. The scope of the book is wide, ranging from pure mathematics to various applied fields such as classical mechanics, biomedicine, and population dynamics.

  1. Ordinary differential equations

    CERN Document Server

    Cox, William

    1995-01-01

    Building on introductory calculus courses, this text provides a sound foundation in the underlying principles of ordinary differential equations. Important concepts, including uniqueness and existence theorems, are worked through in detail and the student is encouraged to develop much of the routine material themselves, thus helping to ensure a solid understanding of the fundamentals required.The wide use of exercises, problems and self-assessment questions helps to promote a deeper understanding of the material and it is developed in such a way that it lays the groundwork for further

  2. Partial differential equations

    CERN Document Server

    Sloan, D; Süli, E

    2001-01-01

    /homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! Over the second half of the 20th century the subject area loosely referred to as numerical analysis of partial differential equations (PDEs) has undergone unprecedented development. At its practical end, the vigorous growth and steady diversification of the field were stimulated by the demand for accurate and reliable tools for computational modelling in physical sciences and engineering, and by the rapid development of computer hardware and architecture. At the more theoretical end, the analytical insight in

  3. Elliptic partial differential equations

    CERN Document Server

    Han, Qing

    2011-01-01

    Elliptic Partial Differential Equations by Qing Han and FangHua Lin is one of the best textbooks I know. It is the perfect introduction to PDE. In 150 pages or so it covers an amazing amount of wonderful and extraordinary useful material. I have used it as a textbook at both graduate and undergraduate levels which is possible since it only requires very little background material yet it covers an enormous amount of material. In my opinion it is a must read for all interested in analysis and geometry, and for all of my own PhD students it is indeed just that. I cannot say enough good things abo

  4. Partial differential equations

    CERN Document Server

    Levine, Harold

    1997-01-01

    The subject matter, partial differential equations (PDEs), has a long history (dating from the 18th century) and an active contemporary phase. An early phase (with a separate focus on taut string vibrations and heat flow through solid bodies) stimulated developments of great importance for mathematical analysis, such as a wider concept of functions and integration and the existence of trigonometric or Fourier series representations. The direct relevance of PDEs to all manner of mathematical, physical and technical problems continues. This book presents a reasonably broad introductory account of the subject, with due regard for analytical detail, applications and historical matters.

  5. Nonelliptic Partial Differential Equations

    CERN Document Server

    Tartakoff, David S

    2011-01-01

    This book provides a very readable description of a technique, developed by the author years ago but as current as ever, for proving that solutions to certain (non-elliptic) partial differential equations only have real analytic solutions when the data are real analytic (locally). The technique is completely elementary but relies on a construction, a kind of a non-commutative power series, to localize the analysis of high powers of derivatives in the so-called bad direction. It is hoped that this work will permit a far greater audience of researchers to come to a deep understanding of this tec

  6. Dynamics of excited instantons in the system of forced Gursey nonlinear differential equations

    Science.gov (United States)

    Aydogmus, F.

    2015-02-01

    The Gursey model is a 4D conformally invariant pure fermionic model with a nonlinear spinor self-coupled term. Gursey proposed his model as a possible basis for a unitary description of elementary particles following the "Heisenberg dream." In this paper, we consider the system of Gursey nonlinear differential equations (GNDEs) formed by using the Heisenberg ansatz. We use it to understand how the behavior of spinor-type Gursey instantons can be affected by excitations. For this, the regular and chaotic numerical solutions of forced GNDEs are investigated by constructing their Poincaré sections in phase space. A hierarchical cluster analysis method for investigating the forced GNDEs is also presented.

  7. Differential equations with involutions

    CERN Document Server

    Cabada, Alberto

    2015-01-01

    This monograph covers the existing results regarding Green’s functions for differential equations with involutions (DEI).The first part of the book is devoted to the study of the most useful aspects of involutions from an analytical point of view and the associated algebras of differential operators. The work combines the state of the art regarding the existence and uniqueness results for DEI and new theorems describing how to obtain Green’s functions, proving that the theory can be extended to operators (not necessarily involutions) of a similar nature, such as the Hilbert transform or projections, due to their analogous algebraic properties. Obtaining a Green’s function for these operators leads to new results on the qualitative properties of the solutions, in particular maximum and antimaximum principles.

  8. Difference equations by differential equation methods

    CERN Document Server

    Hydon, Peter E

    2014-01-01

    Most well-known solution techniques for differential equations exploit symmetry in some form. Systematic methods have been developed for finding and using symmetries, first integrals and conservation laws of a given differential equation. Here the author explains how to extend these powerful methods to difference equations, greatly increasing the range of solvable problems. Beginning with an introduction to elementary solution methods, the book gives readers a clear explanation of exact techniques for ordinary and partial difference equations. The informal presentation is suitable for anyone who is familiar with standard differential equation methods. No prior knowledge of difference equations or symmetry is assumed. The author uses worked examples to help readers grasp new concepts easily. There are 120 exercises of varying difficulty and suggestions for further reading. The book goes to the cutting edge of research; its many new ideas and methods make it a valuable reference for researchers in the field.

  9. Hyperbolic partial differential equations

    CERN Document Server

    Lax, Peter D

    2006-01-01

    The theory of hyperbolic equations is a large subject, and its applications are many: fluid dynamics and aerodynamics, the theory of elasticity, optics, electromagnetic waves, direct and inverse scattering, and the general theory of relativity. This book is an introduction to most facets of the theory and is an ideal text for a second-year graduate course on the subject. The first part deals with the basic theory: the relation of hyperbolicity to the finite propagation of signals, the concept and role of characteristic surfaces and rays, energy, and energy inequalities. The structure of soluti

  10. Elements of partial differential equations

    CERN Document Server

    Sneddon, Ian Naismith

    1957-01-01

    Geared toward students of applied rather than pure mathematics, this volume introduces elements of partial differential equations. Its focus is primarily upon finding solutions to particular equations rather than general theory.Topics include ordinary differential equations in more than two variables, partial differential equations of the first and second orders, Laplace's equation, the wave equation, and the diffusion equation. A helpful Appendix offers information on systems of surfaces, and solutions to the odd-numbered problems appear at the end of the book. Readers pursuing independent st

  11. Scaling of differential equations

    CERN Document Server

    Langtangen, Hans Petter

    2016-01-01

    The book serves both as a reference for various scaled models with corresponding dimensionless numbers, and as a resource for learning the art of scaling. A special feature of the book is the emphasis on how to create software for scaled models, based on existing software for unscaled models. Scaling (or non-dimensionalization) is a mathematical technique that greatly simplifies the setting of input parameters in numerical simulations. Moreover, scaling enhances the understanding of how different physical processes interact in a differential equation model. Compared to the existing literature, where the topic of scaling is frequently encountered, but very often in only a brief and shallow setting, the present book gives much more thorough explanations of how to reason about finding the right scales. This process is highly problem dependent, and therefore the book features a lot of worked examples, from very simple ODEs to systems of PDEs, especially from fluid mechanics. The text is easily accessible and exam...

  12. Dynamics of excited instantons in the system of forced Gursey nonlinear differential equations

    International Nuclear Information System (INIS)

    Aydogmus, F.

    2015-01-01

    The Gursey model is a 4D conformally invariant pure fermionic model with a nonlinear spinor self-coupled term. Gursey proposed his model as a possible basis for a unitary description of elementary particles following the “Heisenberg dream.” In this paper, we consider the system of Gursey nonlinear differential equations (GNDEs) formed by using the Heisenberg ansatz. We use it to understand how the behavior of spinor-type Gursey instantons can be affected by excitations. For this, the regular and chaotic numerical solutions of forced GNDEs are investigated by constructing their Poincaré sections in phase space. A hierarchical cluster analysis method for investigating the forced GNDEs is also presented

  13. Differential equations inverse and direct problems

    CERN Document Server

    Favini, Angelo

    2006-01-01

    DEGENERATE FIRST ORDER IDENTIFICATION PROBLEMS IN BANACH SPACES A NONISOTHERMAL DYNAMICAL GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY. EXISTENCE AND UNIQUENESS THEOREMSSOME GLOBAL IN TIME RESULTS FOR INTEGRODIFFERENTIAL PARABOLIC INVERSE PROBLEMSFOURTH ORDER ORDINARY DIFFERENTIAL OPERATORS WITH GENERAL WENTZELL BOUNDARY CONDITIONSTUDY OF ELLIPTIC DIFFERENTIAL EQUATIONS IN UMD SPACESDEGENERATE INTEGRODIFFERENTIAL EQUATIONS OF PARABOLIC TYPE EXPONENTIAL ATTRACTORS FOR SEMICONDUCTOR EQUATIONSCONVERGENCE TO STATIONARY STATES OF SOLUTIONS TO THE SEMILINEAR EQUATION OF VISCOELASTICITY ASYMPTOTIC BEHA

  14. On stochastic differential equations with random delay

    International Nuclear Information System (INIS)

    Krapivsky, P L; Luck, J M; Mallick, K

    2011-01-01

    We consider stochastic dynamical systems defined by differential equations with a uniform random time delay. The latter equations are shown to be equivalent to deterministic higher-order differential equations: for an nth-order equation with random delay, the corresponding deterministic equation has order n + 1. We analyze various examples of dynamical systems of this kind, and find a number of unusual behaviors. For instance, for the harmonic oscillator with random delay, the energy grows as exp((3/2) t 2/3 ) in reduced units. We then investigate the effect of introducing a discrete time step ε. At variance with the continuous situation, the discrete random recursion relations thus obtained have intrinsic fluctuations. The crossover between the fluctuating discrete problem and the deterministic continuous one as ε goes to zero is studied in detail on the example of a first-order linear differential equation

  15. Parameter estimation and change-point detection from Dynamic Contrast Enhanced MRI data using stochastic differential equations.

    Science.gov (United States)

    Cuenod, Charles-André; Favetto, Benjamin; Genon-Catalot, Valentine; Rozenholc, Yves; Samson, Adeline

    2011-09-01

    Dynamic Contrast Enhanced imaging (DCE-imaging) following a contrast agent bolus allows the extraction of information on tissue micro-vascularization. The dynamic signals obtained from DCE-imaging are modeled by pharmacokinetic compartmental models which integrate the Arterial Input Function. These models use ordinary differential equations (ODEs) to describe the exchanges between the arterial and capillary plasma and the extravascular-extracellular space. Their least squares fitting takes into account measurement noises but fails to deal with unpredictable fluctuations due to external/internal sources of variations (patients' anxiety, time-varying parameters, measurement errors in the input function, etc.). Adding Brownian components to the ODEs leads to stochastic differential equations (SDEs). In DCE-imaging, SDEs are discretely observed with an additional measurement noise. We propose to estimate the parameters of these noisy SDEs by maximum likelihood, using the Kalman filter. In DCE-imaging, the contrast agent injected in vein arrives in plasma with an unknown time delay. The delay parameter induces a change-point in the drift of the SDE and ODE models, which is estimated also. Estimations based on the SDE and ODE pharmacokinetic models are compared to real DCE-MRI data. They show that the use of SDE provides robustness in the estimation results. A simulation study confirms these results. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Computing singularly perturbed differential equations

    Science.gov (United States)

    Chatterjee, Sabyasachi; Acharya, Amit; Artstein, Zvi

    2018-02-01

    A computational tool for coarse-graining nonlinear systems of ordinary differential equations in time is discussed. Three illustrative model examples are worked out that demonstrate the range of capability of the method. This includes the averaging of Hamiltonian as well as dissipative microscopic dynamics whose 'slow' variables, defined in a precise sense, can often display mixed slow-fast response as in relaxation oscillations, and dependence on initial conditions of the fast variables. Also covered is the case where the quasi-static assumption in solid mechanics is violated. The computational tool is demonstrated to capture all of these behaviors in an accurate and robust manner, with significant savings in time. A practically useful strategy for accurately initializing short bursts of microscopic runs for the evolution of slow variables is integral to our scheme, without the requirement that the slow variables determine a unique invariant measure of the microscopic dynamics.

  17. Averaging of multivalued differential equations

    Directory of Open Access Journals (Sweden)

    G. Grammel

    2003-04-01

    Full Text Available Nonlinear multivalued differential equations with slow and fast subsystems are considered. Under transitivity conditions on the fast subsystem, the slow subsystem can be approximated by an averaged multivalued differential equation. The approximation in the Hausdorff sense is of order O(ϵ1/3 as ϵ→0.

  18. fractional differential equations

    Indian Academy of Sciences (India)

    We apply this method for solving space–time fractional Cahn--Allen equation and space--time fractional Klein–Gordon equation. The fractional derivatives are described in the sense of modified Riemann--Lioville. As a result of some exact solution in the form of hyperbolic, trigonometric and rational solutions are deduced.

  19. Approaches for modeling within subject variability in pharmacometric count data analysis: dynamic inter-occasion variability and stochastic differential equations.

    Science.gov (United States)

    Deng, Chenhui; Plan, Elodie L; Karlsson, Mats O

    2016-06-01

    Parameter variation in pharmacometric analysis studies can be characterized as within subject parameter variability (WSV) in pharmacometric models. WSV has previously been successfully modeled using inter-occasion variability (IOV), but also stochastic differential equations (SDEs). In this study, two approaches, dynamic inter-occasion variability (dIOV) and adapted stochastic differential equations, were proposed to investigate WSV in pharmacometric count data analysis. These approaches were applied to published count models for seizure counts and Likert pain scores. Both approaches improved the model fits significantly. In addition, stochastic simulation and estimation were used to explore further the capability of the two approaches to diagnose and improve models where existing WSV is not recognized. The results of simulations confirmed the gain in introducing WSV as dIOV and SDEs when parameters vary randomly over time. Further, the approaches were also informative as diagnostics of model misspecification, when parameters changed systematically over time but this was not recognized in the structural model. The proposed approaches in this study offer strategies to characterize WSV and are not restricted to count data.

  20. Differential Equations Models to Study Quorum Sensing.

    Science.gov (United States)

    Pérez-Velázquez, Judith; Hense, Burkhard A

    2018-01-01

    Mathematical models to study quorum sensing (QS) have become an important tool to explore all aspects of this type of bacterial communication. A wide spectrum of mathematical tools and methods such as dynamical systems, stochastics, and spatial models can be employed. In this chapter, we focus on giving an overview of models consisting of differential equations (DE), which can be used to describe changing quantities, for example, the dynamics of one or more signaling molecule in time and space, often in conjunction with bacterial growth dynamics. The chapter is divided into two sections: ordinary differential equations (ODE) and partial differential equations (PDE) models of QS. Rates of change are represented mathematically by derivatives, i.e., in terms of DE. ODE models allow describing changes in one independent variable, for example, time. PDE models can be used to follow changes in more than one independent variable, for example, time and space. Both types of models often consist of systems (i.e., more than one equation) of equations, such as equations for bacterial growth and autoinducer concentration dynamics. Almost from the onset, mathematical modeling of QS using differential equations has been an interdisciplinary endeavor and many of the works we revised here will be placed into their biological context.

  1. Non-instantaneous impulses in differential equations

    CERN Document Server

    Agarwal, Ravi; O'Regan, Donal

    2017-01-01

    This monograph is the first published book devoted to the theory of differential equations with non-instantaneous impulses. It aims to equip the reader with mathematical models and theory behind real life processes in physics, biology, population dynamics, ecology and pharmacokinetics. The authors examine a wide scope of differential equations with non-instantaneous impulses through three comprehensive chapters, providing an all-rounded and unique presentation on the topic, including: - Ordinary differential equations with non-instantaneous impulses (scalar and n-dimensional case) - Fractional differential equa tions with non-instantaneous impulses (with Caputo fractional derivatives of order q ϵ (0, 1)) - Ordinary differential equations with non-instantaneous impulses occurring at random moments (with exponential, Erlang, or Gamma distribution) Each chapter focuses on theory, proofs and examples, and contains numerous graphs to enrich the reader’s understanding. Additionally, a carefully selected bibliogr...

  2. Applied partial differential equations

    CERN Document Server

    Logan, J David

    2015-01-01

    This text presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs.  Emphasis is placed on motivation, concepts, methods, and interpretation, rather than on formal theory. The concise treatment of the subject is maintained in this third edition covering all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. In this third edition, text remains intimately tied to applications in heat transfer, wave motion, biological systems, and a variety other topics in pure and applied science. The text offers flexibility to instructors who, for example, may wish to insert topics from biology or numerical methods at any time in the course. The exposition is presented in a friendly, easy-to-read, style, with mathematical ideas motivated from physical problems. Many exercises and worked e...

  3. Applied partial differential equations

    CERN Document Server

    DuChateau, Paul

    2012-01-01

    Book focuses mainly on boundary-value and initial-boundary-value problems on spatially bounded and on unbounded domains; integral transforms; uniqueness and continuous dependence on data, first-order equations, and more. Numerous exercises included.

  4. Differential equations methods and applications

    CERN Document Server

    Said-Houari, Belkacem

    2015-01-01

    This book presents a variety of techniques for solving ordinary differential equations analytically and features a wealth of examples. Focusing on the modeling of real-world phenomena, it begins with a basic introduction to differential equations, followed by linear and nonlinear first order equations and a detailed treatment of the second order linear equations. After presenting solution methods for the Laplace transform and power series, it lastly presents systems of equations and offers an introduction to the stability theory. To help readers practice the theory covered, two types of exercises are provided: those that illustrate the general theory, and others designed to expand on the text material. Detailed solutions to all the exercises are included. The book is excellently suited for use as a textbook for an undergraduate class (of all disciplines) in ordinary differential equations. .

  5. An introduction to differential equations

    CERN Document Server

    Ladde, Anil G

    2012-01-01

    This is a twenty-first century book designed to meet the challenges of understanding and solving interdisciplinary problems. The book creatively incorporates "cutting-edge" research ideas and techniques at the undergraduate level. The book also is a unique research resource for undergraduate/graduate students and interdisciplinary researchers. It emphasizes and exhibits the importance of conceptual understandings and its symbiotic relationship in the problem solving process. The book is proactive in preparing for the modeling of dynamic processes in various disciplines. It introduces a "break-down-the problem" type of approach in a way that creates "fun" and "excitement". The book presents many learning tools like "step-by-step procedures (critical thinking)", the concept of "math" being a language, applied examples from diverse fields, frequent recaps, flowcharts and exercises. Uniquely, this book introduces an innovative and unified method of solving nonlinear scalar differential equations. This is called ...

  6. Differential equations and applications recent advances

    CERN Document Server

    2014-01-01

    Differential Equations and Applications : Recent Advances focus on the latest developments in Nonlinear Dynamical Systems, Neural Networks, Fluid Dynamics, Fractional Differential Systems, Mathematical Modelling and Qualitative Theory. Different aspects such as Existence, Stability, Controllability, Viscosity and Numerical Analysis for different systems have been discussed in this book. This book will be of great interest and use to researchers in Applied Mathematics, Engineering and Mathematical Physics.

  7. Stochastic differential equations, backward SDEs, partial differential equations

    CERN Document Server

    Pardoux, Etienne

    2014-01-01

    This research monograph presents results to researchers in stochastic calculus, forward and backward stochastic differential equations, connections between diffusion processes and second order partial differential equations (PDEs), and financial mathematics. It pays special attention to the relations between SDEs/BSDEs and second order PDEs under minimal regularity assumptions, and also extends those results to equations with multivalued coefficients. The authors present in particular the theory of reflected SDEs in the above mentioned framework and include exercises at the end of each chapter. Stochastic calculus and stochastic differential equations (SDEs) were first introduced by K. Itô in the 1940s, in order to construct the path of diffusion processes (which are continuous time Markov processes with continuous trajectories taking their values in a finite dimensional vector space or manifold), which had been studied from a more analytic point of view by Kolmogorov in the 1930s. Since then, this topic has...

  8. Trends in differential equations and applications

    CERN Document Server

    Neble, María; Galván, José

    2016-01-01

    This work collects the most important results presented at the Congress on Differential Equations and Applications/Congress on Applied Mathematics (CEDYA/CMA) in Cádiz (Spain) in 2015. It supports further research in differential equations, numerical analysis, mechanics, control and optimization. In particular, it helps readers gain an overview of specific problems of interest in the current mathematical research related to different branches of applied mathematics. This includes the analysis of nonlinear partial differential equations, exact solutions techniques for ordinary differential equations, numerical analysis and numerical simulation of some models arising in experimental sciences and engineering, control and optimization, and also trending topics on numerical linear Algebra, dynamical systems, and applied mathematics for Industry. This volume is mainly addressed to any researcher interested in the applications of mathematics, especially in any subject mentioned above. It may be also useful to PhD s...

  9. Neural networks dynamic hysteresis model for piezoceramic actuator based on hysteresis operator of first-order differential equation

    International Nuclear Information System (INIS)

    Dang Xuanju; Tan Yonghong

    2005-01-01

    A new neural networks dynamic hysteresis model for piezoceramic actuator is proposed by combining the Preisach model with diagonal recurrent neural networks. The Preisach model is based on elementary rate-independent operators and is not suitable for modeling piezoceramic actuator across a wide frequency band because of the rate-dependent hysteresis characteristic of the piezoceramic actuator. The structure of the developed model is based on the structure of the Preisach model, in which the rate-independent relay hysteresis operators (cells) are replaced by the rate-dependent hysteresis operators of first-order differential equation. The diagonal recurrent neural networks being modified by an adjustable factor can be used to model the hysteresis behavior of the pizeoceramic actuator because its structure is similar to the structure of the modified Preisach model. Therefore, the proposed model not only possesses that of the Preisach model, but also can be used for describing its dynamic hysteresis behavior. Through the experimental results of both the approximation and the prediction, the effectiveness of the neural networks dynamic hysteresis model for the piezoceramic actuator is demonstrated

  10. Introduction to partial differential equations

    CERN Document Server

    Borthwick, David

    2016-01-01

    This modern take on partial differential equations does not require knowledge beyond vector calculus and linear algebra. The author focuses on the most important classical partial differential equations, including conservation equations and their characteristics, the wave equation, the heat equation, function spaces, and Fourier series, drawing on tools from analysis only as they arise.Within each section the author creates a narrative that answers the five questions: (1) What is the scientific problem we are trying to understand? (2) How do we model that with PDE? (3) What techniques can we use to analyze the PDE? (4) How do those techniques apply to this equation? (5) What information or insight did we obtain by developing and analyzing the PDE? The text stresses the interplay between modeling and mathematical analysis, providing a thorough source of problems and an inspiration for the development of methods.

  11. VIM-Based Dynamic Sparse Grid Approach to Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Shu-Li Mei

    2014-01-01

    Full Text Available Combining the variational iteration method (VIM with the sparse grid theory, a dynamic sparse grid approach for nonlinear PDEs is proposed in this paper. In this method, a multilevel interpolation operator is constructed based on the sparse grids theory firstly. The operator is based on the linear combination of the basic functions and independent of them. Second, by means of the precise integration method (PIM, the VIM is developed to solve the nonlinear system of ODEs which is obtained from the discretization of the PDEs. In addition, a dynamic choice scheme on both of the inner and external grid points is proposed. It is different from the traditional interval wavelet collocation method in which the choice of both of the inner and external grid points is dynamic. The numerical experiments show that our method is better than the traditional wavelet collocation method, especially in solving the PDEs with the Nuemann boundary conditions.

  12. Introductory course on differential equations

    CERN Document Server

    Gorain, Ganesh C

    2014-01-01

    Introductory Course on DIFFERENTIAL EQUATIONS provides an excellent exposition of the fundamentals of ordinary and partial differential equations and is ideally suited for a first course of undergraduate students of mathematics, physics and engineering. The aim of this book is to present the elementary theories of differential equations in the forms suitable for use of those students whose main interest in the subject are based on simple mathematical ideas. KEY FEATURES: Discusses the subject in a systematic manner without sacrificing mathematical rigour. A variety of exercises drill the students in problem solving in view of the mathematical theories explained in the book. Worked out examples illustrated according to the theories developed in the book with possible alternatives. Exhaustive collection of problems and the simplicity of presentation differentiate this book from several others. Material contained will help teachers as well as aspiring students of different competitive examinations.

  13. Half-linear differential equations

    CERN Document Server

    Dosly, Ondrej

    2005-01-01

    The book presents a systematic and compact treatment of the qualitative theory of half-lineardifferential equations. It contains the most updated and comprehensive material and represents the first attempt to present the results of the rapidly developing theory of half-linear differential equations in a unified form. The main topics covered by the book are oscillation and asymptotic theory and the theory of boundary value problems associated with half-linear equations, but the book also contains a treatment of related topics like PDE's with p-Laplacian, half-linear difference equations and var

  14. Random Dynamical Systems and Stationary Solutions of Differential Equations Driven by the Fractional Brownian Motion

    Czech Academy of Sciences Publication Activity Database

    Maslowski, Bohdan; Schmalfuss, B.

    2004-01-01

    Roč. 22, č. 6 (2004), s. 1577-1607 ISSN 0736-2994 R&D Projects: GA ČR GA201/01/1197 Institutional research plan: CEZ:AV0Z1019905 Keywords : fractional Brownian motion * random dynamical systems * stationary solutions Subject RIV: BA - General Mathematics Impact factor: 0.290, year: 2004 http://www.tandfonline.com/doi/full/10.1081/ SAP -200029498

  15. Stochastic partial differential equations

    CERN Document Server

    Lototsky, Sergey V

    2017-01-01

    Taking readers with a basic knowledge of probability and real analysis to the frontiers of a very active research discipline, this textbook provides all the necessary background from functional analysis and the theory of PDEs. It covers the main types of equations (elliptic, hyperbolic and parabolic) and discusses different types of random forcing. The objective is to give the reader the necessary tools to understand the proofs of existing theorems about SPDEs (from other sources) and perhaps even to formulate and prove a few new ones. Most of the material could be covered in about 40 hours of lectures, as long as not too much time is spent on the general discussion of stochastic analysis in infinite dimensions. As the subject of SPDEs is currently making the transition from the research level to that of a graduate or even undergraduate course, the book attempts to present enough exercise material to fill potential exams and homework assignments. Exercises appear throughout and are usually directly connected ...

  16. Nielsen number and differential equations

    Directory of Open Access Journals (Sweden)

    Andres Jan

    2005-01-01

    Full Text Available In reply to a problem of Jean Leray (application of the Nielsen theory to differential equations, two main approaches are presented. The first is via Poincaré's translation operator, while the second one is based on the Hammerstein-type solution operator. The applicability of various Nielsen theories is discussed with respect to several sorts of differential equations and inclusions. Links with the Sharkovskii-like theorems (a finite number of periodic solutions imply infinitely many subharmonics are indicated, jointly with some further consequences like the nontrivial -structure of solutions of initial value problems. Some illustrating examples are supplied and open problems are formulated.

  17. Group analysis of differential equations

    CERN Document Server

    Ovsiannikov, L V

    1982-01-01

    Group Analysis of Differential Equations provides a systematic exposition of the theory of Lie groups and Lie algebras and its application to creating algorithms for solving the problems of the group analysis of differential equations.This text is organized into eight chapters. Chapters I to III describe the one-parameter group with its tangential field of vectors. The nonstandard treatment of the Banach Lie groups is reviewed in Chapter IV, including a discussion of the complete theory of Lie group transformations. Chapters V and VI cover the construction of partial solution classes for the g

  18. Basic linear partial differential equations

    CERN Document Server

    Treves, Francois

    1975-01-01

    Focusing on the archetypes of linear partial differential equations, this text for upper-level undergraduates and graduate students features most of the basic classical results. The methods, however, are decidedly nontraditional: in practically every instance, they tend toward a high level of abstraction. This approach recalls classical material to contemporary analysts in a language they can understand, as well as exploiting the field's wealth of examples as an introduction to modern theories.The four-part treatment covers the basic examples of linear partial differential equations and their

  19. Lectures on ordinary differential equations

    CERN Document Server

    Hurewicz, Witold

    1958-01-01

    Hailed by The American Mathematical Monthly as ""a rigorous and lively introduction,"" this text explores a topic of perennial interest in mathematics. The author, a distinguished mathematician and formulator of the Hurewicz theorem, presents a clear and lucid treatment that emphasizes geometric methods. Topics include first-order scalar and vector equations, basic properties of linear vector equations, and two-dimensional nonlinear autonomous systems. Suitable for senior mathematics students, the text begins with an examination of differential equations of the first order in one unknown funct

  20. Surveys in differential-algebraic equations III

    CERN Document Server

    Reis, Timo

    2015-01-01

    The present volume comprises survey articles on various fields of Differential-Algebraic Equations (DAEs), which have widespread applications in controlled dynamical systems, especially in mechanical and electrical engineering and a strong relation to (ordinary) differential equations. The individual chapters provide reviews, presentations of the current state of research and new concepts in - Flexibility of DAE formulations - Reachability analysis and deterministic global optimization - Numerical linear algebra methods - Boundary value problems The results are presented in an accessible style, making this book suitable not only for active researchers but also for graduate students (with a good knowledge of the basic principles of DAEs) for self-study.

  1. Surveys in differential-algebraic equations II

    CERN Document Server

    Reis, Timo

    2015-01-01

    The present volume comprises survey articles on various fields of Differential-Algebraic Equations (DAEs), which have widespread applications in controlled dynamical systems, especially in mechanical and electrical engineering and a strong relation to (ordinary) differential equations. The individual chapters provide reviews, presentations of the current state of research and new concepts in - Observers for DAEs - DAEs in chemical processes - Optimal control of DAEs - DAEs from a functional-analytic viewpoint - Algebraic methods for DAEs The results are presented in an accessible style, making this book suitable not only for active researchers but also for graduate students (with a good knowledge of the basic principles of DAEs) for self-study.

  2. Surveys in differential-algebraic equations IV

    CERN Document Server

    Reis, Timo

    2017-01-01

    The present volume comprises survey articles on various fields of Differential-Algebraic Equations (DAEs) which have widespread applications in controlled dynamical systems, especially in mechanical and electrical engineering and a strong relation to (ordinary) differential equations. The individual chapters provide reviews, presentations of the current state of research and new concepts in - History of DAEs - DAE aspects of mechanical multibody systems - Model reduction of DAEs - Observability for DAEs - Numerical Analysis for DAEs The results are presented in an accessible style, making this book suitable not only for active researchers but also for graduate students (with a good knowledge of the basic principles of DAEs) for self-study.

  3. Asymptotic analysis for functional stochastic differential equations

    CERN Document Server

    Bao, Jianhai; Yuan, Chenggui

    2016-01-01

    This brief treats dynamical systems that involve delays and random disturbances. The study is motivated by a wide variety of systems in real life in which random noise has to be taken into consideration and the effect of delays cannot be ignored. Concentrating on such systems that are described by functional stochastic differential equations, this work focuses on the study of large time behavior, in particular, ergodicity. This brief is written for probabilists, applied mathematicians, engineers, and scientists who need to use delay systems and functional stochastic differential equations in their work. Selected topics from the brief can also be used in a graduate level topics course in probability and stochastic processes.

  4. Stability of Functional Differential Equations

    CERN Document Server

    Lemm, Jeffrey M

    1986-01-01

    This book provides an introduction to the structure and stability properties of solutions of functional differential equations. Numerous examples of applications (such as feedback systrems with aftereffect, two-reflector antennae, nuclear reactors, mathematical models in immunology, viscoelastic bodies, aeroautoelastic phenomena and so on) are considered in detail. The development is illustrated by numerous figures and tables.

  5. Pendulum Motion and Differential Equations

    Science.gov (United States)

    Reid, Thomas F.; King, Stephen C.

    2009-01-01

    A common example of real-world motion that can be modeled by a differential equation, and one easily understood by the student, is the simple pendulum. Simplifying assumptions are necessary for closed-form solutions to exist, and frequently there is little discussion of the impact if those assumptions are not met. This article presents a…

  6. Abstract methods in partial differential equations

    CERN Document Server

    Carroll, Robert W

    2012-01-01

    Detailed, self-contained treatment examines modern abstract methods in partial differential equations, especially abstract evolution equations. Suitable for graduate students with some previous exposure to classical partial differential equations. 1969 edition.

  7. Polynomial chaos methods for hyperbolic partial differential equations numerical techniques for fluid dynamics problems in the presence of uncertainties

    CERN Document Server

    Pettersson, Mass Per; Nordström, Jan

    2015-01-01

    This monograph presents computational techniques and numerical analysis to study conservation laws under uncertainty using the stochastic Galerkin formulation. With the continual growth of computer power, these methods are becoming increasingly popular as an alternative to more classical sampling-based techniques. The approach described in the text takes advantage of stochastic Galerkin projections applied to the original conservation laws to produce a large system of modified partial differential equations, the solutions to which directly provide a full statistical characterization of the effect of uncertainties. Polynomial Chaos Methods of Hyperbolic Partial Differential Equations focuses on the analysis of stochastic Galerkin systems obtained for linear and non-linear convection-diffusion equations and for a systems of conservation laws; a detailed well-posedness and accuracy analysis is presented to enable the design of robust and stable numerical methods. The exposition is restricted to one spatial dime...

  8. Iterative Splitting Methods for Differential Equations

    CERN Document Server

    Geiser, Juergen

    2011-01-01

    Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations. In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential

  9. Approximating chaotic saddles for delay differential equations.

    Science.gov (United States)

    Taylor, S Richard; Campbell, Sue Ann

    2007-04-01

    Chaotic saddles are unstable invariant sets in the phase space of dynamical systems that exhibit transient chaos. They play a key role in mediating transport processes involving scattering and chaotic transients. Here we present evidence (long chaotic transients and fractal basins of attraction) of transient chaos in a "logistic" delay differential equation. We adapt an existing method (stagger-and-step) to numerically construct the chaotic saddle for this system. This is the first such analysis of transient chaos in an infinite-dimensional dynamical system, and in delay differential equations in particular. Using Poincaré section techniques we illustrate approaches to visualizing the saddle set, and confirm that the saddle has the Cantor-like fractal structure consistent with a chaotic saddle generated by horseshoe-type dynamics.

  10. Approximating chaotic saddles for delay differential equations

    Science.gov (United States)

    Taylor, S. Richard; Campbell, Sue Ann

    2007-04-01

    Chaotic saddles are unstable invariant sets in the phase space of dynamical systems that exhibit transient chaos. They play a key role in mediating transport processes involving scattering and chaotic transients. Here we present evidence (long chaotic transients and fractal basins of attraction) of transient chaos in a “logistic” delay differential equation. We adapt an existing method (stagger-and-step) to numerically construct the chaotic saddle for this system. This is the first such analysis of transient chaos in an infinite-dimensional dynamical system, and in delay differential equations in particular. Using Poincaré section techniques we illustrate approaches to visualizing the saddle set, and confirm that the saddle has the Cantor-like fractal structure consistent with a chaotic saddle generated by horseshoe-type dynamics.

  11. Stability theory of differential equations

    CERN Document Server

    Bellman, Richard Ernest

    1953-01-01

    Suitable for advanced undergraduates and graduate students, this was the first English-language text to offer detailed coverage of boundedness, stability, and asymptotic behavior of linear and nonlinear differential equations. It remains a classic guide, featuring material from original research papers, including the author's own studies.The linear equation with constant and almost-constant coefficients receives in-depth attention that includes aspects of matrix theory. No previous acquaintance with the theory is necessary, since author Richard Bellman derives the results in matrix theory from

  12. Partial differential equations an introduction

    CERN Document Server

    Colton, David

    2004-01-01

    Intended for a college senior or first-year graduate-level course in partial differential equations, this text offers students in mathematics, engineering, and the applied sciences a solid foundation for advanced studies in mathematics. Classical topics presented in a modern context include coverage of integral equations and basic scattering theory. This complete and accessible treatment includes a variety of examples of inverse problems arising from improperly posed applications. Exercises at the ends of chapters, many with answers, offer a clear progression in developing an understanding of

  13. Algebraic entropy for differential-delay equations

    OpenAIRE

    Viallet, Claude M.

    2014-01-01

    We extend the definition of algebraic entropy to a class of differential-delay equations. The vanishing of the entropy, as a structural property of an equation, signals its integrability. We suggest a simple way to produce differential-delay equations with vanishing entropy from known integrable differential-difference equations.

  14. Dynamical control of accuracy in the fuzzy Runge-Kutta methods to estimate the solution of a fuzzy differential equation

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Fariborzi Araghi

    2016-02-01

    Full Text Available In this paper, a reliable scheme is proposed to solve fuzzy differential equations by fuzzy Runge-Kutta method of order $m$. For this purpose, the stochastic arithmetic and CESTAC method are applied to validate the results. In order to implement the C++ codes, the CADNA library is used. In this case, the optimal step size is found. The examples illustrate the efficiency and importance of using the stochastic arithmetic in place of the floating-point arithmetic.

  15. Potential in stochastic differential equations: novel construction

    International Nuclear Information System (INIS)

    Ao, P

    2004-01-01

    There is a whole range of emergent phenomena in a complex network such as robustness, adaptiveness, multiple-equilibrium, hysteresis, oscillation and feedback. Those non-equilibrium behaviours can often be described by a set of stochastic differential equations. One persistent important question is the existence of a potential function. Here we demonstrate that a dynamical structure built into stochastic differential equation allows us to construct such a global optimization potential function. We present an explicit construction procedure to obtain the potential and relevant quantities. In the procedure no reference to the Fokker-Planck equation is needed. The availability of the potential suggests that powerful statistical mechanics tools can be used in nonequilibrium situations. (letter to the editor)

  16. Stochastic partial differential equations an introduction

    CERN Document Server

    Liu, Wei

    2015-01-01

    This book provides an introduction to the theory of stochastic partial differential equations (SPDEs) of evolutionary type. SPDEs are one of the main research directions in probability theory with several wide ranging applications. Many types of dynamics with stochastic influence in nature or man-made complex systems can be modelled by such equations. The theory of SPDEs is based both on the theory of deterministic partial differential equations, as well as on modern stochastic analysis. Whilst this volume mainly follows the ‘variational approach’, it also contains a short account on the ‘semigroup (or mild solution) approach’. In particular, the volume contains a complete presentation of the main existence and uniqueness results in the case of locally monotone coefficients. Various types of generalized coercivity conditions are shown to guarantee non-explosion, but also a systematic approach to treat SPDEs with explosion in finite time is developed. It is, so far, the only book where the latter and t...

  17. Handbook of differential equations stationary partial differential equations

    CERN Document Server

    Chipot, Michel

    2006-01-01

    This handbook is volume III in a series devoted to stationary partial differential quations. Similarly as volumes I and II, it is a collection of self contained state-of-the-art surveys written by well known experts in the field. The topics covered by this handbook include singular and higher order equations, problems near critically, problems with anisotropic nonlinearities, dam problem, T-convergence and Schauder-type estimates. These surveys will be useful for both beginners and experts and speed up the progress of corresponding (rapidly developing and fascinating) areas of mathematics. Ke

  18. Modelling conjugation with stochastic differential equations.

    Science.gov (United States)

    Philipsen, K R; Christiansen, L E; Hasman, H; Madsen, H

    2010-03-07

    Conjugation is an important mechanism involved in the transfer of resistance between bacteria. In this article a stochastic differential equation based model consisting of a continuous time state equation and a discrete time measurement equation is introduced to model growth and conjugation of two Enterococcus faecium strains in a rich exhaustible media. The model contains a new expression for a substrate dependent conjugation rate. A maximum likelihood based method is used to estimate the model parameters. Different models including different noise structure for the system and observations are compared using a likelihood-ratio test and Akaike's information criterion. Experiments indicating conjugation on the agar plates selecting for transconjugants motivates the introduction of an extended model, for which conjugation on the agar plate is described in the measurement equation. This model is compared to the model without plate conjugation. The modelling approach described in this article can be applied generally when modelling dynamical systems. 2009 Elsevier Ltd. All rights reserved.

  19. Partial differential equations mathematical techniques for engineers

    CERN Document Server

    Epstein, Marcelo

    2017-01-01

    This monograph presents a graduate-level treatment of partial differential equations (PDEs) for engineers. The book begins with a review of the geometrical interpretation of systems of ODEs, the appearance of PDEs in engineering is motivated by the general form of balance laws in continuum physics. Four chapters are devoted to a detailed treatment of the single first-order PDE, including shock waves and genuinely non-linear models, with applications to traffic design and gas dynamics. The rest of the book deals with second-order equations. In the treatment of hyperbolic equations, geometric arguments are used whenever possible and the analogy with discrete vibrating systems is emphasized. The diffusion and potential equations afford the opportunity of dealing with questions of uniqueness and continuous dependence on the data, the Fourier integral, generalized functions (distributions), Duhamel's principle, Green's functions and Dirichlet and Neumann problems. The target audience primarily comprises graduate s...

  20. Introduction to partial differential equations with applications

    CERN Document Server

    Zachmanoglou, E C

    1988-01-01

    This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.

  1. Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation

    Directory of Open Access Journals (Sweden)

    Hamidreza Rezazadeh

    2014-05-01

    Full Text Available In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.. So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreover, its asymptotic stability and statistical concepts like expectation and variance of solutions are discussed. Finally, the attained solutions of these S.D.E.s compared with exact solution of corresponding differential equations.

  2. Modelling the heat dynamics of a monitored Test Reference Environment for Building Integrated Photovoltaic systems using stochastic differential equations

    DEFF Research Database (Denmark)

    Lodi, C.; Bacher, Peder; Cipriano, J.

    2012-01-01

    and heat transfer coefficients is fundamental in order to improve the thermo-electrical production.The considered grey-box models are composed of a set of continuous time stochastic differential equations, holding the physical description of the system, combined with a set of discrete time measurement...... reduce the ventilation thermal losses of the building by pre-heating the fresh air. Furthermore, by decreasing PV module temperature, the ventilation air heat extraction can simultaneously increase electrical and thermal energy production of the building. A correct prediction of the PV module temperature...... equations, which represent the data driven part.In the present work, both one-state and two-state non-linear grey-box models are considered. In order to validate the results, the residuals are analysed for white-noise properties....

  3. PARALLEL SOLUTION METHODS OF PARTIAL DIFFERENTIAL EQUATIONS

    Directory of Open Access Journals (Sweden)

    Korhan KARABULUT

    1998-03-01

    Full Text Available Partial differential equations arise in almost all fields of science and engineering. Computer time spent in solving partial differential equations is much more than that of in any other problem class. For this reason, partial differential equations are suitable to be solved on parallel computers that offer great computation power. In this study, parallel solution to partial differential equations with Jacobi, Gauss-Siedel, SOR (Succesive OverRelaxation and SSOR (Symmetric SOR algorithms is studied.

  4. Approximations of Stochastic Partial Differential Equations

    OpenAIRE

    Di Nunno, Giulia; Zhang, Tusheng

    2014-01-01

    In this paper we show that solutions of stochastic partial differ- ential equations driven by Brownian motion can be approximated by stochastic partial differential equations forced by pure jump noise/random kicks. Applications to stochastic Burgers equations are discussed.

  5. Computational partial differential equations using Matlab

    CERN Document Server

    Li, Jichun

    2008-01-01

    Brief Overview of Partial Differential Equations The parabolic equations The wave equations The elliptic equations Differential equations in broader areasA quick review of numerical methods for PDEsFinite Difference Methods for Parabolic Equations Introduction Theoretical issues: stability, consistence, and convergence 1-D parabolic equations2-D and 3-D parabolic equationsNumerical examples with MATLAB codesFinite Difference Methods for Hyperbolic Equations IntroductionSome basic difference schemes Dissipation and dispersion errors Extensions to conservation lawsThe second-order hyperbolic PDE

  6. Modelling Evolutionary Algorithms with Stochastic Differential Equations.

    Science.gov (United States)

    Heredia, Jorge Pérez

    2017-11-20

    There has been renewed interest in modelling the behaviour of evolutionary algorithms (EAs) by more traditional mathematical objects, such as ordinary differential equations or Markov chains. The advantage is that the analysis becomes greatly facilitated due to the existence of well established methods. However, this typically comes at the cost of disregarding information about the process. Here, we introduce the use of stochastic differential equations (SDEs) for the study of EAs. SDEs can produce simple analytical results for the dynamics of stochastic processes, unlike Markov chains which can produce rigorous but unwieldy expressions about the dynamics. On the other hand, unlike ordinary differential equations (ODEs), they do not discard information about the stochasticity of the process. We show that these are especially suitable for the analysis of fixed budget scenarios and present analogues of the additive and multiplicative drift theorems from runtime analysis. In addition, we derive a new more general multiplicative drift theorem that also covers non-elitist EAs. This theorem simultaneously allows for positive and negative results, providing information on the algorithm's progress even when the problem cannot be optimised efficiently. Finally, we provide results for some well-known heuristics namely Random Walk (RW), Random Local Search (RLS), the (1+1) EA, the Metropolis Algorithm (MA), and the Strong Selection Weak Mutation (SSWM) algorithm.

  7. Sobolev gradients and differential equations

    CERN Document Server

    Neuberger, J W

    2010-01-01

    A Sobolev gradient of a real-valued functional on a Hilbert space is a gradient of that functional taken relative to an underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. For discrete versions of partial differential equations, corresponding Sobolev gradients are seen to be vastly more efficient than ordinary gradients. In fact, descent methods with these gradients generally scale linearly with the number of grid points, in sharp contrast with the use of ordinary gradients. Aside from the first edition of this work, this is the only known account of Sobolev gradients in book form. Most of the applications in this book have emerged since the first edition was published some twelve years ago. What remains of the first edition has been extensively revised. There are a number of plots of results from calculations and a sample MatLab code is included for a simple problem. Those working through a fair p...

  8. Partial differential equations of mathematical physics

    CERN Document Server

    Sobolev, S L

    1964-01-01

    Partial Differential Equations of Mathematical Physics emphasizes the study of second-order partial differential equations of mathematical physics, which is deemed as the foundation of investigations into waves, heat conduction, hydrodynamics, and other physical problems. The book discusses in detail a wide spectrum of topics related to partial differential equations, such as the theories of sets and of Lebesgue integration, integral equations, Green's function, and the proof of the Fourier method. Theoretical physicists, experimental physicists, mathematicians engaged in pure and applied math

  9. Stochastic integration and differential equations

    CERN Document Server

    Protter, Philip E

    2003-01-01

    It has been 15 years since the first edition of Stochastic Integration and Differential Equations, A New Approach appeared, and in those years many other texts on the same subject have been published, often with connections to applications, especially mathematical finance. Yet in spite of the apparent simplicity of approach, none of these books has used the functional analytic method of presenting semimartingales and stochastic integration. Thus a 2nd edition seems worthwhile and timely, though it is no longer appropriate to call it "a new approach". The new edition has several significant changes, most prominently the addition of exercises for solution. These are intended to supplement the text, but lemmas needed in a proof are never relegated to the exercises. Many of the exercises have been tested by graduate students at Purdue and Cornell Universities. Chapter 3 has been completely redone, with a new, more intuitive and simultaneously elementary proof of the fundamental Doob-Meyer decomposition theorem, t...

  10. Symmetries of nonlinear ordinary differential equations: The ...

    Indian Academy of Sciences (India)

    2015-10-21

    Oct 21, 2015 ... equation and showed that it admits sl(3, R) algebra and constructed a linearizing trans- formation from ... ers of ˙x to zero, one obtains a set of linear partial differential equations for the unknown functions ξ and η. ...... [11] N H Ibragimov, Elementary Lie group analysis and ordinary differential equations (John.

  11. Conversational eigenanalysis program for solving differential equations

    International Nuclear Information System (INIS)

    Killough, G.G.; Eckerman, K.F.

    1984-01-01

    Dynamic models that arise in health physics applications are often expressed in terms of systems of ordinary differential equations. In many cases, such as box models that describe material exchange among reservoirs, the differential equations are linear with constant coefficients, and the analysis can be reduced to the examination of solutions of initial-value problems for such systems. This paper describes a conversational code, DIFSOL, that permits the user to specify the coefficient matrix and an initial vector of the system; DIFSOL prints out closed-form solutions [i.e., expressed as linear combinations of terms of the form e/sup -at/, e/sup -at/cos bt, and e/sup -at/sin bt] and tables of the solution, its derivative, and its integral for any specified linear combination of state variables. The program logic permits menu-driven control. We have operated a FORTRAN IV version of the code on a DEC PDP-10 for several years. A translation into BASIC has proved practical on Radio Shack TRS-80 Model I and III personal computers for smaller systems of differential equations (< 12 state variables). The paper includes illustrations of the use of DIFSOL in studying metabolic models

  12. First-order partial differential equations

    CERN Document Server

    Rhee, Hyun-Ku; Amundson, Neal R

    2001-01-01

    This first volume of a highly regarded two-volume text is fully usable on its own. After going over some of the preliminaries, the authors discuss mathematical models that yield first-order partial differential equations; motivations, classifications, and some methods of solution; linear and semilinear equations; chromatographic equations with finite rate expressions; homogeneous and nonhomogeneous quasilinear equations; formation and propagation of shocks; conservation equations, weak solutions, and shock layers; nonlinear equations; and variational problems. Exercises appear at the end of mo

  13. Local p-Adic Differential Equations

    NARCIS (Netherlands)

    Put, Marius van der; Taelman, Lenny

    2006-01-01

    This paper studies divergence in solutions of p-adic linear local differential equations. Such divergence is related to the notion of p-adic Liouville numbers. Also, the influence of the divergence on the differential Galois groups of such differential equations is explored. A complete result is

  14. Fractional dynamic calculus and fractional dynamic equations on time scales

    CERN Document Server

    Georgiev, Svetlin G

    2018-01-01

    Pedagogically organized, this monograph introduces fractional calculus and fractional dynamic equations on time scales in relation to mathematical physics applications and problems. Beginning with the definitions of forward and backward jump operators, the book builds from Stefan Hilger’s basic theories on time scales and examines recent developments within the field of fractional calculus and fractional equations. Useful tools are provided for solving differential and integral equations as well as various problems involving special functions of mathematical physics and their extensions and generalizations in one and more variables. Much discussion is devoted to Riemann-Liouville fractional dynamic equations and Caputo fractional dynamic equations.  Intended for use in the field and designed for students without an extensive mathematical background, this book is suitable for graduate courses and researchers looking for an introduction to fractional dynamic calculus and equations on time scales. .

  15. FIFI 3: A digital computer code for the solution of sets of first order differential equations and the analysis of process plant dynamics

    International Nuclear Information System (INIS)

    Sumner, H.M.

    1965-11-01

    FIFI 3 is a FORTRAN Code embodying a technique for the analysis of process plant dynamics. As such, it is essentially a tool for the integration of sets of first order ordinary differential equations, either linear or non-linear; special provision is made for the inclusion of time-delayed variables in the mathematical model of the plant. The method of integration is new and is centred on a stable multistep predictor-corrector algorithm devised by the late Mr. F.G. Chapman, of the UKAEA, Winfrith. The theory on which the Code is based and detailed rules for using it are described in Parts I and II respectively. (author)

  16. Lectures on partial differential equations

    CERN Document Server

    Petrovsky, I G

    1992-01-01

    Graduate-level exposition by noted Russian mathematician offers rigorous, transparent, highly readable coverage of classification of equations, hyperbolic equations, elliptic equations and parabolic equations. Wealth of commentary and insight invaluable for deepening understanding of problems considered in text. Translated from the Russian by A. Shenitzer.

  17. Introduction to complex theory of differential equations

    CERN Document Server

    Savin, Anton

    2017-01-01

    This book discusses the complex theory of differential equations or more precisely, the theory of differential equations on complex-analytic manifolds. Although the theory of differential equations on real manifolds is well known – it is described in thousands of papers and its usefulness requires no comments or explanations – to date specialists on differential equations have not focused on the complex theory of partial differential equations. However, as well as being remarkably beautiful, this theory can be used to solve a number of problems in real theory, for instance, the Poincaré balayage problem and the mother body problem in geophysics. The monograph does not require readers to be familiar with advanced notions in complex analysis, differential equations, or topology. With its numerous examples and exercises, it appeals to advanced undergraduate and graduate students, and also to researchers wanting to familiarize themselves with the subject.

  18. Solutions manual to accompany Ordinary differential equations

    CERN Document Server

    Greenberg, Michael D

    2014-01-01

    Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory. Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology, the book anticipates potential difficulties in understanding the various solution steps

  19. Numerical methods for stochastic differential equations.

    Science.gov (United States)

    Wilkie, Joshua

    2004-01-01

    Stochastic differential equations (SDE's) play an important role in physics but existing numerical methods for solving such equations are of low accuracy and poor stability. A general strategy for developing accurate and efficient schemes for solving stochastic equations is outlined here. High-order numerical methods are developed for the integration of stochastic differential equations with strong solutions. We demonstrate the accuracy of the resulting integration schemes by computing the errors in approximate solutions for SDE's which have known exact solutions.

  20. Elliptic differential equations theory and numerical treatment

    CERN Document Server

    Hackbusch, Wolfgang

    2017-01-01

    This book simultaneously presents the theory and the numerical treatment of elliptic boundary value problems, since an understanding of the theory is necessary for the numerical analysis of the discretisation. It first discusses the Laplace equation and its finite difference discretisation before addressing the general linear differential equation of second order. The variational formulation together with the necessary background from functional analysis provides the basis for the Galerkin and finite-element methods, which are explored in detail. A more advanced chapter leads the reader to the theory of regularity. Individual chapters are devoted to singularly perturbed as well as to elliptic eigenvalue problems. The book also presents the Stokes problem and its discretisation as an example of a saddle-point problem taking into account its relevance to applications in fluid dynamics.

  1. Interactive differential equations modeling program

    International Nuclear Information System (INIS)

    Rust, B.W.; Mankin, J.B.

    1976-01-01

    Due to the recent emphasis on mathematical modeling, many ecologists are using mathematics and computers more than ever, and engineers, mathematicians and physical scientists are now included in ecological projects. However, the individual ecologist, with intuitive knowledge of the system, still requires the means to critically examine and adjust system models. An interactive program was developed with the primary goal of allowing an ecologist with minimal experience in either mathematics or computers to develop a system model. It has also been used successfully by systems ecologists, engineers, and mathematicians. This program was written in FORTRAN for the DEC PDP-10, a remote terminal system at Oak Ridge National Laboratory. However, with relatively minor modifications, it can be implemented on any remote terminal system with a FORTRAN IV compiler, or equivalent. This program may be used to simulate any phenomenon which can be described as a system of ordinary differential equations. The program allows the user to interactively change system parameters and/or initial conditions, to interactively select a set of variables to be plotted, and to model discontinuities in the state variables and/or their derivatives. One of the most useful features to the non-computer specialist is the ability to interactively address the system parameters by name and to interactively adjust their values between simulations. These and other features are described in greater detail

  2. Oscillation theory for second order dynamic equations

    CERN Document Server

    Agarwal, Ravi P; O''Regan, Donal

    2003-01-01

    The qualitative theory of dynamic equations is a rapidly developing area of research. In the last 50 years, the Oscillation Theory of ordinary, functional, neutral, partial and impulsive differential equations, and their discrete versions, has inspired many scholars. Hundreds of research papers have been published in every major mathematical journal. Many books deal exclusively with the oscillation of solutions of differential equations, but most of these books appeal only to researchers who already know the subject. In an effort to bring Oscillation Theory to a new and broader audience, the authors present a compact, but thorough, understanding of Oscillation Theory for second order differential equations. They include several examples throughout the text not only to illustrate the theory, but also to provide new direction.

  3. Partial differential equation methods for stochastic dynamic optimization: an application to wind power generation with energy storage.

    Science.gov (United States)

    Johnson, Paul; Howell, Sydney; Duck, Peter

    2017-08-13

    A mixed financial/physical partial differential equation (PDE) can optimize the joint earnings of a single wind power generator (WPG) and a generic energy storage device (ESD). Physically, the PDE includes constraints on the ESD's capacity, efficiency and maximum speeds of charge and discharge. There is a mean-reverting daily stochastic cycle for WPG power output. Physically, energy can only be produced or delivered at finite rates. All suppliers must commit hourly to a finite rate of delivery C , which is a continuous control variable that is changed hourly. Financially, we assume heavy 'system balancing' penalties in continuous time, for deviations of output rate from the commitment C Also, the electricity spot price follows a mean-reverting stochastic cycle with a strong evening peak, when system balancing penalties also peak. Hence the economic goal of the WPG plus ESD, at each decision point, is to maximize expected net present value (NPV) of all earnings (arbitrage) minus the NPV of all expected system balancing penalties, along all financially/physically feasible future paths through state space. Given the capital costs for the various combinations of the physical parameters, the design and operating rules for a WPG plus ESD in a finite market may be jointly optimizable.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  4. Simulation, optimal control and parametric sensitivity analysis of a molten carbonate fuel cell using a partial differential algebraic dynamic equation system; Simulation, Optimale Steuerung und Sensitivitaetsanalyse einer Schmelzkarbonat-Brennstoffzelle mithilfe eines partiellen differential-algebraischen dynamischen Gleichungssystems

    Energy Technology Data Exchange (ETDEWEB)

    Sternberg, K.

    2007-02-08

    Molten carbonate fuel cells (MCFCs) allow an efficient and environmentally friendly energy production by converting the chemical energy contained in the fuel gas in virtue of electro-chemical reactions. In order to predict the effect of the electro-chemical reactions and to control the dynamical behavior of the fuel cell a mathematical model has to be found. The molten carbonate fuel cell (MCFC) can indeed be described by a highly complex,large scale, semi-linear system of partial differential algebraic equations. This system includes a reaction-diffusion-equation of parabolic type, several reaction-transport-equations of hyperbolic type, several ordinary differential equations and finally a system of integro-differential algebraic equations which describes the nonlinear non-standard boundary conditions for the entire partial differential algebraic equation system (PDAE-system). The existence of an analytical or the computability of a numerical solution for this high-dimensional PDAE-system depends on the kind of the differential equations and their special characteristics. Apart from theoretical investigations, the real process has to be controlled, more precisely optimally controlled. Hence, on the basis of the PDAE-system an optimal control problem is set up, whose analytical and numerical solvability is closely linked to the solvability of the PDAE-system. Moreover the solution of that optimal control problem is made more difficult by inaccuracies in the underlying database, which does not supply sufficiently accurate values for the model parameters. Therefore the optimal control problem must also be investigated with respect to small disturbances of model parameters. The aim of this work is to analyze the relevant dynamic behavior of MCFCs and to develop concepts for their optimal process control. Therefore this work is concerned with the simulation, the optimal control and the sensitivity analysis of a mathematical model for MCDCs, which can be characterized

  5. Lie algebras and linear differential equations.

    Science.gov (United States)

    Brockett, R. W.; Rahimi, A.

    1972-01-01

    Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.

  6. Backward stochastic differential equations with Young drift

    OpenAIRE

    Diehl, Joscha; Zhang, Jianfeng

    2016-01-01

    We prove via a direct fixpoint argument the well-posedness of backward stochastic differential equations containing an additional drift driven by a path of finite $p$-variation with $p \\in [1,2)$. An application to the Feynman-Kac representation of semilinear rough partial differential equations is given.

  7. Stability for retarded functional differential equations

    Czech Academy of Sciences Publication Activity Database

    Federson, M.; Schwabik, Štefan

    2008-01-01

    Roč. 60, č. 1 (2008), s. 121-140 ISSN 0041-5995 R&D Projects: GA AV ČR IAA100190702 Institutional research plan: CEZ:AV0Z10190503 Keywords : retarded functional differential equation * generalized differential equation * stability Subject RIV: BA - General Mathematics

  8. Selected papers on analysis and differential equations

    CERN Document Server

    Society, American Mathematical

    2010-01-01

    This volume contains translations of papers that originally appeared in the Japanese journal Sūgaku. These papers range over a variety of topics in ordinary and partial differential equations, and in analysis. Many of them are survey papers presenting new results obtained in the last few years. This volume is suitable for graduate students and research mathematicians interested in analysis and differential equations.

  9. Statistical Methods for Stochastic Differential Equations

    CERN Document Server

    Kessler, Mathieu; Sorensen, Michael

    2012-01-01

    The seventh volume in the SemStat series, Statistical Methods for Stochastic Differential Equations presents current research trends and recent developments in statistical methods for stochastic differential equations. Written to be accessible to both new students and seasoned researchers, each self-contained chapter starts with introductions to the topic at hand and builds gradually towards discussing recent research. The book covers Wiener-driven equations as well as stochastic differential equations with jumps, including continuous-time ARMA processes and COGARCH processes. It presents a sp

  10. On implicit abstract neutral nonlinear differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, Eduardo, E-mail: lalohm@ffclrp.usp.br [Universidade de São Paulo, Departamento de Computação e Matemática, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (Brazil); O’Regan, Donal, E-mail: donal.oregan@nuigalway.ie [National University of Ireland, School of Mathematics, Statistics and Applied Mathematics (Ireland)

    2016-04-15

    In this paper we continue our developments in Hernández and O’Regan (J Funct Anal 261:3457–3481, 2011) on the existence of solutions for abstract neutral differential equations. In particular we extend the results in Hernández and O’Regan (J Funct Anal 261:3457–3481, 2011) for the case of implicit nonlinear neutral equations and we focus on applications to partial “nonlinear” neutral differential equations. Some applications involving partial neutral differential equations are presented.

  11. Stochastic differential equation model to Prendiville processes

    International Nuclear Information System (INIS)

    Granita; Bahar, Arifah

    2015-01-01

    The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution

  12. Stochastic differential equation model to Prendiville processes

    Energy Technology Data Exchange (ETDEWEB)

    Granita, E-mail: granitafc@gmail.com [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310, Johor Malaysia (Malaysia); Bahar, Arifah [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310, Johor Malaysia (Malaysia); UTM Center for Industrial & Applied Mathematics (UTM-CIAM) (Malaysia)

    2015-10-22

    The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution.

  13. Symposium on Differential Geometry and Differential Equations

    CERN Document Server

    Berger, Marcel; Bryant, Robert

    1987-01-01

    The DD6 Symposium was, like its predecessors DD1 to DD5 both a research symposium and a summer seminar and concentrated on differential geometry. This volume contains a selection of the invited papers and some additional contributions. They cover recent advances and principal trends in current research in differential geometry.

  14. From ordinary to partial differential equations

    CERN Document Server

    Esposito, Giampiero

    2017-01-01

    This book is addressed to mathematics and physics students who want to develop an interdisciplinary view of mathematics, from the age of Riemann, Poincaré and Darboux to basic tools of modern mathematics. It enables them to acquire the sensibility necessary for the formulation and solution of difficult problems, with an emphasis on concepts, rigour and creativity. It consists of eight self-contained parts: ordinary differential equations; linear elliptic equations; calculus of variations; linear and non-linear hyperbolic equations; parabolic equations; Fuchsian functions and non-linear equations; the functional equations of number theory; pseudo-differential operators and pseudo-differential equations. The author leads readers through the original papers and introduces new concepts, with a selection of topics and examples that are of high pedagogical value.

  15. On Some Functional-Differential Equation

    Directory of Open Access Journals (Sweden)

    N.P. Evlampiev

    2016-06-01

    Full Text Available The necessary and sufficient conditions for the existence and uniqueness of a solution of the problem for the functional-differential equation are established. The special case of this equation is the functional-differential equation deduced previously by us for the distribution density of light brightness in the interstellar space when there are some absorbing clouds distributed uniformly in the equatorial plane of the Galaxy and having different optical transparency.

  16. Quasi-gas dynamic equations

    CERN Document Server

    Elizarova, Tatiana G

    2009-01-01

    This book presents two interconnected mathematical models generalizing the Navier-Stokes system. The models, called the quasi-gas-dynamic and quasi-hydrodynamic equations, are then used as the basis of numerical methods solving gas- and fluid-dynamic problems.

  17. Almost periodic solutions of impulsive differential equations

    CERN Document Server

    Stamov, Gani T

    2012-01-01

    Impulsive differential equations are suitable for the mathematical simulation of evolutionary processes in which the parameters undergo relatively long periods of smooth variation followed by short-term rapid changes (that is, jumps) in their values. Processes of this type are often investigated in various fields of science and technology. The question of the existence and uniqueness of almost periodic solutions of differential equations is an age-old problem of great importance. The qualitative theory of impulsive differential equations is currently undergoing rapid development in relation to the investigation of various processes which are subject to impacts during their evolution, and many findings on the existence and uniqueness of almost periodic solutions of these equations are being made. This book systematically presents findings related to almost periodic solutions of impulsive differential equations and illustrates their potential applications.

  18. Partial Differential Equations Modeling and Numerical Simulation

    CERN Document Server

    Glowinski, Roland

    2008-01-01

    This book is dedicated to Olivier Pironneau. For more than 250 years partial differential equations have been clearly the most important tool available to mankind in order to understand a large variety of phenomena, natural at first and then those originating from human activity and technological development. Mechanics, physics and their engineering applications were the first to benefit from the impact of partial differential equations on modeling and design, but a little less than a century ago the Schrödinger equation was the key opening the door to the application of partial differential equations to quantum chemistry, for small atomic and molecular systems at first, but then for systems of fast growing complexity. Mathematical modeling methods based on partial differential equations form an important part of contemporary science and are widely used in engineering and scientific applications. In this book several experts in this field present their latest results and discuss trends in the numerical analy...

  19. Advances in nonlinear partial differential equations and stochastics

    CERN Document Server

    Kawashima, S

    1998-01-01

    In the past two decades, there has been great progress in the theory of nonlinear partial differential equations. This book describes the progress, focusing on interesting topics in gas dynamics, fluid dynamics, elastodynamics etc. It contains ten articles, each of which discusses a very recent result obtained by the author. Some of these articles review related results.

  20. Stochastic differential equations and a biological system

    DEFF Research Database (Denmark)

    Wang, Chunyan

    1994-01-01

    . The simulated results are compared with the experimental data, and it is found that the Euler method is the most simple end efficient method for the stochastic growth model considered. Estimation of the parameters of the growth model is based on the stochastic Kalman filter and a continuous Markov process......The purpose of this Ph.D. study is to explore the property of a growth process. The study includes solving and simulating of the growth process which is described in terms of stochastic differential equations. The identification of the growth and variability parameters of the process based...... been developed. Their properties and the relationship between them are discussed. The evolution of a dynamic system or process is usually of great practical interest. In order to simulate the evolution of the process, alternative methods are used to get numerical solutions. In this study, Euler...

  1. Dynamical Approach Study of Spurious Steady-State Numerical Solutions of Nonlinear Differential Equations. Part 2; Global Asymptotic Behavior of Time Discretizations

    Science.gov (United States)

    Yee, H. C.; Sweby, P. K.

    1995-01-01

    The global asymptotic nonlinear behavior of 11 explicit and implicit time discretizations for four 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed. The objectives are to gain a basic understanding of the difference in the dynamics of numerics between the scalars and systems of nonlinear autonomous ODEs and to set a baseline global asymptotic solution behavior of these schemes for practical computations in computational fluid dynamics. We show how 'numerical' basins of attraction can complement the bifurcation diagrams in gaining more detailed global asymptotic behavior of time discretizations for nonlinear differential equations (DEs). We show how in the presence of spurious asymptotes the basins of the true stable steady states can be segmented by the basins of the spurious stable and unstable asymptotes. One major consequence of this phenomenon which is not commonly known is that this spurious behavior can result in a dramatic distortion and, in most cases, a dramatic shrinkage and segmentation of the basin of attraction of the true solution for finite time steps. Such distortion, shrinkage and segmentation of the numerical basins of attraction will occur regardless of the stability of the spurious asymptotes, and will occur for unconditionally stable implicit linear multistep methods. In other words, for the same (common) steady-state solution the associated basin of attraction of the DE might be very different from the discretized counterparts and the numerical basin of attraction can be very different from numerical method to numerical method. The results can be used as an explanation for possible causes of error, and slow convergence and nonconvergence of steady-state numerical solutions when using the time-dependent approach for nonlinear hyperbolic or parabolic PDEs.

  2. Dynamical Approach Study of Spurious Steady-State Numerical Solutions of Nonlinear Differential Equations. 2; Global Asymptotic Behavior of Time Discretizations; 2. Global Asymptotic Behavior of time Discretizations

    Science.gov (United States)

    Yee, H. C.; Sweby, P. K.

    1995-01-01

    The global asymptotic nonlinear behavior of 1 1 explicit and implicit time discretizations for four 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODES) is analyzed. The objectives are to gain a basic understanding of the difference in the dynamics of numerics between the scalars and systems of nonlinear autonomous ODEs and to set a baseline global asymptotic solution behavior of these schemes for practical computations in computational fluid dynamics. We show how 'numerical' basins of attraction can complement the bifurcation diagrams in gaining more detailed global asymptotic behavior of time discretizations for nonlinear differential equations (DEs). We show how in the presence of spurious asymptotes the basins of the true stable steady states can be segmented by the basins of the spurious stable and unstable asymptotes. One major consequence of this phenomenon which is not commonly known is that this spurious behavior can result in a dramatic distortion and, in most cases, a dramatic shrinkage and segmentation of the basin of attraction of the true solution for finite time steps. Such distortion, shrinkage and segmentation of the numerical basins of attraction will occur regardless of the stability of the spurious asymptotes, and will occur for unconditionally stable implicit linear multistep methods. In other words, for the same (common) steady-state solution the associated basin of attraction of the DE might be very different from the discretized counterparts and the numerical basin of attraction can be very different from numerical method to numerical method. The results can be used as an explanation for possible causes of error, and slow convergence and nonconvergence of steady-state numerical solutions when using the time-dependent approach for nonlinear hyperbolic or parabolic PDES.

  3. Selected papers on analysis and differential equations

    CERN Document Server

    Nomizu, Katsumi

    2003-01-01

    This volume contains translations of papers that originally appeared in the Japanese journal, Sugaku. The papers range over a variety of topics, including nonlinear partial differential equations, C^*-algebras, and Schrödinger operators.

  4. A simple chaotic delay differential equation

    International Nuclear Information System (INIS)

    Sprott, J.C.

    2007-01-01

    The simplest chaotic delay differential equation with a sinusoidal nonlinearity is described, including the route to chaos, Lyapunov exponent spectrum, and chaotic diffusion. It is prototypical of many other high-dimensional chaotic systems

  5. An introduction to differential equations using MATLAB

    CERN Document Server

    Butt, Rizwan

    2016-01-01

    An Introduction to Differential Equations using MATLAB exploits the symbolic, numerical, and graphical capabilitiesof MATLAB to develop a thorough understanding of differential equations algorithms. This book provides the readerwith numerous applications, m-files, and practical examples to problems. Balancing theoretical concepts withcomputational speed and accuracy, the book includes numerous short programs in MATLAB that can be used to solveproblems involving first-and higher-order differential equations, Laplace transforms, linear systems of differentialequations, numerical solutions of differential equations, computer graphics, and more. The author emphasizes thebasic ideas of analytical and numerical techniques and the uses of modern mathematical software (MATLAB) ratherthan relying only on complex mathematical derivations to engineers, mathematician, computer scientists, andphysicists or for use as a textbook in applied or computational courses.A CD-ROM with all the figures, codes, solutions, appendices...

  6. Deterministic Brownian motion generated from differential delay equations.

    Science.gov (United States)

    Lei, Jinzhi; Mackey, Michael C

    2011-10-01

    This paper addresses the question of how Brownian-like motion can arise from the solution of a deterministic differential delay equation. To study this we analytically study the bifurcation properties of an apparently simple differential delay equation and then numerically investigate the probabilistic properties of chaotic solutions of the same equation. Our results show that solutions of the deterministic equation with randomly selected initial conditions display a Gaussian-like density for long time, but the densities are supported on an interval of finite measure. Using these chaotic solutions as velocities, we are able to produce Brownian-like motions, which show statistical properties akin to those of a classical Brownian motion over both short and long time scales. Several conjectures are formulated for the probabilistic properties of the solution of the differential delay equation. Numerical studies suggest that these conjectures could be "universal" for similar types of "chaotic" dynamics, but we have been unable to prove this.

  7. Weak self-adjoint differential equations

    International Nuclear Information System (INIS)

    Gandarias, M L

    2011-01-01

    The concepts of self-adjoint and quasi self-adjoint equations were introduced by Ibragimov (2006 J. Math. Anal. Appl. 318 742-57; 2007 Arch. ALGA 4 55-60). In Ibragimov (2007 J. Math. Anal. Appl. 333 311-28), a general theorem on conservation laws was proved. In this paper, we generalize the concept of self-adjoint and quasi self-adjoint equations by introducing the definition of weak self-adjoint equations. We find a class of weak self-adjoint quasi-linear parabolic equations. The property of a differential equation to be weak self-adjoint is important for constructing conservation laws associated with symmetries of the differential equation. (fast track communication)

  8. BERNULLI DIFFERENTIAL EQUATION AND CHAOS

    Directory of Open Access Journals (Sweden)

    V. Ye. Belozerov

    2013-03-01

    Full Text Available Existence conditions of homoclinic orbits for some systems of ordinary quadratic dif­ferential equations with singular linear part are founded. A realization of these conditions guarantees the existence of chaotic attractors at 3-D autonomous quadratic systems. In addition, a chaotic behavior of the solutions of these systems is determined by one-dimensional discrete map at some values of parameters. Examples are given.

  9. On Fractional Order Hybrid Differential Equations

    Directory of Open Access Journals (Sweden)

    Mohamed A. E. Herzallah

    2014-01-01

    Full Text Available We develop the theory of fractional hybrid differential equations with linear and nonlinear perturbations involving the Caputo fractional derivative of order 0<α<1. Using some fixed point theorems we prove the existence of mild solutions for two types of hybrid equations. Examples are given to illustrate the obtained results.

  10. Modeling animal movements using stochastic differential equations

    Science.gov (United States)

    Haiganoush K. Preisler; Alan A. Ager; Bruce K. Johnson; John G. Kie

    2004-01-01

    We describe the use of bivariate stochastic differential equations (SDE) for modeling movements of 216 radiocollared female Rocky Mountain elk at the Starkey Experimental Forest and Range in northeastern Oregon. Spatially and temporally explicit vector fields were estimated using approximating difference equations and nonparametric regression techniques. Estimated...

  11. Numerical solution of highly oscillatory ordinary differential equations

    Science.gov (United States)

    Petzold, Linda R.; Jay, Laurent O.; Yen, Jeng

    One of the most difficult problems in the numerical solution of ordinary differential equations (ODEs) and in differential-algebraic equations (DAEs) is the development of methods for dealing with highly oscillatory systems. These types of systems arise, for example, in vehicle simulation when modelling the suspension system or tyres, in models for contact and impact, in flexible body simulation from vibrations in the structural model, in molecular dynamics, in orbital mechanics, and in circuit simulation. Standard numerical methods can require a huge number of time-steps to track the oscillations, and even with small stepsizes they can alter the dynamics, unless the method is chosen very carefully.

  12. Differential Equations and Computational Simulations

    Science.gov (United States)

    1999-06-18

    given in (6),(7) in Taylor series of e. Equating coefficients of same power of e in both side of equity , we obtain a sequence of linear boundary value...fields, 3). structural instability and block stability of divergence-free vector fields on 2D compact manifolds with nonzero genus , and 4). structural...circle bands. Definition 3.1 Let N be a compact manifold without boundary and with genus k > 0. A closed domain fi C N is called a pseudo-manifold

  13. Existence theorems for ordinary differential equations

    CERN Document Server

    Murray, Francis J

    2007-01-01

    Theorems stating the existence of an object-such as the solution to a problem or equation-are known as existence theorems. This text examines fundamental and general existence theorems, along with the Picard iterants, and applies them to properties of solutions and linear differential equations.The authors assume a basic knowledge of real function theory, and for certain specialized results, of elementary functions of a complex variable. They do not consider the elementary methods for solving certain special differential equations, nor advanced specialized topics; within these restrictions, th

  14. Dynamics of a Definition: A Framework to Analyse Student Construction of the Concept of Solution to a Differential Equation

    Science.gov (United States)

    Raychaudhuri, Debasree

    2008-01-01

    In this note we develop a framework that makes explicit the inherent dynamic structure of certain mathematical definitions by means of the four facets of context-entity-process-object. These facets and their interrelations are then used to capture and interpret specific aspects of student constructions of the concept of solution to first order…

  15. Solution of differential equations by application of transformation groups

    Science.gov (United States)

    Driskell, C. N., Jr.; Gallaher, L. J.; Martin, R. H., Jr.

    1968-01-01

    Report applies transformation groups to the solution of systems of ordinary differential equations and partial differential equations. Lies theorem finds an integrating factor for appropriate invariance group or groups can be found and can be extended to partial differential equations.

  16. Particle Systems and Partial Differential Equations I

    CERN Document Server

    Gonçalves, Patricia

    2014-01-01

    This book presents the proceedings of the international conference Particle Systems and Partial Differential Equations I, which took place at the Centre of Mathematics of the University of Minho, Braga, Portugal, from the 5th to the 7th of December, 2012.  The purpose of the conference was to bring together world leaders to discuss their topics of expertise and to present some of their latest research developments in those fields. Among the participants were researchers in probability, partial differential equations and kinetics theory. The aim of the meeting was to present to a varied public the subject of interacting particle systems, its motivation from the viewpoint of physics and its relation with partial differential equations or kinetics theory, and to stimulate discussions and possibly new collaborations among researchers with different backgrounds.  The book contains lecture notes written by François Golse on the derivation of hydrodynamic equations (compressible and incompressible Euler and Navie...

  17. On new solutions of fuzzy differential equations

    International Nuclear Information System (INIS)

    Chalco-Cano, Y.; Roman-Flores, H.

    2008-01-01

    We study fuzzy differential equations (FDE) using the concept of generalized H-differentiability. This concept is based in the enlargement of the class of differentiable fuzzy mappings and, for this, we consider the lateral Hukuhara derivatives. We will see that both derivatives are different and they lead us to different solutions from a FDE. Also, some illustrative examples are given and some comparisons with other methods for solving FDE are made

  18. Modelling conjugation with stochastic differential equations

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber; Christiansen, Lasse Engbo; Hasman, Henrik

    2010-01-01

    using a likelihood-ratio test and Akaike's information criterion. Experiments indicating conjugation on the agar plates selecting for transconjugants motivates the introduction of an extended model, for which conjugation on the agar plate is described in the measurement equation. This model is compared......Conjugation is an important mechanism involved in the transfer of resistance between bacteria. In this article a stochastic differential equation based model consisting of a continuous time state equation and a discrete time measurement equation is introduced to model growth and conjugation of two...

  19. Numerical Methods for Partial Differential Equations

    CERN Document Server

    Guo, Ben-yu

    1987-01-01

    These Proceedings of the first Chinese Conference on Numerical Methods for Partial Differential Equations covers topics such as difference methods, finite element methods, spectral methods, splitting methods, parallel algorithm etc., their theoretical foundation and applications to engineering. Numerical methods both for boundary value problems of elliptic equations and for initial-boundary value problems of evolution equations, such as hyperbolic systems and parabolic equations, are involved. The 16 papers of this volume present recent or new unpublished results and provide a good overview of current research being done in this field in China.

  20. Parameter Estimation of Partial Differential Equation Models

    KAUST Repository

    Xun, Xiaolei

    2013-09-01

    Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown and need to be estimated from the measurements of the dynamic system in the presence of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from long-range infrared light detection and ranging data. Supplementary materials for this article are available online. © 2013 American Statistical Association.

  1. Dynamical systems theory for the Gardner equation

    Science.gov (United States)

    Saha, Aparna; Talukdar, B.; Chatterjee, Supriya

    2014-02-01

    The Gardner equation ut+auux+bu2ux+μuxxx=0 is a generic mathematical model for weakly nonlinear and weakly dispersive wave propagation when the effects of higher-order nonlinearity become significant. Using the so-called traveling wave ansatz u (x,t)=φ(ξ), ξ =x-vt (where v is the velocity of the wave) we convert the (1+1)-dimensional partial differential equation to a second-order ordinary differential equation in ϕ with an arbitrary constant and treat the latter equation by the methods of the dynamical systems theory. With some special attention on the equilibrium points of the equation, we derive an analytical constraint for admissible values of the parameters a, b, and μ. From the Hamiltonian form of the system we confirm that, in addition to the usual bright soliton solution, the equation can be used to generate three different varieties of internal waves of which one is a dark soliton recently observed in water [A. Chabchoub et al., Phys. Rev. Lett. 110, 124101 (2013), 10.1103/PhysRevLett.110.124101].

  2. Methods of mathematical modelling continuous systems and differential equations

    CERN Document Server

    Witelski, Thomas

    2015-01-01

    This book presents mathematical modelling and the integrated process of formulating sets of equations to describe real-world problems. It describes methods for obtaining solutions of challenging differential equations stemming from problems in areas such as chemical reactions, population dynamics, mechanical systems, and fluid mechanics. Chapters 1 to 4 cover essential topics in ordinary differential equations, transport equations and the calculus of variations that are important for formulating models. Chapters 5 to 11 then develop more advanced techniques including similarity solutions, matched asymptotic expansions, multiple scale analysis, long-wave models, and fast/slow dynamical systems. Methods of Mathematical Modelling will be useful for advanced undergraduate or beginning graduate students in applied mathematics, engineering and other applied sciences.

  3. Stochastic Differential Equations in Banach Spaces : Decoupling, Delay Equations, and Approximations in Space and Time

    NARCIS (Netherlands)

    Cox, S.G.

    2012-01-01

    The thesis deals with various aspects of the study of stochastic partial differential equations driven by Gaussian noise. The approach taken is functional analytic rather than probabilistic: the stochastic partial differential equation is interpreted as an ordinary stochastic differential equation

  4. Climate models with delay differential equations

    Science.gov (United States)

    Keane, Andrew; Krauskopf, Bernd; Postlethwaite, Claire M.

    2017-11-01

    A fundamental challenge in mathematical modelling is to find a model that embodies the essential underlying physics of a system, while at the same time being simple enough to allow for mathematical analysis. Delay differential equations (DDEs) can often assist in this goal because, in some cases, only the delayed effects of complex processes need to be described and not the processes themselves. This is true for some climate systems, whose dynamics are driven in part by delayed feedback loops associated with transport times of mass or energy from one location of the globe to another. The infinite-dimensional nature of DDEs allows them to be sufficiently complex to reproduce realistic dynamics accurately with a small number of variables and parameters. In this paper, we review how DDEs have been used to model climate systems at a conceptual level. Most studies of DDE climate models have focused on gaining insights into either the global energy balance or the fundamental workings of the El Niño Southern Oscillation (ENSO) system. For example, studies of DDEs have led to proposed mechanisms for the interannual oscillations in sea-surface temperature that is characteristic of ENSO, the irregular behaviour that makes ENSO difficult to forecast and the tendency of El Niño events to occur near Christmas. We also discuss the tools used to analyse such DDE models. In particular, the recent development of continuation software for DDEs makes it possible to explore large regions of parameter space in an efficient manner in order to provide a "global picture" of the possible dynamics. We also point out some directions for future research, including the incorporation of non-constant delays, which we believe could improve the descriptive power of DDE climate models.

  5. A first course in differential equations

    CERN Document Server

    Logan, J David

    2015-01-01

    The third edition of this concise, popular textbook on elementary differential equations gives instructors an alternative to the many voluminous texts on the market. It presents a thorough treatment of the standard topics in an accessible, easy-to-read, format. The overarching perspective of the text conveys that differential equations are about applications. This book illuminates the mathematical theory in the text with a wide variety of applications that will appeal to students in physics, engineering, the biosciences, economics and mathematics. Instructors are likely to find that the first four or five chapters are suitable for a first course in the subject. This edition contains a healthy increase over earlier editions in the number of worked examples and exercises, particularly those routine in nature. Two appendices include a review with practice problems, and a MATLAB® supplement that gives basic codes and commands for solving differential equations. MATLAB® is not required; students are encouraged t...

  6. Excitability in a stochastic differential equation model for calcium puffs.

    Science.gov (United States)

    Rüdiger, S

    2014-06-01

    Calcium dynamics are essential to a multitude of cellular processes. For many cell types, localized discharges of calcium through small clusters of intracellular channels are building blocks for all spatially extended calcium signals. Because of the large noise amplitude, the validity of noise-approximating model equations for this system has been questioned. Here we revisit the master equations for local calcium release, examine the multiple scales of calcium concentrations in the cluster domain, and derive adapted stochastic differential equations. We show by comparison of discrete and continuous trajectories that the Langevin equations can be made consistent with the master equations even for very small channel numbers. In its deterministic limit, the model reveals that excitability, a dynamical phenomenon observed in many natural systems, is at the core of calcium puffs. The model also predicts a bifurcation from transient to sustained release which may link local and global calcium signals in cells.

  7. Differential equations from the algebraic standpoint

    CERN Document Server

    Ritt, Joseph Fels

    1932-01-01

    This book can be viewed as a first attempt to systematically develop an algebraic theory of nonlinear differential equations, both ordinary and partial. The main goal of the author was to construct a theory of elimination, which "will reduce the existence problem for a finite or infinite system of algebraic differential equations to the application of the implicit function theorem taken with Cauchy's theorem in the ordinary case and Riquier's in the partial." In his 1934 review of the book, J. M. Thomas called it "concise, readable, original, precise, and stimulating", and his words still rema

  8. An introduction to stochastic differential equations

    CERN Document Server

    Evans, Lawrence C

    2014-01-01

    These notes provide a concise introduction to stochastic differential equations and their application to the study of financial markets and as a basis for modeling diverse physical phenomena. They are accessible to non-specialists and make a valuable addition to the collection of texts on the topic. -Srinivasa Varadhan, New York University This is a handy and very useful text for studying stochastic differential equations. There is enough mathematical detail so that the reader can benefit from this introduction with only a basic background in mathematical analysis and probability. -George Papa

  9. Diffusions, superdiffusions and partial differential equations

    CERN Document Server

    Dynkin, E B

    2002-01-01

    Interactions between the theory of partial differential equations of elliptic and parabolic types and the theory of stochastic processes are beneficial for both probability theory and analysis. At the beginning, mostly analytic results were used by probabilists. More recently, analysts (and physicists) took inspiration from the probabilistic approach. Of course, the development of analysis in general and of the theory of partial differential equations in particular, was motivated to a great extent by problems in physics. A difference between physics and probability is that the latter provides

  10. Generalized solutions of nonlinear partial differential equations

    CERN Document Server

    Rosinger, EE

    1987-01-01

    During the last few years, several fairly systematic nonlinear theories of generalized solutions of rather arbitrary nonlinear partial differential equations have emerged. The aim of this volume is to offer the reader a sufficiently detailed introduction to two of these recent nonlinear theories which have so far contributed most to the study of generalized solutions of nonlinear partial differential equations, bringing the reader to the level of ongoing research.The essence of the two nonlinear theories presented in this volume is the observation that much of the mathematics concernin

  11. Symmetric solutions of evolutionary partial differential equations

    Science.gov (United States)

    Bruell, Gabriele; Ehrnström, Mats; Geyer, Anna; Pei, Long

    2017-10-01

    We show that for a large class of evolutionary nonlinear and nonlocal partial differential equations, symmetry of solutions implies very restrictive properties of the solutions and symmetry axes. These restrictions are formulated in terms of three principles, based on the structure of the equations. The first principle covers equations that allow for steady solutions and shows that any spatially symmetric solution is in fact steady with a speed determined by the motion of the axis of symmetry at the initial time. The second principle includes equations that admit breathers and steady waves, and therefore is less strong: it holds that the axes of symmetry are constant in time. The last principle is a mixed case, when the equation contains terms of the kind from both earlier principles, and there may be different outcomes; for a class of such equations one obtains that a spatially symmetric solution must be constant in both time and space. We list and give examples of more than 30 well-known equations and systems in one and several dimensions satisfying these principles; corresponding results for weak formulations of these equations may be attained using the same techniques. Our investigation is a generalisation of a local and one-dimensional version of the first principle from Ehrnström et al (2009 Int. Math. Res. Not. 2009 4578-96) to nonlocal equations, systems and higher dimensions, as well as a study of the standing and mixed cases.

  12. Electrocardiogram classification using delay differential equations.

    Science.gov (United States)

    Lainscsek, Claudia; Sejnowski, Terrence J

    2013-06-01

    Time series analysis with nonlinear delay differential equations (DDEs) reveals nonlinear as well as spectral properties of the underlying dynamical system. Here, global DDE models were used to analyze 5 min data segments of electrocardiographic (ECG) recordings in order to capture distinguishing features for different heart conditions such as normal heart beat, congestive heart failure, and atrial fibrillation. The number of terms and delays in the model as well as the order of nonlinearity of the model have to be selected that are the most discriminative. The DDE model form that best separates the three classes of data was chosen by exhaustive search up to third order polynomials. Such an approach can provide deep insight into the nature of the data since linear terms of a DDE correspond to the main time-scales in the signal and the nonlinear terms in the DDE are related to nonlinear couplings between the harmonic signal parts. The DDEs were able to detect atrial fibrillation with an accuracy of 72%, congestive heart failure with an accuracy of 88%, and normal heart beat with an accuracy of 97% from 5 min of ECG, a much shorter time interval than required to achieve comparable performance with other methods.

  13. An Îto stochastic differential equations model for the dynamics of the MCF-7 breast cancer cell line treated by radiotherapy.

    Science.gov (United States)

    Oroji, Amin; Omar, Mohd; Yarahmadian, Shantia

    2016-10-21

    In this paper, a new mathematical model is proposed for studying the population dynamics of breast cancer cells treated by radiotherapy by using a system of stochastic differential equations. The novelty of the model is essentially in capturing the concept of the cell cycle in the modeling to be able to evaluate the tumor lifespan. According to the cell cycle, each cell belongs to one of three subpopulations G, S, or M, representing gap, synthesis and mitosis subpopulations. Cells in the M subpopulation are highly radio-sensitive, whereas cells in the S subpopulation are highly radio-resistant. Therefore, in the process of radiotherapy, cell death rates of different subpopulations are not equal. In addition, since flow cytometry is unable to detect apoptotic cells accurately, the small changes in cell death rate in each subpopulation during treatment are considered. Subsequently, the proposed model is calibrated using experimental data from previous experiments involving the MCF-7 breast cancer cell line. Consequently, the proposed model is able to predict tumor lifespan based on the number of initial carcinoma cells. The results show the effectiveness of the radiation under the condition of stability, which describes the decreasing trend of the tumor cells population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Lectures on the theory of group properties of differential equations

    CERN Document Server

    Ovsyannikov, LV

    2013-01-01

    These lecturers provide a clear introduction to Lie group methods for determining and using symmetries of differential equations, a variety of their applications in gas dynamics and other nonlinear models as well as the author's remarkable contribution to this classical subject. It contains material that is useful for students and teachers but cannot be found in modern texts. For example, the theory of partially invariant solutions developed by Ovsyannikov provides a powerful tool for solving systems of nonlinear differential equations and investigating complicated mathematical models. Readers

  15. Difference and differential equations with applications in queueing theory

    CERN Document Server

    Haghighi, Aliakbar Montazer

    2013-01-01

      A Useful Guide to the Interrelated Areas of Differential Equations, Difference Equations, and Queueing Models Difference and Differential Equations with Applications in Queueing Theory presents the unique connections between the methods and applications of differential equations, difference equations, and Markovian queues. Featuring a comprehensive collection of

  16. International Conference on Differential and Difference Equations with Applications

    CERN Document Server

    Došlá, Zuzana; Došlý, Ondrej; Kloeden, Peter

    2016-01-01

    Aimed at the community of mathematicians working on ordinary and partial differential equations, difference equations, and functional equations, this book contains selected papers based on the presentations at the International Conference on Differential and Difference Equations and Applications (ICDDEA) 2015, dedicated to the memory of Professor Georg Sell. Contributions include new trends in the field of differential and difference equations, applications of differential and difference equations, as well as high-level survey results. The main aim of this recurring conference series is to promote, encourage, cooperate, and bring together researchers in the fields of differential and difference equations. All areas of differential and difference equations are represented, with special emphasis on applications.

  17. A first course in differential equations, modeling, and simulation

    CERN Document Server

    Smith, Carlos A

    2011-01-01

    IntroductionAn Introductory ExampleModelingDifferential EquationsForcing FunctionsBook ObjectivesObjects in a Gravitational FieldAn Example Antidifferentiation: Technique for Solving First-Order Ordinary Differential EquationsBack to Section 2-1Another ExampleSeparation of Variables: Technique for Solving First-Order Ordinary Differential Equations Back to Section 2-5Equations, Unknowns, and Degrees of FreedomClassical Solutions of Ordinary Linear Differential EquationsExamples of Differential EquationsDefinition of a Linear Differential EquationIntegrating Factor MethodCharacteristic Equation

  18. Singular Linear Differential Equations in Two Variables

    NARCIS (Netherlands)

    Braaksma, B.L.J.; Put, M. van der

    2008-01-01

    The formal and analytic classification of integrable singular linear differential equations has been studied among others by R. Gerard and Y. Sibuya. We provide a simple proof of their main result, namely: For certain irregular systems in two variables there is no Stokes phenomenon, i.e. there is no

  19. Nonlinear elliptic differential equations with multivalued nonlinearities

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    Nonlinear elliptic differential equations with multivalued ... has a solution. Finally in the last part we consider an eigenvalue problem with a nonmonotone multivalued nonlinearity. Using the critical point theory for nonsmooth .... A is upper semicontinuous (as a set-valued map) from every finite dimensional subspace of X into ...

  20. Qualitative properties of functional differential equation

    Directory of Open Access Journals (Sweden)

    Diana Otrocol

    2014-10-01

    Full Text Available The aim of this paper is to discuss some basic problems (existence and uniqueness, data dependence of the fixed point theory for a functional differential equation with an abstract Volterra operator. In the end an application is given.

  1. Extremal solutions of measure differential equations

    Czech Academy of Sciences Publication Activity Database

    Monteiro, Giselle Antunes; Slavík, A.

    2016-01-01

    Roč. 444, č. 1 (2016), s. 568-597 ISSN 0022-247X Institutional support: RVO:67985840 Keywords : measure differential equations * extremal solution * lower solution Subject RIV: BA - General Mathematics Impact factor: 1.064, year: 2016 http://www.sciencedirect.com/science/article/pii/S0022247X16302724

  2. Path integral methods for stochastic differential equations.

    Science.gov (United States)

    Chow, Carson C; Buice, Michael A

    2015-01-01

    Stochastic differential equations (SDEs) have multiple applications in mathematical neuroscience and are notoriously difficult. Here, we give a self-contained pedagogical review of perturbative field theoretic and path integral methods to calculate moments of the probability density function of SDEs. The methods can be extended to high dimensional systems such as networks of coupled neurons and even deterministic systems with quenched disorder.

  3. Numerical approximation of partial differential equations

    CERN Document Server

    Bartels, Sören

    2016-01-01

    Finite element methods for approximating partial differential equations have reached a high degree of maturity, and are an indispensible tool in science and technology. This textbook aims at providing a thorough introduction to the construction, analysis, and implementation of finite element methods for model problems arising in continuum mechanics. The first part of the book discusses elementary properties of linear partial differential equations along with their basic numerical approximation, the functional-analytical framework for rigorously establishing existence of solutions, and the construction and analysis of basic finite element methods. The second part is devoted to the optimal adaptive approximation of singularities and the fast iterative solution of linear systems of equations arising from finite element discretizations. In the third part, the mathematical framework for analyzing and discretizing saddle-point problems is formulated, corresponding finte element methods are analyzed, and particular ...

  4. Ordinary differential equations principles and applications

    CERN Document Server

    Nandakumaran, A K; George, Raju K

    2017-01-01

    Written in a clear, logical and concise manner, this comprehensive resource allows students to quickly understand the key principles, techniques and applications of ordinary differential equations. Important topics including first and second order linear equations, initial value problems and qualitative theory are presented in separate chapters. The concepts of two point boundary value problems, physical models and first order partial differential equations are discussed in detail. The text uses tools of calculus and real analysis to get solutions in explicit form. While discussing first order linear systems, linear algebra techniques are used. The real-life applications are interspersed throughout the book to invoke reader's interest. The methods and tricks to solve numerous mathematical problems with sufficient derivations and explanation are provided. The proofs of theorems are explained for the benefit of the readers.

  5. Exact solutions to operator differential equations

    International Nuclear Information System (INIS)

    Bender, C.M.

    1992-01-01

    In this talk we consider the Heisenberg equations of motion q = -i(q, H), p = -i(p, H), for the quantum-mechanical Hamiltonian H(p, q) having one degree of freedom. It is a commonly held belief that such operator differential equations are intractable. However, a technique is presented here that allows one to obtain exact, closed-form solutions for huge classes of Hamiltonians. This technique, which is a generalization of the classical action-angle variable methods, allows us to solve, albeit formally and implicitly, the operator differential equations of two anharmonic oscillators whose Hamiltonians are H = p 2 /2 + q 4 /4 and H = p 4 /4 + q 4 /4

  6. Ordinary differential equations a graduate text

    CERN Document Server

    Bhamra, K S

    2015-01-01

    ORDINARY DIFFERENTIAL EQUATIONS: A Graduate Text presents a systematic and comprehensive introduction to ODEs for graduate and postgraduate students. The systematic organized text on differential inequalities, Gronwall's inequality, Nagumo's theorems, Osgood's criteria and applications of different equations of first order is dealt with in a greater depth. The book discusses qualitative and quantitative aspects of the Strum - Liouville problems, Green's function, integral equations, Laplace transform and is supported by a number of worked-out examples in each lesson to make the concepts clear. A lot of stress on stability theory is laid down, especially on Lyapunov and Poincare stability theory. A numerous figures in various lessons (in particular lessons dealing with stability theory) have been added to clarify the key concepts in DE theory. Nonlinear oscillation in conservative systems and Hamiltonian systems highlights basic nature of the systems considered. Perturbation techniques lesson deals in fairly d...

  7. Numerical solutions of integral and integro-differential equations using Legendre polynomials

    Science.gov (United States)

    Khater, A.; Shamardan, A.; Callebaut, D.; Sakran, M.

    2007-11-01

    In this paper, a finite Legendre expansion is developed to solve singularly perturbed integral equations, first order integro-differential equations of Volterra type arising in fluid dynamics and Volterra delay integro-differential equations. The error analysis is derived. Numerical results and comparisons with other methods in literature are considered.

  8. The example of modeling of logistics processes using differential equations

    Science.gov (United States)

    Ryczyński, Jacek

    2017-07-01

    The article describes the use of differential calculus to determine the form of differential equations family of curves. Form of differential equations obtained by eliminating the parameters of the equations describing the different family of curves. Elimination of the parameters has been performed several times by differentiation starting equations. Received appropriate form of differential equations for the case of family circles, family of curves of the second degree and the families of the logistic function.

  9. A textbook on ordinary differential equations

    CERN Document Server

    Ahmad, Shair

    2014-01-01

    The book is a primer of the theory of Ordinary Differential Equations. Each chapter is completed by a broad set of exercises; the reader will also find a set of solutions of selected exercises. The book contains many interesting examples as well (like the equations for the electric circuits, the pendium equation, the logistic equation, the Lotka-Volterra system, and many other) which introduce the reader to some interesting aspects of the theory and its applications. The work is mainly addressed to students of Mathematics, Physics, Engineering, Statistics, Computer Sciences, with  knowledge of Calculus and Linear Algebra, and contains more advanced topics for further developments, such as Laplace transform; Stability theory and existence of solutions to Boundary Value problems. The authors are preparing a complete solutions manual, containing solutions to all the exercises published in the book. The manual will be available Summer 2014. Instructors who wish to adopt the book may request the manual by writing...

  10. Differential equation analysis in biomedical science and engineering ordinary differential equation applications with R

    CERN Document Server

    Schiesser, William E

    2014-01-01

    Features a solid foundation of mathematical and computational tools to formulate and solve real-world ODE problems across various fields With a step-by-step approach to solving ordinary differential equations (ODEs), Differential Equation Analysis in Biomedical Science and Engineering: Ordinary Differential Equation Applications with R successfully applies computational techniques for solving real-worldODE problems that are found in a variety of fields, including chemistry, physics, biology,and physiology. The book provides readers with the necessary knowledge to reproduce andextend the comp

  11. Differential equation analysis in biomedical science and engineering partial differential equation applications with R

    CERN Document Server

    Schiesser, William E

    2014-01-01

    Features a solid foundation of mathematical and computational tools to formulate and solve real-world PDE problems across various fields With a step-by-step approach to solving partial differential equations (PDEs), Differential Equation Analysis in Biomedical Science and Engineering: Partial Differential Equation Applications with R successfully applies computational techniques for solving real-world PDE problems that are found in a variety of fields, including chemistry, physics, biology, and physiology. The book provides readers with the necessary knowledge to reproduce and extend the com

  12. High Weak Order Methods for Stochastic Differential Equations Based on Modified Equations

    KAUST Repository

    Abdulle, Assyr

    2012-01-01

    © 2012 Society for Industrial and Applied Mathematics. Inspired by recent advances in the theory of modified differential equations, we propose a new methodology for constructing numerical integrators with high weak order for the time integration of stochastic differential equations. This approach is illustrated with the constructions of new methods of weak order two, in particular, semi-implicit integrators well suited for stiff (meansquare stable) stochastic problems, and implicit integrators that exactly conserve all quadratic first integrals of a stochastic dynamical system. Numerical examples confirm the theoretical results and show the versatility of our methodology.

  13. Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations

    DEFF Research Database (Denmark)

    Tornøe, Christoffer Wenzel; Overgaard, Rune Viig; Agerso, H.

    2005-01-01

    of noise: a measurement and a system noise term. The measurement noise represents uncorrelated error due to, for example, assay error while the system noise accounts for structural misspecifications, approximations of the dynamical model, and true random physiological fluctuations. Since the system noise......Purpose. The objective of the present analysis was to explore the use of stochastic differential equations (SDEs) in population pharmacokinetic/pharmacodynamic (PK/PD) modeling. Methods. The intra-individual variability in nonlinear mixed-effects models based on SDEs is decomposed into two types...... accounts for model misspecifications, the SDEs provide a diagnostic tool for model appropriateness. The focus of the article is on the implementation of the Extended Kalman Filter (EKF) in NONMEM(R) for parameter estimation in SDE models. Results. Various applications of SDEs in population PK/PD modeling...

  14. Stochastic differential equations as a tool to regularize the parameter estimation problem for continuous time dynamical systems given discrete time measurements.

    Science.gov (United States)

    Leander, Jacob; Lundh, Torbjörn; Jirstrand, Mats

    2014-05-01

    In this paper we consider the problem of estimating parameters in ordinary differential equations given discrete time experimental data. The impact of going from an ordinary to a stochastic differential equation setting is investigated as a tool to overcome the problem of local minima in the objective function. Using two different models, it is demonstrated that by allowing noise in the underlying model itself, the objective functions to be minimized in the parameter estimation procedures are regularized in the sense that the number of local minima is reduced and better convergence is achieved. The advantage of using stochastic differential equations is that the actual states in the model are predicted from data and this will allow the prediction to stay close to data even when the parameters in the model is incorrect. The extended Kalman filter is used as a state estimator and sensitivity equations are provided to give an accurate calculation of the gradient of the objective function. The method is illustrated using in silico data from the FitzHugh-Nagumo model for excitable media and the Lotka-Volterra predator-prey system. The proposed method performs well on the models considered, and is able to regularize the objective function in both models. This leads to parameter estimation problems with fewer local minima which can be solved by efficient gradient-based methods. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. On the Inclusion of Difference Equation Problems and Z Transform Methods in Sophomore Differential Equation Classes

    Science.gov (United States)

    Savoye, Philippe

    2009-01-01

    In recent years, I started covering difference equations and z transform methods in my introductory differential equations course. This allowed my students to extend the "classical" methods for (ordinary differential equation) ODE's to discrete time problems arising in many applications.

  16. ERC Workshop on Geometric Partial Differential Equations

    CERN Document Server

    Novaga, Matteo; Valdinoci, Enrico

    2013-01-01

    This book is the outcome of a conference held at the Centro De Giorgi of the Scuola Normale of Pisa in September 2012. The aim of the conference was to discuss recent results on nonlinear partial differential equations, and more specifically geometric evolutions and reaction-diffusion equations. Particular attention was paid to self-similar solutions, such as solitons and travelling waves, asymptotic behaviour, formation of singularities and qualitative properties of solutions. These problems arise in many models from Physics, Biology, Image Processing and Applied Mathematics in general, and have attracted a lot of attention in recent years.

  17. An introduction to ordinary differential equations

    CERN Document Server

    Coddington, Earl A

    1989-01-01

    ""Written in an admirably cleancut and economical style."" - Mathematical Reviews. This concise text offers undergraduates in mathematics and science a thorough and systematic first course in elementary differential equations. Presuming a knowledge of basic calculus, the book first reviews the mathematical essentials required to master the materials to be presented. The next four chapters take up linear equations, those of the first order and those with constant coefficients, variable coefficients, and regular singular points. The last two chapters address the existence and uniqueness of solu

  18. Causal interpretation of stochastic differential equations

    DEFF Research Database (Denmark)

    Sokol, Alexander; Hansen, Niels Richard

    2014-01-01

    We give a causal interpretation of stochastic differential equations (SDEs) by defining the postintervention SDE resulting from an intervention in an SDE. We show that under Lipschitz conditions, the solution to the postintervention SDE is equal to a uniform limit in probability of postintervention...... structural equation models based on the Euler scheme of the original SDE, thus relating our definition to mainstream causal concepts. We prove that when the driving noise in the SDE is a Lévy process, the postintervention distribution is identifiable from the generator of the SDE....

  19. Bifurcation in autonomous and nonautonomous differential equations with discontinuities

    CERN Document Server

    Akhmet, Marat

    2017-01-01

    This book is devoted to bifurcation theory for autonomous and nonautonomous differential equations with discontinuities of different types. That is, those with jumps present either in the right-hand-side or in trajectories or in the arguments of solutions of equations. The results obtained in this book can be applied to various fields such as neural networks, brain dynamics, mechanical systems, weather phenomena, population dynamics, etc. Without any doubt, bifurcation theory should be further developed to different types of differential equations. In this sense, the present book will be a leading one in this field. The reader will benefit from the recent results of the theory and will learn in the very concrete way how to apply this theory to differential equations with various types of discontinuity. Moreover, the reader will learn new ways to analyze nonautonomous bifurcation scenarios in these equations. The book will be of a big interest both for beginners and experts in the field. For the former group o...

  20. Theory and applications of fractional differential equations

    CERN Document Server

    Kilbas, Anatoly A; Trujillo, Juan J; Van Mill, Jan

    2006-01-01

    This monograph provides the most recent and up-to-date developments on fractional differential and fractional integro-differential equations involving many different potentially useful operators of fractional calculus. The subject of fractional calculus and its applications (that is, calculus of integrals and derivatives of any arbitrary real or complex order) has gained considerable popularity and importance during the past three decades or so, due mainly to its demonstrated applications in numerous seemingly diverse and widespread fields of science and engineering. Some of the areas of prese

  1. Linear measure functional differential equations with infinite delay

    OpenAIRE

    Monteiro, G. (Giselle Antunes); Slavík, A.

    2014-01-01

    We use the theory of generalized linear ordinary differential equations in Banach spaces to study linear measure functional differential equations with infinite delay. We obtain new results concerning the existence, uniqueness, and continuous dependence of solutions. Even for equations with a finite delay, our results are stronger than the existing ones. Finally, we present an application to functional differential equations with impulses.

  2. Hamiltonian partial differential equations and applications

    CERN Document Server

    Nicholls, David; Sulem, Catherine

    2015-01-01

    This book is a unique selection of work by world-class experts exploring the latest developments in Hamiltonian partial differential equations and their applications. Topics covered within are representative of the field’s wide scope, including KAM and normal form theories, perturbation and variational methods, integrable systems, stability of nonlinear solutions as well as applications to cosmology, fluid mechanics and water waves. The volume contains both surveys and original research papers and gives a concise overview of the above topics, with results ranging from mathematical modeling to rigorous analysis and numerical simulation. It will be of particular interest to graduate students as well as researchers in mathematics and physics, who wish to learn more about the powerful and elegant analytical techniques for Hamiltonian partial differential equations.

  3. Ordinary differential equations and mechanical systems

    CERN Document Server

    Awrejcewicz, Jan

    2014-01-01

    This book applies a step-by-step treatment of the current state-of-the-art of ordinary differential equations used in modeling of engineering systems/processes and beyond. It covers systematically ordered problems, beginning with first and second order ODEs, linear and higher-order ODEs of polynomial form, theory and criteria of similarity, modeling approaches, phase plane and phase space concepts, stability optimization, and ending on chaos and synchronization. Presenting both an overview of the theory of the introductory differential equations in the context of applicability and a systematic treatment of modeling of numerous engineering and physical problems through linear and non-linear ODEs, the volume is self-contained, yet serves both scientific and engineering interests. The presentation relies on a general treatment, analytical and numerical methods, concrete examples, and engineering intuition. The scientific background used is well balanced between elementary and advanced level, making it as a uniqu...

  4. Parameter estimation in stochastic differential equations

    CERN Document Server

    Bishwal, Jaya P N

    2008-01-01

    Parameter estimation in stochastic differential equations and stochastic partial differential equations is the science, art and technology of modelling complex phenomena and making beautiful decisions. The subject has attracted researchers from several areas of mathematics and other related fields like economics and finance. This volume presents the estimation of the unknown parameters in the corresponding continuous models based on continuous and discrete observations and examines extensively maximum likelihood, minimum contrast and Bayesian methods. Useful because of the current availability of high frequency data is the study of refined asymptotic properties of several estimators when the observation time length is large and the observation time interval is small. Also space time white noise driven models, useful for spatial data, and more sophisticated non-Markovian and non-semimartingale models like fractional diffusions that model the long memory phenomena are examined in this volume.

  5. Fractional partial differential equations with boundary conditions

    Science.gov (United States)

    Baeumer, Boris; Kovács, Mihály; Sankaranarayanan, Harish

    2018-01-01

    We identify the stochastic processes associated with one-sided fractional partial differential equations on a bounded domain with various boundary conditions. This is essential for modelling using spatial fractional derivatives. We show well-posedness of the associated Cauchy problems in C0 (Ω) and L1 (Ω). In order to do so we develop a new method of embedding finite state Markov processes into Feller processes on bounded domains and then show convergence of the respective Feller processes. This also gives a numerical approximation of the solution. The proof of well-posedness closes a gap in many numerical algorithm articles approximating solutions to fractional differential equations that use the Lax-Richtmyer Equivalence Theorem to prove convergence without checking well-posedness.

  6. Evaluating methods for approximating stochastic differential equations.

    Science.gov (United States)

    Brown, Scott D; Ratcliff, Roger; Smith, Philip L

    2006-08-01

    Models of decision making and response time (RT) are often formulated using stochastic differential equations (SDEs). Researchers often investigate these models using a simple Monte Carlo method based on Euler's method for solving ordinary differential equations. The accuracy of Euler's method is investigated and compared to the performance of more complex simulation methods. The more complex methods for solving SDEs yielded no improvement in accuracy over the Euler method. However, the matrix method proposed by Diederich and Busemeyer (2003) yielded significant improvements. The accuracy of all methods depended critically on the size of the approximating time step. The large (∼10 ms) step sizes often used by psychological researchers resulted in large and systematic errors in evaluating RT distributions.

  7. An Interesting Class of Partial Differential Equations

    OpenAIRE

    Yong, Wen-an

    2007-01-01

    This paper presents an observation that under reasonable conditions, many partial differential equations from mathematical physics possess three structural properties. One of them can be understand as a variant of the celebrated Onsager reciprocal relation in Modern Thermodynamics. It displays a direct relation of irreversible processes to the entropy change. We show that the properties imply various entropy dissipation conditions for hyperbolic relaxation problems. As an application of the o...

  8. On weak solutions of stochastic differential equations

    Czech Academy of Sciences Publication Activity Database

    Hofmanová, Martina; Seidler, Jan

    2012-01-01

    Roč. 30, č. 1 (2012), s. 100-121 ISSN 0736-2994 R&D Projects: GA ČR GAP201/10/0752 Institutional research plan: CEZ:AV0Z10750506 Keywords : stochastic differential equations * weak solutions Subject RIV: BA - General Mathematics Impact factor: 0.303, year: 2012 http://library.utia.cas.cz/separaty/2012/SI/hofmanova-0373626.pdf

  9. Ambit processes and stochastic partial differential equations

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole; Benth, Fred Espen; Veraart, Almut

    Ambit processes are general stochastic processes based on stochastic integrals with respect to Lévy bases. Due to their flexible structure, they have great potential for providing realistic models for various applications such as in turbulence and finance. This papers studies the connection between...... ambit processes and solutions to stochastic partial differential equations. We investigate this relationship from two angles: from the Walsh theory of martingale measures and from the viewpoint of the Lévy noise analysis....

  10. Desingularization of implicit analytic differential equations

    International Nuclear Information System (INIS)

    Cendra, Hernan; Etchechoury, MarIa

    2006-01-01

    The question of finding solutions to a given implicit differential equation (IDE) is an important one, in part because it appears very naturally in several problems in physics, engineering and many other fields. In this work, we show how to reduce a given analytic IDE to an analytic IDE of locally constant rank. This can be done by using some fundamental results on subanalytic subsets and desingularization of closed subanalytic subsets. An example from nonholonomic mechanics is studied using these methods

  11. Desingularization of implicit analytic differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Cendra, Hernan [Universidad Nacional del Sur, Av. Alem 1253, 8000 BahIa Blanca and CONICET (Argentina); Etchechoury, MarIa [Laboratorio de Electronica Industrial, Control e Instrumentacion, Facultad de IngenierIa, Universidad Nacional de La Plata, La Plata (Argentina)

    2006-09-01

    The question of finding solutions to a given implicit differential equation (IDE) is an important one, in part because it appears very naturally in several problems in physics, engineering and many other fields. In this work, we show how to reduce a given analytic IDE to an analytic IDE of locally constant rank. This can be done by using some fundamental results on subanalytic subsets and desingularization of closed subanalytic subsets. An example from nonholonomic mechanics is studied using these methods.

  12. Ordinary differential equations introduction and qualitative theory

    CERN Document Server

    Cronin, Jane

    2007-01-01

    … a classic treatment of many of the topics an instructor would want in such a course, with particular emphasis on those aspects of the qualitative theory that are important for applications to mathematical biology. … A nice feature of this edition is an extended and unified treatment of the perturbation problem for periodic solutions. … a solid graduate-level introduction to ordinary differential equations, especially for applications. …-MAA Reviews, August 2010

  13. Stationary conditions for stochastic differential equations

    Science.gov (United States)

    Adomian, G.; Walker, W. W.

    1972-01-01

    This is a preliminary study of possible necessary and sufficient conditions to insure stationarity in the solution process for a stochastic differential equation. It indirectly sheds some light on ergodicity properties and shows that the spectral density is generally inadequate as a statistical measure of the solution. Further work is proceeding on a more general theory which gives necessary and sufficient conditions in a form useful for applications.

  14. On a representation of linear differential equations

    Czech Academy of Sciences Publication Activity Database

    Neuman, František

    2010-01-01

    Roč. 52, 1-2 (2010), s. 355-360 ISSN 0895-7177 Grant - others:GA ČR(CZ) GA201/08/0469 Institutional research plan: CEZ:AV0Z10190503 Keywords : Brandt and Ehresmann groupoinds * transformations * canonical forms * linear differential equations Subject RIV: BA - General Mathematics Impact factor: 1.066, year: 2010 http://www.sciencedirect.com/science/article/pii/S0895717710001184

  15. Partial Differential Equations and Solitary Waves Theory

    CERN Document Server

    Wazwaz, Abdul-Majid

    2009-01-01

    "Partial Differential Equations and Solitary Waves Theory" is a self-contained book divided into two parts: Part I is a coherent survey bringing together newly developed methods for solving PDEs. While some traditional techniques are presented, this part does not require thorough understanding of abstract theories or compact concepts. Well-selected worked examples and exercises shall guide the reader through the text. Part II provides an extensive exposition of the solitary waves theory. This part handles nonlinear evolution equations by methods such as Hirota’s bilinear method or the tanh-coth method. A self-contained treatment is presented to discuss complete integrability of a wide class of nonlinear equations. This part presents in an accessible manner a systematic presentation of solitons, multi-soliton solutions, kinks, peakons, cuspons, and compactons. While the whole book can be used as a text for advanced undergraduate and graduate students in applied mathematics, physics and engineering, Part II w...

  16. A textbook on ordinary differential equations

    CERN Document Server

    Ahmad, Shair

    2015-01-01

    This book offers readers a primer on the theory and applications of Ordinary Differential Equations. The style used is simple, yet thorough and rigorous. Each chapter ends with a broad set of exercises that range from the routine to the more challenging and thought-provoking. Solutions to selected exercises can be found at the end of the book. The book contains many interesting examples on topics such as electric circuits, the pendulum equation, the logistic equation, the Lotka-Volterra system, the Laplace Transform, etc., which introduce students to a number of interesting aspects of the theory and applications. The work is mainly intended for students of Mathematics, Physics, Engineering, Computer Science and other areas of the natural and social sciences that use ordinary differential equations, and who have a firm grasp of Calculus and a minimal understanding of the basic concepts used in Linear Algebra. It also studies a few more advanced topics, such as Stability Theory and Boundary Value Problems, whic...

  17. Synchronization with propagation - The functional differential equations

    Science.gov (United States)

    Rǎsvan, Vladimir

    2016-06-01

    The structure represented by one or several oscillators couple to a one-dimensional transmission environment (e.g. a vibrating string in the mechanical case or a lossless transmission line in the electrical case) turned to be attractive for the research in the field of complex structures and/or complex behavior. This is due to the fact that such a structure represents some generalization of various interconnection modes with lumped parameters for the oscillators. On the other hand the lossless and distortionless propagation along transmission lines has generated several research in electrical, thermal, hydro and control engineering leading to the association of some functional differential equations to the basic initial boundary value problems. The present research is performed at the crossroad of the aforementioned directions. We shall associate to the starting models some functional differential equations - in most cases of neutral type - and make use of the general theorems for existence and stability of forced oscillations for functional differential equations. The challenges introduced by the analyzed problems for the general theory are emphasized, together with the implication of the results for various applications.

  18. Dichotomies for generalized ordinary differential equations and applications

    Science.gov (United States)

    Bonotto, E. M.; Federson, M.; Santos, F. L.

    2018-03-01

    In this work we establish the theory of dichotomies for generalized ordinary differential equations, introducing the concepts of dichotomies for these equations, investigating their properties and proposing new results. We establish conditions for the existence of exponential dichotomies and bounded solutions. Using the correspondences between generalized ordinary differential equations and other equations, we translate our results to measure differential equations and impulsive differential equations. The fact that we work in the framework of generalized ordinary differential equations allows us to manage functions with many discontinuities and of unbounded variation.

  19. Network Reconstruction From High-Dimensional Ordinary Differential Equations.

    Science.gov (United States)

    Chen, Shizhe; Shojaie, Ali; Witten, Daniela M

    2017-01-01

    We consider the task of learning a dynamical system from high-dimensional time-course data. For instance, we might wish to estimate a gene regulatory network from gene expression data measured at discrete time points. We model the dynamical system nonparametrically as a system of additive ordinary differential equations. Most existing methods for parameter estimation in ordinary differential equations estimate the derivatives from noisy observations. This is known to be challenging and inefficient. We propose a novel approach that does not involve derivative estimation. We show that the proposed method can consistently recover the true network structure even in high dimensions, and we demonstrate empirical improvement over competing approaches. Supplementary materials for this article are available online.

  20. A stochastic differential equation model for transcriptional regulatory networks

    Directory of Open Access Journals (Sweden)

    Quirk Michelle D

    2007-05-01

    Full Text Available Abstract Background This work explores the quantitative characteristics of the local transcriptional regulatory network based on the availability of time dependent gene expression data sets. The dynamics of the gene expression level are fitted via a stochastic differential equation model, yielding a set of specific regulators and their contribution. Results We show that a beta sigmoid function that keeps track of temporal parameters is a novel prototype of a regulatory function, with the effect of improving the performance of the profile prediction. The stochastic differential equation model follows well the dynamic of the gene expression levels. Conclusion When adapted to biological hypotheses and combined with a promoter analysis, the method proposed here leads to improved models of the transcriptional regulatory networks.

  1. Network Reconstruction From High-Dimensional Ordinary Differential Equations

    Science.gov (United States)

    Chen, Shizhe; Shojaie, Ali; Witten, Daniela M.

    2018-01-01

    We consider the task of learning a dynamical system from high-dimensional time-course data. For instance, we might wish to estimate a gene regulatory network from gene expression data measured at discrete time points. We model the dynamical system nonparametrically as a system of additive ordinary differential equations. Most existing methods for parameter estimation in ordinary differential equations estimate the derivatives from noisy observations. This is known to be challenging and inefficient. We propose a novel approach that does not involve derivative estimation. We show that the proposed method can consistently recover the true network structure even in high dimensions, and we demonstrate empirical improvement over competing approaches. Supplementary materials for this article are available online. PMID:29618851

  2. Random ordinary differential equations and their numerical solution

    CERN Document Server

    Han, Xiaoying

    2017-01-01

    This book is intended to make recent results on the derivation of higher order numerical schemes for random ordinary differential equations (RODEs) available to a broader readership, and to familiarize readers with RODEs themselves as well as the closely associated theory of random dynamical systems. In addition, it demonstrates how RODEs are being used in the biological sciences, where non-Gaussian and bounded noise are often more realistic than the Gaussian white noise in stochastic differential equations (SODEs).   RODEs are used in many important applications and play a fundamental role in the theory of random dynamical systems.  They can be analyzed pathwise with deterministic calculus, but require further treatment beyond that of classical ODE theory due to the lack of smoothness in their time variable. Although classical numerical schemes for ODEs can be used pathwise for RODEs, they rarely attain their traditional order since the solutions of RODEs do not have sufficient smoothness to have Taylor ...

  3. Symposium on Nonlinear Semigroups, Partial Differential Equations and Attractors

    CERN Document Server

    Zachary, Woodford

    1987-01-01

    The original idea of the organizers of the Washington Symposium was to span a fairly narrow range of topics on some recent techniques developed for the investigation of nonlinear partial differential equations and discuss these in a forum of experts. It soon became clear, however, that the dynamical systems approach interfaced significantly with many important branches of applied mathematics. As a consequence, the scope of this resulting proceedings volume is an enlarged one with coverage of a wider range of research topics.

  4. Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations.

    Science.gov (United States)

    Tornøe, Christoffer W; Overgaard, Rune V; Agersø, Henrik; Nielsen, Henrik A; Madsen, Henrik; Jonsson, E Niclas

    2005-08-01

    The objective of the present analysis was to explore the use of stochastic differential equations (SDEs) in population pharmacokinetic/pharmacodynamic (PK/PD) modeling. The intra-individual variability in nonlinear mixed-effects models based on SDEs is decomposed into two types of noise: a measurement and a system noise term. The measurement noise represents uncorrelated error due to, for example, assay error while the system noise accounts for structural misspecifications, approximations of the dynamical model, and true random physiological fluctuations. Since the system noise accounts for model misspecifications, the SDEs provide a diagnostic tool for model appropriateness. The focus of the article is on the implementation of the Extended Kalman Filter (EKF) in NONMEM for parameter estimation in SDE models. Various applications of SDEs in population PK/PD modeling are illustrated through a systematic model development example using clinical PK data of the gonadotropin releasing hormone (GnRH) antagonist degarelix. The dynamic noise estimates were used to track variations in model parameters and systematically build an absorption model for subcutaneously administered degarelix. The EKF-based algorithm was successfully implemented in NONMEM for parameter estimation in population PK/PD models described by systems of SDEs. The example indicated that it was possible to pinpoint structural model deficiencies, and that valuable information may be obtained by tracking unexplained variations in parameters.

  5. State-dependent neutral delay equations from population dynamics.

    Science.gov (United States)

    Barbarossa, M V; Hadeler, K P; Kuttler, C

    2014-10-01

    A novel class of state-dependent delay equations is derived from the balance laws of age-structured population dynamics, assuming that birth rates and death rates, as functions of age, are piece-wise constant and that the length of the juvenile phase depends on the total adult population size. The resulting class of equations includes also neutral delay equations. All these equations are very different from the standard delay equations with state-dependent delay since the balance laws require non-linear correction factors. These equations can be written as systems for two variables consisting of an ordinary differential equation (ODE) and a generalized shift, a form suitable for numerical calculations. It is shown that the neutral equation (and the corresponding ODE--shift system) is a limiting case of a system of two standard delay equations.

  6. Numerical analysis of systems of ordinary and stochastic differential equations

    CERN Document Server

    Artemiev, S S

    1997-01-01

    This text deals with numerical analysis of systems of both ordinary and stochastic differential equations. It covers numerical solution problems of the Cauchy problem for stiff ordinary differential equations (ODE) systems by Rosenbrock-type methods (RTMs).

  7. Oscillation criteria for third order delay nonlinear differential equations

    Directory of Open Access Journals (Sweden)

    E. M. Elabbasy

    2012-01-01

    via comparison with some first differential equations whose oscillatory characters are known. Our results generalize and improve some known results for oscillation of third order nonlinear differential equations. Some examples are given to illustrate the main results.

  8. Partial differential equations in several complex variables

    CERN Document Server

    Chen, So-Chin

    2001-01-01

    This book is intended both as an introductory text and as a reference book for those interested in studying several complex variables in the context of partial differential equations. In the last few decades, significant progress has been made in the fields of Cauchy-Riemann and tangential Cauchy-Riemann operators. This book gives an up-to-date account of the theories for these equations and their applications. The background material in several complex variables is developed in the first three chapters, leading to the Levi problem. The next three chapters are devoted to the solvability and regularity of the Cauchy-Riemann equations using Hilbert space techniques. The authors provide a systematic study of the Cauchy-Riemann equations and the \\bar\\partial-Neumann problem, including L^2 existence theorems on pseudoconvex domains, \\frac 12-subelliptic estimates for the \\bar\\partial-Neumann problems on strongly pseudoconvex domains, global regularity of \\bar\\partial on more general pseudoconvex domains, boundary ...

  9. Differential equations, associators, and recurrences for amplitudes

    Directory of Open Access Journals (Sweden)

    Georg Puhlfürst

    2016-01-01

    Full Text Available We provide new methods to straightforwardly obtain compact and analytic expressions for ϵ-expansions of functions appearing in both field and string theory amplitudes. An algebraic method is presented to explicitly solve for recurrence relations connecting different ϵ-orders of a power series solution in ϵ of a differential equation. This strategy generalizes the usual iteration by Picard's method. Our tools are demonstrated for generalized hypergeometric functions. Furthermore, we match the ϵ-expansion of specific generalized hypergeometric functions with the underlying Drinfeld associator with proper Lie algebra and monodromy representations. We also apply our tools for computing ϵ-expansions for solutions to generic first-order Fuchsian equations (Schlesinger system. Finally, we set up our methods to systematically get compact and explicit α′-expansions of tree-level superstring amplitudes to any order in α′.

  10. Partial differential equations with numerical methods

    CERN Document Server

    Larsson, Stig

    2003-01-01

    The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering. The main theme is the integration of the theory of linear PDEs and the numerical solution of such equations. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. As preparation, the two-point boundary value problem and the initial-value problem for ODEs are discussed in separate chapters. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. Some background on linear functional analysis and Sobolev spaces, and also on numerical linear algebra, is reviewed in two appendices.

  11. Functional differential equations with infinite delay

    CERN Document Server

    Hino, Yoshiyuki; Naito, Toshiki

    1991-01-01

    In the theory of functional differential equations with infinite delay, there are several ways to choose the space of initial functions (phase space); and diverse (duplicated) theories arise, according to the choice of phase space. To unify the theories, an axiomatic approach has been taken since the 1960's. This book is intended as a guide for the axiomatic approach to the theory of equations with infinite delay and a culmination of the results obtained in this way. It can also be used as a textbook for a graduate course. The prerequisite knowledge is foundations of analysis including linear algebra and functional analysis. It is hoped that the book will prepare students for further study of this area, and that will serve as a ready reference to the researchers in applied analysis and engineering sciences.

  12. Lectures on differential equations for Feynman integrals

    International Nuclear Information System (INIS)

    Henn, Johannes M

    2015-01-01

    Over the last year significant progress was made in the understanding of the computation of Feynman integrals using differential equations (DE). These lectures give a review of these developments, while not assuming any prior knowledge of the subject. After an introduction to DE for Feynman integrals, we point out how they can be simplified using algorithms available in the mathematical literature. We discuss how this is related to a recent conjecture for a canonical form of the equations. We also discuss a complementary approach that is based on properties of the space–time loop integrands, and explain how the ideas of leading singularities and d-log representations can be used to find an optimal basis for the DE. Finally, as an application of these ideas we show how single-scale integrals can be bootstrapped using the Drinfeld associator of a DE. (topical review)

  13. Stochastic differential equations and diffusion processes

    CERN Document Server

    Ikeda, N

    1989-01-01

    Being a systematic treatment of the modern theory of stochastic integrals and stochastic differential equations, the theory is developed within the martingale framework, which was developed by J.L. Doob and which plays an indispensable role in the modern theory of stochastic analysis.A considerable number of corrections and improvements have been made for the second edition of this classic work. In particular, major and substantial changes are in Chapter III and Chapter V where the sections treating excursions of Brownian Motion and the Malliavin Calculus have been expanded and refined. Sectio

  14. Partial differential equation models in macroeconomics.

    Science.gov (United States)

    Achdou, Yves; Buera, Francisco J; Lasry, Jean-Michel; Lions, Pierre-Louis; Moll, Benjamin

    2014-11-13

    The purpose of this article is to get mathematicians interested in studying a number of partial differential equations (PDEs) that naturally arise in macroeconomics. These PDEs come from models designed to study some of the most important questions in economics. At the same time, they are highly interesting for mathematicians because their structure is often quite difficult. We present a number of examples of such PDEs, discuss what is known about their properties, and list some open questions for future research. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  15. Nonlinear partial differential equations and their applications

    CERN Document Server

    Lions, Jacques Louis

    2002-01-01

    This book contains the written versions of lectures delivered since 1997 in the well-known weekly seminar on Applied Mathematics at the Collège de France in Paris, directed by Jacques-Louis Lions. It is the 14th and last of the series, due to the recent and untimely death of Professor Lions. The texts in this volume deal mostly with various aspects of the theory of nonlinear partial differential equations. They present both theoretical and applied results in many fields of growing importance such as Calculus of variations and optimal control, optimization, system theory and control, op

  16. Double Hopf bifurcation in delay differential equations

    Directory of Open Access Journals (Sweden)

    Redouane Qesmi

    2014-07-01

    Full Text Available The paper addresses the computation of elements of double Hopf bifurcation for retarded functional differential equations (FDEs with parameters. We present an efficient method for computing, simultaneously, the coefficients of center manifolds and normal forms, in terms of the original FDEs, associated with the double Hopf singularity up to an arbitrary order. Finally, we apply our results to a nonlinear model with periodic delay. This shows the applicability of the methodology in the study of delay models arising in either natural or technological problems.

  17. Spectral difference methods for solving differential equations

    Science.gov (United States)

    Mazziotti, David A.

    1999-01-01

    A family of recently developed techniques is explored for achieving both matrix sparsity and rapid convergence when numerically solving differential and eigenvalue equations without domain decomposition. These methods, which we call spectral differences, include Boyd's sum acceleration techniques and the Lagrange distributed approximating functional (LDAF) approach. A formula is developed for estimating the unknown Gaussian parameter within LDAF. We implement these methods to calculate the Morse vibrational energies for diatomic iodine. For equivalent bandwidths the sum acceleration with finite difference weights generates energies which are between two and three orders of magnitude more accurate than those from LDAF.

  18. Multivalued stochastic delay differential equations and related ...

    African Journals Online (AJOL)

    We study the existence and uniqueness of a solution for the multivalued stochastic differential equation with delay (the multivalued term is of subdifferential type):. dX(t) + aφ (X(t))dt ∍ b(t,X(t), Y(t), Z(t)) dt. ⎨ +σ (t, X (t), Y (t), Z (t)) dW (t), t ∈ (s, T). X(t) = ξ (t - s), t ∈ [s - δ, s]. Specify that in this case the coefficients at time t ...

  19. Boundary value problems and partial differential equations

    CERN Document Server

    Powers, David L

    2005-01-01

    Boundary Value Problems is the leading text on boundary value problems and Fourier series. The author, David Powers, (Clarkson) has written a thorough, theoretical overview of solving boundary value problems involving partial differential equations by the methods of separation of variables. Professors and students agree that the author is a master at creating linear problems that adroitly illustrate the techniques of separation of variables used to solve science and engineering.* CD with animations and graphics of solutions, additional exercises and chapter review questions* Nearly 900 exercises ranging in difficulty* Many fully worked examples

  20. Solving Differential Equations in R: Package deSolve

    NARCIS (Netherlands)

    Soetaert, K.E.R.; Petzoldt, T.; Setzer, R.W.

    2010-01-01

    In this paper we present the R package deSolve to solve initial value problems (IVP) written as ordinary differential equations (ODE), differential algebraic equations (DAE) of index 0 or 1 and partial differential equations (PDE), the latter solved using the method of lines approach. The

  1. Stability theory for dynamic equations on time scales

    CERN Document Server

    Martynyuk, Anatoly A

    2016-01-01

    This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems. In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Ma...

  2. Ordinary differential equations introduction to the theory of ordinary differential equations in the real domain

    CERN Document Server

    Kurzweil, J

    1986-01-01

    The author, Professor Kurzweil, is one of the world's top experts in the area of ordinary differential equations - a fact fully reflected in this book. Unlike many classical texts which concentrate primarily on methods of integration of differential equations, this book pursues a modern approach: the topic is discussed in full generality which, at the same time, permits us to gain a deep insight into the theory and to develop a fruitful intuition. The basic framework of the theory is expanded by considering further important topics like stability, dependence of a solution on a parameter, Car

  3. Local bifurcations in differential equations with state-dependent delay

    Science.gov (United States)

    Sieber, Jan

    2017-11-01

    A common task when analysing dynamical systems is the determination of normal forms near local bifurcations of equilibria. As most of these normal forms have been classified and analysed, finding which particular class of normal form one encounters in a numerical bifurcation study guides follow-up computations. This paper builds on normal form algorithms for equilibria of delay differential equations with constant delay that were developed and implemented in DDE-Biftool recently. We show how one can extend these methods to delay-differential equations with state-dependent delay (sd-DDEs). Since higher degrees of regularity of local center manifolds are still open for sd-DDEs, we give an independent (still only partial) argument which phenomena from the truncated normal must persist in the full sd-DDE. In particular, we show that all invariant manifolds with a sufficient degree of normal hyperbolicity predicted by the normal form exist also in the full sd-DDE.

  4. Alternans promotion in cardiac electrophysiology models by delay differential equations

    Science.gov (United States)

    Gomes, Johnny M.; dos Santos, Rodrigo Weber; Cherry, Elizabeth M.

    2017-09-01

    Cardiac electrical alternans is a state of alternation between long and short action potentials and is frequently associated with harmful cardiac conditions. Different dynamic mechanisms can give rise to alternans; however, many cardiac models based on ordinary differential equations are not able to reproduce this phenomenon. A previous study showed that alternans can be induced by the introduction of delay differential equations (DDEs) in the formulations of the ion channel gating variables of a canine myocyte model. The present work demonstrates that this technique is not model-specific by successfully promoting alternans using DDEs for five cardiac electrophysiology models that describe different types of myocytes, with varying degrees of complexity. By analyzing results across the different models, we observe two potential requirements for alternans promotion via DDEs for ionic gates: (i) the gate must have a significant influence on the action potential duration and (ii) a delay must significantly impair the gate's recovery between consecutive action potentials.

  5. Alternans promotion in cardiac electrophysiology models by delay differential equations.

    Science.gov (United States)

    Gomes, Johnny M; Dos Santos, Rodrigo Weber; Cherry, Elizabeth M

    2017-09-01

    Cardiac electrical alternans is a state of alternation between long and short action potentials and is frequently associated with harmful cardiac conditions. Different dynamic mechanisms can give rise to alternans; however, many cardiac models based on ordinary differential equations are not able to reproduce this phenomenon. A previous study showed that alternans can be induced by the introduction of delay differential equations (DDEs) in the formulations of the ion channel gating variables of a canine myocyte model. The present work demonstrates that this technique is not model-specific by successfully promoting alternans using DDEs for five cardiac electrophysiology models that describe different types of myocytes, with varying degrees of complexity. By analyzing results across the different models, we observe two potential requirements for alternans promotion via DDEs for ionic gates: (i) the gate must have a significant influence on the action potential duration and (ii) a delay must significantly impair the gate's recovery between consecutive action potentials.

  6. Singular multiparameter dynamic equations with distributional ...

    African Journals Online (AJOL)

    In this paper, we consider both singular single and several multiparameter second order dynamic equations with distributional potentials on semi-innite time scales. At rst we construct Weyl's theory for the single singular multiparameter dynamic equation with distributional potentials and we prove that the forward jump of at ...

  7. Schwarz maps of algebraic linear ordinary differential equations

    Science.gov (United States)

    Sanabria Malagón, Camilo

    2017-12-01

    A linear ordinary differential equation is called algebraic if all its solution are algebraic over its field of definition. In this paper we solve the problem of finding closed form solution to algebraic linear ordinary differential equations in terms of standard equations. Furthermore, we obtain a method to compute all algebraic linear ordinary differential equations with rational coefficients by studying their associated Schwarz map through the Picard-Vessiot Theory.

  8. Solution of Differential Equation by Means of Finite Element Method

    OpenAIRE

    Hayashi, Daigoro; 林, 大五郎

    1989-01-01

    The finite element method may be defined as the modern "Method of Weighted Residuals" (MWR). This paper describes how to solve the differential equations which are essential in order to explain quantiatively a number of valuable geological and geodynamic problems.The methods to solve linear differential equation, non-linear equation, non-linear non-steady equation, Laplace equation and incompreeible New tonian flow problem are explained by means of the Galerkin finite element method.

  9. Elliptic partial differential equations of second order

    CERN Document Server

    Gilbarg, David

    2001-01-01

    From the reviews: "This is a book of interest to any having to work with differential equations, either as a reference or as a book to learn from. The authors have taken trouble to make the treatment self-contained. It (is) suitable required reading for a PhD student. Although the material has been developed from lectures at Stanford, it has developed into an almost systematic coverage that is much longer than could be covered in a year's lectures". Newsletter, New Zealand Mathematical Society, 1985 "Primarily addressed to graduate students this elegant book is accessible and useful to a broad spectrum of applied mathematicians". Revue Roumaine de Mathématiques Pures et Appliquées,1985.

  10. Efficient Estimating Functions for Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Jakobsen, Nina Munkholt

    The overall topic of this thesis is approximate martingale estimating function-based estimationfor solutions of stochastic differential equations, sampled at high frequency. Focuslies on the asymptotic properties of the estimators. The first part of the thesis deals with diffusions observed over...... a fixed time interval. Rate optimal and effcient estimators areobtained for a one-dimensional diffusion parameter. Stable convergence in distribution isused to achieve a practically applicable Gaussian limit distribution for suitably normalisedestimators. In a simulation example, the limit distributions...... multidimensional parameter. Conditions for rate optimality and effciency of estimatorsof drift-jump and diffusion parameters are given in some special cases. Theseconditions are found to extend the pre-existing conditions applicable to continuous diffusions,and impose much stronger requirements on the estimating...

  11. Ordinary differential equations basics and beyond

    CERN Document Server

    Schaeffer, David G

    2016-01-01

    This book develops the theory of ordinary differential equations (ODEs), starting from an introductory level (with no prior experience in ODEs assumed) through to a graduate-level treatment of the qualitative theory, including bifurcation theory (but not chaos). While proofs are rigorous, the exposition is reader-friendly, aiming for the informality of face-to-face interactions. A unique feature of this book is the integration of rigorous theory with numerous applications of scientific interest. Besides providing motivation, this synthesis clarifies the theory and enhances scientific literacy. Other features include: (i) a wealth of exercises at various levels, along with commentary that explains why they matter; (ii) figures with consistent color conventions to identify nullclines, periodic orbits, stable and unstable manifolds; and (iii) a dedicated website with software templates, problem solutions, and other resources supporting the text. Given its many applications, the book may be used comfortably in sc...

  12. Stochastic differential equations used to model conjugation

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber; Christiansen, Lasse Engbo

    be split into measurement noise and system noise. The system noise is used to compensate for those biological processes not explicitly described by the model. Many authors model conjugation by a simple mass action model first proposed by Levin et al. (1979). Also Michaelis-Menten dependence...... by an experiment conducted with E. faecium. In addition, we suggest that a 3rd order time-delay must be included in the model to account for the delay before a newly conjugated plasmid is expressed. A ML estimate of the parameters based on experimental data is found using the software CTSM. The conjugation rate......Stochastic differential equations (SDEs) are used to model horizontal transfer of antibiotic resis- tance by conjugation. The model describes the concentration of donor, recipient, transconjugants and substrate. The strength of the SDE model over the traditional ODE models is that the noise can...

  13. Inverse problems for partial differential equations

    CERN Document Server

    Isakov, Victor

    2017-01-01

    This third edition expands upon the earlier edition by adding nearly 40 pages of new material reflecting the analytical and numerical progress in inverse problems in last 10 years. As in the second edition, the emphasis is on new ideas and methods rather than technical improvements. These new ideas include use of the stationary phase method in the two-dimensional elliptic problems and of multi frequencies\\temporal data to improve stability and numerical resolution. There are also numerous corrections and improvements of the exposition throughout. This book is intended for mathematicians working with partial differential equations and their applications, physicists, geophysicists, and financial, electrical, and mechanical engineers involved with nondestructive evaluation, seismic exploration, remote sensing, and various kinds of tomography. Review of the second edition: "The first edition of this excellent book appeared in 1998 and became a standard reference for everyone interested in analysis and numerics of...

  14. Modeling and Prediction Using Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Juhl, Rune; Møller, Jan Kloppenborg; Jørgensen, John Bagterp

    2016-01-01

    deterministic and can predict the future perfectly. A more realistic approach would be to allow for randomness in the model due to e.g., the model be too simple or errors in input. We describe a modeling and prediction setup which better reflects reality and suggests stochastic differential equations (SDEs......) for modeling and forecasting. It is argued that this gives models and predictions which better reflect reality. The SDE approach also offers a more adequate framework for modeling and a number of efficient tools for model building. A software package (CTSM-R) for SDE-based modeling is briefly described....... that describes the variation between subjects. The ODE setup implies that the variation for a single subject is described by a single parameter (or vector), namely the variance (covariance) of the residuals. Furthermore the prediction of the states is given as the solution to the ODEs and hence assumed...

  15. Advances in differential equations and applications

    CERN Document Server

    Martínez, Vicente

    2014-01-01

    The book contains a selection of contributions given at the 23rd Congress on Differential Equations and Applications (CEDYA) / 13th Congress of Applied Mathematics (CMA) that took place at Castellon, Spain, in 2013. CEDYA is renowned as the congress of the Spanish Society of Applied Mathematics (SEMA) and constitutes the main forum and meeting point for applied mathematicians in Spain. The papers included in this book have been selected after a thorough refereeing process and provide a good summary of the recent activity developed by different groups working mainly in Spain on applications of mathematics to several fields of science and technology. The purpose is to provide a useful reference of academic and industrial researchers working in the area of numerical analysis and its applications.

  16. Differential equations of my young years

    CERN Document Server

    Maz'ya, Vladimir

    2014-01-01

    Vladimir Maz'ya (born 1937) is an outstanding mathematician who systematically made fundamental contributions to a wide array of areas in mathematical analysis and in the theory of partial differential equations. In this fascinating book he describes the first thirty years of his life in Leningrad (now St. Petersburg). He starts with the story of his family, speaks about his childhood, the high school and university years, and recalls his formative years as a mathematician. Behind the author's personal recollections, with his own joys, sorrows and hopes, one sees a vivid picture of those times in the former Sovjet Union. He speaks warmly about his friends, both outside and inside the world of mathematics, about discovering his passion for mathematics and his early achievements, and about a number of mathematicians who influenced his professional life. The book is written in a highly readable and inviting style, spiced with the occasional touch of humor.

  17. Adaptive finite element methods for differential equations

    CERN Document Server

    Bangerth, Wolfgang

    2003-01-01

    These Lecture Notes discuss concepts of `self-adaptivity' in the numerical solution of differential equations, with emphasis on Galerkin finite element methods. The key issues are a posteriori error estimation and it automatic mesh adaptation. Besides the traditional approach of energy-norm error control, a new duality-based technique, the Dual Weighted Residual method for goal-oriented error estimation, is discussed in detail. This method aims at economical computation of arbitrary quantities of physical interest by properly adapting the computational mesh. This is typically required in the design cycles of technical applications. For example, the drag coefficient of a body immersed in a viscous flow is computed, then it is minimized by varying certain control parameters, and finally the stability of the resulting flow is investigated by solving an eigenvalue problem. `Goal-oriented' adaptivity is designed to achieve these tasks with minimal cost. At the end of each chapter some exercises are posed in order ...

  18. Hilbert space methods for partial differential equations

    Directory of Open Access Journals (Sweden)

    Ralph E. Showalter

    1994-09-01

    Full Text Available This book is an outgrowth of a course which we have given almost periodically over the last eight years. It is addressed to beginning graduate students of mathematics, engineering, and the physical sciences. Thus, we have attempted to present it while presupposing a minimal background: the reader is assumed to have some prior acquaintance with the concepts of ``linear'' and ``continuous'' and also to believe $L^2$ is complete. An undergraduate mathematics training through Lebesgue integration is an ideal background but we dare not assume it without turning away many of our best students. The formal prerequisite consists of a good advanced calculus course and a motivation to study partial differential equations.

  19. Introduction to inverse problems for differential equations

    CERN Document Server

    Hasanov Hasanoğlu, Alemdar

    2017-01-01

    This book presents a systematic exposition of the main ideas and methods in treating inverse problems for PDEs arising in basic mathematical models, though it makes no claim to being exhaustive. Mathematical models of most physical phenomena are governed by initial and boundary value problems for PDEs, and inverse problems governed by these equations arise naturally in nearly all branches of science and engineering. The book’s content, especially in the Introduction and Part I, is self-contained and is intended to also be accessible for beginning graduate students, whose mathematical background includes only basic courses in advanced calculus, PDEs and functional analysis. Further, the book can be used as the backbone for a lecture course on inverse and ill-posed problems for partial differential equations. In turn, the second part of the book consists of six nearly-independent chapters. The choice of these chapters was motivated by the fact that the inverse coefficient and source problems considered here a...

  20. Partial Differential Equations in General Relativity

    International Nuclear Information System (INIS)

    Choquet-Bruhat, Yvonne

    2008-01-01

    General relativity is a physical theory basic in the modeling of the universe at the large and small scales. Its mathematical formulation, the Einstein partial differential equations, are geometrically simple, but intricate for the analyst, involving both hyperbolic and elliptic PDE, with local and global problems. Many problems remain open though remarkable progress has been made recently towards their solutions. Alan Rendall's book states, in a down-to-earth form, fundamental results used to solve different types of equations. In each case he gives applications to special models as well as to general properties of Einsteinian spacetimes. A chapter on ODE contains, in particular, a detailed discussion of Bianchi spacetimes. A chapter entitled 'Elliptic systems' treats the Einstein constraints. A chapter entitled 'Hyperbolic systems' is followed by a chapter on the Cauchy problem and a chapter 'Global results' which contains recently proved theorems. A chapter is dedicated to the Einstein-Vlasov system, of which the author is a specialist. On the whole, the book surveys, in a concise though precise way, many essential results of recent interest in mathematical general relativity, and it is very clearly written. Each chapter is followed by an up to date bibliography. In conclusion, this book will be a valuable asset to relativists who wish to learn clearly-stated mathematical results and to mathematicians who want to penetrate into the subtleties of general relativity, as a mathematical and physical theory. (book review)

  1. Partial Differential Equations in General Relativity

    Energy Technology Data Exchange (ETDEWEB)

    Choquet-Bruhat, Yvonne

    2008-09-07

    General relativity is a physical theory basic in the modeling of the universe at the large and small scales. Its mathematical formulation, the Einstein partial differential equations, are geometrically simple, but intricate for the analyst, involving both hyperbolic and elliptic PDE, with local and global problems. Many problems remain open though remarkable progress has been made recently towards their solutions. Alan Rendall's book states, in a down-to-earth form, fundamental results used to solve different types of equations. In each case he gives applications to special models as well as to general properties of Einsteinian spacetimes. A chapter on ODE contains, in particular, a detailed discussion of Bianchi spacetimes. A chapter entitled 'Elliptic systems' treats the Einstein constraints. A chapter entitled 'Hyperbolic systems' is followed by a chapter on the Cauchy problem and a chapter 'Global results' which contains recently proved theorems. A chapter is dedicated to the Einstein-Vlasov system, of which the author is a specialist. On the whole, the book surveys, in a concise though precise way, many essential results of recent interest in mathematical general relativity, and it is very clearly written. Each chapter is followed by an up to date bibliography. In conclusion, this book will be a valuable asset to relativists who wish to learn clearly-stated mathematical results and to mathematicians who want to penetrate into the subtleties of general relativity, as a mathematical and physical theory. (book review)

  2. Differential equations for Feynman graph amplitudes

    International Nuclear Information System (INIS)

    Remiddi, E.

    1997-01-01

    It is by now well established that, by means of the integration by part identities all the integrals occurring in the evaluation of a Feynman graph of given topology can be expressed in terms of a few independent master integrals. It is shown in this paper that the integration by part identities can be further used for obtaining a linear system of first-order differential equations for the master integrals themselves. The equations con then be used for the numerical evaluation of the amplitudes as well as for investigating their analytic properties, such as the asymptotic and threshold behaviours and the corresponding expansions (and for analytic integration purposes, when possible). The new method is illustrated through its somewhat detailed application to the case of the one-loop self-mass amplitude, by explicitly working out expansions and quadrature formulas, both in arbitrary continuous dimension n and in the n→4 limit. It is then shortly discussed which features of the new method are expected to work in the more general case of multi-point, multi-loop amplitudes

  3. Fem Formulation of Coupled Partial Differential Equations for Heat Transfer

    Science.gov (United States)

    Ameer Ahamad, N.; Soudagar, Manzoor Elahi M.; Kamangar, Sarfaraz; Anjum Badruddin, Irfan

    2017-08-01

    Heat Transfer in any field plays an important role for transfer of energy from one region to another region. The heat transfer in porous medium can be simulated with the help of two partial differential equations. These equations need an alternate and relatively easy method due to complexity of the phenomenon involved. This article is dedicated to discuss the finite element formulation of heat transfer in porous medium in Cartesian coordinates. A triangular element is considered to discretize the governing partial differential equations and matrix equations are developed for 3 nodes of element. Iterative approach is used for the two sets of matrix equations involved representing two partial differential equations.

  4. Introduction to Adaptive Methods for Differential Equations

    Science.gov (United States)

    Eriksson, Kenneth; Estep, Don; Hansbo, Peter; Johnson, Claes

    Knowing thus the Algorithm of this calculus, which I call Differential Calculus, all differential equations can be solved by a common method (Gottfried Wilhelm von Leibniz, 1646-1719).When, several years ago, I saw for the first time an instrument which, when carried, automatically records the number of steps taken by a pedestrian, it occurred to me at once that the entire arithmetic could be subjected to a similar kind of machinery so that not only addition and subtraction, but also multiplication and division, could be accomplished by a suitably arranged machine easily, promptly and with sure results. For it is unworthy of excellent men to lose hours like slaves in the labour of calculations, which could safely be left to anyone else if the machine was used. And now that we may give final praise to the machine, we may say that it will be desirable to all who are engaged in computations which, as is well known, are the managers of financial affairs, the administrators of others estates, merchants, surveyors, navigators, astronomers, and those connected with any of the crafts that use mathematics (Leibniz).

  5. On solutions of variable-order fractional differential equations

    Directory of Open Access Journals (Sweden)

    Ali Akgül

    2017-01-01

    solutions to fractional differential equations are compelling to get in real applications, due to the nonlocality and complexity of the fractional differential operators, especially for variable-order fractional differential equations. Therefore, it is significant to enhanced numerical methods for fractional differential equations. In this work, we consider variable-order fractional differential equations by reproducing kernel method. There has been much attention in the use of reproducing kernels for the solutions to many problems in the recent years. We give two examples to demonstrate how efficiently our theory can be implemented in practice.

  6. Compatible Spatial Discretizations for Partial Differential Equations

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Douglas, N, ed.

    2004-11-25

    From May 11--15, 2004, the Institute for Mathematics and its Applications held a hot topics workshop on Compatible Spatial Discretizations for Partial Differential Equations. The numerical solution of partial differential equations (PDE) is a fundamental task in science and engineering. The goal of the workshop was to bring together a spectrum of scientists at the forefront of the research in the numerical solution of PDEs to discuss compatible spatial discretizations. We define compatible spatial discretizations as those that inherit or mimic fundamental properties of the PDE such as topology, conservation, symmetries, and positivity structures and maximum principles. A wide variety of discretization methods applied across a wide range of scientific and engineering applications have been designed to or found to inherit or mimic intrinsic spatial structure and reproduce fundamental properties of the solution of the continuous PDE model at the finite dimensional level. A profusion of such methods and concepts relevant to understanding them have been developed and explored: mixed finite element methods, mimetic finite differences, support operator methods, control volume methods, discrete differential forms, Whitney forms, conservative differencing, discrete Hodge operators, discrete Helmholtz decomposition, finite integration techniques, staggered grid and dual grid methods, etc. This workshop seeks to foster communication among the diverse groups of researchers designing, applying, and studying such methods as well as researchers involved in practical solution of large scale problems that may benefit from advancements in such discretizations; to help elucidate the relations between the different methods and concepts; and to generally advance our understanding in the area of compatible spatial discretization methods for PDE. Particular points of emphasis included: + Identification of intrinsic properties of PDE models that are critical for the fidelity of numerical

  7. Numerical treatment of special second order ordinary differential equations: general and exponentially fitted methods

    OpenAIRE

    Esposito, Elena

    2012-01-01

    2010 - 2011 The aim of this research is the construction and the analysis of new families of numerical methods for the integration of special second order Ordinary Differential Equations (ODEs). The modeling of continuous time dynamical systems using second order ODEs is widely used in many elds of applications, as celestial mechanics, seismology, molecular dynamics, or in the semidiscretisation of partial differential equations (which leads to high dimensional systems and ...

  8. Nonlinear partial differential equations for scientists and engineers

    CERN Document Server

    Debnath, Lokenath

    1997-01-01

    "An exceptionally complete overview. There are numerous examples and the emphasis is on applications to almost all areas of science and engineering. There is truly something for everyone here. This reviewer feels that it is a very hard act to follow, and recommends it strongly. [This book] is a jewel." ---Applied Mechanics Review (Review of First Edition) This expanded and revised second edition is a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied applications. Building upon the successful material of the first book, this edition contains updated modern examples and applications from areas of fluid dynamics, gas dynamics, plasma physics, nonlinear dynamics, quantum mechanics, nonlinear optics, acoustics, and wave propagation. Methods and properties of solutions are presented, along with their physical significance, making the book more useful for a diverse readership. Topics and key features: * Thorough coverage of derivation and methods of soluti...

  9. Analysis of an Nth-order nonlinear differential-delay equation

    Science.gov (United States)

    Vallée, Réal; Marriott, Christopher

    1989-01-01

    The problem of a nonlinear dynamical system with delay and an overall response time which is distributed among N individual components is analyzed. Such a system can generally be modeled by an Nth-order nonlinear differential delay equation. A linear-stability analysis as well as a numerical simulation of that equation are performed and a comparison is made with the experimental results. Finally, a parallel is established between the first-order differential equation with delay and the Nth-order differential equation without delay.

  10. Growth of meromorphic solutions of delay differential equations

    OpenAIRE

    Halburd, Rod; Korhonen, Risto

    2016-01-01

    Necessary conditions are obtained for certain types of rational delay differential equations to admit a non-rational meromorphic solution of hyper-order less than one. The equations obtained include delay Painlev\\'e equations and equations solved by elliptic functions.

  11. Lyapunov functionals and stability of stochastic functional differential equations

    CERN Document Server

    Shaikhet, Leonid

    2013-01-01

    Stability conditions for functional differential equations can be obtained using Lyapunov functionals. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations describes the general method of construction of Lyapunov functionals to investigate the stability of differential equations with delays. This work continues and complements the author’s previous book Lyapunov Functionals and Stability of Stochastic Difference Equations, where this method is described for discrete- and continuous-time difference equations. The text begins with a description of the peculiarities of deterministic and stochastic functional differential equations. There follow basic definitions for stability theory of stochastic hereditary systems, and a formal procedure of Lyapunov functionals construction is presented. Stability investigation is conducted for stochastic linear and nonlinear differential equations with constant and distributed delays. The proposed method is used for stability investigation of di...

  12. Solving Differential Equations in R: Package deSolve

    Directory of Open Access Journals (Sweden)

    Karline Soetaert

    2010-02-01

    Full Text Available In this paper we present the R package deSolve to solve initial value problems (IVP written as ordinary differential equations (ODE, differential algebraic equations (DAE of index 0 or 1 and partial differential equations (PDE, the latter solved using the method of lines approach. The differential equations can be represented in R code or as compiled code. In the latter case, R is used as a tool to trigger the integration and post-process the results, which facilitates model development and application, whilst the compiled code significantly increases simulation speed. The methods implemented are efficient, robust, and well documented public-domain Fortran routines. They include four integrators from the ODEPACK package (LSODE, LSODES, LSODA, LSODAR, DVODE and DASPK2.0. In addition, a suite of Runge-Kutta integrators and special-purpose solvers to efficiently integrate 1-, 2- and 3-dimensional partial differential equations are available. The routines solve both stiff and non-stiff systems, and include many options, e.g., to deal in an efficient way with the sparsity of the Jacobian matrix, or finding the root of equations. In this article, our objectives are threefold: (1 to demonstrate the potential of using R for dynamic modeling, (2 to highlight typical uses of the different methods implemented and (3 to compare the performance of models specified in R code and in compiled code for a number of test cases. These comparisons demonstrate that, if the use of loops is avoided, R code can efficiently integrate problems comprising several thousands of state variables. Nevertheless, the same problem may be solved from 2 to more than 50 times faster by using compiled code compared to an implementation using only R code. Still, amongst the benefits of R are a more flexible and interactive implementation, better readability of the code, and access to R’s high-level procedures. deSolve is the successor of package odesolve which will be deprecated in

  13. Limit theorems for solutions of stochastic differential equation problems

    Directory of Open Access Journals (Sweden)

    J. Vom Scheidt

    1980-01-01

    Full Text Available In this paper linear differential equations with random processes as coefficients and as inhomogeneous term are regarded. Limit theorems are proved for the solutions of these equations if the random processes are weakly correlated processes.

  14. Nonparametric Bayesian drift estimation for multidimensional stochastic differential equations

    NARCIS (Netherlands)

    Gugushvili, S.; Spreij, P.

    2014-01-01

    We consider nonparametric Bayesian estimation of the drift coefficient of a multidimensional stochastic differential equation from discrete-time observations on the solution of this equation. Under suitable regularity conditions, we establish posterior consistency in this context.

  15. On Volatility Induced Stationarity for Stochastic Differential Equations

    OpenAIRE

    J.M.P., Albin; Bjarne, Astrup Jensen; Anders, Muszta; Martin, Richter

    2006-01-01

    This article deals with stochastic differential equations with volatility induced stationarity. We study of theoretical properties of such equations, as well as numerical aspects, together with a detailed study of three examples.

  16. An introduction to differential equations and their applications

    CERN Document Server

    Farlow, Stanley J

    2006-01-01

    This introductory text explores 1st- and 2nd-order differential equations, series solutions, the Laplace transform, difference equations, much more. Numerous figures, problems with solutions, notes. 1994 edition. Includes 268 figures and 23 tables.

  17. Structure-preserving algorithms for oscillatory differential equations

    CERN Document Server

    Wu, Xinyuan; Wang, Bin

    2013-01-01

    Structure-Preserving Algorithms for Oscillatory Differential Equations describes a large number of highly effective and efficient structure-preserving algorithms for second-order oscillatory differential equations by using theoretical analysis and numerical validation. Structure-preserving algorithms for differential equations, especially for oscillatory differential equations, play an important role in the accurate simulation of oscillatory problems in applied sciences and engineering. The book discusses novel advances in the ARKN, ERKN, two-step ERKN, Falkner-type and energy-preserving methods, etc. for oscillatory differential equations. The work is intended for scientists, engineers, teachers and students who are interested in structure-preserving algorithms for differential equations. Xinyuan Wu is a professor at Nanjing University; Xiong You is an associate professor at Nanjing Agricultural University; Bin Wang is a joint Ph.D student of Nanjing University and University of Cambridge.

  18. Stochastic symmetries of Wick type stochastic ordinary differential equations

    Science.gov (United States)

    Ünal, Gazanfer

    2015-04-01

    We consider Wick type stochastic ordinary differential equations with Gaussian white noise. We define the stochastic symmetry transformations and Lie equations in Kondratiev space (S)-1N. We derive the determining system of Wick type stochastic partial differential equations with Gaussian white noise. Stochastic symmetries for stochastic Bernoulli, Riccati and general stochastic linear equation in (S)-1N are obtained. A stochastic version of canonical variables is also introduced.

  19. On Volatility Induced Stationarity for Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Albin, J.M.P.; Astrup Jensen, Bjarne; Muszta, Anders

    2006-01-01

    This article deals with stochastic differential equations with volatility induced stationarity. We study of theoretical properties of such equations, as well as numerical aspects, together with a detailed study of three examples.......This article deals with stochastic differential equations with volatility induced stationarity. We study of theoretical properties of such equations, as well as numerical aspects, together with a detailed study of three examples....

  20. Introduction to computation and modeling for differential equations

    CERN Document Server

    Edsberg, Lennart

    2008-01-01

    An introduction to scientific computing for differential equationsIntroduction to Computation and Modeling for Differential Equations provides a unified and integrated view of numerical analysis, mathematical modeling in applications, and programming to solve differential equations, which is essential in problem-solving across many disciplines, such as engineering, physics, and economics. This book successfully introduces readers to the subject through a unique ""Five-M"" approach: Modeling, Mathematics, Methods, MATLAB, and Multiphysics. This approach facilitates a thorough understanding of h

  1. Exact Solutions for Nonlinear Differential Difference Equations in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    Khaled A. Gepreel

    2013-01-01

    Full Text Available We modified the truncated expansion method to construct the exact solutions for some nonlinear differential difference equations in mathematical physics via the general lattice equation, the discrete nonlinear Schrodinger with a saturable nonlinearity, the quintic discrete nonlinear Schrodinger equation, and the relativistic Toda lattice system. Also, we put a rational solitary wave function method to find the rational solitary wave solutions for some nonlinear differential difference equations. The proposed methods are more effective and powerful to obtain the exact solutions for nonlinear difference differential equations.

  2. Nonparametric estimation of stochastic differential equations with sparse Gaussian processes.

    Science.gov (United States)

    García, Constantino A; Otero, Abraham; Félix, Paulo; Presedo, Jesús; Márquez, David G

    2017-08-01

    The application of stochastic differential equations (SDEs) to the analysis of temporal data has attracted increasing attention, due to their ability to describe complex dynamics with physically interpretable equations. In this paper, we introduce a nonparametric method for estimating the drift and diffusion terms of SDEs from a densely observed discrete time series. The use of Gaussian processes as priors permits working directly in a function-space view and thus the inference takes place directly in this space. To cope with the computational complexity that requires the use of Gaussian processes, a sparse Gaussian process approximation is provided. This approximation permits the efficient computation of predictions for the drift and diffusion terms by using a distribution over a small subset of pseudosamples. The proposed method has been validated using both simulated data and real data from economy and paleoclimatology. The application of the method to real data demonstrates its ability to capture the behavior of complex systems.

  3. Simple equation method for nonlinear partial differential equations and its applications

    Directory of Open Access Journals (Sweden)

    Taher A. Nofal

    2016-04-01

    Full Text Available In this article, we focus on the exact solution of the some nonlinear partial differential equations (NLPDEs such as, Kodomtsev–Petviashvili (KP equation, the (2 + 1-dimensional breaking soliton equation and the modified generalized Vakhnenko equation by using the simple equation method. In the simple equation method the trial condition is the Bernoulli equation or the Riccati equation. It has been shown that the method provides a powerful mathematical tool for solving nonlinear wave equations in mathematical physics and engineering problems.

  4. Numerical solution of ordinary differential equations

    CERN Document Server

    Fox, L

    1987-01-01

    Nearly 20 years ago we produced a treatise (of about the same length as this book) entitled Computing methods for scientists and engineers. It was stated that most computation is performed by workers whose mathematical training stopped somewhere short of the 'professional' level, and that some books are therefore needed which use quite simple mathematics but which nevertheless communicate the essence of the 'numerical sense' which is exhibited by the real computing experts and which is surely needed, at least to some extent, by all who use modern computers and modern numerical software. In that book we treated, at no great length, a variety of computational problems in which the material on ordinary differential equations occupied about 50 pages. At that time it was quite common to find books on numerical analysis, with a little on each topic ofthat field, whereas today we are more likely to see similarly-sized books on each major topic: for example on numerical linear algebra, numerical approximation, numeri...

  5. Patchwork sampling of stochastic differential equations.

    Science.gov (United States)

    Kürsten, Rüdiger; Behn, Ulrich

    2016-03-01

    We propose a method to sample stationary properties of solutions of stochastic differential equations, which is accurate and efficient if there are rarely visited regions or rare transitions between distinct regions of the state space. The method is based on a complete, nonoverlapping partition of the state space into patches on which the stochastic process is ergodic. On each of these patches we run simulations of the process strictly truncated to the corresponding patch, which allows effective simulations also in rarely visited regions. The correct weight for each patch is obtained by counting the attempted transitions between all different patches. The results are patchworked to cover the whole state space. We extend the concept of truncated Markov chains which is originally formulated for processes which obey detailed balance to processes not fulfilling detailed balance. The method is illustrated by three examples, describing the one-dimensional diffusion of an overdamped particle in a double-well potential, a system of many globally coupled overdamped particles in double-well potentials subject to additive Gaussian white noise, and the overdamped motion of a particle on the circle in a periodic potential subject to a deterministic drift and additive noise. In an appendix we explain how other well-known Markov chain Monte Carlo algorithms can be related to truncated Markov chains.

  6. Stochastic partial differential equations in turbulence related problems

    Science.gov (United States)

    Chow, P.-L.

    1978-01-01

    The theory of stochastic partial differential equations (PDEs) and problems relating to turbulence are discussed by employing the theories of Brownian motion and diffusion in infinite dimensions, functional differential equations, and functional integration. Relevant results in probablistic analysis, especially Gaussian measures in function spaces and the theory of stochastic PDEs of Ito type, are taken into account. Linear stochastic PDEs are analyzed through linearized Navier-Stokes equations with a random forcing. Stochastic equations for waves in random media as well as model equations in turbulent transport theory are considered. Markovian models in fully developed turbulence are discussed from a stochastic equation viewpoint.

  7. Dynamic Analysis of Electrostatic Microactuators Using the Differential Quadrature Method

    Directory of Open Access Journals (Sweden)

    Ming-Hung Hsu

    2011-01-01

    Full Text Available This work studies the dynamic behavior of electrostatic actuators using finite-element package software (FEMLAB and differential quadrature method. The differential quadrature technique is used to transform partial differential equations into a discrete eigenvalue problem. Numerical results indicate that length, width, and thickness significantly impact the frequencies of the electrostatic actuators. The thickness could not affect markedly the electrostatic actuator capacities. The effects of varying actuator length, width, and thickness on the dynamic behavior and actuator capacities in electrostatic actuator systems are investigated. The differential quadrature method is an efficient differential equation solver.

  8. Calculation of similarity solutions of partial differential equations

    International Nuclear Information System (INIS)

    Dresner, L.

    1980-08-01

    When a partial differential equation in two independent variables is invariant to a group G of stretching transformations, it has similarity solutions that can be found by solving an ordinary differential equation. Under broad conditions, this ordinary differential equation is also invariant to another stretching group G', related to G. The invariance of the ordinary differential equation to G' can be used to simplify its solution, particularly if it is of second order. Then a method of Lie's can be used to reduce it to a first-order equation, the study of which is greatly facilitated by analysis of its direction field. The method developed here is applied to three examples: Blasius's equation for boundary layer flow over a flat plate and two nonlinear diffusion equations, cc/sub t/ = c/sub zz/ and c/sub t/ = (cc/sub z/)/sub z/

  9. Symbolic-Numeric Integration of the Dynamical Cosserat Equations

    KAUST Repository

    Lyakhov, Dmitry A.

    2017-08-29

    We devise a symbolic-numeric approach to the integration of the dynamical part of the Cosserat equations, a system of nonlinear partial differential equations describing the mechanical behavior of slender structures, like fibers and rods. This is based on our previous results on the construction of a closed form general solution to the kinematic part of the Cosserat system. Our approach combines methods of numerical exponential integration and symbolic integration of the intermediate system of nonlinear ordinary differential equations describing the dynamics of one of the arbitrary vector-functions in the general solution of the kinematic part in terms of the module of the twist vector-function. We present an experimental comparison with the well-established generalized \\\\alpha -method illustrating the computational efficiency of our approach for problems in structural mechanics.

  10. Applications of the g-Drazin Inverse to the Heat Equation and a Delay Differential Equation

    Directory of Open Access Journals (Sweden)

    Alrazi Abdeljabbar

    2017-01-01

    Full Text Available We consider applications of the g-Drazin inverse to some classes of abstract Cauchy problems, namely, the heat equation with operator coefficient and delay differential equations in Banach space.

  11. Symbolic dynamics of the Lorenz equations

    International Nuclear Information System (INIS)

    Fang Hai-ping; Hao Bailin.

    1994-07-01

    The Lorenz equations are investigated in a wide range of parameters by using the method of symbolic dynamics. First, the systematics of stable periodic orbits in the Lorenz equations is compared with that of the one-dimensional cubic map, which shares the same discrete symmetry with the Lorenz model. The systematics is then ''corrected'' in such a way as to encompass all the known periodic windows of the Lorenz equations with only one exception. Second, in order to justify the above approach and to understand the exceptions, another 1D map with a discontinuity is extracted from an extension of the geometric Lorenz attractor and its symbolic dynamics is constructed. All this has to be done in light of symbolic dynamics of two-dimensional maps. Finally, symbolic dynamics for the actual Poincare return map of the Lorenz equations is constructed in a heuristic way. New periodic windows of the Lorenz equations and their parameters can be predicted from this symbolic dynamics in combination with the 1D cubic map. The extended geometric 2D Lorenz map and the 1D antisymmetric map with a discontinuity describe the topological aspects of the Lorenz equations to high accuracy. (author). 44 refs, 17 figs, 8 tabs

  12. Invariant manifolds and applications for functional differential equations of mixed type

    NARCIS (Netherlands)

    Hupkes, Hermen Jan

    2008-01-01

    Differential equations posed on discrete lattices have by now become a popular modelling tool used in a wide variety of scientific disciplines. Such equations allow the inclusion of non-local interactions into models and lead to interesting dynamical and pattern-forming behaviour. Although many

  13. Lagrangian vector field and Lagrangian formulation of partial differential equations

    Directory of Open Access Journals (Sweden)

    M.Chen

    2005-01-01

    Full Text Available In this paper we consider the Lagrangian formulation of a system of second order quasilinear partial differential equations. Specifically we construct a Lagrangian vector field such that the flows of the vector field satisfy the original system of partial differential equations.

  14. Stochastic differential equations and numerical simulation for pedestrians

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, J.C.

    1993-07-27

    The mathematical foundation of the Ito interpretation of stochastic ordinary and partial differential equations is briefly explained. This provides the basis for a review of simple difference approximations to stochastic differential equations. An example arising in the theory of optical switching is discussed.

  15. Integral conditions for nonoscillation of second order nonlinear differential equations

    Czech Academy of Sciences Publication Activity Database

    Cecchi, M.; Došlá, Z.; Marini, M.; Vrkoč, Ivo

    2006-01-01

    Roč. 64, č. 6 (2006), s. 1278-1289 ISSN 0362-546X R&D Projects: GA AV ČR(CZ) IAA1163401 Institutional research plan: CEZ:AV0Z10190503 Keywords : change of integration * half-linear differential equation * nonlinear differential equation Subject RIV: BA - General Mathematics Impact factor: 0.677, year: 2006

  16. Nonlinear partial differential equations: Integrability, geometry and related topics

    Science.gov (United States)

    Krasil'shchik, Joseph; Rubtsov, Volodya

    2017-03-01

    Geometry and Differential Equations became inextricably entwined during the last one hundred fifty years after S. Lie and F. Klein's fundamental insights. The two subjects go hand in hand and they mutually enrich each other, especially after the "Soliton Revolution" and the glorious streak of Symplectic and Poisson Geometry methods in the context of Integrability and Solvability problems for Non-linear Differential Equations.

  17. Exact solutions for some nonlinear systems of partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, A.A. [Department of Mathematics, Faculty of Science, Helwan University (Egypt)], E-mail: profdarwish@yahoo.com; Ramady, A. [Department of Mathematics, Faculty of Science, Beni-Suef University (Egypt)], E-mail: aramady@yahoo.com

    2009-04-30

    A direct and unified algebraic method for constructing multiple travelling wave solutions of nonlinear systems of partial differential equations (PDEs) is used and implemented in a computer algebraic system. New solutions for some nonlinear partial differential equations (NLPDEs) are obtained. Graphs of the solutions are displayed.

  18. Reduced minimax filtering by means of differential-algebraic equations

    NARCIS (Netherlands)

    V. Mallet; S. Zhuk (Sergiy)

    2011-01-01

    htmlabstractA reduced minimax state estimation approach is proposed for high-dimensional models. It is based on the reduction of the ordinary differential equation with high state space dimension to the low-dimensional Differential-Algebraic Equation (DAE) and on the subsequent application of the

  19. Monograph - The Numerical Integration of Ordinary Differential Equations.

    Science.gov (United States)

    Hull, T. E.

    The materials presented in this monograph are intended to be included in a course on ordinary differential equations at the upper division level in a college mathematics program. These materials provide an introduction to the numerical integration of ordinary differential equations, and they can be used to supplement a regular text on this…

  20. Singular Differential Equations and g-Drazin Invertible Operators

    Directory of Open Access Journals (Sweden)

    Alrazi Abdeljabbar

    2016-01-01

    Full Text Available We extend results of Favini, Nashed, and Zhao on singular differential equations using the g-Drazin inverse and the order of a quasinilpotent operator in the sense of Miekka and Nevanlinna. Two classes of singularly perturbed differential equations are studied using the continuity properties of the g-Drazin inverse obtained by Koliha and Rakočević.

  1. Singular Differential Equations and g-Drazin Invertible Operators

    OpenAIRE

    Abdeljabbar, Alrazi; Tran, Trung Dinh

    2016-01-01

    We extend results of Favini, Nashed, and Zhao on singular differential equations using the g-Drazin inverse and the order of a quasinilpotent operator in the sense of Miekka and Nevanlinna. Two classes of singularly perturbed differential equations are studied using the continuity properties of the g-Drazin inverse obtained by Koliha and Rakočević.

  2. Sourcing for Parameter Estimation and Study of Logistic Differential Equation

    Science.gov (United States)

    Winkel, Brian J.

    2012-01-01

    This article offers modelling opportunities in which the phenomena of the spread of disease, perception of changing mass, growth of technology, and dissemination of information can be described by one differential equation--the logistic differential equation. It presents two simulation activities for students to generate real data, as well as…

  3. Topics in numerical partial differential equations and scientific computing

    CERN Document Server

    2016-01-01

    Numerical partial differential equations (PDEs) are an important part of numerical simulation, the third component of the modern methodology for science and engineering, besides the traditional theory and experiment. This volume contains papers that originated with the collaborative research of the teams that participated in the IMA Workshop for Women in Applied Mathematics: Numerical Partial Differential Equations and Scientific Computing in August 2014.

  4. Charles François Sturm and Differential Equations

    DEFF Research Database (Denmark)

    Lützen, Jesper; Mingarelli, Angelo

    2008-01-01

    An analysis of Sturm's works on differential equations, in particular Sturm-Liouville theory. The historical connection to Sturm's theorem about real roots of polynomials is established......An analysis of Sturm's works on differential equations, in particular Sturm-Liouville theory. The historical connection to Sturm's theorem about real roots of polynomials is established...

  5. Undergraduate Students' Mental Operations in Systems of Differential Equations

    Science.gov (United States)

    Whitehead, Karen; Rasmussen, Chris

    2003-01-01

    This paper reports on research conducted to understand undergraduate students' ways of reasoning about systems of differential equations (SDEs). As part of a semester long classroom teaching experiment in a first course in differential equations, we conducted task-based interviews with six students after their study of first order differential…

  6. Linear measure functional differential equations with infinite delay

    Czech Academy of Sciences Publication Activity Database

    Monteiro, Giselle Antunes; Slavík, A.

    2014-01-01

    Roč. 287, 11-12 (2014), s. 1363-1382 ISSN 0025-584X Institutional support: RVO:67985840 Keywords : measure functional differential equations * generalized ordinary differential equations * Kurzweil-Stieltjes integral Subject RIV: BA - General Mathematics Impact factor: 0.683, year: 2014 http://onlinelibrary.wiley.com/doi/10.1002/mana.201300048/abstract

  7. Analysis of Caputo Impulsive Fractional Order Differential Equations with Applications

    Directory of Open Access Journals (Sweden)

    Lakshman Mahto

    2013-01-01

    Full Text Available We use Sadovskii's fixed point method to investigate the existence and uniqueness of solutions of Caputo impulsive fractional differential equations of order with one example of impulsive logistic model and few other examples as well. We also discuss Caputo impulsive fractional differential equations with finite delay. The results proven are new and compliment the existing one.

  8. Equilibrium approach in the derivation of differential equations for ...

    African Journals Online (AJOL)

    In this paper, the differential equations of Mindlin plates are derived from basic principles by simultaneous satisfaction of the differential equations of equilibrium, the stress-strain laws and the strain-displacement relations for isotropic, homogenous linear elastic materials. Equilibrium method was adopted in the derivation.

  9. On some impulsive fractional differential equations in Banach spaces

    Directory of Open Access Journals (Sweden)

    JinRong Wang

    2010-01-01

    Full Text Available This paper deals with some impulsive fractional differential equations in Banach spaces. Utilizing the Leray-Schauder fixed point theorem and the impulsive nonlinear singular version of the Gronwall inequality, the existence of \\(PC\\-mild solutions for some fractional differential equations with impulses are obtained under some easily checked conditions. At last, an example is given for demonstration.

  10. A Line-Tau Collocation Method for Partial Differential Equations ...

    African Journals Online (AJOL)

    The method of lines is used to convert the partial differential equation (PDE) to a sequence of ordinary differential equations (ODEs) which is then solved by the tau collocation method to obtain an approximate continuous solution in the spatial variable x at a fixed t-level. The choice of the tau collocation method over the tau ...

  11. Reduced differential transform method for partial differential equations within local fractional derivative operators

    Directory of Open Access Journals (Sweden)

    Hossein Jafari

    2016-04-01

    Full Text Available The non-differentiable solution of the linear and non-linear partial differential equations on Cantor sets is implemented in this article. The reduced differential transform method is considered in the local fractional operator sense. The four illustrative examples are given to show the efficiency and accuracy features of the presented technique to solve local fractional partial differential equations.

  12. Reduced differential transform method for partial differential equations within local fractional derivative operators

    OpenAIRE

    Hossein Jafari; Hassan K Jassim; Seithuti P Moshokoa; Vernon M Ariyan; Fairouz Tchier

    2016-01-01

    The non-differentiable solution of the linear and non-linear partial differential equations on Cantor sets is implemented in this article. The reduced differential transform method is considered in the local fractional operator sense. The four illustrative examples are given to show the efficiency and accuracy features of the presented technique to solve local fractional partial differential equations.

  13. A practical course in differential equations and mathematical modeling

    CERN Document Server

    Ibragimov , Nail H

    2009-01-01

    A Practical Course in Differential Equations and Mathematical Modelling is a unique blend of the traditional methods of ordinary and partial differential equations with Lie group analysis enriched by the author's own theoretical developments. The book which aims to present new mathematical curricula based on symmetry and invariance principles is tailored to develop analytic skills and working knowledge in both classical and Lie's methods for solving linear and nonlinear equations. This approach helps to make courses in differential equations, mathematical modelling, distributions and fundame

  14. To the boundary value problem of ordinary differential equations

    Directory of Open Access Journals (Sweden)

    Serikbai Aisagaliev

    2015-09-01

    Full Text Available Method for solving of a boundary value problem for ordinary differential equations with boundary conditions at phase and integral constraints is proposed. The base of the method is an immersion principle based on the general solution of the first order Fredholm integral equation which allows to reduce the original boundary value problem to the special problem of the optimal equation.

  15. Finite Element Method for Linear Multiterm Fractional Differential Equations

    Directory of Open Access Journals (Sweden)

    Abdallah A. Badr

    2012-01-01

    Full Text Available We consider the linear multiterm fractional differential equation (fDE. Existence and uniqueness of the solution of such equation are discussed. We apply the finite element method (FEM to obtain the numerical solution of this equation using Galerkin approach. A comparison, through examples, between our techniques and other previous numerical methods is established.

  16. Finite Element Method for Linear Multiterm Fractional Differential Equations

    OpenAIRE

    Badr, Abdallah A.

    2012-01-01

    We consider the linear multiterm fractional differential equation (fDE). Existence and uniqueness of the solution of such equation are discussed. We apply the finite element method (FEM) to obtain the numerical solution of this equation using Galerkin approach. A comparison, through examples, between our techniques and other previous numerical methods is established.

  17. Lie point symmetries of differential-difference equations

    Energy Technology Data Exchange (ETDEWEB)

    Levi, D [Dipartimento di Ingegneria Elettronica, Universita degli Studi Roma Tre and Sezione INFN, Roma Tre, Via della Vasca Navale 84, 00146 Roma (Italy); Winternitz, P [Centre de recherches mathematiques et, Departement de mathematiques et statistique, Universite de Montreal, C.P. 6128, succ. Centre-ville, H3C 3J7, Montreal, Quebec (Canada); Yamilov, R I, E-mail: levi@roma3.infn.i, E-mail: wintern@crm.umontreal.c, E-mail: RvlYamilov@matem.anrb.r [Ufa Institute of Mathematics, Russian Academy of Sciences, 112 Chernyshevsky Street, Ufa 450008 (Russian Federation)

    2010-07-23

    We present an algorithm for determining the Lie point symmetries of differential equations on fixed non-transforming lattices, i.e. equations involving both continuous and discrete-independent variables. The symmetries of a specific integrable discretization of the Krichever-Novikov equation, the Toda lattice and Toda field theory are presented as examples of the general method. (fast track communication)

  18. Backward stochastic differential equations from linear to fully nonlinear theory

    CERN Document Server

    Zhang, Jianfeng

    2017-01-01

    This book provides a systematic and accessible approach to stochastic differential equations, backward stochastic differential equations, and their connection with partial differential equations, as well as the recent development of the fully nonlinear theory, including nonlinear expectation, second order backward stochastic differential equations, and path dependent partial differential equations. Their main applications and numerical algorithms, as well as many exercises, are included. The book focuses on ideas and clarity, with most results having been solved from scratch and most theories being motivated from applications. It can be considered a starting point for junior researchers in the field, and can serve as a textbook for a two-semester graduate course in probability theory and stochastic analysis. It is also accessible for graduate students majoring in financial engineering.

  19. Partial differential equations & boundary value problems with Maple

    CERN Document Server

    Articolo, George A

    2009-01-01

    Partial Differential Equations and Boundary Value Problems with Maple presents all of the material normally covered in a standard course on partial differential equations, while focusing on the natural union between this material and the powerful computational software, Maple. The Maple commands are so intuitive and easy to learn, students can learn what they need to know about the software in a matter of hours- an investment that provides substantial returns. Maple''s animation capabilities allow students and practitioners to see real-time displays of the solutions of partial differential equations.  Maple files can be found on the books website. Ancillary list: Maple files- http://www.elsevierdirect.com/companion.jsp?ISBN=9780123747327  Provides a quick overview of the software w/simple commands needed to get startedIncludes review material on linear algebra and Ordinary Differential equations, and their contribution in solving partial differential equationsIncorporates an early introduction to Sturm-L...

  20. Delay-differential equations and the Painlevé transcendents

    Science.gov (United States)

    Grammaticos, B.; Ramani, A.; Moreira, I. C.

    1993-07-01

    We apply the recently proposed integrability criterion for differential-difference systems (that blends the classical Painlevé analysis with singularity confinement for discrete systems) to a class of first-order differential-delay equations. Our analysis singles out the family of bi-Riccati equations, as integrability candidates. Among these equations that pass the test some are integrable in a straightforward way (usually by reduction to a standard Riccati equation for some transformed variable) while the remaining ones define new hysterodifferential forms of the Painlevé transcendental equations.

  1. 1/f Noise from nonlinear stochastic differential equations.

    Science.gov (United States)

    Ruseckas, J; Kaulakys, B

    2010-03-01

    We consider a class of nonlinear stochastic differential equations, giving the power-law behavior of the power spectral density in any desirably wide range of frequency. Such equations were obtained starting from the point process models of 1/fbeta noise. In this article the power-law behavior of spectrum is derived directly from the stochastic differential equations, without using the point process models. The analysis reveals that the power spectrum may be represented as a sum of the Lorentzian spectra. Such a derivation provides additional justification of equations, expands the class of equations generating 1/fbeta noise, and provides further insights into the origin of 1/fbeta noise.

  2. Modified Chebyshev Collocation Method for Solving Differential Equations

    Directory of Open Access Journals (Sweden)

    M Ziaul Arif

    2015-05-01

    Full Text Available This paper presents derivation of alternative numerical scheme for solving differential equations, which is modified Chebyshev (Vieta-Lucas Polynomial collocation differentiation matrices. The Scheme of modified Chebyshev (Vieta-Lucas Polynomial collocation method is applied to both Ordinary Differential Equations (ODEs and Partial Differential Equations (PDEs cases. Finally, the performance of the proposed method is compared with finite difference method and the exact solution of the example. It is shown that modified Chebyshev collocation method more effective and accurate than FDM for some example given.

  3. Neutral Backward Stochastic Functional Differential Equations and Their Application

    OpenAIRE

    Wei, Wenning

    2013-01-01

    In this paper we are concerned with a new type of backward equations with anticipation which we call neutral backward stochastic functional differential equations. We obtain the existence and uniqueness and prove a comparison theorem. As an application, we discuss the optimal control of neutral stochastic functional differential equations, establish a Pontryagin maximum principle, and give an explicit optimal value for the linear optimal control.

  4. Partial differential equations and systems related to Morrey spaces

    OpenAIRE

    Ragusa, Maria Alessandra

    2012-01-01

    This PhD thesis deals with the study of well posedness, existence and regularity properties of solutions of partial differential equations and systems. Preparatory to the study of partial differential equations is the action of some integral operators, that are extensively used. Such results are very useful to obtain regularity properties of solutions of elliptic, parabolic and ultraparabolic equations of second order with discontinuous  coefficients, and later of systems. The thesis consists...

  5. Parameter Estimation for Partial Differential Equations by Collage-Based Numerical Approximation

    Directory of Open Access Journals (Sweden)

    Xiaoyan Deng

    2009-01-01

    into a minimization problem of a function of several variables after the partial differential equation is approximated by a differential dynamical system. Then numerical schemes for solving this minimization problem are proposed, including grid approximation and ant colony optimization. The proposed schemes are applied to a parameter estimation problem for the Belousov-Zhabotinskii equation, and the results show that the proposed approximation method is efficient for both linear and nonlinear partial differential equations with respect to unknown parameters. At worst, the presented method provides an excellent starting point for traditional inversion methods that must first select a good starting point.

  6. Wong-Zakai approximations and center manifolds of stochastic differential equations

    Science.gov (United States)

    Shen, Jun; Lu, Kening

    2017-10-01

    In this paper, we study the Wong-Zakai approximations given by a stationary process via the Wiener shift and their associated dynamics of the stochastic differential equation driven by a l-dimensional Brownian motion. We prove that the solutions of Wong-Zakai approximations converge in the mean square to the solutions of the Stratonovich stochastic differential equation. We also show that for a simple multiplicative noise, the center-manifold of the Wong-Zakai approximations converges to the center-manifold of the Stratonovich stochastic differential equation.

  7. Oscillation theory of linear differential equations

    Czech Academy of Sciences Publication Activity Database

    Došlý, Ondřej

    2000-01-01

    Roč. 36, č. 5 (2000), s. 329-343 ISSN 0044-8753 R&D Projects: GA ČR GA201/98/0677 Keywords : discrete oscillation theory %Sturm-Liouville equation%Riccati equation Subject RIV: BA - General Mathematics

  8. Effective action for stochastic partial differential equations.

    Science.gov (United States)

    Hochberg, D; Molina-París, C; Pérez-Mercader, J; Visser, M

    1999-12-01

    Stochastic partial differential equations (SPDEs) are the basic tool for modeling systems where noise is important. SPDEs are used for models of turbulence, pattern formation, and the structural development of the universe itself. It is reasonably well known that certain SPDEs can be manipulated to be equivalent to (nonquantum) field theories that nevertheless exhibit deep and important relationships with quantum field theory. In this paper we systematically extend these ideas: We set up a functional integral formalism and demonstrate how to extract all the one-loop physics for an arbitrary SPDE subject to arbitrary Gaussian noise. It is extremely important to realize that Gaussian noise does not imply that the field variables undergo Gaussian fluctuations, and that these nonquantum field theories are fully interacting. The limitation to one loop is not as serious as might be supposed: Experience with quantum field theories (QFTs) has taught us that one-loop physics is often quite adequate to give a good description of the salient issues. The limitation to one loop does, however, offer marked technical advantages: Because at one loop almost any field theory can be rendered finite using zeta function technology, we can sidestep the complications inherent in the Martin-Siggia-Rose formalism (the SPDE analog of the Becchi-Rouet-Stora-Tyutin formalism used in QFT) and instead focus attention on a minimalist approach that uses only the physical fields (this "direct approach" is the SPDE analog of canonical quantization using physical fields). After setting up the general formalism for the characteristic functional (partition function), we show how to define the effective action to all loops, and then focus on the one-loop effective action and its specialization to constant fields: the effective potential. The physical interpretation of the effective action and effective potential for SPDEs is addressed and we show that key features carry over from QFT to the case of

  9. Solving Differential Equations Analytically. Elementary Differential Equations. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Unit 335.

    Science.gov (United States)

    Goldston, J. W.

    This unit introduces analytic solutions of ordinary differential equations. The objective is to enable the student to decide whether a given function solves a given differential equation. Examples of problems from biology and chemistry are covered. Problem sets, quizzes, and a model exam are included, and answers to all items are provided. The…

  10. Optimal Control Strategies in a Two Dimensional Differential Game Using Linear Equation under a Perturbed System

    Directory of Open Access Journals (Sweden)

    Musa Danjuma SHEHU

    2008-06-01

    Full Text Available This paper lays emphasis on formulation of two dimensional differential games via optimal control theory and consideration of control systems whose dynamics is described by a system of Ordinary Differential equation in the form of linear equation under the influence of two controls U(. and V(.. Base on this, strategies were constructed. Hence we determine the optimal strategy for a control say U(. under a perturbation generated by the second control V(. within a given manifold M.

  11. A comment on Thomas K. Burch's paper "Does demography need differential equations?

    NARCIS (Netherlands)

    Willekens, F.J.C.

    2011-01-01

    The structure of this commentary is as follows. First I discuss differential equations and show that they are more common in demography than is generally accepted, and that they can be used to develop theories of population dynamics. The integration of mathematical modeling with differential

  12. Dynamic Euler-Bernoulli Beam Equation: Classification and Reductions

    Directory of Open Access Journals (Sweden)

    R. Naz

    2015-01-01

    Full Text Available We study a dynamic fourth-order Euler-Bernoulli partial differential equation having a constant elastic modulus and area moment of inertia, a variable lineal mass density g(x, and the applied load denoted by f(u, a function of transverse displacement u(t,x. The complete Lie group classification is obtained for different forms of the variable lineal mass density g(x and applied load f(u. The equivalence transformations are constructed to simplify the determining equations for the symmetries. The principal algebra is one-dimensional and it extends to two- and three-dimensional algebras for an arbitrary applied load, general power-law, exponential, and log type of applied loads for different forms of g(x. For the linear applied load case, we obtain an infinite-dimensional Lie algebra. We recover the Lie symmetry classification results discussed in the literature when g(x is constant with variable applied load f(u. For the general power-law and exponential case the group invariant solutions are derived. The similarity transformations reduce the fourth-order partial differential equation to a fourth-order ordinary differential equation. For the power-law applied load case a compatible initial-boundary value problem for the clamped and free end beam cases is formulated. We deduce the fourth-order ordinary differential equation with appropriate initial and boundary conditions.

  13. Partial differential equations of mathematical physics and integral equations

    CERN Document Server

    Guenther, Ronald B

    1996-01-01

    This book was written to help mathematics students and those in the physical sciences learn modern mathematical techniques for setting up and analyzing problems. The mathematics used is rigorous, but not overwhelming, while the authors carefully model physical situations, emphasizing feedback among a beginning model, physical experiments, mathematical predictions, and the subsequent refinement and reevaluation of the physical model itself. Chapter 1 begins with a discussion of various physical problems and equations that play a central role in applications. The following chapters take up the t

  14. On the relation between elementary partial difference equations and partial differential equations

    NARCIS (Netherlands)

    van den Berg, I.P.

    1998-01-01

    The nonstandard stroboscopy method links discrete-time ordinary difference equations of first-order and continuous-time, ordinary differential equations of first order. We extend this method to the second order, and also to an elementary, yet general class of partial difference/differential

  15. An introduction to partial differential equations with Matlab

    CERN Document Server

    Coleman, Matthew P

    2013-01-01

    Introduction What are Partial Differential Equations? PDEs We Can Already Solve Initial and Boundary Conditions Linear PDEs-Definitions Linear PDEs-The Principle of Superposition Separation of Variables for Linear, Homogeneous PDEs Eigenvalue Problems The Big Three PDEsSecond-Order, Linear, Homogeneous PDEs with Constant CoefficientsThe Heat Equation and Diffusion The Wave Equation and the Vibrating String Initial and Boundary Conditions for the Heat and Wave EquationsLaplace's Equation-The Potential Equation Using Separation of Variables to Solve the Big Three PDEs Fourier Series Introduction

  16. Hilbert space methods in partial differential equations

    CERN Document Server

    Showalter, Ralph E

    1994-01-01

    This graduate-level text opens with an elementary presentation of Hilbert space theory sufficient for understanding the rest of the book. Additional topics include boundary value problems, evolution equations, optimization, and approximation.1979 edition.

  17. Solutions of system of P1 equations without use of auxiliary differential equations coupled

    International Nuclear Information System (INIS)

    Martinez, Aquilino Senra; Silva, Fernando Carvalho da; Cardoso, Carlos Eduardo Santos

    2000-01-01

    The system of P1 equations is composed by two equations coupled itself one for the neutron flux and other for the current. Usually this system is solved by definitions of two integrals parameters, which are named slowing down densities of the flux and the current. Hence, the system P1 can be change from integral to only two differential equations. However, there are two new differentials equations that may be solved with the initial system. The present work analyzes this procedure and studies a method, which solve the P1 equations directly, without definitions of slowing down densities. (author)

  18. Dynamic optimization and differential games

    CERN Document Server

    Friesz, Terry L

    2010-01-01

    Dynamic Optimization and Differential Games has been written to address the increasing number of Operations Research and Management Science problems that involve the explicit consideration of time and of gaming among multiple agents. With end-of-chapter exercises throughout, it is a book that can be used both as a reference and as a textbook. It will be useful as a guide to engineers, operations researchers, applied mathematicians and social scientists whose work involves both the theoretical and computational aspects of dynamic optimization and differential games. Included throughout the text are detailed explanations of several original dynamic and game-theoretic mathematical models which are of particular relevance in today's technologically-driven-global economy: revenue management, oligopoly pricing, production planning, supply chain management, dynamic traffic assignment and dynamic congestion pricing. The book emphasizes deterministic theory, computational tools and applications associated with the stu...

  19. An Efficient Series Solution for Nonlinear Multiterm Fractional Differential Equations

    Directory of Open Access Journals (Sweden)

    Moh’d Khier Al-Srihin

    2017-01-01

    Full Text Available In this paper, we introduce an efficient series solution for a class of nonlinear multiterm fractional differential equations of Caputo type. The approach is a generalization to our recent work for single fractional differential equations. We extend the idea of the Taylor series expansion method to multiterm fractional differential equations, where we overcome the difficulty of computing iterated fractional derivatives, which are difficult to be computed in general. The terms of the series are obtained sequentially using a closed formula, where only integer derivatives have to be computed. Several examples are presented to illustrate the efficiency of the new approach and comparison with the Adomian decomposition method is performed.

  20. Parameter Estimation in Stochastic Differential Equations; An Overview

    DEFF Research Database (Denmark)

    Nielsen, Jan Nygaard; Madsen, Henrik; Young, P. C.

    2000-01-01

    This paper presents an overview of the progress of research on parameter estimation methods for stochastic differential equations (mostly in the sense of Ito calculus) over the period 1981-1999. These are considered both without measurement noise and with measurement noise, where the discretely...... observed stochastic differential equations are embedded in a continuous-discrete time state space model. Every attempts has been made to include results from other scientific disciplines. Maximum likelihood estimation of parameters in nonlinear stochastic differential equations is in general not possible...

  1. Rational approximations to solutions of linear differential equations.

    Science.gov (United States)

    Chudnovsky, D V; Chudnovsky, G V

    1983-08-01

    Rational approximations of Padé and Padé type to solutions of differential equations are considered. One of the main results is a theorem stating that a simultaneous approximation to arbitrary solutions of linear differential equations over C(x) cannot be "better" than trivial ones implied by the Dirichlet box principle. This constitutes, in particular, the solution in the linear case of Kolchin's problem that the "Roth's theorem" holds for arbitrary solutions of algebraic differential equations. Complete effective proofs for several valuations are presented based on the Wronskian methods and graded subrings of Picard-Vessiot extensions.

  2. A neuro approach to solve fuzzy Riccati differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Shahrir, Mohammad Shazri, E-mail: mshazri@gmail.com [InstitutSainsMatematik, Universiti Malaya 50603 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur (Malaysia); Telekom Malaysia, R& D TM Innovation Centre, LingkaranTeknokrat Timur, 63000 Cyberjaya, Selangor (Malaysia); Kumaresan, N., E-mail: drnk2008@gmail.com; Kamali, M. Z. M.; Ratnavelu, Kurunathan [InstitutSainsMatematik, Universiti Malaya 50603 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur (Malaysia)

    2015-10-22

    There are many applications of optimal control theory especially in the area of control systems in engineering. In this paper, fuzzy quadratic Riccati differential equation is estimated using neural networks (NN). Previous works have shown reliable results using Runge-Kutta 4th order (RK4). The solution can be achieved by solving the 1st Order Non-linear Differential Equation (ODE) that is found commonly in Riccati differential equation. Research has shown improved results relatively to the RK4 method. It can be said that NN approach shows promising results with the advantage of continuous estimation and improved accuracy that can be produced over RK4.

  3. Numerical method for solving stochastic differential equations with dichotomous noise.

    Science.gov (United States)

    Kim, Changho; Lee, Eok Kyun; Talkner, Peter

    2006-02-01

    We propose a numerical method for solving stochastic differential equations with dichotomous Markov noise. The numerical scheme is formulated such that (i) the stochastic formula used follows the Stratonovich-Taylor form over the entire range of noise correlation times, including the Gaussian white noise limit; and (ii) the method is readily applicable to dynamical systems driven by arbitrary types of noise, provided there exists a way to describe the random increment of the stochastic process expressed in the Stratonovich-Taylor form. We further propose a simplified Taylor scheme that significantly reduces the computation time, while still satisfying the moment properties up to the required order. The accuracies and efficiencies of the proposed algorithms are validated by applying the schemes to two prototypical model systems that possess analytical solutions.

  4. Ordinary differential equations with applications in molecular biology.

    Science.gov (United States)

    Ilea, M; Turnea, M; Rotariu, M

    2012-01-01

    Differential equations are of basic importance in molecular biology mathematics because many biological laws and relations appear mathematically in the form of a differential equation. In this article we presented some applications of mathematical models represented by ordinary differential equations in molecular biology. The vast majority of quantitative models in cell and molecular biology are formulated in terms of ordinary differential equations for the time evolution of concentrations of molecular species. Assuming that the diffusion in the cell is high enough to make the spatial distribution of molecules homogenous, these equations describe systems with many participating molecules of each kind. We propose an original mathematical model with small parameter for biological phospholipid pathway. All the equations system includes small parameter epsilon. The smallness of epsilon is relative to the size of the solution domain. If we reduce the size of the solution region the same small epsilon will result in a different condition number. It is clear that the solution for a smaller region is less difficult. We introduce the mathematical technique known as boundary function method for singular perturbation system. In this system, the small parameter is an asymptotic variable, different from the independent variable. In general, the solutions of such equations exhibit multiscale phenomena. Singularly perturbed problems form a special class of problems containing a small parameter which may tend to zero. Many molecular biology processes can be quantitatively characterized by ordinary differential equations. Mathematical cell biology is a very active and fast growing interdisciplinary area in which mathematical concepts, techniques, and models are applied to a variety of problems in developmental medicine and bioengineering. Among the different modeling approaches, ordinary differential equations (ODE) are particularly important and have led to significant advances

  5. Handbook of Nonlinear Partial Differential Equations

    CERN Document Server

    Polyanin, Andrei D

    2011-01-01

    New to the Second Edition More than 1,000 pages with over 1,500 new first-, second-, third-, fourth-, and higher-order nonlinear equations with solutions Parabolic, hyperbolic, elliptic, and other systems of equations with solutions Some exact methods and transformations Symbolic and numerical methods for solving nonlinear PDEs with Maple(t), Mathematica(R), and MATLAB(R) Many new illustrative examples and tables A large list of references consisting of over 1,300 sources To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology. They

  6. Modelos matemáticos para la evaluación económica: los modelos dinámicos basados en ecuaciones diferenciales Mathematical models for economic evaluation: dynamic models based on differential equations

    Directory of Open Access Journals (Sweden)

    Roberto Pradas Velasco

    2009-10-01

    Full Text Available La utilización conjunta de árboles de decisión y modelos epidemiológicos basados en ecuaciones diferenciales es un método apropiado para la evaluación económica de medidas profilácticas ante enfermedades infecciosas. Estos modelos permiten combinar el comportamiento dinámico de la enfermedad con el consumo de recursos sanitarios. Para ilustrar este tipo de modelos se ajusta un sistema dinámico de ecuaciones diferenciales al comportamiento epidémico de la gripe en España, con el fin de proyectar el impacto epidemiológico de la vacunación antigripal. Los resultados del modelo dinámico se implementan en un diagrama con estructura de árbol para medir el consumo de recursos sanitarios y su repercusión en términos monetarios.The joint utilization of both decision trees and epidemiological models based on differential equations is an appropriate method for the economic evaluation of preventative interventions applied to infectious diseases. These models can combine the dynamic pattern of the disease together with health resource consumption. To illustrate this type of model, we adjusted a dynamic system of differential equations to the epidemic behavior of influenza in Spain, with a view to projecting the epidemiologic impact of influenza vaccination. The results of the epidemic model are implemented in a diagram with the structure of a decision tree so that health resource consumption and the economic implications can be calculated.

  7. On the Existence and the Applications of Modified Equations for Stochastic Differential Equations

    KAUST Repository

    Zygalakis, K. C.

    2011-01-01

    In this paper we describe a general framework for deriving modified equations for stochastic differential equations (SDEs) with respect to weak convergence. Modified equations are derived for a variety of numerical methods, such as the Euler or the Milstein method. Existence of higher order modified equations is also discussed. In the case of linear SDEs, using the Gaussianity of the underlying solutions, we derive an SDE which the numerical method solves exactly in the weak sense. Applications of modified equations in the numerical study of Langevin equations is also discussed. © 2011 Society for Industrial and Applied Mathematics.

  8. Degenerate parabolic stochastic partial differential equations

    Czech Academy of Sciences Publication Activity Database

    Hofmanová, Martina

    2013-01-01

    Roč. 123, č. 12 (2013), s. 4294-4336 ISSN 0304-4149 R&D Projects: GA ČR GAP201/10/0752 Institutional support: RVO:67985556 Keywords : kinetic solutions * degenerate stochastic parabolic equations Subject RIV: BA - General Mathematics Impact factor: 1.046, year: 2013 http://library.utia.cas.cz/separaty/2013/SI/hofmanova-0397241.pdf

  9. Symmetries of nonlinear ordinary differential equations: The ...

    Indian Academy of Sciences (India)

    2015-10-21

    Oct 21, 2015 ... Abstract. Lie symmetry analysis is one of the powerful tools to analyse nonlinear ordinary dif- ferential equations. We review the effectiveness of this method in terms of various symmetries. We present the method of deriving Lie point symmetries, contact symmetries, hidden symmetries, nonlocal symmetries ...

  10. Partial differential equations and boundary-value problems with applications

    CERN Document Server

    Pinsky, Mark A

    2011-01-01

    Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems-rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate th

  11. Hadamard-type fractional differential equations, inclusions and inequalities

    CERN Document Server

    Ahmad, Bashir; Ntouyas, Sotiris K; Tariboon, Jessada

    2017-01-01

    This book focuses on the recent development of fractional differential equations, integro-differential equations, and inclusions and inequalities involving the Hadamard derivative and integral. Through a comprehensive study based in part on their recent research, the authors address the issues related to initial and boundary value problems involving Hadamard type differential equations and inclusions as well as their functional counterparts. The book covers fundamental concepts of multivalued analysis and introduces a new class of mixed initial value problems involving the Hadamard derivative and Riemann-Liouville fractional integrals. In later chapters, the authors discuss nonlinear Langevin equations as well as coupled systems of Langevin equations with fractional integral conditions. Focused and thorough, this book is a useful resource for readers and researchers interested in the area of fractional calculus.

  12. Bubble dynamics equations in Newton fluid

    International Nuclear Information System (INIS)

    Xiao, J

    2008-01-01

    For the high-speed flow of Newton fluid, bubble is produced and expanded when it moves toward the surface of fluid. Bubble dynamics is a very important research field to understand the intrinsic feature of bubble production and motion. This research formulates the bubble expansion by expansion-local rotation transformation, which can be calculated by the measured velocity field. Then, the related dynamic equations are established to describe the interaction between the fluid and the bubble. The research shows that the bubble production condition can be expressed by critical vortex value and fluid pressure; and the bubble expansion rate can be obtained by solving the non-linear dynamic equation of bubble motion. The results may help the related research as it shows a special kind of fluid motion in theoretic sense. As an application example, the nanofiber radium-voltage relation and threshold voltage-surface tension relation in electrospinning process are discussed

  13. An oscillation criterion for inhomogeneous Stieltjes integro-differential equations

    Directory of Open Access Journals (Sweden)

    M. A. El-Sayed

    1994-01-01

    Full Text Available The aim of the paper is to give an oscillation theorem for inhomogeneous Stieltjes integro-differential equation of the form p(tx′+∫atx(sdσ=f(t. The paper generalizes the author's work [2].

  14. On the monodromy group for the super Schwarzian differential equation

    International Nuclear Information System (INIS)

    Uehara, Shozo; Yasui, Yukinori.

    1991-03-01

    We calculate the first variation of the monodromy group associated with a super Schwarzian differential equation. The relation between the monodromy period and the Fenchel-Nielsen deformation of a super Riemann surface is presented. (author)

  15. Introduction to partial differential equations and Hilbert space methods

    CERN Document Server

    Gustafson, Karl E

    1997-01-01

    Easy-to-use text examines principal method of solving partial differential equations, 1st-order systems, computation methods, and much more. Over 600 exercises, with answers for many. Ideal for a 1-semester or full-year course.

  16. Symmetry of solutions of differential equations Mythily Ramaswamy ...

    Indian Academy of Sciences (India)

    2007-11-02

    .. • crystals, plants, flowers, insects....... • yet, there are symmetry break ups ! • When is a profile symmetric ? • If a physical phenomenon is modelled by a differential equation, when is the solution symmetric? • Can we ...

  17. A system of abstract measure delay differential equations

    Directory of Open Access Journals (Sweden)

    Bapurao Dhage

    2003-01-01

    Full Text Available In this paper existence and uniqueness results for an abstract measure delay differential equation are proved, by using Leray-Schauder nonlinear alternative, under Carathéodory conditions.

  18. Lectures on the practical solution of differential equations

    International Nuclear Information System (INIS)

    Dresner, L.

    1979-11-01

    This report comprises lectures on the practical solution of ordinary and partial differential equations given in the In-Hours Continuing Education Program for Scientific and Technical Personnel at Oak Ridge National Laboratory

  19. Existence and uniqueness of solutions to impulsive fractional differential equations

    Directory of Open Access Journals (Sweden)

    Boualem Attou Slimani

    2009-01-01

    Full Text Available In this article, we establish sufficient conditions for the existence of solutions for a class of initial value problem for impulsive fractional differential equations involving the Caputo fractional derivative.

  20. Multiple solutions for nonresonance impulsive functional differential equations

    Directory of Open Access Journals (Sweden)

    Mouffak Benchohra

    2003-05-01

    Full Text Available In this paper we investigate the existence of multiple solutions for first and second order impulsive functional differential equations with boundary conditions. Our main tool is the Leggett and Williams fixed point theorem.

  1. A new numerical approximation of the fractal ordinary differential equation

    Science.gov (United States)

    Atangana, Abdon; Jain, Sonal

    2018-02-01

    The concept of fractal medium is present in several real-world problems, for instance, in the geological formation that constitutes the well-known subsurface water called aquifers. However, attention has not been quite devoted to modeling for instance, the flow of a fluid within these media. We deem it important to remind the reader that the concept of fractal derivative is not to represent the fractal sharps but to describe the movement of the fluid within these media. Since this class of ordinary differential equations is highly complex to solve analytically, we present a novel numerical scheme that allows to solve fractal ordinary differential equations. Error analysis of the method is also presented. Application of the method and numerical approximation are presented for fractal order differential equation. The stability and the convergence of the numerical schemes are investigated in detail. Also some exact solutions of fractal order differential equations are presented and finally some numerical simulations are presented.

  2. Stability of quasi-linear differential equations with transition conditions

    Directory of Open Access Journals (Sweden)

    Yubin Liu

    2008-08-01

    Full Text Available This paper investigates the stability of quasi-linear differential equations on certain time scales with transition condition (DETC. We establish Sufficient conditions for stability and illustrate our results with examples.

  3. Periodic solutions and bifurcations of delay-differential equations

    International Nuclear Information System (INIS)

    He Jihuan

    2005-01-01

    In this Letter a simple but effective iteration method is proposed to search for limit cycles or bifurcation curves of delay-differential equations. An example is given to illustrate its convenience and effectiveness

  4. International Conference on Differential Equations and Nonlinear Mechanics

    CERN Document Server

    2001-01-01

    The International Conference on Differential Equations and Nonlinear Mechanics was hosted by the University of Central Florida in Orlando from March 17-19, 1999. One of the conference days was dedicated to Professor V. Lakshmikantham in th honor of his 75 birthday. 50 well established professionals (in differential equations, nonlinear analysis, numerical analysis, and nonlinear mechanics) attended the conference from 13 countries. Twelve of the attendees delivered hour long invited talks and remaining thirty-eight presented invited forty-five minute talks. In each of these talks, the focus was on the recent developments in differential equations and nonlinear mechanics and their applications. This book consists of 29 papers based on the invited lectures, and I believe that it provides a good selection of advanced topics of current interest in differential equations and nonlinear mechanics. I am indebted to the Department of Mathematics, College of Arts and Sciences, Department of Mechanical, Materials and Ae...

  5. An introduction to neural network methods for differential equations

    CERN Document Server

    Yadav, Neha; Kumar, Manoj

    2015-01-01

    This book introduces a variety of neural network methods for solving differential equations arising in science and engineering. The emphasis is placed on a deep understanding of the neural network techniques, which has been presented in a mostly heuristic and intuitive manner. This approach will enable the reader to understand the working, efficiency and shortcomings of each neural network technique for solving differential equations. The objective of this book is to provide the reader with a sound understanding of the foundations of neural networks, and a comprehensive introduction to neural network methods for solving differential equations together with recent developments in the techniques and their applications. The book comprises four major sections. Section I consists of a brief overview of differential equations and the relevant physical problems arising in science and engineering. Section II illustrates the history of neural networks starting from their beginnings in the 1940s through to the renewed...

  6. Fractional differential equation with the fuzzy initial condition

    Directory of Open Access Journals (Sweden)

    Sadia Arshad

    2011-02-01

    Full Text Available In this paper we study the existence and uniqueness of the solution for a class of fractional differential equation with fuzzy initial value. The fractional derivatives are considered in the Riemann-Liouville sense.

  7. Analytical solution of differential equation with cubic nonlinearity

    OpenAIRE

    Инхиреева, Т. А.; Козловских, Александр Владимирович

    2016-01-01

    This paper considers method of Cauchy problem solution for nonlinear differential equation. Source of solution error and way of eliminating it is studied. Solution obtained with suggestedmethod is compared with solution obtained with built-in MATLAB functions.

  8. Delay differential equations recent advances and new directions

    CERN Document Server

    Balachandran, Balakumar; Gilsinn, David E

    2009-01-01

    This is a cohesive set of contributions from leading experts on the theory and applications of functional and delay differential equations. The book focuses on theory, symbolic, and numerical methods, which show the practical applications of the concepts.

  9. On the transformations of the dynamical equations

    Science.gov (United States)

    Levi-Civita, T.

    2009-08-01

    In this issue we bring to the reader’s attention a translation of Levi-Civita’s work “Sulle trasformazioni delle equazioni dinamiche”. This paper, written by Levi-Civita at the onset of his career, is remarkable in many respects. Both the main result and the method developed in the paper brought the author in line with the greatest mathematicians of his day and seriously influenced the further progress of geometry and the theory of integrable systems. Speaking modern language the main result of his paper is the deduction of the general geodesic equivalence equation in invariant form and local classification of geodesically equivalent Riemannian metrics in the case of arbitrary dimension, i.e., metrics having the same geodesics considered as unparameterized curves (this classification problem was formulated by Beltrami in 1865). Levi-Civita’s work produced a great impact on further development of the theory of geodesically equivalent metrics and geodesic mappings, and still remains one of the most important tools in this area of differential geometry. In this paper the author uses a new method based on the concept of Riemannian connection, which later has been also referred to as the Levi-Civita connection. This paper is truly a pioneering work in the sense that the real power of covariant differentiation techniques in solving a concrete and highly nontrivial problem from the theory of dynamical systems was demonstrated. The author skillfully operates and weaves together many of the most advanced (for that times) algebraic, geometric and analytic methods. Moreover, an attentive reader can also notice several forerunning ideas of the method of moving frames, which was developed a few decades later by E. Cartan. We hope that the reader will appreciate the style of exposition as well. This work, focused on the essence of the problem and free of manipulation with abstract mathematical terms, is a good example of a classical text of the late 19th century. Owing

  10. Linear matrix differential equations of higher-order and applications

    Directory of Open Access Journals (Sweden)

    Mustapha Rachidi

    2008-07-01

    Full Text Available In this article, we study linear differential equations of higher-order whose coefficients are square matrices. The combinatorial method for computing the matrix powers and exponential is adopted. New formulas representing auxiliary results are obtained. This allows us to prove properties of a large class of linear matrix differential equations of higher-order, in particular results of Apostol and Kolodner are recovered. Also illustrative examples and applications are presented.

  11. Symmetries of stochastic differential equations: A geometric approach

    Energy Technology Data Exchange (ETDEWEB)

    De Vecchi, Francesco C., E-mail: francesco.devecchi@unimi.it; Ugolini, Stefania, E-mail: stefania.ugolini@unimi.it [Dipartimento di Matematica, Università degli Studi di Milano, via Saldini 50, Milano (Italy); Morando, Paola, E-mail: paola.morando@unimi.it [DISAA, Università degli Studi di Milano, via Celoria 2, Milano (Italy)

    2016-06-15

    A new notion of stochastic transformation is proposed and applied to the study of both weak and strong symmetries of stochastic differential equations (SDEs). The correspondence between an algebra of weak symmetries for a given SDE and an algebra of strong symmetries for a modified SDE is proved under suitable regularity assumptions. This general approach is applied to a stochastic version of a two dimensional symmetric ordinary differential equation and to the case of two dimensional Brownian motion.

  12. Fractional differential equations solved by using Mellin transform

    OpenAIRE

    Butera, Salvatore; Di Paola, Mario

    2014-01-01

    In this paper, the solution of the multi-order differential equations, by using Mellin Transform, is proposed. It is shown that the problem related to the shift of the real part of the argument of the transformed function, arising when the Mellin integral operates on the fractional derivatives, may be overcame. Then, the solution may be found for any fractional differential equation involving multi-order fractional derivatives (or integrals). The solution is found in the Mellin domain, by sol...

  13. Approximate Method for Solving the Linear Fuzzy Delay Differential Equations

    Directory of Open Access Journals (Sweden)

    S. Narayanamoorthy

    2015-01-01

    Full Text Available We propose an algorithm of the approximate method to solve linear fuzzy delay differential equations using Adomian decomposition method. The detailed algorithm of the approach is provided. The approximate solution is compared with the exact solution to confirm the validity and efficiency of the method to handle linear fuzzy delay differential equation. To show this proper features of this proposed method, numerical example is illustrated.

  14. Numerical Analysis for Stochastic Partial Differential Delay Equations with Jumps

    OpenAIRE

    Li, Yan; Hu, Junhao

    2013-01-01

    We investigate the convergence rate of Euler-Maruyama method for a class of stochastic partial differential delay equations driven by both Brownian motion and Poisson point processes. We discretize in space by a Galerkin method and in time by using a stochastic exponential integrator. We generalize some results of Bao et al. (2011) and Jacob et al. (2009) in finite dimensions to a class of stochastic partial differential delay equations with jumps in infinite dimensions.

  15. Analytical approach for the Floquet theory of delay differential equations.

    Science.gov (United States)

    Simmendinger, C; Wunderlin, A; Pelster, A

    1999-05-01

    We present an analytical approach to deal with nonlinear delay differential equations close to instabilities of time periodic reference states. To this end we start with approximately determining such reference states by extending the Poincaré-Lindstedt and the Shohat expansions, which were originally developed for ordinary differential equations. Then we systematically elaborate a linear stability analysis around a time periodic reference state. This allows us to approximately calculate the Floquet eigenvalues and their corresponding eigensolutions by using matrix valued continued fractions.

  16. Stochastic functional differential equations and sensitivity to their initial path

    OpenAIRE

    Baños, David R.; Di Nunno, Giulia; Haferkorn, Hannes; Proske, Frank

    2017-01-01

    We consider systems with memory represented by stochastic functional differential equations. Substantially, these are stochastic differential equations with coefficients depending on the past history of the process itself. Such coefficients are hence defined on a functional space. Models with memory appear in many applications ranging from biology to finance. Here we consider the results of some evaluations based on these models (e.g. the prices of some financial products) and the risks conne...

  17. LINEAR MULTIFRACTIONAL STOCHASTIC VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

    OpenAIRE

    Nguyen, Tien Dung

    2013-01-01

    In this paper we prove the variation of parameters formula for linear Volterra integro-differential equations driven by multifractional Brownian motion. To do this, an approximate result for the Stratonovich stochastic integral with respect to the multifractional Brownian motion is given. Based on our obtained results we study almost surely exponentially convergence of the solution. Also, the existence and uniqueness of the solution of a multifractional Volterra integro-differential equation ...

  18. On weak solutions of stochastic differential equations II

    Czech Academy of Sciences Publication Activity Database

    Hofmanová, Martina; Seidler, Jan

    2013-01-01

    Roč. 31, č. 4 (2013), s. 663-670 ISSN 0736-2994 R&D Projects: GA ČR GAP201/10/0752 Institutional support: RVO:67985556 Keywords : fractional integrals * stochastic differential equations * weak solutions Subject RIV: BA - General Mathematics Impact factor: 0.664, year: 2013 http://library.utia.cas.cz/separaty/2013/SI/hofmanova-on weak solutions of stochastic differential equations II.pdf

  19. Comment on "Numerical methods for stochastic differential equations".

    Science.gov (United States)

    Burrage, Kevin; Burrage, Pamela; Higham, Desmond J; Kloeden, Peter E; Platen, Eckhard

    2006-12-01

    Wilkie [Phys. Rev. E 70, 017701 (2004)] used a heuristic approach to derive Runge-Kutta-based numerical methods for stochastic differential equations based on methods used for solving ordinary differential equations. The aim was to follow solution paths with high order. We point out that this approach is invalid in the general case and does not lead to high order methods. We warn readers against the inappropriate use of deterministic calculus in a stochastic setting.

  20. Illness-death model: statistical perspective and differential equations.

    Science.gov (United States)

    Brinks, Ralph; Hoyer, Annika

    2018-01-27

    The aim of this work is to relate the theory of stochastic processes with the differential equations associated with multistate (compartment) models. We show that the Kolmogorov Forward Differential Equations can be used to derive a relation between the prevalence and the transition rates in the illness-death model. Then, we prove mathematical well-definedness and epidemiological meaningfulness of the prevalence of the disease. As an application, we derive the incidence of diabetes from a series of cross-sections.

  1. CIME course on Control of Partial Differential Equations

    CERN Document Server

    Alabau-Boussouira, Fatiha; Glass, Olivier; Le Rousseau, Jérôme; Zuazua, Enrique

    2012-01-01

    The term “control theory” refers to the body of results - theoretical, numerical and algorithmic - which have been developed to influence the evolution of the state of a given system in order to meet a prescribed performance criterion. Systems of interest to control theory may be of very different natures. This monograph is concerned with models that can be described by partial differential equations of evolution. It contains five major contributions and is connected to the CIME Course on Control of Partial Differential Equations that took place in Cetraro (CS, Italy), July 19 - 23, 2010.  Specifically, it covers the stabilization of evolution equations, control of the Liouville equation, control in fluid mechanics, control and numerics for the wave equation, and Carleman estimates for elliptic and parabolic equations with application to control. We are confident this work will provide an authoritative reference work for all scientists who are interested in this field, representing at the same time a fri...

  2. Discontinuous Galerkin finite element methods for hyperbolic differential equations

    NARCIS (Netherlands)

    van der Vegt, Jacobus J.W.; van der Ven, H.; Boelens, O.J.; Boelens, O.J.; Toro, E.F.

    2002-01-01

    In this paper a suryey is given of the important steps in the development of discontinuous Galerkin finite element methods for hyperbolic partial differential equations. Special attention is paid to the application of the discontinuous Galerkin method to the solution of the Euler equations of gas

  3. Analysis of solutions of a nonlinear scalar field differential equation

    Science.gov (United States)

    Muhamadiev, E. M.; Naimov, A. N.

    2017-10-01

    We consider a nonlinear differential equation arising in mathematical models of elementary particle theory. For this equation, we examine questions of the extendability of solutions, the boundedness of solutions at infinity, and the search for new conditions for the existence of a positive particle-like solution.

  4. Stability of Vector Functional Differential Equations: A Survey | Gil ...

    African Journals Online (AJOL)

    This paper is a survey of the recent results of the author on the stability of linear and nonlinear vector differential equations with delay. Explicit conditions for the exponential and absolute stabilities are derived. Moreover, solution estimates for the considered equations are established. They provide the bounds for the regions ...

  5. Stochastic PDEs and Infinite Horizon Backward Doubly Stochastic Differential Equations

    Directory of Open Access Journals (Sweden)

    Bo Zhu

    2012-01-01

    Full Text Available We give a sufficient condition on the coefficients of a class of infinite horizon BDSDEs, under which the infinite horizon BDSDEs have a unique solution for any given square integrable terminal values. We also show continuous dependence theorem and convergence theorem for this kind of equations. A probabilistic interpretation for solutions to a class of stochastic partial differential equations is given.

  6. The Numerical Solution of an Abelian Ordinary Differential Equation ...

    African Journals Online (AJOL)

    In this paper we present a relatively new technique call theNew Hybrid of Adomian decomposition method (ADM) for solution of an Abelian Differential equation. The numerical results of the equation have been obtained in terms of convergent series with easily computable component. These methods are applied to solve ...

  7. Effect of Differential Item Functioning on Test Equating

    Science.gov (United States)

    Kabasakal, Kübra Atalay; Kelecioglu, Hülya

    2015-01-01

    This study examines the effect of differential item functioning (DIF) items on test equating through multilevel item response models (MIRMs) and traditional IRMs. The performances of three different equating models were investigated under 24 different simulation conditions, and the variables whose effects were examined included sample size, test…

  8. Exact solutions of some nonlinear partial differential equations using ...

    Indian Academy of Sciences (India)

    The functional variable method is a powerful solution method for obtaining exact solutions of some nonlinear partial differential equations. In this paper, the functional variable method is used to establish exact solutions of the generalized forms of Klein–Gordon equation, the (2 + 1)-dimensional Camassa–Holm ...

  9. Numerical solution of stiff systems of ordinary differential equations with applications to electronic circuits

    Science.gov (United States)

    Rosenbaum, J. S.

    1971-01-01

    Systems of ordinary differential equations in which the magnitudes of the eigenvalues (or time constants) vary greatly are commonly called stiff. Such systems of equations arise in nuclear reactor kinetics, the flow of chemically reacting gas, dynamics, control theory, circuit analysis and other fields. The research reported develops an A-stable numerical integration technique for solving stiff systems of ordinary differential equations. The method, which is called the generalized trapezoidal rule, is a modification of the trapezoidal rule. However, the method is computationally more efficient than the trapezoidal rule when the solution of the almost-discontinuous segments is being calculated.

  10. Effective evolution equations from quantum dynamics

    CERN Document Server

    Benedikter, Niels; Schlein, Benjamin

    2016-01-01

    These notes investigate the time evolution of quantum systems, and in particular the rigorous derivation of effective equations approximating the many-body Schrödinger dynamics in certain physically interesting regimes. The focus is primarily on the derivation of time-dependent effective theories (non-equilibrium question) approximating many-body quantum dynamics. The book is divided into seven sections, the first of which briefly reviews the main properties of many-body quantum systems and their time evolution. Section 2 introduces the mean-field regime for bosonic systems and explains how the many-body dynamics can be approximated in this limit using the Hartree equation. Section 3 presents a method, based on the use of coherent states, for rigorously proving the convergence towards the Hartree dynamics, while the fluctuations around the Hartree equation are considered in Section 4. Section 5 focuses on a discussion of a more subtle regime, in which the many-body evolution can be approximated by means of t...

  11. Chaotic dynamics and diffusion in a piecewise linear equation

    International Nuclear Information System (INIS)

    Shahrear, Pabel; Glass, Leon; Edwards, Rod

    2015-01-01

    Genetic interactions are often modeled by logical networks in which time is discrete and all gene activity states update simultaneously. However, there is no synchronizing clock in organisms. An alternative model assumes that the logical network is preserved and plays a key role in driving the dynamics in piecewise nonlinear differential equations. We examine dynamics in a particular 4-dimensional equation of this class. In the equation, two of the variables form a negative feedback loop that drives a second negative feedback loop. By modifying the original equations by eliminating exponential decay, we generate a modified system that is amenable to detailed analysis. In the modified system, we can determine in detail the Poincaré (return) map on a cross section to the flow. By analyzing the eigenvalues of the map for the different trajectories, we are able to show that except for a set of measure 0, the flow must necessarily have an eigenvalue greater than 1 and hence there is sensitive dependence on initial conditions. Further, there is an irregular oscillation whose amplitude is described by a diffusive process that is well-modeled by the Irwin-Hall distribution. There is a large class of other piecewise-linear networks that might be analyzed using similar methods. The analysis gives insight into possible origins of chaotic dynamics in periodically forced dynamical systems

  12. Chaotic dynamics and diffusion in a piecewise linear equation

    Science.gov (United States)

    Shahrear, Pabel; Glass, Leon; Edwards, Rod

    2015-03-01

    Genetic interactions are often modeled by logical networks in which time is discrete and all gene activity states update simultaneously. However, there is no synchronizing clock in organisms. An alternative model assumes that the logical network is preserved and plays a key role in driving the dynamics in piecewise nonlinear differential equations. We examine dynamics in a particular 4-dimensional equation of this class. In the equation, two of the variables form a negative feedback loop that drives a second negative feedback loop. By modifying the original equations by eliminating exponential decay, we generate a modified system that is amenable to detailed analysis. In the modified system, we can determine in detail the Poincaré (return) map on a cross section to the flow. By analyzing the eigenvalues of the map for the different trajectories, we are able to show that except for a set of measure 0, the flow must necessarily have an eigenvalue greater than 1 and hence there is sensitive dependence on initial conditions. Further, there is an irregular oscillation whose amplitude is described by a diffusive process that is well-modeled by the Irwin-Hall distribution. There is a large class of other piecewise-linear networks that might be analyzed using similar methods. The analysis gives insight into possible origins of chaotic dynamics in periodically forced dynamical systems.

  13. Numerical Analysis of Partial Differential Equations

    CERN Document Server

    Lions, Jacques-Louis

    2011-01-01

    S. Albertoni: Alcuni metodi di calcolo nella teoria della diffusione dei neutroni.- I. Babuska: Optimization and numerical stability in computations.- J.H. Bramble: Error estimates in elliptic boundary value problems.- G. Capriz: The numerical approach to hydrodynamic problems.- A. Dou: Energy inequalities in an elastic cylinder.- T. Doupont: On the existence of an iterative method for the solution of elliptic difference equation with an improved work estimate.- J. Douglas, J.R. Cannon: The approximation of harmonic and parabolic functions of half-spaces from interior data.- B.E. Hubbard: Erro

  14. Adaptive solution of partial differential equations in multiwavelet bases

    International Nuclear Information System (INIS)

    Alpert, B.; Beylkin, G.; Gines, D.; Vozovoi, L.

    2002-01-01

    We construct multiresolution representations of derivative and exponential operators with linear boundary conditions in multiwavelet bases and use them to develop a simple, adaptive scheme for the solution of nonlinear, time-dependent partial differential equations. The emphasis on hierarchical representations of functions on intervals helps to address issues of both high-order approximation and efficient application of integral operators, and the lack of regularity of multiwavelets does not preclude their use in representing differential operators. Comparisons with finite difference, finite element, and spectral element methods are presented, as are numerical examples with the heat equation and Burgers' equation

  15. Similarity analysis of differential equations by Lie group.

    Science.gov (United States)

    Na, T. Y.; Hansen, A. G.

    1971-01-01

    Methods for transforming partial differential equations into forms more suitable for analysis and solution are investigated. The idea of Lie's infinitesimal contact transformation group is introduced to develop a systematic method which involves mostly algebraic manipulations. A thorough presentation of the application of this general method to the problem of similarity analysis in a broader sense - namely, the similarity between partial and ordinary differential equations, boundary value and initial value problems, and nonlinear and linear equations - is given with new and very general methods evolved for deriving the possible groups of transformations.

  16. Plane waves and spherical means applied to partial differential equations

    CERN Document Server

    John, Fritz

    2004-01-01

    Elementary and self-contained, this heterogeneous collection of results on partial differential equations employs certain elementary identities for plane and spherical integrals of an arbitrary function, showing how a variety of results on fairly general differential equations follow from those identities. The first chapter deals with the decomposition of arbitrary functions into functions of the type of plane waves. Succeeding chapters introduce the first application of the Radon transformation and examine the solution of the initial value problem for homogeneous hyperbolic equations with con

  17. Machine learning of linear differential equations using Gaussian processes

    Science.gov (United States)

    Raissi, Maziar; Perdikaris, Paris; Karniadakis, George Em

    2017-11-01

    This work leverages recent advances in probabilistic machine learning to discover governing equations expressed by parametric linear operators. Such equations involve, but are not limited to, ordinary and partial differential, integro-differential, and fractional order operators. Here, Gaussian process priors are modified according to the particular form of such operators and are employed to infer parameters of the linear equations from scarce and possibly noisy observations. Such observations may come from experiments or "black-box" computer simulations, as demonstrated in several synthetic examples and a realistic application in functional genomics.

  18. Reflected backward stochastic differential equations in an orthant

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    differential games and economics. Recently backward stochastic differential equations with reflecting barrier have been studied by El Karoui et al [5] and Cvitanic and Karatzas. [1] in the one-dimensional case; and by Gegout-Petit and Pardoux [7] in a convex domain in higher dimensions; these works concern the case of ...

  19. Galois Theory of Differential Equations, Algebraic Groups and Lie Algebras

    NARCIS (Netherlands)

    Put, Marius van der

    1999-01-01

    The Galois theory of linear differential equations is presented, including full proofs. The connection with algebraic groups and their Lie algebras is given. As an application the inverse problem of differential Galois theory is discussed. There are many exercises in the text.

  20. A series solution of fuzzy integro-differential equations

    Directory of Open Access Journals (Sweden)

    S. Abbasbandy

    2012-11-01

    Full Text Available In this work we have used the homotopy analysis method (HAM to obtain solution of fuzzy integro-differential equation (FIDE under Hukuhara differentiability. In this paper for first time, $hbar$-mesh curve introduced for solving FIDE. Also some examples illustrate high efficiency and precision of HAM.

  1. A series solution of fuzzy integro-differential equations

    OpenAIRE

    S. Abbasbandy; M.S. Hashemi

    2012-01-01

    In this work we have used the homotopy analysis method (HAM) to obtain solution of fuzzy integro-differential equation (FIDE) under Hukuhara differentiability. In this paper for first time, $hbar$-mesh curve introduced for solving FIDE. Also some examples illustrate high efficiency and precision of HAM.

  2. Asymptotic behavior of second-order impulsive differential equations

    Directory of Open Access Journals (Sweden)

    Haifeng Liu

    2011-02-01

    Full Text Available In this article, we study the asymptotic behavior of all solutions of 2-th order nonlinear delay differential equation with impulses. Our main tools are impulsive differential inequalities and the Riccati transformation. We illustrate the results by an example.

  3. Lie symmetries and differential galois groups of linear equations

    NARCIS (Netherlands)

    Oudshoorn, W.R.; Put, M. van der

    2002-01-01

    For a linear ordinary differential equation the Lie algebra of its infinitesimal Lie symmetries is compared with its differential Galois group. For this purpose an algebraic formulation of Lie symmetries is developed. It turns out that there is no direct relation between the two above objects. In

  4. Integrable dissipative nonlinear second order differential equations via factorizations and Abel equations

    Energy Technology Data Exchange (ETDEWEB)

    Mancas, Stefan C. [Department of Mathematics, Embry–Riddle Aeronautical University, Daytona Beach, FL 32114-3900 (United States); Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICYT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Apdo Postal 3-74 Tangamanga, 78231 San Luis Potosí, SLP (Mexico)

    2013-09-02

    We emphasize two connections, one well known and another less known, between the dissipative nonlinear second order differential equations and the Abel equations which in their first-kind form have only cubic and quadratic terms. Then, employing an old integrability criterion due to Chiellini, we introduce the corresponding integrable dissipative equations. For illustration, we present the cases of some integrable dissipative Fisher, nonlinear pendulum, and Burgers–Huxley type equations which are obtained in this way and can be of interest in applications. We also show how to obtain Abel solutions directly from the factorization of second order nonlinear equations.

  5. Some New Trends in Differential Equations

    Indian Academy of Sciences (India)

    Mythily Ramaswamy TIFR Centre for Applicable Mathematics, Bangalore

    2008-04-05

    Apr 5, 2008 ... 2 Optimal Control Problems. Mathematical Model. Optimal Control. Dynamic Programming. Pontryagin Maximum Principle. 3 Controllability. A Model. Observability ... process using a basic principle or law. • Motivation : ... How to choose a rocket trajectory as close to the desired flight path with minimal fuel ...

  6. Some New Trends in Differential Equations

    Indian Academy of Sciences (India)

    Mythily Ramaswamy TIFR Centre for Applicable Mathematics, Bangalore

    2008-04-05

    Apr 5, 2008 ... Brief History. Main Questions. 2 Optimal Control Problems. Mathematical Model. Optimal Control. Dynamic Programming. Pontryagin Maximum Principle. 3 Controllability. A Model. Observability. 4 Stabilizability. A Model. Stabilization via feedback control. Mythily Ramaswamy. WiS-Cochin University ...

  7. Modeling the euglycemic hyperinsulinemic clamp by stochastic differential equations.

    Science.gov (United States)

    Picchini, Umberto; Ditlevsen, Susanne; De Gaetano, Andrea

    2006-11-01

    The Euglycemic Hyperinsulinemic Clamp (EHC) is the most widely used experimental procedure for the determination of insulin sensitivity. In the present study, 16 subjects with BMI between 18.5 and 63.6 kg/m(2) have been studied with a long-duration (5 hours) EHC. In order to explain the oscillations of glycemia occurring in response to the hyperinsulinization and to the continuous glucose infusion at varying speeds, we first hypothesized a system of ordinary differential equations (ODEs), with limited success. We then extended the model and represented the experiment using a system of stochastic differential equations (SDEs). The latter allow for distinction between (i) random variation imputable to observation error and (ii) system noise (intrinsic variability of the metabolic system), due to a variety of influences which change over time. The stochastic model of the EHC was fitted to data and the system noise was estimated by means of a (simulated) maximum likelihood procedure, for a series of different hypothetical measurement error values. We showed that, for the whole range of reasonable measurement error values: (i) the system noise estimates are non-negligible; and (ii) these estimates are robust to changes in the likely value of the measurement error. Explicit expression of system noise is physiologically relevant in this case, since glucose uptake rate is known to be affected by a host of additive influences, usually neglected when modeling metabolism. While in some of the studied subjects system noise appeared to only marginally affect the dynamics, in others the system appeared to be driven more by the erratic oscillations in tissue glucose transport rather than by the overall glucose-insulin control system. It is possible that the quantitative relevance of the unexpressed effects (system noise) should be considered in other physiological situations, represented so far only with deterministic models.

  8. Algorithmic Verification of Linearizability for Ordinary Differential Equations

    KAUST Repository

    Lyakhov, Dmitry A.

    2017-07-19

    For a nonlinear ordinary differential equation solved with respect to the highest order derivative and rational in the other derivatives and in the independent variable, we devise two algorithms to check if the equation can be reduced to a linear one by a point transformation of the dependent and independent variables. The first algorithm is based on a construction of the Lie point symmetry algebra and on the computation of its derived algebra. The second algorithm exploits the differential Thomas decomposition and allows not only to test the linearizability, but also to generate a system of nonlinear partial differential equations that determines the point transformation and the coefficients of the linearized equation. The implementation of both algorithms is discussed and their application is illustrated using several examples.

  9. Average and deviation for slow-fast stochastic partial differential equations

    Science.gov (United States)

    Wang, W.; Roberts, A. J.

    Averaging is an important method to extract effective macroscopic dynamics from complex systems with slow modes and fast modes. This article derives an averaged equation for a class of stochastic partial differential equations without any Lipschitz assumption on the slow modes. The rate of convergence in probability is obtained as a byproduct. Importantly, the stochastic deviation between the original equation and the averaged equation is also studied. A martingale approach proves that the deviation is described by a Gaussian process. This gives an approximation to errors of order O(ɛ) instead of order O(√{ɛ}) attained in previous averaging.

  10. Nonoscillation of half-linear dynamic equations

    Czech Academy of Sciences Publication Activity Database

    Matucci, S.; Řehák, Pavel

    2010-01-01

    Roč. 60, č. 5 (2010), s. 1421-1429 ISSN 0898-1221 R&D Projects: GA AV ČR KJB100190701 Grant - others:GA ČR(CZ) GA201/07/0145 Institutional research plan: CEZ:AV0Z10190503 Keywords : half-linear dynamic equation * time scale * (non)oscillation * Riccati technique Subject RIV: BA - General Mathematics Impact factor: 1.472, year: 2010 http://www.sciencedirect.com/science/article/pii/S0898122110004384

  11. The two modes extension to the Berk-Breizman equation: Delayed differential equations and asymptotic solutions

    International Nuclear Information System (INIS)

    Marczynski, Slawomir

    2011-01-01

    The integro-differential Berk-Breizman (BB) equation, describing the evolution of particle-driven wave mode is transformed into a simple delayed differential equation form ν∂a(τ)/∂τ=a(τ) -a 2 (τ- 1) a(τ- 2). This transformation is also applied to the two modes extension of the BB theory. The obtained solutions are presented together with the derived asymptotic analytical solutions and the numerical results.

  12. A gradual update method for simulating the steady-state solution of stiff differential equations in metabolic circuits.

    Science.gov (United States)

    Shiraishi, Emi; Maeda, Kazuhiro; Kurata, Hiroyuki

    2009-02-01

    Numerical simulation of differential equation systems plays a major role in the understanding of how metabolic network models generate particular cellular functions. On the other hand, the classical and technical problems for stiff differential equations still remain to be solved, while many elegant algorithms have been presented. To relax the stiffness problem, we propose new practical methods: the gradual update of differential-algebraic equations based on gradual application of the steady-state approximation to stiff differential equations, and the gradual update of the initial values in differential-algebraic equations. These empirical methods show a high efficiency for simulating the steady-state solutions for the stiff differential equations that existing solvers alone cannot solve. They are effective in extending the applicability of dynamic simulation to biochemical network models.

  13. Entropy methods for diffusive partial differential equations

    CERN Document Server

    Jüngel, Ansgar

    2016-01-01

    This book presents a range of entropy methods for diffusive PDEs devised by many researchers in the course of the past few decades, which allow us to understand the qualitative behavior of solutions to diffusive equations (and Markov diffusion processes). Applications include the large-time asymptotics of solutions, the derivation of convex Sobolev inequalities, the existence and uniqueness of weak solutions, and the analysis of discrete and geometric structures of the PDEs. The purpose of the book is to provide readers an introduction to selected entropy methods that can be found in the research literature. In order to highlight the core concepts, the results are not stated in the widest generality and most of the arguments are only formal (in the sense that the functional setting is not specified or sufficient regularity is supposed). The text is also suitable for advanced master and PhD students and could serve as a textbook for special courses and seminars.

  14. Nevanlinna theory, normal families, and algebraic differential equations

    CERN Document Server

    Steinmetz, Norbert

    2017-01-01

    This book offers a modern introduction to Nevanlinna theory and its intricate relation to the theory of normal families, algebraic functions, asymptotic series, and algebraic differential equations. Following a comprehensive treatment of Nevanlinna’s theory of value distribution, the author presents advances made since Hayman’s work on the value distribution of differential polynomials and illustrates how value- and pair-sharing problems are linked to algebraic curves and Briot–Bouquet differential equations. In addition to discussing classical applications of Nevanlinna theory, the book outlines state-of-the-art research, such as the effect of the Yosida and Zalcman–Pang method of re-scaling to algebraic differential equations, and presents the Painlevé–Yosida theorem, which relates Painlevé transcendents and solutions to selected 2D Hamiltonian systems to certain Yosida classes of meromorphic functions. Aimed at graduate students interested in recent developments in the field and researchers wor...

  15. Positive Solutions for Coupled Nonlinear Fractional Differential Equations

    Directory of Open Access Journals (Sweden)

    Wenning Liu

    2014-01-01

    Full Text Available We consider the existence of positive solutions for a coupled system of nonlinear fractional differential equations with integral boundary values. Assume the nonlinear term is superlinear in one equation and sublinear in the other equation. By constructing two cones K1, K2 and computing the fixed point index in product cone K1×K2, we obtain that the system has a pair of positive solutions. It is remarkable that it is established on the Cartesian product of two cones, in which the feature of two equations can be opposite.

  16. A Simple Stochastic Differential Equation with Discontinuous Drift

    DEFF Research Database (Denmark)

    Simonsen, Maria; Leth, John-Josef; Schiøler, Henrik

    2013-01-01

    In this paper we study solutions to stochastic differential equations (SDEs) with discontinuous drift. We apply two approaches: The Euler-Maruyama method and the Fokker-Planck equation and show that a candidate density function based on the Euler-Maruyama method approximates a candidate density...... function based on the stationary Fokker-Planck equation. Furthermore, we introduce a smooth function which approximates the discontinuous drift and apply the Euler-Maruyama method and the Fokker-Planck equation with this input. The point of departure for this work is a particular SDE with discontinuous...

  17. Alternate Solution to Generalized Bernoulli Equations via an Integrating Factor: An Exact Differential Equation Approach

    Science.gov (United States)

    Tisdell, C. C.

    2017-01-01

    Solution methods to exact differential equations via integrating factors have a rich history dating back to Euler (1740) and the ideas enjoy applications to thermodynamics and electromagnetism. Recently, Azevedo and Valentino presented an analysis of the generalized Bernoulli equation, constructing a general solution by linearizing the problem…

  18. Linear differential equations to solve nonlinear mechanical problems: A novel approach

    OpenAIRE

    Nair, C. Radhakrishnan

    2004-01-01

    Often a non-linear mechanical problem is formulated as a non-linear differential equation. A new method is introduced to find out new solutions of non-linear differential equations if one of the solutions of a given non-linear differential equation is known. Using the known solution of the non-linear differential equation, linear differential equations are set up. The solutions of these linear differential equations are found using standard techniques. Then the solutions of the linear differe...

  19. Dynamics analysis of electrodynamic satellite tethers. Equations of motion and numerical solution algorithms for the tether

    Science.gov (United States)

    Nacozy, P. E.

    1984-01-01

    The equations of motion are developed for a perfectly flexible, inelastic tether with a satellite at its extremity. The tether is attached to a space vehicle in orbit. The tether is allowed to possess electrical conductivity. A numerical solution algorithm to provide the motion of the tether and satellite system is presented. The resulting differential equations can be solved by various existing standard numerical integration computer programs. The resulting differential equations allow the introduction of approximations that can lead to analytical, approximate general solutions. The differential equations allow more dynamical insight of the motion.

  20. Artificial neural networks for solving ordinary and partial differential equations.

    Science.gov (United States)

    Lagaris, I E; Likas, A; Fotiadis, D I

    1998-01-01

    We present a method to solve initial and boundary value problems using artificial neural networks. A trial solution of the differential equation is written as a sum of two parts. The first part satisfies the initial/boundary conditions and contains no adjustable parameters. The second part is constructed so as not to affect the initial/boundary conditions. This part involves a feedforward neural network containing adjustable parameters (the weights). Hence by construction the initial/boundary conditions are satisfied and the network is trained to satisfy the differential equation. The applicability of this approach ranges from single ordinary differential equations (ODE's), to systems of coupled ODE's and also to partial differential equations (PDE's). In this article, we illustrate the method by solving a variety of model problems and present comparisons with solutions obtained using the Galekrkin finite element method for several cases of partial differential equations. With the advent of neuroprocessors and digital signal processors the method becomes particularly interesting due to the expected essential gains in the execution speed.

  1. New differential equations for on-shell loop integrals

    CERN Document Server

    Drummond, James M; Trnka, Jaroslav

    2011-01-01

    We present a novel type of differential equations for on-shell loop integrals. The equations are second-order and importantly, they reduce the loop level by one, so that they can be solved iteratively in the loop order. We present several infinite series of integrals satisfying such iterative differential equations. The differential operators we use are best written using momentum twistor space. The use of the latter was advocated in recent papers discussing loop integrals in N=4 super Yang-Mills. One of our motivations is to provide a tool for deriving analytical results for scattering amplitudes in this theory. We show that the integrals needed for planar MHV amplitudes up to two loops can be thought of as deriving from a single master topology. The master integral satisfies our differential equations, and so do most of the reduced integrals. A consequence of the differential equations is that the integrals we discuss are not arbitrarily complicated transcendental functions. For two specific two-loop integr...

  2. Non-oscillation domains of differential equations with two parameters

    CERN Document Server

    Mingarelli, Angelo B

    1988-01-01

    This research monograph is an introduction to single linear differential equations (systems) with two parameters and extensions to difference equations and Stieltjes integral equations. The scope is a study of the values of the parameters for which the equation has one solution(s) having one (finitely many) zeros. The prototype is Hill's equation or Mathieu's equation. For the most part no periodicity assumptions are used and when such are made, more general notions such as almost periodic functions are introduced, extending many classical and introducing many new results. Many of the proofs in the first part are variational thus allowing for natural extensions to more general settings later. The book should be accessible to graduate students and researchers alike and the proofs are, for the most part, self-contained.

  3. Stochastic optimal control, forward-backward stochastic differential equations and the Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Wolfgang; Koeppe, Jeanette [Institut fuer Physik, Martin Luther Universitaet, 06099 Halle (Germany); Grecksch, Wilfried [Institut fuer Mathematik, Martin Luther Universitaet, 06099 Halle (Germany)

    2016-07-01

    The standard approach to solve a non-relativistic quantum problem is through analytical or numerical solution of the Schroedinger equation. We show a way to go around it. This way is based on the derivation of the Schroedinger equation from conservative diffusion processes and the establishment of (several) stochastic variational principles leading to the Schroedinger equation under the assumption of a kinematics described by Nelson's diffusion processes. Mathematically, the variational principle can be considered as a stochastic optimal control problem linked to the forward-backward stochastic differential equations of Nelson's stochastic mechanics. The Hamilton-Jacobi-Bellmann equation of this control problem is the Schroedinger equation. We present the mathematical background and how to turn it into a numerical scheme for analyzing a quantum system without using the Schroedinger equation and exemplify the approach for a simple 1d problem.

  4. Zero singularities of codimension two and three in delay differential equations

    International Nuclear Information System (INIS)

    Campbell, Sue Ann; Yuan Yuan

    2008-01-01

    We give conditions under which a general class of delay differential equations has a point of Bogdanov–Takens or a triple zero bifurcation. We show how a centre manifold projection of the delay equations reduces the dynamics to two- or three-dimensional systems of ordinary differential equations. We put these equations in normal form and determine how the coefficients of the normal forms depend on the original parameters in the model. Finally we apply our results to two neural models and compare the predictions of the theory with numerical bifurcation analysis of the full equations. One model involves a transcritical bifurcation, hence we derive and analyse the appropriate unfoldings for this case

  5. Perturbations of linear delay differential equations at the verge of instability.

    Science.gov (United States)

    Lingala, N; Namachchivaya, N Sri

    2016-06-01

    The characteristic equation for a linear delay differential equation (DDE) has countably infinite roots on the complex plane. This paper considers linear DDEs that are on the verge of instability, i.e., a pair of roots of the characteristic equation lies on the imaginary axis of the complex plane and all other roots have negative real parts. It is shown that when small noise perturbations are present, the probability distribution of the dynamics can be approximated by the probability distribution of a certain one-dimensional stochastic differential equation (SDE) without delay. This is advantageous because equations without delay are easier to simulate and one-dimensional SDEs are analytically tractable. When the perturbations are also linear, it is shown that the stability depends on a specific complex number. The theory is applied to study oscillators with delayed feedback. Some errors in other articles that use multiscale approach are pointed out.

  6. Bifurcation analysis of a neutral delay differential equation modelling the torsional motion of a driven drill-string

    Energy Technology Data Exchange (ETDEWEB)

    Balanov, A.G.; Janson, N.B. E-mail: n.janson@lancaster.ac.uk; McClintock, P.V.E.; Tucker, R.W.; Wang, C.H.T

    2003-01-01

    Using techniques from dynamical systems analysis we explore numerically the solution space, under parametric variation, of a neutral differential delay equation that arises naturally in the Cosserat description of torsional waves on a driven drill-string.

  7. Bifurcation analysis of a neutral delay differential equation modelling the torsional motion of a driven drill-string

    International Nuclear Information System (INIS)

    Balanov, A.G.; Janson, N.B.; McClintock, P.V.E.; Tucker, R.W.; Wang, C.H.T.

    2003-01-01

    Using techniques from dynamical systems analysis we explore numerically the solution space, under parametric variation, of a neutral differential delay equation that arises naturally in the Cosserat description of torsional waves on a driven drill-string

  8. Parameter estimation in neuronal stochastic differential equation models from intracellular recordings of membrane potentials in single neurons

    DEFF Research Database (Denmark)

    Ditlevsen, Susanne; Samson, Adeline

    2016-01-01

    Dynamics of the membrane potential in a single neuron can be studied by estimating biophysical parameters from intracellular recordings. Diffusion processes, given as continuous solutions to stochastic differential equations, are widely applied as models for the neuronal membrane potential evolut...

  9. Improving multilevel Monte Carlo for stochastic differential equations with application to the Langevin equation.

    Science.gov (United States)

    Müller, Eike H; Scheichl, Rob; Shardlow, Tony

    2015-04-08

    This paper applies several well-known tricks from the numerical treatment of deterministic differential equations to improve the efficiency of the multilevel Monte Carlo (MLMC) method for stochastic differential equations (SDEs) and especially the Langevin equation. We use modified equations analysis as an alternative to strong-approximation theory for the integrator, and we apply this to introduce MLMC for Langevin-type equations with integrators based on operator splitting. We combine this with extrapolation and investigate the use of discrete random variables in place of the Gaussian increments, which is a well-known technique for the weak approximation of SDEs. We show that, for small-noise problems, discrete random variables can lead to an increase in efficiency of almost two orders of magnitude for practical levels of accuracy.

  10. Stability boundaries analysis of electric power system with DC transmission based on differential-algebraic equation system

    OpenAIRE

    Susuki, Yoshihiko; Hikihara Takashi; Chiang, HD

    2004-01-01

    This paper discusses stability boundaries in an electric power system with dc transmission based on a differential-algebraic equation (DAE) system. The DAE system is derived to analyze transient stability of the ac/dc power system: the differential equation represents the dynamics of the generator and the dc transmission, and the algebraic equation the active and reactive power relationship between the ac system and the dc transmission. In this paper complete characterization of stability bou...

  11. Queues with Choice via Delay Differential Equations

    Science.gov (United States)

    Pender, Jamol; Rand, Richard H.; Wesson, Elizabeth

    Delay or queue length information has the potential to influence the decision of a customer to join a queue. Thus, it is imperative for managers of queueing systems to understand how the information that they provide will affect the performance of the system. To this end, we construct and analyze two two-dimensional deterministic fluid models that incorporate customer choice behavior based on delayed queue length information. In the first fluid model, customers join each queue according to a Multinomial Logit Model, however, the queue length information the customer receives is delayed by a constant Δ. We show that the delay can cause oscillations or asynchronous behavior in the model based on the value of Δ. In the second model, customers receive information about the queue length through a moving average of the queue length. Although it has been shown empirically that giving patients moving average information causes oscillations and asynchronous behavior to occur in U.S. hospitals, we analytically and mathematically show for the first time that the moving average fluid model can exhibit oscillations and determine their dependence on the moving average window. Thus, our analysis provides new insight on how operators of service systems should report queue length information to customers and how delayed information can produce unwanted system dynamics.

  12. Numerical methods for stochastic partial differential equations with white noise

    CERN Document Server

    Zhang, Zhongqiang

    2017-01-01

    This book covers numerical methods for stochastic partial differential equations with white noise using the framework of Wong-Zakai approximation. The book begins with some motivational and background material in the introductory chapters and is divided into three parts. Part I covers numerical stochastic ordinary differential equations. Here the authors start with numerical methods for SDEs with delay using the Wong-Zakai approximation and finite difference in time. Part II covers temporal white noise. Here the authors consider SPDEs as PDEs driven by white noise, where discretization of white noise (Brownian motion) leads to PDEs with smooth noise, which can then be treated by numerical methods for PDEs. In this part, recursive algorithms based on Wiener chaos expansion and stochastic collocation methods are presented for linear stochastic advection-diffusion-reaction equations. In addition, stochastic Euler equations are exploited as an application of stochastic collocation methods, where a numerical compa...

  13. Partial differential equations modeling, analysis and numerical approximation

    CERN Document Server

    Le Dret, Hervé

    2016-01-01

    This book is devoted to the study of partial differential equation problems both from the theoretical and numerical points of view. After presenting modeling aspects, it develops the theoretical analysis of partial differential equation problems for the three main classes of partial differential equations: elliptic, parabolic and hyperbolic. Several numerical approximation methods adapted to each of these examples are analyzed: finite difference, finite element and finite volumes methods, and they are illustrated using numerical simulation results. Although parts of the book are accessible to Bachelor students in mathematics or engineering, it is primarily aimed at Masters students in applied mathematics or computational engineering. The emphasis is on mathematical detail and rigor for the analysis of both continuous and discrete problems. .

  14. Polynomial mixture method of solving ordinary differential equations

    Science.gov (United States)

    Shahrir, Mohammad Shazri; Nallasamy, Kumaresan; Ratnavelu, Kuru; Kamali, M. Z. M.

    2017-11-01

    In this paper, a numerical solution of fuzzy quadratic Riccati differential equation is estimated using a proposed new approach that provides mixture of polynomials where iteratively the right mixture will be generated. This mixture provide a generalized formalism of traditional Neural Networks (NN). Previous works have shown reliable results using Runge-Kutta 4th order (RK4). This can be achieved by solving the 1st Order Non-linear Differential Equation (ODE) that is found commonly in Riccati differential equation. Research has shown improved results relatively to the RK4 method. It can be said that Polynomial Mixture Method (PMM) shows promising results with the advantage of continuous estimation and improved accuracy that can be produced over Mabood et al, RK-4, Multi-Agent NN and Neuro Method (NM).

  15. Fully Digital Chaotic Differential Equation-based Systems And Methods

    KAUST Repository

    Radwan, Ahmed Gomaa Ahmed

    2012-09-06

    Various embodiments are provided for fully digital chaotic differential equation-based systems and methods. In one embodiment, among others, a digital circuit includes digital state registers and one or more digital logic modules configured to obtain a first value from two or more of the digital state registers; determine a second value based upon the obtained first values and a chaotic differential equation; and provide the second value to set a state of one of the plurality of digital state registers. In another embodiment, a digital circuit includes digital state registers, digital logic modules configured to obtain outputs from a subset of the digital shift registers and to provide the input based upon a chaotic differential equation for setting a state of at least one of the subset of digital shift registers, and a digital clock configured to provide a clock signal for operating the digital shift registers.

  16. Wavelet Methods for Solving Fractional Order Differential Equations

    Directory of Open Access Journals (Sweden)

    A. K. Gupta

    2014-01-01

    Full Text Available Fractional calculus is a field of applied mathematics which deals with derivatives and integrals of arbitrary orders. The fractional calculus has gained considerable importance during the past decades mainly due to its application in diverse fields of science and engineering such as viscoelasticity, diffusion of biological population, signal processing, electromagnetism, fluid mechanics, electrochemistry, and many more. In this paper, we review different wavelet methods for solving both linear and nonlinear fractional differential equations. Our goal is to analyze the selected wavelet methods and assess their accuracy and efficiency with regard to solving fractional differential equations. We discuss challenges faced by researchers in this field, and we emphasize the importance of interdisciplinary effort for advancing the study on various wavelets in order to solve differential equations of arbitrary order.

  17. A perturbative solution to metadynamics ordinary differential equation

    Science.gov (United States)

    Tiwary, Pratyush; Dama, James F.; Parrinello, Michele

    2015-12-01

    Metadynamics is a popular enhanced sampling scheme wherein by periodic application of a repulsive bias, one can surmount high free energy barriers and explore complex landscapes. Recently, metadynamics was shown to be mathematically well founded, in the sense that the biasing procedure is guaranteed to converge to the true free energy surface in the long time limit irrespective of the precise choice of biasing parameters. A differential equation governing the post-transient convergence behavior of metadynamics was also derived. In this short communication, we revisit this differential equation, expressing it in a convenient and elegant Riccati-like form. A perturbative solution scheme is then developed for solving this differential equation, which is valid for any generic biasing kernel. The solution clearly demonstrates the robustness of metadynamics to choice of biasing parameters and gives further confidence in the widely used method.

  18. Exponential Stability of Stochastic Differential Equation with Mixed Delay

    Directory of Open Access Journals (Sweden)

    Wenli Zhu

    2014-01-01

    Full Text Available This paper focuses on a class of stochastic differential equations with mixed delay based on Lyapunov stability theory, Itô formula, stochastic analysis, and inequality technique. A sufficient condition for existence and uniqueness of the adapted solution to such systems is established by employing fixed point theorem. Some sufficient conditions of exponential stability and corollaries for such systems are obtained by using Lyapunov function. By utilizing Doob’s martingale inequality and Borel-Cantelli lemma, it is shown that the exponentially stable in the mean square of such systems implies the almost surely exponentially stable. In particular, our theoretical results show that if stochastic differential equation is exponentially stable and the time delay is sufficiently small, then the corresponding stochastic differential equation with mixed delay will remain exponentially stable. Moreover, time delay upper limit is solved by using our theoretical results when the system is exponentially stable, and they are more easily verified and applied in practice.

  19. Nonlinear dynamics in the relativistic field equation

    International Nuclear Information System (INIS)

    Tanaka, Yosuke; Mizuno, Yuji; Kado, Tatsuhiko; Zhao, Hua-An

    2007-01-01

    We have investigated relativistic equations and chaotic behaviors of the gravitational field with the use of general relativity and nonlinear dynamics. The space component of the Friedmann equation shows chaotic behaviors in case of the inflation (h=G-bar /G>0) and open (ζ=-1) universe. In other cases (h= 0 andx-bar 0 ) and the parameters (a, b, c and d); (2) the self-similarity of solutions in the x-x-bar plane and the x-ρ plane. We carried out the numerical calculations with the use of the microsoft EXCEL. The self-similarity and the hierarchy structure of the universe have been also discussed on the basis of E-infinity theory

  20. Block Backward Differentiation Formulas for Fractional Differential Equations

    Directory of Open Access Journals (Sweden)

    T. A. Biala

    2015-01-01

    Full Text Available This paper concerns the numerical approximation of Fractional Initial Value Problems (FIVPs. This is achieved by constructing k-step continuous BDFs. These continuous schemes are developed via the interpolation and collocation approach and are used to obtain the discrete k-step BDF and (k-1 additional methods which are applied as numerical integrators in a block-by-block mode for the integration of FIVP. The properties of the methods are established and regions of absolute stability of the methods are plotted in the complex plane. Numerical tests including large systems arising form the semidiscretization of one-dimensional fractional Burger’s equation show that the methods are highly accurate and efficient.

  1. Developing Itô stochastic differential equation models for neuronal signal transduction pathways.

    Science.gov (United States)

    Manninen, Tiina; Linne, Marja-Leena; Ruohonen, Keijo

    2006-08-01

    Mathematical modeling and simulation of dynamic biochemical systems are receiving considerable attention due to the increasing availability of experimental knowledge of complex intracellular functions. In addition to deterministic approaches, several stochastic approaches have been developed for simulating the time-series behavior of biochemical systems. The problem with stochastic approaches, however, is the larger computational time compared to deterministic approaches. It is therefore necessary to study alternative ways to incorporate stochasticity and to seek approaches that reduce the computational time needed for simulations, yet preserve the characteristic behavior of the system in question. In this work, we develop a computational framework based on the Itô stochastic differential equations for neuronal signal transduction networks. There are several different ways to incorporate stochasticity into deterministic differential equation models and to obtain Itô stochastic differential equations. Two of the developed models are found most suitable for stochastic modeling of neuronal signal transduction. The best models give stable responses which means that the variances of the responses with time are not increasing and negative concentrations are avoided. We also make a comparative analysis of different kinds of stochastic approaches, that is the Itô stochastic differential equations, the chemical Langevin equation, and the Gillespie stochastic simulation algorithm. Different kinds of stochastic approaches can be used to produce similar responses for the neuronal protein kinase C signal transduction pathway. The fine details of the responses vary slightly, depending on the approach and the parameter values. However, when simulating great numbers of chemical species, the Gillespie algorithm is computationally several orders of magnitude slower than the Itô stochastic differential equations and the chemical Langevin equation. Furthermore, the chemical

  2. A Baker-Campbell-Hausdorff solution by differential equation

    International Nuclear Information System (INIS)

    Lee, Hyun Keun

    2009-01-01

    We propose a procedure to figure out the Baker-Campbell-Hausdorff (BCH) solution, ln e X e Y , when the exponent is a linear combination of the spin operator along a direction and its ladder operators. The procedure converts the manipulation of the BCH formula into that of a differential equation. It is shown that the fixed point of the differential equation leads to the solution we are looking for. We also remark that the validity of the present method is restricted to the case when the solution branch can be determined in the complex plane

  3. GHM method for obtaining rationalsolutions of nonlinear differential equations.

    Science.gov (United States)

    Vazquez-Leal, Hector; Sarmiento-Reyes, Arturo

    2015-01-01

    In this paper, we propose the application of the general homotopy method (GHM) to obtain rational solutions of nonlinear differential equations. It delivers a high precision representation of the nonlinear differential equation using a few linear algebraic terms. In order to assess the benefits of this proposal, three nonlinear problems are solved and compared against other semi-analytic methods or numerical methods. The obtained results show that GHM is a powerful tool, capable to generate highly accurate rational solutions. AMS subject classification 34L30.

  4. International Winter Workshop on Differential Equations and Numerical Analysis

    CERN Document Server

    Miller, John; Narasimhan, Ramanujam; Mathiazhagan, Paramasivam; Victor, Franklin

    2016-01-01

    This book offers an ideal introduction to singular perturbation problems, and a valuable guide for researchers in the field of differential equations. It also includes chapters on new contributions to both fields: differential equations and singular perturbation problems. Written by experts who are active researchers in the related fields, the book serves as a comprehensive source of information on the underlying ideas in the construction of numerical methods to address different classes of problems with solutions of different behaviors, which will ultimately help researchers to design and assess numerical methods for solving new problems. All the chapters presented in the volume are complemented by illustrations in the form of tables and graphs.

  5. Eigenvalue comparisons for differential equations on a measure chain

    Directory of Open Access Journals (Sweden)

    Chuan Jen Chyan

    1998-12-01

    Full Text Available The theory of $mathbf{u_0}$-positive operators with respect to a cone in a Banach space is applied to eigenvalue problems associated with the second order $Delta$-differential equation (often referred to as a differential equation on a measure chain given by $$ y^{DeltaDelta}(t+lambda p(ty(sigma(t=0, qquad tin[0,1], $$ satisfying the boundary conditions $y(0=0=y(sigma^2(1$. The existence of a smallest positive eigenvalue is proven and then a theorem is established comparing the smallest positive eigenvalues for two problems of this type.

  6. The Cauchy problem for higher order abstract differential equations

    CERN Document Server

    Xiao, Ti-Jun

    1998-01-01

    This monograph is the first systematic exposition of the theory of the Cauchy problem for higher order abstract linear differential equations, which covers all the main aspects of the developed theory. The main results are complete with detailed proofs and established recently, containing the corresponding theorems for first and incomplete second order cases and therefore for operator semigroups and cosine functions. They will find applications in many fields. The special power of treating the higher order problems directly is demonstrated, as well as that of the vector-valued Laplace transforms in dealing with operator differential equations and operator families. The reader is expected to have a knowledge of complex and functional analysis.

  7. Solving (2 + 1)-dimensional sine-Poisson equation by a modified variable separated ordinary differential equation method

    International Nuclear Information System (INIS)

    Ka-Lin, Su; Yuan-Xi, Xie

    2010-01-01

    By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equation. As a result, many explicit and exact solutions of the (2 + 1)-dimensional sine-Poisson equation are derived in a simple manner by this technique. (general)

  8. High order analysis of nonlinear periodic differential equations

    International Nuclear Information System (INIS)

    Amore, Paolo; Lamas, Hector Montes

    2004-01-01

    In this Letter we apply a method recently devised in [Phys. Lett. A 316 (2003) 218] to find accurate approximate solutions to a certain class of nonlinear differential equations. The analysis carried out in [Phys. Lett. A 316 (2003) 218] is refined and results of much higher precision are obtained for the problems previously considered (Duffing equation, sextic oscillator). Fast convergence to the exact results is observed both for the frequency and for the Fourier coefficients. The method is also applied with success to more general polynomial potentials (the octic oscillator) and to the van der Pol equation

  9. Controllability of partial differential equations governed by multiplicative controls

    CERN Document Server

    Khapalov, Alexander Y

    2010-01-01

    The goal of this monograph is to address the issue of the global controllability of partial differential equations in the context of multiplicative (or bilinear) controls, which enter the model equations as coefficients. The mathematical models we examine include the linear and nonlinear parabolic and hyperbolic PDE's, the Schrödinger equation, and coupled hybrid nonlinear distributed parameter systems modeling the swimming phenomenon. The book offers a new, high-quality and intrinsically nonlinear methodology to approach the aforementioned highly nonlinear controllability problems.

  10. Differential-difference equations associated with the fractional Lax operators

    International Nuclear Information System (INIS)

    Adler, V E; Postnikov, V V

    2011-01-01

    We study integrable hierarchies associated with spectral problems of the form Pψ = λQψ, where P and Q are difference operators. The corresponding nonlinear differential-difference equations can be viewed as inhomogeneous generalizations of the Bogoyavlensky-type lattices. While the latter turn into the Korteweg-de Vries equation under the continuous limit, the lattices under consideration provide discrete analogs of the Sawada-Kotera and Kaup-Kupershmidt equations. The r-matrix formulation and several of the simplest explicit solutions are presented. (paper)

  11. Convergence of method of lines approximations to partial differential equations

    International Nuclear Information System (INIS)

    Verwer, J.G.; Sanz-Serna, J.M.

    1984-01-01

    Many existing numerical schemes for evolutionary problems in partial differential equations (PDEs) can be viewed as method of lines (MOL) schemes. This paper treats the convergence of one-step MOL schemes. The main purpose is to set up a general framework for a convergence analysis applicable to nonlinear problems. The stability materials for this framework are taken from the field of nonlinear stiff ODEs. In this connection, important concepts are the logarithmic matrix norm and C-stability. A nonlinear parabolic equation and the cubic Schroedinger equation are used for illustrating the ideas. (Auth.)

  12. Crank-Nicolson - Differential quadrature algorithms for the Kawahara equation

    Energy Technology Data Exchange (ETDEWEB)

    Korkmaz, Alper [Anadolu Guzel Sanatlar Lisesi, Eskisehir Osmangazi University, Kuetahya (Turkey)], E-mail: alperkorkmaz7@gmail.com; Dag, Idris [Computer Engineering Department, Eskisehir Osmangazi University, Eskisehir (Turkey)], E-mail: idag@ogu.edu.tr

    2009-10-15

    The Kawahara equation is solved numerically using both Lagrange interpolation polynomials based differential quadrature method and cosine expansion based differential quadrature method. The travelling single solitary wave simulation is pictured. Maximum and discrete mean square error norms, lowest three conserved quantities are computed. Height, peak position and velocity of single solitary wave at various times are also computed for both methods. Breakup of an arbitrary single solitary wave into solitons and oscillatory shock wave generation from single solitary wave are studied.

  13. Crank-Nicolson - Differential quadrature algorithms for the Kawahara equation

    International Nuclear Information System (INIS)

    Korkmaz, Alper; Dag, Idris

    2009-01-01

    The Kawahara equation is solved numerically using both Lagrange interpolation polynomials based differential quadrature method and cosine expansion based differential quadrature method. The travelling single solitary wave simulation is pictured. Maximum and discrete mean square error norms, lowest three conserved quantities are computed. Height, peak position and velocity of single solitary wave at various times are also computed for both methods. Breakup of an arbitrary single solitary wave into solitons and oscillatory shock wave generation from single solitary wave are studied.

  14. Strong solutions of semilinear stochastic partial differential equations

    Czech Academy of Sciences Publication Activity Database

    Hofmanová, Martina

    2013-01-01

    Roč. 20, č. 3 (2013), s. 757-778 ISSN 1021-9722 R&D Projects: GA ČR GAP201/10/0752 Institutional support: RVO:67985556 Keywords : stochastic partial differential equations * strongly elliptic differential operator * strongly continuous semigroup Subject RIV: BA - General Mathematics Impact factor: 0.971, year: 2013 http://library.utia.cas.cz/separaty/2013/SI/hofmanova-0393085.pdf

  15. Existence of a coupled system of fractional differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Rabha W. [Multimedia unit, Department of Computer System and Technology Faculty of Computer Science & IT, University of Malaya, 50603 Kuala Lumpur (Malaysia); Siri, Zailan [Institute of Mathematical Sciences, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-10-22

    We manage the existence and uniqueness of a fractional coupled system containing Schrödinger equations. Such a system appears in quantum mechanics. We confirm that the fractional system under consideration admits a global solution in appropriate functional spaces. The solution is shown to be unique. The method is based on analytic technique of the fixed point theory. The fractional differential operator is considered from the virtue of the Riemann-Liouville differential operator.

  16. Delay Differential Equation Models of Normal and Diseased Electrocardiograms

    Science.gov (United States)

    Lainscsek, Claudia; Sejnowski, Terrence J.

    Time series analysis with nonlinear delay differential equations (DDEs) is a powerful tool since it reveals spectral as well as nonlinear properties of the underlying dynamical system. Here global DDE models are used to analyze electrocardiography recordings (ECGs) in order to capture distinguishing features for different heart conditions such as normal heart beat, congestive heart failure, and atrial fibrillation. To capture distinguishing features of the different data types the number of terms and delays in the model as well as the order of nonlinearity of the DDE model have to be selected. The DDE structure selection is done in a supervised way by selecting the DDE that best separates different data types. We analyzed 24 h of data from 15 young healthy subjects in normal sinus rhythm (NSR) of 15 congestive heart failure (CHF) patients as well as of 15 subjects suffering from atrial fibrillation (AF) selected from the Physionet database. For the analysis presented here we used 5 min non-overlapping data windows on the raw data without any artifact removal. For classification performance we used the Cohen Kappa coefficient computed directly from the confusion matrix. The overall classification performance of the three groups was around 72-99 % on the 5 min windows for the different approaches. For 2 h data windows the classification for all three groups was above 95%.

  17. INTERVAL STATE ESTIMATION FOR SINGULAR DIFFERENTIAL EQUATION SYSTEMS WITH DELAYS

    Directory of Open Access Journals (Sweden)

    T. A. Kharkovskaia

    2016-07-01

    Full Text Available The paper deals with linear differential equation systems with algebraic restrictions (singular systems and a method of interval observer design for this kind of systems. The systems contain constant time delay, measurement noise and disturbances. Interval observer synthesis is based on monotone and cooperative systems technique, linear matrix inequations, Lyapunov function theory and interval arithmetic. The set of conditions that gives the possibility for interval observer synthesis is proposed. Results of synthesized observer operation are shown on the example of dynamical interindustry balance model. The advantages of proposed method are that it is adapted to observer design for uncertain systems, if the intervals of admissible values for uncertain parameters are given. The designed observer is capable to provide asymptotically definite limits on the estimation accuracy, since the interval of admissible values for the object state is defined at every instant. The obtained result provides an opportunity to develop the interval estimation theory for complex systems that contain parametric uncertainty, varying delay and nonlinear elements. Interval observers increasingly find applications in economics, electrical engineering, mechanical systems with constraints and optimal flow control.

  18. Partial differential equations II elements of the modern theory equations with constant coefficients

    CERN Document Server

    Shubin, M

    1994-01-01

    This book, the first printing of which was published as Volume 31 of the Encyclopaedia of Mathematical Sciences, contains a survey of the modern theory of general linear partial differential equations and a detailed review of equations with constant coefficients. Readers will be interested in an introduction to microlocal analysis and its applications including singular integral operators, pseudodifferential operators, Fourier integral operators and wavefronts, a survey of the most important results about the mixed problem for hyperbolic equations, a review of asymptotic methods including short wave asymptotics, the Maslov canonical operator and spectral asymptotics, a detailed description of the applications of distribution theory to partial differential equations with constant coefficients including numerous interesting special topics.

  19. Stability theorems for stochastic differential equations driven by G-Brownian motion

    OpenAIRE

    Zhang, Defei

    2011-01-01

    In this paper, stability theorems for stochastic differential equations and backward stochastic differential equations driven by G-Brownian motion are obtained. We show the existence and uniqueness of solutions to forward-backward stochastic differential equations driven by G-Brownian motion. Stability theorem for forward-backward stochastic differential equations driven by G-Brownian motion is also presented.

  20. Parametric Borel summability for some semilinear system of partial differential equations

    Directory of Open Access Journals (Sweden)

    Hiroshi Yamazawa

    2015-01-01

    Full Text Available In this paper we study the Borel summability of formal solutions with a parameter of first order semilinear system of partial differential equations with \\(n\\ independent variables. In [Singular perturbation of linear systems with a regular singularity, J. Dynam. Control. Syst. 8 (2002, 313-322], Balser and Kostov proved the Borel summability of formal solutions with respect to a singular perturbation parameter for a linear equation with one independent variable. We shall extend their results to a semilinear system of equations with general independent variables.

  1. Boolean Differentiation Equations Applicable in Reconfigurable Computational Medium

    Directory of Open Access Journals (Sweden)

    Shidlovskiy Stanislav

    2016-01-01

    Full Text Available High performance computing environment synthesis with parallel architecture reconstructing throughout the process itself is described. Synthesized computational medium involving Boolean differential equation calculations so as to function in real-time image processing. Automaton imaging was illustrated involving the rearrangement of every processing medium element to calculate the partial differentials of n-th order in respect to Boolean function variables. The method of obtaining setting codes for each element was also described. An example in calculating 2nd -order Boolean derivative to two differentials in respect to Boolean functions, depending on three arguments within the reconstructible computational medium of 8×8 processing elements was given.

  2. Function spaces and partial differential equations volume 2 : contemporary analysis

    CERN Document Server

    Taheri, Ali

    2015-01-01

    This is a book written primarily for graduate students and early researchers in the fields of Analysis and Partial Differential Equations (PDEs). Coverage of the material is essentially self-contained, extensive and novel with great attention to details and rigour.

  3. approximate controllability of a non-autonomous differential equation

    Indian Academy of Sciences (India)

    53

    controllability results of a semilinear control system by assuming monotonicity con- ditions on the nonlinear part. Dauer and Mahmudov [7] studied the approximate controllability of functional differential equation by using the Schauder fixed point theorem when the semigroup is compact, and the Banach fixed theorem when ...

  4. Asymptotic formulae for solutions of half-linear differential equations

    Czech Academy of Sciences Publication Activity Database

    Řehák, Pavel

    2017-01-01

    Roč. 292, January (2017), s. 165-177 ISSN 0096-3003 Institutional support: RVO:67985840 Keywords : half-linear differential equation * nonoscillatory solution * regular variation Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.738, year: 2016 http://www.sciencedirect.com/science/article/pii/S0096300316304581

  5. A Simple Derivation of Kepler's Laws without Solving Differential Equations

    Science.gov (United States)

    Provost, J.-P.; Bracco, C.

    2009-01-01

    Proceeding like Newton with a discrete time approach of motion and a geometrical representation of velocity and acceleration, we obtain Kepler's laws without solving differential equations. The difficult part of Newton's work, when it calls for non-trivial properties of ellipses, is avoided by the introduction of polar coordinates. Then a simple…

  6. Approximate factorization for time-dependent partial differential equations

    NARCIS (Netherlands)

    P.J. van der Houwen; B.P. Sommeijer (Ben)

    1999-01-01

    textabstractThe first application of approximate factorization in the numerical solution of time-dependent partial differential equations (PDEs) can be traced back to the celebrated papers of Peaceman and Rachford and of Douglas in 1955. For linear problems, the Peaceman-Rachford- Douglas method can

  7. Numerical Solution of Differential Algebraic Equations and Applications

    DEFF Research Database (Denmark)

    Thomsen, Per Grove

    2005-01-01

    These lecture notes have been written as part of a special course on the numerical solution of Differential Algebraic Equations and applications . The course was held at IMM in the spring of 2005. The authors of the different chapters have all taken part in the course and the chapters are written...

  8. Local first integrals for systems of differential equations

    International Nuclear Information System (INIS)

    Zhang Xiang

    2003-01-01

    The main purpose of this paper is to provide some sufficient conditions for a system of differential equations to have local first integrals in a certain neighbourhood of a singularity. Our results generalize those given in Kwek et al (2003 Z. Angew. Math. Phys. 54 26) and Li et al (2003 Z. Angew. Math. Phys. 54 235)

  9. Validity of the differential equations for ionization cooling

    International Nuclear Information System (INIS)

    Fernow, R.C.; Gallardo, J.C.

    1995-03-01

    The authors examine the validity of the differential equations used to describe ionization cooling. They find that the simple heating term due to multiple scattering given by D. Neuffer is a good approximation to the expression obtained from a more rigorous derivation

  10. Tensors and Riemannian geometry with applications to differential equations

    CERN Document Server

    Ibragimov, Nail H

    2015-01-01

    This graduate textbook begins by introducing Tensors and Riemannian Spaces, and then elaborates their application in solving second-order differential equations, and ends with introducing theory of relativity and de Sitter space. Based on 40 years of teaching experience, the author compiles a well-developed collection of examples and exercises to facilitate the reader’s learning.

  11. An Efficient Series Solution for Fractional Differential Equations

    Directory of Open Access Journals (Sweden)

    Mohammed Al-Refai

    2014-01-01

    where only integer derivatives have to be computed. The efficiency of the new algorithm is illustrated through several examples. Comparison with other series methods such as the Adomian decomposition method and the homotopy perturbation method is made to indicate the efficiency of the new approach. The algorithm can be implemented for a wide class of fractional differential equations with different types of fractional derivatives.

  12. Homotopy-based methods for fractional differential equations

    NARCIS (Netherlands)

    Ates, I.

    2017-01-01

    The intention of this thesis is two-fold. The first aim is to describe and apply, series-based, numerical methods to fractional differential equation models. For this, it is needed to distinguish between space-fractional and time-fractional derivatives. The second goal of this thesis is to give a

  13. Generalized uniqueness theorem for ordinary differential equations in Banach spaces.

    Science.gov (United States)

    Hassan, Ezzat R; Alhuthali, M Sh; Al-Ghanmi, M M

    2014-01-01

    We consider nonlinear ordinary differential equations in Banach spaces. Uniqueness criterion for the Cauchy problem is given when any of the standard dissipative-type conditions does apply. A similar scalar result has been studied by Majorana (1991). Useful examples of reflexive Banach spaces whose positive cones have empty interior has been given as well.

  14. Initial-value problems for hybrid Hadamard fractional differential equations

    Directory of Open Access Journals (Sweden)

    Bashir Ahmad

    2014-07-01

    Full Text Available In this article, we discuss the existence of solutions for an initial-value problem of nonlinear hybrid differential equations of Hadamard type. The main result is proved by means of a fixed point theorem due to Dhage. An example illustrating the existence result is also presented.

  15. Efficient Numerical Methods for Stochastic Differential Equations in Computational Finance

    KAUST Repository

    Happola, Juho

    2017-09-19

    Stochastic Differential Equations (SDE) offer a rich framework to model the probabilistic evolution of the state of a system. Numerical approximation methods are typically needed in evaluating relevant Quantities of Interest arising from such models. In this dissertation, we present novel effective methods for evaluating Quantities of Interest relevant to computational finance when the state of the system is described by an SDE.

  16. A class of degenerate stochastic differential equations with non ...

    Indian Academy of Sciences (India)

    Introduction. In this article we consider (possibly degenerate) stochastic differential equations (SDEs) with non-Lipschitz coefficients. If the coefficients are Lipschitz, we can prove the existence of a unique strong solution (see [9]). But uniqueness fails in the case of non-Lipschitz coefficients. The literature on this topic is not ...

  17. Homogenization of Elliptic Differential Equations in One-Dimensional Spaces

    OpenAIRE

    Grammel, G.

    2007-01-01

    Linear elliptic differential equations with periodic coefficients in one-dimensional domains are considered. The approximation properties of the homogenized system are investigated. For $H^{-1}$ -data, it turns out that the order of approximation is strongly related to the decay of the Fourier coefficients of the $L^{2}$ -functions involved.

  18. Building Context with Tumor Growth Modeling Projects in Differential Equations

    Science.gov (United States)

    Beier, Julie C.; Gevertz, Jana L.; Howard, Keith E.

    2015-01-01

    The use of modeling projects serves to integrate, reinforce, and extend student knowledge. Here we present two projects related to tumor growth appropriate for a first course in differential equations. They illustrate the use of problem-based learning to reinforce and extend course content via a writing or research experience. Here we discuss…

  19. Numerical Aspects of Solving Differential Equations: Laboratory Approach for Students.

    Science.gov (United States)

    Witt, Ana

    1997-01-01

    Describes three labs designed to help students in a first course on ordinary differential equations with three of the most common numerical difficulties they might encounter when solving initial value problems with a numerical software package. The goal of these labs is to help students advance to independent work on common numerical anomalies.…

  20. Linear algebra a first course with applications to differential equations

    CERN Document Server

    Apostol, Tom M

    2014-01-01

    Developed from the author's successful two-volume Calculus text this book presents Linear Algebra without emphasis on abstraction or formalization. To accommodate a variety of backgrounds, the text begins with a review of prerequisites divided into precalculus and calculus prerequisites. It continues to cover vector algebra, analytic geometry, linear spaces, determinants, linear differential equations and more.