WorldWideScience

Sample records for differential equation dynamic

  1. Dynamics of partial differential equations

    CERN Document Server

    Wayne, C Eugene

    2015-01-01

    This book contains two review articles on the dynamics of partial differential equations that deal with closely related topics but can be read independently. Wayne reviews recent results on the global dynamics of the two-dimensional Navier-Stokes equations. This system exhibits stable vortex solutions: the topic of Wayne's contribution is how solutions that start from arbitrary initial conditions evolve towards stable vortices. Weinstein considers the dynamics of localized states in nonlinear Schrodinger and Gross-Pitaevskii equations that describe many optical and quantum systems. In this contribution, Weinstein reviews recent bifurcations results of solitary waves, their linear and nonlinear stability properties, and results about radiation damping where waves lose energy through radiation.   The articles, written independently, are combined into one volume to showcase the tools of dynamical systems theory at work in explaining qualitative phenomena associated with two classes of partial differential equ...

  2. Differential equations a dynamical systems approach ordinary differential equations

    CERN Document Server

    Hubbard, John H

    1991-01-01

    This is a corrected third printing of the first part of the text Differential Equations: A Dynamical Systems Approach written by John Hubbard and Beverly West. The authors' main emphasis in this book is on ordinary differential equations. The book is most appropriate for upper level undergraduate and graduate students in the fields of mathematics, engineering, and applied mathematics, as well as the life sciences, physics and economics. Traditional courses on differential equations focus on techniques leading to solutions. Yet most differential equations do not admit solutions which can be written in elementary terms. The authors have taken the view that a differential equations defines functions; the object of the theory is to understand the behavior of these functions. The tools the authors use include qualitative and numerical methods besides the traditional analytic methods. The companion software, MacMath, is designed to bring these notions to life.

  3. Sparse dynamics for partial differential equations.

    Science.gov (United States)

    Schaeffer, Hayden; Caflisch, Russel; Hauck, Cory D; Osher, Stanley

    2013-04-23

    We investigate the approximate dynamics of several differential equations when the solutions are restricted to a sparse subset of a given basis. The restriction is enforced at every time step by simply applying soft thresholding to the coefficients of the basis approximation. By reducing or compressing the information needed to represent the solution at every step, only the essential dynamics are represented. In many cases, there are natural bases derived from the differential equations, which promote sparsity. We find that our method successfully reduces the dynamics of convection equations, diffusion equations, weak shocks, and vorticity equations with high-frequency source terms.

  4. Introduction to differential equations with dynamical systems

    CERN Document Server

    Campbell, Stephen L

    2011-01-01

    Many textbooks on differential equations are written to be interesting to the teacher rather than the student. Introduction to Differential Equations with Dynamical Systems is directed toward students. This concise and up-to-date textbook addresses the challenges that undergraduate mathematics, engineering, and science students experience during a first course on differential equations. And, while covering all the standard parts of the subject, the book emphasizes linear constant coefficient equations and applications, including the topics essential to engineering students. Stephen Campbell and Richard Haberman--using carefully worded derivations, elementary explanations, and examples, exercises, and figures rather than theorems and proofs--have written a book that makes learning and teaching differential equations easier and more relevant. The book also presents elementary dynamical systems in a unique and flexible way that is suitable for all courses, regardless of length.

  5. Differential equation models for sharp threshold dynamics.

    Science.gov (United States)

    Schramm, Harrison C; Dimitrov, Nedialko B

    2014-01-01

    We develop an extension to differential equation models of dynamical systems to allow us to analyze probabilistic threshold dynamics that fundamentally and globally change system behavior. We apply our novel modeling approach to two cases of interest: a model of infectious disease modified for malware where a detection event drastically changes dynamics by introducing a new class in competition with the original infection; and the Lanchester model of armed conflict, where the loss of a key capability drastically changes the effectiveness of one of the sides. We derive and demonstrate a step-by-step, repeatable method for applying our novel modeling approach to an arbitrary system, and we compare the resulting differential equations to simulations of the system's random progression. Our work leads to a simple and easily implemented method for analyzing probabilistic threshold dynamics using differential equations. Published by Elsevier Inc.

  6. Long-Term Dynamics of Autonomous Fractional Differential Equations

    Science.gov (United States)

    Liu, Tao; Xu, Wei; Xu, Yong; Han, Qun

    This paper aims to investigate long-term dynamic behaviors of autonomous fractional differential equations with effective numerical method. The long-term dynamic behaviors predict where systems are heading after long-term evolution. We make some modification and transplant cell mapping methods to autonomous fractional differential equations. The mapping time duration of cell mapping is enlarged to deal with the long memory effect. Three illustrative examples, i.e. fractional Lotka-Volterra equation, fractional van der Pol oscillator and fractional Duffing equation, are studied with our revised generalized cell mapping method. We obtain long-term dynamics, such as attractors, basins of attraction, and saddles. Compared with some existing stability and numerical results, the validity of our method is verified. Furthermore, we find that the fractional order has its effect on the long-term dynamics of autonomous fractional differential equations.

  7. Dynamic data analysis modeling data with differential equations

    CERN Document Server

    Ramsay, James

    2017-01-01

    This text focuses on the use of smoothing methods for developing and estimating differential equations following recent developments in functional data analysis and building on techniques described in Ramsay and Silverman (2005) Functional Data Analysis. The central concept of a dynamical system as a buffer that translates sudden changes in input into smooth controlled output responses has led to applications of previously analyzed data, opening up entirely new opportunities for dynamical systems. The technical level has been kept low so that those with little or no exposure to differential equations as modeling objects can be brought into this data analysis landscape. There are already many texts on the mathematical properties of ordinary differential equations, or dynamic models, and there is a large literature distributed over many fields on models for real world processes consisting of differential equations. However, a researcher interested in fitting such a model to data, or a statistician interested in...

  8. Algebraic dynamics solutions and algebraic dynamics algorithm for nonlinear partial differential evolution equations of dynamical systems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using functional derivative technique in quantum field theory, the algebraic dy-namics approach for solution of ordinary differential evolution equations was gen-eralized to treat partial differential evolution equations. The partial differential evo-lution equations were lifted to the corresponding functional partial differential equations in functional space by introducing the time translation operator. The functional partial differential evolution equations were solved by algebraic dynam-ics. The algebraic dynamics solutions are analytical in Taylor series in terms of both initial functions and time. Based on the exact analytical solutions, a new nu-merical algorithm—algebraic dynamics algorithm was proposed for partial differ-ential evolution equations. The difficulty of and the way out for the algorithm were discussed. The application of the approach to and computer numerical experi-ments on the nonlinear Burgers equation and meteorological advection equation indicate that the algebraic dynamics approach and algebraic dynamics algorithm are effective to the solution of nonlinear partial differential evolution equations both analytically and numerically.

  9. Multiscale functions, scale dynamics, and applications to partial differential equations

    Science.gov (United States)

    Cresson, Jacky; Pierret, Frédéric

    2016-05-01

    Modeling phenomena from experimental data always begins with a choice of hypothesis on the observed dynamics such as determinism, randomness, and differentiability. Depending on these choices, different behaviors can be observed. The natural question associated to the modeling problem is the following: "With a finite set of data concerning a phenomenon, can we recover its underlying nature? From this problem, we introduce in this paper the definition of multi-scale functions, scale calculus, and scale dynamics based on the time scale calculus [see Bohner, M. and Peterson, A., Dynamic Equations on Time Scales: An Introduction with Applications (Springer Science & Business Media, 2001)] which is used to introduce the notion of scale equations. These definitions will be illustrated on the multi-scale Okamoto's functions. Scale equations are analysed using scale regimes and the notion of asymptotic model for a scale equation under a particular scale regime. The introduced formalism explains why a single scale equation can produce distinct continuous models even if the equation is scale invariant. Typical examples of such equations are given by the scale Euler-Lagrange equation. We illustrate our results using the scale Newton's equation which gives rise to a non-linear diffusion equation or a non-linear Schrödinger equation as asymptotic continuous models depending on the particular fractional scale regime which is considered.

  10. A stochastic differential equation analysis of cerebrospinal fluid dynamics.

    Science.gov (United States)

    Raman, Kalyan

    2011-01-18

    Clinical measurements of intracranial pressure (ICP) over time show fluctuations around the deterministic time path predicted by a classic mathematical model in hydrocephalus research. Thus an important issue in mathematical research on hydrocephalus remains unaddressed--modeling the effect of noise on CSF dynamics. Our objective is to mathematically model the noise in the data. The classic model relating the temporal evolution of ICP in pressure-volume studies to infusions is a nonlinear differential equation based on natural physical analogies between CSF dynamics and an electrical circuit. Brownian motion was incorporated into the differential equation describing CSF dynamics to obtain a nonlinear stochastic differential equation (SDE) that accommodates the fluctuations in ICP. The SDE is explicitly solved and the dynamic probabilities of exceeding critical levels of ICP under different clinical conditions are computed. A key finding is that the probabilities display strong threshold effects with respect to noise. Above the noise threshold, the probabilities are significantly influenced by the resistance to CSF outflow and the intensity of the noise. Fluctuations in the CSF formation rate increase fluctuations in the ICP and they should be minimized to lower the patient's risk. The nonlinear SDE provides a scientific methodology for dynamic risk management of patients. The dynamic output of the SDE matches the noisy ICP data generated by the actual intracranial dynamics of patients better than the classic model used in prior research.

  11. A stochastic differential equation analysis of cerebrospinal fluid dynamics

    Directory of Open Access Journals (Sweden)

    Raman Kalyan

    2011-01-01

    Full Text Available Abstract Background Clinical measurements of intracranial pressure (ICP over time show fluctuations around the deterministic time path predicted by a classic mathematical model in hydrocephalus research. Thus an important issue in mathematical research on hydrocephalus remains unaddressed--modeling the effect of noise on CSF dynamics. Our objective is to mathematically model the noise in the data. Methods The classic model relating the temporal evolution of ICP in pressure-volume studies to infusions is a nonlinear differential equation based on natural physical analogies between CSF dynamics and an electrical circuit. Brownian motion was incorporated into the differential equation describing CSF dynamics to obtain a nonlinear stochastic differential equation (SDE that accommodates the fluctuations in ICP. Results The SDE is explicitly solved and the dynamic probabilities of exceeding critical levels of ICP under different clinical conditions are computed. A key finding is that the probabilities display strong threshold effects with respect to noise. Above the noise threshold, the probabilities are significantly influenced by the resistance to CSF outflow and the intensity of the noise. Conclusions Fluctuations in the CSF formation rate increase fluctuations in the ICP and they should be minimized to lower the patient's risk. The nonlinear SDE provides a scientific methodology for dynamic risk management of patients. The dynamic output of the SDE matches the noisy ICP data generated by the actual intracranial dynamics of patients better than the classic model used in prior research.

  12. Differential equations, dynamical systems, and an introduction to chaos

    CERN Document Server

    Smale, Stephen; Devaney, Robert L

    2003-01-01

    Thirty years in the making, this revised text by three of the world''s leading mathematicians covers the dynamical aspects of ordinary differential equations. it explores the relations between dynamical systems and certain fields outside pure mathematics, and has become the standard textbook for graduate courses in this area. The Second Edition now brings students to the brink of contemporary research, starting from a background that includes only calculus and elementary linear algebra.The authors are tops in the field of advanced mathematics, including Steve Smale who is a recipient of the Field''s Medal for his work in dynamical systems.* Developed by award-winning researchers and authors* Provides a rigorous yet accessible introduction to differential equations and dynamical systems* Includes bifurcation theory throughout* Contains numerous explorations for students to embark uponNEW IN THIS EDITION* New contemporary material and updated applications* Revisions throughout the text, including simplification...

  13. Algebraic dynamics solutions and algebraic dynamics algorithm for nonlinear ordinary differential equations

    Institute of Scientific and Technical Information of China (English)

    WANG; Shunjin; ZHANG; Hua

    2006-01-01

    The problem of preserving fidelity in numerical computation of nonlinear ordinary differential equations is studied in terms of preserving local differential structure and approximating global integration structure of the dynamical system.The ordinary differential equations are lifted to the corresponding partial differential equations in the framework of algebraic dynamics,and a new algorithm-algebraic dynamics algorithm is proposed based on the exact analytical solutions of the ordinary differential equations by the algebraic dynamics method.In the new algorithm,the time evolution of the ordinary differential system is described locally by the time translation operator and globally by the time evolution operator.The exact analytical piece-like solution of the ordinary differential equations is expressd in terms of Taylor series with a local convergent radius,and its finite order truncation leads to the new numerical algorithm with a controllable precision better than Runge Kutta Algorithm and Symplectic Geometric Algorithm.

  14. Modeling tree crown dynamics with 3D partial differential equations.

    Science.gov (United States)

    Beyer, Robert; Letort, Véronique; Cournède, Paul-Henry

    2014-01-01

    We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth toward light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications.

  15. Differential equations

    CERN Document Server

    Barbu, Viorel

    2016-01-01

    This textbook is a comprehensive treatment of ordinary differential equations, concisely presenting basic and essential results in a rigorous manner. Including various examples from physics, mechanics, natural sciences, engineering and automatic theory, Differential Equations is a bridge between the abstract theory of differential equations and applied systems theory. Particular attention is given to the existence and uniqueness of the Cauchy problem, linear differential systems, stability theory and applications to first-order partial differential equations. Upper undergraduate students and researchers in applied mathematics and systems theory with a background in advanced calculus will find this book particularly useful. Supplementary topics are covered in an appendix enabling the book to be completely self-contained.

  16. The Mathlet Toolkit: Creating Dynamic Applets for Differential Equations and Dynamical Systems

    Science.gov (United States)

    Decker, Robert

    2011-01-01

    Dynamic/interactive graphing applets can be used to supplement standard computer algebra systems such as Maple, Mathematica, Derive, or TI calculators, in courses such as Calculus, Differential Equations, and Dynamical Systems. The addition of this type of software can lead to discovery learning, with students developing their own conjectures, and…

  17. Differential Equations Compatible with KZ Equations

    International Nuclear Information System (INIS)

    Felder, G.; Markov, Y.; Tarasov, V.; Varchenko, A.

    2000-01-01

    We define a system of 'dynamical' differential equations compatible with the KZ differential equations. The KZ differential equations are associated to a complex simple Lie algebra g. These are equations on a function of n complex variables z i taking values in the tensor product of n finite dimensional g-modules. The KZ equations depend on the 'dual' variable in the Cartan subalgebra of g. The dynamical differential equations are differential equations with respect to the dual variable. We prove that the standard hypergeometric solutions of the KZ equations also satisfy the dynamical equations. As an application we give a new determinant formula for the coordinates of a basis of hypergeometric solutions

  18. Differential equations

    CERN Document Server

    Tricomi, FG

    2013-01-01

    Based on his extensive experience as an educator, F. G. Tricomi wrote this practical and concise teaching text to offer a clear idea of the problems and methods of the theory of differential equations. The treatment is geared toward advanced undergraduates and graduate students and addresses only questions that can be resolved with rigor and simplicity.Starting with a consideration of the existence and uniqueness theorem, the text advances to the behavior of the characteristics of a first-order equation, boundary problems for second-order linear equations, asymptotic methods, and diff

  19. The numerical dynamic for highly nonlinear partial differential equations

    Science.gov (United States)

    Lafon, A.; Yee, H. C.

    1992-01-01

    Problems associated with the numerical computation of highly nonlinear equations in computational fluid dynamics are set forth and analyzed in terms of the potential ranges of spurious behaviors. A reaction-convection equation with a nonlinear source term is employed to evaluate the effects related to spatial and temporal discretizations. The discretization of the source term is described according to several methods, and the various techniques are shown to have a significant effect on the stability of the spurious solutions. Traditional linearized stability analyses cannot provide the level of confidence required for accurate fluid dynamics computations, and the incorporation of nonlinear analysis is proposed. Nonlinear analysis based on nonlinear dynamical systems complements the conventional linear approach and is valuable in the analysis of hypersonic aerodynamics and combustion phenomena.

  20. Hyperbolic partial differential equations

    CERN Document Server

    Witten, Matthew

    1986-01-01

    Hyperbolic Partial Differential Equations III is a refereed journal issue that explores the applications, theory, and/or applied methods related to hyperbolic partial differential equations, or problems arising out of hyperbolic partial differential equations, in any area of research. This journal issue is interested in all types of articles in terms of review, mini-monograph, standard study, or short communication. Some studies presented in this journal include discretization of ideal fluid dynamics in the Eulerian representation; a Riemann problem in gas dynamics with bifurcation; periodic M

  1. A stochastic differential equation framework for the timewise dynamics of turbulent velocities

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Schmiegel, Jürgen

    2008-01-01

    We discuss a stochastic differential equation as a modeling framework for the timewise dynamics of turbulent velocities. The equation is capable of capturing basic stylized facts of the statistics of temporal velocity increments. In particular, we focus on the evolution of the probability density...

  2. Application of partial differential equation modeling of the control/structural dynamics of flexible spacecraft

    Science.gov (United States)

    Taylor, Lawrence W., Jr.; Rajiyah, H.

    1991-01-01

    Partial differential equations for modeling the structural dynamics and control systems of flexible spacecraft are applied here in order to facilitate systems analysis and optimization of these spacecraft. Example applications are given, including the structural dynamics of SCOLE, the Solar Array Flight Experiment, the Mini-MAST truss, and the LACE satellite. The development of related software is briefly addressed.

  3. Fractal differential equations and fractal-time dynamical systems

    Indian Academy of Sciences (India)

    like fractal subsets of the real line may be termed as fractal-time dynamical systems. Formulation ... involving scaling and memory effects. But most of ..... begin by recalling the definition of the Riemann integral in ordinary calculus [33]. Let g: [a ...

  4. Cross Coursing in Mathematics: Physical Modelling in Differential Equations Crossing to Discrete Dynamical Systems

    Science.gov (United States)

    Winkel, Brian

    2012-01-01

    We give an example of cross coursing in which a subject or approach in one course in undergraduate mathematics is used in a completely different course. This situation crosses falling body modelling in an upper level differential equations course into a modest discrete dynamical systems unit of a first-year mathematics course. (Contains 1 figure.)

  5. Partial Differential Equations

    CERN Document Server

    1988-01-01

    The volume contains a selection of papers presented at the 7th Symposium on differential geometry and differential equations (DD7) held at the Nankai Institute of Mathematics, Tianjin, China, in 1986. Most of the contributions are original research papers on topics including elliptic equations, hyperbolic equations, evolution equations, non-linear equations from differential geometry and mechanics, micro-local analysis.

  6. Stochastic differential equations for quantum dynamics of spin-boson networks

    International Nuclear Information System (INIS)

    Mandt, Stephan; Sadri, Darius; Houck, Andrew A; Türeci, Hakan E

    2015-01-01

    A popular approach in quantum optics is to map a master equation to a stochastic differential equation, where quantum effects manifest themselves through noise terms. We generalize this approach based on the positive-P representation to systems involving spin, in particular networks or lattices of interacting spins and bosons. We test our approach on a driven dimer of spins and photons, compare it to the master equation, and predict a novel dynamic phase transition in this system. Our numerical approach has scaling advantages over existing methods, but typically requires regularization in terms of drive and dissipation. (paper)

  7. Periodic solutions of first-order functional differential equations in population dynamics

    CERN Document Server

    Padhi, Seshadev; Srinivasu, P D N

    2014-01-01

    This book provides cutting-edge results on the existence of multiple positive periodic solutions of first-order functional differential equations. It demonstrates how the Leggett-Williams fixed-point theorem can be applied to study the existence of two or three positive periodic solutions of functional differential equations with real-world applications, particularly with regard to the Lasota-Wazewska model, the Hematopoiesis model, the Nicholsons Blowflies model, and some models with Allee effects. Many interesting sufficient conditions are given for the dynamics that include nonlinear characteristics exhibited by population models. The last chapter provides results related to the global appeal of solutions to the models considered in the earlier chapters. The techniques used in this book can be easily understood by anyone with a basic knowledge of analysis. This book offers a valuable reference guide for students and researchers in the field of differential equations with applications to biology, ecology, a...

  8. Interpreting experimental data on egg production--applications of dynamic differential equations.

    Science.gov (United States)

    France, J; Lopez, S; Kebreab, E; Dijkstra, J

    2013-09-01

    This contribution focuses on applying mathematical models based on systems of ordinary first-order differential equations to synthesize and interpret data from egg production experiments. Models based on linear systems of differential equations are contrasted with those based on nonlinear systems. Regression equations arising from analytical solutions to linear compartmental schemes are considered as candidate functions for describing egg production curves, together with aspects of parameter estimation. Extant candidate functions are reviewed, a role for growth functions such as the Gompertz equation suggested, and a function based on a simple new model outlined. Structurally, the new model comprises a single pool with an inflow and an outflow. Compartmental simulation models based on nonlinear systems of differential equations, and thus requiring numerical solution, are next discussed, and aspects of parameter estimation considered. This type of model is illustrated in relation to development and evaluation of a dynamic model of calcium and phosphorus flows in layers. The model consists of 8 state variables representing calcium and phosphorus pools in the crop, stomachs, plasma, and bone. The flow equations are described by Michaelis-Menten or mass action forms. Experiments that measure Ca and P uptake in layers fed different calcium concentrations during shell-forming days are used to evaluate the model. In addition to providing a useful management tool, such a simulation model also provides a means to evaluate feeding strategies aimed at reducing excretion of potential pollutants in poultry manure to the environment.

  9. Simulation of quantum dynamics based on the quantum stochastic differential equation.

    Science.gov (United States)

    Li, Ming

    2013-01-01

    The quantum stochastic differential equation derived from the Lindblad form quantum master equation is investigated. The general formulation in terms of environment operators representing the quantum state diffusion is given. The numerical simulation algorithm of stochastic process of direct photodetection of a driven two-level system for the predictions of the dynamical behavior is proposed. The effectiveness and superiority of the algorithm are verified by the performance analysis of the accuracy and the computational cost in comparison with the classical Runge-Kutta algorithm.

  10. Singular stochastic differential equations

    CERN Document Server

    Cherny, Alexander S

    2005-01-01

    The authors introduce, in this research monograph on stochastic differential equations, a class of points termed isolated singular points. Stochastic differential equations possessing such points (called singular stochastic differential equations here) arise often in theory and in applications. However, known conditions for the existence and uniqueness of a solution typically fail for such equations. The book concentrates on the study of the existence, the uniqueness, and, what is most important, on the qualitative behaviour of solutions of singular stochastic differential equations. This is done by providing a qualitative classification of isolated singular points, into 48 possible types.

  11. Sparse Additive Ordinary Differential Equations for Dynamic Gene Regulatory Network Modeling.

    Science.gov (United States)

    Wu, Hulin; Lu, Tao; Xue, Hongqi; Liang, Hua

    2014-04-02

    The gene regulation network (GRN) is a high-dimensional complex system, which can be represented by various mathematical or statistical models. The ordinary differential equation (ODE) model is one of the popular dynamic GRN models. High-dimensional linear ODE models have been proposed to identify GRNs, but with a limitation of the linear regulation effect assumption. In this article, we propose a sparse additive ODE (SA-ODE) model, coupled with ODE estimation methods and adaptive group LASSO techniques, to model dynamic GRNs that could flexibly deal with nonlinear regulation effects. The asymptotic properties of the proposed method are established and simulation studies are performed to validate the proposed approach. An application example for identifying the nonlinear dynamic GRN of T-cell activation is used to illustrate the usefulness of the proposed method.

  12. Price dynamics of the financial markets using the stochastic differential equation for a potential double well

    Science.gov (United States)

    Lima, L. S.; Miranda, L. L. B.

    2018-01-01

    We have used the Itô's stochastic differential equation for the double well with additive white noise as a mathematical model for price dynamics of the financial market. We have presented a model which allows us to test within the same framework the comparative explanatory power of rational agents versus irrational agents, with respect to the facts of financial markets. We have obtained the mean price in terms of the β parameter that represents the force of the randomness term of the model.

  13. Ordinary differential equations

    CERN Document Server

    Greenberg, Michael D

    2014-01-01

    Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory. Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology, the book anticipates potential difficulties in understanding the various solution steps

  14. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2014-01-01

    A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible,combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger's equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is or

  15. Introduction to differential equations

    CERN Document Server

    Taylor, Michael E

    2011-01-01

    The mathematical formulations of problems in physics, economics, biology, and other sciences are usually embodied in differential equations. The analysis of the resulting equations then provides new insight into the original problems. This book describes the tools for performing that analysis. The first chapter treats single differential equations, emphasizing linear and nonlinear first order equations, linear second order equations, and a class of nonlinear second order equations arising from Newton's laws. The first order linear theory starts with a self-contained presentation of the exponen

  16. Differential equations for dummies

    CERN Document Server

    Holzner, Steven

    2008-01-01

    The fun and easy way to understand and solve complex equations Many of the fundamental laws of physics, chemistry, biology, and economics can be formulated as differential equations. This plain-English guide explores the many applications of this mathematical tool and shows how differential equations can help us understand the world around us. Differential Equations For Dummies is the perfect companion for a college differential equations course and is an ideal supplemental resource for other calculus classes as well as science and engineering courses. It offers step-by-step techniques, practical tips, numerous exercises, and clear, concise examples to help readers improve their differential equation-solving skills and boost their test scores.

  17. Pod systems: an equivariant ordinary differential equation approach to dynamical systems on a spatial domain

    International Nuclear Information System (INIS)

    Elmhirst, Toby; Stewart, Ian; Doebeli, Michael

    2008-01-01

    We present a class of systems of ordinary differential equations (ODEs), which we call 'pod systems', that offers a new perspective on dynamical systems defined on a spatial domain. Such systems are typically studied as partial differential equations, but pod systems bring the analytic techniques of ODE theory to bear on the problems, and are thus able to study behaviours and bifurcations that are not easily accessible to the standard methods. In particular, pod systems are specifically designed to study spatial dynamical systems that exhibit multi-modal solutions. A pod system is essentially a linear combination of parametrized functions in which the coefficients and parameters are variables whose dynamics are specified by a system of ODEs. That is, pod systems are concerned with the dynamics of functions of the form Ψ(s, t) = y 1 (t) φ(s; x 1 (t)) + ··· + y N (t) φ(s; x N (t)), where s in R n is the spatial variable and φ: R n × R d → R. The parameters x i in R d and coefficients y i in R are dynamic variables which evolve according to some system of ODEs, x-dot i = G i (x, y) and y-dot i = H i (x, y), for i = 1, ..., N. The dynamics of Ψ in function space can then be studied through the dynamics of the x and y in finite dimensions. A vital feature of pod systems is that the ODEs that specify the dynamics of the x and y variables are not arbitrary; restrictions on G i and H i are required to guarantee that the dynamics of Ψ in function space are well defined (that is, that trajectories are unique). One important restriction is symmetry in the ODEs which arises because Ψ is invariant under permutations of the indices of the (x i , y i ) pairs. However, this is not the whole story, and the primary goal of this paper is to determine the necessary structure of the ODEs explicitly to guarantee that the dynamics of Ψ are well defined

  18. Equivalent construction of the infinitesimal time translation operator in algebraic dynamics algorithm for partial differential evolution equation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We give an equivalent construction of the infinitesimal time translation operator for partial differential evolution equation in the algebraic dynamics algorithm proposed by Shun-Jin Wang and his students. Our construction involves only simple partial differentials and avoids the derivative terms of δ function which appear in the course of computation by means of Wang-Zhang operator. We prove Wang’s equivalent theorem which says that our construction and Wang-Zhang’s are equivalent. We use our construction to deal with several typical equations such as nonlinear advection equation, Burgers equation, nonlinear Schrodinger equation, KdV equation and sine-Gordon equation, and obtain at least second order approximate solutions to them. These equations include the cases of real and complex field variables and the cases of the first and the second order time derivatives.

  19. Solving Ordinary Differential Equations

    Science.gov (United States)

    Krogh, F. T.

    1987-01-01

    Initial-value ordinary differential equation solution via variable order Adams method (SIVA/DIVA) package is collection of subroutines for solution of nonstiff ordinary differential equations. There are versions for single-precision and double-precision arithmetic. Requires fewer evaluations of derivatives than other variable-order Adams predictor/ corrector methods. Option for direct integration of second-order equations makes integration of trajectory problems significantly more efficient. Written in FORTRAN 77.

  20. Partial differential equations

    CERN Document Server

    Evans, Lawrence C

    2010-01-01

    This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: representation formulas for solutions; theory for linear partial differential equations; and theory for nonlinear partial differential equations. Included are complete treatments of the method of characteristics; energy methods within Sobolev spaces; regularity for second-order elliptic, parabolic, and hyperbolic equations; maximum principles; the multidimensional calculus of variations; viscosity solutions of Hamilton-Jacobi equations; shock waves and entropy criteria for conservation laws; and, much more.The author summarizes the relevant mathematics required to understand current research in PDEs, especially nonlinear PDEs. While he has reworked and simplified much of the classical theory (particularly the method of characteristics), he primarily emphasizes the modern interplay between funct...

  1. Nonlinear differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.

  2. Nonlinear differential equations

    International Nuclear Information System (INIS)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics

  3. Differential equations problem solver

    CERN Document Server

    Arterburn, David R

    2012-01-01

    REA's Problem Solvers is a series of useful, practical, and informative study guides. Each title in the series is complete step-by-step solution guide. The Differential Equations Problem Solver enables students to solve difficult problems by showing them step-by-step solutions to Differential Equations problems. The Problem Solvers cover material ranging from the elementary to the advanced and make excellent review books and textbook companions. They're perfect for undergraduate and graduate studies.The Differential Equations Problem Solver is the perfect resource for any class, any exam, and

  4. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2011-01-01

    A rigorous, yet accessible, introduction to partial differential equations-updated in a valuable new edition Beginning Partial Differential Equations, Second Edition provides a comprehensive introduction to partial differential equations (PDEs) with a special focus on the significance of characteristics, solutions by Fourier series, integrals and transforms, properties and physical interpretations of solutions, and a transition to the modern function space approach to PDEs. With its breadth of coverage, this new edition continues to present a broad introduction to the field, while also addres

  5. Ordinary differential equations

    CERN Document Server

    Miller, Richard K

    1982-01-01

    Ordinary Differential Equations is an outgrowth of courses taught for a number of years at Iowa State University in the mathematics and the electrical engineering departments. It is intended as a text for a first graduate course in differential equations for students in mathematics, engineering, and the sciences. Although differential equations is an old, traditional, and well-established subject, the diverse backgrounds and interests of the students in a typical modern-day course cause problems in the selection and method of presentation of material. In order to compensate for this diversity,

  6. Uncertain differential equations

    CERN Document Server

    Yao, Kai

    2016-01-01

    This book introduces readers to the basic concepts of and latest findings in the area of differential equations with uncertain factors. It covers the analytic method and numerical method for solving uncertain differential equations, as well as their applications in the field of finance. Furthermore, the book provides a number of new potential research directions for uncertain differential equation. It will be of interest to researchers, engineers and students in the fields of mathematics, information science, operations research, industrial engineering, computer science, artificial intelligence, automation, economics, and management science.

  7. Reduced-order modelling of parameter-dependent, linear and nonlinear dynamic partial differential equation models.

    Science.gov (United States)

    Shah, A A; Xing, W W; Triantafyllidis, V

    2017-04-01

    In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach.

  8. A dynamical regularization algorithm for solving inverse source problems of elliptic partial differential equations

    Science.gov (United States)

    Zhang, Ye; Gong, Rongfang; Cheng, Xiaoliang; Gulliksson, Mårten

    2018-06-01

    This study considers the inverse source problem for elliptic partial differential equations with both Dirichlet and Neumann boundary data. The unknown source term is to be determined by additional boundary conditions. Unlike the existing methods found in the literature, which usually employ the first-order in time gradient-like system (such as the steepest descent methods) for numerically solving the regularized optimization problem with a fixed regularization parameter, we propose a novel method with a second-order in time dissipative gradient-like system and a dynamical selected regularization parameter. A damped symplectic scheme is proposed for the numerical solution. Theoretical analysis is given for both the continuous model and the numerical algorithm. Several numerical examples are provided to show the robustness of the proposed algorithm.

  9. Dynamics of a delay differential equation model of hepatitis B virus infection.

    Science.gov (United States)

    Gourley, Stephen A; Kuang, Yang; Nagy, John D

    2008-04-01

    We formulate and systematically study the global dynamics of a simple model of hepatitis B virus in terms of delay differential equations. This model has two important and novel features compared to the well-known basic virus model in the literature. Specifically, it makes use of the more realistic standard incidence function and explicitly incorporates a time delay in virus production. As a result, the infection reproduction number is no longer dependent on the patient liver size (number of initial healthy liver cells). For this model, the existence and the component values of the endemic steady state are explicitly dependent on the time delay. In certain biologically interesting limiting scenarios, a globally attractive endemic equilibrium can exist regardless of the time delay length.

  10. Problems in differential equations

    CERN Document Server

    Brenner, J L

    2013-01-01

    More than 900 problems and answers explore applications of differential equations to vibrations, electrical engineering, mechanics, and physics. Problem types include both routine and nonroutine, and stars indicate advanced problems. 1963 edition.

  11. Differential equations I essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Differential Equations I covers first- and second-order equations, series solutions, higher-order linear equations, and the Laplace transform.

  12. Calculus & ordinary differential equations

    CERN Document Server

    Pearson, David

    1995-01-01

    Professor Pearson's book starts with an introduction to the area and an explanation of the most commonly used functions. It then moves on through differentiation, special functions, derivatives, integrals and onto full differential equations. As with other books in the series the emphasis is on using worked examples and tutorial-based problem solving to gain the confidence of students.

  13. Exact Solution of Gas Dynamics Equations Through Reduced Differential Transform and Sumudu Transform Linked with Pades Approximants

    Science.gov (United States)

    Rao, T. R. Ramesh

    2018-04-01

    In this paper, we study the analytical method based on reduced differential transform method coupled with sumudu transform through Pades approximants. The proposed method may be considered as alternative approach for finding exact solution of Gas dynamics equation in an effective manner. This method does not require any discretization, linearization and perturbation.

  14. SIMULTANEOUS DIFFERENTIAL EQUATION COMPUTER

    Science.gov (United States)

    Collier, D.M.; Meeks, L.A.; Palmer, J.P.

    1960-05-10

    A description is given for an electronic simulator for a system of simultaneous differential equations, including nonlinear equations. As a specific example, a homogeneous nuclear reactor system including a reactor fluid, heat exchanger, and a steam boiler may be simulated, with the nonlinearity resulting from a consideration of temperature effects taken into account. The simulator includes three operational amplifiers, a multiplier, appropriate potential sources, and interconnecting R-C networks.

  15. Differential Game for a Class of Warfare Dynamic Systems with Reinforcement Based on Lanchester Equation

    OpenAIRE

    Chen, Xiangyong; Qiu, Jianlong

    2014-01-01

    This paper concerns the optimal reinforcement game problem between two opposing forces in military conflicts. With some moderate assumptions, we employ Lanchester equation and differential game theory to develop a corresponding optimization game model. After that, we establish the optimum condition for the differential game problem and give an algorithm to obtain the optimal reinforcement strategies. Furthermore, we also discuss the convergence of the algorithm. Finally, a numerical example i...

  16. Applied partial differential equations

    CERN Document Server

    Logan, J David

    2004-01-01

    This primer on elementary partial differential equations presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs. What makes this book unique is that it is a brief treatment, yet it covers all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. Mathematical ideas are motivated from physical problems, and the exposition is presented in a concise style accessible to science and engineering students; emphasis is on motivation, concepts, methods, and interpretation, rather than formal theory. This second edition contains new and additional exercises, and it includes a new chapter on the applications of PDEs to biology: age structured models, pattern formation; epidemic wave fronts, and advection-diffusion processes. The student who reads through this book and solves many of t...

  17. On the selection of ordinary differential equation models with application to predator-prey dynamical models.

    Science.gov (United States)

    Zhang, Xinyu; Cao, Jiguo; Carroll, Raymond J

    2015-03-01

    We consider model selection and estimation in a context where there are competing ordinary differential equation (ODE) models, and all the models are special cases of a "full" model. We propose a computationally inexpensive approach that employs statistical estimation of the full model, followed by a combination of a least squares approximation (LSA) and the adaptive Lasso. We show the resulting method, here called the LSA method, to be an (asymptotically) oracle model selection method. The finite sample performance of the proposed LSA method is investigated with Monte Carlo simulations, in which we examine the percentage of selecting true ODE models, the efficiency of the parameter estimation compared to simply using the full and true models, and coverage probabilities of the estimated confidence intervals for ODE parameters, all of which have satisfactory performances. Our method is also demonstrated by selecting the best predator-prey ODE to model a lynx and hare population dynamical system among some well-known and biologically interpretable ODE models. © 2014, The International Biometric Society.

  18. Global dynamics for switching systems and their extensions by linear differential equations

    Science.gov (United States)

    Huttinga, Zane; Cummins, Bree; Gedeon, Tomáš; Mischaikow, Konstantin

    2018-03-01

    Switching systems use piecewise constant nonlinearities to model gene regulatory networks. This choice provides advantages in the analysis of behavior and allows the global description of dynamics in terms of Morse graphs associated to nodes of a parameter graph. The parameter graph captures spatial characteristics of a decomposition of parameter space into domains with identical Morse graphs. However, there are many cellular processes that do not exhibit threshold-like behavior and thus are not well described by a switching system. We consider a class of extensions of switching systems formed by a mixture of switching interactions and chains of variables governed by linear differential equations. We show that the parameter graphs associated to the switching system and any of its extensions are identical. For each parameter graph node, there is an order-preserving map from the Morse graph of the switching system to the Morse graph of any of its extensions. We provide counterexamples that show why possible stronger relationships between the Morse graphs are not valid.

  19. Global dynamics for switching systems and their extensions by linear differential equations.

    Science.gov (United States)

    Huttinga, Zane; Cummins, Bree; Gedeon, Tomáš; Mischaikow, Konstantin

    2018-03-15

    Switching systems use piecewise constant nonlinearities to model gene regulatory networks. This choice provides advantages in the analysis of behavior and allows the global description of dynamics in terms of Morse graphs associated to nodes of a parameter graph. The parameter graph captures spatial characteristics of a decomposition of parameter space into domains with identical Morse graphs. However, there are many cellular processes that do not exhibit threshold-like behavior and thus are not well described by a switching system. We consider a class of extensions of switching systems formed by a mixture of switching interactions and chains of variables governed by linear differential equations. We show that the parameter graphs associated to the switching system and any of its extensions are identical. For each parameter graph node, there is an order-preserving map from the Morse graph of the switching system to the Morse graph of any of its extensions. We provide counterexamples that show why possible stronger relationships between the Morse graphs are not valid.

  20. ESTIMATION OF CONSTANT AND TIME-VARYING DYNAMIC PARAMETERS OF HIV INFECTION IN A NONLINEAR DIFFERENTIAL EQUATION MODEL.

    Science.gov (United States)

    Liang, Hua; Miao, Hongyu; Wu, Hulin

    2010-03-01

    Modeling viral dynamics in HIV/AIDS studies has resulted in deep understanding of pathogenesis of HIV infection from which novel antiviral treatment guidance and strategies have been derived. Viral dynamics models based on nonlinear differential equations have been proposed and well developed over the past few decades. However, it is quite challenging to use experimental or clinical data to estimate the unknown parameters (both constant and time-varying parameters) in complex nonlinear differential equation models. Therefore, investigators usually fix some parameter values, from the literature or by experience, to obtain only parameter estimates of interest from clinical or experimental data. However, when such prior information is not available, it is desirable to determine all the parameter estimates from data. In this paper, we intend to combine the newly developed approaches, a multi-stage smoothing-based (MSSB) method and the spline-enhanced nonlinear least squares (SNLS) approach, to estimate all HIV viral dynamic parameters in a nonlinear differential equation model. In particular, to the best of our knowledge, this is the first attempt to propose a comparatively thorough procedure, accounting for both efficiency and accuracy, to rigorously estimate all key kinetic parameters in a nonlinear differential equation model of HIV dynamics from clinical data. These parameters include the proliferation rate and death rate of uninfected HIV-targeted cells, the average number of virions produced by an infected cell, and the infection rate which is related to the antiviral treatment effect and is time-varying. To validate the estimation methods, we verified the identifiability of the HIV viral dynamic model and performed simulation studies. We applied the proposed techniques to estimate the key HIV viral dynamic parameters for two individual AIDS patients treated with antiretroviral therapies. We demonstrate that HIV viral dynamics can be well characterized and

  1. Differential Equation over Banach Algebra

    OpenAIRE

    Kleyn, Aleks

    2018-01-01

    In the book, I considered differential equations of order $1$ over Banach $D$-algebra: differential equation solved with respect to the derivative; exact differential equation; linear homogeneous equation. In noncommutative Banach algebra, initial value problem for linear homogeneous equation has infinitely many solutions.

  2. Differential Equations as Actions

    DEFF Research Database (Denmark)

    Ronkko, Mauno; Ravn, Anders P.

    1997-01-01

    We extend a conventional action system with a primitive action consisting of a differential equation and an evolution invariant. The semantics is given by a predicate transformer. The weakest liberal precondition is chosen, because it is not always desirable that steps corresponding to differential...... actions shall terminate. It is shown that the proposed differential action has a semantics which corresponds to a discrete approximation when the discrete step size goes to zero. The extension gives action systems the power to model real-time clocks and continuous evolutions within hybrid systems....

  3. Modelling the heat dynamics of a building using stochastic differential equations

    DEFF Research Database (Denmark)

    Andersen, Klaus Kaae; Madsen, Henrik; Hansen, Lars Henrik

    2000-01-01

    estimation and model validation, while physical knowledge is used in forming the model structure. The suggested lumped parameter model is thus based on thermodynamics and formulated as a system of stochastic differential equations. Due to the continuous time formulation the parameters of the model...

  4. Differential Equation of Equilibrium

    African Journals Online (AJOL)

    user

    ABSTRACT. Analysis of underground circular cylindrical shell is carried out in this work. The forth order differential equation of equilibrium, comparable to that of beam on elastic foundation, was derived from static principles on the assumptions of P. L Pasternak. Laplace transformation was used to solve the governing ...

  5. Partial differential equations for scientists and engineers

    CERN Document Server

    Farlow, Stanley J

    1993-01-01

    Most physical phenomena, whether in the domain of fluid dynamics, electricity, magnetism, mechanics, optics, or heat flow, can be described in general by partial differential equations. Indeed, such equations are crucial to mathematical physics. Although simplifications can be made that reduce these equations to ordinary differential equations, nevertheless the complete description of physical systems resides in the general area of partial differential equations.This highly useful text shows the reader how to formulate a partial differential equation from the physical problem (constructing th

  6. Stochastic partial differential fluid equations as a diffusive limit of deterministic Lagrangian multi-time dynamics.

    Science.gov (United States)

    Cotter, C J; Gottwald, G A; Holm, D D

    2017-09-01

    In Holm (Holm 2015 Proc. R. Soc. A 471 , 20140963. (doi:10.1098/rspa.2014.0963)), stochastic fluid equations were derived by employing a variational principle with an assumed stochastic Lagrangian particle dynamics. Here we show that the same stochastic Lagrangian dynamics naturally arises in a multi-scale decomposition of the deterministic Lagrangian flow map into a slow large-scale mean and a rapidly fluctuating small-scale map. We employ homogenization theory to derive effective slow stochastic particle dynamics for the resolved mean part, thereby obtaining stochastic fluid partial equations in the Eulerian formulation. To justify the application of rigorous homogenization theory, we assume mildly chaotic fast small-scale dynamics, as well as a centring condition. The latter requires that the mean of the fluctuating deviations is small, when pulled back to the mean flow.

  7. Partial differential equations

    CERN Document Server

    Agranovich, M S

    2002-01-01

    Mark Vishik's Partial Differential Equations seminar held at Moscow State University was one of the world's leading seminars in PDEs for over 40 years. This book celebrates Vishik's eightieth birthday. It comprises new results and survey papers written by many renowned specialists who actively participated over the years in Vishik's seminars. Contributions include original developments and methods in PDEs and related fields, such as mathematical physics, tomography, and symplectic geometry. Papers discuss linear and nonlinear equations, particularly linear elliptic problems in angles and gener

  8. Differential Game for a Class of Warfare Dynamic Systems with Reinforcement Based on Lanchester Equation

    Directory of Open Access Journals (Sweden)

    Xiangyong Chen

    2014-01-01

    Full Text Available This paper concerns the optimal reinforcement game problem between two opposing forces in military conflicts. With some moderate assumptions, we employ Lanchester equation and differential game theory to develop a corresponding optimization game model. After that, we establish the optimum condition for the differential game problem and give an algorithm to obtain the optimal reinforcement strategies. Furthermore, we also discuss the convergence of the algorithm. Finally, a numerical example illustrates the effectiveness of the presented optimal schemes. Our proposed results provide a theoretical guide for both making warfare command decision and assessing military actions.

  9. The geometric approach to sets of ordinary differential equations and Hamiltonian dynamics

    Science.gov (United States)

    Estabrook, F. B.; Wahlquist, H. D.

    1975-01-01

    The calculus of differential forms is used to discuss the local integration theory of a general set of autonomous first order ordinary differential equations. Geometrically, such a set is a vector field V in the space of dependent variables. Integration consists of seeking associated geometric structures invariant along V: scalar fields, forms, vectors, and integrals over subspaces. It is shown that to any field V can be associated a Hamiltonian structure of forms if, when dealing with an odd number of dependent variables, an arbitrary equation of constraint is also added. Families of integral invariants are an immediate consequence. Poisson brackets are isomorphic to Lie products of associated CT-generating vector fields. Hamilton's variational principle follows from the fact that the maximal regular integral manifolds of a closed set of forms must include the characteristics of the set.

  10. Differential equations with Mathematica

    CERN Document Server

    Abell, Martha L

    2004-01-01

    The Third Edition of the Differential Equations with Mathematica integrates new applications from a variety of fields,especially biology, physics, and engineering. The new handbook is also completely compatible with recent versions of Mathematica and is a perfect introduction for Mathematica beginners.* Focuses on the most often used features of Mathematica for the beginning Mathematica user* New applications from a variety of fields, including engineering, biology, and physics* All applications were completed using recent versions of Mathematica

  11. Fun with Differential Equations

    Indian Academy of Sciences (India)

    IAS Admin

    tion of ® with ¼=2. One can use the uniqueness of solutions of differential equations to prove the addition formulae for sin(t1 +t2), etc. But instead of continuing with this thought process, let us do something more interesting. Now we shall consider another system. Fix 0 < < 1. I am looking for three real-valued functions x(t), ...

  12. Introduction to partial differential equations

    CERN Document Server

    Greenspan, Donald

    2000-01-01

    Designed for use in a one-semester course by seniors and beginning graduate students, this rigorous presentation explores practical methods of solving differential equations, plus the unifying theory underlying the mathematical superstructure. Topics include basic concepts, Fourier series, second-order partial differential equations, wave equation, potential equation, heat equation, approximate solution of partial differential equations, and more. Exercises appear at the ends of most chapters. 1961 edition.

  13. Applied analysis and differential equations

    CERN Document Server

    Cârj, Ovidiu

    2007-01-01

    This volume contains refereed research articles written by experts in the field of applied analysis, differential equations and related topics. Well-known leading mathematicians worldwide and prominent young scientists cover a diverse range of topics, including the most exciting recent developments. A broad range of topics of recent interest are treated: existence, uniqueness, viability, asymptotic stability, viscosity solutions, controllability and numerical analysis for ODE, PDE and stochastic equations. The scope of the book is wide, ranging from pure mathematics to various applied fields such as classical mechanics, biomedicine, and population dynamics.

  14. Partial differential equations

    CERN Document Server

    Levine, Harold

    1997-01-01

    The subject matter, partial differential equations (PDEs), has a long history (dating from the 18th century) and an active contemporary phase. An early phase (with a separate focus on taut string vibrations and heat flow through solid bodies) stimulated developments of great importance for mathematical analysis, such as a wider concept of functions and integration and the existence of trigonometric or Fourier series representations. The direct relevance of PDEs to all manner of mathematical, physical and technical problems continues. This book presents a reasonably broad introductory account of the subject, with due regard for analytical detail, applications and historical matters.

  15. Ordinary differential equations

    CERN Document Server

    Cox, William

    1995-01-01

    Building on introductory calculus courses, this text provides a sound foundation in the underlying principles of ordinary differential equations. Important concepts, including uniqueness and existence theorems, are worked through in detail and the student is encouraged to develop much of the routine material themselves, thus helping to ensure a solid understanding of the fundamentals required.The wide use of exercises, problems and self-assessment questions helps to promote a deeper understanding of the material and it is developed in such a way that it lays the groundwork for further

  16. Partial differential equations

    CERN Document Server

    Sloan, D; Süli, E

    2001-01-01

    /homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! Over the second half of the 20th century the subject area loosely referred to as numerical analysis of partial differential equations (PDEs) has undergone unprecedented development. At its practical end, the vigorous growth and steady diversification of the field were stimulated by the demand for accurate and reliable tools for computational modelling in physical sciences and engineering, and by the rapid development of computer hardware and architecture. At the more theoretical end, the analytical insight in

  17. Elliptic partial differential equations

    CERN Document Server

    Han, Qing

    2011-01-01

    Elliptic Partial Differential Equations by Qing Han and FangHua Lin is one of the best textbooks I know. It is the perfect introduction to PDE. In 150 pages or so it covers an amazing amount of wonderful and extraordinary useful material. I have used it as a textbook at both graduate and undergraduate levels which is possible since it only requires very little background material yet it covers an enormous amount of material. In my opinion it is a must read for all interested in analysis and geometry, and for all of my own PhD students it is indeed just that. I cannot say enough good things abo

  18. Elements of partial differential equations

    CERN Document Server

    Sneddon, Ian Naismith

    1957-01-01

    Geared toward students of applied rather than pure mathematics, this volume introduces elements of partial differential equations. Its focus is primarily upon finding solutions to particular equations rather than general theory.Topics include ordinary differential equations in more than two variables, partial differential equations of the first and second orders, Laplace's equation, the wave equation, and the diffusion equation. A helpful Appendix offers information on systems of surfaces, and solutions to the odd-numbered problems appear at the end of the book. Readers pursuing independent st

  19. Dynamics of excited instantons in the system of forced Gursey nonlinear differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Aydogmus, F., E-mail: fatma.aydogmus@gmail.com [Istanbul University, Department of Physics, Faculty of Science (Turkey)

    2015-02-15

    The Gursey model is a 4D conformally invariant pure fermionic model with a nonlinear spinor self-coupled term. Gursey proposed his model as a possible basis for a unitary description of elementary particles following the “Heisenberg dream.” In this paper, we consider the system of Gursey nonlinear differential equations (GNDEs) formed by using the Heisenberg ansatz. We use it to understand how the behavior of spinor-type Gursey instantons can be affected by excitations. For this, the regular and chaotic numerical solutions of forced GNDEs are investigated by constructing their Poincaré sections in phase space. A hierarchical cluster analysis method for investigating the forced GNDEs is also presented.

  20. Scaling of differential equations

    CERN Document Server

    Langtangen, Hans Petter

    2016-01-01

    The book serves both as a reference for various scaled models with corresponding dimensionless numbers, and as a resource for learning the art of scaling. A special feature of the book is the emphasis on how to create software for scaled models, based on existing software for unscaled models. Scaling (or non-dimensionalization) is a mathematical technique that greatly simplifies the setting of input parameters in numerical simulations. Moreover, scaling enhances the understanding of how different physical processes interact in a differential equation model. Compared to the existing literature, where the topic of scaling is frequently encountered, but very often in only a brief and shallow setting, the present book gives much more thorough explanations of how to reason about finding the right scales. This process is highly problem dependent, and therefore the book features a lot of worked examples, from very simple ODEs to systems of PDEs, especially from fluid mechanics. The text is easily accessible and exam...

  1. Some New Trends in Differential Equations

    Indian Academy of Sciences (India)

    Mythily Ramaswamy TIFR Centre for Applicable Mathematics, Bangalore

    2008-04-05

    Apr 5, 2008 ... Optimal Control Problems. Controllability. Stabilizability. Overview. 1 Differential Equations as Models. Mathematical Models. Brief History. Main Questions. 2 Optimal Control Problems. Mathematical Model. Optimal Control. Dynamic Programming. Pontryagin Maximum Principle. 3 Controllability. A Model.

  2. Differential equations inverse and direct problems

    CERN Document Server

    Favini, Angelo

    2006-01-01

    DEGENERATE FIRST ORDER IDENTIFICATION PROBLEMS IN BANACH SPACES A NONISOTHERMAL DYNAMICAL GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY. EXISTENCE AND UNIQUENESS THEOREMSSOME GLOBAL IN TIME RESULTS FOR INTEGRODIFFERENTIAL PARABOLIC INVERSE PROBLEMSFOURTH ORDER ORDINARY DIFFERENTIAL OPERATORS WITH GENERAL WENTZELL BOUNDARY CONDITIONSTUDY OF ELLIPTIC DIFFERENTIAL EQUATIONS IN UMD SPACESDEGENERATE INTEGRODIFFERENTIAL EQUATIONS OF PARABOLIC TYPE EXPONENTIAL ATTRACTORS FOR SEMICONDUCTOR EQUATIONSCONVERGENCE TO STATIONARY STATES OF SOLUTIONS TO THE SEMILINEAR EQUATION OF VISCOELASTICITY ASYMPTOTIC BEHA

  3. On Degenerate Partial Differential Equations

    OpenAIRE

    Chen, Gui-Qiang G.

    2010-01-01

    Some of recent developments, including recent results, ideas, techniques, and approaches, in the study of degenerate partial differential equations are surveyed and analyzed. Several examples of nonlinear degenerate, even mixed, partial differential equations, are presented, which arise naturally in some longstanding, fundamental problems in fluid mechanics and differential geometry. The solution to these fundamental problems greatly requires a deep understanding of nonlinear degenerate parti...

  4. Generalized Ordinary Differential Equation Models.

    Science.gov (United States)

    Miao, Hongyu; Wu, Hulin; Xue, Hongqi

    2014-10-01

    Existing estimation methods for ordinary differential equation (ODE) models are not applicable to discrete data. The generalized ODE (GODE) model is therefore proposed and investigated for the first time. We develop the likelihood-based parameter estimation and inference methods for GODE models. We propose robust computing algorithms and rigorously investigate the asymptotic properties of the proposed estimator by considering both measurement errors and numerical errors in solving ODEs. The simulation study and application of our methods to an influenza viral dynamics study suggest that the proposed methods have a superior performance in terms of accuracy over the existing ODE model estimation approach and the extended smoothing-based (ESB) method.

  5. Introduction to ordinary differential equations

    CERN Document Server

    Rabenstein, Albert L

    1966-01-01

    Introduction to Ordinary Differential Equations is a 12-chapter text that describes useful elementary methods of finding solutions using ordinary differential equations. This book starts with an introduction to the properties and complex variable of linear differential equations. Considerable chapters covered topics that are of particular interest in applications, including Laplace transforms, eigenvalue problems, special functions, Fourier series, and boundary-value problems of mathematical physics. Other chapters are devoted to some topics that are not directly concerned with finding solutio

  6. On matrix fractional differential equations

    OpenAIRE

    Adem Kılıçman; Wasan Ajeel Ahmood

    2017-01-01

    The aim of this article is to study the matrix fractional differential equations and to find the exact solution for system of matrix fractional differential equations in terms of Riemann–Liouville using Laplace transform method and convolution product to the Riemann–Liouville fractional of matrices. Also, we show the theorem of non-homogeneous matrix fractional partial differential equation with some illustrative examples to demonstrate the effectiveness of the new methodology. The main objec...

  7. Differential equations extended to superspace

    Energy Technology Data Exchange (ETDEWEB)

    Torres, J. [Instituto de Fisica, Universidad de Guanajuato, A.P. E-143, Leon, Guanajuato (Mexico); Rosu, H.C. [Instituto Potosino de Investigacion Cientifica y Tecnologica, A.P. 3-74, Tangamanga, San Luis Potosi (Mexico)

    2003-07-01

    We present a simple SUSY Ns = 2 superspace extension of the differential equations in which the sought solutions are considered to be real superfields but maintaining the common derivative operators and the coefficients of the differential equations unaltered. In this way, we get self consistent systems of coupled differential equations for the components of the superfield. This procedure is applied to the Riccati equation, for which we obtain in addition the system of coupled equations corresponding to the components of the general superfield solution. (Author)

  8. Differential equations extended to superspace

    International Nuclear Information System (INIS)

    Torres, J.; Rosu, H.C.

    2003-01-01

    We present a simple SUSY Ns = 2 superspace extension of the differential equations in which the sought solutions are considered to be real superfields but maintaining the common derivative operators and the coefficients of the differential equations unaltered. In this way, we get self consistent systems of coupled differential equations for the components of the superfield. This procedure is applied to the Riccati equation, for which we obtain in addition the system of coupled equations corresponding to the components of the general superfield solution. (Author)

  9. Skew differential fields, differential and difference equations

    NARCIS (Netherlands)

    van der Put, M

    2004-01-01

    The central question is: Let a differential or difference equation over a field K be isomorphic to all its Galois twists w.r.t. the group Gal(K/k). Does the equation descend to k? For a number of categories of equations an answer is given.

  10. On stochastic differential equations with random delay

    International Nuclear Information System (INIS)

    Krapivsky, P L; Luck, J M; Mallick, K

    2011-01-01

    We consider stochastic dynamical systems defined by differential equations with a uniform random time delay. The latter equations are shown to be equivalent to deterministic higher-order differential equations: for an nth-order equation with random delay, the corresponding deterministic equation has order n + 1. We analyze various examples of dynamical systems of this kind, and find a number of unusual behaviors. For instance, for the harmonic oscillator with random delay, the energy grows as exp((3/2) t 2/3 ) in reduced units. We then investigate the effect of introducing a discrete time step ε. At variance with the continuous situation, the discrete random recursion relations thus obtained have intrinsic fluctuations. The crossover between the fluctuating discrete problem and the deterministic continuous one as ε goes to zero is studied in detail on the example of a first-order linear differential equation

  11. On matrix fractional differential equations

    Directory of Open Access Journals (Sweden)

    Adem Kılıçman

    2017-01-01

    Full Text Available The aim of this article is to study the matrix fractional differential equations and to find the exact solution for system of matrix fractional differential equations in terms of Riemann–Liouville using Laplace transform method and convolution product to the Riemann–Liouville fractional of matrices. Also, we show the theorem of non-homogeneous matrix fractional partial differential equation with some illustrative examples to demonstrate the effectiveness of the new methodology. The main objective of this article is to discuss the Laplace transform method based on operational matrices of fractional derivatives for solving several kinds of linear fractional differential equations. Moreover, we present the operational matrices of fractional derivatives with Laplace transform in many applications of various engineering systems as control system. We present the analytical technique for solving fractional-order, multi-term fractional differential equation. In other words, we propose an efficient algorithm for solving fractional matrix equation.

  12. Parameter estimation and change-point detection from Dynamic Contrast Enhanced MRI data using stochastic differential equations.

    Science.gov (United States)

    Cuenod, Charles-André; Favetto, Benjamin; Genon-Catalot, Valentine; Rozenholc, Yves; Samson, Adeline

    2011-09-01

    Dynamic Contrast Enhanced imaging (DCE-imaging) following a contrast agent bolus allows the extraction of information on tissue micro-vascularization. The dynamic signals obtained from DCE-imaging are modeled by pharmacokinetic compartmental models which integrate the Arterial Input Function. These models use ordinary differential equations (ODEs) to describe the exchanges between the arterial and capillary plasma and the extravascular-extracellular space. Their least squares fitting takes into account measurement noises but fails to deal with unpredictable fluctuations due to external/internal sources of variations (patients' anxiety, time-varying parameters, measurement errors in the input function, etc.). Adding Brownian components to the ODEs leads to stochastic differential equations (SDEs). In DCE-imaging, SDEs are discretely observed with an additional measurement noise. We propose to estimate the parameters of these noisy SDEs by maximum likelihood, using the Kalman filter. In DCE-imaging, the contrast agent injected in vein arrives in plasma with an unknown time delay. The delay parameter induces a change-point in the drift of the SDE and ODE models, which is estimated also. Estimations based on the SDE and ODE pharmacokinetic models are compared to real DCE-MRI data. They show that the use of SDE provides robustness in the estimation results. A simulation study confirms these results. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Robust variable selection method for nonparametric differential equation models with application to nonlinear dynamic gene regulatory network analysis.

    Science.gov (United States)

    Lu, Tao

    2016-01-01

    The gene regulation network (GRN) evaluates the interactions between genes and look for models to describe the gene expression behavior. These models have many applications; for instance, by characterizing the gene expression mechanisms that cause certain disorders, it would be possible to target those genes to block the progress of the disease. Many biological processes are driven by nonlinear dynamic GRN. In this article, we propose a nonparametric differential equation (ODE) to model the nonlinear dynamic GRN. Specially, we address following questions simultaneously: (i) extract information from noisy time course gene expression data; (ii) model the nonlinear ODE through a nonparametric smoothing function; (iii) identify the important regulatory gene(s) through a group smoothly clipped absolute deviation (SCAD) approach; (iv) test the robustness of the model against possible shortening of experimental duration. We illustrate the usefulness of the model and associated statistical methods through a simulation and a real application examples.

  14. A hybrid algorithm for coupling partial differential equation and compartment-based dynamics.

    Science.gov (United States)

    Harrison, Jonathan U; Yates, Christian A

    2016-09-01

    Stochastic simulation methods can be applied successfully to model exact spatio-temporally resolved reaction-diffusion systems. However, in many cases, these methods can quickly become extremely computationally intensive with increasing particle numbers. An alternative description of many of these systems can be derived in the diffusive limit as a deterministic, continuum system of partial differential equations (PDEs). Although the numerical solution of such PDEs is, in general, much more efficient than the full stochastic simulation, the deterministic continuum description is generally not valid when copy numbers are low and stochastic effects dominate. Therefore, to take advantage of the benefits of both of these types of models, each of which may be appropriate in different parts of a spatial domain, we have developed an algorithm that can be used to couple these two types of model together. This hybrid coupling algorithm uses an overlap region between the two modelling regimes. By coupling fluxes at one end of the interface and using a concentration-matching condition at the other end, we ensure that mass is appropriately transferred between PDE- and compartment-based regimes. Our methodology gives notable reductions in simulation time in comparison with using a fully stochastic model, while maintaining the important stochastic features of the system and providing detail in appropriate areas of the domain. We test our hybrid methodology robustly by applying it to several biologically motivated problems including diffusion and morphogen gradient formation. Our analysis shows that the resulting error is small, unbiased and does not grow over time. © 2016 The Authors.

  15. Differential equations and finite groups

    NARCIS (Netherlands)

    Put, Marius van der; Ulmer, Felix

    2000-01-01

    The classical solution of the Riemann-Hilbert problem attaches to a given representation of the fundamental group a regular singular linear differential equation. We present a method to compute this differential equation in the case of a representation with finite image. The approach uses Galois

  16. Solving Linear Differential Equations

    NARCIS (Netherlands)

    Nguyen, K.A.; Put, M. van der

    2010-01-01

    The theme of this paper is to 'solve' an absolutely irreducible differential module explicitly in terms of modules of lower dimension and finite extensions of the differential field K. Representations of semi-simple Lie algebras and differential Galo is theory are the main tools. The results extend

  17. Solving Nonlinear Coupled Differential Equations

    Science.gov (United States)

    Mitchell, L.; David, J.

    1986-01-01

    Harmonic balance method developed to obtain approximate steady-state solutions for nonlinear coupled ordinary differential equations. Method usable with transfer matrices commonly used to analyze shaft systems. Solution to nonlinear equation, with periodic forcing function represented as sum of series similar to Fourier series but with form of terms suggested by equation itself.

  18. A microscopic derivation of stochastic differential equations

    International Nuclear Information System (INIS)

    Arimitsu, Toshihico

    1996-01-01

    With the help of the formulation of Non-Equilibrium Thermo Field Dynamics, a unified canonical operator formalism is constructed for the quantum stochastic differential equations. In the course of its construction, it is found that there are at least two formulations, i.e. one is non-hermitian and the other is hermitian. Having settled which framework should be satisfied by the quantum stochastic differential equations, a microscopic derivation is performed for these stochastic differential equations by extending the projector methods. This investigation may open a new field for quantum systems in order to understand the deeper meaning of dissipation

  19. Asymptotic integration of differential and difference equations

    CERN Document Server

    Bodine, Sigrun

    2015-01-01

    This book presents the theory of asymptotic integration for both linear differential and difference equations. This type of asymptotic analysis is based on some fundamental principles by Norman Levinson. While he applied them to a special class of differential equations, subsequent work has shown that the same principles lead to asymptotic results for much wider classes of differential and also difference equations. After discussing asymptotic integration in a unified approach, this book studies how the application of these methods provides several new insights and frequent improvements to results found in earlier literature. It then continues with a brief introduction to the relatively new field of asymptotic integration for dynamic equations on time scales. Asymptotic Integration of Differential and Difference Equations is a self-contained and clearly structured presentation of some of the most important results in asymptotic integration and the techniques used in this field. It will appeal to researchers i...

  20. Approaches for modeling within subject variability in pharmacometric count data analysis: dynamic inter-occasion variability and stochastic differential equations.

    Science.gov (United States)

    Deng, Chenhui; Plan, Elodie L; Karlsson, Mats O

    2016-06-01

    Parameter variation in pharmacometric analysis studies can be characterized as within subject parameter variability (WSV) in pharmacometric models. WSV has previously been successfully modeled using inter-occasion variability (IOV), but also stochastic differential equations (SDEs). In this study, two approaches, dynamic inter-occasion variability (dIOV) and adapted stochastic differential equations, were proposed to investigate WSV in pharmacometric count data analysis. These approaches were applied to published count models for seizure counts and Likert pain scores. Both approaches improved the model fits significantly. In addition, stochastic simulation and estimation were used to explore further the capability of the two approaches to diagnose and improve models where existing WSV is not recognized. The results of simulations confirmed the gain in introducing WSV as dIOV and SDEs when parameters vary randomly over time. Further, the approaches were also informative as diagnostics of model misspecification, when parameters changed systematically over time but this was not recognized in the structural model. The proposed approaches in this study offer strategies to characterize WSV and are not restricted to count data.

  1. Non-instantaneous impulses in differential equations

    CERN Document Server

    Agarwal, Ravi; O'Regan, Donal

    2017-01-01

    This monograph is the first published book devoted to the theory of differential equations with non-instantaneous impulses. It aims to equip the reader with mathematical models and theory behind real life processes in physics, biology, population dynamics, ecology and pharmacokinetics. The authors examine a wide scope of differential equations with non-instantaneous impulses through three comprehensive chapters, providing an all-rounded and unique presentation on the topic, including: - Ordinary differential equations with non-instantaneous impulses (scalar and n-dimensional case) - Fractional differential equa tions with non-instantaneous impulses (with Caputo fractional derivatives of order q ϵ (0, 1)) - Ordinary differential equations with non-instantaneous impulses occurring at random moments (with exponential, Erlang, or Gamma distribution) Each chapter focuses on theory, proofs and examples, and contains numerous graphs to enrich the reader’s understanding. Additionally, a carefully selected bibliogr...

  2. Differential Equations Models to Study Quorum Sensing.

    Science.gov (United States)

    Pérez-Velázquez, Judith; Hense, Burkhard A

    2018-01-01

    Mathematical models to study quorum sensing (QS) have become an important tool to explore all aspects of this type of bacterial communication. A wide spectrum of mathematical tools and methods such as dynamical systems, stochastics, and spatial models can be employed. In this chapter, we focus on giving an overview of models consisting of differential equations (DE), which can be used to describe changing quantities, for example, the dynamics of one or more signaling molecule in time and space, often in conjunction with bacterial growth dynamics. The chapter is divided into two sections: ordinary differential equations (ODE) and partial differential equations (PDE) models of QS. Rates of change are represented mathematically by derivatives, i.e., in terms of DE. ODE models allow describing changes in one independent variable, for example, time. PDE models can be used to follow changes in more than one independent variable, for example, time and space. Both types of models often consist of systems (i.e., more than one equation) of equations, such as equations for bacterial growth and autoinducer concentration dynamics. Almost from the onset, mathematical modeling of QS using differential equations has been an interdisciplinary endeavor and many of the works we revised here will be placed into their biological context.

  3. Applied partial differential equations

    CERN Document Server

    Logan, J David

    2015-01-01

    This text presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs.  Emphasis is placed on motivation, concepts, methods, and interpretation, rather than on formal theory. The concise treatment of the subject is maintained in this third edition covering all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. In this third edition, text remains intimately tied to applications in heat transfer, wave motion, biological systems, and a variety other topics in pure and applied science. The text offers flexibility to instructors who, for example, may wish to insert topics from biology or numerical methods at any time in the course. The exposition is presented in a friendly, easy-to-read, style, with mathematical ideas motivated from physical problems. Many exercises and worked e...

  4. Applied partial differential equations

    CERN Document Server

    DuChateau, Paul

    2012-01-01

    Book focuses mainly on boundary-value and initial-boundary-value problems on spatially bounded and on unbounded domains; integral transforms; uniqueness and continuous dependence on data, first-order equations, and more. Numerous exercises included.

  5. Differential equations methods and applications

    CERN Document Server

    Said-Houari, Belkacem

    2015-01-01

    This book presents a variety of techniques for solving ordinary differential equations analytically and features a wealth of examples. Focusing on the modeling of real-world phenomena, it begins with a basic introduction to differential equations, followed by linear and nonlinear first order equations and a detailed treatment of the second order linear equations. After presenting solution methods for the Laplace transform and power series, it lastly presents systems of equations and offers an introduction to the stability theory. To help readers practice the theory covered, two types of exercises are provided: those that illustrate the general theory, and others designed to expand on the text material. Detailed solutions to all the exercises are included. The book is excellently suited for use as a textbook for an undergraduate class (of all disciplines) in ordinary differential equations. .

  6. Applications of Parameterized Nonlinear Ordinary Differential Equations and Dynamic Systems: An Example of the Taiwan Stock Index

    Directory of Open Access Journals (Sweden)

    Meng-Rong Li

    2018-01-01

    Full Text Available Considering the phenomenon of the mean reversion and the different speeds of stock prices in the bull market and in the bear market, we propose four dynamic models each of which is represented by a parameterized ordinary differential equation in this study. Based on existing studies, the models are in the form of either the logistic growth or the law of Newton’s cooling. We solve the models by dynamic integration and apply them to the daily closing prices of the Taiwan stock index, Taiwan Stock Exchange Capitalization Weighted Stock Index. The empirical study shows that some of the models fit the prices well and the forecasting ability of the best model is acceptable even though the martingale forecasts the prices slightly better. To increase the forecasting ability and to broaden the scope of applications of the dynamic models, we will model the coefficients of the dynamic models in the future. Applying the models to the market without the price limit is also our future work.

  7. An introduction to differential equations

    CERN Document Server

    Ladde, Anil G

    2012-01-01

    This is a twenty-first century book designed to meet the challenges of understanding and solving interdisciplinary problems. The book creatively incorporates "cutting-edge" research ideas and techniques at the undergraduate level. The book also is a unique research resource for undergraduate/graduate students and interdisciplinary researchers. It emphasizes and exhibits the importance of conceptual understandings and its symbiotic relationship in the problem solving process. The book is proactive in preparing for the modeling of dynamic processes in various disciplines. It introduces a "break-down-the problem" type of approach in a way that creates "fun" and "excitement". The book presents many learning tools like "step-by-step procedures (critical thinking)", the concept of "math" being a language, applied examples from diverse fields, frequent recaps, flowcharts and exercises. Uniquely, this book introduces an innovative and unified method of solving nonlinear scalar differential equations. This is called ...

  8. Differential equations and applications recent advances

    CERN Document Server

    2014-01-01

    Differential Equations and Applications : Recent Advances focus on the latest developments in Nonlinear Dynamical Systems, Neural Networks, Fluid Dynamics, Fractional Differential Systems, Mathematical Modelling and Qualitative Theory. Different aspects such as Existence, Stability, Controllability, Viscosity and Numerical Analysis for different systems have been discussed in this book. This book will be of great interest and use to researchers in Applied Mathematics, Engineering and Mathematical Physics.

  9. Solving Differential Equations in R

    Science.gov (United States)

    Although R is still predominantly applied for statistical analysis and graphical representation, it is rapidly becoming more suitable for mathematical computing. One of the fields where considerable progress has been made recently is the solution of differential equations. Here w...

  10. Neural networks dynamic hysteresis model for piezoceramic actuator based on hysteresis operator of first-order differential equation

    International Nuclear Information System (INIS)

    Dang Xuanju; Tan Yonghong

    2005-01-01

    A new neural networks dynamic hysteresis model for piezoceramic actuator is proposed by combining the Preisach model with diagonal recurrent neural networks. The Preisach model is based on elementary rate-independent operators and is not suitable for modeling piezoceramic actuator across a wide frequency band because of the rate-dependent hysteresis characteristic of the piezoceramic actuator. The structure of the developed model is based on the structure of the Preisach model, in which the rate-independent relay hysteresis operators (cells) are replaced by the rate-dependent hysteresis operators of first-order differential equation. The diagonal recurrent neural networks being modified by an adjustable factor can be used to model the hysteresis behavior of the pizeoceramic actuator because its structure is similar to the structure of the modified Preisach model. Therefore, the proposed model not only possesses that of the Preisach model, but also can be used for describing its dynamic hysteresis behavior. Through the experimental results of both the approximation and the prediction, the effectiveness of the neural networks dynamic hysteresis model for the piezoceramic actuator is demonstrated

  11. Trends in differential equations and applications

    CERN Document Server

    Neble, María; Galván, José

    2016-01-01

    This work collects the most important results presented at the Congress on Differential Equations and Applications/Congress on Applied Mathematics (CEDYA/CMA) in Cádiz (Spain) in 2015. It supports further research in differential equations, numerical analysis, mechanics, control and optimization. In particular, it helps readers gain an overview of specific problems of interest in the current mathematical research related to different branches of applied mathematics. This includes the analysis of nonlinear partial differential equations, exact solutions techniques for ordinary differential equations, numerical analysis and numerical simulation of some models arising in experimental sciences and engineering, control and optimization, and also trending topics on numerical linear Algebra, dynamical systems, and applied mathematics for Industry. This volume is mainly addressed to any researcher interested in the applications of mathematics, especially in any subject mentioned above. It may be also useful to PhD s...

  12. Introduction to partial differential equations

    CERN Document Server

    Borthwick, David

    2016-01-01

    This modern take on partial differential equations does not require knowledge beyond vector calculus and linear algebra. The author focuses on the most important classical partial differential equations, including conservation equations and their characteristics, the wave equation, the heat equation, function spaces, and Fourier series, drawing on tools from analysis only as they arise.Within each section the author creates a narrative that answers the five questions: (1) What is the scientific problem we are trying to understand? (2) How do we model that with PDE? (3) What techniques can we use to analyze the PDE? (4) How do those techniques apply to this equation? (5) What information or insight did we obtain by developing and analyzing the PDE? The text stresses the interplay between modeling and mathematical analysis, providing a thorough source of problems and an inspiration for the development of methods.

  13. Differential equations a concise course

    CERN Document Server

    Bear, H S

    2011-01-01

    Concise introduction for undergraduates includes, among other topics, a survey of first order equations, discussions of complex-valued solutions, linear differential operators, inverse operators and variation of parameters method, the Laplace transform, Picard's existence theorem, and an exploration of various interpretations of systems of equations. Numerous clearly stated theorems and proofs, examples, and problems followed by solutions.

  14. Lie symmetries in differential equations

    International Nuclear Information System (INIS)

    Pleitez, V.

    1979-01-01

    A study of ordinary and Partial Differential equations using the symmetries of Lie groups is made. Following such a study, an application to the Helmholtz, Line-Gordon, Korleweg-de Vries, Burguer, Benjamin-Bona-Mahony and wave equations is carried out [pt

  15. Wave Partial Differential Equation

    OpenAIRE

    Szöllös, Alexandr

    2009-01-01

    Práce se zabývá diferenciálními rovnicemi, jejich využitím při analýze     vedení, experimenty s vedením a možnou akcelerací výpočtu v GPU  s využitím prostředí nVidia CUDA. This work deals with diffrential equations, with the possibility     of using them for analysis of the line and the possibility     of accelerating the computations in GPU using nVidia CUDA. C

  16. Introductory course on differential equations

    CERN Document Server

    Gorain, Ganesh C

    2014-01-01

    Introductory Course on DIFFERENTIAL EQUATIONS provides an excellent exposition of the fundamentals of ordinary and partial differential equations and is ideally suited for a first course of undergraduate students of mathematics, physics and engineering. The aim of this book is to present the elementary theories of differential equations in the forms suitable for use of those students whose main interest in the subject are based on simple mathematical ideas. KEY FEATURES: Discusses the subject in a systematic manner without sacrificing mathematical rigour. A variety of exercises drill the students in problem solving in view of the mathematical theories explained in the book. Worked out examples illustrated according to the theories developed in the book with possible alternatives. Exhaustive collection of problems and the simplicity of presentation differentiate this book from several others. Material contained will help teachers as well as aspiring students of different competitive examinations.

  17. Reverse engineering of logic-based differential equation models using a mixed-integer dynamic optimization approach.

    Science.gov (United States)

    Henriques, David; Rocha, Miguel; Saez-Rodriguez, Julio; Banga, Julio R

    2015-09-15

    Systems biology models can be used to test new hypotheses formulated on the basis of previous knowledge or new experimental data, contradictory with a previously existing model. New hypotheses often come in the shape of a set of possible regulatory mechanisms. This search is usually not limited to finding a single regulation link, but rather a combination of links subject to great uncertainty or no information about the kinetic parameters. In this work, we combine a logic-based formalism, to describe all the possible regulatory structures for a given dynamic model of a pathway, with mixed-integer dynamic optimization (MIDO). This framework aims to simultaneously identify the regulatory structure (represented by binary parameters) and the real-valued parameters that are consistent with the available experimental data, resulting in a logic-based differential equation model. The alternative to this would be to perform real-valued parameter estimation for each possible model structure, which is not tractable for models of the size presented in this work. The performance of the method presented here is illustrated with several case studies: a synthetic pathway problem of signaling regulation, a two-component signal transduction pathway in bacterial homeostasis, and a signaling network in liver cancer cells. Supplementary data are available at Bioinformatics online. julio@iim.csic.es or saezrodriguez@ebi.ac.uk. © The Author 2015. Published by Oxford University Press.

  18. Stochastic partial differential equations

    CERN Document Server

    Lototsky, Sergey V

    2017-01-01

    Taking readers with a basic knowledge of probability and real analysis to the frontiers of a very active research discipline, this textbook provides all the necessary background from functional analysis and the theory of PDEs. It covers the main types of equations (elliptic, hyperbolic and parabolic) and discusses different types of random forcing. The objective is to give the reader the necessary tools to understand the proofs of existing theorems about SPDEs (from other sources) and perhaps even to formulate and prove a few new ones. Most of the material could be covered in about 40 hours of lectures, as long as not too much time is spent on the general discussion of stochastic analysis in infinite dimensions. As the subject of SPDEs is currently making the transition from the research level to that of a graduate or even undergraduate course, the book attempts to present enough exercise material to fill potential exams and homework assignments. Exercises appear throughout and are usually directly connected ...

  19. Basic linear partial differential equations

    CERN Document Server

    Treves, Francois

    1975-01-01

    Focusing on the archetypes of linear partial differential equations, this text for upper-level undergraduates and graduate students features most of the basic classical results. The methods, however, are decidedly nontraditional: in practically every instance, they tend toward a high level of abstraction. This approach recalls classical material to contemporary analysts in a language they can understand, as well as exploiting the field's wealth of examples as an introduction to modern theories.The four-part treatment covers the basic examples of linear partial differential equations and their

  20. Nielsen number and differential equations

    Directory of Open Access Journals (Sweden)

    Andres Jan

    2005-01-01

    Full Text Available In reply to a problem of Jean Leray (application of the Nielsen theory to differential equations, two main approaches are presented. The first is via Poincaré's translation operator, while the second one is based on the Hammerstein-type solution operator. The applicability of various Nielsen theories is discussed with respect to several sorts of differential equations and inclusions. Links with the Sharkovskii-like theorems (a finite number of periodic solutions imply infinitely many subharmonics are indicated, jointly with some further consequences like the nontrivial -structure of solutions of initial value problems. Some illustrating examples are supplied and open problems are formulated.

  1. Comparison of stationary and oscillatory dynamics described by differential equations and Boolean maps in transcriptional regulatory circuits

    Science.gov (United States)

    Ye, Weiming; Li, Pengfei; Huang, Xuhui; Xia, Qinzhi; Mi, Yuanyuan; Chen, Runsheng; Hu, Gang

    2010-10-01

    Exploring the principle and relationship of gene transcriptional regulations (TR) has been becoming a generally researched issue. So far, two major mathematical methods, ordinary differential equation (ODE) method and Boolean map (BM) method have been widely used for these purposes. It is commonly believed that simplified BMs are reasonable approximations of more realistic ODEs, and both methods may reveal qualitatively the same essential features though the dynamical details of both systems may show some differences. In this Letter we exhaustively enumerated all the 3-gene networks and many autonomous randomly constructed TR networks with more genes by using both the ODE and BM methods. In comparison we found that both methods provide practically identical results in most of cases of steady solutions. However, to our great surprise, most of network structures showing periodic cycles with the BM method possess only stationary states in ODE descriptions. These observations strongly suggest that many periodic oscillations and other complicated oscillatory states revealed by the BM rule may be related to the computational errors of variable and time discretizations and rarely have correspondence in realistic biology transcriptional regulatory circuits.

  2. Asymptotic analysis for functional stochastic differential equations

    CERN Document Server

    Bao, Jianhai; Yuan, Chenggui

    2016-01-01

    This brief treats dynamical systems that involve delays and random disturbances. The study is motivated by a wide variety of systems in real life in which random noise has to be taken into consideration and the effect of delays cannot be ignored. Concentrating on such systems that are described by functional stochastic differential equations, this work focuses on the study of large time behavior, in particular, ergodicity. This brief is written for probabilists, applied mathematicians, engineers, and scientists who need to use delay systems and functional stochastic differential equations in their work. Selected topics from the brief can also be used in a graduate level topics course in probability and stochastic processes.

  3. Surveys in differential-algebraic equations IV

    CERN Document Server

    Reis, Timo

    2017-01-01

    The present volume comprises survey articles on various fields of Differential-Algebraic Equations (DAEs) which have widespread applications in controlled dynamical systems, especially in mechanical and electrical engineering and a strong relation to (ordinary) differential equations. The individual chapters provide reviews, presentations of the current state of research and new concepts in - History of DAEs - DAE aspects of mechanical multibody systems - Model reduction of DAEs - Observability for DAEs - Numerical Analysis for DAEs The results are presented in an accessible style, making this book suitable not only for active researchers but also for graduate students (with a good knowledge of the basic principles of DAEs) for self-study.

  4. Surveys in differential-algebraic equations III

    CERN Document Server

    Reis, Timo

    2015-01-01

    The present volume comprises survey articles on various fields of Differential-Algebraic Equations (DAEs), which have widespread applications in controlled dynamical systems, especially in mechanical and electrical engineering and a strong relation to (ordinary) differential equations. The individual chapters provide reviews, presentations of the current state of research and new concepts in - Flexibility of DAE formulations - Reachability analysis and deterministic global optimization - Numerical linear algebra methods - Boundary value problems The results are presented in an accessible style, making this book suitable not only for active researchers but also for graduate students (with a good knowledge of the basic principles of DAEs) for self-study.

  5. Linear determining equations for differential constraints

    International Nuclear Information System (INIS)

    Kaptsov, O V

    1998-01-01

    A construction of differential constraints compatible with partial differential equations is considered. Certain linear determining equations with parameters are used to find such differential constraints. They generalize the classical determining equations used in the search for admissible Lie operators. As applications of this approach equations of an ideal incompressible fluid and non-linear heat equations are discussed

  6. Pendulum Motion and Differential Equations

    Science.gov (United States)

    Reid, Thomas F.; King, Stephen C.

    2009-01-01

    A common example of real-world motion that can be modeled by a differential equation, and one easily understood by the student, is the simple pendulum. Simplifying assumptions are necessary for closed-form solutions to exist, and frequently there is little discussion of the impact if those assumptions are not met. This article presents a…

  7. Stability of Functional Differential Equations

    CERN Document Server

    Lemm, Jeffrey M

    1986-01-01

    This book provides an introduction to the structure and stability properties of solutions of functional differential equations. Numerous examples of applications (such as feedback systrems with aftereffect, two-reflector antennae, nuclear reactors, mathematical models in immunology, viscoelastic bodies, aeroautoelastic phenomena and so on) are considered in detail. The development is illustrated by numerous figures and tables.

  8. Dynamics and control for Constrained Multibody Systems modeled with Maggi's equation: Application to Differential Mobile Robots Partll

    International Nuclear Information System (INIS)

    Amengonu, Yawo H; Kakad, Yogendra P

    2014-01-01

    Quasivelocity techniques were applied to derive the dynamics of a Differential Wheeled Mobile Robot (DWMR) in the companion paper. The present paper formulates a control system design for trajectory tracking of this class of robots. The method develops a feedback linearization technique for the nonlinear system using dynamic extension algorithm. The effectiveness of the nonlinear controller is illustrated with simulation example

  9. Polynomial chaos methods for hyperbolic partial differential equations numerical techniques for fluid dynamics problems in the presence of uncertainties

    CERN Document Server

    Pettersson, Mass Per; Nordström, Jan

    2015-01-01

    This monograph presents computational techniques and numerical analysis to study conservation laws under uncertainty using the stochastic Galerkin formulation. With the continual growth of computer power, these methods are becoming increasingly popular as an alternative to more classical sampling-based techniques. The approach described in the text takes advantage of stochastic Galerkin projections applied to the original conservation laws to produce a large system of modified partial differential equations, the solutions to which directly provide a full statistical characterization of the effect of uncertainties. Polynomial Chaos Methods of Hyperbolic Partial Differential Equations focuses on the analysis of stochastic Galerkin systems obtained for linear and non-linear convection-diffusion equations and for a systems of conservation laws; a detailed well-posedness and accuracy analysis is presented to enable the design of robust and stable numerical methods. The exposition is restricted to one spatial dime...

  10. Differential equations, mechanics, and computation

    CERN Document Server

    Palais, Richard S

    2009-01-01

    This book provides a conceptual introduction to the theory of ordinary differential equations, concentrating on the initial value problem for equations of evolution and with applications to the calculus of variations and classical mechanics, along with a discussion of chaos theory and ecological models. It has a unified and visual introduction to the theory of numerical methods and a novel approach to the analysis of errors and stability of various numerical solution algorithms based on carefully chosen model problems. While the book would be suitable as a textbook for an undergraduate or elementary graduate course in ordinary differential equations, the authors have designed the text also to be useful for motivated students wishing to learn the material on their own or desiring to supplement an ODE textbook being used in a course they are taking with a text offering a more conceptual approach to the subject.

  11. Abstract methods in partial differential equations

    CERN Document Server

    Carroll, Robert W

    2012-01-01

    Detailed, self-contained treatment examines modern abstract methods in partial differential equations, especially abstract evolution equations. Suitable for graduate students with some previous exposure to classical partial differential equations. 1969 edition.

  12. Iterative Splitting Methods for Differential Equations

    CERN Document Server

    Geiser, Juergen

    2011-01-01

    Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations. In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential

  13. Approximating chaotic saddles for delay differential equations.

    Science.gov (United States)

    Taylor, S Richard; Campbell, Sue Ann

    2007-04-01

    Chaotic saddles are unstable invariant sets in the phase space of dynamical systems that exhibit transient chaos. They play a key role in mediating transport processes involving scattering and chaotic transients. Here we present evidence (long chaotic transients and fractal basins of attraction) of transient chaos in a "logistic" delay differential equation. We adapt an existing method (stagger-and-step) to numerically construct the chaotic saddle for this system. This is the first such analysis of transient chaos in an infinite-dimensional dynamical system, and in delay differential equations in particular. Using Poincaré section techniques we illustrate approaches to visualizing the saddle set, and confirm that the saddle has the Cantor-like fractal structure consistent with a chaotic saddle generated by horseshoe-type dynamics.

  14. Approximating chaotic saddles for delay differential equations

    Science.gov (United States)

    Taylor, S. Richard; Campbell, Sue Ann

    2007-04-01

    Chaotic saddles are unstable invariant sets in the phase space of dynamical systems that exhibit transient chaos. They play a key role in mediating transport processes involving scattering and chaotic transients. Here we present evidence (long chaotic transients and fractal basins of attraction) of transient chaos in a “logistic” delay differential equation. We adapt an existing method (stagger-and-step) to numerically construct the chaotic saddle for this system. This is the first such analysis of transient chaos in an infinite-dimensional dynamical system, and in delay differential equations in particular. Using Poincaré section techniques we illustrate approaches to visualizing the saddle set, and confirm that the saddle has the Cantor-like fractal structure consistent with a chaotic saddle generated by horseshoe-type dynamics.

  15. Partial differential equations an introduction

    CERN Document Server

    Colton, David

    2004-01-01

    Intended for a college senior or first-year graduate-level course in partial differential equations, this text offers students in mathematics, engineering, and the applied sciences a solid foundation for advanced studies in mathematics. Classical topics presented in a modern context include coverage of integral equations and basic scattering theory. This complete and accessible treatment includes a variety of examples of inverse problems arising from improperly posed applications. Exercises at the ends of chapters, many with answers, offer a clear progression in developing an understanding of

  16. Algebraic entropy for differential-delay equations

    OpenAIRE

    Viallet, Claude M.

    2014-01-01

    We extend the definition of algebraic entropy to a class of differential-delay equations. The vanishing of the entropy, as a structural property of an equation, signals its integrability. We suggest a simple way to produce differential-delay equations with vanishing entropy from known integrable differential-difference equations.

  17. Potential in stochastic differential equations: novel construction

    International Nuclear Information System (INIS)

    Ao, P

    2004-01-01

    There is a whole range of emergent phenomena in a complex network such as robustness, adaptiveness, multiple-equilibrium, hysteresis, oscillation and feedback. Those non-equilibrium behaviours can often be described by a set of stochastic differential equations. One persistent important question is the existence of a potential function. Here we demonstrate that a dynamical structure built into stochastic differential equation allows us to construct such a global optimization potential function. We present an explicit construction procedure to obtain the potential and relevant quantities. In the procedure no reference to the Fokker-Planck equation is needed. The availability of the potential suggests that powerful statistical mechanics tools can be used in nonequilibrium situations. (letter to the editor)

  18. Stochastic partial differential equations an introduction

    CERN Document Server

    Liu, Wei

    2015-01-01

    This book provides an introduction to the theory of stochastic partial differential equations (SPDEs) of evolutionary type. SPDEs are one of the main research directions in probability theory with several wide ranging applications. Many types of dynamics with stochastic influence in nature or man-made complex systems can be modelled by such equations. The theory of SPDEs is based both on the theory of deterministic partial differential equations, as well as on modern stochastic analysis. Whilst this volume mainly follows the ‘variational approach’, it also contains a short account on the ‘semigroup (or mild solution) approach’. In particular, the volume contains a complete presentation of the main existence and uniqueness results in the case of locally monotone coefficients. Various types of generalized coercivity conditions are shown to guarantee non-explosion, but also a systematic approach to treat SPDEs with explosion in finite time is developed. It is, so far, the only book where the latter and t...

  19. Handbook of differential equations stationary partial differential equations

    CERN Document Server

    Chipot, Michel

    2006-01-01

    This handbook is volume III in a series devoted to stationary partial differential quations. Similarly as volumes I and II, it is a collection of self contained state-of-the-art surveys written by well known experts in the field. The topics covered by this handbook include singular and higher order equations, problems near critically, problems with anisotropic nonlinearities, dam problem, T-convergence and Schauder-type estimates. These surveys will be useful for both beginners and experts and speed up the progress of corresponding (rapidly developing and fascinating) areas of mathematics. Ke

  20. Observability of discretized partial differential equations

    Science.gov (United States)

    Cohn, Stephen E.; Dee, Dick P.

    1988-01-01

    It is shown that complete observability of the discrete model used to assimilate data from a linear partial differential equation (PDE) system is necessary and sufficient for asymptotic stability of the data assimilation process. The observability theory for discrete systems is reviewed and applied to obtain simple observability tests for discretized constant-coefficient PDEs. Examples are used to show how numerical dispersion can result in discrete dynamics with multiple eigenvalues, thereby detracting from observability.

  1. Spurious Numerical Solutions Of Differential Equations

    Science.gov (United States)

    Lafon, A.; Yee, H. C.

    1995-01-01

    Paper presents detailed study of spurious steady-state numerical solutions of differential equations that contain nonlinear source terms. Main objectives of this study are (1) to investigate how well numerical steady-state solutions of model nonlinear reaction/convection boundary-value problem mimic true steady-state solutions and (2) to relate findings of this investigation to implications for interpretation of numerical results from computational-fluid-dynamics algorithms and computer codes used to simulate reacting flows.

  2. Spurious Solutions Of Nonlinear Differential Equations

    Science.gov (United States)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1992-01-01

    Report utilizes nonlinear-dynamics approach to investigate possible sources of errors and slow convergence and non-convergence of steady-state numerical solutions when using time-dependent approach for problems containing nonlinear source terms. Emphasizes implications for development of algorithms in CFD and computational sciences in general. Main fundamental conclusion of study is that qualitative features of nonlinear differential equations cannot be adequately represented by finite-difference method and vice versa.

  3. Partial differential equations mathematical techniques for engineers

    CERN Document Server

    Epstein, Marcelo

    2017-01-01

    This monograph presents a graduate-level treatment of partial differential equations (PDEs) for engineers. The book begins with a review of the geometrical interpretation of systems of ODEs, the appearance of PDEs in engineering is motivated by the general form of balance laws in continuum physics. Four chapters are devoted to a detailed treatment of the single first-order PDE, including shock waves and genuinely non-linear models, with applications to traffic design and gas dynamics. The rest of the book deals with second-order equations. In the treatment of hyperbolic equations, geometric arguments are used whenever possible and the analogy with discrete vibrating systems is emphasized. The diffusion and potential equations afford the opportunity of dealing with questions of uniqueness and continuous dependence on the data, the Fourier integral, generalized functions (distributions), Duhamel's principle, Green's functions and Dirichlet and Neumann problems. The target audience primarily comprises graduate s...

  4. Arithmetic differential equations on $GL_n$, I: differential cocycles

    OpenAIRE

    Buium, Alexandru; Dupuy, Taylor

    2013-01-01

    The theory of differential equations has an arithmetic analogue in which derivatives are replaced by Fermat quotients. One can then ask what is the arithmetic analogue of a linear differential equation. The study of usual linear differential equations is the same as the study of the differential cocycle from $GL_n$ into its Lie algebra given by the logarithmic derivative. However we prove here that there are no such cocycles in the context of arithmetic differential equations. In sequels of t...

  5. Introduction to partial differential equations with applications

    CERN Document Server

    Zachmanoglou, E C

    1988-01-01

    This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.

  6. ON DIFFERENTIAL EQUATIONS, INTEGRABLE SYSTEMS, AND GEOMETRY

    OpenAIRE

    Enrique Gonzalo Reyes Garcia

    2004-01-01

    ON DIFFERENTIAL EQUATIONS, INTEGRABLE SYSTEMS, AND GEOMETRY Equations in partial derivatives appeared in the 18th century as essential tools for the analytic study of physical models and, later, they proved to be fundamental for the progress of mathematics. For example, fundamental results of modern differential geometry are based on deep theorems on differential equations. Reciprocally, it is possible to study differential equations through geometrical means just like it was done by o...

  7. PARALLEL SOLUTION METHODS OF PARTIAL DIFFERENTIAL EQUATIONS

    Directory of Open Access Journals (Sweden)

    Korhan KARABULUT

    1998-03-01

    Full Text Available Partial differential equations arise in almost all fields of science and engineering. Computer time spent in solving partial differential equations is much more than that of in any other problem class. For this reason, partial differential equations are suitable to be solved on parallel computers that offer great computation power. In this study, parallel solution to partial differential equations with Jacobi, Gauss-Siedel, SOR (Succesive OverRelaxation and SSOR (Symmetric SOR algorithms is studied.

  8. Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation

    Directory of Open Access Journals (Sweden)

    Hamidreza Rezazadeh

    2014-05-01

    Full Text Available In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.. So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreover, its asymptotic stability and statistical concepts like expectation and variance of solutions are discussed. Finally, the attained solutions of these S.D.E.s compared with exact solution of corresponding differential equations.

  9. Auxiliary equation method for solving nonlinear partial differential equations

    International Nuclear Information System (INIS)

    Sirendaoreji,; Jiong, Sun

    2003-01-01

    By using the solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct several kinds of exact travelling wave solutions for some nonlinear partial differential equations. By this method some physically important nonlinear equations are investigated and new exact travelling wave solutions are explicitly obtained with the aid of symbolic computation

  10. Mars approach for global sensitivity analysis of differential equation models with applications to dynamics of influenza infection.

    Science.gov (United States)

    Lee, Yeonok; Wu, Hulin

    2012-01-01

    Differential equation models are widely used for the study of natural phenomena in many fields. The study usually involves unknown factors such as initial conditions and/or parameters. It is important to investigate the impact of unknown factors (parameters and initial conditions) on model outputs in order to better understand the system the model represents. Apportioning the uncertainty (variation) of output variables of a model according to the input factors is referred to as sensitivity analysis. In this paper, we focus on the global sensitivity analysis of ordinary differential equation (ODE) models over a time period using the multivariate adaptive regression spline (MARS) as a meta model based on the concept of the variance of conditional expectation (VCE). We suggest to evaluate the VCE analytically using the MARS model structure of univariate tensor-product functions which is more computationally efficient. Our simulation studies show that the MARS model approach performs very well and helps to significantly reduce the computational cost. We present an application example of sensitivity analysis of ODE models for influenza infection to further illustrate the usefulness of the proposed method.

  11. Sobolev gradients and differential equations

    CERN Document Server

    Neuberger, J W

    2010-01-01

    A Sobolev gradient of a real-valued functional on a Hilbert space is a gradient of that functional taken relative to an underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. For discrete versions of partial differential equations, corresponding Sobolev gradients are seen to be vastly more efficient than ordinary gradients. In fact, descent methods with these gradients generally scale linearly with the number of grid points, in sharp contrast with the use of ordinary gradients. Aside from the first edition of this work, this is the only known account of Sobolev gradients in book form. Most of the applications in this book have emerged since the first edition was published some twelve years ago. What remains of the first edition has been extensively revised. There are a number of plots of results from calculations and a sample MatLab code is included for a simple problem. Those working through a fair p...

  12. Modelling Evolutionary Algorithms with Stochastic Differential Equations.

    Science.gov (United States)

    Heredia, Jorge Pérez

    2017-11-20

    There has been renewed interest in modelling the behaviour of evolutionary algorithms (EAs) by more traditional mathematical objects, such as ordinary differential equations or Markov chains. The advantage is that the analysis becomes greatly facilitated due to the existence of well established methods. However, this typically comes at the cost of disregarding information about the process. Here, we introduce the use of stochastic differential equations (SDEs) for the study of EAs. SDEs can produce simple analytical results for the dynamics of stochastic processes, unlike Markov chains which can produce rigorous but unwieldy expressions about the dynamics. On the other hand, unlike ordinary differential equations (ODEs), they do not discard information about the stochasticity of the process. We show that these are especially suitable for the analysis of fixed budget scenarios and present analogues of the additive and multiplicative drift theorems from runtime analysis. In addition, we derive a new more general multiplicative drift theorem that also covers non-elitist EAs. This theorem simultaneously allows for positive and negative results, providing information on the algorithm's progress even when the problem cannot be optimised efficiently. Finally, we provide results for some well-known heuristics namely Random Walk (RW), Random Local Search (RLS), the (1+1) EA, the Metropolis Algorithm (MA), and the Strong Selection Weak Mutation (SSWM) algorithm.

  13. Computational partial differential equations using Matlab

    CERN Document Server

    Li, Jichun

    2008-01-01

    Brief Overview of Partial Differential Equations The parabolic equations The wave equations The elliptic equations Differential equations in broader areasA quick review of numerical methods for PDEsFinite Difference Methods for Parabolic Equations Introduction Theoretical issues: stability, consistence, and convergence 1-D parabolic equations2-D and 3-D parabolic equationsNumerical examples with MATLAB codesFinite Difference Methods for Hyperbolic Equations IntroductionSome basic difference schemes Dissipation and dispersion errors Extensions to conservation lawsThe second-order hyperbolic PDE

  14. Quantum hydrodynamics and nonlinear differential equations for degenerate Fermi gas

    International Nuclear Information System (INIS)

    Bettelheim, Eldad; Abanov, Alexander G; Wiegmann, Paul B

    2008-01-01

    We present new nonlinear differential equations for spacetime correlation functions of Fermi gas in one spatial dimension. The correlation functions we consider describe non-stationary processes out of equilibrium. The equations we obtain are integrable equations. They generalize known nonlinear differential equations for correlation functions at equilibrium [1-4] and provide vital tools for studying non-equilibrium dynamics of electronic systems. The method we developed is based only on Wick's theorem and the hydrodynamic description of the Fermi gas. Differential equations appear directly in bilinear form. (fast track communication)

  15. Partial differential equations of mathematical physics

    CERN Document Server

    Sobolev, S L

    1964-01-01

    Partial Differential Equations of Mathematical Physics emphasizes the study of second-order partial differential equations of mathematical physics, which is deemed as the foundation of investigations into waves, heat conduction, hydrodynamics, and other physical problems. The book discusses in detail a wide spectrum of topics related to partial differential equations, such as the theories of sets and of Lebesgue integration, integral equations, Green's function, and the proof of the Fourier method. Theoretical physicists, experimental physicists, mathematicians engaged in pure and applied math

  16. Modelling the heat dynamics of a monitored Test Reference Environment for Building Integrated Photovoltaic systems using stochastic differential equations

    DEFF Research Database (Denmark)

    Lodi, C.; Bacher, Peder; Cipriano, J.

    2012-01-01

    reduce the ventilation thermal losses of the building by pre-heating the fresh air. Furthermore, by decreasing PV module temperature, the ventilation air heat extraction can simultaneously increase electrical and thermal energy production of the building. A correct prediction of the PV module temperature...... and heat transfer coefficients is fundamental in order to improve the thermo-electrical production.The considered grey-box models are composed of a set of continuous time stochastic differential equations, holding the physical description of the system, combined with a set of discrete time measurement......This paper deals with grey-box modelling of the energy transfer of a double skin Building Integrated Photovoltaic (BIPV) system. Grey-box models are based on a combination of prior physical knowledge and statistics, which enable identification of the unknown parameters in the system and accurate...

  17. Stochastic integration and differential equations

    CERN Document Server

    Protter, Philip E

    2003-01-01

    It has been 15 years since the first edition of Stochastic Integration and Differential Equations, A New Approach appeared, and in those years many other texts on the same subject have been published, often with connections to applications, especially mathematical finance. Yet in spite of the apparent simplicity of approach, none of these books has used the functional analytic method of presenting semimartingales and stochastic integration. Thus a 2nd edition seems worthwhile and timely, though it is no longer appropriate to call it "a new approach". The new edition has several significant changes, most prominently the addition of exercises for solution. These are intended to supplement the text, but lemmas needed in a proof are never relegated to the exercises. Many of the exercises have been tested by graduate students at Purdue and Cornell Universities. Chapter 3 has been completely redone, with a new, more intuitive and simultaneously elementary proof of the fundamental Doob-Meyer decomposition theorem, t...

  18. Modeling genome-wide dynamic regulatory network in mouse lungs with influenza infection using high-dimensional ordinary differential equations.

    Science.gov (United States)

    Wu, Shuang; Liu, Zhi-Ping; Qiu, Xing; Wu, Hulin

    2014-01-01

    The immune response to viral infection is regulated by an intricate network of many genes and their products. The reverse engineering of gene regulatory networks (GRNs) using mathematical models from time course gene expression data collected after influenza infection is key to our understanding of the mechanisms involved in controlling influenza infection within a host. A five-step pipeline: detection of temporally differentially expressed genes, clustering genes into co-expressed modules, identification of network structure, parameter estimate refinement, and functional enrichment analysis, is developed for reconstructing high-dimensional dynamic GRNs from genome-wide time course gene expression data. Applying the pipeline to the time course gene expression data from influenza-infected mouse lungs, we have identified 20 distinct temporal expression patterns in the differentially expressed genes and constructed a module-based dynamic network using a linear ODE model. Both intra-module and inter-module annotations and regulatory relationships of our inferred network show some interesting findings and are highly consistent with existing knowledge about the immune response in mice after influenza infection. The proposed method is a computationally efficient, data-driven pipeline bridging experimental data, mathematical modeling, and statistical analysis. The application to the influenza infection data elucidates the potentials of our pipeline in providing valuable insights into systematic modeling of complicated biological processes.

  19. Local p-Adic Differential Equations

    NARCIS (Netherlands)

    Put, Marius van der; Taelman, Lenny

    2006-01-01

    This paper studies divergence in solutions of p-adic linear local differential equations. Such divergence is related to the notion of p-adic Liouville numbers. Also, the influence of the divergence on the differential Galois groups of such differential equations is explored. A complete result is

  20. Fermat type differential and difference equations

    Directory of Open Access Journals (Sweden)

    Kai Liu

    2015-06-01

    Full Text Available This article we explore the relationship between the number of differential and difference operators with the existence of meromorphic solutions of Fermat type differential and difference equations. Some Fermat differential and difference equations of certain types are also considered.

  1. First-order partial differential equations

    CERN Document Server

    Rhee, Hyun-Ku; Amundson, Neal R

    2001-01-01

    This first volume of a highly regarded two-volume text is fully usable on its own. After going over some of the preliminaries, the authors discuss mathematical models that yield first-order partial differential equations; motivations, classifications, and some methods of solution; linear and semilinear equations; chromatographic equations with finite rate expressions; homogeneous and nonhomogeneous quasilinear equations; formation and propagation of shocks; conservation equations, weak solutions, and shock layers; nonlinear equations; and variational problems. Exercises appear at the end of mo

  2. FIFI 3: A digital computer code for the solution of sets of first order differential equations and the analysis of process plant dynamics

    International Nuclear Information System (INIS)

    Sumner, H.M.

    1965-11-01

    FIFI 3 is a FORTRAN Code embodying a technique for the analysis of process plant dynamics. As such, it is essentially a tool for the integration of sets of first order ordinary differential equations, either linear or non-linear; special provision is made for the inclusion of time-delayed variables in the mathematical model of the plant. The method of integration is new and is centred on a stable multistep predictor-corrector algorithm devised by the late Mr. F.G. Chapman, of the UKAEA, Winfrith. The theory on which the Code is based and detailed rules for using it are described in Parts I and II respectively. (author)

  3. Using some results about the Lie evolution of differential operators to obtain the Fokker-Planck equation for non-Hamiltonian dynamical systems of interest

    Science.gov (United States)

    Bianucci, Marco

    2018-05-01

    Finding the generalized Fokker-Planck Equation (FPE) for the reduced probability density function of a subpart of a given complex system is a classical issue of statistical mechanics. Zwanzig projection perturbation approach to this issue leads to the trouble of resumming a series of commutators of differential operators that we show to correspond to solving the Lie evolution of first order differential operators along the unperturbed Liouvillian of the dynamical system of interest. In this paper, we develop in a systematic way the procedure to formally solve this problem. In particular, here we show which the basic assumptions are, concerning the dynamical system of interest, necessary for the Lie evolution to be a group on the space of first order differential operators, and we obtain the coefficients of the so-evolved operators. It is thus demonstrated that if the Liouvillian of the system of interest is not a first order differential operator, in general, the FPE structure breaks down and the master equation contains all the power of the partial derivatives, up to infinity. Therefore, this work shed some light on the trouble of the ubiquitous emergence of both thermodynamics from microscopic systems and regular regression laws at macroscopic scales. However these results are very general and can be applied also in other contexts that are non-Hamiltonian as, for example, geophysical fluid dynamics, where important events, like El Niño, can be considered as large time scale phenomena emerging from the observation of few ocean degrees of freedom of a more complex system, including the interaction with the atmosphere.

  4. Introduction to complex theory of differential equations

    CERN Document Server

    Savin, Anton

    2017-01-01

    This book discusses the complex theory of differential equations or more precisely, the theory of differential equations on complex-analytic manifolds. Although the theory of differential equations on real manifolds is well known – it is described in thousands of papers and its usefulness requires no comments or explanations – to date specialists on differential equations have not focused on the complex theory of partial differential equations. However, as well as being remarkably beautiful, this theory can be used to solve a number of problems in real theory, for instance, the Poincaré balayage problem and the mother body problem in geophysics. The monograph does not require readers to be familiar with advanced notions in complex analysis, differential equations, or topology. With its numerous examples and exercises, it appeals to advanced undergraduate and graduate students, and also to researchers wanting to familiarize themselves with the subject.

  5. Lectures on partial differential equations

    CERN Document Server

    Petrovsky, I G

    1992-01-01

    Graduate-level exposition by noted Russian mathematician offers rigorous, transparent, highly readable coverage of classification of equations, hyperbolic equations, elliptic equations and parabolic equations. Wealth of commentary and insight invaluable for deepening understanding of problems considered in text. Translated from the Russian by A. Shenitzer.

  6. On a complex differential Riccati equation

    International Nuclear Information System (INIS)

    Khmelnytskaya, Kira V; Kravchenko, Vladislav V

    2008-01-01

    We consider a nonlinear partial differential equation for complex-valued functions which is related to the two-dimensional stationary Schroedinger equation and enjoys many properties similar to those of the ordinary differential Riccati equation such as the famous Euler theorems, the Picard theorem and others. Besides these generalizations of the classical 'one-dimensional' results, we discuss new features of the considered equation including an analogue of the Cauchy integral theorem

  7. Solutions manual to accompany Ordinary differential equations

    CERN Document Server

    Greenberg, Michael D

    2014-01-01

    Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory. Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology, the book anticipates potential difficulties in understanding the various solution steps

  8. Fractional dynamic calculus and fractional dynamic equations on time scales

    CERN Document Server

    Georgiev, Svetlin G

    2018-01-01

    Pedagogically organized, this monograph introduces fractional calculus and fractional dynamic equations on time scales in relation to mathematical physics applications and problems. Beginning with the definitions of forward and backward jump operators, the book builds from Stefan Hilger’s basic theories on time scales and examines recent developments within the field of fractional calculus and fractional equations. Useful tools are provided for solving differential and integral equations as well as various problems involving special functions of mathematical physics and their extensions and generalizations in one and more variables. Much discussion is devoted to Riemann-Liouville fractional dynamic equations and Caputo fractional dynamic equations.  Intended for use in the field and designed for students without an extensive mathematical background, this book is suitable for graduate courses and researchers looking for an introduction to fractional dynamic calculus and equations on time scales. .

  9. Complex centers of polynomial differential equations

    Directory of Open Access Journals (Sweden)

    Mohamad Ali M. Alwash

    2007-07-01

    Full Text Available We present some results on the existence and nonexistence of centers for polynomial first order ordinary differential equations with complex coefficients. In particular, we show that binomial differential equations without linear terms do not have complex centers. Classes of polynomial differential equations, with more than two terms, are presented that do not have complex centers. We also study the relation between complex centers and the Pugh problem. An algorithm is described to solve the Pugh problem for equations without complex centers. The method of proof involves phase plane analysis of the polar equations and a local study of periodic solutions.

  10. Elliptic differential equations theory and numerical treatment

    CERN Document Server

    Hackbusch, Wolfgang

    2017-01-01

    This book simultaneously presents the theory and the numerical treatment of elliptic boundary value problems, since an understanding of the theory is necessary for the numerical analysis of the discretisation. It first discusses the Laplace equation and its finite difference discretisation before addressing the general linear differential equation of second order. The variational formulation together with the necessary background from functional analysis provides the basis for the Galerkin and finite-element methods, which are explored in detail. A more advanced chapter leads the reader to the theory of regularity. Individual chapters are devoted to singularly perturbed as well as to elliptic eigenvalue problems. The book also presents the Stokes problem and its discretisation as an example of a saddle-point problem taking into account its relevance to applications in fluid dynamics.

  11. Partial differential equation methods for stochastic dynamic optimization: an application to wind power generation with energy storage.

    Science.gov (United States)

    Johnson, Paul; Howell, Sydney; Duck, Peter

    2017-08-13

    A mixed financial/physical partial differential equation (PDE) can optimize the joint earnings of a single wind power generator (WPG) and a generic energy storage device (ESD). Physically, the PDE includes constraints on the ESD's capacity, efficiency and maximum speeds of charge and discharge. There is a mean-reverting daily stochastic cycle for WPG power output. Physically, energy can only be produced or delivered at finite rates. All suppliers must commit hourly to a finite rate of delivery C , which is a continuous control variable that is changed hourly. Financially, we assume heavy 'system balancing' penalties in continuous time, for deviations of output rate from the commitment C Also, the electricity spot price follows a mean-reverting stochastic cycle with a strong evening peak, when system balancing penalties also peak. Hence the economic goal of the WPG plus ESD, at each decision point, is to maximize expected net present value (NPV) of all earnings (arbitrage) minus the NPV of all expected system balancing penalties, along all financially/physically feasible future paths through state space. Given the capital costs for the various combinations of the physical parameters, the design and operating rules for a WPG plus ESD in a finite market may be jointly optimizable.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).

  12. A Two-Stage Estimation Method for Random Coefficient Differential Equation Models with Application to Longitudinal HIV Dynamic Data.

    Science.gov (United States)

    Fang, Yun; Wu, Hulin; Zhu, Li-Xing

    2011-07-01

    We propose a two-stage estimation method for random coefficient ordinary differential equation (ODE) models. A maximum pseudo-likelihood estimator (MPLE) is derived based on a mixed-effects modeling approach and its asymptotic properties for population parameters are established. The proposed method does not require repeatedly solving ODEs, and is computationally efficient although it does pay a price with the loss of some estimation efficiency. However, the method does offer an alternative approach when the exact likelihood approach fails due to model complexity and high-dimensional parameter space, and it can also serve as a method to obtain the starting estimates for more accurate estimation methods. In addition, the proposed method does not need to specify the initial values of state variables and preserves all the advantages of the mixed-effects modeling approach. The finite sample properties of the proposed estimator are studied via Monte Carlo simulations and the methodology is also illustrated with application to an AIDS clinical data set.

  13. Interactive differential equations modeling program

    International Nuclear Information System (INIS)

    Rust, B.W.; Mankin, J.B.

    1976-01-01

    Due to the recent emphasis on mathematical modeling, many ecologists are using mathematics and computers more than ever, and engineers, mathematicians and physical scientists are now included in ecological projects. However, the individual ecologist, with intuitive knowledge of the system, still requires the means to critically examine and adjust system models. An interactive program was developed with the primary goal of allowing an ecologist with minimal experience in either mathematics or computers to develop a system model. It has also been used successfully by systems ecologists, engineers, and mathematicians. This program was written in FORTRAN for the DEC PDP-10, a remote terminal system at Oak Ridge National Laboratory. However, with relatively minor modifications, it can be implemented on any remote terminal system with a FORTRAN IV compiler, or equivalent. This program may be used to simulate any phenomenon which can be described as a system of ordinary differential equations. The program allows the user to interactively change system parameters and/or initial conditions, to interactively select a set of variables to be plotted, and to model discontinuities in the state variables and/or their derivatives. One of the most useful features to the non-computer specialist is the ability to interactively address the system parameters by name and to interactively adjust their values between simulations. These and other features are described in greater detail

  14. Simulation, optimal control and parametric sensitivity analysis of a molten carbonate fuel cell using a partial differential algebraic dynamic equation system; Simulation, Optimale Steuerung und Sensitivitaetsanalyse einer Schmelzkarbonat-Brennstoffzelle mithilfe eines partiellen differential-algebraischen dynamischen Gleichungssystems

    Energy Technology Data Exchange (ETDEWEB)

    Sternberg, K

    2007-02-08

    Molten carbonate fuel cells (MCFCs) allow an efficient and environmentally friendly energy production by converting the chemical energy contained in the fuel gas in virtue of electro-chemical reactions. In order to predict the effect of the electro-chemical reactions and to control the dynamical behavior of the fuel cell a mathematical model has to be found. The molten carbonate fuel cell (MCFC) can indeed be described by a highly complex,large scale, semi-linear system of partial differential algebraic equations. This system includes a reaction-diffusion-equation of parabolic type, several reaction-transport-equations of hyperbolic type, several ordinary differential equations and finally a system of integro-differential algebraic equations which describes the nonlinear non-standard boundary conditions for the entire partial differential algebraic equation system (PDAE-system). The existence of an analytical or the computability of a numerical solution for this high-dimensional PDAE-system depends on the kind of the differential equations and their special characteristics. Apart from theoretical investigations, the real process has to be controlled, more precisely optimally controlled. Hence, on the basis of the PDAE-system an optimal control problem is set up, whose analytical and numerical solvability is closely linked to the solvability of the PDAE-system. Moreover the solution of that optimal control problem is made more difficult by inaccuracies in the underlying database, which does not supply sufficiently accurate values for the model parameters. Therefore the optimal control problem must also be investigated with respect to small disturbances of model parameters. The aim of this work is to analyze the relevant dynamic behavior of MCFCs and to develop concepts for their optimal process control. Therefore this work is concerned with the simulation, the optimal control and the sensitivity analysis of a mathematical model for MCDCs, which can be characterized

  15. Oscillation theory for second order dynamic equations

    CERN Document Server

    Agarwal, Ravi P; O''Regan, Donal

    2003-01-01

    The qualitative theory of dynamic equations is a rapidly developing area of research. In the last 50 years, the Oscillation Theory of ordinary, functional, neutral, partial and impulsive differential equations, and their discrete versions, has inspired many scholars. Hundreds of research papers have been published in every major mathematical journal. Many books deal exclusively with the oscillation of solutions of differential equations, but most of these books appeal only to researchers who already know the subject. In an effort to bring Oscillation Theory to a new and broader audience, the authors present a compact, but thorough, understanding of Oscillation Theory for second order differential equations. They include several examples throughout the text not only to illustrate the theory, but also to provide new direction.

  16. Generalized differential transform method to differential-difference equation

    International Nuclear Information System (INIS)

    Zou Li; Wang Zhen; Zong Zhi

    2009-01-01

    In this Letter, we generalize the differential transform method to solve differential-difference equation for the first time. Two simple but typical examples are applied to illustrate the validity and the great potential of the generalized differential transform method in solving differential-difference equation. A Pade technique is also introduced and combined with GDTM in aim of extending the convergence area of presented series solutions. Comparisons are made between the results of the proposed method and exact solutions. Then we apply the differential transform method to the discrete KdV equation and the discrete mKdV equation, and successfully obtain solitary wave solutions. The results reveal that the proposed method is very effective and simple. We should point out that generalized differential transform method is also easy to be applied to other nonlinear differential-difference equation.

  17. Symposium on Differential Geometry and Differential Equations

    CERN Document Server

    Berger, Marcel; Bryant, Robert

    1987-01-01

    The DD6 Symposium was, like its predecessors DD1 to DD5 both a research symposium and a summer seminar and concentrated on differential geometry. This volume contains a selection of the invited papers and some additional contributions. They cover recent advances and principal trends in current research in differential geometry.

  18. Special solutions of neutral functional differential equations

    Directory of Open Access Journals (Sweden)

    Győri István

    2001-01-01

    Full Text Available For a system of nonlinear neutral functional differential equations we prove the existence of an -parameter family of "special solutions" which characterize the asymptotic behavior of all solutions at infinity. For retarded functional differential equations the special solutions used in this paper were introduced by Ryabov.

  19. Selected papers on analysis and differential equations

    CERN Document Server

    Society, American Mathematical

    2010-01-01

    This volume contains translations of papers that originally appeared in the Japanese journal Sūgaku. These papers range over a variety of topics in ordinary and partial differential equations, and in analysis. Many of them are survey papers presenting new results obtained in the last few years. This volume is suitable for graduate students and research mathematicians interested in analysis and differential equations.

  20. Solving Differential Equations Using Modified Picard Iteration

    Science.gov (United States)

    Robin, W. A.

    2010-01-01

    Many classes of differential equations are shown to be open to solution through a method involving a combination of a direct integration approach with suitably modified Picard iterative procedures. The classes of differential equations considered include typical initial value, boundary value and eigenvalue problems arising in physics and…

  1. Lie algebras and linear differential equations.

    Science.gov (United States)

    Brockett, R. W.; Rahimi, A.

    1972-01-01

    Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.

  2. Statistical Methods for Stochastic Differential Equations

    CERN Document Server

    Kessler, Mathieu; Sorensen, Michael

    2012-01-01

    The seventh volume in the SemStat series, Statistical Methods for Stochastic Differential Equations presents current research trends and recent developments in statistical methods for stochastic differential equations. Written to be accessible to both new students and seasoned researchers, each self-contained chapter starts with introductions to the topic at hand and builds gradually towards discussing recent research. The book covers Wiener-driven equations as well as stochastic differential equations with jumps, including continuous-time ARMA processes and COGARCH processes. It presents a sp

  3. On implicit abstract neutral nonlinear differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, Eduardo, E-mail: lalohm@ffclrp.usp.br [Universidade de São Paulo, Departamento de Computação e Matemática, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (Brazil); O’Regan, Donal, E-mail: donal.oregan@nuigalway.ie [National University of Ireland, School of Mathematics, Statistics and Applied Mathematics (Ireland)

    2016-04-15

    In this paper we continue our developments in Hernández and O’Regan (J Funct Anal 261:3457–3481, 2011) on the existence of solutions for abstract neutral differential equations. In particular we extend the results in Hernández and O’Regan (J Funct Anal 261:3457–3481, 2011) for the case of implicit nonlinear neutral equations and we focus on applications to partial “nonlinear” neutral differential equations. Some applications involving partial neutral differential equations are presented.

  4. Exponentially Convergent Algorithms for Abstract Differential Equations

    CERN Document Server

    Gavrilyuk, Ivan; Vasylyk, Vitalii

    2011-01-01

    This book presents new accurate and efficient exponentially convergent methods for abstract differential equations with unbounded operator coefficients in Banach space. These methods are highly relevant for the practical scientific computing since the equations under consideration can be seen as the meta-models of systems of ordinary differential equations (ODE) as well as the partial differential equations (PDEs) describing various applied problems. The framework of functional analysis allows one to obtain very general but at the same time transparent algorithms and mathematical results which

  5. Stochastic differential equation model to Prendiville processes

    Energy Technology Data Exchange (ETDEWEB)

    Granita, E-mail: granitafc@gmail.com [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310, Johor Malaysia (Malaysia); Bahar, Arifah [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310, Johor Malaysia (Malaysia); UTM Center for Industrial & Applied Mathematics (UTM-CIAM) (Malaysia)

    2015-10-22

    The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution.

  6. Stochastic differential equation model to Prendiville processes

    International Nuclear Information System (INIS)

    Granita; Bahar, Arifah

    2015-01-01

    The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution

  7. Numerical methods for differential equations and applications

    International Nuclear Information System (INIS)

    Ixaru, L.G.

    1984-01-01

    This book is addressed to persons who, without being professionals in applied mathematics, are often faced with the problem of numerically solving differential equations. In each of the first three chapters a definite class of methods is discussed for the solution of the initial value problem for ordinary differential equations: multistep methods; one-step methods; and piecewise perturbation methods. The fourth chapter is mainly focussed on the boundary value problems for linear second-order equations, with a section devoted to the Schroedinger equation. In the fifth chapter the eigenvalue problem for the radial Schroedinger equation is solved in several ways, with computer programs included. (Auth.)

  8. From ordinary to partial differential equations

    CERN Document Server

    Esposito, Giampiero

    2017-01-01

    This book is addressed to mathematics and physics students who want to develop an interdisciplinary view of mathematics, from the age of Riemann, Poincaré and Darboux to basic tools of modern mathematics. It enables them to acquire the sensibility necessary for the formulation and solution of difficult problems, with an emphasis on concepts, rigour and creativity. It consists of eight self-contained parts: ordinary differential equations; linear elliptic equations; calculus of variations; linear and non-linear hyperbolic equations; parabolic equations; Fuchsian functions and non-linear equations; the functional equations of number theory; pseudo-differential operators and pseudo-differential equations. The author leads readers through the original papers and introduces new concepts, with a selection of topics and examples that are of high pedagogical value.

  9. Time-course window estimator for ordinary differential equations linear in the parameters

    NARCIS (Netherlands)

    Vujacic, Ivan; Dattner, Itai; Gonzalez, Javier; Wit, Ernst

    In many applications obtaining ordinary differential equation descriptions of dynamic processes is scientifically important. In both, Bayesian and likelihood approaches for estimating parameters of ordinary differential equations, the speed and the convergence of the estimation procedure may

  10. Equations of multiparticle dynamics

    International Nuclear Information System (INIS)

    Chao, A.W.

    1987-01-01

    The description of the motion of charged-particle beams in an accelerator proceeds in steps of increasing complexity. The first step is to consider a single-particle picture in which the beam is represented as a collection on non-interacting test particles moving in a prescribed external electromagnetic field. Knowing the external field, it is then possible to calculate the beam motion to a high accuracy. The real beam consists of a large number of particles, typically 10 11 per beam bunch. It is sometimes inconvenient, or even impossible, to treat the real beam behavior using the single particle approach. One way to approach this problem is to supplement the single particle by another qualitatively different picture. The commonly used tools in accelerator physics for this purpose are the Vlasov and the Fokker-Planck equations. These equations assume smooth beam distributions and are therefore strictly valid in the limit of infinite number of micro-particles, each carrying an infinitesimal charge. The hope is that by studying the two extremes -- the single particle picture and the picture of smooth beam distributions -- we will be able to describe the behavior of our 10 11 -particle system. As mentioned, the most notable use of the smooth distribution picture is the study of collective beam instabilities. However, the purpose of this lecture is not to address this more advanced subject. Rather, it has the limited goal to familiarize the reader with the analytical tools, namely the Vlasov and the Fokker-Planck equations, as a preparation for dealing with the more advanced problems at later times. We will first derive these equations and then illustrate their applications by several examples which allow exact solutions

  11. Ordinary differential equation for local accumulation time.

    Science.gov (United States)

    Berezhkovskii, Alexander M

    2011-08-21

    Cell differentiation in a developing tissue is controlled by the concentration fields of signaling molecules called morphogens. Formation of these concentration fields can be described by the reaction-diffusion mechanism in which locally produced molecules diffuse through the patterned tissue and are degraded. The formation kinetics at a given point of the patterned tissue can be characterized by the local accumulation time, defined in terms of the local relaxation function. Here, we show that this time satisfies an ordinary differential equation. Using this equation one can straightforwardly determine the local accumulation time, i.e., without preliminary calculation of the relaxation function by solving the partial differential equation, as was done in previous studies. We derive this ordinary differential equation together with the accompanying boundary conditions and demonstrate that the earlier obtained results for the local accumulation time can be recovered by solving this equation. © 2011 American Institute of Physics

  12. Partial Differential Equations Modeling and Numerical Simulation

    CERN Document Server

    Glowinski, Roland

    2008-01-01

    This book is dedicated to Olivier Pironneau. For more than 250 years partial differential equations have been clearly the most important tool available to mankind in order to understand a large variety of phenomena, natural at first and then those originating from human activity and technological development. Mechanics, physics and their engineering applications were the first to benefit from the impact of partial differential equations on modeling and design, but a little less than a century ago the Schrödinger equation was the key opening the door to the application of partial differential equations to quantum chemistry, for small atomic and molecular systems at first, but then for systems of fast growing complexity. Mathematical modeling methods based on partial differential equations form an important part of contemporary science and are widely used in engineering and scientific applications. In this book several experts in this field present their latest results and discuss trends in the numerical analy...

  13. Parameter Estimation of Partial Differential Equation Models.

    Science.gov (United States)

    Xun, Xiaolei; Cao, Jiguo; Mallick, Bani; Carroll, Raymond J; Maity, Arnab

    2013-01-01

    Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown, and need to be estimated from the measurements of the dynamic system in the present of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE, and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from LIDAR data.

  14. Advances in nonlinear partial differential equations and stochastics

    CERN Document Server

    Kawashima, S

    1998-01-01

    In the past two decades, there has been great progress in the theory of nonlinear partial differential equations. This book describes the progress, focusing on interesting topics in gas dynamics, fluid dynamics, elastodynamics etc. It contains ten articles, each of which discusses a very recent result obtained by the author. Some of these articles review related results.

  15. Stability analysis of impulsive functional differential equations

    CERN Document Server

    Stamova, Ivanka

    2009-01-01

    This book is devoted to impulsive functional differential equations which are a natural generalization of impulsive ordinary differential equations (without delay) and of functional differential equations (without impulses). At the present time the qualitative theory of such equationsis under rapid development. After a presentation of the fundamental theory of existence, uniqueness and continuability of solutions, a systematic development of stability theory for that class of problems is given which makes the book unique. It addresses to a wide audience such as mathematicians, applied research

  16. Numerical Analysis of Partial Differential Equations

    CERN Document Server

    Lui, S H

    2011-01-01

    A balanced guide to the essential techniques for solving elliptic partial differential equations Numerical Analysis of Partial Differential Equations provides a comprehensive, self-contained treatment of the quantitative methods used to solve elliptic partial differential equations (PDEs), with a focus on the efficiency as well as the error of the presented methods. The author utilizes coverage of theoretical PDEs, along with the nu merical solution of linear systems and various examples and exercises, to supply readers with an introduction to the essential concepts in the numerical analysis

  17. Quasi-gas dynamic equations

    CERN Document Server

    Elizarova, Tatiana G

    2009-01-01

    This book presents two interconnected mathematical models generalizing the Navier-Stokes system. The models, called the quasi-gas-dynamic and quasi-hydrodynamic equations, are then used as the basis of numerical methods solving gas- and fluid-dynamic problems.

  18. Selected papers on analysis and differential equations

    CERN Document Server

    Nomizu, Katsumi

    2003-01-01

    This volume contains translations of papers that originally appeared in the Japanese journal, Sugaku. The papers range over a variety of topics, including nonlinear partial differential equations, C^*-algebras, and Schrödinger operators.

  19. Connecting Related Rates and Differential Equations

    Science.gov (United States)

    Brandt, Keith

    2012-01-01

    This article points out a simple connection between related rates and differential equations. The connection can be used for in-class examples or homework exercises, and it is accessible to students who are familiar with separation of variables.

  20. A simple chaotic delay differential equation

    International Nuclear Information System (INIS)

    Sprott, J.C.

    2007-01-01

    The simplest chaotic delay differential equation with a sinusoidal nonlinearity is described, including the route to chaos, Lyapunov exponent spectrum, and chaotic diffusion. It is prototypical of many other high-dimensional chaotic systems

  1. An introduction to differential equations using MATLAB

    CERN Document Server

    Butt, Rizwan

    2016-01-01

    An Introduction to Differential Equations using MATLAB exploits the symbolic, numerical, and graphical capabilitiesof MATLAB to develop a thorough understanding of differential equations algorithms. This book provides the readerwith numerous applications, m-files, and practical examples to problems. Balancing theoretical concepts withcomputational speed and accuracy, the book includes numerous short programs in MATLAB that can be used to solveproblems involving first-and higher-order differential equations, Laplace transforms, linear systems of differentialequations, numerical solutions of differential equations, computer graphics, and more. The author emphasizes thebasic ideas of analytical and numerical techniques and the uses of modern mathematical software (MATLAB) ratherthan relying only on complex mathematical derivations to engineers, mathematician, computer scientists, andphysicists or for use as a textbook in applied or computational courses.A CD-ROM with all the figures, codes, solutions, appendices...

  2. equilibrium approach in thederivation of differential equations

    African Journals Online (AJOL)

    user

    DEPT OF CIVIL ENGINEERING, ENUGU STATE UNIVERSITY OF SCIENCE & TECHNOLOGY ... In this paper, the differential equations of Mindlin plates are derived from basic principles by ..... Journal of Applied Mechanics, pages 31-38.

  3. Deterministic Brownian motion generated from differential delay equations.

    Science.gov (United States)

    Lei, Jinzhi; Mackey, Michael C

    2011-10-01

    This paper addresses the question of how Brownian-like motion can arise from the solution of a deterministic differential delay equation. To study this we analytically study the bifurcation properties of an apparently simple differential delay equation and then numerically investigate the probabilistic properties of chaotic solutions of the same equation. Our results show that solutions of the deterministic equation with randomly selected initial conditions display a Gaussian-like density for long time, but the densities are supported on an interval of finite measure. Using these chaotic solutions as velocities, we are able to produce Brownian-like motions, which show statistical properties akin to those of a classical Brownian motion over both short and long time scales. Several conjectures are formulated for the probabilistic properties of the solution of the differential delay equation. Numerical studies suggest that these conjectures could be "universal" for similar types of "chaotic" dynamics, but we have been unable to prove this.

  4. Weak self-adjoint differential equations

    International Nuclear Information System (INIS)

    Gandarias, M L

    2011-01-01

    The concepts of self-adjoint and quasi self-adjoint equations were introduced by Ibragimov (2006 J. Math. Anal. Appl. 318 742-57; 2007 Arch. ALGA 4 55-60). In Ibragimov (2007 J. Math. Anal. Appl. 333 311-28), a general theorem on conservation laws was proved. In this paper, we generalize the concept of self-adjoint and quasi self-adjoint equations by introducing the definition of weak self-adjoint equations. We find a class of weak self-adjoint quasi-linear parabolic equations. The property of a differential equation to be weak self-adjoint is important for constructing conservation laws associated with symmetries of the differential equation. (fast track communication)

  5. Differential equations in airplane mechanics

    Science.gov (United States)

    Carleman, M T

    1922-01-01

    In the following report, we will first draw some conclusions of purely theoretical interest, from the general equations of motion. At the end, we will consider the motion of an airplane, with the engine dead and with the assumption that the angle of attack remains constant. Thus we arrive at a simple result, which can be rendered practically utilizable for determining the trajectory of an airplane descending at a constant steering angle.

  6. Modeling animal movements using stochastic differential equations

    Science.gov (United States)

    Haiganoush K. Preisler; Alan A. Ager; Bruce K. Johnson; John G. Kie

    2004-01-01

    We describe the use of bivariate stochastic differential equations (SDE) for modeling movements of 216 radiocollared female Rocky Mountain elk at the Starkey Experimental Forest and Range in northeastern Oregon. Spatially and temporally explicit vector fields were estimated using approximating difference equations and nonparametric regression techniques. Estimated...

  7. On Fractional Order Hybrid Differential Equations

    Directory of Open Access Journals (Sweden)

    Mohamed A. E. Herzallah

    2014-01-01

    Full Text Available We develop the theory of fractional hybrid differential equations with linear and nonlinear perturbations involving the Caputo fractional derivative of order 0<α<1. Using some fixed point theorems we prove the existence of mild solutions for two types of hybrid equations. Examples are given to illustrate the obtained results.

  8. Dual exponential polynomials and linear differential equations

    Science.gov (United States)

    Wen, Zhi-Tao; Gundersen, Gary G.; Heittokangas, Janne

    2018-01-01

    We study linear differential equations with exponential polynomial coefficients, where exactly one coefficient is of order greater than all the others. The main result shows that a nontrivial exponential polynomial solution of such an equation has a certain dual relationship with the maximum order coefficient. Several examples illustrate our results and exhibit possibilities that can occur.

  9. Differential Equations and Computational Simulations

    Science.gov (United States)

    1999-06-18

    given in (6),(7) in Taylor series of e. Equating coefficients of same power of e in both side of equity , we obtain a sequence of linear boundary value...fields, 3). structural instability and block stability of divergence-free vector fields on 2D compact manifolds with nonzero genus , and 4). structural...circle bands. Definition 3.1 Let N be a compact manifold without boundary and with genus k > 0. A closed domain fi C N is called a pseudo-manifold

  10. A Unified Introduction to Ordinary Differential Equations

    Science.gov (United States)

    Lutzer, Carl V.

    2006-01-01

    This article describes how a presentation from the point of view of differential operators can be used to (partially) unify the myriad techniques in an introductory course in ordinary differential equations by providing students with a powerful, flexible paradigm that extends into (or from) linear algebra. (Contains 1 footnote.)

  11. Stochastic Differential Equations and Kondratiev Spaces

    Energy Technology Data Exchange (ETDEWEB)

    Vaage, G.

    1995-05-01

    The purpose of this mathematical thesis was to improve the understanding of physical processes such as fluid flow in porous media. An example is oil flowing in a reservoir. In the first of five included papers, Hilbert space methods for elliptic boundary value problems are used to prove the existence and uniqueness of a large family of elliptic differential equations with additive noise without using the Hermite transform. The ideas are then extended to the multidimensional case and used to prove existence and uniqueness of solution of the Stokes equations with additive noise. The second paper uses functional analytic methods for partial differential equations and presents a general framework for proving existence and uniqueness of solutions to stochastic partial differential equations with multiplicative noise, for a large family of noises. The methods are applied to equations of elliptic, parabolic as well as hyperbolic type. The framework presented can be extended to the multidimensional case. The third paper shows how the ideas from the second paper can be extended to study the moving boundary value problem associated with the stochastic pressure equation. The fourth paper discusses a set of stochastic differential equations. The fifth paper studies the relationship between the two families of Kondratiev spaces used in the thesis. 102 refs.

  12. Laplace and the era of differential equations

    Science.gov (United States)

    Weinberger, Peter

    2012-11-01

    Between about 1790 and 1850 French mathematicians dominated not only mathematics, but also all other sciences. The belief that a particular physical phenomenon has to correspond to a single differential equation originates from the enormous influence Laplace and his contemporary compatriots had in all European learned circles. It will be shown that at the beginning of the nineteenth century Newton's "fluxionary calculus" finally gave way to a French-type notation of handling differential equations. A heated dispute in the Philosophical Magazine between Challis, Airy and Stokes, all three of them famous Cambridge professors of mathematics, then serves to illustrate the era of differential equations. A remark about Schrödinger and his equation for the hydrogen atom finally will lead back to present times.

  13. Particle Systems and Partial Differential Equations I

    CERN Document Server

    Gonçalves, Patricia

    2014-01-01

    This book presents the proceedings of the international conference Particle Systems and Partial Differential Equations I, which took place at the Centre of Mathematics of the University of Minho, Braga, Portugal, from the 5th to the 7th of December, 2012.  The purpose of the conference was to bring together world leaders to discuss their topics of expertise and to present some of their latest research developments in those fields. Among the participants were researchers in probability, partial differential equations and kinetics theory. The aim of the meeting was to present to a varied public the subject of interacting particle systems, its motivation from the viewpoint of physics and its relation with partial differential equations or kinetics theory, and to stimulate discussions and possibly new collaborations among researchers with different backgrounds.  The book contains lecture notes written by François Golse on the derivation of hydrodynamic equations (compressible and incompressible Euler and Navie...

  14. On new solutions of fuzzy differential equations

    International Nuclear Information System (INIS)

    Chalco-Cano, Y.; Roman-Flores, H.

    2008-01-01

    We study fuzzy differential equations (FDE) using the concept of generalized H-differentiability. This concept is based in the enlargement of the class of differentiable fuzzy mappings and, for this, we consider the lateral Hukuhara derivatives. We will see that both derivatives are different and they lead us to different solutions from a FDE. Also, some illustrative examples are given and some comparisons with other methods for solving FDE are made

  15. Solution of differential equations by application of transformation groups

    Science.gov (United States)

    Driskell, C. N., Jr.; Gallaher, L. J.; Martin, R. H., Jr.

    1968-01-01

    Report applies transformation groups to the solution of systems of ordinary differential equations and partial differential equations. Lies theorem finds an integrating factor for appropriate invariance group or groups can be found and can be extended to partial differential equations.

  16. Solving polynomial differential equations by transforming them to linear functional-differential equations

    OpenAIRE

    Nahay, John Michael

    2008-01-01

    We present a new approach to solving polynomial ordinary differential equations by transforming them to linear functional equations and then solving the linear functional equations. We will focus most of our attention upon the first-order Abel differential equation with two nonlinear terms in order to demonstrate in as much detail as possible the computations necessary for a complete solution. We mention in our section on further developments that the basic transformation idea can be generali...

  17. Parameter Estimation of Partial Differential Equation Models

    KAUST Repository

    Xun, Xiaolei

    2013-09-01

    Partial differential equation (PDE) models are commonly used to model complex dynamic systems in applied sciences such as biology and finance. The forms of these PDE models are usually proposed by experts based on their prior knowledge and understanding of the dynamic system. Parameters in PDE models often have interesting scientific interpretations, but their values are often unknown and need to be estimated from the measurements of the dynamic system in the presence of measurement errors. Most PDEs used in practice have no analytic solutions, and can only be solved with numerical methods. Currently, methods for estimating PDE parameters require repeatedly solving PDEs numerically under thousands of candidate parameter values, and thus the computational load is high. In this article, we propose two methods to estimate parameters in PDE models: a parameter cascading method and a Bayesian approach. In both methods, the underlying dynamic process modeled with the PDE model is represented via basis function expansion. For the parameter cascading method, we develop two nested levels of optimization to estimate the PDE parameters. For the Bayesian method, we develop a joint model for data and the PDE and develop a novel hierarchical model allowing us to employ Markov chain Monte Carlo (MCMC) techniques to make posterior inference. Simulation studies show that the Bayesian method and parameter cascading method are comparable, and both outperform other available methods in terms of estimation accuracy. The two methods are demonstrated by estimating parameters in a PDE model from long-range infrared light detection and ranging data. Supplementary materials for this article are available online. © 2013 American Statistical Association.

  18. Numerical Methods for Partial Differential Equations

    CERN Document Server

    Guo, Ben-yu

    1987-01-01

    These Proceedings of the first Chinese Conference on Numerical Methods for Partial Differential Equations covers topics such as difference methods, finite element methods, spectral methods, splitting methods, parallel algorithm etc., their theoretical foundation and applications to engineering. Numerical methods both for boundary value problems of elliptic equations and for initial-boundary value problems of evolution equations, such as hyperbolic systems and parabolic equations, are involved. The 16 papers of this volume present recent or new unpublished results and provide a good overview of current research being done in this field in China.

  19. Robust estimation for ordinary differential equation models.

    Science.gov (United States)

    Cao, J; Wang, L; Xu, J

    2011-12-01

    Applied scientists often like to use ordinary differential equations (ODEs) to model complex dynamic processes that arise in biology, engineering, medicine, and many other areas. It is interesting but challenging to estimate ODE parameters from noisy data, especially when the data have some outliers. We propose a robust method to address this problem. The dynamic process is represented with a nonparametric function, which is a linear combination of basis functions. The nonparametric function is estimated by a robust penalized smoothing method. The penalty term is defined with the parametric ODE model, which controls the roughness of the nonparametric function and maintains the fidelity of the nonparametric function to the ODE model. The basis coefficients and ODE parameters are estimated in two nested levels of optimization. The coefficient estimates are treated as an implicit function of ODE parameters, which enables one to derive the analytic gradients for optimization using the implicit function theorem. Simulation studies show that the robust method gives satisfactory estimates for the ODE parameters from noisy data with outliers. The robust method is demonstrated by estimating a predator-prey ODE model from real ecological data. © 2011, The International Biometric Society.

  20. Differential geometry techniques for sets of nonlinear partial differential equations

    Science.gov (United States)

    Estabrook, Frank B.

    1990-01-01

    An attempt is made to show that the Cartan theory of partial differential equations can be a useful technique for applied mathematics. Techniques for finding consistent subfamilies of solutions that are generically rich and well-posed and for introducing potentials or other usefully consistent auxiliary fields are introduced. An extended sample calculation involving the Korteweg-de Vries equation is given.

  1. Methods of mathematical modelling continuous systems and differential equations

    CERN Document Server

    Witelski, Thomas

    2015-01-01

    This book presents mathematical modelling and the integrated process of formulating sets of equations to describe real-world problems. It describes methods for obtaining solutions of challenging differential equations stemming from problems in areas such as chemical reactions, population dynamics, mechanical systems, and fluid mechanics. Chapters 1 to 4 cover essential topics in ordinary differential equations, transport equations and the calculus of variations that are important for formulating models. Chapters 5 to 11 then develop more advanced techniques including similarity solutions, matched asymptotic expansions, multiple scale analysis, long-wave models, and fast/slow dynamical systems. Methods of Mathematical Modelling will be useful for advanced undergraduate or beginning graduate students in applied mathematics, engineering and other applied sciences.

  2. Spectral theories for linear differential equations

    International Nuclear Information System (INIS)

    Sell, G.R.

    1976-01-01

    The use of spectral analysis in the study of linear differential equations with constant coefficients is not only a fundamental technique but also leads to far-reaching consequences in describing the qualitative behaviour of the solutions. The spectral analysis, via the Jordan canonical form, will not only lead to a representation theorem for a basis of solutions, but will also give a rather precise statement of the (exponential) growth rates of various solutions. Various attempts have been made to extend this analysis to linear differential equations with time-varying coefficients. The most complete such extensions is the Floquet theory for equations with periodic coefficients. For time-varying linear differential equations with aperiodic coefficients several authors have attempted to ''extend'' the Foquet theory. The precise meaning of such an extension is itself a problem, and we present here several attempts in this direction that are related to the general problem of extending the spectral analysis of equations with constant coefficients. The main purpose of this paper is to introduce some problems of current research. The primary problem we shall examine occurs in the context of linear differential equations with almost periodic coefficients. We call it ''the Floquet problem''. (author)

  3. The differential equation of an arbitrary reflecting surface

    Science.gov (United States)

    Melka, Richard F.; Berrettini, Vincent D.; Yousif, Hashim A.

    2018-05-01

    A differential equation describing the reflection of a light ray incident upon an arbitrary reflecting surface is obtained using the law of reflection. The derived equation is written in terms of a parameter and the value of this parameter determines the nature of the reflecting surface. Under various parametric constraints, the solution of the differential equation leads to the various conic surfaces but is not generally solvable. In addition, the dynamics of the light reflections from the conic surfaces are executed in the Mathematica software. Our derivation is the converse of the traditional approach and our analysis assumes a relation between the object distance and the image distance. This leads to the differential equation of the reflecting surface.

  4. Climate models with delay differential equations

    Science.gov (United States)

    Keane, Andrew; Krauskopf, Bernd; Postlethwaite, Claire M.

    2017-11-01

    A fundamental challenge in mathematical modelling is to find a model that embodies the essential underlying physics of a system, while at the same time being simple enough to allow for mathematical analysis. Delay differential equations (DDEs) can often assist in this goal because, in some cases, only the delayed effects of complex processes need to be described and not the processes themselves. This is true for some climate systems, whose dynamics are driven in part by delayed feedback loops associated with transport times of mass or energy from one location of the globe to another. The infinite-dimensional nature of DDEs allows them to be sufficiently complex to reproduce realistic dynamics accurately with a small number of variables and parameters. In this paper, we review how DDEs have been used to model climate systems at a conceptual level. Most studies of DDE climate models have focused on gaining insights into either the global energy balance or the fundamental workings of the El Niño Southern Oscillation (ENSO) system. For example, studies of DDEs have led to proposed mechanisms for the interannual oscillations in sea-surface temperature that is characteristic of ENSO, the irregular behaviour that makes ENSO difficult to forecast and the tendency of El Niño events to occur near Christmas. We also discuss the tools used to analyse such DDE models. In particular, the recent development of continuation software for DDEs makes it possible to explore large regions of parameter space in an efficient manner in order to provide a "global picture" of the possible dynamics. We also point out some directions for future research, including the incorporation of non-constant delays, which we believe could improve the descriptive power of DDE climate models.

  5. Climate models with delay differential equations.

    Science.gov (United States)

    Keane, Andrew; Krauskopf, Bernd; Postlethwaite, Claire M

    2017-11-01

    A fundamental challenge in mathematical modelling is to find a model that embodies the essential underlying physics of a system, while at the same time being simple enough to allow for mathematical analysis. Delay differential equations (DDEs) can often assist in this goal because, in some cases, only the delayed effects of complex processes need to be described and not the processes themselves. This is true for some climate systems, whose dynamics are driven in part by delayed feedback loops associated with transport times of mass or energy from one location of the globe to another. The infinite-dimensional nature of DDEs allows them to be sufficiently complex to reproduce realistic dynamics accurately with a small number of variables and parameters. In this paper, we review how DDEs have been used to model climate systems at a conceptual level. Most studies of DDE climate models have focused on gaining insights into either the global energy balance or the fundamental workings of the El Niño Southern Oscillation (ENSO) system. For example, studies of DDEs have led to proposed mechanisms for the interannual oscillations in sea-surface temperature that is characteristic of ENSO, the irregular behaviour that makes ENSO difficult to forecast and the tendency of El Niño events to occur near Christmas. We also discuss the tools used to analyse such DDE models. In particular, the recent development of continuation software for DDEs makes it possible to explore large regions of parameter space in an efficient manner in order to provide a "global picture" of the possible dynamics. We also point out some directions for future research, including the incorporation of non-constant delays, which we believe could improve the descriptive power of DDE climate models.

  6. A first course in differential equations

    CERN Document Server

    Logan, J David

    2015-01-01

    The third edition of this concise, popular textbook on elementary differential equations gives instructors an alternative to the many voluminous texts on the market. It presents a thorough treatment of the standard topics in an accessible, easy-to-read, format. The overarching perspective of the text conveys that differential equations are about applications. This book illuminates the mathematical theory in the text with a wide variety of applications that will appeal to students in physics, engineering, the biosciences, economics and mathematics. Instructors are likely to find that the first four or five chapters are suitable for a first course in the subject. This edition contains a healthy increase over earlier editions in the number of worked examples and exercises, particularly those routine in nature. Two appendices include a review with practice problems, and a MATLAB® supplement that gives basic codes and commands for solving differential equations. MATLAB® is not required; students are encouraged t...

  7. Inequalities for differential and integral equations

    CERN Document Server

    Ames, William F

    1997-01-01

    Inequalities for Differential and Integral Equations has long been needed; it contains material which is hard to find in other books. Written by a major contributor to the field, this comprehensive resource contains many inequalities which have only recently appeared in the literature and which can be used as powerful tools in the development of applications in the theory of new classes of differential and integral equations. For researchers working in this area, it will be a valuable source of reference and inspiration. It could also be used as the text for an advanced graduate course.Key Features* Covers a variety of linear and nonlinear inequalities which find widespread applications in the theory of various classes of differential and integral equations* Contains many inequalities which have only recently appeared in literature and cannot yet be found in other books* Provides a valuable reference to engineers and graduate students

  8. Book review: Partial Differential Equations and Fluid Mechanics

    NARCIS (Netherlands)

    Muntean, A.

    2011-01-01

    The baak is the result of the workshop Partial Differential Equations and Fluid Dynamics that look place at the Mathematics Institute of the University of Warwick. May 21st - 23rd, 2007. It contains ten review and research papers which provide an accessible summary of a wide range of active research

  9. Differential equations from the algebraic standpoint

    CERN Document Server

    Ritt, Joseph Fels

    1932-01-01

    This book can be viewed as a first attempt to systematically develop an algebraic theory of nonlinear differential equations, both ordinary and partial. The main goal of the author was to construct a theory of elimination, which "will reduce the existence problem for a finite or infinite system of algebraic differential equations to the application of the implicit function theorem taken with Cauchy's theorem in the ordinary case and Riquier's in the partial." In his 1934 review of the book, J. M. Thomas called it "concise, readable, original, precise, and stimulating", and his words still rema

  10. Modeling and Prediction Using Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Juhl, Rune; Møller, Jan Kloppenborg; Jørgensen, John Bagterp

    2016-01-01

    Pharmacokinetic/pharmakodynamic (PK/PD) modeling for a single subject is most often performed using nonlinear models based on deterministic ordinary differential equations (ODEs), and the variation between subjects in a population of subjects is described using a population (mixed effects) setup...... deterministic and can predict the future perfectly. A more realistic approach would be to allow for randomness in the model due to e.g., the model be too simple or errors in input. We describe a modeling and prediction setup which better reflects reality and suggests stochastic differential equations (SDEs...

  11. Algorithms For Integrating Nonlinear Differential Equations

    Science.gov (United States)

    Freed, A. D.; Walker, K. P.

    1994-01-01

    Improved algorithms developed for use in numerical integration of systems of nonhomogenous, nonlinear, first-order, ordinary differential equations. In comparison with integration algorithms, these algorithms offer greater stability and accuracy. Several asymptotically correct, thereby enabling retention of stability and accuracy when large increments of independent variable used. Accuracies attainable demonstrated by applying them to systems of nonlinear, first-order, differential equations that arise in study of viscoplastic behavior, spread of acquired immune-deficiency syndrome (AIDS) virus and predator/prey populations.

  12. An introduction to stochastic differential equations

    CERN Document Server

    Evans, Lawrence C

    2014-01-01

    These notes provide a concise introduction to stochastic differential equations and their application to the study of financial markets and as a basis for modeling diverse physical phenomena. They are accessible to non-specialists and make a valuable addition to the collection of texts on the topic. -Srinivasa Varadhan, New York University This is a handy and very useful text for studying stochastic differential equations. There is enough mathematical detail so that the reader can benefit from this introduction with only a basic background in mathematical analysis and probability. -George Papa

  13. Generalized solutions of nonlinear partial differential equations

    CERN Document Server

    Rosinger, EE

    1987-01-01

    During the last few years, several fairly systematic nonlinear theories of generalized solutions of rather arbitrary nonlinear partial differential equations have emerged. The aim of this volume is to offer the reader a sufficiently detailed introduction to two of these recent nonlinear theories which have so far contributed most to the study of generalized solutions of nonlinear partial differential equations, bringing the reader to the level of ongoing research.The essence of the two nonlinear theories presented in this volume is the observation that much of the mathematics concernin

  14. Nonlinear partial differential equations of second order

    CERN Document Server

    Dong, Guangchang

    1991-01-01

    This book addresses a class of equations central to many areas of mathematics and its applications. Although there is no routine way of solving nonlinear partial differential equations, effective approaches that apply to a wide variety of problems are available. This book addresses a general approach that consists of the following: Choose an appropriate function space, define a family of mappings, prove this family has a fixed point, and study various properties of the solution. The author emphasizes the derivation of various estimates, including a priori estimates. By focusing on a particular approach that has proven useful in solving a broad range of equations, this book makes a useful contribution to the literature.

  15. An Îto stochastic differential equations model for the dynamics of the MCF-7 breast cancer cell line treated by radiotherapy.

    Science.gov (United States)

    Oroji, Amin; Omar, Mohd; Yarahmadian, Shantia

    2016-10-21

    In this paper, a new mathematical model is proposed for studying the population dynamics of breast cancer cells treated by radiotherapy by using a system of stochastic differential equations. The novelty of the model is essentially in capturing the concept of the cell cycle in the modeling to be able to evaluate the tumor lifespan. According to the cell cycle, each cell belongs to one of three subpopulations G, S, or M, representing gap, synthesis and mitosis subpopulations. Cells in the M subpopulation are highly radio-sensitive, whereas cells in the S subpopulation are highly radio-resistant. Therefore, in the process of radiotherapy, cell death rates of different subpopulations are not equal. In addition, since flow cytometry is unable to detect apoptotic cells accurately, the small changes in cell death rate in each subpopulation during treatment are considered. Subsequently, the proposed model is calibrated using experimental data from previous experiments involving the MCF-7 breast cancer cell line. Consequently, the proposed model is able to predict tumor lifespan based on the number of initial carcinoma cells. The results show the effectiveness of the radiation under the condition of stability, which describes the decreasing trend of the tumor cells population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Electrocardiogram classification using delay differential equations.

    Science.gov (United States)

    Lainscsek, Claudia; Sejnowski, Terrence J

    2013-06-01

    Time series analysis with nonlinear delay differential equations (DDEs) reveals nonlinear as well as spectral properties of the underlying dynamical system. Here, global DDE models were used to analyze 5 min data segments of electrocardiographic (ECG) recordings in order to capture distinguishing features for different heart conditions such as normal heart beat, congestive heart failure, and atrial fibrillation. The number of terms and delays in the model as well as the order of nonlinearity of the model have to be selected that are the most discriminative. The DDE model form that best separates the three classes of data was chosen by exhaustive search up to third order polynomials. Such an approach can provide deep insight into the nature of the data since linear terms of a DDE correspond to the main time-scales in the signal and the nonlinear terms in the DDE are related to nonlinear couplings between the harmonic signal parts. The DDEs were able to detect atrial fibrillation with an accuracy of 72%, congestive heart failure with an accuracy of 88%, and normal heart beat with an accuracy of 97% from 5 min of ECG, a much shorter time interval than required to achieve comparable performance with other methods.

  17. Lectures on the theory of group properties of differential equations

    CERN Document Server

    Ovsyannikov, LV

    2013-01-01

    These lecturers provide a clear introduction to Lie group methods for determining and using symmetries of differential equations, a variety of their applications in gas dynamics and other nonlinear models as well as the author's remarkable contribution to this classical subject. It contains material that is useful for students and teachers but cannot be found in modern texts. For example, the theory of partially invariant solutions developed by Ovsyannikov provides a powerful tool for solving systems of nonlinear differential equations and investigating complicated mathematical models. Readers

  18. International Conference on Delay Differential and Difference Equations and Applications

    CERN Document Server

    Pituk, Mihály; Recent Advances in Delay Differential and Difference Equations

    2014-01-01

    Delay differential and difference equations serve as models for a range of processes in biology, physics, engineering, and control theory. In this volume, the participants of the International Conference on Delay Differential and Difference Equations and Applications, Balatonfüred, Hungary, July 15-19, 2013 present recent research in this quickly-evolving field. The papers relate to the existence, asymptotic, and oscillatory properties of the solutions; stability theory; numerical approximations; and applications to real world phenomena using deterministic and stochastic discrete and continuous dynamical systems.

  19. Asymptotic problems for stochastic partial differential equations

    Science.gov (United States)

    Salins, Michael

    Stochastic partial differential equations (SPDEs) can be used to model systems in a wide variety of fields including physics, chemistry, and engineering. The main SPDEs of interest in this dissertation are the semilinear stochastic wave equations which model the movement of a material with constant mass density that is exposed to both determinstic and random forcing. Cerrai and Freidlin have shown that on fixed time intervals, as the mass density of the material approaches zero, the solutions of the stochastic wave equation converge uniformly to the solutions of a stochastic heat equation, in probability. This is called the Smoluchowski-Kramers approximation. In Chapter 2, we investigate some of the multi-scale behaviors that these wave equations exhibit. In particular, we show that the Freidlin-Wentzell exit place and exit time asymptotics for the stochastic wave equation in the small noise regime can be approximated by the exit place and exit time asymptotics for the stochastic heat equation. We prove that the exit time and exit place asymptotics are characterized by quantities called quasipotentials and we prove that the quasipotentials converge. We then investigate the special case where the equation has a gradient structure and show that we can explicitly solve for the quasipotentials, and that the quasipotentials for the heat equation and wave equation are equal. In Chapter 3, we study the Smoluchowski-Kramers approximation in the case where the material is electrically charged and exposed to a magnetic field. Interestingly, if the system is frictionless, then the Smoluchowski-Kramers approximation does not hold. We prove that the Smoluchowski-Kramers approximation is valid for systems exposed to both a magnetic field and friction. Notably, we prove that the solutions to the second-order equations converge to the solutions of the first-order equation in an Lp sense. This strengthens previous results where convergence was proved in probability.

  20. On a quaternionic generalisation of the Riccati differential equation

    OpenAIRE

    Kravchenko, Viktor; Kravchenko, Vladislav; Williams, Benjamin

    2001-01-01

    A quaternionic partial differential equation is shown to be a generalisation of the Riccati ordinary differential equation and its relationship with the Schrodinger equation is established. Various approaches to the problem of finding particular solutions are explored, and the generalisations of two theorems of Euler on the Riccati differential equation, which correspond to the quaternionic equation, are given.

  1. Differential-algebraic solutions of the heat equation

    OpenAIRE

    Buchstaber, Victor M.; Netay, Elena Yu.

    2014-01-01

    In this work we introduce the notion of differential-algebraic ansatz for the heat equation and explicitly construct heat equation and Burgers equation solutions given a solution of a homogeneous non-linear ordinary differential equation of a special form. The ansatz for such solutions is called the $n$-ansatz, where $n+1$ is the order of the differential equation.

  2. Difference and differential equations with applications in queueing theory

    CERN Document Server

    Haghighi, Aliakbar Montazer

    2013-01-01

      A Useful Guide to the Interrelated Areas of Differential Equations, Difference Equations, and Queueing Models Difference and Differential Equations with Applications in Queueing Theory presents the unique connections between the methods and applications of differential equations, difference equations, and Markovian queues. Featuring a comprehensive collection of

  3. Third order differential equations with delay

    Directory of Open Access Journals (Sweden)

    Petr Liška

    2015-05-01

    Full Text Available In this paper, we study the oscillation and asymptotic properties of solutions of certain nonlinear third order differential equations with delay. In particular, we extend results of I. Mojsej (Nonlinear Analysis 68, 2008 and we improve conditions on the property B of N. Parhi and S. Padhi (Indian J. Pure Appl. Math., 33, 2002.

  4. Waveform relaxation methods for implicit differential equations

    NARCIS (Netherlands)

    P.J. van der Houwen; W.A. van der Veen

    1996-01-01

    textabstractWe apply a Runge-Kutta-based waveform relaxation method to initial-value problems for implicit differential equations. In the implementation of such methods, a sequence of nonlinear systems has to be solved iteratively in each step of the integration process. The size of these systems

  5. Singular Linear Differential Equations in Two Variables

    NARCIS (Netherlands)

    Braaksma, B.L.J.; Put, M. van der

    2008-01-01

    The formal and analytic classification of integrable singular linear differential equations has been studied among others by R. Gerard and Y. Sibuya. We provide a simple proof of their main result, namely: For certain irregular systems in two variables there is no Stokes phenomenon, i.e. there is no

  6. Parallel Algorithm Solves Coupled Differential Equations

    Science.gov (United States)

    Hayashi, A.

    1987-01-01

    Numerical methods adapted to concurrent processing. Algorithm solves set of coupled partial differential equations by numerical integration. Adapted to run on hypercube computer, algorithm separates problem into smaller problems solved concurrently. Increase in computing speed with concurrent processing over that achievable with conventional sequential processing appreciable, especially for large problems.

  7. Efficient Estimating Functions for Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Jakobsen, Nina Munkholt

    The overall topic of this thesis is approximate martingale estimating function-based estimationfor solutions of stochastic differential equations, sampled at high frequency. Focuslies on the asymptotic properties of the estimators. The first part of the thesis deals with diffusions observed over...

  8. Stochastic differential equations used to model conjugation

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber; Christiansen, Lasse Engbo

    Stochastic differential equations (SDEs) are used to model horizontal transfer of antibiotic resis- tance by conjugation. The model describes the concentration of donor, recipient, transconjugants and substrate. The strength of the SDE model over the traditional ODE models is that the noise can...

  9. Differential functional von Foerster equations with renewal

    Directory of Open Access Journals (Sweden)

    H.Leszczyński

    2008-06-01

    Full Text Available Natural iterative methods converge to the exact solution of a differential-functional von Foerster-type equation which describes a single population dependent on its past time and state densities as well as on its total size. On the lateral boundary we impose a renewal condition.

  10. Random Fuzzy Differential Equations with Impulses

    Directory of Open Access Journals (Sweden)

    Ho Vu

    2017-01-01

    Full Text Available We consider the random fuzzy differential equations (RFDEs with impulses. Using Picard method of successive approximations, we shall prove the existence and uniqueness of solutions to RFDEs with impulses under suitable conditions. Some of the properties of solution of RFDEs with impulses are studied. Finally, an example is presented to illustrate the results.

  11. Qualitative properties of functional differential equation

    Directory of Open Access Journals (Sweden)

    Diana Otrocol

    2014-10-01

    Full Text Available The aim of this paper is to discuss some basic problems (existence and uniqueness, data dependence of the fixed point theory for a functional differential equation with an abstract Volterra operator. In the end an application is given.

  12. Extremal solutions of measure differential equations

    Czech Academy of Sciences Publication Activity Database

    Monteiro, Giselle Antunes; Slavík, A.

    2016-01-01

    Roč. 444, č. 1 (2016), s. 568-597 ISSN 0022-247X Institutional support: RVO:67985840 Keywords : measure differential equations * extremal solution * lower solution Subject RIV: BA - General Mathematics Impact factor: 1.064, year: 2016 http://www.sciencedirect.com/science/article/pii/S0022247X16302724

  13. International Conference on Differential and Difference Equations with Applications

    CERN Document Server

    Došlá, Zuzana; Došlý, Ondrej; Kloeden, Peter

    2016-01-01

    Aimed at the community of mathematicians working on ordinary and partial differential equations, difference equations, and functional equations, this book contains selected papers based on the presentations at the International Conference on Differential and Difference Equations and Applications (ICDDEA) 2015, dedicated to the memory of Professor Georg Sell. Contributions include new trends in the field of differential and difference equations, applications of differential and difference equations, as well as high-level survey results. The main aim of this recurring conference series is to promote, encourage, cooperate, and bring together researchers in the fields of differential and difference equations. All areas of differential and difference equations are represented, with special emphasis on applications.

  14. Ordinary differential equations principles and applications

    CERN Document Server

    Nandakumaran, A K; George, Raju K

    2017-01-01

    Written in a clear, logical and concise manner, this comprehensive resource allows students to quickly understand the key principles, techniques and applications of ordinary differential equations. Important topics including first and second order linear equations, initial value problems and qualitative theory are presented in separate chapters. The concepts of two point boundary value problems, physical models and first order partial differential equations are discussed in detail. The text uses tools of calculus and real analysis to get solutions in explicit form. While discussing first order linear systems, linear algebra techniques are used. The real-life applications are interspersed throughout the book to invoke reader's interest. The methods and tricks to solve numerous mathematical problems with sufficient derivations and explanation are provided. The proofs of theorems are explained for the benefit of the readers.

  15. A course in ordinary differential equations

    CERN Document Server

    Swift, Randall J

    2014-01-01

    Praise for the First Edition:"A Course in Ordinary Differential Equations deserves to be on the MAA's Basic Library List … the book with its layout, is very student friendly-it is easy to read and understand; every chapter and explanations flow smoothly and coherently … the reviewer would recommend this book highly for undergraduate introductory differential equation courses." -Srabasti Dutta, College of Saint Elizabeth, MAA Online, July 2008"An important feature is that the exposition is richly accompanied by computer algebra code (equally distributed between MATLAB, Mathematica, and Maple). The major part of the book is devoted to classical theory (both for systems and higher order equations). The necessary material from linear algebra is also covered. More advanced topics include numerical methods, stability of equilibria, bifurcations, Laplace transforms, and the power series method."-EMS Newsletter, June 2007"This is a delightful textbook for a standard one-semester undergraduate course in ordinary d...

  16. Exact solutions to operator differential equations

    International Nuclear Information System (INIS)

    Bender, C.M.

    1992-01-01

    In this talk we consider the Heisenberg equations of motion q = -i(q, H), p = -i(p, H), for the quantum-mechanical Hamiltonian H(p, q) having one degree of freedom. It is a commonly held belief that such operator differential equations are intractable. However, a technique is presented here that allows one to obtain exact, closed-form solutions for huge classes of Hamiltonians. This technique, which is a generalization of the classical action-angle variable methods, allows us to solve, albeit formally and implicitly, the operator differential equations of two anharmonic oscillators whose Hamiltonians are H = p 2 /2 + q 4 /4 and H = p 4 /4 + q 4 /4

  17. Stochastic differential equations and a biological system

    DEFF Research Database (Denmark)

    Wang, Chunyan

    1994-01-01

    The purpose of this Ph.D. study is to explore the property of a growth process. The study includes solving and simulating of the growth process which is described in terms of stochastic differential equations. The identification of the growth and variability parameters of the process based...... on experimental data is considered. As an example, the growth of bacteria Pseudomonas fluorescens is taken. Due to the specific features of stochastic differential equations, namely that their solutions do not exist in the general sense, two new integrals - the Ito integral and the Stratonovich integral - have...... description. In order to identify the parameters, a Maximum likelihood estimation method is used together with a simplified truncated second order filter. Because of the continuity feature of the predictor equation, two numerical integration methods, called the Odeint and the Discretization method...

  18. Ordinary differential equations a graduate text

    CERN Document Server

    Bhamra, K S

    2015-01-01

    ORDINARY DIFFERENTIAL EQUATIONS: A Graduate Text presents a systematic and comprehensive introduction to ODEs for graduate and postgraduate students. The systematic organized text on differential inequalities, Gronwall's inequality, Nagumo's theorems, Osgood's criteria and applications of different equations of first order is dealt with in a greater depth. The book discusses qualitative and quantitative aspects of the Strum - Liouville problems, Green's function, integral equations, Laplace transform and is supported by a number of worked-out examples in each lesson to make the concepts clear. A lot of stress on stability theory is laid down, especially on Lyapunov and Poincare stability theory. A numerous figures in various lessons (in particular lessons dealing with stability theory) have been added to clarify the key concepts in DE theory. Nonlinear oscillation in conservative systems and Hamiltonian systems highlights basic nature of the systems considered. Perturbation techniques lesson deals in fairly d...

  19. Differential constraints and exact solutions of nonlinear diffusion equations

    International Nuclear Information System (INIS)

    Kaptsov, Oleg V; Verevkin, Igor V

    2003-01-01

    The differential constraints are applied to obtain explicit solutions of nonlinear diffusion equations. Certain linear determining equations with parameters are used to find such differential constraints. They generalize the determining equations used in the search for classical Lie symmetries

  20. Solution of fractional differential equations by using differential transform method

    International Nuclear Information System (INIS)

    Arikoglu, Aytac; Ozkol, Ibrahim

    2007-01-01

    In this study, we implement a well known transformation technique, Differential Transform Method (DTM), to the area of fractional differential equations. Theorems that never existed before are introduced with their proofs. Also numerical examples are carried out for various types of problems, including the Bagley-Torvik, Ricatti and composite fractional oscillation equations for the application of the method. The results obtained are in good agreement with the existing ones in open literature and it is shown that the technique introduced here is robust, accurate and easy to apply

  1. Solution of fractional differential equations by using differential transform method

    Energy Technology Data Exchange (ETDEWEB)

    Arikoglu, Aytac [Istanbul Technical University, Faculty of Aeronautics and Astronautics, Department of Aeronautical Engineering, Maslak, TR-34469 Istanbul (Turkey); Ozkol, Ibrahim [Istanbul Technical University, Faculty of Aeronautics and Astronautics, Department of Aeronautical Engineering, Maslak, TR-34469 Istanbul (Turkey)]. E-mail: ozkol@itu.edu.tr

    2007-12-15

    In this study, we implement a well known transformation technique, Differential Transform Method (DTM), to the area of fractional differential equations. Theorems that never existed before are introduced with their proofs. Also numerical examples are carried out for various types of problems, including the Bagley-Torvik, Ricatti and composite fractional oscillation equations for the application of the method. The results obtained are in good agreement with the existing ones in open literature and it is shown that the technique introduced here is robust, accurate and easy to apply.

  2. Functional analysis in the study of differential and integral equations

    International Nuclear Information System (INIS)

    Sell, G.R.

    1976-01-01

    This paper illustrates the use of functional analysis in the study of differential equations. Our particular starting point, the theory of flows or dynamical systems, originated with the work of H. Poincare, who is the founder of the qualitative theory of ordinary differential equations. In the qualitative theory one tries to describe the behaviour of a solution, or a collection of solutions, without ''solving'' the differential equation. As a starting point one assumes the existence, and sometimes the uniqueness, of solutions and then one tries to describe the asymptotic behaviour, as time t→+infinity, of these solutions. We compare the notion of a flow with that of a C 0 -group of bounded linear operators on a Banach space. We shall show how the concept C 0 -group, or more generally a C 0 -semigroup, can be used to study the behaviour of solutions of certain differential and integral equations. Our main objective is to show how the concept of a C 0 -group and especially the notion of weak-compactness can be used to prove the existence of an invariant measure for a flow on a compact Hausdorff space. Applications to the theory of ordinary differential equations are included. (author)

  3. Introduction to numerical methods for time dependent differential equations

    CERN Document Server

    Kreiss, Heinz-Otto

    2014-01-01

    Introduces both the fundamentals of time dependent differential equations and their numerical solutions Introduction to Numerical Methods for Time Dependent Differential Equations delves into the underlying mathematical theory needed to solve time dependent differential equations numerically. Written as a self-contained introduction, the book is divided into two parts to emphasize both ordinary differential equations (ODEs) and partial differential equations (PDEs). Beginning with ODEs and their approximations, the authors provide a crucial presentation of fundamental notions, such as the t

  4. A textbook on ordinary differential equations

    CERN Document Server

    Ahmad, Shair

    2014-01-01

    The book is a primer of the theory of Ordinary Differential Equations. Each chapter is completed by a broad set of exercises; the reader will also find a set of solutions of selected exercises. The book contains many interesting examples as well (like the equations for the electric circuits, the pendium equation, the logistic equation, the Lotka-Volterra system, and many other) which introduce the reader to some interesting aspects of the theory and its applications. The work is mainly addressed to students of Mathematics, Physics, Engineering, Statistics, Computer Sciences, with  knowledge of Calculus and Linear Algebra, and contains more advanced topics for further developments, such as Laplace transform; Stability theory and existence of solutions to Boundary Value problems. The authors are preparing a complete solutions manual, containing solutions to all the exercises published in the book. The manual will be available Summer 2014. Instructors who wish to adopt the book may request the manual by writing...

  5. Modelling conjugation with stochastic differential equations

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber; Christiansen, Lasse Engbo; Hasman, Henrik

    2010-01-01

    Enterococcus faecium strains in a rich exhaustible media. The model contains a new expression for a substrate dependent conjugation rate. A maximum likelihood based method is used to estimate the model parameters. Different models including different noise structure for the system and observations are compared......Conjugation is an important mechanism involved in the transfer of resistance between bacteria. In this article a stochastic differential equation based model consisting of a continuous time state equation and a discrete time measurement equation is introduced to model growth and conjugation of two...... using a likelihood-ratio test and Akaike's information criterion. Experiments indicating conjugation on the agar plates selecting for transconjugants motivates the introduction of an extended model, for which conjugation on the agar plate is described in the measurement equation. This model is compared...

  6. Differential equation analysis in biomedical science and engineering ordinary differential equation applications with R

    CERN Document Server

    Schiesser, William E

    2014-01-01

    Features a solid foundation of mathematical and computational tools to formulate and solve real-world ODE problems across various fields With a step-by-step approach to solving ordinary differential equations (ODEs), Differential Equation Analysis in Biomedical Science and Engineering: Ordinary Differential Equation Applications with R successfully applies computational techniques for solving real-worldODE problems that are found in a variety of fields, including chemistry, physics, biology,and physiology. The book provides readers with the necessary knowledge to reproduce andextend the comp

  7. Differential equation analysis in biomedical science and engineering partial differential equation applications with R

    CERN Document Server

    Schiesser, William E

    2014-01-01

    Features a solid foundation of mathematical and computational tools to formulate and solve real-world PDE problems across various fields With a step-by-step approach to solving partial differential equations (PDEs), Differential Equation Analysis in Biomedical Science and Engineering: Partial Differential Equation Applications with R successfully applies computational techniques for solving real-world PDE problems that are found in a variety of fields, including chemistry, physics, biology, and physiology. The book provides readers with the necessary knowledge to reproduce and extend the com

  8. Lie Group Classifications and Non-differentiable Solutions for Time-Fractional Burgers Equation

    International Nuclear Information System (INIS)

    Wu Guocheng

    2011-01-01

    Lie group method provides an efficient tool to solve nonlinear partial differential equations. This paper suggests Lie group method for fractional partial differential equations. A time-fractional Burgers equation is used as an example to illustrate the effectiveness of the Lie group method and some classes of exact solutions are obtained. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  9. Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations

    DEFF Research Database (Denmark)

    Tornøe, Christoffer Wenzel; Overgaard, Rune Viig; Agerso, H.

    2005-01-01

    of noise: a measurement and a system noise term. The measurement noise represents uncorrelated error due to, for example, assay error while the system noise accounts for structural misspecifications, approximations of the dynamical model, and true random physiological fluctuations. Since the system noise...... degarelix. Conclusions. The EKF-based algorithm was successfully implemented in NONMEM for parameter estimation in population PK/PD models described by systems of SDEs. The example indicated that it was possible to pinpoint structural model deficiencies, and that valuable information may be obtained......Purpose. The objective of the present analysis was to explore the use of stochastic differential equations (SDEs) in population pharmacokinetic/pharmacodynamic (PK/PD) modeling. Methods. The intra-individual variability in nonlinear mixed-effects models based on SDEs is decomposed into two types...

  10. High Weak Order Methods for Stochastic Differential Equations Based on Modified Equations

    KAUST Repository

    Abdulle, Assyr

    2012-01-01

    © 2012 Society for Industrial and Applied Mathematics. Inspired by recent advances in the theory of modified differential equations, we propose a new methodology for constructing numerical integrators with high weak order for the time integration of stochastic differential equations. This approach is illustrated with the constructions of new methods of weak order two, in particular, semi-implicit integrators well suited for stiff (meansquare stable) stochastic problems, and implicit integrators that exactly conserve all quadratic first integrals of a stochastic dynamical system. Numerical examples confirm the theoretical results and show the versatility of our methodology.

  11. Partial differential equations methods, applications and theories

    CERN Document Server

    Hattori, Harumi

    2013-01-01

    This volume is an introductory level textbook for partial differential equations (PDE's) and suitable for a one-semester undergraduate level or two-semester graduate level course in PDE's or applied mathematics. Chapters One to Five are organized according to the equations and the basic PDE's are introduced in an easy to understand manner. They include the first-order equations and the three fundamental second-order equations, i.e. the heat, wave and Laplace equations. Through these equations we learn the types of problems, how we pose the problems, and the methods of solutions such as the separation of variables and the method of characteristics. The modeling aspects are explained as well. The methods introduced in earlier chapters are developed further in Chapters Six to Twelve. They include the Fourier series, the Fourier and the Laplace transforms, and the Green's functions. The equations in higher dimensions are also discussed in detail. This volume is application-oriented and rich in examples. Going thr...

  12. Stochastic differential equations as a tool to regularize the parameter estimation problem for continuous time dynamical systems given discrete time measurements.

    Science.gov (United States)

    Leander, Jacob; Lundh, Torbjörn; Jirstrand, Mats

    2014-05-01

    In this paper we consider the problem of estimating parameters in ordinary differential equations given discrete time experimental data. The impact of going from an ordinary to a stochastic differential equation setting is investigated as a tool to overcome the problem of local minima in the objective function. Using two different models, it is demonstrated that by allowing noise in the underlying model itself, the objective functions to be minimized in the parameter estimation procedures are regularized in the sense that the number of local minima is reduced and better convergence is achieved. The advantage of using stochastic differential equations is that the actual states in the model are predicted from data and this will allow the prediction to stay close to data even when the parameters in the model is incorrect. The extended Kalman filter is used as a state estimator and sensitivity equations are provided to give an accurate calculation of the gradient of the objective function. The method is illustrated using in silico data from the FitzHugh-Nagumo model for excitable media and the Lotka-Volterra predator-prey system. The proposed method performs well on the models considered, and is able to regularize the objective function in both models. This leads to parameter estimation problems with fewer local minima which can be solved by efficient gradient-based methods. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Five-dimensional Monopole Equation with Hedge-Hog Ansatz and Abel's Differential Equation

    OpenAIRE

    Kihara, Hironobu

    2008-01-01

    We review the generalized monopole in the five-dimensional Euclidean space. A numerical solution with the Hedge-Hog ansatz is studied. The Bogomol'nyi equation becomes a second order autonomous non-linear differential equation. The equation can be translated into the Abel's differential equation of the second kind and is an algebraic differential equation.

  14. A Priori Regularity of Parabolic Partial Differential Equations

    KAUST Repository

    Berkemeier, Francisco

    2018-01-01

    In this thesis, we consider parabolic partial differential equations such as the heat equation, the Fokker-Planck equation, and the porous media equation. Our aim is to develop methods that provide a priori estimates for solutions with singular

  15. The interplay between differential geometry and differential equations

    CERN Document Server

    Lychagin, V V

    1995-01-01

    This work applies symplectic methods and discusses quantization problems to emphasize the advantage of an algebraic geometry approach to nonlinear differential equations. One common feature in most of the presentations in this book is the systematic use of the geometry of jet spaces.

  16. A partial differential equation for pseudocontact shift.

    Science.gov (United States)

    Charnock, G T P; Kuprov, Ilya

    2014-10-07

    It is demonstrated that pseudocontact shift (PCS), viewed as a scalar or a tensor field in three dimensions, obeys an elliptic partial differential equation with a source term that depends on the Hessian of the unpaired electron probability density. The equation enables straightforward PCS prediction and analysis in systems with delocalized unpaired electrons, particularly for the nuclei located in their immediate vicinity. It is also shown that the probability density of the unpaired electron may be extracted, using a regularization procedure, from PCS data.

  17. Causal interpretation of stochastic differential equations

    DEFF Research Database (Denmark)

    Sokol, Alexander; Hansen, Niels Richard

    2014-01-01

    We give a causal interpretation of stochastic differential equations (SDEs) by defining the postintervention SDE resulting from an intervention in an SDE. We show that under Lipschitz conditions, the solution to the postintervention SDE is equal to a uniform limit in probability of postintervention...... structural equation models based on the Euler scheme of the original SDE, thus relating our definition to mainstream causal concepts. We prove that when the driving noise in the SDE is a Lévy process, the postintervention distribution is identifiable from the generator of the SDE....

  18. Partial differential equations and their applications

    International Nuclear Information System (INIS)

    Gauthier-Villars

    1998-01-01

    This book is dedicated to the French mathematician J.L.Lions. It represents a compilation of articles from about 80 authors. The topics treated are diverse but the more or less commune matter is the study of the characteristics of some partial differential equations. Stability, optimal approximation, numerical resolution, particular applications are among the subjects reviewed. An article deals with the MHD stability of fusion plasmas in tokamaks, another presents the scientific and technical challenges of nuclear energy in France. The latter that contains no equations can be considered as an enjoyable break in a sea of about 40 mathematical articles. (A.C.)

  19. ERC Workshop on Geometric Partial Differential Equations

    CERN Document Server

    Novaga, Matteo; Valdinoci, Enrico

    2013-01-01

    This book is the outcome of a conference held at the Centro De Giorgi of the Scuola Normale of Pisa in September 2012. The aim of the conference was to discuss recent results on nonlinear partial differential equations, and more specifically geometric evolutions and reaction-diffusion equations. Particular attention was paid to self-similar solutions, such as solitons and travelling waves, asymptotic behaviour, formation of singularities and qualitative properties of solutions. These problems arise in many models from Physics, Biology, Image Processing and Applied Mathematics in general, and have attracted a lot of attention in recent years.

  20. Bifurcation in autonomous and nonautonomous differential equations with discontinuities

    CERN Document Server

    Akhmet, Marat

    2017-01-01

    This book is devoted to bifurcation theory for autonomous and nonautonomous differential equations with discontinuities of different types. That is, those with jumps present either in the right-hand-side or in trajectories or in the arguments of solutions of equations. The results obtained in this book can be applied to various fields such as neural networks, brain dynamics, mechanical systems, weather phenomena, population dynamics, etc. Without any doubt, bifurcation theory should be further developed to different types of differential equations. In this sense, the present book will be a leading one in this field. The reader will benefit from the recent results of the theory and will learn in the very concrete way how to apply this theory to differential equations with various types of discontinuity. Moreover, the reader will learn new ways to analyze nonautonomous bifurcation scenarios in these equations. The book will be of a big interest both for beginners and experts in the field. For the former group o...

  1. On the Inclusion of Difference Equation Problems and Z Transform Methods in Sophomore Differential Equation Classes

    Science.gov (United States)

    Savoye, Philippe

    2009-01-01

    In recent years, I started covering difference equations and z transform methods in my introductory differential equations course. This allowed my students to extend the "classical" methods for (ordinary differential equation) ODE's to discrete time problems arising in many applications.

  2. OSCILLATION CRITERIA FOR A FOURTH ORDER SUBLINEAR DYNAMIC EQUATION ON TIME SCALE

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Some new criteria for the oscillation of a fourth order sublinear and/or linear dynamic equation on time scale are established. Our results are new for the corresponding fourth order differential equations as well as difference equations.

  3. Parameter estimation in stochastic differential equations

    CERN Document Server

    Bishwal, Jaya P N

    2008-01-01

    Parameter estimation in stochastic differential equations and stochastic partial differential equations is the science, art and technology of modelling complex phenomena and making beautiful decisions. The subject has attracted researchers from several areas of mathematics and other related fields like economics and finance. This volume presents the estimation of the unknown parameters in the corresponding continuous models based on continuous and discrete observations and examines extensively maximum likelihood, minimum contrast and Bayesian methods. Useful because of the current availability of high frequency data is the study of refined asymptotic properties of several estimators when the observation time length is large and the observation time interval is small. Also space time white noise driven models, useful for spatial data, and more sophisticated non-Markovian and non-semimartingale models like fractional diffusions that model the long memory phenomena are examined in this volume.

  4. Hamiltonian partial differential equations and applications

    CERN Document Server

    Nicholls, David; Sulem, Catherine

    2015-01-01

    This book is a unique selection of work by world-class experts exploring the latest developments in Hamiltonian partial differential equations and their applications. Topics covered within are representative of the field’s wide scope, including KAM and normal form theories, perturbation and variational methods, integrable systems, stability of nonlinear solutions as well as applications to cosmology, fluid mechanics and water waves. The volume contains both surveys and original research papers and gives a concise overview of the above topics, with results ranging from mathematical modeling to rigorous analysis and numerical simulation. It will be of particular interest to graduate students as well as researchers in mathematics and physics, who wish to learn more about the powerful and elegant analytical techniques for Hamiltonian partial differential equations.

  5. Teaching Modeling with Partial Differential Equations: Several Successful Approaches

    Science.gov (United States)

    Myers, Joseph; Trubatch, David; Winkel, Brian

    2008-01-01

    We discuss the introduction and teaching of partial differential equations (heat and wave equations) via modeling physical phenomena, using a new approach that encompasses constructing difference equations and implementing these in a spreadsheet, numerically solving the partial differential equations using the numerical differential equation…

  6. Linear measure functional differential equations with infinite delay

    OpenAIRE

    Monteiro, G. (Giselle Antunes); Slavík, A.

    2014-01-01

    We use the theory of generalized linear ordinary differential equations in Banach spaces to study linear measure functional differential equations with infinite delay. We obtain new results concerning the existence, uniqueness, and continuous dependence of solutions. Even for equations with a finite delay, our results are stronger than the existing ones. Finally, we present an application to functional differential equations with impulses.

  7. Ambit processes and stochastic partial differential equations

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole; Benth, Fred Espen; Veraart, Almut

    Ambit processes are general stochastic processes based on stochastic integrals with respect to Lévy bases. Due to their flexible structure, they have great potential for providing realistic models for various applications such as in turbulence and finance. This papers studies the connection betwe...... ambit processes and solutions to stochastic partial differential equations. We investigate this relationship from two angles: from the Walsh theory of martingale measures and from the viewpoint of the Lévy noise analysis....

  8. On a representation of linear differential equations

    Czech Academy of Sciences Publication Activity Database

    Neuman, František

    2010-01-01

    Roč. 52, 1-2 (2010), s. 355-360 ISSN 0895-7177 Grant - others:GA ČR(CZ) GA201/08/0469 Institutional research plan: CEZ:AV0Z10190503 Keywords : Brandt and Ehresmann groupoinds * transformations * canonical forms * linear differential equations Subject RIV: BA - General Mathematics Impact factor: 1.066, year: 2010 http://www.sciencedirect.com/science/article/pii/S0895717710001184

  9. Partial Differential Equations and Solitary Waves Theory

    CERN Document Server

    Wazwaz, Abdul-Majid

    2009-01-01

    "Partial Differential Equations and Solitary Waves Theory" is a self-contained book divided into two parts: Part I is a coherent survey bringing together newly developed methods for solving PDEs. While some traditional techniques are presented, this part does not require thorough understanding of abstract theories or compact concepts. Well-selected worked examples and exercises shall guide the reader through the text. Part II provides an extensive exposition of the solitary waves theory. This part handles nonlinear evolution equations by methods such as Hirota’s bilinear method or the tanh-coth method. A self-contained treatment is presented to discuss complete integrability of a wide class of nonlinear equations. This part presents in an accessible manner a systematic presentation of solitons, multi-soliton solutions, kinks, peakons, cuspons, and compactons. While the whole book can be used as a text for advanced undergraduate and graduate students in applied mathematics, physics and engineering, Part II w...

  10. Synchronization with propagation - The functional differential equations

    Science.gov (United States)

    Rǎsvan, Vladimir

    2016-06-01

    The structure represented by one or several oscillators couple to a one-dimensional transmission environment (e.g. a vibrating string in the mechanical case or a lossless transmission line in the electrical case) turned to be attractive for the research in the field of complex structures and/or complex behavior. This is due to the fact that such a structure represents some generalization of various interconnection modes with lumped parameters for the oscillators. On the other hand the lossless and distortionless propagation along transmission lines has generated several research in electrical, thermal, hydro and control engineering leading to the association of some functional differential equations to the basic initial boundary value problems. The present research is performed at the crossroad of the aforementioned directions. We shall associate to the starting models some functional differential equations - in most cases of neutral type - and make use of the general theorems for existence and stability of forced oscillations for functional differential equations. The challenges introduced by the analyzed problems for the general theory are emphasized, together with the implication of the results for various applications.

  11. A textbook on ordinary differential equations

    CERN Document Server

    Ahmad, Shair

    2015-01-01

    This book offers readers a primer on the theory and applications of Ordinary Differential Equations. The style used is simple, yet thorough and rigorous. Each chapter ends with a broad set of exercises that range from the routine to the more challenging and thought-provoking. Solutions to selected exercises can be found at the end of the book. The book contains many interesting examples on topics such as electric circuits, the pendulum equation, the logistic equation, the Lotka-Volterra system, the Laplace Transform, etc., which introduce students to a number of interesting aspects of the theory and applications. The work is mainly intended for students of Mathematics, Physics, Engineering, Computer Science and other areas of the natural and social sciences that use ordinary differential equations, and who have a firm grasp of Calculus and a minimal understanding of the basic concepts used in Linear Algebra. It also studies a few more advanced topics, such as Stability Theory and Boundary Value Problems, whic...

  12. Solving Partial Differential Equations Using a New Differential Evolution Algorithm

    Directory of Open Access Journals (Sweden)

    Natee Panagant

    2014-01-01

    Full Text Available This paper proposes an alternative meshless approach to solve partial differential equations (PDEs. With a global approximate function being defined, a partial differential equation problem is converted into an optimisation problem with equality constraints from PDE boundary conditions. An evolutionary algorithm (EA is employed to search for the optimum solution. For this approach, the most difficult task is the low convergence rate of EA which consequently results in poor PDE solution approximation. However, its attractiveness remains due to the nature of a soft computing technique in EA. The algorithm can be used to tackle almost any kind of optimisation problem with simple evolutionary operation, which means it is mathematically simpler to use. A new efficient differential evolution (DE is presented and used to solve a number of the partial differential equations. The results obtained are illustrated and compared with exact solutions. It is shown that the proposed method has a potential to be a future meshless tool provided that the search performance of EA is greatly enhanced.

  13. Dynamical equations for the optical potential

    International Nuclear Information System (INIS)

    Kowalski, K.L.

    1981-01-01

    Dynamical equations for the optical potential are obtained starting from a wide class of N-particle equations. This is done with arbitrary multiparticle interactions to allow adaptation to few-body models of nuclear reactions and including all effects of nucleon identity. Earlier forms of the optical potential equations are obtained as special cases. Particular emphasis is placed upon obtaining dynamical equations for the optical potential from the equations of Kouri, Levin, and Tobocman including all effects of particle identity

  14. Dichotomies for generalized ordinary differential equations and applications

    Science.gov (United States)

    Bonotto, E. M.; Federson, M.; Santos, F. L.

    2018-03-01

    In this work we establish the theory of dichotomies for generalized ordinary differential equations, introducing the concepts of dichotomies for these equations, investigating their properties and proposing new results. We establish conditions for the existence of exponential dichotomies and bounded solutions. Using the correspondences between generalized ordinary differential equations and other equations, we translate our results to measure differential equations and impulsive differential equations. The fact that we work in the framework of generalized ordinary differential equations allows us to manage functions with many discontinuities and of unbounded variation.

  15. Random ordinary differential equations and their numerical solution

    CERN Document Server

    Han, Xiaoying

    2017-01-01

    This book is intended to make recent results on the derivation of higher order numerical schemes for random ordinary differential equations (RODEs) available to a broader readership, and to familiarize readers with RODEs themselves as well as the closely associated theory of random dynamical systems. In addition, it demonstrates how RODEs are being used in the biological sciences, where non-Gaussian and bounded noise are often more realistic than the Gaussian white noise in stochastic differential equations (SODEs).   RODEs are used in many important applications and play a fundamental role in the theory of random dynamical systems.  They can be analyzed pathwise with deterministic calculus, but require further treatment beyond that of classical ODE theory due to the lack of smoothness in their time variable. Although classical numerical schemes for ODEs can be used pathwise for RODEs, they rarely attain their traditional order since the solutions of RODEs do not have sufficient smoothness to have Taylor ...

  16. Network Reconstruction From High-Dimensional Ordinary Differential Equations.

    Science.gov (United States)

    Chen, Shizhe; Shojaie, Ali; Witten, Daniela M

    2017-01-01

    We consider the task of learning a dynamical system from high-dimensional time-course data. For instance, we might wish to estimate a gene regulatory network from gene expression data measured at discrete time points. We model the dynamical system nonparametrically as a system of additive ordinary differential equations. Most existing methods for parameter estimation in ordinary differential equations estimate the derivatives from noisy observations. This is known to be challenging and inefficient. We propose a novel approach that does not involve derivative estimation. We show that the proposed method can consistently recover the true network structure even in high dimensions, and we demonstrate empirical improvement over competing approaches. Supplementary materials for this article are available online.

  17. Stochastic fractional differential equations: Modeling, method and analysis

    International Nuclear Information System (INIS)

    Pedjeu, Jean-C.; Ladde, Gangaram S.

    2012-01-01

    By introducing a concept of dynamic process operating under multi-time scales in sciences and engineering, a mathematical model described by a system of multi-time scale stochastic differential equations is formulated. The classical Picard–Lindelöf successive approximations scheme is applied to the model validation problem, namely, existence and uniqueness of solution process. Naturally, this leads to the problem of finding closed form solutions of both linear and nonlinear multi-time scale stochastic differential equations of Itô–Doob type. Finally, to illustrate the scope of ideas and presented results, multi-time scale stochastic models for ecological and epidemiological processes in population dynamic are outlined.

  18. Differential equations with applications in cancer diseases.

    Science.gov (United States)

    Ilea, M; Turnea, M; Rotariu, M

    2013-01-01

    Mathematical modeling is a process by which a real world problem is described by a mathematical formulation. The cancer modeling is a highly challenging problem at the frontier of applied mathematics. A variety of modeling strategies have been developed, each focusing on one or more aspects of cancer. The vast majority of mathematical models in cancer diseases biology are formulated in terms of differential equations. We propose an original mathematical model with small parameter for the interactions between these two cancer cell sub-populations and the mathematical model of a vascular tumor. We work on the assumption that, the quiescent cells' nutrient consumption is long. One the equations system includes small parameter epsilon. The smallness of epsilon is relative to the size of the solution domain. MATLAB simulations obtained for transition rate from the quiescent cells' nutrient consumption is long, we show a similar asymptotic behavior for two solutions of the perturbed problem. In this system, the small parameter is an asymptotic variable, different from the independent variable. The graphical output for a mathematical model of a vascular tumor shows the differences in the evolution of the tumor populations of proliferating, quiescent and necrotic cells. The nutrient concentration decreases sharply through the viable rim and tends to a constant level in the core due to the nearly complete necrosis in this region. Many mathematical models can be quantitatively characterized by ordinary differential equations or partial differential equations. The use of MATLAB in this article illustrates the important role of informatics in research in mathematical modeling. The study of avascular tumor growth cells is an exciting and important topic in cancer research and will profit considerably from theoretical input. Interpret these results to be a permanent collaboration between math's and medical oncologists.

  19. Data-driven discovery of partial differential equations.

    Science.gov (United States)

    Rudy, Samuel H; Brunton, Steven L; Proctor, Joshua L; Kutz, J Nathan

    2017-04-01

    We propose a sparse regression method capable of discovering the governing partial differential equation(s) of a given system by time series measurements in the spatial domain. The regression framework relies on sparsity-promoting techniques to select the nonlinear and partial derivative terms of the governing equations that most accurately represent the data, bypassing a combinatorially large search through all possible candidate models. The method balances model complexity and regression accuracy by selecting a parsimonious model via Pareto analysis. Time series measurements can be made in an Eulerian framework, where the sensors are fixed spatially, or in a Lagrangian framework, where the sensors move with the dynamics. The method is computationally efficient, robust, and demonstrated to work on a variety of canonical problems spanning a number of scientific domains including Navier-Stokes, the quantum harmonic oscillator, and the diffusion equation. Moreover, the method is capable of disambiguating between potentially nonunique dynamical terms by using multiple time series taken with different initial data. Thus, for a traveling wave, the method can distinguish between a linear wave equation and the Korteweg-de Vries equation, for instance. The method provides a promising new technique for discovering governing equations and physical laws in parameterized spatiotemporal systems, where first-principles derivations are intractable.

  20. Advanced-Retarded Differential Equations in Quantum Photonic Systems

    Science.gov (United States)

    Alvarez-Rodriguez, Unai; Perez-Leija, Armando; Egusquiza, Iñigo L.; Gräfe, Markus; Sanz, Mikel; Lamata, Lucas; Szameit, Alexander; Solano, Enrique

    2017-01-01

    We propose the realization of photonic circuits whose dynamics is governed by advanced-retarded differential equations. Beyond their mathematical interest, these photonic configurations enable the implementation of quantum feedback and feedforward without requiring any intermediate measurement. We show how this protocol can be applied to implement interesting delay effects in the quantum regime, as well as in the classical limit. Our results elucidate the potential of the protocol as a promising route towards integrated quantum control systems on a chip. PMID:28230090

  1. Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations.

    Science.gov (United States)

    Tornøe, Christoffer W; Overgaard, Rune V; Agersø, Henrik; Nielsen, Henrik A; Madsen, Henrik; Jonsson, E Niclas

    2005-08-01

    The objective of the present analysis was to explore the use of stochastic differential equations (SDEs) in population pharmacokinetic/pharmacodynamic (PK/PD) modeling. The intra-individual variability in nonlinear mixed-effects models based on SDEs is decomposed into two types of noise: a measurement and a system noise term. The measurement noise represents uncorrelated error due to, for example, assay error while the system noise accounts for structural misspecifications, approximations of the dynamical model, and true random physiological fluctuations. Since the system noise accounts for model misspecifications, the SDEs provide a diagnostic tool for model appropriateness. The focus of the article is on the implementation of the Extended Kalman Filter (EKF) in NONMEM for parameter estimation in SDE models. Various applications of SDEs in population PK/PD modeling are illustrated through a systematic model development example using clinical PK data of the gonadotropin releasing hormone (GnRH) antagonist degarelix. The dynamic noise estimates were used to track variations in model parameters and systematically build an absorption model for subcutaneously administered degarelix. The EKF-based algorithm was successfully implemented in NONMEM for parameter estimation in population PK/PD models described by systems of SDEs. The example indicated that it was possible to pinpoint structural model deficiencies, and that valuable information may be obtained by tracking unexplained variations in parameters.

  2. Polygons of differential equations for finding exact solutions

    International Nuclear Information System (INIS)

    Kudryashov, Nikolai A.; Demina, Maria V.

    2007-01-01

    A method for finding exact solutions of nonlinear differential equations is presented. Our method is based on the application of polygons corresponding to nonlinear differential equations. It allows one to express exact solutions of the equation studied through solutions of another equation using properties of the basic equation itself. The ideas of power geometry are used and developed. Our approach has a pictorial interpretation, which is illustrative and effective. The method can be also applied for finding transformations between solutions of differential equations. To demonstrate the method application exact solutions of several equations are found. These equations are: the Korteveg-de Vries-Burgers equation, the generalized Kuramoto-Sivashinsky equation, the fourth-order nonlinear evolution equation, the fifth-order Korteveg-de Vries equation, the fifth-order modified Korteveg-de Vries equation and the sixth-order nonlinear evolution equation describing turbulent processes. Some new exact solutions of nonlinear evolution equations are given

  3. Reconsidering harmonic and anharmonic coherent states: Partial differential equations approach

    Energy Technology Data Exchange (ETDEWEB)

    Toutounji, Mohamad, E-mail: Mtoutounji@uaeu.ac.ae

    2015-02-15

    This article presents a new approach to dealing with time dependent quantities such as autocorrelation function of harmonic and anharmonic systems using coherent states and partial differential equations. The approach that is normally used to evaluate dynamical quantities involves formidable operator algebra. That operator algebra becomes insurmountable when employing Morse oscillator coherent states. This problem becomes even more complicated in case of Morse oscillator as it tends to exhibit divergent dynamics. This approach employs linear partial differential equations, some of which may be solved exactly and analytically, thereby avoiding the cumbersome noncommutative algebra required to manipulate coherent states of Morse oscillator. Additionally, the arising integrals while using the herein presented method feature stability and high numerical efficiency. The correctness, applicability, and utility of the above approach are tested by reproducing the partition and optical autocorrelation function of the harmonic oscillator. A closed-form expression for the equilibrium canonical partition function of the Morse oscillator is derived using its coherent states and partial differential equations. Also, a nonequilibrium autocorrelation function expression for weak electron–phonon coupling in condensed systems is derived for displaced Morse oscillator in electronic state. Finally, the utility of the method is demonstrated through further simplifying the Morse oscillator partition function or autocorrelation function expressions reported by other researchers in unevaluated form of second-order derivative exponential. Comparison with exact dynamics shows identical results.

  4. Numerical analysis of systems of ordinary and stochastic differential equations

    CERN Document Server

    Artemiev, S S

    1997-01-01

    This text deals with numerical analysis of systems of both ordinary and stochastic differential equations. It covers numerical solution problems of the Cauchy problem for stiff ordinary differential equations (ODE) systems by Rosenbrock-type methods (RTMs).

  5. On the existence of solutions for functional differential equations

    International Nuclear Information System (INIS)

    Walo Omana, R.

    1994-12-01

    The aim of the paper is to extend the Granas Topological Transversality Method used in boundary value problems for functional differential equations for first and second order, to the case of n-th order functional differential equations. 15 refs

  6. Oscillation criteria for third order delay nonlinear differential equations

    Directory of Open Access Journals (Sweden)

    E. M. Elabbasy

    2012-01-01

    via comparison with some first differential equations whose oscillatory characters are known. Our results generalize and improve some known results for oscillation of third order nonlinear differential equations. Some examples are given to illustrate the main results.

  7. Bounded solutions for fuzzy differential and integral equations

    Energy Technology Data Exchange (ETDEWEB)

    Nieto, Juan J. [Departamento de Analisis Matematico Facultad de Matematicas Universidad de Santiago de Compostela, 15782 (Spain)] e-mail: amnieto@usc.es; Rodriguez-Lopez, Rosana [Departamento de Analisis Matematico Facultad de Matematicas Universidad de Santiago de Compostela, 15782 (Spain)] e-mail: amrosana@usc.es

    2006-03-01

    We find sufficient conditions for the boundness of every solution of first-order fuzzy differential equations as well as certain fuzzy integral equations. Our results are based on several theorems concerning crisp differential and integral inequalities.

  8. Partial differential equations in several complex variables

    CERN Document Server

    Chen, So-Chin

    2001-01-01

    This book is intended both as an introductory text and as a reference book for those interested in studying several complex variables in the context of partial differential equations. In the last few decades, significant progress has been made in the fields of Cauchy-Riemann and tangential Cauchy-Riemann operators. This book gives an up-to-date account of the theories for these equations and their applications. The background material in several complex variables is developed in the first three chapters, leading to the Levi problem. The next three chapters are devoted to the solvability and regularity of the Cauchy-Riemann equations using Hilbert space techniques. The authors provide a systematic study of the Cauchy-Riemann equations and the \\bar\\partial-Neumann problem, including L^2 existence theorems on pseudoconvex domains, \\frac 12-subelliptic estimates for the \\bar\\partial-Neumann problems on strongly pseudoconvex domains, global regularity of \\bar\\partial on more general pseudoconvex domains, boundary ...

  9. Differential equations, associators, and recurrences for amplitudes

    Directory of Open Access Journals (Sweden)

    Georg Puhlfürst

    2016-01-01

    Full Text Available We provide new methods to straightforwardly obtain compact and analytic expressions for ϵ-expansions of functions appearing in both field and string theory amplitudes. An algebraic method is presented to explicitly solve for recurrence relations connecting different ϵ-orders of a power series solution in ϵ of a differential equation. This strategy generalizes the usual iteration by Picard's method. Our tools are demonstrated for generalized hypergeometric functions. Furthermore, we match the ϵ-expansion of specific generalized hypergeometric functions with the underlying Drinfeld associator with proper Lie algebra and monodromy representations. We also apply our tools for computing ϵ-expansions for solutions to generic first-order Fuchsian equations (Schlesinger system. Finally, we set up our methods to systematically get compact and explicit α′-expansions of tree-level superstring amplitudes to any order in α′.

  10. Partial differential equations with numerical methods

    CERN Document Server

    Larsson, Stig

    2003-01-01

    The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering. The main theme is the integration of the theory of linear PDEs and the numerical solution of such equations. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. As preparation, the two-point boundary value problem and the initial-value problem for ODEs are discussed in separate chapters. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. Some background on linear functional analysis and Sobolev spaces, and also on numerical linear algebra, is reviewed in two appendices.

  11. Polynomial chaos functions and stochastic differential equations

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    2006-01-01

    The Karhunen-Loeve procedure and the associated polynomial chaos expansion have been employed to solve a simple first order stochastic differential equation which is typical of transport problems. Because the equation has an analytical solution, it provides a useful test of the efficacy of polynomial chaos. We find that the convergence is very rapid in some cases but that the increased complexity associated with many random variables can lead to very long computational times. The work is illustrated by exact and approximate solutions for the mean, variance and the probability distribution itself. The usefulness of a white noise approximation is also assessed. Extensive numerical results are given which highlight the weaknesses and strengths of polynomial chaos. The general conclusion is that the method is promising but requires further detailed study by application to a practical problem in transport theory

  12. Lectures on differential equations for Feynman integrals

    International Nuclear Information System (INIS)

    Henn, Johannes M

    2015-01-01

    Over the last year significant progress was made in the understanding of the computation of Feynman integrals using differential equations (DE). These lectures give a review of these developments, while not assuming any prior knowledge of the subject. After an introduction to DE for Feynman integrals, we point out how they can be simplified using algorithms available in the mathematical literature. We discuss how this is related to a recent conjecture for a canonical form of the equations. We also discuss a complementary approach that is based on properties of the space–time loop integrands, and explain how the ideas of leading singularities and d-log representations can be used to find an optimal basis for the DE. Finally, as an application of these ideas we show how single-scale integrals can be bootstrapped using the Drinfeld associator of a DE. (topical review)

  13. Algebraic limit cycles in polynomial systems of differential equations

    International Nuclear Information System (INIS)

    Llibre, Jaume; Zhao Yulin

    2007-01-01

    Using elementary tools we construct cubic polynomial systems of differential equations with algebraic limit cycles of degrees 4, 5 and 6. We also construct a cubic polynomial system of differential equations having an algebraic homoclinic loop of degree 3. Moreover, we show that there are polynomial systems of differential equations of arbitrary degree that have algebraic limit cycles of degree 3, as well as give an example of a cubic polynomial system of differential equations with two algebraic limit cycles of degree 4

  14. Ordinary Differential Equation Models for Adoptive Immunotherapy.

    Science.gov (United States)

    Talkington, Anne; Dantoin, Claudia; Durrett, Rick

    2018-05-01

    Modified T cells that have been engineered to recognize the CD19 surface marker have recently been shown to be very successful at treating acute lymphocytic leukemias. Here, we explore four previous approaches that have used ordinary differential equations to model this type of therapy, compare their properties, and modify the models to address their deficiencies. Although the four models treat the workings of the immune system in slightly different ways, they all predict that adoptive immunotherapy can be successful to move a patient from the large tumor fixed point to an equilibrium with little or no tumor.

  15. Nonlinear elliptic partial differential equations an introduction

    CERN Document Server

    Le Dret, Hervé

    2018-01-01

    This textbook presents the essential parts of the modern theory of nonlinear partial differential equations, including the calculus of variations. After a short review of results in real and functional analysis, the author introduces the main mathematical techniques for solving both semilinear and quasilinear elliptic PDEs, and the associated boundary value problems. Key topics include infinite dimensional fixed point methods, the Galerkin method, the maximum principle, elliptic regularity, and the calculus of variations. Aimed at graduate students and researchers, this textbook contains numerous examples and exercises and provides several comments and suggestions for further study.

  16. Partial differential equation models in macroeconomics.

    Science.gov (United States)

    Achdou, Yves; Buera, Francisco J; Lasry, Jean-Michel; Lions, Pierre-Louis; Moll, Benjamin

    2014-11-13

    The purpose of this article is to get mathematicians interested in studying a number of partial differential equations (PDEs) that naturally arise in macroeconomics. These PDEs come from models designed to study some of the most important questions in economics. At the same time, they are highly interesting for mathematicians because their structure is often quite difficult. We present a number of examples of such PDEs, discuss what is known about their properties, and list some open questions for future research. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  17. Boundary value problems and partial differential equations

    CERN Document Server

    Powers, David L

    2005-01-01

    Boundary Value Problems is the leading text on boundary value problems and Fourier series. The author, David Powers, (Clarkson) has written a thorough, theoretical overview of solving boundary value problems involving partial differential equations by the methods of separation of variables. Professors and students agree that the author is a master at creating linear problems that adroitly illustrate the techniques of separation of variables used to solve science and engineering.* CD with animations and graphics of solutions, additional exercises and chapter review questions* Nearly 900 exercises ranging in difficulty* Many fully worked examples

  18. Stochastic differential equations and diffusion processes

    CERN Document Server

    Ikeda, N

    1989-01-01

    Being a systematic treatment of the modern theory of stochastic integrals and stochastic differential equations, the theory is developed within the martingale framework, which was developed by J.L. Doob and which plays an indispensable role in the modern theory of stochastic analysis.A considerable number of corrections and improvements have been made for the second edition of this classic work. In particular, major and substantial changes are in Chapter III and Chapter V where the sections treating excursions of Brownian Motion and the Malliavin Calculus have been expanded and refined. Sectio

  19. Multivalued stochastic delay differential equations and related ...

    African Journals Online (AJOL)

    We study the existence and uniqueness of a solution for the multivalued stochastic differential equation with delay (the multivalued term is of subdifferential type):. dX(t) + aφ (X(t))dt ∍ b(t,X(t), Y(t), Z(t)) dt. ⎨ +σ (t, X (t), Y (t), Z (t)) dW (t), t ∈ (s, T). X(t) = ξ (t - s), t ∈ [s - δ, s]. Specify that in this case the coefficients at time t ...

  20. Double Hopf bifurcation in delay differential equations

    Directory of Open Access Journals (Sweden)

    Redouane Qesmi

    2014-07-01

    Full Text Available The paper addresses the computation of elements of double Hopf bifurcation for retarded functional differential equations (FDEs with parameters. We present an efficient method for computing, simultaneously, the coefficients of center manifolds and normal forms, in terms of the original FDEs, associated with the double Hopf singularity up to an arbitrary order. Finally, we apply our results to a nonlinear model with periodic delay. This shows the applicability of the methodology in the study of delay models arising in either natural or technological problems.

  1. Nonlinear partial differential equations and their applications

    CERN Document Server

    Lions, Jacques Louis

    2002-01-01

    This book contains the written versions of lectures delivered since 1997 in the well-known weekly seminar on Applied Mathematics at the Collège de France in Paris, directed by Jacques-Louis Lions. It is the 14th and last of the series, due to the recent and untimely death of Professor Lions. The texts in this volume deal mostly with various aspects of the theory of nonlinear partial differential equations. They present both theoretical and applied results in many fields of growing importance such as Calculus of variations and optimal control, optimization, system theory and control, op

  2. State-dependent neutral delay equations from population dynamics.

    Science.gov (United States)

    Barbarossa, M V; Hadeler, K P; Kuttler, C

    2014-10-01

    A novel class of state-dependent delay equations is derived from the balance laws of age-structured population dynamics, assuming that birth rates and death rates, as functions of age, are piece-wise constant and that the length of the juvenile phase depends on the total adult population size. The resulting class of equations includes also neutral delay equations. All these equations are very different from the standard delay equations with state-dependent delay since the balance laws require non-linear correction factors. These equations can be written as systems for two variables consisting of an ordinary differential equation (ODE) and a generalized shift, a form suitable for numerical calculations. It is shown that the neutral equation (and the corresponding ODE--shift system) is a limiting case of a system of two standard delay equations.

  3. Using Difference Equation to Model Discrete-time Behavior in System Dynamics Modeling

    NARCIS (Netherlands)

    Hesan, R.; Ghorbani, A.; Dignum, M.V.

    2014-01-01

    In system dynamics modeling, differential equations have been used as the basic mathematical operator. Using difference equation to build system dynamics models instead of differential equation, can be insightful for studying small organizations or systems with micro behavior. In this paper we

  4. A Line-Tau Collocation Method for Partial Differential Equations ...

    African Journals Online (AJOL)

    This paper deals with the numerical solution of second order linear partial differential equations with the use of the method of lines coupled with the tau collocation method. The method of lines is used to convert the partial differential equation (PDE) to a sequence of ordinary differential equations (ODEs) which is then ...

  5. GLOBAL LINEARIZATION OF DIFFERENTIAL EQUATIONS WITH SPECIAL STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper introduces the global linearization of the differential equations with special structures.The function in the differential equation is unbounded.We prove that the differential equation with unbounded function can be topologically linearlized if it has a special structure.

  6. Solving Differential Equations in R: Package deSolve

    Science.gov (United States)

    In this paper we present the R package deSolve to solve initial value problems (IVP) written as ordinary differential equations (ODE), differential algebraic equations (DAE) of index 0 or 1 and partial differential equations (PDE), the latter solved using the method of lines appr...

  7. The existence of solutions of q-difference-differential equations.

    Science.gov (United States)

    Wang, Xin-Li; Wang, Hua; Xu, Hong-Yan

    2016-01-01

    By using the Nevanlinna theory of value distribution, we investigate the existence of solutions of some types of non-linear q-difference differential equations. In particular, we generalize the Rellich-Wittich-type theorem and Malmquist-type theorem about differential equations to the case of q-difference differential equations (system).

  8. Solving Differential Equations in R: Package deSolve

    NARCIS (Netherlands)

    Soetaert, K.E.R.; Petzoldt, T.; Setzer, R.W.

    2010-01-01

    In this paper we present the R package deSolve to solve initial value problems (IVP) written as ordinary differential equations (ODE), differential algebraic equations (DAE) of index 0 or 1 and partial differential equations (PDE), the latter solved using the method of lines approach. The

  9. Pure soliton solutions of some nonlinear partial differential equations

    International Nuclear Information System (INIS)

    Fuchssteiner, B.

    1977-01-01

    A general approach is given to obtain the system of ordinary differential equations which determines the pure soliton solutions for the class of generalized Korteweg-de Vries equations. This approach also leads to a system of ordinary differential equations for the pure soliton solutions of the sine-Gordon equation. (orig.) [de

  10. Ordinary differential equations introduction to the theory of ordinary differential equations in the real domain

    CERN Document Server

    Kurzweil, J

    1986-01-01

    The author, Professor Kurzweil, is one of the world's top experts in the area of ordinary differential equations - a fact fully reflected in this book. Unlike many classical texts which concentrate primarily on methods of integration of differential equations, this book pursues a modern approach: the topic is discussed in full generality which, at the same time, permits us to gain a deep insight into the theory and to develop a fruitful intuition. The basic framework of the theory is expanded by considering further important topics like stability, dependence of a solution on a parameter, Car

  11. Introduction to linear systems of differential equations

    CERN Document Server

    Adrianova, L Ya

    1995-01-01

    The theory of linear systems of differential equations is one of the cornerstones of the whole theory of differential equations. At its root is the concept of the Lyapunov characteristic exponent. In this book, Adrianova presents introductory material and further detailed discussions of Lyapunov exponents. She also discusses the structure of the space of solutions of linear systems. Classes of linear systems examined are from the narrowest to widest: 1)�autonomous, 2)�periodic, 3)�reducible to autonomous, 4)�nearly reducible to autonomous, 5)�regular. In addition, Adrianova considers the following: stability of linear systems and the influence of perturbations of the coefficients on the stability the criteria of uniform stability and of uniform asymptotic stability in terms of properties of the solutions several estimates of the growth rate of solutions of a linear system in terms of its coefficients How perturbations of the coefficients change all the elements of the spectrum of the system is defin...

  12. Modeling Noisy Data with Differential Equations Using Observed and Expected Matrices

    Science.gov (United States)

    Deboeck, Pascal R.; Boker, Steven M.

    2010-01-01

    Complex intraindividual variability observed in psychology may be well described using differential equations. It is difficult, however, to apply differential equation models in psychological contexts, as time series are frequently short, poorly sampled, and have large proportions of measurement and dynamic error. Furthermore, current methods for…

  13. Parallels between control PDE's (Partial Differential Equations) and systems of ODE's (Ordinary Differential Equations)

    Science.gov (United States)

    Hunt, L. R.; Villarreal, Ramiro

    1987-01-01

    System theorists understand that the same mathematical objects which determine controllability for nonlinear control systems of ordinary differential equations (ODEs) also determine hypoellipticity for linear partial differentail equations (PDEs). Moreover, almost any study of ODE systems begins with linear systems. It is remarkable that Hormander's paper on hypoellipticity of second order linear p.d.e.'s starts with equations due to Kolmogorov, which are shown to be analogous to the linear PDEs. Eigenvalue placement by state feedback for a controllable linear system can be paralleled for a Kolmogorov equation if an appropriate type of feedback is introduced. Results concerning transformations of nonlinear systems to linear systems are similar to results for transforming a linear PDE to a Kolmogorov equation.

  14. Cellular automata for spatiotemporal pattern formation from reaction–diffusion partial differential equations

    International Nuclear Information System (INIS)

    Ohmori, Shousuke; Yamazaki, Yoshihiro

    2016-01-01

    Ultradiscrete equations are derived from a set of reaction–diffusion partial differential equations, and cellular automaton rules are obtained on the basis of the ultradiscrete equations. Some rules reproduce the dynamical properties of the original reaction–diffusion equations, namely, bistability and pulse annihilation. Furthermore, other rules bring about soliton-like preservation and periodic pulse generation with a pacemaker, which are not obtained from the original reaction–diffusion equations. (author)

  15. Local bifurcations in differential equations with state-dependent delay.

    Science.gov (United States)

    Sieber, Jan

    2017-11-01

    A common task when analysing dynamical systems is the determination of normal forms near local bifurcations of equilibria. As most of these normal forms have been classified and analysed, finding which particular class of normal form one encounters in a numerical bifurcation study guides follow-up computations. This paper builds on normal form algorithms for equilibria of delay differential equations with constant delay that were developed and implemented in DDE-Biftool recently. We show how one can extend these methods to delay-differential equations with state-dependent delay (sd-DDEs). Since higher degrees of regularity of local center manifolds are still open for sd-DDEs, we give an independent (still only partial) argument which phenomena from the truncated normal must persist in the full sd-DDE. In particular, we show that all invariant manifolds with a sufficient degree of normal hyperbolicity predicted by the normal form exist also in the full sd-DDE.

  16. Alternans promotion in cardiac electrophysiology models by delay differential equations.

    Science.gov (United States)

    Gomes, Johnny M; Dos Santos, Rodrigo Weber; Cherry, Elizabeth M

    2017-09-01

    Cardiac electrical alternans is a state of alternation between long and short action potentials and is frequently associated with harmful cardiac conditions. Different dynamic mechanisms can give rise to alternans; however, many cardiac models based on ordinary differential equations are not able to reproduce this phenomenon. A previous study showed that alternans can be induced by the introduction of delay differential equations (DDEs) in the formulations of the ion channel gating variables of a canine myocyte model. The present work demonstrates that this technique is not model-specific by successfully promoting alternans using DDEs for five cardiac electrophysiology models that describe different types of myocytes, with varying degrees of complexity. By analyzing results across the different models, we observe two potential requirements for alternans promotion via DDEs for ionic gates: (i) the gate must have a significant influence on the action potential duration and (ii) a delay must significantly impair the gate's recovery between consecutive action potentials.

  17. Local bifurcations in differential equations with state-dependent delay

    Science.gov (United States)

    Sieber, Jan

    2017-11-01

    A common task when analysing dynamical systems is the determination of normal forms near local bifurcations of equilibria. As most of these normal forms have been classified and analysed, finding which particular class of normal form one encounters in a numerical bifurcation study guides follow-up computations. This paper builds on normal form algorithms for equilibria of delay differential equations with constant delay that were developed and implemented in DDE-Biftool recently. We show how one can extend these methods to delay-differential equations with state-dependent delay (sd-DDEs). Since higher degrees of regularity of local center manifolds are still open for sd-DDEs, we give an independent (still only partial) argument which phenomena from the truncated normal must persist in the full sd-DDE. In particular, we show that all invariant manifolds with a sufficient degree of normal hyperbolicity predicted by the normal form exist also in the full sd-DDE.

  18. Alternans promotion in cardiac electrophysiology models by delay differential equations

    Science.gov (United States)

    Gomes, Johnny M.; dos Santos, Rodrigo Weber; Cherry, Elizabeth M.

    2017-09-01

    Cardiac electrical alternans is a state of alternation between long and short action potentials and is frequently associated with harmful cardiac conditions. Different dynamic mechanisms can give rise to alternans; however, many cardiac models based on ordinary differential equations are not able to reproduce this phenomenon. A previous study showed that alternans can be induced by the introduction of delay differential equations (DDEs) in the formulations of the ion channel gating variables of a canine myocyte model. The present work demonstrates that this technique is not model-specific by successfully promoting alternans using DDEs for five cardiac electrophysiology models that describe different types of myocytes, with varying degrees of complexity. By analyzing results across the different models, we observe two potential requirements for alternans promotion via DDEs for ionic gates: (i) the gate must have a significant influence on the action potential duration and (ii) a delay must significantly impair the gate's recovery between consecutive action potentials.

  19. Stability theory for dynamic equations on time scales

    CERN Document Server

    Martynyuk, Anatoly A

    2016-01-01

    This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems. In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Ma...

  20. In silico ordinary differential equation/partial differential equation hemodialysis model estimates methadone removal during dialysis

    Science.gov (United States)

    Linares, Oscar A; Schiesser, William E; Fudin, Jeffrey; Pham, Thien C; Bettinger, Jeffrey J; Mathew, Roy O; Daly, Annemarie L

    2015-01-01

    Background There is a need to have a model to study methadone’s losses during hemodialysis to provide informed methadone dose recommendations for the practitioner. Aim To build a one-dimensional (1-D), hollow-fiber geometry, ordinary differential equation (ODE) and partial differential equation (PDE) countercurrent hemodialyzer model (ODE/PDE model). Methodology We conducted a cross-sectional study in silico that evaluated eleven hemodialysis patients. Patients received a ceiling dose of methadone hydrochloride 30 mg/day. Outcome measures included: the total amount of methadone removed during dialysis; methadone’s overall intradialytic mass transfer rate coefficient, km; and, methadone’s removal rate, jME. Each metric was measured at dialysate flow rates of 250 mL/min and 800 mL/min. Results The ODE/PDE model revealed a significant increase in the change of methadone’s mass transfer with increased dialysate flow rate, %Δkm=18.56, P=0.02, N=11. The total amount of methadone mass transferred across the dialyzer membrane with high dialysate flow rate significantly increased (0.042±0.016 versus 0.052±0.019 mg/kg, P=0.02, N=11). This was accompanied by a small significant increase in methadone’s mass transfer rate (0.113±0.002 versus 0.014±0.002 mg/kg/h, P=0.02, N=11). The ODE/PDE model accurately predicted methadone’s removal during dialysis. The absolute value of the prediction errors for methadone’s extraction and throughput were less than 2%. Conclusion ODE/PDE modeling of methadone’s hemodialysis is a new approach to study methadone’s removal, in particular, and opioid removal, in general, in patients with end-stage renal disease on hemodialysis. ODE/PDE modeling accurately quantified the fundamental phenomena of methadone’s mass transfer during hemodialysis. This methodology may lead to development of optimally designed intradialytic opioid treatment protocols, and allow dynamic monitoring of outflow plasma opioid concentrations for model

  1. In silico ordinary differential equation/partial differential equation hemodialysis model estimates methadone removal during dialysis.

    Science.gov (United States)

    Linares, Oscar A; Schiesser, William E; Fudin, Jeffrey; Pham, Thien C; Bettinger, Jeffrey J; Mathew, Roy O; Daly, Annemarie L

    2015-01-01

    There is a need to have a model to study methadone's losses during hemodialysis to provide informed methadone dose recommendations for the practitioner. To build a one-dimensional (1-D), hollow-fiber geometry, ordinary differential equation (ODE) and partial differential equation (PDE) countercurrent hemodialyzer model (ODE/PDE model). We conducted a cross-sectional study in silico that evaluated eleven hemodialysis patients. Patients received a ceiling dose of methadone hydrochloride 30 mg/day. Outcome measures included: the total amount of methadone removed during dialysis; methadone's overall intradialytic mass transfer rate coefficient, km ; and, methadone's removal rate, j ME. Each metric was measured at dialysate flow rates of 250 mL/min and 800 mL/min. The ODE/PDE model revealed a significant increase in the change of methadone's mass transfer with increased dialysate flow rate, %Δkm =18.56, P=0.02, N=11. The total amount of methadone mass transferred across the dialyzer membrane with high dialysate flow rate significantly increased (0.042±0.016 versus 0.052±0.019 mg/kg, P=0.02, N=11). This was accompanied by a small significant increase in methadone's mass transfer rate (0.113±0.002 versus 0.014±0.002 mg/kg/h, P=0.02, N=11). The ODE/PDE model accurately predicted methadone's removal during dialysis. The absolute value of the prediction errors for methadone's extraction and throughput were less than 2%. ODE/PDE modeling of methadone's hemodialysis is a new approach to study methadone's removal, in particular, and opioid removal, in general, in patients with end-stage renal disease on hemodialysis. ODE/PDE modeling accurately quantified the fundamental phenomena of methadone's mass transfer during hemodialysis. This methodology may lead to development of optimally designed intradialytic opioid treatment protocols, and allow dynamic monitoring of outflow plasma opioid concentrations for model predictive control during dialysis in humans.

  2. Nonclassical Symmetries for Nonlinear Partial Differential Equations via Compatibility

    International Nuclear Information System (INIS)

    El-Sabbagh, Mostafa F.; Ahmad, Ali T.

    2011-01-01

    The determining equations for the nonclassical symmetry reductions of nonlinear partial differential equations with arbitrary order can be obtained by requiring the compatibility between the original equations and the invariant surface conditions. The (2+1)-dimensional shallow water wave equation, Boussinesq equation, and the dispersive wave equations in shallow water serve as examples illustrating how compatibility leads quickly and easily to the determining equations for their nonclassical symmetries. (general)

  3. Schwarz maps of algebraic linear ordinary differential equations

    Science.gov (United States)

    Sanabria Malagón, Camilo

    2017-12-01

    A linear ordinary differential equation is called algebraic if all its solution are algebraic over its field of definition. In this paper we solve the problem of finding closed form solution to algebraic linear ordinary differential equations in terms of standard equations. Furthermore, we obtain a method to compute all algebraic linear ordinary differential equations with rational coefficients by studying their associated Schwarz map through the Picard-Vessiot Theory.

  4. Quasi-exact solutions of nonlinear differential equations

    OpenAIRE

    Kudryashov, Nikolay A.; Kochanov, Mark B.

    2014-01-01

    The concept of quasi-exact solutions of nonlinear differential equations is introduced. Quasi-exact solution expands the idea of exact solution for additional values of parameters of differential equation. These solutions are approximate solutions of nonlinear differential equations but they are close to exact solutions. Quasi-exact solutions of the the Kuramoto--Sivashinsky, the Korteweg--de Vries--Burgers and the Kawahara equations are founded.

  5. Variational and potential formulation for stochastic partial differential equations

    International Nuclear Information System (INIS)

    Munoz S, A G; Ojeda, J; Sierra D, P; Soldovieri, T

    2006-01-01

    Recently there has been interest in finding a potential formulation for stochastic partial differential equations (SPDEs). The rationale behind this idea lies in obtaining all the dynamical information of the system under study from one single expression. In this letter we formally provide a general Lagrangian formalism for SPDEs using the Hojman et al method. We show that it is possible to write the corresponding effective potential starting from an s-equivalent Lagrangian, and that this potential is able to reproduce all the dynamics of the system once a special differential operator has been applied. This procedure can be used to study the complete time evolution and spatial inhomogeneities of the system under consideration, and is also suitable for the statistical mechanics description of the problem. (letter to the editor)

  6. Inverse problems for partial differential equations

    CERN Document Server

    Isakov, Victor

    2017-01-01

    This third edition expands upon the earlier edition by adding nearly 40 pages of new material reflecting the analytical and numerical progress in inverse problems in last 10 years. As in the second edition, the emphasis is on new ideas and methods rather than technical improvements. These new ideas include use of the stationary phase method in the two-dimensional elliptic problems and of multi frequencies\\temporal data to improve stability and numerical resolution. There are also numerous corrections and improvements of the exposition throughout. This book is intended for mathematicians working with partial differential equations and their applications, physicists, geophysicists, and financial, electrical, and mechanical engineers involved with nondestructive evaluation, seismic exploration, remote sensing, and various kinds of tomography. Review of the second edition: "The first edition of this excellent book appeared in 1998 and became a standard reference for everyone interested in analysis and numerics of...

  7. Differential equations of my young years

    CERN Document Server

    Maz'ya, Vladimir

    2014-01-01

    Vladimir Maz'ya (born 1937) is an outstanding mathematician who systematically made fundamental contributions to a wide array of areas in mathematical analysis and in the theory of partial differential equations. In this fascinating book he describes the first thirty years of his life in Leningrad (now St. Petersburg). He starts with the story of his family, speaks about his childhood, the high school and university years, and recalls his formative years as a mathematician. Behind the author's personal recollections, with his own joys, sorrows and hopes, one sees a vivid picture of those times in the former Sovjet Union. He speaks warmly about his friends, both outside and inside the world of mathematics, about discovering his passion for mathematics and his early achievements, and about a number of mathematicians who influenced his professional life. The book is written in a highly readable and inviting style, spiced with the occasional touch of humor.

  8. Adaptive finite element methods for differential equations

    CERN Document Server

    Bangerth, Wolfgang

    2003-01-01

    These Lecture Notes discuss concepts of `self-adaptivity' in the numerical solution of differential equations, with emphasis on Galerkin finite element methods. The key issues are a posteriori error estimation and it automatic mesh adaptation. Besides the traditional approach of energy-norm error control, a new duality-based technique, the Dual Weighted Residual method for goal-oriented error estimation, is discussed in detail. This method aims at economical computation of arbitrary quantities of physical interest by properly adapting the computational mesh. This is typically required in the design cycles of technical applications. For example, the drag coefficient of a body immersed in a viscous flow is computed, then it is minimized by varying certain control parameters, and finally the stability of the resulting flow is investigated by solving an eigenvalue problem. `Goal-oriented' adaptivity is designed to achieve these tasks with minimal cost. At the end of each chapter some exercises are posed in order ...

  9. Telescopic projective methods for parabolic differential equations

    CERN Document Server

    Gear, C W

    2003-01-01

    Projective methods were introduced in an earlier paper [C.W. Gear, I.G. Kevrekidis, Projective Methods for Stiff Differential Equations: problems with gaps in their eigenvalue spectrum, NEC Research Institute Report 2001-029, available from http://www.neci.nj.nec.com/homepages/cwg/projective.pdf Abbreviated version to appear in SISC] as having potential for the efficient integration of problems with a large gap between two clusters in their eigenvalue spectrum, one cluster containing eigenvalues corresponding to components that have already been damped in the numerical solution and one corresponding to components that are still active. In this paper we introduce iterated projective methods that allow for explicit integration of stiff problems that have a large spread of eigenvalues with no gaps in their spectrum as arise in the semi-discretization of PDEs with parabolic components.

  10. Telescopic projective methods for parabolic differential equations

    International Nuclear Information System (INIS)

    Gear, C.W.; Kevrekidis, Ioannis G.

    2003-01-01

    Projective methods were introduced in an earlier paper [C.W. Gear, I.G. Kevrekidis, Projective Methods for Stiff Differential Equations: problems with gaps in their eigenvalue spectrum, NEC Research Institute Report 2001-029, available from http://www.neci.nj.nec.com/homepages/cwg/projective.pdf Abbreviated version to appear in SISC] as having potential for the efficient integration of problems with a large gap between two clusters in their eigenvalue spectrum, one cluster containing eigenvalues corresponding to components that have already been damped in the numerical solution and one corresponding to components that are still active. In this paper we introduce iterated projective methods that allow for explicit integration of stiff problems that have a large spread of eigenvalues with no gaps in their spectrum as arise in the semi-discretization of PDEs with parabolic components

  11. Efficient Estimating Functions for Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Jakobsen, Nina Munkholt

    The overall topic of this thesis is approximate martingale estimating function-based estimationfor solutions of stochastic differential equations, sampled at high frequency. Focuslies on the asymptotic properties of the estimators. The first part of the thesis deals with diffusions observed over...... a fixed time interval. Rate optimal and effcient estimators areobtained for a one-dimensional diffusion parameter. Stable convergence in distribution isused to achieve a practically applicable Gaussian limit distribution for suitably normalisedestimators. In a simulation example, the limit distributions...... multidimensional parameter. Conditions for rate optimality and effciency of estimatorsof drift-jump and diffusion parameters are given in some special cases. Theseconditions are found to extend the pre-existing conditions applicable to continuous diffusions,and impose much stronger requirements on the estimating...

  12. Ordinary differential equations basics and beyond

    CERN Document Server

    Schaeffer, David G

    2016-01-01

    This book develops the theory of ordinary differential equations (ODEs), starting from an introductory level (with no prior experience in ODEs assumed) through to a graduate-level treatment of the qualitative theory, including bifurcation theory (but not chaos). While proofs are rigorous, the exposition is reader-friendly, aiming for the informality of face-to-face interactions. A unique feature of this book is the integration of rigorous theory with numerous applications of scientific interest. Besides providing motivation, this synthesis clarifies the theory and enhances scientific literacy. Other features include: (i) a wealth of exercises at various levels, along with commentary that explains why they matter; (ii) figures with consistent color conventions to identify nullclines, periodic orbits, stable and unstable manifolds; and (iii) a dedicated website with software templates, problem solutions, and other resources supporting the text. Given its many applications, the book may be used comfortably in sc...

  13. Elliptic partial differential equations of second order

    CERN Document Server

    Gilbarg, David

    2001-01-01

    From the reviews: "This is a book of interest to any having to work with differential equations, either as a reference or as a book to learn from. The authors have taken trouble to make the treatment self-contained. It (is) suitable required reading for a PhD student. Although the material has been developed from lectures at Stanford, it has developed into an almost systematic coverage that is much longer than could be covered in a year's lectures". Newsletter, New Zealand Mathematical Society, 1985 "Primarily addressed to graduate students this elegant book is accessible and useful to a broad spectrum of applied mathematicians". Revue Roumaine de Mathématiques Pures et Appliquées,1985.

  14. Advances in differential equations and applications

    CERN Document Server

    Martínez, Vicente

    2014-01-01

    The book contains a selection of contributions given at the 23rd Congress on Differential Equations and Applications (CEDYA) / 13th Congress of Applied Mathematics (CMA) that took place at Castellon, Spain, in 2013. CEDYA is renowned as the congress of the Spanish Society of Applied Mathematics (SEMA) and constitutes the main forum and meeting point for applied mathematicians in Spain. The papers included in this book have been selected after a thorough refereeing process and provide a good summary of the recent activity developed by different groups working mainly in Spain on applications of mathematics to several fields of science and technology. The purpose is to provide a useful reference of academic and industrial researchers working in the area of numerical analysis and its applications.

  15. APPROACHED DECISION OF THE DIFFERENTIAL EQUATIONS

    Directory of Open Access Journals (Sweden)

    Oleksii B. Krasnozhon

    2011-02-01

    Full Text Available The urgency of the material stated in the article is caused by necessity of development, updating and improvements of methodical operating time on subject matters of issue "Calculus mathematics" which teaching is carried out in conditions of use of information-communication technologies. In the article the program realizations in Mathcad environment of Adams and Runge-Kutt methods of the approached decision of the differential equations are offered; examples on application of the specified methods are brought; the expediency of application of Mathcad environment during mathematical preparation of experts is proved. Perspective directions of the further scientific researches are methodical, mathematical and algorithmic aspects of creation of effective program realizations of numerical methods in Mathcad environment.

  16. Partial Differential Equations in General Relativity

    International Nuclear Information System (INIS)

    Choquet-Bruhat, Yvonne

    2008-01-01

    General relativity is a physical theory basic in the modeling of the universe at the large and small scales. Its mathematical formulation, the Einstein partial differential equations, are geometrically simple, but intricate for the analyst, involving both hyperbolic and elliptic PDE, with local and global problems. Many problems remain open though remarkable progress has been made recently towards their solutions. Alan Rendall's book states, in a down-to-earth form, fundamental results used to solve different types of equations. In each case he gives applications to special models as well as to general properties of Einsteinian spacetimes. A chapter on ODE contains, in particular, a detailed discussion of Bianchi spacetimes. A chapter entitled 'Elliptic systems' treats the Einstein constraints. A chapter entitled 'Hyperbolic systems' is followed by a chapter on the Cauchy problem and a chapter 'Global results' which contains recently proved theorems. A chapter is dedicated to the Einstein-Vlasov system, of which the author is a specialist. On the whole, the book surveys, in a concise though precise way, many essential results of recent interest in mathematical general relativity, and it is very clearly written. Each chapter is followed by an up to date bibliography. In conclusion, this book will be a valuable asset to relativists who wish to learn clearly-stated mathematical results and to mathematicians who want to penetrate into the subtleties of general relativity, as a mathematical and physical theory. (book review)

  17. Introduction to inverse problems for differential equations

    CERN Document Server

    Hasanov Hasanoğlu, Alemdar

    2017-01-01

    This book presents a systematic exposition of the main ideas and methods in treating inverse problems for PDEs arising in basic mathematical models, though it makes no claim to being exhaustive. Mathematical models of most physical phenomena are governed by initial and boundary value problems for PDEs, and inverse problems governed by these equations arise naturally in nearly all branches of science and engineering. The book’s content, especially in the Introduction and Part I, is self-contained and is intended to also be accessible for beginning graduate students, whose mathematical background includes only basic courses in advanced calculus, PDEs and functional analysis. Further, the book can be used as the backbone for a lecture course on inverse and ill-posed problems for partial differential equations. In turn, the second part of the book consists of six nearly-independent chapters. The choice of these chapters was motivated by the fact that the inverse coefficient and source problems considered here a...

  18. Partial Differential Equations in General Relativity

    Energy Technology Data Exchange (ETDEWEB)

    Choquet-Bruhat, Yvonne

    2008-09-07

    General relativity is a physical theory basic in the modeling of the universe at the large and small scales. Its mathematical formulation, the Einstein partial differential equations, are geometrically simple, but intricate for the analyst, involving both hyperbolic and elliptic PDE, with local and global problems. Many problems remain open though remarkable progress has been made recently towards their solutions. Alan Rendall's book states, in a down-to-earth form, fundamental results used to solve different types of equations. In each case he gives applications to special models as well as to general properties of Einsteinian spacetimes. A chapter on ODE contains, in particular, a detailed discussion of Bianchi spacetimes. A chapter entitled 'Elliptic systems' treats the Einstein constraints. A chapter entitled 'Hyperbolic systems' is followed by a chapter on the Cauchy problem and a chapter 'Global results' which contains recently proved theorems. A chapter is dedicated to the Einstein-Vlasov system, of which the author is a specialist. On the whole, the book surveys, in a concise though precise way, many essential results of recent interest in mathematical general relativity, and it is very clearly written. Each chapter is followed by an up to date bibliography. In conclusion, this book will be a valuable asset to relativists who wish to learn clearly-stated mathematical results and to mathematicians who want to penetrate into the subtleties of general relativity, as a mathematical and physical theory. (book review)

  19. Consistency of direct integral estimator for partially observed systems of ordinary differential equations

    NARCIS (Netherlands)

    Vujačić, Ivan; Dattner, Itai

    In this paper we use the sieve framework to prove consistency of the ‘direct integral estimator’ of parameters for partially observed systems of ordinary differential equations, which are commonly used for modeling dynamic processes.

  20. Bipartite Fuzzy Stochastic Differential Equations with Global Lipschitz Condition

    Directory of Open Access Journals (Sweden)

    Marek T. Malinowski

    2016-01-01

    Full Text Available We introduce and analyze a new type of fuzzy stochastic differential equations. We consider equations with drift and diffusion terms occurring at both sides of equations. Therefore we call them the bipartite fuzzy stochastic differential equations. Under the Lipschitz and boundedness conditions imposed on drifts and diffusions coefficients we prove existence of a unique solution. Then, insensitivity of the solution under small changes of data of equation is examined. Finally, we mention that all results can be repeated for solutions to bipartite set-valued stochastic differential equations.

  1. NUMERICAL HOPF BIFURCATION OF DELAY-DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper we consider the numerical solution of some delay differential equations undergoing a Hopf bifurcation. We prove that if the delay differential equations have a Hopf bifurcation point atλ=λ*, then the numerical solution of the equation also has a Hopf bifurcation point atλh =λ* + O(h).

  2. COMPARISON THEOREMS AND APPLICATIONS OF OSCILLATION OF NEUTRAL DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    燕居让

    1991-01-01

    We first establish comparison theorems of the oscillation for a higher-order neutral delaydifferential equation. By these comparison theorems, the criterion of oscillation propertiesof neutral delay differential equation is reduced to that of nonneutral delay differential equa-tion, from which we give a series of oscillation theorems for neutral delay differentialequation.

  3. Numerov iteration method for second order integral-differential equation

    International Nuclear Information System (INIS)

    Zeng Fanan; Zhang Jiaju; Zhao Xuan

    1987-01-01

    In this paper, Numerov iterative method for second order integral-differential equation and system of equations are constructed. Numerical examples show that this method is better than direct method (Gauss elimination method) in CPU time and memoy requireing. Therefore, this method is an efficient method for solving integral-differential equation in nuclear physics

  4. On solutions of variable-order fractional differential equations

    Directory of Open Access Journals (Sweden)

    Ali Akgül

    2017-01-01

    solutions to fractional differential equations are compelling to get in real applications, due to the nonlocality and complexity of the fractional differential operators, especially for variable-order fractional differential equations. Therefore, it is significant to enhanced numerical methods for fractional differential equations. In this work, we consider variable-order fractional differential equations by reproducing kernel method. There has been much attention in the use of reproducing kernels for the solutions to many problems in the recent years. We give two examples to demonstrate how efficiently our theory can be implemented in practice.

  5. Legendre-tau approximations for functional differential equations

    Science.gov (United States)

    Ito, K.; Teglas, R.

    1986-01-01

    The numerical approximation of solutions to linear retarded functional differential equations are considered using the so-called Legendre-tau method. The functional differential equation is first reformulated as a partial differential equation with a nonlocal boundary condition involving time-differentiation. The approximate solution is then represented as a truncated Legendre series with time-varying coefficients which satisfy a certain system of ordinary differential equations. The method is very easy to code and yields very accurate approximations. Convergence is established, various numerical examples are presented, and comparison between the latter and cubic spline approximation is made.

  6. Compatible Spatial Discretizations for Partial Differential Equations

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Douglas, N, ed.

    2004-11-25

    From May 11--15, 2004, the Institute for Mathematics and its Applications held a hot topics workshop on Compatible Spatial Discretizations for Partial Differential Equations. The numerical solution of partial differential equations (PDE) is a fundamental task in science and engineering. The goal of the workshop was to bring together a spectrum of scientists at the forefront of the research in the numerical solution of PDEs to discuss compatible spatial discretizations. We define compatible spatial discretizations as those that inherit or mimic fundamental properties of the PDE such as topology, conservation, symmetries, and positivity structures and maximum principles. A wide variety of discretization methods applied across a wide range of scientific and engineering applications have been designed to or found to inherit or mimic intrinsic spatial structure and reproduce fundamental properties of the solution of the continuous PDE model at the finite dimensional level. A profusion of such methods and concepts relevant to understanding them have been developed and explored: mixed finite element methods, mimetic finite differences, support operator methods, control volume methods, discrete differential forms, Whitney forms, conservative differencing, discrete Hodge operators, discrete Helmholtz decomposition, finite integration techniques, staggered grid and dual grid methods, etc. This workshop seeks to foster communication among the diverse groups of researchers designing, applying, and studying such methods as well as researchers involved in practical solution of large scale problems that may benefit from advancements in such discretizations; to help elucidate the relations between the different methods and concepts; and to generally advance our understanding in the area of compatible spatial discretization methods for PDE. Particular points of emphasis included: + Identification of intrinsic properties of PDE models that are critical for the fidelity of numerical

  7. Representing Sudden Shifts in Intensive Dyadic Interaction Data Using Differential Equation Models with Regime Switching.

    Science.gov (United States)

    Chow, Sy-Miin; Ou, Lu; Ciptadi, Arridhana; Prince, Emily B; You, Dongjun; Hunter, Michael D; Rehg, James M; Rozga, Agata; Messinger, Daniel S

    2018-06-01

    A growing number of social scientists have turned to differential equations as a tool for capturing the dynamic interdependence among a system of variables. Current tools for fitting differential equation models do not provide a straightforward mechanism for diagnosing evidence for qualitative shifts in dynamics, nor do they provide ways of identifying the timing and possible determinants of such shifts. In this paper, we discuss regime-switching differential equation models, a novel modeling framework for representing abrupt changes in a system of differential equation models. Estimation was performed by combining the Kim filter (Kim and Nelson State-space models with regime switching: classical and Gibbs-sampling approaches with applications, MIT Press, Cambridge, 1999) and a numerical differential equation solver that can handle both ordinary and stochastic differential equations. The proposed approach was motivated by the need to represent discrete shifts in the movement dynamics of [Formula: see text] mother-infant dyads during the Strange Situation Procedure (SSP), a behavioral assessment where the infant is separated from and reunited with the mother twice. We illustrate the utility of a novel regime-switching differential equation model in representing children's tendency to exhibit shifts between the goal of staying close to their mothers and intermittent interest in moving away from their mothers to explore the room during the SSP. Results from empirical model fitting were supplemented with a Monte Carlo simulation study to evaluate the use of information criterion measures to diagnose sudden shifts in dynamics.

  8. From differential to difference equations for first order ODEs

    Science.gov (United States)

    Freed, Alan D.; Walker, Kevin P.

    1991-01-01

    When constructing an algorithm for the numerical integration of a differential equation, one should first convert the known ordinary differential equation (ODE) into an ordinary difference equation. Given this difference equation, one can develop an appropriate numerical algorithm. This technical note describes the derivation of two such ordinary difference equations applicable to a first order ODE. The implicit ordinary difference equation has the same asymptotic expansion as the ODE itself, whereas the explicit ordinary difference equation has an asymptotic that is similar in structure but different in value when compared with that of the ODE.

  9. Nonlinear partial differential equations for scientists and engineers

    CERN Document Server

    Debnath, Lokenath

    1997-01-01

    "An exceptionally complete overview. There are numerous examples and the emphasis is on applications to almost all areas of science and engineering. There is truly something for everyone here. This reviewer feels that it is a very hard act to follow, and recommends it strongly. [This book] is a jewel." ---Applied Mechanics Review (Review of First Edition) This expanded and revised second edition is a comprehensive and systematic treatment of linear and nonlinear partial differential equations and their varied applications. Building upon the successful material of the first book, this edition contains updated modern examples and applications from areas of fluid dynamics, gas dynamics, plasma physics, nonlinear dynamics, quantum mechanics, nonlinear optics, acoustics, and wave propagation. Methods and properties of solutions are presented, along with their physical significance, making the book more useful for a diverse readership. Topics and key features: * Thorough coverage of derivation and methods of soluti...

  10. Estimating varying coefficients for partial differential equation models.

    Science.gov (United States)

    Zhang, Xinyu; Cao, Jiguo; Carroll, Raymond J

    2017-09-01

    Partial differential equations (PDEs) are used to model complex dynamical systems in multiple dimensions, and their parameters often have important scientific interpretations. In some applications, PDE parameters are not constant but can change depending on the values of covariates, a feature that we call varying coefficients. We propose a parameter cascading method to estimate varying coefficients in PDE models from noisy data. Our estimates of the varying coefficients are shown to be consistent and asymptotically normally distributed. The performance of our method is evaluated by a simulation study and by an empirical study estimating three varying coefficients in a PDE model arising from LIDAR data. © 2017, The International Biometric Society.

  11. Neural network error correction for solving coupled ordinary differential equations

    Science.gov (United States)

    Shelton, R. O.; Darsey, J. A.; Sumpter, B. G.; Noid, D. W.

    1992-01-01

    A neural network is presented to learn errors generated by a numerical algorithm for solving coupled nonlinear differential equations. The method is based on using a neural network to correctly learn the error generated by, for example, Runge-Kutta on a model molecular dynamics (MD) problem. The neural network programs used in this study were developed by NASA. Comparisons are made for training the neural network using backpropagation and a new method which was found to converge with fewer iterations. The neural net programs, the MD model and the calculations are discussed.

  12. On Exponential Hedging and Related Quadratic Backward Stochastic Differential Equations

    International Nuclear Information System (INIS)

    Sekine, Jun

    2006-01-01

    The dual optimization problem for the exponential hedging problem is addressed with a cone constraint. Without boundedness conditions on the terminal payoff and the drift of the Ito-type controlled process, the backward stochastic differential equation, which has a quadratic growth term in the drift, is derived as a necessary and sufficient condition for optimality via a variational method and dynamic programming. Further, solvable situations are given, in which the value and the optimizer are expressed in closed forms with the help of the Clark-Haussmann-Ocone formula

  13. Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. Part 1: The ODE connection and its implications for algorithm development in computational fluid dynamics

    Science.gov (United States)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1990-01-01

    Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit.

  14. Maintaining the stability of nonlinear differential equations by the enhancement of HPM

    International Nuclear Information System (INIS)

    Hosein Nia, S.H.; Ranjbar, A.N.; Ganji, D.D.; Soltani, H.; Ghasemi, J.

    2008-01-01

    Homotopy perturbation method is an effective method to find a solution of a nonlinear differential equation. In this method, a nonlinear complex differential equation is transformed to a series of linear and nonlinear parts, almost simpler differential equations. These sets of equations are then solved iteratively. Finally, a linear series of the solutions completes the answer if the convergence is maintained. In this Letter, the need for stability verification is shown through some examples. Consequently, HPM is enhanced by a preliminary assumption. The idea is to keep the inherent stability of nonlinear dynamic, even the selected linear part is not

  15. Analysis of an Nth-order nonlinear differential-delay equation

    Science.gov (United States)

    Vallée, Réal; Marriott, Christopher

    1989-01-01

    The problem of a nonlinear dynamical system with delay and an overall response time which is distributed among N individual components is analyzed. Such a system can generally be modeled by an Nth-order nonlinear differential delay equation. A linear-stability analysis as well as a numerical simulation of that equation are performed and a comparison is made with the experimental results. Finally, a parallel is established between the first-order differential equation with delay and the Nth-order differential equation without delay.

  16. Growth of meromorphic solutions of delay differential equations

    OpenAIRE

    Halburd, Rod; Korhonen, Risto

    2016-01-01

    Necessary conditions are obtained for certain types of rational delay differential equations to admit a non-rational meromorphic solution of hyper-order less than one. The equations obtained include delay Painlev\\'e equations and equations solved by elliptic functions.

  17. Lyapunov functionals and stability of stochastic functional differential equations

    CERN Document Server

    Shaikhet, Leonid

    2013-01-01

    Stability conditions for functional differential equations can be obtained using Lyapunov functionals. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations describes the general method of construction of Lyapunov functionals to investigate the stability of differential equations with delays. This work continues and complements the author’s previous book Lyapunov Functionals and Stability of Stochastic Difference Equations, where this method is described for discrete- and continuous-time difference equations. The text begins with a description of the peculiarities of deterministic and stochastic functional differential equations. There follow basic definitions for stability theory of stochastic hereditary systems, and a formal procedure of Lyapunov functionals construction is presented. Stability investigation is conducted for stochastic linear and nonlinear differential equations with constant and distributed delays. The proposed method is used for stability investigation of di...

  18. Solving Differential Equations in R: Package deSolve

    Directory of Open Access Journals (Sweden)

    Karline Soetaert

    2010-02-01

    Full Text Available In this paper we present the R package deSolve to solve initial value problems (IVP written as ordinary differential equations (ODE, differential algebraic equations (DAE of index 0 or 1 and partial differential equations (PDE, the latter solved using the method of lines approach. The differential equations can be represented in R code or as compiled code. In the latter case, R is used as a tool to trigger the integration and post-process the results, which facilitates model development and application, whilst the compiled code significantly increases simulation speed. The methods implemented are efficient, robust, and well documented public-domain Fortran routines. They include four integrators from the ODEPACK package (LSODE, LSODES, LSODA, LSODAR, DVODE and DASPK2.0. In addition, a suite of Runge-Kutta integrators and special-purpose solvers to efficiently integrate 1-, 2- and 3-dimensional partial differential equations are available. The routines solve both stiff and non-stiff systems, and include many options, e.g., to deal in an efficient way with the sparsity of the Jacobian matrix, or finding the root of equations. In this article, our objectives are threefold: (1 to demonstrate the potential of using R for dynamic modeling, (2 to highlight typical uses of the different methods implemented and (3 to compare the performance of models specified in R code and in compiled code for a number of test cases. These comparisons demonstrate that, if the use of loops is avoided, R code can efficiently integrate problems comprising several thousands of state variables. Nevertheless, the same problem may be solved from 2 to more than 50 times faster by using compiled code compared to an implementation using only R code. Still, amongst the benefits of R are a more flexible and interactive implementation, better readability of the code, and access to R’s high-level procedures. deSolve is the successor of package odesolve which will be deprecated in

  19. Fuchs indices and the first integrals of nonlinear differential equations

    International Nuclear Information System (INIS)

    Kudryashov, Nikolai A.

    2005-01-01

    New method of finding the first integrals of nonlinear differential equations in polynomial form is presented. Basic idea of our approach is to use the scaling of solution of nonlinear differential equation and to find the dimensions of arbitrary constants in the Laurent expansion of the general solution. These dimensions allows us to obtain the scalings of members for the first integrals of nonlinear differential equations. Taking the polynomials with unknown coefficients into account we present the algorithm of finding the first integrals of nonlinear differential equations in the polynomial form. Our method is applied to look for the first integrals of eight nonlinear ordinary differential equations of the fourth order. The general solution of one of the fourth order ordinary differential equations is given

  20. STRICT STABILITY OF IMPULSIVE SET VALUED DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper, we develop strict stability concepts of ODE to impulsive hybrid set valued differential equations. By Lyapunov’s original method, we get some basic strict stability criteria of impulsive hybrid set valued equations.

  1. Exact solutions of some nonlinear partial differential equations using ...

    Indian Academy of Sciences (India)

    Nonlinear partial differential equations (NPDEs) are encountered in various ... such as physics, mechanics, chemistry, biology, mathematics and engineering. ... In §3, this method is applied to the generalized forms of Klein–Gordon equation,.

  2. An introduction to differential equations and their applications

    CERN Document Server

    Farlow, Stanley J

    2006-01-01

    This introductory text explores 1st- and 2nd-order differential equations, series solutions, the Laplace transform, difference equations, much more. Numerous figures, problems with solutions, notes. 1994 edition. Includes 268 figures and 23 tables.

  3. On the hierarchy of partially invariant submodels of differential equations

    OpenAIRE

    Golovin, Sergey V.

    2007-01-01

    It is noticed, that partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PIS of the higher rank. This introduce a hierarchic structure in the set of all PISs of a given system of differential equations. By using this structure one can significantly decrease an amount of calculations required in enumeration of all PISs for a given system of partially differential equations. An equivalence of the two-step and the direct ...

  4. A new approach to Catalan numbers using differential equations

    Science.gov (United States)

    Kim, D. S.; Kim, T.

    2017-10-01

    In this paper, we introduce two differential equations arising from the generating function of the Catalan numbers which are `inverses' to each other in a certain sense. From these differential equations, we obtain some new and explicit identities for Catalan and higher-order Catalan numbers. In addition, by other means than differential equations, we also derive some interesting identities involving Catalan numbers which are of arithmetic and combinatorial nature.

  5. Simplifying Differential Equations for Multiscale Feynman Integrals beyond Multiple Polylogarithms.

    Science.gov (United States)

    Adams, Luise; Chaubey, Ekta; Weinzierl, Stefan

    2017-04-07

    In this Letter we exploit factorization properties of Picard-Fuchs operators to decouple differential equations for multiscale Feynman integrals. The algorithm reduces the differential equations to blocks of the size of the order of the irreducible factors of the Picard-Fuchs operator. As a side product, our method can be used to easily convert the differential equations for Feynman integrals which evaluate to multiple polylogarithms to an ϵ form.

  6. Applying homotopy analysis method for solving differential-difference equation

    International Nuclear Information System (INIS)

    Wang Zhen; Zou Li; Zhang Hongqing

    2007-01-01

    In this Letter, we apply the homotopy analysis method to solving the differential-difference equations. A simple but typical example is applied to illustrate the validity and the great potential of the generalized homotopy analysis method in solving differential-difference equation. Comparisons are made between the results of the proposed method and exact solutions. The results show that the homotopy analysis method is an attractive method in solving the differential-difference equations

  7. Introduction to computation and modeling for differential equations

    CERN Document Server

    Edsberg, Lennart

    2008-01-01

    An introduction to scientific computing for differential equationsIntroduction to Computation and Modeling for Differential Equations provides a unified and integrated view of numerical analysis, mathematical modeling in applications, and programming to solve differential equations, which is essential in problem-solving across many disciplines, such as engineering, physics, and economics. This book successfully introduces readers to the subject through a unique ""Five-M"" approach: Modeling, Mathematics, Methods, MATLAB, and Multiphysics. This approach facilitates a thorough understanding of h

  8. On Volatility Induced Stationarity for Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Albin, J.M.P.; Astrup Jensen, Bjarne; Muszta, Anders

    2006-01-01

    This article deals with stochastic differential equations with volatility induced stationarity. We study of theoretical properties of such equations, as well as numerical aspects, together with a detailed study of three examples.......This article deals with stochastic differential equations with volatility induced stationarity. We study of theoretical properties of such equations, as well as numerical aspects, together with a detailed study of three examples....

  9. Lipschitz Regularity of Solutions for Mixed Integro-Differential Equations

    OpenAIRE

    Barles, Guy; Chasseigne, Emmanuel; Ciomaga, Adina; Imbert, Cyril

    2011-01-01

    We establish new Hoelder and Lipschitz estimates for viscosity solutions of a large class of elliptic and parabolic nonlinear integro-differential equations, by the classical Ishii-Lions's method. We thus extend the Hoelder regularity results recently obtained by Barles, Chasseigne and Imbert (2011). In addition, we deal with a new class of nonlocal equations that we term mixed integro-differential equations. These equations are particularly interesting, as they are degenerate both in the loc...

  10. Dielectric metasurfaces solve differential and integro-differential equations.

    Science.gov (United States)

    Abdollahramezani, Sajjad; Chizari, Ata; Dorche, Ali Eshaghian; Jamali, Mohammad Vahid; Salehi, Jawad A

    2017-04-01

    Leveraging subwavelength resonant nanostructures, plasmonic metasurfaces have recently attracted much attention as a breakthrough concept for engineering optical waves both spatially and spectrally. However, inherent ohmic losses concomitant with low coupling efficiencies pose fundamental impediments over their practical applications. Not only can all-dielectric metasurfaces tackle such substantial drawbacks, but also their CMOS-compatible configurations support both Mie resonances that are invariant to the incident angle. Here, we report on a transmittive metasurface comprising arrayed silicon nanodisks embedded in a homogeneous dielectric medium to manipulate phase and amplitude of incident light locally and almost independently. By taking advantage of the interplay between the electric/magnetic resonances and employing general concepts of spatial Fourier transformation, a highly efficient metadevice is proposed to perform mathematical operations including solution of ordinary differential and integro-differential equations with constant coefficients. Our findings further substantiate dielectric metasurfaces as promising candidates for miniaturized, two-dimensional, and planar optical analog computing systems that are much thinner than their conventional lens-based counterparts.

  11. Exact Solutions for Nonlinear Differential Difference Equations in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    Khaled A. Gepreel

    2013-01-01

    Full Text Available We modified the truncated expansion method to construct the exact solutions for some nonlinear differential difference equations in mathematical physics via the general lattice equation, the discrete nonlinear Schrodinger with a saturable nonlinearity, the quintic discrete nonlinear Schrodinger equation, and the relativistic Toda lattice system. Also, we put a rational solitary wave function method to find the rational solitary wave solutions for some nonlinear differential difference equations. The proposed methods are more effective and powerful to obtain the exact solutions for nonlinear difference differential equations.

  12. A concise course on stochastic partial differential equations

    CERN Document Server

    Prévôt, Claudia

    2007-01-01

    These lectures concentrate on (nonlinear) stochastic partial differential equations (SPDE) of evolutionary type. All kinds of dynamics with stochastic influence in nature or man-made complex systems can be modelled by such equations. To keep the technicalities minimal we confine ourselves to the case where the noise term is given by a stochastic integral w.r.t. a cylindrical Wiener process.But all results can be easily generalized to SPDE with more general noises such as, for instance, stochastic integral w.r.t. a continuous local martingale. There are basically three approaches to analyze SPDE: the "martingale measure approach", the "mild solution approach" and the "variational approach". The purpose of these notes is to give a concise and as self-contained as possible an introduction to the "variational approach". A large part of necessary background material, such as definitions and results from the theory of Hilbert spaces, are included in appendices.

  13. Nonparametric estimation of stochastic differential equations with sparse Gaussian processes.

    Science.gov (United States)

    García, Constantino A; Otero, Abraham; Félix, Paulo; Presedo, Jesús; Márquez, David G

    2017-08-01

    The application of stochastic differential equations (SDEs) to the analysis of temporal data has attracted increasing attention, due to their ability to describe complex dynamics with physically interpretable equations. In this paper, we introduce a nonparametric method for estimating the drift and diffusion terms of SDEs from a densely observed discrete time series. The use of Gaussian processes as priors permits working directly in a function-space view and thus the inference takes place directly in this space. To cope with the computational complexity that requires the use of Gaussian processes, a sparse Gaussian process approximation is provided. This approximation permits the efficient computation of predictions for the drift and diffusion terms by using a distribution over a small subset of pseudosamples. The proposed method has been validated using both simulated data and real data from economy and paleoclimatology. The application of the method to real data demonstrates its ability to capture the behavior of complex systems.

  14. Numerical solution of ordinary differential equations

    CERN Document Server

    Fox, L

    1987-01-01

    Nearly 20 years ago we produced a treatise (of about the same length as this book) entitled Computing methods for scientists and engineers. It was stated that most computation is performed by workers whose mathematical training stopped somewhere short of the 'professional' level, and that some books are therefore needed which use quite simple mathematics but which nevertheless communicate the essence of the 'numerical sense' which is exhibited by the real computing experts and which is surely needed, at least to some extent, by all who use modern computers and modern numerical software. In that book we treated, at no great length, a variety of computational problems in which the material on ordinary differential equations occupied about 50 pages. At that time it was quite common to find books on numerical analysis, with a little on each topic ofthat field, whereas today we are more likely to see similarly-sized books on each major topic: for example on numerical linear algebra, numerical approximation, numeri...

  15. In silico ordinary differential equation/partial differential equation hemodialysis model estimates methadone removal during dialysis

    Directory of Open Access Journals (Sweden)

    Linares OA

    2015-07-01

    Full Text Available Oscar A Linares,1 William E Schiesser,2 Jeffrey Fudin,3–6 Thien C Pham,6 Jeffrey J Bettinger,6 Roy O Mathew,6 Annemarie L Daly7 1Translational Genomic Medicine Lab, Plymouth Pharmacokinetic Modeling Study Group, Plymouth, MI, 2Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, 3University of Connecticut School of Pharmacy, Storrs, CT, 4Western New England College of Pharmacy, Springfield, MA, 5Albany College of Pharmacy and Health Sciences, Albany, NY, 6Stratton VA Medical Center, Albany, NY, 7Grace Hospice of Ann Arbor, Ann Arbor, MI, USA Background: There is a need to have a model to study methadone’s losses during hemodialysis to provide informed methadone dose recommendations for the practitioner. Aim: To build a one-dimensional (1-D, hollow-fiber geometry, ordinary differential equation (ODE and partial differential equation (PDE countercurrent hemodialyzer model (ODE/PDE model. Methodology: We conducted a cross-sectional study in silico that evaluated eleven hemodialysis patients. Patients received a ceiling dose of methadone hydrochloride 30 mg/day. Outcome measures included: the total amount of methadone removed during dialysis; methadone’s overall intradialytic mass transfer rate coefficient, km; and, methadone’s removal rate, jME. Each metric was measured at dialysate flow rates of 250 mL/min and 800 mL/min. Results: The ODE/PDE model revealed a significant increase in the change of methadone’s mass transfer with increased dialysate flow rate, %Δ km=18.56, P=0.02, N=11. The total amount of methadone mass transferred across the dialyzer membrane with high dialysate flow rate significantly increased (0.042±0.016 versus 0.052±0.019 mg/kg, P=0.02, N=11. This was accompanied by a small significant increase in methadone’s mass transfer rate (0.113±0.002 versus 0.014±0.002 mg/kg/h, P=0.02, N=11. The ODE/PDE model accurately predicted methadone’s removal during dialysis. The absolute value

  16. Simple equation method for nonlinear partial differential equations and its applications

    Directory of Open Access Journals (Sweden)

    Taher A. Nofal

    2016-04-01

    Full Text Available In this article, we focus on the exact solution of the some nonlinear partial differential equations (NLPDEs such as, Kodomtsev–Petviashvili (KP equation, the (2 + 1-dimensional breaking soliton equation and the modified generalized Vakhnenko equation by using the simple equation method. In the simple equation method the trial condition is the Bernoulli equation or the Riccati equation. It has been shown that the method provides a powerful mathematical tool for solving nonlinear wave equations in mathematical physics and engineering problems.

  17. Singular multiparameter dynamic equations with distributional ...

    African Journals Online (AJOL)

    Singular multiparameter dynamic equations with distributional potentials on time scales. ... In this paper, we consider both singular single and several multiparameter ... multiple function which is of one sign and nonzero on the given time scale.

  18. Calculation of similarity solutions of partial differential equations

    International Nuclear Information System (INIS)

    Dresner, L.

    1980-08-01

    When a partial differential equation in two independent variables is invariant to a group G of stretching transformations, it has similarity solutions that can be found by solving an ordinary differential equation. Under broad conditions, this ordinary differential equation is also invariant to another stretching group G', related to G. The invariance of the ordinary differential equation to G' can be used to simplify its solution, particularly if it is of second order. Then a method of Lie's can be used to reduce it to a first-order equation, the study of which is greatly facilitated by analysis of its direction field. The method developed here is applied to three examples: Blasius's equation for boundary layer flow over a flat plate and two nonlinear diffusion equations, cc/sub t/ = c/sub zz/ and c/sub t/ = (cc/sub z/)/sub z/

  19. The modified simplest equation method to look for exact solutions of nonlinear partial differential equations

    OpenAIRE

    Efimova, Olga Yu.

    2010-01-01

    The modification of simplest equation method to look for exact solutions of nonlinear partial differential equations is presented. Using this method we obtain exact solutions of generalized Korteweg-de Vries equation with cubic source and exact solutions of third-order Kudryashov-Sinelshchikov equation describing nonlinear waves in liquids with gas bubbles.

  20. Differential and difference equations a comparison of methods of solution

    CERN Document Server

    Maximon, Leonard C

    2016-01-01

    This book, intended for researchers and graduate students in physics, applied mathematics and engineering, presents a detailed comparison of the important methods of solution for linear differential and difference equations - variation of constants, reduction of order, Laplace transforms and generating functions - bringing out the similarities as well as the significant differences in the respective analyses. Equations of arbitrary order are studied, followed by a detailed analysis for equations of first and second order. Equations with polynomial coefficients are considered and explicit solutions for equations with linear coefficients are given, showing significant differences in the functional form of solutions of differential equations from those of difference equations. An alternative method of solution involving transformation of both the dependent and independent variables is given for both differential and difference equations. A comprehensive, detailed treatment of Green’s functions and the associat...

  1. Computationally efficient statistical differential equation modeling using homogenization

    Science.gov (United States)

    Hooten, Mevin B.; Garlick, Martha J.; Powell, James A.

    2013-01-01

    Statistical models using partial differential equations (PDEs) to describe dynamically evolving natural systems are appearing in the scientific literature with some regularity in recent years. Often such studies seek to characterize the dynamics of temporal or spatio-temporal phenomena such as invasive species, consumer-resource interactions, community evolution, and resource selection. Specifically, in the spatial setting, data are often available at varying spatial and temporal scales. Additionally, the necessary numerical integration of a PDE may be computationally infeasible over the spatial support of interest. We present an approach to impose computationally advantageous changes of support in statistical implementations of PDE models and demonstrate its utility through simulation using a form of PDE known as “ecological diffusion.” We also apply a statistical ecological diffusion model to a data set involving the spread of mountain pine beetle (Dendroctonus ponderosae) in Idaho, USA.

  2. Symbolic-Numeric Integration of the Dynamical Cosserat Equations

    KAUST Repository

    Lyakhov, Dmitry A.

    2017-08-29

    We devise a symbolic-numeric approach to the integration of the dynamical part of the Cosserat equations, a system of nonlinear partial differential equations describing the mechanical behavior of slender structures, like fibers and rods. This is based on our previous results on the construction of a closed form general solution to the kinematic part of the Cosserat system. Our approach combines methods of numerical exponential integration and symbolic integration of the intermediate system of nonlinear ordinary differential equations describing the dynamics of one of the arbitrary vector-functions in the general solution of the kinematic part in terms of the module of the twist vector-function. We present an experimental comparison with the well-established generalized \\\\alpha -method illustrating the computational efficiency of our approach for problems in structural mechanics.

  3. Symbolic-Numeric Integration of the Dynamical Cosserat Equations

    KAUST Repository

    Lyakhov, Dmitry A.; Gerdt, Vladimir P.; Weber, Andreas G.; Michels, Dominik L.

    2017-01-01

    We devise a symbolic-numeric approach to the integration of the dynamical part of the Cosserat equations, a system of nonlinear partial differential equations describing the mechanical behavior of slender structures, like fibers and rods. This is based on our previous results on the construction of a closed form general solution to the kinematic part of the Cosserat system. Our approach combines methods of numerical exponential integration and symbolic integration of the intermediate system of nonlinear ordinary differential equations describing the dynamics of one of the arbitrary vector-functions in the general solution of the kinematic part in terms of the module of the twist vector-function. We present an experimental comparison with the well-established generalized \\alpha -method illustrating the computational efficiency of our approach for problems in structural mechanics.

  4. Reduced differential transform method for partial differential equations within local fractional derivative operators

    Directory of Open Access Journals (Sweden)

    Hossein Jafari

    2016-04-01

    Full Text Available The non-differentiable solution of the linear and non-linear partial differential equations on Cantor sets is implemented in this article. The reduced differential transform method is considered in the local fractional operator sense. The four illustrative examples are given to show the efficiency and accuracy features of the presented technique to solve local fractional partial differential equations.

  5. Topics in numerical partial differential equations and scientific computing

    CERN Document Server

    2016-01-01

    Numerical partial differential equations (PDEs) are an important part of numerical simulation, the third component of the modern methodology for science and engineering, besides the traditional theory and experiment. This volume contains papers that originated with the collaborative research of the teams that participated in the IMA Workshop for Women in Applied Mathematics: Numerical Partial Differential Equations and Scientific Computing in August 2014.

  6. Lagrangian vector field and Lagrangian formulation of partial differential equations

    Directory of Open Access Journals (Sweden)

    M.Chen

    2005-01-01

    Full Text Available In this paper we consider the Lagrangian formulation of a system of second order quasilinear partial differential equations. Specifically we construct a Lagrangian vector field such that the flows of the vector field satisfy the original system of partial differential equations.

  7. Equilibrium approach in the derivation of differential equations for ...

    African Journals Online (AJOL)

    In this paper, the differential equations of Mindlin plates are derived from basic principles by simultaneous satisfaction of the differential equations of equilibrium, the stress-strain laws and the strain-displacement relations for isotropic, homogenous linear elastic materials. Equilibrium method was adopted in the derivation.

  8. Linear measure functional differential equations with infinite delay

    Czech Academy of Sciences Publication Activity Database

    Monteiro, Giselle Antunes; Slavík, A.

    2014-01-01

    Roč. 287, 11-12 (2014), s. 1363-1382 ISSN 0025-584X Institutional support: RVO:67985840 Keywords : measure functional differential equations * generalized ordinary differential equations * Kurzweil-Stieltjes integral Subject RIV: BA - General Mathematics Impact factor: 0.683, year: 2014 http://onlinelibrary.wiley.com/doi/10.1002/mana.201300048/abstract

  9. Nonstandard Topics for Student Presentations in Differential Equations

    Science.gov (United States)

    LeMasurier, Michelle

    2006-01-01

    An interesting and effective way to showcase the wide variety of fields to which differential equations can be applied is to have students give short oral presentations on a specific application. These talks, which have been presented by 30-40 students per year in our differential equations classes, provide exposure to a diverse array of topics…

  10. Sourcing for Parameter Estimation and Study of Logistic Differential Equation

    Science.gov (United States)

    Winkel, Brian J.

    2012-01-01

    This article offers modelling opportunities in which the phenomena of the spread of disease, perception of changing mass, growth of technology, and dissemination of information can be described by one differential equation--the logistic differential equation. It presents two simulation activities for students to generate real data, as well as…

  11. Variable-mesh method of solving differential equations

    Science.gov (United States)

    Van Wyk, R.

    1969-01-01

    Multistep predictor-corrector method for numerical solution of ordinary differential equations retains high local accuracy and convergence properties. In addition, the method was developed in a form conducive to the generation of effective criteria for the selection of subsequent step sizes in step-by-step solution of differential equations.

  12. Charles François Sturm and Differential Equations

    DEFF Research Database (Denmark)

    Lützen, Jesper; Mingarelli, Angelo

    2008-01-01

    An analysis of Sturm's works on differential equations, in particular Sturm-Liouville theory. The historical connection to Sturm's theorem about real roots of polynomials is established......An analysis of Sturm's works on differential equations, in particular Sturm-Liouville theory. The historical connection to Sturm's theorem about real roots of polynomials is established...

  13. Parameter Estimates in Differential Equation Models for Chemical Kinetics

    Science.gov (United States)

    Winkel, Brian

    2011-01-01

    We discuss the need for devoting time in differential equations courses to modelling and the completion of the modelling process with efforts to estimate the parameters in the models using data. We estimate the parameters present in several differential equation models of chemical reactions of order n, where n = 0, 1, 2, and apply more general…

  14. Solving Fuzzy Fractional Differential Equations Using Zadeh's Extension Principle

    Science.gov (United States)

    Ahmad, M. Z.; Hasan, M. K.; Abbasbandy, S.

    2013-01-01

    We study a fuzzy fractional differential equation (FFDE) and present its solution using Zadeh's extension principle. The proposed study extends the case of fuzzy differential equations of integer order. We also propose a numerical method to approximate the solution of FFDEs. To solve nonlinear problems, the proposed numerical method is then incorporated into an unconstrained optimisation technique. Several numerical examples are provided. PMID:24082853

  15. Modular differential equations for torus one-point functions

    International Nuclear Information System (INIS)

    Gaberdiel, Matthias R; Lang, Samuel

    2009-01-01

    It is shown that in a rational conformal field theory every torus one-point function of a given highest weight state satisfies a modular differential equation. We derive and solve these differential equations explicitly for some Virasoro minimal models. In general, however, the resulting amplitudes do not seem to be expressible in terms of standard transcendental functions

  16. Undergraduate Students' Mental Operations in Systems of Differential Equations

    Science.gov (United States)

    Whitehead, Karen; Rasmussen, Chris

    2003-01-01

    This paper reports on research conducted to understand undergraduate students' ways of reasoning about systems of differential equations (SDEs). As part of a semester long classroom teaching experiment in a first course in differential equations, we conducted task-based interviews with six students after their study of first order differential…

  17. Analysis of Caputo Impulsive Fractional Order Differential Equations with Applications

    Directory of Open Access Journals (Sweden)

    Lakshman Mahto

    2013-01-01

    Full Text Available We use Sadovskii's fixed point method to investigate the existence and uniqueness of solutions of Caputo impulsive fractional differential equations of order with one example of impulsive logistic model and few other examples as well. We also discuss Caputo impulsive fractional differential equations with finite delay. The results proven are new and compliment the existing one.

  18. approximate controllability of a non-autonomous differential equation

    Indian Academy of Sciences (India)

    53

    for a non-autonomous functional differential equation using the theory of linear ... approximate controllability of various functional differential equations in abstract ...... the operator A(t) and into the requirement that x(t) ∈ D(A) for all t ≥ 0.

  19. On some impulsive fractional differential equations in Banach spaces

    Directory of Open Access Journals (Sweden)

    JinRong Wang

    2010-01-01

    Full Text Available This paper deals with some impulsive fractional differential equations in Banach spaces. Utilizing the Leray-Schauder fixed point theorem and the impulsive nonlinear singular version of the Gronwall inequality, the existence of \\(PC\\-mild solutions for some fractional differential equations with impulses are obtained under some easily checked conditions. At last, an example is given for demonstration.

  20. Differential equations for loop integrals in Baikov representation

    Science.gov (United States)

    Bosma, Jorrit; Larsen, Kasper J.; Zhang, Yang

    2018-05-01

    We present a proof that differential equations for Feynman loop integrals can always be derived in Baikov representation without involving dimension-shift identities. We moreover show that in a large class of two- and three-loop diagrams it is possible to avoid squared propagators in the intermediate steps of setting up the differential equations.

  1. Monograph - The Numerical Integration of Ordinary Differential Equations.

    Science.gov (United States)

    Hull, T. E.

    The materials presented in this monograph are intended to be included in a course on ordinary differential equations at the upper division level in a college mathematics program. These materials provide an introduction to the numerical integration of ordinary differential equations, and they can be used to supplement a regular text on this…

  2. Differential equations driven by rough paths with jumps

    Science.gov (United States)

    Friz, Peter K.; Zhang, Huilin

    2018-05-01

    We develop the rough path counterpart of Itô stochastic integration and differential equations driven by general semimartingales. This significantly enlarges the classes of (Itô/forward) stochastic differential equations treatable with pathwise methods. A number of applications are discussed.

  3. Reduced minimax filtering by means of differential-algebraic equations

    NARCIS (Netherlands)

    V. Mallet; S. Zhuk (Sergiy)

    2011-01-01

    htmlabstractA reduced minimax state estimation approach is proposed for high-dimensional models. It is based on the reduction of the ordinary differential equation with high state space dimension to the low-dimensional Differential-Algebraic Equation (DAE) and on the subsequent application of the

  4. Invariant manifolds and applications for functional differential equations of mixed type

    NARCIS (Netherlands)

    Hupkes, Hermen Jan

    2008-01-01

    Differential equations posed on discrete lattices have by now become a popular modelling tool used in a wide variety of scientific disciplines. Such equations allow the inclusion of non-local interactions into models and lead to interesting dynamical and pattern-forming behaviour. Although many

  5. On the hierarchy of partially invariant submodels of differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Golovin, Sergey V [Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk 630090 (Russian Federation)], E-mail: sergey@hydro.nsc.ru

    2008-07-04

    It is noted that the partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PISs of the higher rank. This introduces a hierarchic structure in the set of all PISs of a given system of differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. The hierarchy simplifies the process of enumeration and analysis of partially invariant submodels to the given system of differential equations. In this framework, the complete classification of regular partially invariant solutions of ideal MHD equations is given.

  6. On the hierarchy of partially invariant submodels of differential equations

    Science.gov (United States)

    Golovin, Sergey V.

    2008-07-01

    It is noted that the partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PISs of the higher rank. This introduces a hierarchic structure in the set of all PISs of a given system of differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. The hierarchy simplifies the process of enumeration and analysis of partially invariant submodels to the given system of differential equations. In this framework, the complete classification of regular partially invariant solutions of ideal MHD equations is given.

  7. On the hierarchy of partially invariant submodels of differential equations

    International Nuclear Information System (INIS)

    Golovin, Sergey V

    2008-01-01

    It is noted that the partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PISs of the higher rank. This introduces a hierarchic structure in the set of all PISs of a given system of differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. The hierarchy simplifies the process of enumeration and analysis of partially invariant submodels to the given system of differential equations. In this framework, the complete classification of regular partially invariant solutions of ideal MHD equations is given

  8. A practical course in differential equations and mathematical modeling

    CERN Document Server

    Ibragimov , Nail H

    2009-01-01

    A Practical Course in Differential Equations and Mathematical Modelling is a unique blend of the traditional methods of ordinary and partial differential equations with Lie group analysis enriched by the author's own theoretical developments. The book which aims to present new mathematical curricula based on symmetry and invariance principles is tailored to develop analytic skills and working knowledge in both classical and Lie's methods for solving linear and nonlinear equations. This approach helps to make courses in differential equations, mathematical modelling, distributions and fundame

  9. Symbolic dynamics of the Lorenz equations

    International Nuclear Information System (INIS)

    Fang Hai-ping; Hao Bailin.

    1994-07-01

    The Lorenz equations are investigated in a wide range of parameters by using the method of symbolic dynamics. First, the systematics of stable periodic orbits in the Lorenz equations is compared with that of the one-dimensional cubic map, which shares the same discrete symmetry with the Lorenz model. The systematics is then ''corrected'' in such a way as to encompass all the known periodic windows of the Lorenz equations with only one exception. Second, in order to justify the above approach and to understand the exceptions, another 1D map with a discontinuity is extracted from an extension of the geometric Lorenz attractor and its symbolic dynamics is constructed. All this has to be done in light of symbolic dynamics of two-dimensional maps. Finally, symbolic dynamics for the actual Poincare return map of the Lorenz equations is constructed in a heuristic way. New periodic windows of the Lorenz equations and their parameters can be predicted from this symbolic dynamics in combination with the 1D cubic map. The extended geometric 2D Lorenz map and the 1D antisymmetric map with a discontinuity describe the topological aspects of the Lorenz equations to high accuracy. (author). 44 refs, 17 figs, 8 tabs

  10. Fractional neutron point kinetics equations for nuclear reactor dynamics

    International Nuclear Information System (INIS)

    Espinosa-Paredes, Gilberto; Polo-Labarrios, Marco-A.; Espinosa-Martinez, Erick-G.; Valle-Gallegos, Edmundo del

    2011-01-01

    The fractional point-neutron kinetics model for the dynamic behavior in a nuclear reactor is derived and analyzed in this paper. The fractional model retains the main dynamic characteristics of the neutron motion in which the relaxation time associated with a rapid variation in the neutron flux contains a fractional order, acting as exponent of the relaxation time, to obtain the best representation of a nuclear reactor dynamics. The physical interpretation of the fractional order is related with non-Fickian effects from the neutron diffusion equation point of view. The numerical approximation to the solution of the fractional neutron point kinetics model, which can be represented as a multi-term high-order linear fractional differential equation, is calculated by reducing the problem to a system of ordinary and fractional differential equations. The numerical stability of the fractional scheme is investigated in this work. Results for neutron dynamic behavior for both positive and negative reactivity and for different values of fractional order are shown and compared with the classic neutron point kinetic equations. Additionally, a related review with the neutron point kinetics equations is presented, which encompasses papers written in English about this research topic (as well as some books and technical reports) published since 1940 up to 2010.

  11. Partial differential equations of parabolic type

    CERN Document Server

    Friedman, Avner

    2008-01-01

    This accessible and self-contained treatment provides even readers previously unacquainted with parabolic and elliptic equations with sufficient background to understand research literature. Author Avner Friedman - Director of the Mathematical Biosciences Institute at The Ohio State University - offers a systematic and thorough approach that begins with the main facts of the general theory of second order linear parabolic equations. Subsequent chapters explore asymptotic behavior of solutions, semi-linear equations and free boundary problems, and the extension of results concerning fundamenta

  12. Backward stochastic differential equations from linear to fully nonlinear theory

    CERN Document Server

    Zhang, Jianfeng

    2017-01-01

    This book provides a systematic and accessible approach to stochastic differential equations, backward stochastic differential equations, and their connection with partial differential equations, as well as the recent development of the fully nonlinear theory, including nonlinear expectation, second order backward stochastic differential equations, and path dependent partial differential equations. Their main applications and numerical algorithms, as well as many exercises, are included. The book focuses on ideas and clarity, with most results having been solved from scratch and most theories being motivated from applications. It can be considered a starting point for junior researchers in the field, and can serve as a textbook for a two-semester graduate course in probability theory and stochastic analysis. It is also accessible for graduate students majoring in financial engineering.

  13. Field Method for Integrating the First Order Differential Equation

    Institute of Scientific and Technical Information of China (English)

    JIA Li-qun; ZHENG Shi-wang; ZHANG Yao-yu

    2007-01-01

    An important modern method in analytical mechanics for finding the integral, which is called the field-method, is used to research the solution of a differential equation of the first order. First, by introducing an intermediate variable, a more complicated differential equation of the first order can be expressed by two simple differential equations of the first order, then the field-method in analytical mechanics is introduced for solving the two differential equations of the first order. The conclusion shows that the field-method in analytical mechanics can be fully used to find the solutions of a differential equation of the first order, thus a new method for finding the solutions of the first order is provided.

  14. Partial differential equations & boundary value problems with Maple

    CERN Document Server

    Articolo, George A

    2009-01-01

    Partial Differential Equations and Boundary Value Problems with Maple presents all of the material normally covered in a standard course on partial differential equations, while focusing on the natural union between this material and the powerful computational software, Maple. The Maple commands are so intuitive and easy to learn, students can learn what they need to know about the software in a matter of hours- an investment that provides substantial returns. Maple''s animation capabilities allow students and practitioners to see real-time displays of the solutions of partial differential equations.  Maple files can be found on the books website. Ancillary list: Maple files- http://www.elsevierdirect.com/companion.jsp?ISBN=9780123747327  Provides a quick overview of the software w/simple commands needed to get startedIncludes review material on linear algebra and Ordinary Differential equations, and their contribution in solving partial differential equationsIncorporates an early introduction to Sturm-L...

  15. A New Factorisation of a General Second Order Differential Equation

    Science.gov (United States)

    Clegg, Janet

    2006-01-01

    A factorisation of a general second order ordinary differential equation is introduced from which the full solution to the equation can be obtained by performing two integrations. The method is compared with traditional methods for solving these type of equations. It is shown how the Green's function can be derived directly from the factorisation…

  16. Intuitive Understanding of Solutions of Partially Differential Equations

    Science.gov (United States)

    Kobayashi, Y.

    2008-01-01

    This article uses diagrams that help the observer see how solutions of the wave equation and heat conduction equation are obtained. The analytical approach cannot necessarily show the mechanisms of the key to the solution without transforming the differential equation into a more convenient form by separation of variables. The visual clues based…

  17. The 'strength' of a system of differential equations

    International Nuclear Information System (INIS)

    Hoenselaers, C.

    1977-01-01

    A review of Einstein's concept of ''strength'' of a system of differential equations is given. As an example the strength of the Einstein-Maxwell equations for non-null Maxwell field is calculated and shown to be the same as for the pure vacuum Einstein equations. (auth.)

  18. Energy preserving integration of bi-Hamiltonian partial differential equations

    NARCIS (Netherlands)

    Karasozen, B.; Simsek, G.

    2013-01-01

    The energy preserving average vector field (AVF) integrator is applied to evolutionary partial differential equations (PDEs) in bi-Hamiltonian form with nonconstant Poisson structures. Numerical results for the Korteweg de Vries (KdV) equation and for the Ito type coupled KdV equation confirm the

  19. Properties of meromorphic solutions to certain differential-difference equations

    Directory of Open Access Journals (Sweden)

    Xiaoguang Qi

    2013-06-01

    Full Text Available We consider the properties of meromorphic solutions to certain type of non-linear difference equations. Also we show the existence of meromorphic solutions with finite order for differential-difference equations related to the Fermat type functional equation. This article extends earlier results by Liu et al [12].

  20. Modified Chebyshev Collocation Method for Solving Differential Equations

    Directory of Open Access Journals (Sweden)

    M Ziaul Arif

    2015-05-01

    Full Text Available This paper presents derivation of alternative numerical scheme for solving differential equations, which is modified Chebyshev (Vieta-Lucas Polynomial collocation differentiation matrices. The Scheme of modified Chebyshev (Vieta-Lucas Polynomial collocation method is applied to both Ordinary Differential Equations (ODEs and Partial Differential Equations (PDEs cases. Finally, the performance of the proposed method is compared with finite difference method and the exact solution of the example. It is shown that modified Chebyshev collocation method more effective and accurate than FDM for some example given.

  1. Delay-differential equations and the Painlevé transcendents

    Science.gov (United States)

    Grammaticos, B.; Ramani, A.; Moreira, I. C.

    1993-07-01

    We apply the recently proposed integrability criterion for differential-difference systems (that blends the classical Painlevé analysis with singularity confinement for discrete systems) to a class of first-order differential-delay equations. Our analysis singles out the family of bi-Riccati equations, as integrability candidates. Among these equations that pass the test some are integrable in a straightforward way (usually by reduction to a standard Riccati equation for some transformed variable) while the remaining ones define new hysterodifferential forms of the Painlevé transcendental equations.

  2. Real-time optical laboratory solution of parabolic differential equations

    Science.gov (United States)

    Casasent, David; Jackson, James

    1988-01-01

    An optical laboratory matrix-vector processor is used to solve parabolic differential equations (the transient diffusion equation with two space variables and time) by an explicit algorithm. This includes optical matrix-vector nonbase-2 encoded laboratory data, the combination of nonbase-2 and frequency-multiplexed data on such processors, a high-accuracy optical laboratory solution of a partial differential equation, new data partitioning techniques, and a discussion of a multiprocessor optical matrix-vector architecture.

  3. Hojman's theorem of the third-order ordinary differential equation

    International Nuclear Information System (INIS)

    Hong-Sheng, Lü; Hong-Bin, Zhang; Shu-Long, Gu

    2009-01-01

    This paper extends Hojman's conservation law to the third-order differential equation. A new conserved quantity is constructed based on the Lie group of transformation generators of the equations of motion. The generators contain variations of the time and generalized coordinates. Two independent non-trivial conserved quantities of the third-order ordinary differential equation are obtained. A simple example is presented to illustrate the applications of the results. (general)

  4. A general comparison theorem for backward stochastic differential equations

    OpenAIRE

    Cohen, Samuel N.; Elliott, Robert J.; Pearce, Charles E. M.

    2010-01-01

    A useful result when dealing with backward stochastic differential equations is the comparison theorem of Peng (1992). When the equations are not based on Brownian motion, the comparison theorem no longer holds in general. In this paper we present a condition for a comparison theorem to hold for backward stochastic differential equations based on arbitrary martingales. This theorem applies to both vector and scalar situations. Applications to the theory of nonlinear expectat...

  5. Neutral Backward Stochastic Functional Differential Equations and Their Application

    OpenAIRE

    Wei, Wenning

    2013-01-01

    In this paper we are concerned with a new type of backward equations with anticipation which we call neutral backward stochastic functional differential equations. We obtain the existence and uniqueness and prove a comparison theorem. As an application, we discuss the optimal control of neutral stochastic functional differential equations, establish a Pontryagin maximum principle, and give an explicit optimal value for the linear optimal control.

  6. Dynamic optimization and differential games

    CERN Document Server

    Friesz, Terry L

    2010-01-01

    Dynamic Optimization and Differential Games has been written to address the increasing number of Operations Research and Management Science problems that involve the explicit consideration of time and of gaming among multiple agents. With end-of-chapter exercises throughout, it is a book that can be used both as a reference and as a textbook. It will be useful as a guide to engineers, operations researchers, applied mathematicians and social scientists whose work involves both the theoretical and computational aspects of dynamic optimization and differential games. Included throughout the text are detailed explanations of several original dynamic and game-theoretic mathematical models which are of particular relevance in today's technologically-driven-global economy: revenue management, oligopoly pricing, production planning, supply chain management, dynamic traffic assignment and dynamic congestion pricing. The book emphasizes deterministic theory, computational tools and applications associated with the stu...

  7. Parameter Estimation for Partial Differential Equations by Collage-Based Numerical Approximation

    Directory of Open Access Journals (Sweden)

    Xiaoyan Deng

    2009-01-01

    into a minimization problem of a function of several variables after the partial differential equation is approximated by a differential dynamical system. Then numerical schemes for solving this minimization problem are proposed, including grid approximation and ant colony optimization. The proposed schemes are applied to a parameter estimation problem for the Belousov-Zhabotinskii equation, and the results show that the proposed approximation method is efficient for both linear and nonlinear partial differential equations with respect to unknown parameters. At worst, the presented method provides an excellent starting point for traditional inversion methods that must first select a good starting point.

  8. Oscillation theory of linear differential equations

    Czech Academy of Sciences Publication Activity Database

    Došlý, Ondřej

    2000-01-01

    Roč. 36, č. 5 (2000), s. 329-343 ISSN 0044-8753 R&D Projects: GA ČR GA201/98/0677 Keywords : discrete oscillation theory %Sturm-Liouville equation%Riccati equation Subject RIV: BA - General Mathematics

  9. Reconstruction of dynamical equations for traffic flow

    OpenAIRE

    Kriso, S.; Friedrich, R.; Peinke, J.; Wagner, P.

    2001-01-01

    Traffic flow data collected by an induction loop detector on the highway close to Koeln-Nord are investigated with respect to their dynamics including the stochastic content. In particular we present a new method, with which the flow dynamics can be extracted directly from the measured data. As a result a Langevin equation for the traffic flow is obtained. From the deterministic part of the flow dynamics, stable fixed points are extracted and set into relation with common features of the fund...

  10. Effective action for stochastic partial differential equations

    International Nuclear Information System (INIS)

    Hochberg, David; Molina-Paris, Carmen; Perez-Mercader, Juan; Visser, Matt

    1999-01-01

    Stochastic partial differential equations (SPDEs) are the basic tool for modeling systems where noise is important. SPDEs are used for models of turbulence, pattern formation, and the structural development of the universe itself. It is reasonably well known that certain SPDEs can be manipulated to be equivalent to (nonquantum) field theories that nevertheless exhibit deep and important relationships with quantum field theory. In this paper we systematically extend these ideas: We set up a functional integral formalism and demonstrate how to extract all the one-loop physics for an arbitrary SPDE subject to arbitrary Gaussian noise. It is extremely important to realize that Gaussian noise does not imply that the field variables undergo Gaussian fluctuations, and that these nonquantum field theories are fully interacting. The limitation to one loop is not as serious as might be supposed: Experience with quantum field theories (QFTs) has taught us that one-loop physics is often quite adequate to give a good description of the salient issues. The limitation to one loop does, however, offer marked technical advantages: Because at one loop almost any field theory can be rendered finite using zeta function technology, we can sidestep the complications inherent in the Martin-Siggia-Rose formalism (the SPDE analog of the Becchi-Rouet-Stora-Tyutin formalism used in QFT) and instead focus attention on a minimalist approach that uses only the physical fields (this ''direct approach'' is the SPDE analog of canonical quantization using physical fields). After setting up the general formalism for the characteristic functional (partition function), we show how to define the effective action to all loops, and then focus on the one-loop effective action and its specialization to constant fields: the effective potential. The physical interpretation of the effective action and effective potential for SPDEs is addressed and we show that key features carry over from QFT to the case of

  11. Effective action for stochastic partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Hochberg, David [Laboratorio de Astrofisica Espacial y Fisica Fundamental, Apartado 50727, 28080 Madrid, (Spain); Centro de Astrobiologia, INTA, Carratera Ajalvir, Km. 4, 28850 Torrejon, Madrid, (Spain); Molina-Paris, Carmen [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Perez-Mercader, Juan [Laboratorio de Astrofisica Espacial y Fisica Fundamental, Apartado 50727, 28080 Madrid, (Spain); Visser, Matt [Physics Department, Washington University, Saint Louis, Missouri 63130-4899 (United States)

    1999-12-01

    Stochastic partial differential equations (SPDEs) are the basic tool for modeling systems where noise is important. SPDEs are used for models of turbulence, pattern formation, and the structural development of the universe itself. It is reasonably well known that certain SPDEs can be manipulated to be equivalent to (nonquantum) field theories that nevertheless exhibit deep and important relationships with quantum field theory. In this paper we systematically extend these ideas: We set up a functional integral formalism and demonstrate how to extract all the one-loop physics for an arbitrary SPDE subject to arbitrary Gaussian noise. It is extremely important to realize that Gaussian noise does not imply that the field variables undergo Gaussian fluctuations, and that these nonquantum field theories are fully interacting. The limitation to one loop is not as serious as might be supposed: Experience with quantum field theories (QFTs) has taught us that one-loop physics is often quite adequate to give a good description of the salient issues. The limitation to one loop does, however, offer marked technical advantages: Because at one loop almost any field theory can be rendered finite using zeta function technology, we can sidestep the complications inherent in the Martin-Siggia-Rose formalism (the SPDE analog of the Becchi-Rouet-Stora-Tyutin formalism used in QFT) and instead focus attention on a minimalist approach that uses only the physical fields (this ''direct approach'' is the SPDE analog of canonical quantization using physical fields). After setting up the general formalism for the characteristic functional (partition function), we show how to define the effective action to all loops, and then focus on the one-loop effective action and its specialization to constant fields: the effective potential. The physical interpretation of the effective action and effective potential for SPDEs is addressed and we show that key features carry over from

  12. Solving Differential Equations Analytically. Elementary Differential Equations. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Unit 335.

    Science.gov (United States)

    Goldston, J. W.

    This unit introduces analytic solutions of ordinary differential equations. The objective is to enable the student to decide whether a given function solves a given differential equation. Examples of problems from biology and chemistry are covered. Problem sets, quizzes, and a model exam are included, and answers to all items are provided. The…

  13. Optimal Control Strategies in a Two Dimensional Differential Game Using Linear Equation under a Perturbed System

    Directory of Open Access Journals (Sweden)

    Musa Danjuma SHEHU

    2008-06-01

    Full Text Available This paper lays emphasis on formulation of two dimensional differential games via optimal control theory and consideration of control systems whose dynamics is described by a system of Ordinary Differential equation in the form of linear equation under the influence of two controls U(. and V(.. Base on this, strategies were constructed. Hence we determine the optimal strategy for a control say U(. under a perturbation generated by the second control V(. within a given manifold M.

  14. A Priori Regularity of Parabolic Partial Differential Equations

    KAUST Repository

    Berkemeier, Francisco

    2018-05-13

    In this thesis, we consider parabolic partial differential equations such as the heat equation, the Fokker-Planck equation, and the porous media equation. Our aim is to develop methods that provide a priori estimates for solutions with singular initial data. These estimates are obtained by understanding the time decay of norms of solutions. First, we derive regularity results for the heat equation by estimating the decay of Lebesgue norms. Then, we apply similar methods to the Fokker-Planck equation with suitable assumptions on the advection and diffusion. Finally, we conclude by extending our techniques to the porous media equation. The sharpness of our results is confirmed by examining known solutions of these equations. The main contribution of this thesis is the use of functional inequalities to express decay of norms as differential inequalities. These are then combined with ODE methods to deduce estimates for the norms of solutions and their derivatives.

  15. The Extended Fractional Subequation Method for Nonlinear Fractional Differential Equations

    OpenAIRE

    Zhao, Jianping; Tang, Bo; Kumar, Sunil; Hou, Yanren

    2012-01-01

    An extended fractional subequation method is proposed for solving fractional differential equations by introducing a new general ansätz and Bäcklund transformation of the fractional Riccati equation with known solutions. Being concise and straightforward, this method is applied to the space-time fractional coupled Burgers’ equations and coupled MKdV equations. As a result, many exact solutions are obtained. It is shown that the considered method provides a very effective, convenient, and powe...

  16. Partial differential equations of mathematical physics and integral equations

    CERN Document Server

    Guenther, Ronald B

    1996-01-01

    This book was written to help mathematics students and those in the physical sciences learn modern mathematical techniques for setting up and analyzing problems. The mathematics used is rigorous, but not overwhelming, while the authors carefully model physical situations, emphasizing feedback among a beginning model, physical experiments, mathematical predictions, and the subsequent refinement and reevaluation of the physical model itself. Chapter 1 begins with a discussion of various physical problems and equations that play a central role in applications. The following chapters take up the t

  17. On the relation between elementary partial difference equations and partial differential equations

    NARCIS (Netherlands)

    van den Berg, I.P.

    1998-01-01

    The nonstandard stroboscopy method links discrete-time ordinary difference equations of first-order and continuous-time, ordinary differential equations of first order. We extend this method to the second order, and also to an elementary, yet general class of partial difference/differential

  18. Hilbert space methods in partial differential equations

    CERN Document Server

    Showalter, Ralph E

    1994-01-01

    This graduate-level text opens with an elementary presentation of Hilbert space theory sufficient for understanding the rest of the book. Additional topics include boundary value problems, evolution equations, optimization, and approximation.1979 edition.

  19. FORSIM-6, Automatic Solution of Coupled Differential Equation System

    International Nuclear Information System (INIS)

    Carver, M.B.; Stewart, D.G.; Blair, J.M.; Selander, W.N.

    1983-01-01

    1 - Description of problem or function: The FORSIM program is a versatile package which automates the solution of coupled differential equation systems. The independent variables are time, and up to three space coordinates, and the equations may be any mixture of partial and/or ordinary differential equations. The philosophy of the program is to provide a tool which will solve a system of differential equations for a user who has basic but unspecialized knowledge of numerical analysis and FORTRAN. The equations to be solved, together with the initial conditions and any special instructions, may be specified by the user in a single FORTRAN subroutine, although he may write a number of routines if this is more suitable. These are then loaded with the control routines, which perform the solution and any requested input and output. 2 - Method of solution: Partial differential equations are automatically converted into sets of coupled ordinary differential equations by variable order discretization in the spatial dimensions. These and other ordinary differential equations are integrated continuously in time using efficient variable order, variable step, error-controlled algorithms

  20. Equations of motion for train derailment dynamics

    Science.gov (United States)

    2007-09-11

    This paper describes a planar or two-dimensional model to : examine the gross motions of rail cars in a generalized train : derailment. Three coupled, second-order differential equations : are derived from Newton's Laws to calculate rigid-body car : ...

  1. Dynamic Euler-Bernoulli Beam Equation: Classification and Reductions

    Directory of Open Access Journals (Sweden)

    R. Naz

    2015-01-01

    Full Text Available We study a dynamic fourth-order Euler-Bernoulli partial differential equation having a constant elastic modulus and area moment of inertia, a variable lineal mass density g(x, and the applied load denoted by f(u, a function of transverse displacement u(t,x. The complete Lie group classification is obtained for different forms of the variable lineal mass density g(x and applied load f(u. The equivalence transformations are constructed to simplify the determining equations for the symmetries. The principal algebra is one-dimensional and it extends to two- and three-dimensional algebras for an arbitrary applied load, general power-law, exponential, and log type of applied loads for different forms of g(x. For the linear applied load case, we obtain an infinite-dimensional Lie algebra. We recover the Lie symmetry classification results discussed in the literature when g(x is constant with variable applied load f(u. For the general power-law and exponential case the group invariant solutions are derived. The similarity transformations reduce the fourth-order partial differential equation to a fourth-order ordinary differential equation. For the power-law applied load case a compatible initial-boundary value problem for the clamped and free end beam cases is formulated. We deduce the fourth-order ordinary differential equation with appropriate initial and boundary conditions.

  2. A generalized fractional sub-equation method for fractional differential equations with variable coefficients

    International Nuclear Information System (INIS)

    Tang, Bo; He, Yinnian; Wei, Leilei; Zhang, Xindong

    2012-01-01

    In this Letter, a generalized fractional sub-equation method is proposed for solving fractional differential equations with variable coefficients. Being concise and straightforward, this method is applied to the space–time fractional Gardner equation with variable coefficients. As a result, many exact solutions are obtained including hyperbolic function solutions, trigonometric function solutions and rational solutions. It is shown that the considered method provides a very effective, convenient and powerful mathematical tool for solving many other fractional differential equations in mathematical physics. -- Highlights: ► Study of fractional differential equations with variable coefficients plays a role in applied physical sciences. ► It is shown that the proposed algorithm is effective for solving fractional differential equations with variable coefficients. ► The obtained solutions may give insight into many considerable physical processes.

  3. Solutions of system of P1 equations without use of auxiliary differential equations coupled

    International Nuclear Information System (INIS)

    Martinez, Aquilino Senra; Silva, Fernando Carvalho da; Cardoso, Carlos Eduardo Santos

    2000-01-01

    The system of P1 equations is composed by two equations coupled itself one for the neutron flux and other for the current. Usually this system is solved by definitions of two integrals parameters, which are named slowing down densities of the flux and the current. Hence, the system P1 can be change from integral to only two differential equations. However, there are two new differentials equations that may be solved with the initial system. The present work analyzes this procedure and studies a method, which solve the P1 equations directly, without definitions of slowing down densities. (author)

  4. Calculating differential Galois groups of parametrized differential equations, with applications to hypertranscendence

    OpenAIRE

    Hardouin, Charlotte; Minchenko, Andrei; Ovchinnikov, Alexey

    2015-01-01

    The main motivation of our work is to create an efficient algorithm that decides hypertranscendence of solutions of linear differential equations, via the parameterized differential and Galois theories. To achieve this, we expand the representation theory of linear differential algebraic groups and develop new algorithms that calculate unipotent radicals of parameterized differential Galois groups for differential equations whose coefficients are rational functions. P. Berman and M.F. Singer ...

  5. A new sine-Gordon equation expansion algorithm to investigate some special nonlinear differential equations

    International Nuclear Information System (INIS)

    Yan Zhenya

    2005-01-01

    A new transformation method is developed using the general sine-Gordon travelling wave reduction equation and a generalized transformation. With the aid of symbolic computation, this method can be used to seek more types of solutions of nonlinear differential equations, which include not only the known solutions derived by some known methods but new solutions. Here we choose the double sine-Gordon equation, the Magma equation and the generalized Pochhammer-Chree (PC) equation to illustrate the method. As a result, many types of new doubly periodic solutions are obtained. Moreover when using the method to these special nonlinear differential equations, some transformations are firstly needed. The method can be also extended to other nonlinear differential equations

  6. LIE GROUPS AND NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS: INVARIANT DISCRETIZATION VERSUS DIFFERENTIAL APPROXIMATION

    Directory of Open Access Journals (Sweden)

    Decio Levi

    2013-10-01

    Full Text Available We briefly review two different methods of applying Lie group theory in the numerical solution of ordinary differential equations. On specific examples we show how the symmetry preserving discretization provides difference schemes for which the “first differential approximation” is invariant under the same Lie group as the original ordinary differential equation.

  7. On the singular perturbations for fractional differential equation.

    Science.gov (United States)

    Atangana, Abdon

    2014-01-01

    The goal of this paper is to examine the possible extension of the singular perturbation differential equation to the concept of fractional order derivative. To achieve this, we presented a review of the concept of fractional calculus. We make use of the Laplace transform operator to derive exact solution of singular perturbation fractional linear differential equations. We make use of the methodology of three analytical methods to present exact and approximate solution of the singular perturbation fractional, nonlinear, nonhomogeneous differential equation. These methods are including the regular perturbation method, the new development of the variational iteration method, and the homotopy decomposition method.

  8. An Efficient Series Solution for Nonlinear Multiterm Fractional Differential Equations

    Directory of Open Access Journals (Sweden)

    Moh’d Khier Al-Srihin

    2017-01-01

    Full Text Available In this paper, we introduce an efficient series solution for a class of nonlinear multiterm fractional differential equations of Caputo type. The approach is a generalization to our recent work for single fractional differential equations. We extend the idea of the Taylor series expansion method to multiterm fractional differential equations, where we overcome the difficulty of computing iterated fractional derivatives, which are difficult to be computed in general. The terms of the series are obtained sequentially using a closed formula, where only integer derivatives have to be computed. Several examples are presented to illustrate the efficiency of the new approach and comparison with the Adomian decomposition method is performed.

  9. On the Singular Perturbations for Fractional Differential Equation

    Directory of Open Access Journals (Sweden)

    Abdon Atangana

    2014-01-01

    Full Text Available The goal of this paper is to examine the possible extension of the singular perturbation differential equation to the concept of fractional order derivative. To achieve this, we presented a review of the concept of fractional calculus. We make use of the Laplace transform operator to derive exact solution of singular perturbation fractional linear differential equations. We make use of the methodology of three analytical methods to present exact and approximate solution of the singular perturbation fractional, nonlinear, nonhomogeneous differential equation. These methods are including the regular perturbation method, the new development of the variational iteration method, and the homotopy decomposition method.

  10. Rational approximations to solutions of linear differential equations.

    Science.gov (United States)

    Chudnovsky, D V; Chudnovsky, G V

    1983-08-01

    Rational approximations of Padé and Padé type to solutions of differential equations are considered. One of the main results is a theorem stating that a simultaneous approximation to arbitrary solutions of linear differential equations over C(x) cannot be "better" than trivial ones implied by the Dirichlet box principle. This constitutes, in particular, the solution in the linear case of Kolchin's problem that the "Roth's theorem" holds for arbitrary solutions of algebraic differential equations. Complete effective proofs for several valuations are presented based on the Wronskian methods and graded subrings of Picard-Vessiot extensions.

  11. Periodicity and positivity of a class of fractional differential equations.

    Science.gov (United States)

    Ibrahim, Rabha W; Ahmad, M Z; Mohammed, M Jasim

    2016-01-01

    Fractional differential equations have been discussed in this study. We utilize the Riemann-Liouville fractional calculus to implement it within the generalization of the well known class of differential equations. The Rayleigh differential equation has been generalized of fractional second order. The existence of periodic and positive outcome is established in a new method. The solution is described in a fractional periodic Sobolev space. Positivity of outcomes is considered under certain requirements. We develop and extend some recent works. An example is constructed.

  12. Analysis of stability for stochastic delay integro-differential equations.

    Science.gov (United States)

    Zhang, Yu; Li, Longsuo

    2018-01-01

    In this paper, we concern stability of numerical methods applied to stochastic delay integro-differential equations. For linear stochastic delay integro-differential equations, it is shown that the mean-square stability is derived by the split-step backward Euler method without any restriction on step-size, while the Euler-Maruyama method could reproduce the mean-square stability under a step-size constraint. We also confirm the mean-square stability of the split-step backward Euler method for nonlinear stochastic delay integro-differential equations. The numerical experiments further verify the theoretical results.

  13. International conference on differential and difference equations with applications

    CERN Document Server

    Caraballo, Tomás; Kloeden, Peter; Graef, John

    2018-01-01

    This book gathers papers from the International Conference on Differential & Difference Equations and Applications 2017 (ICDDEA 2017), held in Lisbon, Portugal on June 5-9, 2017. The editors have compiled the strongest research presented at the conference, providing readers with valuable insights into new trends in the field, as well as applications and high-level survey results. The goal of the ICDDEA was to promote fruitful collaborations between researchers in the fields of differential and difference equations. All areas of differential and difference equations are represented, with a special emphasis on applications.

  14. A neuro approach to solve fuzzy Riccati differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Shahrir, Mohammad Shazri, E-mail: mshazri@gmail.com [InstitutSainsMatematik, Universiti Malaya 50603 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur (Malaysia); Telekom Malaysia, R& D TM Innovation Centre, LingkaranTeknokrat Timur, 63000 Cyberjaya, Selangor (Malaysia); Kumaresan, N., E-mail: drnk2008@gmail.com; Kamali, M. Z. M.; Ratnavelu, Kurunathan [InstitutSainsMatematik, Universiti Malaya 50603 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur (Malaysia)

    2015-10-22

    There are many applications of optimal control theory especially in the area of control systems in engineering. In this paper, fuzzy quadratic Riccati differential equation is estimated using neural networks (NN). Previous works have shown reliable results using Runge-Kutta 4th order (RK4). The solution can be achieved by solving the 1st Order Non-linear Differential Equation (ODE) that is found commonly in Riccati differential equation. Research has shown improved results relatively to the RK4 method. It can be said that NN approach shows promising results with the advantage of continuous estimation and improved accuracy that can be produced over RK4.

  15. Darboux transformations and linear parabolic partial differential equations

    International Nuclear Information System (INIS)

    Arrigo, Daniel J.; Hickling, Fred

    2002-01-01

    Solutions for a class of linear parabolic partial differential equation are provided. These solutions are obtained by first solving a system of (n+1) nonlinear partial differential equations. This system arises as the coefficients of a Darboux transformation and is equivalent to a matrix Burgers' equation. This matrix equation is solved using a generalized Hopf-Cole transformation. The solutions for the original equation are given in terms of solutions of the heat equation. These results are applied to the (1+1)-dimensional Schroedinger equation where all bound state solutions are obtained for a 2n-parameter family of potentials. As a special case, the solutions for integral members of the regular and modified Poeschl-Teller potentials are recovered. (author). Letter-to-the-editor

  16. Workload Characterization of CFD Applications Using Partial Differential Equation Solvers

    Science.gov (United States)

    Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)

    1998-01-01

    Workload characterization is used for modeling and evaluating of computing systems at different levels of detail. We present workload characterization for a class of Computational Fluid Dynamics (CFD) applications that solve Partial Differential Equations (PDEs). This workload characterization focuses on three high performance computing platforms: SGI Origin2000, EBM SP-2, a cluster of Intel Pentium Pro bases PCs. We execute extensive measurement-based experiments on these platforms to gather statistics of system resource usage, which results in workload characterization. Our workload characterization approach yields a coarse-grain resource utilization behavior that is being applied for performance modeling and evaluation of distributed high performance metacomputing systems. In addition, this study enhances our understanding of interactions between PDE solver workloads and high performance computing platforms and is useful for tuning these applications.

  17. Nonchaoticity of Ordinary Differential Equations Describing Autonomous Transcriptional Regulatory Circuits

    International Nuclear Information System (INIS)

    Li Pengfei; Hu Gang; Chen Runsheng

    2008-01-01

    Gene transcriptional regulation (TR) processes are often described by coupled nonlinear ordinary differential equations (ODEs). When the dimension of TR circuits is high (e.g. n ≥ 3) the motions of the corresponding ODEs may, very probably, show self-sustained oscillations and chaos. On the other hand, chaoticity may be harmful for the normal biological functions of TR processes. In this letter we numerically study the dynamics of 3-gene TR ODEs in great detail, and investigate many 4-, 5-, and 10-gene TR systems by randomly choosing figures and parameters in the conventionally accepted ranges. And we find that oscillations are very seldom and no chaotic motion is observed, even if the dimension of systems is sufficiently high (n ≥ 3). It is argued that the observation of nonchaoticity of these ODEs agrees with normal functions of actual TR processes

  18. Modelos matemáticos para la evaluación económica: los modelos dinámicos basados en ecuaciones diferenciales Mathematical models for economic evaluation: dynamic models based on differential equations

    Directory of Open Access Journals (Sweden)

    Roberto Pradas Velasco

    2009-10-01

    Full Text Available La utilización conjunta de árboles de decisión y modelos epidemiológicos basados en ecuaciones diferenciales es un método apropiado para la evaluación económica de medidas profilácticas ante enfermedades infecciosas. Estos modelos permiten combinar el comportamiento dinámico de la enfermedad con el consumo de recursos sanitarios. Para ilustrar este tipo de modelos se ajusta un sistema dinámico de ecuaciones diferenciales al comportamiento epidémico de la gripe en España, con el fin de proyectar el impacto epidemiológico de la vacunación antigripal. Los resultados del modelo dinámico se implementan en un diagrama con estructura de árbol para medir el consumo de recursos sanitarios y su repercusión en términos monetarios.The joint utilization of both decision trees and epidemiological models based on differential equations is an appropriate method for the economic evaluation of preventative interventions applied to infectious diseases. These models can combine the dynamic pattern of the disease together with health resource consumption. To illustrate this type of model, we adjusted a dynamic system of differential equations to the epidemic behavior of influenza in Spain, with a view to projecting the epidemiologic impact of influenza vaccination. The results of the epidemic model are implemented in a diagram with the structure of a decision tree so that health resource consumption and the economic implications can be calculated.

  19. Ordinary differential equations with applications in molecular biology.

    Science.gov (United States)

    Ilea, M; Turnea, M; Rotariu, M

    2012-01-01

    Differential equations are of basic importance in molecular biology mathematics because many biological laws and relations appear mathematically in the form of a differential equation. In this article we presented some applications of mathematical models represented by ordinary differential equations in molecular biology. The vast majority of quantitative models in cell and molecular biology are formulated in terms of ordinary differential equations for the time evolution of concentrations of molecular species. Assuming that the diffusion in the cell is high enough to make the spatial distribution of molecules homogenous, these equations describe systems with many participating molecules of each kind. We propose an original mathematical model with small parameter for biological phospholipid pathway. All the equations system includes small parameter epsilon. The smallness of epsilon is relative to the size of the solution domain. If we reduce the size of the solution region the same small epsilon will result in a different condition number. It is clear that the solution for a smaller region is less difficult. We introduce the mathematical technique known as boundary function method for singular perturbation system. In this system, the small parameter is an asymptotic variable, different from the independent variable. In general, the solutions of such equations exhibit multiscale phenomena. Singularly perturbed problems form a special class of problems containing a small parameter which may tend to zero. Many molecular biology processes can be quantitatively characterized by ordinary differential equations. Mathematical cell biology is a very active and fast growing interdisciplinary area in which mathematical concepts, techniques, and models are applied to a variety of problems in developmental medicine and bioengineering. Among the different modeling approaches, ordinary differential equations (ODE) are particularly important and have led to significant advances

  20. Handbook of Nonlinear Partial Differential Equations

    CERN Document Server

    Polyanin, Andrei D

    2011-01-01

    New to the Second Edition More than 1,000 pages with over 1,500 new first-, second-, third-, fourth-, and higher-order nonlinear equations with solutions Parabolic, hyperbolic, elliptic, and other systems of equations with solutions Some exact methods and transformations Symbolic and numerical methods for solving nonlinear PDEs with Maple(t), Mathematica(R), and MATLAB(R) Many new illustrative examples and tables A large list of references consisting of over 1,300 sources To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology. They

  1. Partial differential equations and calculus of variations

    CERN Document Server

    Leis, Rolf

    1988-01-01

    This volume contains 18 invited papers by members and guests of the former Sonderforschungsbereich in Bonn (SFB 72) who, over the years, collaborated on the research group "Solution of PDE's and Calculus of Variations". The emphasis is on existence and regularity results, on special equations of mathematical physics and on scattering theory.

  2. Degenerate parabolic stochastic partial differential equations

    Czech Academy of Sciences Publication Activity Database

    span class="emphasis">Hofmanová, Martinaspan>

    2013-01-01

    Roč. 123, č. 12 (2013), s. 4294-4336 ISSN 0304-4149 R&D Projects: GA ČR GAP201/10/0752 Institutional support: RVO:67985556 Keywords : kinetic solutions * degenerate stochastic parabolic equations Subject RIV: BA - General Mathematics Impact factor: 1.046, year: 2013 http://library.utia.cas.cz/separaty/2013/SI/hofmanova-0397241.pdf

  3. On the Existence and the Applications of Modified Equations for Stochastic Differential Equations

    KAUST Repository

    Zygalakis, K. C.

    2011-01-01

    In this paper we describe a general framework for deriving modified equations for stochastic differential equations (SDEs) with respect to weak convergence. Modified equations are derived for a variety of numerical methods, such as the Euler or the Milstein method. Existence of higher order modified equations is also discussed. In the case of linear SDEs, using the Gaussianity of the underlying solutions, we derive an SDE which the numerical method solves exactly in the weak sense. Applications of modified equations in the numerical study of Langevin equations is also discussed. © 2011 Society for Industrial and Applied Mathematics.

  4. Hadamard-type fractional differential equations, inclusions and inequalities

    CERN Document Server

    Ahmad, Bashir; Ntouyas, Sotiris K; Tariboon, Jessada

    2017-01-01

    This book focuses on the recent development of fractional differential equations, integro-differential equations, and inclusions and inequalities involving the Hadamard derivative and integral. Through a comprehensive study based in part on their recent research, the authors address the issues related to initial and boundary value problems involving Hadamard type differential equations and inclusions as well as their functional counterparts. The book covers fundamental concepts of multivalued analysis and introduces a new class of mixed initial value problems involving the Hadamard derivative and Riemann-Liouville fractional integrals. In later chapters, the authors discuss nonlinear Langevin equations as well as coupled systems of Langevin equations with fractional integral conditions. Focused and thorough, this book is a useful resource for readers and researchers interested in the area of fractional calculus.

  5. High-precision numerical integration of equations in dynamics

    Science.gov (United States)

    Alesova, I. M.; Babadzanjanz, L. K.; Pototskaya, I. Yu.; Pupysheva, Yu. Yu.; Saakyan, A. T.

    2018-05-01

    An important requirement for the process of solving differential equations in Dynamics, such as the equations of the motion of celestial bodies and, in particular, the motion of cosmic robotic systems is high accuracy at large time intervals. One of effective tools for obtaining such solutions is the Taylor series method. In this connection, we note that it is very advantageous to reduce the given equations of Dynamics to systems with polynomial (in unknowns) right-hand sides. This allows us to obtain effective algorithms for finding the Taylor coefficients, a priori error estimates at each step of integration, and an optimal choice of the order of the approximation used. In the paper, these questions are discussed and appropriate algorithms are considered.

  6. Delay differential equations recent advances and new directions

    CERN Document Server

    Balachandran, Balakumar; Gilsinn, David E

    2009-01-01

    This is a cohesive set of contributions from leading experts on the theory and applications of functional and delay differential equations. The book focuses on theory, symbolic, and numerical methods, which show the practical applications of the concepts.

  7. International Conference on Differential Equations and Nonlinear Mechanics

    CERN Document Server

    2001-01-01

    The International Conference on Differential Equations and Nonlinear Mechanics was hosted by the University of Central Florida in Orlando from March 17-19, 1999. One of the conference days was dedicated to Professor V. Lakshmikantham in th honor of his 75 birthday. 50 well established professionals (in differential equations, nonlinear analysis, numerical analysis, and nonlinear mechanics) attended the conference from 13 countries. Twelve of the attendees delivered hour long invited talks and remaining thirty-eight presented invited forty-five minute talks. In each of these talks, the focus was on the recent developments in differential equations and nonlinear mechanics and their applications. This book consists of 29 papers based on the invited lectures, and I believe that it provides a good selection of advanced topics of current interest in differential equations and nonlinear mechanics. I am indebted to the Department of Mathematics, College of Arts and Sciences, Department of Mechanical, Materials and Ae...

  8. Lectures on the practical solution of differential equations

    International Nuclear Information System (INIS)

    Dresner, L.

    1979-11-01

    This report comprises lectures on the practical solution of ordinary and partial differential equations given in the In-Hours Continuing Education Program for Scientific and Technical Personnel at Oak Ridge National Laboratory

  9. Pythagoras, Binomial, and de Moivre Revisited Through Differential Equations

    OpenAIRE

    Singh, Jitender; Bajaj, Renu

    2018-01-01

    The classical Pythagoras theorem, binomial theorem, de Moivre's formula, and numerous other deductions are made using the uniqueness theorem for the initial value problems in linear ordinary differential equations.

  10. Fractional differential equation with the fuzzy initial condition

    Directory of Open Access Journals (Sweden)

    Sadia Arshad

    2011-02-01

    Full Text Available In this paper we study the existence and uniqueness of the solution for a class of fractional differential equation with fuzzy initial value. The fractional derivatives are considered in the Riemann-Liouville sense.

  11. Systems of Differential Equations with Skew-Symmetric, Orthogonal Matrices

    Science.gov (United States)

    Glaister, P.

    2008-01-01

    The solution of a system of linear, inhomogeneous differential equations is discussed. The particular class considered is where the coefficient matrix is skew-symmetric and orthogonal, and where the forcing terms are sinusoidal. More general matrices are also considered.

  12. Partial differential equation models in the socio-economic sciences

    KAUST Repository

    Burger, Martin; Caffarelli, Luis; Markowich, Peter A.

    2014-01-01

    Mathematical models based on partial differential equations (PDEs) have become an integral part of quantitative analysis in most branches of science and engineering, recently expanding also towards biomedicine and socio-economic sciences

  13. ALMOST AUTOMORPHIC MILD SOLUTIONS TO SOME FRACTIONAL DELAY DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    In this paper,a new and general existence and uniqueness theorem of almost automorphic mild solutions is obtained for some fractional delay differential equations,using sectorial operators and the Banach contraction principle.

  14. OSCILLATION OF IMPULSIVE HYPERBOLIC PARTIAL DIFFERENTIAL EQUATION WITH DELAY

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, oscillation properties of the solutions of impulsive hyperbolic equation with delay are investigated via the method of differential inequalities. Sufficient conditions for oscillations of the solutions are established.

  15. ACCURATE ESTIMATES OF CHARACTERISTIC EXPONENTS FOR SECOND ORDER DIFFERENTIAL EQUATION

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper, a second order linear differential equation is considered, and an accurate estimate method of characteristic exponent for it is presented. Finally, we give some examples to verify the feasibility of our result.

  16. Subroutine for series solutions of linear differential equations

    International Nuclear Information System (INIS)

    Tasso, H.; Steuerwald, J.

    1976-02-01

    A subroutine for Taylor series solutions of systems of ordinary linear differential equations is descriebed. It uses the old idea of Lie series but allows simple implementation and is time-saving for symbolic manipulations. (orig.) [de

  17. Periodic solutions and bifurcations of delay-differential equations

    International Nuclear Information System (INIS)

    He Jihuan

    2005-01-01

    In this Letter a simple but effective iteration method is proposed to search for limit cycles or bifurcation curves of delay-differential equations. An example is given to illustrate its convenience and effectiveness

  18. Stability criteria for neutral delay differential-algebraic equations

    Directory of Open Access Journals (Sweden)

    FAN Ni

    2013-10-01

    Full Text Available The asymptotic stability of neutral delay differential-algebraic equations is studied in this paper.Two stability criteria described by evaluating a corresponding harmonic function on the boundary of a torus region are presented.

  19. Introduction to partial differential equations and Hilbert space methods

    CERN Document Server

    Gustafson, Karl E

    1997-01-01

    Easy-to-use text examines principal method of solving partial differential equations, 1st-order systems, computation methods, and much more. Over 600 exercises, with answers for many. Ideal for a 1-semester or full-year course.

  20. Symmetry of solutions of differential equations Mythily Ramaswamy ...

    Indian Academy of Sciences (India)

    2007-11-02

    .. • crystals, plants, flowers, insects....... • yet, there are symmetry break ups ! • When is a profile symmetric ? • If a physical phenomenon is modelled by a differential equation, when is the solution symmetric? • Can we ...