WorldWideScience

Sample records for dietary restriction-mediated lifespan

  1. Calorie restriction-mediated replicative lifespan extension in yeast is non-cell autonomous.

    Directory of Open Access Journals (Sweden)

    Szu-Chieh Mei

    2015-01-01

    Full Text Available In laboratory yeast strains with Sir2 and Fob1 function, wild-type NAD+ salvage is required for calorie restriction (CR to extend replicative lifespan. CR does not significantly alter steady state levels of intracellular NAD+ metabolites. However, levels of Sir2 and Pnc1, two enzymes that sequentially convert NAD+ to nicotinic acid (NA, are up-regulated during CR. To test whether factors such as NA might be exported by glucose-restricted mother cells to survive later generations, we developed a replicative longevity paradigm in which mother cells are moved after 15 generations on defined media. The experiment reveals that CR mother cells lose the longevity benefit of CR when evacuated from their local environment to fresh CR media. Addition of NA or nicotinamide riboside (NR allows a moved mother to maintain replicative longevity despite the move. Moreover, conditioned medium from CR-treated cells transmits the longevity benefit of CR to moved mother cells. Evidence suggests the existence of a longevity factor that is dialyzable but is neither NA nor NR, and indicates that Sir2 is not required for the longevity factor to be produced or to act. Data indicate that the benefit of glucose-restriction is transmitted from cell to cell in budding yeast, suggesting that glucose restriction may benefit neighboring cells and not only an individual cell.

  2. Dietary restriction depends on nutrient composition to extend chronological lifespan in budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Wu, Ziyun; Liu, Shao Quan; Huang, Dejian

    2013-01-01

    The traditional view on dietary restriction has been challenged with regard to extending lifespan of the fruit fly Drosophila melanogaster. This is because studies have shown that changing the balance of dietary components without reduction of dietary intake can increase lifespan, suggesting that nutrient composition other than dietary restriction play a pivotal role in regulation of longevity. However, this opinion has not been reflected in yeast aging studies. Inspired by this new finding, response surface methodology was applied to evaluate the relationships between nutrients (glucose, amino acids and yeast nitrogen base) and lifespan as well as biomass production in four Saccharomyces cerevisiae strains (wild-type BY4742, sch9Δ, tor1Δ, and sir2Δ mutants) using a high throughput screening assay. Our results indicate that lifespan extension by a typical dietary restriction regime was dependent on the nutrients in media and that nutrient composition was a key determinant for yeast longevity. Four different yeast strains were cultured in various media, which showed similar response surface trends in biomass production and viability at day two but greatly different trends in lifespan. The pH of aging media was dependent on glucose concentration and had no apparent correlation with lifespan under conditions where amino acids and YNB were varied widely, and simply buffering the pH of media could extend lifespan significantly. Furthermore, the results showed that strain sch9Δ was more responsive in nutrient-sensing than the other three strains, suggesting that Sch9 (serine-threonine kinase pathway) was a major nutrient-sensing factor that regulates cell growth, cell size, metabolism, stress resistance and longevity. Overall, our findings support the notion that nutrient composition might be a more effective way than simple dietary restriction to optimize lifespan and biomass production from yeast to other organisms.

  3. A role for autophagy in the extension of lifespan by dietary restriction in C. elegans.

    Directory of Open Access Journals (Sweden)

    Malene Hansen

    2008-02-01

    Full Text Available In many organisms, dietary restriction appears to extend lifespan, at least in part, by down-regulating the nutrient-sensor TOR (Target Of Rapamycin. TOR inhibition elicits autophagy, the large-scale recycling of cytoplasmic macromolecules and organelles. In this study, we asked whether autophagy might contribute to the lifespan extension induced by dietary restriction in C. elegans. We find that dietary restriction and TOR inhibition produce an autophagic phenotype and that inhibiting genes required for autophagy prevents dietary restriction and TOR inhibition from extending lifespan. The longevity response to dietary restriction in C. elegans requires the PHA-4 transcription factor. We find that the autophagic response to dietary restriction also requires PHA-4 activity, indicating that autophagy is a transcriptionally regulated response to food limitation. In spite of the rejuvenating effect that autophagy is predicted to have on cells, our findings suggest that autophagy is not sufficient to extend lifespan. Long-lived daf-2 insulin/IGF-1 receptor mutants require both autophagy and the transcription factor DAF-16/FOXO for their longevity, but we find that autophagy takes place in the absence of DAF-16. Perhaps autophagy is not sufficient for lifespan extension because although it provides raw material for new macromolecular synthesis, DAF-16/FOXO must program the cells to recycle this raw material into cell-protective longevity proteins.

  4. The thioredoxin TRX-1 regulates adult lifespan extension induced by dietary restriction in Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Fierro-Gonzalez, Juan Carlos [Karolinska Institute, Center for Biosciences at NOVUM, Department of Biosciences and Nutrition, S-141 83 Huddinge (Sweden); Gonzalez-Barrios, Maria [Centro Andaluz de Biologia del Desarrollo (CABD-CSIC), Departamento de Fisiologia, Anatomia y Biologia Celular, Universidad Pablo de Olavide, E-41013 Sevilla (Spain); Miranda-Vizuete, Antonio, E-mail: amirviz@upo.es [Centro Andaluz de Biologia del Desarrollo (CABD-CSIC), Departamento de Fisiologia, Anatomia y Biologia Celular, Universidad Pablo de Olavide, E-41013 Sevilla (Spain); Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, E-41013 Sevilla (Spain); Swoboda, Peter, E-mail: peter.swoboda@ki.se [Karolinska Institute, Center for Biosciences at NOVUM, Department of Biosciences and Nutrition, S-141 83 Huddinge (Sweden)

    2011-03-18

    Highlights: {yields} First in vivo data for thioredoxin in dietary-restriction-(DR)-induced longevity. {yields} Thioredoxin (trx-1) loss suppresses longevity of eat-2 mutant, a genetic DR model. {yields} trx-1 overexpression extends wild-type longevity, but not that of eat-2 mutant. {yields} Longevity by dietary deprivation (DD), a non-genetic DR model, requires trx-1. {yields} trx-1 expression in ASJ neurons of aging adults is increased in response to DD. -- Abstract: Dietary restriction (DR) is the only environmental intervention known to extend adult lifespan in a wide variety of animal models. However, the genetic and cellular events that mediate the anti-aging programs induced by DR remain elusive. Here, we used the nematode Caenorhabditis elegans to provide the first in vivo evidence that a thioredoxin (TRX-1) regulates adult lifespan extension induced by DR. We found that deletion of the gene trx-1 completely suppressed the lifespan extension caused by mutation of eat-2, a genetic surrogate of DR in the worm. However, trx-1 deletion only partially suppressed the long lifespan caused by mutation of the insulin-like receptor gene daf-2 or by mutation of the sensory cilia gene osm-5. A trx-1::GFP translational fusion expressed from its own promoter in ASJ neurons (Ptrx-1::trx-1::GFP) rescued the trx-1 deletion-mediated suppression of the lifespan extension caused by mutation of eat-2. This rescue was not observed when trx-1::GFP was expressed from the ges-1 promoter in the intestine. In addition, overexpression of Ptrx-1::trx-1::GFP extended lifespan in wild type, but not in eat-2 mutants. trx-1 deletion almost completely suppressed the lifespan extension induced by dietary deprivation (DD), a non-genetic, nutrient-based model of DR in the worm. Moreover, DD upregulated the expression of a trx-1 promoter-driven GFP reporter gene (Ptrx-1::GFP) in ASJ neurons of aging adults, but not that of control Pgpa-9::GFP (which is also expressed in ASJ neurons). We propose

  5. The thioredoxin TRX-1 regulates adult lifespan extension induced by dietary restriction in Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Fierro-Gonzalez, Juan Carlos; Gonzalez-Barrios, Maria; Miranda-Vizuete, Antonio; Swoboda, Peter

    2011-01-01

    Highlights: → First in vivo data for thioredoxin in dietary-restriction-(DR)-induced longevity. → Thioredoxin (trx-1) loss suppresses longevity of eat-2 mutant, a genetic DR model. → trx-1 overexpression extends wild-type longevity, but not that of eat-2 mutant. → Longevity by dietary deprivation (DD), a non-genetic DR model, requires trx-1. → trx-1 expression in ASJ neurons of aging adults is increased in response to DD. -- Abstract: Dietary restriction (DR) is the only environmental intervention known to extend adult lifespan in a wide variety of animal models. However, the genetic and cellular events that mediate the anti-aging programs induced by DR remain elusive. Here, we used the nematode Caenorhabditis elegans to provide the first in vivo evidence that a thioredoxin (TRX-1) regulates adult lifespan extension induced by DR. We found that deletion of the gene trx-1 completely suppressed the lifespan extension caused by mutation of eat-2, a genetic surrogate of DR in the worm. However, trx-1 deletion only partially suppressed the long lifespan caused by mutation of the insulin-like receptor gene daf-2 or by mutation of the sensory cilia gene osm-5. A trx-1::GFP translational fusion expressed from its own promoter in ASJ neurons (Ptrx-1::trx-1::GFP) rescued the trx-1 deletion-mediated suppression of the lifespan extension caused by mutation of eat-2. This rescue was not observed when trx-1::GFP was expressed from the ges-1 promoter in the intestine. In addition, overexpression of Ptrx-1::trx-1::GFP extended lifespan in wild type, but not in eat-2 mutants. trx-1 deletion almost completely suppressed the lifespan extension induced by dietary deprivation (DD), a non-genetic, nutrient-based model of DR in the worm. Moreover, DD upregulated the expression of a trx-1 promoter-driven GFP reporter gene (Ptrx-1::GFP) in ASJ neurons of aging adults, but not that of control Pgpa-9::GFP (which is also expressed in ASJ neurons). We propose that DR activates TRX-1

  6. Epigenetic mechanisms underlying lifespan and age-related effects of dietary restriction and the ketogenic diet.

    Science.gov (United States)

    Moreno, Cesar L; Mobbs, Charles V

    2017-11-05

    Aging constitutes the central risk factor for major diseases including many forms of cancer, neurodegeneration, and cardiovascular diseases. The aging process is characterized by both global and tissue-specific changes in gene expression across taxonomically diverse species. While aging has historically been thought to entail cell-autonomous, even stochastic changes, recent evidence suggests that modulation of this process can be hierarchal, wherein manipulations of nutrient-sensing neurons (e.g., in the hypothalamus) produce peripheral effects that may modulate the aging process itself. The most robust intervention extending lifespan, plausibly impinging on the aging process, involves different modalities of dietary restriction (DR). Lifespan extension by DR is associated with broad protection against diseases (natural and engineered). Here we review potential epigenetic processes that may link lifespan to age-related diseases, particularly in the context of DR and (other) ketogenic diets, focusing on brain and hypothalamic mechanisms. Copyright © 2016. Published by Elsevier B.V.

  7. Intestinal IRE1 Is Required for Increased Triglyceride Metabolism and Longer Lifespan under Dietary Restriction.

    Science.gov (United States)

    Luis, Nuno Miguel; Wang, Lifen; Ortega, Mauricio; Deng, Hansong; Katewa, Subhash D; Li, Patrick Wai-Lun; Karpac, Jason; Jasper, Heinrich; Kapahi, Pankaj

    2016-10-25

    Dietary restriction (DR) is one of the most robust lifespan-extending interventions in animals. The beneficial effects of DR involve a metabolic adaptation toward increased triglyceride usage. The regulatory mechanism and the tissue specificity of this metabolic switch remain unclear. Here, we show that the IRE1/XBP1 endoplasmic reticulum (ER) stress signaling module mediates metabolic adaptation upon DR in flies by promoting triglyceride synthesis and accumulation in enterocytes (ECs) of the Drosophila midgut. Consistently, IRE1/XBP1 function in ECs is required for increased longevity upon DR. We further identify sugarbabe, a Gli-like zinc-finger transcription factor, as a key mediator of the IRE1/XBP1-regulated induction of de novo lipogenesis in ECs. Overexpression of sugarbabe rescues metabolic and lifespan phenotypes of IRE1 loss-of-function conditions. Our study highlights the critical role of metabolic adaptation of the intestinal epithelium for DR-induced lifespan extension and explores the IRE1/XBP1 signaling pathway regulating this adaptation and influencing lifespan. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Genetic perturbation of key central metabolic genes extends lifespan in Drosophila and affects response to dietary restriction.

    Science.gov (United States)

    Talbert, Matthew E; Barnett, Brittany; Hoff, Robert; Amella, Maria; Kuczynski, Kate; Lavington, Erik; Koury, Spencer; Brud, Evgeny; Eanes, Walter F

    2015-09-22

    There is a connection between nutrient inputs, energy-sensing pathways, lifespan variation and aging. Despite the role of metabolic enzymes in energy homeostasis and their metabolites as nutrient signals, little is known about how their gene expression impacts lifespan. In this report, we use P-element mutagenesis in Drosophila to study the effect on lifespan of reductions in expression of seven central metabolic enzymes, and contrast the effects on normal diet and dietary restriction. The major observation is that for five of seven genes, the reduction of gene expression extends lifespan on one or both diets. Two genes are involved in redox balance, and we observe that lower activity genotypes significantly extend lifespan. The hexokinases also show extension of lifespan with reduced gene activity. Since both affect the ATP/ADP ratio, this connects with the role of AMP-activated protein kinase as an energy sensor in regulating lifespan and mediating caloric restriction. These genes possess significant expression variation in natural populations, and our experimental genotypes span this level of natural activity variation. Our studies link the readout of energy state with the perturbation of the genes of central metabolism and demonstrate their effect on lifespan. © 2015 The Author(s).

  9. A Systems Approach to Reverse Engineer Lifespan Extension by Dietary Restriction.

    Science.gov (United States)

    Hou, Lei; Wang, Dan; Chen, Di; Liu, Yi; Zhang, Yue; Cheng, Hao; Xu, Chi; Sun, Na; McDermott, Joseph; Mair, William B; Han, Jing-Dong J

    2016-03-08

    Dietary restriction (DR) is the most powerful natural means to extend lifespan. Although several genes can mediate responses to alternate DR regimens, no single genetic intervention has recapitulated the full effects of DR, and no unified system is known for different DR regimens. Here we obtain temporally resolved transcriptomes during calorie restriction and intermittent fasting in Caenorhabditis elegans and find that early and late responses involve metabolism and cell cycle/DNA damage, respectively. We uncover three network modules of DR regulators by their target specificity. By genetic manipulations of nodes representing discrete modules, we induce transcriptomes that progressively resemble DR as multiple nodes are perturbed. Targeting all three nodes simultaneously results in extremely long-lived animals that are refractory to DR. These results and dynamic simulations demonstrate that extensive feedback controls among regulators may be leveraged to drive the regulatory circuitry to a younger steady state, recapitulating the full effect of DR. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. A key role for neuropeptide Y in lifespan extension and cancer suppression via dietary restriction.

    Science.gov (United States)

    Chiba, Takuya; Tamashiro, Yukari; Park, Daeui; Kusudo, Tatsuya; Fujie, Ryoko; Komatsu, Toshimitsu; Kim, Sang Eun; Park, Seongjoon; Hayashi, Hiroko; Mori, Ryoichi; Yamashita, Hitoshi; Chung, Hae Young; Shimokawa, Isao

    2014-03-31

    Knowledge of genes essential for the life-extending effect of dietary restriction (DR) in mammals is incomplete. In this study, we found that neuropeptide Y (Npy), which mediates physiological adaptations to energy deficits, is an essential link between DR and longevity in mice. The lifespan-prolonging effect of lifelong 30% DR was attenuated in Npy-null mice, as was the effect on the occurrence of spontaneous tumors and oxidative stress responses in comparison to wild-type mice. In contrast, the physiological processes activated during adaptation to DR, including inhibition of anabolic signaling molecules (insulin and insulin-like growth factor-1), modulation of adipokine and corticosterone levels, and preferential fatty acid oxidation, were unaffected by the absence of Npy. These results suggest a key role for Npy in mediating the effects of DR. We also provide evidence that most of the physiological adaptations to DR could be achieved in mice without Npy.

  11. Target of rapamycin signalling mediates the lifespan-extending effects of dietary restriction by essential amino acid alteration

    NARCIS (Netherlands)

    Emran, S.; Yang, M.Y.; He, X.L.; Zandveld, J.; Piper, M.D.W.

    2014-01-01

    Dietary restriction (DR), defined as a moderate reduction in food intake short of malnutrition, has been shown to extend healthy lifespan in a diverse range of organisms, from yeast to primates. Reduced signalling through the insulin/IGF-like (IIS) and Target of Rapamycin (TOR) signalling pathways

  12. A review of associations between family or shared meal frequency and dietary and weight status outcomes across the lifespan.

    Science.gov (United States)

    Fulkerson, Jayne A; Larson, Nicole; Horning, Melissa; Neumark-Sztainer, Dianne

    2014-01-01

    To summarize the research literature on associations between family meal frequency and dietary outcomes as well as weight status across the lifespan. Reviewed literature of family or shared meals with dietary and weight outcomes in youth, adults, and older adults. Across the lifespan, eating with others, particularly family, is associated with healthier dietary outcomes. Among children and adolescents, these findings appear to be consistent for both boys and girls, whereas mixed findings are seen by gender for adult men and women. The findings of associations between family or shared meals and weight outcomes across the lifespan are less consistent and more complicated than those of dietary outcomes. Now is the time for the field to improve understanding of the mechanisms involved in the positive associations seen with family meal frequency, and to move forward with implementing interventions aimed at increasing the frequency of, and improving the quality of, food served at family meals, and evaluating their impact. Given the more limited findings of associations between family or shared meals and weight outcomes, capitalizing on the positive benefits of family and shared meals while addressing the types of foods served, portion sizes, and other potential mechanisms may have a significant impact on obesity prevention and reduction. Future research recommendations are provided. Copyright © 2014 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  13. Calories or protein? The effect of dietary restriction on lifespan in rodents is explained by calories alone.

    Science.gov (United States)

    Speakman, J R; Mitchell, S E; Mazidi, M

    2016-12-15

    Almost exactly 100years ago Osborne and colleagues demonstrated that restricting the food intake of a small number of female rats extended their lifespan. In the 1930s experiments on the impact of diet on lifespan were extended by Slonaker, and subsequently McCay. Slonaker concluded that there was a strong impact of protein intake on lifespan, while McCay concluded that calories are the main factor causing differences in lifespan when animals are restricted (Calorie restriction or CR). Hence from the very beginning the question of whether food restriction acts on lifespan via reduced calorie intake or reduced protein intake was disputed. Subsequent work supported the idea that calories were the dominant factor. More recently, however, this role has again been questioned, particularly in studies of insects. Here we review the data regarding previous studies of protein and calorie restriction in rodents. We show that increasing CR (with simultaneous protein restriction: PR) increases lifespan, and that CR with no PR generates an identical effect. None of the residual variation in the impact of CR (with PR) on lifespan could be traced to variation in macronutrient content of the diet. Other studies show that low protein content in the diet does increase median lifespan, but the effect is smaller than the CR effect. We conclude that CR is a valid phenomenon in rodents that cannot be explained by changes in protein intake, but that there is a separate phenomenon linking protein intake to lifespan, which acts over a different range of protein intakes than is typical in CR studies. This suggests there may be a fundamental difference in the responses of insects and rodents to CR. This may be traced to differences in the physiology of these groups, or reflect a major methodological difference between 'restriction' studies performed on rodents and insects. We suggest that studies where the diet is supplied ad libitum, but diluted with inert components, should perhaps be

  14. SOD isoforms play no role in lifespan in ad lib or dietary restricted conditions, but mutational inactivation of SOD-1 reduces life extension by cold.

    Science.gov (United States)

    Yen, Kelvin; Patel, Harshil B; Lublin, Alex L; Mobbs, Charles V

    2009-03-01

    The free radical theory of aging is one of the most prominent theories of aging and senescence, but has yet to be definitively proven. If free radicals are the cause of senescence, then the cellular anti-oxidant system should play a large role in lifespan determination. Because superoxide dismutase (SOD) plays a central role in detoxifying superoxide radicals, we have examined the effects of mutational inactivation of each isoform of sod on normal lifespan and lifespan extension by dietary restriction (DR) or cold-/hypothermic-induced longevity (CHIL). We find no significant decrease in lifespan for control worms or worms undergoing DR when sod isoforms are knocked-out even though sod mutational inactivation produces hypersensitivity to paraquat. In contrast, sod-1 inactivation significantly reduces lifespan extension by CHIL, suggesting that CHIL requires a specific genetic program beyond simple reduction in metabolic rate. Furthermore, CHIL paradoxically increases lifespan while reducing resistance to oxidative stress, further disassociating oxidative stress resistance and lifespan.

  15. d-Allulose, a stereoisomer of d-fructose, extends Caenorhabditis elegans lifespan through a dietary restriction mechanism: A new candidate dietary restriction mimetic.

    Science.gov (United States)

    Shintani, Tomoya; Sakoguchi, Hirofumi; Yoshihara, Akihide; Izumori, Ken; Sato, Masashi

    2017-12-02

    Dietary restriction (DR) is an effective intervention known to increase lifespan in a wide variety of organisms. DR also delays the onset of aging-associated diseases. DR mimetics, compounds that can mimic the effects of DR, have been intensively explored. d-Allulose (d-Alu), the C3-epimer of d-fructose, is a rare sugar that has various health benefits, including anti-hyperglycemia and anti-obesity effects. Here, we report that d-Alu increased the lifespan of Caenorhabditis elegans both under monoxenic and axenic culture conditions. d-Alu did not further extend the lifespan of the long-lived DR model eat-2 mutant, strongly indicating that the effect is related to DR. However, d-Alu did not reduce the food intake of wild-type C. elegans. To explore the mechanisms of the d-Alu longevity effect, we examined the lifespan of d-Alu-treated mutants deficient for nutrient sensing pathway-related genes daf-16, sir-2.1, aak-2, and skn-1. As a result, d-Alu increased the lifespan of the daf-16, sir-2.1, and skn-1 mutants, but not the aak-2 mutant, indicating that the lifespan extension was dependent on the energy sensor, AMP-activated protein kinase (AMPK). d-Alu also enhanced the mRNA expression and enzyme activities of superoxide dismutase (SOD) and catalase. From these findings, we conclude that d-Alu extends lifespan by increasing oxidative stress resistance through a DR mechanism, making it a candidate DR mimetic. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. New Genes Tied to Endocrine, Metabolic, and Dietary Regulation of Lifespan from a Caenorhabditis elegans Genomic RNAi Screen.

    Directory of Open Access Journals (Sweden)

    2005-07-01

    Full Text Available Most of our knowledge about the regulation of aging comes from mutants originally isolated for other phenotypes. To ask whether our current view of aging has been affected by selection bias, and to deepen our understanding of known longevity pathways, we screened a genomic Caenorhabditis elegans RNAi library for clones that extend lifespan. We identified 23 new longevity genes affecting signal transduction, the stress response, gene expression, and metabolism and assigned these genes to specific longevity pathways. Our most important findings are (i that dietary restriction extends C. elegans' lifespan by down-regulating expression of key genes, including a gene required for methylation of many macromolecules, (ii that integrin signaling is likely to play a general, evolutionarily conserved role in lifespan regulation, and (iii that specific lipophilic hormones may influence lifespan in a DAF-16/FOXO-dependent fashion. Surprisingly, of the new genes that have conserved sequence domains, only one could not be associated with a known longevity pathway. Thus, our current view of the genetics of aging has probably not been distorted substantially by selection bias.

  17. New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen.

    Directory of Open Access Journals (Sweden)

    Malene Hansen

    2005-07-01

    Full Text Available Most of our knowledge about the regulation of aging comes from mutants originally isolated for other phenotypes. To ask whether our current view of aging has been affected by selection bias, and to deepen our understanding of known longevity pathways, we screened a genomic Caenorhabditis elegans RNAi library for clones that extend lifespan. We identified 23 new longevity genes affecting signal transduction, the stress response, gene expression, and metabolism and assigned these genes to specific longevity pathways. Our most important findings are (i that dietary restriction extends C. elegans' lifespan by down-regulating expression of key genes, including a gene required for methylation of many macromolecules, (ii that integrin signaling is likely to play a general, evolutionarily conserved role in lifespan regulation, and (iii that specific lipophilic hormones may influence lifespan in a DAF-16/FOXO-dependent fashion. Surprisingly, of the new genes that have conserved sequence domains, only one could not be associated with a known longevity pathway. Thus, our current view of the genetics of aging has probably not been distorted substantially by selection bias.

  18. Life-span extension by dietary restriction is mediated by NLP-7 signaling and coelomocyte endocytosis in C. elegans.

    Science.gov (United States)

    Park, Sang-Kyu; Link, Christopher D; Johnson, Thomas E

    2010-02-01

    Recent studies have shown that the rate of aging can be modulated by diverse interventions. Dietary restriction is the most widely used intervention to promote longevity; however, the mechanisms underlying the effect of dietary restriction remain elusive. In a previous study, we identified two novel genes, nlp-7 and cup-4, required for normal longevity in Caenorhabditis elegans. nlp-7 is one of a set of neuropeptide-like protein genes; cup-4 encodes an ion-channel involved in endocytosis by coelomocytes. Here, we assess whether nlp-7 and cup-4 mediate longevity increases by dietary restriction. RNAi of nlp-7 or cup-4 significantly reduces the life span of the eat-2 mutant, a genetic model of dietary restriction, but has no effect on the life span of long-lived mutants resulting from reduced insulin/IGF-1 signaling or dysfunction of the mitochondrial electron transport chain. The life-span extension observed in wild-type N2 worms by dietary restriction using bacterial dilution is prevented significantly in nlp-7 and cup-4 mutants. RNAi knockdown of genes encoding candidate receptors of NLP-7 and genes involved in endocytosis by coelomocytes also specifically shorten the life span of the eat-2 mutant. We conclude that two novel pathways, NLP-7 signaling and endocytosis by coelomocytes, are required for life extension under dietary restriction in C. elegans.

  19. The interplay among dietary fat, sugar, protein and açai (Euterpe oleracea Mart.) pulp in modulating lifespan and reproduction in a Tephritid fruit fly

    OpenAIRE

    Liedo, Pablo; Carey, James R.; Ingram, Donald K.; Zou, Sige

    2012-01-01

    Macronutrient balance is a critical contributor in modulating lifespan and health. Consumption of diets rich in fruits and vegetables provides numerous health benefits. The interactions among macronutrients and botanicals and how they influence aging and health remain elusive. Here we employed a nutritional geometry approach to investigate the interplay among dietary fat, sugar, protein and antioxidant- and polyphenolic-rich freeze-dried açai pulp in modulating lifespan and reproductive outpu...

  20. Drosophila development, physiology, behavior, and lifespan are influenced by altered dietary composition.

    Science.gov (United States)

    Ormerod, Kiel G; LePine, Olivia K; Abbineni, Prabhodh S; Bridgeman, Justin M; Coorssen, Jens R; Mercier, A Joffre; Tattersall, Glenn J

    2017-07-03

    Diet profoundly influences the behavior of animals across many phyla. Despite this, most laboratories using model organisms, such as Drosophila, use multiple, different, commercial or custom-made media for rearing their animals. In addition to measuring growth, fecundity and longevity, we used several behavioral and physiological assays to determine if and how altering food media influence wild-type (Canton S) Drosophila melanogaster, at larval, pupal, and adult stages. Comparing 2 commonly used commercial food media we observed several key developmental and morphological differences. Third-instar larvae and pupae developmental timing, body weight and size, and even lifespan significantly differed between the 2 diets, and some of these differences persisted into adulthood. Diet was also found to produce significantly different thermal preference, locomotory capacity for geotaxis, feeding rates, and lower muscle response to hormonal stimulation. There were no differences, however, in adult thermal preferences, in the number or viability of eggs laid, or in olfactory learning and memory between the diets. We characterized the composition of the 2 diets and found particularly significant differences in cholesterol and (phospho)lipids between them. Notably, diacylglycerol (DAG) concentrations vary substantially between the 2 diets, and may contribute to key phenotypic differences, including lifespan. Overall, the data confirm that 2 different diets can profoundly influence the behavior, physiology, morphology and development of wild-type Drosophila, with greater behavioral and physiologic differences occurring during the larval stages.

  1. Autism through the Lifespan

    Science.gov (United States)

    ... Information Publications Awards Partners Contact Us ¿Qué es Autismo? Donate Home What is Autism? What is Autism? ... Information Publications Awards Partners Contact Us ¿Qué es Autismo? Autism through the Lifespan Home / Living with Autism / ...

  2. Lifespan and Glucose Metabolism in Insulin Receptor Mutant Mice

    Directory of Open Access Journals (Sweden)

    Takahiko Shimizu

    2011-01-01

    Full Text Available Insulin/insulin-like growth factor type 1 signaling regulates lifespan and resistance to oxidative stress in worms, flies, and mammals. In a previous study, we revealed that insulin receptor (IR mutant mice, which carry a homologous mutation found in the long-lived daf-2 mutant of Caenorhabditis elegans, showed enhanced resistance to oxidative stress cooperatively modulated by sex hormones and dietary signals (Baba et al., (2005. We herein investigated the lifespan of IR mutant mice to evaluate the biological significance of insulin signaling in mice. Under normoxia, mutant male mice had a lifespan comparable to that of wild-type male mice. IR mutant female mice also showed a lifespan similar to that of wild-type female mice, in spite of the fact that the IR mutant female mice acquired more resistance to oxidative stress than IR mutant male mice. On the other hand, IR mutant male and female mice both showed insulin resistance with hyperinsulinemia, but they did not develop hyperglycemia throughout their entire lifespan. These data indicate that the IR mutation does not impact the lifespan in mice, thus suggesting that insulin signaling might have a limited effect on the lifespan of mice.

  3. Lifespan Extension by the Antioxidant Curcumin in Drosophila Melanogaster

    Science.gov (United States)

    Suckow, Brianne K.; Suckow, Mark A.

    2006-01-01

    The interest in health benefits associated with consumption of anti-oxidants has led to investigations examining the possibility that diets rich in anti-oxidants promote lifespan extension. Studies using the standard fruit fly (Drosophila melanogaster) model of longevity have shown that the antioxidants vitamin E and N-acetyl cysteine prolong lifespan. Turmeric is a spice which has been consumed and used for medicinal purposes for many centuries in Asia. Interestingly, turmeric contains the powerful antioxidant, curcumin. To test the hypothesis that dietary curcumin prolongs lifespan, groups of 30 male D. melanogaster were cultured on media containing 1) no additive; 2) 0.5 mg of curcumin/gram of media; 3) 1.0 mg of curumin/gram of media; 4) 1.0μg of the superoxide dismutase inhibitor, disulfiram/gram of media; 5) 10 g of disulfiram/gram of media; 6) 0.5 mg curcumin and 1.0 g disulfiram/ gram of media; 7) 1.0 mg curcumin and 1.0 g disulfiram/ gram of media; 8) 0.5 mg curcumin and 10 g disulfiram/gram of media; or 9) 1.0 mg curcumin and 10 g disulfiram/gram of media. The number of live fruitflies was noted daily and mean lifespan determined for each treatment group. A significant (P≤0.05) increase in mean lifespan was noted only for the fruitflies maintained on 1.0 mg of curcumin/gram of media; this effect was reversed by addition of disulfiram. These results demonstrate that dietary curcumin prolongs lifespan and that this effect is associated with enhanced superoxide dismutase activity. PMID:23675008

  4. Malate and fumarate extend lifespan in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Clare B Edwards

    Full Text Available Malate, the tricarboxylic acid (TCA cycle metabolite, increased lifespan and thermotolerance in the nematode C. elegans. Malate can be synthesized from fumarate by the enzyme fumarase and further oxidized to oxaloacetate by malate dehydrogenase with the accompanying reduction of NAD. Addition of fumarate also extended lifespan, but succinate addition did not, although all three intermediates activated nuclear translocation of the cytoprotective DAF-16/FOXO transcription factor and protected from paraquat-induced oxidative stress. The glyoxylate shunt, an anabolic pathway linked to lifespan extension in C. elegans, reversibly converts isocitrate and acetyl-CoA to succinate, malate, and CoA. The increased longevity provided by malate addition did not occur in fumarase (fum-1, glyoxylate shunt (gei-7, succinate dehydrogenase flavoprotein (sdha-2, or soluble fumarate reductase F48E8.3 RNAi knockdown worms. Therefore, to increase lifespan, malate must be first converted to fumarate, then fumarate must be reduced to succinate by soluble fumarate reductase and the mitochondrial electron transport chain complex II. Reduction of fumarate to succinate is coupled with the oxidation of FADH2 to FAD. Lifespan extension induced by malate depended upon the longevity regulators DAF-16 and SIR-2.1. Malate supplementation did not extend the lifespan of long-lived eat-2 mutant worms, a model of dietary restriction. Malate and fumarate addition increased oxygen consumption, but decreased ATP levels and mitochondrial membrane potential suggesting a mild uncoupling of oxidative phosphorylation. Malate also increased NADPH, NAD, and the NAD/NADH ratio. Fumarate reduction, glyoxylate shunt activity, and mild mitochondrial uncoupling likely contribute to the lifespan extension induced by malate and fumarate by increasing the amount of oxidized NAD and FAD cofactors.

  5. Sorbitol treatment extends lifespan and induces the osmotic stress response in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Devon eChandler-Brown

    2015-10-01

    Full Text Available The response to osmotic stress is a highly conserved process for adapting to changing environmental conditions. Prior studies have shown that hyperosmolarity by addition of sorbitol to the growth medium is sufficient to increase both chronological and replicative lifespan in the budding yeast, Saccharomyces cerevisiae. Here we report a similar phenomenon in the nematode Caenorhabditis elegans. Addition of sorbitol to the nematode growth medium induces an adaptive osmotic response and increases C. elegans lifespan by about 35%. Lifespan extension from 5% sorbitol behaves similarly to dietary restriction in a variety of genetic backgrounds, increasing lifespan additively with mutation of daf-2(e1370 and independently of daf-16(mu86, sir-2.1(ok434, aak-2(ok524, and hif-1(ia04. Dietary restriction by bacterial deprivation or mutation of eat-2(ad1113 fails to further extend lifespan in the presence of 5% sorbitol. Two mutants with constitutive activation of the osmotic response, osm-5(p813 and osm-7(n1515, were found to be long-lived, and lifespan extension from sorbitol required the glycerol biosynthetic enzymes GPDH-1 and GPDH-2. Taken together, these observations demonstrate that exposure to sorbitol at levels sufficient to induce an adaptive osmotic response extends lifespan in worms and define the osmotic stress response pathway as a longevity pathway conserved between yeast and nematodes.

  6. Effect of taurine and N-acetylcysteine on methionine restriction-mediated adiposity resistance.

    Science.gov (United States)

    Elshorbagy, Amany K; Valdivia-Garcia, Maria; Mattocks, Dwight A L; Plummer, Jason D; Orentreich, David S; Orentreich, Norman; Refsum, Helga; Perrone, Carmen E

    2013-04-01

    Methionine-restricted (MR) rats, which are lean and insulin sensitive, have low serum total cysteine (tCys) and taurine and decreased hepatic expression and activity indices of stearoyl-coenzyme A desaturase-1 (SCD1). These effects are partly or completely reversed by cysteine supplementation. We investigated whether reversal of MR phenotypes can be achieved by other sulfur compounds, namely taurine or N-acetylcysteine (NAC). MR and control-fed (CF) rats were supplemented with taurine (0.5%) or NAC (0.5%) for 12weeks. Adiposity, serum sulfur amino acids (SAA), Scd1 gene expression in liver and white adipose tissue, and SCD1 activity indices (calculated from serum fatty acid profile) were monitored. Taurine supplementation of MR rats did not restore weight gain or hepatic Scd1 expression or indices to CF levels, but further decreased adiposity. Taurine supplementation of CF rats did not affect adiposity, but lowered triglyceridemia. NAC supplementation in MR rats raised tCys and partly or completely reversed MR effects on weight, fat %, Scd1 expression in liver and white adipose tissue, and estimated SCD1 activity. In CF rats, NAC decreased body fat % and lowered SCD1-18 activity index (Ptaurine as a mediator of increased adiposity produced by cysteine in MR, and show that NAC, similar to L-cysteine, blocks anti-obesity effects of MR. Our data show that dietary SAA can influence adiposity in part through mechanisms that converge on SCD1 function. This may have implications for understanding and preventing human obesity. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Undine Kruegel

    2011-09-01

    Full Text Available Aging is characterized by the accumulation of damaged cellular macromolecules caused by declining repair and elimination pathways. An integral component employed by cells to counter toxic protein aggregates is the conserved ubiquitin/proteasome system (UPS. Previous studies have described an age-dependent decline of proteasomal function and increased longevity correlates with sustained proteasome capacity in centenarians and in naked mole rats, a long-lived rodent. Proof for a direct impact of enhanced proteasome function on longevity, however, is still lacking. To determine the importance of proteasome function in yeast aging, we established a method to modulate UPS capacity by manipulating levels of the UPS-related transcription factor Rpn4. While cells lacking RPN4 exhibit a decreased non-adaptable proteasome pool, loss of UBR2, an ubiquitin ligase that regulates Rpn4 turnover, results in elevated Rpn4 levels, which upregulates UPS components. Increased UPS capacity significantly enhances replicative lifespan (RLS and resistance to proteotoxic stress, while reduced UPS capacity has opposing consequences. Despite tight transcriptional co-regulation of the UPS and oxidative detoxification systems, the impact of proteasome capacity on lifespan is independent of the latter, since elimination of Yap1, a key regulator of the oxidative stress response, does not affect lifespan extension of cells with higher proteasome capacity. Moreover, since elevated proteasome capacity results in improved clearance of toxic huntingtin fragments in a yeast model for neurodegenerative diseases, we speculate that the observed lifespan extension originates from prolonged elimination of damaged proteins in old mother cells. Epistasis analyses indicate that proteasome-mediated modulation of lifespan is at least partially distinct from dietary restriction, Tor1, and Sir2. These findings demonstrate that UPS capacity determines yeast RLS by a mechanism that is distinct

  8. Workplace flexibility across the lifespan

    OpenAIRE

    Bal, Pieter; Jansen, Paul G W

    2016-01-01

    As demographic changes impact the workplace, governments, organizations and workers arelooking for ways to sustain optimal working lives at higher ages. Workplace flexibility has beenintroduced as a potential way workers can have more satisfying working lives until theirretirement ages. This paper presents a critical review of the literature on workplace flexibilityacross the lifespan. It discusses how flexibility has been conceptualized across differentdisciplines, and postulates a definitio...

  9. Assimilation of endogenous nicotinamide riboside is essential for calorie restriction-mediated life span extension in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lu, Shu-Ping; Kato, Michiko; Lin, Su-Ju

    2009-06-19

    NAD(+) (nicotinamide adenine dinucleotide) is an essential cofactor involved in various biological processes including calorie restriction-mediated life span extension. Administration of nicotinamide riboside (NmR) has been shown to ameliorate deficiencies related to aberrant NAD(+) metabolism in both yeast and mammalian cells. However, the biological role of endogenous NmR remains unclear. Here we demonstrate that salvaging endogenous NmR is an integral part of NAD(+) metabolism. A balanced NmR salvage cycle is essential for calorie restriction-induced life span extension and stress resistance in yeast. Our results also suggest that partitioning of the pyridine nucleotide flux between the classical salvage cycle and the NmR salvage branch might be modulated by the NAD(+)-dependent Sir2 deacetylase. Furthermore, two novel deamidation steps leading to nicotinic acid mononucleotide and nicotinic acid riboside production are also uncovered that further underscore the complexity and flexibility of NAD(+) metabolism. In addition, utilization of extracellular nicotinamide mononucleotide requires prior conversion to NmR mediated by a periplasmic phosphatase Pho5. Conversion to NmR may thus represent a strategy for the transport and assimilation of large nonpermeable NAD(+) precursors. Together, our studies provide a molecular basis for how NAD(+) homeostasis factors confer metabolic flexibility.

  10. Assimilation of Endogenous Nicotinamide Riboside Is Essential for Calorie Restriction-mediated Life Span Extension in Saccharomyces cerevisiae*

    Science.gov (United States)

    Lu, Shu-Ping; Kato, Michiko; Lin, Su-Ju

    2009-01-01

    NAD+ (nicotinamide adenine dinucleotide) is an essential cofactor involved in various biological processes including calorie restriction-mediated life span extension. Administration of nicotinamide riboside (NmR) has been shown to ameliorate deficiencies related to aberrant NAD+ metabolism in both yeast and mammalian cells. However, the biological role of endogenous NmR remains unclear. Here we demonstrate that salvaging endogenous NmR is an integral part of NAD+ metabolism. A balanced NmR salvage cycle is essential for calorie restriction-induced life span extension and stress resistance in yeast. Our results also suggest that partitioning of the pyridine nucleotide flux between the classical salvage cycle and the NmR salvage branch might be modulated by the NAD+-dependent Sir2 deacetylase. Furthermore, two novel deamidation steps leading to nicotinic acid mononucleotide and nicotinic acid riboside production are also uncovered that further underscore the complexity and flexibility of NAD+ metabolism. In addition, utilization of extracellular nicotinamide mononucleotide requires prior conversion to NmR mediated by a periplasmic phosphatase Pho5. Conversion to NmR may thus represent a strategy for the transport and assimilation of large nonpermeable NAD+ precursors. Together, our studies provide a molecular basis for how NAD+ homeostasis factors confer metabolic flexibility. PMID:19416965

  11. Epigenetic Effects of Diet on Fruit Fly Lifespan: An Investigation to Teach Epigenetics to Biology Students

    Science.gov (United States)

    Billingsley, James; Carlson, Kimberly A.

    2010-01-01

    Do our genes exclusively control us, or are other factors at play? Epigenetics can provide a means for students to use inquiry-based methods to understand a complex biological concept. Students research and design an experiment testing whether dietary supplements affect the lifespan of Drosophila melanogaster over multiple generations.

  12. Docosahexaenoic Acid and Cognition throughout the Lifespan

    Directory of Open Access Journals (Sweden)

    Michael J. Weiser

    2016-02-01

    Full Text Available Docosahexaenoic acid (DHA is the predominant omega-3 (n-3 polyunsaturated fatty acid (PUFA found in the brain and can affect neurological function by modulating signal transduction pathways, neurotransmission, neurogenesis, myelination, membrane receptor function, synaptic plasticity, neuroinflammation, membrane integrity and membrane organization. DHA is rapidly accumulated in the brain during gestation and early infancy, and the availability of DHA via transfer from maternal stores impacts the degree of DHA incorporation into neural tissues. The consumption of DHA leads to many positive physiological and behavioral effects, including those on cognition. Advanced cognitive function is uniquely human, and the optimal development and aging of cognitive abilities has profound impacts on quality of life, productivity, and advancement of society in general. However, the modern diet typically lacks appreciable amounts of DHA. Therefore, in modern populations, maintaining optimal levels of DHA in the brain throughout the lifespan likely requires obtaining preformed DHA via dietary or supplemental sources. In this review, we examine the role of DHA in optimal cognition during development, adulthood, and aging with a focus on human evidence and putative mechanisms of action.

  13. Functional loss of two ceramide synthases elicits autophagy-dependent lifespan extension in C. elegans

    DEFF Research Database (Denmark)

    Mosbech, Mai-Britt; Kruse, Rikke; Harvald, Eva Bang

    2013-01-01

    of HYL-1 or LAGR-1 does not affect lifespan. We show that loss of HYL-1 and LAGR-1 functions extend lifespan in an autophagy-dependent manner, as knock down of the autophagy-associated gene ATG-12 abolishes hyl-1;lagr-1 longevity. The transcription factors PHA-4/FOXA, DAF-16/FOXO, and SKN-1 are also...... required for the observed lifespan extension, as well as the increased number of autophagosomes in hyl-1;lagr-1 animals. Both autophagic events and the transcription factors PHA-4/FOXA, DAF-16, and SKN-1 have previously been associated with dietary restriction-induced longevity. Accordingly, we find...

  14. Towards understanding the lifespan extension by reduced insulin signaling: bioinformatics analysis of DAF-16/FOXO direct targets in Caenorhabditis elegans.

    Science.gov (United States)

    Li, Yan-Hui; Zhang, Gai-Gai

    2016-04-12

    DAF-16, the C. elegans FOXO transcription factor, is an important determinant in aging and longevity. In this work, we manually curated FOXODB http://lyh.pkmu.cn/foxodb/, a database of FOXO direct targets. It now covers 208 genes. Bioinformatics analysis on 109 DAF-16 direct targets in C. elegans found interesting results. (i) DAF-16 and transcription factor PQM-1 co-regulate some targets. (ii) Seventeen targets directly regulate lifespan. (iii) Four targets are involved in lifespan extension induced by dietary restriction. And (iv) DAF-16 direct targets might play global roles in lifespan regulation.

  15. Mono-unsaturated fatty acids link H3K4me3 modifiers to C. elegans lifespan.

    Science.gov (United States)

    Han, Shuo; Schroeder, Elizabeth A; Silva-García, Carlos G; Hebestreit, Katja; Mair, William B; Brunet, Anne

    2017-04-13

    Chromatin and metabolic states both influence lifespan, but how they interact in lifespan regulation is largely unknown. The COMPASS chromatin complex, which trimethylates lysine 4 on histone H3 (H3K4me3), regulates lifespan in Caenorhabditis elegans. However, the mechanism by which H3K4me3 modifiers affect longevity, and whether this mechanism involves metabolic changes, remain unclear. Here we show that a deficiency in H3K4me3 methyltransferase, which extends lifespan, promotes fat accumulation in worms with a specific enrichment of mono-unsaturated fatty acids (MUFAs). This fat metabolism switch in H3K4me3 methyltransferase-deficient worms is mediated at least in part by the downregulation of germline targets, including S6 kinase, and by the activation of an intestinal transcriptional network that upregulates delta-9 fatty acid desaturases. Notably, the accumulation of MUFAs is necessary for the lifespan extension of H3K4me3 methyltransferase-deficient worms, and dietary MUFAs are sufficient to extend lifespan. Given the conservation of lipid metabolism, dietary or endogenous MUFAs could extend lifespan and healthspan in other species, including mammals.

  16. Zinc Levels Modulate Lifespan through Multiple Longevity Pathways in Caenorhabditis elegans

    Science.gov (United States)

    Kumar, Jitendra; Barhydt, Tracy; Awasthi, Anjali; Lithgow, Gordon J.; Killilea, David W.; Kapahi, Pankaj

    2016-01-01

    Zinc is an essential trace metal that has integral roles in numerous biological processes, including enzymatic function, protein structure, and cell signaling pathways. Both excess and deficiency of zinc can lead to detrimental effects on development and metabolism, resulting in abnormalities and disease. We altered the zinc balance within Caenorhabditis elegans to examine how changes in zinc burden affect longevity and healthspan in an invertebrate animal model. We found that increasing zinc levels in vivo with excess dietary zinc supplementation decreased the mean and maximum lifespan, whereas reducing zinc levels in vivo with a zinc-selective chelator increased the mean and maximum lifespan in C. elegans. We determined that the lifespan shortening effects of excess zinc required expression of DAF-16, HSF-1 and SKN-1 proteins, whereas the lifespan lengthening effects of the reduced zinc may be partially dependent upon this set of proteins. Furthermore, reducing zinc levels led to greater nuclear localization of DAF-16 and enhanced dauer formation compared to controls, suggesting that the lifespan effects of zinc are mediated in part by the insulin/IGF-1 pathway. Additionally, zinc status correlated with several markers of healthspan in worms, including proteostasis, locomotion and thermotolerance, with reduced zinc levels always associated with improvements in function. Taken together, these data support a role for zinc in regulating both development and lifespan in C. elegans, and that suggest that regulation of zinc homeostasis in the worm may be an example of antagonistic pleiotropy. PMID:27078872

  17. Green tea polyphenols extend the lifespan of male drosophila melanogaster while impairing reproductive fitness.

    Science.gov (United States)

    Lopez, Terry; Schriner, Samuel E; Okoro, Michael; Lu, David; Chiang, Beatrice T; Huey, Jocelyn; Jafari, Mahtab

    2014-12-01

    Green tea is a popular beverage believed to have many health benefits, including a reduction in the risks of heart disease and cancer. Rich in polyphenolic compounds known as catechins, green tea and its components have been shown to increase the lifespan of various animal models, including Drosophila melanogaster. Here, we investigated the gender-specific effects of green tea on the lifespan of fruit flies and observed that green tea extended the lifespan of male flies only. This effect was found to be independent of typical aging interventions, such as dietary restriction, modulation of oxidative energy metabolism, and improved tolerance to environmental stresses. The one exception was that green tea did protect male flies against iron toxicity. Since there is an inverse correlation between lifespan and reproduction, the impact of green tea on male reproductive fitness was also investigated. We found that green tea negatively impacted male fertility as shown by a reduced number of offspring produced and increased mating latency. We further identified that the lifespan extension properties of green tea was only observed in the presence of females which alludes to a reproductive (or mating) dependent mechanism. Our findings suggest that green tea extends the lifespan of male flies by inhibiting reproductive potential, possibly by limiting iron uptake. To our knowledge, our study is the first to report the negative impact of green tea on Drosophila male reproduction. Our results also support previous studies that suggest that green tea might have a negative effect on reproductive fitness in humans.

  18. Zinc Levels Modulate Lifespan through Multiple Longevity Pathways in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jitendra Kumar

    Full Text Available Zinc is an essential trace metal that has integral roles in numerous biological processes, including enzymatic function, protein structure, and cell signaling pathways. Both excess and deficiency of zinc can lead to detrimental effects on development and metabolism, resulting in abnormalities and disease. We altered the zinc balance within Caenorhabditis elegans to examine how changes in zinc burden affect longevity and healthspan in an invertebrate animal model. We found that increasing zinc levels in vivo with excess dietary zinc supplementation decreased the mean and maximum lifespan, whereas reducing zinc levels in vivo with a zinc-selective chelator increased the mean and maximum lifespan in C. elegans. We determined that the lifespan shortening effects of excess zinc required expression of DAF-16, HSF-1 and SKN-1 proteins, whereas the lifespan lengthening effects of the reduced zinc may be partially dependent upon this set of proteins. Furthermore, reducing zinc levels led to greater nuclear localization of DAF-16 and enhanced dauer formation compared to controls, suggesting that the lifespan effects of zinc are mediated in part by the insulin/IGF-1 pathway. Additionally, zinc status correlated with several markers of healthspan in worms, including proteostasis, locomotion and thermotolerance, with reduced zinc levels always associated with improvements in function. Taken together, these data support a role for zinc in regulating both development and lifespan in C. elegans, and that suggest that regulation of zinc homeostasis in the worm may be an example of antagonistic pleiotropy.

  19. Neural plasticity across the lifespan.

    Science.gov (United States)

    Power, Jonathan D; Schlaggar, Bradley L

    2017-01-01

    An essential feature of the brain is its capacity to change. Neuroscientists use the term 'plasticity' to describe the malleability of neuronal connectivity and circuitry. How does plasticity work? A review of current data suggests that plasticity encompasses many distinct phenomena, some of which operate across most or all of the lifespan, and others that operate exclusively in early development. This essay surveys some of the key concepts related to neural plasticity, beginning with how current patterns of neural activity (e.g., as you read this essay) come to impact future patterns of activity (e.g., your memory of this essay), and then extending this framework backward into more development-specific mechanisms of plasticity. WIREs Dev Biol 2017, 6:e216. doi: 10.1002/wdev.216 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  20. Hormonal Programming Across the Lifespan

    Science.gov (United States)

    Tobet, Stuart A; Lara, Hernan E; Lucion, Aldo B; Wilson, Melinda E; Recabarren, Sergio E; Paredes, Alfonso H

    2013-01-01

    Hormones influence countless biological processes across the lifespan, and during developmental sensitive periods hormones have the potential to cause permanent tissue-specific alterations in anatomy and physiology. There are numerous critical periods in development wherein different targets are affected. This review outlines the proceedings of the Hormonal Programming in Development session at the US-South American Workshop in Neuroendocrinology in August 2011. Here we discuss how gonadal hormones impact various biological processes within the brain and gonads during early development and describe the changes that take place in the aging female ovary. At the cellular level, hormonal targets in the brain include neurons, glia, or vasculature. On a genomic/epigenomic level, transcription factor signaling and epigenetic changes alter the expression of hormone receptor genes across development and following ischemic brain insult. In addition, organizational hormone exposure alters epigenetic processes in specific brain nuclei and may be a mediator of sexual differentiation of the neonatal brain. During development of the ovary, exposure to excess gonadal hormones leads to polycystic ovarian syndrome (PCOS). Exposure to excess androgens during fetal development also has a profound effect on the development of the male reproductive system. In addition, increased sympathetic nerve activity and stress during early life have been linked to PCOS symptomology in adulthood. Finally, we describe how age-related decreases in fertility are linked to high levels of nerve growth factor (NGF), which enhances sympathetic nerve activity and alters ovarian function. PMID:22700441

  1. Methionine restriction activates the retrograde response and confers both stress tolerance and lifespan extension to yeast, mouse and human cells.

    Directory of Open Access Journals (Sweden)

    Jay E Johnson

    Full Text Available A methionine-restricted diet robustly improves healthspan in key model organisms. For example, methionine restriction reduces age-related pathologies and extends lifespan up to 45% in rodents. However, the mechanisms underlying these benefits remain largely unknown. We tested whether the yeast chronological aging assay could model the benefits of methionine restriction, and found that this intervention extends lifespan when enforced by either dietary or genetic approaches, and furthermore, that the observed lifespan extension is due primarily to reduced acid accumulation. In addition, methionine restriction-induced lifespan extension requires the activity of the retrograde response, which regulates nuclear gene expression in response to changes in mitochondrial function. Consistent with an involvement of stress-responsive retrograde signaling, we also found that methionine-restricted yeast are more stress tolerant than control cells. Prompted by these findings in yeast, we tested the effects of genetic methionine restriction on the stress tolerance and replicative lifespans of cultured mouse and human fibroblasts. We found that such methionine-restricted mammalian cells are resistant to numerous cytotoxic stresses, and are substantially longer-lived than control cells. In addition, similar to yeast, the extended lifespan of methionine-restricted mammalian cells is associated with NFκB-mediated retrograde signaling. Overall, our data suggest that improved stress tolerance and extension of replicative lifespan may contribute to the improved healthspan observed in methionine-restricted rodents, and also support the possibility that manipulation of the pathways engaged by methionine restriction may improve healthspan in humans.

  2. Diet across the Lifespan and the Association with Breast Density in Adulthood

    Directory of Open Access Journals (Sweden)

    Jessica Lindgren

    2013-01-01

    Full Text Available Studies have shown inconsistent results regarding the association between dietary factors across the lifespan and breast density and breast cancer in women. Breast density is a strong risk factor for breast cancer, and the mechanism through which it influences cancer risk remains unclear. Breast density has been shown to be modifiable, potentially through dietary modifications. The goal of this paper is to summarize the current studies on diet and diet-related factors across all ages, determine which dietary factors show the strongest association with breast density, the most critical age of exposure, and identify future directions. We identified 28 studies, many of which are cross-sectional, and found that the strongest associations are among vitamin D, calcium, dietary fat, and alcohol in premenopausal women. Longitudinal studies with repeated dietary measures as well as the examination of overall diet over time are needed to confirm these findings.

  3. Acidic Food pH Increases Palatability and Consumption and Extends Drosophila Lifespan.

    Science.gov (United States)

    Deshpande, Sonali A; Yamada, Ryuichi; Mak, Christine M; Hunter, Brooke; Soto Obando, Alina; Hoxha, Sany; Ja, William W

    2015-12-01

    Despite the prevalent use of Drosophila as a model in studies of nutrition, the effects of fundamental food properties, such as pH, on animal health and behavior are not well known. We examined the effect of food pH on adult Drosophila lifespan, feeding behavior, and microbiota composition and tested the hypothesis that pH-mediated changes in palatability and total consumption are required for modulating longevity. We measured the effect of buffered food (pH 5, 7, or 9) on male gustatory responses (proboscis extension), total food intake, and male and female lifespan. The effect of food pH on germfree male lifespan was also assessed. Changes in fly-associated microbial composition as a result of food pH were determined by 16S ribosomal RNA gene sequencing. Male gustatory responses, total consumption, and male and female longevity were additionally measured in the taste-defective Pox neuro (Poxn) mutant and its transgenic rescue control. An acidic diet increased Drosophila gustatory responses (40-230%) and food intake (5-50%) and extended survival (10-160% longer median lifespan) compared with flies on either neutral or alkaline pH food. Alkaline food pH shifted the composition of fly-associated bacteria and resulted in greater lifespan extension (260% longer median survival) after microbes were eliminated compared with flies on an acidic (50%) or neutral (130%) diet. However, germfree flies lived longer on an acidic diet (5-20% longer median lifespan) compared with those on either neutral or alkaline pH food. Gustatory responses, total consumption, and longevity were unaffected by food pH in Poxn mutant flies. Food pH can directly influence palatability and feeding behavior and affect parameters such as microbial growth to ultimately affect Drosophila lifespan. Fundamental food properties altered by dietary or drug interventions may therefore contribute to changes in animal physiology, metabolism, and survival. © 2015 American Society for Nutrition.

  4. Acidic Food pH Increases Palatability and Consumption and Extends Drosophila Lifespan12

    Science.gov (United States)

    Deshpande, Sonali A; Yamada, Ryuichi; Mak, Christine M; Hunter, Brooke; Obando, Alina Soto; Hoxha, Sany; Ja, William W

    2015-01-01

    Background: Despite the prevalent use of Drosophila as a model in studies of nutrition, the effects of fundamental food properties, such as pH, on animal health and behavior are not well known. Objectives: We examined the effect of food pH on adult Drosophila lifespan, feeding behavior, and microbiota composition and tested the hypothesis that pH-mediated changes in palatability and total consumption are required for modulating longevity. Methods: We measured the effect of buffered food (pH 5, 7, or 9) on male gustatory responses (proboscis extension), total food intake, and male and female lifespan. The effect of food pH on germfree male lifespan was also assessed. Changes in fly-associated microbial composition as a result of food pH were determined by 16S ribosomal RNA gene sequencing. Male gustatory responses, total consumption, and male and female longevity were additionally measured in the taste-defective Pox neuro (Poxn) mutant and its transgenic rescue control. Results: An acidic diet increased Drosophila gustatory responses (40–230%) and food intake (5–50%) and extended survival (10–160% longer median lifespan) compared with flies on either neutral or alkaline pH food. Alkaline food pH shifted the composition of fly-associated bacteria and resulted in greater lifespan extension (260% longer median survival) after microbes were eliminated compared with flies on an acidic (50%) or neutral (130%) diet. However, germfree flies lived longer on an acidic diet (5–20% longer median lifespan) compared with those on either neutral or alkaline pH food. Gustatory responses, total consumption, and longevity were unaffected by food pH in Poxn mutant flies. Conclusions: Food pH can directly influence palatability and feeding behavior and affect parameters such as microbial growth to ultimately affect Drosophila lifespan. Fundamental food properties altered by dietary or drug interventions may therefore contribute to changes in animal physiology, metabolism, and

  5. Resveratrol and Lifespan in Model Organisms.

    Science.gov (United States)

    Pallauf, Kathrin; Rimbach, Gerald; Rupp, Petra Maria; Chin, Dawn; Wolf, Insa M A

    2016-01-01

    Resveratrol may possess life-prolonging and health-benefitting properties, some of which may resemble the effect of caloric restriction (CR). CR appears to prolong the lifespan of model organisms in some studies and may benefit human health. However, for humans, restricting food intake for an extended period of time seems impracticable and substances imitating the beneficial effects of CR without having to reduce food intake could improve health in an aging and overweight population. We have reviewed the literature studying the influence of resveratrol on the lifespan of model organisms including yeast, flies, worms, and rodents. We summarize the in vivo findings, describe modulations of molecular targets and gene expression observed in vivo and in vitro, and discuss how these changes may contribute to lifespan extension. Data from clinical studies are summarized to provide an insight about the potential of resveratrol supplementation in humans. Resveratrol supplementation has been shown to prolong lifespan in approximately 60% of the studies conducted in model organisms. However, current literature is contradictory, indicating that the lifespan effects of resveratrol vary strongly depending on the model organism. While worms and killifish seemed very responsive to resveratrol, resveratrol failed to affect lifespan in the majority of the studies conducted in flies and mice. Furthermore, factors such as dose, gender, genetic background and diet composition may contribute to the high variance in the observed effects. It remains inconclusive whether resveratrol is indeed a CR mimetic and possesses life-prolonging properties. The limited bioavailability of resveratrol may further impede its potential effects.

  6. Extension of yeast chronological lifespan by methylamine.

    Directory of Open Access Journals (Sweden)

    Sanjeev Kumar

    Full Text Available BACKGROUND: Chronological aging of yeast cells is commonly used as a model for aging of human post-mitotic cells. The yeast Saccharomyces cerevisiae grown on glucose in the presence of ammonium sulphate is mainly used in yeast aging research. We have analyzed chronological aging of the yeast Hansenula polymorpha grown at conditions that require primary peroxisome metabolism for growth. METHODOLOGY/PRINCIPAL FINDINGS: The chronological lifespan of H. polymorpha is strongly enhanced when cells are grown on methanol or ethanol, metabolized by peroxisome enzymes, relative to growth on glucose that does not require peroxisomes. The short lifespan of H. polymorpha on glucose is mainly due to medium acidification, whereas most likely ROS do not play an important role. Growth of cells on methanol/methylamine instead of methanol/ammonium sulphate resulted in further lifespan enhancement. This was unrelated to medium acidification. We show that oxidation of methylamine by peroxisomal amine oxidase at carbon starvation conditions is responsible for lifespan extension. The methylamine oxidation product formaldehyde is further oxidized resulting in NADH generation, which contributes to increased ATP generation and reduction of ROS levels in the stationary phase. CONCLUSION/SIGNIFICANCE: We conclude that primary peroxisome metabolism enhanced chronological lifespan of H. polymorpha. Moreover, the possibility to generate NADH at carbon starvation conditions by an organic nitrogen source supports further extension of the lifespan of the cell. Consequently, the interpretation of CLS analyses in yeast should include possible effects on the energy status of the cell.

  7. Resistance to oxidative stress induced by paraquat correlates well with both decreased and increased lifespan in Drosophila melanogaster

    NARCIS (Netherlands)

    Vermeulen, CJ; Van De Zande, L; Bijlsma, R

    2005-01-01

    There is increasing support for the notion that genetic variation for lifespan, both within and between species, is correlated with variation in the efficiency of the free radical scavenging system and the ability to withstand oxidative stress. In Drosophila, resistance to dietary paraquat, a free

  8. Functional loss of two ceramide synthases elicits autophagy-dependent lifespan extension in C. elegans.

    Directory of Open Access Journals (Sweden)

    Mai-Britt Mosbech

    Full Text Available Ceramide and its metabolites constitute a diverse group of lipids, which play important roles as structural entities of biological membranes as well as regulators of cellular growth, differentiation, and development. The C. elegans genome comprises three ceramide synthase genes; hyl-1, hyl-2, and lagr-1. HYL-1 function is required for synthesis of ceramides and sphingolipids containing very long acyl-chains (≥C24, while HYL-2 is required for synthesis of ceramides and sphingolipids containing shorter acyl-chains (≤C22. Here we show that functional loss of HYL-2 decreases lifespan, while loss of HYL-1 or LAGR-1 does not affect lifespan. We show that loss of HYL-1 and LAGR-1 functions extend lifespan in an autophagy-dependent manner, as knock down of the autophagy-associated gene ATG-12 abolishes hyl-1;lagr-1 longevity. The transcription factors PHA-4/FOXA, DAF-16/FOXO, and SKN-1 are also required for the observed lifespan extension, as well as the increased number of autophagosomes in hyl-1;lagr-1 animals. Both autophagic events and the transcription factors PHA-4/FOXA, DAF-16, and SKN-1 have previously been associated with dietary restriction-induced longevity. Accordingly, we find that hyl-1;lagr-1 animals display reduced feeding, increased resistance to heat, and reduced reproduction. Collectively, our data suggest that specific sphingolipids produced by different ceramide synthases have opposing roles in determination of C. elegans lifespan. We propose that loss of HYL-1 and LAGR-1 result in dietary restriction-induced autophagy and consequently prolonged longevity.

  9. Antioxidants can extend lifespan of Brachionus manjavacas (Rotifera), but only in a few combinations

    Science.gov (United States)

    Fields, Allison M.; Johnston, Rachel K.

    2013-01-01

    Animal cells are protected from oxidative damage by an antioxidant network operating as a coordinated system, with strong synergistic interactions. Lifespan studies with whole animals are expensive and laborious, so there has been little investigation of which antioxidant interactions might be useful for life extension. Animals in the phylum Rotifera are particularly promising models for aging studies because they are small (0.1–1 mm), have short, two-week lifespan, display typical patterns of animal aging, and have well characterized, easy to measure phenotypes of aging and senescence. One class of interventions that has consistently produced significant rotifer life extension is antioxidants. Although the mechanism of antioxidant effects on animal aging remains controversial, the ability of some antioxidant supplements to extend rotifer lifespan was unequivocal. We found that exposing rotifers to certain combinations of antioxidant supplements can produce up to about 20% longer lifespan, but that most antioxidants have no effect. We performed life table tests with 20 single antioxidants and none yielded significant rotifer life extension. We tested 60 two-way combinations of selected antioxidants and only seven (12%) produced significant rotifer life extension. None of the 20 three- and four-way antioxidant combinations tested yielded significant rotifer life extension. These observations suggest that dietary exposure of antioxidants can extend rotifer lifespan, but most antioxidants do not. We observed significant rotifer life extension only when antioxidants were paired with trolox, N-acetyl cysteine, l-carnosine, or EUK-8. This illustrates that antioxidant treatments capable of rotifer life extension are patchily distributed in the parameter space, so large regions must be searched to find them. It furthermore underscores the value of the rotifer model to conduct rapid, facile life table experiments with many treatments, which makes such a search feasible

  10. Landfill Lifespan Estimation: A Case Study

    African Journals Online (AJOL)

    Michael

    2017-12-02

    Dec 2, 2017 ... Akyen, T., Boye, C.B. and Ziggah, Y. Y. (2017), “Landfill Lifespan Estimation: A Case Study”, Ghana Mining ... through the application of various modeling ... The data was provided by the. Environmental and Sanitation Unit of the Tarkwa. Nsuaem Municipal Assembly. Table 1 presents the data used. Fig.

  11. Wisdom and mental health across the lifespan

    NARCIS (Netherlands)

    Webster, Jeffrey Dean; Webster, J.D.; Westerhof, Gerben Johan; Bohlmeijer, Ernst Thomas

    2014-01-01

    Objectives: The relationships between wisdom and age and between wisdom and mental health are complex with empirical results often inconsistent. We used a lifespan sample and broad, psychometrically sound measures of wisdom and mental health to test for possible age trends in wisdom and its

  12. Food insecurity and health across the lifespan.

    Science.gov (United States)

    Lee, Jung Sun; Gundersen, Craig; Cook, John; Laraia, Barbara; Johnson, Mary Ann

    2012-09-01

    Our symposium entitled, "Food Insecurity and Health across the Lifespan" explored the latest research from the economic, medical, pediatric, geriatric, and nutrition literature concerning the measurement, prevalence, predictors, and consequences of food insecurity across the lifespan, with a focus on chronic disease, chronic disease management, and healthcare costs. Consideration of the health impacts of food insecurity is a new and timely area of research, with a considerable potential for translation of the findings into public policy surrounding alleviation of food insecurity. Although it is widely acknowledged that food insecurity and hunger are morally unacceptable, strategies to develop national policies to alleviate hunger must also approach this problem by considering the economic impact of food insecurity on health and well-being. The goals of this symposium were to: 1) learn about the prevalence and severity of food insecurity in the US across the lifespan and how this is increasing with the continued economic downturn; 2) understand the growing body of research that documents the impact of varying degrees of food insecurity on physical and mental health across the lifespan; 3) examine how food insecurity is related to chronic disease; and 4) explore research methodology to determine the impact of food insecurity on healthcare costs and utilization. Our symposium provided new and novel understandings and research initiatives directed toward alleviating food insecurity in America.

  13. The First International Mini-Symposium on Methionine Restriction and Lifespan

    Directory of Open Access Journals (Sweden)

    Gene eAbles

    2014-05-01

    Full Text Available It has been 20 years since the Orentreich Foundation for the Advancement of Science, under the leadership Dr. Norman Orentreich, first reported that low methionine (Met ingestion by rats extends lifespan [1]. Since then, several studies have replicated the effects of dietary methionine restriction (MR in delaying age-related diseases [2–5]. We report the abstracts from the First International Mini-Symposium on Methionine Restriction and Lifespan held in Tarrytown, NY last September 2013. The goals were 1 to gather researchers with an interest in methionine restriction and lifespan, 2 to exchange knowledge, 3 to generate ideas for future investigations, and 4 to strengthen relationships within this community. The presentations highlighted the importance of research on cysteine, growth hormone (GH, and ATF4 in the paradigm of aging. In addition, the effects of dietary restriction or MR in the kidneys, liver, bones and the adipose tissue were discussed. The symposium also emphasized the value of other species, e.g. the naked mole rat, Brandt’s bat and drosophila in aging research. Overall, the symposium consolidated scientists with similar research interests and provided opportunities to conduct future collaborative studies.

  14. Bicarbonate-sensitive calcification and lifespan of klotho-deficient mice.

    Science.gov (United States)

    Leibrock, Christina B; Voelkl, Jakob; Kohlhofer, Ursula; Quintanilla-Martinez, Leticia; Kuro-O, Makoto; Lang, Florian

    2016-01-01

    Klotho, a protein counteracting aging, is a powerful inhibitor of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] formation and regulator of mineral metabolism. In klotho hypomorphic (kl/kl) mice, excessive 1,25(OH)2D3 formation leads to hypercalcemia, hyperphosphatemia and vascular calcification, severe growth deficits, accelerated aging and early death. Kl/kl mice further suffer from extracellular volume depletion and hypotension, leading to the stimulation of antidiuretic hormone and aldosterone release. A vitamin D-deficient diet, restriction of dietary phosphate, inhibition of mineralocorticoid receptors with spironolactone, and dietary NaCl all extend the lifespan of kl/kl mice. Kl/kl mice suffer from acidosis. The present study explored whether replacement of tap drinking water by 150 mM NaHCO3 affects the growth, tissue calcification, and lifespan of kl/kl mice. As a result, NaHCO3 administration to kl/kl mice did not reverse the growth deficit but substantially decreased tissue calcification and significantly increased the average lifespan from 78 to 127 days. NaHCO3 did not significantly affect plasma concentrations of 1,25(OH)2D3 and Ca(2+) but significantly decreased plasma phosphate concentration and plasma aldosterone concentration. The present study reveals a novel effect of bicarbonate, i.e., a favorable influence on vascular calcification and early death of klotho-deficient mice. Copyright © 2016 the American Physiological Society.

  15. INFLUENCE OF AMYLOSE STARCH ON DEVELOPMENT AND LIFESPAN OF FRUIT FLY DROSOPHILA MELANOGASTER

    Directory of Open Access Journals (Sweden)

    Oleksandra Abrat

    2015-05-01

    Full Text Available Last years, the concept of resistant starch (RS has evoked a new interest in researchers in the context of bioavailability of starch and its use as a source of dietary fiber. Based on clinical and animal research, RS has been proposed to be the most potentially beneficial starch fraction for human health. In this study, the effects of amylose starch as a fraction of RS on development and lifespan of fruit fly Drosophila melanogaster were investigated. In both Canton S and w1118 strains, the diet with 20% amylose RS delayed fly development, increased triacylglyceride level in the body of adult insects and reduced their lifespan compared to the diet with 4% amylose starch. Thus, our data clearly demonstrate that amylose starch at high concentrations may negatively affect fruit fly.

  16. Short-term dietary restriction and fasting precondition against ischemia reperfusion injury in mice

    NARCIS (Netherlands)

    J.R. Mitchell (James); M. Verweij (Marielle); K. Brand (Karl); H.W.M. van de Ven (Marieke); N.N.T. Goemaere (Natascha); S. van den Engel (Sandra); T. Chu (Timothy); F. Forrer (Flavio); C. Müller (Cristina); M. de Jong (Marion); W.F.J. van IJcken (Wilfred); J.N.M. IJzermans (Jan); J.H.J. Hoeijmakers (Jan); R.W.F. de Bruin (Ron)

    2010-01-01

    textabstractDietary restriction (DR) extends lifespan and increases resistance to multiple forms of stress, including ischemia reperfusion injury to the brain and heart in rodents. While maximal effects on lifespan require long-term restriction, the kinetics of onset of benefits against acute stress

  17. Nuclear hormone receptor DHR96 mediates the resistance to xenobiotics but not the increased lifespan of insulin-mutant Drosophila.

    Science.gov (United States)

    Afschar, Sonita; Toivonen, Janne M; Hoffmann, Julia Marianne; Tain, Luke Stephen; Wieser, Daniela; Finlayson, Andrew John; Driege, Yasmine; Alic, Nazif; Emran, Sahar; Stinn, Julia; Froehlich, Jenny; Piper, Matthew D; Partridge, Linda

    2016-02-02

    Lifespan of laboratory animals can be increased by genetic, pharmacological, and dietary interventions. Increased expression of genes involved in xenobiotic metabolism, together with resistance to xenobiotics, are frequent correlates of lifespan extension in the nematode worm Caenorhabditis elegans, the fruit fly Drosophila, and mice. The Green Theory of Aging suggests that this association is causal, with the ability of cells to rid themselves of lipophilic toxins limiting normal lifespan. To test this idea, we experimentally increased resistance of Drosophila to the xenobiotic dichlordiphenyltrichlorethan (DDT), by artificial selection or by transgenic expression of a gene encoding a cytochrome P450. Although both interventions increased DDT resistance, neither increased lifespan. Furthermore, dietary restriction increased lifespan without increasing xenobiotic resistance, confirming that the two traits can be uncoupled. Reduced activity of the insulin/Igf signaling (IIS) pathway increases resistance to xenobiotics and extends lifespan in Drosophila, and can also increase longevity in C. elegans, mice, and possibly humans. We identified a nuclear hormone receptor, DHR96, as an essential mediator of the increased xenobiotic resistance of IIS mutant flies. However, the IIS mutants remained long-lived in the absence of DHR96 and the xenobiotic resistance that it conferred. Thus, in Drosophila IIS mutants, increased xenobiotic resistance and enhanced longevity are not causally connected. The frequent co-occurrence of the two traits may instead have evolved because, in nature, lowered IIS can signal the presence of pathogens. It will be important to determine whether enhanced xenobiotic metabolism is also a correlated, rather than a causal, trait in long-lived mice.

  18. Changes in Regenerative Capacity through Lifespan

    Science.gov (United States)

    Yun, Maximina H.

    2015-01-01

    Most organisms experience changes in regenerative abilities through their lifespan. During aging, numerous tissues exhibit a progressive decline in homeostasis and regeneration that results in tissue degeneration, malfunction and pathology. The mechanisms responsible for this decay are both cell intrinsic, such as cellular senescence, as well as cell-extrinsic, such as changes in the regenerative environment. Understanding how these mechanisms impact on regenerative processes is essential to devise therapeutic approaches to improve tissue regeneration and extend healthspan. This review offers an overview of how regenerative abilities change through lifespan in various organisms, the factors that underlie such changes and the avenues for therapeutic intervention. It focuses on established models of mammalian regeneration as well as on models in which regenerative abilities do not decline with age, as these can deliver valuable insights for our understanding of the interplay between regeneration and aging. PMID:26512653

  19. Sex differences and stress across the lifespan

    Science.gov (United States)

    Bale, Tracy L; Epperson, C Neill

    2015-01-01

    Sex differences in stress responses can be found at all stages of life and are related to both the organizational and activational effects of gonadal hormones and to genes on the sex chromosomes. As stress dysregulation is the most common feature across neuropsychiatric diseases, sex differences in how these pathways develop and mature may predict sex-specific periods of vulnerability to disruption and increased disease risk or resilience across the lifespan. The aging brain is also at risk to the effects of stress, where the rapid decline of gonadal hormones in women combined with cellular aging processes promote sex biases in stress dysregulation. In this Review, we discuss potential underlying mechanisms driving sex differences in stress responses and their relevance to disease. Although stress is involved in a much broader range of diseases than neuropsychiatric ones, we highlight here this area and its examples across the lifespan. PMID:26404716

  20. Metformin improves healthspan and lifespan in mice

    Science.gov (United States)

    Martin-Montalvo, Alejandro; Mercken, Evi M.; Mitchell, Sarah J.; Palacios, Hector H.; Mote, Patricia L.; Scheibye-Knudsen, Morten; Gomes, Ana P.; Ward, Theresa M.; Minor, Robin K.; Blouin, Marie-José; Schwab, Matthias; Pollak, Michael; Zhang, Yongqing; Yu, Yinbing; Becker, Kevin G.; Bohr, Vilhelm A.; Ingram, Donald K.; Sinclair, David A.; Wolf, Norman S.; Spindler, Stephen R.; Bernier, Michel; de Cabo, Rafael

    2013-01-01

    Metformin is a drug commonly prescribed to treat patients with type 2 diabetes. Here we show that long-term treatment with metformin (0.1% w/w in diet) starting at middle age extends healthspan and lifespan in male mice, while a higher dose (1% w/w) was toxic. Treatment with metformin mimics some of the benefits of calorie restriction, such as improved physical performance, increased insulin sensitivity, and reduced LDL and cholesterol levels without a decrease in caloric intake. At a molecular level, metformin increases AMP-activated protein kinase activity and increases antioxidant protection, resulting in reductions in both oxidative damage accumulation and chronic inflammation. Our results indicate that these actions may contribute to the beneficial effects of metformin on healthspan and lifespan. These findings are in agreement with current epidemiological data and raise the possibility of metformin-based interventions to promote healthy aging. PMID:23900241

  1. QUANTIFYING LIFE STYLE IMPACT ON LIFESPAN

    Directory of Open Access Journals (Sweden)

    Antonello Lorenzini

    2012-12-01

    Full Text Available A healthy diet, physical activity and avoiding dangerous habits such as smoking are effective ways of increasing health and lifespan. Although a significant portion of the world's population still suffers from malnutrition, especially children, the most common cause of death in the world today is non-communicable diseases. Overweight and obesity significantly increase the relative risk for the most relevant non communicable diseases: cardiovascular disease, type II diabetes and some cancers. Childhood overweight also seems to increase the likelihood of disease in adulthood through epigenetic mechanisms. This worrisome trend now termed "globesity" will deeply impact society unless preventive strategies are put into effect. Researchers of the basic biology of aging have clearly established that animals with short lifespans live longer when their diet is calorie restricted. Although similar experiments carried on rhesus monkeys, a longer-lived species more closely related to humans, yielded mixed results, overall the available scientific data suggest keeping the body mass index in the "normal" range increases the chances of living a longer, healthier life. This can be successfully achieved both by maintaining a healthy diet and by engaging in physical activity. In this review we will try to quantify the relative impact of life style choices on lifespan.

  2. The Sexual Dimorphism of Dietary Restriction Responsiveness in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Sakiko Honjoh

    2017-12-01

    Full Text Available Organismal lifespan is highly plastic in response to environmental cues, and dietary restriction (DR is the most robust way to extend lifespan in various species. Recent studies have shown that sex also is an important factor for lifespan regulation; however, it remains largely unclear how these two factors, food and sex, interact in lifespan regulation. The nematode Caenorhabditis elegans has two sexes, hermaphrodite and male, and only the hermaphrodites are essential for the short-term succession of the species. Here, we report an extreme sexual dimorphism in the responsiveness to DR in C. elegans; the essential hermaphrodites show marked longevity responses to various forms of DR, but the males show few longevity responses and sustain reproductive ability. Our analysis reveals that the sex determination pathway and the steroid hormone receptor DAF-12 regulate the sex-specific DR responsiveness, integrating sex and environmental cues to determine organismal lifespan.

  3. A computer model of the evolution of specific maximum lifespan.

    Science.gov (United States)

    Miller, A R

    1981-05-01

    To answer the question of why organisms have evolved finite and specific maximum lifespans, I have built and experimentally studied a discrete-event simulation model of the evolution of lifespan. Through natural selection, the model evolves an apparent plateau in maximum lifespan, the height of which is a decreasing function of both the intensity of niche fluctuations and specific fecundity. Evolved lifespan is therefore finite (small and essentially constant over accessible time intervals) and specific. Experiments demonstrate that the plateau is not due to group selection. Instead, it occurs because the rate of increase of maximum lifespan by natural selection - in an environment presenting a finite probability that death will occur prior to reaching the genetically specified maximum - is a decreasing function of maximum lifespan itself and asymptotically approaches zero. This supports in part a class of existing hypotheses that finite lifespan is due to an equilibrium between weak selection, as in the model, and various lifespan-decreasing processes, which however were not simulated in the present experiments. Although the model shows that such counter processes are not strictly necessary for the evolution of finite and specific maximum lifespan, my interpretation of the model's correspondence to organic evolution does imply a counter process, a bias in random genetic drift toward shorter lifespan, that is more general than those previously hypothesized.

  4. Cardioprotection and lifespan extension by the natural polyamine spermidine

    Science.gov (United States)

    Eisenberg, Tobias; Abdellatif, Mahmoud; Schroeder, Sabrina; Primessnig, Uwe; Stekovic, Slaven; Pendl, Tobias; Harger, Alexandra; Schipke, Julia; Zimmermann, Andreas; Schmidt, Albrecht; Tong, Mingming; Ruckenstuhl, Christoph; Dammbrueck, Christopher; Gross, Angelina S.; Herbst, Viktoria; Magnes, Christoph; Trausinger, Gert; Narath, Sophie; Meinitzer, Andreas; Hu, Zehan; Kirsch, Alexander; Eller, Kathrin; Gutierrez, Didac-Carmona; Büttner, Sabrina; Pietrocola, Federico; Knittelfelder, Oskar; Schrepfer, Emilie; Rockenfeller, Patrick; Simonini, Corinna; Rahn, Alexandros; Horsch, Marion; Moreth, Kristin; Beckers, Johannes; Fuchs, Helmut; Gailus-Durner, Valerie; Neff, Frauke; Janik, Dirk; Rathkolb, Birgit; Rozman, Jan; de Angelis, Martin Hrabe; Moustafa, Tarek; Haemmerle, Guenter; Mayr, Manuel; Willeit, Peter; von Frieling-Salewsky, Marion; Pieske, Burkert; Scorrano, Luca; Pieber, Thomas; Pechlaner, Raimund; Willeit, Johann; Sigrist, Stephan J.; Linke, Wolfgang A.; Mühlfeld, Christian; Sadoshima, Junichi; Dengjel, Joern; Kiechl, Stefan; Kroemer, Guido; Sedej, Simon; Madeo, Frank

    2018-01-01

    Aging is associated with an increased risk of cardiovascular disease and death. Here we show that oral supplementation of the natural polyamine spermidine extends the lifespan of mice and exerts cardioprotective effects, reducing cardiac hypertrophy and preserving diastolic function in old mice. Spermidine feeding enhanced cardiac autophagy, mitophagy and mitochondrial respiration, and it also improved the mechano-elastical properties of cardiomyocytes in vivo, coinciding with increased titin phosphorylation and suppressed subclinical inflammation. Spermidine feeding failed to provide cardioprotection in mice that lack the autophagy-related protein Atg5 in cardiomyocytes. In Dahl salt-sensitive rats that were fed a high-salt diet, a model for hypertension-induced congestive heart failure, spermidine feeding reduced systemic blood pressure, increased titin phosphorylation and prevented cardiac hypertrophy and a decline in diastolic function, thus delaying the progression to heart failure. In humans, high levels of dietary spermidine, as assessed from food questionnaires, correlated with reduced blood pressure and a lower incidence of cardiovascular disease. Our results suggest a new and feasible strategy for the protection from cardiovascular disease. PMID:27841876

  5. Sleep, aging, and lifespan in Drosophila

    Directory of Open Access Journals (Sweden)

    Tononi Giulio

    2010-04-01

    Full Text Available Abstract Background Epidemiological studies in humans suggest that a decrease in daily sleep duration is associated with reduced lifespan, but this issue remains controversial. Other studies in humans also show that both sleep quantity and sleep quality decrease with age. Drosophila melanogaster is a useful model to study aging and sleep, and inheriting mutations affecting the potassium current Shaker results in flies that sleep less and have a shorter lifespan. However, whether the link between short sleep and reduced longevity exists also in wild-type flies is unknown. Similarly, it is unknown whether such a link depends on sleep amount per se, rather than on other factors such as waking activity. Also, sleep quality has been shown to decrease in old flies, but it remains unclear whether aging-related sleep fragmentation is a generalized phenomenon. Results We compared 3 short sleeping mutant lines (Hk1, HkY and Hk2 carrying a mutation in Hyperkinetic, which codes for the beta subunit of the Shaker channel, to wild-type siblings throughout their entire lifespan (all flies kept at 20°C. Hk1 and HkY mutants were short sleeping relative to wild-type controls from day 3 after eclosure, and Hk2 flies became short sleepers about two weeks later. All 3 Hk mutant lines had reduced lifespan relative to wild-type flies. Total sleep time showed a trend to increase in all lines with age, but the effect was most pronounced in Hk1 and HkY flies. In both mutant and wild-type lines sleep quality did not decay with age, but the strong preference for sleep at night declined starting in "middle age". Using Cox regression analysis we found that in Hk1 and HkY mutants and their control lines there was a negative relationship between total sleep amount during the first 2 and 4 weeks of age and hazard (individual risk of death, while no association was found in Hk2 flies and their wild-type controls. Hk1 and HkY mutants and their control lines also showed an

  6. THE LIFESPAN OF NURSING EDUCATION IN CAMBODIA

    Directory of Open Access Journals (Sweden)

    Virya Koy

    2016-08-01

    Full Text Available This paper aims to explain the lifespan of nursing education in Cambodia, which has been up and down for over 66 years. The journey of Cambodian nursing education is fulfilled by many challenges faced by nursing leaders in the country, including the challenges caused by the decades of civil war devastated Cambodian society. It takes high responsibility and needs more powers, skills, and commitments to produce competent professional nurses to fulfill the tasks in the clinical settings through nursing education, and it is characterized by the progress in responding societal needs of the society.

  7. Epigenetic variation during the adult lifespan

    DEFF Research Database (Denmark)

    Talens, Rudolf P; Christensen, Kaare; Putter, Hein

    2012-01-01

    The accumulation of epigenetic changes was proposed to contribute to the age-related increase in the risk of most common diseases. In this study on 230 monozygotic twin pairs (MZ pairs), aged 18-89 years, we investigated the occurrence of epigenetic changes over the adult lifespan. Using mass......-related increase in methylation variation was generally attributable to unique environmental factors, except for CRH, for which familial factors may play a more important role. In conclusion, sustained epigenetic differences arise from early adulthood to old age and contribute to an increasing discordance of MZ...

  8. Effect of a standardised dietary restriction protocol on multiple laboratory strains of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Richard C Grandison

    Full Text Available Outcomes of lifespan studies in model organisms are particularly susceptible to variations in technical procedures. This is especially true of dietary restriction, which is implemented in many different ways among laboratories.In this study, we have examined the effect of laboratory stock maintenance, genotype differences and microbial infection on the ability of dietary restriction (DR to extend life in the fruit fly Drosophila melanogaster. None of these factors block the DR effect.These data lend support to the idea that nutrient restriction genuinely extends lifespan in flies, and that any mechanistic discoveries made with this model are of potential relevance to the determinants of lifespan in other organisms.

  9. The Yang-Tonifying Herbal Medicine Cynomorium songaricum Extends Lifespan and Delays Aging in Drosophila

    Directory of Open Access Journals (Sweden)

    Hsin-Ping Liu

    2012-01-01

    Full Text Available Aging is highly correlated with the progressive loss of physiological function, including cognitive behavior and reproductive capacity, as well as an increased susceptibility to diseases; therefore, slowing age-related degeneration could greatly contribute to human health. Cynomorium songaricum Rupr. (CS is traditionally used to improve sexual function and treat kidney dysfunction in traditional Chinese medicine, although little is known about whether CS has effects on longevity. Here, we show that CS supplementation in the diet extends both the mean and maximum lifespan of adult female flies. The increase in lifespan with CS was correlated with higher resistance to oxidative stress and starvation and lower lipid hydroperoxides (LPO levels. Additionally, the lifespan extension was accompanied by beneficial effects, such as improved mating readiness, increased fecundity, and suppression of age-related learning impairment in aged flies. These findings demonstrate the important antiaging effects of CS and indicate the potential applicability of dietary intervention with CS to enhance health and prevent multiple age-related diseases.

  10. Catalpol Modulates Lifespan via DAF-16/FOXO and SKN-1/Nrf2 Activation in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Hyun Won Seo

    2015-01-01

    Full Text Available Catalpol is an effective component of rehmannia root and known to possess various pharmacological properties. The present study was aimed at investigating the potential effects of catalpol on the lifespan and stress tolerance using C. elegans model system. Herein, catalpol showed potent lifespan extension of wild-type nematode under normal culture condition. In addition, survival rate of catalpol-fed nematodes was significantly elevated compared to untreated control under heat and oxidative stress but not under hyperosmolality conditions. We also found that elevated antioxidant enzyme activities and expressions of stress resistance proteins were attributed to catalpol-mediated increased stress tolerance of nematode. We further investigated whether catalpol’s longevity effect is related to aging-related factors including reproduction, food intake, and growth. Interestingly, catalpol exposure could attenuate pharyngeal pumping rate, indicating that catalpol may induce dietary restriction of nematode. Moreover, locomotory ability of aged nematode was significantly improved by catalpol treatment, while lipofuscin levels were attenuated, suggesting that catalpol may affect age-associated changes of nematode. Our mechanistic studies revealed that mek-1, daf-2, age-1, daf-16, and skn-1 are involved in catalpol-mediated longevity. These results indicate that catalpol extends lifespan and increases stress tolerance of C. elegans via DAF-16/FOXO and SKN-1/Nrf activation dependent on insulin/IGF signaling and JNK signaling.

  11. Male lifespan and the secondary sex ratio.

    Science.gov (United States)

    Catalano, Ralph; Bruckner, Tim

    2006-01-01

    Literature speculating on the fetal origins of later life morbidity often invokes the "damaged cohort" theory, i.e., that maternal responses to exogenous shocks induce "stress reactivity" in fetuses and thereby shorten the lifespan of males in utero during stressful times. A rival, or "culled cohort," theory posits that exogenous shocks to gravid females induce spontaneous abortions of frail male fetuses, leaving relatively hardy survivors who enjoy, on average, lifespans longer than males in less stressed birth cohorts. A recent test based on archival data from Sweden supported the culled cohort theory. Several characteristics of the Swedish data, however, raise questions regarding the external validity of the findings. We repeat the test with data from Denmark, Iceland, and England and Wales. We use time-series methods that control for trends, seasonal cycles, and other forms of autocorrelation that could confound the test. None of the results supports the "damaged cohort" theory. Consistent with the Swedish findings and with evolutionary theory, we find support in Iceland and England and Wales for the "culled cohort" theory. We discuss the implications of our findings for basic research as well as for public health.

  12. The Path to Competence: A Lifespan Developmental Perspective on Reading

    Science.gov (United States)

    Alexander, Patricia A.

    2012-01-01

    The purpose of this document is to present a developmental model of reading that encompasses changes across the lifespan. The need for such a lifespan orientation toward reading within our educational institutions is great. Until we adopt this lifelong perspective, we continue to run the risk of turning out undeveloped, unmotivated, and uncritical…

  13. Injuries can prolong lifespan in Drosophila melanogaster males

    DEFF Research Database (Denmark)

    Henten, Anne Marie Vestergaard; Loeschcke, Volker; Pedersen, Jorgen Granfeldt

    2016-01-01

    Previous studies have shown that a range of different stresses can increase mean lifespan. Here we investigated the effect of injuries and bacterial inoculation on mean lifespan in lines selected for increased longevity and their controls. The three lines from each selection regime were subjected...

  14. Minority Stress across the Career-Lifespan Trajectory

    Science.gov (United States)

    Dispenza, Franco; Brown, Colton; Chastain, Taylor E.

    2016-01-01

    Sexual minority persons (e.g., lesbian, gay, bisexual, and queer) are likely to encounter "minority stress", such as discrimination, concealment, expectation of rejection, and internalized heterosexism. Minority stress occurs alongside one's lifespan and has considerable implications in the context of the career lifespan trajectory.…

  15. Serum from calorie-restricted animals delays senescence and extends the lifespan of normal human fibroblasts in vitro.

    Science.gov (United States)

    de Cabo, Rafael; Liu, Lijuan; Ali, Ahmed; Price, Nathan; Zhang, Jing; Wang, Mingyi; Lakatta, Edward; Irusta, Pablo M

    2015-03-01

    The cumulative effects of cellular senescence and cell loss over time in various tissues and organs are considered major contributing factors to the ageing process. In various organisms, caloric restriction (CR) slows ageing and increases lifespan, at least in part, by activating nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases of the sirtuin family. Here, we use an in vitro model of CR to study the effects of this dietary regime on replicative senescence, cellular lifespan and modulation of the SIRT1 signaling pathway in normal human diploid fibroblasts. We found that serum from calorie-restricted animals was able to delay senescence and significantly increase replicative lifespan in these cells, when compared to serum from ad libitum fed animals. These effects correlated with CR-mediated increases in SIRT1 and decreases in p53 expression levels. In addition, we show that manipulation of SIRT1 levels by either over-expression or siRNA-mediated knockdown resulted in delayed and accelerated cellular senescence, respectively. Our results demonstrate that CR can delay senescence and increase replicative lifespan of normal human diploid fibroblasts in vitro and suggest that SIRT1 plays an important role in these processes.

  16. Microglia Gone Rogue: Impacts on Psychiatric Disorders across the Lifespan.

    Science.gov (United States)

    Tay, Tuan Leng; Béchade, Catherine; D'Andrea, Ivana; St-Pierre, Marie-Kim; Henry, Mathilde S; Roumier, Anne; Tremblay, Marie-Eve

    2017-01-01

    Microglia are the predominant immune response cells and professional phagocytes of the central nervous system (CNS) that have been shown to be important for brain development and homeostasis. These cells present a broad spectrum of phenotypes across stages of the lifespan and especially in CNS diseases. Their prevalence in all neurological pathologies makes it pertinent to reexamine their distinct roles during steady-state and disease conditions. A major question in the field is determining whether the clustering and phenotypical transformation of microglial cells are leading causes of pathogenesis, or potentially neuroprotective responses to the onset of disease. The recent explosive growth in our understanding of the origin and homeostasis of microglia, uncovering their roles in shaping of the neural circuitry and synaptic plasticity, allows us to discuss their emerging functions in the contexts of cognitive control and psychiatric disorders. The distinct mesodermal origin and genetic signature of microglia in contrast to other neuroglial cells also make them an interesting target for the development of therapeutics. Here, we review the physiological roles of microglia, their contribution to the effects of environmental risk factors (e.g., maternal infection, early-life stress, dietary imbalance), and their impact on psychiatric disorders initiated during development (e.g., Nasu-Hakola disease (NHD), hereditary diffuse leukoencephaly with spheroids, Rett syndrome, autism spectrum disorders (ASDs), and obsessive-compulsive disorder (OCD)) or adulthood (e.g., alcohol and drug abuse, major depressive disorder (MDD), bipolar disorder (BD), schizophrenia, eating disorders and sleep disorders). Furthermore, we discuss the changes in microglial functions in the context of cognitive aging, and review their implication in neurodegenerative diseases of the aged adult (e.g., Alzheimer's and Parkinson's). Taking into account the recent identification of microglia

  17. Microglia Gone Rogue: Impacts on Psychiatric Disorders across the Lifespan

    Directory of Open Access Journals (Sweden)

    Tuan Leng Tay

    2018-01-01

    Full Text Available Microglia are the predominant immune response cells and professional phagocytes of the central nervous system (CNS that have been shown to be important for brain development and homeostasis. These cells present a broad spectrum of phenotypes across stages of the lifespan and especially in CNS diseases. Their prevalence in all neurological pathologies makes it pertinent to reexamine their distinct roles during steady-state and disease conditions. A major question in the field is determining whether the clustering and phenotypical transformation of microglial cells are leading causes of pathogenesis, or potentially neuroprotective responses to the onset of disease. The recent explosive growth in our understanding of the origin and homeostasis of microglia, uncovering their roles in shaping of the neural circuitry and synaptic plasticity, allows us to discuss their emerging functions in the contexts of cognitive control and psychiatric disorders. The distinct mesodermal origin and genetic signature of microglia in contrast to other neuroglial cells also make them an interesting target for the development of therapeutics. Here, we review the physiological roles of microglia, their contribution to the effects of environmental risk factors (e.g., maternal infection, early-life stress, dietary imbalance, and their impact on psychiatric disorders initiated during development (e.g., Nasu-Hakola disease (NHD, hereditary diffuse leukoencephaly with spheroids, Rett syndrome, autism spectrum disorders (ASDs, and obsessive-compulsive disorder (OCD or adulthood (e.g., alcohol and drug abuse, major depressive disorder (MDD, bipolar disorder (BD, schizophrenia, eating disorders and sleep disorders. Furthermore, we discuss the changes in microglial functions in the context of cognitive aging, and review their implication in neurodegenerative diseases of the aged adult (e.g., Alzheimer’s and Parkinson’s. Taking into account the recent identification of

  18. Dietary Restriction and Nutrient Balance in Aging

    Directory of Open Access Journals (Sweden)

    Júlia Santos

    2016-01-01

    Full Text Available Dietary regimens that favour reduced calorie intake delay aging and age-associated diseases. New evidences revealed that nutritional balance of dietary components without food restriction increases lifespan. Particular nutrients as several nitrogen sources, proteins, amino acid, and ammonium are implicated in life and healthspan regulation in different model organisms from yeast to mammals. Aging and dietary restriction interact through partially overlapping mechanisms in the activation of the conserved nutrient-signalling pathways, mainly the insulin/insulin-like growth factor (IIS and the Target Of Rapamycin (TOR. The specific nutrients of dietary regimens, their balance, and how they interact with different genes and pathways are currently being uncovered. Taking into account that dietary regimes can largely influence overall human health and changes in risk factors such as cholesterol level and blood pressure, these new findings are of great importance to fully comprehend the interplay between diet and humans health.

  19. Telomerase is required for zebrafish lifespan.

    Directory of Open Access Journals (Sweden)

    Catarina M Henriques

    Full Text Available Telomerase activity is restricted in humans. Consequentially, telomeres shorten in most cells throughout our lives. Telomere dysfunction in vertebrates has been primarily studied in inbred mice strains with very long telomeres that fail to deplete telomeric repeats during their lifetime. It is, therefore, unclear how telomere shortening regulates tissue homeostasis in vertebrates with naturally short telomeres. Zebrafish have restricted telomerase expression and human-like telomere length. Here we show that first-generation tert(-/- zebrafish die prematurely with shorter telomeres. tert(-/- fish develop degenerative phenotypes, including premature infertility, gastrointestinal atrophy, and sarcopaenia. tert(-/- mutants have impaired cell proliferation, accumulation of DNA damage markers, and a p53 response leading to early apoptosis, followed by accumulation of senescent cells. Apoptosis is primarily observed in the proliferative niche and germ cells. Cell proliferation, but not apoptosis, is rescued in tp53(-/-tert(-/- mutants, underscoring p53 as mediator of telomerase deficiency and consequent telomere instability. Thus, telomerase is limiting for zebrafish lifespan, enabling the study of telomere shortening in naturally ageing individuals.

  20. Visual Word Recognition Across the Adult Lifespan

    Science.gov (United States)

    Cohen-Shikora, Emily R.; Balota, David A.

    2016-01-01

    The current study examines visual word recognition in a large sample (N = 148) across the adult lifespan and across a large set of stimuli (N = 1187) in three different lexical processing tasks (pronunciation, lexical decision, and animacy judgments). Although the focus of the present study is on the influence of word frequency, a diverse set of other variables are examined as the system ages and acquires more experience with language. Computational models and conceptual theories of visual word recognition and aging make differing predictions for age-related changes in the system. However, these have been difficult to assess because prior studies have produced inconsistent results, possibly due to sample differences, analytic procedures, and/or task-specific processes. The current study confronts these potential differences by using three different tasks, treating age and word variables as continuous, and exploring the influence of individual differences such as vocabulary, vision, and working memory. The primary finding is remarkable stability in the influence of a diverse set of variables on visual word recognition across the adult age spectrum. This pattern is discussed in reference to previous inconsistent findings in the literature and implications for current models of visual word recognition. PMID:27336629

  1. Book Review: Generalized Anxiety Disorder Across the Lifespan: An ...

    African Journals Online (AJOL)

    Book Review: Generalized Anxiety Disorder Across the Lifespan: An Integrative Approach. ME Portman. Abstract. Michael E. Portman: Publisher: New York: Springer, 2009. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  2. Engineering Substantially Prolonged Human Lifespans: Biotechnological Enhancement and Ethics

    OpenAIRE

    Derkx, P.H.J.M.

    2006-01-01

    Substantial extension of the human lifespan has recently become a subject of lively debate. One reason for this is the completion in 2001 of the Human Genome Project and the experimental avenues for biogerontological research it has opened. Another is recent theoretical progress in biogerontology. We had better investigate the ethical aspects of considerable human lifespan extension now, before this extension has become genuinely practicable, or before large sums of money have been spent on i...

  3. The association between intelligence and lifespan is mostly genetic.

    Science.gov (United States)

    Arden, Rosalind; Luciano, Michelle; Deary, Ian J; Reynolds, Chandra A; Pedersen, Nancy L; Plassman, Brenda L; McGue, Matt; Christensen, Kaare; Visscher, Peter M

    2016-02-01

    Several studies in the new field of cognitive epidemiology have shown that higher intelligence predicts longer lifespan. This positive correlation might arise from socioeconomic status influencing both intelligence and health; intelligence leading to better health behaviours; and/or some shared genetic factors influencing both intelligence and health. Distinguishing among these hypotheses is crucial for medicine and public health, but can only be accomplished by studying a genetically informative sample. We analysed data from three genetically informative samples containing information on intelligence and mortality: Sample 1, 377 pairs of male veterans from the NAS-NRC US World War II Twin Registry; Sample 2, 246 pairs of twins from the Swedish Twin Registry; and Sample 3, 784 pairs of twins from the Danish Twin Registry. The age at which intelligence was measured differed between the samples. We used three methods of genetic analysis to examine the relationship between intelligence and lifespan: we calculated the proportion of the more intelligent twins who outlived their co-twin; we regressed within-twin-pair lifespan differences on within-twin-pair intelligence differences; and we used the resulting regression coefficients to model the additive genetic covariance. We conducted a meta-analysis of the regression coefficients across the three samples. The combined (and all three individual samples) showed a small positive phenotypic correlation between intelligence and lifespan. In the combined sample observed r = .12 (95% confidence interval .06 to .18). The additive genetic covariance model supported a genetic relationship between intelligence and lifespan. In the combined sample the genetic contribution to the covariance was 95%; in the US study, 84%; in the Swedish study, 86%, and in the Danish study, 85%. The finding of common genetic effects between lifespan and intelligence has important implications for public health, and for those interested in the

  4. Changes in cortical plasticity across the lifespan

    Directory of Open Access Journals (Sweden)

    Catarina eFreitas

    2011-04-01

    Full Text Available Deterioration of motor and cognitive performance with advancing age is well documented, but its cause remains unknown. Animal studies dating back to the late 1970’s reveal that age-associated neurocognitive changes are linked to age-dependent changes in synaptic plasticity, including alterations of long-term potentiation and depression (LTP and LTD. Non-invasive brain stimulation techniques enable measurement of LTP- and LTD-like mechanisms of plasticity, in vivo, in humans, and may thus provide valuable insights. We examined the effects of a 40-second train of continuous theta-burst stimulation (cTBS to the motor cortex (600 stimuli, 3 pulses at 50 Hz applied at a frequency of 5 Hz on cortico-spinal excitability as measured by the motor evoked potentials (MEPs induced by single-pulse TMS before and after cTBS in the contralateral first dorsal interosseus muscle. Thirty-six healthy individuals aged 19 to 81 years old were studied in two sites (Boston, USA and Barcelona, Spain. The findings did not differ across study sites. We found that advancing age is negatively correlated with the duration of the effect of cTBS (r = -0.367; p = 0.028 and the overall amount of corticomotor suppression induced by cTBS (r = -0.478; p = 0.003, and positively correlated with the maximal suppression of amplitude on motor evoked responses in the target muscle (r = 0.420; p = 0.011. We performed magnetic resonance imaging (MRI-based individual morphometric analysis in a subset of subjects to demonstrate that these findings are not explained by age-related brain atrophy or differences in scalp-to-brain distance that could have affected the TBS effects. Our findings provide empirical evidence that the mechanisms of cortical plasticity area are altered with aging and their efficiency decreases across the human lifespan. This may critically contribute to motor and possibly cognitive decline.

  5. Personality and Obesity across the Adult Lifespan

    Science.gov (United States)

    Sutin, Angelina R.; Ferrucci, Luigi; Zonderman, Alan B.; Terracciano, Antonio

    2011-01-01

    Personality traits contribute to health outcomes, in part through their association with major controllable risk factors, such as obesity. Body weight, in turn, reflects our behaviors and lifestyle and contributes to the way we perceive ourselves and others. In this study, we use data from a large (N=1,988) longitudinal study that spanned more than 50 years to examine how personality traits are associated with multiple measures of adiposity and with fluctuations in body mass index (BMI). Using 14,531 anthropometric assessments, we modeled the trajectory of BMI across adulthood and tested whether personality predicted its rate of change. Measured concurrently, participants higher on Neuroticism or Extraversion or lower on Conscientiousness had higher BMI; these associations replicated across body fat, waist, and hip circumference. The strongest association was found for the impulsivity facet: Participants who scored in the top 10% of impulsivity weighed, on average, 11Kg more than those in the bottom 10%. Longitudinally, high Neuroticism and low Conscientiousness, and the facets of these traits related to difficulty with impulse control, were associated with weight fluctuations, measured as the variability in weight over time. Finally, low Agreeableness and impulsivity-related traits predicted a greater increase in BMI across the adult lifespan. BMI was mostly unrelated to change in personality traits. Personality traits are defined by cognitive, emotional, and behavioral patterns that likely contribute to unhealthy weight and difficulties with weight management. Such associations may elucidate the role of personality traits in disease progression and may help to design more effective interventions. PMID:21744974

  6. Sex differences in the genetic architecture of lifespan in a seed beetle: extreme inbreeding extends male lifespan

    DEFF Research Database (Denmark)

    Bilde, T.; Maklakov, Alexei A.; Meisner, Katrine

    2009-01-01

    Background Sex differences in lifespan are ubiquitous throughout the animal kingdom but the causes underlying this phenomenon remain poorly understood. Several explanations based on asymmetrical inheritance patterns (sex chromosomes or mitochondrial DNA) have been proposed, but these ideas have...... rarely been tested experimentally. Alternatively, sexual dimorphism in lifespan could result from sex-specific selection, caused by fundamental differences in how males and females optimize their fitness by allocating resources into current and future reproduction. Results Here we used sex......-specific responses to inbreeding to study the genetic architecture of lifespan and mortality rates in Callosobruchus maculatus, a seed beetle that shows sexual dimorphism in lifespan. Two independent assays revealed opposing sex-specific responses to inbreeding. The combined data set showed that inbred males live...

  7. Cutting back on the essentials: Can manipulating intake of specific amino acids modulate health and lifespan?

    Science.gov (United States)

    Brown-Borg, Holly M; Buffenstein, Rochelle

    2017-10-01

    With few exceptions, nutritional and dietary interventions generally impact upon both old-age quality of life and longevity. The life prolonging effects, commonly observed with dietary restriction reportedly are linked to alterations in protein intake and specifically limiting the dietary intake of certain essential amino acids. There is however a paucity of data methodically evaluating the various essential amino acids on health- and lifespan and the mechanisms involved. Rodent diets containing either lower methionine content, or tryptophan, than that found in commercially available chow, appear to elicit beneficial effects. It is unclear whether all of these favorable effects associated with restricted intake of methionine and tryptophan are due to their specific unique properties or if restriction of other essential amino acids, or proteins in general, may produce similar results. Considerably more work remains to be done to elucidate the mechanisms by which limiting these vital molecules may delay the onset of age-associated diseases and improve quality of life at older ages. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Dietary fat composition influences glomerular and proximal convoluted tubule cell structure and autophagic processes in kidneys from calorie?restricted mice

    OpenAIRE

    Calvo?Rubio, Miguel; Bur?n, M? Isabel; L?pez?Lluch, Guillermo; Navas, Pl?cido; de Cabo, Rafael; Ramsey, Jon J.; Villalba, Jos? M.; Gonz?lez?Reyes, Jos? A.

    2016-01-01

    Summary Calorie restriction (CR) has been repeatedly shown to prevent cancer, diabetes, hypertension, and other age?related diseases in a wide range of animals, including non?human primates and humans. In rodents, CR also increases lifespan and is a powerful tool for studying the aging process. Recently, it has been reported in mice that dietary fat plays an important role in determining lifespan extension with 40% CR. In these conditions, animals fed lard as dietary fat showed an increased l...

  9. Dietary Fiber

    Science.gov (United States)

    ... label as soluble fiber or insoluble fiber. Both types have important health benefits. Good sources of dietary fiber include Whole grains Nuts and seeds Fruit and vegetables Dietary fiber adds bulk to ...

  10. The effect of dietary restriction on longevity, fecundity, and antioxidant responses in the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae).

    Science.gov (United States)

    Chen, Er-Hu; Wei, Dong; Wei, Dan-Dan; Yuan, Guo-Rui; Wang, Jin-Jun

    2013-10-01

    Recent studies in fruit flies have imposed dietary restriction (DR) by diluting yeast and have reported increased lifespan as the yeast-to-sugar ratio decreased. In this study, the effects of DR on the lifespan of Bactrocera dorsalis were investigated using constant-feeding diets with different yeast:sugar ratios and an intermittent-feeding diet in which flies ate every sixth day. Antioxidant enzyme activities and the malondialdehyde concentration were also measured in virgin females under constant-feeding DR protocols to investigate their relationships with lifespan. The results showed that B. dorsalis lifespan was significantly extended by DR, and carbohydrate-enriched diet may be important for lifespan-extension. Female flies lived significantly longer than males at all dietary levels under both feeding regimes, indicating no interaction between diet and sex in determining lifespan. Antioxidant enzyme activities increased with the amount of yeast increased in the diets (0-4.76%) between starvation and DR treatments, indicating that the antioxidants may have influences in determining lifespan in B. dorsalis under starvation and DR treatments. However, antioxidants cannot keep up with increased oxidative damage induced by the high yeast diet (25%). These results revealed that the extension of lifespan by DR is evolutionarily conserved in B. dorsalis and that yeast:sugar ratios significantly modulate lifespan in this species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Regulation of Drosophila Lifespan by bellwether Promoter Alleles.

    Science.gov (United States)

    Garcia, Júlia Frankenberg; Carbone, Mary Anna; Mackay, Trudy F C; Anholt, Robert R H

    2017-06-23

    Longevity varies among individuals, but how natural genetic variation contributes to variation in lifespan is poorly understood. Drosophila melanogaster presents an advantageous model system to explore the genetic underpinnings of longevity, since its generation time is brief and both the genetic background and rearing environment can be precisely controlled. The bellwether (blw) gene encodes the α subunit of mitochondrial ATP synthase. Since metabolic rate may influence lifespan, we investigated whether alternative haplotypes in the blw promoter affect lifespan when expressed in a co-isogenic background. We amplified 521 bp upstream promoter sequences containing alternative haplotypes and assessed promoter activity both in vitro and in vivo using a luciferase reporter system. The AG haplotype showed significantly greater expression of luciferase than the GT haplotype. We then overexpressed a blw cDNA construct driven by either the AG or GT haplotype promoter in transgenic flies and showed that the AG haplotype also results in greater blw cDNA expression and a significant decrease in lifespan relative to the GT promoter haplotype, in male flies only. Thus, our results show that naturally occurring regulatory variants of blw affect lifespan in a sex-specific manner.

  12. Design and synthesis of compounds that extend yeast replicative lifespan

    Science.gov (United States)

    Yang, Hongying; Baur, Joseph A.; Chen, Allen; Miller, Christine; Sinclair, David A.

    2011-01-01

    Summary This past decade has seen the identification of numerous conserved genes that extend lifespan in diverse species, yet the number of compounds that extend lifespan is relatively small. A class of compounds called STACs, which were identified as activators of Sir2/SIRT1 NAD+-dependent deacetylases, extend the lifespans of multiple species in a Sir2-dependent manner and can delay the onset of age-related diseases such as cancer, diabetes and neurodegeneration in model organisms. Plant-derived STACs such as fisetin and resveratrol have several liabilities, including poor stability and relatively low potency as SIRT1 activators. To develop improved STACs, stilbene derivatives with modifications at the 4′ position of the B ring were synthesized using a Horner-Emmons-based synthetic route or by hydrolyzing deoxyrhapontin. Here, we describe synthetic STACs with lower toxicity toward human cells, and higher potency with respect to SIRT1 activation and lifespan extension in Saccharomyces cerevisiae. These studies show that it is possible to improve upon naturally occurring STACs based on a number of criteria including lifespan extension. PMID:17156081

  13. Altered bacterial metabolism, not coenzyme Q content, is responsible for the lifespan extension in Caenorhabditis elegans fed an Escherichia coli diet lacking coenzyme Q.

    Science.gov (United States)

    Saiki, Ryoichi; Lunceford, Adam L; Bixler, Tarra; Dang, Peter; Lee, Wendy; Furukawa, Satoru; Larsen, Pamela L; Clarke, Catherine F

    2008-06-01

    Coenzyme Q(n) is a fully substituted benzoquinone containing a polyisoprene tail of distinct numbers (n) of isoprene groups. Caenorhabditis elegans fed Escherichia coli devoid of Q(8) have a significant lifespan extension when compared to C. elegans fed a standard 'Q-replete'E. coli diet. Here we examine possible mechanisms for the lifespan extension caused by the Q-less E. coli diet. A bioassay for Q uptake shows that a water-soluble formulation of Q(10) is effectively taken up by both clk-1 mutant and wild-type nematodes, but does not reverse lifespan extension mediated by the Q-less E. coli diet, indicating that lifespan extension is not due to the absence of dietary Q per se. The enhanced longevity mediated by the Q-less E. coli diet cannot be attributed to dietary restriction, different Qn isoforms, reduced pathogenesis or slowed growth of the Q-less E. coli, and in fact requires E. coli viability. Q-less E. coli have defects in respiratory metabolism. C. elegans fed Q-replete E. coli mutants with similarly impaired respiratory metabolism due to defects in complex V also show a pronounced lifespan extension, although not as dramatic as those fed the respiratory deficient Q-less E. coli diet. The data suggest that feeding respiratory incompetent E. coli, whether Q-less or Q-replete, produces a robust life extension in wild-type C. elegans. We believe that the fermentation-based metabolism of the E. coli diet is an important parameter of C. elegans longevity.

  14. A reduction in age-enhanced gluconeogenesis extends lifespan.

    Directory of Open Access Journals (Sweden)

    Mayumi Hachinohe

    Full Text Available The regulation of energy metabolism, such as calorie restriction (CR, is a major determinant of cellular longevity. Although augmented gluconeogenesis is known to occur in aged yeast cells, the role of enhanced gluconeogenesis in aged cells remains undefined. Here, we show that age-enhanced gluconeogenesis is suppressed by the deletion of the tdh2 gene, which encodes glyceraldehyde-3-phosphate dehydrogenase (GAPDH, a protein that is involved in both glycolysis and gluconeogenesis in yeast cells. The deletion of TDH2 restores the chronological lifespan of cells with deletions of both the HST3 and HST4 genes, which encode yeast sirtuins, and represses the activation of gluconeogenesis. Furthermore, the tdh2 gene deletion can extend the replicative lifespan in a CR pathway-dependent manner. These findings demonstrate that the repression of enhanced gluconeogenesis effectively extends the cellular lifespan.

  15. A reduction in age-enhanced gluconeogenesis extends lifespan.

    Science.gov (United States)

    Hachinohe, Mayumi; Yamane, Midori; Akazawa, Daiki; Ohsawa, Kazuhiro; Ohno, Mayumi; Terashita, Yuzu; Masumoto, Hiroshi

    2013-01-01

    The regulation of energy metabolism, such as calorie restriction (CR), is a major determinant of cellular longevity. Although augmented gluconeogenesis is known to occur in aged yeast cells, the role of enhanced gluconeogenesis in aged cells remains undefined. Here, we show that age-enhanced gluconeogenesis is suppressed by the deletion of the tdh2 gene, which encodes glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a protein that is involved in both glycolysis and gluconeogenesis in yeast cells. The deletion of TDH2 restores the chronological lifespan of cells with deletions of both the HST3 and HST4 genes, which encode yeast sirtuins, and represses the activation of gluconeogenesis. Furthermore, the tdh2 gene deletion can extend the replicative lifespan in a CR pathway-dependent manner. These findings demonstrate that the repression of enhanced gluconeogenesis effectively extends the cellular lifespan.

  16. The association between intelligence and lifespan is mostly genetic

    DEFF Research Database (Denmark)

    Arden, Rosalind; Luciano, Michelle; Deary, Ian J

    2016-01-01

    differed between the samples. We used three methods of genetic analysis to examine the relationship between intelligence and lifespan: we calculated the proportion of the more intelligent twins who outlived their co-twin; we regressed within-twin-pair lifespan differences on within-twin-pair intelligence......BACKGROUND: Several studies in the new field of cognitive epidemiology have shown that higher intelligence predicts longer lifespan. This positive correlation might arise from socioeconomic status influencing both intelligence and health; intelligence leading to better health behaviours; and....../or some shared genetic factors influencing both intelligence and health. Distinguishing among these hypotheses is crucial for medicine and public health, but can only be accomplished by studying a genetically informative sample. METHODS: We analysed data from three genetically informative samples...

  17. Lifespan extension and increased resistance to environmental stressors by N-Acetyl-L-Cysteine in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Seung-Il Oh

    2015-05-01

    Full Text Available OBJECTIVE: This study was performed to determine the effect of N-acetyl-L-cysteine, a modified sulfur-containing amino acid that acts as a strong cellular antioxidant, on the response to environmental stressors and on aging in C. elegans. METHOD: The survival of worms under oxidative stress conditions induced by paraquat was evaluated with and without in vivo N-acetyl-L-cysteine treatment. The effect of N-acetyl-L-cysteine on the response to other environmental stressors, including heat stress and ultraviolet irradiation (UV, was also monitored. To investigate the effect on aging, we examined changes in lifespan, fertility, and expression of age-related biomarkers in C. elegans after N-acetyl-L-cysteine treatment. RESULTS: Dietary N-acetyl-L-cysteine supplementation significantly increased resistance to oxidative stress, heat stress, and UV irradiation in C. elegans. In addition, N-acetyl-L-cysteine supplementation significantly extended both the mean and maximum lifespan of C. elegans. The mean lifespan was extended by up to 30.5% with 5 mM N-acetyl-L-cysteine treatment, and the maximum lifespan was increased by 8 days. N-acetyl-L-cysteine supplementation also increased the total number of progeny produced and extended the gravid period of C. elegans. The green fluorescent protein reporter assay revealed that expression of the stress-responsive genes, sod-3 and hsp-16.2, increased significantly following N-acetyl-L-cysteine treatment. CONCLUSION: N-acetyl-L-cysteine supplementation confers a longevity phenotype in C. elegans, possibly through increased resistance to environmental stressors.

  18. Telomeres and the natural lifespan limit in humans

    DEFF Research Database (Denmark)

    Steenstrup, Troels; Kark, Jeremy D; Verhulst, Simon

    2017-01-01

    An ongoing debate in demography has focused on whether the human lifespan has a maximal natural limit. Taking a mechanistic perspective, and knowing that short telomeres are associated with diminished longevity, we examined whether telomere length dynamics during adult life could set a maximal...... natural lifespan limit. We define leukocyte telomere length of 5 kb as the 'telomeric brink', which denotes a high risk of imminent death. We show that a subset of adults may reach the telomeric brink within the current life expectancy and more so for a 100-year life expectancy. Thus, secular trends...

  19. Fatigue Lifespan of Engine Box Influenced by Fan Blade Out

    Science.gov (United States)

    Qiu, Ju; Shi, Jingwei; Su, Huaizhong; Zhang, Jinling; Feng, Juan; Shi, Qian; Tian, Xiaoyu

    2017-11-01

    This provides precious experience and reliable reference data for future design. This paper introduces the analysis process of Fan-blade-out, and considers the effect of windmill load on the fatigue lifespan of the case. According to Extended Operations (ETOPS) in the airworthiness regulations, the fatigue crack of it is analyzed by the unbalanced rotor load, during FBO. Compared with the lifespan in normal work of the engine, this research provides valuable design experience and reliable reference data for the case design in the near future.

  20. Emodin extends lifespan of Caenorhabditis elegans through insulin/IGF-1 signaling pathway depending on DAF-16 and SIR-2.1.

    Science.gov (United States)

    Zhao, Xuan; Lu, Lulu; Qi, Yonghao; Li, Miao; Zhou, Lijun

    2017-10-01

    The naturally occurring anthraquinone emodin has been serving primarily as an anti-bacterial and anti-inflammatory agent. However, little is known about its potential on anti-aging. This investigation examined the effect of emodin on lifespan and focused on its physiological molecular mechanisms in vivo. Using Caenorhabditis elegans (C. elegans) as an animal model, we found emodin could extend lifespan of worms and improve their antioxidant capacity. Our mechanistic studies revealed that emodin might function via insulin/IGF-1 signaling (IIS) pathway involving, specifically the core transcription factor DAF-16. Quantitative RT-PCR results illustrated that emodin up-regulated transcription of DAF-16 target genes which express antioxidants to promote antioxidant capacity and lifespan of worms. In addition, attenuated effect in sir-2.1 mutants suggests that emodin likely functioned in a SIR-2.1-dependent manner. Our study uncovers a novel role of emodin in prolonging lifespan and supports the understanding of emodin being a beneficial dietary supplement.

  1. Supplementation of Spirulina (Arthrospira platensis) Improves Lifespan and Locomotor Activity in Paraquat-Sensitive DJ-1βΔ93Flies, a Parkinson's Disease Model in Drosophila melanogaster.

    Science.gov (United States)

    Kumar, Ajay; Christian, Pearl K; Panchal, Komal; Guruprasad, B R; Tiwari, Anand K

    2017-09-03

    Spirulina (Arthrospira platensis) is a cyanobacterium (blue-green alga) consumed by humans and other animals because of its nutritional values and pharmacological properties. Apart from high protein contents, it also contains high levels of antioxidant and anti-inflammatory compounds, such as carotenoids, β-carotene, phycocyanin, and phycocyanobilin, indicating its possible pharmaco-therapeutic utility. In the present study using DJ-1β Δ93 flies, a Parkinson's disease model in Drosophila, we have demonstrated the therapeutic effect of spirulina and its active component C-phycocyanin (C-PC) in the improvement of lifespan and locomotor behavior. Our findings indicate that dietary supplementation of spirulina significantly improves the lifespan and locomotor activity of paraquat-fed DJ-1β Δ93 flies. Furthermore, supplementation of spirulina and C-PC individually and independently reduced the cellular stress marked by deregulating the expression of heat shock protein 70 and Jun-N-terminal kinase signaling in DJ-1β Δ93 flies. A significant decrease in superoxide dismutase and catalase activities in spirulina-fed DJ-1β Δ93 flies tends to indicate the involvement of antioxidant properties associated with spirulina in the modulation of stress-induced signaling and improvement in lifespan and locomotor activity in Drosophila DJ-1β Δ93 flies. Our results suggest that antioxidant boosting properties of spirulina can be used as a nutritional supplement for improving the lifespan and locomotor behavior in Parkinson's disease.

  2. Neural correlates of prospective memory across the lifespan

    NARCIS (Netherlands)

    Zöllig, J.; West, R.; Martina, M.; Altgassen, A.M.; Lemke, U.; Kliegel, M.

    2007-01-01

    Overview Behavioural data reveal an inverted U-shaped function in the efficiency of prospective memory from childhood to young adulthood to later adulthood. However, prior research has not directly compared processes contributing to age-related variation in prospective memory across the lifespan,

  3. Implications of Methodist clergies' average lifespan and missional ...

    African Journals Online (AJOL)

    We are born, we touch the lives of others, we die – and then we are remembered. For the purpose of this article, I have assessed from obituaries the average lifespan of the clergy (ministers) in the Methodist Church of South Africa (MCSA), who died between 2003 and 2014. These obituaries were published in the ...

  4. Neural Correlates of Prospective Memory across the Lifespan

    Science.gov (United States)

    Zollig, Jacqueline; West, Robert; Martin, Mike; Altgassen, Mareike; Lemke, Ulrike; Kliegel, Matthias

    2007-01-01

    Overview: Behavioural data reveal an inverted U-shaped function in the efficiency of prospective memory from childhood to young adulthood to later adulthood. However, prior research has not directly compared processes contributing to age-related variation in prospective memory across the lifespan, hence it is unclear whether the same factors…

  5. Engineering Substantially Prolonged Human Lifespans: Biotechnological Enhancement and Ethics

    NARCIS (Netherlands)

    Derkx, P.H.J.M.

    2006-01-01

    Substantial extension of the human lifespan has recently become a subject of lively debate. One reason for this is the completion in 2001 of the Human Genome Project and the experimental avenues for biogerontological research it has opened. Another is recent theoretical progress in biogerontology.

  6. Modality Differences in Timing and Temporal Memory throughout the Lifespan

    Science.gov (United States)

    Lustig, Cindy; Meck, Warren H.

    2011-01-01

    The perception of time is heavily influenced by attention and memory, both of which change over the lifespan. In the current study, children (8 yrs), young adults (18-25 yrs), and older adults (60-75 yrs) were tested on a duration bisection procedure using 3 and 6-s auditory and visual signals as anchor durations. During test, participants were…

  7. Materialism across the lifespan : An age-period-cohort analysis

    NARCIS (Netherlands)

    Jaspers, Esther; Pieters, Rik

    This research examined the development of materialism across the lifespan. Two initial studies revealed that: 1) lay beliefs were that materialism declines with age; and 2) previous research findings also implied a modest, negative relationship between age and materialism. Yet, previous research has

  8. Epigenetic Contributions to Cognitive Aging: Disentangling Mindspan and Lifespan

    Science.gov (United States)

    Spiegel, Amy M.; Sewal, Angila S.; Rapp, Peter R.

    2014-01-01

    Epigenetic modifications of chromatin structure provide a mechanistic interface for gene-environment interactions that impact the individualization of health trajectories across the lifespan. A growing body of research indicates that dysfunctional epigenetic regulation contributes to poor cognitive outcomes among aged populations. Here we review…

  9. Predicting fine root lifespan from plant functional traits in temperate trees.

    Science.gov (United States)

    Luke McCormack, M; Adams, Thomas S; Smithwick, Erica A H; Eissenstat, David M

    2012-09-01

    Although linkages of leaf and whole-plant traits to leaf lifespan have been rigorously investigated, there is a limited understanding of similar linkages of whole-plant and fine root traits to root lifespan. In comparisons across species, do suites of traits found in leaves also exist for roots, and can these traits be used to predict root lifespan? We observed the fine root lifespan of 12 temperate tree species using minirhizotrons in a common garden and compared their median lifespans with fine-root and whole-plant traits. We then determined which set of combined traits would be most useful in predicting patterns of root lifespan. Median root lifespan ranged widely among species (95-336 d). Root diameter, calcium content, and tree wood density were positively related to root lifespan, whereas specific root length, nitrogen (N) : carbon (C) ratio, and plant growth rate were negatively related to root lifespan. Root diameter and plant growth rate, together (R² = 0.62) or in combination with root N : C ratio (R² = 0.76), were useful predictors of root lifespan across the 12 species. Our results highlight linkages between fine root lifespan in temperate trees and plant functional traits that may reduce uncertainty in predictions of root lifespan or turnover across species at broader spatial scales. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  10. Lifespan psychomotor behaviour profiles of multigenerational prenatal stress and artificial food dye effects in rats.

    Directory of Open Access Journals (Sweden)

    Zachary T Erickson

    Full Text Available The consumption of artificial food dye (AFD during childhood and adolescence has been linked to behavioural changes, such as hyperactivity. It is possible that the vulnerability to AFDs is modified by prenatal stress. Common consequences of prenatal stress include hyperactivity, thus potentially leading to synergistic actions with AFDs. Here, we investigated the compounding effect of multigenerational prenatal stress (MPS and AFD consumption on the development of hyperactivity and anxiety-related behaviours across the lifespan in male rats. MPS treatment involved a family history of four consecutive generations of prenatal stress (F4 generation. AFD treatment included a 4%-concentration of FD&C Red 40, FD&C Yellow 5, FD&C Yellow 6, and FD&C Blue 1 in the drinking water from postnatal days 22 to 50 to resemble juvenile and adolescent dietary exposure. Using several exploration tasks, animals were tested in motor activity and anxiety-like behaviours from adolescence to 13 months of age. MPS resulted in hyperactivity both early (50 days and later in life (13 months, with normalized activity patterns at reproductive age. AFD consumption resulted in hyperactivity during consumption, which subsided following termination of treatment. Notably, both MPS and AFD promoted risk-taking behaviour in young adults (3 months. There were few synergistic effects between MPS and AFD in this study. The findings suggest that AFDs exert the most noticeable effects at the time of exposure. MPS, however, results in a characteristic lifespan profile of behavioural changes, indicating that development and aging represent particularly vulnerable periods in life during which a family history of prenatal stress may precipitate.

  11. Nutrients, not caloric restriction, extend lifespan in Queensland fruit flies (Bactrocera tryoni).

    Science.gov (United States)

    Fanson, Benjamin G; Weldon, Christopher W; Pérez-Staples, Diana; Simpson, Stephen J; Taylor, Phillip W

    2009-09-01

    Caloric restriction (CR) has been widely accepted as a mechanism explaining increased lifespan (LS) in organisms subjected to dietary restriction (DR), but recent studies investigating the role of nutrients have challenged the role of CR in extending longevity. Fuelling this debate is the difficulty in experimentally disentangling CR and nutrient effects due to compensatory feeding (CF) behaviour. We quantified CF by measuring the volume of solution imbibed and determined how calories and nutrients influenced LS and fecundity in unmated females of the Queensland fruit fly, Bactocera tryoni (Diptera: Tephritidae). We restricted flies to one of 28 diets varying in carbohydrate:protein (C:P) ratios and concentrations. On imbalanced diets, flies overcame dietary dilutions, consuming similar caloric intakes for most dilutions. The response surface for LS revealed that increasing C:P ratio while keeping calories constant extended LS, with the maximum LS along C:P ratio of 21:1. In general, LS was reduced as caloric intake decreased. Lifetime egg production was maximized at a C:P ratio of 3:1. When given a choice of separate sucrose and yeast solutions, each at one of five concentrations (yielding 25 choice treatments), flies regulated their nutrient intake to match C:P ratio of 3:1. Our results (i) demonstrate that CF can overcome dietary dilutions; (ii) reveal difficulties with methods presenting fixed amounts of liquid diet; (iii) illustrate the need to measure intake to account for CF in DR studies and (iv) highlight nutrients rather than CR as a dominant influence on LS.

  12. Effect of chlorella and its fractions on blood pressure, cerebral stroke lesions, and life-span in stroke-prone spontaneously hypertensive rats.

    Science.gov (United States)

    Sansawa, Hiroshi; Takahashi, Masatoshi; Tsuchikura, Satoru; Endo, Hiroshi

    2006-12-01

    Effects of Chlorella regularis (dried cell powder)--cultured axenically under heterotrophic conditions, and provided as a dietary supplement--and its fractions on the blood pressure, cerebral stroke lesions, and life-span of stroke-prone spontaneously hypertensive rats (SHRSP/Izm) were investigated. When SHRSP were fed on diets with supplemented Chlorella to a commercial diet (Funabashi SP), elevation of blood pressure was significantly lower in the Chlorella groups than in the control group. At 21 wk of feeding, serum total cholesterol was significantly lower in the Chlorella groups than in the control group. Histopathological examination revealed cerebral vascular accidents in the brains of the control group, but those of Chlorella groups showed apparently low incidence compared to the control group. The average life-span of the Chlorella groups were significantly longer than that of the control group (p vascular function of rats.

  13. Lifespan trends of autobiographical remembering: episodicity and search for meaning.

    Science.gov (United States)

    Habermas, Tilmann; Diel, Verena; Welzer, Harald

    2013-09-01

    Autobiographical memories of older adults show fewer episodic and more non-episodic elements than those of younger adults. This semantization effect is attributed to a loss of episodic memory ability. However the alternative explanation by an increasing proclivity to search for meaning has not been ruled out to date. To test whether a decrease in episodicity and an increase in meaning-making in autobiographical narratives are related across the lifespan, we used different instructions, one focussing on specific episodes, the other on embedding events in life, in two lifespan samples. A continuous decrease of episodic quality of memory (memory specificity, narrative quality) was confirmed. An increase of search for meaning (interpretation, life story integration) was confirmed only up to middle adulthood. This non-inverse development of episodicity and searching for meaning in older age speaks for an autonomous semantization effect that is not merely due to an increase in interpretative preferences. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Myc-dependent genome instability and lifespan in Drosophila.

    Directory of Open Access Journals (Sweden)

    Christina Greer

    Full Text Available The Myc family of transcription factors are key regulators of cell growth and proliferation that are dysregulated in a large number of human cancers. When overexpressed, Myc family proteins also cause genomic instability, a hallmark of both transformed and aging cells. Using an in vivo lacZ mutation reporter, we show that overexpression of Myc in Drosophila increases the frequency of large genome rearrangements associated with erroneous repair of DNA double-strand breaks (DSBs. In addition, we find that overexpression of Myc shortens adult lifespan and, conversely, that Myc haploinsufficiency reduces mutation load and extends lifespan. Our data provide the first evidence that Myc may act as a pro-aging factor, possibly through its ability to greatly increase genome instability.

  15. Modelling hippocampal neurogenesis across the lifespan in seven species

    OpenAIRE

    Lazic, Stanley E.

    2011-01-01

    The aim of this study was to estimate the number of new cells and neurons added to the dentate gyrus across the lifespan, and to compare the rate of age-associated decline in neurogenesis across species. Data from mice (Mus musculus), rats (Rattus norvegicus), lesser hedgehog tenrecs (Echinops telfairi), macaques (Macaca mulatta), marmosets (Callithrix jacchus), tree shrews (Tupaia belangeri), and humans (Homo sapiens) were extracted from twenty one data sets published in fourteen different p...

  16. Pomegranate juice enhances healthy lifespan in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Padmavathy eVenkatasubramanian

    2014-12-01

    Full Text Available Exploring innovative ways to ensure healthy ageing of populations is a pre-requisite to contain rising healthcare costs. Scientific research into the principles and practices of traditional medicines can provide new insights and simple solutions to lead a healthy life. Rasayana is a dedicated branch of Ayurveda (an Indian medicine that deals with methods to increase vitality and delay aging through the use of diet, herbal supplements and other lifestyle practices. The life-span and health-span enhancing actions of the fruits of Pomegranate (Punica granatum L., a well-known Rasayana, were tested on Drosophila melanogaster (fruitfly model. Supplementation of standard corn meal with 10% (v/v pomegranate juice (PJ extended the life-span of male and female flies by 18% and 8% respectively. When male and female flies were mixed and reared together, there was 19% increase in the longevity of PJ fed flies, as assessed by MSD, the median survival day (24.8. MSD for control and resveratrol (RV groups was at 20.8 and 23.1 days respectively. A two-fold enhancement in fecundity, improved resistance to oxidative stress (H2O2 and paraquat induced and to Candida albicans infection were observed in PJ fed flies. Further, the flies in the PJ fed group were physically active over an extended period of time, as assessed by the climbing assay. PJ thus outperformed both control and RV groups in the life-span and health-span parameters tested. This study provides the scope to explore the potential of PJ as a nutraceutical to improve health span and lifespan in humans.

  17. Dietary Fibre

    NARCIS (Netherlands)

    Kamp, van der J.W.; Asp, N.G.; Miller Jones, J.; Schaafsma, G.

    2004-01-01

    In this book invited expert scientists of leading research groups all over the world will address the following issues: Definitions, health claims and new challenges, Analytical tools, technological aspects and applications, Health Benefits of dietary fibre, including both authoritative generic

  18. Dietary Supplements

    Science.gov (United States)

    ... by Audience For Women Dietary Supplements: Tips for Women Share Tweet Linkedin Pin it More sharing options ... State & Local Officials Consumers Health Professionals Science & Research Industry Scroll back to top Popular Content Home Latest ...

  19. Rapamycin extends murine lifespan but has limited effects on aging

    Science.gov (United States)

    Neff, Frauke; Flores-Dominguez, Diana; Ryan, Devon P.; Horsch, Marion; Schröder, Susanne; Adler, Thure; Afonso, Luciana Caminha; Aguilar-Pimentel, Juan Antonio; Becker, Lore; Garrett, Lillian; Hans, Wolfgang; Hettich, Moritz M.; Holtmeier, Richard; Hölter, Sabine M.; Moreth, Kristin; Prehn, Cornelia; Puk, Oliver; Rácz, Ildikó; Rathkolb, Birgit; Rozman, Jan; Naton, Beatrix; Ordemann, Rainer; Adamski, Jerzy; Beckers, Johannes; Bekeredjian, Raffi; Busch, Dirk H.; Ehninger, Gerhard; Graw, Jochen; Höfler, Heinz; Klingenspor, Martin; Klopstock, Thomas; Ollert, Markus; Stypmann, Jörg; Wolf, Eckhard; Wurst, Wolfgang; Zimmer, Andreas; Fuchs, Helmut; Gailus-Durner, Valérie; Hrabe de Angelis, Martin; Ehninger, Dan

    2013-01-01

    Aging is a major risk factor for a large number of disorders and functional impairments. Therapeutic targeting of the aging process may therefore represent an innovative strategy in the quest for novel and broadly effective treatments against age-related diseases. The recent report of lifespan extension in mice treated with the FDA-approved mTOR inhibitor rapamycin represented the first demonstration of pharmacological extension of maximal lifespan in mammals. Longevity effects of rapamycin may, however, be due to rapamycin’s effects on specific life-limiting pathologies, such as cancers, and it remains unclear if this compound actually slows the rate of aging in mammals. Here, we present results from a comprehensive, large-scale assessment of a wide range of structural and functional aging phenotypes, which we performed to determine whether rapamycin slows the rate of aging in male C57BL/6J mice. While rapamycin did extend lifespan, it ameliorated few studied aging phenotypes. A subset of aging traits appeared to be rescued by rapamycin. Rapamycin, however, had similar effects on many of these traits in young animals, indicating that these effects were not due to a modulation of aging, but rather related to aging-independent drug effects. Therefore, our data largely dissociate rapamycin’s longevity effects from effects on aging itself. PMID:23863708

  20. Piceatannol extends the lifespan of Caenorhabditis elegans via DAF-16.

    Science.gov (United States)

    Shen, Peiyi; Yue, Yiren; Sun, Quancai; Kasireddy, Nandita; Kim, Kee-Hong; Park, Yeonhwa

    2017-05-06

    Piceatannol is a natural stilbene with many beneficial effects, such as antioxidative, anti-inflammatory, antiatherogenic activities; however, its role on aging is not known. In this study, we used Caenorhabditis elegans as an animal model to study the effect of piceatannol on its lifespan and investigated the underlying mechanisms. The results showed that 50 and 100 µM piceatannol significantly extended the lifespan of C. elegans without altering the growth rate, worm size and progeny production. Piceatannol delayed the age-related decline of pumping rate and locomotive activity, and protected the worms from heat and oxidative stress. This study further indicated that lifespan extension and enhanced stress resistance induced by piceatannol requires DAF-16. Since DAF-16 is conserved from nematodes to mammals, our study may have important implications in utilizing piceatannol to promote healthy aging and combat age-related disease in humans. © 2016 BioFactors, 43(3):379-387, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  1. Ontogeny of morningness-eveningness across the adult human lifespan

    Science.gov (United States)

    Randler, Christoph

    2016-02-01

    Sleep timing of humans can be classified alongside a continuum from early to late sleepers, with some people (larks) having an early activity, early bed, and rise times and others (owls) with a more nocturnally orientated activity. Only a few studies reported that morningness-eveningness changes significantly during the adult lifespan based on community samples. Here, I applied a different methodological approach to seek for evidence for the age-related changes in morningness-eveningness preferences by using a meta-data from all available studies. The new aspect of this cross-sectional approach is that only a few studies themselves address the age-related changes of the adult lifespan development, but that many studies are available that provide exactly the data needed. The studies came from 27 countries and included 36,939 participants. Age was highly significantly correlated with scores on the Composite Scale of Morningness ( r = 0.70). This relationship seems linear, because a linear regression explained nearly the same amount of variance compared to other models such as logarithmic, quadratic, or cubic models. The standard deviation of age correlated with the standard deviation of CSM scores ( r = 0.55), suggesting when there is much variance in age in a study; in turn, there is much variance in morningness. This meta-analytical approach shows that morningness-eveningness changes across the adult lifespan and that older age is related to higher morningness.

  2. Dietary restriction of rodents decreases aging rate without affecting initial mortality rate a meta-analysis

    NARCIS (Netherlands)

    Simons, Mirre J. P.; Koch, Wouter; Verhulst, Simon

    Dietary restriction (DR) extends lifespan in multiple species from various taxa. This effect can arise via two distinct but not mutually exclusive ways: a change in aging rate and/or vulnerability to the aging process (i.e. initial mortality rate). When DR affects vulnerability, this lowers

  3. Flies and their golden apples: the effect of dietary restriction on Drosophila aging and age-dependent gene expression.

    Science.gov (United States)

    Pletcher, Scott D; Libert, Sergiy; Skorupa, Danielle

    2005-11-01

    Reduced nutrient availability (dietary restriction) extends lifespan in species as diverse as yeast, nematode worms, Daphnia, Drosophila, and mammals. Recent demographic experiments have shown that moderate nutrient manipulation in adult Drosophila affects current mortality rate in a completely reversible manner, which suggests that dietary restriction in Drosophila increases lifespan through a reduction of the current risk of death rather than a slowing of aging-related damage. When examined in the light of the new demographic data, age-dependent changes in gene expression in normal and diet-restricted flies can provide unique insight into the biological processes affected by aging and may help identify molecular pathways that regulate it.

  4. Worker lifespan is an adaptive trait during colony establishment in the long-lived ant Lasius niger

    NARCIS (Netherlands)

    Kramer, Boris H.; Schaible, Ralf; Scheuerlein, Alexander

    2016-01-01

    Eusociality has been recognized as a strong driver of lifespan evolution. While queens show extraordinary lifespans of 20 years and more, worker lifespan is short and variable. A recent comparative study found that in eusocial species with larger average colony sizes the disparities in the lifespans

  5. Polyphenol-Rich Diets Exacerbate AMPK-Mediated Autophagy, Decreasing Proliferation of Mosquito Midgut Microbiota, and Extending Vector Lifespan.

    Directory of Open Access Journals (Sweden)

    Rodrigo Dutra Nunes

    2016-10-01

    Full Text Available Mosquitoes feed on plant-derived fluids such as nectar and sap and are exposed to bioactive molecules found in this dietary source. However, the role of such molecules on mosquito vectorial capacity is unknown. Weather has been recognized as a major determinant of the spread of dengue, and plants under abiotic stress increase their production of polyphenols.Here, we show that including polyphenols in mosquito meals promoted the activation of AMP-dependent protein kinase (AMPK. AMPK positively regulated midgut autophagy leading to a decrease in bacterial proliferation and an increase in vector lifespan. Suppression of AMPK activity resulted in a 6-fold increase in midgut microbiota. Similarly, inhibition of polyphenol-induced autophagy induced an 8-fold increase in bacterial proliferation. Mosquitoes maintained on the polyphenol diet were readily infected by dengue virus.The present findings uncover a new direct route by which exacerbation of autophagy through activation of the AMPK pathway leads to a more efficient control of mosquito midgut microbiota and increases the average mosquito lifespan. Our results suggest for the first time that the polyphenol content and availability of the surrounding vegetation may increase the population of mosquitoes prone to infection with arboviruses.

  6. Polyphenol-Rich Diets Exacerbate AMPK-Mediated Autophagy, Decreasing Proliferation of Mosquito Midgut Microbiota, and Extending Vector Lifespan

    Science.gov (United States)

    Nunes, Rodrigo Dutra; Ventura-Martins, Guilherme; Moretti, Débora Monteiro; Medeiros-Castro, Priscilla; Rocha-Santos, Carlucio; Daumas-Filho, Carlos Renato de Oliveira; Bittencourt-Cunha, Paula Rego Barros; Martins-Cardoso, Karina; Cudischevitch, Cecília Oliveira; Menna-Barreto, Rubem Figueiredo Sadok; Oliveira, José Henrique Maia; Gusmão, Desiely Silva; Alves Lemos, Francisco José; Alviano, Daniela Sales; Oliveira, Pedro Lagerblad; Lowenberger, Carl; Majerowicz, David; Oliveira, Ricardo Melo; Mesquita, Rafael Dias; Atella, Georgia Correa

    2016-01-01

    Background Mosquitoes feed on plant-derived fluids such as nectar and sap and are exposed to bioactive molecules found in this dietary source. However, the role of such molecules on mosquito vectorial capacity is unknown. Weather has been recognized as a major determinant of the spread of dengue, and plants under abiotic stress increase their production of polyphenols. Results Here, we show that including polyphenols in mosquito meals promoted the activation of AMP-dependent protein kinase (AMPK). AMPK positively regulated midgut autophagy leading to a decrease in bacterial proliferation and an increase in vector lifespan. Suppression of AMPK activity resulted in a 6-fold increase in midgut microbiota. Similarly, inhibition of polyphenol-induced autophagy induced an 8-fold increase in bacterial proliferation. Mosquitoes maintained on the polyphenol diet were readily infected by dengue virus. Conclusion The present findings uncover a new direct route by which exacerbation of autophagy through activation of the AMPK pathway leads to a more efficient control of mosquito midgut microbiota and increases the average mosquito lifespan. Our results suggest for the first time that the polyphenol content and availability of the surrounding vegetation may increase the population of mosquitoes prone to infection with arboviruses. PMID:27732590

  7. Radiation effects on lifespan of the fish Oryzias latipes

    International Nuclear Information System (INIS)

    Egami, N.

    1979-01-01

    The mortality rate of adult fish exposed to continuous γ-ray irradiation was examined and the results summarized. Initial results into the effects of low-dose γ-irradiation during early developmental stages (one day embryo - 3 month old young) on lifespan, indicate that in this fish the life-shortening effects of radiation are marked at high doses but not at low doses. Age-related histological changes in various tissues have been observed in both irradiated and non-irradiated fish. (Auth.)

  8. Emotional Egocentricity Bias across the life-span

    Directory of Open Access Journals (Sweden)

    Federica eRiva

    2016-04-01

    Full Text Available In our daily lives, we often have to quickly estimate the emotions of our conspecifics in order to have successful social interactions. While this estimation process seems quite easy when we are ourselves in a neutral or equivalent emotional state, it has recently been shown that in case of incongruent emotional states between ourselves and the others, our judgments can be biased. This phenomenon, introduced to the literature with the term Emotional Egocentricity Bias (EEB, has been found to occur in young adults and, to a greater extent, in children. However, how EEB changes across the life-span from adolescence to old age has been largely unexplored. In this study, we recruited 114 female participants subdivided in four cohorts (adolescents, young adults, middle-aged adults, older adults to examine EEB age-related changes. Participants were administered with a paradigm which, by making use of visuo-tactile stimulation that elicits conflicting feelings in paired participants, allows the valid and reliable exploration of EEB. Results highlighted a U-shaped relation between age and EEB, revealing higher emotional egocentricity in adolescents and older adults compared to young and middle-aged adults. These results are in line with the neuroscientific literature which has recently shown that overcoming EEB is associated with a greater activation of a portion of the parietal lobe, namely the right Supramarginal Gyrus (rSMG. This is an area that reaches full maturation only by the end of adolescence, and displays an early decay in older age. Thus, the age-related changes of the EEB could be possibly due to the life-span development of the rSMG. This study is the first one to show the quadratic relation between age and the EEB and set a milestone for further research exploring the neural correlates of the life-span development of the EEB. Future studies are needed in order to generalize these results to the male population and to explore gender

  9. Caloric Restriction-Induced Extension of Chronological Lifespan Requires Intact Respiration in Budding Yeast

    OpenAIRE

    Kwon, Young-Yon; Lee, Sung-Keun; Lee, Cheol-Koo

    2017-01-01

    Caloric restriction (CR) has been shown to extend lifespan and prevent cellular senescence in various species ranging from yeast to humans. Many effects of CR may contribute to extend lifespan. Specifically, CR prevents oxidative damage from reactive oxygen species (ROS) by enhancing mitochondrial function. In this study, we characterized 33 single electron transport chain (ETC) gene-deletion strains to identify CR-induced chronological lifespan (CLS) extension mechanisms. Interestingly, defe...

  10. The "unguarded-X" and the genetic architecture of lifespan: Inbreeding results in a potentially maladaptive sex-specific reduction of female lifespan in Drosophila melanogaster.

    Science.gov (United States)

    Sultanova, Zahida; Andic, Muhammed; Carazo, Pau

    2018-03-01

    Sex differences in ageing and lifespan are ubiquitous in nature. The "unguarded-X" hypothesis (UXh) suggests they may be partly due to the expression of recessive mutations in the hemizygous sex chromosomes of the heterogametic sex, which could help explain sex-specific ageing in a broad array of taxa. A prediction central to the UX hypothesis is that inbreeding will decrease the lifespan of the homogametic sex more than the heterogametic sex, because only in the former does inbreeding increase the expression of recessive deleterious mutations. In this study, we test this prediction by examining the effects of inbreeding on the lifespan and fitness of male and female Drosophila melanogaster across different social environments. We found that, across social environments, inbreeding resulted in a greater reduction of female than male lifespan, and that inbreeding effects on fitness did not seem to counterbalance sex-specific effects on lifespan, suggesting the former are maladaptative. Inter- and intra-sexual correlation analyses also allowed us to identify evidence of an underlying joint genetic architecture for inbreeding effects on lifespan. We discuss these results in light of the UXh and other alternative explanations, and suggest that more attention should be paid to the possibility that the "unguarded-X" may play an important role in the evolution of sex-specific lifespan. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  11. Small lymphocytes in peripheral lymphoid tissues of nude mice. Life-span and distribution

    DEFF Research Database (Denmark)

    Hougen, H P; Röpke, C

    1975-01-01

    The distribution of small lymphocytes according to life-span in the peripheral lymphoid tissues of the mouse mutant "nude" has been studied by means of auto-radiography and scintillation counting to evaluate the localization of B lymphocytes with varying life-span. The vast majority of the lympho......The distribution of small lymphocytes according to life-span in the peripheral lymphoid tissues of the mouse mutant "nude" has been studied by means of auto-radiography and scintillation counting to evaluate the localization of B lymphocytes with varying life-span. The vast majority...

  12. The role of MAP4K3 in lifespan regulation of Caenorhabditiselegans

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Maruf H. [Barshop Institute for Longevity and Aging Studies, Department of Physiology, University of Texas Health Science Center, San Antonio, TX 78240 (United States); Hart, Matthew J., E-mail: HartMJ@uthscsa.edu [Barshop Institute for Longevity and Aging Studies, Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78240 (United States); Rea, Shane L., E-mail: reas3@uthscsa.edu [Barshop Institute for Longevity and Aging Studies, Department of Physiology, University of Texas Health Science Center, San Antonio, TX 78240 (United States)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Inhibition of MAP4K3 by RNAi leads to increased mean lifespan in Caenorhabditis elegans. Black-Right-Pointing-Pointer Mutation in the citron homology domain of MAP4K3 leads to increased mean lifespan. Black-Right-Pointing-Pointer Mutation in the kinase domain of MAP4K3 has no significant effect on mean lifespan. -- Abstract: The TOR pathway is a kinase signaling pathway that regulates cellular growth and proliferation in response to nutrients and growth factors. TOR signaling is also important in lifespan regulation - when this pathway is inhibited, either naturally, by genetic mutation, or by pharmacological means, lifespan is extended. MAP4K3 is a Ser/Thr kinase that has recently been found to be involved in TOR activation. Unexpectedly, the effect of this protein is not mediated via Rheb, the more widely known TOR activation pathway. Given the role of TOR in growth and lifespan control, we looked at how inhibiting MAP4K3 in Caenorhabditiselegans affects lifespan. We used both feeding RNAi and genetic mutants to look at the effect of MAP4K3 deficiency. Our results show a small but significant increase in mean lifespan in MAP4K3 deficient worms. MAP4K3 thus represents a new target in the TOR pathway that can be targeted for pharmacological intervention to control lifespan.

  13. Form and Function of Sleep Spindles across the Lifespan

    Directory of Open Access Journals (Sweden)

    Brittany C. Clawson

    2016-01-01

    Full Text Available Since the advent of EEG recordings, sleep spindles have been identified as hallmarks of non-REM sleep. Despite a broad general understanding of mechanisms of spindle generation gleaned from animal studies, the mechanisms underlying certain features of spindles in the human brain, such as “global” versus “local” spindles, are largely unknown. Neither the topography nor the morphology of sleep spindles remains constant throughout the lifespan. It is likely that changes in spindle phenomenology during development and aging are the result of dramatic changes in brain structure and function. Across various developmental windows, spindle activity is correlated with general cognitive aptitude, learning, and memory; however, these correlations vary in strength, and even direction, depending on age and metrics used. Understanding these differences across the lifespan should further clarify how these oscillations are generated and their function under a variety of circumstances. We discuss these issues, and their translational implications for human cognitive function. Because sleep spindles are similarly affected in disorders of neurodevelopment (such as schizophrenia and during aging (such as neurodegenerative conditions, both types of disorders may benefit from therapies based on a better understanding of spindle function.

  14. Homeless Aging Veterans in Transition: A Life-Span Perspective

    Directory of Open Access Journals (Sweden)

    Carla J. Thompson

    2013-01-01

    Full Text Available The need for counseling and career/educational services for homeless veterans has captured political and economic venues for more than 25 years. Veterans are three times more likely to become homeless than the general population if veterans live in poverty or are minority veterans. This mixed methods study emphasized a life-span perspective approach for exploring factors influencing normative aging and life-quality of 39 homeless veterans in Alabama and Florida. Seven descriptive quantitative and qualitative research questions framed the investigation. Study participants completed a quantitative survey reflecting their preferences and needs with a subset of the sample (N=12 also participating in individual qualitative interview sessions. Thirty-two service providers and stakeholders completed quantitative surveys. Empirical and qualitative data with appropriate triangulation procedures provided interpretive information relative to a life-span development perspective. Study findings provide evidence of the need for future research efforts to address strategies that focus on the health and economic challenges of veterans before they are threatened with the possibility of homelessness. Implications of the study findings provide important information associated with the premise that human development occurs throughout life with specific characteristics influencing the individual’s passage. Implications for aging/homelessness research are grounded in late-life transitioning and human development intervention considerations.

  15. Life-span studies of inhaled plutonium in beagle dogs

    International Nuclear Information System (INIS)

    Bair, W.J.

    1990-04-01

    In 1970 a life-span study with over 300 beagle dogs was begun to gain an understanding of long-term health effects resulting from respiratory tract intakes of plutonium and to derive risk estimates that might be applied to plutonium and other transuranic elements. Groups of beagle dogs were given single exposures to 239 PuO 2 , 238 PuO 2 , or 239 Pu(NO 3 ) 4 to obtain graded levels of initial lung burdens ranging from 1 to 1800 Bq lung. The objective of this paper is to give you a progress report on the current life-span studies of inhaled plutonium in beagle dogs at the Pacific Northwest Laboratory. I will describe the biokinetics of inhaled plutonium in dogs and the resulting health effects. I will also mention some studies directed towards understanding the mechanism leading to these effects. Finally, I will discuss the current risk estimates derived from these studies and how they might relate to plutonium exposures in humans. 5 refs., 13 figs., 4 tabs

  16. On the challenge of a century lifespan satellite

    Science.gov (United States)

    Gonzalo, Jesús; Domínguez, Diego; López, Deibi

    2014-10-01

    This paper provides a review of the main issues affecting satellite survivability, including a discussion on the technologies to mitigate the risks and to enhance system reliability. The feasibility of a 100-year lifespan space mission is taken as the guiding thread for the discussion. Such a mission, defined with a few preliminary requirements, could be used to deliver messages to our descendants regardless of the on-ground contingencies. After the analysis of the main threats for long endurance in space, including radiation, debris and micrometeoroids, atmospheric drag and thermal environment, the available solutions are investigated. A trade-off study analyses orbital profiles from the point of view of radiation, thermal stability and decay rate, providing best locations to maximize lifespan. Special attention is also paid to on-board power, in terms of energy harvesting and accumulation, highlighting the limitations of current assets, i.e. solar panels and batteries, and revealing possible future solutions. Furthermore, the review includes electronics, non-volatile memories and communication elements, which need extra hardening against radiation and thermal cycling if extra-long endurance is required. As a result of the analysis, a century-lifetime mission is depicted by putting together all the reviewed concepts. The satellite, equipped with reliability enhanced elements and system-level solutions such as smart hibernation policies, could provide limited but still useful performance after a 100-year flight.

  17. Role of CBP and SATB-1 in aging, dietary restriction, and insulin-like signaling.

    Directory of Open Access Journals (Sweden)

    Minhua Zhang

    2009-11-01

    Full Text Available How dietary restriction (DR increases lifespan and decreases disease burden are questions of major interest in biomedical research. Here we report that hypothalamic expression of CREB-binding protein (CBP and CBP-binding partner Special AT-rich sequence binding protein 1 (SATB-1 is highly correlated with lifespan across five strains of mice, and expression of these genes decreases with age and diabetes in mice. Furthermore, in Caenorhabditis elegans, cbp-1 is induced by bacterial dilution DR (bDR and the daf-2 mutation, and cbp-1 RNAi specifically in adults completely blocks lifespan extension by three distinct protocols of DR, partially blocks lifespan extension by the daf-2 mutation but not of cold, and blocks delay of other age-related pathologies by bDR. Inhibiting the C. elegans ortholog of SATB-1 and CBP-binding partners daf-16 and hsf-1 also attenuates lifespan extension by bDR, but not other protocols of DR. In a transgenic Abeta42 model of Alzheimer's disease, cbp-1 RNAi prevents protective effects of bDR and accelerates Abeta42-related pathology. Furthermore, consistent with the function of CBP as a histone acetyltransferase, drugs that enhance histone acetylation increase lifespan and reduce Abeta42-related pathology, protective effects completely blocked by cbp-1 RNAi. Other factors implicated in lifespan extension are also CBP-binding partners, suggesting that CBP constitutes a common factor in the modulation of lifespan and disease burden by DR and the insulin/IGF1 signaling pathway.

  18. Splicing factor 1 modulates dietary restriction and TORC1 pathway longevity in C. elegans

    DEFF Research Database (Denmark)

    Heintz, Caroline; Doktor, Thomas K; Lanjuin, Anne

    2017-01-01

    via splicing factor 1 (SFA-1; the C. elegans homologue of SF1, also known as branchpoint binding protein, BBP). We show that SFA-1 is specifically required for lifespan extension by dietary restriction and by modulation of the TORC1 pathway components AMPK, RAGA-1 and RSKS-1/S6 kinase. We also...... homeostasis is a biomarker and predictor of life expectancy in Caenorhabditis elegans. Using transcriptomics and in-depth splicing analysis in young and old animals fed ad libitum or subjected to dietary restriction, we find defects in global pre-mRNA splicing with age that are reduced by dietary restriction...

  19. Dietary sodium

    DEFF Research Database (Denmark)

    Graudal, Niels

    2015-01-01

    The 2013 Institute of Medicine (IOM) report "Sodium Intake in Populations: Assessment of Evidence" did not support the current recommendations of the IOM and the American Heart Association (AHA) to reduce daily dietary sodium intake to below 2,300 mg. The report concluded that the population......-based health outcome evidence was not sufficient to define a safe upper intake level for sodium. Recent studies have extended this conclusion to show that a sodium intake below 2,300 mg/day is associated with increased mortality. In spite of this increasing body of evidence, the AHA, Centers for Disease...... Control (CDC), other public health advisory bodies, and major medical journals have continued to support the current policy of reducing dietary sodium....

  20. Dietary guidelines

    DEFF Research Database (Denmark)

    Jelsøe, Erling

    2015-01-01

    Dietary guidelines are issued regularly in most developed countries. In almost all cases they are concerned solely with the nutritional aspects of food and eating and are based on an understanding of food exclusively as a source of nutrients. In recent years, however, a growing number of proposals...... in a number of countries have addressed the issue of making dietary guidelines that integrate health and sustainability, but in all cases they have been met with different kinds of resistance. This article reviews the development towards an integrated understanding of health and sustainability in relation...... to food and eating and the emergence of proposals for integrated guidelines. It explores the conflicts and controversies that have arisen in the wake of the various proposals and identifies a number of different types of conflicts. These relate to conflicts of interests between the various actors involved...

  1. How Dietary Phosphorus Availability during Development Influences Condition and Life History Traits of the Cricket, Acheta domesticas

    OpenAIRE

    Visanuvimol, Laksanavadee; Bertram, Susan M.

    2011-01-01

    Phosphorus is extremely limited in the environment, often being 10–20 times lower in plants than what invertebrate herbivores require. This mismatch between resource availability and resource need can profoundly influence herbivore life history traits and fitness. This study investigated how dietary phosphorus availability influenced invertebrate growth, development time, consumption, condition, and lifespan using juvenile European house crickets, Acheta domesticus L. (Orthoptera: Gryllidae)....

  2. Why do lifespan variability trends for the young and old diverge? A perturbation analysis

    NARCIS (Netherlands)

    Engelman, M.; Caswell, H.; Agree, E.M.

    2014-01-01

    Background: Variation in lifespan has followed strikingly different trends for the young and old: while overall lifespan variability has decreased as life expectancy at birth has risen, the variability conditional on survival to older ages has increased. These diverging trends reflect changes in the

  3. Transcription factor genes essential for cell proliferation and replicative lifespan in budding yeast

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, Yuka; Tai, Akiko; Dakeyama, Shota; Yamamoto, Kaori; Inoue, Yamato; Kishimoto, Yoshifumi; Ohara, Hiroya; Mukai, Yukio, E-mail: y_mukai@nagahama-i-bio.ac.jp

    2015-07-31

    Many of the lifespan-related genes have been identified in eukaryotes ranging from the yeast to human. However, there is limited information available on the longevity genes that are essential for cell proliferation. Here, we investigated whether the essential genes encoding DNA-binding transcription factors modulated the replicative lifespan of Saccharomyces cerevisiae. Heterozygous diploid knockout strains for FHL1, RAP1, REB1, and MCM1 genes showed significantly short lifespan. {sup 1}H-nuclear magnetic resonance analysis indicated a characteristic metabolic profile in the Δfhl1/FHL1 mutant. These results strongly suggest that FHL1 regulates the transcription of lifespan related metabolic genes. Thus, heterozygous knockout strains could be the potential materials for discovering further novel lifespan genes. - Highlights: • Involvement of yeast TF genes essential for cell growth in lifespan was evaluated. • The essential TF genes, FHL1, RAP1, REB1, and MCM1, regulate replicative lifespan. • Heterozygous deletion of FHL1 changes cellular metabolism related to lifespan.

  4. Curcumin-supplemented diets increase superoxide dismutase activity and mean lifespan in Drosophila

    Science.gov (United States)

    Curcumin is an antioxidant extracted from the root of the turmeric plant. We examined the antioxidant effect and lifespan extension of curcumin in Drosophila. To ascertain the antioxidant effects of curcumin with regard to lifespan extension and the response to reactive oxygen species, female and ma...

  5. Mechanisms of increased lifespan in hypoxia in the alfalfa leafcutting bee, Megachile rotundata

    Science.gov (United States)

    Genetic variation accounts for a small amount of variation in lifespan, while environmental stressors are strong predictors. Hypoxia is an environmental stress that increases longevity in some contexts, but the mechanisms remain poorly understood. In the bee Megachile rotundata, lifespan doubles upo...

  6. No influence of Indy on lifespan in Drosophila after correction for genetic and cytoplasmic background effects.

    Directory of Open Access Journals (Sweden)

    Janne M Toivonen

    2007-06-01

    Full Text Available To investigate whether alterations in mitochondrial metabolism affect longevity in Drosophila melanogaster, we studied lifespan in various single gene mutants, using inbred and outbred genetic backgrounds. As positive controls we included the two most intensively studied mutants of Indy, which encodes a Drosophila Krebs cycle intermediate transporter. It has been reported that flies heterozygous for these Indy mutations, which lie outside the coding region, show almost a doubling of lifespan. We report that only one of the two mutants lowers mRNA levels, implying that the lifespan extension observed is not attributable to the Indy mutations themselves. Moreover, neither Indy mutation extended lifespan in female flies in any genetic background tested. In the original genetic background, only the Indy mutation associated with altered RNA expression extended lifespan in male flies. However, this effect was abolished by backcrossing into standard outbred genetic backgrounds, and was associated with an unidentified locus on the X chromosome. The original Indy line with long-lived males is infected by the cytoplasmic symbiont Wolbachia, and the longevity of Indy males disappeared after tetracycline clearance of this endosymbiont. These findings underscore the critical importance of standardisation of genetic background and of cytoplasm in genetic studies of lifespan, and show that the lifespan extension previously claimed for Indy mutants was entirely attributable to confounding variation from these two sources. In addition, we saw no effects on lifespan of expression knockdown of the Indy orthologues nac-2 and nac-3 in the nematode Caenorhabditis elegans.

  7. No turnover in lens lipids for the entire human lifespan.

    Science.gov (United States)

    Hughes, Jessica R; Levchenko, Vladimir A; Blanksby, Stephen J; Mitchell, Todd W; Williams, Alan; Truscott, Roger J W

    2015-03-11

    Lipids are critical to cellular function and it is generally accepted that lipid turnover is rapid and dysregulation in turnover results in disease (Dawidowicz 1987; Phillips et al., 2009; Liu et al., 2013). In this study, we present an intriguing counter-example by demonstrating that in the center of the human ocular lens, there is no lipid turnover in fiber cells during the entire human lifespan. This discovery, combined with prior demonstration of pronounced changes in the lens lipid composition over a lifetime (Hughes et al., 2012), suggests that some lipid classes break down in the body over several decades, whereas others are stable. Such substantial changes in lens cell membranes may play a role in the genesis of age-related eye disorders. Whether long-lived lipids are present in other tissues is not yet known, but this may prove to be important in understanding the development of age-related diseases.

  8. Linguistic Processing of Accented Speech Across the Lifespan

    Directory of Open Access Journals (Sweden)

    Alejandrina eCristia

    2012-11-01

    Full Text Available In most of the world, people have regular exposure to multiple accents. Therefore, learning to quickly process accented speech is a prerequisite to successful communication. In this paper, we examine work on the perception of accented speech across the lifespan, from early infancy to late adulthood. Unfamiliar accents initially impair linguistic processing by infants, children, younger adults, and older adults, but listeners of all ages come to adapt to accented speech. Emergent research also goes beyond these perceptual abilities, by assessing links with production and the relative contributions of linguistic knowledge and general cognitive skills. We conclude by underlining points of convergence across ages, and the gaps left to face in future work.

  9. Exercise, APOE genotype, and the evolution of the human lifespan

    Science.gov (United States)

    Raichlen, David A.; Alexander, Gene E.

    2014-01-01

    Humans have exceptionally long lifespans compared with other mammals. However, our longevity evolved when our ancestors had two copies of the apolipoprotein E (APOE) ε4 allele, a genotype that leads to a high risk of Alzheimer’s disease (AD), cardiovascular disease, and increased mortality. How did human aging evolve within this genetic constraint? Drawing from neuroscience, anthropology, and brain-imaging research, we propose the hypothesis that the evolution of increased physical activity approximately 2 million years ago served to reduce the amyloid plaque and vascular burden of APOE ε4, relaxing genetic constraints on aging. This multidisciplinary approach links human evolution with health and provides a complementary perspective on aging and neurodegenerative disease that may help identify key mechanisms and targets for intervention. PMID:24690272

  10. Ontogenetic patterns in the dreams of women across the lifespan.

    Science.gov (United States)

    Dale, Allyson; Lortie-Lussier, Monique; De Koninck, Joseph

    2015-12-01

    The present study supports and extends previous research on the developmental differences in women's dreams across the lifespan. The participants included 75 Canadian women in each of 5 age groups from adolescence to old age including 12-17, 18-24, 25-39, 40-64, and 65-85, totaling 375 women. One dream per participant was scored by two independent judges using the method of content analysis. Trend analysis was used to determine the ontogenetic pattern of the dream content categories. Results demonstrated significant ontogenetic decreases (linear trends) for female and familiar characters, activities, aggression, and friendliness. These patterns of dream imagery reflect the waking developmental patterns as proposed by social theories and recognized features of aging as postulated by the continuity hypothesis. Limitations and suggestions for future research including the examining of developmental patterns in the dreams of males are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Building lifespan: effect on the environmental impact of building components in a Danish perspective

    DEFF Research Database (Denmark)

    Marsh, Rob

    2017-01-01

    of building lifespan are inadequately addressed. The aim of this research is therefore to explore how environmental impact from building components is affected by building lifespans of 50, 80, 100 and 120 years in a Danish context. LCAs are undertaken for 792 parametric variations of typical construction....../rooflights. On average, a building lifespan of 80 years reduces environmental impact by 29 %, 100 years by 38 %, and 120 years by 44 %, all in relation to a lifespan of 50 years. The results show that if construction professionals and policy makers use short building lifespans, then resource allocation to reduce...... environmental impact during procurement may become disproportionately focussed on the construction contra operational phases of the lifecycle....

  12. Empirically derived lifespan polytraumatization typologies: A systematic review.

    Science.gov (United States)

    Contractor, Ateka A; Caldas, Stephanie; Fletcher, Shelley; Shea, M Tracie; Armour, Cherie

    2018-01-24

    Polytraumatization classes based on trauma endorsement patterns relate to distinct clinical outcomes. Person-centered approaches robustly evaluate the nature, and construct validity of polytraumatization classes. Our review examined evidence for the nature and construct validity of lifespan polytraumatization typologies. In September 2016, we searched Pubmed, PSYCINFO, PSYC ARTICLES, Academic Search Complete, PILPTS, Web of Science, CINAHL, Medline, PsycEXTRA, and PBSC. Search terms included "latent profile," "latent class," "latent analysis," "person-centered," "polytrauma," "polyvictimization," "traumatization," "lifetime," "cooccurring," "complex," "typology," "multidimensional," "sequential," "multiple," "subtype," "(re)victimization," "cumulative," "maltreatment," "abuse," and "stressor." Inclusionary criteria included: peer-reviewed; latent class/latent profile analyses (LCA/LPA) of lifespan polytrauma classes; adult samples of size greater than 200; only trauma types as LCA/LPA indicators; mental health correlates of typologies; and individual-level trauma assessment. Of 1,397 articles, nine met inclusion criteria. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, research assistants completed a secondary reference search, and independently extracted data with standardized coding forms. Three-class (n = 5) or four-class (n = 4) solutions were found. Seven studies found a class characterized by higher trauma endorsement (high-trauma). All studies found a class characterized by lower trauma endorsement (low-trauma), and predominance of specific traumas (specific-trauma; e.g., childhood maltreatment). High-trauma versus low-trauma classes and specific-trauma versus low-trauma classes differed on mental health correlates. Evidence supports the prevalence of a high-trauma class experiencing poorer mental health, and the detrimental impact of aggregated interpersonal and other traumas. We highlight the clinical

  13. Down syndrome: Cognitive and behavioral functioning across the lifespan.

    Science.gov (United States)

    Grieco, Julie; Pulsifer, Margaret; Seligsohn, Karen; Skotko, Brian; Schwartz, Alison

    2015-06-01

    Individuals with Down syndrome (DS) commonly possess unique neurocognitive and neurobehavioral profiles that emerge within specific developmental periods. These profiles are distinct relative to others with similar intellectual disability (ID) and reflect underlying neuroanatomic findings, providing support for a distinctive phenotypic profile. This review updates what is known about the cognitive and behavioral phenotypes associated with DS across the lifespan. In early childhood, mild deviations from neurotypically developing trajectories emerge. By school-age, delays become pronounced. Nonverbal skills remain on trajectory for mental age, whereas verbal deficits emerge and persist. Nonverbal learning and memory are strengths relative to verbal skills. Expressive language is delayed relative to comprehension. Aspects of language skills continue to develop throughout adolescence, although language skills remain compromised in adulthood. Deficits in attention/executive functions are present in childhood and become more pronounced with age. Characteristic features associated with DS (cheerful, social nature) are personality assets. Children are at a lower risk for psychopathology compared to other children with ID; families report lower levels of stress and a more positive outlook. In youth, externalizing behaviors may be problematic, whereas a shift toward internalizing behaviors emerges with maturity. Changes in emotional/behavioral functioning in adulthood are typically associated with neurodegeneration and individuals with DS are higher risk for dementia of the Alzheimer's type. Individuals with DS possess many unique strengths and weaknesses that should be appreciated as they develop across the lifespan. Awareness of this profile by professionals and caregivers can promote early detection and support cognitive and behavioral development. © 2015 Wiley Periodicals, Inc.

  14. Dietary antiaging phytochemicals and mechanisms associated with prolonged survival

    Science.gov (United States)

    Si, Hongwei; Liu, Dongmin

    2014-01-01

    Aging is well-known an inevitable process that is influenced by genetic, lifestyle and environmental factors. However, the exact mechanisms underlying the aging process are not well understood. Increasing evidence shows that aging is highly associated with chronic increase in reactive oxygen species (ROS), accumulation of a low-grade proinflammatory phenotype and reduction in age-related autophagy, suggesting that these factors may play important roles in promoting aging. Indeed, reduction of ROS and low-grade inflammation and promotion of autophagy by calorie restriction or other dietary manipulation can extend lifespan in a wide spectrum of model organisms. Interestingly, recent studies show that some food-derived small molecules, also called phytochemicals, can extend lifespan in various animal species. In this paper, we review several recently identified potential antiaging phytochemicals that have been studied in cells, animals and humans and further highlight the cellular and molecular mechanisms underlying the antiaging actions by these molecules. PMID:24742470

  15. Why do lifespan variability trends for the young and old diverge? A perturbation analysis

    Directory of Open Access Journals (Sweden)

    Michal Engelman

    2014-05-01

    Full Text Available Background: Variation in lifespan has followed strikingly different trends for the young and old: while overall lifespan variability has decreased as life expectancy at birth has risen, the variability conditional on survival to older ages has increased. These diverging trends reflect changes in the underlying demographic parameters determining age-specific mortality. Objective: We ask why the variation in the adult ages at death has followed a different trend than the variation at younger ages, and aim to explain the diverging patterns in terms of historical changes in the age schedule of mortality. Methods: Using simulations, we show that the empirical trends in lifespan variation are well characterized using the Siler model, which describes the mortality hazard across the full lifespan using functions representing early-life, later-life, and background mortality. We then obtain maximum likelihood estimates of the Siler parameters over time. Finally, we express lifespan variation in terms of a Markov chain model, and apply matrix calculus perturbation analysis to compute the sensitivity of age-specific lifespan variance trends to the changing Siler model parameters. Results: Our analysis produces a detailed quantification of the impact of changing demographic parameters on the pattern of lifespan variability at all ages, highlighting the impact of declining childhood mortality on the reduction of lifespan variability and the impact of improved survival in adulthood on the rising variability of lifespans at older ages. Conclusions: These findings provide insight into the dynamic relationship between the age pattern of survival improvements and time trends in lifespan variability.

  16. The evolution of senescence and post-reproductive lifespan in guppies (Poecilia reticulata.

    Directory of Open Access Journals (Sweden)

    David Reznick

    2006-01-01

    Full Text Available The study of post-reproductive lifespan has been of interest primarily with regard to the extended post-menopausal lifespan seen in humans. This unusual feature of human demography has been hypothesized to have evolved because of the "grandmother" effect, or the contributions that post-reproductive females make to the fitness of their children and grandchildren. While some correlative analyses of human populations support this hypothesis, few formal, experimental studies have addressed the evolution of post-reproductive lifespan. As part of an ongoing study of life history evolution in guppies, we compared lifespans of individual guppies derived from populations that differ in their extrinsic mortality rates. Some of these populations co-occur with predators that increase mortality rate, whereas other nearby populations above barrier waterfalls are relatively free from predation. Theory predicts that such differences in extrinsic mortality will select for differences in the age at maturity, allocation of resources to reproduction, and patterns of senescence, including reproductive declines. As part of our evaluation of these predictions, we quantified differences among populations in post-reproductive lifespan. We present here the first formal, comparative study of the evolution of post-reproductive lifespan as a component of the evolution of the entire life history. Guppies that evolved with predators and that experienced high extrinsic mortality mature at an earlier age but also have longer lifespans. We divided the lifespan into three non-overlapping components: birth to age at first reproduction, age at first reproduction to age at last reproduction (reproductive lifespan, and age at last reproduction to age at death (post-reproductive lifespan. Guppies from high-predation environments live longer because they have a longer reproductive lifespan, which is the component of the life history that can make a direct contribution to individual

  17. The Evolution of Senescence and Post-Reproductive Lifespan in Guppies (Poecilia reticulata.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available The study of post-reproductive lifespan has been of interest primarily with regard to the extended post-menopausal lifespan seen in humans. This unusual feature of human demography has been hypothesized to have evolved because of the "grandmother" effect, or the contributions that post-reproductive females make to the fitness of their children and grandchildren. While some correlative analyses of human populations support this hypothesis, few formal, experimental studies have addressed the evolution of post-reproductive lifespan. As part of an ongoing study of life history evolution in guppies, we compared lifespans of individual guppies derived from populations that differ in their extrinsic mortality rates. Some of these populations co-occur with predators that increase mortality rate, whereas other nearby populations above barrier waterfalls are relatively free from predation. Theory predicts that such differences in extrinsic mortality will select for differences in the age at maturity, allocation of resources to reproduction, and patterns of senescence, including reproductive declines. As part of our evaluation of these predictions, we quantified differences among populations in post-reproductive lifespan. We present here the first formal, comparative study of the evolution of post-reproductive lifespan as a component of the evolution of the entire life history. Guppies that evolved with predators and that experienced high extrinsic mortality mature at an earlier age but also have longer lifespans. We divided the lifespan into three non-overlapping components: birth to age at first reproduction, age at first reproduction to age at last reproduction (reproductive lifespan, and age at last reproduction to age at death (post-reproductive lifespan. Guppies from high-predation environments live longer because they have a longer reproductive lifespan, which is the component of the life history that can make a direct contribution to individual

  18. The evolution of senescence and post-reproductive lifespan in guppies (Poecilia reticulata).

    Science.gov (United States)

    Reznick, David; Bryant, Michael; Holmes, Donna

    2006-01-01

    The study of post-reproductive lifespan has been of interest primarily with regard to the extended post-menopausal lifespan seen in humans. This unusual feature of human demography has been hypothesized to have evolved because of the "grandmother" effect, or the contributions that post-reproductive females make to the fitness of their children and grandchildren. While some correlative analyses of human populations support this hypothesis, few formal, experimental studies have addressed the evolution of post-reproductive lifespan. As part of an ongoing study of life history evolution in guppies, we compared lifespans of individual guppies derived from populations that differ in their extrinsic mortality rates. Some of these populations co-occur with predators that increase mortality rate, whereas other nearby populations above barrier waterfalls are relatively free from predation. Theory predicts that such differences in extrinsic mortality will select for differences in the age at maturity, allocation of resources to reproduction, and patterns of senescence, including reproductive declines. As part of our evaluation of these predictions, we quantified differences among populations in post-reproductive lifespan. We present here the first formal, comparative study of the evolution of post-reproductive lifespan as a component of the evolution of the entire life history. Guppies that evolved with predators and that experienced high extrinsic mortality mature at an earlier age but also have longer lifespans. We divided the lifespan into three non-overlapping components: birth to age at first reproduction, age at first reproduction to age at last reproduction (reproductive lifespan), and age at last reproduction to age at death (post-reproductive lifespan). Guppies from high-predation environments live longer because they have a longer reproductive lifespan, which is the component of the life history that can make a direct contribution to individual fitness. We found no

  19. Diabetes and Dietary Supplements

    Science.gov (United States)

    ... R S T U V W X Y Z Diabetes and Dietary Supplements: In Depth Share: On This ... much do we know about dietary supplements for diabetes? Many studies have investigated dietary supplements, including vitamins, ...

  20. Using Dietary Supplements Wisely

    Science.gov (United States)

    ... U V W X Y Z Using Dietary Supplements Wisely Share: On This Page Key Points About ... help ensure coordinated and safe care. About Dietary Supplements Dietary supplements were defined in a law passed ...

  1. Synergism between soluble guanylate cyclase signaling and neuropeptides extends lifespan in the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Abergel, Rachel; Livshits, Leonid; Shaked, Maayan; Chatterjee, Arijit Kumar; Gross, Einav

    2017-04-01

    Oxygen (O 2 ) homeostasis is important for all aerobic animals. However, the manner by which O 2 sensing and homeostasis contribute to lifespan regulation is poorly understood. Here, we use the nematode Caenorhabditis elegans to address this question. We demonstrate that a loss-of-function mutation in the neuropeptide receptor gene npr-1 and a deletion mutation in the atypical soluble guanylate cyclase gcy-35 O 2 sensor interact synergistically to extend worm lifespan. The function of npr-1 and gcy-35 in the O 2 -sensing neurons AQR, PQR, and URX shortens the lifespan of the worm. By contrast, the activity of the atypical soluble guanylate cyclase O 2 sensor gcy-33 in these neurons is crucial for lifespan extension. In addition to AQR, PQR, and URX, we show that the O 2 -sensing neuron BAG and the interneuron RIA are also important for the lifespan lengthening. Neuropeptide processing by the proprotein convertase EGL-3 is essential for lifespan extension, suggesting that the synergistic effect of joint loss of function of gcy-35 and npr-1 is mediated through neuropeptide signal transduction. The extended lifespan is regulated by hypoxia and insulin signaling pathways, mediated by the transcription factors HIF-1 and DAF-16. Moreover, reactive oxygen species (ROS) appear to play an important function in lifespan lengthening. As HIF-1 and DAF-16 activities are modulated by ROS, we speculate that joint loss of function of gcy-35 and npr-1 extends lifespan through ROS signaling. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  2. Modulation of Replicative Lifespan in Cryptococcus neoformans: Implications for Virulence

    Science.gov (United States)

    Bouklas, Tejas; Jain, Neena; Fries, Bettina C.

    2017-01-01

    The fungal pathogen, Cryptococcus neoformans, has been shown to undergo replicative aging. Old cells are characterized by advanced generational age and phenotypic changes that appear to mediate enhanced resistance to host and antifungal-based killing. As a consequence of this age-associated resilience, old cells accumulate during chronic infection. Based on these findings, we hypothesized that shifting the generational age of a pathogenic yeast population would alter its vulnerability to the host and affect its virulence. SIR2 is a well-conserved histone deacetylase, and a pivotal target for the development of anti-aging drugs. We tested its effect on C. neoformans’ replicative lifespan (RLS). First, a mutant C. neoformans strain (sir2Δ) was generated, and confirmed a predicted shortened RLS in sir2Δ cells consistent with its known role in aging. Next, RLS analysis showed that treatment of C. neoformans with Sir2p-agonists resulted in a significantly prolonged RLS, whereas treatment with a Sir2p-antagonist shortened RLS. RLS modulating effects were dependent on SIR2 and not observed in sir2Δ cells. Because SIR2 loss resulted in a slightly impaired fitness, effects of genetic RLS modulation on virulence could not be compared with wild type cells. Instead we chose to chemically modulate RLS, and investigated the effect of Sir2p modulating drugs on C. neoformans cells in a Galleria mellonella infection model. Consistent with our hypothesis that shifts in the generational age of the infecting yeast population alters its vulnerability to host cells, we observed decreased virulence of C. neoformans in the Galleria host when RLS was prolonged by treatment with Sir2p agonists. In contrast, treatment with a Sir2p antagonist, which shortens RLS enhanced virulence in Galleria. In addition, combination of Sir2p agonists with antifungal therapy enhanced the antifungal’s effect. Importantly, no difference in virulence was observed with drug treatment when sir2Δ cells

  3. Impact of dietary fats on brain functions.

    Science.gov (United States)

    Chianese, Rosanna; Coccurello, Roberto; Viggiano, Andrea; Scafuro, Marika; Fiore, Marco; Coppola, Giangennaro; Operto, Francesca Felicia; Fasano, Silvia; Layé, Sophie; Pierantoni, Riccardo; Meccariello, Rosaria

    2017-10-17

    Adequate dietary intake and nutritional status have important effects on brain functions and on brain health. Energy intake and specific nutrients excess or deficiency from diet differently affect cognitive processes, emotions, behaviour, neuroendocrine functions and synaptic plasticity with possible protective or detrimental effects on neuronal physiology. Lipids, in particular, play structural and functional roles in neurons. Here the importance of dietary fats and the need to understand the brain mechanisms activated by peripheral and central metabolic sensors. Thus, the manipulation of lifestyle factors such as dietary interventions may represent a successful therapeutic approach to maintain and preserve brain health along lifespan. This review aims at summarizing the impact of dietary fats on brain functions. Starting from fat consumption, nutrient sensing and food-related reward, the impact of gut-brain communications will be discussed in brain health and disease. A specific focus will be on the impact of fats on the molecular pathways within the hypothalamus involved in the control of reproduction via the expression and the release of Gonadotropin-Releasing Hormone. Lastly, the effects of specific lipid classes such as polyunsaturated fatty acids and of the "fattest" of all diets, commonly known as "ketogenic diets", on brain functions will also be discussed. Despite the knowledge of the molecular mechanisms is still a work in progress, the clinical relevance of the manipulation of dietary fats is well acknowledged and such manipulations are in fact currently in use for the treatment of brain diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Modeling hippocampal neurogenesis across the lifespan in seven species.

    Science.gov (United States)

    Lazic, Stanley E

    2012-08-01

    The aim of this study was to estimate the number of new cells and neurons added to the dentate gyrus across the lifespan, and to compare the rate of age-associated decline in neurogenesis across species. Data from mice (Mus musculus), rats (Rattus norvegicus), lesser hedgehog tenrecs (Echinops telfairi), macaques (Macaca mulatta), marmosets (Callithrix jacchus), tree shrews (Tupaia belangeri), and humans (Homo sapiens) were extracted from 21 data sets published in 14 different reports. Analysis of variance (ANOVA), exponential, Weibull, and power models were fit to the data to determine which best described the relationship between age and neurogenesis. Exponential models provided a suitable fit and were used to estimate the relevant parameters. The rate of decrease of neurogenesis correlated with species longevity (r = 0.769, p = 0.043), but not body mass or basal metabolic rate. Of all the cells added postnatally to the mouse dentate gyrus, only 8.5% (95% confidence interval [CI], 1.0% to 14.7%) of these will be added after middle age. In addition, only 5.7% (95% CI 0.7% to 9.9%) of the existing cell population turns over from middle age and onward. Thus, relatively few new cells are added for much of an animal's life, and only a proportion of these will mature into functional neurons. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Basic and clinical pharmacology contribution to extend anthelmintic molecules lifespan.

    Science.gov (United States)

    Lanusse, Carlos; Lifschitz, Adrian; Alvarez, Luis

    2015-08-15

    The correct use of pharmacology-based information is critical to design successful strategies for the future of parasite control in livestock animals. Integrated pharmaco-parasitological research approaches have greatly contributed to optimize drug activity. In an attempt to manage drug resistance in helminths of ruminants, combinations of two or more anthelmintics are being used or promoted, based on the fact that individual worms may have a lower degree of resistance to a multiple component formulation, when each chemical has a different mode of action compared to that observed when a single compound is used. However, as emphasized in the current review, the occurrence of potential pharmacokinetic and/or pharmacodynamic interactions between drug components highlights the need for deeper and integrated research to identify the advantages or disadvantages associated with the use of combined drug preparations. This review article provides integrated pharmacokinetic/pharmacodynamic and clinical pharmacology information pertinent to preserve the traditional and modern active ingredients as practical tools for parasite control. Novel pharmacological data on derquantel and monepantel, as representatives of modern anthelmintics for use in livestock, is summarized here. The article also summarizes the pharmaco-parasitological knowledge considered critical to secure and/or extend the lifespan of the recently available novel molecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Lifespan extension and the doctrine of double effect.

    Science.gov (United States)

    Capitaine, Laura; Devolder, Katrien; Pennings, Guido

    2013-06-01

    Recent developments in biogerontology--the study of the biology of ageing--suggest that it may eventually be possible to intervene in the human ageing process. This, in turn, offers the prospect of significantly postponing the onset of age-related diseases. The biogerontological project, however, has met with strong resistance, especially by deontologists. They consider the act of intervening in the ageing process impermissible on the grounds that it would (most probably) bring about an extended maximum lifespan--a state of affairs that they deem intrinsically bad. In a bid to convince their deontological opponents of the permissibility of this act, proponents of biogerontology invoke an argument which is grounded in the doctrine of double effect. Surprisingly, their argument, which we refer to as the 'double effect argument', has gone unnoticed. This article exposes and critically evaluates this 'double effect argument'. To this end, we first review a series of excerpts from the ethical debate on biogerontology in order to substantiate the presence of double effect reasoning. Next, we attempt to determine the role that the 'double effect argument' is meant to fulfil within this debate. Finally, we assess whether the act of intervening in ageing actually can be justified using double effect reasoning.

  7. Developmental aspects of synaesthesia across the adult lifespan

    Directory of Open Access Journals (Sweden)

    Beat eMeier

    2014-03-01

    Full Text Available In synaesthesia, stimuli such as sounds, words or letters trigger experiences of colours, shapes or tastes and the consistency of these experiences is a hallmark of this condition. In this study we investigate for the first time whether there are age-related changes in the consistency of synaesthetic experiences. We tested a sample of more than 400 grapheme-colour synaesthetes who have colour experiences when they see letters and/or digits with a well-established test of consistency. Our results showed a decline in the number of consistent grapheme-colour associations across the adult lifespan. We also assessed age-related changes in the breadth of the colour spectrum. The results showed that the appearance of primary colours (i.e., red, blue, and green was mainly age-invariant. However, there was a decline in the occurrence of lurid colours while brown and achromatic tones occurred more often as concurrents in older age. These shifts in the colour spectrum suggest that synaesthesia does not simply fade, but rather undergoes more comprehensive changes. We propose that these changes are the result of a combination of both age-related perceptual and memory processing shifts.

  8. The potential lifespan impact of gingivitis and periodontitis in children.

    Science.gov (United States)

    Bimstein, Enrique; Huja, Pinar Emecen; Ebersole, Jeffrey L

    2013-01-01

    The prevalence of gingivitis in children can be similar to or greater than dental caries, but has received much less attention in understanding the long-term impact on overall health. Oral health providers must take into consideration that the clinical presentation of the gingivitis progression/severity in the primary dentition is only evident when the magnitude of the inflammatory cell infiltrate approximates the gingival surface reflected by inflamed tissues. Moreover despite its relatively benign clinical appearance, the establishment of chronic inflammation of the periodontal tissues in childhood may have the potential for local tissue destruction leading to periodontitis, and/or create an "at-risk" environment in the tissues that could adversely affect the health of these tissues across the lifespan. The present manuscript presents some fundamental information regarding the characteristics of chronic inflammation in gingival tissues of children and adolescents and speculates about the lifetime impact of gingival and periodontal infections in childhood on future oral and systemic health in the adult.

  9. Neural Processing of Emotional Prosody across the Adult Lifespan.

    Science.gov (United States)

    Demenescu, Liliana Ramona; Kato, Yutaka; Mathiak, Klaus

    2015-01-01

    Emotion recognition deficits emerge with the increasing age, in particular, a decline in the identification of sadness. However, little is known about the age-related changes of emotion processing in sensory, affective, and executive brain areas. This functional magnetic resonance imaging (fMRI) study investigated neural correlates of auditory processing of prosody across adult lifespan. Unattended detection of emotional prosody changes was assessed in 21 young (age range: 18-35 years), 19 middle-aged (age range: 36-55 years), and 15 older (age range: 56-75 years) adults. Pseudowords uttered with neutral prosody were standards in an oddball paradigm with angry, sad, happy, and gender deviants (total 20% deviants). Changes in emotional prosody and voice gender elicited bilateral superior temporal gyri (STG) responses reflecting automatic encoding of prosody. At the right STG, responses to sad deviants decreased linearly with age, whereas happy events exhibited a nonlinear relationship. In contrast to behavioral data, no age by sex interaction emerged on the neural networks. The aging decline of emotion processing of prosodic cues emerges already at an early automatic stage of information processing at the level of the auditory cortex. However, top-down modulation may lead to an additional perceptional bias, for example, towards positive stimuli, and may depend on context factors such as the listener's sex.

  10. Neural Processing of Emotional Prosody across the Adult Lifespan

    Directory of Open Access Journals (Sweden)

    Liliana Ramona Demenescu

    2015-01-01

    Full Text Available Emotion recognition deficits emerge with the increasing age, in particular, a decline in the identification of sadness. However, little is known about the age-related changes of emotion processing in sensory, affective, and executive brain areas. This functional magnetic resonance imaging (fMRI study investigated neural correlates of auditory processing of prosody across adult lifespan. Unattended detection of emotional prosody changes was assessed in 21 young (age range: 18–35 years, 19 middle-aged (age range: 36–55 years, and 15 older (age range: 56–75 years adults. Pseudowords uttered with neutral prosody were standards in an oddball paradigm with angry, sad, happy, and gender deviants (total 20% deviants. Changes in emotional prosody and voice gender elicited bilateral superior temporal gyri (STG responses reflecting automatic encoding of prosody. At the right STG, responses to sad deviants decreased linearly with age, whereas happy events exhibited a nonlinear relationship. In contrast to behavioral data, no age by sex interaction emerged on the neural networks. The aging decline of emotion processing of prosodic cues emerges already at an early automatic stage of information processing at the level of the auditory cortex. However, top-down modulation may lead to an additional perceptional bias, for example, towards positive stimuli, and may depend on context factors such as the listener’s sex.

  11. Age structure changes and extraordinary lifespan in wild medfly populations.

    Science.gov (United States)

    Carey, James R; Papadopoulos, Nikos T; Müller, Hans-Georg; Katsoyannos, Byron I; Kouloussis, Nikos A; Wang, Jane-Ling; Wachter, Kenneth; Yu, Wei; Liedo, Pablo

    2008-06-01

    The main purpose of this study was to test the hypotheses that major changes in age structure occur in wild populations of the Mediterranean fruit fly (medfly) and that a substantial fraction of individuals survive to middle age and beyond (> 3-4 weeks). We thus brought reference life tables and deconvolution models to bear on medfly mortality data gathered from a 3-year study of field-captured individuals that were monitored in the laboratory. The average time-to-death of captured females differed between sampling dates by 23.9, 22.7, and 37.0 days in the 2003, 2004, and 2005 field seasons, respectively. These shifts in average times-to-death provided evidence of changes in population age structure. Estimates indicated that middle-aged medflies (> 30 days) were common in the population. A surprise in the study was the extraordinary longevity observed in field-captured medflies. For example, 19 captured females but no reference females survived in the laboratory for 140 days or more, and 6 captured but no reference males survived in the laboratory for 170 days or more. This paper advances the study of aging in the wild by introducing a new method for estimating age structure in insect populations, demonstrating that major changes in age structure occur in field populations of insects, showing that middle-aged individuals are common in the wild, and revealing the extraordinary lifespans of wild-caught individuals due to their early life experience in the field.

  12. Obesity and Lifespan Health—Importance of the Fetal Environment

    Directory of Open Access Journals (Sweden)

    Alice F. Tarantal

    2014-04-01

    Full Text Available A marked increase in the frequency of obesity at the population level has resulted in an increasing number of obese women entering pregnancy. The increasing realization of the importance of the fetal environment in relation to chronic disease across the lifespan has focused attention on the role of maternal obesity in fetal development. Previous studies have demonstrated that obesity during adolescence and adulthood can be traced back to fetal and early childhood exposures. This review focuses on factors that contribute to early developmental events, such as epigenetic modifications, the potential for an increase in inflammatory burden, early developmental programming changes such as the variable development of white versus brown adipose tissue, and alterations in organ ontogeny. We hypothesize that these mechanisms promote an unfavorable fetal environment and can have a long-standing impact, with early manifestations of chronic disease that can result in an increased demand for future health care. In order to identify appropriate preventive measures, attention needs to be placed both on reducing maternal obesity as well as understanding the molecular, cellular, and epigenetic mechanisms that may be responsible for the prenatal onset of chronic disease.

  13. Nutrigenomics at the Interface of Aging, Lifespan, and Cancer Prevention.

    Science.gov (United States)

    Riscuta, Gabriela

    2016-10-01

    The percentage of elderly people with associated age-related health deterioration, including cancer, has been increasing for decades. Among age-related diseases, the incidence of cancer has grown substantially, in part because of the overlap of some molecular pathways between cancer and aging. Studies with model organisms suggest that aging and age-related conditions are manipulable processes that can be modified by both genetic and environmental factors, including dietary habits. Variations in genetic backgrounds likely lead to differential responses to dietary changes and account for some of the inconsistencies found in the literature. The intricacies of the aging process, coupled with the interrelational role of bioactive food components on gene expression, make this review a complex undertaking. Nevertheless, intriguing evidence suggests that dietary habits can manipulate the aging process and/or its consequences and potentially may have unprecedented health benefits. The present review focuses on 4 cellular events: telomerase activity, bioenergetics, DNA repair, and oxidative stress. These processes are linked to both aging and cancer risk, and their alteration in animal models by selected food components is evident. © 2016 American Society for Nutrition.

  14. Nmdmc overexpression extends Drosophila lifespan and reduces levels of mitochondrial reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Suyeun [Department of Preventive Medicine, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705 (Korea, Republic of); Jang, Yeogil; Paik, Donggi [Department of Physiology, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705 (Korea, Republic of); Lee, Eunil, E-mail: eunil@korea.ac.kr [Department of Preventive Medicine, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705 (Korea, Republic of); Park, Joong-Jean, E-mail: parkjj@korea.ac.kr [Department of Physiology, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul 136-705 (Korea, Republic of)

    2015-10-02

    NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase (NMDMC) is a bifunctional enzyme involved in folate-dependent metabolism and highly expressed in rapidly proliferating cells. However, Nmdmc physiological roles remain unveiled. We found that ubiquitous Nmdmc overexpression enhanced Drosophila lifespan and stress resistance. Interestingly, Nmdmc overexpression in the fat body was sufficient to increase lifespan and tolerance against oxidative stress. In addition, these conditions coincided with significant decreases in the levels of mitochondrial ROS and Hsp22 as well as with a significant increase in the copy number of mitochondrial DNA. These results suggest that Nmdmc overexpression should be beneficial for mitochondrial homeostasis and increasing lifespan. - Highlights: • Ubiquitous Nmdmc overexpression enhanced lifespan and stress tolerance. • Nmdmc overexpression in the fat body extended longevity. • Fat body-specific Nmdmc overexpression increased oxidative stress resistance. • Nmdmc overexpression decreased Hsp22 transcript levels and ROS. • Nmdmc overexpression increased mitochondrial DNA copy number.

  15. Nmdmc overexpression extends Drosophila lifespan and reduces levels of mitochondrial reactive oxygen species

    International Nuclear Information System (INIS)

    Yu, Suyeun; Jang, Yeogil; Paik, Donggi; Lee, Eunil; Park, Joong-Jean

    2015-01-01

    NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase (NMDMC) is a bifunctional enzyme involved in folate-dependent metabolism and highly expressed in rapidly proliferating cells. However, Nmdmc physiological roles remain unveiled. We found that ubiquitous Nmdmc overexpression enhanced Drosophila lifespan and stress resistance. Interestingly, Nmdmc overexpression in the fat body was sufficient to increase lifespan and tolerance against oxidative stress. In addition, these conditions coincided with significant decreases in the levels of mitochondrial ROS and Hsp22 as well as with a significant increase in the copy number of mitochondrial DNA. These results suggest that Nmdmc overexpression should be beneficial for mitochondrial homeostasis and increasing lifespan. - Highlights: • Ubiquitous Nmdmc overexpression enhanced lifespan and stress tolerance. • Nmdmc overexpression in the fat body extended longevity. • Fat body-specific Nmdmc overexpression increased oxidative stress resistance. • Nmdmc overexpression decreased Hsp22 transcript levels and ROS. • Nmdmc overexpression increased mitochondrial DNA copy number.

  16. Alcohol Use and Abuse: Understanding Alcohol Use Across Your Lifespan | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... of this page please turn Javascript on. Feature: Alcohol Use and Abuse Understanding Alcohol Use Across Your Lifespan Past Issues / Winter 2013 Table of Contents Alcohol use and the risk for alcohol-related problems ...

  17. Lifespan extension by cranberry supplementation partially requires SOD2 and is life stage independent.

    Science.gov (United States)

    Sun, Yaning; Yolitz, Jason; Alberico, Thomas; Sun, Xiaoping; Zou, Sige

    2014-02-01

    Many nutraceuticals and pharmaceuticals have been shown to promote healthspan and lifespan. However, the mechanisms underlying the beneficial effects of prolongevity interventions and the time points at which interventions should be implemented to achieve beneficial effects are not well characterized. We have previously shown that a cranberry-containing nutraceutical can promote lifespan in worms and flies and delay age-related functional decline of pancreatic cells in rats. Here we investigated the mechanism underlying lifespan extension induced by cranberry and the effects of short-term or life stage-specific interventions with cranberry on lifespan in Drosophila. We found that lifespan extension induced by cranberry was associated with reduced phosphorylation of ERK, a component of oxidative stress response MAPK signaling, and slightly increased phosphorylation of AKT, a component of insulin-like signaling. Lifespan extension was also associated with a reduced level of 4-hydroxynonenal protein adducts, a biomarker of lipid oxidation. Moreover, lifespan extension induced by cranberry was partially suppressed by knockdown of SOD2, a major mitochondrial superoxide scavenger. Furthermore, cranberry supplementation was administered in three life stages of adult flies, health span (3-30 days), transition span (31-60 days) and senescence span (61 days to the end when all flies died). Cranberry supplementation during any of these life stages extended the remaining lifespan relative to the non-supplemented and life stage-matched controls. These findings suggest that cranberry supplementation is sufficient to promote longevity when implemented during any life stage, likely through reducing oxidative damage. Published by Elsevier Inc.

  18. Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jeremy M Van Raamsdonk

    2009-02-01

    Full Text Available The oxidative stress theory of aging postulates that aging results from the accumulation of molecular damage caused by reactive oxygen species (ROS generated during normal metabolism. Superoxide dismutases (SODs counteract this process by detoxifying superoxide. It has previously been shown that elimination of either cytoplasmic or mitochondrial SOD in yeast, flies, and mice results in decreased lifespan. In this experiment, we examine the effect of eliminating each of the five individual sod genes present in Caenorhabditis elegans. In contrast to what is observed in other model organisms, none of the sod deletion mutants shows decreased lifespan compared to wild-type worms, despite a clear increase in sensitivity to paraquat- and juglone-induced oxidative stress. In fact, even mutants lacking combinations of two or three sod genes survive at least as long as wild-type worms. Examination of gene expression in these mutants reveals mild compensatory up-regulation of other sod genes. Interestingly, we find that sod-2 mutants are long-lived despite a significant increase in oxidatively damaged proteins. Testing the effect of sod-2 deletion on known pathways of lifespan extension reveals a clear interaction with genes that affect mitochondrial function: sod-2 deletion markedly increases lifespan in clk-1 worms while clearly decreasing the lifespan of isp-1 worms. Combined with the mitochondrial localization of SOD-2 and the fact that sod-2 mutant worms exhibit phenotypes that are characteristic of long-lived mitochondrial mutants-including slow development, low brood size, and slow defecation-this suggests that deletion of sod-2 extends lifespan through a similar mechanism. This conclusion is supported by our demonstration of decreased oxygen consumption in sod-2 mutant worms. Overall, we show that increased oxidative stress caused by deletion of sod genes does not result in decreased lifespan in C. elegans and that deletion of sod-2 extends worm

  19. Effect of gamma irradiation on lifespan and offspring physiology of male drosophila melanogaster

    International Nuclear Information System (INIS)

    Hou Jiangyu; Gu Wei; Jiang Fangping; Han Hetong

    2010-01-01

    This study aimed to investigate the effects of γ-rays irradiation on adult longevity and physiological changes in F 1 generation.Male Drosophila melanogaster at 1 ∼ 2 days old were irradiated by γ-rays with doses of 5, 10, 15 and 30 Gy. In all experimental groups, mean lifespan, maximum lifespan and 90% of lethaldeath irradiated flies were reduced(at P 1 generation of irradiated group, body weight increased, but the capacity of physiological stress declined. (authors)

  20. Lifespan differences in hematopoietic stem cells are due to imperfect repair and unstable mean-reversion.

    Directory of Open Access Journals (Sweden)

    Hans B Sieburg

    2013-04-01

    Full Text Available The life-long supply of blood cells depends on the long-term function of hematopoietic stem cells (HSCs. HSCs are functionally defined by their multi-potency and self-renewal capacity. Because of their self-renewal capacity, HSCs were thought to have indefinite lifespans. However, there is increasing evidence that genetically identical HSCs differ in lifespan and that the lifespan of a HSC is predetermined and HSC-intrinsic. Lifespan is here defined as the time a HSC gives rise to all mature blood cells. This raises the intriguing question: what controls the lifespan of HSCs within the same animal, exposed to the same environment? We present here a new model based on reliability theory to account for the diversity of lifespans of HSCs. Using clonal repopulation experiments and computational-mathematical modeling, we tested how small-scale, molecular level, failures are dissipated at the HSC population level. We found that the best fit of the experimental data is provided by a model, where the repopulation failure kinetics of each HSC are largely anti-persistent, or mean-reverting, processes. Thus, failure rates repeatedly increase during population-wide division events and are counteracted and decreased by repair processes. In the long-run, a crossover from anti-persistent to persistent behavior occurs. The cross-over is due to a slow increase in the mean failure rate of self-renewal and leads to rapid clonal extinction. This suggests that the repair capacity of HSCs is self-limiting. Furthermore, we show that the lifespan of each HSC depends on the amplitudes and frequencies of fluctuations in the failure rate kinetics. Shorter and longer lived HSCs differ significantly in their pre-programmed ability to dissipate perturbations. A likely interpretation of these findings is that the lifespan of HSCs is determined by preprogrammed differences in repair capacity.

  1. COCOA (Theobroma cacao) Polyphenol-Rich Extract Increases the Chronological Lifespan of Saccharomyces cerevisiae.

    Science.gov (United States)

    Baiges, I; Arola, L

    2016-01-01

    BACKGROUND: Saccharomyces cerevisiae is a model organism with conserved aging pathways. Yeast chronological lifespan experiments mimic the processes involved in human non-dividing tissues, such as the nervous system or skeletal muscle, and can speed up the search for biomolecules with potential anti-aging effects before proceeding to animal studies. OBJECTIVE: To test the effectiveness of a cocoa polyphenol-rich extract (CPE) in expanding the S. cerevisiae chronological lifespan in two conditions: in the stationary phase reached after glucose depletion and under severe caloric restriction. MEASUREMENTS: Using a high-throughput method, wild-type S. cerevisiae and its mitochondrial manganese-dependent superoxide dismutase null mutant (sod2Δ) were cultured in synthetic complete dextrose medium. After 2 days, 0, 5 and 20 mg/ml of CPE were added, and viability was measured throughout the stationary phase. The effects of the major components of CPE were also evaluated. To determine yeast lifespan under severe caloric restriction conditions, cultures were washed with water 24 h after the addition of 0 and 20 mg/ml of CPE, and viability was followed over time. RESULTS : CPE increased the chronological lifespan of S. cerevisiae during the stationary phase in a dose-dependent manner. A similar increase was also observed in (sod2Δ). None of the major CPE components (theobromine, caffeine, maltodextrin, (-)-epicatechin, (+)-catechin and procyanidin B2) was able to increase the yeast lifespan. CPE further increased the yeast lifespan under severe caloric restriction. CONCLUSION: CPE increases the chronological lifespan of S. cerevisiae through a SOD2-independent mechanism. The extract also extends yeast lifespan under severe caloric restriction conditions. The high-throughput assay used makes it possible to simply and rapidly test the efficacy of a large number of compounds on yeast aging, requiring only small amounts, and is thus a convenient screening assay to accelerate

  2. Impairment of insulin signalling in peripheral tissue fails to extend murine lifespan.

    Science.gov (United States)

    Merry, Troy L; Kuhlow, Doreen; Laube, Beate; Pöhlmann, Doris; Pfeiffer, Andreas F H; Kahn, C Ronald; Ristow, Michael; Zarse, Kim

    2017-08-01

    Impaired insulin/IGF1 signalling has been shown to extend lifespan in model organisms ranging from yeast to mammals. Here we sought to determine the effect of targeted disruption of the insulin receptor (IR) in non-neuronal tissues of adult mice on the lifespan. We induced hemizygous (PerIRKO +/- ) or homozygous (PerIRKO -/- ) disruption of the IR in peripheral tissue of 15-weeks-old mice using a tamoxifen-inducible Cre transgenic mouse with only peripheral tissue expression, and subsequently monitored glucose metabolism, insulin signalling and spontaneous death rates over 4 years. Complete peripheral IR disruption resulted in a diabetic phenotype with increased blood glucose and plasma insulin levels in young mice. Although blood glucose levels returned to normal, and fat mass was reduced in aged PerIRKO -/- mice, their lifespan was reduced. By contrast, heterozygous disruption had no effect on lifespan. This was despite young male PerIRKO +/- mice showing reduced fat mass and mild increase in hepatic insulin sensitivity. In conflict with findings in metazoans like Caenorhabditis elegans and Drosophila melanogaster, our results suggest that heterozygous impairment of the insulin signalling limited to peripheral tissues of adult mice fails to extend lifespan despite increased systemic insulin sensitivity, while homozygous impairment shortens lifespan. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  3. Extension of lifespan in C. elegans by naphthoquinones that act through stress hormesis mechanisms.

    Directory of Open Access Journals (Sweden)

    Piper R Hunt

    Full Text Available Hormesis occurs when a low level stress elicits adaptive beneficial responses that protect against subsequent exposure to severe stress. Recent findings suggest that mild oxidative and thermal stress can extend lifespan by hormetic mechanisms. Here we show that the botanical pesticide plumbagin, while toxic to C. elegans nematodes at high doses, extends lifespan at low doses. Because plumbagin is a naphthoquinone that can generate free radicals in vivo, we investigated whether it extends lifespan by activating an adaptive cellular stress response pathway. The C. elegans cap'n'collar (CNC transcription factor, SKN-1, mediates protective responses to oxidative stress. Genetic analysis showed that skn-1 activity is required for lifespan extension by low-dose plumbagin in C. elegans. Further screening of a series of plumbagin analogs identified three additional naphthoquinones that could induce SKN-1 targets in C. elegans. Naphthazarin showed skn-1dependent lifespan extension, over an extended dose range compared to plumbagin, while the other naphthoquinones, oxoline and menadione, had differing effects on C. elegans survival and failed to activate ARE reporter expression in cultured mammalian cells. Our findings reveal the potential for low doses of naturally occurring naphthoquinones to extend lifespan by engaging a specific adaptive cellular stress response pathway.

  4. The lifespan-extending effects of Nymphaea hybrid root extract in the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Zhuang, Ziheng; Lv, Ting; Li, Min; Zhang, Yusi; Xue, Ting; Yang, Linsong; Liu, Hui; Zhang, Weiming

    2014-12-01

    Nymphaea hybrid, a water lily from the Nymphaeaceae family, has been found to exhibit some in vivo beneficial effects. In the present study we investigated the lifespan-extending effects of Nymphaea hybrid root extract in the nematode Caenorhabditis elegans. We found that Nymphaea hybrid root extract significantly extended the lifespan of C.elegans and improved its locomotion during aging. Moreover, Nymphaea hybrid root extract increased the resistance of C.elegans to both heat stress and oxidative stress. We found that the ability of Nymphaea hybrid root extract to increase lifespan was independent of its antimicrobial effects and was probably associated with its effects on the reproduction of C.elegans. In addition, the lifespan-extending effects of Nymphaea hybrid root extract were found to be dependent on the insulin/IGF signaling pathway. We also found that total flavones of Nymphaea hybrid could increase survival of C.elegans in both normal and adverse conditions, indicating that total flavones comprise the major fractions with lifespan-extending effects. Therefore, Nymphaea hybrid root extract has lifespan-extending effects in C.elegans and could be developed as a functional food.

  5. Long lifespans have evolved with long and monounsaturated fatty acids in birds.

    Science.gov (United States)

    Galván, Ismael; Naudí, Alba; Erritzøe, Johannes; Møller, Anders P; Barja, Gustavo; Pamplona, Reinald

    2015-10-01

    The evolution of lifespan is a central question in evolutionary biology, begging the question why there is so large variation among taxa. Specifically, a central quest is to unravel proximate causes of ageing. Here, we show that the degree of unsaturation of liver fatty acids predicts maximum lifespan in 107 bird species. In these birds, the degree of fatty acid unsaturation is positively related to maximum lifespan across species. This is due to a positive effect of monounsaturated fatty acid content, while polyunsaturated fatty acid content negatively correlates with maximum lifespan. Furthermore, fatty acid chain length unsuspectedly increases with maximum lifespan independently of degree of unsaturation. These findings tune theories on the proximate causes of ageing while providing evidence that the evolution of lifespan in birds occurs in association with fatty acid profiles. This suggests that studies of proximate and ultimate questions may facilitate our understanding of these central evolutionary questions. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  6. Why men matter: mating patterns drive evolution of human lifespan.

    Directory of Open Access Journals (Sweden)

    Shripad D Tuljapurkar

    2007-08-01

    Full Text Available Evolutionary theory predicts that senescence, a decline in survival rates with age, is the consequence of stronger selection on alleles that affect fertility or mortality earlier rather than later in life. Hamilton quantified this argument by showing that a rare mutation reducing survival is opposed by a selective force that declines with age over reproductive life. He used a female-only demographic model, predicting that female menopause at age ca. 50 yrs should be followed by a sharp increase in mortality, a "wall of death." Human lives obviously do not display such a wall. Explanations of the evolution of lifespan beyond the age of female menopause have proven difficult to describe as explicit genetic models. Here we argue that the inclusion of males and mating patterns extends Hamilton's theory and predicts the pattern of human senescence. We analyze a general two-sex model to show that selection favors survival for as long as men reproduce. Male fertility can only result from matings with fertile females, and we present a range of data showing that males much older than 50 yrs have substantial realized fertility through matings with younger females, a pattern that was likely typical among early humans. Thus old-age male fertility provides a selective force against autosomal deleterious mutations at ages far past female menopause with no sharp upper age limit, eliminating the wall of death. Our findings illustrate the evolutionary importance of males and mating preferences, and show that one-sex demographic models are insufficient to describe the forces that shape human senescence.

  7. Lifespan anxiety is reflected in human amygdala cortical connectivity.

    Science.gov (United States)

    He, Ye; Xu, Ting; Zhang, Wei; Zuo, Xi-Nian

    2016-03-01

    The amygdala plays a pivotal role in processing anxiety and connects to large-scale brain networks. However, intrinsic functional connectivity (iFC) between amygdala and these networks has rarely been examined in relation to anxiety, especially across the lifespan. We employed resting-state functional MRI data from 280 healthy adults (18-83.5 yrs) to elucidate the relationship between anxiety and amygdala iFC with common cortical networks including the visual network, somatomotor network, dorsal attention network, ventral attention network, limbic network, frontoparietal network, and default network. Global and network-specific iFC were separately computed as mean iFC of amygdala with the entire cerebral cortex and each cortical network. We detected negative correlation between global positive amygdala iFC and trait anxiety. Network-specific associations between amygdala iFC and anxiety were also detectable. Specifically, the higher iFC strength between the left amygdala and the limbic network predicted lower state anxiety. For the trait anxiety, left amygdala anxiety-connectivity correlation was observed in both somatomotor and dorsal attention networks, whereas the right amygdala anxiety-connectivity correlation was primarily distributed in the frontoparietal and ventral attention networks. Ventral attention network exhibited significant anxiety-gender interactions on its iFC with amygdala. Together with findings from additional vertex-wise analysis, these data clearly indicated that both low-level sensory networks and high-level associative networks could contribute to detectable predictions of anxiety behaviors by their iFC profiles with the amygdala. This set of systems neuroscience findings could lead to novel functional network models on neural correlates of human anxiety and provide targets for novel treatment strategies on anxiety disorders. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  8. Lifespan anxiety is reflected in human amygdala cortical connectivity

    Science.gov (United States)

    He, Ye; Xu, Ting; Zhang, Wei

    2016-01-01

    Abstract The amygdala plays a pivotal role in processing anxiety and connects to large‐scale brain networks. However, intrinsic functional connectivity (iFC) between amygdala and these networks has rarely been examined in relation to anxiety, especially across the lifespan. We employed resting‐state functional MRI data from 280 healthy adults (18–83.5 yrs) to elucidate the relationship between anxiety and amygdala iFC with common cortical networks including the visual network, somatomotor network, dorsal attention network, ventral attention network, limbic network, frontoparietal network, and default network. Global and network‐specific iFC were separately computed as mean iFC of amygdala with the entire cerebral cortex and each cortical network. We detected negative correlation between global positive amygdala iFC and trait anxiety. Network‐specific associations between amygdala iFC and anxiety were also detectable. Specifically, the higher iFC strength between the left amygdala and the limbic network predicted lower state anxiety. For the trait anxiety, left amygdala anxiety–connectivity correlation was observed in both somatomotor and dorsal attention networks, whereas the right amygdala anxiety–connectivity correlation was primarily distributed in the frontoparietal and ventral attention networks. Ventral attention network exhibited significant anxiety–gender interactions on its iFC with amygdala. Together with findings from additional vertex‐wise analysis, these data clearly indicated that both low‐level sensory networks and high‐level associative networks could contribute to detectable predictions of anxiety behaviors by their iFC profiles with the amygdala. This set of systems neuroscience findings could lead to novel functional network models on neural correlates of human anxiety and provide targets for novel treatment strategies on anxiety disorders. Hum Brain Mapp 37:1178–1193, 2016. © 2015 The Authors Human Brain Mapping

  9. GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomycescerevisiae

    International Nuclear Information System (INIS)

    Kamei, Yuka; Tamura, Takayuki; Yoshida, Ryo; Ohta, Shinji; Fukusaki, Eiichiro; Mukai, Yukio

    2011-01-01

    Highlights: →We demonstrate that two genes in the yeast GABA metabolism pathway affect aging. → Deletion of the UGA1 or GAD1 genes extends replicative lifespan. → Addition of GABA to wild-type cultures has no effect on lifespan. → Intracellular GABA levels do not differ in longevity mutants and wild-type cells. → Levels of tricarboxylic acid cycle intermediates positively correlate with lifespan. -- Abstract: Many of the genes involved in aging have been identified in organisms ranging from yeast to human. Our previous study showed that deletion of the UGA3 gene-which encodes a zinc-finger transcription factor necessary for γ-aminobutyric acid (GABA)-dependent induction of the UGA1 (GABA aminotransferase), UGA2 (succinate semialdehyde dehydrogenase), and UGA4 (GABA permease) genes-extends replicative lifespan in the budding yeast Saccharomycescerevisiae. Here, we found that deletion of UGA1 lengthened the lifespan, as did deletion of UGA3; in contrast, strains with UGA2 or UGA4 deletions exhibited no lifespan extension. The Δuga1 strain cannot deaminate GABA to succinate semialdehyde. Deletion of GAD1, which encodes the glutamate decarboxylase that converts glutamate into GABA, also increased lifespan. Therefore, two genes in the GABA metabolism pathway, UGA1 and GAD1, were identified as aging genes. Unexpectedly, intracellular GABA levels in mutant cells (except for Δuga2 cells) did not differ from those in wild-type cells. Addition of GABA to culture media, which induces transcription of the UGA structural genes, had no effect on replicative lifespan of wild-type cells. Multivariate analysis of 1 H nuclear magnetic resonance spectra for the whole-cell metabolite levels demonstrated a separation between long-lived and normal-lived strains. Gas chromatography-mass spectrometry analysis of identified metabolites showed that levels of tricarboxylic acid cycle intermediates positively correlated with lifespan extension. These results strongly suggest

  10. GABA metabolism pathway genes, UGA1 and GAD1, regulate replicative lifespan in Saccharomycescerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, Yuka; Tamura, Takayuki [Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan); Yoshida, Ryo [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ohta, Shinji [Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan); Fukusaki, Eiichiro [Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Mukai, Yukio, E-mail: y_mukai@nagahama-i-bio.ac.jp [Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829 (Japan)

    2011-04-01

    Highlights: {yields}We demonstrate that two genes in the yeast GABA metabolism pathway affect aging. {yields} Deletion of the UGA1 or GAD1 genes extends replicative lifespan. {yields} Addition of GABA to wild-type cultures has no effect on lifespan. {yields} Intracellular GABA levels do not differ in longevity mutants and wild-type cells. {yields} Levels of tricarboxylic acid cycle intermediates positively correlate with lifespan. -- Abstract: Many of the genes involved in aging have been identified in organisms ranging from yeast to human. Our previous study showed that deletion of the UGA3 gene-which encodes a zinc-finger transcription factor necessary for {gamma}-aminobutyric acid (GABA)-dependent induction of the UGA1 (GABA aminotransferase), UGA2 (succinate semialdehyde dehydrogenase), and UGA4 (GABA permease) genes-extends replicative lifespan in the budding yeast Saccharomycescerevisiae. Here, we found that deletion of UGA1 lengthened the lifespan, as did deletion of UGA3; in contrast, strains with UGA2 or UGA4 deletions exhibited no lifespan extension. The {Delta}uga1 strain cannot deaminate GABA to succinate semialdehyde. Deletion of GAD1, which encodes the glutamate decarboxylase that converts glutamate into GABA, also increased lifespan. Therefore, two genes in the GABA metabolism pathway, UGA1 and GAD1, were identified as aging genes. Unexpectedly, intracellular GABA levels in mutant cells (except for {Delta}uga2 cells) did not differ from those in wild-type cells. Addition of GABA to culture media, which induces transcription of the UGA structural genes, had no effect on replicative lifespan of wild-type cells. Multivariate analysis of {sup 1}H nuclear magnetic resonance spectra for the whole-cell metabolite levels demonstrated a separation between long-lived and normal-lived strains. Gas chromatography-mass spectrometry analysis of identified metabolites showed that levels of tricarboxylic acid cycle intermediates positively correlated with lifespan

  11. Joint inhibition of TOR and JNK pathways interacts to extend the lifespan of Brachionus manjavacas (Rotifera).

    Science.gov (United States)

    Snell, Terry W; Johnston, Rachel K; Rabeneck, Brett; Zipperer, Cody; Teat, Stephanie

    2014-04-01

    The TOR kinase pathway is central in modulating aging in a variety of animal models. The target of rapamycin (TOR) integrates a complex network of signals from growth conditions, nutrient availability, energy status, and physiological stresses and matches an organism's growth rate to the resource environment. Important remaining problems are the identification of the pathways that interact with TOR and their characterization as additive or synergistic. One of the most versatile stress sensors in metazoans is the Jun-N-terminal kinase (JNK) signaling pathway. JNK is an evolutionarily conserved stress-activated protein kinase that is induced by a range of stressors, including UV irradiation, reactive oxygen species, DNA damage, heat, and bacterial antigens. JNK is thought to interact with the TOR pathway, but its effects on TOR are poorly understood. We used the rotifer Brachionus manjavacas as a model animal to probe the regulation of TOR and JNK pathways and explore their interaction. The effect of various chemical inhibitors was examined in life table and stressor challenge experiments. A survey of 12 inhibitors revealed two, rapamycin and JNK inhibitor, that significantly extended lifespan of B. manjavacas. At 1 μM concentration, exposure to rapamycin or JNK inhibitor extended mean rotifer lifespan by 35% and maximum lifespan by 37%. Exposure to both rapamycin and JNK inhibitor simultaneously extended mean rotifer lifespan by 65% more than either alone. Exposure to a combination of rapamycin and JNK inhibitors conveyed greater protection to starvation, UV and osmotic stress than either inhibitor alone. RNAi knockdown of TOR and JNK gene expression was investigated for its ability to extend rotifer lifespan. RNAi knockdown of the TOR gene resulted in 29% extension of the mean lifespan compared to control and knockdown of the JNK gene resulted in 51% mean lifespan extension. In addition to the lifespan, we quantified mitochondria activity using the fluorescent

  12. Natural thioallyl compounds increase oxidative stress resistance and lifespan in Caenorhabditis elegans by modulating SKN-1/Nrf.

    Science.gov (United States)

    Ogawa, Takahiro; Kodera, Yukihiro; Hirata, Dai; Blackwell, T Keith; Mizunuma, Masaki

    2016-02-22

    Identification of biologically active natural compounds that promote health and longevity, and understanding how they act, will provide insights into aging and metabolism, and strategies for developing agents that prevent chronic disease. The garlic-derived thioallyl compounds S-allylcysteine (SAC) and S-allylmercaptocysteine (SAMC) have been shown to have multiple biological activities. Here we show that SAC and SAMC increase lifespan and stress resistance in Caenorhabditis elegans and reduce accumulation of reactive oxygen species (ROS). These compounds do not appear to activate DAF-16 (FOXO orthologue) or mimic dietary restriction (DR) effects, but selectively induce SKN-1 (Nrf1/2/3 orthologue) targets involved in oxidative stress defense. Interestingly, their treatments do not facilitate SKN-1 nuclear accumulation, but slightly increased intracellular SKN-1 levels. Our data also indicate that thioallyl structure and the number of sulfur atoms are important for SKN-1 target induction. Our results indicate that SAC and SAMC may serve as potential agents that slow aging.

  13. Communities advancing the studies of Tribal nations across their lifespan: Design, methods, and baseline of the CoASTAL cohort.

    Science.gov (United States)

    Tracy, Kate; Boushey, Carol; Roberts, Sparkle M; Morris, J Glenn; Grattan, Lynn M

    2016-07-01

    The CoASTAL cohort represents the first community cohort assembled to study a HAB related illness. It is comprised of three Native American tribes in the Pacific NW for the purpose of studying the health impacts of chronic, low level domoic acid (DA) exposure through razor clam consumption. This cohort is at risk of domoic acid (DA) toxicity by virtue of their geographic location (access to beaches with a history of elevated DA levels in razor clams) and the cultural and traditional significance of razor clams in their diet. In this prospective, longitudinal study, Wave 1 of the cohort is comprised of 678 members across the lifespan with both sexes represented within child, adult and geriatric age groups. All participants are followed annually with standard measures of medical and social history; neuropsychological functions, psychological status, and dietary exposure. DA concentration levels are measured at both public and reservation beaches where razor clams are sourced and multiple metrics have been piloted to further determine exposure. Baseline data indicates that all cognitive and psychological functions are within normal limits. In addition there is considerable variability in razor clam exposure. Therefore, the CoASTAL cohort offers a unique opportunity to investigate the potential health effects of chronic, low level exposure to DA over time.

  14. Daily dietary intake

    International Nuclear Information System (INIS)

    Dang, H.S.

    1998-01-01

    As part of study on ''Reference Asian Man'' to strengthen radiation protection, the data on the dietary consumption patterns of the Asian region were collected. Eight provided dietary data - Bangladesh, China, India, Indonesia, Japan, Pakistan, Philippines, and Viet Nam. Whereas the dietary information from Bangladesh, Indonesia, Pakistan and Viet Nam are preliminary in nature, the dietary information from China, India, Japan and Philippines, on the other hand, is quite substantial. The population of the countries from which sufficient dietary data are available represents more than 2/3 of the population of the Asian region. The details of the individual data available on dietary parameters from different Asian countries are listed below

  15. Oleanolic acid activates daf-16 to increase lifespan in Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Zhang, Jiaolong; Lu, Lulu; Zhou, Lijun

    2015-01-01

    Oleanolic acid (OA) is an active ingredient in natural plants. It has been reported to possess a variety of pharmacological activities, but very little is known about its effects of anti-aging. We investigate here whether OA has an impact on longevity in vivo, and more specifically, we have examined effects of OA on the lifespan and stress tolerance in Caenorhabditis elegans (C. elegans). Our results showed that OA could extend the lifespan, increase its stress resistance and reduce the intracellular reactive oxygen species (ROS) in wild-type worms. Moreover, we have found that OA-induced longevity may not be associated with the calorie restriction (CR) mechanism. Our mechanistic studies using daf-16 loss-of-function mutant strains (GR1307) indicated that the extension of lifespan by OA requires daf-16. In addition, OA treatment could also modulate the nuclear localization, and the quantitative real-time PCR results revealed that up-regulation of daf-16 target genes such as sod-3, hsp-16.2 and ctl-1 could prolong lifespan and increase stress response in C. elegans. This study overall uncovers the longevity effect of OA and its underpinning mechanisms. - Graphical abstract: Oleanolic acid modulates the activity of DAF-16 to promote longevity and increase stress resistance in Caenorhabditis elegans. - Highlights: • OA extends the lifespan of wild-type Caenorhabditis elegans. • OA improves the stress resistance and reduces the intracellular ROS level in C. elegans. • OA induces lifespan extension may not proceed through the CR mechanism. • OA extends the lifespan in C. elegans is modulated by daf-16.

  16. Oleanolic acid activates daf-16 to increase lifespan in Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiaolong; Lu, Lulu; Zhou, Lijun, E-mail: lijunzhou@tju.edu.cn

    2015-12-25

    Oleanolic acid (OA) is an active ingredient in natural plants. It has been reported to possess a variety of pharmacological activities, but very little is known about its effects of anti-aging. We investigate here whether OA has an impact on longevity in vivo, and more specifically, we have examined effects of OA on the lifespan and stress tolerance in Caenorhabditis elegans (C. elegans). Our results showed that OA could extend the lifespan, increase its stress resistance and reduce the intracellular reactive oxygen species (ROS) in wild-type worms. Moreover, we have found that OA-induced longevity may not be associated with the calorie restriction (CR) mechanism. Our mechanistic studies using daf-16 loss-of-function mutant strains (GR1307) indicated that the extension of lifespan by OA requires daf-16. In addition, OA treatment could also modulate the nuclear localization, and the quantitative real-time PCR results revealed that up-regulation of daf-16 target genes such as sod-3, hsp-16.2 and ctl-1 could prolong lifespan and increase stress response in C. elegans. This study overall uncovers the longevity effect of OA and its underpinning mechanisms. - Graphical abstract: Oleanolic acid modulates the activity of DAF-16 to promote longevity and increase stress resistance in Caenorhabditis elegans. - Highlights: • OA extends the lifespan of wild-type Caenorhabditis elegans. • OA improves the stress resistance and reduces the intracellular ROS level in C. elegans. • OA induces lifespan extension may not proceed through the CR mechanism. • OA extends the lifespan in C. elegans is modulated by daf-16.

  17. A mitochondrial mutator plasmid that causes senescence under dietary restricted conditions

    Directory of Open Access Journals (Sweden)

    Hoekstra Rolf F

    2007-04-01

    Full Text Available Abstract Background Calorie or dietary restriction extends life span in a wide range of organisms including the filamentous fungus Podospora anserina. Under dietary restricted conditions, P. anserina isolates are several-fold longer lived. This is however not the case in isolates that carry one of the pAL2-1 homologous mitochondrial plasmids. Results We show that the pAL2-1 homologues act as 'insertional mutators' of the mitochondrial genome, which may explain their negative effect on life span extension. Sequencing revealed at least fourteen unique plasmid integration sites, of which twelve were located within the mitochondrial genome and two within copies of the plasmid itself. The plasmids were able to integrate in their entirety, via a non-homologous mode of recombination. Some of the integrated plasmid copies were truncated, which probably resulted from secondary, post-integrative, recombination processes. Integration sites were predominantly located within and surrounding the region containing the mitochondrial rDNA loci. Conclusion We propose a model for the mechanism of integration, based on innate modes of mtDNA recombination, and discuss its possible link with the plasmid's negative effect on dietary restriction mediated life span extension.

  18. Children and Dietary Supplements

    Science.gov (United States)

    ... Clinical Digest for health professionals Children and Dietary Supplements Share: September 2012 © Matthew Lester Research has shown that many children use herbs and other dietary supplements. However, there are little data available on their ...

  19. Role of the GH/IGF-1 axis in lifespan and healthspan: lessons from animal models.

    Science.gov (United States)

    Berryman, Darlene E; Christiansen, Jens Sandahl; Johannsson, Gudmundur; Thorner, Michael O; Kopchick, John J

    2008-12-01

    Animal models are fundamentally important in our quest to understand the genetic, epigenetic, and environmental factors that contribute to human aging. In comparison to humans, relatively short-lived mammals are useful models as they allow for rapid assessment of both genetic manipulation and environmental intervention as related to longevity. These models also allow for the study of clinically relevant pathologies as a function of aging. Data associated with more distant species offers additional insight and critical consideration of the basic physiological processes and molecular mechanisms that influence lifespan. Consistently, two interventions, caloric restriction and repression of the growth hormone (GH)/insulin-like growth factor-1/insulin axis, have been shown to increase lifespan in both invertebrates and vertebrate animal model systems. Caloric restriction (CR) is a nutrition intervention that robustly extends lifespan whether it is started early or later in life. Likewise, genes involved in the GH/IGF-1 signaling pathways can lengthen lifespan in vertebrates and invertebrates, implying evolutionary conservation of the molecular mechanisms. Specifically, insulin and insulin-like growth factor-1 (IGF-1)-like signaling and its downstream intracellular signaling molecules have been shown to be associated with lifespan in fruit flies and nematodes. More recently, mammalian models with reduced growth hormone (GH) and/or IGF-1 signaling have also been shown to have extended lifespans as compared to control siblings. Importantly, this research has also shown that these genetic alterations can keep the animals healthy and disease-free for longer periods and can alleviate specific age-related pathologies similar to what is observed for CR individuals. Thus, these mutations may not only extend lifespan but may also improve healthspan, the general health and quality of life of an organism as it ages. In this review, we will provide an overview of how the

  20. Reproductive cessation and post-reproductive lifespan in Asian elephants and pre-industrial humans

    Science.gov (United States)

    2014-01-01

    Introduction Short post-reproductive lifespan is widespread across species, but prolonged post-reproductive life-stages of potential adaptive significance have been reported only in few mammals with extreme longevity. Long post-reproductive lifespan contradicts classical evolutionary predictions of simultaneous senescence in survival and reproduction, and raises the question of whether extreme longevity in mammals promotes such a life-history. Among terrestrial mammals, elephants share the features with great apes and humans, of having long lifespan and offspring with long dependency. However, little data exists on the frequency of post-reproductive lifespan in elephants. Here we use extensive demographic records on semi-captive Asian elephants (n = 1040) and genealogical data on pre-industrial women (n = 5336) to provide the first comparisons of age-specific reproduction, survival and post-reproductive lifespan in both of these long-lived species. Results We found that fertility decreased after age 50 in elephants, but the pattern differed from a total loss of fertility in menopausal women with many elephants continuing to reproduce at least until the age of 65 years. The probability of entering a non-reproductive state increased steadily in elephants from the earliest age of reproduction until age 65, with the longer living elephants continuing to reproduce until older ages, in contrast to humans whose termination probability increased rapidly after age 35 and reached 1 at 56 years, but did not depend on longevity. Post-reproductive lifespan reached 11–17 years in elephants and 26–27 years in humans living until old age (depending on method), but whereas half of human adult lifespan (of those reproductive females surviving to the age of 5% fecundity) was spent as post-reproductive, only one eighth was in elephants. Consequently, although some elephants have long post-reproductive lifespans, relatively few individuals reach such a phase and the

  1. A life-span behavioral mechanism relating childhood conscientiousness to adult clinical health.

    Science.gov (United States)

    Hampson, Sarah E; Edmonds, Grant W; Goldberg, Lewis R; Dubanoski, Joan P; Hillier, Teresa A

    2015-09-01

    To investigate a life-span health-behavior mechanism relating childhood personality to adult clinical health. Childhood Big Five personality traits at mean age 10, adult Big Five personality traits, adult clinically assessed dysregulation at mean age 51 (a summary of dysregulated blood glucose, blood pressure, and lipids), and a retrospective, cumulative measure of life-span health-damaging behavior (lifetime smoking, physical inactivity, and body mass index from age 20) were assessed in the Hawaii Personality and Health Cohort (N = 759). Structural equation modeling was used to test the conceptual model with direct and indirect paths from a childhood Conscientiousness factor to an adult Conscientiousness factor, life-span health-damaging behaviors, educational attainment, adult cognitive ability, and adult clinical health. For both men and women, childhood Conscientiousness influenced health-damaging behaviors through educational attainment, and life-span health-damaging behaviors predicted dysregulation. Childhood Conscientiousness predicted adult Conscientiousness, which did not predict any other variables in the model. For men, childhood Conscientiousness predicted dysregulation through educational attainment and health-damaging behaviors. For women, childhood Conscientiousness predicted dysregulation through educational attainment and adult cognitive ability. Assessing cumulative life-span health behaviors is a novel approach to the study of health-behavior mechanisms. Childhood Conscientiousness appears to influence health assessed more than 40 years later through complex processes involving educational attainment, cognitive ability, and the accumulated effects of health behaviors, but not adult Conscientiousness. (c) 2015 APA, all rights reserved).

  2. A Lifespan Behavioral Mechanism Relating Childhood Conscientiousness to Adult Clinical Health

    Science.gov (United States)

    Hampson, Sarah E.; Edmonds, Grant W.; Goldberg, Lewis R.; Dubanoski, Joan P.; Hillier, Teresa A.

    2015-01-01

    Objective To investigate a lifespan health behavior mechanism relating childhood personality to adult clinical health. Methods Childhood Big Five personality traits at mean age 10, adult Big Five personality traits, adult clinically assessed dysregulation at mean age 51 (a summary of dysregulated blood glucose, blood pressure, and lipids), and a retrospective, cumulative measure of lifespan health-damaging behavior (lifetime smoking, physical inactivity, and Body Mass Index from age 20) were assessed in the Hawaii Personality and Health Cohort (N = 759). Structural equation modelling was used to test the conceptual model with direct and indirect paths from childhood Conscientiousness to adult Conscientiousness, lifespan health-damaging behaviors, educational attainment, adult cognitive ability, and adult clinic health. Results For both men and women, childhood Conscientiousness influenced health-damaging behaviors through educational attainment, and lifespan health-damaging behaviors predicted dysregulation. Childhood Conscientiousness predicted adult Conscientiousness, which did not predict any other variables in the model. For men, childhood Conscientiousness predicted dysregulation through educational attainment and health-damaging behaviors. For women, childhood Conscientiousness predicted dysregulation through educational attainment and adult cognitive ability. Conclusions Assessing cumulative lifespan health behaviors is a novel approach to the study of health behavior mechanisms. Childhood Conscientiousness appears to influence health assessed more than forty years later through complex processes involving educational attainment, cognitive ability, and the accumulated effects of health behaviors but not adult Conscientiousness. PMID:25622076

  3. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae.

    Science.gov (United States)

    Anderson, Rozalyn M; Bitterman, Kevin J; Wood, Jason G; Medvedik, Oliver; Sinclair, David A

    2003-05-08

    Calorie restriction extends lifespan in a broad range of organisms, from yeasts to mammals. Numerous hypotheses have been proposed to explain this phenomenon, including decreased oxidative damage and altered energy metabolism. In Saccharomyces cerevisiae, lifespan extension by calorie restriction requires the NAD+-dependent histone deacetylase, Sir2 (ref. 1). We have recently shown that Sir2 and its closest human homologue SIRT1, a p53 deacetylase, are strongly inhibited by the vitamin B3 precursor nicotinamide. Here we show that increased expression of PNC1 (pyrazinamidase/nicotinamidase 1), which encodes an enzyme that deaminates nicotinamide, is both necessary and sufficient for lifespan extension by calorie restriction and low-intensity stress. We also identify PNC1 as a longevity gene that is responsive to all stimuli that extend lifespan. We provide evidence that nicotinamide depletion is sufficient to activate Sir2 and that this is the mechanism by which PNC1 regulates longevity. We conclude that yeast lifespan extension by calorie restriction is the consequence of an active cellular response to a low-intensity stress and speculate that nicotinamide might regulate critical cellular processes in higher organisms.

  4. Trade-off between reproduction and lifespan of the rotifer Brachionus plicatilis under different food conditions.

    Science.gov (United States)

    Sun, Yunfei; Hou, Xinying; Xue, Xiaofeng; Zhang, Lu; Zhu, Xuexia; Huang, Yuan; Chen, Yafen; Yang, Zhou

    2017-11-13

    Phaeocystis globosa, one of the most typical red tide-forming species, is usually mixed in the food composition of rotifers. To explore how rotifers respond by adjusting life history strategy when feeding on different quality foods, we exposed the rotifer Brachionus plicatilis to cultures with 100% Chlorella, a mixture of 50% P. globosa and 50% Chlorella, or 100% P. globosa. Results showed that rotifers exposed to 100% Chlorella or to mixed diets produced more total offspring and had higher age-specific fecundity than those exposed to 100% P. globosa. Food combination significantly affected the net reproduction rates of rotifers. By contrast, rotifers that fed on 100% P. globosa or on mixed diets had a longer lifespan than those fed on 100% Chlorella. The overall performances (combining reproduction and lifespan together) of rotifers cultured in 100% Chlorella or mixed diets were significantly higher than those cultured in 100% P. globosa. In general, Chlorella favors rotifers reproduction at the cost of shorter lifespan, whereas P. globosa tends to extend the lifespan of rotifers with lower fecundity, indicating that trade-off exists between reproduction and lifespan under different food conditions. The present study also suggests that rotifers may have the potential to control harmful P. globosa.

  5. Caenorhabditis elegans battling starvation stress: low levels of ethanol prolong lifespan in L1 larvae.

    Directory of Open Access Journals (Sweden)

    Paola V Castro

    Full Text Available The nematode Caenorhabditis elegans arrests development at the first larval stage if food is not present upon hatching. Larvae in this stage provide an excellent model for studying stress responses during development. We found that supplementing starved larvae with ethanol markedly extends their lifespan within this L1 diapause. The effects of ethanol-induced lifespan extension can be observed when the ethanol is added to the medium at any time between 0 and 10 days after hatching. The lowest ethanol concentration that extended lifespan was 1 mM (0.005%; higher concentrations to 68 mM (0.4% did not result in increased survival. In spite of their extended survival, larvae did not progress to the L2 stage. Supplementing starved cultures with n-propanol and n-butanol also extended lifespan, but methanol and isopropanol had no measurable effect. Mass spectrometry analysis of nematode fatty acids and amino acids revealed that L1 larvae can incorporate atoms from ethanol into both types of molecules. Based on these data, we suggest that ethanol supplementation may extend the lifespan of L1 larvae by either serving as a carbon and energy source and/or by inducing a stress response.

  6. Reproductive capability is associated with lifespan and cause of death in companion dogs.

    Science.gov (United States)

    Hoffman, Jessica M; Creevy, Kate E; Promislow, Daniel E L

    2013-01-01

    Reproduction is a risky affair; a lifespan cost of maintaining reproductive capability, and of reproduction itself, has been demonstrated in a wide range of animal species. However, little is understood about the mechanisms underlying this relationship. Most cost-of-reproduction studies simply ask how reproduction influences age at death, but are blind to the subjects' actual causes of death. Lifespan is a composite variable of myriad causes of death and it has not been clear whether the consequences of reproduction or of reproductive capability influence all causes of death equally. To address this gap in understanding, we compared causes of death among over 40,000 sterilized and reproductively intact domestic dogs, Canis lupus familiaris. We found that sterilization was strongly associated with an increase in lifespan, and while it decreased risk of death from some causes, such as infectious disease, it actually increased risk of death from others, such as cancer. These findings suggest that to understand how reproduction affects lifespan, a shift in research focus is needed. Beyond the impact of reproduction on when individuals die, we must investigate its impact on why individuals die, and subsequently must identify the mechanisms by which these causes of death are influenced by the physiology associated with reproductive capability. Such an approach may also clarify the effects of reproduction on lifespan in people.

  7. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae

    Science.gov (United States)

    Anderson, Rozalyn M.; Bitterman, Kevin J.; Wood, Jason G.; Medvedik, Oliver; Sinclair, David A.

    2016-01-01

    Calorie restriction extends lifespan in a broad range of organisms, from yeasts to mammals. Numerous hypotheses have been proposed to explain this phenomenon, including decreased oxidative damage and altered energy metabolism. In Saccharomyces cerevisiae, lifespan extension by calorie restriction requires the NAD+-dependent histone deacetylase, Sir2 (ref. 1). We have recently shown that Sir2 and its closest human homologue SIRT1, a p53 deacetylase, are strongly inhibited by the vitamin B3 precursor nicotinamide2. Here we show that increased expression of PNC1 (pyrazinamidase/nicotinamidase 1), which encodes an enzyme that deaminates nicotinamide, is both necessary and sufficient for lifespan extension by calorie restriction and low-intensity stress. We also identify PNC1 as a longevity gene that is responsive to all stimuli that extend lifespan. We provide evidence that nicotinamide depletion is sufficient to activate Sir2 and that this is the mechanism by which PNC1 regulates longevity. We conclude that yeast lifespan extension by calorie restriction is the consequence of an active cellular response to a low-intensity stress and speculate that nicotinamide might regulate critical cellular processes in higher organisms. PMID:12736687

  8. Coffee, its roasted form, and their residues cause birth failure and shorten lifespan in dengue vectors.

    Science.gov (United States)

    Dieng, Hamady; Ellias, Salbiah Binti; Satho, Tomomitsu; Ahmad, Abu Hassan; Abang, Fatimah; Ghani, Idris Abd; Noor, Sabina; Ahmad, Hamdan; Zuharah, Wan Fatma; Morales Vargas, Ronald E; Morales, Noppawan P; Hipolito, Cirilo N; Attrapadung, Siriluck; Noweg, Gabriel Tonga

    2017-06-01

    In dengue mosquitoes, successful embryonic development and long lifespan are key determinants for the persistence of both virus and vector. Therefore, targeting the egg stage and vector lifespan would be expected to have greater impacts than larvicides or adulticides, both strategies that have lost effectiveness due to the development of resistance. Therefore, there is now a pressing need to find novel chemical means of vector control. Coffee contains many chemicals, and its waste, which has become a growing environmental concern, is as rich in toxicants as the green coffee beans; these chemicals do not have a history of resistance in insects, but some are lost in the roasting process. We examined whether exposure to coffee during embryonic development could alter larval eclosion and lifespan of dengue vectors. A series of bioassays with different coffee forms and their residues indicated that larval eclosion responses of Aedes albopictus and Ae. aegypti were appreciably lower when embryonic maturation occurred in environments containing coffee, especially roasted coffee crude extract (RCC). In addition, the lifespan of adults derived from eggs that hatched successfully in a coffee milieu was reduced, but this effect was less pronounced with roasted and green coffee extracts (RCU and GCU, respectively). Taken together, these findings suggested that coffee and its residues have embryocidal activities with impacts that are carried over onto the adult lifespan of dengue vectors. These effects may significantly reduce the vectorial capacity of these insects. Reutilizing coffee waste in vector control may also represent a realistic solution to the issues associated with its pollution.

  9. Regional and longitudinal estimation of product lifespan distribution: a case study for automobiles and a simplified estimation method.

    Science.gov (United States)

    Oguchi, Masahiro; Fuse, Masaaki

    2015-02-03

    Product lifespan estimates are important information for understanding progress toward sustainable consumption and estimating the stocks and end-of-life flows of products. Publications reported actual lifespan of products; however, quantitative data are still limited for many countries and years. This study presents regional and longitudinal estimation of lifespan distribution of consumer durables, taking passenger cars as an example, and proposes a simplified method for estimating product lifespan distribution. We estimated lifespan distribution parameters for 17 countries based on the age profile of in-use cars. Sensitivity analysis demonstrated that the shape parameter of the lifespan distribution can be replaced by a constant value for all the countries and years. This enabled a simplified estimation that does not require detailed data on the age profile. Applying the simplified method, we estimated the trend in average lifespans of passenger cars from 2000 to 2009 for 20 countries. Average lifespan differed greatly between countries (9-23 years) and was increasing in many countries. This suggests consumer behavior differs greatly among countries and has changed over time, even in developed countries. The results suggest that inappropriate assumptions of average lifespan may cause significant inaccuracy in estimating the stocks and end-of-life flows of products.

  10. Ovarian Reserve Assessment in Users of Oral Contraception Seeking Fertility Advice on their Reproductive Lifespan

    DEFF Research Database (Denmark)

    Petersen, K. Birch; Hvidman, H. W.; Forman, J. L.

    2016-01-01

    in the antral follicles of 5-7 and 8-10 mm with the highest number of AMH secreting granulosa cells. It is essential to be aware of the impact of OC use on ovarian reserve parameters when guiding OC users on their fertility status and reproductive lifespan. STUDY FUNDING/COMPETING INTERESTS: The FAC Clinic......STUDY QUESTION: To what extent does oral contraception (OC) impair ovarian reserve parameters in women who seek fertility assessment and counselling to get advice on whether their remaining reproductive lifespan is reduced? SUMMARY ANSWER: Ovarian reserve parameters defined by anti...... ageing. In women, AMH declines with age and data suggest a relationship with remaining reproductive lifespan and age at menopause. OC may alter parameters related to ovarian reserve assessment but the extent of the reduction is uncertain. STUDY DESIGN, SIZE, DURATION: A cross-sectional study of 887 women...

  11. Ovarian reserve assessment in users of oral contraception seeking fertility advice on their reproductive lifespan

    DEFF Research Database (Denmark)

    Birch Petersen, K; Hvidman, H W; Forman, J L

    2015-01-01

    in the antral follicles of 5-7 and 8-10 mm with the highest number of AMH secreting granulosa cells. It is essential to be aware of the impact of OC use on ovarian reserve parameters when guiding OC users on their fertility status and reproductive lifespan. STUDY FUNDING/COMPETING INTERESTS: The FAC Clinic......STUDY QUESTION: To what extent does oral contraception (OC) impair ovarian reserve parameters in women who seek fertility assessment and counselling to get advice on whether their remaining reproductive lifespan is reduced? SUMMARY ANSWER: Ovarian reserve parameters defined by anti...... ageing. In women, AMH declines with age and data suggest a relationship with remaining reproductive lifespan and age at menopause. OC may alter parameters related to ovarian reserve assessment but the extent of the reduction is uncertain. STUDY DESIGN, SIZE, DURATION: A cross-sectional study of 887 women...

  12. Brief Communication: SIR-2.1-dependent lifespan extension of Caenorhabditis elegans by oxyresveratrol and resveratrol.

    Science.gov (United States)

    Lee, Jiyun; Kwon, Gayeung; Park, Jieun; Kim, Jeong-Keun; Lim, Young-Hee

    2016-10-01

    Resveratrol (RES) has been studied for its effects on the lifespan extension of Caenorhabditis elegans, but controversy still remains on its mechanism related with SIR-2. In this study, longevity assay was performed to confirm SIR-2-dependent lifespan extension of C. elgeans with RES and oxyresveratrol (OXY), an isomer of hydroxylated RES using loss-of-function mutants of C. elegans including sir-2.1 mutant. The results showed that OXY and RES significantly (P elegans compared with the control. OXY and RES also significantly (P elegans by overexpression of SIR-2.1, which is related to lifespan extension through calorie restriction and the AMP-activated protein kinase (AMPK) pathway, although this process is independent of the FOXO/DAF-16 pathway. © 2016 by the Society for Experimental Biology and Medicine.

  13. Lifespan divergence between social insect castes: challenges and opportunities for evolutionary theories of aging.

    Science.gov (United States)

    Kramer, Boris H; van Doorn, G Sander; Weissing, Franz J; Pen, Ido

    2016-08-01

    The extraordinarily long lifespans of queens (and kings) in eusocial insects and the strikingly large differences in life expectancy between workers and queens challenge our understanding of the evolution of aging and provide unique opportunities for studying the causes underlying adaptive variation in lifespan within species. Here we review the major evolutionary theories of aging, focusing on their scope and limitations when applied to social insects. We show that reproductive division of labor, interactions between kin, caste-specific gene regulation networks, and the integration of colony-level trade-offs with individual-level trade-offs provide challenges to the classical theories We briefly indicate how these challenges could be met in future models of adaptive phenotypic plasticity in lifespan between and within different castes. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. A Modified Carbon Monoxide Breath Test for Measuring Erythrocyte Lifespan in Small Animals

    Directory of Open Access Journals (Sweden)

    Yong-Jian Ma

    2016-01-01

    Full Text Available This study was to develop a CO breath test for RBC lifespan estimation of small animals. The ribavirin induced hemolysis rabbit models were placed individually in a closed rebreath cage and air samples were collected for measurement of CO concentration. RBC lifespan was calculated from accumulated CO, blood volume, and hemoglobin concentration data. RBC lifespan was determined in the same animals with the standard biotin-labeling method. RBC lifespan data obtained by the CO breath test method for control (CON, 49.0±5.9 d rabbits, rabbits given 10 mg/kg·d−1 of ribavirin (RIB10, 31.0±4.0 d, and rabbits given 20 mg/kg·d−1 of ribavirin (RIB20, 25.0±2.9 d were statistically similar (all p>0.05 to and linearly correlated (r=0.96, p<0.01 with the RBC lifespan data obtained for the same rabbits by the standard biotin-labeling method (CON, 51.0±2.7 d; RIB10, 33.0±1.3 d; and RIB20, 27.0±0.8 d. The CO breath test method takes less than 3 h to complete, whereas the standard method requires at least several weeks. In conclusion, the CO breath test method provides a simple and rapid means of estimating RBC lifespan and is feasible for use with small animal models.

  15. Rifampicin reduces advanced glycation end products and activates DAF-16 to increase lifespan in Caenorhabditis elegans.

    Science.gov (United States)

    Golegaonkar, Sandeep; Tabrez, Syed S; Pandit, Awadhesh; Sethurathinam, Shalini; Jagadeeshaprasad, Mashanipalya G; Bansode, Sneha; Sampathkumar, Srinivasa-Gopalan; Kulkarni, Mahesh J; Mukhopadhyay, Arnab

    2015-06-01

    Advanced glycation end products (AGEs) are formed when glucose reacts nonenzymatically with proteins; these modifications are implicated in aging and pathogenesis of many age-related diseases including type II diabetes, atherosclerosis, and neurodegenerative disorders. Thus, pharmaceutical interventions that can reduce AGEs may delay age-onset diseases and extend lifespan. Using LC-MS(E), we show that rifampicin (RIF) reduces glycation of important cellular proteins in vivo and consequently increases lifespan in Caenorhabditis elegans by up to 60%. RIF analog rifamycin SV (RSV) possesses similar properties, while rifaximin (RMN) lacks antiglycation activity and therefore fails to affect lifespan positively. The efficacy of RIF and RSV as potent antiglycating agents may be attributed to the presence of a p-dihydroxyl moiety that can potentially undergo spontaneous oxidation to yield highly reactive p-quinone structures, a feature absent in RMN. We also show that supplementing rifampicin late in adulthood is sufficient to increase lifespan. For its effect on longevity, rifampicin requires DAF-18 (nematode PTEN) as well as JNK-1 and activates DAF-16, the FOXO homolog. Interestingly, the drug treatment modulates transcription of a different subset of DAF-16 target genes, those not controlled by the conserved Insulin-IGF-1-like signaling pathway. RIF failed to increase the lifespan of daf-16 null mutant despite reducing glycation, showing thereby that DAF-16 may not directly affect AGE formation. Together, our data suggest that the dual ability to reduce glycation in vivo and activate prolongevity processes through DAF-16 makes RIF and RSV effective lifespan-extending interventions. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  16. Extension of the Lifespan of Cultured Normal Human Diploid Cells by Vitamin E

    Science.gov (United States)

    Packer, Lester; Smith, James R.

    1974-01-01

    Inclusion of vitamin E (DL-α-tocopherol) in the culture medium for human diploid cells greatly prolongs their in vitro lifespan. The addition of 100 μg of DL-α-tocopherol per ml of medium has allowed us to culture WI-38 cells for more than 100 population doublings to date. (These cells normally have an in vitro lifespan of 50 ± 10 population doublings.) Cells at the 100th population doubling have a normal diploid karyotype, appear to behave in all other respects like young WI-38 cells, and are still actively dividing. We interpret this result as support for the free radical theory of aging. Images PMID:4531015

  17. Extension of the lifespan of cultured normal human diploid cells by vitamin E: a reevaluation

    Energy Technology Data Exchange (ETDEWEB)

    Packer, L. (Univ. of California, Berkeley); Smith, J.R.

    1977-04-01

    Previously we reported that the lifespan of WI-38 human diploid fibroblasts in vitro was significantly increased by continuously growing the cell cultures in the presence of vitamin E (dl-..cap alpha..-tocopherol), but in 19 subsequent subcultivation series we were unable to reproduce these findings. While vitamin E is incorporated into the cells and is able to act effectively as an antioxidant, apparently its intracellular antioxidant properties alone do not routinely result in an increase of cell lifespan. A synergism between vitamin E and some component(s) in the first of two lots of serum used in the original experiments seems the most likely explanation for our earlier findings.

  18. The Impact of Endometriosis across the Lifespan of Women: Foreseeable Research and Therapeutic Prospects

    Directory of Open Access Journals (Sweden)

    C. L. Hughes

    2015-01-01

    Full Text Available In addition to estrogen dependence, endometriosis is characterized by chronic pelvic inflammation. The impact of the chronic pelvic inflammatory state on other organ systems and women’s health is unclear. Endometriosis associated chronic inflammation and potential adverse health effects across the lifespan render it imperative for renewed research vigor into the identification of novel biomarkers of disease and therapeutic options. Herein we propose a number of opportunities for research and development of new therapeutics to address the unmet needs in the treatment of endometriosis per se and its ancillary risks for other diseases in women across the lifespan.

  19. Sex differences in telomeres and lifespan in Soay sheep: From the beginning to the end.

    Science.gov (United States)

    Dantzer, Ben; Garratt, Michael

    2017-06-01

    There is tremendous diversity in ageing rates and lifespan not only among taxa but within species, and particularly between the sexes. Women often live longer than men, and considerable research on this topic has revealed some of the potential biological, psychological and cultural causes of sex differences in human ageing and lifespan. However, sex differences in lifespan are widespread in nonhuman animals suggesting biology plays a prominent role in variation in ageing and lifespan. Recently, evolutionary biologists have borrowed techniques from biomedicine to identify whether similar mechanisms causing or contributing to variation in ageing and lifespan in humans and laboratory animals also operate in wild animals. Telomeres are repetitive noncoding DNA sequences capping the ends of chromosomes that are important for chromosomal stability but that can shorten during normal cell division and exposure to stress. Telomere shortening is hypothesized to directly contribute to the ageing process as once telomeres shorten to some length, the cells stop dividing and die. Men tend to have shorter telomeres and faster rates of telomere attrition with age than women, suggesting one possible biological cause of sex differences in lifespan. In this issue of Molecular Ecology, Watson et al. () show that telomere lengths in wild Soay sheep are similar between females and males near the beginning of life but quickly diverge with age because males but not females showed reduced telomere lengths at older ages. The authors further show that some of the observed sex difference in telomere lengths in old age may be due to male investment in horn growth earlier in life, suggesting that sexually dimorphic allocation to traits involved in sexual selection might underlie sex differences in telomere attrition. This study provides a rare example of how biological mechanisms potentially contributing to sex differences in lifespan in humans may also operate in free-living animals. However

  20. The effects of dietary restriction on oxidative stress in rodents

    Science.gov (United States)

    Walsh, Michael E.; Shi, Yun; Van Remmen, Holly

    2013-01-01

    Oxidative stress is observed during aging and in numerous age-related diseases. Dietary restriction (DR) is a regimen that protects against disease and extends lifespan in multiple species. However, it is unknown how DR mediates its protective effects. One prominent and consistent effect of DR in a number of systems is the ability to reduce oxidative stress and damage. The purpose of this review is to comprehensively examine the hypothesis that dietary restriction reduces oxidative stress in rodents by decreasing reactive oxygen species (ROS) production and increasing antioxidant enzyme activity, leading to an overall reduction of oxidative damage to macromolecules. The literature reveals that the effects of DR on oxidative stress are complex and likely influenced by a variety of factors, including sex, species, tissue examined, types of ROS and antioxidant enzymes examined, and duration of DR. Here we present a comprehensive review of the existing literature on the effect of DR on mitochondrial ROS generation, antioxidant enzymes and oxidative damage. In a majority of studies, dietary restriction had little effect on mitochondrial ROS production or antioxidant activity. On the other hand, DR decreased oxidative damage in the majority of cases. Although the effects of DR on endogenous antioxidants are mixed, we find that glutathione levels are the most likely antioxidant to be increased by dietary restriction, which supports the emerging redox-stress hypothesis of aging. PMID:23743291

  1. Evolution of product lifespan and implications for environmental assessment and management: a case study of personal computers in higher education.

    Science.gov (United States)

    Babbitt, Callie W; Kahhat, Ramzy; Williams, Eric; Babbitt, Gregory A

    2009-07-01

    Product lifespan is a fundamental variable in understanding the environmental impacts associated with the life cycle of products. Existing life cycle and materials flow studies of products, almost without exception, consider lifespan to be constant over time. To determine the validity of this assumption, this study provides an empirical documentation of the long-term evolution of personal computer lifespan, using a major U.S. university as a case study. Results indicate that over the period 1985-2000, computer lifespan (purchase to "disposal") decreased steadily from a mean of 10.7 years in 1985 to 5.5 years in 2000. The distribution of lifespan also evolved, becoming narrower over time. Overall, however, lifespan distribution was broader than normally considered in life cycle assessments or materials flow forecasts of electronic waste management for policy. We argue that these results suggest that at least for computers, the assumption of constant lifespan is problematic and that it is important to work toward understanding the dynamics of use patterns. We modify an age-structured model of population dynamics from biology as a modeling approach to describe product life cycles. Lastly, the purchase share and generation of obsolete computers from the higher education sector is estimated using different scenarios for the dynamics of product lifespan.

  2. Locomotor stability and adaptation during perturbed walking across the adult female lifespan

    NARCIS (Netherlands)

    McCrum, Christopher; Epro, Gaspar; Meijer, Kenneth; Zijlstra, Wiebren; Brueggemann, Gert-Peter; Karamanidis, Kiros

    2016-01-01

    The aim of this work was to examine locomotor stability and, adaptation across the adult female lifespan during perturbed walking on the treadmill. 11 young, 11 middle and 14 older-aged female adults (mean and SD: 25.5(2.1), 50.6(6.4) and 69.0(4.7) years old respectively) walked on a treadmill. We

  3. Role of lutein and zeaxanthin in visual and cognitive function throughout the lifespan

    Science.gov (United States)

    The relationship between lutein and zeaxanthin and visual and cognitive health throughout the lifespan is compelling. There is a variety of evidence to support a role for lutein and zeaxanthin in vision. Lutein's role in cognition has only recently been considered. Lutein and its isomer, zeaxanthin,...

  4. Neoplastic and life-span effects of chronic exposure to tritium. II. Rats exposed in utero

    International Nuclear Information System (INIS)

    Cahill, D.F.; Wright, J.F.; Godbold, J.H.; Ward, J.M.; Laskey, J.W.; Tompkins, E.A.

    1975-01-01

    A study was conducted to determine the effects on neoplasia incidence and life-span of exposure in utero to a major environmental radionuclide. Sprague-Dawley rats were continuously exposed to tritiated water (HTO) from conception through birth in doses of 0, 1, 10, 50, and 100 μCi HTO/ml body water. HTO administration was terminated at birth. Calculated cumulative doses during gestation were approximately 0, 6.6, 66, 330, and 660 rads of total body irradiation. Under these exposure conditions, the two highest doses resulted in sterile offspring. Animals surviving through 30 days postnatally were defined as the study population and observed until their deaths. Intrauterine exposures to doses up to 66 rads had no significant effects on either sex with respect to lifespan, overall neoplasia incidence, incidence rate, or onset of mammary fibroadenomas. Females exposed to 330 or 660 rads were sterile and had lower incidence rates of mammary fibroadenomas than did controls; at 660 rads females had a lower incidence of overall neoplasia and reduced mean lifespans. Sterile male offspring had reduced mean longevity after irradiation at 660 rads. Regardless of dose group, females had significantly higher incidences of neoplasia and longer life-spans than males

  5. Investigating the life-span of cork products through a longitudinal approach with users- Interim results

    NARCIS (Netherlands)

    Da Silva Pereira, A.C.; Brezet, J.C.; Pereira, H.; Vogtlander, J.G.

    2012-01-01

    Products with long life-spans are generally preferred form an environmental perspective. This paper addresses the longevity of cork products, and the respective influencing aspects. This is accomplished through a longitudinal study where several cork products are used, and at different moments in

  6. Perceptions of love across the lifespan: differences in passion, intimacy, and commitment

    NARCIS (Netherlands)

    Sumter, S.R.; Valkenburg, P.M.; Peter, J.

    2013-01-01

    This study investigated perceptions of love across the lifespan using Sternberg’s triangular theory of love, which distinguishes between passion, intimacy, and commitment. The study aimed to (a) investigate the psychometric properties of the short Triangular Love Scale (TLS-short) in adolescents and

  7. Calorie restriction does not elicit a robust extension of replicative lifespan in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Huberts, Daphne H.E.W.; Gonzalez Hernandez, Javier; Lee, Sung Sik; Litsios, Athanasios; Hubmann, Georg; Wit, Ernst C.; Heinemann, Matthias

    2014-01-01

    Calorie restriction (CR) is often described as the most robust manner to extend lifespan in a large variety of organisms. Hence, considerable research effort is directed toward understanding the mechanisms underlying CR, especially in the yeast Saccharomyces cerevisiae. However, the effect of CR on

  8. Genetic and Environmental Stability in Attention Problems Across the Lifespan: Evidence From the Netherlands Twin Register

    NARCIS (Netherlands)

    Kan, K.J.; Dolan, C.V.; Nivard, M.G.; Middeldorp, C.M.; van Beijsterveldt, C.E.M.; Willemsen, G.; Boomsma, D.I.

    2013-01-01

    Objective: To review findings on attention-deficit/hyperactivity disorder and attention problems (AP) in children, adolescents, and adults, as established in the database of the Netherlands Twin Register and increase the understanding of stability in AP across the lifespan as a function of genetic

  9. Genetic and Environmental Stability in Attention Problems across the Lifespan: Evidence from the Netherlands Twin Register

    Science.gov (United States)

    Kan, Kees-Jan; Dolan, Conor V.; Nivard, Michel G.; Middeldorp, Christel M.; van Beijsterveldt, Catharina E. M.; Willemsen, Gonneke; Boomsma, Dorret I.

    2013-01-01

    Objective: To review findings on attention-deficit/hyperactivity disorder and attention problems (AP) in children, adolescents, and adults, as established in the database of the Netherlands Twin Register and increase the understanding of stability in AP across the lifespan as a function of genetic and environmental influences. Method: A…

  10. Brain IGF-1 receptors control mammalian growth and lifespan through a neuroendocrine mechanism.

    Directory of Open Access Journals (Sweden)

    Laurent Kappeler

    2008-10-01

    Full Text Available Mutations that decrease insulin-like growth factor (IGF and growth hormone signaling limit body size and prolong lifespan in mice. In vertebrates, these somatotropic hormones are controlled by the neuroendocrine brain. Hormone-like regulations discovered in nematodes and flies suggest that IGF signals in the nervous system can determine lifespan, but it is unknown whether this applies to higher organisms. Using conditional mutagenesis in the mouse, we show that brain IGF receptors (IGF-1R efficiently regulate somatotropic development. Partial inactivation of IGF-1R in the embryonic brain selectively inhibited GH and IGF-I pathways after birth. This caused growth retardation, smaller adult size, and metabolic alterations, and led to delayed mortality and longer mean lifespan. Thus, early changes in neuroendocrine development can durably modify the life trajectory in mammals. The underlying mechanism appears to be an adaptive plasticity of somatotropic functions allowing individuals to decelerate growth and preserve resources, and thereby improve fitness in challenging environments. Our results also suggest that tonic somatotropic signaling entails the risk of shortened lifespan.

  11. Mental illness and mental health: The two continua model across the lifespan

    NARCIS (Netherlands)

    Westerhof, Gerben Johan; Keyes, Cory L.M.

    2010-01-01

    Mental health has long been defined as the absence of psychopathologies, such as depression and anxiety. The absence of mental illness, however, is a minimal outcome from a psychological perspective on lifespan development. This article therefore focuses on mental illness as well as on three core

  12. Cold storage affects mortality, body mass, lifespan, reproduction and flight capacity of Praon volucre (Hymenoptera: Braconidae)

    NARCIS (Netherlands)

    Lins, J.C.; Bueno, V.H.P.; Sidney, L.A.; Silva, D.B.; Sampaio, M.V.; Pereira, J.M.; Nomelini, Q.S.S.; Lenteren, van J.C.

    2013-01-01

    The possibility of storing natural enemies at low temperatures is important for the mass production of biological control agents. We evaluated the effect of different periods of cold storage on immature mortality, mummy body mass, lifespan, reproduction and flight capacity of the parasitoid Praon

  13. Mood and anxiety disorders across the adult lifespan: a European perspective.

    Science.gov (United States)

    McDowell, R D; Ryan, A; Bunting, B P; O'Neill, S M; Alonso, J; Bruffaerts, R; de Graaf, R; Florescu, S; Vilagut, G; de Almeida, J M C; de Girolamo, G; Haro, J M; Hinkov, H; Kovess-Masfety, V; Matschinger, H; Tomov, T

    2014-03-01

    The World Mental Health Survey Initiative (WMHSI) has advanced our understanding of mental disorders by providing data suitable for analysis across many countries. However, these data have not yet been fully explored from a cross-national lifespan perspective. In particular, there is a shortage of research on the relationship between mood and anxiety disorders and age across countries. In this study we used multigroup methods to model the distribution of 12-month DSM-IV/CIDI mood and anxiety disorders across the adult lifespan in relation to determinants of mental health in 10 European Union (EU) countries. Logistic regression was used to model the odds of any mood or any anxiety disorder as a function of age, gender, marital status, urbanicity and employment using a multigroup approach (n = 35500). This allowed for the testing of specific lifespan hypotheses across participating countries. No simple geographical pattern exists with which to describe the relationship between 12-month prevalence of mood and anxiety disorders and age. Of the adults sampled, very few aged ≥ 80 years met DSM-IV diagnostic criteria for these disorders. The associations between these disorders and key sociodemographic variables were relatively homogeneous across countries after adjusting for age. Further research is required to confirm that there are indeed stages in the lifespan where the reported prevalence of mental disorders is low, such as among younger adults in the East and older adults in the West. This project illustrates the difficulties in conducting research among different age groups simultaneously.

  14. Cognitive Creative Abilities and Self-Esteem across the Adult Life-Span.

    Science.gov (United States)

    Jaquish, Gail A.; Ripple, Richard E.

    1981-01-01

    Explored the relationship between divergent thinking and self-esteem across the adult lifespan. Subjects from 18 to 84 years of age responded to a self-esteem inventory and an exercise in divergent thinking. Self-esteem predicted divergent thinking across age groups, whereas age differences accounted for little variance in divergent thinking.…

  15. Age-related differences in cognition across the adult lifespan in autism spectrum disorder

    NARCIS (Netherlands)

    Lever, A.G.; Geurts, H.M.

    It is largely unknown how age impacts cognition in autism spectrum disorder (ASD). We investigated whether age-related cognitive differences are similar, reduced or increased across the adult lifespan, examined cognitive strengths and weaknesses, and explored whether objective test performance is

  16. Vocabulary Skills in Adulthood: Longitudinal Relations with Cognitive and Personality Measures Across the Life-Span

    Czech Academy of Sciences Publication Activity Database

    Smolík, Filip; Blatný, Marek; Jelínek, Martin; Millová, Katarína; Sobotková, Veronika

    2016-01-01

    Roč. 60, č. 2 (2016), s. 97-105 ISSN 0009-062X R&D Projects: GA ČR GAP407/10/2410 Institutional support: RVO:68081740 Keywords : vocabulary * personality * life-span development * verbal IQ Subject RIV: AN - Psychology Impact factor: 0.242, year: 2016

  17. Searching for a Life-Span Psychobiology of Down Syndrome: Advancing Educational and Behavioural Management Strategies.

    Science.gov (United States)

    Gibson, David

    1991-01-01

    Recent experimental research is synthesized to identify distinctive biobehavioral characteristics of Down's Syndrome persons across their lifespan. It is argued that educational and other intervention programs have not demonstrated strong gains having significant durability or generalization. Recommended is an interactionist function-structure…

  18. Prospective memory across the lifespan: investigating the contribution of retrospective and prospective processes.

    Science.gov (United States)

    Mattli, Florentina; Schnitzspahn, Katharina M; Studerus-Germann, Aline; Brehmer, Yvonne; Zöllig, Jacqueline

    2014-01-01

    Prospective memory performance follows an inverted U-shaped function across the lifespan. Findings on the relative contribution of purely prospective memory and retrospective memory processes within prospective memory to this trajectory are scarce and inconclusive. We analyzed age-related differences in prospective memory performance across the lifespan in a cross-sectional design including six age groups (N = 99, 7-83 years) and investigated possible mechanisms by experimentally disentangling the relative contributions of retrospective memory and purely prospective memory processes. Results confirmed the inverted U-shaped function of prospective memory performance across the lifespan. A significant interaction between process type and age group was observed indicating differential relative contributions of retrospective memory and purely prospective memory processes on the development of prospective memory performance. Our results showed that mainly the pure prospective memory processes within prospective memory lead to lower prospective memory performance in young children and old adults. Moreover, the relative contributions of the retrospective memory and purely prospective memory processes are not uniform at both ends of the lifespan, i.e., in later adulthood the purely prospective memory processes seem to determine performance to an even greater extent than in childhood. Nevertheless, age effects were also observed in the retrospective component which thus contributed to the prospective memory performance differences between the age groups.

  19. Complex Prospective Memory: Development across the Lifespan and the Role of Task Interruption

    Science.gov (United States)

    Kliegel, Matthias; Mackinlay, Rachael; Jager, Theodor

    2008-01-01

    Prospective memory (PM) reflects the product of cognitive processes associated with the formation, retention, delayed initiation, and execution of intentions. It has been proposed that developmental changes in PM across the lifespan are heavily dependent upon the developmental trajectory of executive control functions. This study is the first to…

  20. Dance Talent Development across the Lifespan: A Review of Current Research

    Science.gov (United States)

    Chua, Joey

    2014-01-01

    The aim of this study is to compile and synthesize empirically based articles published between 2000 and 2012 about the critical issues of developing dance talents across the lifespan of children, adolescents and adults. The present article updates and extends a review article related to the identification and development in dance written by…

  1. Perceptions of Love across the Lifespan: Differences in Passion, Intimacy, and Commitment

    Science.gov (United States)

    Sumter, Sindy R.; Valkenburg, Patti M.; Peter, Jochen

    2013-01-01

    This study investigated perceptions of love across the lifespan using Sternberg's triangular theory of love, which distinguishes between passion, intimacy, and commitment. The study aimed to (a) investigate the psychometric properties of the short Triangular Love Scale (TLS-short) in adolescents and adults (see Appendix), and (b) track age and…

  2. Differences in Binding and Monitoring Mechanisms Contribute to Lifespan Age Differences in False Memory

    Science.gov (United States)

    Fandakova, Yana; Shing, Yee Lee; Lindenberger, Ulman

    2013-01-01

    Based on a 2-component framework of episodic memory development across the lifespan (Shing & Lindenberger, 2011), we examined the contribution of memory-related binding and monitoring processes to false memory susceptibility in childhood and old age. We administered a repeated continuous recognition task to children (N = 20, 10-12 years),…

  3. A bodyweight-dependent allometric exponent for scaling clearance across the human life-span

    NARCIS (Netherlands)

    C. Wang (Chenguang); M.Y. Peeters (Mariska); K.M. Allegaert (Karel); H.J. Blussé van Oud-Alblas (Heleen); E.H.J. Krekels (Elke); D. Tibboel (Dick); M. Danhof (Meindert); C.A.J. Knibbe (Catherijne)

    2012-01-01

    textabstractPurpose: To explore different allometric equations for scaling clearance across the human life-span using propofol as a model drug. Methods: Data from seven previously published propofol studies ((pre)term neonates, infants, toddlers, children, adolescents and adults) were analysed using

  4. Survival time, lifespan, and quality of life in dogs with idiopathic Fanconi syndrome.

    Science.gov (United States)

    Yearley, Jennifer H; Hancock, Dale D; Mealey, Katrina L

    2004-08-01

    To evaluate survival time of dogs with idiopathic Fanconi syndrome. Case series. 60 dogs with idiopathic Fanconi syndrome. Data were collected by means of questionnaires distributed to owners and veterinarians of dogs with idiopathic Fanconi syndrome and by examination of medical records when accessible. Questionnaires and records were reviewed for criteria used in diagnosis, treatments administered, survival time, and subjective owner perceptions regarding their dogs' general condition. 58 of the dogs were Basenjis. Fifty-seven dogs (95%) were reportedly managed by use of a single therapeutic regimen. Median survival time after diagnosis of Fanconi syndrome was 5.25 years; median estimated lifespan was calculated to be between 11.3 and 12.1 years. Owners of 28 of 29 (97%) dogs still alive at the time of the study subjectively assessed their dogs' general condition as good to excellent. Seizures or other neurologic dysfunction was reported for 11 dogs. Results suggest that expected lifespan for dogs with idiopathic Fanconi syndrome was not substantially reduced, compared with expected lifespan for unaffected dogs, and that affected dogs generally had a good to excellent quality of life, as subjectively assessed by their owners. What effect the treatment regimen had on survival time or lifespan could not be determined, given the small number of dogs managed with other methods. The high percentage of dogs with neurologic abnormalities was a concern, but whether this was related to Fanconi syndrome or represented a breed-related predisposition to neurologic disease could not be determined.

  5. Oleanolic acid activates daf-16 to increase lifespan in Caenorhabditis elegans.

    Science.gov (United States)

    Zhang, Jiaolong; Lu, Lulu; Zhou, Lijun

    2015-12-25

    Oleanolic acid (OA) is an active ingredient in natural plants. It has been reported to possess a variety of pharmacological activities, but very little is known about its effects of anti-aging. We investigate here whether OA has an impact on longevity in vivo, and more specifically, we have examined effects of OA on the lifespan and stress tolerance in Caenorhabditis elegans (C. elegans). Our results showed that OA could extend the lifespan, increase its stress resistance and reduce the intracellular reactive oxygen species (ROS) in wild-type worms. Moreover, we have found that OA-induced longevity may not be associated with the calorie restriction (CR) mechanism. Our mechanistic studies using daf-16 loss-of-function mutant strains (GR1307) indicated that the extension of lifespan by OA requires daf-16. In addition, OA treatment could also modulate the nuclear localization, and the quantitative real-time PCR results revealed that up-regulation of daf-16 target genes such as sod-3, hsp-16.2 and ctl-1 could prolong lifespan and increase stress response in C. elegans. This study overall uncovers the longevity effect of OA and its underpinning mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. CAMKII and calcineurin regulate the lifespan of Caenorhabditis elegans through the FOXO transcription factor DAF-16.

    Science.gov (United States)

    Tao, Li; Xie, Qi; Ding, Yue-He; Li, Shang-Tong; Peng, Shengyi; Zhang, Yan-Ping; Tan, Dan; Yuan, Zengqiang; Dong, Meng-Qiu

    2013-06-25

    The insulin-like signaling pathway maintains a relatively short wild-type lifespan in Caenorhabditis elegans by phosphorylating and inactivating DAF-16, the ortholog of the FOXO transcription factors of mammalian cells. DAF-16 is phosphorylated by the AKT kinases, preventing its nuclear translocation. Calcineurin (PP2B phosphatase) also limits the lifespan of C. elegans, but the mechanism through which it does so is unknown. Herein, we show that TAX-6•CNB-1 and UNC-43, the C. elegans Calcineurin and Ca(2+)/calmodulin-dependent kinase type II (CAMKII) orthologs, respectively, also regulate lifespan through DAF-16. Moreover, UNC-43 regulates DAF-16 in response to various stress conditions, including starvation, heat or oxidative stress, and cooperatively contributes to lifespan regulation by insulin signaling. However, unlike insulin signaling, UNC-43 phosphorylates and activates DAF-16, thus promoting its nuclear localization. The phosphorylation of DAF-16 at S286 by UNC-43 is removed by TAX-6•CNB-1, leading to DAF-16 inactivation. Mammalian FOXO3 is also regulated by CAMKIIA and Calcineurin. DOI:http://dx.doi.org/10.7554/eLife.00518.001.

  7. Mental health and illness in relation to physical health across the lifespan

    NARCIS (Netherlands)

    Lamers, S.M.A.; Westerhof, Gerben Johan; Bohlmeijer, Ernst Thomas; Keyes, Corey L.M.; Sinnott, J.D.

    2013-01-01

    This chapter addresses mental health as more than the absence of disease, also approaching it from a positive perspective as the presence of well-being across the lifespan. The study described in the chapter investigated the association of age with psychopathology and positive mental health,

  8. Lifespan divergence between social insect castes : Challenges and opportunities for evolutionary theories of aging

    NARCIS (Netherlands)

    Kramer, Boris H.; van Doorn, G. Sander; Weissing, Franz J.; Pen, Ido

    The extraordinarily long lifespans of queens (and kings) in eusocial insects and the strikingly large differences in life expectancy between workers and queens challenge our understanding of the evolution of aging and provide unique opportunities for studying the causes underlying adaptive variation

  9. The Effect of Post-Reproductive Lifespan on the Fixation Probability of Beneficial Mutations

    DEFF Research Database (Denmark)

    Giaimo, Stefano; Baudisch, Annette

    2015-01-01

    -reproductive longevity. This finding is surprising, as the population with more prolonged post-reproductive lifespan has smaller effective size and the classic population-genetic model would suggest that decreasing effective size reduces fixation chances of beneficial mutations. Yet, as we explain, in the age-structured...

  10. Life-span radiation effects studies in animals: what can they tell us

    International Nuclear Information System (INIS)

    Thompson, R.C.

    1984-05-01

    Results from life-span studies in a variety of animal species have found relatively little application in the development of radiation risk factors for various organs of man. This paper discusses possible reasons for this situation and presents recommendations to correct it

  11. Aging and orthopedics: how a lifespan development model can inform practice and research.

    Science.gov (United States)

    Gautreau, Sylvia; Gould, Odette N; Forsythe, Michael E

    2016-08-01

    Orthopedic surgical care, like all health care today, is in flux owing to an aging population and to chronic medical conditions leading to an increased number of people with illnesses that need to be managed over the lifespan. The result is an ongoing shift from curing acute illnesses to the management and care of chronic illness and conditions. Theoretical models that provide a useful and feasible vision for the future of health care and health care research are needed. This review discusses how the lifespan development model used in some disciplines within the behavioural sciences can be seen as an extension of the biopsychosocial model. We posit that the lifespan development model provides useful perspectives for both orthopedic care and research. We present key concepts and recommendations, and we discuss how the lifespan development model can contribute to new and evolving perspectives on orthopedic outcomes and to new directions for research. We also offer practical guidelines on how to implement the model in orthopedic practice.

  12. NAD(+) Replenishment Improves Lifespan and Healthspan in Ataxia Telangiectasia Models via Mitophagy and DNA Repair

    DEFF Research Database (Denmark)

    Fang, Evandro Fei; Kassahun, Henok; Croteau, Deborah L

    2016-01-01

    function, delay memory loss, and extend lifespan in both animal models. Mechanistically, treatments that increase intracellular NAD(+) also stimulate neuronal DNA repair and improve mitochondrial quality via mitophagy. This work links two major theories on aging, DNA damage accumulation, and mitochondrial...

  13. Beat Synchronization across the Lifespan: Intersection of Development and Musical Experience

    OpenAIRE

    Thompson, Elaine C.; White-Schwoch, Travis; Tierney, Adam; Kraus, Nina

    2015-01-01

    Rhythmic entrainment, or beat synchronization, provides an opportunity to understand how multiple systems operate together to integrate sensory-motor information. Also, synchronization is an essential component of musical performance that may be enhanced through musical training. Investigations of rhythmic entrainment have revealed a developmental trajectory across the lifespan, showing synchronization improves with age and musical experience. Here, we explore the development and maintenance ...

  14. On personality stability and change: main results of Brno longitudinal study on life-span development

    Czech Academy of Sciences Publication Activity Database

    Blatný, Marek

    2007-01-01

    Roč. 51, Supplement (2007), s. 37-49 ISSN 0009-062X R&D Projects: GA ČR(CZ) GA406/06/1408 Institutional research plan: CEZ:AV0Z70250504 Keywords : life-span development * personality stability and change Subject RIV: AN - Psychology Impact factor: 0.133, year: 2007

  15. Lifespan and reproduction of isoclonal individual E.coli in different environments

    DEFF Research Database (Denmark)

    Jouvet, Lionel; Steiner, Ulrich

    Lifespan and reproduction are key fitness components, both of which are influences by genetics and the environment. Tracking large numbers of genotypically known individuals throughout their lives in known environments has been challenging. Here we show for isogenic individual E. coli bacteria un...

  16. Myricetin-Mediated Lifespan Extension in Caenorhabditis elegans Is Modulated by DAF-16

    Directory of Open Access Journals (Sweden)

    Wim Wätjen

    2013-06-01

    Full Text Available Myricetin is a naturally occurring flavonol found in many plant based food sources. It increases the lifespan of Caenorhabditis elegans, but the molecular mechanisms are not yet fully understood. We have investigated the impact of this flavonoid on the transcription factors DAF-16 (C. elegans FoxO homologue and SKN-1 (Nrf2 homologue, which have crucial functions in the regulation of ageing. Myricetin is rapidly assimilated by the nematode, causes a nuclear translocation of DAF-16 but not of SKN-1, and finally prolongs the mean adult lifespan of C. elegans by 32.9%. The lifespan prolongation was associated with a decrease in the accumulation of reactive oxygen species (ROS detected by DCF. Myricetin also decreases the formation of lipofuscin, a pigment consisting of highly oxidized and cross-linked proteins that is considered as a biomarker of ageing in diverse species. The lifespan extension was completely abolished in a daf-16 loss-of-function mutant strain (CF1038. Consistently with this result, myricetin was also not able to diminish stress-induced ROS accumulation in the mutant. These results strongly indicate that the pro-longevity effect of myricetin is dependent on DAF-16 and not on direct anti-oxidative effects of the flavonoid.

  17. Dietary Patterns in Childhood

    DEFF Research Database (Denmark)

    Andersen, Louise Beltoft Borup

    single food. People consume meals and these meals vary during a day, over a year and during a life time. To comprehend some of this complexity it could be advantageous to investigate dietary patterns representing the whole diet as patterns might be better markers of growth and health than single...... nutrients. However, little is known about the development of dietary patterns in childhood both in relation to possible indicators and to obesity related outcomes. Therefore, the aim of this PhD thesis was to make exploratory analyses of dietary patterns in childhood using the method principal component...... of the complexity in child nutrition both in observational and intervention designs as well as for investigating development of dietary patterns over time. Explorative analyses of indicators for dietary patterns showed that parental, household and child characteristics are associated with dietary patterns in early...

  18. The Insulation for Machines Having a High Lifespan Expectancy, Design, Tests and Acceptance Criteria Issues

    Directory of Open Access Journals (Sweden)

    Olivier Barré

    2017-02-01

    Full Text Available The windings insulation of electrical machines will remain a topic that is updated frequently. The criteria severity requested by the electrical machine applications increases continuously. Manufacturers and designers are always confronted with new requirements or new criteria with enhanced performances. The most problematic requirements that will be investigated here are the extremely long lifespan coupled to critical operating conditions (overload, supply grid instabilities, and critical operating environments. Increasing lifespan does not have a considerable benefit because the purchasing price of usual machines has to be compared to the purchasing price and maintenance price of long lifespan machines. A machine having a 40-year lifespan will cost more than twice the usual price of a 20-year lifetime machine. Systems which need a long lifetime are systems which are crucial for a country, and those for which outage costs are exorbitant. Nuclear power stations are such systems. It is certain that the used technologies have evolved since the first nuclear power plant, but they cannot evolve as quickly as in other sectors of activities. No-one wants to use an immature technology in such power plants. Even if the electrical machines have exceeded 100 years of age, their improvements are linked to a patient and continuous work. Nowadays, the windings insulation systems have a well-established structure, especially high voltage windings. Unfortunately, a high life span is not only linked to this result. Several manufacturers’ improvements induced by many years of experiment have led to the writing of standards that help the customers and the manufacturers to regularly enhance the insulation specifications or qualifications. Hence, in this publication, the authors will give a step by step exhaustive review of one insulation layout and will take time to give a detailed report on the standards that are linked to insulation systems. No standard can

  19. Lifespan-extending effects of royal jelly and its related substances on the nematode Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Yoko Honda

    Full Text Available One of the most important challenges in the study of aging is to discover compounds with longevity-promoting activities and to unravel their underlying mechanisms. Royal jelly (RJ has been reported to possess diverse beneficial properties. Furthermore, protease-treated RJ (pRJ has additional pharmacological activities. Exactly how RJ and pRJ exert these effects and which of their components are responsible for these effects are largely unknown. The evolutionarily conserved mechanisms that control longevity have been indicated. The purpose of the present study was to determine whether RJ and its related substances exert a lifespan-extending function in the nematode Caenorhabditis elegans and to gain insights into the active agents in RJ and their mechanism of action.We found that both RJ and pRJ extended the lifespan of C. elegans. The lifespan-extending activity of pRJ was enhanced by Octadecyl-silica column chromatography (pRJ-Fraction 5. pRJ-Fr.5 increased the animals' lifespan in part by acting through the FOXO transcription factor DAF-16, the activation of which is known to promote longevity in C. elegans by reducing insulin/IGF-1 signaling (IIS. pRJ-Fr.5 reduced the expression of ins-9, one of the insulin-like peptide genes. Moreover, pRJ-Fr.5 and reduced IIS shared some common features in terms of their effects on gene expression, such as the up-regulation of dod-3 and the down-regulation of dod-19, dao-4 and fkb-4. 10-Hydroxy-2-decenoic acid (10-HDA, which was present at high concentrations in pRJ-Fr.5, increased lifespan independently of DAF-16 activity.These results demonstrate that RJ and its related substances extend lifespan in C. elegans, suggesting that RJ may contain longevity-promoting factors. Further analysis and characterization of the lifespan-extending agents in RJ and pRJ may broaden our understanding of the gene network involved in longevity regulation in diverse species and may lead to the development of nutraceutical

  20. Dietary determinants of obesity

    OpenAIRE

    Huaidong, D.U.; Feskens, E.J.M.

    2010-01-01

    Obesity has become a serious public health problem worldwide, and dietary composition can play a role in its prevention and treatment. However, available literature on the impacts of different dietary factors on weight change is inconsistent, or even conflicting. In this review, we briefly summarized the mechanisms and influences of several major dietary determinants of weight change, with a focus on their potential in the prevention of weight gain or regain. We discussed the intake of fat, p...

  1. Cardiovascular Disease Risk in NASA Astronauts Across the Lifespan: Historical Cohort Studies

    Science.gov (United States)

    Charvat, Jacqueline M.; Lee, Stuart M. C.; Davenport, Eddie; Barlow, Carolyn E.; Radford, Nina B.; De Fina, Laura F.; Stenger, Michael B.; Van Baalen, Mary

    2017-01-01

    Acute effects of spaceflight on the cardiovascular system have been studied extensively, but the combined chronic effects of spaceflight and aging are not well understood. Preparation for and participation in space flight activities are potentially associated with cardiovascular disease risk factors (e.g., altered dietary and exercise habits, physical and emotional stress, circadian shifts, radiation). Further, astronauts who travel into space multiple times may be at an increased risk across their lifespan. However, comparing the risk of cardiovascular disease in astronauts to other large cohorts is difficult. For example, comparisons between astronauts and large national cohorts, such as the National Health and Nutrition Examination Survey and the National Health Information Survey, are hampered by significant differences in health status between astronauts and the general population, and most of these national studies fail to provide longitudinal data on population health. To address those limitations, NASA's Longitudinal Study of Astronaut Health previously sought to compare the astronauts to a cohort of civil servants employed at the Johnson Space Center. However, differences between the astronauts and civil servants at the beginning of the study, as well as differential follow up, limited the ability to interpret the results. To resolve some of these limitations, two unique cohorts of healthy workers, U.S. Air Force aviators and Cooper Center Longitudinal Study participants, have been identified as potential comparison populations for the astronaut corps. The Air Force cohort was chosen due to similarities in health at selection, screening, and some occupational exposures that Air Force aviators endure, many of which mirror that of the astronaut corps. The Cooper Clinic cohort, a generally healthy prevention cohort, was chosen for the vast array of clinical cardiovascular measures collected in a longitudinal manner complementary to those collected on

  2. Dietary Calcium and Dairy Modulation of Oxidative Stress and Mortality in aP2-Agouti and Wild-type Mice

    Directory of Open Access Journals (Sweden)

    Antje Bruckbauer

    2009-08-01

    Full Text Available Oxidative and inflammatory stress have been implicated as major contributors to the aging process. Dietary Ca reduced both factors in short-term interventions, while milk exerted a greater effect than supplemental Ca. In this work, we examined the effects of life-long supplemental and dairy calcium on lifespan and life-span related biomarkers in aP2-agouti transgenic (model of diet-induced obesity and wild-type mice fed obesigenic diets until their death. These data demonstrate that dairy Ca exerts sustained effects resulting in attenuated adiposity, protection against age-related muscle loss and reduction of oxidative and inflammatory stress in both mouse strains. Although these effects did not alter maximum lifespan, they did suppress early mortality in wild-type mice, but not in aP2-agouti transgenic mice.

  3. The ω-3 fatty acid α-linolenic acid extends Caenorhabditis elegans lifespan via NHR-49/PPARα and oxidation to oxylipins.

    Science.gov (United States)

    Qi, Wenbo; Gutierrez, Gloria E; Gao, Xiaoli; Dixon, Hong; McDonough, Joe A; Marini, Ann M; Fisher, Alfred L

    2017-10-01

    The dietary intake of ω-3 polyunsaturated fatty acids has been linked to a reduction in the incidence of aging-associated disease including cardiovascular disease and stroke. Additionally, long-lived Caenorhabditis elegans glp-1 germ line-less mutant animals show a number of changes in lipid metabolism including the increased production of the ω-3 fatty acid, α-linolenic acid (ALA). Here, we show that the treatment of C. elegans with ALA produces a dose-dependent increase in lifespan. The increased longevity of the glp-1 mutant animals is known to be dependent on both the NHR-49/PPARα and SKN-1/Nrf2 transcription factors, although the mechanisms involved are incompletely understood. We find that ALA treatment increased the lifespan of wild-type worms and that these effects required both of these transcription factors. Specifically, NHR-49 was activated by ALA to promote the expression of genes involved in the β-oxidation of lipids, whereas SKN-1 is not directly activated by ALA, but instead, the exposure of ALA to air results in the oxidation of ALA to a group of compounds termed oxylipins. At least one of the oxylipins activates SKN-1 and enhances the increased longevity resulting from ALA treatment. The results show that ω-3 fatty acids inhibit aging and that these effects could reflect the combined effects of the ω-3 fatty acid and the oxylipin metabolites. The benefits of ω-3 fatty acid consumption on human health may similarly involve the production of oxylipins, and differences in oxylipin conversion could account for at least part of the variability found between observational vs. interventional clinical trials. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  4. Beware of Fraudulent 'Dietary Supplements'

    Science.gov (United States)

    ... For Consumers Consumer Updates Beware of Fraudulent Dietary Supplements Share Tweet Linkedin Pin it More sharing options ... at 1-800-FDA-1088 or online . Dietary Supplements and FDA Dietary supplements, in general, are not ...

  5. Botanical Dietary Supplements: Background Information

    Science.gov (United States)

    ... Office of Dietary Supplements Health Professional Other Resources Botanical Dietary Supplements Background Information Have a question? Ask ... on botanical dietary supplements? Disclaimer What is a botanical? A botanical is a plant or plant part ...

  6. C. elegans lifespan extension by osmotic stress requires FUdR, base excision repair, FOXO, and sirtuins.

    Science.gov (United States)

    Anderson, Edward N; Corkins, Mark E; Li, Jia-Cheng; Singh, Komudi; Parsons, Sadé; Tucey, Tim M; Sorkaç, Altar; Huang, Huiyan; Dimitriadi, Maria; Sinclair, David A; Hart, Anne C

    2016-03-01

    Moderate stress can increase lifespan by hormesis, a beneficial low-level induction of stress response pathways. 5'-fluorodeoxyuridine (FUdR) is commonly used to sterilize Caenorhabditis elegans in aging experiments. However, FUdR alters lifespan in some genotypes and induces resistance to thermal and proteotoxic stress. We report that hypertonic stress in combination with FUdR treatment or inhibition of the FUdR target thymidylate synthase, TYMS-1, extends C. elegans lifespan by up to 30%. By contrast, in the absence of FUdR, hypertonic stress decreases lifespan. Adaptation to hypertonic stress requires diminished Notch signaling and loss of Notch co-ligands leads to lifespan extension only in combination with FUdR. Either FUdR treatment or TYMS-1 loss induced resistance to acute hypertonic stress, anoxia, and thermal stress. FUdR treatment increased expression of DAF-16 FOXO and the osmolyte biosynthesis enzyme GPDH-1. FUdR-induced hypertonic stress resistance was partially dependent on sirtuins and base excision repair (BER) pathways, while FUdR-induced lifespan extension under hypertonic stress conditions requires DAF-16, BER, and sirtuin function. Combined, these results demonstrate that FUdR, through inhibition of TYMS-1, activates stress response pathways in somatic tissues to confer hormetic resistance to acute and chronic stress. C. elegans lifespan studies using FUdR may need re-interpretation in light of this work. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Embryonic expression of shuttle craft, a Drosophila gene involved in neuron development, is associated with adult lifespan.

    Science.gov (United States)

    Roshina, Natalia V; Symonenko, Alexander V; Krementsova, Anna V; Trostnikov, Mikhail V; Pasyukova, Elena G

    2014-12-01

    Despite the progress in aging research that highlights the role of the nervous system in longevity, whether genes that control development and consequently structure of the nervous system affect lifespan is unclear. We demonstrated that a mutation inshuttle craft, a gene involved in the nervous system development, increased the lifespan of unmated females and decreased the lifespan of mated females, without affecting males. Precise reversions of the mutation lead to the restoration of the lifespan specific to control females. In mutant unmated females, increased lifespan was associated with elevated locomotion at older ages, indicating slowed aging. In mutant mated females, reproduction was decreased compared to controls, indicating a lack of tradeoff between this trait and lifespan. No differences in shuttle craft transcription were observed between whole bodies, ovaries, and brains of mutant and control females of different ages, either unmated or mated. The amount of shuttle craft transcript appeared to be substantially decreased in mutant embryos. Our results demonstrated that a gene that regulates development of the nervous system might also influence longevity, and thus expanded the spectrum of genes involved in lifespan control. We hypothesize that this "carry-over" effect might be the result of transcription regulation in embryos.

  8. Trade-Offs between Growth Rate, Tree Size and Lifespan of Mountain Pine (Pinus montana in the Swiss National Park.

    Directory of Open Access Journals (Sweden)

    Christof Bigler

    Full Text Available A within-species trade-off between growth rates and lifespan has been observed across different taxa of trees, however, there is some uncertainty whether this trade-off also applies to shade-intolerant tree species. The main objective of this study was to investigate the relationships between radial growth, tree size and lifespan of shade-intolerant mountain pines. For 200 dead standing mountain pines (Pinus montana located along gradients of aspect, slope steepness and elevation in the Swiss National Park, radial annual growth rates and lifespan were reconstructed. While early growth (i.e. mean tree-ring width over the first 50 years correlated positively with diameter at the time of tree death, a negative correlation resulted with lifespan, i.e. rapidly growing mountain pines face a trade-off between reaching a large diameter at the cost of early tree death. Slowly growing mountain pines may reach a large diameter and a long lifespan, but risk to die young at a small size. Early growth was not correlated with temperature or precipitation over the growing period. Variability in lifespan was further contingent on aspect, slope steepness and elevation. The shade-intolerant mountain pines follow diverging growth trajectories that are imposed by extrinsic environmental influences. The resulting trade-offs between growth rate, tree size and lifespan advance our understanding of tree population dynamics, which may ultimately improve projections of forest dynamics under changing environmental conditions.

  9. Promoting Healthy Dietary Behaviors.

    Science.gov (United States)

    Perry, Cheryl L.; Story, Mary; Lytle, Leslie A.

    This chapter reviews the research on promoting healthy dietary behaviors in all youth, not just those who exhibit problems such as obesity or eating disorders. The first section of this chapter presents a rationale for addressing healthy dietary behavior with children and adolescents, on the basis of the impact of these behaviors on short- and…

  10. Dietary intake of phytoestrogens

    NARCIS (Netherlands)

    Bakker MI; SIR

    2004-01-01

    The dietary intake of phytoestrogens supposedly influences a variety of diseases, both in terms of beneficial and adverse effects. This report describes current knowledge on dietary intakes of phytoestrogens in Western countries, and briefly summarizes the evidence for health effects. The

  11. Dietary determinants of obesity

    NARCIS (Netherlands)

    Huaidong, D.U.; Feskens, E.J.M.

    2010-01-01

    Obesity has become a serious public health problem worldwide, and dietary composition can play a role in its prevention and treatment. However, available literature on the impacts of different dietary factors on weight change is inconsistent, or even conflicting. In this review, we briefly

  12. What is dietary fiber?

    Science.gov (United States)

    Prosky, L

    2000-01-01

    Dietary fiber consists of the remnants of the edible plant cell, polysaccharides, lignin, and associated substances resistant to digestion (hydrolysis) by human alimentary enzymes. This physiological definition has been translated into a chemical method (AOAC Method 985.29), which has recently been shown to miss substances of 10, 11, and 12 degrees of polymerization. It also fails to precipitate some hydrolysis-resistant oligosaccharides which contain many physiological properties expected in dietary fiber, such as inulin and oligofructose, indigestible dextrin (Fibersol-2), galactooligosaccharides and the synthetic polymer polydextrose. The Executive Board of the American Association of Cereal Chemists has appointed a committee to explore the possibility of expanding the definition or chemical methodology for dietary fiber to accommodate components that are not hydrolyzed by human alimentary enzymes, yet have the physiological attributes normally associated with dietary fiber. However, the present review suggests that the current definition is sufficient, along with new methodology, to detect recently discovered components of the dietary fiber complex.

  13. Active Hexose Correlated Compound Extends the Lifespan and Increases the Thermotolerance of Nematodes

    Directory of Open Access Journals (Sweden)

    Tetsuya Okuyama

    2013-06-01

    Full Text Available ABSTRACTBackground: Active hexose correlated compound (AHCC is the extract from cultured mycelia of Lentinula edodes, a species of Basidiomycetes mushroom. AHCC contains various polysaccharides, including partially acylated -1,4-glucan, which is one of its major constituents. The application of AHCC has been markedly increased in complementary and alternative medicine as a functional food because AHCC improved the prognosis of postoperative hepatocellular carcinoma patients. AHCC has anti-inflammatory and antioxidant effects, such as the suppression of nitric oxide production in hepatocytes. AHCC might affect resistance to environmental stress, which is assumed to play a pivotal role in the longevity of many organisms.Objective: To investigate the effect of AHCC on longevity, we measured the lifespan of the nematode Caenorhabditis elegans, a model animal that is widely used to assess longevity. We also examined the effect of AHCC on resistance to heat stress, i.e., thermotolerance.Methods: The lifespan of C. elegans animals grown on media in the absence or presence of AHCC at 20°C was evaluated. Thermotolerance assays were performed at 35°C, the restrictive temperature of the animals. The effects of AHCC on lifespan and thermotolerance were analyzed with longevity mutants. Expression levels of stress-related genes, including heat shock genes, were measured by strand-specific reverse transcription-polymerase chain reaction after heat shock.Results: Wild-type C. elegans animals exhibited a longer mean lifespan by up to 10% in the presence of AHCC in the growth media than animals in the absence of AHCC. Furthermore, AHCC markedly increased thermotolerance at 35°C. Epistasis analyses showed that lifespan extension by AHCC at least partly required two longevity-promoting transcription factors: DAF-16 (C. elegans homolog of FOXO and HSF-1 (C. elegans homolog of heat shock transcription factor 1. After heat shock, AHCC activated the transcription

  14. A dietary test of putative deleterious sterols for the aphid Myzus persicae.

    Science.gov (United States)

    Bouvaine, Sophie; Faure, Marie-Line; Grebenok, Robert J; Behmer, Spencer T; Douglas, Angela E

    2014-01-01

    The aphid Myzus persicae displays high mortality on tobacco plants bearing a transgene which results in the accumulation of the ketosteroids cholestan-3-one and cholest-4-en-3-one in the phloem sap. To test whether the ketosteroids are the basis of the plant resistance to the aphids, M. persicae were reared on chemically-defined diets with different steroid contents at 0.1-10 µg ml(-1). Relative to sterol-free diet and dietary supplements of the two ketosteroids and two phytosterols, dietary cholesterol significantly extended aphid lifespan and increased fecundity at one or more dietary concentrations tested. Median lifespan was 50% lower on the diet supplemented with cholest-4-en-3-one than on the cholesterol-supplemented diet. Aphid feeding rate did not vary significantly across the treatments, indicative of no anti-feedant effect of any sterol/steroid. Aphids reared on diets containing equal amounts of cholesterol and cholest-4-en-3-one showed fecundity equivalent to aphids on diets containing only cholesterol. Aphids were reared on diets that reproduced the relative steroid abundance in the phloem sap of the control and modified tobacco plants, and their performance on the two diet formulations was broadly equivalent. We conclude that, at the concentrations tested, plant ketosteroids support weaker aphid performance than cholesterol, but do not cause acute toxicity to the aphids. In plants, the ketosteroids may act synergistically with plant factors absent from artificial diets but are unlikely to be solely responsible for resistance of modified tobacco plants.

  15. Dietary macronutrient recommendations for optimal Dietary ...

    African Journals Online (AJOL)

    ... use â-hydroxy â-methylbutyrate (HMB) supplementation by trained athletes seems to have limited benefits. It is important to keep dietary advice individualised considering the complexity in which the endocrine system regulates cell function, the diverse mechanisms that control homeostasis, as well as genetic variability.

  16. Dietary advanced glycation end products and aging.

    Science.gov (United States)

    Luevano-Contreras, Claudia; Chapman-Novakofski, Karen

    2010-12-01

    Advanced glycation end products (AGEs) are a heterogeneous, complex group of compounds that are formed when reducing sugar reacts in a non-enzymatic way with amino acids in proteins and other macromolecules. This occurs both exogenously (in food) and endogenously (in humans) with greater concentrations found in older adults. While higher AGEs occur in both healthy older adults and those with chronic diseases, research is progressing to both quantify AGEs in food and in people, and to identify mechanisms that would explain why some human tissues are damaged, and others are not. In the last twenty years, there has been increased evidence that AGEs could be implicated in the development of chronic degenerative diseases of aging, such as cardiovascular disease, Alzheimer's disease and with complications of diabetes mellitus. Results of several studies in animal models and humans show that the restriction of dietary AGEs has positive effects on wound healing, insulin resistance and cardiovascular diseases. Recently, the effect of restriction in AGEs intake has been reported to increase the lifespan in animal models. This paper will summarize the work that has been published for both food AGEs and in vivo AGEs and their relation with aging, as well as provide suggestions for future research.

  17. Dietary Advanced Glycation End Products and Aging

    Directory of Open Access Journals (Sweden)

    Karen Chapman-Novakofski

    2010-12-01

    Full Text Available Advanced glycation end products (AGEs are a heterogeneous, complex group of compounds that are formed when reducing sugar reacts in a non-enzymatic way with amino acids in proteins and other macromolecules. This occurs both exogenously (in food and endogenously (in humans with greater concentrations found in older adults. While higher AGEs occur in both healthy older adults and those with chronic diseases, research is progressing to both quantify AGEs in food and in people, and to identify mechanisms that would explain why some human tissues are damaged, and others are not. In the last twenty years, there has been increased evidence that AGEs could be implicated in the development of chronic degenerative diseases of aging, such as cardiovascular disease, Alzheimer’s disease and with complications of diabetes mellitus. Results of several studies in animal models and humans show that the restriction of dietary AGEs has positive effects on wound healing, insulin resistance and cardiovascular diseases. Recently, the effect of restriction in AGEs intake has been reported to increase the lifespan in animal models. This paper will summarize the work that has been published for both food AGEs and in vivo AGEs and their relation with aging, as well as provide suggestions for future research.

  18. The light of life: evidence that the sun modulates human lifespan.

    Science.gov (United States)

    Lowell, Walter E; Davis, George E

    2008-01-01

    This paper describes the effects of radiation, probably ultraviolet radiation (UVR), on the human genome at peaks of solar cycles. This phenomenon was not previously reported because peak cycle lifespan had not been separated from non-peak lifespan. This paper reinforces the findings of others regarding the seasonality of various diseases and that there are factors occurring early in utero that increase susceptibility to diseases later in life. The authors use the vital statistics of 320,247 Maine citizens over a 29-year period to show that those born in 3-year peaks of 11-year solar cycles live an average of 1.5 years (CL 1.3-1.7) less than those born in non-peak years. Males are more sensitive than females to this phenomenon, which is statistically demonstrable well into adult life, showing the effect of probable UVR on the early human embryo despite superimposed adult lifetime hazards. The authors also show that changes in seasonal light modulate lifespan differently in males and females and that genome and environment must be tightly interactive early after conception. Published literature supports the hypothesis that UVR suppresses the maternal immune system by producing cytokines in circulating lymphocytes that probably affect the fetal genome. The intermittent and incompletely predictable solar cycles periodically stress the genomes of all life producing genetic changes which may be harmful or adaptive. The evidence presented in this study indicates that solar cycles, particularly the most irradiant which have occurred over the past 65 years, are fundamental engines of evolution, even underlying natural selection, and we bear their marks even to the end of our lives. Future researchers must further define the pathogenesis of solar radiation on early embryonic development to possibly minimize a predisposition to diseases at their origin. This study explores the relationship of season of birth and human lifespan particularly in reference to the intensity of

  19. Establishment of a protocol to extend the lifespan of human hormone-secreting pituitary adenoma cells.

    Science.gov (United States)

    Aiello, Aurora; Cassarino, Maria Francesca; Nanni, Simona; Sesta, Antonella; Ferraú, Francesco; Grassi, Claudio; Losa, Marco; Trimarchi, Francesco; Pontecorvi, Alfredo; Cannavò, Salvatore; Pecori Giraldi, Francesca; Farsetti, Antonella

    2018-01-01

    The aim of this study was to generate immortalized human anterior pituitary adenoma cells. Reliable cell models for the study of human pituitary adenomas are as yet lacking and studies performed so far used repeated passaging of freshly excised adenomas, with the attendant limitations due to limited survival in culture, early senescence, and poor reproducibility. We devised a technique based upon repeated co-transfections of two retroviral vectors, one carrying the catalytic subunit of human telomerase, hTERT, the other SV40 large T antigen. This approach extended the lifespan of cells derived from a human growth hormone-secreting adenoma up to 18 months while retaining morphology of primary cells, growth hormone synthesis and growth hormone secretion. Our attempt represents the first demonstration of successful lifespan extension of human growth hormone-secreting pituitary adenoma cells via co-transfection of hTERT and SV40T and paves the way to future attempts to obtain stable cell lines.

  20. Sulfur restriction extends fission yeast chronological lifespan through Ecl1 family genes by downregulation of ribosome.

    Science.gov (United States)

    Ohtsuka, Hokuto; Takinami, Masahiro; Shimasaki, Takafumi; Hibi, Takahide; Murakami, Hiroshi; Aiba, Hirofumi

    2017-07-01

    Nutritional restrictions such as calorie restrictions are known to increase the lifespan of various organisms. Here, we found that a restriction of sulfur extended the chronological lifespan (CLS) of the fission yeast Schizosaccharomyces pombe. The restriction decreased cellular size, RNA content, and ribosomal proteins and increased sporulation rate. These responses depended on Ecl1 family genes, the overexpression of which results in the extension of CLS. We also showed that the Zip1 transcription factor results in the sulfur restriction-dependent expression of the ecl1 + gene. We demonstrated that a decrease in ribosomal activity results in the extension of CLS. Based on these observations, we propose that sulfur restriction extends CLS through Ecl1 family genes in a ribosomal activity-dependent manner. © 2017 John Wiley & Sons Ltd.

  1. The rise and decline of prospective memory performance across the lifespan.

    Science.gov (United States)

    Zimmermann, Thomas D; Meier, Beat

    2006-12-01

    In the present study, the trajectory of prospective memory across the lifespan was investigated in a total of 200 participants from five age groups (4- to 6-year-old children, 13- to 14-year-old adolescents, 19- to 26-year-old adults, 55- to 65-year-old adults, and 65- to 75-year-old adults). In an event-based prospective memory task the prospective and the retrospective components were assessed separately. For the prospective component, the results showed better performance for adolescents and young adults than for children and 65- to 75-year-old adults. In addition, participants belonging to the latter group were more likely to forget the retrospective component after having noticed the prospective memory targets. Overall, these results indicate that across the lifespan prospective memory performance follows a similar inverted u-shape function as is well known for retrospective episodic memory.

  2. Playfulness over the lifespan and its relation to happiness: results from an online survey.

    Science.gov (United States)

    Proyer, R T

    2014-08-01

    Playfulness is an understudied topic in adults and particularly among the elderly. There is no large study to date on age-related changes in playfulness across the lifespan, nor have relations with different indicators of well-being been investigated in much detail as yet. In total, 4100 adults completed online self-ratings on their playfulness, happiness and Seligman's three orientations to happiness (a pleasurable, engaged and meaningfully fulfilled life). In a cross-sectional design, playfulness was stable across the lifespan; variations in the mean scores were relatively small (half a standard deviation). Yet participants happiness. Playfulness seems to be of relevance in all age groups and displays robust relations with different indicators of well-being.

  3. C30F12.4 influences oogenesis, fat metabolism, and lifespan in C. elegans.

    Science.gov (United States)

    Wang, Lu; Xu, Fei; Wang, Guishuan; Wang, Xiaorong; Liang, Ajuan; Huang, Hefeng; Sun, Fei

    2016-10-01

    Reproduction, fat metabolism, and longevity are intertwined regulatory axes; recent studies in C. elegans have provided evidence that these processes are directly coupled. However, the mechanisms by which they are coupled and the reproductive signals modulating fat metabolism and lifespan are poorly understood. Here, we find that an oogenesis-enriched gene, c30f12.4, is specifically expressed and located in germ cells and early embryos; when the gene is knocked out, oogenesis is disrupted and brood size is decreased. In addition to the reproductive phenotype, we find that the loss of c30f12.4 alters fat metabolism, resulting in decreased fat storage and smaller lipid droplets. Meanwhile, c30f12.4 mutant worms display a shortened lifespan. Our results highlight an important role for c30f12.4 in regulating reproduction, fat homeostasis, and aging in C. elegans, which helps us to better understand the relationship between these processes.

  4. Weight concern across the life-span: relationship to self-esteem and feminist identity.

    Science.gov (United States)

    Tiggemann, M; Stevens, C

    1999-07-01

    The aim of this study was to investigate the correlates of weight concern across the life-span. Questionnaires assessing weight concern, self-esteem, and feminist attitudes were completed in their homes by 180 women aged between 18 and 60 years. It was found that there was a negative relationship between weight concern and self-esteem for 30 to 49-year-old women, but not for younger or older women. A similar pattern held for feminist attitudes. Among 30 to 49-year-old women, a strong feminist orientation related to a lesser concern with weight. It was concluded that the meaning and experience of body weight and size change across the life-span.

  5. Subjective Well-being Across the Lifespan in Europe and Central Asia

    DEFF Research Database (Denmark)

    Bauer, Jan Michael; Levin, Victoria; Munoz Boudet, Ana Maria

    2017-01-01

    Using data from the Integrated Values Survey (IVS), the Life in Transition Survey (LiTS), and the Russia Longitudinal Monitoring Survey (RLMS), we analyse the relation between age and subjective well-being in the World Bank’s Europe and Central Asia (ECA) region and compare it to that in Western...... Europe. Although our results generally confirm previous studies’ findings of a U-shaped relation between subjective well-being and age for most of the lifecycle, we also find that well-being in ECA declines again after the 70s, giving rise to an S-shape relation across the entire lifespan. When...... controlling for socio-demographic characteristics, this pattern generally remains robust for most of our cross-sectional and panel analyses. Hence, despite significant heterogeneity in the pattern of well-being across the lifespan within the ECA region, we do not observe high levels of cross-country or cross...

  6. Toward an Integrative Science of Life-Span Development and Aging

    Science.gov (United States)

    Piccinin, Andrea M.

    2010-01-01

    The study of aging demands an integrative life-span developmental framework, involving interdisciplinary collaborations and multiple methodological approaches for understanding how and why individuals change, in both normative and idiosyncratic ways. We highlight and summarize some of the issues encountered when conducting integrative research for understanding aging-related change, including, the integration of results across different levels of analysis; the integration of theory, design, and analysis; and the synthesis of results across studies of aging. We emphasize the necessity of longitudinal designs for understanding development and aging and discuss methodological issues that should be considered for achieving reproducible research on within-person processes. It will be important that current and future studies permit opportunities for quantitative comparison across populations given the extent to which historical shifts and cultural differences influence life-span processes and aging-related outcomes. PMID:20237144

  7. An Acute Lateral Ankle Sprain Significantly Decreases Physical Activity across the Lifespan

    Directory of Open Access Journals (Sweden)

    Tricia Hubbard-Turner, Erik A. Wikstrom, Sophie Guderian, Michael J. Turner

    2015-09-01

    Full Text Available We do not know the impact an ankle sprain has on physical activity levels across the lifespan. With the negative consequences of physical inactivity well established, understanding the effect of an ankle sprain on this outcome is critical. The objective of this study was to measure physical activity across the lifespan after a single ankle sprain in an animal model. Thirty male mice (CBA/J were randomly placed into one of three groups: the transected calcaneofibular ligament (CFL group, the transected anterior talofibular ligament (ATFL/CFL group, and a SHAM group. Three days after surgery, all of the mice were individually housed in a cage containing a solid surface running wheel. Physical activity levels were recorded and averaged every week across the mouse’s lifespan. The SHAM mice ran significantly more distance each day compared to the remaining two running groups (post hoc p = 0.011. Daily duration was different between the three running groups (p = 0.048. The SHAM mice ran significantly more minutes each day compared to the remaining two running groups (post hoc p=0.046 while the ATFL/CFL mice ran significantly less minutes each day (post hoc p = 0.028 compared to both the SHAM and CFL only group. The SHAM mice ran at a faster daily speed versus the remaining two groups of mice (post hoc p = 0.019 and the ATFL/CFL mice ran significantly slower each day compared to the SHAM and CFL group (post hoc p = 0.005. The results of this study indicate that a single ankle sprain significantly decreases physical activity across the lifespan in mice. This decrease in physical activity can potentially lead to the development of numerous chronic diseases. An ankle sprain thus has the potential to lead to significant long term health risks if not treated appropriately.

  8. Deficiency of circadian protein CLOCK reduces lifespan and increases age-related cataract development in mice

    OpenAIRE

    Dubrovsky, Yuliya V.; Samsa, William E.; Kondratov, Roman V.

    2010-01-01

    Circadian clock is implicated in the regulation of aging. The transcription factor CLOCK, a core component of the circadian system, operates in complex with another circadian clock protein BMAL1. Recently it was demonstrated that BMAL1 deficiency results in premature aging in mice. Here we investigate the aging of mice deficient for CLOCK protein. Deficiency of the CLOCK protein significantly affects longevity: the average lifespan of Clock−/− mice is reduced by 15% compared with wild type mi...

  9. Explaining sex differences in lifespan in terms of optimal energy allocation in the baboon

    DEFF Research Database (Denmark)

    King, Annette M.; Kirkwood, Thomas B.L.; Shanley, Daryl P.

    2017-01-01

    We provide a quantitative test of the hypothesis that sex role specialization may account for sex differences in lifespan in baboons if such specialization causes the dependency of fitness upon longevity, and consequently the optimal resolution to an energetic trade-off between somatic maintenance...... from differences in the value of somatic maintenance relative to other fitness-enhancing functions in keeping with the disposable soma theory....

  10. Immigration, Language Proficiency, and Autobiographical Memories: Lifespan Distribution and Second-Language Access

    OpenAIRE

    Esposito, Alena G.; Baker-Ward, Lynne

    2015-01-01

    This investigation examined two controversies in the autobiographical literature: how cross-language immigration affects the distribution of autobiographical memories across the lifespan and under what circumstances language-dependent recall is observed. Both Spanish/English bilingual immigrants and English monolingual non-immigrants participated in a cue word study, with the bilingual sample taking part in a within-subject language manipulation. The expected bump in the num...

  11. Lifespan extension in the spontaneous dwarf rat and enhanced resistance to hyperoxia-induced mortality.

    Science.gov (United States)

    Sasaki, Toru; Tahara, Shoichi; Shinkai, Tadashi; Kuramoto, Kazunao; Matsumoto, Shigenobu; Yanabe, Makoto; Takagi, Shohei; Kondo, Hiroshi; Kaneko, Takao

    2013-05-01

    Lifespan extension has been demonstrated in dwarfism mouse models relative to their wild-type. The spontaneous dwarf rat (SDR) was isolated from a closed colony of Sprague-Dawley (SD) rats. Growth hormone deficiencies have been indicated to be responsible for dwarfism in SDR. Survival time, the markers of oxidative stress, antioxidant enzymes, and resistance to hyperoxia were compared between SDR and SD rats, to investigate whether SDR, a dwarfism rat model, also extends lifespan and has an enhanced resistance to oxidative stress. SDRs lived 38% longer than SD rats on average. This is the first report to show that dwarf rats exhibit lifespan extensions similar to Ames and Snell mice. Decreased 8-oxo-2'-deoxyguanosine (8-oxodG) content, a marker of oxidative DNA damage, indicated suppressed oxidative stress in the liver, kidney, and lung of SDRs. Increased glutathione peroxidase enzyme activity was consistent with decreased 8-oxodG content in the same tissues. The heart and brain showed a similar tendency, but this was not significant. However, the catalase and superoxide dismutase enzyme activities of SDRs were not different from those of SD rats in any tissue. This was not what the original null hypothesis predicted. SDRs had potent resistance to the toxicity associated with high O2 (85%) exposure. The mean survival time in SDRs was more than 147% that of SD rats with 168h O2 exposure. These results suggest that the enhanced resistance to oxidative stress of SDRs associated with enhanced hydrogen peroxide elimination may support its potential role in lifespan extension. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. The effects of oral clefts on hospital use throughout the lifespan

    DEFF Research Database (Denmark)

    Wehby, George L; Pedersen, Dorthe Almind; Murray, Jeffrey C

    2012-01-01

    Oral clefts are one of the most common birth defects worldwide. They require multiple healthcare interventions and add significant burden on the health and quality of life of affected individuals. However, not much is known about the long term effects of oral clefts on health and healthcare use...... of affected individuals. In this study, we evaluate the effects of oral clefts on hospital use throughout the lifespan....

  13. The effect of Emblica officinalis diet on lifespan, sexual behavior, and fitness characters in Drosophila melanogaster

    OpenAIRE

    Pathak, Pankaj; Prasad, B. R. Guru; Murthy, N. Anjaneya; Hegde, S. N.

    2011-01-01

    Drosophila is an excellent organism to test Ayurvedic medicines. The objective of our study was to explore the potential of Emblica officinalis drug on longevity, sexual behavior, and reproductive fitness of Drosophila melanogaster using adult feeding method. Increase in the lifespan, fecundity, fertility, ovarioles number, and developmental time was observed in both parents and F1 generation, but not in the F2 generation in experimental culture (control + E. officinalis). According to the Du...

  14. Connectivity trajectory across lifespan differentiates the precuneus from the default network.

    Science.gov (United States)

    Yang, Zhi; Chang, Catie; Xu, Ting; Jiang, Lili; Handwerker, Daniel A; Castellanos, F Xavier; Milham, Michael P; Bandettini, Peter A; Zuo, Xi-Nian

    2014-04-01

    The default network of the human brain has drawn much attention due to its relevance to various brain disorders, cognition, and behavior. However, its functional components and boundaries have not been precisely defined. There is no consensus as to whether the precuneus, a hub in the functional connectome, acts as part of the default network. This discrepancy is more critical for brain development and aging studies: it is not clear whether age has a stronger impact on the default network or precuneus, or both. We used Generalized Ranking and Averaging Independent Component Analysis by Reproducibility (gRAICAR) to investigate the lifespan trajectories of intrinsic functional networks. By estimating individual-specific spatial components and aligning them across subjects, gRAICAR measures the spatial variation of component maps across a population without constraining the same components to appear in every subject. In a cross-lifespan fMRI dataset (N=126, 7-85years old), we observed stronger age dependence in the spatial pattern of a precuneus-dorsal posterior cingulate cortex network compared to the default network, despite the fact that the two networks exhibit considerable spatial overlap and temporal correlation. These results remained even when analyses were restricted to a subpopulation with very similar head motion across age. Our analyses further showed that the two networks tend to merge with increasing age. Post-hoc analyses of functional connectivity confirmed the distinguishable cross-lifespan trajectories between the two networks. Based on these observations, we proposed a dynamic model of cross-lifespan functional segregation and integration between the two networks, suggesting that the precuneus network may have a different functional role than the default network, which declines with age. These findings have implications for understanding the functional roles of the default network, gaining insight into its dynamics throughout life, and guiding

  15. Effects of an unusual poison identify a lifespan role for Topoisomerase 2 in Saccharomyces cerevisiae

    OpenAIRE

    Tombline, Gregory; Millen, Jonathan I.; Polevoda, Bogdan; Rapaport, Matan; Baxter, Bonnie; Van Meter, Michael; Gilbertson, Matthew; Madrey, Joe; Piazza, Gary A.; Rasmussen, Lynn; Wennerberg, Krister; White, E. Lucile; Nitiss, John L.; Goldfarb, David S.

    2017-01-01

    A progressive loss of genome maintenance has been implicated as both a cause and consequence of aging. Here we present evidence supporting the hypothesis that an age-associated decay in genome maintenance promotes aging in Saccharomyces cerevisiae (yeast) due to an inability to sense or repair DNA damage by topoisomerase 2 (yTop2). We describe the characterization of LS1, identified in a high throughput screen for small molecules that shorten the replicative lifespan of yeast. LS1 accelerates...

  16. Life-Span Differences in the Uses and Gratifications of Tablets: Implications for Older Adults

    OpenAIRE

    Magsamen-Conrad, Kate; Dowd, John; Abuljadail, Mohammad; Alsulaiman, Saud; Shareefi, Adnan

    2015-01-01

    This study extends Uses and Gratifications theory by examining the uses and gratifications of a new technological device, the tablet computer, and investigating the differential uses and gratifications of tablet computers across the life-span. First, we utilized a six-week tablet training intervention to adapt and extend existing measures to the tablet as a technological device. Next, we used paper-based and online surveys (N=847), we confirmed four main uses of tablets: 1) Information Seekin...

  17. Ramadan major dietary patterns.

    Science.gov (United States)

    Shadman, Zhaleh; Poorsoltan, Nooshin; Akhoundan, Mahdieh; Larijani, Bagher; Soleymanzadeh, Mozhdeh; Akhgar Zhand, Camelia; Seyed Rohani, Zahra Alsadat; Khoshniat Nikoo, Mohsen

    2014-09-01

    There has been no data on population based dietary patterns during the Ramadan fasting month. The purpose of this study was to detect Ramadan major dietary patterns among those who fast in Tehran. This cross-sectional study included 600 subjects, aged 18-65 with body mass index (BMI) of 18.5-40, who had decided to fast during Ramadan. Anthropometric measurements, usual physical activity level and educational status were collected two weeks before Ramadan. Information on Ramadan dietary intakes was obtained using a food frequency questionnaire and factor analysis was used to identify major dietary patterns. We identified four major dietary patterns: 1) Western-like pattern; high in fast foods, salty snacks, nuts, potato, fish, poultry, chocolates, juices; 2) high cholesterol and high sweet junk food pattern; high in pickles, sweets and condiments, butter and cream, canned fish, visceral meats and eggs; 3) Mediterranean-like pattern; high in vegetables, olive oil, dates, dairy, dried fruits, fruits, red meats, tea and coffee and 4) Ramadan-style pattern; large consumption of Halim, soups, porridges, legumes and whole grains, soft drinks, Zoolbia and Bamieh. Age was positively and inversely associated with Mediterranean-like (P = 0.003; r = 0.17) and Ramadan style (P = 0.1; r = -0.13) dietary pattern, respectively. Pre-Ramadan physical activity level was associated with a Mediterranean-like dietary pattern (P characteristics, which has not yet been identified as a model of dietary pattern. Also, among identified dietary patterns, Mediterranean-like was the healthiest.

  18. EFFECT ON LIFESPAN OF HIGH YIELD NONMYELOABLATING TRANSPLANTATION OF BONE MARROW FROM YOUNG TO OLD MICE

    Directory of Open Access Journals (Sweden)

    Marina eKovina

    2013-08-01

    Full Text Available Tissue renewal is a well-known phenomenon by which old and dying-off cells of various tissues of the body are replaced by progeny of local or circulating stem cells (SC. An interesting question is whether donor stem cells are capable to prolong the lifespan of an ageing organism by tissue renewal.. In this work we investigated the possible use of bone marrow SC for lifespan extension. To this purpose, chimeric C57BL/6 mice were created by transplanting bone marrow from young 1.5-month donors to 21.5-month-old recipients. Transplantation was carried out by means of a recently developed method which allowed to transplant without myeloablation up to 1.5×108 cells, that is, about 25 % of the total BM cells of the mouse. As a result, the mean survival time, counting from the age of 21.5 months, the start of the experiment, was +3.6 and +5.0 (± 0.1 months for the control and experimental groups, respectively, corresponding to a 39% ± 4% increase in the experimental group over the control. In earlier studies on BM transplantation a considerably smaller quantity of donor cells (5×106 was used, about 1 % of the total own BM cells. The recipients before transplantation were exposed to a lethal (for control animals X-ray dose which eliminated the possibility of studying the lifespan extension by this method.

  19. Age-related differences in the temporal dynamics of prospective memory retrieval: a lifespan approach.

    Science.gov (United States)

    Mattli, Florentina; Zöllig, Jacqueline; West, Robert

    2011-10-01

    The efficiency of prospective memory (PM) typically increases from childhood to young adulthood and then decreases in later adulthood. The current study used event-related brain potentials (ERPs) to examine the development of the neural correlates of processes associated with the detection of a PM cue, switching from the ongoing activity to the prospective task, retrieval of the intention from memory or task set configuration, and strategic monitoring of the environment. The study included 99 participants that were 7.5-83 years of age. Slow wave activity related to strategic monitoring was reliable across the lifespan suggesting that all ages were able to allocate attentional resources to facilitate PM. Additionally, components of the ERPs related to cue detection, switching, and task configuration were reliable across the lifespan, suggesting that similar processes contribute to PM at all ages. In children, PM errors may have resulted from a decoupling of processes supporting cue detection and switching from the ongoing activity to the prospective element of the task. In younger and older adults, PM errors appeared to result from the failure to detect PM cues in the environment. These findings lead to the conclusion that different processes may contribute to variation in PM across the lifespan. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Effects of calorie restriction on the lifespan and healthspan of POLG mitochondrial mutator mice.

    Directory of Open Access Journals (Sweden)

    Shinichi Someya

    Full Text Available Mitochondrial DNA (mtDNA mutations are thought to have a causative role in age-related pathologies. We have shown previously that mitochondrial mutator mice (PolgD257A/D257A, harboring a proofreading-deficient version of the mtDNA polymerase gamma (POLG, accumulate mtDNA mutations in multiple tissues and display several features of accelerated aging. Calorie restriction (CR is known to delay the onset of age-related diseases and to extend the lifespan of a variety of species, including rodents. In the current study we investigated the effects of CR on the lifespan and healthspan of mitochondrial mutator mice. Long-term CR did not increase the median or maximum lifespan of PolgD257A/D257A mice. Furthermore, CR did not reduce mtDNA deletions in the heart and muscle, accelerated sarcopenia, testicular atrophy, nor improve the alterations in cardiac parameters that are present in aged mitochondrial mutator mice. Therefore, our findings suggest that accumulation of mtDNA mutations may interfere with the beneficial action of CR in aging retardation.

  1. The normative dimensions of extending the human lifespan by age-related biomedical innovations.

    Science.gov (United States)

    Ehni, Hans-Joerg; Marckmann, Georg

    2008-10-01

    The current normative debate on age-related biomedical innovations and the extension of the human lifespan has important shortcomings. Mainly, the complexity of the different normative dimensions relevant for ethical and/or juridicial norms is not fully developed and the normative quality of teleological and deontological arguments is not properly distinguished. This article addresses some of these shortcomings and develops the outline of a more comprehensive normative framework covering all relevant dimensions. Such a frame necessarily has to include conceptions of a good life on the individual and societal levels. Furthermore, as a third dimension, a model for the access to and the just distribution of age-related biomedical innovations and technologies extending the human lifespan will be developed. It is argued that such a model has to include the different levels of the general philosophical theories of distributive justice, including social rights and theories of just health care. Furthermore, it has to show how these theories can be applied to the problem area of aging and extending the human lifespan.

  2. Caenorhabditis elegans Genes Affecting Interindividual Variation in Life-span Biomarker Gene Expression.

    Science.gov (United States)

    Mendenhall, Alexander; Crane, Matthew M; Tedesco, Patricia M; Johnson, Thomas E; Brent, Roger

    2017-10-01

    Genetically identical organisms grown in homogenous environments differ in quantitative phenotypes. Differences in one such trait, expression of a single biomarker gene, can identify isogenic cells or organisms that later manifest different fates. For example, in isogenic populations of young adult Caenorhabditis elegans, differences in Green Fluorescent Protein (GFP) expressed from the hsp-16.2 promoter predict differences in life span. Thus, it is of interest to determine how interindividual differences in biomarker gene expression arise. Prior reports showed that the thermosensory neurons and insulin signaling systems controlled the magnitude of the heat shock response, including absolute expression of hsp-16.2. Here, we tested whether these regulatory signals might also influence variation in hsp-16.2 reporter expression. Genetic experiments showed that the action of AFD thermosensory neurons increases interindividual variation in biomarker expression. Further genetic experimentation showed the insulin signaling system acts to decrease interindividual variation in life-span biomarker expression; in other words, insulin signaling canalizes expression of the hsp-16.2-driven life-span biomarker. Our results show that specific signaling systems regulate not only expression level, but also the amount of interindividual expression variation for a life-span biomarker gene. They raise the possibility that manipulation of these systems might offer means to reduce heterogeneity in the aging process. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Entropy Generation and Human Aging: Lifespan Entropy and Effect of Physical Activity Level

    Science.gov (United States)

    Silva, Carlos; Annamalai, Kalyan

    2008-06-01

    The first and second laws of thermodynamics were applied to biochemical reactions typical of human metabolism. An open-system model was used for a human body. Energy conservation, availability and entropy balances were performed to obtain the entropy generated for the main food components. Quantitative results for entropy generation were obtained as a function of age using the databases from the U.S. Food and Nutrition Board (FNB) and Centers for Disease Control and Prevention (CDC), which provide energy requirements and food intake composition as a function of age, weight and stature. Numerical integration was performed through human lifespan for different levels of physical activity. Results were presented and analyzed. Entropy generated over the lifespan of average individuals (natural death) was found to be 11,404 kJ/ºK per kg of body mass with a rate of generation three times higher on infants than on the elderly. The entropy generated predicts a life span of 73.78 and 81.61 years for the average U.S. male and female individuals respectively, which are values that closely match the average lifespan from statistics (74.63 and 80.36 years). From the analysis of the effect of different activity levels, it is shown that entropy generated increases with physical activity, suggesting that exercise should be kept to a “healthy minimum” if entropy generation is to be minimized.

  4. Entropy Generation and Human Aging: Lifespan Entropy and Effect of Physical Activity Level

    Directory of Open Access Journals (Sweden)

    Kalyan Annamalai

    2008-06-01

    Full Text Available The first and second laws of thermodynamics were applied to biochemical reactions typical of human metabolism. An open-system model was used for a human body. Energy conservation, availability and entropy balances were performed to obtain the entropy generated for the main food components. Quantitative results for entropy generation were obtained as a function of age using the databases from the U.S. Food and Nutrition Board (FNB and Centers for Disease Control and Prevention (CDC, which provide energy requirements and food intake composition as a function of age, weight and stature. Numerical integration was performed through human lifespan for different levels of physical activity. Results were presented and analyzed. Entropy generated over the lifespan of average individuals (natural death was found to be 11,404 kJ/ºK per kg of body mass with a rate of generation three times higher on infants than on the elderly. The entropy generated predicts a life span of 73.78 and 81.61 years for the average U.S. male and female individuals respectively, which are values that closely match the average lifespan from statistics (74.63 and 80.36 years. From the analysis of the effect of different activity levels, it is shown that entropy generated increases with physical activity, suggesting that exercise should be kept to a “healthy minimum” if entropy generation is to be minimized.

  5. Caloric Restriction-Induced Extension of Chronological Lifespan Requires Intact Respiration in Budding Yeast.

    Science.gov (United States)

    Kwon, Young-Yon; Lee, Sung-Keun; Lee, Cheol-Koo

    2017-04-01

    Caloric restriction (CR) has been shown to extend lifespan and prevent cellular senescence in various species ranging from yeast to humans. Many effects of CR may contribute to extend lifespan. Specifically, CR prevents oxidative damage from reactive oxygen species (ROS) by enhancing mitochondrial function. In this study, we characterized 33 single electron transport chain (ETC) gene-deletion strains to identify CR-induced chronological lifespan (CLS) extension mechanisms. Interestingly, defects in 17 of these 33 ETC gene-deleted strains showed loss of both respiratory function and CR-induced CLS extension. On the contrary, the other 16 respiration-capable mutants showed increased CLS upon CR along with increased mitochondrial membrane potential (MMP) and intracellular adenosine triphosphate (ATP) levels, with decreased mitochondrial superoxide generation. We measured the same parameters in the 17 non-respiratory mutants upon CR. CR simultaneously increased MMP and mitochondrial superoxide generation without altering intracellular ATP levels. In conclusion, respiration is essential for CLS extension by CR and is important for balancing MMP, ROS, and ATP levels.

  6. Whole apple extracts increase lifespan, healthspan and resistance to stress in Caenorhabditis elegans.

    Science.gov (United States)

    Vayndorf, Elena M; Lee, Siu Sylvia; Liu, Rui Hai

    2013-07-01

    Regular consumption of fruits and vegetables is associated with reduced risk of age-related functional decline and chronic diseases such as cancer and cardiovascular disease. These effects are primarily attributed to phytochemicals, plant compounds with a wide range of biological activities and health benefits. Apples, the top contributor of fruit phenolics in American diets, have high antioxidant, antiproliferative and chemopreventive activity in vitro and in vivo. However, little is known about their effects on aging. The objectives of this study were to determine the effects of whole apple phytochemical extracts on lifespan, healthspan and resistance to various stresses in vivo using C. elegans as a model. The mean and maximum lifespan of animals treated with 2.5, 5 and 10 mg/ml whole apple extracts increased significantly in a dose-dependent manner by up to 39 and 25%, respectively. Healthspan also significantly improved as indicated by improved motility and reduced lipofuscin accumulation. Animals pre-treated with whole apple extracts were more resistant to stresses such as heat, UV radiation, paraquat-induced oxidative stress, and pathogenic infection, suggesting that cellular defense and immune system functions also improved. Our findings indicate that, in C. elegans , whole apple extracts slow aging, extend lifespan, improve healthspan, and enhance resistance to stress.

  7. Temporomandibular pain and jaw dysfunction at different ages covering the lifespan--A population based study.

    Science.gov (United States)

    Lövgren, A; Häggman-Henrikson, B; Visscher, C M; Lobbezoo, F; Marklund, S; Wänman, A

    2016-04-01

    Temporomandibular pain and jaw dysfunction can have a negative effect on daily life, but these conditions are not well recognized in the health care systems. The general aim was to examine the cross-sectional prevalence of frequent temporomandibular pain and jaw dysfunction in men and women across the lifespan. The analysis was based on data from 137,718 individuals (mean age 35 years, SD 22.7) who answered three questions (3Q/TMD) included in the digital health declaration in the Public Dental Health care in the county of Västerbotten, Sweden; Q1: 'Do you have pain in your temple, face, jaw or jaw joint once a week or more?'; Q2: 'Does it hurt once a week or more when you open your mouth or chew?'; and Q3: 'Does your jaw lock or become stuck once a week or more?' The prevalence of frequent temporomandibular pain (Q1) was 5.2% among women and 1.8% among men (p temporomandibular pain and jaw dysfunction varies during the lifespan. For men and women, respectively, symptoms increase during adolescence, peak in middle age and then gradually diminish. The prevalence of these symptoms is significantly higher among women except from the first and last decades of a 100-year lifespan. © 2015 European Pain Federation - EFIC®

  8. Tenebrio molitor Extracts Modulate the Response to Environmental Stressors and Extend Lifespan in Caenorhabditis elegans.

    Science.gov (United States)

    Won, Seong-Min; Cha, Hye-Uk; Yi, Sun Shin; Kim, Sung-Jo; Park, Sang-Kyu

    2016-09-08

    Tenebrio molitor are large insects and their larvae are consumed as food in many countries. The nutritional composition of T. molitor has been studied and contains high amounts of proteins, unsaturated fatty acids, and valuable minerals. However, the bioactivity of T. molitor has not been fully understood. We examined the effects of T. molitor extracts on resistance to oxidative stress and organism's lifespan using Caenorhabditis elegans as a model system. The response to heat shock and ultraviolet (UV) irradiation was monitored in vivo. The extracts from T. molitor showed significant effects on resistance to oxidative stress and UV irradiation and extend both mean and maximum lifespan of C. elegans. The number of progeny produced significantly increased in animals supplemented with T. molitor extracts. In addition, the expression of hsp-16.2 and sod-3 was markedly upregulated by supplementation with T. molitor extracts. These findings suggest that T. molitor extracts can increase response to stressors and extend lifespan by the induction of longevity assurance genes in C. elegans.

  9. Priority service needs and receipt across the lifespan for individuals with autism spectrum disorder.

    Science.gov (United States)

    Lai, Jonathan K Y; Weiss, Jonathan A

    2017-08-01

    Individuals with Autism Spectrum Disorder (ASD) have a range of health, community, and social support needs across the lifespan that create age-specific challenges in navigating service sectors. In this study, we set out to identify the priority needs of individuals with ASD across the lifespan, and the factors that predict receiving priority services. Participants included 3,317 individuals with ASD from a Canada-wide online caregiver survey, stratified into five age groups (preschool, elementary school age, adolescence, emerging adulthood, adulthood). Priority receipt was calculated as a ratio of current services that corresponded to individualized priority need. Age-stratified Poisson regression analyses were used to identify the sociodemographic, clinical and systemic predictors of priority receipt. Results indicate that the distribution of priority need varied by age, except for social skills programming, which was a high across all groups. The number of high and moderate priority needs diversified with age. Overall, 30% of individuals had none of their priority needs met and priority receipt decreased with age. Systemic factors were most consistently related to priority receipt across the lifespan. Understanding patterns and correlates of priority needs and use that currently exist in different age groups can inform policies to improve service access. Autism Res 2017, 10: 1436-1447. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. © 2017 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research.

  10. Reduced Circulating Insulin Enhances Insulin Sensitivity in Old Mice and Extends Lifespan

    Directory of Open Access Journals (Sweden)

    Nicole M. Templeman

    2017-07-01

    Full Text Available The causal relationships between insulin levels, insulin resistance, and longevity are not fully elucidated. Genetic downregulation of insulin/insulin-like growth factor 1 (Igf1 signaling components can extend invertebrate and mammalian lifespan, but insulin resistance, a natural form of decreased insulin signaling, is associated with greater risk of age-related disease in mammals. We compared Ins2+/− mice to Ins2+/+ littermate controls, on a genetically stable Ins1 null background. Proteomic and transcriptomic analyses of livers from 25-week-old mice suggested potential for healthier aging and altered insulin sensitivity in Ins2+/− mice. Halving Ins2 lowered circulating insulin by 25%–34% in aged female mice, without altering Igf1 or circulating Igf1. Remarkably, decreased insulin led to lower fasting glucose and improved insulin sensitivity in aged mice. Moreover, lowered insulin caused significant lifespan extension, observed across two diverse diets. Our study indicates that elevated insulin contributes to age-dependent insulin resistance and that limiting basal insulin levels can extend lifespan.

  11. Reduced Circulating Insulin Enhances Insulin Sensitivity in Old Mice and Extends Lifespan.

    Science.gov (United States)

    Templeman, Nicole M; Flibotte, Stephane; Chik, Jenny H L; Sinha, Sunita; Lim, Gareth E; Foster, Leonard J; Nislow, Corey; Johnson, James D

    2017-07-11

    The causal relationships between insulin levels, insulin resistance, and longevity are not fully elucidated. Genetic downregulation of insulin/insulin-like growth factor 1 (Igf1) signaling components can extend invertebrate and mammalian lifespan, but insulin resistance, a natural form of decreased insulin signaling, is associated with greater risk of age-related disease in mammals. We compared Ins2 +/- mice to Ins2 +/+ littermate controls, on a genetically stable Ins1 null background. Proteomic and transcriptomic analyses of livers from 25-week-old mice suggested potential for healthier aging and altered insulin sensitivity in Ins2 +/- mice. Halving Ins2 lowered circulating insulin by 25%-34% in aged female mice, without altering Igf1 or circulating Igf1. Remarkably, decreased insulin led to lower fasting glucose and improved insulin sensitivity in aged mice. Moreover, lowered insulin caused significant lifespan extension, observed across two diverse diets. Our study indicates that elevated insulin contributes to age-dependent insulin resistance and that limiting basal insulin levels can extend lifespan. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Life-Span Differences in the Uses and Gratifications of Tablets: Implications for Older Adults.

    Science.gov (United States)

    Magsamen-Conrad, Kate; Dowd, John; Abuljadail, Mohammad; Alsulaiman, Saud; Shareefi, Adnan

    2015-11-01

    This study extends Uses and Gratifications theory by examining the uses and gratifications of a new technological device, the tablet computer, and investigating the differential uses and gratifications of tablet computers across the life-span. First, we utilized a six-week tablet training intervention to adapt and extend existing measures to the tablet as a technological device. Next, we used paper-based and online surveys ( N =847), we confirmed four main uses of tablets: 1) Information Seeking, 2) Relationship Maintenance, 3) Style, 4) Amusement and Killing time, and added one additional use category 5) Organization. We discovered differences among the five main uses of tablets across the life-span, with older adults using tablets the least overall. Builders, Boomers, GenX and GenY all reported the highest means for information seeking. Finally, we used a structural equation model to examine how uses and gratifications predicts hours of tablet use. The study provides limitations and suggestions for future research and marketers. In particular, this study offers insight to the relevancy of theory as it applies to particular information and communication technologies and consideration of how different periods in the life-span affect tablet motivations.

  13. Dementia across the Lifespan and around the Globe-Pathophysiology, Prevention, Treatment, and Societal Impact: A Call for Papers.

    Science.gov (United States)

    2016-08-01

    In this months editorial, the PLOS Medicine Editors announce an upcoming Special Issue and call for papers, with Guest Editors Carol Brayne and Bruce Miller, on dementia across the lifespan and around the globe.

  14. Effects of very low doses of ionizing radiation on the clonal life-span in Paramecium Tetraurelia

    International Nuclear Information System (INIS)

    Tixador, R.; Richoilley, G.; Monrozies, E.; Planel, H.; Tap, G.

    1981-01-01

    Effects of very low doses of ionizing radiation were investigated on life-span in Paramecium tetraurelia. After autogamy single cell cultures were placed (1) in a control chamber with radiopermeable walls; (2) in a shielding device with 10 cm thick lead walls; (3) in a similar shielding device including a 60 Co source giving a dose of 760 mrad per year at the culture level. Life-spans, expressed in days and in mean total number of fissions measured from autogamy to the death of all sublines, were about of 200 fissions and 55 days in controls. Life-spans of shielded sublines were increased and lower life-spans were observed in both shielded and irradiated sublines. These findings provide new evidence for a biological effect of very low doses of ionizing radiations and show that fission potential of Paramecium tetraurelia can be affected by variations in the background radiation level. (author)

  15. Macronutrient composition determines accumulation of persistent organic pollutants from dietary exposure in adipose tissue of mice

    DEFF Research Database (Denmark)

    Myrmel, Lene Secher; Fjære, Even; Midtbø, Lisa Kolden

    2016-01-01

    Accumulation of persistent organic pollutants (POPs) has been linked to adipose tissue expansion. As different nutrients modulate adipose tissue development, we investigated the influence of dietary composition on POP accumulation, obesity development and related disorders. Lifespan was determined...... in mice fed fish-oil-based high fat diets during a long-term feeding trial and accumulation of POPs was measured after 3, 6 and 18months of feeding. Further, we performed dose-response experiments using four abundant POPs found in marine sources, PCB-153, PCB-138, PCB-118 and pp'-DDE as single congeners...

  16. Dietary Supplements for Toddlers

    Science.gov (United States)

    ... Listen Español Text Size Email Print Share Dietary Supplements for Toddlers Page Content ​​If you provide your ... growth and brain development, so particular vitamins and supplements may be recommended. Rickets , for example, is a ...

  17. Dietary determinants of obesity.

    Science.gov (United States)

    Du, Huaidong; Feskens, Edith

    2010-08-01

    Obesity has become a serious public health problem worldwide, and dietary composition can play a role in its prevention and treatment. However, available literature on the impacts of different dietary factors on weight change is inconsistent, or even conflicting. In this review, we briefly summarized the mechanisms and influences of several major dietary determinants of weight change, with a focus on their potential in the prevention of weight gain or regain. We discussed the intake of fat, protein, total carbohydrates, fruits and vegetables, fibre, free sugars, fructose and sugar sweetened beverages, dietary energy density, portion size, eating outside home, glycaemic index and glycaemic load. Popular weight loss diets, including the Atkins diet, Weight Watchers, Ornish diet and Zone diet, are also briefly discussed for their safety and efficacy in the maintenance of weight loss.

  18. Dietary Supplement Ingredient Database

    Science.gov (United States)

    ... and US Department of Agriculture Dietary Supplement Ingredient Database Toggle navigation Menu Home About DSID Mission Current ... values can be saved to build a small database or add to an existing database for national, ...

  19. Estimation of adult and neonatal RBC lifespans in anemic neonates using RBCs labeled at several discrete biotin densities.

    Science.gov (United States)

    Kuruvilla, Denison J; Widness, John A; Nalbant, Demet; Schmidt, Robert L; Mock, Donald M; An, Guohua; Veng-Pedersen, Peter

    2017-06-01

    Prior conclusions that autologous neonatal red blood cells (RBC) have substantially shorter lifespans than allogeneic adult RBCs were not based on direct comparison of autologous neonatal vs. allogeneic adult RBCs performed concurrently in the same infant. Biotin labeling of autologous neonatal RBCs and allogeneic adult donor RBCs permits concurrent direct comparison of autologous vs. allogeneic RBC lifespan. RBCs from 15 allogeneic adult donors and from 15 very-low-birth-weight (VLBW) neonates were labeled at separate biotin densities and transfused simultaneously into the 15 neonates. Two mathematical models that account for the RBC differences were employed to estimate lifespans for the two RBC populations. Mean ± SD lifespan for adult allogeneic RBC was 70.1 ± 19.1 d, which is substantially shorter than the 120 d lifespan of both autologous and adult allogeneic RBC in healthy adults. Mean ± SD lifespan for neonatal RBC was 54.2 ± 11.3 d, which is only about 30% shorter than that of the adult allogeneic RBCs. This study provides evidence that extrinsic environmental factors primarily determine RBC survival (e.g., small bore of the capillaries of neonates, rate of oxygenation/deoxygenation cycles) rather than factors intrinsic to RBC.

  20. Evidence That Lifelong Low Dose Rates of Ionizing Radiation Increase Lifespan in Long- and Short-Lived Dogs

    Directory of Open Access Journals (Sweden)

    Jerry M. Cuttler

    2017-02-01

    Full Text Available After the 1956 radiation scare to stop weapons testing, studies focused on cancer induction by low-level radiation. Concern has shifted to protecting “radiation-sensitive individuals.” Since longevity is a measure of health impact, this analysis reexamined data to compare the effect of dose rate on the lifespans of short-lived (5% and 10% mortality dogs and on the lifespans of dogs at 50% mortality. The data came from 2 large-scale studies. One exposed 10 groups to different γ dose rates; the other exposed 8 groups to different lung burdens of plutonium. Reexamination indicated that normalized lifespans increased more for short-lived dogs than for average dogs, when radiation was moderately above background. This was apparent by interpolating between the lifespans of nonirradiated dogs and exposed dogs. The optimum lifespan increase appeared at 50 mGy/y. The threshold for harm (decreased lifespan was 700 mGy/y for 50% mortality dogs and 1100 mGy/y for short-lived dogs. For inhaled α-emitting particulates, longevity was remarkably increased for short-lived dogs below the threshold for harm. Short-lived dogs seem more radiosensitive than average dogs and they benefit more from low radiation. If dogs model humans, this evidence would support a change to radiation protection policy. Maintaining exposures “as low as reasonably achievable” (ALARA appears questionable.

  1. How cellulose-based leaf toughness and lamina density contribute to long leaf lifespans of shade-tolerant species.

    Science.gov (United States)

    Kitajima, Kaoru; Llorens, Anna-Maria; Stefanescu, Carla; Timchenko, Marta Vargas; Lucas, Peter W; Wright, S Joseph

    2012-08-01

    Cell wall fibre and lamina density may interactively affect leaf toughness and leaf lifespan. Here, we tested this with seedlings of 24 neotropical tree species differing in shade tolerance and leaf lifespan under standardized field conditions (140-867 d in gaps; longer in shade). We quantified toughness with a cutting test, explicitly seeking a mechanistic linkage to fibre. Lamina density, but not fracture toughness, exhibited a plastic response to gaps vs shade, while neither trait was affected by leaf age. Toughness corrected for lamina density, a recently recognized indicator of material strength per unit mass, was linearly correlated with cellulose content per unit dry mass. Leaf lifespan was positively correlated with cellulose and toughness in shade-tolerant species but only weakly in gap-dependent species. Leaf lifespan was uncorrelated with lamina thickness, phenolics and tannin concentrations. In path analysis including all species, leaf lifespan was directly enhanced by density and toughness, and indirectly by cellulose via its effect on toughness. Different suites of leaf traits were correlated with early seedling survival in gaps vs shade. In conclusion, cellulose and lamina density jointly enhance leaf fracture toughness, and these carbon-based physical traits, rather than phenolic-based defence, explain species differences in herbivory, leaf lifespan and shade survival. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  2. Dietary treatment of nephrolithiasis

    OpenAIRE

    Nouvenne, Antonio; Meschi, Tiziana; Guerra, Angela; Allegri, Franca; Prati, Beatrice; Borghi, Loris

    2008-01-01

    The prevalence of idiopathic nephrolithiasis is increasing in rich countries. Dietary manipulation could contribute to the prevention of both its first appearance and the recurrence of the disease. The target of dietary treatment is to decrease the “urinary lithogenic risk factors” such as low urine volume, hypercalciuria, hyperoxaluria, hyperuricosuria, hyperphosphaturia, hypocitraturia, hypomagnesuria and excessively alkaline or acid urinary pH. Due to the lack of randomized controlled tria...

  3. Personality and dietary habits.

    Science.gov (United States)

    Kikuchi, Y; Watanabe, S

    2000-05-01

    The personality of healthy individuals has not been well studied in relation to health consciousness, dietary habits and actual food intake, simultaneously. Our objective was to study the association between personality and dietary habits. Information on dietary habits, including taste preferences and the frequency of food consumption, was collected through a questionnaire from 76 male and 394 female students. The personality of students was determined by a modified NEO-FFI test. Health status, height, body weight, body fat percentage and blood pressure were measured by physical examination. Main outcome measures were personality scores as indicators of a healthy dietary pattern. Food intake was influenced by neuroticism (N), extraversion (E), openness (O) and agreeableness (A) of personality. Taste preferences and receptivity to dietary advice were also influenced by personality: the odds ratios (ORs) between the high and low tertiary points of the NEO-FFI scores for salty and sweet taste preferences were significantly higher in the group that scored high for neuroticism (N) (salty taste preference: OR = 2.25, NS in males and OR = 2.39, 95%CI = 1.16-4.93 in females; sweet taste preference: OR = 21.00, 95%CI = 2.40-183.99 in males and OR = 3.33, 95%CI = 1.61-6.91 in females). On the other hand, the groups with high scorer for O and A did not like salty tastes. The groups with high scores for A and C were receptive to dietary advice. High scores of each N, E, O, A, and C factor were characterized by distinguishable, dietary habits and lifestyle. For nutritional or health education, group classes are sufficient for high A and O. High C scorer displayed discrepancies between health consciousness and dietary habits, so intervention or a close follow-up by medical professionals would be necessary to improve the health of individuals in this group. High E scorer possessed a confident attitude towards their health, but they were not interested in developing healthy habits

  4. Acacetin 7-O-α-l-rhamnopyranosyl (1-2) β-D-xylopyranoside Elicits Life-span Extension and Stress Resistance in Caenorhabditis elegans.

    Science.gov (United States)

    Asthana, Jyotsna; Yadav, Deepti; Pant, Aakanksha; Yadav, A K; Gupta, M M; Pandey, Rakesh

    2016-09-01

    The advancements in the field of gerontology have unraveled the signaling pathways that regulate life span, suggesting that it might be feasible to modulate aging. To this end, we isolated a novel phytomolecule Acacetin 7-O-α-l-rhamnopyranosyl (1-2) β-D-xylopyranoside (ARX) from Premna integrifolia and evaluated its antiaging effects in Caenorhabditis elegans The spectral data analysis revealed the occurrence of a new compound ARX. Out of the three tested pharmacological doses of ARX, viz. 5, 25, and 50 µM, the 25-µM dose was able to extend life span in C. elegans by more than 39%. The present study suggests that ARX affects bacterial metabolism, which in turn leads to dietary restriction (DR)-like effects in the worms. The effect of ARX on worms with mutations (mev-1, eat-2, sir-2.1, skn-1, daf-16, and hsf-1) indicates that ARX-mediated life-span extension involves mechanisms associated with DR and maintenance of cellular redox homeostasis. This study is the first time report on longevity-promoting activity of ARX in C. elegans mediated by stress and DR-regulating genes. This novel phytomolecule can contribute in designing therapeutics for managing aging and age-related diseases. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. A Novel Physiology-Based Mathematical Model to Estimate Red Blood Cell Lifespan in Different Human Age Groups.

    Science.gov (United States)

    An, Guohua; Widness, John A; Mock, Donald M; Veng-Pedersen, Peter

    2016-09-01

    Direct measurement of red blood cell (RBC) survival in humans has improved from the original accurate but limited differential agglutination technique to the current reliable, safe, and accurate biotin method. Despite this, all of these methods are time consuming and require blood sampling over several months to determine the RBC lifespan. For situations in which RBC survival information must be obtained quickly, these methods are not suitable. With the exception of adults and infants, RBC survival has not been extensively investigated in other age groups. To address this need, we developed a novel, physiology-based mathematical model that quickly estimates RBC lifespan in healthy individuals at any age. The model is based on the assumption that the total number of RBC recirculations during the lifespan of each RBC (denoted by N max) is relatively constant for all age groups. The model was initially validated using the data from our prior infant and adult biotin-labeled red blood cell studies and then extended to the other age groups. The model generated the following estimated RBC lifespans in 2-year-old, 5-year-old, 8-year-old, and 10-year-old children: 62, 74, 82, and 86 days, respectively. We speculate that this model has useful clinical applications. For example, HbA1c testing is not reliable in identifying children with diabetes because HbA1c is directly affected by RBC lifespan. Because our model can estimate RBC lifespan in children at any age, corrections to HbA1c values based on the model-generated RBC lifespan could improve diabetes diagnosis as well as therapy in children.

  6. Extension of Saccharomyces paradoxus chronological lifespan by retrotransposons in certain media conditions is associated with changes in reactive oxygen species.

    Science.gov (United States)

    VanHoute, David; Maxwell, Patrick H

    2014-10-01

    Retrotransposons are mobile DNA elements present throughout eukaryotic genomes that can cause mutations and genome rearrangements when they replicate through reverse transcription. Increased expression and/or mobility of retrotransposons has been correlated with aging in yeast, Caenorhabditis elegans, Drosophila melanogaster, and mammals. The many copies of retrotransposons in humans and various model organisms complicate further pursuit of this relationship. The Saccharomyces cerevisiae Ty1 retrotransposon was introduced into a strain of S. paradoxus that completely lacks retrotransposons to compare chronological lifespans (CLSs) of yeast strains with zero, low, or high Ty1 copy number. Yeast chronological lifespan reflects the progressive loss of cell viability in a nondividing state. Chronological lifespans for the strains were not different in rich medium, but were extended in high Ty1 copy-number strains in synthetic medium and in rich medium containing a low dose of hydroxyurea (HU), an agent that depletes deoxynucleoside triphosphates. Lifespan extension was not strongly correlated with Ty1 mobility or mutation rates for a representative gene. Buffering deoxynucleoside triphosphate levels with threonine supplementation did not substantially affect this lifespan extension, and no substantial differences in cell cycle arrest in the nondividing cells were observed. Lifespan extension was correlated with reduced reactive oxygen species during early stationary phase in high Ty1 copy strains, and antioxidant treatment allowed the zero Ty1 copy strain to live as long as high Ty1 copy-number strains in rich medium with hydroxyurea. This exceptional yeast system has identified an unexpected longevity-promoting role for retrotransposons that may yield novel insights into mechanisms regulating lifespan. Copyright © 2014 by the Genetics Society of America.

  7. Dietary ecology of human

    International Nuclear Information System (INIS)

    Minagawa, Masao

    1990-01-01

    The dietary life of humans varies with the environment where they live and has been changing with time. It has become possible to examine such changes by using stable carbon and nitrogen isotope composition as a chemical tool. The present report outlines recent developments in the application of this tool and compares the dietary ecologies of various human groups from the viewpoint of isotope geochemistry. The history of the application of this tool to dietary analysis is summarized first, and features of the carbon and nitrogen isotope composition in animals and their relations with the food chain are outlined. The dietary ecology of the current people is then discussed in relation to the isotope composition in food, the isotope composition in hair of the current people, and determination of food habit of specific groups of people from such isotope compositions. For prediction of dietary composition, the report presents a flow chart for an algorism which is based on the Monte Carlo method. It also outlines processes for analyzing food habits of people in the prehistoric age, focusing on distribution of isotope composition in humans over the world. (N.K.)

  8. [The role of the pineal-thymus system in the regulation of autoimmunity, aging and lifespan].

    Science.gov (United States)

    Csaba, György

    2016-07-03

    Thymus is an immunoendocrine organ, the hormones of which mainly influence its own lymphatic elements. It has a central role in the immune system, the neonatal removal causes the collapse of immune system and the whole organism. The thymic nurse cells select the bone marrow originated lymphocytes and destroy the autoreactive ones, while thymus originated Treg cells suppress the autoreactive cells in the periphery. The involution of the organ starts after birth, however, this truly happens in the end of puberty only, as before this it is overcompensated by developmental processes. From the end of adolescence the involution allows the life, proliferation and enhanced functioning of some autoreactive cells, which gradually wear down the cells and intercellular materials, causing the aging. The enhanced and mass function of autoreactive cells lead to the autoimmune diseases and natural death. This means that the involution of thymus is not a part of the organismic involution, but an originator of it, which is manifested in the lifespan-pacemaker function. Thus, aging can be conceptualized as a thymus-commanded slow autoimmune process. The neonatal removal of pineal gland leads to the complete destruction of the thymus and the crashing down of the immune system, as well as to wasting disease. The involution of the pineal and thymus runs parallel, because the two organs form a functional unit. It is probable that the pineal gland is responsible for the involution of thymus and also regulates its lifespan determining role. However, the data reviewed here do not prove the exclusive role of the pineal-thymus system in the regulation of aging and lifespan, but only call attention to such possibility.

  9. Repurposed FDA-approved drugs targeting genes influencing aging can extend lifespan and healthspan in rotifers.

    Science.gov (United States)

    Snell, Terry W; Johnston, Rachel K; Matthews, Amelia B; Zhou, Hongyi; Gao, Mu; Skolnick, Jeffrey

    2018-04-01

    Pharmaceutical interventions can slow aging in animals, and have advantages because their dose can be tightly regulated and the timing of the intervention can be closely controlled. They also may complement environmental interventions like caloric restriction by acting additively. A fertile source for therapies slowing aging is FDA approved drugs whose safety has been investigated. Because drugs bind to several protein targets, they cause multiple effects, many of which have not been characterized. It is possible that some of the side effects of drugs prescribed for one therapy may have benefits in retarding aging. We used computationally guided drug screening for prioritizing drug targets to produce a short list of candidate compounds for in vivo testing. We applied the virtual ligand screening approach FINDSITE comb for screening potential anti-aging protein targets against FDA approved drugs listed in DrugBank. A short list of 31 promising compounds was screened using a multi-tiered approach with rotifers as an animal model of aging. Primary and secondary survival screens and cohort life table experiments identified four drugs capable of extending rotifer lifespan by 8-42%. Exposures to 1 µM erythromycin, 5 µM carglumic acid, 3 µM capecitabine, and 1 µM ivermectin, extended rotifer lifespan without significant effect on reproduction. Some drugs also extended healthspan, as estimated by mitochondria activity and mobility (swimming speed). Our most promising result is that rotifer lifespan was extended by 7-8.9% even when treatment was started in middle age.

  10. Regional scale patterns of fine root lifespan and turnover under current and future climate.

    Science.gov (United States)

    McCormack, Luke M; Eissenstat, David M; Prasad, Anantha M; Smithwick, Erica A H

    2013-06-01

    Fine root dynamics control a dominant flux of carbon from plants and into soils and mediate potential uptake and cycling of nutrients and water in terrestrial ecosystems. Understanding of these patterns is needed to accurately describe critical processes like productivity and carbon storage from ecosystem to global scales. However, limited observations of root dynamics make it difficult to define and predict patterns of root dynamics across broad spatial scales. Here, we combine species-specific estimates of fine root dynamics with a model that predicts current distribution and future suitable habitat of temperate tree species across the eastern United States (US). Estimates of fine root lifespan and turnover are based on empirical observations and relationships with fine root and whole-plant traits and apply explicitly to the fine root pool that is relatively short-lived and most active in nutrient and water uptake. Results from the combined model identified patterns of faster root turnover rates in the North Central US and slower turnover rates in the Southeastern US. Portions of Minnesota, Ohio, and Pennsylvania were also predicted to experience >10% increases in root turnover rates given potential shifts in tree species composition under future climate scenarios while root turnover rates in other portions of the eastern US were predicted to decrease. Despite potential regional changes, the average estimates of root lifespan and turnover for the entire study area remained relatively stable between the current and future climate scenarios. Our combined model provides the first empirically based, spatially explicit, and spatially extensive estimates of fine root lifespan and turnover and is a potentially powerful tool allowing researchers to identify reasonable approximations of forest fine root turnover in areas where no direct observations are available. Future efforts should focus on reducing uncertainty in estimates of root dynamics by better understanding how

  11. The Influence of Parental Psychopathology on Offspring Suicidal Behavior across the Lifespan.

    Directory of Open Access Journals (Sweden)

    Geilson Lima Santana

    Full Text Available Suicide tends to occur in families, and parental psychopathology has been linked to offspring suicidal behaviors. This study explores the influence of parental mental disorders across the lifespan. Data are from the Sao Paulo Megacity Mental Health Survey, a cross-sectional household study with a representative sample of the adult population living in the Sao Paulo Metropolitan Area, Brazil (N=2,942. Survival models examined bivariate and multivariate associations between a range of parental disorders and offspring suicidality. After controlling for comorbidity, number of mental disorders and offspring psychopathology, we found that parental psychopathology influences suicidal behaviors throughout most part of the life cycle, from childhood until young adult years. Generalized anxiety disorder (GAD and antisocial personality were associated with offspring suicidal ideation (OR 1.8 and 1.9, respectively, panic and GAD predicted suicidal attempts (OR 2.3 and 2.7, respectively, and panic was related to the transition from ideation to attempts (OR 2.7. Although noticed in many different stages of the lifespan, this influence is most evident during adolescence. In this period, depression and antisocial personality increased the odds of suicidal ideation (OR 5.1 and 3.2, respectively, and depression, panic disorder, GAD and substance abuse predicted suicidal attempts (OR varying from 1.7 to 3.8. In short, parental disorders characterized by impulsive-aggression and anxiety-agitation were the main predictors of offspring suicidality across the lifespan. This clinically relevant intergenerational transmission of suicide risk was independent of offspring mental disorders, and this underscores the need for a family approach to psychopathology.

  12. Regulation of lifespan, metabolism, and stress responses by the Drosophila SH2B protein, Lnk.

    Directory of Open Access Journals (Sweden)

    Cathy Slack

    2010-03-01

    Full Text Available Drosophila Lnk is the single ancestral orthologue of a highly conserved family of structurally-related intracellular adaptor proteins, the SH2B proteins. As adaptors, they lack catalytic activity but contain several protein-protein interaction domains, thus playing a critical role in signal transduction from receptor tyrosine kinases to form protein networks. Physiological studies of SH2B function in mammals have produced conflicting data. However, a recent study in Drosophila has shown that Lnk is an important regulator of the insulin/insulin-like growth factor (IGF-1 signaling (IIS pathway during growth, functioning in parallel to the insulin receptor substrate, Chico. As this pathway also has an evolutionary conserved role in the determination of organism lifespan, we investigated whether Lnk is required for normal lifespan in Drosophila. Phenotypic analysis of mutants for Lnk revealed that loss of Lnk function results in increased lifespan and improved survival under conditions of oxidative stress and starvation. Starvation resistance was found to be associated with increased metabolic stores of carbohydrates and lipids indicative of impaired metabolism. Biochemical and genetic data suggest that Lnk functions in both the IIS and Ras/Mitogen activated protein Kinase (MapK signaling pathways. Microarray studies support this model, showing transcriptional feedback onto genes in both pathways as well as indicating global changes in both lipid and carbohydrate metabolism. Finally, our data also suggest that Lnk itself may be a direct target of the IIS responsive transcription factor, dFoxo, and that dFoxo may repress Lnk expression. We therefore describe novel functions for a member of the SH2B protein family and provide the first evidence for potential mechanisms of SH2B regulation. Our findings suggest that IIS signaling in Drosophila may require the activity of a second intracellular adaptor, thereby yielding fundamental new insights into the

  13. Towards a unified analysis of brain maturation and aging across the entire lifespan: A MRI analysis.

    Science.gov (United States)

    Coupé, Pierrick; Catheline, Gwenaelle; Lanuza, Enrique; Manjón, José Vicente

    2017-11-01

    There is no consensus in literature about lifespan brain maturation and senescence, mainly because previous lifespan studies have been performed on restricted age periods and/or with a limited number of scans, making results instable and their comparison very difficult. Moreover, the use of nonharmonized tools and different volumetric measurements lead to a great discrepancy in reported results. Thanks to the new paradigm of BigData sharing in neuroimaging and the last advances in image processing enabling to process baby as well as elderly scans with the same tool, new insights on brain maturation and aging can be obtained. This study presents brain volume trajectory over the entire lifespan using the largest age range to date (from few months of life to elderly) and one of the largest number of subjects (N = 2,944). First, we found that white matter trajectory based on absolute and normalized volumes follows an inverted U-shape with a maturation peak around middle life. Second, we found that from 1 to 8-10 y there is an absolute gray matter (GM) increase related to body growth followed by a GM decrease. However, when normalized volumes were considered, GM continuously decreases all along the life. Finally, we found that this observation holds for almost all the considered subcortical structures except for amygdala which is rather stable and hippocampus which exhibits an inverted U-shape with a longer maturation period. By revealing the entire brain trajectory picture, a consensus can be drawn since most of the previously discussed discrepancies can be explained. Hum Brain Mapp 38:5501-5518, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. The Influence of Parental Psychopathology on Offspring Suicidal Behavior across the Lifespan

    Science.gov (United States)

    Borges, Guilherme; Viana, Maria Carmen

    2015-01-01

    Suicide tends to occur in families, and parental psychopathology has been linked to offspring suicidal behaviors. This study explores the influence of parental mental disorders across the lifespan. Data are from the Sao Paulo Megacity Mental Health Survey, a cross-sectional household study with a representative sample of the adult population living in the Sao Paulo Metropolitan Area, Brazil (N=2,942). Survival models examined bivariate and multivariate associations between a range of parental disorders and offspring suicidality. After controlling for comorbidity, number of mental disorders and offspring psychopathology, we found that parental psychopathology influences suicidal behaviors throughout most part of the life cycle, from childhood until young adult years. Generalized anxiety disorder (GAD) and antisocial personality were associated with offspring suicidal ideation (OR 1.8 and 1.9, respectively), panic and GAD predicted suicidal attempts (OR 2.3 and 2.7, respectively), and panic was related to the transition from ideation to attempts (OR 2.7). Although noticed in many different stages of the lifespan, this influence is most evident during adolescence. In this period, depression and antisocial personality increased the odds of suicidal ideation (OR 5.1 and 3.2, respectively), and depression, panic disorder, GAD and substance abuse predicted suicidal attempts (OR varying from 1.7 to 3.8). In short, parental disorders characterized by impulsive-aggression and anxiety-agitation were the main predictors of offspring suicidality across the lifespan. This clinically relevant intergenerational transmission of suicide risk was independent of offspring mental disorders, and this underscores the need for a family approach to psychopathology. PMID:26230321

  15. RNA Editing Genes Associated with Extreme Old Age in Humans and with Lifespan in C. elegans

    Science.gov (United States)

    Puca, Annibale; Solovieff, Nadia; Kojima, Toshio; Wang, Meng C.; Melista, Efthymia; Meltzer, Micah; Fischer, Sylvia E. J.; Andersen, Stacy; Hartley, Stephen H.; Sedgewick, Amanda; Arai, Yasumichi; Bergman, Aviv; Barzilai, Nir; Terry, Dellara F.; Riva, Alberto; Anselmi, Chiara Viviani; Malovini, Alberto; Kitamoto, Aya; Sawabe, Motoji; Arai, Tomio; Gondo, Yasuyuki; Steinberg, Martin H.; Hirose, Nobuyoshi; Atzmon, Gil; Ruvkun, Gary; Baldwin, Clinton T.; Perls, Thomas T.

    2009-01-01

    Background The strong familiality of living to extreme ages suggests that human longevity is genetically regulated. The majority of genes found thus far to be associated with longevity primarily function in lipoprotein metabolism and insulin/IGF-1 signaling. There are likely many more genetic modifiers of human longevity that remain to be discovered. Methodology/Principal Findings Here, we first show that 18 single nucleotide polymorphisms (SNPs) in the RNA editing genes ADARB1 and ADARB2 are associated with extreme old age in a U.S. based study of centenarians, the New England Centenarian Study. We describe replications of these findings in three independently conducted centenarian studies with different genetic backgrounds (Italian, Ashkenazi Jewish and Japanese) that collectively support an association of ADARB1 and ADARB2 with longevity. Some SNPs in ADARB2 replicate consistently in the four populations and suggest a strong effect that is independent of the different genetic backgrounds and environments. To evaluate the functional association of these genes with lifespan, we demonstrate that inactivation of their orthologues adr-1 and adr-2 in C. elegans reduces median survival by 50%. We further demonstrate that inactivation of the argonaute gene, rde-1, a critical regulator of RNA interference, completely restores lifespan to normal levels in the context of adr-1 and adr-2 loss of function. Conclusions/Significance Our results suggest that RNA editors may be an important regulator of aging in humans and that, when evaluated in C. elegans, this pathway may interact with the RNA interference machinery to regulate lifespan. PMID:20011587

  16. Lifespan Development of the Human Brain Revealed by Large-Scale Network Eigen-Entropy

    Directory of Open Access Journals (Sweden)

    Yiming Fan

    2017-09-01

    Full Text Available Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying functional connectivity patterns of the developing and aging brain. Normal brain development is characterized by continuous and significant network evolution through infancy, childhood, and adolescence, following specific maturational patterns. Normal aging is related to some resting state brain networks disruption, which are associated with certain cognitive decline. It is a big challenge to design an integral metric to track connectome evolution patterns across the lifespan, which is to understand the principles of network organization in the human brain. In this study, we first defined a brain network eigen-entropy (NEE based on the energy probability (EP of each brain node. Next, we used the NEE to characterize the lifespan orderness trajectory of the whole-brain functional connectivity of 173 healthy individuals ranging in age from 7 to 85 years. The results revealed that during the lifespan, the whole-brain NEE exhibited a significant non-linear decrease and that the EP distribution shifted from concentration to wide dispersion, implying orderness enhancement of functional connectome over age. Furthermore, brain regions with significant EP changes from the flourishing (7–20 years to the youth period (23–38 years were mainly located in the right prefrontal cortex and basal ganglia, and were involved in emotion regulation and executive function in coordination with the action of the sensory system, implying that self-awareness and voluntary control performance significantly changed during neurodevelopment. However, the changes from the youth period to middle age (40–59 years were located in the mesial temporal lobe and caudate, which are associated with long-term memory, implying that the memory of the human brain begins to decline with age during this period. Overall, the findings suggested that the human connectome

  17. Holistic Life-Span Health Outcomes Among Elite Intercollegiate Student–Athletes

    Science.gov (United States)

    Sorenson, Shawn C.; Romano, Russell; Scholefield, Robin M.; Martin, Brandon E.; Gordon, James E.; Azen, Stanley P.; Schroeder, E. Todd; Salem, George J.

    2014-01-01

    Context: Competitive sports are recognized as having unique health benefits and risks, and the effect of sports on life-span health among elite athletes has received increasing attention. However, supporting scientific data are sparse and do not represent modern athletes. Objective: To assess holistic life-span health and health-related quality-of-life (HRQL) among current and former National Collegiate Athletic Association student–athletes (SAs). Design: Cross-sectional study. Setting: A large Division I university. Patients or Other Participants: Population-based sample of 496 university students and alumni (age 17–84 years), including SAs and an age-matched and sex-matched nonathlete (NA) control group. Main Outcome Measure(s): Participants completed anonymous, self-report questionnaires. We measured the Short-Form 12 (SF-12) physical and mental component HRQL scores and cumulative lifetime experience and relative risk of treatment for joint, cardiopulmonary, and psychosocial health concerns. Results: Older alumni (age 43+ years) SAs reported greater joint health concerns than NAs (larger joint summary scores; P = .04; Cohen d = 0.69; probability of clinically important difference [pCID] = 77%; treatment odds ratio [OR] = 14.0, 95% confidence interval [CI] = 1.6, 126). Joint health for current and younger alumni SAs was similar to that for NAs. Older alumni reported greater cardiopulmonary health concerns than younger alumni (summary score P students (P 99.5%; OR = 7.1, 95% CI = 3.3, 15), but the risk was similar for SAs and NAs. Current SAs demonstrated evidence of better psychosocial health (summary score P = .006; d = −0.52; pCID = 40%) and mental component HRQL (P = .008; d = 0.50; pCID = 48%) versus NAs but similar psychosocial treatment odds (OR = 0.87, 95% CI = 0.39, 1.9). Psychosocial health and mental component HRQL were similar between alumni SAs and NAs. No differences were observed between SAs and NAs in physical component HRQL. Conclusions

  18. Holistic life-span health outcomes among elite intercollegiate student-athletes.

    Science.gov (United States)

    Sorenson, Shawn C; Romano, Russell; Scholefield, Robin M; Martin, Brandon E; Gordon, James E; Azen, Stanley P; Schroeder, E Todd; Salem, George J

    2014-01-01

    Competitive sports are recognized as having unique health benefits and risks, and the effect of sports on life-span health among elite athletes has received increasing attention. However, supporting scientific data are sparse and do not represent modern athletes. To assess holistic life-span health and health-related quality-of-life (HRQL) among current and former National Collegiate Athletic Association student-athletes (SAs). Cross-sectional study. A large Division I university. Population-based sample of 496 university students and alumni (age 17-84 years), including SAs and an age-matched and sex-matched nonathlete (NA) control group. Participants completed anonymous, self-report questionnaires. We measured the Short-Form 12 (SF-12) physical and mental component HRQL scores and cumulative lifetime experience and relative risk of treatment for joint, cardiopulmonary, and psychosocial health concerns. Older alumni (age 43+ years) SAs reported greater joint health concerns than NAs (larger joint summary scores; P = .04; Cohen d = 0.69; probability of clinically important difference [pCID] = 77%; treatment odds ratio [OR] = 14.0, 95% confidence interval [CI] = 1.6, 126). Joint health for current and younger alumni SAs was similar to that for NAs. Older alumni reported greater cardiopulmonary health concerns than younger alumni (summary score P students (P 99.5%; OR = 7.1, 95% CI = 3.3, 15), but the risk was similar for SAs and NAs. Current SAs demonstrated evidence of better psychosocial health (summary score P = .006; d = -0.52; pCID = 40%) and mental component HRQL (P = .008; d = 0.50; pCID = 48%) versus NAs but similar psychosocial treatment odds (OR = 0.87, 95% CI = 0.39, 1.9). Psychosocial health and mental component HRQL were similar between alumni SAs and NAs. No differences were observed between SAs and NAs in physical component HRQL. The SAs demonstrated significant, clinically meaningful evidence of greater joint health concerns later in life, comparable

  19. Cell specific radiation dosimetry in skeleton from life-span carcinogenesis studies

    Energy Technology Data Exchange (ETDEWEB)

    Webster, S.S.J.

    1993-04-05

    The osteogenic sarcoma is the dominant life-threatening pathology in lifespan studies of beagles exposed to alpha-emitting bone-seeking radionuclides. It was deduced from these studies that certain skeletal sites are more prone to develop tumors. This project sought to determine the bone cells at risk and their cell-specific radiation dose. The cell-specific radiation dose values are related to loss and high Ra-226 and Pu-239 induced osteogenic sarcoma sites, to test different dose response hypothesis and predict the extent of effects in humans.

  20. [The effect of SSH&H on the lifespan and spontaneous cancer development in transgenic mice with HER-2/neu mutation].

    Science.gov (United States)

    Tyndyk, M L; Popovich, I G; Anikin, I V; Egormin, P A; Iurova, M N; Zabezhinskiĭ, M A; Anisimov, V N

    2012-01-01

    10 months old mice receiving SSH&H with daily food increased the lifespan in comparison to the control group. The maximal lifespan was increased by 1,6 months. For the long-living 10% group the mean lifespan increased by 8,7% compared to the control group (pSSH&H on the neoplastic rate in transgenic mice with HER-2/neu mutation.

  1. MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Oliver Medvedik

    2007-10-01

    Full Text Available Calorie restriction (CR robustly extends the lifespan of numerous species. In the yeast Saccharomyces cerevisiae, CR has been proposed to extend lifespan by boosting the activity of sirtuin deacetylases, thereby suppressing the formation of toxic repetitive ribosomal DNA (rDNA circles. An alternative theory is that CR works by suppressing the TOR (target of rapamycin signaling pathway, which extends lifespan via mechanisms that are unknown but thought to be independent of sirtuins. Here we show that TOR inhibition extends lifespan by the same mechanism as CR: by increasing Sir2p activity and stabilizing the rDNA locus. Further, we show that rDNA stabilization and lifespan extension by both CR and TOR signaling is due to the relocalization of the transcription factors Msn2p and Msn4p from the cytoplasm to the nucleus, where they increase expression of the nicotinamidase gene PNC1. These findings suggest that TOR and sirtuins may be part of the same longevity pathway in higher organisms, and that they may promote genomic stability during aging.

  2. MSN2 and MSN4 Link Calorie Restriction and TOR to Sirtuin-Mediated Lifespan Extension in Saccharomyces cerevisiae

    Science.gov (United States)

    Kim, Keyman D; Sinclair, David A

    2007-01-01

    Calorie restriction (CR) robustly extends the lifespan of numerous species. In the yeast Saccharomyces cerevisiae, CR has been proposed to extend lifespan by boosting the activity of sirtuin deacetylases, thereby suppressing the formation of toxic repetitive ribosomal DNA (rDNA) circles. An alternative theory is that CR works by suppressing the TOR (target of rapamycin) signaling pathway, which extends lifespan via mechanisms that are unknown but thought to be independent of sirtuins. Here we show that TOR inhibition extends lifespan by the same mechanism as CR: by increasing Sir2p activity and stabilizing the rDNA locus. Further, we show that rDNA stabilization and lifespan extension by both CR and TOR signaling is due to the relocalization of the transcription factors Msn2p and Msn4p from the cytoplasm to the nucleus, where they increase expression of the nicotinamidase gene PNC1. These findings suggest that TOR and sirtuins may be part of the same longevity pathway in higher organisms, and that they may promote genomic stability during aging. PMID:17914901

  3. A transcription elongation factor that links signals from the reproductive system to lifespan extension in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Arjumand Ghazi

    2009-09-01

    Full Text Available In Caenorhabditis elegans and Drosophila melanogaster, the aging of the soma is influenced by the germline. When germline-stem cells are removed, aging slows and lifespan is increased. The mechanism by which somatic tissues respond to loss of the germline is not well-understood. Surprisingly, we have found that a predicted transcription elongation factor, TCER-1, plays a key role in this process. TCER-1 is required for loss of the germ cells to increase C. elegans' lifespan, and it acts as a regulatory switch in the pathway. When the germ cells are removed, the levels of TCER-1 rise in somatic tissues. This increase is sufficient to trigger key downstream events, as overexpression of tcer-1 extends the lifespan of normal animals that have an intact reproductive system. Our findings suggest that TCER-1 extends lifespan by promoting the expression of a set of genes regulated by the conserved, life-extending transcription factor DAF-16/FOXO. Interestingly, TCER-1 is not required for DAF-16/FOXO to extend lifespan in animals with reduced insulin/IGF-1 signaling. Thus, TCER-1 specifically links the activity of a broadly deployed transcription factor, DAF-16/FOXO, to longevity signals from reproductive tissues.

  4. Dietary Reference Values for choline

    DEFF Research Database (Denmark)

    Sjödin, Anders Mikael

    2016-01-01

    Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) derives Dietary Reference Values (DRVs) for choline. In this Opinion, the Panel considers dietary choline including choline compounds (e.g. glycerophosphocholine, phosphocholine...

  5. Examples of Dietary Supplement Interactions

    Science.gov (United States)

    ... Products Drug-Nutrient Interactions and Drug-Supplement Interactions | Examples of Dietary Supplement Interactions Drug-Nutrient Interactions and Drug-Supplement Interactions | Examples of Dietary Supplement Interactions Share Print Almost half ...

  6. Dietary patterns and colorectal cancer

    OpenAIRE

    Tayyem, Reema F.; Bawadi, Hiba A.; Shehadah, Ihab; Agraib, Lana M.; AbuMweis, Suhad S.; Al-Jaberi, Tareq; Al-Nusairr, Majed; Bani-Hani, Kamal E.; Heath, Dennis D.

    2016-01-01

    Summary Background & aimsDietary pattern and lifestyle have been reported to be important risk factors in the development of colorectal cancer (CRC). However, the mechanism of action of dietary factors in CRC disease is unclear. The aim of this study is the examination of several dietary choices and their potential association with the risk of developing CRC. MethodsDietary data was collected from 220 subjects who were previously diagnosed with CRC, and 281 control subjects (matched by age, g...

  7. Riluzole does not improve lifespan or motor function in three ALS mouse models.

    Science.gov (United States)

    Hogg, Marion C; Halang, Luise; Woods, Ina; Coughlan, Karen S; Prehn, Jochen H M

    2017-12-08

    Riluzole is the most widespread therapeutic for treatment of the progressive degenerative disease amyotrophic lateral sclerosis (ALS). Riluzole gained FDA approval in 1995 before the development of ALS mouse models. We assessed riluzole in three transgenic ALS mouse models: the SOD1 G93A model, the TDP-43 A315T model, and the recently developed FUS (1-359) model. Age, sex and litter-matched mice were treated with riluzole (22 mg/kg) in drinking water or vehicle (DMSO) from symptom onset. Lifespan was assessed and motor function tests were carried out twice weekly to determine whether riluzole slowed disease progression. Riluzole treatment had no significant benefit on lifespan in any of the ALS mouse models tested. Riluzole had no significant impact on decline in motor performance in the FUS (1-359) and SOD1 G93A transgenic mice as assessed by Rotarod and stride length analysis. Riluzole is widely prescribed for ALS patients despite questions surrounding its efficacy. Our data suggest that if riluzole was identified as a therapeutic candidate today it would not progress past pre-clinical assessment. This raises questions about the standards used in pre-clinical assessment of therapeutic candidates for the treatment of ALS.

  8. Brain structure across the lifespan: the influence of stress and mood

    Directory of Open Access Journals (Sweden)

    Jose Miguel Soares

    2014-11-01

    Full Text Available Normal brain aging is an inevitable and heterogeneous process characterized by a selective pattern of structural changes. Such heterogeneity arises as a consequence of cumulative effects over the lifespan, including stress and mood effects, which drive different micro- and macro-structural alterations in the brain. Investigating these differences in healthy age-related changes is a major challenge for the comprehension of the cognitive status. Herein we addressed the impact of normal aging, stress, mood and their interplay in the brain gray and white matter structure. We showed the critical impact of age in the white matter volume and how stress and mood influence brain volumetry across the lifespan. Moreover, we found a more profound effect of the interaction of aging/stress/mood on structures located in the left hemisphere. These findings help to clarify some divergent results associated with the aging decline and to enlighten the association between abnormal volumetric alterations and several states that may lead to psychiatric disorders.

  9. Short-term memory predictions across the lifespan: monitoring span before and after conducting a task.

    Science.gov (United States)

    Bertrand, Julie Marilyne; Moulin, Chris John Anthony; Souchay, Céline

    2017-05-01

    Our objective was to explore metamemory in short-term memory across the lifespan. Five age groups participated in this study: 3 groups of children (4-13 years old), and younger and older adults. We used a three-phase task: prediction-span-postdiction. For prediction and postdiction phases, participants reported with a Yes/No response if they could recall in order a series of images. For the span task, they had to actually recall such series. From 4 years old, children have some ability to monitor their short-term memory and are able to adjust their prediction after experiencing the task. However, accuracy still improves significantly until adolescence. Although the older adults had a lower span, they were as accurate as young adults in their evaluation, suggesting that metamemory is unimpaired for short-term memory tasks in older adults. •We investigate metamemory for short-term memory tasks across the lifespan. •We find younger children cannot accurately predict their span length. •Older adults are accurate in predicting their span length. •People's metamemory accuracy was related to their short-term memory span.

  10. Prenatal loss of father during World War One is predictive of a reduced lifespan in adulthood.

    Science.gov (United States)

    Todd, Nicolas; Valleron, Alain-Jacques; Bougnères, Pierre

    2017-04-18

    Although early-life stress is known to alter health, its long-term consequences on mortality remain largely unknown. Thanks to unique French legislation established in 1917 for war orphans and children of disabled soldiers, we were able to study the adult mortality of individuals born in 1914-1916 whose fathers were killed during World War 1. Vital information and socio-demographic characteristics were extracted manually from historical civil registers for 5,671 children born between 1 August 1914 and 31 December 1916 who were granted the status of " pupille de la Nation " (orphan of the Nation). We used a database comprising 1.4 million deceased soldiers to identify war orphans and collect information on their fathers and then paired each orphan with a nonorphan from the same birth register matched for date of birth, sex, and mother's age at the infant's birth. Mortality between ages 31 and 99 y was analyzed for 2,365 orphan/nonorphan pairs. The mean loss of adult lifespan of orphans who had lost their father before birth was 2.4 y (95% CI: 0.7, 3.9 y) and was the result of increased mortality before age 65 y. Adult lifespan was not reduced when the father's death occurred after the infant's birth. These results support the notion that intrauterine exposure to a major psychological maternal stress can affect human longevity.

  11. Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees

    Science.gov (United States)

    Simone-Finstrom, Michael; Li-Byarlay, Hongmei; Huang, Ming H.; Strand, Micheline K.; Rueppell, Olav; Tarpy, David R.

    2016-01-01

    Most pollination in large-scale agriculture is dependent on managed colonies of a single species, the honey bee Apis mellifera. More than 1 million hives are transported to California each year just to pollinate the almonds, and bees are trucked across the country for various cropping systems. Concerns have been raised about whether such “migratory management” causes bees undue stress; however to date there have been no longer-term studies rigorously addressing whether migratory management is detrimental to bee health. To address this issue, we conducted field experiments comparing bees from commercial and experimental migratory beekeeping operations to those from stationary colonies to quantify effects on lifespan, colony health and productivity, and levels of oxidative damage for individual bees. We detected a significant decrease in lifespan of migratory adult bees relative to stationary bees. We also found that migration affected oxidative stress levels in honey bees, but that food scarcity had an even larger impact; some detrimental effects of migration may be alleviated by a greater abundance of forage. In addition, rearing conditions affect levels of oxidative damage incurred as adults. This is the first comprehensive study on impacts of migratory management on the health and oxidative stress of honey bees. PMID:27554200

  12. Life-span development of self-esteem and its effects on important life outcomes.

    Science.gov (United States)

    Orth, Ulrich; Robins, Richard W; Widaman, Keith F

    2012-06-01

    We examined the life-span development of self-esteem and tested whether self-esteem influences the development of important life outcomes, including relationship satisfaction, job satisfaction, occupational status, salary, positive and negative affect, depression, and physical health. Data came from the Longitudinal Study of Generations. Analyses were based on 5 assessments across a 12-year period of a sample of 1,824 individuals ages 16 to 97 years. First, growth curve analyses indicated that self-esteem increases from adolescence to middle adulthood, reaches a peak at about age 50 years, and then decreases in old age. Second, cross-lagged regression analyses indicated that self-esteem is best modeled as a cause rather than a consequence of life outcomes. Third, growth curve analyses, with self-esteem as a time-varying covariate, suggested that self-esteem has medium-sized effects on life-span trajectories of affect and depression, small to medium-sized effects on trajectories of relationship and job satisfaction, a very small effect on the trajectory of health, and no effect on the trajectory of occupational status. These findings replicated across 4 generations of participants--children, parents, grandparents, and their great-grandparents. Together, the results suggest that self-esteem has a significant prospective impact on real-world life experiences and that high and low self-esteem are not mere epiphenomena of success and failure in important life domains. 2012 APA, all rights reserved

  13. Suicide Precipitants Differ Across the Lifespan but Are Not Significant in Predicting Medically Severe Attempts

    Directory of Open Access Journals (Sweden)

    Carol C. Choo

    2018-04-01

    Full Text Available An important risk factor for suicide assessment is the suicide precipitant. This study explores suicide attempt precipitants across the lifespan. Three years of medical records related to suicide attempters who were admitted to the emergency department of a large teaching hospital in Singapore were subjected to analysis. These cases were divided into three age groups: Adolescence, Early Adulthood, and Middle Adulthood. A total of 540 cases were examined (70.9% females; 63.7% Chinese, 13.7% Malays, 15.9% Indians, whose ages ranged from 12 to 62. There were eight cases above the age of 65 years which were excluded from the analysis. Significant differences were found in precipitants for suicide attempts across the lifespan. Middle adults had relatively fewer relationship problems, and adolescents had comparatively fewer financial and medical problems. The models to predict medically severe attempts across the age groups using suicide precipitants were not significant. The findings were discussed in regards to implications in suicide assessment and primary prevention in Singapore, as well as limitations and recommendations for future research.

  14. Lifespan changes in the countermanding performance of young and middle aged adult rats

    Directory of Open Access Journals (Sweden)

    Jonathan Beuk

    2016-08-01

    Full Text Available Inhibitory control can be investigated with the countermanding task, which requires subjects to make a response to a go signal and cancel that response when a stop signal is presented occasionally. Adult humans performing the countermanding task typically exhibit impaired response time, stop signal response time and response accuracy as they get older, but little change in post-error slowing. Rodent models of the countermanding paradigm have been developed recently, yet none have directly examined age-related changes in performance throughout the lifespan. Male Wistar rats (N = 16 were trained to respond to a visual stimulus (go signal by pressing a lever directly below an illuminated light for food reward, but to countermand the lever press subsequent to a tone (stop signal that was presented occasionally (25% of trials at a variable delay. Subjects were tested in 1 hour sessions at approximately 7 and 12 months of age with intermittent training in between. Rats demonstrated longer go trial response time, a higher proportion of go trial errors and performed less total trials at 12, compared to 7 months of age. Consistent stop signal response time and post-error slowing were observed for rats at both ages. These results suggest that the countermanding performance of rats does vary throughout the lifespan, in a manner similar to humans, suggesting that rodents may provide a suitable model for behavioral impairment related to normal aging. These findings also highlight the importance of indicating the age at which rodents are tested in countermanding investigations.

  15. Uneven futures of human lifespans: reckonings from Gompertz mortality rates, climate change, and air pollution.

    Science.gov (United States)

    Finch, Caleb E; Beltrán-Sánchez, Hiram; Crimmins, Eileen M

    2014-01-01

    The past 200 years have enabled remarkable increases in human lifespans through improvements in the living environment that have nearly eliminated infections as a cause of death through improved hygiene, public health, medicine, and nutrition. We argue that the limit to lifespan may be approaching. Since 1997, no one has exceeded Jeanne Calment's record of 122.5 years, despite an exponential increase of centenarians. Moreover, the background mortality may be approaching a lower limit. We calculate from Gompertz coefficients that further increases in longevity to approach a life expectancy of 100 years in 21st century cohorts would require 50% slower mortality rate accelerations, which would be a fundamental change in the rate of human aging. Looking into the 21st century, we see further challenges to health and longevity from the continued burning of fossil fuels that contribute to air pollution as well as global warming. Besides increased heat waves to which elderly are vulnerable, global warming is anticipated to increase ozone levels and facilitate the spread of pathogens. We anticipate continuing socioeconomic disparities in life expectancy.

  16. The effects of oral clefts on hospital use throughout the lifespan

    Directory of Open Access Journals (Sweden)

    Wehby George L

    2012-03-01

    Full Text Available Abstract Background Oral clefts are one of the most common birth defects worldwide. They require multiple healthcare interventions and add significant burden on the health and quality of life of affected individuals. However, not much is known about the long term effects of oral clefts on health and healthcare use of affected individuals. In this study, we evaluate the effects of oral clefts on hospital use throughout the lifespan. Methods We estimate two-part regression models for hospital admission and length of stay for several age groups up to 68 years of age. The study employs unique secondary population-based data from several administrative inpatient, civil registration, demographic and labor market databases for 7,670 individuals born with oral clefts between 1936 and 2002 in Denmark, and 220,113 individuals without oral clefts from a 5% random sample of the total birth population from 1936 to 2002. Results Oral clefts significantly increase hospital use for most ages below 60 years by up to 233% for children ages 0-10 years and 16% for middle age adults. The more severe cleft forms (cleft lip with palate have significantly larger effects on hospitalizations than less severe forms. Conclusions The results suggest that individuals with oral clefts have higher hospitalization risks than the general population throughout most of the lifespan.

  17. C30F12.4 influences oogenesis, fat metabolism, and lifespan in C. elegans

    Directory of Open Access Journals (Sweden)

    Lu Wang

    2016-09-01

    Full Text Available ABSTRACT Reproduction, fat metabolism, and longevity are intertwined regulatory axes; recent studies in C. elegans have provided evidence that these processes are directly coupled. However, the mechanisms by which they are coupled and the reproductive signals modulating fat metabolism and lifespan are poorly understood. Here, we find that an oogenesis-enriched gene, c30f12.4, is specifically expressed and located in germ cells and early embryos; when the gene is knocked out, oogenesis is disrupted and brood size is decreased. In addition to the reproductive phenotype, we find that the loss of c30f12.4 alters fat metabolism, resulting in decreased fat storage and smaller lipid droplets. Meanwhile, c30f12.4 mutant worms display a shortened lifespan. Our results highlight an important role for c30f12.4 in regulating reproduction, fat homeostasis, and aging in C. elegans, which helps us to better understand the relationship between these processes.

  18. DOE life-span radiation effects studies at Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    Thompson, R.C.; Cross, F.T.; Dagle, G.E.; Park, J.F.; Sanders, C.L.

    1986-01-01

    Major life-span radiation effects studies at Pacific Northwest Laboratory fall into three categories: (1) studies with beagle dogs exposed to plutonium compounds via a single inhalation; (2) studies with dogs and rats exposed chronically via inhalation to various combinations and concentrations of radon, radon daughters, and other components of uranium mine atmospheres; and (3) a study in which rats are exposed via single inhalation, in very large numbers, to very low concentrations of 239 PuO 2 . Exposure of beagles currently on study was initiated in 1970 with 239 PuO 2 , in 1973 with 238 PuO 2 , and in 1976 with 239 Pu(NO 3 ) 4 . These experiments involve more than 500 animals, many of them still alive. Experiments seeking to explain the increased incidence of lung cancer in uranium miners have been in progress since 1966. Present emphasis is on studies with rats, in an attempt to define dose-effect relationships at the lowest feasible radon-daughter exposure levels. Our very-low-level experiment with inhaled 239 PuO 2 in rats, with exposures still under way, includes 1000 rats in the control group and 1000 rats in the lowest-exposure group, where life-span lung doses of <5 rads are anticipated

  19. A bodyweight-dependent allometric exponent for scaling clearance across the human life-span.

    Science.gov (United States)

    Wang, Chenguang; Peeters, Mariska Y M; Allegaert, Karel; Blussé van Oud-Alblas, Heleen J; Krekels, Elke H J; Tibboel, Dick; Danhof, Meindert; Knibbe, Catherijne A J

    2012-06-01

    To explore different allometric equations for scaling clearance across the human life-span using propofol as a model drug. Data from seven previously published propofol studies ((pre)term neonates, infants, toddlers, children, adolescents and adults) were analysed using NONMEM VI. To scale clearance, a bodyweight-based exponential equation with four different structures for the exponent was used: (I) 3/4 allometric scaling model; (II) mixture model; (III) bodyweight-cut-point separated model; (IV) bodyweight-dependent exponent model. Model I adequately described clearance in adults and older children, but overestimated clearance of neonates and underestimated clearance of infants. Use of two different exponents in Model II and Model III showed significantly improved performance, but yielded ambiguities on the boundaries of the two subpopulations. This discontinuity was overcome in Model IV, in which the exponent changed sigmoidally from 1.35 at a hypothetical bodyweight of 0 kg to a value of 0.56 from 10 kg onwards, thereby describing clearance of all individuals best. A model was developed for scaling clearance over the entire human life-span with a single continuous equation, in which the exponent of the bodyweight-based exponential equation varied with bodyweight.

  20. Nursing Across the Lifespan: Implications of Lifecourse Theory for Nursing Research.

    Science.gov (United States)

    Bates, Randi A; Blair, Lisa M; Schlegel, Emma C; McGovern, Colleen M; Nist, Marliese Dion; Sealschott, Stephanie; Arcoleo, Kimberly

    Despite the lifecourse focus of nursing clinical care, nursing research largely remains cross-sectional or process-oriented within silos determined by patient characteristics such as age, acuity, or disease process. Incorporating interdisciplinary lifecourse theory into pediatric nursing research provides the opportunity to expand nursing theories and research beyond practice, age, and disease silos. One such theory is the Lifecourse Health Development (LCHD) framework. LCHD takes a more expansive view of health development from preconception through old age based on the premise that health is a consequence of transactions between genetic, biological, behavioral, social, and economic contexts that change as a child develops over time (Halfon & Hochstein, 2002). LCHD also explains how intergenerational influences and prevention during early life help predict health development and disease over the lifespan. The preventive and lifecourse focus of LCHD is well-aligned with the lifespan wellness foci of pediatric nurses. The purpose of this article is to introduce pediatric nurse researchers to LCHD and discuss proposed augmentations and implications related to expanding LCHD into pediatric nursing research. Copyright © 2017 National Association of Pediatric Nurse Practitioners. Published by Elsevier Inc. All rights reserved.

  1. Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB.

    Science.gov (United States)

    Mair, William; Morantte, Ianessa; Rodrigues, Ana P C; Manning, Gerard; Montminy, Marc; Shaw, Reuben J; Dillin, Andrew

    2011-02-17

    Activating AMPK or inactivating calcineurin slows ageing in Caenorhabditis elegans and both have been implicated as therapeutic targets for age-related pathology in mammals. However, the direct targets that mediate their effects on longevity remain unclear. In mammals, CREB-regulated transcriptional coactivators (CRTCs) are a family of cofactors involved in diverse physiological processes including energy homeostasis, cancer and endoplasmic reticulum stress. Here we show that both AMPK and calcineurin modulate longevity exclusively through post-translational modification of CRTC-1, the sole C. elegans CRTC. We demonstrate that CRTC-1 is a direct AMPK target, and interacts with the CREB homologue-1 (CRH-1) transcription factor in vivo. The pro-longevity effects of activating AMPK or deactivating calcineurin decrease CRTC-1 and CRH-1 activity and induce transcriptional responses similar to those of CRH-1 null worms. Downregulation of crtc-1 increases lifespan in a crh-1-dependent manner and directly reducing crh-1 expression increases longevity, substantiating a role for CRTCs and CREB in ageing. Together, these findings indicate a novel role for CRTCs and CREB in determining lifespan downstream of AMPK and calcineurin, and illustrate the molecular mechanisms by which an evolutionarily conserved pathway responds to low energy to increase longevity.

  2. Beat Synchronization across the Lifespan: Intersection of Development and Musical Experience.

    Directory of Open Access Journals (Sweden)

    Elaine C Thompson

    Full Text Available Rhythmic entrainment, or beat synchronization, provides an opportunity to understand how multiple systems operate together to integrate sensory-motor information. Also, synchronization is an essential component of musical performance that may be enhanced through musical training. Investigations of rhythmic entrainment have revealed a developmental trajectory across the lifespan, showing synchronization improves with age and musical experience. Here, we explore the development and maintenance of synchronization in childhood through older adulthood in a large cohort of participants (N = 145, and also ask how it may be altered by musical experience. We employed a uniform assessment of beat synchronization for all participants and compared performance developmentally and between individuals with and without musical experience. We show that the ability to consistently tap along to a beat improves with age into adulthood, yet in older adulthood tapping performance becomes more variable. Also, from childhood into young adulthood, individuals are able to tap increasingly close to the beat (i.e., asynchronies decline with age, however, this trend reverses from younger into older adulthood. There is a positive association between proportion of life spent playing music and tapping performance, which suggests a link between musical experience and auditory-motor integration. These results are broadly consistent with previous investigations into the development of beat synchronization across the lifespan, and thus complement existing studies and present new insights offered by a different, large cross-sectional sample.

  3. A regulated response to impaired respiration slows behavioral rates and increases lifespan in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    David Cristina

    2009-04-01

    Full Text Available When mitochondrial respiration or ubiquinone production is inhibited in Caenorhabditis elegans, behavioral rates are slowed and lifespan is extended. Here, we show that these perturbations increase the expression of cell-protective and metabolic genes and the abundance of mitochondrial DNA. This response is similar to the response triggered by inhibiting respiration in yeast and mammalian cells, termed the "retrograde response". As in yeast, genes switched on in C. elegans mitochondrial mutants extend lifespan, suggesting an underlying evolutionary conservation of mechanism. Inhibition of fstr-1, a potential signaling gene that is up-regulated in clk-1 (ubiquinone-defective mutants, and its close homolog fstr-2 prevents the expression of many retrograde-response genes and accelerates clk-1 behavioral and aging rates. Thus, clk-1 mutants live in "slow motion" because of a fstr-1/2-dependent pathway that responds to ubiquinone. Loss of fstr-1/2 does not suppress the phenotypes of all long-lived mitochondrial mutants. Thus, although different mitochondrial perturbations activate similar transcriptional and physiological responses, they do so in different ways.

  4. Dietary Supplements for Weight Loss

    Science.gov (United States)

    Dietary Supplements for Weight Loss Fact Sheet for Consumers If you’re thinking about taking a dietary supplement to lose weight, talk with your health care provider. What are weight-loss dietary supplements and what do they do? The ...

  5. Climate friendly dietary guidelines

    DEFF Research Database (Denmark)

    Trolle, Ellen; Mogensen, Lisbeth; Thorsen, Anne Vibeke

    2014-01-01

    ) modifying the average diet according to the Danish food based dietary guidelines, 2) and adjusting to ensure an iso-energy content and a nutrient content according to the Nordic Nutrient Recommendations. Afterwards the healthy diet were changed further to reduce CF. CF from the diet was reduced by 4...

  6. Calycosin promotes lifespan in Caenorhabditis elegans through insulin signaling pathway via daf-16, age-1 and daf-2.

    Science.gov (United States)

    Lu, Lulu; Zhao, Xuan; Zhang, Jianyong; Li, Miao; Qi, Yonghao; Zhou, Lijun

    2017-07-01

    The naturally occurring calycosin is a known antioxidant that prevents redox imbalance in organisms. However, calycosin's effect on lifespan and its physiological molecular mechanisms are not yet well understood. In this study, we demonstrated that calycosin could prolong the lifespan of Caenorhabditis elegans, and that such extension was associated with its antioxidant capability as well as its ability to enhance stress resistance and reduce ROS (reactive oxygen species) accumulation. To explore mechanisms of this longevity effect, we assessed the impact of calycosin on lifespans of insulin-signaling impaired worms: daf-2, age-1, and daf-16 mutants. We found that calycosin did not alter the lifespan of all three mutants, thereby suggesting that calycosin requires insulin signaling to promote lifespan extension. On the other hand, we observed that calycosin could enhance the nuclear translocation of the core transcription factor DAF-16/FoXO instead of the conserved stress-responsive transcription factor SKN-1/Nrf-2. This observation is consistent with the understanding that the nuclear localized DAF-16 up-regulates its downstream targets sod-3, ctl-1, and hsp-16.2. Lastly, it is also noteworthy that the longevity effect of calycosin is likely not associated with the calorie restriction mechanism. Collectively, our results strongly suggest that calycosin could function as an antioxidant to extend the lifespan of C. elegans by enhancing nucleus translocation of DAF-16 through the insulin-signaling pathway. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. A functional genomic screen for evolutionarily conserved genes required for lifespan and immunity in germline-deficient C. elegans.

    Directory of Open Access Journals (Sweden)

    Amit Sinha

    Full Text Available The reproductive system regulates lifespan in insects, nematodes and vertebrates. In Caenorhabditis elegans removal of germline increases lifespan by 60% which is dependent upon insulin signaling, nuclear hormone signaling, autophagy and fat metabolism and their microRNA-regulators. Germline-deficient C. elegans are also more resistant to various bacterial pathogens but the underlying molecular mechanisms are largely unknown. Firstly, we demonstrate that previously identified genes that regulate the extended lifespan of germline-deficient C. elegans (daf-2, daf-16, daf-12, tcer-1, mir-7.1 and nhr-80 are also essential for resistance to the pathogenic bacterium Xenorhabdus nematophila. We then use a novel unbiased approach combining laser cell ablation, whole genome microarrays, RNAi screening and exposure to X. nematophila to generate a comprehensive genome-wide catalog of genes potentially required for increased lifespan and innate immunity in germline-deficient C. elegans. We find 3,440 genes to be upregulated in C. elegans germline-deficient animals in a gonad dependent manner, which are significantly enriched for genes involved in insulin signaling, fatty acid desaturation, translation elongation and proteasome complex function. Using RNAi against a subset of 150 candidate genes selected from the microarray results, we show that the upregulated genes such as transcription factor DAF-16/FOXO, the PTEN homolog lipid phosphatase DAF-18 and several components of the proteasome complex (rpn-6.1, rpn-7, rpn-9, rpn-10, rpt-6, pbs-3 and pbs-6 are essential for both lifespan and immunity of germline deficient animals. We also identify a novel role for genes including par-5 and T12G3.6 in both lifespan-extension and increased survival on X. nematophila. From an evolutionary perspective, most of the genes differentially expressed in germline deficient C. elegans also show a conserved expression pattern in germline deficient Pristionchus pacificus, a

  8. Stochastic dietary restriction using a Markov-chain feeding protocol elicits complex, life history response in medflies

    Science.gov (United States)

    Carey, James R.; Liedo, Pablo; Müller, Hans-Georg; Wang, Jane-Ling; Zhang, Ying; Harshman, Lawrence

    2008-01-01

    Summary Lifespan in individually housed medflies (virgins of both sexes) and daily reproduction for females were studied following one of 12 dietary restriction (DR) treatments in which the availability of high-quality food (yeast–sugar mixture) for each fly was based on a Markov chain feeding scheme – a stochastic dietary regime which specifies that the future dietary state depends only on the present dietary state and not on the path by which the present state was achieved. The stochastic treatments consisted of a combination of one of four values of a ‘discovery’ parameter and one of three values of a ‘persistence’ parameter. The results supported the hypotheses that: (i) longevity is extended in most medfly cohorts subject to stochastic DR; and (ii) longevity is more affected by the patch discovery than the patch persistence parameter. One of the main conclusions of the study is that, in combination with the results of earlier dietary restriction studies on the medfly, the results reinforce the concept that the details of the dietary restriction protocols have a profound impact on the sign and magnitude of the longevity extension relative to ad libitum cohorts and that a deeper understanding of the effect of food restriction on longevity is not possible without an understanding of its effect on reproduction. PMID:15659211

  9. Evidence That Lifelong Low Dose Rates of Ionizing Radiation Increase Lifespan in Long- and Short-Lived Dogs

    OpenAIRE

    Cuttler, Jerry M.; Feinendegen, Ludwig E.; Socol, Yehoshua

    2017-01-01

    After the 1956 radiation scare to stop weapons testing, studies focused on cancer induction by low-level radiation. Concern has shifted to protecting “radiation-sensitive individuals.” Since longevity is a measure of health impact, this analysis reexamined data to compare the effect of dose rate on the lifespans of short-lived (5% and 10% mortality) dogs and on the lifespans of dogs at 50% mortality. The data came from 2 large-scale studies. One exposed 10 groups to different γ dose rates; th...

  10. Dietary acculturation in Asian Americans.

    Science.gov (United States)

    Serafica, Reimund C

    2014-01-01

    The purpose of this literature review is to promote a better understanding of the construct of dietary acculturation in recent years and how it affects dietary intake of Asian-American population. Four databases were searched simultaneously using the following key terms: Asian-Americans, dietary practices, eating habits, and dietary acculturation. A total of seven articles were relevant and met the inclusion criteria. The findings from these studies of dietary acculturation in Asian Americans are generally in agreement with other dietary acculturation research conducted in non-Asian population samples. Although the studies presented in this literature review represent the recent researches conducted in Asian populations in the US, the research in dietary acculturation remains sparse.

  11. Transcriptional regulation of Caenorhabditis elegans FOXO/DAF-16 modulates lifespan.

    Science.gov (United States)

    Bansal, Ankita; Kwon, Eun-Soo; Conte, Darryl; Liu, Haibo; Gilchrist, Michael J; MacNeil, Lesley T; Tissenbaum, Heidi A

    2014-01-01

    Insulin/IGF-1 signaling plays a central role in longevity across phylogeny. In C. elegans, the forkhead box O (FOXO) transcription factor, DAF-16, is the primary target of insulin/IGF-1 signaling, and multiple isoforms of DAF-16 (a, b, and d/f) modulate lifespan, metabolism, dauer formation, and stress resistance. Thus far, across phylogeny modulation of mammalian FOXOs and DAF-16 have focused on post-translational regulation with little focus on transcriptional regulation. In C. elegans, we have previously shown that DAF-16d/f cooperates with DAF-16a to promote longevity. In this study, we generated transgenic strains expressing near-endogenous levels of either daf-16a or daf-16d/f, and examined temporal expression of the isoforms to further define how these isoforms contribute to lifespan regulation. Here, we show that DAF-16a is sensitive both to changes in gene dosage and to alterations in the level of insulin/IGF-1 signaling. Interestingly, we find that as worms age, the intestinal expression of daf-16d/f but not daf-16a is dramatically upregulated at the level of transcription. Preventing this transcriptional upregulation shortens lifespan, indicating that transcriptional regulation of daf-16d/f promotes longevity. In an RNAi screen of transcriptional regulators, we identify elt-2 (GATA transcription factor) and swsn-1 (core subunit of SWI/SNF complex) as key modulators of daf-16d/f gene expression. ELT-2 and another GATA factor, ELT-4, promote longevity via both DAF-16a and DAF-16d/f while the components of SWI/SNF complex promote longevity specifically via DAF-16d/f. Our findings indicate that transcriptional control of C. elegans FOXO/daf-16 is an essential regulatory event. Considering the conservation of FOXO across species, our findings identify a new layer of FOXO regulation as a potential determinant of mammalian longevity and age-related diseases such as cancer and diabetes.

  12. Development of Glutamatergic Proteins in Human Visual Cortex across the Lifespan.

    Science.gov (United States)

    Siu, Caitlin R; Beshara, Simon P; Jones, David G; Murphy, Kathryn M

    2017-06-21

    Traditionally, human primary visual cortex (V1) has been thought to mature within the first few years of life, based on anatomical studies of synapse formation, and establishment of intracortical and intercortical connections. Human vision, however, develops well beyond the first few years. Previously, we found prolonged development of some GABAergic proteins in human V1 (Pinto et al., 2010). Yet as >80% of synapses in V1 are excitatory, it remains unanswered whether the majority of synapses regulating experience-dependent plasticity and receptive field properties develop late, like their inhibitory counterparts. To address this question, we used Western blotting of postmortem tissue from human V1 (12 female, 18 male) covering a range of ages. Then we quantified a set of postsynaptic glutamatergic proteins (PSD-95, GluA2, GluN1, GluN2A, GluN2B), calculated indices for functional pairs that are developmentally regulated (GluA2:GluN1; GluN2A:GluN2B), and determined interindividual variability. We found early loss of GluN1, prolonged development of PSD-95 and GluA2 into late childhood, protracted development of GluN2A until ∼40 years, and dramatic loss of GluN2A in aging. The GluA2:GluN1 index switched at ∼1 year, but the GluN2A:GluN2B index continued to shift until ∼40 year before changing back to GluN2B in aging. We also identified young childhood as a stage of heightened interindividual variability. The changes show that human V1 develops gradually through a series of five orchestrated stages, making it likely that V1 participates in visual development and plasticity across the lifespan. SIGNIFICANCE STATEMENT Anatomical structure of human V1 appears to mature early, but vision changes across the lifespan. This discrepancy has fostered two hypotheses: either other aspects of V1 continue changing, or later changes in visual perception depend on extrastriate areas. Previously, we showed that some GABAergic synaptic proteins change across the lifespan, but most

  13. Dietary fat composition influences glomerular and proximal convoluted tubule cell structure and autophagic processes in kidneys from calorie-restricted mice.

    Science.gov (United States)

    Calvo-Rubio, Miguel; Burón, M Isabel; López-Lluch, Guillermo; Navas, Plácido; de Cabo, Rafael; Ramsey, Jon J; Villalba, José M; González-Reyes, José A

    2016-06-01

    Calorie restriction (CR) has been repeatedly shown to prevent cancer, diabetes, hypertension, and other age-related diseases in a wide range of animals, including non-human primates and humans. In rodents, CR also increases lifespan and is a powerful tool for studying the aging process. Recently, it has been reported in mice that dietary fat plays an important role in determining lifespan extension with 40% CR. In these conditions, animals fed lard as dietary fat showed an increased longevity compared with mice fed soybean or fish oils. In this paper, we study the effect of these dietary fats on structural and physiological parameters of kidney from mice maintained on 40% CR for 6 and 18 months. Analyses were performed using quantitative electron microcopy techniques and protein expression in Western blots. CR mitigated most of the analyzed age-related parameters in kidney, such as glomerular basement membrane thickness, mitochondrial mass in convoluted proximal tubules and autophagic markers in renal homogenates. The lard group showed improved preservation of several renal structures with aging when compared to the other CR diet groups. These results indicate that dietary fat modulates renal structure and function in CR mice and plays an essential role in the determination of health span in rodents. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  14. Reduced costs of reproduction in females mediate a shift from a male-biased to a female-biased lifespan in humans

    Science.gov (United States)

    Bolund, Elisabeth; Lummaa, Virpi; Smith, Ken R.; Hanson, Heidi A.; Maklakov, Alexei A.

    2016-01-01

    The causes underlying sex differences in lifespan are strongly debated. While females commonly outlive males in humans, this is generally less pronounced in societies before the demographic transition to low mortality and fertility rates. Life-history theory suggests that reduced reproduction should benefit female lifespan when females pay higher costs of reproduction than males. Using unique longitudinal demographic records on 140,600 reproducing individuals from the Utah Population Database, we demonstrate a shift from male-biased to female-biased adult lifespans in individuals born before versus during the demographic transition. Only women paid a cost of reproduction in terms of shortened post-reproductive lifespan at high parities. Therefore, as fertility decreased over time, female lifespan increased, while male lifespan remained largely stable, supporting the theory that differential costs of reproduction in the two sexes result in the shifting patterns of sex differences in lifespan across human populations. Further, our results have important implications for demographic forecasts in human populations and advance our understanding of lifespan evolution. PMID:27087670

  15. Dietary Patterns in Childhood

    DEFF Research Database (Denmark)

    Andersen, Louise Beltoft Borup

    nutrients. However, little is known about the development of dietary patterns in childhood both in relation to possible indicators and to obesity related outcomes. Therefore, the aim of this PhD thesis was to make exploratory analyses of dietary patterns in childhood using the method principal component......A healthy diet is essential for healthy growth and development during childhood and may prevent obesity, diabetes, and cardiovascular diseases throughout life. Traditionally, diet has been investigated as single nutrients. However, people do not eat one single nutrient and they do not even eat one...... analysis (PCA) and to investigate associations to possible indicators and outcomes related to growth and obesity. This was based on two observational cohort studies (SKOT I, SKOT II) and one intervention study (MoMS). The research showed that PCA is a suitable method for understanding some...

  16. [Dietary life style of Japanese college students: relationship between dietary life, mental health and eating disorders].

    Science.gov (United States)

    Takano, Yuji; Nouchi, Rui; Takano, Haruka; Kojima, Akiko; Sato, Shinichi

    2009-10-01

    A scale was constructed to investigate the dietary life style of Japanese college students relating to dietary life, mental health, and eating disorders. Exploratory factor analysis found four factors, termed "dietary mood," "dietary regulation," "dietary stress avoidance behavior," and "food safety." Cluster analysis revealed four typical dietary habits of Japanese college students: "deprecating food safety," "dietary regulation oriented and infrequent dietary stress avoidance behavior," "deprecating dietary moods," and "frequent dietary stress avoidance behavior." Regarding eating disorders, a high percentage of the moderate eating disorder group exhibited frequent dietary stress avoidance behavior. Regarding mental health, a high percentage of the healthy group showed dietary regulation orientation and infrequent dietary stress avoidance behavior. A high percentage of the neurotic-level participants deprecated dietary moods. These results suggest that dietary regulation and deprecatory mood and infrequent dietary stress avoidance behavior lead to college students having a healthy dietary life.

  17. Effecting dietary change.

    Science.gov (United States)

    Adamson, Ashley J; Mathers, John C

    2004-11-01

    A world epidemic of diet-related chronic disease is currently being faced. In the UK incidence of obesity alone has tripled in the last 20 years and this trend is predicted to continue. Consensus exists for the urgent need for a change in diet and other lifestyle factors and for the direction and targets for this change. The evidence for how this change can be achieved is less certain. It has been established that disease processes begin in childhood. Recent evidence indicates that dietary habits too are established in childhood but that these habits are amenable to change. While establishing a healthy lifestyle in childhood is paramount, interventions have the potential to promote positive change throughout the life course. Success in reversing current trends in diet-related disease will depend on commitment from legislators, health professionals, industry and individuals, and this collaboration must seek to address not only the food choices of the individual but also the environment that influences such choices. Recent public health policy development in England, if fully supported and implemented, is a positive move towards this goal. Evidence for effective strategies to promote dietary change at the individual level is emerging and three reviews of this evidence are discussed. In addition, three recent dietary intervention studies, in three different settings and with different methods and aims, are presented to illustrate methods of effecting dietary change. Further work is required on what factors influence the eating behaviour and physical activity of individuals. There is a need for further theory-based research on which to develop more effective strategies to enable individuals to adopt healthier lifestyles.

  18. The golden root, Rhodiola rosea, prolongs lifespan but decreases oxidative stress resistance in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Bayliak, Maria M; Lushchak, Volodymyr I

    2011-11-15

    The effect of aqueous extract from R. rosea root on lifespan and the activity of antioxidant enzymes in budding yeast Saccharomyces cerevisiae have been studied. The supplementation of the growth medium with R. rosea extract decreased survival of exponentially growing S. cerevisiae cells under H(2)O(2)-induced oxidative stress, but increased viability and reproduction success of yeast cells in stationary phase. The extract did not significantly affect catalase activity and decreased SOD activity in chronologically aged yeast population. These results suggest that R. rosea acts as a stressor for S. cerevisiae cells, what sensitizes yeast cells to oxidative stress at exponential phase, but induces adaptation in stationary phase cells demonstrating the positive effect on yeast survival without activation of major antioxidant enzymes. Copyright © 2011 Elsevier GmbH. All rights reserved.

  19. A Cross-Sectional Study of Ageing and Cardiovascular Function over the Baboon Lifespan.

    Directory of Open Access Journals (Sweden)

    Kristen R Yeung

    Full Text Available Ageing is associated with changes at the molecular and cellular level that can alter cardiovascular function and ultimately lead to disease. The baboon is an ideal model for studying ageing due to the similarities in genetic, anatomical, physiological and biochemical characteristics with humans. The aim of this cross-sectional study was to investigate the changes in cardiovascular profile of baboons over the course of their lifespan.Data were collected from 109 healthy baboons (Papio hamadryas at the Australian National Baboon Colony. A linear regression model, adjusting for sex, was used to analyse the association between age and markers of ageing with P 12 years had significantly shorter telomeres when compared to younger (<3 years baboons (P = 0.001.This study is the first to demonstrate that cardiovascular function alters with age in the baboon. This research identifies similarities within cardiovascular parameters between humans and baboon even though the length of life differs between the two species.

  20. Shortened Lifespan and Lethal Hemorrhage in a Hemophilia A Mouse Model.

    Science.gov (United States)

    Staber, Janice M; Pollpeter, Molly J

    2016-01-01

    Hemophilia A animal models have helped advance our understanding of factor VIII deficiency. Previously, factor VIII deficient mouse models were reported to have a normal life span without spontaneous bleeds. However, the bleeding frequency and survival in these animals has not been thoroughly evaluated. To investigate the survival and lethal bleeding frequency in two strains of E-16 hemophilia A mice. We prospectively studied factor VIII deficient hemizygous affected males (n = 83) and homozygous affected females (n = 55) for survival and bleeding frequency. Animals were evaluated for presence and location of bleeds as potential cause of death. Hemophilia A mice had a median survival of 254 days, which is significantly shortened compared to wild type controls (p hemophilia A mice experienced hemorrhage in several tissues. This previously-underappreciated shortened survival in the hemophilia A murine model provides new outcomes for investigation of therapeutics and also reflects the shortened lifespan of patients if left untreated.

  1. Contrasting effects of vocabulary knowledge on temporal and parietal brain structure across lifespan.

    Science.gov (United States)

    Richardson, Fiona M; Thomas, Michael S C; Filippi, Roberto; Harth, Helen; Price, Cathy J

    2010-05-01

    Using behavioral, structural, and functional imaging techniques, we demonstrate contrasting effects of vocabulary knowledge on temporal and parietal brain structure in 47 healthy volunteers who ranged in age from 7 to 73 years. In the left posterior supramarginal gyrus, vocabulary knowledge was positively correlated with gray matter density in teenagers but not adults. This region was not activated during auditory or visual sentence processing, and activation was unrelated to vocabulary skills. Its gray matter density may reflect the use of an explicit learning strategy that links new words to lexical or conceptual equivalents, as used in formal education and second language acquisition. By contrast, in left posterior temporal regions, gray matter as well as auditory and visual sentence activation correlated with vocabulary knowledge throughout lifespan. We propose that these effects reflect the acquisition of vocabulary through context, when new words are learnt within the context of semantically and syntactically related words.

  2. Challenges in the diagnosis and treatment of depression in autism spectrum disorders across the lifespan.

    Science.gov (United States)

    Chandrasekhar, Tara; Sikich, Linmarie

    2015-06-01

    Diagnosis and treatment of comorbid neuropsychiatric illness is often a secondary focus of treatment in individuals with autism spectrum disorder (ASD), given that substantial impairment may be caused by core symptoms of ASD itself. However, psychiatric comorbidities, including depressive disorders, are common and frequently result in additional functional impairment, treatment costs, and burden on caregivers. Clinicians may struggle to appropriately diagnose depression in ASD due to communication deficits, atypical presentation of depression in ASD, and lack of standardized diagnostic tools. Specific risk and resilience factors for depression in ASD across the lifespan, including level of functioning, age, family history, and coping style, have been suggested, but require further study. Treatment with medications or psychotherapy may be beneficial, though more research is required to establish guidelines for management of symptoms. This review will describe typical presentations of depression in individuals with ASD, review current information on the prevalence, assessment, and treatment of comorbid depression in individuals with ASD, and identify important research gaps.

  3. Self-Reported Ageism Across the Lifespan: Role of Aging Knowledge.

    Science.gov (United States)

    Cherry, Katie E; Brigman, Susan; Lyon, Bethany A; Blanchard, Blakeley; Walker, Erin J; Smitherman, Emily A

    2016-10-01

    The authors examined the prevalence of self-reported ageist behaviors in a lifespan sample ranging in age from 13 to 91 years. Participants completed the Relating to Older People Evaluation (Cherry & Palmore). Results indicated that adolescents and young adults reported fewer ageist behaviors overall than did middle-aged and older adults. Positive ageist behaviors were more frequent than negative ageist behaviors for people of all ages. Women endorsed positive ageism items more often than men, although men and women did not differ in frequency of negative ageist behaviors. Follow-up analyses on participants' responses to two knowledge of aging measures, the Facts on Aging Quiz and the Knowledge of Memory Aging Questionnaire, showed that knowledge of aging was significantly correlated with negative ageist behaviors, after controlling for age and gender. Implications of these findings for current views of ageism (positive and negative) are discussed. © The Author(s) 2016.

  4. Sex differences in the gut microbiome-brain axis across the lifespan.

    Science.gov (United States)

    Jašarević, Eldin; Morrison, Kathleen E; Bale, Tracy L

    2016-02-19

    In recent years, the bidirectional communication between the gut microbiome and the brain has emerged as a factor that influences immunity, metabolism, neurodevelopment and behaviour. Cross-talk between the gut and brain begins early in life immediately following the transition from a sterile in utero environment to one that is exposed to a changing and complex microbial milieu over a lifetime. Once established, communication between the gut and brain integrates information from the autonomic and enteric nervous systems, neuroendocrine and neuroimmune signals, and peripheral immune and metabolic signals. Importantly, the composition and functional potential of the gut microbiome undergoes many transitions that parallel dynamic periods of brain development and maturation for which distinct sex differences have been identified. Here, we discuss the sexually dimorphic development, maturation and maintenance of the gut microbiome-brain axis, and the sex differences therein important in disease risk and resilience throughout the lifespan. © 2016 The Author(s).

  5. Sex differences in the gut microbiome–brain axis across the lifespan

    Science.gov (United States)

    Jašarević, Eldin; Morrison, Kathleen E.; Bale, Tracy L.

    2016-01-01

    In recent years, the bidirectional communication between the gut microbiome and the brain has emerged as a factor that influences immunity, metabolism, neurodevelopment and behaviour. Cross-talk between the gut and brain begins early in life immediately following the transition from a sterile in utero environment to one that is exposed to a changing and complex microbial milieu over a lifetime. Once established, communication between the gut and brain integrates information from the autonomic and enteric nervous systems, neuroendocrine and neuroimmune signals, and peripheral immune and metabolic signals. Importantly, the composition and functional potential of the gut microbiome undergoes many transitions that parallel dynamic periods of brain development and maturation for which distinct sex differences have been identified. Here, we discuss the sexually dimorphic development, maturation and maintenance of the gut microbiome–brain axis, and the sex differences therein important in disease risk and resilience throughout the lifespan. PMID:26833840

  6. Buffering the pH of the culture medium does not extend yeast replicative lifespan.

    Science.gov (United States)

    Wasko, Brian M; Carr, Daniel T; Tung, Herman; Doan, Ha; Schurman, Nathan; Neault, Jillian R; Feng, Joey; Lee, Janet; Zipkin, Ben; Mouser, Jacob; Oudanonh, Edward; Nguyen, Tina; Stetina, Torin; Shemorry, Anna; Lemma, Mekedes; Kaeberlein, Matt

    2013-01-01

    During chronological aging of budding yeast cells, the culture medium can become acidified, and this acidification limits cell survival.  As a consequence, buffering the culture medium to pH 6 significantly extends chronological life span under standard conditions in synthetic medium.  In this study, we assessed whether a similar process occurs during replicative aging of yeast cells.  We find no evidence that buffering the pH of the culture medium to pH levels either higher or lower than the initial pH of the medium is able to significantly extend replicative lifespan.  Thus, we conclude that, unlike chronological life span, replicative life span is not limited by acidification of the culture medium or by changes in the pH of the environment.

  7. Significance of Building Maintenance Management on Life-Span of Buildings

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin

    2017-06-01

    Full Text Available The attentions and skills of maintenance are required for the construction of buildings in this twenty-first century. Because much architectural education is still focused on the one-of-a-kind assignment, encouraging the notion of personal fulfillment through leaving a mark for off-springs and obtaining a design award by means of concept drawings. Due to the reason that many building designers (architects, engineers, technicians are not encompassed in the subsequent maintenance of the building, they just regard it as other specialists’ responsibilities. In all likelihood, the building user-to-be has no formal role: the building contractors just fulfill their accountabilities to complete the building in compliance with the contract documents, not to care occupier’s needs and wants. This paper will focus on the important of building maintenance management on the life-span of buildings.

  8. Overexpression of malic enzyme in the larval stage extends Drosophila lifespan.

    Science.gov (United States)

    Kim, Gye-Hyeong; Lee, Young-Eun; Lee, Gun-Ho; Cho, Youn-Ho; Lee, Young-Nam; Jang, Yeogil; Paik, Donggi; Park, Joong-Jean

    2015-01-09

    Metabolic modifications during the developmental period can extend longevity. We found that malic enzyme (Men) overexpression during the larval period lengthened the lifespan of Drosophila. Men overexpression by S106-GeneSwitch-Gal4 driver increased pyruvate content and NADPH/NADP(+) ratio but reduced triglyceride, glycogen, and ATP levels in the larvae. ROS levels increased unexpectedly in Men-overexpressing larvae. Interestingly, adults exposed to larval Men-overexpression maintained ROS tolerance with enhanced expression levels of glutathione-S-transferase D2 and thioredoxin-2. Our results suggest that metabolic changes mediated by Men during development might be related to the control of ROS tolerance and the longevity of Drosophila. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Connections Matter: Social Networks and Lifespan Health in Primate Translational Models

    Science.gov (United States)

    McCowan, Brenda; Beisner, Brianne; Bliss-Moreau, Eliza; Vandeleest, Jessica; Jin, Jian; Hannibal, Darcy; Hsieh, Fushing

    2016-01-01

    Humans live in societies full of rich and complex relationships that influence health. The ability to improve human health requires a detailed understanding of the complex interplay of biological systems that contribute to disease processes, including the mechanisms underlying the influence of social contexts on these biological systems. A longitudinal computational systems science approach provides methods uniquely suited to elucidate the mechanisms by which social systems influence health and well-being by investigating how they modulate the interplay among biological systems across the lifespan. In the present report, we argue that nonhuman primate social systems are sufficiently complex to serve as model systems allowing for the development and refinement of both analytical and theoretical frameworks linking social life to health. Ultimately, developing systems science frameworks in nonhuman primate models will speed discovery of the mechanisms that subserve the relationship between social life and human health. PMID:27148103

  10. Natural Dietary Phytosterols.

    Science.gov (United States)

    Racette, Susan B; Lin, Xiaobo; Ma, Lina; Ostlund, Richard E

    2015-01-01

    Most clinical phytosterol studies are performed by adding purified supplements to smaller phytosterol amounts present in the natural diet. However, natural dietary phytosterols themselves may also have important effects on cholesterol metabolism. Epidemiological work using food frequency questionnaires to estimate dietary intake suggest that extremes of normal consumption may be associated with 3-14% changes in LDL cholesterol. Standardized food databases do not have enough phytosterol values to allow calculation of phytosterol intake for individuals outside of specialized studies. Natural diets contain phytosterol amounts ranging from less than 60 mg/2000 kcal to over 500 mg/2000 kcal. Physiological studies in which whole body cholesterol metabolism is investigated show large effects of natural dietary phytosterols on cholesterol absorption efficiency, cholesterol biosynthesis and cholesterol excretion which exceed the magnitude of changes in LDL cholesterol. The dual effects of natural phytosterols on both LDL-C and whole body cholesterol metabolism need to be considered in relating them to potential protection from coronary heart disease risk.

  11. Dietary treatment of nephrolithiasis.

    Science.gov (United States)

    Nouvenne, Antonio; Meschi, Tiziana; Guerra, Angela; Allegri, Franca; Prati, Beatrice; Borghi, Loris

    2008-05-01

    The prevalence of idiopathic nephrolithiasis is increasing in rich countries. Dietary manipulation could contribute to the prevention of both its first appearance and the recurrence of the disease. The target of dietary treatment is to decrease the "urinary lithogenic risk factors" such as low urine volume, hypercalciuria, hyperoxaluria, hyperuricosuria, hyperphosphaturia, hypocitraturia, hypomagnesuria and excessively alkaline or acid urinary pH. Due to the lack of randomized controlled trials focused on this problem, there is not ample evidence to confidently recommend dietary changes. Despite this, numerous recent and past experiences support modification of diet as having a primary role in the prevention of nephrolithiasis. In particular, it is recommended to limit animal protein and salt intake, to consume milk and derivatives in amounts corresponding to calcium intake of about 1200 mg/day and to assume fiber (40 g/day), vegetables and fruit daily avoiding foods with high oxalate content. Furthermore, vitamin C intake not exceeding 1500 mg/day plays a protective role as well as avoiding vitamin B6 deficiency and abstaining, if possible, from vitamin D supplements. Lastly, it is recommended to drink enough water to bring the urinary volume up to at least 2 L/day and, as much as possible, to use fresh or frozen products rather than prepacked or precooked foods which are often too rich in sodium chloride.

  12. Dietary methanol and autism.

    Science.gov (United States)

    Walton, Ralph G; Monte, Woodrow C

    2015-10-01

    The authors sought to establish whether maternal dietary methanol during pregnancy was a factor in the etiology of autism spectrum disorders. A seven item questionnaire was given to women who had given birth to at least one child after 1984. The subjects were solicited from a large primary care practice and several internet sites and separated into two groups - mothers who had given birth to a child with autism and those who had not. Average weekly methanol consumption was calculated based on questionnaire responses. 550 questionnaires were completed by women who gave birth to a non-autistic child. On average these women consumed 66.71mg. of methanol weekly. 161 questionnaires were completed by women who had given birth to an autistic child. The average estimated weekly methanol consumption for this group was 142.31mg. Based on the results of the Wilcoxon rank sum-test, we see a significant difference between the reported methanol consumption rates of the two groups. This study suggests that women who have given birth to an autistic child are likely to have had higher intake of dietary sources of methanol than women who have not. Further investigation of a possible link of dietary methanol to autism is clearly warranted. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Dietary treatment of obesity

    Directory of Open Access Journals (Sweden)

    Ana Maria Pita Lottenberg

    2006-03-01

    Full Text Available The fast global increased prevalence of obesity has been classifiedas an epidemics by the World Health Organization. The etiology ofobesity is very complex and involves genetic and environmentalfactors. One of the main factors that trigger obesity is sedentarylife, as well as the great availability of fat-rich foods that present ahigh energy density. According to the NHANES II, although thepopulation has decreased the ingestion of fat, the total consumptionof food has increased. The main factors that influence in choice offood are flavor, followed by cost, convenience and, finally, itsnutritional value. The dietary treatment of obesity should haverealistic goals concerning weight loss rate and amount. It issuggested to prescribe a balanced low-calorie diet, emphasizingmostly the quality of foods by using the food pyramid. Therefore,patients may learn the appropriate criteria to select food and makehealthy choices. The dietary treatment of obesity also includesthe use of behavioral techniques directed at dietary education,thus resulting in choice of healthy foods with adequate energyvalue.

  14. Saccharomyces cerevisiae displays an increased growth rate and an extended replicative lifespan when grown under respiratory conditions in the presence of bacteria.

    Science.gov (United States)

    Kirchman, Paul A; Van Zee, Nicholas

    2017-09-01

    Individual cells of the budding yeast Saccharomyces cerevisiae have a limited replicative potential, referred to as the replicative lifespan. We have found that both the growth rate and average replicative lifespan of S. cerevisiae cells are greatly increased in the presence of a variety of bacteria. The growth and lifespan effects are not observable when yeast are allowed to ferment glucose but are only notable on solid media when yeast are forced to respire due to the lack of a fermentable carbon source. Growth near strains of Escherichia coli containing deletions of genes needed for the production of compounds used for quorum sensing or for the production of the siderophore enterobactin also still induced the lifespan extension in yeast. Furthermore, the bacterially induced increases in growth rate and lifespan occur even across gaps in the growth medium, indicating that the bacteria are influencing the yeast through the action of a volatile compound.

  15. Trajectories of brain system maturation from childhood to older adulthood: Implications for lifespan cognitive functioning.

    Science.gov (United States)

    Petrican, Raluca; Taylor, Margot J; Grady, Cheryl L

    2017-12-01

    The human brain's intrinsic functional architecture reflects behavioural history and can help elucidate the neural mechanisms underlying age-related cognitive changes. To probe this issue, we used resting state (N = 586) and behavioural (N = 255) data from a lifespan sample and tested the interactions among ten intrinsic neural systems, derived from a well-established whole-brain parcellation. Our results revealed three distinguishable profiles, whose expression strengthened with increasing age and which characterized developmental differences in connectivity within the ten systems, between networks thought to underlie cognitive control and non-control systems, and among the non-control networks. The within-network connectivity profile was typified by decreased connectivity within two external processing networks (auditory/language and ventral attention). The non-control-to-non-control connectivity profile was typified by increased separation between networks involved in external processing, including language (dorsal attention, auditory) and those linked to internally generated cognitions and category learning (default mode, subcortical). Finally, the third connectivity profile was characterized by increased coupling of the three control networks (frontoparietal, salience, cingulo-opercular) with one another and with the remaining systems, particularly the subcortical and the two networks showing declining segregation with age. All three profiles showed significant associations with behavior during young adulthood, although these effects were less discernible during early development (before the age of 21) and degraded during late middle age and older adulthood. An exception to this trend was observed with respect to the within-network connectivity profile, whose "precocious" expression during early development predicted superior cognitive functioning. These findings thus help explain lifespan changes in the quality of mental processes, while also pointing to

  16. An antidiabetic polyherbal phytomedicine confers stress resistance and extends lifespan in Caenorhabditis elegans.

    Science.gov (United States)

    Rathor, Laxmi; Pant, Aakanksha; Awasthi, Harshika; Mani, Dayanandan; Pandey, Rakesh

    2017-02-01

    An Ayurvedic polyherbal extract (PHE) comprising six herbs viz. Berberis aristata, Cyperus rotundus, Cedrus deodara, Emblica officinalis, Terminalia chebula and Terminalia bellirica is mentioned as an effective anti-hyperglycemic agent in 'Charaka Samhita', the classical text of Ayurveda. Previously, antidiabetic drug metformin was found to elicit antiaging effects and PHE was also found to exhibit antidiabetic effects in humans. Therefore, we screened it for its in vivo antioxidant antiaging effect on stress and lifespan using human homologous Caenorhabditis elegans model system. The effect on aging is evaluated by studying effect of PHE on mean survival in worms. The stress modulatory potential was assessed by quantification of intracellular ROS level, autofluorescent age pigment lipofuscin, oxidative and thermal stress assays. Additionally, stress response was quantified using gene reporter assays. The 0.01 µg/ml dose of PHE was able to enhance mean lifespan by 16.09% (P elegans. Furthermore, PHE treated worms demonstrated oxidative stress resistance in both wild type and stress hypersensitive mev-1 mutant along with upregulation of stress response genes sod-3 and gst-4. The delayed aging under stress can be attributed to its direct reactive oxygen species-scavenging activity and regulation of some age associated genes like daf-2, daf-16, skn-1, sod-3 and gst-4 in wild-type worms. Additonally, PHE delayed age related paralysis phenotype in CL4176 transgenic worms. Altogether, our results suggest PHE significantly improves the oxidative stress and life span in C. elegans. Overall the present study suggests this polyherbal formulation might play important role in regultaing aging and related complications like diabetes.

  17. Procedural learning across the lifespan: A systematic review with implications for atypical development.

    Science.gov (United States)

    Zwart, Fenny S; Vissers, Constance Th W M; Kessels, Roy P C; Maes, Joseph H R

    2017-10-08

    This systematic review aimed to investigate procedural learning across the lifespan in typical and atypical development. Procedural learning is essential for the development of everyday skills, including language and communication skills. Although procedural learning efficiency has been extensively studied, there is no consensus yet on potential procedural learning changes during development and ageing. Currently, three conflicting models regarding this trajectory exist: (1) a model of age invariance; (2a) a model with a peak in young adulthood; and (2b) a model with a plateau in childhood followed by a decline. The aims of this study were (1) to investigate this debate on procedural learning across the lifespan by systematically reviewing evidence for each model from studies using the serial reaction time task; and (2) to review procedural learning in autism spectrum disorder (ASD) and specific language impairment (SLI), two developmental disorders characterized by deficits in communication skills, in the light of these models. Our findings on typical development strongly support a model of age-related changes (Model 2a or 2b) and show that mixed findings regarding the developmental trajectory during childhood can be explained by methodological differences across studies. Applying these conclusions to systematic reviews of studies of ASD and SLI makes it clear that there is a strong need for the inclusion of multiple age groups in these clinical studies to model procedural learning in atypical development. Clinical implications of the findings are discussed. Future research should focus on the role of declarative learning in both typical and atypical development. © 2017 The British Psychological Society.

  18. The role of cue detection for prospective memory development across the lifespan.

    Science.gov (United States)

    Hering, Alexandra; Wild-Wall, Nele; Gajewski, Patrick D; Falkenstein, Michael; Kliegel, Matthias; Zinke, Katharina

    2016-12-01

    Behavioral findings suggest an inverted U-shaped pattern of prospective memory development across the lifespan. A key mechanism underlying this development is the ability to detect cues. We examined the influence of cue detection on prospective memory, combining behavioral and electrophysiological measures, in three age groups: adolescents (12-14 years), young (19-28 years), and old adults (66-77 years). Cue detection was manipulated by varying the distinctiveness (i.e., how easy it was to detect the cue based on color) of the prospective memory cue in a semantic judgment ongoing task. Behavioral results supported the pattern of an inverted U-shape with a pronounced prospective memory decrease in old adults. Adolescents and young adults showed a prospective memory specific modulation (larger amplitudes for the cues compared to other trials) already for the N1 component. No such specific modulation was evident in old adults for the early N1 component but only at the later P3b component. Adolescents showed differential modulations of the amplitude also for irrelevant information at the P3b, suggesting less efficient processing. In terms of conceptual implications, present findings underline the importance of cue detection for prospective remembering and reveal different developmental trajectories for cue detection. Our findings suggest that cue detection is not a unitary process but consists of multiple stages corresponding to several ERP components that differentially contribute to prospective memory performance across the lifespan. In adolescents resource allocation for detecting cues seemed successful initially but less efficient at later stages; whereas we found the opposite pattern for old adults. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A web-based examination of experiences with intrusive thoughts across the adult lifespan

    Science.gov (United States)

    Magee, Joshua C.; Smyth, Frederick L.; Teachman, Bethany A.

    2014-01-01

    Objectives Intrusive thoughts and images are common across the adult lifespan, but vary in their consequences. Understanding age-related experiences with intrusive thoughts is important for identifying risk and protective factors for intrusive thought problems across the adult lifespan. This study characterized age trajectories for six aspects of experiences with intrusive thoughts using Internet data collection. Method Participants (N=1427; ages 18–87) were randomly assigned to suppress (i.e., keep out of mind) or monitor an intrusive thought for one minute, and then later to monitor the thought for a second minute. Participants tracked thought recurrences during each thinking period, then reported their positive and negative affect following each thinking period, as well as their effort expended suppressing the thought, and perceived difficulty controlling the intrusive thought. Multilevel modeling and generalized estimating equations modeled the continuous relationships between age and each dependent variable. Results As expected, older age was associated with less decline in positive affect while engaging with an intrusive thought. Interestingly, older age was also associated with a sharper rise and fall of negative affect. Suppression effort increased linearly with age (though perceived difficulty did not). Finally, no age differences were found in either the frequency or duration of the thought’s recurrence, adding to previous evidence that older adults function similarly to younger adults in their control of intrusive thoughts, despite certain age-related declines in cognitive functioning. Conclusion These findings suggest a dissociation between age-related changes in emotional versus cognitive characteristics of engaging with intrusive thoughts. PMID:24460223

  20. Hurst Exponent Analysis of Resting-State fMRI Signal Complexity across the Adult Lifespan

    Directory of Open Access Journals (Sweden)

    Jianxin Dong

    2018-02-01

    Full Text Available Exploring functional information among various brain regions across time enables understanding of healthy aging process and holds great promise for age-related brain disease diagnosis. This paper proposed a method to explore fractal complexity of the resting-state functional magnetic resonance imaging (rs-fMRI signal in the human brain across the adult lifespan using Hurst exponent (HE. We took advantage of the examined rs-fMRI data from 116 adults 19 to 85 years of age (44.3 ± 19.4 years, 49 females from NKI/Rockland sample. Region-wise and voxel-wise analyses were performed to investigate the effects of age, gender, and their interaction on complexity. In region-wise analysis, we found that the healthy aging is accompanied by a loss of complexity in frontal and parietal lobe and increased complexity in insula, limbic, and temporal lobe. Meanwhile, differences in HE between genders were found to be significant in parietal lobe (p = 0.04, corrected. However, there was no interaction between gender and age. In voxel-wise analysis, the significant complexity decrease with aging was found in frontal and parietal lobe, and complexity increase was found in insula, limbic lobe, occipital lobe, and temporal lobe with aging. Meanwhile, differences in HE between genders were found to be significant in frontal, parietal, and limbic lobe. Furthermore, we found age and sex interaction in right parahippocampal gyrus (p = 0.04, corrected. Our findings reveal HE variations of the rs-fMRI signal across the human adult lifespan and show that HE may serve as a new parameter to assess healthy aging process.

  1. Arm-Gal4 inheritance influences development and lifespan in Drosophila melanogaster.

    Science.gov (United States)

    Slade, F A; Staveley, B E

    2015-10-19

    The UAS-Gal4 ectopic expression system is a widely used and highly valued tool that allows specific gene expression in Drosophila melanogaster. Yeast transcription factor Gal4 can be directed using D. melanogaster transcriptional control elements, and is often assumed to have little effect on the organism. By evaluation of the consequences of maternal and paternal inheritance of a Gal4 transgene under the transcriptional regulation of armadillo control elements (arm-Gal4), we demonstrated that Gal4 expression could be detrimental to development and longevity. Male progeny expressing arm-Gal4 in the presence of UAS-lacZ transgene had reduced numbers and size of ommatidia, compared to flies expressing UAS-lacZ transgene under the control of other Gal4 transgenes. Aged at 25°C, the median life span of male flies with maternally inherited elav-Gal4 was 70 days, without a responding transgene or with UAS-lacZ. The median life span of maternally inherited arm-Gal4 male flies without a responding transgene was 48 days, and 40 days with the UAS-lacZ transgene. A partial rescue of this phenotype was observed with the expression of UAS-lacZ under paternal arm-Gal4 control, having an average median lifespan of 60 days. This data suggests that arm-Gal4 has detrimental effects on Drosophila development and lifespan that are directly dependent upon parental inheritance, and that the benign responder and reporter gene UAS-lacZ may influence D. melanogaster development. These findings should be taken into consideration during the design and execution of UAS-Gal4 expression experiments.

  2. Manganese rescues adverse effects on lifespan and development in Podospora anserina challenged by excess hydrogen peroxide.

    Science.gov (United States)

    Grimm, Carolin; Osiewacz, Heinz D

    2015-03-01

    For biological systems, balancing cellular levels of reactive oxygen species (ROS) is of great importance because ROS are both, essential for cellular signaling and dangerous in causing molecular damage. Cellular ROS abundance is controlled by a delicate network of molecular pathways. Within this network, superoxide dismutases (SODs) are active in disproportion of the superoxide anion leading to the formation of hydrogen peroxide. The fungal aging model Podospora anserina encodes at least three SODs. One of these is the mitochondrial PaSOD3 isoform containing manganese as a cofactor. Previous work resulted in the selection of strains in which PaSod3 is strongly overexpressed. These strains display impairments in growth and lifespan. A computational model suggests a series of events to occur in Sod3 overexpressing strains leading to adverse effects due to elevated hydrogen peroxide levels. In an attempt to validate this model and to obtain more detailed information about the cellular responses involved in ROS balancing, we further investigated the PaSod3 overexpressing strains. Here we show that hydrogen peroxide levels are indeed strongly increased in the mutant strain. Surprisingly, this phenotype can be rescued by the addition of manganese to the growth medium. Strikingly, while we obtained no evidence for an antioxidant effect of manganese, we found that the metal is required for induction of components of the ROS scavenging network and lowers the hydrogen peroxide level of the mutant. A similar effect of manganese on lifespan reversion was obtained in wild-type strains challenged with exogenous hydrogen peroxide. It appears that manganese is limited under high hydrogen peroxide and suggests that a manganese-dependent activity leads to the induction of ROS scavenging components. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. The cost of mating: influences of life history traits and mating strategies on lifespan in two closely related Yponomeuta species

    NARCIS (Netherlands)

    Bakker, A.C.; Campos Louçã, J.; Roessingh, P.; Menken, S.B.J.

    2011-01-01

    Theory predicts that in monandrous butterfly species males should not invest in a long lifespan because receptive females quickly disappear from the mating population. In polyandrous species, however, it pays for males to invest in longevity, which increases the number of mating opportunities and

  4. Differential control of ageing and lifespan by isoforms and splice variants across the mTOR network

    NARCIS (Netherlands)

    Razquin Navas, Patricia; Thedieck, Kathrin

    2017-01-01

    Ageing can be defined as the gradual deterioration of physiological functions, increasing the incidence of age-related disorders and the probability of death. Therefore, the term ageing not only reflects the lifespan of an organism but also refers to progressive functional impairment and disease.

  5. Alteration of ROS Homeostasis and Decreased Lifespan in S. cerevisiae Elicited by Deletion of the Mitochondrial Translocator FLX1

    Directory of Open Access Journals (Sweden)

    Teresa Anna Giancaspero

    2014-01-01

    Full Text Available This paper deals with the control exerted by the mitochondrial translocator FLX1, which catalyzes the movement of the redox cofactor FAD across the mitochondrial membrane, on the efficiency of ATP production, ROS homeostasis, and lifespan of S. cerevisiae. The deletion of the FLX1 gene resulted in respiration-deficient and small-colony phenotype accompanied by a significant ATP shortage and ROS unbalance in glycerol-grown cells. Moreover, the flx1Δ strain showed H2O2 hypersensitivity and decreased lifespan. The impaired biochemical phenotype found in the flx1Δ strain might be justified by an altered expression of the flavoprotein subunit of succinate dehydrogenase, a key enzyme in bioenergetics and cell regulation. A search for possible cis-acting consensus motifs in the regulatory region upstream SDH1-ORF revealed a dozen of upstream motifs that might respond to induced metabolic changes by altering the expression of Flx1p. Among these motifs, two are present in the regulatory region of genes encoding proteins involved in flavin homeostasis. This is the first evidence that the mitochondrial flavin cofactor status is involved in controlling the lifespan of yeasts, maybe by changing the cellular succinate level. This is not the only case in which the homeostasis of redox cofactors underlies complex phenotypical behaviours, as lifespan in yeasts.

  6. Event-based prospective memory across the lifespan: Do all age groups benefit from salient prospective memory cues?

    NARCIS (Netherlands)

    Kretschmer-Trendowicz, A.; Altgassen, A.M.

    2016-01-01

    The present study investigated effects of cognitive control demands on prospective memory (PM) performance across the lifespan. Four different age groups (children, adolescents, young adults, old adults) worked on a computer-based picture categorization task as ongoing activity, while PM cue

  7. The Lifespan Self-Esteem Scale: Initial Validation of a New Measure of Global Self-Esteem.

    Science.gov (United States)

    Harris, Michelle A; Donnellan, M Brent; Trzesniewski, Kali H

    2018-01-01

    This article introduces the Lifespan Self-Esteem Scale (LSE), a short measure of global self-esteem suitable for populations drawn from across the lifespan. Many existing measures of global self-esteem cannot be used across multiple developmental periods due to changes in item content, response formats, and other scale characteristics. This creates a need for a new lifespan scale so that changes in global self-esteem over time can be studied without confounding maturational changes with alterations in the measure. The LSE is a 4-item measure with a 5-point response format using items inspired by established self-esteem scales. The scale is essentially unidimensional and internally consistent, and it converges with existing self-esteem measures across ages 5 to 93 (N = 2,714). Thus, the LSE appears to be a useful measure of global self-esteem suitable for use across the lifespan as well as contexts where a short measure is desirable, such as populations with short attention spans or large projects assessing multiple constructs. Moreover, the LSE is one of the first global self-esteem scales to be validated for children younger than age 8, which provides the opportunity to broaden the field to include research on early formation and development of global self-esteem, an area that has previously been limited.

  8. DhHP-6 extends lifespan of Caenorhabditis elegans by enhancing nuclear translocation and transcriptional activity of DAF-16.

    Science.gov (United States)

    Huang, Lei; Li, Pengfei; Wang, Guan; Guan, Shuwen; Sun, Xiaoli; Wang, Liping

    2013-04-01

    Earlier studies have demonstrated that Deuterohaemin-AlaHisThrValGluLys (DhHP-6), a novel porphyrin-peptide, increases lifespan and enhances stress resistance of Caenorhabditis elegans. To explore the possible mechanisms, in this study we investigated the roles of SIR-2.1 and DAF-16 in DhHP-6's function using wild-type and various other mutant strains of C. elegans. DhHP-6's effect was dependent upon DAF-16, and it did not extend the lifespan of the loss-of-function daf-16 mutant strain (daf-16(mu86) I). DhHP-6 enhanced DAF-16 translocation from cytoplasm to nuclei; and it increased DAF-16's transcriptional activity, likely by activating the SIR-2.1/DAF-16 complex. DhHP-6's effect was also dependent upon SIR-2.1, and it did not increase the lifespan of the worms with SIR-2.1 deacetylase activity inhibited by niacin amide (SIR-2.1 inhibitor) and SIR-2.1 RNA interference (RNAi). Niacin amide and RNAi increased DAF-16's nuclear localization; but they decreased DAF-16's transcriptional activity, likely by preventing the formation of the SIR-2.1/DAF-16 complex. These results suggest that DhHP-6 extends the lifespan of C. elegans via SIR 2.1 and DAF-16, and they provide new insights into the molecular mechanisms of aging.

  9. The protein kinase MBK-1 contributes to lifespan extension in daf-2 mutant and germline-deficient Caenorhabditis elegans.

    Science.gov (United States)

    Mack, Hildegard I D; Zhang, Peichuan; Fonslow, Bryan R; Yates, John R

    2017-05-25

    In Caenorhabditis elegans , reduction of insulin/IGF-1 like signaling and loss of germline stem cells both increase lifespan by activating the conserved transcription factor DAF-16 (FOXO). While the mechanisms that regulate DAF-16 nuclear localization in response to insulin/IGF-1 like signaling are well characterized, the molecular pathways that act in parallel to regulate DAF-16 transcriptional activity, and the pathways that couple DAF-16 activity to germline status, are not fully understood at present. Here, we report that inactivation of MBK-1, the C. elegans ortholog of the human FOXO1-kinase DYRK1A substantially shortens the prolonged lifespan of daf-2 and glp-1 mutant animals while decreasing wild-type lifespan to a lesser extent. On the other hand, lifespan-reduction by mutation of the MBK-1-related kinase HPK-1 was not preferential for long-lived mutants. Interestingly, mbk-1 loss still allowed for DAF-16 nuclear accumulation but reduced expression of certain DAF-16 target genes in germline-less, but not in daf-2 mutant animals. These findings indicate that mbk-1 and daf-16 functionally interact in the germline- but not in the daf-2 pathway. Together, our data suggest mbk-1 as a novel regulator of C. elegans longevity upon both, germline ablation and DAF-2 inhibition, and provide evidence for mbk-1 regulating DAF-16 activity in germline-deficient animals.

  10. Plasmacytoid dendritic cells are short-lived: reappraising the influence of migration, genetic factors and activation on estimation of lifespan.

    Science.gov (United States)

    Zhan, Yifan; Chow, Kevin V; Soo, Priscilla; Xu, Zhen; Brady, Jamie L; Lawlor, Kate E; Masters, Seth L; O'keeffe, Meredith; Shortman, Ken; Zhang, Jian-Guo; Lew, Andrew M

    2016-04-26

    Plasmacytoid dendritic cells (pDCs) play an important role in immunity to certain pathogens and immunopathology in some autoimmune diseases. They are thought to have a longer lifespan than conventional DCs (cDCs), largely based on a slower rate of BrdU labeling by splenic pDCs. Here we demonstrated that pDC expansion and therefore BrdU labeling by pDCs occurs in bone marrow (BM). The rate of labeling was similar between BM pDCs and spleen cDCs. Therefore, slower BrdU labeling of spleen pDCs likely reflects the "migration time" (∼2 days) for BrdU labeled pDCs to traffic to the spleen, not necessarily reflecting longer life span. Tracking the decay of differentiated DCs showed that splenic pDCs and cDCs decayed at a similar rate. We suggest that spleen pDCs have a shorter in vivo lifespan than estimated utilizing some of the previous approaches. Nevertheless, pDC lifespan varies between mouse strains. pDCs from lupus-prone NZB mice survived longer than C57BL/6 pDCs. We also demonstrated that activation either positively or negatively impacted on the survival of pDCs via different cell-death mechanisms. Thus, pDCs are also short-lived. However, the pDC lifespan is regulated by genetic and environmental factors that may have pathological consequence.

  11. CD8+ lymphocytes control viral replication in SIVmac239-infected rhesus macaques without decreasing the lifespan of productively infected cells.

    Directory of Open Access Journals (Sweden)

    Nichole R Klatt

    2010-01-01

    Full Text Available While CD8+ T cells are clearly important in controlling virus replication during HIV and SIV infections, the mechanisms underlying this antiviral effect remain poorly understood. In this study, we assessed the in vivo effect of CD8+ lymphocyte depletion on the lifespan of productively infected cells during chronic SIVmac239 infection of rhesus macaques. We treated two groups of animals that were either CD8+ lymphocyte-depleted or controls with antiretroviral therapy, and used mathematical modeling to assess the lifespan of infected cells either in the presence or absence of CD8+ lymphocytes. We found that, in both early (day 57 post-SIV and late (day 177 post-SIV chronic SIV infection, depletion of CD8+ lymphocytes did not result in a measurable increase in the lifespan of either short- or long-lived productively infected cells in vivo. This result indicates that the presence of CD8+ lymphocytes does not result in a noticeably shorter lifespan of productively SIV-infected cells, and thus that direct cell killing is unlikely to be the main mechanism underlying the antiviral effect of CD8+ T cells in SIV-infected macaques with high virus replication.

  12. Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species

    NARCIS (Netherlands)

    Kitajima, K.; Poorter, L.

    2010-01-01

    Leaf toughness is thought to enhance physical defense and leaf lifespan. Here, we evaluated the relative importance of tissue-level leaf traits vs lamina thickness, as well as their ontogenetic changes, for structure-level leaf toughness and regeneration ecology of 19 tropical tree species. We

  13. A dietary test of putative deleterious sterols for the aphid Myzus persicae.

    Directory of Open Access Journals (Sweden)

    Sophie Bouvaine

    Full Text Available The aphid Myzus persicae displays high mortality on tobacco plants bearing a transgene which results in the accumulation of the ketosteroids cholestan-3-one and cholest-4-en-3-one in the phloem sap. To test whether the ketosteroids are the basis of the plant resistance to the aphids, M. persicae were reared on chemically-defined diets with different steroid contents at 0.1-10 µg ml(-1. Relative to sterol-free diet and dietary supplements of the two ketosteroids and two phytosterols, dietary cholesterol significantly extended aphid lifespan and increased fecundity at one or more dietary concentrations tested. Median lifespan was 50% lower on the diet supplemented with cholest-4-en-3-one than on the cholesterol-supplemented diet. Aphid feeding rate did not vary significantly across the treatments, indicative of no anti-feedant effect of any sterol/steroid. Aphids reared on diets containing equal amounts of cholesterol and cholest-4-en-3-one showed fecundity equivalent to aphids on diets containing only cholesterol. Aphids were reared on diets that reproduced the relative steroid abundance in the phloem sap of the control and modified tobacco plants, and their performance on the two diet formulations was broadly equivalent. We conclude that, at the concentrations tested, plant ketosteroids support weaker aphid performance than cholesterol, but do not cause acute toxicity to the aphids. In plants, the ketosteroids may act synergistically with plant factors absent from artificial diets but are unlikely to be solely responsible for resistance of modified tobacco plants.

  14. Uncoupling of oxidative stress resistance and lifespan in long-lived isp-1 mitochondrial mutants in Caenorhabditis elegans.

    Science.gov (United States)

    Dues, Dylan J; Schaar, Claire E; Johnson, Benjamin K; Bowman, Megan J; Winn, Mary E; Senchuk, Megan M; Van Raamsdonk, Jeremy M

    2017-07-01

    Mutations affecting components of the mitochondrial electron transport chain have been shown to increase lifespan in multiple species including the worm Caenorhabditis elegans. While it was originally proposed that decreased generation of reactive oxygen species (ROS) resulting from lower rates of electron transport could account for the observed increase in lifespan, recent evidence indicates that ROS levels are increased in at least some of these long-lived mitochondrial mutants. Here, we show that the long-lived mitochondrial mutant isp-1 worms have increased resistance to oxidative stress. Our results suggest that elevated ROS levels in isp-1 worms cause the activation of multiple stress-response pathways including the mitochondrial unfolded protein response, the SKN-1-mediated stress response, and the hypoxia response. In addition, these worms have increased expression of specific antioxidant enzymes, including a marked upregulation of the inducible superoxide dismutase genes sod-3 and sod-5. Examining the contribution of sod-3 and sod-5 to the oxidative stress resistance in isp-1 worms revealed that loss of either of these genes increased resistance to oxidative stress, but not other forms of stress. Deletion of sod-3 or sod-5 decreased the lifespan of isp-1 worms and further exacerbated their slow physiologic rates. Thus, while deletion of sod-3 and sod-5 genes has little impact on stress resistance, physiologic rates or lifespan in wild-type worms, these genes are required for the longevity of isp-1 worms. Overall, this work shows that the increased resistance to oxidative stress in isp-1 worms does not account for their longevity, and that resistance to oxidative stress can be experimentally dissociated from lifespan. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The interplay between protein L-isoaspartyl methyltransferase activity and insulin-like signaling to extend lifespan in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Shilpi Khare

    Full Text Available The protein L-isoaspartyl-O-methyltransferase functions to initiate the repair of isomerized aspartyl and asparaginyl residues that spontaneously accumulate with age in a variety of organisms. Caenorhabditis elegans nematodes lacking the pcm-1 gene encoding this enzyme display a normal lifespan and phenotype under standard laboratory growth conditions. However, significant defects in development, egg laying, dauer survival, and autophagy have been observed in pcm-1 mutant nematodes when deprived of food and when exposed to oxidative stress. Interestingly, overexpression of this repair enzyme in both Drosophila and C. elegans extends adult lifespan under thermal stress. In this work, we show the involvement of the insulin/insulin-like growth factor-1 signaling (IIS pathway in PCM-1-dependent lifespan extension in C. elegans. We demonstrate that reducing the levels of the DAF-16 downstream transcriptional effector of the IIS pathway by RNA interference reduces the lifespan extension resulting from PCM-1 overexpression. Using quantitative real-time PCR analysis, we show the up-regulation of DAF-16-dependent stress response genes in the PCM-1 overexpressor animals compared to wild-type and pcm-1 mutant nematodes under mild thermal stress conditions. Additionally, similar to other long-lived C. elegans mutants in the IIS pathway, including daf-2 and age-1 mutants, PCM-1 overexpressor adult animals display increased resistance to severe thermal stress, whereas pcm-1 mutant animals survive less long under these conditions. Although we observe a higher accumulation of damaged proteins in pcm-1 mutant nematodes, the basal level of isoaspartyl residues detected in wild-type animals was not reduced by PCM-1 overexpression. Our results support a signaling role for the protein L-isoaspartyl methyltransferase in lifespan extension that involves the IIS pathway, but that may be independent of its function in overall protein repair.

  16. Reduction of DILP2 in Drosophila triages a metabolic phenotype from lifespan revealing redundancy and compensation among DILPs.

    Directory of Open Access Journals (Sweden)

    Susan Broughton

    Full Text Available The insulin/IGF-like signalling (IIS pathway has diverse functions in all multicellular organisms, including determination of lifespan. The seven insulin-like peptides (DILPs in Drosophila are expressed in a stage- and tissue-specific manner. Partial ablation of the median neurosecretory cells (mNSCs in the brain, which produce three DILPs, extends lifespan, reduces fecundity, alters lipid and carbohydrate metabolism and increases oxidative stress resistance. To determine if reduced expression of DILPs is causal in these effects, and to investigate possible functional diversification and redundancy between DILPs, we used RNA interference to lower specifically the transcript and protein levels of dilp2, the most highly expressed of the mNSC-derived DILPs. We found that DILP2 was limiting only for the increased whole-body trehalose content associated with mNSC-ablation. We observed a compensatory increase in dilp3 and 5 mRNA upon dilp2 knock down. By manipulation of dfoxo and dInR, we showed that the increase in dilp3 is regulated via autocrine insulin signaling in the mNSCs. Our study demonstrates that, despite the correlation between reduced dilp2 mRNA levels and lifespan-extension often observed, DILP2 reduction is not sufficient to extend lifespan. Nor is the increased trehalose storage associated with reduced IIS sufficient to extend lifespan. To understand the normal regulation of expression of the dilps and any functional diversification between them will require independent control of the expression of different dilps.

  17. Cordyceps sinensis oral liquid prolongs the lifespan of the fruit fly, Drosophila melanogaster, by inhibiting oxidative stress

    Science.gov (United States)

    ZOU, YINGXIN; LIU, YUXIANG; RUAN, MINGHUA; FENG, XU; WANG, JIACHUN; CHU, ZHIYONG; ZHANG, ZESHENG

    2015-01-01

    This study investigated the effect of Cordyceps sinensis oral liquid (CSOL) on the lifespan of Drosophila melanogaster (fruit fly). Following the lifelong treatment of fruit flies with CSOL, lifespan was examined. The activity of copper-zinc-containing superoxide dismutase 1 (SOD1), manganese-containing superoxide dismutase 2 (SOD2) and catalase (CAT), as well as the lipofuscin (LF) content were determined. The mRNA levels of SOD1, SOD2 and CAT were quantified by qPCR. Hydrogen peroxide (H2O2) and paraquat were used to mimic the effects of damage caused by acute oxidative stress. D-galactose was used to mimic chronic pathological aging. CSOL significantly prolonged the lifespan of the fruit flies under physiological conditions. The activity of SOD1 and CAT was upregulated, and LF accumulation was inhibited by CSOL. CSOL had no effect on the transcriptional levels (mRNA) of these enzymes. The survival time of the fruit flies which were negatively affected by exposure to H2O2 or paraquat was significantly prolonged by CSOL. In fruit flies pathologically aged by epxosure to D-galactose, CSOL also significantly prolonged their lifespan, upregulated the activity of SOD1 and CAT, and inhibited LF accumulation. The findings of our study indicate that CSOL prolongs the lifespan of fruit flies through an anti-oxidative stress pathway involving the upregulation of SOD1 and CAT activity and the inhibition of LF accumulation. CSOL may thus be explored as a novel agent for slowing the human aging process. PMID:26239097

  18. Dietary patterns, food groups and telomere length: a systematic review of current studies.

    Science.gov (United States)

    Rafie, N; Golpour Hamedani, S; Barak, F; Safavi, S M; Miraghajani, M

    2017-02-01

    Telomere length (TL) is recognized as a biomarker of aging and shorter telomeres are linked with shorter lifespan. Inter-individual variability in telomere length is highly heritable. However, there has been a resurgence of interest in the controversial relationship between diet and TL. Evaluating the impact of diet at the food group and dietary pattern level will provide greater insight into the effect of diet on TL dynamics, which are of significant importance in health and longevity. This article reports the first systematic review of the relation between food groups, dietary patterns and TL in human populations based on PRISMA guidelines. PubMed, Science Direct, The Cochrane Library and Google Scholar databases were electronically searched for all relevant studies, up to November 2015. Among the 17 included studies, 3 and 10 of them were regarding the effect of dietary patterns and various food groups on TL, respectively. Also, in 4 studies, both dietary patterns and different food groups were assessed in relation to TL. Mediterranean dietary pattern was related to longer TL in 3 studies. Five studies indicated beneficial effect of fruits or vegetables on TL. In 7 studies, a reverse association between TL and intake of cereals, processed meat, and fats and oils was reported. Our systematic review supports the health benefits of adherence to Mediterranean diet on TL. Except for the fruits and vegetables, which showed positive association with TL, results were inconsistent for other dietary factors. Also, certain food categories including processed meat, cereals and sugar-sweetened beverages may be associated with shorter TLs. However, additional epidemiological evidence and clinical trials should be considered in future research in order to develop firm conclusions in this regard.

  19. Dietary Determinants of Prostate Cancer

    National Research Council Canada - National Science Library

    Chu, Lisa W

    2005-01-01

    .... Epidemiologic studies suggest that dietary factors may be important in the etiology of PCa. The objective of our research is to determine how nutritional compounds genistein, betasitosterol (STT...

  20. Health effects of dietary fiber.

    Science.gov (United States)

    Otles, Semih; Ozgoz, Selin

    2014-01-01

    Dietary fibre is a group of food components which is resistant to digestive enzymes and found mainly in cereals, fruits and vegetables. Dietary fi ber and whole grains contain a unique blend of bioactive components including resistant starches, vitamins, minerals, phytochemicals and antioxidants. Dietary fi ber which indigestible in human small intestinal, on the other hand digested completely or partially fermented in the large intestine, is examined in two groups: water-soluble and water insoluble organic compounds. Dietary fi ber can be separated into many different fractions. These fractions include arabinoxylan, inulin, pectin, bran, cellulose, β-glucan and resistant starch. Dietary fibres compose the major component of products with low energy value that have had an increasing importance in recent years. Dietary fibres also have technological and functional properties that can be used in the formulation of foods, as well as numerous beneficial effects on human health. Dietary fibre components organise functions of large intestine and have important physiological effects on glucose, lipid metabolism and mineral bioavailability. Today, dietary fibers are known to be protective effect against certain gastrointestinal diseases, constipation, hemorrhoids, colon cancer, gastroesophageal reflux disease, duodenal ulcer, diverticulitis, obesity, diabetes, stroke, hypertension and cardiovascular diseases. In this review the physicochemical and biological properties of dietary fibers and their important implications on human health will be investigated.

  1. Dietary therapy in NIDDM.

    Science.gov (United States)

    Pearson, G C; Wales, J K

    1988-05-01

    Clearly the dietary treatment of the NIDDM patient remains an act of faith bearing in mind the poor compliance of the patient to dietary advice, and the lack of long-term studies confirming the efficacy of diets (old or new) in the prevention of diabetic vascular complications. Few of the newer recommended diets seem to have been tested in the hurly-burly of the busy, understaffed diabetic clinic. Perhaps another major hurdle has been the attitude of patients and doctors in failing to regard diet therapy as a form of treatment, akin to tablets. The phrase 'I eat my diet, doctor, then I have my usual meal' sums up the problem. There needs to be a change in attitude to diet by both doctors and patients so that the dietary changes suggested should be eating habits which would become second nature to patients--the so called 'healthy eating'--more fibre, less refined carbohydrate, less total and saturated fat and more polyunsaturated fats. It seems difficult for a majority of NIDDM patients to add onto 'healthy eating' calorie restriction to achieve weight loss. This difficulty also applies to non-diabetic obese subjects with similar poor results. One cannot help but feel that NIDDM patients should benefit from the general change in attitude of the general population towards nutrition, but reinforced education concerning diet goals for NIDDM patients is an urgent requirement and needs closer examination by the diabetic health care team as to how it may be delivered to the individual NIDDM patients. Perhaps dietitians in particular should become more critical in their approach to diet strategies and should investigate and report on the results of this treatment.

  2. Loss of NDG-4 extends lifespan and stress resistance in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Brejning, Jeanette; Nørgaard, Steffen; Schøler, Lone Vedel

    2014-01-01

    NDG-4 is a predicted transmembrane acyltransferase protein that acts in the distribution of lipophilic factors. Consequently, ndg-4 mutants lay eggs with a pale appearance due to lack of yolk, and they are resistant to sterility caused by dietary supplementation with the long-chain omega-6...

  3. Dietary Supplements: What You Need to Know

    Science.gov (United States)

    ... Food Home Food Resources for You Consumers Dietary Supplements: What You Need to Know Share Tweet Linkedin ... and nutrients you personally need. What are dietary supplements? Dietary supplements include such ingredients as vitamins, minerals, ...

  4. National Children's Study Dietary Assessment Workshop

    Science.gov (United States)

    The National Children's Study dietary assessment workshop was an opportunity for experts in dietary assessment methodology to gather and discuss the current state of knowledge about methodologies used to assess dietary intake during pregnancy, lactation, infancy, childhood, and adolescence.

  5. Dietary advanced glycation endproducts

    DEFF Research Database (Denmark)

    Poulsen, Malene Wibe

    High heat cooking induces flavor, aroma, and color of food, but leads to formation of advanced glycation endproducts (AGEs) by the Maillard reaction. In addition to the formation in food, AGEs are also formed in vivo, and increased endogenous formation of AGEs has been linked to diabetic complica......High heat cooking induces flavor, aroma, and color of food, but leads to formation of advanced glycation endproducts (AGEs) by the Maillard reaction. In addition to the formation in food, AGEs are also formed in vivo, and increased endogenous formation of AGEs has been linked to diabetic...... complications. A potential pathophysiological role of dietary AGEs in type 2 diabetes and cardiovascular disease has been discussed, as the contribution of dietary AGEs has been estimated to be larger than the amount of endogenously formed AGEs. Furthermore, the increased mortality associated with type 2...... for biological effects of high heat-treated diets in humans. Studies with well-defined AGEs should be undertaken in order to advance our understanding of biological effects of specific AGEs....

  6. Dietary Therapies for Epilepsy

    Directory of Open Access Journals (Sweden)

    Eric H Kossoff

    2013-02-01

    Full Text Available Since their introduction in 1921, high-fat, low-carbohydrate "ketogenic" diets have been used worldwide for refractory childhood epilepsy. Approximately half of the children have at least half their seizures reduced, including 15% who are seizure free. The mechanisms of action of dietary therapies are under active investigation and appear to involve mitochondria. Once perceived as a last resort, modifications to initiation and maintenance, as well as the widespread use of pre-made ketogenic formulas have allowed dietary treatment to be used earlier in the course of epilepsy. For infantile spasms (West syndrome specifically, the ketogenic diet is successful about 50% of the time as a first-line treatment. New "alternative" diets such as the modified Atkins diet were created in 2003 and can be started more easily and are less restrictive. They may have particular value for countries in Asia. Side effects include constipation, dyslipidemia, growth slowing, acidosis, and kidney stones. Additionally, neurologists are studying ketogenic diets for conditions other than epilepsy, including Alzheimer's disease, autism, and brain tumors.

  7. In Vivo MRI Mapping of Brain Iron Deposition across the Adult Lifespan.

    Science.gov (United States)

    Acosta-Cabronero, Julio; Betts, Matthew J; Cardenas-Blanco, Arturo; Yang, Shan; Nestor, Peter J

    2016-01-13

    Disruption of iron homeostasis as a consequence of aging is thought to cause iron levels to increase, potentially promoting oxidative cellular damage. Therefore, understanding how this process evolves through the lifespan could offer insights into both the aging process and the development of aging-related neurodegenerative brain diseases. This work aimed to map, in vivo for the first time with an unbiased whole-brain approach, age-related iron changes using quantitative susceptibility mapping (QSM)--a new postprocessed MRI contrast mechanism. To this end, a full QSM standardization routine was devised and a cohort of N = 116 healthy adults (20-79 years of age) was studied. The whole-brain and ROI analyses confirmed that the propensity of brain cells to accumulate excessive iron as a function of aging largely depends on their exact anatomical location. Whereas only patchy signs of iron scavenging were observed in white matter, strong, bilateral, and confluent QSM-age associations were identified in several deep-brain nuclei--chiefly the striatum and midbrain-and across motor, premotor, posterior insular, superior prefrontal, and cerebellar cortices. The validity of QSM as a suitable in vivo imaging technique with which to monitor iron dysregulation in the human brain was demonstrated by confirming age-related increases in several subcortical nuclei that are known to accumulate iron with age. The study indicated that, in addition to these structures, there is a predilection for iron accumulation in the frontal lobes, which when combined with the subcortical findings, suggests that iron accumulation with age predominantly affects brain regions concerned with motor/output functions. This study used a whole--brain imaging approach known as quantitative susceptibility mapping (QSM) to provide a novel insight into iron accumulation in the brain across the adult lifespan. Validity of the method was demonstrated by showing concordance with ROI analysis and prior knowledge

  8. Intraoperative blood salvage may shorten the lifespan of red blood cells within 3 days postoperatively

    Science.gov (United States)

    Liao, Xin-Yi; Zuo, Shan-Shan; Meng, Wen-Tong; Zhang, Jie; Huang, Qin; Gou, Da-Ming

    2017-01-01

    Abstract Background: Intraoperative blood salvage (IBS) recovers most lost blood, and is widely used in the clinic. It is unclear why IBS does not reduce long-term postoperative requirements for red blood cells (RBCs), and 1 possibility is that IBS affects RBC lifespan. Methods: Prospectively enrolled patients who underwent spine, pelvic, or femur surgery not involving allogeneic RBC transfusion were grouped based on whether they received IBS or not. Volumes of blood lost and of RBCs salvaged during surgery were recorded. Total blood cell counts, levels of plasma-free hemoglobin, and CD235a-positive granulocytes were determined perioperatively. Results: Although intraoperative blood loss was higher in the IBS group (n = 45) than in the non-IBS group (n = 52) (P < .001), hemoglobin levels were similar between groups (P = .125) at the end of surgery. Hemoglobin levels increased in non-IBS patients (4 ± 11 g/L), but decreased in IBS patients (−7 ± 12 g/L) over the first 3 postoperative days. Nadir hemoglobin levels after surgery were higher in the non-IBS group (107 ± 12 g/L) than in the IBS group (91 ± 12 g/L). Salvaged RBC volume correlated with hemoglobin decrease (r = 0.422, P = .004). In multivariate analysis, salvaged RBC volume was an independent risk factor for hemoglobin decrease (adjusted odds ratio 1.002, 95% confidence interval 1.001–1.004, P = .008). Flow cytometry showed the numbers of CD235a-positive granulocytes after surgery to be higher in the IBS group than in the non-IBS group (P < .05). Conclusion: IBS may shorten the lifespan of RBCs by triggering their engulfment upon re-infusion (China Clinical Trial Registry ChiCTR-OCH-14005140). PMID:28953650

  9. Soil Productive Lifespans: Rethinking Soil Sustainability for the 21st Century

    Science.gov (United States)

    Evans, Daniel

    2017-04-01

    The ability for humans to sustainably manage the natural resources on which they depend has been one of the existential challenges facing mankind since the dawn of civilisation. Given the demands from this century's unprecedented global population and the unremitting course of climatic change, that challenge has soared in intensity. Sustainability, in this context, refers to agricultural practices which meet the needs of the present without compromising the ability of future generations to meet their own needs. Ensuring sustainability is arguably of greatest importance when resources, such as soil, are non-renewable. However, there is as yet no tool to evaluate how sustainable conservation strategies are in the long-term. Up to now, many pedologists have assessed sustainability in binary terms, questioning whether management is sustainable or not. In truth, one can never determine whether a practice is ultimately sustainable because of the indefinite nature implied by "future generations". We suggest that a more useful assessment of sustainability for the 21st century should avoid binary questions and instead ask: how sustainable are soils? Indeed, how many future generations can soils provide for? Although the use of modelling is by no means a novelty for the discipline, there are very few holistic models that encompass the fluxes and dynamic relationships between both mass and quality concomitantly. We therefore propose a new conceptual framework - the Soil Productive Lifespan (SPL) - that employs empirically derived residence times of both soil mass and quality, together with pathways of environmental change, to forecast the length of time a soil profile can provide the critical functions. Although mass and quality are considered synergistically, the SPL model allows one to assess whether mass or quality alone presents the greatest limiting factor in the productive lifespans of soils. As a result, more targeted conservation strategies can be designed. Ultimately

  10. Impacts of Dietary Phytochemicals in the Presence and Absence of Pesticides on Longevity of Honey Bees (Apis mellifera).

    Science.gov (United States)

    Liao, Ling-Hsiu; Wu, Wen-Yen; Berenbaum, May R

    2017-02-14

    Because certain flavonols and phenolic acids are found in pollen and nectar of most angiosperms, they are routinely ingested by Apis mellifera , the western honey bee. The flavonol quercetin and the phenolic acid p -coumaric acid are known to upregulate detoxification enzymes in adult bees; their presence or absence in the diet may thus affect the toxicity of ingested pesticides. We conducted a series of longevity assays with one-day-old adult workers to test if dietary phytochemicals enhance longevity and pesticide tolerance. One-day-old bees were maintained on sugar syrup with or without casein (a phytochemical-free protein source) in the presence or absence of quercetin and p -coumaric acid as well as in the presence or absence of two pyrethroid insecticides, bifenthrin and β-cyfluthrin. Dietary quercetin (hazard ratio, HR = 0.82), p -coumaric acid (HR = 0.91) and casein (HR = 0.74) were associated with extended lifespan and the two pyrethroid insecticides, 4 ppm bifenthrin (HR = 9.17) and 0.5 ppm β-cyfluthrin (HR = 1.34), reduced lifespan. Dietary quercetin enhanced tolerance of both pyrethroids; p -coumaric acid had a similar effect trend, although of reduced magnitude. Casein in the diet appears to eliminate the life-prolonging effect of p -coumaric acid in the absence of quercetin. Collectively, these assays demonstrate that dietary phytochemicals influence honey bee longevity and pesticide stress; substituting sugar syrups for honey or yeast/soy flour patties may thus have hitherto unrecognized impacts on adult bee health.

  11. Impacts of Dietary Phytochemicals in the Presence and Absence of Pesticides on Longevity of Honey Bees (Apis mellifera

    Directory of Open Access Journals (Sweden)

    Ling-Hsiu Liao

    2017-02-01

    Full Text Available Because certain flavonols and phenolic acids are found in pollen and nectar of most angiosperms, they are routinely ingested by Apis mellifera, the western honey bee. The flavonol quercetin and the phenolic acid p-coumaric acid are known to upregulate detoxification enzymes in adult bees; their presence or absence in the diet may thus affect the toxicity of ingested pesticides. We conducted a series of longevity assays with one-day-old adult workers to test if dietary phytochemicals enhance longevity and pesticide tolerance. One-day-old bees were maintained on sugar syrup with or without casein (a phytochemical-free protein source in the presence or absence of quercetin and p-coumaric acid as well as in the presence or absence of two pyrethroid insecticides, bifenthrin and β-cyfluthrin. Dietary quercetin (hazard ratio, HR = 0.82, p-coumaric acid (HR = 0.91 and casein (HR = 0.74 were associated with extended lifespan and the two pyrethroid insecticides, 4 ppm bifenthrin (HR = 9.17 and 0.5 ppm β-cyfluthrin (HR = 1.34, reduced lifespan. Dietary quercetin enhanced tolerance of both pyrethroids; p-coumaric acid had a similar effect trend, although of reduced magnitude. Casein in the diet appears to eliminate the life-prolonging effect of p-coumaric acid in the absence of quercetin. Collectively, these assays demonstrate that dietary phytochemicals influence honey bee longevity and pesticide stress; substituting sugar syrups for honey or yeast/soy flour patties may thus have hitherto unrecognized impacts on adult bee health.

  12. Dietary management and genetic predisposition

    DEFF Research Database (Denmark)

    Jensen, Hanne Holbæk; Larsen, Lesli Hingstrup

    2013-01-01

    Today, dietary recommendations are based on recommended daily intake for the general population, and only a few subgroups are considered for additional dietary advice. Nutrigenetics aim to optimize health and prevent disease. Particularly for lifestyle disease, such as obesity, which has increase...

  13. Dietary reference values for thiamin

    DEFF Research Database (Denmark)

    Sjödin, Anders Mikael

    2016-01-01

    Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) derived dietary reference values (DRVs) for thiamin (vitamin B1). The Panel considers that data from depletion–repletion studies in adults on the amount of dietary thiamin intake...

  14. Dietary intervention in acne

    Science.gov (United States)

    Melnik, Bodo

    2012-01-01

    The purpose of this paper is to highlight the endocrine signaling of Western diet, a fundamental environmental factor involved in the pathogenesis of epidemic acne. Western nutrition is characterized by high calorie uptake, high glycemic load, high fat and meat intake, as well as increased consumption of insulin- and IGF-1-level elevating dairy proteins. Metabolic signals of Western diet are sensed by the nutrient-sensitive kinase, mammalian target of rapamycin complex 1 (mTORC1), which integrates signals of cellular energy, growth factors (insulin, IGF-1) and protein-derived signals, predominantly leucine, provided in high amounts by milk proteins and meat. mTORC1 activates SREBP, the master transcription factor of lipogenesis. Leucine stimulates mTORC1-SREBP signaling and leucine is directly converted by sebocytes into fatty acids and sterols for sebaceous lipid synthesis. Over-activated mTORC1 increases androgen hormone secretion and most likely amplifies androgen-driven mTORC1 signaling of sebaceous follicles. Testosterone directly activates mTORC1. Future research should investigate the effects of isotretinoin on sebocyte mTORC1 activity. It is conceivable that isotretinoin may downregulate mTORC1 in sebocytes by upregulation of nuclear levels of FoxO1. The role of Western diet in acne can only be fully appreciated when all stimulatory inputs for maximal mTORC1 activation, i.e., glucose, insulin, IGF-1 and leucine, are adequately considered. Epidemic acne has to be recognized as an mTORC1-driven disease of civilization like obesity, type 2 diabetes, cancer and neurodegenerative diseases. These new insights into Western diet-mediated mTORC1-hyperactivity provide a rational basis for dietary intervention in acne by attenuating mTORC1 signaling by reducing (1) total energy intake, (2) hyperglycemic carbohydrates, (3) insulinotropic dairy proteins and (4) leucine-rich meat and dairy proteins. The necessary dietary changes are opposed to the evolution of

  15. Locomotor stability and adaptation during perturbed walking across the adult female lifespan.

    Science.gov (United States)

    McCrum, Christopher; Epro, Gaspar; Meijer, Kenneth; Zijlstra, Wiebren; Brüggemann, Gert-Peter; Karamanidis, Kiros

    2016-05-03

    The aim of this work was to examine locomotor stability and adaptation across the adult female lifespan during perturbed walking on the treadmill. 11 young, 11 middle and 14 older-aged female adults (mean and SD: 25.5(2.1), 50.6(6.4) and 69.0(4.7) years old respectively) walked on a treadmill. We applied a sustained perturbation to the swing phase of the right leg for 18 consecutive gait cycles, followed by a step with the resistance unexpectedly removed, via an ankle strap connected to a break-and-release system. The margin of stability (MoS) at foot touchdown was calculated as the difference between the anterior boundary of the base of support (BoS) and extrapolated center of mass. Older participants showed lower MoS adaptation magnitude in the early adaptation phase (steps 1-3) compared to the young and middle-aged groups. However, in the late adaptation phase (steps 16-18) there were no significant differences in adaptation magnitude between the three age groups. After removing the resistance, all three age groups showed similar aftereffects (i.e. increased BoS). The current results suggest that in old age, the ability to recalibrate locomotion to control stability is preserved, but the rate of adaptive improvement in locomotor stability is diminished. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Social influence on age and reproduction: reduced lifespan and fecundity in multi-queen ant colonies.

    Science.gov (United States)

    Schrempf, A; Cremer, S; Heinze, J

    2011-07-01

    Evolutionary theories of ageing predict that life span increases with decreasing extrinsic mortality, and life span variation among queens in ant species seems to corroborate this prediction: queens, which are the only reproductive in a colony, live much longer than queens in multi-queen colonies. The latter often inhabit ephemeral nest sites and accordingly are assumed to experience a higher mortality risk. Yet, all prior studies compared queens from different single- and multi-queen species. Here, we demonstrate an effect of queen number on longevity and fecundity within a single, socially plastic species, where queens experience the similar level of extrinsic mortality. Queens from single- and two-queen colonies had significantly longer lifespan and higher fecundity than queens living in associations of eight queens. As queens also differ neither in morphology nor the mode of colony foundation, our study shows that the social environment itself strongly affects ageing rate. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  17. Hedgehog pathway inhibitor saridegib (IPI-926) increases lifespan in a mouse medulloblastoma model.

    Science.gov (United States)

    Lee, Michelle J; Hatton, Beryl A; Villavicencio, Elisabeth H; Khanna, Paritosh C; Friedman, Seth D; Ditzler, Sally; Pullar, Barbara; Robison, Keith; White, Kerry F; Tunkey, Chris; LeBlanc, Michael; Randolph-Habecker, Julie; Knoblaugh, Sue E; Hansen, Stacey; Richards, Andrew; Wainwright, Brandon J; McGovern, Karen; Olson, James M

    2012-05-15

    The Sonic Hedgehog (Shh) pathway drives a subset of medulloblastomas, a malignant neuroectodermal brain cancer, and other cancers. Small-molecule Shh pathway inhibitors have induced tumor regression in mice and patients with medulloblastoma; however, drug resistance rapidly emerges, in some cases via de novo mutation of the drug target. Here we assess the response and resistance mechanisms to the natural product derivative saridegib in an aggressive Shh-driven mouse medulloblastoma model. In this model, saridegib treatment induced tumor reduction and significantly prolonged survival. Furthermore, the effect of saridegib on tumor-initiating capacity was demonstrated by reduced tumor incidence, slower growth, and spontaneous tumor regression that occurred in allografts generated from previously treated autochthonous medulloblastomas compared with those from untreated donors. Saridegib, a known P-glycoprotein (Pgp) substrate, induced Pgp activity in treated tumors, which likely contributed to emergence of drug resistance. Unlike other Smoothened (Smo) inhibitors, the drug resistance was neither mutation-dependent nor Gli2 amplification-dependent, and saridegib was found to be active in cells with the D473H point mutation that rendered them resistant to another Smo inhibitor, GDC-0449. The fivefold increase in lifespan in mice treated with saridegib as a single agent compares favorably with both targeted and cytotoxic therapies. The absence of genetic mutations that confer resistance distinguishes saridegib from other Smo inhibitors.

  18. Hepatic S6K1 Partially Regulates Lifespan of Mice with Mitochondrial Complex I Deficiency

    Directory of Open Access Journals (Sweden)

    Takashi K. Ito

    2017-09-01

    Full Text Available The inactivation of ribosomal protein S6 kinase 1 (S6K1 recapitulates aspects of caloric restriction and mTORC1 inhibition to achieve prolonged longevity in invertebrate and mouse models. In addition to delaying normative aging, inhibition of mTORC1 extends the shortened lifespan of yeast, fly, and mouse models with severe mitochondrial disease. Here we tested whether disruption of S6K1 can recapitulate the beneficial effects of mTORC1 inhibition in the Ndufs4 knockout (NKO mouse model of Leigh Syndrome caused by Complex I deficiency. These NKO mice develop profound neurodegeneration resulting in brain lesions and death around 50–60 days of age. Our results show that liver-specific, as well as whole body, S6K1 deletion modestly prolongs survival and delays onset of neurological symptoms in NKO mice. In contrast, we observed no survival benefit in NKO mice specifically disrupted for S6K1 in neurons or adipocytes. Body weight was reduced in WT mice upon disruption of S6K1 in adipocytes or whole body, but not altered when S6K1 was disrupted only in neurons or liver. Taken together, these data indicate that decreased S6K1 activity in liver is sufficient to delay the neurological and survival defects caused by deficiency of Complex I and suggest that mTOR signaling can modulate mitochondrial disease and metabolism via cell non-autonomous mechanisms.

  19. Automatic segmentation of brain MRIs and mapping neuroanatomy across the human lifespan

    Science.gov (United States)

    Keihaninejad, Shiva; Heckemann, Rolf A.; Gousias, Ioannis S.; Rueckert, Daniel; Aljabar, Paul; Hajnal, Joseph V.; Hammers, Alexander

    2009-02-01

    A robust model for the automatic segmentation of human brain images into anatomically defined regions across the human lifespan would be highly desirable, but such structural segmentations of brain MRI are challenging due to age-related changes. We have developed a new method, based on established algorithms for automatic segmentation of young adults' brains. We used prior information from 30 anatomical atlases, which had been manually segmented into 83 anatomical structures. Target MRIs came from 80 subjects (~12 individuals/decade) from 20 to 90 years, with equal numbers of men, women; data from two different scanners (1.5T, 3T), using the IXI database. Each of the adult atlases was registered to each target MR image. By using additional information from segmentation into tissue classes (GM, WM and CSF) to initialise the warping based on label consistency similarity before feeding this into the previous normalised mutual information non-rigid registration, the registration became robust enough to accommodate atrophy and ventricular enlargement with age. The final segmentation was obtained by combination of the 30 propagated atlases using decision fusion. Kernel smoothing was used for modelling the structural volume changes with aging. Example linear correlation coefficients with age were, for lateral ventricular volume, rmale=0.76, rfemale=0.58 and, for hippocampal volume, rmale=-0.6, rfemale=-0.4 (allρ<0.01).

  20. Different Temporal Patterns of Specific and General Autobiographical Memories across the Lifespan in Alzheimer's Disease.

    Science.gov (United States)

    Philippi, Nathalie; Rousseau, François; Noblet, Vincent; Botzung, Anne; Després, Olivier; Cretin, Benjamin; Kremer, Stéphane; Blanc, Frédéric; Manning, Liliann

    2015-01-01

    We compared specific (i.e., associated with a unique time and space) and general (i.e., extended or repeated events) autobiographical memories (AbM) in Alzheimer's disease (AD). The comparison aims at investigating the relationship between these two components of AbM across the lifespan and the volume of cerebral regions of interest within the temporal lobe. We hypothesized that the ability to elicit specific memories would correlate with hippocampal volume, whereas evoking general memories would be related to lateral temporal lobe. AbM was assessed using the modified Crovitz test in 18 patients with early AD and 18 matched controls. The proportions of total memories-supposed to reflect the ability to produce general memories-and specific memories retrieved were compared between AD patients and controls. Correlations to MRI volumes of temporal cortex were tested. We found different temporal patterns for specific and general memories in AD patients, with (i) relatively spared general memories, according to a temporal gradient that preserved remote memories, predominantly associated with right lateral temporal cortex volume. (ii) Conversely, the retrieval of specific AbMs was impaired for all life periods and correlated with bilateral hippocampal volumes. Our results highlight a shift from an initially episodic to a semantic nature of AbMs during AD, where the abstracted form of memories remains.

  1. Immigration, language proficiency, and autobiographical memories: Lifespan distribution and second-language access.

    Science.gov (United States)

    Esposito, Alena G; Baker-Ward, Lynne

    2016-08-01

    This investigation examined two controversies in the autobiographical literature: how cross-language immigration affects the distribution of autobiographical memories across the lifespan and under what circumstances language-dependent recall is observed. Both Spanish/English bilingual immigrants and English monolingual non-immigrants participated in a cue word study, with the bilingual sample taking part in a within-subject language manipulation. The expected bump in the number of memories from early life was observed for non-immigrants but not immigrants, who reported more memories for events surrounding immigration. Aspects of the methodology addressed possible reasons for past discrepant findings. Language-dependent recall was influenced by second-language proficiency. Results were interpreted as evidence that bilinguals with high second-language proficiency, in contrast to those with lower second-language proficiency, access a single conceptual store through either language. The final multi-level model predicting language-dependent recall, including second-language proficiency, age of immigration, internal language, and cue word language, explained ¾ of the between-person variance and (1)/5 of the within-person variance. We arrive at two conclusions. First, major life transitions influence the distribution of memories. Second, concept representation across multiple languages follows a developmental model. In addition, the results underscore the importance of considering language experience in research involving memory reports.

  2. A novel endogenous indole protects rodent mitochondria and extends rotifer lifespan.

    Directory of Open Access Journals (Sweden)

    Burkhard Poeggeler

    2010-04-01

    Full Text Available Aging is a multi-factorial process, however, it is generally accepted that reactive oxygen species (ROS are significant contributors. Mitochondria are important players in the aging process because they produce most of the cellular ROS. Despite the strength of the free-radical hypothesis, the use of free radical scavengers to delay aging has generated mixed results in vertebrate models, and clinical evidence of efficacy is lacking. This is in part due to the production of pro-oxidant metabolites by many antioxidants while scavenging ROS, which counteract their potentially beneficial effects. As such, a more effective approach is to enhance mitochondrial metabolism by reducing electron leakage with attendant reduction of ROS generation. Here, we report on the actions of a novel endogenous indole derivative, indolepropionamide (IPAM, which is similar in structure to melatonin. Our results suggest that IPAM binds to the rate-limiting component of oxidative phosphorylation in complex I of the respiratory chain and acts as a stabilizer of energy metabolism, thereby reducing ROS production. IPAM reversed the age-dependent decline of mitochondrial energetic capacity and increased rotifer lifespan, and it may, in fact, constitute a novel endogenous anti-aging substance of physiological importance.

  3. Normative data from the CANTAB. I: development of executive function over the lifespan.

    Science.gov (United States)

    De Luca, Cinzia R; Wood, Stephen J; Anderson, Vicki; Buchanan, Jo-Anne; Proffitt, Tina M; Mahony, Kate; Pantelis, Christos

    2003-04-01

    The study of executive function within a developmental framework has proven integral to the advancement of knowledge concerning the acquisition and decline of higher skill processes. Still in its early stages, there exists a discontinuity in the literature between the exploration of executive capacity in young children and the elderly. Research of age-related differences utilising a lifespan approach has been restricted by the lack of assessment tools for the measurement of executive skills that are applicable across all age levels. This paper addresses these issues using the computer-based Cambridge Neuropsychological Test Automated Battery (CANTAB) to identify periods of development in executive capacities using a normative sample of 194 participants ranging in age from 8 to 64 years. Findings of executive function in children as young as 8 years of age were extended, with functional gains found in the efficiency of working memory capacity, planning and problem-solving abilities, between the ages of 15 and 19 years and again at 20-29 years of age. Cognitive flexibility was assessed at adult-levels in even the youngest children. Declines in performance on all tasks were revealed for the 50-64 year old sample, providing support for the vulnerability of executive skills to normal aging.

  4. Lack of Ach1 CoA-transferase triggers apoptosis and decreases chronological lifespan in yeast

    Directory of Open Access Journals (Sweden)

    Ivan eOrlandi

    2012-06-01

    Full Text Available ACH1 encodes a mitochondrial enzyme of Saccharomyces cerevisiae endowed with CoA-transferase activity. It catalyzes the CoASH transfer from succinyl-CoA to acetate generating acetyl-CoA. It is known that ACH1 inactivation results in growth defects on media containing acetate as a sole carbon and energy source which are particularly severe at low pH. Here, we show that chronological aging ach1 cells which accumulate a high amount of extracellular acetic acid display a reduced chronological lifespan. The faster drop of cell survival is completely abrogated by alleviating the acid stress either by a calorie restricted regimen that prevents acetic acid production or by transferring chronologically aging mutant cells to water. Moreover, the short-lived phenotype of ach1 cells is accompanied by reactive oxygen species accumulation, severe mitochondrial damage and an early insurgence of apoptosis. A similar pattern of endogenous severe oxidative stress is observed when ach1 cells are cultured using acetic acid as a carbon source under acidic conditions. On the whole, our data provide further evidence of the role of acetic acid as cell-extrinsic mediator of cell death during chronological aging and highlight a primary role of Ach1 enzymatic activity in acetic acid detoxification which is important for mitochondrial functionality.

  5. Polyhydroxy fullerenes (fullerols or fullerenols: beneficial effects on growth and lifespan in diverse biological models.

    Directory of Open Access Journals (Sweden)

    Jie Gao

    Full Text Available Recent toxicological studies on carbon nanomaterials, including fullerenes, have led to concerns about their safety. Functionalized fullerenes, such as polyhydroxy fullerenes (PHF, fullerols, or fullerenols, have attracted particular attention due to their water solubility and toxicity. Here, we report surprisingly beneficial and/or specific effects of PHF on model organisms representing four kingdoms, including the green algae Pseudokirchneriella subcapitata, the plant Arabidopsis thaliana, the fungus Aspergillus niger, and the invertebrate Ceriodaphnia dubia. The results showed that PHF had no acute or chronic negative effects on the freshwater organisms. Conversely, PHF could surprisingly increase the algal culture density over controls at higher concentrations (i.e., 72% increase by 1 and 5 mg/L of PHF and extend the lifespan and stimulate the reproduction of Daphnia (e.g. about 38% by 20 mg/L of PHF. We also show that at certain PHF concentrations fungal growth can be enhanced and Arabidopsis thaliana seedlings exhibit longer hypocotyls, while other complex physiological processes remain unaffected. These findings may open new research fields in the potential applications of PHF, e.g., in biofuel production and aquaculture. These results will form the basis of further research into the mechanisms of growth stimulation and life extension by PHF.

  6. Types of strain among family members of individuals with autism spectrum disorder across the lifespan.

    Science.gov (United States)

    Shivers, Carolyn M; Krizova, Katarina; Lee, Gloria K

    2017-09-01

    Although increased caregiver strain is often found among family caregivers of individuals with autism spectrum disorder, it is still unclear as to how different types of strain relate to amount and types of caregiving across the lifespan. The present study examined different types of strain (i.e. subjective internalized strain, subjective externalized strain, and objective strain) and how such strain relates to the amount of caregiving responsibilities. Data was collected via online survey from a sample of 193 family caregivers of individuals with ASD from the United States, Canada, and the Republic of Ireland. Participants completed measures of strain and caregiving responsibilities, as well as coping, demographics, and services needed and received by the individual with ASD. Caregivers reported higher levels of objective strain than subjective, and caregiving responsibility was related to objective and subjective internalized strain. Coping style was strongly correlated with all types of strain, and unmet service needs were significantly related to objective and subjective internalized strain. Caregiving behaviors were only related to objective strain. The present results indicate that, although caregiving responsibility is related to objective and subjective internalized strain, the relationship is perhaps not as strong as the relationship between coping mechanisms and strain. Future research is needed to understand different types of strain and develop strategies to help caregivers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Anticipatory postural adjustment patterns during gait initiation across the adult lifespan.

    Science.gov (United States)

    Lu, Chiahao; Amundsen Huffmaster, Sommer L; Harvey, Jack C; MacKinnon, Colum D

    2017-09-01

    Gait initiation involves a complex sequence of anticipatory postural adjustments (APAs) during the transition from steady state standing to forward locomotion. APAs have four core components that function to accelerate the center of mass forwards and towards the initial single-support stance limb. These components include loading of the initial step leg, unloading of the initial stance leg, and excursion of the center of pressure in the posterior and lateral (towards the stepping leg) directions. This study examined the incidence, magnitude, and timing of these components and how they change across the lifespan (ages 20-79). 157 individuals performed five trials of self-paced, non-cued gait initiation on an instrumented walkway. At least one component of the APA was absent in 24% of all trials. The component most commonly absent was loading of the initial step leg (absent in 10% of all trials in isolation, absent in 10% of trials in conjunction with another missing component). Trials missing all four components were rare (1%) and were observed in both younger and older adults. There was no significant difference across decades in the incidence of trials without an APA, the number or type of APA components absent, or the magnitude or timing of the APA components. These data demonstrate that one or more components of the APA sequence are commonly absent in the general population and the spatiotemporal profile of the APA does not markedly change with ageing. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Oxygen availability strongly affects chronological lifespan and thermotolerance in batch cultures of Saccharomyces cerevisiae

    Science.gov (United States)

    Bisschops, Markus M.; Vos, Tim; Martínez-Moreno, Rubén; Cortés, Pilar T.; Pronk, Jack T.; Daran-Lapujade, Pascale

    2015-01-01

    Stationary-phase (SP) batch cultures of Saccharomyces cerevisiae, in which growth has been arrested by carbon-source depletion, are widely applied to study chronological lifespan, quiescence and SP-associated robustness. Based on this type of experiments, typically performed under aerobic conditions, several roles of oxygen in aging have been proposed. However, SP in anaerobic yeast cultures has not been investigated in detail. Here, we use the unique capability of S. cerevisiae to grow in the complete absence of oxygen to directly compare SP in aerobic and anaerobic bioreactor cultures. This comparison revealed strong positive effects of oxygen availability on adenylate energy charge, longevity and thermotolerance during SP. A low thermotolerance of anaerobic batch cultures was already evident during the exponential growth phase and, in contrast to the situation in aerobic cultures, was not substantially increased during transition into SP. A combination of physiological and transcriptome analysis showed that the slow post-diauxic growth phase on ethanol, which precedes SP in aerobic, but not in anaerobic cultures, endowed cells with the time and resources needed for inducing longevity and thermotolerance. When combined with literature data on acquisition of longevity and thermotolerance in retentostat cultures, the present study indicates that the fast transition from glucose excess to SP in anaerobic cultures precludes acquisition of longevity and thermotolerance. Moreover, this study demonstrates the importance of a preceding, calorie-restricted conditioning phase in the acquisition of longevity and stress tolerance in SP yeast cultures, irrespective of oxygen availability. PMID:28357268

  9. SIRT2 induces the checkpoint kinase BubR1 to increase lifespan.

    Science.gov (United States)

    North, Brian J; Rosenberg, Michael A; Jeganathan, Karthik B; Hafner, Angela V; Michan, Shaday; Dai, Jing; Baker, Darren J; Cen, Yana; Wu, Lindsay E; Sauve, Anthony A; van Deursen, Jan M; Rosenzweig, Anthony; Sinclair, David A

    2014-07-01

    Mice overexpressing the mitotic checkpoint kinase gene BubR1 live longer, whereas mice hypomorphic for BubR1 (BubR1(H/H)) live shorter and show signs of accelerated aging. As wild-type mice age, BubR1 levels decline in many tissues, a process that is proposed to underlie normal aging and age-related diseases. Understanding why BubR1 declines with age and how to slow this process is therefore of considerable interest. The sirtuins (SIRT1-7) are a family of NAD(+)-dependent deacetylases that can delay age-related diseases. Here, we show that the loss of BubR1 levels with age is due to a decline in NAD(+) and the ability of SIRT2 to maintain lysine-668 of BubR1 in a deacetylated state, which is counteracted by the acetyltransferase CBP. Overexpression of SIRT2 or treatment of mice with the NAD(+) precursor nicotinamide mononucleotide (NMN) increases BubR1 abundance in vivo. Overexpression of SIRT2 in BubR1(H/H) animals increases median lifespan, with a greater effect in male mice. Together, these data indicate that further exploration of the potential of SIRT2 and NAD(+) to delay diseases of aging in mammals is warranted. © 2014 The Authors.

  10. Micro and regular saccades across the lifespan during a visual search of "Where's Waldo" puzzles.

    Science.gov (United States)

    Port, Nicholas L; Trimberger, Jane; Hitzeman, Steve; Redick, Bryan; Beckerman, Stephen

    2016-01-01

    Despite the fact that different aspects of visual-motor control mature at different rates and aging is associated with declines in both sensory and motor function, little is known about the relationship between microsaccades and either development or aging. Using a sample of 343 individuals ranging in age from 4 to 66 and a task that has been shown to elicit a high frequency of microsaccades (solving Where's Waldo puzzles), we explored microsaccade frequency and kinematics (main sequence curves) as a function of age. Taking advantage of the large size of our dataset (183,893 saccades), we also address (a) the saccade amplitude limit at which video eye trackers are able to accurately measure microsaccades and (b) the degree and consistency of saccade kinematics at varying amplitudes and directions. Using a modification of the Engbert-Mergenthaler saccade detector, we found that even the smallest amplitude movements (0.25-0.5°) demonstrate basic saccade kinematics. With regard to development and aging, both microsaccade and regular saccade frequency exhibited a very small increase across the life span. Visual search ability, as per many other aspects of visual performance, exhibited a U-shaped function over the lifespan. Finally, both large horizontal and moderate vertical directional biases were detected for all saccade sizes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Sucralose administered in feed, beginning prenatally through lifespan, induces hematopoietic neoplasias in male swiss mice.

    Science.gov (United States)

    M, Soffritti; M, Padovani; E, Tibaldi; L, Falcioni; F, Manservisi; M, Lauriola; L, Bua; M, Manservigi; F, Belpoggi

    2016-01-01

    Sucralose is an organochlorine artificial sweetener approximately 600 times sweeter than sucrose and used in over 4,500 products. Long-term carcinogenicity bioassays on rats and mice conducted on behalf of the manufacturer have failed to show the evidence of carcinogenic effects. The aim of this study was to evaluate the carcinogenic effect of sucralose in mice, using a sensitive experimental design. Five groups of male (total n = 457) and five groups female (total n = 396) Swiss mice were treated from 12 days of gestation through the lifespan with sucralose in their feed at concentrations of 0, 500, 2,000, 8,000, and 16,000 ppm. We found a significant dose-related increased incidence of males bearing malignant tumors (p neoplasias in males, in particular at the dose levels of 2,000 ppm (p < 0.01) and 16,000 ppm (p < 0.01). These findings do not support previous data that sucralose is biologically inert. More studies are necessary to show the safety of sucralose, including new and more adequate carcinogenic bioassay on rats. Considering that millions of people are likely exposed, follow-up studies are urgent.

  12. Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry.

    Science.gov (United States)

    Westlye, Lars T; Walhovd, Kristine B; Dale, Anders M; Bjørnerud, Atle; Due-Tønnessen, Paulina; Engvig, Andreas; Grydeland, Håkon; Tamnes, Christian K; Ostby, Ylva; Fjell, Anders M

    2010-09-01

    Magnetic resonance imaging volumetry studies report inverted U-patterns with increasing white-matter (WM) volume into middle age suggesting protracted WM maturation compared with the cortical gray matter. Diffusion tensor imaging (DTI) is sensitive to degree and direction of water permeability in biological tissues, providing in vivo indices of WM microstructure. The aim of this cross-sectional study was to delineate age trajectories of WM volume and DTI indices in 430 healthy subjects ranging 8-85 years of age. We used automated regional brain volume segmentation and tract-based statistics of fractional anisotropy, mean, and radial diffusivity as markers of WM integrity. Nonparametric regressions were used to fit the age trajectories and to estimate the timing of maximum development and deterioration in aging. Although the volumetric data supported protracted growth into the sixth decade, DTI indices plateaued early in the fourth decade across all tested regions and then declined slowly into late adulthood followed by an accelerating decrease in senescence. Tractwise and voxel-based analyses yielded regional differences in development and aging but did not provide ample evidence in support of a simple last-in-first-out hypothesis of life-span changes.

  13. Cultivating Composting Culture Activities among Citizens and Its Beneficial to Prolong the Landfill Lifespan

    Science.gov (United States)

    Azura Zakarya, Irnis; Azri Jamial, Khairul; Mat Tanda, Norazlinda

    2018-03-01

    Currently, the Ministry of Housing and Local Government manage solid waste in Malaysia, with the participation of the private sector. Food waste represents almost 60% of the total municipal solid waste disposed in the landfill. Material valorisation of food waste usually conducted by biological processes such as composting. Compost, an organic amendment, is the final product of the composting process. These processes are efficient, low cost and environmentally friendly alternative for managing food waste and are used extensively worldwide. Therefore, organic solid waste management practices program for the communities in Perlis was conducted. The main objective of this program was to instilling environment awareness especially among Perlis citizens. This study was investigated the impact of food waste or kitchen waste composting to the citizens in Perlis State and the beneficial of compost fertilizer to our environment especially in plant growth. Composting method was taught to the food premises owner, individuals, teachers, and students and their responses to the composting practices were then summarized. In future, we can prolong our landfill lifespan by practicing organic waste composting and can preserving our environment.

  14. Lack of Ach1 CoA-Transferase Triggers Apoptosis and Decreases Chronological Lifespan in Yeast

    International Nuclear Information System (INIS)

    Orlandi, Ivan; Casatta, Nadia; Vai, Marina

    2012-01-01

    ACH1 encodes a mitochondrial enzyme of Saccharomyces cerevisiae endowed with CoA-transferase activity. It catalyzes the CoASH transfer from succinyl-CoA to acetate generating acetyl-CoA. It is known that ACH1 inactivation results in growth defects on media containing acetate as a sole carbon and energy source which are particularly severe at low pH. Here, we show that chronological aging ach1Δ cells which accumulate a high amount of extracellular acetic acid display a reduced chronological lifespan. The faster drop of cell survival is completely abrogated by alleviating the acid stress either by a calorie restricted regimen that prevents acetic acid production or by transferring chronologically aging mutant cells to water. Moreover, the short-lived phenotype of ach1Δ cells is accompanied by reactive oxygen species accumulation, severe mitochondrial damage, and an early insurgence of apoptosis. A similar pattern of endogenous severe oxidative stress is observed when ach1Δ cells are cultured using acetic acid as a carbon source under acidic conditions. On the whole, our data provide further evidence of the role of acetic acid as cell-extrinsic mediator of cell death during chronological aging and highlight a primary role of Ach1 enzymatic activity in acetic acid detoxification which is important for mitochondrial functionality.

  15. Beyond comorbidity: Toward a dimensional and hierarchal approach to understanding psychopathology across the lifespan

    Science.gov (United States)

    Forbes, Miriam K.; Tackett, Jennifer L.; Markon, Kristian E.; Krueger, Robert F.

    2016-01-01

    In this review, we propose a novel developmentally informed framework to push research beyond a focus on comorbidity between discrete diagnostic categories, and to move towards research based on the well-validated dimensional and hierarchical structure of psychopathology. For example, a large body of research speaks to the validity and utility of the Internalizing and Externalizing (IE) spectra as organizing constructs for research on common forms of psychopathology. The IE spectra act as powerful explanatory variables that channel the psychopathological effects of genetic and environmental risk factors, predict adaptive functioning, and account for the likelihood of disorder-level manifestations of psychopathology. As such, our proposed theoretical framework uses the IE spectra as central constructs to guide future psychopathology research across the lifespan. The framework is particularly flexible, as any of the facets or factors from the dimensional and hierarchical structure of psychopathology can form the focus of research. We describe the utility and strengths of this framework for developmental psychopathology in particular, and explore avenues for future research. PMID:27739384

  16. Different Temporal Patterns of Specific and General Autobiographical Memories across the Lifespan in Alzheimer's Disease

    Science.gov (United States)

    Philippi, Nathalie; Rousseau, François; Noblet, Vincent; Botzung, Anne; Després, Olivier; Cretin, Benjamin; Kremer, Stéphane; Blanc, Frédéric; Manning, Liliann

    2015-01-01

    We compared specific (i.e., associated with a unique time and space) and general (i.e., extended or repeated events) autobiographical memories (AbM) in Alzheimer's disease (AD). The comparison aims at investigating the relationship between these two components of AbM across the lifespan and the volume of cerebral regions of interest within the temporal lobe. We hypothesized that the ability to elicit specific memories would correlate with hippocampal volume, whereas evoking general memories would be related to lateral temporal lobe. AbM was assessed using the modified Crovitz test in 18 patients with early AD and 18 matched controls. The proportions of total memories—supposed to reflect the ability to produce general memories—and specific memories retrieved were compared between AD patients and controls. Correlations to MRI volumes of temporal cortex were tested. We found different temporal patterns for specific and general memories in AD patients, with (i) relatively spared general memories, according to a temporal gradient that preserved remote memories, predominantly associated with right lateral temporal cortex volume. (ii) Conversely, the retrieval of specific AbMs was impaired for all life periods and correlated with bilateral hippocampal volumes. Our results highlight a shift from an initially episodic to a semantic nature of AbMs during AD, where the abstracted form of memories remains. PMID:26175549

  17. Idebenone and resveratrol extend lifespan and improve motor function of HtrA2 knockout mice.

    Directory of Open Access Journals (Sweden)

    Ellen Gerhardt

    Full Text Available Heterozygous loss-of-function mutation of the human gene for the mitochondrial protease HtrA2 has been associated with increased risk to develop mitochondrial dysfunction, a process known to contribute to neurodegenerative disorders such as Huntington's disease (HD and Parkinson's disease (PD. Knockout of HtrA2 in mice also leads to mitochondrial dysfunction and to phenotypes that resemble those found in neurodegenerative disorders and, ultimately, lead to death of animals around postnatal day 30. Here, we show that Idebenone, a synthetic antioxidant of the coenzyme Q family, and Resveratrol, a bioactive compound extracted from grapes, are both able to ameliorate this phenotype. Feeding HtrA2 knockout mice with either compound extends lifespan and delays worsening of the motor phenotype. Experiments conducted in cell culture and on brain tissue of mice revealed that each compound has a different mechanism of action. While Idebenone acts by downregulating the integrated stress response, Resveratrol acts by attenuating apoptosis at the level of Bax. These activities can account for the delay in neuronal degeneration in the striata of these mice and illustrate the potential of these compounds as effective therapeutic approaches against neurodegenerative disorders such as HD or PD.

  18. Effects of an unusual poison identify a lifespan role for Topoisomerase 2 in Saccharomyces cerevisiae.

    Science.gov (United States)

    Tombline, Gregory; Millen, Jonathan I; Polevoda, Bogdan; Rapaport, Matan; Baxter, Bonnie; Van Meter, Michael; Gilbertson, Matthew; Madrey, Joe; Piazza, Gary A; Rasmussen, Lynn; Wennerberg, Krister; White, E Lucile; Nitiss, John L; Goldfarb, David S

    2017-01-05

    A progressive loss of genome maintenance has been implicated as both a cause and consequence of aging. Here we present evidence supporting the hypothesis that an age-associated decay in genome maintenance promotes aging in Saccharomyces cerevisiae (yeast) due to an inability to sense or repair DNA damage by topoisomerase 2 (yTop2). We describe the characterization of LS1, identified in a high throughput screen for small molecules that shorten the replicative lifespan of yeast. LS1 accelerates aging without affecting proliferative growth or viability. Genetic and biochemical criteria reveal LS1 to be a weak Top2 poison. Top2 poisons induce the accumulation of covalent Top2-linked DNA double strand breaks that, if left unrepaired, lead to genome instability and death. LS1 is toxic to cells deficient in homologous recombination, suggesting that the damage it induces is normally mitigated by genome maintenance systems. The essential roles of yTop2 in proliferating cells may come with a fitness trade-off in older cells that are less able to sense or repair yTop2-mediated DNA damage. Consistent with this idea, cells live longer when yTop2 expression levels are reduced. These results identify intrinsic yTop2-mediated DNA damage as potentially manageable cause of aging.

  19. Oxygen availability strongly affects chronological lifespan and thermotolerance in batch cultures of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Markus M.M. Bisschops

    2015-10-01

    Full Text Available Stationary-phase (SP batch cultures of Saccharomyces cerevisiae, in which growth has been arrested by carbon-source depletion, are widely applied to study chronological lifespan, quiescence and SP-associated robustness. Based on this type of experiments, typically performed under aerobic conditions, several roles of oxygen in aging have been proposed. However, SP in anaerobic yeast cultures has not been investigated in detail. Here, we use the unique capability of S. cerevisiae to grow in the complete absence of oxygen to directly compare SP in aerobic and anaerobic bioreactor cultures. This comparison revealed strong positive effects of oxygen availability on adenylate energy charge, longevity and thermotolerance during SP. A low thermotolerance of anaerobic batch cultures was already evident during the exponential growth phase and, in contrast to the situation in aerobic cultures, was not substantially increased during transition into SP. A combination of physiological and transcriptome analysis showed that the slow post-diauxic growth phase on ethanol, which precedes SP in aerobic, but not in anaerobic cultures, endowed cells with the time and resources needed for inducing longevity and thermotolerance. When combined with literature data on acquisition of longevity and thermotolerance in retentostat cultures, the present study indicates that the fast transition from glucose excess to SP in anaerobic cultures precludes acquisition of longevity and thermotolerance. Moreover, this study demonstrates the importance of a preceding, calorie-restricted conditioning phase in the acquisition of longevity and stress tolerance in SP yeast cultures, irrespective of oxygen availability.

  20. Essential oil alloaromadendrene from mixed-type Cinnamomum osmophloeum leaves prolongs the lifespan in Caenorhabditis elegans.

    Science.gov (United States)

    Yu, Chan-Wei; Li, Wen-Hsuan; Hsu, Fu-Lan; Yen, Pei-Ling; Chang, Shang-Tzen; Liao, Vivian Hsiu-Chuan

    2014-07-02

    Cinnamomum osmophloeum Kaneh. is an indigenous tree species in Taiwan. The present study investigates phytochemical characteristics, antioxidant activities, and longevity of the essential oils from the leaves of the mixed-type C. osmophloeum tree. We demonstrate that the essential oils from leaves of mixed-type C. osmophloeum exerted in vivo antioxidant activities on Caenorhabditis elegans. In addition, minor (alloaromadendrene, 5.0%) but not major chemical components from the leaves of mixed-type C. osmophloeum have a key role against juglone-induced oxidative stress in C. elegans. Additionally, alloaromadendrene not only acts protective against oxidative stress but also prolongs the lifespan of C. elegans. Moreover, mechanistic studies show that DAF-16 is required for alloaromadendrene-mediated oxidative stress resistance and longevity in C. elegans. The results in the present study indicate that the leaves of mixed-type C. osmophloeum and essential oil alloaromadendrene have the potential for use as a source for antioxidants or treatments to delay aging.

  1. Specific protein homeostatic functions of small heat-shock proteins increase lifespan.

    Science.gov (United States)

    Vos, Michel J; Carra, Serena; Kanon, Bart; Bosveld, Floris; Klauke, Karin; Sibon, Ody C M; Kampinga, Harm H

    2016-04-01

    During aging, oxidized, misfolded, and aggregated proteins accumulate in cells, while the capacity to deal with protein damage declines severely. To cope with the toxicity of damaged proteins, cells rely on protein quality control networks, in particular proteins belonging to the family of heat-shock proteins (HSPs). As safeguards of the cellular proteome, HSPs assist in protein folding and prevent accumulation of damaged, misfolded proteins. Here, we compared the capacity of all Drosophila melanogaster small HSP family members for their ability to assist in refolding stress-denatured substrates and/or to prevent aggregation of disease-associated misfolded proteins. We identified CG14207 as a novel and potent small HSP member that exclusively assisted in HSP70-dependent refolding of stress-denatured proteins. Furthermore, we report that HSP67BC, which has no role in protein refolding, was the most effective small HSP preventing toxic protein aggregation in an HSP70-independent manner. Importantly, overexpression of both CG14207 and HSP67BC in Drosophila leads to a mild increase in lifespan, demonstrating that increased levels of functionally diverse small HSPs can promote longevity in vivo. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  2. HIF-1-dependent regulation of lifespan in Caenorhabditis elegans by the acyl-CoA-binding protein MAA-1

    DEFF Research Database (Denmark)

    Shamalnasab, Mehrnaz; Dhaoui, Manel; Thondamal, Manjunatha

    2017-01-01

    In yeast, the broadly conserved acyl-CoA-binding protein (ACBP) is a negative regulator of stress resistance and longevity. Here, we have turned to the nematode C. elegans as a model organism in which to determine whether ACBPs play similar roles in multicellular organisms. We systematically...... inactivated each of the seven C. elegans ACBP paralogs and found that one of them, maa-1 (which encodes membrane-associated ACBP 1), is indeed involved in the regulation of longevity. In fact, loss of maa-1 promotes lifespan extension and resistance to different types of stress. Through genetic and gene...... of the proteome. Our work extends to C. elegans the role of ACBP in aging, implicates HIF-1 in the increase of lifespan of maa-1-deficient worms, and sheds light on the anti-aging function of HIF-1. Given that both ACBP and HIF-1 are highly conserved, our results suggest the possible involvement of these proteins...

  3. The alkaloid compound harmane increases the lifespan of Caenorhabditis elegans during bacterial infection, by modulating the nematode's innate immune response

    DEFF Research Database (Denmark)

    Jakobsen, Henrik; Bojer, Martin Saxtorph; Marinus, Martin G.

    2013-01-01

    pathway; however, intriguingly the lifespan extension resulting from Harmane was higher in p38 MAPK-deficient nematodes. This indicates that Harmane has a complex effect on the innate immune system of C. elegans. Harmane could therefore be a useful tool in the further research into C. elegans immunity....... Since the innate immunity of C. elegans has a high degree of evolutionary conservation, drugs such as Harmane could also be possible alternatives to classic antibiotics. The C. elegans model could prove to be useful for selection and development of such drugs.......The nematode Caenorhabditis elegans has in recent years been proven to be a powerful in vivo model for testing antimicrobial compounds. We report here that the alkaloid compound Harmane (2-methyl-β-carboline) increases the lifespan of nematodes infected with a human pathogen, the Shiga toxin...

  4. Influence of sex and stress exposure across the lifespan on endophenotypes of depression: focus on behavior, glucocorticoids and hippocampus

    Directory of Open Access Journals (Sweden)

    Aarthi Raksha Gobinath

    2015-01-01

    Full Text Available Sex differences exist in vulnerability, symptoms and treatment of many neuropsychiatric disorders. In this review we discuss both preclinical and clinical research that investigates how sex influences depression endophenotypes at the behavioral, neuroendocrine, and neural levels across the lifespan. Chronic exposure to stress is a risk factor for depression and we discuss how stress during the prenatal, postnatal, and adolescent periods differentially affects males and females depending on the method of stress and metric examined. Given that the integrity of the hippocampus is compromised in depression, we specifically focus on sex differences in how hippocampal plasticity is affected by stress and depression across the lifespan. In addition, we examine how female physiology predisposes depression in adulthood, specifically in postpartum and perimenopausal periods. Finally, we discuss the underrepresentation of women in both preclinical and clinical research and how this limits our understanding of sex differences in vulnerability, presentation, and treatment of depression.

  5. The addition of a developmental factor, unc-62, to already long-lived worms increases lifespan and healthspan

    Directory of Open Access Journals (Sweden)

    Dror Sagi

    2017-12-01

    Full Text Available Aging is a complex trait that is affected by multiple genetic pathways. A relatively unexplored approach is to manipulate multiple independent aging pathways simultaneously in order to observe their cumulative effect on lifespan. Here, we report the phenotypic characterization of a strain with changes in five aging pathways: (1 mitochondrial reactive oxygen species (ROS production, (2 innate immunity, (3 stress response, (4 metabolic control and (5 developmental regulation in old age. The quintuply modified strain has a lifespan that is 160% longer than the transgenic control strain. Additionally, the quintuply modified strain maintains several physiological markers of aging for a longer time than the transgenic control. Our results support a modular approach as a general scheme to study how multiple pathways interact to achieve extreme longevity.

  6. Leaf-trait variation explained by the hypothesis that plants maximize their canopy carbon export over the lifespan of leaves.

    Science.gov (United States)

    McMurtrie, Ross E; Dewar, Roderick C

    2011-09-01

    Measured values of four key leaf traits (leaf area per unit mass, nitrogen concentration, photosynthetic capacity, leaf lifespan) co-vary consistently within and among diverse biomes, suggesting convergent evolution across species. The same leaf traits co-vary consistently with the environmental conditions (light intensity, carbon-dioxide concentration, nitrogen supply) prevailing during leaf development. No existing theory satisfactorily explains all of these trends. Here, using a simple model of the carbon-nitrogen economy of trees, we show that global leaf-trait relationships and leaf responses to environmental conditions can be explained by the optimization hypothesis (MAXX) that plants maximize the total amount of carbon exported from their canopies over the lifespan of leaves. Incorporating MAXX into larger-scale vegetation models may improve their consistency with global leaf-trait relationships, and enhance their ability to predict how global terrestrial productivity and carbon sequestration respond to environmental change.

  7. Short-term dietary restriction and fasting precondition against ischemia reperfusion injury in mice.

    Science.gov (United States)

    Mitchell, James R; Verweij, Mariëlle; Brand, Karl; van de Ven, Marieke; Goemaere, Natascha; van den Engel, Sandra; Chu, Timothy; Forrer, Flavio; Müller, Cristina; de Jong, Marion; van IJcken, Wilfred; IJzermans, Jan N M; Hoeijmakers, Jan H J; de Bruin, Ron W F

    2010-02-01

    Dietary restriction (DR) extends lifespan and increases resistance to multiple forms of stress, including ischemia reperfusion injury to the brain and heart in rodents. While maximal effects on lifespan require long-term restriction, the kinetics of onset of benefits against acute stress is not known. Here, we show that 2-4 weeks of 30% DR improved survival and kidney function following renal ischemia reperfusion injury in mice. Brief periods of water-only fasting were similarly effective at protecting against ischemic damage. Significant protection occurred within 1 day, persisted for several days beyond the fasting period and extended to another organ, the liver. Protection by both short-term DR and fasting correlated with improved insulin sensitivity, increased expression of markers of antioxidant defense and reduced expression of markers of inflammation and insulin/insulin-like growth factor-1 signaling. Unbiased transcriptional profiling of kidneys from mice subject to short-term DR or fasting revealed a significant enrichment of signature genes of long-term DR. These data demonstrate that brief periods of reduced food intake, including short-term daily restriction and fasting, can increase resistance to ischemia reperfusion injury in rodents and suggest a rapid onset of benefits of DR in mammals.

  8. Dietary effects on cuticular hydrocarbons and sexual attractiveness in Drosophila.

    Directory of Open Access Journals (Sweden)

    Tatyana Y Fedina

    Full Text Available Dietary composition is known to have profound effects on many aspects of animal physiology, including lifespan, general health, and reproductive potential. We have previously shown that aging and insulin signaling significantly influence the composition and sexual attractiveness of Drosophila melanogaster female cuticular hydrocarbons (CHCs, some of which are known to be sex pheromones. Because diet is intimately linked to aging and to the activity of nutrient-sensing pathways, we asked how diet affects female CHCs and attractiveness. Here we report consistent and significant effects of diet composition on female CHC profiles across ages, with dietary yeast and sugar driving CHC changes in opposite directions. Surprisingly, however, we found no evidence that these changes affect female attractiveness. Multivariate comparisons among responses of CHC profiles to diet, aging, and insulin signaling suggest that diet may alter the levels of some CHCs in a way that results in profiles that are more attractive while simultaneously altering other CHCs in a way that makes them less attractive. For example, changes in short-chain CHCs induced by a high-yeast diet phenocopy changes caused by aging and by decreased insulin signaling, both of which result in less attractive females. On the other hand, changes in long-chain CHCs in response to the same diet result in levels that are comparable to those observed in attractive young females and females with increased insulin signaling. The effects of a high-sugar diet tend in the opposite direction, as levels of short-chain CHCs resemble those in attractive females with increased insulin signaling and changes in long-chain CHCs are similar to those caused by decreased insulin signaling. Together, these data suggest that diet-dependent changes in female CHCs may be sending conflicting messages to males.

  9. Dietary supplements for osteoarthritis.

    Science.gov (United States)

    Gregory, Philip J; Sperry, Morgan; Wilson, Amy Friedman

    2008-01-15

    A large number of dietary supplements are promoted to patients with osteoarthritis and as many as one third of those patients have used a supplement to treat their condition. Glucosamine-containing supplements are among the most commonly used products for osteoarthritis. Although the evidence is not entirely consistent, most research suggests that glucosamine sulfate can improve symptoms of pain related to osteoarthritis, as well as slow disease progression in patients with osteoarthritis of the knee. Chondroitin sulfate also appears to reduce osteoarthritis symptoms and is often combined with glucosamine, but there is no reliable evidence that the combination is more effective than either agent alone. S-adenosylmethionine may reduce pain but high costs and product quality issues limit its use. Several other supplements are promoted for treating osteoarthritis, such as methylsulfonylmethane, Harpagophytum procumbens (devil's claw), Curcuma longa (turmeric), and Zingiber officinale (ginger), but there is insufficient reliable evidence regarding long-term safety or effectiveness.

  10. The Combined Effect of Methyl- and Ethyl-Paraben on Lifespan and Preadult Development Period of Drosophila melanogaster (Diptera: Drosophilidae)

    OpenAIRE

    Chen, Qi; Pan, Chenguang; Li, Yajuan; Zhang, Min; Gu, Wei

    2016-01-01

    Parabens are widely used as preservative substances in foods, pharmaceuticals, industrial products, and cosmetics. But several studies have cautioned that parabens have estrogenic or endocrine-disrupting properties. Drosophila melanogaster is an ideal model in vivo to detect the toxic effects of chemistry. The study was designed to assess the potential additive toxic effects of methylparaben (MP) and ethylparaben (EP) mixture (MP + EP) on lifespan and preadult development period in D. melanog...

  11. Learning, neural plasticity and sensitive periods: implications for language acquisition, music training and transfer across the lifespan

    OpenAIRE

    White, Erin J.; Hutka, Stefanie A.; Williams, Lynne J.; Moreno, Sylvain

    2013-01-01

    Sensitive periods in human development have often been proposed to explain age-related differences in the attainment of a number of skills, such as a second language (L2) and musical expertise. It is difficult to reconcile the negative consequence this traditional view entails for learning after a sensitive period with our current understanding of the brain’s ability for experience-dependent plasticity across the lifespan. What is needed is a better understanding of the mechanisms underlying ...

  12. Learning, neural plasticity and sensitive periods: implications for language acquisition, music training and transfer across the lifespan

    OpenAIRE

    Erin Jacquelyn White; Stefanie Andrea Hutka; Stefanie Andrea Hutka; Lynne J Williams; Sylvain eMoreno

    2013-01-01

    Sensitive periods in human development have often been proposed to explain age-related differences in the attainment of a number of skills, such as a second language and musical expertise. It is difficult to reconcile the negative consequence this traditional view entails for learning after a sensitive period with our current understanding of the brain’s ability for experience-dependent plasticity across the lifespan. What is needed is a better understanding of the mechanisms underlying audit...

  13. Rec-8 dimorphism affects longevity, stress resistance and X-chromosome nondisjunction in C. elegans, and replicative lifespan in yeast

    Directory of Open Access Journals (Sweden)

    Srinivas eAyyadevara

    2014-08-01

    Full Text Available A quantitative trait locus (QTL in the nematode C. elegans, lsq4, was recently implicated by mapping longevity genes. QTLs for lifespan and 3 stress-resistance traits coincided within a span of <300 kbp, later narrowed to <200 kbp. A single gene in this interval is now shown to modulate all lsq4-associated traits. Full-genome analysis of transcript levels indicates that lsq4 contains a dimorphic gene governing expression of sperm-specific genes, suggesting effects on spermatogenesis. Quantitation of allele-specific transcripts encoded within the lsq4 interval revealed significant, 2- to 15-fold expression differences for 10 of 33 genes. Fourteen genes, implicated by both position and expression, were tested for RNA-interference effects on QTL-linked traits. In a strain carrying the shorter-lived allele, knockdown of rec-8 (encoding a meiotic cohesin reduced its transcripts 4-fold, to a level similar to the longer-lived strain, and extended lifespan 25–26% whether begun before fertilization or at maturity. The short-lived lsq4 allele also conferred sensitivity to oxidative and thermal stresses, and lower male frequency, traits reversed uniquely by rec-8 knockdown. A strain bearing the longer-lived lsq4 allele, differing from the short-lived strain at <0.3% of its genome, derived no lifespan or stress-survival benefit from rec-8 knockdown. We consider two possible explanations: high rec-8 expression may include increased leaky expression in mitotic cells, leading to deleterious destabilization of somatic genomes; or REC-8 may act entirely in germ-line meiotic cells to reduce aberrations such as nondisjunction, thereby blunting a stress-resistance response mediated by innate immunity. Replicative lifespan was extended 20% in haploid S. cerevisiae (BY4741 by deletion of REC8, orthologous to nematode rec-8, implying that REC8 disruption of mitotic-cell survival is widespread, reflecting antagonistic pleiotropy and/or balancing selection.

  14. Vitellogenin-RNAi and ovariectomy each increase lifespan, increase protein storage, and decrease feeding, but are not additive in grasshoppers.

    Science.gov (United States)

    Tetlak, Alicia G; Burnett, Jacob B; Hahn, Daniel A; Hatle, John D

    2015-12-01

    Reduced reproduction has been shown to increase lifespan in many animals, yet the mechanisms behind this trade-off are unclear. We addressed this question by combining two distinct, direct means of life-extension via reduced reproduction, to test whether they were additive. In the lubber grasshopper, Romalea microptera, ovariectomized (OVX) individuals had a ~20% increase in lifespan and a doubling of storage relative to controls (Sham operated). Similarly, young female grasshoppers treated with RNAi against vitellogenin (the precursor to egg yolk protein) had increased fat body mass and halted ovarian growth. In this study, we compared VgRNAi to two control groups that do not reduce reproduction, namely buffer injection (Buffer) and injection with RNAi against a hexameric storage protein (Hex90RNAi). Each injection treatment was tested with and without ovariectomy. Hence, we tested feeding, storage, and lifespans in six groups: OVX and Buffer, OVX and Hex90RNAi, OVX and VgRNAi, Sham and Buffer, Sham and Hex90RNAi, and Sham and VgRNAi. Ovariectomized grasshoppers and VgRNAi grasshoppers each had similar reductions in feeding (~40%), increases in protein storage in the hemolymph (150-300%), and extensions in lifespan (13-21%). Ovariectomized grasshoppers had higher vitellogenin protein levels than did VgRNAi grasshoppers. Last but not least, when ovariectomy and VgRNAi were applied together, there was no greater effect on feeding, protein storage, or longevity. Hence, feeding regulation, and protein storage in insects, may be conserved components of life-extension via reduced reproduction.

  15. Influence of operator's experience level on lifespan of the WaveOne Primary file in extracted teeth

    Directory of Open Access Journals (Sweden)

    Abdulrahman Mohammed Saleh

    2013-11-01

    Full Text Available Objectives The aim of this study was to assess the influence of operator experience level on the lifespan of the WaveOne Primary file (Dentsply Maillefer, Ballaigues, Switzerland in extracted teeth. Materials and Methods Moderately curved canals of extracted maxillary and mandibular molars were randomly distributed into 2 groups: experienced and inexperienced operators. Ten files were allocated to each group (n = 10. Each canal was prepared until the working length was reached, and the same file was used to prepare additional canals until it separated. The number of canals prepared before file separation was recorded. The fragment length of each file was measured, and the location of the fragment in the canal was determined. Data were statistically analysed using the independent 2-sample t-test. Results The 2 operators prepared a total of 324 moderately curved canals of maxillary and mandibular molars. There was no significant intergroup difference in the mean number of canals prepared (p = 0.27. The average lifespan of the WaveOne Primary file was 17.1 and 15.3 canals, and the longest lifespan was 25 and 20 canals, when used by experienced and inexperienced operators, respectively. There were no statistically significant intergroup differences in separated fragment length and location. Conclusions Within the limitations of this study, operator experience level appears to have no effect on the lifespan of the WaveOne Primary file in preparation of moderately curved canals. Single teeth with multiple canals can be prepared safely even by a novice operator by using a single file.

  16. Effects of Caenorhabditis elegans sgk-1 mutations on lifespan, stress resistance, and DAF-16/FoxO regulation.

    Science.gov (United States)

    Chen, Albert Tzong-Yang; Guo, Chunfang; Dumas, Kathleen J; Ashrafi, Kaveh; Hu, Patrick J

    2013-10-01

    The AGC family serine-threonine kinases Akt and Sgk are similar in primary amino acid sequence and in vitro substrate specificity, and both kinases are thought to directly phosphorylate and inhibit FoxO transcription factors. In the nematode Caenorhabditis elegans, it is well established that AKT-1 controls dauer arrest and lifespan by regulating the subcellular localization of the FoxO transcription factor DAF-16. SGK-1 is thought to act similarly to AKT-1 in lifespan control by phosphorylating and inhibiting the nuclear translocation of DAF-16/FoxO. Using sgk-1 null and gain-of-function mutants, we now provide multiple lines of evidence indicating that AKT-1 and SGK-1 influence C. elegans lifespan, stress resistance, and DAF-16/FoxO activity in fundamentally different ways. Whereas AKT-1 shortens lifespan, SGK-1 promotes longevity in a DAF-16-/FoxO-dependent manner. In contrast to AKT-1, which reduces resistance to multiple stresses, SGK-1 promotes resistance to oxidative stress and ultraviolet radiation but inhibits thermotolerance. Analysis of several DAF-16/FoxO target genes that are repressed by AKT-1 reveals that SGK-1 represses a subset of these genes while having little influence on the expression of others. Accordingly, unlike AKT-1, which promotes the cytoplasmic sequestration of DAF-16/FoxO, SGK-1 does not influence DAF-16/FoxO subcellular localization. Thus, in spite of their similar in vitro substrate specificities, Akt and Sgk influence longevity, stress resistance, and FoxO activity through distinct mechanisms in vivo. Our findings highlight the need for a re-evaluation of current paradigms of FoxO regulation by Sgk. © 2013 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  17. A Lifespan Perspective on Entrepreneurship: Perceived Opportunities and Skills Explain the Negative Association between Age and Entrepreneurial Activity

    OpenAIRE

    Bohlmann, Clarissa; Rauch, Andreas; Zacher, Hannes

    2017-01-01

    Researchers and practitioners are increasingly interested in entrepreneurship as a means to fight youth unemployment and to improve financial stability at higher ages. However, only few studies so far have examined the association between age and entrepreneurial activity. Based on theories from the lifespan psychology literature and entrepreneurship, we develop and test a model in which perceived opportunities and skills explain the relationship between age and entrepreneurial activity. We an...

  18. Different neural processes accompany self-recognition in photographs across the lifespan: an ERP study using dizygotic twins.

    Directory of Open Access Journals (Sweden)

    David L Butler

    Full Text Available Our appearance changes over time, yet we can recognize ourselves in photographs from across the lifespan. Researchers have extensively studied self-recognition in photographs and have proposed that specific neural correlates are involved, but few studies have examined self-recognition using images from different periods of life. Here we compared ERP responses to photographs of participants when they were 5-15, 16-25, and 26-45 years old. We found marked differences between the responses to photographs from these time periods in terms of the neural markers generally assumed to reflect (i the configural processing of faces (i.e., the N170, (ii the matching of the currently perceived face to a representation already stored in memory (i.e., the P250, and (iii the retrieval of information about the person being recognized (i.e., the N400. There was no uniform neural signature of visual self-recognition. To test whether there was anything specific to self-recognition in these brain responses, we also asked participants to identify photographs of their dizygotic twins taken from the same time periods. Critically, this allowed us to minimize the confounding effects of exposure, for it is likely that participants have been similarly exposed to each other's faces over the lifespan. The same pattern of neural response emerged with only one exception: the neural marker reflecting the retrieval of mnemonic information (N400 differed across the lifespan for self but not for twin. These results, as well as our novel approach using twins and photographs from across the lifespan, have wide-ranging consequences for the study of self-recognition and the nature of our personal identity through time.

  19. Nutrigenomics at the Interface of Aging, Lifespan, and Cancer Prevention123

    Science.gov (United States)

    Riscuta, Gabriela

    2016-01-01

    The percentage of elderly people with associated age-related health deterioration, including cancer, has been increasing for decades. Among age-related diseases, the incidence of cancer has grown substantially, in part because of the overlap of some molecular pathways between cancer and aging. Studies with model organisms suggest that aging and age-related conditions are manipulable processes that can be modified by both genetic and environmental factors, including dietary habits. Variations in genetic backgrounds likely lead to differential responses to dietary changes and account for some of the inconsistencies found in the literature. The intricacies of the aging process, coupled with the interrelational role of bioactive food components on gene expression, make this review a complex undertaking. Nevertheless, intriguing evidence suggests that dietary habits can manipulate the aging process and/or its consequences and potentially may have unprecedented health benefits. The present review focuses on 4 cellular events: telomerase activity, bioenergetics, DNA repair, and oxidative stress. These processes are linked to both aging and cancer risk, and their alteration in animal models by selected food components is evident. PMID:27558581

  20. Dietary treatments of obesity.

    Science.gov (United States)

    Moloney, M

    2000-11-01

    Numerous dietary treatments that purport to promote something unique for stimulating weight loss have been published. These treatments include fad diets, diets formulated by various commercial slimming clubs, very-low-energy diets (VLCD) and conventional diets. Fad diets may possibly reduce some weight short-term; however, there is no scientific basis to their long-term use. Commercial slimming clubs may be suitable for some individuals but they need to be properly assessed professionally. There are specific guidelines for the use of VLCD, which are only appropriate for short-term use. There is scientific evidence to suggest that conventional diets can produce both short- and long-term weight loss. A successful weight-loss programme depends on a multidisciplinary team approach. Management strategies should be devised for addressing issues such as goals, monitoring, follow-up, relapse and evaluation. Initial assessments should include medical, laboratory and anthropometric data, fitness level and dietary and behavioural attitudes. These results will form the basis of the treatment plan. Frequent visits to the clinic are fundamental in promoting continuing weight loss during the long-term maintenance stage of treatment. The visits should be made worthwhile for the patient. Realistic and attainable goals for diet, exercise and behaviour modification should be made. The diet should have a novel approach and be tailored to the needs of the patient. It should be adequate nutritionally, low in energy and fat. The overall aim should be to promote lifelong changes in lifestyle, improvement in quality of life and health risks.

  1. A low dose of dietary resveratrol partially mimics caloric restriction and retards aging parameters in mice.

    Directory of Open Access Journals (Sweden)

    Jamie L Barger

    2008-06-01

    Full Text Available Resveratrol in high doses has been shown to extend lifespan in some studies in invertebrates and to prevent early mortality in mice fed a high-fat diet. We fed mice from middle age (14-months to old age (30-months either a control diet, a low dose of resveratrol (4.9 mg kg(-1 day(-1, or a calorie restricted (CR diet and examined genome-wide transcriptional profiles. We report a striking transcriptional overlap of CR and resveratrol in heart, skeletal muscle and brain. Both dietary interventions inhibit gene expression profiles associated with cardiac and skeletal muscle aging, and prevent age-related cardiac dysfunction. Dietary resveratrol also mimics the effects of CR in insulin mediated glucose uptake in muscle. Gene expression profiling suggests that both CR and resveratrol may retard some aspects of aging through alterations in chromatin structure and transcription. Resveratrol, at doses that can be readily achieved in humans, fulfills the definition of a dietary compound that mimics some aspects of CR.

  2. Coenzyme Q and Its Role in the Dietary Therapy against Aging

    Directory of Open Access Journals (Sweden)

    Alfonso Varela-López

    2016-03-01

    Full Text Available Coenzyme Q (CoQ is a naturally occurring molecule located in the hydrophobic domain of the phospholipid bilayer of all biological membranes. Shortly after being discovered, it was recognized as an essential electron transport chain component in mitochondria where it is particularly abundant. Since then, more additional roles in cell physiology have been reported, including antioxidant, signaling, death prevention, and others. It is known that all cells are able to synthesize functionally sufficient amounts of CoQ under normal physiological conditions. However, CoQ is a molecule found in different dietary sources, which can be taken up and incorporated into biological membranes. It is known that mitochondria have a close relationship with the aging process. Additionally, delaying the aging process through diet has aroused the interest of scientists for many years. These observations have stimulated investigation of the anti-aging potential of CoQ and its possible use in dietary therapies to alleviate the effects of aging. In this context, the present review focus on the current knowledge and evidence the roles of CoQ cells, its relationship with aging, and possible implications of dietary CoQ in relation to aging, lifespan or age-related diseases.

  3. Benzimidazole derivative M084 extends the lifespan of Caenorhabditis elegans in a DAF-16/FOXO-dependent way.

    Science.gov (United States)

    Ding, Ai-Jun; Wu, Gui-Sheng; Tang, Bin; Hong, Xuechuan; Zhu, Michael X; Luo, Huai-Rong

    2017-02-01

    With the growth of aging population, there is increasing demand to develop strategy to improve the aging process and aging-related diseases. Benzimidazole and its derivatives are crucial heterocyclic backbone of many drugs and compounds with diverse therapeutic applications, including alleviation of aging-related diseases. Here, we investigate if the benzimidazole derivative n-butyl-[1H]-benzimidazol-2-amine (M084), a novel inhibitor of TRPC4 and TRPC5 channels and antidepressant, could affect the lifespan of Caenorhabditis elegans (C. elegans). Our results showed that M084 could extend the lifespan of C. elegans, delay age-related decline of phenotypes, and improve stress resistance. M084 could not extend the lifespan of the loss-of-function mutants of daf-16, daf-2, pdk-1, aak-2, clk-1, isp-1, sir-2.1, and skn-1. M084 could decrease the ATP level and increase the gene expression of mitochondrial unfolded protein response factors. Thus, M084 might inhibit the mitochondrial respiration, activate mitochondrial unfolded protein response and AMPK, recruite SIR-2.1 and SKN-1, and finally through the transcription factor DAF-16, delay the aging process of C. elegans. Our findings reveal the new pharmaceutical potential of benzimidazole derivatives and provide clue for developing novel anti-aging agents.

  4. EEG correlates of visual short-term memory in older age vary with adult lifespan cognitive development.

    Science.gov (United States)

    Wiegand, Iris; Lauritzen, Martin J; Osler, Merete; Mortensen, Erik Lykke; Rostrup, Egill; Rask, Lene; Richard, Nelly; Horwitz, Anna; Benedek, Krisztina; Vangkilde, Signe; Petersen, Anders

    2018-02-01

    Visual short-term memory (vSTM) is a cognitive resource that declines with age. This study investigated whether electroencephalography (EEG) correlates of vSTM vary with cognitive development over individuals' lifespan. We measured vSTM performance and EEG in a lateralized whole-report task in a healthy birth cohort, whose cognitive function (intelligence quotient) was assessed in youth and late-middle age. Higher vSTM capacity (K; measured by Bundesen's theory of visual attention) was associated with higher amplitudes of the contralateral delay activity (CDA) and the central positivity (CP). In addition, rightward hemifield asymmetry of vSTM (K λ ) was associated with lower CDA amplitudes. Furthermore, more severe cognitive decline from young adulthood to late-middle age predicted higher CDA amplitudes, and the relationship between K and the CDA was less reliable in individuals who show higher levels of cognitive decline compared to individuals with preserved abilities. By contrast, there was no significant effect of lifespan cognitive changes on the CP or the relationship between behavioral measures of vSTM and the CP. Neither the CDA, nor the CP, nor the relationships between K or K λ and the event-related potentials were predicted by individuals' current cognitive status. Together, our findings indicate complex age-related changes in processes underlying behavioral and EEG measures of vSTM and suggest that the K-CDA relationship might be a marker of cognitive lifespan trajectories. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The SIRT1 Activator SRT1720 Extends Lifespan and Improves Health of Mice Fed a Standard Diet

    Directory of Open Access Journals (Sweden)

    Sarah J. Mitchell

    2014-03-01

    Full Text Available The prevention or delay of the onset of age-related diseases prolongs survival and improves quality of life while reducing the burden on the health care system. Activation of sirtuin 1 (SIRT1, an NAD+-dependent deacetylase, improves metabolism and confers protection against physiological and cognitive disturbances in old age. SRT1720 is a specific SIRT1 activator that has health and lifespan benefits in adult mice fed a high-fat diet. We found extension in lifespan, delayed onset of age-related metabolic diseases, and improved general health in mice fed a standard diet after SRT1720 supplementation. Inhibition of proinflammatory gene expression in both liver and muscle of SRT1720-treated animals was noted. SRT1720 lowered the phosphorylation of NF-κB pathway regulators in vitro only when SIRT1 was functionally present. Combined with our previous work, the current study further supports the beneficial effects of SRT1720 on health across the lifespan in mice.

  6. The LIFEspan model of transitional rehabilitative care for youth with disabilities: healthcare professionals' perspectives on service delivery.

    Science.gov (United States)

    Hamdani, Yani; Proulx, Meghann; Kingsnorth, Shauna; Lindsay, Sally; Maxwell, Joanne; Colantonio, Angela; Macarthur, Colin; Bayley, Mark

    2014-01-01

    LIFEspan is a service delivery model of continuous coordinated care developed and implemented by a cross-organization partnership between a pediatric and an adult rehabilitation hospital. Previous work explored enablers and barriers to establishing the partnership service. This paper examines healthcare professionals' (HCPs') experiences of 'real world' service delivery aimed at supporting transitional rehabilitative care for youth with disabilities. This qualitative study - part of an ongoing mixed method longitudinal study - elicited HCPs' perspectives on their experiences of LIFEspan service delivery through in-depth interviews. Data were categorized into themes of service delivery activities, then interpreted from the lens of a service integration/coordination framework. Five main service delivery themes were identified: 1) addressing youth's transition readiness and capacities; 2) shifting responsibility for healthcare management from parents to youth; 3) determining services based on organizational resources; 4) linking between pediatric and adult rehabilitation services; and, 5) linking with multi-sector services. LIFEspan contributed to service delivery activities that coordinated care for youth and families and integrated inter-hospital services. However, gaps in service integration with primary care, education, social, and community services limited coordinated care to the rehabilitation sector. Recommendations are made to enhance service delivery using a systems/sector-based approach.

  7. Revised dietary guidelines for Koreans.

    Science.gov (United States)

    Jang, Young Ai; Lee, Haeng Shin; Kim, Bok Hee; Lee, Yoonna; Lee, Hae Jeung; Moon, Jae Jin; Kim, Cho-il

    2008-01-01

    With rapidly changing dietary environment, dietary guidelines for Koreans were revised and relevant action guides were developed. First, the Dietary Guidelines Advisory Committee was established with experts and government officials from the fields of nutrition, preventive medicine, health promotion, agriculture, education and environment. The Committee set dietary goals for Koreans aiming for a better nutrition state of all after a thorough review and analysis of recent information related to nutritional status and/or problems of Korean population, changes in food production/supply, disease pattern, health policy and agricultural policy. Then, the revised dietary guidelines were proposed to accomplish these goals in addition to 6 different sets of dietary action guides to accommodate specific nutrition and health problems of respective age groups. Subsequently, these guidelines and guides were subjected to the focus group review, consumer perception surveys, and a public hearing for general and professional comments. Lastly, the language was clarified in terms of public understanding and phraseology. The revised Dietary guidelines for Koreans are as follows: eat a variety of grains, vegetables, fruits, fish, meat, poultry and dairy products; choose salt-preserved foods less, and use less salt when you prepare foods; increase physical activity for a healthy weight, and balance what you eat with your activity; enjoy every meal, and do not skip breakfast; if you drink alcoholic beverages, do so in moderation; prepare foods properly, and order sensible amounts; enjoy our rice-based diet.

  8. Predicting whether dietary restriction would increase longevity in species not tested so far.

    Science.gov (United States)

    Le Bourg, Eric

    2010-07-01

    Dietary restriction (DR) is often considered as a nearly universal means to extend longevity in animal species. This article argues that whether DR will increase longevity is dependent on life-history strategies. Long-lived species are not expected to live much longer under DR, contrarily to short-lived ones. However, species able to cover long distances are not expected to live longer under DR, even if they are short-lived. Human beings are long-lived and can also cover long distances: thus, DR would probably not increase their lifespan. One may wonder whether DR mimetics would have some effects in human beings if DR does not increase longevity in this species. 2010 Elsevier Ireland Ltd. All rights reserved.

  9. Dietary Intake of Competitive Bodybuilders.

    Science.gov (United States)

    Spendlove, Jessica; Mitchell, Lachlan; Gifford, Janelle; Hackett, Daniel; Slater, Gary; Cobley, Stephen; O'Connor, Helen

    2015-07-01

    Competitive bodybuilders are well known for extreme physique traits and extremes in diet and training manipulation to optimize lean mass and achieve a low body fat. Although many of the dietary dogmas in bodybuilding lack scientific scrutiny, a number, including timing and dosing of high biological value proteins across the day, have more recently been confirmed as effective by empirical research studies. A more comprehensive understanding of the dietary intakes of bodybuilders has the potential to uncover other dietary approaches, deserving of scientific investigation, with application to the wider sporting, and potential health contexts, where manipulation of physique traits is desired. Our objective was to conduct a systematic review of dietary intake practices of competitive bodybuilders, evaluate the quality and currency of the existing literature, and identify research gaps to inform future studies. A systematic search of electronic databases was conducted from the earliest record until March 2014. The search combined permutations of the terms 'bodybuilding', 'dietary intake', and 'dietary supplement'. Included studies needed to report quantitative data (energy and macronutrients at a minimum) on habitual dietary intake of competitive bodybuilders. The 18 manuscripts meeting eligibility criteria reported on 385 participants (n = 62 women). Most studies were published in the 1980-1990s, with three published in the past 5 years. Study methodological quality was evaluated as poor. Energy intake ranged from 10 to 24 MJ/day for men and from 4 to 14 MJ/day for women. Protein intake ranged from 1.9 to 4.3 g/kg for men and from 0.8 to 2.8 g/kg for women. Intake of carbohydrate and fat was preparation, typically being highest in the non-competition (>6 months from competition) or immediate post-competition period and lowest during competition preparation (≤6 months from competition) or competition week. The most commonly reported dietary supplements were protein

  10. Determinants of dietary supplement use - healthy individuals use dietary supplements

    DEFF Research Database (Denmark)

    Kofoed, Christina L F; Christensen, Jane; Dragsted, Lars Ove

    2015-01-01

    and lifestyle between 1993 and 1997. A health index including smoking, physical activity, alcohol and diet, and a metabolic risk index including waist circumference, urinary glucose and measured hypertension were constructed. Logistic regression was used to investigate these determinants in relation...... common supplement use. In conclusion, those with the healthiest lifestyle were more likely to use dietary supplements. Thus, lifestyle and dietary composition should be considered as confounders on supplement use and health outcomes....

  11. Dietary supplements for dysmenorrhoea.

    Science.gov (United States)

    Pattanittum, Porjai; Kunyanone, Naowarat; Brown, Julie; Sangkomkamhang, Ussanee S; Barnes, Joanne; Seyfoddin, Vahid; Marjoribanks, Jane

    2016-03-22

    Dysmenorrhoea refers to painful menstrual cramps and is a common gynaecological complaint. Conventional treatments include non-steroidal anti-inflammatory drugs (NSAIDs) and oral contraceptive pills (OCPs), which both reduce myometrial activity (contractions of the uterus). A suggested alternative approach is dietary supplements. We used the term 'dietary supplement' to include herbs or other botanical, vitamins, minerals, enzymes, and amino acids. We excluded traditional Chinese medicines. To determine the efficacy and safety of dietary supplements for treating dysmenorrhoea. We searched sources including the Cochrane Gynaecology and Fertility Group Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, AMED, PsycINFO (all from inception to 23 March 2015), trial registries, and the reference lists of relevant articles. We included randomised controlled trials (RCTs) of dietary supplements for moderate or severe primary or secondary dysmenorrhoea. We excluded studies of women with an intrauterine device. Eligible comparators were other dietary supplements, placebo, no treatment, or conventional analgesia. Two review authors independently performed study selection, performed data extraction and assessed the risk of bias in the included trials. The primary outcomes were pain intensity and adverse effects. We used a fixed-effect model to calculate odds ratios (ORs) for dichotomous data, and mean differences (MDs) or standardised mean differences (SMDs) for continuous data, with 95% confidence intervals (CIs). We presented data that were unsuitable for analysis either descriptively or in additional tables. We assessed the quality of the evidence using Grading of Recommendations Assessment, Development and Evaluation (GRADE) methods. We included 27 RCTs (3101 women). Most included studies were conducted amongst cohorts of students with primary dysmenorrhoea in their late teens or early twenties. Twenty-two studies were

  12. Effects of variability and rate on battery charge storage and lifespan

    Science.gov (United States)

    Krieger, Elena Marie

    The growing prevalence of hybrid and electric vehicles, intermittent renewable energy sources, and other complex power systems has triggered a rapid increase in demand for energy storage. Unlike portable electronic devices, whose batteries can be recharged according to a pre-determined protocol simply by plugging them into the wall, many of these applications are characterized by highly variable charge and demand profiles. The central objective of this work is to assess the impact of power distribution and frequency on battery behavior in order to improve overall system efficiency and lifespan in these variable power applications. We first develop and experimentally verify a model to describe the trade-off between battery charging power and energy stored to assess how varying power input affects battery efficiency. This relationship is influenced both by efficiency losses at high powers and by premature voltage cutoffs, which contribute to incomplete battery charging and discharging. We experimentally study the impact of variable power on battery aging in lead-acid, nickel metal hydride, lithium-ion and lithium iron phosphate batteries. As a case study we focus on off-grid wind systems, and analyze the impact of both power distribution and frequency on charge acceptance and degradation in each of these chemistries. We suggest that lithium iron phosphate batteries may be more suitable for off-grid electrification projects than standard lead-acid batteries. We experimentally assess the impact of additional variable charging parameters on battery performance, including the interplay between efficiency, frequency of power oscillations, state-of-charge, incomplete charging and path dependence. We develop a frequency-domain model for hybrid energy storage systems that couples non-stationary frequency analysis of variable power signals to a frequency-based metric for energy storage device performance. The experimental and modeling work developed herein can be utilized to

  13. Hydrogen peroxide induced loss of heterozygosity correlates with replicative lifespan and mitotic asymmetry in Saccharomyces cerevisiae

    Science.gov (United States)

    Jackson, Erin D.; Parker, Meighan C.; Gupta, Nilin; Rodrigues, Jenny

    2016-01-01

    Cellular aging in Saccharomyces cerevisiae can lead to genomic instability and impaired mitotic asymmetry. To investigate the role of oxidative stress in cellular aging, we examined the effect of exogenous hydrogen peroxide on genomic instability and mitotic asymmetry in a collection of yeast strains with diverse backgrounds. We treated yeast cells with hydrogen peroxide and monitored the changes of viability and the frequencies of loss of heterozygosity (LOH) in response to hydrogen peroxide doses. The mid-transition points of viability and LOH were quantified using sigmoid mathematical functions. We found that the increase of hydrogen peroxide dependent genomic instability often occurs before a drop in viability. We previously observed that elevation of genomic instability generally lags behind the drop in viability during chronological aging. Hence, onset of genomic instability induced by exogenous hydrogen peroxide treatment is opposite to that induced by endogenous oxidative stress during chronological aging, with regards to the midpoint of viability. This contrast argues that the effect of endogenous oxidative stress on genome integrity is well suppressed up to the dying-off phase during chronological aging. We found that the leadoff of exogenous hydrogen peroxide induced genomic instability to viability significantly correlated with replicative lifespan (RLS), indicating that yeast cells’ ability to counter oxidative stress contributes to their replicative longevity. Surprisingly, this leadoff is positively correlated with an inverse measure of endogenous mitotic asymmetry, indicating a trade-off between mitotic asymmetry and cell’s ability to fend off hydrogen peroxide induced oxidative stress. Overall, our results demonstrate strong associations of oxidative stress to genomic instability and mitotic asymmetry at the population level of budding yeast. PMID:27833823

  14. Curcumin Stimulates Biochemical Mechanisms of Apis Mellifera Resistance and Extends the Apian Life-Span

    Directory of Open Access Journals (Sweden)

    Strachecka Aneta J.

    2015-06-01

    Full Text Available We examined the influence of curcumin-supplemented feeding on worker lifespan, Nosema resistance, key enzyme activities, metabolic compound concentrations and percentage of the global DNA methylation. Two worker groups (Apis mellifera were set up: 1 control group; workers were fed ad libitum with sucrose syrup; 2 workers were fed with the syrup with the addition of curcumin. Dead workers were removed every two days and the Nosema spp. infection levels were assessed. Hemolymph was taken from living workers for biochemical analyses. The global DNA methylation level was analysed using DNA from worker heads and thoraces. The bees that consumed curcumin lived longer and were less infested with Nosema spp. The curcumin-treated workers had higher concentrations of proteins, non-enzymatic biomarkers (triglycerides, glucose, cholesterol, Mg2+ and Ca2+, uric acid and creatinine, as well as elevated activities of antioxidant enzymes (SOD , GPx, CAT , GST , neutral proteases, protease inhibitors, enzymatic biomarkers (AST , ALT , ALP . The concentrations of albumin and urea, and the activities of acidic and alkaline proteases were higher in the control group. Curcumin decreased global DNA methylation levels especially in older bees in which the natural, age-related level increase was observed. Most of the parameters increased over the apian youth and adulthood, and decreased in older bees. The decrease was markedly delayed in the bees fed with curcumin. Curcumin appeared to be an unexpectedly effective natural bio-stimulator, improving apian health and vitality. This multifactorial effect is caused by the activation of many biochemical processes involved in the formation of apian resistance.

  15. Physical activity, sleep quality, and self-reported fatigue across the adult lifespan.

    Science.gov (United States)

    Christie, Anita D; Seery, Emily; Kent, Jane A

    2016-05-01

    Deteriorating sleep quality and increased fatigue are common complaints of old age, and poor sleep is associated with decreased quality of life and increased mortality rates. To date, little attention has been given to the potential effects of physical activity on sleep quality and fatigue in aging. The purpose of this study was to examine the relationships between activity, sleep and fatigue across the adult lifespan. Sixty community-dwelling adults were studied; 22 younger (21-29 years), 16 middle-aged (36-64 years), and 22 older (65-81 years). Physical activity was measured by accelerometer. Sleep quality was assessed using the Pittsburg Sleep Quality Index. Self-reported fatigue was evaluated with the Patient-Reported Outcomes Measurement Information System (PROMIS). Regression analysis revealed a positive relationship between activity and sleep quality in the older (r(2)=0.18, p=0.05), but not the younger (r(2) = 0.041, p = 0.35) or middle-aged (r(2) = 0.001, p = 0.93) groups. This association was mainly established by the relationship between moderate-vigorous activity and sleep quality (r(2)=0.37, p=0.003) in older adults. No association was observed between physical activity and self-reported fatigue in any of the groups (r(2) ≤ 0.14, p ≥ 0.15). However, an inverse relationship was found between sleep quality and fatigue in the older (r(2) = 0.29, p = 0.05), but not the younger or middle-aged (r(2) ≤ 0.13, p ≥ 0.10) groups. These results support the hypothesis that physical activity may be associated with sleep quality in older adults, and suggest that improved sleep may mitigate self-reported fatigue in older adults in a manner that is independent of activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. DUSTY ENVIRONMENT IMPACT ON LIFESPAN OF THE INDUCTION MOTORS STATOR WINDING

    Directory of Open Access Journals (Sweden)

    V. E. Krivonosov

    2015-01-01

    Full Text Available Large quantity of asynchronous motors work in heavily dusted environments. On the end-winding insulation of the motors to 55 kW operating in the mining and smelting enterprise there is a 3 cm dust layer, which may lead to the asynchronous motor end-winding local overheat and consequent early breakdown. Contemporary literature allocates insufficient consideration to the issue of studying the impact the winding dust pollution has on the motor lifespan; for the most part they are experimental researches. The article investigates and establishes correlation relationship between the additional winding heating and the end-winding dust layer thickness. The investigation considers the induction motor winding to be a homogeneous solid and assumes the motor thermal conditions steady inasmuch as the winding insulation dust-cover forming time is much greater than the motor-heating time constant. The obtained expression permits determining the winding dust level by temperature variations; the dependence has linear character. Neither the motor type, size, nor the capacity do affect the local insulation overheating since the temperature difference between the windings being dust laden does not exceed 10 % for asynchronous motors of various capacity. The authors develop an appliance that enables the winding dustiness level monitoring and signals of necessity for the preventive cleaning measures implementation. The appliance operation principle is based on measuring results comparison of the two temperature-sensing devices mounted on the end-winding: one – in the upper part, and the other – in the bottom. The differential in the sensors reading-out allows estimating the dust layer sedimentation on the end-winding. A patent of invention has been issued on the investigation results. 

  17. Age-related differences in cognition across the adult lifespan in autism spectrum disorder.

    Science.gov (United States)

    Lever, Anne G; Geurts, Hilde M

    2016-06-01

    It is largely unknown how age impacts cognition in autism spectrum disorder (ASD). We investigated whether age-related cognitive differences are similar, reduced or increased across the adult lifespan, examined cognitive strengths and weaknesses, and explored whether objective test performance is related to subjective cognitive challenges. Neuropsychological tests assessing visual and verbal memory, generativity, and theory of mind (ToM), and a self-report measure assessing cognitive failures were administered to 236 matched participants with and without ASD, aged 20-79 years (IQ > 80). Group comparisons revealed that individuals with ASD had higher scores on visual memory, lower scores on generativity and ToM, and similar performance on verbal memory. However, ToM impairments were no longer present in older (50+ years) adults with ASD. Across adulthood, individuals with ASD demonstrated similar age-related effects on verbal memory, generativity, and ToM, while age-related differences were reduced on visual memory. Although adults with ASD reported many cognitive failures, those were not associated with neuropsychological test performance. Hence, while some cognitive abilities (visual and verbal memory) and difficulties (generativity and semantic memory) persist across adulthood in ASD, others become less apparent in old age (ToM). Age-related differences characteristic of typical aging are reduced or parallel, but not increased in individuals with ASD, suggesting that ASD may partially protect against an age-related decrease in cognitive functioning. Despite these findings, adults with ASD experience many cognitive daily challenges, which highlights the need for adequate social support and the importance of further research into this topic, including longitudinal studies. Autism Res 2016, 9: 666-676. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  18. Mito-nuclear Interactions Affecting Lifespan and Neurodegeneration in aDrosophilaModel of Leigh Syndrome.

    Science.gov (United States)

    Loewen, Carin A; Ganetzky, Barry

    2018-03-01

    Proper mitochondrial activity depends upon proteins encoded by genes in the nuclear and mitochondrial genomes that must interact functionally and physically in a precisely coordinated manner. Consequently, mito-nuclear allelic interactions are thought to be of crucial importance on an evolutionary scale, as well as for manifestation of essential biological phenotypes, including those directly relevant to human disease. Nonetheless, detailed molecular understanding of mito-nuclear interactions is still lacking, and definitive examples of such interactions in vivo are sparse. Here we describe the characterization of a mutation in Drosophila ND23 , a nuclear gene encoding a highly conserved subunit of mitochondrial complex 1. This characterization led to the discovery of a mito-nuclear interaction that affects the ND23 mutant phenotype. ND23 mutants exhibit reduced lifespan, neurodegeneration, abnormal mitochondrial morphology and decreased ATP levels. These phenotypes are similar to those observed in patients with Leigh Syndrome, which is caused by mutations in a number of nuclear genes that encode mitochondrial proteins, including the human ortholog of ND23 A key feature of Leigh Syndrome, and other mitochondrial disorders, is unexpected and unexplained phenotypic variability. We discovered that the phenotypic severity of ND23 mutations varies depending on the maternally inherited mitochondrial background. Sequence analysis of the relevant mitochondrial genomes identified several variants that are likely candidates for the phenotypic interaction with mutant ND23 , including a variant affecting a mitochondrially-encoded component of complex I. Thus, our work provides an in vivo demonstration of the phenotypic importance of mito-nuclear interactions in the context of mitochondrial disease. Copyright © 2018, Genetics.

  19. Dynamic range in BOLD modulation: lifespan aging trajectories and association with performance.

    Science.gov (United States)

    Kennedy, Kristen M; Boylan, Maria A; Rieck, Jenny R; Foster, Chris M; Rodrigue, Karen M

    2017-12-01

    Alteration of dynamic range of modulation to cognitive difficulty has been proposed as a salient predictor of cognitive aging. Here, we examine in 171 adults (aged 20-94 years) the effects of age on dynamic modulation of blood oxygenation-level dependent activation to difficulty in parametrically increasing working memory (WM) load (0-, 2-, 3-, and 4-back conditions). First, we examined parametric increases and decreases in activation to increasing WM load (positive modulation effect and negative modulation effect). Second, we examined the effect of age on modulation to difficulty (WM load) to identify regions that differed with age as difficulty increased (age-related positive and negative modulation effects). Weakened modulation to difficulty with age was found in both the positive modulation (middle frontal, superior/inferior parietal) and negative modulation effect (deactivated) regions (insula, cingulate, medial superior frontal, fusiform, and parahippocampal gyri, hippocampus, and lateral occipital cortex). Age-related alterations to positive modulation emerged later in the lifespan than negative modulation. Furthermore, these effects were significantly coupled in that greater upmodulation was associated with lesser downmodulation. Importantly, greater fronto-parietal upmodulation to difficulty and greater downmodulation of deactivated regions were associated with better task accuracy and upmodulation with better WM span measured outside the scanner. These findings suggest that greater dynamic range of modulation of activation to cognitive challenge is in service of current task performance, as well as generalizing to cognitive ability beyond the scanner task, lending support to its utility as a marker of successful cognitive aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. An intricate dance: Life experience, multisystem resiliency, and rate of telomere decline throughout the lifespan.

    Science.gov (United States)

    Puterman, Eli; Epel, Elissa

    2012-11-01

    Accumulation of life stressors predicts accelerated development and progression of diseases of aging. Telomere length, the DNA-based biomarker indicating cellular aging, is a mechanism of disease development, and is shortened in a dose response fashion by duration and severity of life stressor exposures. Telomere length captures the interplay between genetics, life experiences and psychosocial and behavioral factors. Over the past several years, psychological stress resilience, healthy lifestyle factors, and social connections have been associated with longer telomere length and it appears that these factors can protect individuals from stress-induced telomere shortening. In the current review, we highlight these findings, and illustrate that combining these `multisystem resiliency' factors may strengthen our understanding of aging, as these powerful factors are often neglected in studies of aging. In naturalistic studies, the effects of chronic stress exposure on biological pathways are rarely main effects, but rather a complex interplay between adversity and resiliency factors. We suggest that chronic stress effects can be best understood by directly testing if the deleterious effects of stress on biological aging processes, in this case the cell allostasis measure of telomere shortening, are mitigated in individuals with high levels of multisystem resiliency. Without attending to such interactions, stress effects are often masked and missed. Taking account of the cluster of positive buffering factors that operate across the lifespan will take us a step further in understanding healthy aging. While these ideas are applied to the telomere length literature for illustration, the concept of multisystem resiliency might apply to aging broadly, from cellular to systemic health.