WorldWideScience

Sample records for dietary polyunsaturated fatty

  1. Dietary habits, plasma polyunsaturated fatty acids and selected ...

    African Journals Online (AJOL)

    Dietary habits, plasma polyunsaturated fatty acids and selected coronary disease risk factors in Tanzania. ... Conclusion: Our results indicate that, there are significant differences in dietary patterns among the three study areas, and that the intake of fish is inversely associated with selected risk factors for coronary heart ...

  2. The effects of dietary supplementation with n-3 polyunsaturated fatty acids in patients with rheumatoid arthritis

    DEFF Research Database (Denmark)

    Nielsen, G L; Faarvang, K L; Thomsen, B S

    1992-01-01

    STUDY OBJECTIVE: To determine the effect of dietary supplementation with n-3 polyunsaturated fatty acids (n-3 PUFA) on disease variables in patients with rheumatoid arthritis. DESIGN: Multicenter, randomized, placebo controlled, double blind. SETTING: Three Danish hospital Departments of Rheumato......STUDY OBJECTIVE: To determine the effect of dietary supplementation with n-3 polyunsaturated fatty acids (n-3 PUFA) on disease variables in patients with rheumatoid arthritis. DESIGN: Multicenter, randomized, placebo controlled, double blind. SETTING: Three Danish hospital Departments...

  3. Modulation of the chicken immune cell function by dietary polyunsaturated fatty acids

    NARCIS (Netherlands)

    Sijben, J.W.C.

    2002-01-01

    Polyunsaturated fatty acids (PUFA) possess a wide range of biological properties, including immunomodulation. The amount, type, and ratio of dietary PUFA determine the types of fatty acids that are incorporated into immune cell membranes. Consequently, the physiological properties of immune cells

  4. Ruminal Biohydrogenation Pattern of Poly-Unsaturated Fatty Acid as Influenced by Dietary Tannin

    Directory of Open Access Journals (Sweden)

    Anuraga Jayanegara

    2013-09-01

    Full Text Available Large amounts of polyunsaturated fatty acids undergo transformation processes in the rumen through microbial biohydrogenation to form fatty acids with higher saturation degree. The respective process explains the high content of saturated fatty acids in products of ruminants and the potential risk of consumers’ health by consuming such products. Various nutritional approaches have been attempted to modulate biohydrogenation process in order to obtain healthier fatty acid profile from consumers’ perspective. The present paper is aimed to review the influence of dietary tannin, a naturally produced plant secondary compound, on the pattern of polyunsaturated fatty acids biohydrogenation occurring in the rumen. The effect of tannin on some key fatty acids involved in biohydrogenation process is presented together with the underlying mechanisms, particularly from up-to-date research results. Accordingly, different form of tannin as well as different level of the application are also discussed.

  5. Lowering dietary n-6 polyunsaturated fatty acids: interaction with brain arachidonic and docosahexaenoic acids.

    Science.gov (United States)

    Alashmali, Shoug M; Hopperton, Kathryn E; Bazinet, Richard P

    2016-02-01

    Arachidonic (ARA) and docosahexaenoic (DHA) acids are the most abundant polyunsaturated fatty acids (PUFA) in the brain, where they have many biological effects, including on inflammation, cell-signaling, appetite regulation, and blood flow. The Western diet contains a high ratio of n-6: n-3 PUFA. Although interest in lowering this ratio has largely focused on increasing intake of n-3 PUFA, few studies have examined lowering dietary n-6 PUFA. This review will evaluate the effect of lowering dietary n-6 PUFA on levels and metabolism of ARA and DHA in animal models and in humans, with a primary focus on the brain. In animal models, lowering dietary ARA or linoleic acid generally lowers levels of brain ARA and raises DHA. Lowering dietary n-6 PUFA can also modulate the levels of ARA and DHA metabolizing enzymes, as well as their associated bioactive mediators. Human studies examining changes in plasma fatty acid composition following n-6 PUFA lowering demonstrate no changes in levels of ARA and DHA, though there is evidence of alterations in their respective bioactive mediators. Lowering dietary n-6 PUFA, in animal models, can alter the levels and metabolism of ARA and DHA in the brain, but it remains to be determined whether these changes are clinically meaningful.

  6. Dietary omega-6 fatty acid lowering increases bioavailability of omega-3 polyunsaturated fatty acids in human plasma lipid pools.

    Science.gov (United States)

    Taha, Ameer Y; Cheon, Yewon; Faurot, Keturah F; Macintosh, Beth; Majchrzak-Hong, Sharon F; Mann, J Douglas; Hibbeln, Joseph R; Ringel, Amit; Ramsden, Christopher E

    2014-05-01

    Dietary linoleic acid (LA, 18:2n-6) lowering in rats reduces n-6 polyunsaturated fatty acid (PUFA) plasma concentrations and increases n-3 PUFA (eicosapentaenoic (EPA) and docosahexaenoic acid (DHA)) concentrations. To evaluate the extent to which 12 weeks of dietary n-6 PUFA lowering, with or without increased dietary n-3 PUFAs, alters unesterified and esterified plasma n-6 and n-3 PUFA concentrations in subjects with chronic headache. Secondary analysis of a randomized trial. Subjects with chronic headache were randomized for 12 weeks to (1) average n-3, low n-6 (L6) diet; or (2) high n-3, low n-6 LA (H3-L6) diet. Esterified and unesterified plasma fatty acids were quantified at baseline (0 weeks) and after 12 weeks on a diet. Compared to baseline, the L6 diet reduced esterified plasma LA and increased esterified n-3 PUFA concentrations (nmol/ml), but did not significantly change plasma arachidonic acid (AA, 20:4n-6) concentration. In addition, unesterified EPA concentration was increased significantly among unesterified fatty acids. The H3-L6 diet decreased esterified LA and AA concentrations, and produced more marked increases in esterified and unesterified n-3 PUFA concentrations. Dietary n-6 PUFA lowering for 12 weeks significantly reduces LA and increases n-3 PUFA concentrations in plasma, without altering plasma AA concentration. A concurrent increase in dietary n-3 PUFAs for 12 weeks further increases n-3 PUFA plasma concentrations and reduces AA. Published by Elsevier Ltd.

  7. Dietary omega-3 and omega-6 polyunsaturated fatty acids modulate hepatic pathology.

    Science.gov (United States)

    Khadge, Saraswoti; Sharp, John Graham; Thiele, Geoffrey M; McGuire, Timothy R; Klassen, Lynell W; Duryee, Michael J; Britton, Holly C; Dafferner, Alicia J; Beck, Jordan; Black, Paul N; DiRusso, Concetta C; Talmadge, James

    2018-02-01

    Recent evidence has suggested that dietary polyunsaturated fatty acids (PUFAs) modulate inflammation; however, few studies have focused on the pathobiology of PUFA using isocaloric and isolipidic diets and it is unclear if the associated pathologies are due to dietary PUFA composition, lipid metabolism or obesity, as most studies compare diets fed ad libitum. Our studies used isocaloric and isolipidic liquid diets (35% of calories from fat), with differing compositions of omega (ω)-6 or long chain (Lc) ω-3 PUFA that were pair-fed and assessed hepatic pathology, inflammation and lipid metabolism. Consistent with an isocaloric, pair-fed model we observed no significant difference in diet consumption between the groups. In contrast, the body and liver weight, total lipid level and abdominal fat deposits were significantly higher in mice fed an ω-6 diet. An analysis of the fatty acid profile in plasma and liver showed that mice on the ω-6 diet had significantly more arachidonic acid (AA) in the plasma and liver, whereas, in these mice ω-3 fatty acids such as eicosapentaenoic acid (EPA) were not detected and docosahexaenoic acid (DHA) was significantly lower. Histopathologic analyses documented that mice on the ω-6 diet had a significant increase in macrovesicular steatosis, extramedullary myelopoiesis (EMM), apoptotic hepatocytes and decreased glycogen storage in lobular hepatocytes, and hepatocyte proliferation relative to mice fed the Lc ω-3 diet. Together, these results support PUFA dietary regulation of hepatic pathology and inflammation with implications for enteral feeding regulation of steatosis and other hepatic lesions. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Dietary omega-6 fatty acid lowering increases bioavailability of omega-3 polyunsaturated fatty acids in human plasma lipid pools

    Science.gov (United States)

    Taha, Ameer Y.; Cheon, Yewon; Faurot, Keturah F.; MacIntosh, Beth; Majchrzak-Hong, Sharon F.; Mann, J. Douglas; Hibbeln, Joseph R.; Ringel, Amit; Ramsden, Christopher E.

    2014-01-01

    Background Dietary linoleic acid (LA, 18:2n-6) lowering in rats reduces n-6 polyunsaturated fatty acid (PUFA) plasma concentrations and increases n-3 PUFA (eicosapentaenoic (EPA) and docosahexaenoic acid (DHA)) concentrations. Objective To evaluate the extent to which 12 weeks of dietary n-6 PUFA lowering, with or without increased dietary n-3 PUFAs, change unesterified and esterified plasma n-6 and n-3 PUFA concentrations in subjects with chronic headache. Design Secondary analysis of a randomized trial. Subjects with chronic headache were randomized for 12 weeks to: (1) average n-3, low n-6 (L6) diet; or (2) high n-3, low n-6 LA (H3-L6) diet. Esterified and unesterified plasma fatty acids were quantified at baseline (0 weeks) and after 12 weeks on a diet. Results Compared to baseline, the L6 diet reduced esterified plasma LA and increased esterified n-3 PUFA concentrations (nmol/ml), but did not significantly change plasma arachidonic acid (AA, 20:4n-6) concentration. In addition, unesterified EPA concentration was increased significantly among unesterified fatty acids. The H3-L6 diet decreased esterified LA and AA concentrations, and produced more marked increases in esterified and unesterified n-3 PUFA concentrations. Conclusion Dietary n-6 PUFA lowering for 12 weeks significantly reduces LA and increases n-3 PUFA concentrations in plasma, without altering plasma AA concentration. A concurrent increase in dietary n-3 PUFA for 12 weeks further increases n-3 PUFA plasma concentrations, but also reduces AA. PMID:24675168

  9. Dietary omega-3 polyunsaturated fatty acids induce plasminogen activator activity and DNA damage in rabbit spermatozoa.

    Science.gov (United States)

    Kokoli, A N; Lavrentiadou, S N; Zervos, I A; Tsantarliotou, M P; Georgiadis, M P; Nikolaidis, E A; Botsoglou, N; Boscos, C M; Taitzoglou, I A

    2017-12-01

    The aim of this study was to determine the effect(s) of dietary omega-3 polyunsaturated fatty acids (ω-3 PUFA) on rabbit semen. Adult rabbit bucks were assigned to two groups that were given two diets, a standard diet (control) and a diet supplemented with ω-3 PUFA. Sperm samples were collected from all bucks with the use of an artificial vagina in 20-day intervals, for a total period of 120 days. The enrichment of membranes in ω-3 PUFA was manifested by the elevation of the 22:5 ω-3 (docosapentaenoic acid [DPA]) levels within 40 days. This increase in DPA content did not affect semen characteristics (i.e., concentration, motility and viability). However, it was associated with the induction of lipid peroxidation in spermatozoa, as determined on the basis of the malondialdehyde content. Lipid peroxidation was associated with DNA fragmentation in ω-3 PUFA-enriched spermatozoa and a concomitant increase in plasminogen activator (PA) activity. The effects of ω-3 PUFA on sperm cells were evident within 40 days of ω-3 PUFA dietary intake and exhibited peack values on day 120. Our findings suggest that an ω-3 PUFA-rich diet may not affect semen characteristics; however, it may have a negative impact on the oxidative status and DNA integrity of the spermatozoa, which was associated with an induction of PAs activity. © 2017 Blackwell Verlag GmbH.

  10. Dietary Omega-3 polyunsaturated fatty acids promote colon carcinoma metastasis in rat liver

    NARCIS (Netherlands)

    Griffini, P.; Fehres, O.; Klieverik, L.; Vogels, I. M.; Tigchelaar, W.; Smorenburg, S. M.; van Noorden, C. J.

    1998-01-01

    The effects of Ohm-3 polyunsaturated fatty acids (PUFAs) and Ohm-6 PUFAs on the development of experimentally induced colon carcinoma metastasis in rat liver were investigated quantitatively in vivo. Rats mere kept on either a lon-fat diet or on a fish oil (Ohm-3 PUFAs) or safflower oil (Ohm-6

  11. Effect of dietary polyunsaturated fatty acids on reproductive output and larval growth of bivalves

    NARCIS (Netherlands)

    Hendriks, I.E.; Van Duren, L.A.; Herman, P.M.J.

    2003-01-01

    The pre-spawning condition of adult bivalves is influenced by quantity and quality of available food. For bivalves, the essential polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) 20:5(n-3) and docosahexaenoic acid (DHA) 22:6(n-3) are presumed to determine the nutritional value of

  12. Adaptive thermogenesis by dietary n-3 polyunsaturated fatty acids: Emerging evidence and mechanisms.

    Science.gov (United States)

    Fan, Rong; Koehler, Karsten; Chung, Soonkyu

    2018-04-19

    Brown/beige fat plays a crucial role in maintaining energy homeostasis through non-shivering thermogenesis in response to cold temperature and excess nutrition (adaptive thermogenesis). Although numerous molecular and genetic regulators have been identified, relatively little information is available regarding thermogenic dietary molecules. Recently, a growing body of evidence suggests that high consumption of n-3 polyunsaturated fatty acids (PUFA) or activation of GPR120, a membrane receptor of n-3 PUFA, stimulate adaptive thermogenesis. In this review, we summarize the emerging evidence that n-3 PUFA promote brown/beige fat formation and highlight the potential mechanisms whereby n-3 PUFA require GPR120 as a signaling platform or act independently. Human clinical trials are revisited in the context of energy expenditure. Additionally, we explore some future perspective that n-3 PUFA intake might be a useful strategy to boost or sustain metabolic activities of brown/beige fat at different lifecycle stages of pregnancy and senescence. Given that a high ratio of n-6/n-3 PUFA intake is associated with the development of obesity and type 2 diabetes, understanding the impact of n-6/n-3 ratio on energy expenditure and adaptive thermogenesis will inform the implementation of a novel nutritional strategy for preventing obesity. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Neuroinflammation and aging: influence of dietary n-3 polyunsaturated fatty acid*

    Directory of Open Access Journals (Sweden)

    Layé Sophie

    2011-11-01

    Full Text Available The innate immune system of the brain is principally composed of microglial cells and astrocytes, which, once activated, protect neurons against noxious agents or lesions. Activated glial cells produce inflammatory cytokines that act specifically through receptors expressed in the brain, leading to the development of altered emotional and cognitive behavior. These behavioral alterations cease along with the synthesis of brain cytokines. When the level of expression of these cytokines remains high, they become toxic to neurons possibly leading to neuronal death, as observed in neurodegenerative disorders such as Alzheimer’s disease. Omega-3 (n-3 type polyunsaturated fatty acids (PUFAs are essential nutrients and fundamental components of neuronal and glial cell membranes. Additionally, they have immunomodulatory properties. They accumulate in the brain during the perinatal period in a dietary supply-dependant fashion. Their brain levels diminish with age, but can be corrected by a diet enriched in n-3 PUFAs. The increasing exposure of the population to diets unbalanced in n-3 PUFAs could contribute to the deleterious effect of inflammatory cytokines in the brain.

  14. Effect of dietary polyunsaturated fatty acids and Vitamin E on serum oxidative status in horses performing very light exercise

    Directory of Open Access Journals (Sweden)

    Liviana Prola

    2010-01-01

    Full Text Available In sporting horses the use of dietary polyunsaturated fatty acids (PUFAs could enhance performance because these fatty acids are very important in membrane permeability, and in particular they seem to increase the possibility of long chain fatty acids entering mythochondria to be burnt. The composition of cellular membranes and lipoprotein fatty acids com- position is strictly related to dietary fat quality; percentages of polyunsaturated fatty acids and amount of antioxidants also affect tissue susceptibility to lipid peroxidation. Six horses were used in a latin square design in which three homogeneous groups were subsequently assigned three dif- ferent dietary treatments for one month each: Control group (C: basic diet; Oil group (O: Basic diet + 200g/day oil rich in PUFAs (Crossential GLA TG20, Croda ®; Vitamin E group (O+E: basic diet + 200 g/day oil rich in PUFAs (Crossential GLA TG20, Croda ® + 5 g/day α-toco- pheryl-acetate (Egon-E, Acme ®. At the end of each experimental period blood samples were taken by jugular vein puncture. Serum oxidative status was evaluated by TBARs and d-ROMs assessment. Oxidative markers showed the high- est mean values for the oil group, even if no statistically significant differences were found.

  15. Effects of dietary conjugated linoleic acid and linoleic:linolenic acid ratio on polyunsaturated fatty acid status in laying hens.

    Science.gov (United States)

    Du, M; Ahn, D U; Sell, J L

    2000-12-01

    A study was conducted to determine the effects of dietary conjugated linoleic acid (CLA) and the ratio of linoleic:linolenic acid on long-chain polyunsaturated fatty acid status. Thirty-two 31-wk-old White Leghorn hens were randomly assigned to four diets containing 8.2% soy oil, 4.1% soy oil + 2.5% CLA (4.1% CLA source), 4.1% flax oil + 2.5% CLA, or 4.1% soy oil + 4.1% flax oil. Hens were fed the diets for 3 wk before eggs and tissues were collected for the study. Lipids were extracted from egg yolk and tissues, classes of egg yolk lipids were separated, and fatty acid concentrations of total lipids, triglyceride, phosphatidylethanolamine, and phosphatidylcholine were analyzed by gas chromatography. The concentrations of monounsaturated fatty acids and non-CLA polyunsaturated fatty acids were reduced after CLA feeding. The amount of arachidonic acid was decreased after CLA feeding in linoleic acid- and linolenic acid-rich diets, but amounts of eicosapentaenoic acid and docosahexaenoic acid were increased in the linolenic-rich diet, indicating that the synthesis or deposition of long-chain n-3 fatty acids was accelerated after CLA feeding. The increased docosahexaenoic acid and eicosapentaenoic acid contents in lipid may be compensation for the decreased arachidonic acid content. Dietary supplementation of linoleic acid increased n-6 fatty acid levels in lipids, whereas linolenic acid increased n-3 fatty acid levels. Results also suggest that CLA might not be elongated to synthesize long-chain fatty acids in significant amounts. The effect of CLA in reducing the level of n-6 fatty acids and promoting the level of n-3 fatty acids could be related to the biological effects of CLA.

  16. Combined effects of dietary polyunsaturated fatty acids and parasite exposure on eicosanoid-related gene expression in an invertebrate model.

    Science.gov (United States)

    Schlotz, Nina; Roulin, Anne; Ebert, Dieter; Martin-Creuzburg, Dominik

    2016-11-01

    Eicosanoids derive from essential polyunsaturated fatty acids (PUFA) and play crucial roles in immunity, development, and reproduction. However, potential links between dietary PUFA supply and eicosanoid biosynthesis are poorly understood, especially in invertebrates. Using Daphnia magna and its bacterial parasite Pasteuria ramosa as model system, we studied the expression of genes coding for key enzymes in eicosanoid biosynthesis and of genes related to oogenesis in response to dietary arachidonic acid and eicosapentaenoic acid in parasite-exposed and non-exposed animals. Gene expression related to cyclooxygenase activity was especially responsive to the dietary PUFA supply and parasite challenge, indicating a role for prostanoid eicosanoids in immunity and reproduction. Vitellogenin gene expression was induced upon parasite exposure in all food treatments, suggesting infection-related interference with the host's reproductive system. Our findings highlight the potential of dietary PUFA to modulate the expression of key enzymes involved in eicosanoid biosynthesis and reproduction and thus underpin the idea that the dietary PUFA supply can influence invertebrate immune functions and host-parasite interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Dietary polyunsaturated fatty acid supplementation ameliorates the ionizing radiation induced cognitive deterioration

    International Nuclear Information System (INIS)

    Bekal, Mahesh; Suchetha Kumari

    2016-01-01

    The whole brain irradiation causes injury to the nervous system at various levels. Omega-3 Poly Unsaturated Fatty Acids are very much essential for the growth and development of nervous system. Dietary supplementation of these nutrients will promote the development of injured neuronal cells. Therefore, this study was undertaken to establish the role of Omega-3 Poly Unsaturated Fatty Acids on Memory, Learning ability and anxiety levels in the irradiated mice. The effect of Electron Beam Radiation (EBR) on memory and learning ability was investigated in male Swiss albino mice. The study groups were subjected to a sub-lethal dose of 8 and 6 Gy of EBR and also the Fish oil and Flax seed extract (300 mg/kg body weight) were given orally to the irradiated mice

  18. Effect of dietary incorporation of n-3 polyunsaturated fatty acids rich oil sources on fatty acid profile, keeping quality and sensory attributes of broiler chicken meat

    Directory of Open Access Journals (Sweden)

    Sridhar Kalakuntla

    2017-12-01

    Full Text Available The present study was undertaken to investigate the effect of dietary replacement of commonly used vegetable oil (sunflower oil, SFO with n-3 polyunsaturated fatty acids (PUFA rich oil sources on broiler chicken performance, carcass yield, meat fatty acid composition, keeping quality and sensory attributes of meat. In the current experiment, 300 day-old Krishibro broiler chicks were randomly distributed to 5 dietary groups (50 replicates with 6 chicks in each prepared by replacing SFO (2% and 3% of diet during starter and finisher periods, respectively with n-3 PUFA rich soybean oil (SO, mustard oil (MO, linseed oil (LO or fish oil (FO on weight basis. Variation in oil sources had no influence (P > 0.05 on performance and carcass yield. Supplementation of MO, LO or FO significantly (P < 0.01 increased the n-3 PUFA, lowered the n-6 PUFA deposition and n-6:n-3 ratio in breast and thigh without affecting the organoleptic characters (appearance, flavour, juiciness, tenderness and overall acceptability of meat. However, thiobarbituric acid reacting substances concentration in meat was increased (P < 0.01 with LO and FO supplementation compared with SFO. It is concluded that, dietary incorporation of MO, LO or FO at 2% and 3% levels during starter and finisher phase can enrich broiler chicken meat with n-3 PUFA without affecting the bird's performance and sensory characters of meat.

  19. The Impact of Dietary Long-Chain Polyunsaturated Fatty Acids on Respiratory Illness in Infants and Children

    NARCIS (Netherlands)

    Hageman, J.H.J.; Hooyenga, P.; Diersen-Schade, D.A.; Scalabrin, D.M.F.; Wichers, H.J.; Birch, E.E.

    2012-01-01

    Increasing evidence suggests that intake of long-chain polyunsaturated fatty acids (LCPUFA), especially omega-3 LCPUFA, improves respiratory health early in life. This review summarizes publications from 2009 through July 2012 that evaluated effects of fish, fish oil or LCPUFA intake during

  20. Specific behavioral and cellular adaptations induced by chronic morphine are reduced by dietary omega-3 polyunsaturated fatty acids.

    Directory of Open Access Journals (Sweden)

    Joshua Hakimian

    Full Text Available Opiates, one of the oldest known drugs, are the benchmark for treating pain. Regular opioid exposure also induces euphoria making these compounds addictive and often misused, as shown by the current epidemic of opioid abuse and overdose mortalities. In addition to the effect of opioids on their cognate receptors and signaling cascades, these compounds also induce multiple adaptations at cellular and behavioral levels. As omega-3 polyunsaturated fatty acids (n-3 PUFAs play a ubiquitous role in behavioral and cellular processes, we proposed that supplemental n-3 PUFAs, enriched in docosahexanoic acid (DHA, could offset these adaptations following chronic opioid exposure. We used an 8 week regimen of n-3 PUFA supplementation followed by 8 days of morphine in the presence of this diet. We first assessed the effect of morphine in different behavioral measures and found that morphine increased anxiety and reduced wheel-running behavior. These effects were reduced by dietary n-3 PUFAs without affecting morphine-induced analgesia or hyperlocomotion, known effects of this opiate acting at mu opioid receptors. At the cellular level we found that morphine reduced striatal DHA content and that this was reversed by supplemental n-3 PUFAs. Chronic morphine also increased glutamatergic plasticity and the proportion of Grin2B-NMDARs in striatal projection neurons. This effect was similarly reversed by supplemental n-3 PUFAs. Gene analysis showed that supplemental PUFAs offset the effect of morphine on genes found in neurons of the dopamine receptor 2 (D2-enriched indirect pathway but not of genes found in dopamine receptor 1(D1-enriched direct-pathway neurons. Analysis of the D2 striatal connectome by a retrogradely transported pseudorabies virus showed that n-3 PUFA supplementation reversed the effect of chronic morphine on the innervation of D2 neurons by the dorsomedial prefontal and piriform cortices. Together these changes outline specific behavioral and

  1. Ratio of Dietary n-6/n-3 Polyunsaturated Fatty Acids Independently Related to Muscle Mass Decline in Hemodialysis Patients.

    Directory of Open Access Journals (Sweden)

    Te-Chih Wong

    Full Text Available n-3 polyunsaturated fatty acids (PUFAs might be useful nutritional strategy for treating patients with sarcopenia. We evaluated the effect of the intake of dietary n-3 PUFAs on the skeletal muscle mass (SMM, appendicular skeletal muscle mass (ASM, and its determinants in patients receiving standard hemodialysis (HD treatment for the management of end stage renal disease.In this cross-sectional study, data of 111 HD patients were analyzed. Anthropometric and bioelectrical impedance measurements used to estimate the muscle mass were performed the day of dialysis immediately after the dialysis session. Routine laboratory and 3-day dietary data were also collected. The cutoff value of adequate intake (AI for both n-3 PUFAs and alpha-linolenic acid (ALA was 1.6 g/day and 1.1 g/day for men and women, respectively.The mean age, mean dietary n-3 PUFAs intake, ALA intake, ratio of n-6/n-3 PUFAs intake, SMM, and ASM of patients were 61.4 ± 10.4 years, 2.0 ± 1.3 g/day, 1.5 ± 1.0 g/day, 9.5 ± 6.7 g/day, 23.9 ± 5.5 kg, and 17.5 ± 4.5 kg, respectively. A higher SMM and ASM significantly observed in patients who achieved an AI of n-3 PUFAs. Similar trends appeared to be observed among those patients who achieved the AI of ALA, but the difference was not significantly, except for ASM (P = 0.047. No relevant differences in demographics, laboratory and nutritional parameters were observed, regardless of whether the patients achieved an AI of n-3 PUFAs. Multivariate analysis showed that the BMI and equilibrated Kt/V were independent determinants of the muscle mass. Moreover, the ratio of n-6/n-3 PUFAs was an independent risk determinant of reduced ASM in HD patients.Patients with an AI of n-3 PUFAs had better total-body SMM and ASM. A higher dietary ratio of n-6/n-3 PUFAs seemed to be associated with a reduced muscle mass in HD patients.

  2. Ratio of Dietary n-6/n-3 Polyunsaturated Fatty Acids Independently Related to Muscle Mass Decline in Hemodialysis Patients.

    Science.gov (United States)

    Wong, Te-Chih; Chen, Yu-Tong; Wu, Pei-Yu; Chen, Tzen-Wen; Chen, Hsi-Hsien; Chen, Tso-Hsiao; Yang, Shwu-Huey

    2015-01-01

    n-3 polyunsaturated fatty acids (PUFAs) might be useful nutritional strategy for treating patients with sarcopenia. We evaluated the effect of the intake of dietary n-3 PUFAs on the skeletal muscle mass (SMM), appendicular skeletal muscle mass (ASM), and its determinants in patients receiving standard hemodialysis (HD) treatment for the management of end stage renal disease. In this cross-sectional study, data of 111 HD patients were analyzed. Anthropometric and bioelectrical impedance measurements used to estimate the muscle mass were performed the day of dialysis immediately after the dialysis session. Routine laboratory and 3-day dietary data were also collected. The cutoff value of adequate intake (AI) for both n-3 PUFAs and alpha-linolenic acid (ALA) was 1.6 g/day and 1.1 g/day for men and women, respectively. The mean age, mean dietary n-3 PUFAs intake, ALA intake, ratio of n-6/n-3 PUFAs intake, SMM, and ASM of patients were 61.4 ± 10.4 years, 2.0 ± 1.3 g/day, 1.5 ± 1.0 g/day, 9.5 ± 6.7 g/day, 23.9 ± 5.5 kg, and 17.5 ± 4.5 kg, respectively. A higher SMM and ASM significantly observed in patients who achieved an AI of n-3 PUFAs. Similar trends appeared to be observed among those patients who achieved the AI of ALA, but the difference was not significantly, except for ASM (P = 0.047). No relevant differences in demographics, laboratory and nutritional parameters were observed, regardless of whether the patients achieved an AI of n-3 PUFAs. Multivariate analysis showed that the BMI and equilibrated Kt/V were independent determinants of the muscle mass. Moreover, the ratio of n-6/n-3 PUFAs was an independent risk determinant of reduced ASM in HD patients. Patients with an AI of n-3 PUFAs had better total-body SMM and ASM. A higher dietary ratio of n-6/n-3 PUFAs seemed to be associated with a reduced muscle mass in HD patients.

  3. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA); Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol

    DEFF Research Database (Denmark)

    Tetens, Inge

    This Opinion of the EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA) deals with the setting of Dietary Reference Values (DRVs) for fats. A lower bound of the reference intake range for total fat of 20 energy % (E%) and an upper bound of 35 E% are proposed. Fat intake in infants can......-linolenic acid (ALA) of 0.5 E%; not to set an UL for ALA; to set an AI of 250 mg for eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA) for adults; to set an AI of 100 mg DHA for infants (>6 months) and young children...... gradually be reduced from 40 E% in the 6-12 month period to 35-40 E% in the 2nd and 3rd year of life. For specific fatty acids the following is proposed: saturated fatty acid (SFA) and trans fatty acid intake should be as low as possible; not to set any DRV for cis-monounsaturated fatty acids......; not to formulate a DRV for the intake of total cis-polyunsaturated fatty acids (PUFA); not to set specific values for the n-3/n-6 ratio; to set an Adequate Intake (AI) of 4 E% for linoleic acid (LA); not to set any DRV for arachidonic acid; not to set an UL for total or any of the n-6 PUFA; to set an AI for alpha...

  4. Increased dietary long-chain polyunsaturated fatty acids alter serum fatty acid concentrations and lower risk of urine stone formation in cats.

    Directory of Open Access Journals (Sweden)

    Jean A Hall

    Full Text Available The lifespan of cats with non-obstructive kidney stones is shortened compared with healthy cats indicating a need to reduce stone formation and minimize chronic kidney disease. The purpose of this study was to investigate the effects of increasing dietary polyunsaturated fatty acids (PUFA on urine characteristics. Domestic-short-hair cats (n = 12; mean age 5.6 years were randomized into two groups and fed one of two dry-cat foods in a cross-over study design. For one week before study initiation, all cats consumed control food that contained 0.07% arachidonic acid (AA, but no eicosapentaenoic acid (EPA or docosahexaenoic acid (DHA. Group 1 continued eating control food for 56 days. Group 2 was fed test food for 56 days, which was control food plus fish oil and high-AA oil. Test food contained 0.17% AA, 0.09% EPA and 0.18% DHA. After 56 days, cats were fed the opposite food for another 56 days. At baseline and after each feeding period, serum was analyzed for fatty acid concentrations, and urine for specific gravity, calcium concentration, relative-super-saturation for struvite crystals, and a calcium-oxalate-titrimetric test was performed. After consuming test food, cats had increased (all P<0.001 serum concentrations of EPA (173%, DHA (61%, and AA (35%; decreased urine specific gravity (P = 0.02; decreased urine calcium concentration (P = 0.06; decreased relative-super-saturation for struvite crystals (P = 0.03; and increased resistance to oxalate crystal formation (P = 0.06 compared with cats consuming control food. Oxalate crystal formation was correlated with serum calcium concentration (r = 0.41; P<0.01. These data show benefits for reducing urine stone formation in cats by increasing dietary PUFA.

  5. Dietary levels of vitamin E and polyunsaturated fatty acids and plasma vitamin E.

    Science.gov (United States)

    Witting, L A; Lee, L

    1975-06-01

    Seventeen daily diets (breakfast, lunch, and dinner) were analyzed from a 35-day menu cycle fed to students, under contract in the University dining halls. This 35-day menu cycle was repeated 6.6 times over the course of two 15-week semesters and registration and final examination periods. The average 2, 500 kcal diet collected during the sixth and seventh menu cycles contained 96 plus or minus 26 g fat of which 19.5 plus or minus 1.8% was linoleate and 28.7 plus or minus 14.2 mg total tocopherol of which 7.5 plus or minus 3.5 mg was RRR-alpha-tocopherol. Blood samples obtained from 26 female undergraduate student volunteers contained adequate levels of plasma total vitamin E, 1.09 plus or minus 0.25 mg/100 ml, despite the observation that 71% and 65% of the diets analyzed did not meet the value tabluated in the eighth edition of "Recommended Dietary Allowances" for adult females in terms of RRR-alpha-tocopherol or total vitamin E activity, respectively. These data emphasize the importance of the average long-term consumption of this fat-soluble vitamin rather than daily intake.

  6. Polyunsaturated fatty acid status of Dutch vegans and omnivores

    NARCIS (Netherlands)

    Fokkema, M R; Brouwer, D A; Hasperhoven, M B; Hettema, Y; Bemelmans, W J; Muskiet, F A

    We compared the polyunsaturated fatty acid (PUFA) status of Dutch vegans and omnivores to investigate whether disparities can be explained by different diets and long chain PUFA (LCP) synthesis rates. Dietary intakes and fatty acid compositions of erythrocytes (RBC), platelets (PLT), plasma

  7. Polyunsaturated fatty acid status of Dutch vegans and omnivores

    NARCIS (Netherlands)

    Fokkema, M R; Brouwer, D A; Hasperhoven, M B; Hettema, Y; Bemelmans, W J; Muskiet, F A

    2000-01-01

    We compared the polyunsaturated fatty acid (PUFA) status of Dutch vegans and omnivores to investigate whether disparities can be explained by different diets and long chain PUFA (LCP) synthesis rates. Dietary intakes and fatty acid compositions of erythrocytes (RBC), platelets (PLT), plasma

  8. Dietary High-Oleic Acid Soybean Oil Dose Dependently Attenuates Egg Yolk Content of n-3 Polyunsaturated Fatty Acids in Laying Hens Fed Supplemental Flaxseed Oil.

    Science.gov (United States)

    Elkin, Robert G; Kukorowski, Alexandra N; Ying, Yun; Harvatine, Kevin J

    2018-02-01

    Chickens can hepatically synthesize eicosapentaenoic acid (20:5 n-3) and docosahexaenoic acid (22:6 n-3) from α-linolenic acid (ALA; 18:3 n-3); however, the process is inefficient and competitively inhibited by dietary linoleic acid (LNA; 18:2 n-6). In the present study, the influence of dietary high-oleic acid (OLA; 18:1 n-9) soybean oil (HOSO) on egg and tissue deposition of ALA and n-3 polyunsaturated fatty acids (PUFA) synthesized from dietary ALA was investigated in laying hens fed a reduced-LNA base diet supplemented with high-ALA flaxseed oil (FLAX). We hypothesized that reducing the dietary level of LNA would promote greater hepatic conversion of ALA to very long-chain (VLC; >20C) n-3 PUFA, while supplemental dietary HOSO would simultaneously further enrich eggs with OLA without influencing egg n-3 PUFA contents. Nine 51-week-old hens each were fed 0, 10, 20, or 40 g HOSO/kg diet for 12 weeks. Within each group, supplemental dietary FLAX was increased every 3 weeks from 0 to 10 to 20 to 40 g/kg diet. Compared to controls, dietary FLAX maximally enriched the total n-3 and VLC n-3 PUFA contents in egg yolk by 9.4-fold and 2.2-fold, respectively, while feeding hens 40 g HOSO/kg diet maximally attenuated the yolk deposition of ALA, VLC n-3 PUFA, and total n-3 PUFA by 37, 15, and 32%, respectively. These results suggest that dietary OLA is not neutral with regard to the overall process by which dietary ALA is absorbed, metabolized, and deposited into egg yolk, either intact or in the form of longer-chain/more unsaturated n-3 PUFA derivatives. © 2018 AOCS.

  9. Dietary n-3 polyunsaturated fatty acid depletion activates caspases and decreases NMDA receptors in the brain of a transgenic mouse model of Alzheimer's disease.

    Science.gov (United States)

    Calon, Frédéric; Lim, Giselle P; Morihara, Takashi; Yang, Fusheng; Ubeda, Oliver; Salem, Norman; Frautschy, Sally A; Cole, Greg M

    2005-08-01

    Epidemiological data indicate that low n-3 polyunsaturated fatty acids (PFA) intake is a readily manipulated dietary risk factor for Alzheimer's disease (AD). Studies in animals confirm the deleterious effect of n-3 PFA depletion on cognition and on dendritic scaffold proteins. Here, we show that in transgenic mice overexpressing the human AD gene APPswe (Tg2576), safflower oil-induced n-3 PFA deficiency caused a decrease in N-methyl-D-aspartate (NMDA) receptor subunits, NR2A and NR2B, in the cortex and hippocampus with no loss of the presynaptic markers, synaptophysin and synaptosomal-associated protein 25 (SNAP-25). n-3 PFA depletion also decreased the NR1 subunit in the hippocampus and Ca2+/calmodulin-dependent protein kinase (CaMKII) in the cortex of Tg2576 mice. These effects of dietary n-3 PFA deficiency were greatly amplified in Tg2576 mice compared to nontransgenic mice. Loss of the NR2B receptor subunit was not explained by changes in mRNA expression, but correlated with p85alpha phosphatidylinositol 3-kinase levels. Most interestingly, n-3 PFA deficiency dramatically increased levels of protein fragments, corresponding to caspase/calpain-cleaved fodrin and gelsolin in Tg2576 mice. This effect was minimal in nontransgenic mice suggesting that n-3 PFA depletion potentiated caspase activation in the Tg2576 mouse model of AD. Dietary supplementation with docosahexaenoic acid (DHA; 22 : 6n-3) partly protected from NMDA receptor subunit loss and accumulation of fodrin and gelsolin fragments but fully prevented CaMKII decrease. The marked effect of dietary n-3 PFA on NMDA receptors and caspase/calpain activation in the cortex of an animal model of AD provide new insights into how dietary essential fatty acids may influence cognition and AD risk.

  10. Effect of Dietary n-3 Polyunsaturated Fatty Acids on Oxidant/Antioxidant Status in Macrosomic Offspring of Diabetic Rats

    Directory of Open Access Journals (Sweden)

    B. Guermouche

    2014-01-01

    Full Text Available The aim of this work was to determine the effect of dietary n-3 PUFA on oxidant/antioxidant status, in vitro very low and low density lipoprotein (VLDL-LDL, and VLDL-LDL-fatty acid composition in macrosomic pups of diabetic mothers. We hypothesized that n-3 PUFA would improve oxidative stress in macrosomia. Diabetes was induced in female Wistar rats fed with the ISIO diet (control or with the EPAX diet (enriched in n-3 PUFAs, by streptozotocin. The macrosomic pups were killed at birth (day 0 and at adulthood (day 90. Lipid parameters and VLDL-LDL-fatty acid composition were investigated. The oxidant/antioxidant status was determined by measuring plasma oxygen radical absorbance capacity (ORAC, hydroperoxides, carbonyl proteins, and VLDL-LDL oxidation. Macrosomic rats of ISIO fed diabetic mothers showed an increase in plasma and VLDL-LDL-triglycerides and VLDL-LDL-cholesterol levels and altered VLDL-LDL-fatty acid composition. Plasma ORAC was low with high hydroperoxide and carbonyl protein levels. The in vitro oxidizability of VLDL-LDL was enhanced in these macrosomic rats. The EPAX diet corrected lipid parameters and improved oxidant/antioxidant status but increased VLDL-LDL susceptibility to oxidation. Macrosomia is associated with lipid abnormalities and oxidative stress. n-3 PUFA exerts favorable effects on lipid metabolism and on the oxidant/antioxidant status of macrosomic rats. However, there are no evident effects on VLDL-LDL oxidation.

  11. Dietary long chain n-3 polyunsaturated fatty acids prevent impaired social behaviour and normalize brain dopamine levels in food allergic mice.

    Science.gov (United States)

    de Theije, Caroline G M; van den Elsen, Lieke W J; Willemsen, Linette E M; Milosevic, Vanja; Korte-Bouws, Gerdien A H; Lopes da Silva, Sofia; Broersen, Laus M; Korte, S Mechiel; Olivier, Berend; Garssen, Johan; Kraneveld, Aletta D

    2015-03-01

    Allergy is suggested to exacerbate impaired behaviour in children with neurodevelopmental disorders. We have previously shown that food allergy impaired social behaviour in mice. Dietary fatty acid composition may affect both the immune and nervous system. The aim of this study was to assess the effect of n-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) on food allergy-induced impaired social behaviour and associated deficits in prefrontal dopamine (DA) in mice. Mice were fed either control or n-3 LCPUFA-enriched diet before and during sensitization with whey. Social behaviour, acute allergic skin response and serum immunoglobulins were assessed. Monoamine levels were measured in brain and intestine and fatty acid content in brain. N-3 LCPUFA prevented impaired social behaviour of allergic mice. Moreover, n-3 LCPUFA supplementation increased docosahexaenoic acid (DHA) incorporation into the brain and restored reduced levels of prefrontal DA and its metabolites 3,4-dihydroxyphenylacetic acid, 3-methoxytyramine and homovanillic acid in allergic mice. In addition to these brain effects, n-3 LCPUFA supplementation reduced the allergic skin response and restored decreased intestinal levels of serotonin metabolite 5-hydroxyindoleacetic acid in allergic mice. N-3 LCPUFA may have beneficial effects on food allergy-induced deficits in social behaviour, either indirectly by reducing the allergic response and restoring intestinal 5-HT signalling, or directly by DHA incorporation into neuronal membranes, affecting the DA system. Therefore, it is of interest to further investigate the relevance of food allergy-enhanced impairments in social behaviour in humans and the potential benefits of dietary n-3 LCPUFA supplementation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Maternal dietary n-6 polyunsaturated fatty acid deprivation does not exacerbate post-weaning reductions in arachidonic acid and its mediators in the mouse hippocampus.

    Science.gov (United States)

    Alashmali, Shoug M; Kitson, Alex P; Lin, Lin; Lacombe, R J Scott; Bazinet, Richard P

    2017-09-13

    The present study examines how lowering maternal dietary n-6 polyunsaturated fatty acids (PUFA) (starting from pregnancy) compared to offspring (starting from post-weaning) affect the levels of n-6 and n-3 fatty acids in phospholipids (PL) and lipid mediators in the hippocampus of mice. Pregnant mice were randomly assigned to consume either a deprived or an adequate n-6 PUFA diet during pregnancy and lactation (maternal exposure). On postnatal day (PND) 21, half of the male pups were weaned onto the same diet as their dams, and the other half were switched to the other diet for 9 weeks (offspring exposure). At PND 84, upon head-focused high-energy microwave irradiation, hippocampi were collected for PL fatty acid and lipid mediator analyses. Arachidonic acid (ARA) concentrations were significantly decreased in both total PL and PL fractions, while eicosapentaenoic acid (EPA) concentrations were increased only in PL fractions upon n-6 PUFA deprivation of offspring, regardless of maternal exposure. Several ARA-derived eicosanoids were reduced, while some of the EPA-derived eicosanoids were elevated by n-6 PUFA deprivation in offspring. There was no effect of diet on docosahexaenoic acid (DHA) or DHA-derived docosanoids concentrations under either maternal or offspring exposure. These results indicate that the maternal exposure to dietary n-6 PUFA may not be as important as the offspring exposure in regulating hippocampal ARA and some lipid mediators. Results from this study will be helpful in the design of experiments aimed at testing the significance of altering brain ARA levels over different stages of life.

  13. Changes in cholesterol homeostasis modify the response of F1B hamsters to dietary very long chain n-3 and n-6 polyunsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    Rader Daniel J

    2011-10-01

    Full Text Available Abstract Background The plasma lipoprotein response of F1B Golden-Syrian hamsters fed diets high in very long chain (VLC n-3 polyunsaturated fatty acids (PUFA is paradoxical to that observed in humans. This anomaly is attributed, in part, to low lipoprotein lipase activity and is dependent on cholesterol status. To further elucidate the mechanism(s for these responses, hamsters were fed diets containing supplemental fish oil (VLC n-3 PUFA or safflower oil (n-6 PUFA (both 10% [w/w] and either cholesterol-supplemented (0.1% cholesterol [w/w] or cholesterol-depleted (0.01% cholesterol [w/w] and 10 days prior to killing fed 0.15% lovastatin+2% cholestyramine [w/w]. Results Cholesterol-supplemented hamsters fed fish oil, relative to safflower oil, had higher non-high density lipoprotein (HDL cholesterol and triglyceride concentrations (P Conclusion These data suggest disturbing cholesterol homeostasis in F1B hamsters alters their response to dietary fatty acids, which is reflected in altered plasma lipoprotein patterns and regulation of genes associated with their metabolism.

  14. DietaryFish and Long-Chain n-3 Polyunsaturated Fatty Acids Intake and Risk of Atrial Fibrillation: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Fu-Rong Li

    2017-08-01

    Full Text Available Findings on the association between long-term intake of fish or long-chain n-3 polyunsaturated fatty acids (PUFAs and risk of atrial fibrillation (AF are inconsistent in observational studies. We conducted a meta-analysis of prospective studies to separately examine the associations between fish consumption and dietary intake of n-3 PUFAs with the risk of AF. A systematic search was conducted in PubMed and Embase to identify relevant studies. Risk estimates were combined using a random-effect model. Seven prospective cohort studies covering 206,811 participants and 12,913 AF cases were eligible. The summary relative risk of AF for the highest vs. lowest category of fish consumption and dietary intake of n-3 PUFAs was 1.01(95% confidence interval: 0.94–1.09 and 1.03 (95% confidence interval: 0.97–1.09, respectively. These null associations persisted in subgroup and dose-response analyses. There was little evidence of publication bias. This meta-analysis suggests that neither long-term intake of fish, nor of n-3 PUFAs were significantly associated with lower risk of AF.

  15. Dietary omega-3 polyunsaturated fatty acids improve the neurolipidome and restore the DHA status while promoting functional recovery after experimental spinal cord injury.

    Science.gov (United States)

    Figueroa, Johnny D; Cordero, Kathia; Llán, Miguel S; De Leon, Marino

    2013-05-15

    Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) confer multiple health benefits and decrease the risk of neurological disorders. Studies are needed, however, to identify promising cellular targets and to assess their prophylactic value against neurodegeneration. The present study (1) examined the efficacy of a preventive diet enriched with ω-3 PUFAs to reduce dysfunction in a well-established spinal cord injury (SCI) animal model and (2) used a novel metabolomics data analysis to identify potential neurolipidomic targets. Rats were fed with either control chow or chow enriched with ω-3 PUFAs (750 mg/kg/day) for 8 weeks before being subjected to a sham or a contusion SCI operation. We report new evidence showing that rats subjected to SCI after being pre-treated with a diet enriched with ω-3 PUFAs exhibit significantly better functional outcomes. Pre-treated animals exhibited lower sensory deficits, autonomic bladder recovery, and early improvements in locomotion that persisted for at least 8 weeks after trauma. We found that SCI triggers a robust alteration in the cord PUFA neurolipidome, which was characterized by a marked docosahexaenoic acid (DHA) deficiency. This DHA deficiency was associated with dysfunction and corrected with the ω-3 PUFA-enriched diet. Multivariate data analyses revealed that the spinal cord of animals consuming the ω-3 PUFA-enriched diet had a fundamentally distinct neurolipidome, particularly increasing the levels of essential and long chain ω-3 fatty acids and lysolipids at the expense of ω-6 fatty acids and its metabolites. Altogether, dietary ω-3 PUFAs prophylaxis confers resiliency to SCI mediated, at least in part, by generating a neuroprotective and restorative neurolipidome.

  16. Dietary Omega-3 Polyunsaturated Fatty Acids Improve the Neurolipidome and Restore the DHA Status while Promoting Functional Recovery after Experimental Spinal Cord Injury

    Science.gov (United States)

    Figueroa, Johnny D.; Cordero, Kathia; llán, Miguel S.

    2013-01-01

    Abstract Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) confer multiple health benefits and decrease the risk of neurological disorders. Studies are needed, however, to identify promising cellular targets and to assess their prophylactic value against neurodegeneration. The present study (1) examined the efficacy of a preventive diet enriched with ω-3 PUFAs to reduce dysfunction in a well-established spinal cord injury (SCI) animal model and (2) used a novel metabolomics data analysis to identify potential neurolipidomic targets. Rats were fed with either control chow or chow enriched with ω-3 PUFAs (750 mg/kg/day) for 8 weeks before being subjected to a sham or a contusion SCI operation. We report new evidence showing that rats subjected to SCI after being pre-treated with a diet enriched with ω-3 PUFAs exhibit significantly better functional outcomes. Pre-treated animals exhibited lower sensory deficits, autonomic bladder recovery, and early improvements in locomotion that persisted for at least 8 weeks after trauma. We found that SCI triggers a robust alteration in the cord PUFA neurolipidome, which was characterized by a marked docosahexaenoic acid (DHA) deficiency. This DHA deficiency was associated with dysfunction and corrected with the ω-3 PUFA-enriched diet. Multivariate data analyses revealed that the spinal cord of animals consuming the ω-3 PUFA-enriched diet had a fundamentally distinct neurolipidome, particularly increasing the levels of essential and long chain ω-3 fatty acids and lysolipids at the expense of ω-6 fatty acids and its metabolites. Altogether, dietary ω-3 PUFAs prophylaxis confers resiliency to SCI mediated, at least in part, by generating a neuroprotective and restorative neurolipidome. PMID:23294084

  17. Dietary n-3 polyunsaturated fatty acid intake and all-cause and cardiovascular mortality in adults on hemodialysis: The DIET-HD multinational cohort study.

    Science.gov (United States)

    Saglimbene, Valeria M; Wong, Germaine; Ruospo, Marinella; Palmer, Suetonia C; Campbell, Katrina; Larsen, Vanessa Garcia; Natale, Patrizia; Teixeira-Pinto, Armando; Carrero, Juan-Jesus; Stenvinkel, Peter; Gargano, Letizia; Murgo, Angelo M; Johnson, David W; Tonelli, Marcello; Gelfman, Rubén; Celia, Eduardo; Ecder, Tevfik; Bernat, Amparo G; Del Castillo, Domingo; Timofte, Delia; Török, Marietta; Bednarek-Skublewska, Anna; Duława, Jan; Stroumza, Paul; Hoischen, Susanne; Hansis, Martin; Fabricius, Elisabeth; Wollheim, Charlotta; Hegbrant, Jörgen; Craig, Jonathan C; Strippoli, Giovanni F M

    2017-12-06

    Patients on hemodialysis suffer from high risk of premature death, which is largely attributed to cardiovascular disease, but interventions targeting traditional cardiovascular risk factors have made little or no difference. Long chain n-3 polyunsaturated fatty acids (n-3 PUFA) are putative candidates to reduce cardiovascular disease. Diets rich in n-3 PUFA are recommended in the general population, although their role in the hemodialysis setting is uncertain. We evaluated the association between the dietary intake of n-3 PUFA and mortality for hemodialysis patients. The DIET-HD study is a prospective cohort study (January 2014-June 2017) in 9757 adults treated with hemodialysis in Europe and South America. Dietary n-3 PUFA intake was measured at baseline using the GA 2 LEN Food Frequency Questionnaire. Adjusted Cox regression analyses clustered by country were conducted to evaluate the association of dietary n-3 PUFA intake with cardiovascular and all-cause mortality. During a median follow up of 2.7 years (18,666 person-years), 2087 deaths were recorded, including 829 attributable to cardiovascular causes. One third of the study participants consumed sufficient (at least 1.75 g/week) n-3 PUFA recommended for primary cardiovascular prevention, and less than 10% recommended for secondary prevention (7-14 g/week). Compared to patients with the lowest tertile of dietary n-3 PUFA intake (<0.37 g/week), the adjusted hazard ratios (95% confidence interval) for cardiovascular mortality for patients in the middle (0.37 to <1.8 g/week) and highest (≥1.8 g/week) tertiles of n-3 PUFA were 0.82 (0.69-0.98) and 1.03 (0.84-1.26), respectively. Corresponding adjusted hazard ratios for all-cause mortality were 0.96 (0.86-1.08) and 1.00 (0.88-1.13), respectively. Dietary n-3 PUFA intake was not associated with cardiovascular or all-cause mortality in patients on hemodialysis. As dietary n-3 PUFA intake was low, the possibility that n-3 PUFA supplementation might mitigate

  18. Changes in cholesterol homeostasis modify the response of F1B hamsters to dietary very long chain n-3 and n-6 polyunsaturated fatty acids.

    Science.gov (United States)

    Lecker, Jaime L; Matthan, Nirupa R; Billheimer, Jeffrey T; Rader, Daniel J; Lichtenstein, Alice H

    2011-10-21

    The plasma lipoprotein response of F1B Golden-Syrian hamsters fed diets high in very long chain (VLC) n-3 polyunsaturated fatty acids (PUFA) is paradoxical to that observed in humans. This anomaly is attributed, in part, to low lipoprotein lipase activity and is dependent on cholesterol status. To further elucidate the mechanism(s) for these responses, hamsters were fed diets containing supplemental fish oil (VLC n-3 PUFA) or safflower oil (n-6 PUFA) (both 10% [w/w]) and either cholesterol-supplemented (0.1% cholesterol [w/w]) or cholesterol-depleted (0.01% cholesterol [w/w] and 10 days prior to killing fed 0.15% lovastatin+2% cholestyramine [w/w]). Cholesterol-supplemented hamsters fed fish oil, relative to safflower oil, had higher non-high density lipoprotein (HDL) cholesterol and triglyceride concentrations (P safflower oil, had lower non-HDL cholesterol and triglyceride concentrations (P < 0.001) which were associated with lower hepatic SREBP-1c (p < 0.05) but not apo B-100, apo E or ACAT-2 mRNA or protein levels. Independent of cholesterol status, fish oil fed hamsters had lower HDL cholesterol concentrations (p < 0.001), which were associated with lower hepatic apoA-I protein levels (p < 0.05). These data suggest disturbing cholesterol homeostasis in F1B hamsters alters their response to dietary fatty acids, which is reflected in altered plasma lipoprotein patterns and regulation of genes associated with their metabolism.

  19. Uncoupling of interleukin-6 from its signalling pathway by dietary n-3-polyunsaturated fatty acid deprivation alters sickness behaviour in mice

    Science.gov (United States)

    Mingam, Rozenn; Moranis, Aurélie; Bluthé, Rose-Marie; De Smedt-Peyrusse, Véronique; Kelley, Keith W.; Guesnet, Philippe; Lavialle, Monique; Dantzer, Robert; Layé, Sophie

    2009-01-01

    Sickness behaviour is an adaptive behavioural response to the activation of the innate immune system. It is mediated by brain cytokine production and action, especially interleukin-6 (IL-6). Polyunsaturated fatty acids (PUFA) are essential fatty acids that are highly incorporated in brain cells membranes and display immunomodulating properties. We hypothesized that a decrease in n-3 PUFA brain level by dietary means impacts on lipopolysaccharide (LPS)-induced IL-6 production and sickness behaviour. Our results show that mice exposed throughout life to a diet containing n-3 PUFA (n-3/n-6 diet) display a decrease in social interaction that does not occur in mice submitted to a diet devoid of n-3 PUFA (n-6 diet). LPS induced high IL-6 plasma levels as well as expression of IL-6 mRNA in the hippocampus and cFos mRNA in the brainstem of mice fed either diet, indicating intact immune-to-brain communication. However, STAT3 and STAT1 activation, a hallmark of IL-6 signalling pathway, was lower in the hippocampus of LPS-treated n-6 mice as compared to n-3/n-6 mice. In addition, LPS did not reduce social interaction in IL-6 knock-out (IL-6 KO) mice and failed to induce STAT3 activation in the brain of IL-6 KO mice. Altogether, these findings point to alteration in brain STAT3 as a key mechanism for the lack of effect of LPS on social interaction in mice fed with the n-6 PUFA diet. The relative deficiency of Western diets in n-3 PUFA could impact on behavioural aspects of the host response to infection. PMID:18973601

  20. Dietary polyunsaturated fatty acids and adaptation to chronic hypoxia alter acyl composition of serum and heart lipids

    Czech Academy of Sciences Publication Activity Database

    Balková, P.; Ježková, J.; Hlaváčková, M.; Neckář, Jan; Staňková, B.; Kolář, František; Novák, F.; Nováková, O.

    2009-01-01

    Roč. 102, č. 9 (2009), s. 1297-1307 ISSN 0007-1145 R&D Projects: GA ČR(CZ) GA305/07/0875 Institutional research plan: CEZ:AV0Z50110509 Keywords : chronic hypoxia * dietary n-3 and n-6 PUFA * heart Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 3.446, year: 2009

  1. The antidepressant role of dietary long-chain polyunsaturated n-3 fatty acids in two phases in the developing brain.

    Science.gov (United States)

    Ferraz, Anete Curte; Kiss, Agata; Araújo, Renata Lins Fuentes; Salles, Hélidy Maria Rossi; Naliwaiko, Katya; Pamplona, Juliana; Matheussi, Francesca

    2008-03-01

    In this work we investigated the effect from fish oil (FO) supplementation, rich in n-3 fatty acids, on an antidepressant effect on adult rats in Phase A (supplementation during pregnancy and lactation) and phase B (supplementation during post-weaning until adulthood). During Phase A, female rats, used as matrix to obtain male rats, were divided in three groups: FO (daily supplemented), CF (coconut fat daily supplemented) and control (not supplemented). Our results showed that adult rats whose mothers were supplemented with FO during Phase A and rats supplemented during phase B demonstrated a significantly decreased immobility time when compared to control and CF groups. There was no difference in neither motor activity nor anxiety behavior in the three groups excluding false positive results. Our results suggest that n-3 fatty acids supplementation during Phases A and B had a beneficial effect on preventing the development of depression-like behavior in adult rats.

  2. Effect of Dietary Omega-3 Polyunsaturated Fatty Acids on Heart Rate and Heart Rate Variability in Animals Susceptible or Resistant to Ventricular Fibrillation

    Directory of Open Access Journals (Sweden)

    George E Billman

    2012-03-01

    Full Text Available The consumption of omega-3 polyunsaturated fatty acids (n-3 PUFAs has been reported to reduce cardiac mortality following myocardial infarction as well as to decrease resting heart rate (HR and increase heart rate variability (HRV. However, it has not been established whether n-3 PUFAs exhibit the same actions on HR and HRV in individuals known to be either susceptible or resistant to ventricular fibrillation (VF. Therefore, HR and HRV (high frequency and total R-R interval variability were evaluated before and 3 months after n-3 PUFA treatment in dogs with healed myocardial infarction that were either susceptible (VF+, n = 31 or resistant (VF-, n = 31 to ventricular tachyarrhythmias induced by a 2 min coronary artery occlusion during the last minute of a submaximal exercise test. HR and HRV were evaluated at rest, during submaximal exercise and in response to acute myocardial ischemia at rest before and after either placebo (1 g/day, corn oil, VF+, n = 9; VF- n = 8 or n-3 PUFA (docosahexaenoic acid + eicosapentaenoic acid ethyl esters, 1-4g/day, VF+, n = 22; VF-, n = 23 treatment for 3 months. The n-3 PUFA treatment elicited similar increases in red blood cell membrane, right atrial, and left ventricular n-3 PUFA levels in both the VF+ and VF- dogs. The n-3 PUFA treatment also provoked similar reductions in baseline HR and increases in baseline HRV in both groups that resulted in parallel shifts in the response to either exercise or acute myocardial ischemia (that is, the change in these variables induced by physiological challenges was not altered after n-3 PUFA treatment. These data demonstrate that dietary n-3 PUFA decreased HR and increased HRV to a similar extent in animals known to be prone to or resistant to malignant cardiac tachyarrhythmias.

  3. Modulation of Long-term Potentiation of Cortico-amygdala Synaptic Responses and Auditory Fear Memory by Dietary Polyunsaturated Fatty Acid

    Directory of Open Access Journals (Sweden)

    Daisuke Yamada

    2016-08-01

    Full Text Available Converging evidence suggests that an imbalance of ω3 to ω6 polyunsaturated fatty acid (PUFA in the brain is involved in mental illnesses such as anxiety disorders. However, the underlying mechanism is unknown. We previously reported that the dietary ratio of ω3 to ω6 PUFA alters this ratio in the brain, and influences contextual fear memory. In addition to behavioral change, enhancement of cannabinoid CB1 receptor-mediated short-term synaptic plasticity and facilitation of the agonist sensitivity of CB1 receptors have been observed in excitatory synaptic responses in the basolateral nucleus of the amygdala. However, it is not known whether long-term synaptic plasticity in the amygdala is influenced by the dietary ratio of ω3 to ω6 PUFA. In the present study, we examined long-term potentiation (LTP of optogenetically–evoked excitatory synaptic responses in synapses between the terminal of the projection from the auditory cortex and the pyramidal cells in the lateral nucleus of the amygdala. We found that LTP in this pathway was attenuated in mice fed a diet with a high ω3 to ω6 PUFA ratio (0.97, compared with mice fed a diet with a low ω3 to ω6 PUFA ratio (0.14. Furthermore, mice in the former condition showed reduced fear responses in an auditory fear conditioning test, compared with mice in the latter condition. In both electrophysiological and behavioral experiments, the effect of a diet with a high ω3 to ω6 PUFA ratio was completely blocked by treatment with a CB1 receptor antagonist. Furthermore, a significant reduction was observed in cholesterol content, but not in the level of an endogenous CB1 receptor agonist, 2-arachidonoylglycerol, in brain samples containing the amygdala. These results suggest that the balance of ω3 to ω6 PUFA has an impact on fear memory and cortico-amygdala synaptic plasticity, both in a CB1 receptor–dependent manner.

  4. Mouse models: the ketogenic diet and polyunsaturated fatty acids.

    Science.gov (United States)

    Borges, Karin

    2008-11-01

    Literature on the anticonvulsant effects of the ketogenic diet (KD) in mouse seizure models is summarized. Recent data show that a KD balanced in vitamin, mineral, and antioxidant content is anticonvulsant in mice, confirming that the KD's effect in mice can be attributed to the composition of the diet and not other dietary factors. Given that the anticonvulsant mechanism of the KD is still unknown, the anticonvulsant profile of the diet in different seizure models may help to decipher this mechanism. The implications of the findings that the KD is anticonvulsant in electrical seizure models are indicated. Further, the potential involvement of polyunsaturated fatty acids (PUFA) in the KD's anticonvulsant mechanism is discussed.

  5. Polyunsaturated fatty acids and prostate cancer risk

    DEFF Research Database (Denmark)

    Khankari, Nikhil K; Murff, Harvey J; Zeng, Chenjie

    2016-01-01

    BACKGROUND: Prostate cancer is a common cancer worldwide with no established modifiable lifestyle factors to guide prevention. The associations between polyunsaturated fatty acids (PUFAs) and prostate cancer risk have been inconsistent. Using Mendelian randomisation, we evaluated associations...... and prostate cancer risk. However, risk reductions were observed for short-chain PUFAs, linoleic (ORLA=0.95, 95%CI=0.92, 0.98) and α-linolenic acids (ORALA=0.96, 95%CI=0.93, 0.98), among men ...-chain PUFAs (i.e., arachidonic, eicosapentaenoic, and docosapentaenoic acids), increased risks were observed among men

  6. Nutrigenomics and nutrigenetics of ω3 polyunsaturated fatty acids.

    Science.gov (United States)

    Vanden Heuvel, John P

    2012-01-01

    Diets rich in ω3 polyunsaturated fatty acids (ω3-PUFAs) such as alpha-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid are associated with decreased incidence and severity of several chronic diseases including cardiovascular disease (CVD) and cancer. At least some of the beneficial effects of these dietary fatty acids are via metabolites such as prostaglandins, leukotrienes, thromboxanes, and resolvins. The effects of ω3-PUFAs are in contrast to those of fatty acids with virtually identical structures, such as the ω6-PUFAs linoleic acid and arachidonic acid, and their corresponding metabolites. The purpose of this chapter is to discuss both the nutrigenomics (nutrient-gene interactions) and nutrigenetics (genetic variation in nutrition) of dietary fatty acids with a focus on the ω3-PUFAs (Gebauer et al., 2007(1)). Important in the biological response for these fatty acids or their metabolites are cognate receptors that are able to regulate gene expression and coordinately affect metabolic or signaling pathways associated with CVD and cancer. Four nuclear receptor (NR) subfamilies will be emphasized as receptors that respond to dietary and endogenous ligands: (1) peroxisome proliferator-activated receptors, (2) retinoid X receptors, (3) liver X receptors, and (4) farnesoid X receptor. In addition to the different responses elicited by varying structures of fatty acids, responses may vary because of genetic variation in enzymes that metabolize ω3- and ω6 fatty acids or that respond to them. In particular, polymorphisms in the fatty acid desaturases and the aforementioned NRs contribute to the complexity of nutritional effects seen with ω3-PUFAs. Following a brief introduction to the health benefits of ω3-PUFAs, the regulation of gene expression by these dietary fatty acids via NRs will be characterized. Subsequently, the effects of single-nucleotide polymorphisms (SNPs) in key enzymes involved in the metabolism and response to ω3-PUFAs will

  7. Lipid profile and levels of omega-3 polyunsaturated fatty acids ...

    African Journals Online (AJOL)

    The intake of polyunsaturated fatty acids especially omega-3 is projected to be way below the recommended intake in Kenya. Thus, there is need to find other sources of polyunsaturated fatty acids (PUFAs). This study screened for the lipid profile and levels of omega-3 PUFAs in jackfruit and explored the variation in lipid ...

  8. Dietary long chain n-3 polyunsaturated fatty acids prevent impaired social behaviour and normalize brain dopamine levels in food allergic mice

    NARCIS (Netherlands)

    de Theije, Caroline G M; van den Elsen, Lieke W J; Willemsen, Linette E M; Milosevic, Vanja; Korte-Bouws, Gerdien A H; Lopes da Silva, Sofia; Broersen, Laus M; Korte, S Mechiel; Olivier, Berend; Garssen, Johan; Kraneveld, Aletta D

    2015-01-01

    Allergy is suggested to exacerbate impaired behaviour in children with neurodevelopmental disorders. We have previously shown that food allergy impaired social behaviour in mice. Dietary fatty acid composition may affect both the immune and nervous system. The aim of this study was to assess the

  9. Circulating B-vitamins and smoking habits are associated with serum polyunsaturated Fatty acids in patients with suspected coronary heart disease: a cross-sectional study.

    Science.gov (United States)

    Skeie, Eli; Strand, Elin; Pedersen, Eva R; Bjørndal, Bodil; Bohov, Pavol; Berge, Rolf K; Svingen, Gard F T; Seifert, Reinhard; Ueland, Per M; Midttun, Øivind; Ulvik, Arve; Hustad, Steinar; Drevon, Christian A; Gregory, Jesse F; Nygård, Ottar

    2015-01-01

    The long-chain polyunsaturated fatty acids are considered to be of major health importance, and recent studies indicate that their endogenous metabolism is influenced by B-vitamin status and smoking habits. We investigated the associations of circulating B-vitamins and smoking habits with serum polyunsaturated fatty acids among 1,366 patients who underwent coronary angiography due to suspected coronary heart disease at Haukeland University Hospital, Norway. Of these, 52% provided information on dietary habits by a food frequency questionnaire. Associations were assessed using partial correlation (Spearman's rho). In the total population, the concentrations of most circulating B-vitamins were positively associated with serum n-3 polyunsaturated fatty acids, but negatively with serum n-6 polyunsaturated fatty acids. However, the associations between B-vitamins and polyunsaturated fatty acids tended to be weaker in smokers. This could not be solely explained by differences in dietary intake. Furthermore, plasma cotinine, a marker of recent nicotine exposure, showed a negative relationship with serum n-3 polyunsaturated fatty acids, but a positive relationship with serum n-6 polyunsaturated fatty acids. In conclusion, circulating B-vitamins are, in contrast to plasma cotinine, generally positively associated with serum n-3 polyunsaturated fatty acids and negatively with serum n-6 polyunsaturated fatty acids in patients with suspected coronary heart disease. Further studies should investigate whether B-vitamin status and smoking habits may modify the clinical effects of polyunsaturated fatty acid intake.

  10. Polyunsaturated fatty acids in the treatment of attention deficit hyperactivity disorder

    NARCIS (Netherlands)

    Lange, Klaus W.; Hauser, Joachim; Kanaya, Shigehiko; Kaunzinger, Ivo; Lange, Katharina M.; Makulska-Gertruda, Ewelina; Nakamura, Yukiko; Sontag, Thomas A.; Tucha, Lara

    2014-01-01

    Background: Attention deficit/hyperactivity disorder (ADHD) is one of the most common behavioral disorders in children. Insufficient dietary intake of long-chain polyunsaturated fatty acids (LC-PUFAs) has been suggested to have an impact on the development of symptoms of ADHD in children.

  11. Long-chain polyunsaturated fatty acids in maternal and infant nutrition

    NARCIS (Netherlands)

    Muskiet, Frits A. J.; van Goor, Saskia A.; Kuipers, Remko S.; Velzing-Aarts, Francien V.; Smit, Ella N.; Bouwstra, Hylco; Dijck-Brouwer, D. A. Janneke; Boersma, E. Rudy; Hadders-Algra, Mijna

    Homo sapiens has evolved on a diet rich in alpha-linolenic acid and long chain polyunsaturated fatty acids (LCP). We have, however, gradually changed our diet from about 10,000 years ago and accelerated this change from about 100 to 200 years ago. The many dietary changes, including lower intake of

  12. Dietary supplementation with n-3 polyunsaturated fatty acids in early childhood: effects on blood pressure and arterial structure and function at age 8 y.

    Science.gov (United States)

    Ayer, Julian G; Harmer, Jason A; Xuan, Wei; Toelle, Brett; Webb, Karen; Almqvist, Catarina; Marks, Guy B; Celermajer, David S

    2009-08-01

    n-3 Fatty acid supplementation in adults results in cardiovascular benefits. However, the cardiovascular effects of n-3 supplementation in early childhood are unknown. The objective was to evaluate blood pressure (BP) and arterial structure and function in 8-y-old children who had participated in a randomized controlled trial of dietary n-3 and n-6 modification over the first 5 y of life. The children (n = 616; 49% girls) were randomly assigned antenatally to active (n = 312; increase in n-3 intake and decrease in n-6 intake) or control (n = 304) diet interventions implemented from the time of weaning or introduction of solids until 5 y of age. At age 8.0 +/- 0.1 y, BP, carotid intima-media thickness, carotid artery distensibility, augmentation index, and brachial pulse wave velocity were measured in 405 of these children. Venous blood was collected for measurement of plasma fatty acids, lipoproteins, high-sensitivity C-reactive protein, and asymmetric dimethylarginine. Plasma fatty acid concentrations were also assessed during the intervention. Plasma concentrations of n-3 fatty acids were higher and of n-6 were lower in the active than in the control diet group at 18 mo and 3 and 5 y (P n-3 and n-6 fatty acids were similar at 8 y. At 8 y of age, no significant differences were found in BP, carotid intima-media thickness, carotid artery distensibility, augmentation index, asymmetric dimethylarginine, high-sensitivity C-reactive protein, or lipoproteins between diet groups. A dietary supplement intervention to increase n-3 and decrease n-6 intakes from infancy until 5 y does not result in significant improvements in arterial structure and function at age 8 y. This trial was registered at the Australian Clinical Trials Registry as ACTRN012605000042640.

  13. The Role of Omega-3 Polyunsaturated Fatty Acids in Stroke

    Directory of Open Access Journals (Sweden)

    Jiyuan Bu

    2016-01-01

    Full Text Available Stroke is the third commonest cause of death following cardiovascular diseases and cancer. In particular, in recent years, the morbidity and mortality of stroke keep remarkable growing. However, stroke still captures people attention far less than cardiovascular diseases and cancer. Past studies have shown that oxidative stress and inflammation play crucial roles in the progress of cerebral injury induced by stroke. Evidence is accumulating that the dietary supplementation of fish oil exhibits beneficial effects on several diseases, such as cardiovascular diseases, metabolic diseases, and cancer. Omega-3 polyunsaturated fatty acids (n-3 PUFAs, the major component of fish oil, have been found against oxidative stress and inflammation in cardiovascular diseases. And the potential of n-3 PUFAs in stroke treatment is attracting more and more attention. In this review, we will review the effects of n-3 PUFAs on stroke and mainly focus on the antioxidant and anti-inflammatory effects of n-3 PUFAs.

  14. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits.

    Science.gov (United States)

    Shahidi, Fereidoon; Ambigaipalan, Priyatharini

    2018-03-25

    Omega-3 polyunsaturated fatty acids (PUFAs) include α-linolenic acid (ALA; 18:3 ω-3), stearidonic acid (SDA; 18:4 ω-3), eicosapentaenoic acid (EPA; 20:5 ω-3), docosapentaenoic acid (DPA; 22:5 ω-3), and docosahexaenoic acid (DHA; 22:6 ω-3). In the past few decades, many epidemiological studies have been conducted on the myriad health benefits of omega-3 PUFAs. In this review, we summarized the structural features, properties, dietary sources, metabolism, and bioavailability of omega-3 PUFAs and their effects on cardiovascular disease, diabetes, cancer, Alzheimer's disease, dementia, depression, visual and neurological development, and maternal and child health. Even though many health benefits of omega-3 PUFAs have been reported in the literature, there are also some controversies about their efficacy and certain benefits to human health.

  15. Bioavailability of omega-3 long-chain polyunsaturated fatty acids from foods

    DEFF Research Database (Denmark)

    Mu, Huiling

    2008-01-01

    Increasing recognition of the importance of the omega-3 long chain polyunsaturated fatty acids (LCPUFA) has caused greater attention about dietary intake of these fatty acids. Fatty fish is the major dietary source of these fatty acids. Because of the low intake of fish at many places, foods...... enriched with omega-3 LCPUFA can be good alternatives to improve the intake of these fatty acids. Effects of lipid structures and food matrices on bioavailability of omega-3 LCPUFA have been investigated. Short term studies showed that both lipid structure and food matrix affect the bioavailability...... of these fatty acids, whereas diverse results have been reported from long-term studies. Therefore more studies are encouraged to clarify the long-term effects....

  16. Dietary n-3 long-chain polyunsaturated fatty acids modify phosphoenolpyruvate carboxykinase activity and lipid synthesis from glucose in adipose tissue of rats fed a high-sucrose diet.

    Science.gov (United States)

    Londero, Lisiane G; Rieger, Débora K; Hansen, Fernanda; Silveira, Simone L; Martins, Tiago L; Lulhier, Francisco; da Silva, Roselis S; Souza, Diogo O; Perry, Marcos L S; de Assis, Adriano M

    2013-12-01

    Long-chain polyunsaturated n-3 fatty acids (n-3 LCPUFAs) have hypolipidemic effects and modulate intermediary metabolism to prevent or reverse insulin resistance in a way that is not completely elucidated. Here, effects of these fatty acids on the lipid profile, phosphoenolpyruvate carboxykinase (PEPCK) activity, lipid synthesis from glucose in epididymal adipose tissue (Ep-AT) and liver were investigated. Male rats were fed a high-sucrose diet (SU diet), containing either sunflower oil or a mixture of sunflower and fish oil (SU-FO diet), and the control group was fed a standard diet. After 13 weeks, liver, adipose tissue and blood were harvested and analysed. The dietary n-3 LCPUFAs prevented sucrose-induced increase in adiposity and serum free fat acids, serum and hepatic triacylglycerol and insulin levels. Furthermore, these n-3 LCPUFAs decreased lipid synthesis from glucose and increased PEPCK activity in the Ep-AT of rats fed the SU-FO diet compared to those fed the SU diet, besides reducing lipid synthesis from glucose in hepatic tissue. Thus, the inclusion of n-3 LCPUFAs in the diet may be beneficial for the prevention or attenuation of dyslipidemia and insulin resistance, and for reducing the risk of related chronic diseases. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Dietary polyunsaturated fatty acid supplementation of young post-pubertal dairy bulls alters the fatty acid composition of seminal plasma and spermatozoa but has no effect on semen volume or sperm quality.

    Science.gov (United States)

    Byrne, C J; Fair, S; English, A M; Holden, S A; Dick, J R; Lonergan, P; Kenny, D A

    2017-03-01

    The aim of this study was to examine the effects of dietary supplementation with rumen protected n-6 or n-3 polyunsaturated fatty acids (PUFA) on the quantity and quality of semen from young post-pubertal dairy bulls. Pubertal Holstein-Friesian (n = 43) and Jersey (n = 7) bulls with a mean ± s.e.m. age and bodyweight of 420.1 ± 5.86 days and 382 ± 8.94 kg, respectively, were blocked on breed, weight, age and semen quality (based on the outcomes of two pre-trial ejaculates) and randomly assigned to one of three treatments: (i) a non-supplemented control (CTL, n = 15), (ii) rumen-protected safflower (SO, n = 15), (iii) rumen-protected n-3 PUFA-enriched fish oil (FO, n = 20). Bulls were fed their respective diets, ad libitum for 12 weeks; individual intakes were recorded using an electronic feeding system for the initial 6 weeks of the feeding period. Semen was collected via electro-ejaculation at weeks -2, -1, 0, 7, 10, 11 and 12 relative to the beginning of the trial period (week 0). On collection, semen volume, sperm concentration and progressive linear motility (PLM) were assessed. On weeks -2, -1, 0, 10, 11, 12, semen was packaged into 0.25 mL straws and frozen using a programmable freezer. On weeks -1, 7 and 11; a sub-sample of semen was separated into sperm and seminal plasma, by centrifugation and stored at - 20 °C until analysis of lipid composition. Semen from 10 bulls per treatment were used for post-thaw analysis at weeks 10, 11 and 12 (3 straws per ejaculate). Sperm motility was analysed by computer assisted semen analysis (CASA). In addition, membrane fluidity, acrosome reaction and oxidative stress were assessed using flow cytometry. Sperm from bulls fed SO had a 1.2 fold higher total n-6 PUFA content at week 11 compared to week -1 (P semen volume, concentration or PLM of sperm when assessed either immediately following collection or post-thawing. Membrane fluidity and oxidative stress of sperm were also not affected by

  18. [Efficacy assessment of Nutrilarm®, a per os omega-3 and omega-6 polyunsaturated essential fatty acid dietary formulation versus placebo in patients with bilateral treated moderate dry eye syndrome].

    Science.gov (United States)

    Creuzot-Garcher, C; Baudouin, C; Labetoulle, M; Pisella, P-J; Mouriaux, F; Meddeb-Ouertani, A; El Matri, L; Khairallah, M; Brignole-Baudouin, F

    2011-09-01

    Inflammation is one of the main mechanisms common to all forms of dry eye. Since polyunsaturated acids are known to show biological anti-inflammatory properties, the aim of this study was to evaluate the efficacy of dietary n-6 and n-3 fatty acids in patients suffering from ocular dryness. One hundred and eighty-one patients diagnosed with bilateral moderate dry eye who were already treated with lachrymal substitutes were randomized in a double-blind international study to receive placebo or Nutrilarm(®) capsules (combination of omega-3 and omega-6), twice a day for 6 months. In all subjects, dryness feeling, overall subjective comfort, and ocular symptoms (burning, stinging, sandy and/or gritty sensation, light sensitivity, reflex tearing, and ocular fatigue) were evaluated at each visit. Furthermore, fluorescein tests (break-uptime and Oxford scheme) and lissamine green test were performed at each visit. The Schirmer test was performed at inclusion and after 6 months of treatment. After 6 months of supplementation with Nutrilarm(®), both the BUT scores and ocular fatigue were significantly improved when compared with placebo (P=0.036 and P=0.044, respectively). There was a trend in favor of Nutrilarm(®) in terms of the efficacy evaluated by the investigator (P=0.061). Fewer patients experienced a feeling of severe dryness with Nutrilarm(®) compared with placebo after 6 months of treatment (2.5 and 9.3%, respectively), but the difference was not statistically significant. Oral administration of a double supplementation dietary n-6 and n-3 fatty acids present an additional therapeutic advantage in patients suffering from ocular dryness who were already treated with lachrymal substitutes. Copyright © 2011. Published by Elsevier Masson SAS.

  19. Time trend investigation of PCBs, PBDEs, and organochlorine pesticides in selected n-3 polyunsaturated fatty acid rich dietary fish oil and vegetable oil supplements; nutritional relevance for human essential n-3 fatty acid requirements.

    Science.gov (United States)

    Jacobs, Miriam N; Covaci, Adrian; Gheorghe, Adriana; Schepens, Paul

    2004-03-24

    In addition to being used in the food and animal feed industry, fish oils have also been used traditionally as dietary supplements. Due to the presence of long-chain n-3 fatty acids, fish oils have therapeutic benefits in the prevention and treatment of cardiovascular, immunological, and arthritic diseases, as well as childhood deficiency diseases such as rickets, because of a high content of vitamin D. However, fish oils are also susceptible to contamination with lipophilic organic chemicals that are now ubiquitous contaminants of marine ecosystems. Many vegetable oils are sources of the shorter chain precursor forms of n-3 fatty acids, and in recent years the specialist dietary supplement market has expanded to include these oils in a variety of different formulations. This paper reports analytical results of selected contaminants, including polychlorinated biphenyls, organochlorine pesticides, and polybrominated diphenyl ethers, for a range of commercially available n-3 fatty acid rich fish and vegetable oil dietary supplements. Using principal component analysis, the values are compared with historic samples to elucidate time trends in contamination profiles. Levels of contaminants are discussed in relation to the nutritional benefits to the consumer of long- and short-chain forms of n-3 fatty acids.

  20. Dietary effects on fatty acid metabolism of common carp.

    Science.gov (United States)

    Csengeri, I

    1996-01-01

    The paper summarises experimental data demonstrating effects of various dietary factors exerting changes in the fatty acid composition and fatty acid metabolism of the common carp (Cyprinus carpio L.). Among the dietary factors (1) supplementary feeding in fish ponds, (2) absence of essential fatty acids (EFA) in the diet, (3) starvation, and (4) ration level were studied. It was concluded that supplementary feeding in carp rearing ponds is frequently excessive in the Hungarian carp culture practice, inducing slight EFA-deficiency and enhancing de novo fatty acid synthesis. This latter caused enlarged fat depots with high oleic acid contents in the fish organs and tissues. EFA-deficient diets enhanced the synthesis of oleic acid except when high rate of de novo fatty acid synthesis was suppressed by dietary fatty acids. Feeding EFA-deficient diets caused gradual decrease in the levels of polyunsaturated fatty acids and gradual increase in that of Mead's acid: 20:3(n-9), an indicator of the EFA-deficiency. At prolonged starvation, polyunsaturated fatty acids of the structural lipids were somehow protected and mainly oleic acid was utilised for energy production. At high ration levels, excessive exogenous polyunsaturates were decomposed, and probably converted to oleic acid or energy. Starvation subsequent to the feeding the fish at various ration levels, reflected adaptive changes in the fatty acid metabolism: Below and above the ration level required for the most efficient feed utilisation for growth, decomposition processes of the fatty acid metabolism were accelerated.

  1. Significance of long chain polyunsaturated fatty acids in human health

    Czech Academy of Sciences Publication Activity Database

    Zárate, R.; El Jaber-Vazdekis, Nabil; Tejera, N.; Pérez, J.A.; Rodrígues, C.

    2017-01-01

    Roč. 6, JUL 27 (2017), s. 1-19, č. článku 25. ISSN 2001-1326 R&D Projects: GA MŠk(CZ) LO1416 Institutional support: RVO:61388971 Keywords : Lipidomics * Lipids * Long chain polyunsaturated fatty acids Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology

  2. Omega-3 polyunsaturated fatty acids and brain aging.

    Science.gov (United States)

    Denis, Isabelle; Potier, Brigitte; Heberden, Christine; Vancassel, Sylvie

    2015-03-01

    The literature on the influence of dietary omega-3 polyunsaturated fatty acid (ω-3 PUFA) on brain aging has grown exponentially during the last decade. Many avenues have been explored but no global picture or clear evidence has emerged. Experimental studies have shown that ω-3 PUFA is involved in many neurobiological processes that are involved in neurotransmission and neuroprotection, indicating that these PUFAs may prevent age-related brain damage. Human studies have revealed only a weak link between ω-3 PUFA status and cognitive aging, whereas interventional studies have yet to confirm it. The purpose of this review is to analyze the developments in the area during the last 2 years. Human brain MRI studies have confirmed previous findings that ω-3 PUFA can protect the brain during aging; two intervention studies obtained clear evidence. We also analyzed the experimental data clarifying the involvement of ω-3 PUFA in neurotransmission, neuroprotection (including prevention of peroxidation, inflammation, and excitotoxicity), and neurogenesis, thereby helping the brain cope with aging. These recent human and experimental studies provide support for and clarification of how ω-3 PUFA protect against brain aging and highlight the main lines for future research.

  3. THE EGG – FUNCTIONAL FOOD.COMPARATIVE STUDY ON VARIOUS NUTRITIONAL SOLUTIONS TO ENRICH THE EGG POLYUNSATURATED FATTY ACIDS. II YOLK FATTY ACIDS PROFILE RESULTING FROM THE DIETARY USE OF SAFFLOWER OIL AND FLAX SEEDS

    Directory of Open Access Journals (Sweden)

    CRISTE RODICA. D.

    2007-05-01

    Full Text Available The paper presents the results obtained in a study on the comparative evaluation of the effect of a diet with safflower oil and flax seeds compared to a control soybean oil diet given to layers on the bioproductive effects, egg characteristics and yolk fatty acids profile. The trial involved 32 Lowman Brown layers during the age period 23- 28 weeks (1 week of accommodation and 4 experimental weeks. The layers, assigned to 2 groups (16 layers/group, 4 layers/cage received diets based on corn, wheat and soybean meal. The diets differed by the source of fatty acids: soybean oil for the control group (SO; safflower oil and flax seeds for SSO+FS. The diets were supplemented with 250 ppm vitamin E. Twelve eggs per group were collected randomly 10 and 30 days, respectively, after the beginning of the experiment. The paper presents comparative data on the: average egg weight, egg component (egg shell, yolk, egg white weight, intensity of yolk colour (Hoffman – La Roche colour range, yolk protein, fat yolk pH (measured one week after collection, the eggs being kept at 50C and yolk fatty acids. All data show that the profile of yolk unsaturated fatty acids can be handled quite easily by the nature of the dietary fats, their level of inclusion and their dietary ratio.

  4. Dietary fatty acids and membrane protein function.

    Science.gov (United States)

    Murphy, M G

    1990-02-01

    In recent years, there has been growing public awareness of the potential health benefits of dietary fatty acids, and of the distinction between the effects of the omega6 and omega3 polyunsaturated fatty acids that are concentrated in vegetable and fish oils, respectively. A part of the biologic effectiveness of the two families of polyunsaturated fatty acids resides in their relative roles as precursors of the eicosanoids. However, we are also beginning to appreciate that as the major components of the hydrophobic core of the membrane bilayer, they can interact with and directly influence the functioning of select integral membrane proteins. Among the most important of these are the enzymes, receptors, and ion channels that are situated in the plasma membrane of the cell, since they carry out the communication and homeostatic processes that are necessary for normal cell function. This review examines current information regarding the effects of diet-induced changes in plasma membrane fatty acid composition on several specific enzymes (adenylate cyclase, 5'-nucleotidase, Na(+)/K(+)-ATPase) and cell-surface receptors (opiate, adrenergic, insulin). Dietary manipulation studies have demonstrated a sensitivity of each to a fatty acid environment that is variably dependent on the nature of the fatty acid(s) and/or source of the membrane. The molecular mechanisms appear to involve fatty acid-dependent effects on protein conformation, on the "fluidity" and/or thickness of the membrane, or on protein synthesis. Together, the results of these studies reinforce the concept that dietary fats have the potential to regulate physiologic function and to further our understanding of how this occurs at a membrane level.

  5. Effectiveness and tolerability of dietary supplementation with a combination of omega-3 polyunsaturated fatty acids and antioxidants in the treatment of dry eye symptoms: results of a prospective study

    Directory of Open Access Journals (Sweden)

    Oleñik A

    2014-01-01

    Full Text Available Andrea OleñikOn behalf of the Dry Eye Clinical Study Group (DECSGOphthalmology Department, Fundación Jiménez Díaz, Madrid, SpainBackground: We assessed the effectiveness and tolerability of a dietary supplement based on the combination of omega-3 essential fatty acids and antioxidants on dry eye-related symptoms.Methods: A total of 905 patients (72% women, median age 60 years with dry eye syndrome and using artificial tears to relieve symptoms participated in an open-label prospective intervention study. They were recruited during a routine ophthalmological appointment. Patients were instructed to take three capsules/day of the nutraceutical formulation (Brudysec® 1.5 g for 12 weeks. Dry eye symptoms (categorized as 0, none; 1, mild; 2, moderate; and 3, severe included scratchy and stinging sensation in the eyes, eye redness, grittiness, painful eyes, tired eyes, grating sensation, and blurry vision.Results: The mean intensity of dry eye symptoms varied from 1.1 (± standard deviation [SD] 0.9 for painful eyes to 2.0 (0.9 for grittiness, with a mean value of 11.9 (4.8 for all symptoms together. At week 12, all individual symptoms improved significantly (P<0.001. The mean value for all symptoms together decreased from a mean value of 11.9 (± SD 4.8 at baseline to 6.8 (± SD 4.5 after 12 weeks of treatment (P<0.001. There was a decrease in the percentage of patients in which dry eye symptoms predominated nearly all the time (53.5% versus 34.1%. A total of 68.1% of patients reported better tolerance to contact lenses after treatment. The mean number of daily instillations of artificial tears also decreased significantly (3.8 [± SD 1.6] versus 3.3 [± SD 1.6], P<0.001. A total of 634 patients (70.1% did not report any adverse events. In the remaining patients with adverse events, the most frequent was fish-tasting regurgitation in 13.5% of cases, followed by nausea in 4.9%, diarrhea in 1.3%, and vomiting in 0.3%.Conclusion: Dietary

  6. Dietary intake of fish, omega-3, omega-6 polyunsaturated fatty acids and vitamin D and the prevalence of psychotic-like symptoms in a cohort of 33,000 women from the general population.

    Science.gov (United States)

    Hedelin, Maria; Löf, Marie; Olsson, Marita; Lewander, Tommy; Nilsson, Björn; Hultman, Christina M; Weiderpass, Elisabete

    2010-05-26

    Low intake of fish, polyunsaturated fatty acids (PUFA) and vitamin D deficiency has been suggested to play a role in the development of schizophrenia. Our aim was to evaluate the association between the intake of different fish species, PUFA and vitamin D and the prevalence of psychotic-like symptoms in a population-based study among Swedish women. Dietary intake was estimated using a food frequency questionnaire among 33,623 women aged 30-49 years at enrollment (1991/92). Information on psychotic-like symptoms was derived from a follow-up questionnaire in the years 2002/03. Participants were classified into three predefined levels: low, middle and high frequency of symptoms. The association between diet and psychotic-like symptoms was summarized in terms of relative risks (RR) and corresponding 95% confidence intervals and was evaluated by energy-adjusted multinomial logistic regression. 18,411 women were classified as having a low level of psychotic-like symptoms, 14 395 as middle and 817 as having a high level. The risk of high level symptoms was 53% (95% CI, 30-69%) lower among women who ate fish 3-4 times per week compared to women who never ate fish. The risk was also lower for women with a high intake of omega-3 and omega-6 PUFA compared to women with a lower intake of these fatty acids. The effect was most pronounced for omega-6 PUFAs. The RR comparing the highest to the lowest quartile of omega-6 PUFAs intake was 0.78 (95% CI, 0.64-0.97). The associations were J-shaped with the strongest reduced risk for an intermediate intake of fish or PUFA. For fatty fish (herring/mackerel, salmon-type fish), the strongest inverse association was found for an intermediate intake (RR: 0.81, 95% CI, 0.66-0.98), whereas a high intake of fatty fish was associated with an increased risk of psychotic-like symptoms (RR: 1.90, 95% CI, 1.34-2.70). Women in the highest compared with the lowest quartile of vitamin D consumption experienced a 37% (95% CI, 22-50%) lower risk of

  7. Dietary intake of fish, omega-3, omega-6 polyunsaturated fatty acids and vitamin D and the prevalence of psychotic-like symptoms in a cohort of 33 000 women from the general population

    Directory of Open Access Journals (Sweden)

    Lewander Tommy

    2010-05-01

    Full Text Available Abstract Background Low intake of fish, polyunsaturated fatty acids (PUFA and vitamin D deficiency has been suggested to play a role in the development of schizophrenia. Our aim was to evaluate the association between the intake of different fish species, PUFA and vitamin D and the prevalence of psychotic-like symptoms in a population-based study among Swedish women. Methods Dietary intake was estimated using a food frequency questionnaire among 33 623 women aged 30-49 years at enrolment (1991/92. Information on psychotic-like symptoms was derived from a follow-up questionnaire in the years 2002/03. Participants were classified into three predefined levels: low, middle and high frequency of symptoms. The association between diet and psychotic-like symptoms was summarized in terms of relative risks (RR and corresponding 95% confidence intervals and was evaluated by energy-adjusted multinomial logistic regression. Results 18 411 women were classified as having a low level of psychotic-like symptoms, 14 395 as middle and 817 as having a high level. The risk of high level symptoms was 53% (95% CI, 30-69% lower among women who ate fish 3-4 times per week compared to women who never ate fish. The risk was also lower for women with a high intake of omega-3 and omega-6 PUFA compared to women with a lower intake of these fatty acids. The effect was most pronounced for omega-6 PUFAs. The RR comparing the highest to the lowest quartile of omega-6 PUFAs intake was 0.78 (95% CI, 0.64-0.97. The associations were J-shaped with the strongest reduced risk for an intermediate intake of fish or PUFA. For fatty fish (herring/mackerel, salmon-type fish, the strongest inverse association was found for an intermediate intake (RR: 0.81, 95% CI, 0.66-0.98, whereas a high intake of fatty fish was associated with an increased risk of psychotic-like symptoms (RR: 1.90, 95% CI, 1.34-2.70. Women in the highest compared with the lowest quartile of vitamin D consumption

  8. Intake of marine fat, rich in (n-3)-polyunsaturated fatty acids, may increase birthweight by prolonging gestation

    DEFF Research Database (Denmark)

    Olsen, S.F.; Hansen, Harald S.; Sørensen, T.I.

    1986-01-01

    an important part in the timing of parturition in human beings. Dietary (n-3)-polyunsaturated fatty acids (PUFA) in high amounts influence endogenous prostaglandin metabolism. Owing to the large consumption of marine fat, the average intake of (n-3)-PUFA in the Faroes by far exceeds that in Denmark...

  9. Dietary intervention increases n-3 long-chain polyunsaturated fatty acids in sceletal muscle membrane phospholipids of obese subjects. Inplications for insulin sensitivity

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Madsbad, Sten; Høy, C-E

    2006-01-01

    . Insulin resistance was estimated by the homeostasis model assessment (HOMA-IR). RESULTS The mean weight loss was 5.1 kg (range -15.3 to +1.3 kg). BMI decreased from 36.5 to 34.9 kg/m(2) (P=0.003). Saturated FA (SFA) decreased 11% (P=0.0001). Polyunsaturated FA (PUFA)n-6 increased 4% (P =0.003). Long......-chain PUFAn-3 increased 51% (P= 0.0001), mainly due to a 75% increase (PHOMA-IR correlated significantly with changes in long-chain PUFAn-3 (R=-0.57, P... that included changes in weight, fat mass, waist circumference, plasma lipids, PUFA, SFA and long-chain PUFAn-3 indicated that SFA and long-chain PUFAn-3 were independent predictors of HOMA-IR (R(2)=0.33, P

  10. Dietary intervention increases n-3 long-chain polyunsaturated fatty acids in skeletal muscle membrane phospholipids of obese subjects. Implications for insulin sensitivity

    DEFF Research Database (Denmark)

    Haugaard, S.B.; Madsbad, S.; Høy, Carl-Erik

    2006-01-01

    . Insulin resistance was estimated by the homeostasis model assessment (HOMA-IR). Results The mean weight loss was 5.1 kg (range -15.3 to +1.3 kg). BMI decreased from 36.5 to 34.9 kg/m(2) (P = 0.003). Saturated FA (SFA) decreased 11% (P = 0.0001). Polyunsaturated FA (PUFA)n-6 increased 4% (P = 0.003). Long......-chain PUFAn-3 increased 51% (P = 0.0001), mainly due to a 75% increase (P HOMA-IR correlated significantly with changes in long-chain PUFAn-3 (R = -0.57, P ... analysis that included changes in weight, fat mass, waist circumference, plasma lipids, PUFA, SFA and long-chain PUFAn-3 indicated that SFA and long-chain PUFAn-3 were independent predictors of HOMA-IR (R-2 = 0.33, P

  11. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    DEFF Research Database (Denmark)

    Refsgaard, Hanne; Tsai, Lin; Stadtman, Earl

    2000-01-01

    The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(lll)/O-2] depends on the degree of unsaturation of the fatty acid. The fatty acid......-dependent generation of carbonyl groups and loss of lysine residues increased in the order methyl linoleate fatty acids were oxidized in the presence...... in the formation of protein carbonyls, These results are consistent with the proposition that metal-catalyzed oxidation of polyunsaturated fatty acids can contribute to the generation of protein carbonyls by direct interaction of lipid oxidation products (alpha,beta-unsaturated aldehydes) with lysine residues...

  12. Thai jute seed oil: a potential polyunsaturated fatty acid source

    Directory of Open Access Journals (Sweden)

    Maitree Suttajit

    2006-03-01

    Full Text Available This study examined lipid and fatty acid compositions of different varieties of jute (Po-kra-jao, Corchorus olitorius L. seed grown in Thailand. Four different jute seeds (Nonn-Soong, Keaw-Yai, Cuba and Khonkaen harvested from northeastern Thailand were ground, their lipid was extracted with chloroform: methanol (2:1, v/v, and lipid composition was determined by Iatroscan (TLC/FID. Fatty acid composition was analyzed using GLC with standard methods. Triacylglycerol was a predominant lipid in jute seed oil, ranging from 70% to 74%, and other two minor components were phytosterol (12% to 28% and diacylglycerol (0% to 9%. The ratio of saturates: monounsaturates: polyunsaturates, was approximately 2: 3: 4. Most predominant polyunsaturated fatty acid (PUFA was linoleic acid (18:2n-6, accounting for 40-67% of total fatty acid. Nonn-Soong had the highest amount of PUFA (67.7%, followed by Khonkaen (44.53%, Keaw-Yai (41.14%, and Cuba (40.19%. Another PUFA found was α-linolenic acid (18:3n-3, accounting for about 1% of total fatty acid. The results indicated that jute seed oil was a potential edible PUFA source. The oils obtained from different kinds of jute seeds had significantly different lipid and fatty acid compositions.

  13. n-3 polyunsaturated fatty acid supplementation during cancer chemotherapy

    OpenAIRE

    Morland, Sarah Louise; Martins, Karen J.B.; Mazurak, Vera C.

    2016-01-01

    Evidence from several clinical trials suggests that n-3 polyunsaturated fatty acid (n-3 PUFA) supplementation during cancer chemotherapy improves patient outcomes related to chemotherapy tolerability, regardless of the type of chemotherapy used. While the effects of n-3 PUFA supplementation during chemotherapy have been the subject of several reviews, the mechanisms by which n-3 PUFA improve patient responses through improved chemotherapy tolerability are unclear. There are several barriers c...

  14. Composition and textural properties of Mozzarella cheese naturally-enriched in polyunsaturated fatty acids.

    Science.gov (United States)

    Caroprese, Mariangela; Sevi, Agostino; Marino, Rosaria; Santillo, Antonella; Tateo, Alessandra; Albenzio, Marzia

    2013-08-01

    The effects of adding flaxseed or fish oil to the diet of dairy cows on the chemical and physical profile of Mozzarella cheese production were studied. The experiment involved 24 Friesian cows, divided into 3 groups accordingly fat supplementation: basal diet (CT), diet supplemented with flaxseed (FS) or fish oil (FO). Mozzarella cheeses were manufactured from bulk milk of each group. Bulk milk was analysed for chemical composition and renneting parameters. Mozzarella cheeses were analysed for chemical composition, fatty acid profile, and textural properties. Results suggest that Mozzarella cheese from cows receiving flaxseed supplementation showed a decrease in saturated fatty acids (SFA), an increase in monounsaturated fatty acids (MUFA), and in polyunsaturated fatty acids (PUFA) compared with control Mozzarella cheese. The increased dietary intake of C18:3 in flaxseed supplemented cows resulted in increased levels of trans-11 C18:1, and of CLA cis-9 trans-11 C18:2, and in low Atherogenic and Trombogenic Indexes. FO Mozzarella cheese showed compositional and textural properties quite similar to CT Mozzarella cheese; however, increased levels of n-3 polyunsaturated fatty acids in FO Mozzarella were found.

  15. Effect of dietary n-3 polyunsaturated fatty acid rich fish oil on the endometrial prostaglandin production in the doe (Capra hircus).

    Science.gov (United States)

    Chaudhari, Ravjibhai K; Mahla, Ajit Singh; Singh, Amit Kumar; Singh, Sanjay Kumar; Pawde, Abhijit M; Gandham, Ravi Kumar; Singh, Gyanendra; Sarkar, Mihir; Kumar, Harendra; Krishnaswamy, Narayanan

    2018-03-01

    Recently, we showed that dietary supplementation of n-3 PUFA rich fish oil (FO) decreased the metabolites of serum prostaglandin (PG) F 2α and E 2 during the window of pregnancy recognition in the doe. In this study, we investigated its effect on the changes on endometrial PG production in vitro. Cycling does (n = 12) of Rohilkhand region were divided into two equal groups and fed a concentrate diet supplemented with either FO containing 26% n-3 PUFA (TRT; n = 6) or palm oil (CON; n = 6) @ 0.6 mL/kg body weight for 57 days. Estrus was synchronized by two injections of PGF 2α analogue viz, on day 25 and 36 of supplementation and laparo-hysterotomy was performed to obtain endometrial tissue on day 16 of the synchronized estrus. Endometrial explant culture was done using a defined medium.The basal PG production was assayed at 6 and 12 h. Endometrial explant was stimulated with oxytocin (OXT) and/or recombinant ovine interferon tau (roIFN-τ) and PGs were assayed at 3 and 12 h post-treatment. The relative expression of genes related to PG metabolism in the endometrium was done by Quantitative Real Time PCR technique (qRT-PCR). There was a significant (P  0.05) effect on the PGF 2α and PGE 2 production in the TRT group. Similarly, the PG production in the OXT and roIFN-τ was comparable with the control in TRT. Expression of mRNA for cyclooxygenase-2 (COX-2), cytosolic phospholipase A 2 (cPLA 2 ) and PGF synthase (PGFS) was lower (P n-3 PUFA fed doe. In conclusion, dietary supplementation of FO decreased the endometrial production of PGF 2α and PGE 2 by downregulating the COX-2, cPLA 2 and PGFS transcripts in the doe. The findings suggest that n-3 PUFA influence embryo survival by modulating the endometrial PG. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Effect of dietary supplementation of omega-3 polyunsaturated fatty acid (PUFA) rich fish oil on reproductive performance of the goat (Capra hircus).

    Science.gov (United States)

    Mahla, Ajit Singh; Chaudhari, Ravjibhai K; Verma, Atul Kumar; Singh, Amit Kumar; Singh, Sanjay Kumar; Singh, Gyanendra; Sarkar, Mihir; Dutta, Narayan; Kumar, Harendra; Krishnaswamy, Narayanan

    2017-09-01

    Dietary supplementation of n-3 PUFA decreases the luteolytic PGF 2α and improves the pregnancy rate in the dairy cow. However, its effect in the goat is not known. Accordingly, we studied the effect of supplementation of n-3 PUFA rich Fish oil (FO) on different reproductive events in the goat. Cycling goats (n = 30) were divided into two equal groups and fed an isocaloric and isonitrogenous diet supplemented with either FO (TRT; n = 15) or palm oil (PO) (CON; n = 15) @ 0.6 mL/kg body weight for 72 days during the breeding season. Estrus synchronization was done on day 25 and 36 of supplementation using two PG regimen and the goats in estrus were bred. Mean interval from PGF 2α administration to the onset of estrus was 12 h longer (P goats (P  0.05). Mean concentration of serum estradiol (E 2 ) was significantly (P goats was significantly (P  0.05). In conclusion, supplementation of n-3 PUFA rich FO significantly increased the number of POF and ovulation rate with numerical increase in the kidding rate. Further, it decreased the serum E 2 and PGFM during the critical window of pregnancy recognition in the doe. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. [Overexpression of four fatty acid synthase genes elevated the efficiency of long-chain polyunsaturated fatty acids biosynthesis in mammalian cells].

    Science.gov (United States)

    Zhu, Guiming; Saleh, Abdulmomen Ali Mohammed; Bahwal, Said Ahmed; Wang, Kunfu; Wang, Mingfu; Wang, Didi; Ge, Tangdong; Sun, Jie

    2014-09-01

    Three long-chain polyunsaturated fatty acids, docosahexaenoic acid (DHA, 22:6n-3), eicosapentaenoic acid (EPA, 20:5n-3) and arachidonic acid (ARA, 20:4n-6), are the most biologically active polyunsaturated fatty acids in the body. They are important in developing and maintaining the brain function, and in preventing and treating many diseases such as cardiovascular disease, inflammation and cancer. Although mammals can biosynthesize these long-chain polyunsaturated fatty acids, the efficiency is very low and dietary intake is needed to meet the requirement. In this study, a multiple-genes expression vector carrying mammalian A6/A5 fatty acid desaturases and multiple-genes expression vector carrying mammalian Δ6/Δ5 fatty acid desaturases and Δ6/Δ5 fatty acid elongases coding genes was used to transfect HEK293T cells, then the overexpression of the target genes was detected. GC-MS analysis shows that the biosynthesis efficiency and level of DHA, EPA and ARA were significantly increased in cells transfected with the multiple-genes expression vector. Particularly, DHA level in these cells was 2.5 times higher than in the control cells. This study indicates mammal possess a certain mechanism for suppression of high level of biosynthesis of long chain polyunsaturated fatty acids, and the overexpression of Δ6/Δ5 fatty acid desaturases and Δ6/Δ5 fatty acid elongases broke this suppression mechanism so that the level of DHA, EPA and ARA was significantly increased. This study also provides a basis for potential applications of this gene construct in transgenic animal to produce high level of these long-chain polyunsaturated fatty acid.

  18. Polyunsaturated fatty acids and their derivatives: therapeutic value for inflammatory, functional gastrointestinal disorders and colorectal cancer

    Directory of Open Access Journals (Sweden)

    Paula Mosinska

    2016-12-01

    Full Text Available Polyunsaturated fatty acids (PUFAs are bioactive lipids which modulate inflammation and immunity. They gained recognition in nutritional therapy and are recommended dietary supplements. There is a growing body of evidence suggesting the usefulness of PUFAs in active therapy of various gastrointestinal (GI diseases.In this review we briefly cover the systematics of PUFAs and their metabolites, and elaborate on their possible use in inflammatory bowel disease (IBD, functional gastrointestinal disorders (FGIDs with focus on irritable bowel syndrome (IBS, and colorectal cancer (CRC. Each section describes the latest findings from in vitro and in vivo studies, with reports of clinical interventions when available.

  19. N-3 polyunsaturated fatty acids, body fat and inflammation

    DEFF Research Database (Denmark)

    Lund, Anne-Sofie Quist; Hasselbalch, Ann Louise; Gamborg, Michael

    2013-01-01

    BACKGROUND: Based on animal studies, n-3 polyunsaturated fatty acids (PUFAs) have been suggested to lower the risk of obesity and inflammation. We aimed to investigate if, among humans, intake of n-3 PUFAs was associated with i) total body fat, ii) body fat distribution and iii) obesity...... in relation to outcomes were performed and adjusted for potential confounders. RESULTS: Absolute n-3 PUFA intake, but not n-3/n-6, was inversely associated with the different measures of body fat. Among n-3 PUFA derivatives, only α-linolenic acid (ALA) was inversely associated with body fat measures...

  20. The role of polyunsaturated fatty acids (n-3 PUFAs) on the pancreatic β-cells and insulin action.

    Science.gov (United States)

    Baynes, Habtamu Wondifraw; Mideksa, Seifu; Ambachew, Sintayehu

    2018-03-14

    Polyunsaturated Fatty acids have multiple effects in peripheral tissues and pancreatic beta cell function. The n-3 Polyunsaturated Fatty acids prevent and reverse high-fat-diet induced adipose tissue inflammation and insulin resistance. Insulin secretion is stimulated by glucose, amino acids, and glucagon- like peptide-1 in tissue containing high levels of n-3 Polyunsaturated Fatty acids than lower level of n-3 Polyunsaturated Fatty acids. Also, n-3 Polyunsaturated Fatty acids led to decreased production of prostaglandin, which in turn contributed to the elevation of insulin secretion. N-3 polyunsaturated fatty acids prevent cytokine-induced cell death in pancreatic islets. Supplementation of n-3 Polyunsaturated Fatty acids for human subjects prevent beta cell destruction and insulin resistance. It also enhances insulin secretion, reduction in lipid profiles and glucose concentration particularly in type II diabetes patients. Therefore there should be a focus on the treatment mechanism of insulin related obesity and diabetes by n-3 polyunsaturated fatty acids.

  1. Polyunsaturated fatty acid content of mother's milk is associated with childhood body composition

    DEFF Research Database (Denmark)

    Pedersen, Louise; Lauritzen, Lotte; Brasholt, Martin

    2012-01-01

    The consumption of polyunsaturated fatty acids has changed, and the prevalence of adiposity has increased over the past 30 y. A decrease of n-3 polyunsaturated fatty acid content in breast milk has been suggested to be a contributing factor. The objective of this study was to investigate the rela...... the relationship between docosahexaenoic acid (DHA) content and n-6/n-3 polyunsaturated fatty acid ratio in breast milk, body composition, and timing of adiposity rebound in children.......The consumption of polyunsaturated fatty acids has changed, and the prevalence of adiposity has increased over the past 30 y. A decrease of n-3 polyunsaturated fatty acid content in breast milk has been suggested to be a contributing factor. The objective of this study was to investigate...

  2. Enriched eggs as a source of n-3 polyunsaturated fatty acids for humans

    Directory of Open Access Journals (Sweden)

    Gordana Kralik

    2017-01-01

    Full Text Available The aim of the research was to enrich eggs with n-3 polyunsaturated fatty acids by using plant oils and fish oil as dietary supplements in laying hens’ feed. The focus was put on the effect of the daily consumption of 100 g of egg yolk, i.e. 100 g of egg mass, on the human health. The 1st group of laying hens was fed a diet containing soybean and fish oil, and the 2nd group was given feed containing a combination of linseed, rapeseed, soybean, and fish oils. Eggs laid by the 2nd group contained 4.73% α-linolenic acid, 0.20% eicosapentaenoic acid and 2.37% docosahexaenoic acid (% of total fatty acids in yolk lipids, P < 0.001, which marks an increase of × 4.04 for α-linolenic acid, × 3.33 for eicosapentaenoic acid, and × 1.75 for docosahexaenoic acid compared to eggs laid by the 1st group. Total n-3 polyunsaturated fatty acids in eggs of the 2nd group were × 2.8 higher than in the 1st first group. Calculated per 100 g of eggs of the 2nd group, the intake for the human body corresponds to 435 mg α-linolenic acid, 18.43 mg eicosapentaenoic acid, and 218.2 mg docosahexaenoic acid.

  3. Dietary Fatty Acids and Predementia Syndromes

    Directory of Open Access Journals (Sweden)

    Vincenzo Solfrizzi

    2009-01-01

    Full Text Available An increasing body of epidemiological evidence suggests that elevated saturated fatty acids (SFA could have negative effects on age-related cognitive decline (ARCD. Furthermore, a reduction of risk for cognitive decline and mild cognitive impairment (MCI has been found in population samples with elevated fish consumption, and high intake of monounsaturated fatty acids (MUFA and polyunsaturated fatty acids (PUFA, particularly n-3 PUFA. However, recent findings from clinical trials with n-3 PUFA supplementation showed efficacy on depressive symptoms in non–Vapolipoprotein E (APOE ε4 carriers, and on cognitive symptoms only in very mild Alzheimer's disease (AD subgroups, MCI patients, and cognitively unimpaired non-APOE ε4 carriers. These data, together with epidemiological evidence, support the idea that n-3 PUFA may play a role in maintaining adequate cognitive functioning in predementia syndromes, but not when the AD process has already taken over. Therefore, at present, no definitive dietary recommendations on fish and unsaturated fatty acids consumption, or lower intake of saturated fat, in relation to the risk for dementia and cognitive decline are possible.

  4. Polyunsaturated Fatty Acid Composition of Maternal Diet and Erythrocyte Phospholipid Status in Chilean Pregnant Women

    Directory of Open Access Journals (Sweden)

    Karla A. Bascuñán

    2014-11-01

    Full Text Available Chilean diets are characterized by a low supply of n-3 polyunsaturated fatty acids (n-3 PUFA, which are critical nutrients during pregnancy and lactation, because of their role in brain and visual development. DHA is the most relevant n-3 PUFA in this period. We evaluated the dietary n-3 PUFA intake and erythrocyte phospholipids n-3 PUFA in Chilean pregnant women. Eighty healthy pregnant women (20–36 years old in the 3rd–6th month of pregnancy were included in the study. Dietary assessment was done applying a food frequency questionnaire, and data were analyzed through the Food Processor SQL® software. Fatty acids of erythrocyte phospholipids were assessed by gas-liquid chromatography. Diet composition was high in saturated fat, low in mono- and PUFA, high in n-6 PUFA (linoleic acid and low in n-3 PUFA (alpha-linolenic acid and DHA, with imbalance in the n-6/n-3 PUFA ratio. Similar results were observed for fatty acids from erythrocyte phospholipids. The sample of Chilean pregnant women showed high consumption of saturated fat and low consumption of n-3 PUFA, which is reflected in the low DHA content of erythrocyte phospholipids. Imbalance between n-6/n-3 PUFA could negatively affect fetal development. New strategies are necessary to improve n-3 PUFA intake throughout pregnancy and breast feeding periods. Furthermore, it is necessary to develop dietary interventions to improve the quality of consumed foods with particular emphasis on n-3 PUFA.

  5. Polyunsaturated fatty acid composition of maternal diet and erythrocyte phospholipid status in Chilean pregnant women.

    Science.gov (United States)

    Bascuñán, Karla A; Valenzuela, Rodrigo; Chamorro, Rodrigo; Valencia, Alejandra; Barrera, Cynthia; Puigrredon, Claudia; Sandoval, Jorge; Valenzuela, Alfonso

    2014-11-07

    Chilean diets are characterized by a low supply of n-3 polyunsaturated fatty acids (n-3 PUFA), which are critical nutrients during pregnancy and lactation, because of their role in brain and visual development. DHA is the most relevant n-3 PUFA in this period. We evaluated the dietary n-3 PUFA intake and erythrocyte phospholipids n-3 PUFA in Chilean pregnant women. Eighty healthy pregnant women (20-36 years old) in the 3rd-6th month of pregnancy were included in the study. Dietary assessment was done applying a food frequency questionnaire, and data were analyzed through the Food Processor SQL® software. Fatty acids of erythrocyte phospholipids were assessed by gas-liquid chromatography. Diet composition was high in saturated fat, low in mono- and PUFA, high in n-6 PUFA (linoleic acid) and low in n-3 PUFA (alpha-linolenic acid and DHA), with imbalance in the n-6/n-3 PUFA ratio. Similar results were observed for fatty acids from erythrocyte phospholipids. The sample of Chilean pregnant women showed high consumption of saturated fat and low consumption of n-3 PUFA, which is reflected in the low DHA content of erythrocyte phospholipids. Imbalance between n-6/n-3 PUFA could negatively affect fetal development. New strategies are necessary to improve n-3 PUFA intake throughout pregnancy and breast feeding periods. Furthermore, it is necessary to develop dietary interventions to improve the quality of consumed foods with particular emphasis on n-3 PUFA.

  6. Heterologous Reconstitution of Omega-3 Polyunsaturated Fatty Acids in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Sun Hee Kim

    2015-01-01

    Full Text Available Reconstitution of nonnative, very-long-chain polyunsaturated fatty acid (VLC-PUFA biosynthetic pathways in Arabidopsis thaliana was undertaken. The introduction of three primary biosynthetic activities to cells requires the stable coexpression of multiple proteins within the same cell. Herein, we report that C22 VLC-PUFAs were synthesized from C18 precursors by reactions catalyzed by Δ6-desaturase, an ELOVL5-like enzyme involved in VLC-PUFA elongation, and Δ5-desaturase. Coexpression of the corresponding genes (McD6DES, AsELOVL5, and PtD5DES under the control of the seed-specific vicilin promoter resulted in production of docosapentaenoic acid (22:5 n-3 and docosatetraenoic acid (22:4 n-6 as well as eicosapentaenoic acid (20:5 n-3 and arachidonic acid (20:4 n-6 in Arabidopsis seeds. The contributions of the transgenic enzymes and endogenous fatty acid metabolism were determined. Specifically, the reasonable synthesis of omega-3 stearidonic acid (18:4 n-3 could be a useful tool to obtain a sustainable system for the production of omega-3 fatty acids in seeds of a transgenic T3 line 63-1. The results indicated that coexpression of the three proteins was stable. Therefore, this study suggests that metabolic engineering of oilseed crops to produce VLC-PUFAs is feasible.

  7. TRPA1 is a polyunsaturated fatty acid sensor in mammals.

    Directory of Open Access Journals (Sweden)

    Arianne L Motter

    Full Text Available Fatty acids can act as important signaling molecules regulating diverse physiological processes. Our understanding, however, of fatty acid signaling mechanisms and receptor targets remains incomplete. Here we show that Transient Receptor Potential Ankyrin 1 (TRPA1, a cation channel expressed in sensory neurons and gut tissues, functions as a sensor of polyunsaturated fatty acids (PUFAs in vitro and in vivo. PUFAs, containing at least 18 carbon atoms and three unsaturated bonds, activate TRPA1 to excite primary sensory neurons and enteroendocrine cells. Moreover, behavioral aversion to PUFAs is absent in TRPA1-null mice. Further, sustained or repeated agonism with PUFAs leads to TRPA1 desensitization. PUFAs activate TRPA1 non-covalently and independently of known ligand binding domains located in the N-terminus and 5(th transmembrane region. PUFA sensitivity is restricted to mammalian (rodent and human TRPA1 channels, as the drosophila and zebrafish TRPA1 orthologs do not respond to DHA. We propose that PUFA-sensing by mammalian TRPA1 may regulate pain and gastrointestinal functions.

  8. Fish Lipids as a Valuable Source of Polyunsaturated Fatty Acids

    Directory of Open Access Journals (Sweden)

    Merdzhanova Albena

    2017-03-01

    Full Text Available This article presents information about omega-3 (h-3 and omega-6 (n-6 polyunsaturated fatty acid (PUFA contents in a broad range of commercially important fish species available on Bulgarian fish markets. The aim is to raise consumers’ awareness and encourage them to eat fish. Fish species from the Black Sea coast have relatively high proportion of n-3 PUFAs, of which more than 80% is by EPf (eicosapentaenoic acid, C 20:5 n-3 and DHA (docosahexaenoic acid, C 22:6 n-3. Extensive epidemiological studies show that fish consumption is inversely associated with the incidence of cardiovascular diseases (CVD, stroke and the functioning of the brain. About 0.5 g of omega-3 (EPA+DHA a day or two savings of oily fish a week are required to reduce the risk of death from CVD. PUFAs needs should be satisfied not only with food additives but with fish lipids containing food.

  9. Fish Lipids as a Valuable Source of Polyunsaturated Fatty Acids

    Science.gov (United States)

    Merdzhanova, Albena; Ivanov, Ivaylo; Dobreva, Diana A.; Makedonski, Lyubomir

    2017-03-01

    This article presents information about omega-3 (h-3) and omega-6 (n-6) polyunsaturated fatty acid (PUFA) contents in a broad range of commercially important fish species available on Bulgarian fish markets. The aim is to raise consumers' awareness and encourage them to eat fish. Fish species from the Black Sea coast have relatively high proportion of n-3 PUFAs, of which more than 80% is by EPf (eicosapentaenoic acid, C 20:5 n-3) and DHA (docosahexaenoic acid, C 22:6 n-3). Extensive epidemiological studies show that fish consumption is inversely associated with the incidence of cardiovascular diseases (CVD), stroke and the functioning of the brain. About 0.5 g of omega-3 (EPA+DHA) a day or two savings of oily fish a week are required to reduce the risk of death from CVD. PUFAs needs should be satisfied not only with food additives but with fish lipids containing food.

  10. [Metabolic syndrome reversion by polyunsaturated fatty acids ingestion].

    Science.gov (United States)

    Campos Mondragón, Martha Gabriela; Oliart Ros, Rosa María; Martínez Martinez, Angélica; Méndez Machado, Gustavo Francisco; Angulo Guerrero, Jesús Ofelia

    2013-12-21

    Metabolic syndrome (MS) frequency is growing and diet has an important influence on its evolution. Our objective was to study the effect of 3 sources of polyunsaturated fatty acids on MS parameters in humans. The MS was diagnosed according to the International Diabetes Federation. Three groups of individuals (n=15/group) were quasi-randomly assigned to one of the following treatments during 6 weeks: a) 1.8 g/d n-3 (1.08g eicosapentoaenoic acid+0.72 g docosahexaenoic acid); b) 2.0 g/d conjugated linoleic acid (CLA, 50:50, cis9:trans11, trans10:cis12), and c) 40 g/d walnut. The clinical and biochemical parameters were evaluated at the beginning and the end of the essay. In the group with n-3 the triglycerides level decreased from 183.9 ± 35.2mg/dl to 149.6 ± 29.0mg/dl (P=.007). In the group with walnut the HDL level rose from 41.7 ± 5.2mg/dl to 47.8 ± 5.4 mg/dl (P=.004) and the Castelli index (total cholesterol/HDL) decreased from 4.86 ± 0.97 to 3.82 ± 0.81 (P=.004). There were not significant changes in the CLA group. At the end of the essay, 46.7% of walnut group patients, 46.7% of n-3 group and 20% of CLA group, had no MS. The groups that consumed polyunsaturated fatty acids n-3 and those in walnut in moderate daily doses during 6 weeks had an improvement of the dyslipidemia component of MS, hypertriglyceridemia and low HDL level. Copyright © 2011 Elsevier España, S.L. All rights reserved.

  11. Genetic variation in polyunsaturated fatty acid metabolism and its potential relevance for human development and health.

    Science.gov (United States)

    Glaser, Claudia; Lattka, Eva; Rzehak, Peter; Steer, Colin; Koletzko, Berthold

    2011-04-01

    Blood and tissue contents of polyunsaturated fatty acid (PUFA) and long-chain PUFA (LC-PUFA) are related to numerous health outcomes including cardiovascular health, allergies, mental health and cognitive development. Evidence has accumulated to show that in addition to diet, common polymorphisms in the fatty acid desaturase (FADS) gene cluster have very marked effects on human PUFA and LC-PUFA status. Recent results suggest that in addition to fatty acid desaturase 1 and fatty acid desaturase 2, the gene product of fatty acid desaturase 3 is associated with desaturating activity. New data have become available to show that FADS single nucleotide polymorphisms (SNPs) also modulate docosahexaenoic acid status in pregnancy as well as LC-PUFA levels in children and in human milk. There are indications that FADS SNPs modulate the risk for allergic disorders and eczema, and the effect of breastfeeding on later cognitive development. Mechanisms by which FADS SNPs modulate PUFA levels in blood, breast milk and tissues should be explored further. More studies are required to explore the effects of FADS gene variants in populations with different ethnic backgrounds, lifestyles and dietary habits, and to investigate in greater depth the interaction of gene variants, diet and clinical end points, including immune response and developmental outcomes. Analyses of FADS gene variants should be included into all sizeable cohort and intervention studies addressing biological effects of PUFA and LC-PUFA in order to consider these important confounders, and to enhance study sensitivity and precision. © 2011 Blackwell Publishing Ltd.

  12. Associations of Polyunsaturated Fatty Acid Intake with Bone Mineral Density in Postmenopausal Women

    Directory of Open Access Journals (Sweden)

    Margaret Harris

    2015-01-01

    Full Text Available A secondary analysis of cross-sectional data was analyzed from 6 cohorts (Fall 1995–Fall 1997 of postmenopausal women (n=266; 56.6±4.7 years participating in the Bone Estrogen Strength Training (BEST study (a 12-month, block-randomized, clinical trial. Bone mineral density (BMD was measured at femur neck and trochanter, lumbar spine (L2–L4, and total body BMD using dual-energy X-ray absorptiometry (DXA. Mean dietary polyunsaturated fatty acids (PUFAs intakes were assessed using 8 days of diet records. Multiple linear regression was used to examine associations between dietary PUFAs and BMD. Covariates included in the models were total energy intake, body weight at year 1, years after menopause, exercise, use of hormone therapy (HT, total calcium, and total iron intakes. In the total sample, lumbar spine and total body BMD had significant negative associations with dietary PUFA intake at P<0.05. In the non-HT group, no significant associations between dietary PUFA intake and BMD were seen. In the HT group, significant inverse associations with dietary PUFA intake were seen in the spine, total body, and Ward’s triangle BMD, suggesting that HT may influence PUFA associations with BMD. This study is registered with clinicaltrials.gov, identifier: NCT00000399.

  13. Polyunsaturated fatty acid regulation of gene transcription: a molecular mechanism to improve the metabolic syndrome.

    Science.gov (United States)

    Clarke, S D

    2001-04-01

    This review addresses the hypothesis that polyunsaturated fatty acids (PUFA), particularly those of the (n-3) family, play pivotal roles as "fuel partitioners" in that they direct fatty acids away from triglyceride storage and toward oxidation, and that they enhance glucose flux to glycogen. In doing this, PUFA may protect against the adverse symptoms of the metabolic syndrome and reduce the risk of heart disease. PUFA exert their beneficial effects by up-regulating the expression of genes encoding proteins involved in fatty acid oxidation while simultaneously down-regulating genes encoding proteins of lipid synthesis. PUFA govern oxidative gene expression by activating the transcription factor peroxisome proliferator-activated receptor alpha. PUFA suppress lipogenic gene expression by reducing the nuclear abundance and DNA-binding affinity of transcription factors responsible for imparting insulin and carbohydrate control to lipogenic and glycolytic genes. In particular, PUFA suppress the nuclear abundance and expression of sterol regulatory element binding protein-1 and reduce the DNA-binding activities of nuclear factor Y, Sp1 and possibly hepatic nuclear factor-4. Collectively, the studies discussed suggest that the fuel "repartitioning" and gene expression actions of PUFA should be considered among criteria used in defining the dietary needs of (n-6) and (n-3) and in establishing the dietary ratio of (n-6) to (n-3) needed for optimum health benefit.

  14. Does perinatal omega-3 polyunsaturated fatty acid deficiency increase appetite signaling?

    Science.gov (United States)

    Mathai, Michael L; Soueid, Mona; Chen, Nora; Jayasooriya, Anura P; Sinclair, Andrew J; Wlodek, Mary E; Weisinger, Harrison S; Weisinger, Richard S

    2004-11-01

    To investigate the effect of maternal dietary omega-3 polyunsaturated fatty acid (PUFA) deficiency and repletion on food appetite signaling. Sprague-Dawley rat dams were maintained on diets either supplemented with (CON) or deficient in (DEF) omega-3 PUFA. All offspring were raised on the maternal diet until weaning. After weaning, two groups remained on the respective maternal diet (CON and DEF groups), whereas a third group, born of dams fed the DEF diet, were switched to the CON diet (REC). Experiments on food intake began when the male rats reached 16 weeks of age. Food intake was stimulated either by a period of food restriction, by blocking glucose utilization (by 2-deoxyglucose injection), or by blocking beta-oxidation of fatty acids (by beta-mercaptoacetate injection). DEF animals consumed more than CON animals in response to all stimuli, with the greatest difference (1.9-fold) demonstrated following administration of 2-deoxyglucose. REC animals also consumed more than CON animals in response to food restriction and 2-deoxyglucose but not to beta-mercaptoacetate. These findings indicate that supply of omega-3 PUFA, particularly during the perinatal period, plays a role in the normal development of mechanisms controlling food intake, especially glucoprivic (i.e. reduced glucose availability) appetite signaling. Dietary repletion of omega-3 PUFA from 3 weeks of age restored intake responses to fatty acid metabolite signaling but did not reverse those in response to food restriction or glucoprivic stimuli.

  15. Conversion of α-linolenic acid to long-chain omega-3 fatty acid derivatives and alterations of HDL density subfractions and plasma lipids with dietary polyunsaturated fatty acids in Monk parrots (Myiopsitta monachus).

    Science.gov (United States)

    Petzinger, C; Larner, C; Heatley, J J; Bailey, C A; MacFarlane, R D; Bauer, J E

    2014-04-01

    The effect of α-linolenic acid from a flaxseed (FLX)-enriched diet on plasma lipid and fatty acid metabolism and possible atherosclerosis risk factors was studied in Monk parrots (Myiopsitta monachus). Twenty-four Monk parrots were randomly assigned to diets containing either 10% ground SUNs or 10% ground FLXs. Feed intake was calculated daily. Blood samples, body condition scores and body weights were obtained at -5 weeks, day 0, 7, 14, 28, 42 and 70. Plasma samples were analysed for total cholesterol, free cholesterol, triacylglycerols and lipoproteins. Phospholipid subfraction fatty acid profiles were determined. By day 70, the FLX group had significantly higher plasma phospholipid fatty acids including 18:3n-3 (α-linolenic acid), 20:5n-3 (eicosapentaenoic acid) and 22:6n-3 (docosahexaenoic acid). The sunflower group had significantly higher plasma phospholipid levels of 20:4n-6 (arachidonic acid). By day 70, the high-density lipoprotein (HDL) peak shifted resulting in significantly different HDL peak densities between the two experimental groups (1.097 g/ml FLX group and 1.095 g/ml SUN group, p = 0.028). The plasma fatty acid results indicate that Monk parrots can readily convert α-linolenic acid to the long-chain omega-3 derivatives including docosahexaenoic acid and reduce 20:4n-6 accumulation in plasma phospholipids. The reason for a shift in the HDL peak density is unknown at this time. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  16. Effect of eicosapentaenoic acid, an omega-3 polyunsaturated fatty acid, on UVR-related cancer risk in humans. An assessment of early genotoxic markers

    NARCIS (Netherlands)

    Rhodes, L.E.; Shahbakhti, H.; Azurdia, R.M.; Moison, R.M.W.; Steenwinkel, M.J.S.T.; Homburg, M.I.; Dean, M.P.; McArdle, F.; Beijersbergen van Henegouwen, G.M.J.; Epe, B.; Vink, A.A.

    2003-01-01

    Dietary omega-3 polyunsaturated fatty acids (ω-3 PUFAs) protect against photocarcinogenesis in animals, but prospective human studies are scarce. The mechanism(s) underlying the photoprotection are uncertain, although ω-3 PUFAs may influence oxidative stress. We examined the effect of

  17. Alternative Sources of n-3 Long-Chain Polyunsaturated Fatty Acids in Marine Microalgae

    Directory of Open Access Journals (Sweden)

    João Varela

    2013-06-01

    Full Text Available The main source of n-3 long-chain polyunsaturated fatty acids (LC-PUFA in human nutrition is currently seafood, especially oily fish. Nonetheless, due to cultural or individual preferences, convenience, geographic location, or awareness of risks associated to fatty fish consumption, the intake of fatty fish is far from supplying the recommended dietary levels. The end result observed in most western countries is not only a low supply of n-3 LC-PUFA, but also an unbalance towards the intake of n-6 fatty acids, resulting mostly from the consumption of vegetable oils. Awareness of the benefits of LC-PUFA in human health has led to the use of fish oils as food supplements. However, there is a need to explore alternatives sources of LC-PUFA, especially those of microbial origin. Microalgae species with potential to accumulate lipids in high amounts and to present elevated levels of n-3 LC-PUFA are known in marine phytoplankton. This review focuses on sources of n-3 LC-PUFA, namely eicosapentaenoic and docosahexaenoic acids, in marine microalgae, as alternatives to fish oils. Based on current literature, examples of marketed products and potentially new species for commercial exploitation are presented.

  18. A New Insight to Bone Turnover: Role of -3 Polyunsaturated Fatty Acids

    Directory of Open Access Journals (Sweden)

    Naroa Kajarabille

    2013-01-01

    Full Text Available Background. Evidence has shown that long-chain polyunsaturated fatty acids (LCPUFA, especially the ω-3 fatty acids such as eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA are beneficial for bone health and turnover. Objectives. This review summarizes findings from both in vivo and in vitro studies and the effects of LC PUFA on bone metabolism, as well as the relationship with the oxidative stress, the inflammatory process, and obesity. Results. Some studies in humans indicate that LCPUFA can increase bone formation, affect peak bone mass in adolescents, and reduce bone loss. However, the cellular mechanisms of action of the LCPUFA are complex and involve modulation of fatty acid metabolites such as prostaglandins, resolvins and protectins, several signaling pathways, cytokines, and growth factors, although in certain aspects there is still some controversy. LCPUFA affect receptor activator of nuclear factor κβ (RANK, a receptor found on the osteoclast, causing bone resorption, which controls osteoclast formation. Conclusions. Since fatty acids are an endogenous source of reactive oxygen species, free radicals alter the process of bone turnover; however, although there are clinical evidences linking bone metabolism and dietary lipids, more clinical trials are necessary to prove whether ω-3 PUFA supplementation plays a major role in bone health.

  19. Running speed in mammals increases with muscle n-6 polyunsaturated fatty acid content.

    Directory of Open Access Journals (Sweden)

    Thomas Ruf

    Full Text Available Polyunsaturated fatty acids (PUFAs are important dietary components that mammals cannot synthesize de novo. Beneficial effects of PUFAs, in particular of the n-3 class, for certain aspects of animal and human health (e.g., cardiovascular function are well known. Several observations suggest, however, that PUFAs may also affect the performance of skeletal muscles in vertebrates. For instance, it has been shown that experimentally n-6 PUFA-enriched diets increase the maximum swimming speed in salmon. Also, we recently found that the proportion of PUFAs in the muscle phospholipids of an extremely fast runner, the brown hare (Lepus europaeus, are very high compared to other mammals. Therefore, we predicted that locomotor performance, namely running speed, should be associated with differences in muscle fatty acid profiles. To test this hypothesis, we determined phospholipid fatty acid profiles in skeletal muscles of 36 mammalian species ranging from shrews to elephants. We found that there is indeed a general positive, surprisingly strong relation between the n-6 PUFAs content in muscle phospholipids and maximum running speed of mammals. This finding suggests that muscle fatty acid composition directly affects a highly fitness-relevant trait, which may be decisive for the ability of animals to escape from predators or catch prey.

  20. Omega-3 polyunsaturated fatty acid (fish oil) supplementation and the prevention of clinical cardiovascular disease

    Science.gov (United States)

    Multiple randomized controlled trials (RCTs) have assessed the effects of supplementation with eicosapentaenoic acid plus docosahexaenoic acid (omega-3 polyunsaturated fatty acids, commonly called fish oils) on the occurrence of clinical cardiovascular diseases. Although the effects of supplementati...

  1. Polyunsaturated fatty acids are potent openers of human M-channels expressed in Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Liin, Sara I; Karlsson, Urban; Bentzen, Bo Hjorth

    2016-01-01

    the threshold current to evoke action potentials in dorsal root ganglion neurons. The polyunsaturated fatty acids docosahexaenoic acid, α-linolenic acid, and eicosapentaenoic acid facilitated opening of the human M-channel, comprised of the heteromeric human KV 7.2/3 channel expressed in Xenopus oocytes......, by shifting the conductance-versus-voltage curve towards more negative voltages (by -7.4 to -11.3 mV by 70 μM). Uncharged docosahexaenoic acid methyl ester and monounsaturated oleic acid did not facilitate opening of the human KV 7.2/3 channel. CONCLUSIONS: These findings suggest that circulating...... polyunsaturated fatty acids, with a minimum requirement of multiple double bonds and a charged carboxyl group, dampen excitability by opening neuronal M-channels. Collectively, our data bring light to the molecular targets of polyunsaturated fatty acids and thus a possible mechanism by which polyunsaturated fatty...

  2. Role of n-3 Polyunsaturated Fatty Acids and Exercise in Breast Cancer Prevention: Identifying Common Targets

    Directory of Open Access Journals (Sweden)

    Salma A. Abdelmagid

    2016-01-01

    Full Text Available Diet and exercise are recognized as important lifestyle factors that significantly influence breast cancer risk. In particular, dietary n-3 polyunsaturated fatty acids (PUFAs have been shown to play an important role in breast cancer prevention. Growing evidence also demonstrates a role for exercise in cancer and chronic disease prevention. However, the potential synergistic effect of n-3 PUFA intake and exercise is yet to be determined. This review explores targets for breast cancer prevention that are common between n-3 PUFA intake and exercise and that may be important study outcomes for future research investigating the combined effect of n-3 PUFA intake and exercise. These lines of evidence highlight potential new avenues for research and strategies for breast cancer prevention.

  3. The effect of polyunsaturated fatty acids and vitamin D on growth and bone mineralization in children

    DEFF Research Database (Denmark)

    Pedersen, Louise

    2012-01-01

    Polyunsaturated fatty acids (PUFA) and vitamin D are important for fat and bone metabolism but the intake is declining in Western societies with a potential deleterious effect on growth and bone health. Dietary PUFA composition favors the intake of omega-6 (n-6 PUFA) compared to omega-3 (n-3 PUFA...... early in life is essential for preventive steps against development of overweight and obesity. Vitamin D promotes bone mineralization and growth through regulation of the calcium homeostasis, and via activation of vitamin D receptors on bone and cartilage forming cells. However vitamin D insufficiency...... development, and fat percentage; serum vitamin D status in cord blood and height development and bone mineralization; and serum vitamin D status at 4 years and bone mineralization. This is performed in the Copenhagen Prospective Study of Asthma in Childhood (COPSAC2000). In Study 1, breast-milk n-3 PUFA...

  4. Nutritional enrichment of larval fish feed with thraustochytrid producing polyunsaturated fatty acids and xanthophylls.

    Science.gov (United States)

    Yamasaki, Takashi; Aki, Tsunehiro; Mori, Yuhsuke; Yamamoto, Takeki; Shinozaki, Masami; Kawamoto, Seiji; Ono, Kazuhisa

    2007-09-01

    In marine aquaculture, rotifers and Artemia nauplii employed as larval fish feed are often nutritionally enriched with forage such as yeast and algal cells supplemented with polyunsaturated fatty acids and xanthophylls, which are required for normal growth and a high survival ratio of fish larvae. To reduce the enrichment steps, we propose here the use of a marine thraustochytrid strain, Schizochytrium sp. KH105, producing docosahexaenoic acid, docosapentaenoic acid, canthaxanthin, and astaxanthin. The KH105 cells prepared by cultivation under optimized conditions were successfully incorporated by rotifers and Artemia nauplii. The contents of docosahexaenoic acid surpassed the levels required in feed for fish larvae, and the enriched Artemia showed an increased body length. The results demonstrate that we have developed an improved method of increasing the dietary value of larval fish feed.

  5. Effect of the preparation of canned "crumbled anchovy" (Engraulis ringens) on polyunsaturated omega 3 fatty acids

    OpenAIRE

    Ordoñez, Lenny R.; Hernánde, Eloisa M.

    2015-01-01

    The anchoveta (Engraulis ringens) is a major fishery resources exploited in Peru. It is rich source of proteins of high biological value and polyunsaturated fatty acids omega-3: eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The objective was to determine the effect of the process of preparing the canned "crumbled anchovy" with emphasis on polyunsaturated omega-3 fatty acids and true content of them in canning. It was developed following the standardized technology by the Institu...

  6. Effect of polyunsaturated fatty acids and phospholipids on [3H]-vitamin E incorporation into pulmonary artery endothelial cell membranes

    International Nuclear Information System (INIS)

    Sekharam, K.M.; Patel, J.M.; Block, E.R.

    1990-01-01

    Vitamin E, a dietary antioxidant, is presumed to be incorporated into the lipid bilayer of biological membranes to an extent proportional to the amount of polyunsaturated fatty acids or phospholipids in the membrane. In the present study we evaluated the distribution of incorporated polyunsaturated fatty acids (PUFA) and phosphatidylethanolamine (PE) in various membranes of pulmonary artery endothelial cells. We also studied whether incorporation of PUFA or PE is responsible for increased incorporation of [3H]-vitamin E into the membranes of these cells. Following a 24-hr incubation with linoleic acid (18:2), 18:2 was increased by 6.9-, 9.2-, and 13.2-fold in plasma, mitochondrial, and microsomal membranes, respectively. Incorporation of 18:2 caused significant increases in the unsaturation indexes of mitochondrial and microsomal polyunsaturated fatty acyl chains (P less than .01 versus control in both membranes). Incubation with arachidonic acid (20:4) for 24 hr resulted in 1.5-, 2.3-, and 2.4-fold increases in 20:4 in plasma, mitochondrial, and microsomal membranes, respectively. The unsaturation indexes of polyunsaturated fatty acyl chains of mitochondrial and microsomal membranes also increased (P less than .01 versus control in both membranes). Although incubations with 18:2 or 20:4 resulted in several-fold increases in membrane 18:2 or 20:4 fatty acids, incorporation of [3H]-vitamin E into these membranes was similar to that in controls. Following a 24-hr incubation with PE, membrane PE content was significantly increased, and [3H]-vitamin E incorporation was also increased to a comparable degree, i.e., plasma membrane greater than mitochondria greater than microsomes. Endogenous vitamin E content of the cells was not altered because of increased incorporation of PE and [3H]-vitamin E

  7. Wastewater recycling technology for fermentation in polyunsaturated fatty acid production.

    Science.gov (United States)

    Song, Xiaojin; Ma, Zengxin; Tan, Yanzhen; Zhang, Huidan; Cui, Qiu

    2017-07-01

    To reduce fermentation-associated wastewater discharge and the cost of wastewater treatment, which further reduces the total cost of DHA and ARA production, this study first analyzed the composition of wastewater from Aurantiochytrium (DHA) and Mortierella alpina (ARA) fermentation, after which wastewater recycling technology for these fermentation processes was developed. No negative effects of DHA and ARA production were observed when the two fermentation wastewater methods were cross-recycled. DHA and ARA yields were significantly inhibited when the wastewater from the fermentation process was directly reused. In 5-L fed-batch fermentation experiments, using this cross-recycle technology, the DHA and ARA yields were 30.4 and 5.13gL -1 , respectively, with no significant changes (P>0.05) compared to the control group, and the water consumption was reduced by half compared to the traditional process. Therefore, this technology has great potential in industrial fermentation for polyunsaturated fatty acid production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Omega-3 Polyunsaturated Fatty Acids and Heart Rate Variability

    Directory of Open Access Journals (Sweden)

    Jeppe Hagstrup Christensen

    2011-11-01

    Full Text Available Omega-3 polyunsaturated fatty acids (PUFA may modulate autonomic control of the heart because omega-3 PUFA is abundant in the brain and other nervous tissue as well as in cardiac tissue. This might partly explain why omega-3 PUFA offer some protection against sudden cardiac death (SCD. The autonomic nervous system is involved in the pathogenesis of SCD. Heart rate variability (HRV can be used as a non-invasive marker of cardiac autonomic control and a low HRV is a predictor for SCD and arrhythmic events. Studies on HRV and omega-3 PUFA have been performed in several populations such as patients with ischemic heart disease, patients with diabetes mellitus, patients with chronic renal failure, and in healthy subjects as well as in children.. The studies have demonstrated a positive association between cellular content of omega-3 PUFA and HRV and supplementation with omega-3 PUFA seems to increase HRV which could be a possible explanation for decreased risk of arrhythmic events and SCD sometimes observed after omega-3 PUFA supplementation. However, the results are not consistent and further research is needed

  9. Development of rabbit meat products fortified with n-3 polyunsaturated fatty acids.

    Science.gov (United States)

    Petracci, Massimiliano; Bianchi, Maurizio; Cavani, Claudio

    2009-02-01

    Rabbit meat is a highly digestible, tasty, low-calorie food, often recommended by nutritionists over other meats. Currently research in the rabbit sector is interested in developing feeding strategies aiming to further increase the nutritional value of rabbit meat as a "functional food" by including n-3 polyunsaturated fatty acids (n-3 PUFA), conjugated linoleic acid (CLA), vitamins and antioxidants in rabbit diets and assessing their effects on both raw and stored/processed meat quality properties. Our recent studies indicate that the dietary inclusion from 3 to 6% of linseed might be considered as a way to achieve the enrichment of the meat with α-linolenic acid and to guarantee satisfactory product stability during further processing and storage. Considering that 6% dietary linseed corresponds to a n-3 PUFA content of 8.5% of the total fatty acids and a lipid content of 4.7 g/100 g of leg meat, a content of 396 mg n-3 PUFA/100g meat can be estimated, which represents about 19% of the recommended daily allowance (RDA) for n-3 PUFA.

  10. Investigating the Role of Polyunsaturated Fatty Acids in Bone Development Using Animal Models

    Directory of Open Access Journals (Sweden)

    Beatrice Y.Y. Lau

    2013-11-01

    Full Text Available Incorporating n-3 polyunsaturated fatty acids (PUFA in the diet may promote the development of a healthy skeleton and thereby reduce the risk of developing osteoporosis in later life. Studies using developing animal models suggest lowering dietary n-6 PUFA and increasing n-3 PUFA intakes, especially long chain n-3 PUFA, may be beneficial for achieving higher bone mineral content, density and stronger bones. To date, the evidence regarding the effects of α-linolenic acid (ALA remain equivocal, in contrast to evidence from the longer chain products, eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. This review reports the results of investigations into n-3 PUFA supplementation on bone fatty acid composition, strength and mineral content in developing animal models as well as the mechanistic relationships of PUFA and bone, and identifies critical areas for future research. Overall, this review supports a probable role for essential (ALA and long chain (EPA and DHA n-3 PUFA for bone health. Understanding the role of PUFA in optimizing bone health may lead to dietary strategies that promote bone development and maintenance of a healthy skeleton.

  11. Development of Rabbit Meat Products Fortified With n-3 Polyunsaturated Fatty Acids

    Directory of Open Access Journals (Sweden)

    Massimiliano Petracci

    2009-10-01

    Full Text Available Rabbit meat is a highly digestible, tasty, low-calorie food, often recommended by nutritionists over other meats. Currently research in the rabbit sector is interested in developing feeding strategies aiming to further increase the nutritional value of rabbit meat as a “functional food” by including n-3 polyunsaturated fatty acids (n-3 PUFA, conjugated linoleic acid (CLA, vitamins and antioxidants in rabbit diets and assessing their effects on both raw and stored/processed meat quality properties. Our recent studies indicate that the dietary inclusion from 3 to 6% of linseed might be considered as a way to achieve the enrichment of the meat with α-linolenic acid and to guarantee satisfactory product stability during further processing and storage. Considering that 6% dietary linseed corresponds to a n-3 PUFA content of 8.5% of the total fatty acids and a lipid content of 4.7 g/100 g of leg meat, a content of 396 mg n-3 PUFA/100g meat can be estimated, which represents about 19% of the recommended daily allowance (RDA for n-3 PUFA.

  12. Cardiorespiratory fitness modifies the association between dietary fat intake and plasma fatty acids.

    Science.gov (United States)

    König, D; Väisänen, S B; Bouchard, C; Halle, M; Lakka, T A; Baumstark, M W; Alen, M; Berg, A; Rauramaa, R

    2003-07-01

    To investigate the relation between (1) cardiorespiratory fitness and plasma saturated, monounsaturated and polyunsaturated fatty acids and (2) the interactions between cardiorespiratory fitness, dietary fat intake and plasma fatty acid composition. Cross-sectional analysis. The subjects were randomly selected, 127 middle-aged Finnish men participating in the DNASCO exercise intervention study. Cardiorespiratory fitness was determined spiroergometrically, dietary intake of macro- and micronutrients by 4-day food records and plasma fatty acids by gas chromatography. The subjects were divided into tertiles of aerobic fitness. Differences between fitness tertiles were not observed for dietary intake of total fat, and saturated, monounsaturated or polyunsaturated fatty acids (percent of total energy). In contrast, plasma saturated fatty acids were significantly lower (P cardiorespiratory fitness are associated with different levels in plasma saturated and polyunsaturated fatty acids and lead to modifications in the association between dietary and plasma fatty acids. These findings can perhaps be explained by a reduced hepatic fatty acid and lipoprotein synthesis as well as by an enhanced muscular lipid utilization, which are commonly seen in those who are physically active and who exhibit a higher level of fitness.

  13. Symbiotic zooxanthellae provide the host-coral Montipora digitata with polyunsaturated fatty acids.

    Science.gov (United States)

    Papina, M; Meziane, T; van Woesik, R

    2003-07-01

    We compared the fatty acid composition of the host-coral Montipora digitata with the fatty acid composition in the coral's endosymbiotic dinoflagellates (zooxanthellae). Fatty acids as methyl esters were determined using gas chromatography (GC) and verified by GC-mass spectrometry. We found the main difference between the fatty acids in the host and their symbionts were that zooxanthellae supported higher proportions of polyunsaturated fatty acids. The presence of fatty acids specific to dinoflagellates (i.e. 18:4omega3, 22:5omega3 and 22:6omega3) in the host tissue suggests that zooxanthellae provide the coral host not only with saturated fatty acids, but also with diverse polyunsaturated fatty acids.

  14. Polyunsaturated fatty acids (PUFAs) for children with specific learning disorders.

    Science.gov (United States)

    Tan, May Loong; Ho, Jacqueline J; Teh, Keng Hwang

    2016-09-28

    About 5% of school children have a specific learning disorder, defined as unexpected failure to acquire adequate abilities in reading, writing or mathematics that is not a result of reduced intellectual ability, inadequate teaching or social deprivation. Of these events, 80% are reading disorders. Polyunsaturated fatty acids (PUFAs), in particular, omega-3 and omega-6 fatty acids, which normally are abundant in the brain and in the retina, are important for learning. Some children with specific learning disorders have been found to be deficient in these PUFAs, and it is argued that supplementation of PUFAs may help these children improve their learning abilities. 1. To assess effects on learning outcomes of supplementation of polyunsaturated fatty acids (PUFAs) for children with specific learning disorders.2. To determine whether adverse effects of supplementation of PUFAs are reported in these children. In November 2015, we searched CENTRAL, Ovid MEDLINE, Embase, PsycINFO, 10 other databases and two trials registers. We also searched the reference lists of relevant articles. Randomised controlled trials (RCTs) or quasi-RCTs comparing PUFAs with placebo or no treatment in children younger than 18 years with specific learning disabilities, as diagnosed in accordance with the fifth (or earlier) edition of theDiagnostic and Statistical Manual of Mental Disorders (DSM-5), or the 10th (or earlier) revision of the International Classification of Diseases (ICD-10) or equivalent criteria. We included children with coexisting developmental disorders such as attention deficit hyperactivity disorder (ADHD) or autism. Two review authors (MLT and KHT) independently screened the titles and abstracts of articles identified by the search and eliminated all studies that did not meet the inclusion criteria. We contacted study authors to ask for missing information and clarification, when needed. We used the GRADE approach to assess the quality of evidence. Two small studies

  15. Perinatal long chain polyunsaturated fatty acid supply Are there long term consequences?

    Directory of Open Access Journals (Sweden)

    Demmelmair Hans

    2007-05-01

    Full Text Available Long-chain polyunsaturated fatty acids (LC-PUFA, especially docosahexaenoic acid (DHA, are essential components of biological membranes or act as precursors for eicosanoid formation, in case of the 20 carbon atom fatty acids, arachidonic acid (AA, dihomo-c-linolenic acid and eicosapentaenoic acid. During pregnancy LC-PUFA are enriched in the fetal circulation relative to maternal plasma. The corresponding placental processes have not been fully elucidated so far, but there are good indications that the LC-PUFA enrichment during the materno-fetal transfer is mediated by differences in the incorporation into lipid classes within the placenta between fatty acids and that specific fatty acid binding and transfer proteins are of major importance. In vitro a plasma membrane fatty acid binding protein could be identified, which preferentially binds DHA and AA compared to linoleic and oleic acids; in addition the m-RNA expression of fatty acid transfer protein 4 (FATP-4 in placental tissue was found to correlate significantly with the DHA percentage in cord blood phospholipids. After birth the percentage of LC-PUFA in infantile blood rapidly declines to levels depending on the dietary LC-PUFA supply, although preterm and full-term babies can convert linoleic and _-linolenic acids into AA and DHA, respectively. Breast milk provides preformed LC-PUFA, and breastfed infants have higher LC-PUFA levels in plasma and tissue than infants fed formulas without LC-PUFA. The high percentage of DHA in brain and other nervous tissue and the fact that the perinatal period is a period of fast brain growth suggests the importance of placental DHA transfer and dietary DHA content for optimal infantile development. Most but not all randomized, double blind, controlled clinical trials in preterm and in healthy full term infants demonstrated benefits of formulas supplemented with DHA and AA for the neurological development compared to formulas without LC-PUFA. Furthermore

  16. Metabolomics of dietary fatty acid restriction in patients with phenylketonuria.

    Directory of Open Access Journals (Sweden)

    Ulrike Mütze

    Full Text Available BACKGROUND: Patients with phenylketonuria (PKU have to follow a lifelong phenylalanine restricted diet. This type of diet markedly reduces the intake of saturated and unsaturated fatty acids especially long chain polyunsaturated fatty acids (LC-PUFA. Long-chain saturated fatty acids are substrates of mitochondrial fatty acid oxidation for acetyl-CoA production. LC-PUFA are discussed to affect inflammatory and haemostaseological processes in health and disease. The influence of the long term PKU diet on fatty acid metabolism with a special focus on platelet eicosanoid metabolism has been investigated in the study presented here. METHODOLOGY/PRINCIPAL FINDINGS: 12 children with PKU under good metabolic control and 8 healthy controls were included. Activated fatty acids (acylcarnitines C6-C18 in dried blood and the cholesterol metabolism in serum were analyzed by liquid chromatographic tandem mass spectrometry (LC-MS/MS. Fatty acid composition of plasma glycerophospholipids was determined by gas chromatography. LC-PUFA metabolites were analyzed in supernatants by LC-MS/MS before and after platelet activation and aggregation using a standardized protocol. Patients with PKU had significantly lower free carnitine and lower activated fatty acids in dried blood compared to controls. Phytosterols as marker of cholesterol (re- absorption were not influenced by the dietary fatty acid restriction. Fatty acid composition in glycerophospholipids was comparable to that of healthy controls. However, patients with PKU showed significantly increased concentrations of y-linolenic acid (C18:3n-6 a precursor of arachidonic acid. In the PKU patients significantly higher platelet counts were observed. After activation with collagen platelet aggregation and thromboxane B(2 and thromboxane B(3 release did not differ from that of healthy controls. CONCLUSION/SIGNIFICANCE: Long-term dietary fatty acid restriction influenced the intermediates of mitochondrial beta

  17. Metabolomics of Dietary Fatty Acid Restriction in Patients with Phenylketonuria

    Science.gov (United States)

    Mütze, Ulrike; Beblo, Skadi; Kortz, Linda; Matthies, Claudia; Koletzko, Berthold; Bruegel, Mathias; Rohde, Carmen; Thiery, Joachim; Kiess, Wieland; Ceglarek, Uta

    2012-01-01

    Background Patients with phenylketonuria (PKU) have to follow a lifelong phenylalanine restricted diet. This type of diet markedly reduces the intake of saturated and unsaturated fatty acids especially long chain polyunsaturated fatty acids (LC-PUFA). Long-chain saturated fatty acids are substrates of mitochondrial fatty acid oxidation for acetyl-CoA production. LC-PUFA are discussed to affect inflammatory and haemostaseological processes in health and disease. The influence of the long term PKU diet on fatty acid metabolism with a special focus on platelet eicosanoid metabolism has been investigated in the study presented here. Methodology/Principal Findings 12 children with PKU under good metabolic control and 8 healthy controls were included. Activated fatty acids (acylcarnitines C6–C18) in dried blood and the cholesterol metabolism in serum were analyzed by liquid chromatographic tandem mass spectrometry (LC-MS/MS). Fatty acid composition of plasma glycerophospholipids was determined by gas chromatography. LC-PUFA metabolites were analyzed in supernatants by LC-MS/MS before and after platelet activation and aggregation using a standardized protocol. Patients with PKU had significantly lower free carnitine and lower activated fatty acids in dried blood compared to controls. Phytosterols as marker of cholesterol (re-) absorption were not influenced by the dietary fatty acid restriction. Fatty acid composition in glycerophospholipids was comparable to that of healthy controls. However, patients with PKU showed significantly increased concentrations of y-linolenic acid (C18:3n-6) a precursor of arachidonic acid. In the PKU patients significantly higher platelet counts were observed. After activation with collagen platelet aggregation and thromboxane B2 and thromboxane B3 release did not differ from that of healthy controls. Conclusion/Significance Long-term dietary fatty acid restriction influenced the intermediates of mitochondrial beta-oxidation. No functional

  18. Therapeutic potential of n-3 polyunsaturated fatty acids in disease.

    Science.gov (United States)

    Fetterman, James W; Zdanowicz, Martin M

    2009-07-01

    The potential therapeutic benefits of supplementation with n-3 polyunsaturated fatty acids (PUFAs) in various diseases are reviewed, and the antiinflammatory actions, activity, and potential drug interactions and adverse effects of n-3 PUFAs are discussed. Fish oils are an excellent source of long-chain n-3 PUFAs, such as eicosapentaenoic acid and docosahexaenoic acid. After consumption, n-3 PUFAs can be incorporated into cell membranes and reduce the amount of arachidonic acid available for the synthesis of proinflammatory eicosanoids (e.g., prostaglandins, leukotrienes). Likewise, n-3 PUFAs can also reduce the production of inflammatory cytokines, such as tumor necrosis factor alpha, interleukin-1, and interleukin-6. Considerable research has been conducted to evaluate the potential therapeutic effects of fish oils in numerous conditions, including arthritis, coronary artery disease, inflammatory bowel disease, asthma, and sepsis, all of which have inflammation as a key component of their pathology. Additional investigations into the use of supplementation with fish oils in patients with neural injury, cancer, ocular diseases, and critical illness have recently been conducted. The most commonly reported adverse effects of fish oil supplements are a fishy aftertaste and gastrointestinal upset. When recommending an n-3 PUFA, clinicians should be aware of any possible adverse effect or drug interaction that, although not necessarily clinically significant, may occur, especially for patients who may be susceptible to increased bleeding (e.g., patients taking warfarin). The n-3 PUFAs have been shown to be efficacious in treating and preventing various diseases. The wide variation in dosages and formulations used in studies makes it difficult to recommend dosages for specific treatment goals.

  19. Omega-3 polyunsaturated fatty acids and mood disorders

    Directory of Open Access Journals (Sweden)

    Astorg Pierre

    2007-05-01

    Full Text Available The hypothesis of a role of n-3 polyunsaturated fatty acids (PUFA in the pathophysiology of depression has emerged from the observation that depressed patients had decreased levels of n-3 long-chain PUFA (especially eicosapentaenoic acid, EPA, and docosahexaenoic acid, DHA in plasma, erythrocytes, or adipose tissue, as compared to healthy controls, a decrease which was not observed with n-6 PUFA. Suicide attempters have much lower levels of EPA and DHA in red blood cells than hospital controls. Recently, a decreased level of DHA has also been observed in the post-mortem brain cortex of patients with major depression. The fact that these changes were specific of the n-3 family suggests that a low n-3 PUFA status or intake predisposes to depression. International ecological studies show a strong negative correlation between apparent fish consumption and the prevalence of depression or of bipolar disorder, as well as between DHA content of maternal milk and the prevalence of postpartum depression. In cross-sectional studies in several countries, a higher risk of depression or of depressive symptoms has been found in subjects with a lower fish consumption. In a French cohort of adults, habitual fatty fish consumption or a higher n-3 PUFA intake were associated with a lower risk of depression, especially of recurrent depression. Randomized, placebo-controlled trials have been conducted to test the effects of long-chain n-3 PUFA in depressive or bipolar patients. EPA as an adjunct to a standard treatment appears to improve depressive patients or bipolar patients in depressive phase when given at the dose of 1-2 g/day, and fish oil prevents depressive recurrences in bipolar patients. Recently, a mixture of EPA plus DHA has proven efficiency in untreated depressive children. In summary, many epidemiological and clinical works in the last ten years have abundantly documented the existence of an association between a low n-3 PUFA intake or status and a

  20. Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas

    NARCIS (Netherlands)

    Ginneken, van V.J.T.; Helsper, J.P.F.G.; Visser, de W.; Keulen, van H.; Brandenburg, W.A.

    2011-01-01

    Background - In this study the efficacy of using marine macroalgae as a source for polyunsaturated fatty acids, which are associated with the prevention of inflammation, cardiovascular diseases and mental disorders, was investigated. Methods - The fatty acid (FA) composition in lipids from seven sea

  1. Childrens' Learning and Behaviour and the Association with Cheek Cell Polyunsaturated Fatty Acid Levels

    Science.gov (United States)

    Kirby, A.; Woodward, A.; Jackson, S.; Wang, Y.; Crawford, M. A.

    2010-01-01

    Increasing interest in the role of omega-3 fatty acids in relation to neurodevelopmental disorders (e.g. ADHD, dyslexia, autism) has occurred as a consequence of some international studies highlighting this link. In particular, some studies have shown that children with ADHD may have lower concentrations of polyunsaturated fatty acids (PUFAs),…

  2. Efeito da suplementação de linhaça, óleo de canola e vitamina E na dieta sobre as concentrações de ácidos graxos poliinsaturados em ovos de galinha Effect of dietary supplementation of flaxseed, canola oil and vitamin E upon polyunsaturated fatty acids in chicken eggs

    Directory of Open Access Journals (Sweden)

    M.C.G. Pita

    2006-10-01

    Full Text Available Estudou-se o efeito de diferentes fontes de ácidos graxos insaturados (óleo de canola e semente de linhaça, acrescidas de diferentes teores de alfa-tocoferol nas dietas de poedeiras, sobre a composição de ácidos graxos da gema do ovo foi estudado. Foram utilizadas 288 galinhas da linhagem Babcock que receberam dietas com 6% de óleo de canola, 20% de semente de linhaça moída ou 3% de óleo de canola e 10% de linhaça moída com teores de 0, 100 e 200UI/kg de alfa-tocoferol. As dietas com 20% de semente de linhaça proporcionaram teores mais elevados de ácidos graxos poliinsaturados no ovo com aumento, em particular, dos teores de ácido alfa-linolênico e EPA (ácido eicosapentaenóico e diminuição de ácido araquidônico na gema. Os teores de vitamina E contidos nas rações experimentais não determinaram alteração significativa na deposição dos diferentes ácidos graxos na gema dos ovos, exceto com relação aos ácidos graxos saturados.The effect of dietary sources of polyunsaturated fatty acids - canola oil and flaxseed - with different vitamin E supplementation on the fatty acid deposition into the eggs of 288 Babcock laying hens was investigated. Birds were fed diets containing 6% of canola oil, 20% of flaxseed or a combination of 3% of canola oil and 10% of flaxseed, enriched with 0, 100 or 200Ul of dl-alpha-tocopheril acetate. The inclusion of flaxseed in the diets increased the yolk polyunsaturated fatty acids, mainly alpha-linolenic acid and EPA (eicosapentaenoic acid. The concentration of alpha-tocopherol in the diet did not change the egg yolk, fatty acids deposition but changed the saturated fatty acids deposition.

  3. Dietary fatty acids and cardiovascular disease: A review

    Directory of Open Access Journals (Sweden)

    Raquel Eccel Prates

    2015-09-01

    Full Text Available Fatty acids (FAs can be classified into saturated (SFA, unsaturated (poly- or monounsaturated and trans FA. Recent studies have found that both the quantity and quality of dietary FAs may influence their role in metabolic pathways. Due to their chemical composition, some FAs play a major role in the development and progression of cardiovascular disease. This is especially true for SFA and n-3 polyunsaturated fatty acids, which include marine eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA. The proinflammatory effects of high SFA intake may increase the risk of atherosclerosis. On the other hand, dietary n-3 intake may reduce the risk of cardiovascular disease by decreasing atherosclerosis, inflammation, and thrombotic processes. The goal of this study was to review the current literature on the role of FA intake in the prevention and risk of cardiovascular disease.

  4. Rotator cuff tendinopathy: is there a role for polyunsaturated Fatty acids and antioxidants?

    Science.gov (United States)

    Lewis, Jeremy S; Sandford, Fiona M

    2009-01-01

    Despite the lack of robust evidence, there has been a steady increase in the use of dietary supplements, including Omega 3 fatty acids and antioxidants, in the management of musculoskeletal conditions. One reason for this is that unsatisfactory outcomes with conventional treatments have lead sufferers to seek alternative solutions including the use of nutritional supplements. In the United Kingdom alone, the current supplement market is estimated to be over 300 pounds million per annum. One target market for nutritional supplements is tendinopathies including conditions involving the rotator cuff. This condition is debilitating and associated with considerable morbidity. Incidence increases with advancing age. High levels of cytokines, such as the pro-inflammatory interleukin 1 beta and vascular endothelial growth factor, have been reported within the bursa of patients with rotator cuff disease. There is also evidence that high concentrations of free-radical oxidants may also be involved in tendon pathology. Therefore, the possibility exists that dietary supplements may have a beneficial effect on tendon pathology, including that of the rotator cuff. A review was conducted to synthesize the available research literature on the histopathology of rotator cuff disease and the effectiveness of polyunsaturated fatty acids (PUFAs) and antioxidants on tendinopathies. A search was conducted using the MEDLINE, CINAHL, AMED, EMBASE, Cochrane, and PEDro databases using the terms "rotator cuff" and "tear/s" and "subacromial impingement syndrome," "burase," "bursitis," "tendinopathy," "tendinitis," "tendinosis," "polyunsaturated fatty acids," "PUFA," "Omega 3," "histopathology," "etiology," and "antioxidants." English language was an inclusion criterion. There were no randomized clinical trials found relating specifically to the rotator cuff. Only one trial was found that investigated the efficacy of PUFAs and antioxidants on tendinopathies. The findings suggest that some (low

  5. N-3 polyunsaturated fatty acids in animal models with neuroinflammation: An update.

    Science.gov (United States)

    Trépanier, Marc-Olivier; Hopperton, Kathryn E; Orr, Sarah K; Bazinet, Richard P

    2016-08-15

    Neuroinflammation is a characteristic of a multitude of neurological and psychiatric disorders. Modulating inflammatory pathways offers a potential therapeutic target in these disorders. Omega-3 polyunsaturated fatty acids have anti-inflammatory and pro-resolving properties in the periphery, however, their effect on neuroinflammation is less studied. This review summarizes 61 animal studies that tested the effect of omega-3 polyunsaturated fatty acids on neuroinflammatory outcomes in vivo in various models including stroke, spinal cord injury, aging, Alzheimer's disease, Parkinson's disease, lipopolysaccharide and IL-1β injections, diabetes, neuropathic pain, traumatic brain injury, depression, surgically induced cognitive decline, whole body irradiation, amyotrophic lateral sclerosis, N-methyl-D-aspartate-induced excitotoxicity and lupus. The evidence presented in this review suggests anti-neuroinflammatory properties of omega-3 polyunsaturated fatty acids, however, it is not clear by which mechanism omega-3 polyunsaturated fatty acids exert their effect. Future research should aim to isolate the effect of omega-3 polyunsaturated fatty acids on neuroinflammatory signaling in vivo and elucidate the mechanisms underlying these effects. Copyright © 2016. Published by Elsevier B.V.

  6. Dietary fatty acids alter blood pressure, behavior and brain membrane composition of hypertensive rats

    NARCIS (Netherlands)

    de Wilde, MC; Hogyes, E; Kiliaan, AJ; Farkas, T; Luiten, PGM; Farkas, E; Wilde, Martijn C. de; Hőgyes, Endre; Kiliaan, Amanda J.

    2003-01-01

    The beneficial effect of dietary n-3 polyunsaturated fatty acids (PUFAs) on developing hypertension has been repeatedly demonstrated. However. related changes in brain membrane composition and its cognitive correlates have remained unclear. Our study aimed at a comprehensive analysis of behavior and

  7. Fatty acid intake and its dietary sources in relation with markers of type 2 diabetes risk

    NARCIS (Netherlands)

    Wanders, A.J.; Alssema, M.; Koning, de E.J.P.; Cessie, Le S.; Vries, de J.H.; Zock, P.L.; Rosendaal, F.R.; Heijer, den M.; Mutsert, de R.

    2017-01-01

    Objective: The aim of this study was to examine the relations between intakes of total, saturated, mono-unsaturated, poly-unsaturated and trans fatty acids (SFA, MUFA, PUFA and TFA), and their dietary sources (dairy, meat and plant) with markers of type 2 diabetes risk. Subjects/Methods: This was

  8. Dietary fatty acids linking postprandial metabolic response and chronic diseases.

    Science.gov (United States)

    Ortega, Almudena; Varela, Lourdes M; Bermudez, Beatriz; Lopez, Sergio; Abia, Rocio; Muriana, Francisco J G

    2012-01-01

    Chronic diseases are by far one of the main causes of mortality in the world. One of the current global recommendations to counteract disability and premature death resulting from chronic diseases is to decrease the consumption of energy-dense high-fat diets, particularly those rich in saturated fatty acids (SFA). The most effective replacement for SFA in terms of risk factor outcomes for chronic disease are polyunsaturated fatty acids (PUFA) and monounsaturated fatty acids (MUFA). The biochemical basis for healthy benefits of such a dietary pattern has been widely evaluated under fasting conditions. However, the increasing amount of data available from multiple studies suggest that the postprandial state, i.e., "the period that comprises and follows a meal", plays an important, yet underappreciated, role in the genesis of numerous pathological conditions. In this review, the potential of MUFA, PUFA, and SFA to postprandially affect selected metabolic abnormalities related to chronic diseases is discussed.

  9. Omega-3 Polyunsaturated Fatty Acids: The Way Forward in Times of Mixed Evidence

    Science.gov (United States)

    Weylandt, Karsten H.; Serini, Simona; Chen, Yong Q.; Su, Hui-Min; Lim, Kyu; Calviello, Gabriella

    2015-01-01

    Almost forty years ago, it was first hypothesized that an increased dietary intake of omega-3 polyunsaturated fatty acids (PUFA) from fish fat could exert protective effects against several pathologies. Decades of intense preclinical investigation have supported this hypothesis in a variety of model systems. Several clinical cardiovascular studies demonstrated the beneficial health effects of omega-3 PUFA, leading medical institutions worldwide to publish recommendations for their increased intake. However, particularly in recent years, contradictory results have been obtained in human studies focusing on cardiovascular disease and the clinical evidence in other diseases, particularly chronic inflammatory and neoplastic diseases, was never established to a degree that led to clear approval of treatment with omega-3 PUFA. Recent data not in line with the previous findings have sparked a debate on the health efficacy of omega-3 PUFA and the usefulness of increasing their intake for the prevention of a number of pathologies. In this review, we aim to examine the controversies on the possible use of these fatty acids as preventive/curative tools against the development of cardiovascular, metabolic, and inflammatory diseases, as well as several kinds of cancer. PMID:26301240

  10. The Role of n-3 Polyunsaturated Fatty Acids in the Prevention and Treatment of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Jiajie Liu

    2014-11-01

    Full Text Available Breast cancer (BC is the most common cancer among women worldwide. Dietary fatty acids, especially n-3 polyunsaturated fatty acids (PUFA, are believed to play a role in reducing BC risk. Evidence has shown that fish consumption or intake of long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA, are beneficial for inhibiting mammary carcinogenesis. The evidence regarding α-linolenic acid (ALA, however, remains equivocal. It is essential to clarify the relation between ALA and cancer since ALA is the principal source of n-3 PUFA in the Western diet and the conversion of ALA to EPA and DHA is not efficient in humans. In addition, the specific anticancer roles of individual n-3 PUFA, alone, have not yet been identified. Therefore, the present review evaluates ALA, EPA and DHA consumed individually as well as in n-3 PUFA mixtures. Also, their role in the prevention of BC and potential anticancer mechanisms of action are examined. Overall, this review suggests that each n-3 PUFA has promising anticancer effects and warrants further research.

  11. Long-chain polyunsaturated fatty acid status in children, adolescents and adults with phenylketonuria.

    Science.gov (United States)

    Gramer, Gwendolyn; Haege, Gisela; Langhans, Claus-Dieter; Schuhmann, Vera; Burgard, Peter; Hoffmann, Georg F

    2016-06-01

    Patients with phenylketonuria have been reported to be deficient in long-chain polyunsaturated fatty acids (LCPUFAs). It has been postulated that good compliance with the dietary regimen negatively influences LCPUFA status. In 36 patients with phenylketonuria and 18 age-matched healthy control subjects LCPUFA-levels in plasma phospholipids and cholesteryl esters, erythrocyte phosphatidylcholine and phosphatidylethanolamine were evaluated. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) levels did not differ significantly between patients and control subjects in plasma and erythrocyte fractions. There was a significant negative correlation between SDS (standard deviation) scores of DHA-levels in erythrocyte parameters from the respective age-matched control group and patients' concurrent and long-term phenylalanine levels for erythrocyte phosphatidylethanolamine and erythrocyte phosphatidylcholine. Patients with lower (higher) phenylalanine levels had positive (negative) DHA-SDS. In contrast to previous reports we did not find lower LCPUFA-levels in patients with phenylketonuria compared to age-matched healthy control subjects. Good dietary control was associated with better LCPUFA status. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Polyunsaturated Fatty Acid and S-Adenosylmethionine Supplementation in Predementia Syndromes and Alzheimer's Disease: A Review

    Directory of Open Access Journals (Sweden)

    Francesco Panza

    2009-01-01

    Full Text Available A growing body of evidence indicates that nutritional supplements can improve cognition; however, which supplements are effective remains controversial. In this review article, we focus on dietary supplementation suggested for predementia syndromes and Alzheimer’s disease (AD, with particular emphasis on S-adenosylmethionine (SAM and polyunsaturated fatty acids (PUFA. Very recent findings confirmed that SAM can exert a direct effect on glutathione S-transferase (GST activity. AD is accompanied by reduced GST activity, diminished SAM, and increased S-adenosylhomocysteine (SAH, the downstream metabolic product resulting from SAM-mediated transmethylation reactions, when deprived of folate. Therefore, these findings underscored the critical role of SAM in maintenance of neuronal health, suggesting a possible role of SAM as a neuroprotective dietary supplement for AD patients. In fact, very recent studies on early-stage AD patients and moderate- to late-stage AD patients were conducted with a nutriceutical supplementation that included SAM, with promising results. Given recent findings from randomized clinical trials (RCTs in which n-3 PUFA supplementation was effective only in very mild AD subgroups or mild cognitive impairment (MCI, we suggest future intervention trials using measures of dietary supplementation (dietary n-3 PUFA and SAM plus B vitamin supplementation to determine if such supplements will reduce the risk for cognitive decline in very mild AD and MCI. Therefore, key supplements are not necessarily working in isolation and the most profound impact, or in some cases the only impact, is noted very early in the course of AD, suggesting that nutriceutical supplements may bolster pharmacological approaches well past the window where supplements can work on their own. Recommendations regarding future research on the effects of SAM or n-3 PUFA supplementation on predementia syndromes and very mild AD include properly designed RCTs that are

  13. Interactions between prebiotics, probiotics, polyunsaturated fatty acids and polyphenols: diet or supplementation for metabolic syndrome prevention?

    Science.gov (United States)

    Peluso, Ilaria; Romanelli, Luca; Palmery, Maura

    2014-05-01

    The metabolic syndrome can be prevented by the Mediterranean diet, characterized by fiber, omega-3 polyunsaturated fatty acids and polyphenols. However, the composition of the Mediterranean diet, which can be viewed as a natural multiple supplement, is poorly controlled, and its beneficial effects poorly predictable. The metabolic syndrome is associated with intestinal dysbiosis and the gut microbioma seems to be the main target and player in the interactions occurring between probiotics, prebiotics, omega 3 polyunsaturated fatty acids, and polyphenols. From the reviewed evidence, it is reasonable to manage growth and metabolism of gut microflora with specific prebiotics and polyphenols. Even though the healthy properties of functional foods and nutraceuticals still need to be fully elucidated, available data suggest that well-designed supplements, containing the better ratio of omega-3 polyunsaturated fatty acids and antioxidants, specific probiotic strains, and selected polyphenols and prebiotics, could be useful in metabolic syndrome prevention and treatment.

  14. Plasma phospholipid long-chain n-3 polyunsaturated fatty acids and body weight change

    DEFF Research Database (Denmark)

    Jakobsen, Marianne Uhre; Dethlefsen, Claus; Due, Karen Margrete

    2011-01-01

    We investigated the association between the proportion of long-chain n-3 polyunsaturated fatty acids (PUFA) in plasma phospholipids from blood samples drawn at enrollment and subsequent change in body weight. Sex, age, and BMI were considered as potential effect modifiers.......We investigated the association between the proportion of long-chain n-3 polyunsaturated fatty acids (PUFA) in plasma phospholipids from blood samples drawn at enrollment and subsequent change in body weight. Sex, age, and BMI were considered as potential effect modifiers....

  15. Metabolic engineering of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway into transgenic plants.

    Science.gov (United States)

    Ruiz-López, Noemi; Sayanova, Olga; Napier, Johnathan A; Haslam, Richard P

    2012-04-01

    Omega-3 (ω-3) very long chain polyunsaturated fatty acids (VLC-PUFAs) such as eicosapentaenoic acid (EPA; 20:5 Δ5,8,11,14,17) and docosahexaenoic acid (DHA; 22:6 Δ4,7,10,13,16,19) have been shown to have significant roles in human health. Currently the primary dietary source of these fatty acids are marine fish; however, the increasing demand for fish and fish oil (in particular the expansion of the aquaculture industry) is placing enormous pressure on diminishing marine stocks. Such overfishing and concerns related to pollution in the marine environment have directed research towards the development of a viable alternative sustainable source of VLC-PUFAs. As a result, the last decade has seen many genes encoding the primary VLC-PUFA biosynthetic activities identified and characterized. This has allowed the reconstitution of the VLC-PUFA biosynthetic pathway in oilseed crops, producing transgenic plants engineered to accumulate ω-3 VLC-PUFAs at levels approaching those found in native marine organisms. Moreover, as a result of these engineering activities, knowledge of the fundamental processes surrounding acyl exchange and lipid remodelling has progressed. The application of new technologies, for example lipidomics and next-generation sequencing, is providing a better understanding of seed oil biosynthesis and opportunities for increasing the production of unusual fatty acids. Certainly, it is now possible to modify the composition of plant oils successfully, and, in this review, the most recent developments in this field and the challenges of producing VLC-PUFAs in the seed oil of higher plants will be described.

  16. Perinatal ω-3 polyunsaturated fatty acid supply modifies brain zinc homeostasis during adulthood

    Science.gov (United States)

    Jayasooriya, Anura P.; Ackland, M. Leigh; Mathai, Michael L.; Sinclair, Andrew J.; Weisinger, Harrison S.; Weisinger, Richard S.; Halver, John E.; Kitajka, Klára; Puskás, László G.

    2005-01-01

    Dietary ω-3 polyunsaturated fatty acid (PUFA) influences the expression of a number of genes in the brain. Zinc transporter (ZnT) 3 has been identified as a putative transporter of zinc into synaptic vesicles of neurons and is found in brain areas such as hippocampus and cortex. Neuronal zinc is involved in the formation of amyloid plaques, a major characteristic of Alzheimer's disease. The present study evaluated the influence of dietary ω-3 PUFA on the expression of the ZnT3 gene in the brains of adult male Sprague-Dawley rats. The rats were raised and/or maintained on a control (CON) diet that contained ω-3 PUFA or a diet deficient (DEF) in ω-3 PUFA. ZnT3 gene expression was analyzed by using real-time PCR, free zinc in brain tissue was determined by zinquin staining, and total zinc concentrations in plasma and cerebrospinal fluid were determined by atomic absorption spectrophotometry. Compared with CON-raised animals, DEF-raised animals had increased expression of ZnT3 in the brain that was associated with an increased level of free zinc in the hippocampus. In addition, compared with CON-raised animals, DEF-raised animals had decreased plasma zinc level. No difference in cerebrospinal fluid zinc level was observed. The results suggest that overexpression of ZnT3 due to a perinatal ω-3 PUFA deficiency caused abnormal zinc metabolism in the brain. Conceivably, the influence of dietary ω-3 PUFA on brain zinc metabolism could explain the observation made in population studies that the consumption of fish is associated with a reduced risk of dementia and Alzheimer's disease. PMID:15883362

  17. Perinatal omega-3 polyunsaturated fatty acid supply modifies brain zinc homeostasis during adulthood.

    Science.gov (United States)

    Jayasooriya, Anura P; Ackland, M Leigh; Mathai, Michael L; Sinclair, Andrew J; Weisinger, Harrison S; Weisinger, Richard S; Halver, John E; Kitajka, Klára; Puskás, László G

    2005-05-17

    Dietary omega-3 polyunsaturated fatty acid (PUFA) influences the expression of a number of genes in the brain. Zinc transporter (ZnT) 3 has been identified as a putative transporter of zinc into synaptic vesicles of neurons and is found in brain areas such as hippocampus and cortex. Neuronal zinc is involved in the formation of amyloid plaques, a major characteristic of Alzheimer's disease. The present study evaluated the influence of dietary omega-3 PUFA on the expression of the ZnT3 gene in the brains of adult male Sprague-Dawley rats. The rats were raised and/or maintained on a control (CON) diet that contained omega-3 PUFA or a diet deficient (DEF) in omega-3 PUFA. ZnT3 gene expression was analyzed by using real-time PCR, free zinc in brain tissue was determined by zinquin staining, and total zinc concentrations in plasma and cerebrospinal fluid were determined by atomic absorption spectrophotometry. Compared with CON-raised animals, DEF-raised animals had increased expression of ZnT3 in the brain that was associated with an increased level of free zinc in the hippocampus. In addition, compared with CON-raised animals, DEF-raised animals had decreased plasma zinc level. No difference in cerebrospinal fluid zinc level was observed. The results suggest that overexpression of ZnT3 due to a perinatal omega-3 PUFA deficiency caused abnormal zinc metabolism in the brain. Conceivably, the influence of dietary omega-3 PUFA on brain zinc metabolism could explain the observation made in population studies that the consumption of fish is associated with a reduced risk of dementia and Alzheimer's disease.

  18. Alterations in polyunsaturated fatty acid composition of Voandzeia subterranea seeds upon gamma irradiation

    International Nuclear Information System (INIS)

    Andrianarison, R.H.; Rakotoarisoa, Z.; Tixier, M.; Beneytout, J.L.

    1992-01-01

    Exposure of V. subterranea seeds, a herbaceous plant from Madagascar belonging to the family of legumes, to gamma irradiation resulted in a polyunsaturated fatty acids decrease associated with the formation of UV-absorbing substances. The finding that products containing conjugated diene structure are formed during lipid extract irradiation indicates that hydroperoxy fatty acids may arise not only by enzymatic reactions but also by nonenzymatic oxygenation of polyunsaturated fatty acids promoted by ionizing radiation. Dehulled green seeds, flour made from dehulled green seeds, and lipid extract were studied for irradiation dose dependent changes in fatty acids compositions and hydroperoxydiene synthesis. The irradiation dose is more efficient in lipid extract than in dehulled green seeds or in flour made from these seeds, suggesting that the formation of UV-absorbing products is not a reliable clue for enzyme activity owing to the absence of protein in lipid extract. A homolytic pathway for the biogenesis of hydroperoxy fatty acids from polyunsaturated fatty acids is proposed. This involves an initiating radical which promotes a chain mechanism in which the O2 adsorbed is converted to hydroperoxide. Conclusively, preservation of fatty acid oxygenation should be a primary goal in the ionizing radiation processes of V. subterranea seeds and generally in the preservation of food of plant origin by ionizing radiation

  19. Balancing the benefits of n-3 polyunsaturated fatty acids and the risks of methylmercury exposure from fish consumption

    DEFF Research Database (Denmark)

    Mahaffey, K. R.; Sunderland, E. M.; Chan, H. M.

    2011-01-01

    Fish and shellfish are widely available foods that provide important nutrients, particularly n-3 polyunsaturated fatty acids (n-3 PUFAs), to many populations globally. These nutrients, especially docosahexaenoic acid, confer benefits to brain and visual system development in infants and reduce...... risks of certain forms of heart disease in adults. However, fish and shellfish can also be a major source of methylmercury (MeHg), a known neurotoxicant that is particularly harmful to fetal brain development. This review documents the latest knowledge on the risks and benefits of seafood consumption...... for perinatal development of infants. It is possible to choose fish species that are both high in n-3 PUFAs and low in MeHg. A framework for providing dietary advice for women of childbearing age on how to maximize the dietary intake of n-3 PUFAs while minimizing MeHg exposures is suggested. (C) 2011...

  20. Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas

    OpenAIRE

    van Ginneken, Vincent JT; Helsper, Johannes PFG; de Visser, Willem; van Keulen, Herman; Brandenburg, Willem A

    2011-01-01

    Abstract Background In this study the efficacy of using marine macroalgae as a source for polyunsaturated fatty acids, which are associated with the prevention of inflammation, cardiovascular diseases and mental disorders, was investigated. Methods The fatty acid (FA) composition in lipids from seven sea weed species from the North Sea (Ulva lactuca, Chondrus crispus, Laminaria hyperborea, Fucus serratus, Undaria pinnatifida, Palmaria palmata, Ascophyllum nodosum) and two from tropical seas (...

  1. Molecular Species of the Enzymatically Synthesized Polyunsaturated Fatty Acid Rich Triglyceride

    OpenAIRE

    長田, 恭一; 高橋, 是太郎; 羽田野, 六男; 細川, 雅史

    1991-01-01

    Enzymatic glyceride synthesis and acid interchange using icosapentaenoic acid (EPA), docosahexaenoic acid (DHA), γ-linolenic acid (GLA), and EPA and DHA concentrated saponified fatty acid mixture obtained from sardine oil were carried out through the use of four kinds of microbial lipases. Lipase TOYO (Chromobacterium viscosum) was the most effective enzyme for glyceride synthesis as well as acid interchange of triglyceride (TG) rich in polyunsaturated fatty acids. There was a general tendenc...

  2. Polyunsaturated Fatty Acid Status and Physical Activity Level in Children Admitted with Severe Acute Malnutrition

    DEFF Research Database (Denmark)

    Babirekere-Iriso, Esther

    Severe acute malnutrition (SAM) is a worldwide problem although it commonly occurs in children living in low-income countries. SAM may be associated with reduced relative contribution of whole-blood polyunsaturated fatty acids (PUFA) yet PUFA play very important roles in the body such as immune...

  3. gamma-linolenic acid does not augment long-chain polyunsaturated fatty acid omega-3 status

    NARCIS (Netherlands)

    Brouwer, DAJ; Hettema, Y; van Doormaal, JJ; Muskiet, FAJ

    Augmentation of long chain polyunsaturated omega 3 fatty acid (LCPUFA omega 3) status can be reached by consumption of fish oil or by improvement of the conversion of a-linolenic acid (ALA) to LCPUFA omega 3. Since gamma-linolenic acid (GLA) might activate the rate-limiting Delta-6 desaturation, we

  4. Omega-3 polyunsaturated fatty acid biomarkers and coronary heart disease: Pooling project of 19 cohort studies

    Science.gov (United States)

    The role of omega-3 polyunsaturated fatty acids for primary prevention of coronary heart disease (CHD) remains controversial. Most prior longitudinal studies evaluated self-reported consumption rather than biomarkers. This study sought to evaluate biomarkers of seafood-derived eicosapentaenoic acid ...

  5. cAMP-dependent signaling regulates the adipogenic effect of n-6 polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    Madsen, Lise; Pedersen, Lone Møller; Liaset, Bjørn

    2008-01-01

    The effect of n-6 polyunsaturated fatty acids (n-6 PUFAs) on adipogenesis and obesity is controversial. Using in vitro cell culture models, we show that n-6 PUFAs was pro-adipogenic under conditions with base-line levels of cAMP, but anti-adipogenic when the levels of cAMP were elevated. The anti...

  6. Biotechnological production and applications of the omega-3 polyunsaturated fatty acid docosahexaenoic acid

    NARCIS (Netherlands)

    Sijtsma, L.; Swaaf, de M.E.

    2004-01-01

    Docosahexaenoic acid (DHA) is a polyunsaturated fatty acid composed of 22 carbon atoms and six double bonds. Because the first double bond, as counted from the methyl terminus, is at position three, DHA belongs to the so-called omega-3 group. In recent years, DHA has attracted much attention because

  7. The role of omega-3 polyunsaturated fatty acids supplementation in childhood: a review.

    Science.gov (United States)

    Ciccone, Marco M; Scicchitano, Pietro; Gesualdo, Michele; Zito, Annapaola; Carbonara, Santa; Ricci, Gabriella; Cortese, Francesca; Giordano, Paola

    2013-04-01

    Dietary omega-3 polyunsaturated fatty acids (ω-3 PUFAs) benefits are not clearly defined in childhood although already well-defined in adults. Recent studies have demonstrated their positive effects on bronchial asthma, neuropsychiatric disorders and cognitive brain function in childhood. Furthermore, it has been demonstrated as a relationship between the increased incidence of childhood obesity and the role of ω-3 PUFAs in reducing the metabolic and vascular alterations induced by the fat accumulation since young age. Such relationship could be more important in prevention of future cardiovascular events. In fact, ω-3 PUFAs could improve endothelial function and structure since childhood. By considering endothelial dysfunction as a well-known early marker of atherosclerosis, its amelioration in the beginning years of individuals' life will certainly reduce the cardiovascular risk profile in adulthood. Nevertheless, their use is limited by several factors, such as the lack of studies in children and the awful taste of the products enriched with ω-3 PUFAs, although several patents have managed to overcome such defects and developed the use of these molecules. This paper is a literature study and patents analysis aiming to explore key issues regarding ω-3 PUFAs administration in childhood in order to take into account its routine intake daily. However, it is well-established that further studies are needed to endorse the promising results outlined by literature analysis.

  8. The role of polyunsaturated fatty acid metabolism in overweight and obese children and adolescents

    Directory of Open Access Journals (Sweden)

    A. A. Glazyrina

    2014-01-01

    Full Text Available The problem of obesity is currently being widely discussed by various specialists. The literature dealing with this problem places a considerable emphasis on investigations of lipid metabolism disorders that occupy a prominent place in the genesis of cardiovascular diseases in the populations of most countries. The special role of long chain polyunsaturated fatty acids that are major functional components of brain membrane structure phospholipids, retinal photoreceptors is emphasized. Pediatricians pay great attention to the nutrition of infants, by adjusting adapted milk-based formulas for their adequate growth and development. At the same time, no consideration is given to the possibility of correcting obesity-associated problems with appropriate adapted milk-based formulas in older infants. However, dietary recommendations for older infants with obesity and overweight should be developed not only in the context of optimization of a qualitative and quantitative diet that ensures the needs of the growing organism at the present moment, but should take into account the prevention of cardiovascular diseases and other complications of obesity in the future.

  9. The association between polyunsaturated fatty acids and depression among Iranian postgraduate students in Malaysia

    Directory of Open Access Journals (Sweden)

    Aazami Sanaz

    2011-08-01

    Full Text Available Abstract Background The incidence of depression is expected to increase over the next 20 years, and many people will have to deal with it. It has been reported that up to 40% of university students experience levels of depression. Several negative consequences are associated with depression symptoms, such as memory impairment, suicide, and substance abuse. Recently, researchers have been studying possible associations between depression and polyunsaturated fatty acids (PUFAs, which may modify depression symptoms. The aim of the present study was to find an association between PUFA levels and depression among Iranian postgraduate students in Malaysia. Methods This cross-sectional study was conducted in 2011 with 402 Iranian postgraduate students who were studying in Malaysia. The participants included 173 (43% women and 229 (57% men, and the mean age of the participants was 32.54 ± 6.22 years. Results After adjustment for several potential confounders including sex, age, BMI, PUFAs, MUFAs, and SFAs, monthly expenses, close friends, living in campus, smoking, education, and marital status in a logistic regression model, an inverse relationship was found between depression symptoms and the dietary intake of PUFAs. Conclusion We found an inverse association between PUFA intake and depression symptoms in Iranian postgraduate students in Malaysia. We, therefore, concluded that long-term intake of PUFAs may modify or prevent depression symptoms.

  10. The association between polyunsaturated fatty acids and depression among Iranian postgraduate students in Malaysia.

    Science.gov (United States)

    Yary, Teymoor; Aazami, Sanaz

    2011-08-24

    The incidence of depression is expected to increase over the next 20 years, and many people will have to deal with it. It has been reported that up to 40% of university students experience levels of depression. Several negative consequences are associated with depression symptoms, such as memory impairment, suicide, and substance abuse. Recently, researchers have been studying possible associations between depression and polyunsaturated fatty acids (PUFAs), which may modify depression symptoms. The aim of the present study was to find an association between PUFA levels and depression among Iranian postgraduate students in Malaysia. This cross-sectional study was conducted in 2011 with 402 Iranian postgraduate students who were studying in Malaysia. The participants included 173 (43%) women and 229 (57%) men, and the mean age of the participants was 32.54 ± 6.22 years. After adjustment for several potential confounders including sex, age, BMI, PUFAs, MUFAs, and SFAs, monthly expenses, close friends, living in campus, smoking, education, and marital status in a logistic regression model, an inverse relationship was found between depression symptoms and the dietary intake of PUFAs. We found an inverse association between PUFA intake and depression symptoms in Iranian postgraduate students in Malaysia. We, therefore, concluded that long-term intake of PUFAs may modify or prevent depression symptoms.

  11. Omega-3 polyunsaturated fatty acids preserve retinal function in type 2 diabetic mice.

    Science.gov (United States)

    Sapieha, P; Chen, J; Stahl, A; Seaward, M R; Favazza, T L; Juan, A M; Hatton, C J; Joyal, J-S; Krah, N M; Dennison, R J; Tang, J; Kern, T S; Akula, J D; Smith, L E H

    2012-07-23

    Diabetic retinopathy (DR) is associated with hyperglycemia-driven microvascular pathology and neuronal compromise in the retina. However, DR is also linked to dyslipidemia. As omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) are protective in proliferative retinopathy, we investigated the capacity of ω-3PUFAs to preserve retinal function in a mouse model of type 2 diabetes mellitus (T2DM). Male leptin-receptor-deficient (db/db) mice were maintained for 22 weeks (4 weeks-26 weeks of life) on calorically and compositionally matched diets, except for 2% enrichment in either ω-3 or ω-6PUFAs. Visual function was assessed at 9, 14 and 26 weeks by electroretinography. Retinal capillary and neuronal integrity, as well as glucose challenge responses, were assessed on each diet. The ω-3PUFA diet significantly preserved retinal function in the mouse model of T2DM to levels similar to those observed in nondiabetic control mice on normal chow. Conversely, retinal function gradually deteriorated in db/db mice on a ω-6PUFA-rich diet. There was also an enhanced ability of ω-3PUFA-fed mice to respond to glucose challenge. The protection of visual function appeared to be independent of cytoprotective or anti-inflammatory effects of ω-3PUFAs. This study identifies beneficial effects of dietary ω-3PUFAs on visual function in T2DM. The data are consistent with dyslipidemia negatively impacting retinal function. As ω-3PUFA lipid dietary interventions are readily available, safe and inexpensive, increasing ω-3PUFA intake in diabetic patients may slow the progression of vision loss in T2DM.

  12. A role for AMPK in the inhibition of glucose-6-phosphate dehydrogenase by polyunsaturated fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Kohan, Alison B.; Talukdar, Indrani; Walsh, Callee M. [Department of Biochemistry, West Virginia University, Morgantown, WV (United States); Salati, Lisa M., E-mail: lsalati@hsc.wvu.edu [Department of Biochemistry, West Virginia University, Morgantown, WV (United States)

    2009-10-09

    Both polyunsaturated fatty acids and AMPK promote energy partitioning away from energy consuming processes, such as fatty acid synthesis, towards energy generating processes, such as {beta}-oxidation. In this report, we demonstrate that arachidonic acid activates AMPK in primary rat hepatocytes, and that this effect is p38 MAPK-dependent. Activation of AMPK mimics the inhibition by arachidonic acid of the insulin-mediated induction of G6PD. Similar to intracellular signaling by arachidonic acid, AMPK decreases insulin signal transduction, increasing Ser{sup 307} phosphorylation of IRS-1 and a subsequent decrease in AKT phosphorylation. Overexpression of dominant-negative AMPK abolishes the effect of arachidonic acid on G6PD expression. These data suggest a role for AMPK in the inhibition of G6PD by polyunsaturated fatty acids.

  13. Effect of n-3 polyunsaturated fatty acids on the lipidic profile of healthy Mexican volunteers

    Directory of Open Access Journals (Sweden)

    CARVAJAL OCTAVIO

    1997-01-01

    Full Text Available Objective. The effect of n-3 polyunsaturated fatty acids on the serum lipid profile in a Mexican population was evaluated. Material and methods. Three g of salmon oil was the daily intake during four weeks. Total cholesterol, triglycerides, low density lipoproteins, high density lipoproteins and erythrocyte fatty acid composition were analyzed. Results. The hypertriglyceridemic group showed a statistically significant (p< 0.05 reduction of triglycerides and significant (p< 0.01 elevation of high density lipoproteins. The hypercholesterolemic group reduced significantly the levels of cholesterol and triglycerides; high density lipoproteins were augmented by 11.6%. Conclusions. The hipolipidemic effect of n-3 polyunsaturated fatty acids was manifest in the Mexican volunteers under the conditions here evaluated.

  14. Metabolically engineered cells for the production of polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    2005-01-01

    The present invention relates to the construction and engineering of cells, more particularly microorganisms for producing PUFAs with four or more double bonds from non-fatty acid substrates through heterologous expression of an oxygen requiring pathway. The invention especially involves...... improvement of the PUFA content in the host organism through fermentation optimization, e.g. decreasing the temperature and/or designing an optimal medium, or through improving the flux towards fatty acids by metabolic engineering, e.g. through over-expression of fatty acid synthases, over-expression of other...

  15. ω-3 Polyunsaturated fatty acids and their cytochrome P450-derived metabolites suppress colorectal tumor development in mice.

    Science.gov (United States)

    Wang, Weicang; Yang, Jun; Nimiya, Yoshiki; Lee, Kin Sing Stephen; Sanidad, Katherine; Qi, Weipeng; Sukamtoh, Elvira; Park, Yeonhwa; Liu, Zhenhua; Zhang, Guodong

    2017-10-01

    Many studies have shown that dietary intake of ω-3 polyunsaturated fatty acids (PUFAs) reduces the risks of colorectal cancer; however, the underlying mechanisms are not well understood. Here we used a LC-MS/MS-based lipidomics to explore the role of eicosanoid signaling in the anti-colorectal cancer effects of ω-3 PUFAs. Our results showed that dietary feeding of ω-3 PUFAs-rich diets suppressed growth of MC38 colorectal tumor, and modulated profiles of fatty acids and eicosanoid metabolites in C57BL/6 mice. Notably, we found that dietary feeding of ω-3 PUFAs significantly increased levels of epoxydocosapentaenoic acids (EDPs, metabolites of ω-3 PUFA produced by cytochrome P450 enzymes) in plasma and tumor tissue of the treated mice. We further showed that systematic treatment with EDPs (dose=0.5 mg/kg per day) suppressed MC38 tumor growth in mice, with reduced expressions of pro-oncogenic genes such as C-myc, Axin2, and C-jun in tumor tissues. Together, these results support that formation of EDPs might contribute to the anti-colorectal cancer effects of ω-3 PUFAs. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Five Decades with Polyunsaturated Fatty Acids: Chemical Synthesis, Enzymatic Formation, Lipid Peroxidation and Its Biological Effects

    Directory of Open Access Journals (Sweden)

    Angel Catalá

    2013-01-01

    Full Text Available I have been involved in research on polyunsaturated fatty acids since 1964 and this review is intended to cover some of the most important aspects of this work. Polyunsaturated fatty acids have followed me during my whole scientific career and I have published a number of studies concerned with different aspects of them such as chemical synthesis, enzymatic formation, metabolism, transport, physical, chemical, and catalytic properties of a reconstructed desaturase system in liposomes, lipid peroxidation, and their effects. The first project I became involved in was the organic synthesis of [1-14C] eicosa-11,14-dienoic acid, with the aim of demonstrating the participation of that compound as a possible intermediary in the biosynthesis of arachidonic acid “in vivo.” From 1966 to 1982, I was involved in several projects that study the metabolism of polyunsaturated fatty acids. In the eighties, we studied fatty acid binding protein. From 1990 up to now, our laboratory has been interested in the lipid peroxidation of biological membranes from various tissues and different species as well as liposomes prepared with phospholipids rich in PUFAs. We tested the effect of many antioxidants such as alpha tocopherol, vitamin A, melatonin and its structural analogues, and conjugated linoleic acid, among others.

  17. Correlation of polyunsaturated fatty acids with the cold adaptation of Rhodotorula glutinis.

    Science.gov (United States)

    He, Jing; Yang, Zhaojie; Hu, Binbin; Ji, Xiuling; Wei, Yunlin; Lin, Lianbing; Zhang, Qi

    2015-11-01

    This study aimed to investigate the correlation between the cold adaptation of Rhodotorula glutinis YM25079 and the membrane fluidity, content of polyunsaturated fatty acids and mRNA expression level of the Δ(12)-desaturase gene. The optimum temperature for YM25079 growth was analysed first, then the composition changes of membrane lipid in YM25079 were detected by GC-MS and membrane fluidity was evaluated by 1-anilinonaphthalene-8-sulphonate (ANS) fluorescence. Meanwhile, the encoding sequence of Δ(12)-fatty acid desaturase in YM25079 was cloned and further transformed into Saccharomyces cerevisiae INVScl for functional analysis. The mRNA expression levels of Δ(12)-fatty acid desaturase at 15°C and 25°C were analysed by real-time PCR. YM25079 could grow at 5-30°C, with the optimum temperature of 15°C. The membrane fluidity of YM25079 was not significantly reduced when the culture temperature decreased from 25°C to 15°C, but the content of polyunsaturated fatty acids (PUFAs), including linoleic acid and α-Linolenic acid increased significantly from 29.4% to 55.39%. Furthermore, a novel Δ(12)-fatty acid desaturase gene YM25079RGD12 from YM25079 was successfully identified and characterized, and the mRNA transcription level of the Δ(12)-desaturase gene was about five-fold higher in YM25079 cells grown at 15°C than that at 25°C. These results suggests that the cold adaptation of Rhodotorula glutinis YM25079 might result from higher expression of genes, especially the Δ(12)-fatty acid desaturase gene, during polyunsaturated fatty acids biosynthesis, which increased the content of PUFAs in the cell membrane and maintained the membrane fluidity at low temperature. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Synergistic effects of squalene and polyunsaturated fatty acid ...

    African Journals Online (AJOL)

    GREGO

    2007-04-16

    Apr 16, 2007 ... (EPA, C20:5n-3) and docosahexaenoic acid (DHA,. C22:6n-3) present in ... is secreted in human serum, where it protects the skin from ultraviolet radiation ..... Omega-3 fatty acids from fish oils and cardiovascular disease. Mol.

  19. Novel signature fatty acid profile of the giant manta ray suggests reliance on an uncharacterised mesopelagic food source low in polyunsaturated fatty acids.

    Science.gov (United States)

    Burgess, Katherine B; Guerrero, Michel; Marshall, Andrea D; Richardson, Anthony J; Bennett, Mike B; Couturier, Lydie I E

    2018-01-01

    Traditionally, large planktivorous elasmobranchs have been thought to predominantly feed on surface zooplankton during daytime hours. However, the recent application of molecular methods to examine long-term assimilated diets, has revealed that these species likely gain the majority from deeper or demersal sources. Signature fatty acid analysis (FA) of muscle tissue was used to examine the assimilated diet of the giant manta ray Mobula birostris, and then compared with surface zooplankton that was collected during feeding and non-feeding events at two aggregation sites off mainland Ecuador. The FA profiles of M. birostris and surface zooplankton were markedly different apart from similar proportions of arachidonic acid, which suggests daytime surface zooplankton may comprise a small amount of dietary intake for M. birostris. The FA profile of M. birostris muscle was found to be depleted in polyunsaturated fatty acids, and instead comprised high proportions of 18:1ω9 isomers. While 18:1ω9 isomers are not explicitly considered dietary FAs, they are commonly found in high proportions in deep-sea organisms, including elasmobranch species. Overall, the FA profile of M. birostris suggests a diet that is mesopelagic in origin, but many mesopelagic zooplankton species also vertically migrate, staying deep during the day and moving to shallower waters at night. Here, signature FA analysis is unable to resolve the depth at which these putative dietary items were consumed and how availability of this prey may drive distribution and movements of this large filter-feeder.

  20. Novel signature fatty acid profile of the giant manta ray suggests reliance on an uncharacterised mesopelagic food source low in polyunsaturated fatty acids.

    Directory of Open Access Journals (Sweden)

    Katherine B Burgess

    Full Text Available Traditionally, large planktivorous elasmobranchs have been thought to predominantly feed on surface zooplankton during daytime hours. However, the recent application of molecular methods to examine long-term assimilated diets, has revealed that these species likely gain the majority from deeper or demersal sources. Signature fatty acid analysis (FA of muscle tissue was used to examine the assimilated diet of the giant manta ray Mobula birostris, and then compared with surface zooplankton that was collected during feeding and non-feeding events at two aggregation sites off mainland Ecuador. The FA profiles of M. birostris and surface zooplankton were markedly different apart from similar proportions of arachidonic acid, which suggests daytime surface zooplankton may comprise a small amount of dietary intake for M. birostris. The FA profile of M. birostris muscle was found to be depleted in polyunsaturated fatty acids, and instead comprised high proportions of 18:1ω9 isomers. While 18:1ω9 isomers are not explicitly considered dietary FAs, they are commonly found in high proportions in deep-sea organisms, including elasmobranch species. Overall, the FA profile of M. birostris suggests a diet that is mesopelagic in origin, but many mesopelagic zooplankton species also vertically migrate, staying deep during the day and moving to shallower waters at night. Here, signature FA analysis is unable to resolve the depth at which these putative dietary items were consumed and how availability of this prey may drive distribution and movements of this large filter-feeder.

  1. LONG-CHAIN POLYUNSATURATED ω-3 AND ω-6 FATTY ACIDS AS ESSENTIAL NUTRIENTS IN DIFFERENT PERIODS OF CHILDHOOD

    Directory of Open Access Journals (Sweden)

    S. G. Makarova

    2013-01-01

    Full Text Available The authors present modern data on the issue of rational nutrition of children in different periods of childhood. The most frequent types of disorders are listed; insufficient consumption of long-chain polyunsaturated fatty acids is among them. The authors show that this issue is topical not only in Russia, but also in a range of the developed countries. The authors give special attention to classification and biological role of polyunsaturated fatty acids, especially in the development of nervous and immune systems. The authors demonstrated importance of sufficient consumption of long-chain polyunsaturated fatty acids in the period of fetal development for antenatal prevention of atopic disease. The authors list methods of recovery from deficiency of polyunsaturated fatty acids in antenatal and neonatal periods and after the first year of life.

  2. Omega-3 polyunsaturated fatty acids and chronic stress-induced modulations of glutamatergic neurotransmission in the hippocampus.

    Science.gov (United States)

    Hennebelle, Marie; Champeil-Potokar, Gaëlle; Lavialle, Monique; Vancassel, Sylvie; Denis, Isabelle

    2014-02-01

    Chronic stress causes the release of glucocorticoids, which greatly influence cerebral function, especially glutamatergic transmission. These stress-induced changes in neurotransmission could be counteracted by increasing the dietary intake of omega-3 polyunsaturated fatty acids (n-3 PUFAs). Numerous studies have described the capacity of n-3 PUFAs to help protect glutamatergic neurotransmission from damage induced by stress and glucocorticoids, possibly preventing the development of stress-related disorders such as depression or anxiety. The hippocampus contains glucocorticoid receptors and is involved in learning and memory. This makes it particularly sensitive to stress, which alters certain aspects of hippocampal function. In this review, the various ways in which n-3 PUFAs may prevent the harmful effects of chronic stress, particularly the alteration of glutamatergic synapses in the hippocampus, are summarized. © 2014 International Life Sciences Institute.

  3. Polyunsaturated fatty acid receptors, GPR40 and GPR120, are expressed in the hypothalamus and control energy homeostasis and inflammation

    DEFF Research Database (Denmark)

    Dragano, Nathalia R V; Solon, Carina; Ramalho, Albina F

    2017-01-01

    BACKGROUND: The consumption of large amounts of dietary fats is one of the most important environmental factors contributing to the development of obesity and metabolic disorders. GPR120 and GPR40 are polyunsaturated fatty acid receptors that exert a number of systemic effects that are beneficial...... for metabolic and inflammatory diseases. Here, we evaluate the expression and potential role of hypothalamic GPR120 and GPR40 as targets for the treatment of obesity. METHODS: Male Swiss (6-weeks old), were fed with a high fat diet (HFD, 60% of kcal from fat) for 4 weeks. Next, mice underwent stereotaxic...... the treatment period. At the end of the experiment, the hypothalamus was collected for real-time PCR analysis. RESULTS: We show that both receptors are expressed in the hypothalamus; GPR120 is primarily present in microglia, whereas GPR40 is expressed in neurons. Upon intracerebroventricular treatment, GW9508...

  4. Regulation of adipocyte differentiation and function by polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    Madsen, Lise; Petersen, Rasmus Koefoed; Kristiansen, Karsten

    2005-01-01

    factors currently implicated as key players in adipocyte differentiation and function, including peroxisome proliferator activated receptors (PPARs) (alpha, beta and gamma), sterol regulatory element binding proteins (SREBPs) and liver X receptors (LXRs). We review evidence that dietary n-3 PUFAs decrease...

  5. Effects of n-3 polyunsaturated fatty acids on cardiac ion channels

    Directory of Open Access Journals (Sweden)

    Cristina eMoreno

    2012-07-01

    Full Text Available Dietary n-3 polyunsaturated fatty acids (PUFAs have been reported to exhibit antiarrhythmic properties, attributed to their capability to modulate ion channels. In the present review, we will focus on the effects of PUFAs on cardiac sodium channel (Nav1.5 and two potassium channels (Kv (Kv1.5 and Kv11.1. n-3 marine (docohexaenoic and eicohexapentaenoic acid and plant origin (alpha-linolenic acid PUFAs block Kv1.5 and Kv11.1 channels at physiological concentrations. Also, DHA and EPA decreased Nav1.5 and calcium channels. These effects on Na and Ca channels theoretically should shorten the cardiac APD, whereas the blocking actions of n-3 PUFAs of Kv channels should lengthen the cardiac action potential. Experiments performed in female rabbits fed with a diet rich in n-3 PUFAs show a longer cardiac action potential and effective refractory period. This study was performed to analyze if their antiarrhythmic effects are due to a reduction of triangulation, reverse use-dependence, instability and dispersion of the cardiac action potential (TRIaD as a measure of proarrhythmic effects. Dietary n-3 PUFAs supplementation markedly reduced dofetilide-induced TRIaD and abolished dofetilide-induced torsades de pointes (TdP. Ultrafast sodium channel block by DHA may account for the antiarrhythmic protection of dietary supplements of n-3 PUFAs against dofetilide induced proarrhythmia observed in this animal model. The cardiac effects of n-3 PUFAs resemble those of amiodarone: both block sodium, calcium and potassium channels, have anti-adrenergic properties, can prolong the cardiac action potential, reverse TRIaD and suppress TdP. The main difference is that sodium channel block by n-3 PUFAs has a much faster onset and offset kinetics. Therefore, the electrophysiological profile of n-3 PUFAs appears more desirable: the duration of reduced sodium current (facilitates re-entry is much shorter. The n-3 PUFAs appear as a safer alternative to other antiarrhythmic

  6. EU REPRO: The Production of fish feed enriched with poly-unsaturated fatty acid

    CSIR Research Space (South Africa)

    Erasmus, C

    2007-01-01

    Full Text Available .2 The Production of Fish Feed enriched with poly-unsaturated fatty acids Corinda Erasmus Annali Jacobs Gerda Lombard Petrus van Zyl Judy Reddy Ntombikayise Nkomo Elizabeth Timme Partner 11 Slide 2 © CSIR 2006 www... www.csir.co.za FLOW DIAGRAM OF THE PRODUCTION OF EPA- ENRICHED FISH FEED BSG (SPENT GRAIN) Eicosapentaenoic Acid (EPA) Protein-rich BSG FISH FEED PELLETS MODIFICATION OF BSG (ENZYME/CHEMICAL/MECHANICAL) FERMENTATION (RECOVERY OF EPA...

  7. Long-chain polyunsaturated fatty acids may mutually benefit both obesity and osteoporosis.

    Science.gov (United States)

    Kelly, Owen J; Gilman, Jennifer C; Kim, Youjin; Ilich, Jasminka Z

    2013-07-01

    The overconsumption of n-6 polyunsaturated fatty acids (PUFA), resulting in a high ratio of n-6 to n-3 PUFA, may contribute to the increased pathogenesis of obesity and osteoporosis by promoting low-grade chronic inflammation (LGCI). As evidence suggests, both obesity and osteoporosis are linked on a cellular and systemic basis. This review will analyze if a relationship exists between LGCI, fat, bone, and n-3 PUFA. During the life cycle, inflammation increases, fat mass accumulates, and bone mass declines, thus suggesting that a connection exists. This review will begin by examining how the current American diet and dietary guidelines may fall short of providing an anti-inflammatory dose of the n-3 PUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). It will then define LGCI and outline the evidence for a relationship between fat and bone. Inflammation as it pertains to obesity and osteoporosis and how EPA and DHA can alleviate the associated inflammation will be discussed, followed by some preliminary evidence to show how mesenchymal stem cell (MSC) lineage commitment may be altered by inflammation to favor adipogenesis. Our hypothesis is that n-3 PUFA positively influence obesity and osteoporosis by reducing LGCI, ultimately leading to a beneficial shift in MSC lineage commitment. This hypothesis essentially relates the need for more focused research in several areas such as determining age and lifestyle factors that promote the shift in MSC commitment and if current intakes of EPA and DHA are optimal for fat and bone. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. MAT1A variants modulate the effect of dietary fatty acids on plasma homocysteine concentrations and DNA damage

    Science.gov (United States)

    Dietary n-3 polyunsaturated fatty acids (PUFA) are associated with decreased plasma homocysteine (Hcy), an important biomarker for cardiovascular disease. Methionine adenosyltransferase (MAT1A) is an enzyme involved in formation of form S-adenosylmethionine during methionine metabolism. The objectiv...

  9. Lipophilic antioxidants and polyunsaturated fatty acids in lipoprotein classes: distribution and interaction

    DEFF Research Database (Denmark)

    Sunesen, V.H.; Weber, Christine; Hølmer, Gunhild Kofoed

    2001-01-01

    supplementations, but fish oil increased the amount of n-3 fatty acids at the expense of n-6 fatty acids. Conclusion: Lipoprotein distribution of CoQ(10) is markedly different from that of alpha -tocopherol, suggesting that they may be metabolised by distinct routes. alpha -Tocopherol is distributed similarly to n......Objective: To study the lipoprotein distribution of supplemented coenzyme Q(10) (CoQ(10)), vitamin E, and polyunsaturated fatty acids (PUFA). Design: Balanced three- period crossover study. Setting: University research unit. Subjects: Eighteen apparently healthy free-living non-smoking volunteers...... the first period and then after each period. Plasma and isolated lipoproteins were analysed for cholesterol, triacylglycerol, alpha- and gamma -tocopherol, CoQ(10), and fatty acid composition. Results: Significant (P

  10. Polyunsaturated fatty acids effect on serum triglycerides concentration in presence of metabolic syndrome components. The Alaska-Siberia Project

    Science.gov (United States)

    Lopez-Alvarenga, Juan C.; Ebbesson, Sven O E; Ebbesson, Lars O E; Tejero, M Elizabeth; Voruganti, V. Saroja; Comuzzie, Anthony G

    2009-01-01

    Serum fatty acids (FA) have wide effects on metabolism: Serum saturated fatty acids (SFA) increase triglyceride (TG) levels in plasma while polyunsaturated fatty acids (PUFA) reduce them. Traditionally, Eskimos have a high consumption of omega -3 fatty acids (ω–3 FA), but the westernization of their food habits have increased their dietary SFAs, partly reflected in their serum concentrations. We studied the joint effect of serum SFAs and PUFAs on circulating levels of TG in the presence of metabolic syndrome components. We included 212 men and 240 women (age 47.9±15.7 y, BMI 26.9±5.3) from four villages located in Alaska for a cross sectional study. Generalized linear models were employed to build surface responses of TG as in functions of SFAs and PUFAs measured in blood samples adjusting by sex, BMI and village. The effects of individual FAs were assessed by multiple linear regression analysis and partial correlations (r) were calculated. The most important predictors for TG levels were glucose tolerance (r = 0.116, p = 0.018) and BMI (r = 0.42, pstructure. The long chain ω-3, even in presence of high levels of SF, was associated with lower triglyceride levels. Eicosapentanoic acid (20:5ω3) had the strongest effect against palmitic acid on TG. The total FA showed moderate association with levels of TG, while SFA was positively associated, and large chain PUFA negatively. The westernized dietary habits among Eskimos are likely to change their metabolic profile and increase comorbidities related to metabolic disease. PMID:19766268

  11. Evolutionary modifications of human milk composition: evidence from long-chain polyunsaturated fatty acid composition of anthropoid milks.

    Science.gov (United States)

    Milligan, Lauren A; Bazinet, Richard P

    2008-12-01

    Brain growth in mammals is associated with increased accretion of long-chain polyunsaturated fatty acids (LCPUFA) in brain phospholipids. The period of maximum accumulation is during the brain growth spurt. Humans have a perinatal brain growth spurt, selectively accumulating docosahexaenoic acid (DHA) and other LCPUFA from the third trimester through the second year of life. The emphasis on rapid postnatal brain growth and LCPUFA transfer during lactation has led to the suggestion that human milk LCPUFA composition may be unique. Our study tests this hypothesis by determining fatty acid composition for 11 species of captive anthropoids (n=53; Callithrix jacchus, Cebus apella, Gorilla gorilla, Hylobates lar, Leontopithecus rosalia, Macaca mulatta, Pan troglodytes, Pan paniscus, Pongo pygmaeus, Saimiri boliviensis, and Symphalangus syndactylus). Results are compared to previously published data on five species of wild anthropoids (n=28; Alouatta paliatta, Callithrix jacchus, Gorilla beringei, Leontopithecus rosalia, and Macaca sinica) and human milk fatty acid profiles. Milk LCPUFA profiles of captive anthropoids (consuming diets with a preformed source of DHA) are similar to milk from women on a Western diet, and those of wild anthropoids are similar to milk from vegan women. Collectively, the range of DHA percent composition values from nonhuman anthropoid milks (0.03-1.1) is nearly identical to that from a cross-cultural analysis of human milk (0.06-1.4). Humans do not appear to be unique in their ability to secrete LCPUFA in milk but may be unique in their access to dietary LCPUFA.

  12. Omega-3 polyunsaturated fatty acids enrichment alters performance and immune response in infectious bursal disease challenged broilers

    Directory of Open Access Journals (Sweden)

    Maroufyan Elham

    2012-01-01

    Full Text Available Abstract Background Infectious bursal disease (IBD results in economic loss due to mortality, reduction in production efficiency and increasing the usage of antibiotics. This study was carried out to investigate the modulatory roles of dietary n-3 polyunsaturated fatty acids (PUFA enrichment in immune response and performance of IBD challenged broiler chickens. Methods A total of 300 day old male broiler chicks were assigned to four dietary n-3 PUFA ascending levels as the treatment groups (T1: 0.5; T2: 8.0; T3: 11.5; T4: 16.5 using combinations of tuna oil and sunflower oil. All diets were isocaloric and isonitrogenous. On day 28, all birds were challenged with IBD virus. Antibody titer, cytokine production, bursa lesion pre and post-challenge and lymphoid organ weight were recorded. Results On d 42 the highest body weight was observed in the T2 and T3 and the lowest in T4 chickens. Feed conversion ratio of the T2 broilers was significantly better than the other groups. Although productive parameters were not responded to the dietary n-3 PUFA in a dose-dependent manner, spleen weight, IBD and Newcastle disease antibody titers and IL-2 and IFN-γ concentrations were constantly elevated by n-3 PUFA enrichment. Conclusions Dietary n-3 PUFA enrichment may improve the immune response and IBD resistance, but the optimum performance does not coincide with the optimum immune response. It seems that dietary n-3 PUFA modulates the broiler chicken performance and immune response in a dose-dependent manner. Thus, a moderate level of dietary n-3 PUFA enrichment may help to put together the efficiency of performance and relative immune response enhancement in broiler chickens.

  13. Impaired plasma phospholipids and relative amounts of essential polyunsaturated fatty acids in autistic patients from Saudi Arabia

    Directory of Open Access Journals (Sweden)

    El-Ansary Afaf K

    2011-04-01

    Full Text Available Abstract Backgrounds Autism is a developmental disorder characterized by social and emotional deficits, language impairments and stereotyped behaviors that manifest in early postnatal life. This study aims to compare the relative concentrations of essential fatty acids (Linoleic and α- linolenic, their long chain polyunsaturated fatty acids and phospholipids in plasma of autistic patients from Saudi Arabia with age-matching controls. Methods 25 autistic children aged 3-15 years and 16 healthy children as control group were included in this study. Relative concentration of essential fatty acids/long chain polyunsaturated fatty acids and omega-3/omega-6 fatty acid series together with phosphatidylethanolamine, phosphatidylserine and phosphatidylcholine were measured in plasma of both groups. Results Remarkable alteration of essential fatty acids/long chain polyunsaturated fatty acids, omeg-3/omega-6 and significant lower levels of phospholipids were reported. Reciever Operating characteristics (ROC analysis of the measured parameters revealed a satisfactory level of sensitivity and specificity. Conclusion Essential fatty acids/long chain polyunsaturated fatty acids and omeg-3/omega-6 ratios, phosphatidylethanolamine, phosphatidylserine and phosphatidylcholine could be used as potential biomarkers that point to specific mechanisms in the development of autism and may help tailor treatment or prevention strategies.

  14. Dietary fatty acids influence sperm quality and function.

    Science.gov (United States)

    Ferramosca, A; Moscatelli, N; Di Giacomo, M; Zara, V

    2017-05-01

    Recently, obesity has been linked to male infertility. In animal models the administration of a high-fat diet caused a reduction in sperm quality, by impairing gamete energy metabolism. The aim of this study was to investigate a possible effect of dietary fatty acids supplementation in the modulation of sperm energy metabolism and, in turn, in the improvement of sperm quality in rats fed a high-fat diet. Sexually mature male Sprague-Dawley rats were divided into four groups and fed for 4 weeks a standard diet (control group), a high-fat diet (enriched in 35% of fat and 15% sucrose), a high-fat diet supplemented with 2.5% olive oil (a source of monounsaturated fatty acids) or a high-fat diet supplemented with 2.5% krill oil (a source of n-3 polyunsaturated fatty acids). Liver and adipose tissue weight, plasma glucose, insulin and lipid concentrations were determined. Activities of enzymes involved in sperm energetic metabolism were evaluated by spectrophotometric assays. Sperm mitochondrial respiratory efficiency was also assayed. The obtained results suggest that olive oil partially counteracts the negative effects of a high-fat diet on sperm quality, by increasing gamete motility, by reducing oxidative stress and slightly improving mitochondrial respiration efficiency. On the other hand, krill oil determines an increase in sperm concentration and motility, an increase in the activities of lactate dehydrogenase, Krebs cycle enzymes and respiratory chain complexes; a parallel increase in the cellular levels of ATP and a reduction in oxidative damage were also observed. These results suggest that dietary fatty acids are able to positively influence sperm quality and function. © 2017 American Society of Andrology and European Academy of Andrology.

  15. Women who take n-3 long-chain polyunsaturated fatty acid supplements during pregnancy and lactation meet the recommended intake.

    Science.gov (United States)

    Jia, Xiaoming; Pakseresht, Mohammadreza; Wattar, Nour; Wildgrube, Jamie; Sontag, Stephanie; Andrews, Murphy; Subhan, Fatheema Begum; McCargar, Linda; Field, Catherine J

    2015-05-01

    The aim of the current study was to estimate total intake and dietary sources of eicosapentaenoic acid (EPA), docosapentanoic (DPA), and docosahexaenoic acid (DHA) and compare DHA intakes with the recommended intakes in a cohort of pregnant and lactating women. Twenty-four-hour dietary recalls and supplement intake questionnaires were collected from 600 women in the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort at each trimester of pregnancy and 3 months postpartum. Dietary intake was estimated in 2 ways: by using a commercial software program and by using a database created for APrON. Only 27% of women during pregnancy and 25% at 3 months postpartum met the current European Union (EU) consensus recommendation for DHA. Seafood, fish, and seaweed products contributed to 79% of overall n-3 long-chain polyunsaturated fatty acids intake from foods, with the majority from salmon. The estimated intake of DHA and EPA was similar between databases, but the estimated DPA intake was 20%-30% higher using the comprehensive database built for this study. Women who took a supplement containing DHA were 10.6 and 11.1 times more likely to meet the current EU consensus recommendation for pregnancy (95% confidence interval (CI): 6.952-16.07; PDHA during pregnancy and lactation, but taking a supplement significantly improved the likelihood that they would meet recommendations.

  16. Polyunsaturated fatty acids influence differential biosynthesis of oxylipids and other lipid mediators during bovine coliform mastitis.

    Science.gov (United States)

    Mavangira, Vengai; Gandy, Jeffery C; Zhang, Chen; Ryman, Valerie E; Daniel Jones, A; Sordillo, Lorraine M

    2015-09-01

    Coliform mastitis is a severe and sometimes fatal disease characterized by an unregulated inflammatory response. The initiation, progression, and resolution of inflammatory responses are regulated, in part, by potent oxylipid metabolites derived from polyunsaturated fatty acids. The purpose of this study was to characterize the biosynthesis and diversity of oxylipid metabolites during acute bovine coliform mastitis. Eleven cows diagnosed with naturally occurring acute systemic coliform mastitis and 13 healthy control cows, matched for lactation number and days in milk, were selected for comparison of oxylipid and free fatty acid concentrations in both milk and plasma. Oxylipids and free fatty acids were quantified using liquid chromatography-tandem mass spectrometry. All polyunsaturated fatty acids quantified in milk were elevated during coliform mastitis with linoleic acid being the most abundant. Oxylipids synthesized through the lipoxygenase and cytochrome P450 pathways accounted for the majority of the oxylipid biosynthesis. This study demonstrated a complex and diverse oxylipid network, most pronounced at the level of the mammary gland. Substrate availability, biosynthetic pathways, and degree of metabolism influence the biosynthesis of oxylipids during bovine coliform mastitis. Further studies are required to identify targets for novel interventions that modulate oxylipid biosynthesis during coliform mastitis to optimize inflammation. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Comparison of inferred fractions of n-3 and n-6 polyunsaturated fatty acids in feral domestic cat diets with those in commercial feline extruded diets.

    Science.gov (United States)

    Backus, Robert C; Thomas, David G; Fritsche, Kevin L

    2013-04-01

    To compare presumed fatty acid content in natural diets of feral domestic cats (inferred from body fat polyunsatrated fatty acids content) with polyunsaturated fatty acid content of commercial feline extruded diets. Subcutaneous and intra-abdominal adipose tissue samples (approx 1 g) from previously frozen cadavers of 7 adult feral domestic cats trapped in habitats remote from human activity and triplicate samples (200 g each) of 7 commercial extruded diets representing 68% of market share obtained from retail stores. Lipid, triacylglycerol, and phospholipid fractions in adipose tissue samples and ether extracts of diet samples were determined by gas chromatography of methyl esters. Triacylglycerol and phospholipid fractions in the adipose tissue were isolated by thin-layer chromatography. Diet samples were also analyzed for proximate contents. For the adipose tissue samples, with few exceptions, fatty acids fractions varied only moderately with lipid fraction and site from which tissue samples were obtained. Linoleic, α-linolenic, arachidonic, eicosapentaenoic, and docosahexaenoic acid fractions were 15.0% to 28.2%, 4.5% to 18.7%, 0.9% to 5.0%, feral cat diets, in which dietary n-3 and possibly n-6 polyunsaturated fatty acids were more abundant. The impact of this difference on the health of pet cats is not known.

  18. Polyunsaturated fatty acids production by Schizochytrium sp. isolated from mangrove

    Directory of Open Access Journals (Sweden)

    K.W. Fan

    2003-09-01

    Full Text Available Five Schizochytrium strains (N-1, N-2, N-5, N-6, and N-9 were isolated from fallen, senescent leaves of mangrove tree (Kandelia candel in Hong Kong. The fungi were cultivated in glucose yeast extract medium containing 60 g of glucose, 10 g of yeast extract and 1 L of 15‰ artificial seawater, initial pH 6.0, with shaking for 52 hr at 25ºC. Biomass yields of 5 isolates ranged from 10.8 to 13.2 g/l. Isolate N-2 yielding the highest dried cell mass at 13.2 g/l and isolate N-9 grew poorly with 10.8 g/l of biomass. EPA (Eicosapentaenoic acid, 20:5n-3 yield was low in most strains, while DHA (Docosahexaenoic acid, 22:6n-3 was high on the same medium. The contents of DHA in biomass varied: 174.9, 203.6, 186.1, 171.3 and 157.9 mg/g of dried-biomass for Schizochytrium isolate N-1, N-2, N-5, N-6, and N-9, respectively. Isolate N-2 had the highest proportion of DHA in fatty acid profile with 15:0, 28.7%; 16:0, 21.3%; 18:0, 0.9%; 18:3, 0.2%; 20:4, 0.3%; 20:5, 0.9%; 22:4, 6.7%; 22:6, 36.1%; and others, 9.3%. The salinity range for growth of Schizochytrium isolates was from 0-30‰ with optimum salinity for growth between 20-30‰.

  19. N-3 Polyunsaturated Fatty Acids of Marine Origin and Multifocality in Human Breast Cancer.

    Science.gov (United States)

    Ouldamer, Lobna; Goupille, Caroline; Vildé, Anne; Arbion, Flavie; Body, Gilles; Chevalier, Stephan; Cottier, Jean Philippe; Bougnoux, Philippe

    2016-01-01

    The microenvironment of breast epithelial tissue may contribute to the clinical expression of breast cancer. Breast epithelial tissue, whether healthy or tumoral, is directly in contact with fat cells, which in turn could influence tumor multifocality. In this pilot study we investigated whether the fatty acid composition of breast adipose tissue differed according to breast cancer focality. Twenty-three consecutive women presenting with non-metastatic breast cancer underwent breast-imaging procedures including Magnetic Resonance Imaging prior to treatment. Breast adipose tissue specimens were collected during breast surgery. We established a biochemical profile of adipose tissue fatty acids by gas chromatography. We assessed whether there were differences according to breast cancer focality. We found that decreased levels in breast adipose tissue of docosahexaenoic and eicosapentaenoic acids, the two main polyunsaturated n-3 fatty acids of marine origin, were associated with multifocality. These differences in lipid content may contribute to mechanisms through which peritumoral adipose tissue fuels breast cancer multifocality.

  20. Prenatal and early postnatal long-chain polyunsaturated fatty acid status : do they affect neurodevelopmental outcome in healthy term infants?

    NARCIS (Netherlands)

    Bouwstra, Hylco

    2007-01-01

    Long-chain metabolites of the parent essential fatty acids called long-chain polyunsaturated fatty acids (LCPUFAs) are major membrane components in the central nervous system. Dictary intake partly determines the availability of LCPUFAs as building btocks for neuronal structures. Fifty till sixty

  1. Vitamin D enhances omega-3 polyunsaturated fatty acids-induced apoptosis in breast cancer cells.

    Science.gov (United States)

    Yang, Jing; Zhu, Shenglong; Lin, Guangxiao; Song, Ci; He, Zhao

    2017-08-01

    Breast cancer is a leading type of cancer in women and generally classified into three subtypes of ER + /PR + , HER2 + and triple negative. Both omega-3 polyunsaturated fatty acids and vitamin D 3 play positive role in the reduction of breast cancer incidence. However, whether combination of omega-3 polyunsaturated fatty acids and vitamin D 3 has stronger protective effect on breast carcinogenesis still remains unknown. In this study, we show that the combination of ω-3 free fatty acids (ω-3 FFAs) and 1α, 25-dihydroxy-vitamin D 3 (VD 3 ) dramatically enhances cell apoptosis among three subtypes of breast cancer cell lines. Bcl-2 and total PARP protein levels are decreased in combined treatment MCF-7 and SK-BR-3 cells. Caspase signals play a vital role in cell apoptosis induced by combination. Moreover, Raf-MAPK signaling pathway is involved in the apoptosis induction by combination of ω-3 FFAs+VD 3 . These results demonstrate that the induction of cell apoptosis by combined treatment is dependent on different signaling pathways in three subtypes of breast cancer cell lines. © 2017 International Federation for Cell Biology.

  2. Impaired maternal glucose homeostasis during pregnancy is associated with low status of long-chain polyunsaturated fatty acids (LCP) and essential fatty acids (EFA) in the fetus

    NARCIS (Netherlands)

    Dijck-Brouwer, DAJ; Hadders-Algra, M; Bouwstra, H; Decsi, T; Boehm, G; Martini, IA; Boersma, ER; Muskiet, FAJ

    Low status of long-chain polyunsaturated fatty acids (LCP) and essential fatty acids (EFA) in the fetus is associated with less favorable neonatal neurological condition. A 'relative', rather than 'absolute' EFA deficiency might explain this finding. A relative EFA deficiency may derive from

  3. Correlates of whole-blood polyunsaturated fatty acids among young children with moderate acute malnutrition

    DEFF Research Database (Denmark)

    Yaméogo, Charles W; Cichon, Bernardette; Fabiansen, Christian

    2017-01-01

    BACKGROUND: Severe acute malnutrition (SAM) has been associated with low polyunsaturated fatty acid (PUFA) status. However, investigations regarding PUFA status and correlates in children with moderate acute malnutrition (MAM) from low-income countries are scarce. The aim of this study...... was to describe whole-blood PUFA levels in children with moderate acute malnutrition (MAM) and to identify correlates of PUFAs. METHODS: We conducted a cross-sectional study using baseline data from a prospective nutritional intervention trial among 1609 children with MAM aged 6-23 months in Burkina Faso...

  4. Cognitive antecedents of consumers' willingness to purchase fish rich in polyunsaturated fatty acids (PUFA).

    Science.gov (United States)

    Foxall, G; Leek, S; Maddock, S

    1998-12-01

    A sample of UK consumers (N = 311) was interviewed in order to identify the attitudinal, cognitive and involvement characteristics of probable early adopters of polyunsaturated fatty acid (PUFA) fed fish. Attitude to fish significantly influenced PUFA fish, premium price PUFA fish, PUFA salmon, PUFA eel and PUFA sturgeon purchase. Involvement in healthy eating influenced PUFA fish, premium price PUFA fish and PUFA salmon purchase. Cognitive style did not influence PUFA fish and premium price PUFA fish purchase; nor, contrary to earlier research, did cognitive style and involvement interact to influence intended PUFA fish purchases.

  5. Synthesis of Monoacylglycerol Rich in Polyunsaturated Fatty Acids from Tuna Oil with Immobilized Lipase AK

    DEFF Research Database (Denmark)

    Pawongrat, Ratchapol; Xu, Xuebing; H-Kittikun, Aran

    2007-01-01

    The aim of this study was to produce monoacylglycerols (MAG) rich in polyunsaturated fatty acids (PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), by glycerolysis of tuna oil with lipase AK from Pseudomonas fluorescence immobilized on Accurel EP-100 (IM-AK). tert...... on tuna oil. The temperature was controlled at 45 degrees C. Under these conditions, with a 24 h reaction, the yield of MAG was 24.6%, but containing 56.0 wt% PUFA (EPA and DHA). Stability of the IM-AK was also studied. The hydrolytic activity of the enzyme remained at 88% and 80% of initial activity...

  6. Milk yield and reproductive performance of dairy heifers and cows supplemented with polyunsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    Félix Gonzalez

    2015-04-01

    Full Text Available The objective of this work was to determine productive and fertility responses of Holstein-Friesian heifers and cows to supplementation with extruded linseed and soybean as sources of polyunsaturated fatty acids (PUFAs. Supplementation had a positive effect on profitability, with significant increases in milk yield in supplemented cows, but not in heifers. Treatments had no effect on milk fat content, but higher milk protein contents were observed with supplementation. A higher conception rate was found for supplemented heifers, but not for cows. Fat sources containing PUFAs are recommended for dairy cattle supplementation, since they improve fertility in heifers and milk yield in cows.

  7. Polyunsaturated fatty acid analogs act antiarrhythmically on the cardiac IKs channel

    DEFF Research Database (Denmark)

    Liin, Sara I.; Silverå Ejneby, Malin; Barro-Soria, Rene

    2015-01-01

    Polyunsaturated fatty acids (PUFAs) affect cardiac excitability. Kv7.1 and the β-subunit KCNE1 form the cardiac IKs channel that is central for cardiac repolarization. In this study, we explore the prospects of PUFAs as IKs channel modulators. We report that PUFAs open Kv7.1 via an electrostatic...... charge at neutral pH, restore the sensitivity to open IKs channels. PUFA analogs with a positively charged head group inhibit IKs channels. These different PUFA analogs could be developed into drugs to treat cardiac arrhythmias. In support of this possibility, we show that PUFA analogs act...

  8. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota.

    Science.gov (United States)

    Watson, Henry; Mitra, Suparna; Croden, Fiona C; Taylor, Morag; Wood, Henry M; Perry, Sarah L; Spencer, Jade A; Quirke, Phil; Toogood, Giles J; Lawton, Clare L; Dye, Louise; Loadman, Paul M; Hull, Mark A

    2017-09-26

    Omega-3 polyunsaturated fatty acids (PUFAs) have anticolorectal cancer (CRC) activity. The intestinal microbiota has been implicated in colorectal carcinogenesis. Dietary omega-3 PUFAs alter the mouse intestinal microbiome compatible with antineoplastic activity. Therefore, we investigated the effect of omega-3 PUFA supplements on the faecal microbiome in middle-aged, healthy volunteers (n=22). A randomised, open-label, cross-over trial of 8 weeks' treatment with 4 g mixed eicosapentaenoic acid/docosahexaenoic acid in two formulations (soft-gel capsules and Smartfish drinks), separated by a 12-week 'washout' period. Faecal samples were collected at five time-points for microbiome analysis by 16S ribosomal RNA PCR and Illumina MiSeq sequencing. Red blood cell (RBC) fatty acid analysis was performed by liquid chromatography tandem mass spectrometry. Both omega-3 PUFA formulations induced similar changes in RBC fatty acid content, except that drinks were associated with a larger, and more prolonged, decrease in omega-6 PUFA arachidonic acid than the capsule intervention (p=0.02). There were no significant changes in α or β diversity, or phyla composition, associated with omega-3 PUFA supplementation. However, a reversible increased abundance of several genera, including Bifidobacterium , Roseburia and Lactobacillus was observed with one or both omega-3 PUFA interventions. Microbiome changes did not correlate with RBC omega-3 PUFA incorporation or development of omega-3 PUFA-induced diarrhoea. There were no treatment order effects. Omega-3 PUFA supplementation induces a reversible increase in several short-chain fatty acid-producing bacteria, independently of the method of administration. There is no simple relationship between the intestinal microbiome and systemic omega-3 PUFA exposure. ISRCTN18662143. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless

  9. Polyunsaturated fatty acids in various macroalgal species from North Atlantic and tropical seas.

    Science.gov (United States)

    van Ginneken, Vincent J T; Helsper, Johannes P F G; de Visser, Willem; van Keulen, Herman; Brandenburg, Willem A

    2011-06-22

    In this study the efficacy of using marine macroalgae as a source for polyunsaturated fatty acids, which are associated with the prevention of inflammation, cardiovascular diseases and mental disorders, was investigated. The fatty acid (FA) composition in lipids from seven sea weed species from the North Sea (Ulva lactuca, Chondrus crispus, Laminaria hyperborea, Fucus serratus, Undaria pinnatifida, Palmaria palmata, Ascophyllum nodosum) and two from tropical seas (Caulerpa taxifolia, Sargassum natans) was determined using GCMS. Four independent replicates were taken from each seaweed species. Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs), were in the concentration range of 2-14 mg/g dry matter (DM), while total lipid content ranged from 7-45 mg/g DM. The n-9 FAs of the selected seaweeds accounted for 3%-56% of total FAs, n-6 FAs for 3%-32% and n-3 FAs for 8%-63%. Red and brown seaweeds contain arachidonic (C20:4, n-6) and/or eicosapentaenoic acids (EPA, C20:5, n-3), the latter being an important "fish" FA, as major PUFAs while in green seaweeds these values are low and mainly C16 FAs were found. A unique observation is the presence of another typical "fish" fatty acid, docosahexaenoic acid (DHA, C22:6, n-3) at ≈ 1 mg/g DM in S. natans. The n-6: n-3 ratio is in the range of 0.05-2.75 and in most cases below 1.0. Environmental effects on lipid-bound FA composition in seaweed species are discussed. Marine macroalgae form a good, durable and virtually inexhaustible source for polyunsaturated fatty acids with an (n-6) FA: (n-3) FA ratio of about 1.0. This ratio is recommended by the World Health Organization to be less than 10 in order to prevent inflammatory, cardiovascular and nervous system disorders. Some marine macroalgal species, like P. palmata, contain high proportions of the "fish fatty acid" eicosapentaenoic acid (EPA, C20:5, n-3), while in S. natans also docosahexaenoic acid (DHA, C22:6, n-3) was detected.

  10. Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas

    Directory of Open Access Journals (Sweden)

    van Keulen Herman

    2011-06-01

    Full Text Available Abstract Background In this study the efficacy of using marine macroalgae as a source for polyunsaturated fatty acids, which are associated with the prevention of inflammation, cardiovascular diseases and mental disorders, was investigated. Methods The fatty acid (FA composition in lipids from seven sea weed species from the North Sea (Ulva lactuca, Chondrus crispus, Laminaria hyperborea, Fucus serratus, Undaria pinnatifida, Palmaria palmata, Ascophyllum nodosum and two from tropical seas (Caulerpa taxifolia, Sargassum natans was determined using GCMS. Four independent replicates were taken from each seaweed species. Results Omega-3 (n-3 and omega-6 (n-6 polyunsaturated fatty acids (PUFAs, were in the concentration range of 2-14 mg/g dry matter (DM, while total lipid content ranged from 7-45 mg/g DM. The n-9 FAs of the selected seaweeds accounted for 3%-56% of total FAs, n-6 FAs for 3%-32% and n-3 FAs for 8%-63%. Red and brown seaweeds contain arachidonic (C20:4, n-6 and/or eicosapentaenoic acids (EPA, C20:5, n-3, the latter being an important "fish" FA, as major PUFAs while in green seaweeds these values are low and mainly C16 FAs were found. A unique observation is the presence of another typical "fish" fatty acid, docosahexaenoic acid (DHA, C22:6, n-3 at ≈ 1 mg/g DM in S. natans. The n-6: n-3 ratio is in the range of 0.05-2.75 and in most cases below 1.0. Environmental effects on lipid-bound FA composition in seaweed species are discussed. Conclusion Marine macroalgae form a good, durable and virtually inexhaustible source for polyunsaturated fatty acids with an (n-6 FA: (n-3 FA ratio of about 1.0. This ratio is recommended by the World Health Organization to be less than 10 in order to prevent inflammatory, cardiovascular and nervous system disorders. Some marine macroalgal species, like P. palmata, contain high proportions of the "fish fatty acid" eicosapentaenoic acid (EPA, C20:5, n-3, while in S. natans also docosahexaenoic acid (DHA, C

  11. Polyunsaturated fatty acids intake, omega-6/omega-3 ratio and mortality: Findings from two independent nationwide cohorts.

    Science.gov (United States)

    Zhuang, Pan; Wang, Wenqiao; Wang, Jun; Zhang, Yu; Jiao, Jingjing

    2018-03-03

    Polyunsaturated fatty acids (PUFA) have been reported to exert pleiotropic protective effects against various chronic diseases. However, epidemiologic evidence linking specific PUFA intake to mortality has been limited and contradictory. We aim to assess the associations between specific dietary PUFA and mortality among adults in China and America, respectively. Participants from China Health and Nutrition Survey (CHNS, n = 14,117) and National Health and Nutrition Examination Survey [NHANES (n = 36,032)] were prospectively followed up through the year 2011. Cox regression models were used to investigate hypothesized associations. A total of 1007 and 4826 deaths accrued over a median of 14 and 9.1 years of follow-up in CHNS and NHANES, respectively. Dietary marine omega-3 PUFA was robustly associated with a reduced all-cause mortality [Hazard ratio (HR) comparing extreme categories: 0.74, 95% CI: 0.61-0.89; P omega-6/omega-3 ratio of 6-10 was associated with a lower risk of death in CHNS. Intakes of different specific PUFA show distinct associations with mortality and these relationships also vary between Chinese and US populations. These findings suggest maintaining an omega-6/omega-3 balance diet for overall health promotion outcomes (NCT03155659). Copyright © 2018 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  12. Role of dietary fatty acids in liver injury caused by vinyl chloride metabolites in mice

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Lisanne C [Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Department of Medicine, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Yeo, Heegook; Kaelin, Brenna R; Lang, Anna L; Bushau, Adrienne M; Douglas, Amanda N [Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Cave, Matt [Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Department of Medicine, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Hepatobiology and Toxicology Program, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Diabetes and Obesity Center, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Robley Rex Louisville VAMC, Louisville, KY 40206 (United States); Arteel, Gavin E [Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Hepatobiology and Toxicology Program, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); McClain, Craig J [Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Department of Medicine, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Hepatobiology and Toxicology Program, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Diabetes and Obesity Center, University of Louisville Health Sciences Center, Louisville, KY 40292 (United States); Robley Rex Louisville VAMC, Louisville, KY 40206 (United States); and others

    2016-11-15

    Background: Vinyl chloride (VC) causes toxicant-associated steatohepatitis at high exposure levels. Recent work by this group suggests that underlying liver disease may predispose the liver to VC hepatotoxicity at lower exposure levels. The most common form of underlying liver disease in the developed world is non-alcoholic fatty liver disease (NAFLD). It is well-known that the type of dietary fat can play an important role in the pathogenesis of NAFLD. However, whether the combination of dietary fat and VC/metabolites promotes liver injury has not been studied. Methods: Mice were administered chloroethanol (CE - a VC metabolite) or vehicle once, 10 weeks after being fed diets rich in saturated fatty acids (HSFA), rich in poly-unsaturated fatty acids (HPUFA), or the respective low-fat control diets (LSFA; LPUFA). Results: In control mice, chloroethanol caused no detectable liver injury, as determined by plasma transaminases and histologic indices of damage. In HSFA-fed mice, chloroethanol increased HSFA-induced liver damage, steatosis, infiltrating inflammatory cells, hepatic expression of proinflammatory cytokines, and markers of endoplasmic reticulum (ER) stress. Moreover, markers of inflammasome activation were increased, while markers of inflammasome inhibition were downregulated. In mice fed HPUFA all of these effects were significantly attenuated. Conclusions: Chloroethanol promotes inflammatory liver injury caused by dietary fatty acids. This effect is far more exacerbated with saturated fat, versus poly-unsaturated fat; and strongly correlates with a robust activation of the NLRP3 inflammasome in the saturated fed animals only. Taken together these data support the hypothesis that environmental toxicant exposure can exacerbate the severity of NAFLD/NASH. - Highlights: • CE promotes inflammatory liver injury caused by dietary fatty acids. • This effect is stronger with saturated than with unsaturated fatty acids. • Damage caused by saturated fat and CE

  13. Role of dietary fatty acids in liver injury caused by vinyl chloride metabolites in mice

    International Nuclear Information System (INIS)

    Anders, Lisanne C; Yeo, Heegook; Kaelin, Brenna R; Lang, Anna L; Bushau, Adrienne M; Douglas, Amanda N; Cave, Matt; Arteel, Gavin E; McClain, Craig J

    2016-01-01

    Background: Vinyl chloride (VC) causes toxicant-associated steatohepatitis at high exposure levels. Recent work by this group suggests that underlying liver disease may predispose the liver to VC hepatotoxicity at lower exposure levels. The most common form of underlying liver disease in the developed world is non-alcoholic fatty liver disease (NAFLD). It is well-known that the type of dietary fat can play an important role in the pathogenesis of NAFLD. However, whether the combination of dietary fat and VC/metabolites promotes liver injury has not been studied. Methods: Mice were administered chloroethanol (CE - a VC metabolite) or vehicle once, 10 weeks after being fed diets rich in saturated fatty acids (HSFA), rich in poly-unsaturated fatty acids (HPUFA), or the respective low-fat control diets (LSFA; LPUFA). Results: In control mice, chloroethanol caused no detectable liver injury, as determined by plasma transaminases and histologic indices of damage. In HSFA-fed mice, chloroethanol increased HSFA-induced liver damage, steatosis, infiltrating inflammatory cells, hepatic expression of proinflammatory cytokines, and markers of endoplasmic reticulum (ER) stress. Moreover, markers of inflammasome activation were increased, while markers of inflammasome inhibition were downregulated. In mice fed HPUFA all of these effects were significantly attenuated. Conclusions: Chloroethanol promotes inflammatory liver injury caused by dietary fatty acids. This effect is far more exacerbated with saturated fat, versus poly-unsaturated fat; and strongly correlates with a robust activation of the NLRP3 inflammasome in the saturated fed animals only. Taken together these data support the hypothesis that environmental toxicant exposure can exacerbate the severity of NAFLD/NASH. - Highlights: • CE promotes inflammatory liver injury caused by dietary fatty acids. • This effect is stronger with saturated than with unsaturated fatty acids. • Damage caused by saturated fat and CE

  14. Exogenous Polyunsaturated Fatty Acids Impact Membrane Remodeling and Affect Virulence Phenotypes among Pathogenic Vibrio Species.

    Science.gov (United States)

    Moravec, Anna R; Siv, Andrew W; Hobby, Chelsea R; Lindsay, Emily N; Norbash, Layla V; Shults, Daniel J; Symes, Steven J K; Giles, David K

    2017-11-15

    The pathogenic Vibrio species ( V. cholerae , V. parahaemolyticus , and V. vulnificus ) represent a constant threat to human health, causing foodborne and skin wound infections as a result of ingestion of or exposure to contaminated water and seafood. Recent studies have highlighted Vibrio 's ability to acquire fatty acids from environmental sources and assimilate them into cell membranes. The possession and conservation of such machinery provokes consideration of fatty acids as important factors in the pathogenic lifestyle of Vibrio species. The findings here link exogenous fatty acid exposure to changes in bacterial membrane phospholipid structure, permeability, phenotypes associated with virulence, and consequent stress responses that may impact survival and persistence of pathogenic Vibrio species. Polyunsaturated fatty acids (PUFAs) (ranging in carbon length and unsaturation) supplied in growth medium were assimilated into bacterial phospholipids, as determined by thin-layer chromatography and liquid chromatography-mass spectrometry. The incorporation of fatty acids variably affected membrane permeability, as judged by uptake of the hydrophobic compound crystal violet. For each species, certain fatty acids were identified as affecting resistance to antimicrobial peptide treatment. Significant fluctuations were observed with regard to both motility and biofilm formation following growth in the presence of individual PUFAs. Our results illustrate the important and complex roles of exogenous fatty acids in the membrane physiology and virulence of a bacterial genus that inhabits aquatic and host environments containing an abundance of diverse fatty acids. IMPORTANCE Bacterial responses to fatty acids include, but are not limited to, degradation for metabolic gain, modification of membrane lipids, alteration of protein function, and regulation of gene expression. Vibrio species exhibit significant diversity with regard to the machinery known to participate in the

  15. Polyunsaturated fatty acids and their metabolites in brain function and disease.

    Science.gov (United States)

    Bazinet, Richard P; Layé, Sophie

    2014-12-01

    The brain is highly enriched with fatty acids. These include the polyunsaturated fatty acids (PUFAs) arachidonic acid and docosahexaenoic acid, which are largely esterified to the phospholipid cell membrane. Once PUFAs are released from the membrane, they can participate in signal transduction, either directly or after enzymatic conversion to a variety of bioactive derivatives ('mediators'). PUFAs and their mediators regulate several processes within the brain, such as neurotransmission, cell survival and neuroinflammation, and thereby mood and cognition. PUFA levels and the signalling pathways that they regulate are altered in various neurological disorders, including Alzheimer's disease and major depression. Diet and drugs targeting PUFAs may lead to novel therapeutic approaches for the prevention and treatment of brain disorders.

  16. The composition of polyunsaturated fatty acids in erythrocytes of lactating mothers and their infants

    DEFF Research Database (Denmark)

    Jørgensen, M.H.; Nielsen, P.K.; Michaelsen, K.F.

    2006-01-01

    Long-chain polyunsaturated fatty acids (LCPUFA) in breastmilk, specifically docosahexaenoic acid (DHA), are important for infant brain development. Accretion of DHA in the infant brain is dependent on DHA-status, intake and metabolism. The aim of this study was to describe changes in maternal...... and infant erythrocyte (RBC) DHA-status during the first four months of lactation. We examined 17 mothers and their term infants at 1, 2 and 4 months of age. Milk samples and RBC from the mothers and infants were obtained and analysed for fatty acid composition. Comparative analysis of the results showed...... that the content of DHA in maternal RBC-phosphatidylcholine (PE) decreased over the four month period and this was not accompanied by a decrease in DHA in infant RBC-PE (P = 0.005). The ratio of n-6 PUFA to n-3 PUFA increased over time in maternal RBC-PE, but not in infant RBC-PE (P

  17. Selective incorporation of various C-22 polyunsaturated fatty acids in Ehrlich ascites tumor cells

    International Nuclear Information System (INIS)

    Masuzawa, Y.; Okano, S.; Waku, K.; Sprecher, H.; Lands, W.E.

    1986-01-01

    Three 14 C-labeled 22-carbon polyunsaturated fatty acids, 7,10,13,16-[ 14 C]docosatetraenoic acid (22:4(n-6)), 7,10,13,16,19-[ 14 C]docosapentaenoic acid (22:5(n-3)), and 4,7,10,13,16,19-[ 14 C]docosahexaenoic acid (22:6(n-3)), were compared with [ 3 H]arachidonic acid (20:4(n-6] and [14C]linoleic acid (18:2(n-6)) to characterize their incorporation into the lipids of Ehrlich ascites cells. The relatively rapid incorporation of the labeled 22-carbon acids into phosphatidic acid indicated that substantial amounts of these acids may be incorporated through the de novo pathway of phospholipid synthesis. In marked contrast to 20:4(n-6), the 22-carbon acids were incorporated much less into choline glycerophospholipids (CGP) and inositol glycerophospholipids (IGP). No selective preference was apparent for the (n-3) or (n-6) type of fatty acids. The amounts of the acids incorporated into diacylglycerophosphoethanolamine were in the order of: 22:6(n-3) greater than 20:4(n-6) much greater than 22:5(n-3) greater than or equal to 22:4(n-6) greater than 18:2(n-6), whereas for alkylacylglycerophosphoethanolamine they were in the order of: 22:4(n-6) greater than 22:6(n-3) greater than 22:5(n-3) much greater than 20:4(n-6) greater than 18:2(n-6). Of the mechanisms possibly responsible for the selective entry of 22-carbon acids into ethanolamine glycerophospholipids, the most reasonable explanation was that the cytidine-mediated ethanolamine phosphotransferase may have a unique double selectivity: for hexaenoic species of diacylglycerol and for 22-carbon polyunsaturated fatty acid-containing species of alkylacylglycerol. The relative distribution of fatty acids between newly incorporated and already maintained lipid classes suggested that IGP may function in Ehrlich cells as an intermediate pool for the retention of polyunsaturated fatty acids in glycerolipids

  18. Polyunsaturated fatty acids acutely affect triacylglycerol-derived skeletal muscle fatty acid uptake and increases postprandial insulin sensitivity

    NARCIS (Netherlands)

    Jans, Anneke; Konings, Ellen; Goossens, Gijs H.; Bouwman, Freek G.; Moors, Chantalle C.; Boekschoten, Mark; Afman, Lydia; Muller, Michael; Mariman, Edwin C.; Blaak, Ellen E.

    2012-01-01

    Dietary fat quality may influence skeletal muscle lipid handling and fat accumulation, thereby modulating insulin sensitivity. Objective: To examine acute effects of meals with various fatty acid (FA) compositions on skeletal muscle FA handling and postprandial insulin sensitivity in obese insulin

  19. Polyunsaturated fatty acid amides from the Zanthoxylum genus - from culinary curiosities to probes for chemical biology.

    Science.gov (United States)

    Chruma, Jason J; Cullen, Douglas J; Bowman, Lydia; Toy, Patrick H

    2018-01-25

    Covering up to February 2017The pericarps of several species from the Zanthoxylum genus, a.k.a. the "prickly ash", have long been used for culinary purposes throughout Asia, most notably in the Sichuan (previously Szechuan) cuisine of Southwestern China, due to the unique tingling and numbing orosensations arising from a collection of polyunsaturated fatty acid amide (alkamide) constituents. The past decade has experienced dramatically increased academic and industrial interest in these pungent Zanthoxylum-derived alkamides, with a concomitant explosion in studies aimed at elucidating the specific biochemical mechanisms behind several medically-relevant biological activities exhibited by the natural products. This rapid increase in interest is partially fueled by advances in organic synthesis reported within the past few years that finally have allowed for the production of diastereomerically-pure Zanthoxylum alkamides and related analogs in multigram quantities. Herein is a comprehensive review of the discovery, total synthesis, and biological evaluation of Zanthoxylum-derived polyunsaturated fatty acid amides and synthetic analogues. Critical insights into how chemical synthesis can further benefit future chemical biology efforts in the field are also provided.

  20. Therapeutic Applicability of Anti-Inflammatory and Proresolving Polyunsaturated Fatty Acid-Derived Lipid Mediators

    Directory of Open Access Journals (Sweden)

    Gerard L. Bannenberg

    2010-01-01

    Full Text Available The enzymatic oxygenation of polyunsaturated fatty acids by lipoxygenases and cyclo-oxygenases is a resourceful mode of formation of specific autacoids that regulate the extent and pace of the inflammatory response. Arachidonate-derived eicosanoids, such as lipoxin A4, prostaglandin (PGD2, PGF2α, PGE2, and PGD2-derived cyclopentenones exert specific roles in counter-regulating inflammation and turning on resolution. Recently recognized classes of autacoids derived from long-chain ω-3 polyunsaturated fatty acids, the E- and D-series resolvins, protectin D1, and maresin 1, act as specialized mediators to dampen inflammation actively, afford tissue protection, stimulate host defense, and activate resolution. It is held that counter-regulatory lipid mediators and the specific molecular pathways activated by such endogenous agonists may be suitable for pharmacological use in the treatment of inflammatory disease. The anti-inflammatory drug aspirin is a striking example of a drug that is able to act in such a manner, namely through triggering the formation of 15-epi-lipoxin A4 and aspirin-triggered resolvins. Different aspects of the therapeutic applicability of lipid mediators have been addressed here, and indicate that the development of innovative pharmacotherapy based on anti-inflammatory and proresolution lipid mediators presents novel prospects for the treatment of inflammatory disease.

  1. The Molecular Basis of Polyunsaturated Fatty Acid Interactions with the Shaker Voltage-Gated Potassium Channel.

    Directory of Open Access Journals (Sweden)

    Samira Yazdi

    2016-01-01

    Full Text Available Voltage-gated potassium (KV channels are membrane proteins that respond to changes in membrane potential by enabling K+ ion flux across the membrane. Polyunsaturated fatty acids (PUFAs induce channel opening by modulating the voltage-sensitivity, which can provide effective treatment against refractory epilepsy by means of a ketogenic diet. While PUFAs have been reported to influence the gating mechanism by electrostatic interactions to the voltage-sensor domain (VSD, the exact PUFA-protein interactions are still elusive. In this study, we report on the interactions between the Shaker KV channel in open and closed states and a PUFA-enriched lipid bilayer using microsecond molecular dynamics simulations. We determined a putative PUFA binding site in the open state of the channel located at the protein-lipid interface in the vicinity of the extracellular halves of the S3 and S4 helices of the VSD. In particular, the lipophilic PUFA tail covered a wide range of non-specific hydrophobic interactions in the hydrophobic central core of the protein-lipid interface, while the carboxylic head group displayed more specific interactions to polar/charged residues at the extracellular regions of the S3 and S4 helices, encompassing the S3-S4 linker. Moreover, by studying the interactions between saturated fatty acids (SFA and the Shaker KV channel, our study confirmed an increased conformational flexibility in the polyunsaturated carbon tails compared to saturated carbon chains, which may explain the specificity of PUFA action on channel proteins.

  2. Reduced triacylglycerol mobilization during seed germination and early seedling growth in Arabidopsis containing nutritionally important polyunsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    Pushkar Shrestha

    2016-09-01

    Full Text Available There are now several examples of plant species engineered to synthesise and accumulate nutritionally important polyunsaturated fatty acids in their seed triacylglycerols (TAG. The utilization of such TAG in germinating seeds of such transgenic plants was unknown. In this study, we examined the TAG utilization efficiency during seed germination in transgenic Arabidopsis seeds containing several examples of these fatty acids. Seed TAG species with native fatty acids had higher utilization rate than the TAG species containing transgenically produced polyunsaturated fatty acids. Conversely, quantification of the fatty acid components remaining in the total TAG after early stages of seed germination revealed that the undigested TAGs tended to contain an elevated level of the engineered polyunsaturated fatty acids (PUFA. LC-MS analysis further revealed asymmetrical mobilization rates for the individual TAG species. TAGs which contained multiple PUFA fatty acids were mobilized slower than the species containing single PUFA. The mobilised engineered fatty acids were used in de novo membrane lipid synthesis during seedling development.

  3. Are Polyunsaturated Fatty Acids Implicated in Histaminergic Dysregulation in Bipolar Disorder?: AN HYPOTHESIS

    Directory of Open Access Journals (Sweden)

    María E. Riveros

    2018-06-01

    Full Text Available Bipolar disorder (BD is an extremely disabling psychiatric disease, characterized by alternate states of mania (or hypomania and depression with euthymic states in between. Currently, patients receive pharmacological treatment with mood stabilizers, antipsychotics, and antidepressants. Unfortunately, not all patients respond well to this type of treatment. Bipolar patients are also more prone to heart and metabolic diseases as well as a higher risk of suicide compared to the healthy population. For a correct brain function is indispensable a right protein and lipids (e.g., fatty acids balance. In particular, the amount of fatty acids in the brain corresponds to a 50–70% of the dry weight. It has been reported that in specific brain regions of BD patients there is a reduction in the content of unsaturated n-3 fatty acids. Accordingly, a diet rich in n-3 fatty acids has beneficial effects in BD patients, while their absence or high levels of saturated fatty acids in the diet are correlated to the risk of developing the disease. On the other hand, the histamine system is likely to be involved in the pathophysiology of several psychiatric diseases such as BD. Histamine is a neuromodulator involved in arousal, motivation, and energy balance; drugs acting on the histamine receptor H3 have shown potential as antidepressants and antipsychotics. The histaminergic system as other neurotransmission systems can be altered by fatty acid membrane composition. The purpose of this review is to explore how polyunsaturated fatty acids content alterations are related to the histaminergic system modulation and their impact in BD pathophysiology.

  4. Erythrocyte polyunsaturated fatty acid composition is associated with depression and FADS genotype in Caucasians.

    Science.gov (United States)

    Cribb, Lachlan; Murphy, Jenifer; Froud, Amy; Oliver, Georgina; Bousman, Chad A; Ng, Chee H; Sarris, Jerome

    2017-05-29

    Polyunsaturated fatty acids (PUFAs) play an important role in the pathophysiology of major depressive disorder (MDD), related, in part, to their role in inflammatory systems. The enzymes δ-5 and δ-6 desaturase are the rate-limiting steps in the metabolism of PUFAs and are encoded in the genes fatty acid desaturase (FADS) 1 and 2, respectively. Single nucleotide polymorphisms (SNPs) and haplotypes within the FADS gene cluster have been shown to influence PUFA composition. The objective of this study was to determine whether key omega-3 (n-3) and omega-6 (n-6) fatty acids may be associated with depression, and to explore the role of FADS genotype in PUFA variation. Four erythrocyte long chain (LC) fatty acids (linoleic acid [LA], α-linolenic acid [ALA], arachidonic acid [AA] and Eicosapentaenoic acid [EPA]), as well as six SNPs (rs174537, rs174547, rs174570, rs174575, rs498793 and rs3834458) within the FADS gene cluster were measured in a sample of 207 participants (154 with MDD versus 53 non-depressed controls). The precursor LC-PUFAs LA and ALA appeared to be negatively associated with depression (P depression (P Precursor LC-PUFAs, LA and ALA, appear to be associated with MDD and potentially modulated by genetic variation in the FADS gene cluster. These results provide support for the consideration of PUFA composition, diet and FADS genetic variation in the pathophysiology of MDD.

  5. Combining nutrition, food science and engineering in developing solutions to Inflammatory bowel diseases--omega-3 polyunsaturated fatty acids as an example.

    Science.gov (United States)

    Ferguson, Lynnette R; Smith, Bronwen G; James, Bryony J

    2010-10-01

    The Inflammatory bowel diseases, Crohn's disease and ulcerative colitis, are debilitating conditions, characterised by lifelong sensitivity to certain foods, and often a need for surgery and life-long medication. The anti-inflammatory effects of long chain omega-3 polyunsaturated acids justify their inclusion in enteral nutrition formulas that have been associated with disease remission. However, there have been variable data in clinical trials to test supplementary omega-3 polyunsaturated fatty acids in inducing or maintaining remission in these diseases. Although variability in trial design has been suggested as a major factor, we suggest that variability in processing and presentation of the products may be equally or more important. The nature of the source, and rapidity of getting the fish or other food source to processing or to market, will affect the percentage of the various fatty acids, possible presence of heavy metal contaminants and oxidation status of the various fatty acids. For dietary supplements or fortified foods, whether the product is encapsulated or not, whether storage is under nitrogen or not, and length of time between harvest, processing and marketing will again profoundly affect the properties of the final product. Clinical trials to test efficacy of these products in IBD to date have utilised the relevant skills of pharmacology and gastroenterology. We suggest that knowledge from food science, nutrition and engineering will be essential to establish the true role of this important group of compounds in these diseases. This journal is © The Royal Society of Chemistry 2010

  6. Long-chain polyunsaturated fatty acids and neurological developmental outcome at 18 months in healthy term infants

    NARCIS (Netherlands)

    Bouwstra, H; Dijck-Brouwer, DAJ; Boehm, G; Boersma, ER; Muskiet, FAJ; Hadders-Algra, M

    Aim: Previously, we found a beneficial effect of 2 mo supplementation of infant formula with long-chain polyunsaturated fatty acids (LC-PUFA) on neurological condition at 3 mo in healthy term infants. The aim of the present follow-up study was to evaluate whether the effect on neurological condition

  7. Effect of polyunsaturated fatty acids on the reactive oxygen and nitrogen species production by raw 264.7 macrophages

    Czech Academy of Sciences Publication Activity Database

    Ambrožová, Gabriela; Pekarová, Michaela; Lojek, Antonín

    2010-01-01

    Roč. 49, č. 3 (2010), s. 133-139 ISSN 1436-6207 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : polyunsaturated fatty acids * reactive oxygen species * reactive nitrogen species Subject RIV: BO - Biophysics Impact factor: 3.343, year: 2010

  8. The impact of long chain polyunsaturated fatty acids on food allergy and cardiovascular disease. Fish and no chips?

    NARCIS (Netherlands)

    van den Elsen, L.W.J.

    2013-01-01

    This thesis creates more insight into the efficacy and mechanism of action of polyunsaturated fatty acids (PUFA), which act on the interface between pharmacology and nutrition in the prevention of allergic and cardiovascular disease. PUFA are categorized into n-6 and n-3 PUFA. The last decades have

  9. Prenatal long-chain polyunsaturated fatty acid status : the importance of a balanced intake of docosahexaenoic acid and arachidonic acid

    NARCIS (Netherlands)

    Hadders-Algra, Mijna

    2008-01-01

    This review addresses the effect of prenatal long-chain polyunsaturated fatty acid (LCPUFA) status on neuro-developmental outcome. It focuses on the major LPCUFA doxosahexaenoic acid (DNA; 22:6 omega 3) and arachidonic acid (AA; 20:4 omega 6). Due to enzymatic competition high DHA intake results in

  10. n-3 Polyunsaturated Fatty Acids and Mechanisms to Mitigate Inflammatory Paracrine Signaling in Obesity-Associated Breast Cancer

    Directory of Open Access Journals (Sweden)

    Jennifer M. Monk

    2014-10-01

    Full Text Available Globally, the prevalence of obesity is increasing which subsequently increases the risk of the development of obesity-related chronic diseases. Low-grade chronic inflammation and dysregulated adipose tissue inflammatory mediator/adipokine secretion are well-established in obesity, and these factors increase the risk of developing inflammation-associated cancer. Breast cancer is of particular interest given that increased inflammation within the subcutaneous mammary adipose tissue depot can alter the local tissue inflammatory microenvironment such that it resembles that of obese visceral adipose tissue. Therefore, in obese women with breast cancer, increased inflammatory mediators both locally and systemically can perpetuate inflammation-associated pro-carcinogenic signaling pathways, thereby increasing disease severity. Herein, we discuss some of these inflammation-associated pro-carcinogenic mechanisms of the combined obese breast cancer phenotype and offer evidence that dietary long chain n-3 polyunsaturated fatty acids (PUFA may have utility in mitigating the severity of obesity-associated inflammation and breast cancer.

  11. Validity of a food frequency questionnaire to estimate long-chain polyunsaturated fatty acid intake among Japanese women in early and late pregnancy.

    Science.gov (United States)

    Kobayashi, Minatsu; Jwa, Seung Chik; Ogawa, Kohei; Morisaki, Naho; Fujiwara, Takeo

    2017-01-01

    The relative validity of food frequency questionnaires for estimating long-chain polyunsaturated fatty acid (LC-PUFA) intake among pregnant Japanese women is currently unclear. The aim of this study was to verify the external validity of a food frequency questionnaire, originally developed for non-pregnant adults, to assess the dietary intake of LC-PUFA using dietary records and serum phospholipid levels among Japanese women in early and late pregnancy. A validation study involving 188 participants in early pregnancy and 169 participants in late pregnancy was conducted. Intake LC-PUFA was estimated using a food frequency questionnaire and evaluated using a 3-day dietary record and serum phospholipid concentrations in both early and late pregnancy. The food frequency questionnaire provided estimates of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) intake with higher precision than dietary records in both early and late pregnancy. Significant correlations were observed for LC-PUFA intake estimated using dietary records in both early and late pregnancy, particularly for EPA and DHA (correlation coefficients ranged from 0.34 to 0.40, p food frequency questionnaire, which was originally designed for non-pregnant adults and was evaluated in this study against dietary records and biological markers, has good validity for assessing LC-PUFA intake, especially EPA and DHA intake, among Japanese women in early and late pregnancy. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  12. PTH1 receptor is involved in mediating cellular response to long-chain polyunsaturated fatty acids.

    Directory of Open Access Journals (Sweden)

    Jose Candelario

    Full Text Available The molecular pathways by which long chain polyunsaturated fatty acids (LCPUFA influence skeletal health remain elusive. Both LCPUFA and parathyroid hormone type 1 receptor (PTH1R are known to be involved in bone metabolism while any direct link between the two is yet to be established. Here we report that LCPUFA are capable of direct, PTH1R dependent activation of extracellular ligand-regulated kinases (ERK. From a wide range of fatty acids studied, varying in chain length, saturation, and position of double bonds, eicosapentaenoic (EPA and docosahexaenoic fatty acids (DHA caused the highest ERK phosphorylation. Moreover, EPA potentiated the effect of parathyroid hormone (PTH(1-34 in a superagonistic manner. EPA or DHA dependent ERK phosphorylation was inhibited by the PTH1R antagonist and by knockdown of PTH1R. Inhibition of PTH1R downstream signaling molecules, protein kinases A (PKA and C (PKC, reduced EPA and DHA dependent ERK phosphorylation indicating that fatty acids predominantly activate G-protein pathway and not the β-arrestin pathway. Using picosecond time-resolved fluorescence microscopy and a genetically engineered PTH1R sensor (PTH-CC, we detected conformational responses to EPA similar to those caused by PTH(1-34. PTH1R antagonist blocked the EPA induced conformational response of the PTH-CC. Competitive binding studies using fluorescence anisotropy technique showed that EPA and DHA competitively bind to and alter the affinity of PTH1 receptor to PTH(1-34 leading to a superagonistic response. Finally, we showed that EPA stimulates protein kinase B (Akt phosphorylation in a PTH1R-dependent manner and affects the osteoblast survival pathway, by inhibiting glucocorticoid-induced cell death. Our findings demonstrate for the first time that LCPUFAs, EPA and DHA, can activate PTH1R receptor at nanomolar concentrations and consequently provide a putative molecular mechanism for the action of fatty acids in bone.

  13. Short chain and polyunsaturated fatty acids in host gut health and foodborne bacterial pathogen inhibition.

    Science.gov (United States)

    Peng, Mengfei; Biswas, Debabrata

    2017-12-12

    As a major source of microbes and their numerous beneficial effects, the gut microflora/microbiome is intimately linked to human health and disease. The exclusion of enteric pathogens by these commensal microbes partially depends upon the production of bioactive compounds such as short-chain fatty acids (SCFAs) and polyunsaturated fatty acids (PUFAs). These key intestinal microbial byproducts are crucial to the maintenance of a healthy gut microbial community. Moreover, SCFAs and PUFAs play multiple critical roles in host defense and immunity, including anti-cancer, anti-inflammation, and anti-oxidant activities, as well as out-competition of enteric bacterial pathogens. In this review article, we hereby aim to highlight the importance of SCFAs and PUFAs and the microbes involved in production of these beneficial intestinal components, and their biological functions, specifically as to their immunomodulation and interactions with enteric bacterial pathogens. Finally, we also advance potential applications of these fatty acids with regards to food safety and human gut health.

  14. Anti-inflammatory effects of polyunsaturated fatty acids in THP-1 cells

    International Nuclear Information System (INIS)

    Zhao Guixiang; Etherton, Terry D.; Martin, Keith R.; Vanden Heuvel, John P.; Gillies, Peter J.; West, Sheila G.; Kris-Etherton, Penny M.

    2005-01-01

    The effects of linoleic acid (LA), α-linolenic acid (ALA), and docosahexaenoic acid (DHA) were compared to that of palmitic acid (PA), on inflammatory responses in human monocytic THP-1 cells. When cells were pre-incubated with fatty acids for 2-h and then stimulated with lipopolysaccharide for 24-h in the presence of fatty acids, secretion of interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNFα) was significantly decreased after treatment with LA, ALA, and DHA versus PA (P 12,14 -prostaglandin J2 (15d-PGJ2) and were dose-dependent. In addition, LA, ALA, and DHA decreased IL-6, IL-1β, and TNFα gene expression (P < 0.05 for all) and nuclear factor (NF)-κB DNA-binding activity, whereas peroxisome proliferator-activated receptor-γ (PPARγ) DNA-binding activity was increased. The results indicate that the anti-inflammatory effects of polyunsaturated fatty acids may be, in part, due to the inhibition of NF-κB activation via activation of PPARγ

  15. N-3 Polyunsaturated Fatty Acids of Marine Origin and Multifocality in Human Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Lobna Ouldamer

    Full Text Available The microenvironment of breast epithelial tissue may contribute to the clinical expression of breast cancer. Breast epithelial tissue, whether healthy or tumoral, is directly in contact with fat cells, which in turn could influence tumor multifocality. In this pilot study we investigated whether the fatty acid composition of breast adipose tissue differed according to breast cancer focality.Twenty-three consecutive women presenting with non-metastatic breast cancer underwent breast-imaging procedures including Magnetic Resonance Imaging prior to treatment. Breast adipose tissue specimens were collected during breast surgery. We established a biochemical profile of adipose tissue fatty acids by gas chromatography. We assessed whether there were differences according to breast cancer focality.We found that decreased levels in breast adipose tissue of docosahexaenoic and eicosapentaenoic acids, the two main polyunsaturated n-3 fatty acids of marine origin, were associated with multifocality.These differences in lipid content may contribute to mechanisms through which peritumoral adipose tissue fuels breast cancer multifocality.

  16. Involvement of gut microbial fermentation in the metabolic alterations occurring in n-3 polyunsaturated fatty acids-depleted mice

    Directory of Open Access Journals (Sweden)

    Carpentier Yvon A

    2011-06-01

    Full Text Available Abstract Backround Western diet is characterized by an insufficient n-3 polyunsaturated fatty acid (PUFA consumption which is known to promote the pathogenesis of several diseases. We have previously observed that mice fed with a diet poor in n-3 PUFA for two generations exhibit hepatic steatosis together with a decrease in body weight. The gut microbiota contributes to the regulation of host energy metabolism, due to symbiotic relationship with fermentable nutrients provided in the diet. In this study, we have tested the hypothesis that perturbations of the gut microbiota contribute to the metabolic alterations occurring in mice fed a diet poor in n-3 PUFA for two generations (n-3/- mice. Methods C57Bl/6J mice fed with a control or an n-3 PUFA depleted diet for two generations were supplemented with prebiotic (inulin-type Fructooligosaccharides, FOS, 0.20 g/day/mice during 24 days. Results n-3/-mice exhibited a marked drop in caecum weight, a decrease in lactobacilli and an increase in bifidobacteria in the caecal content as compared to control mice (n-3/+ mice. Dietary supplementation with FOS for 24 days was sufficient to increase caecal weight and bifidobacteria count in both n-3/+ and n-3/-mice. Moreover, FOS increased lactobacilli content in n-3/-mice, whereas it decreased their level in n-3/+ mice. Interestingly, FOS treatment promoted body weight gain in n-3/-mice by increasing energy efficiency. In addition, FOS treatment decreased fasting glycemia and lowered the higher expression of key factors involved in the fatty acid catabolism observed in the liver of n-3/-mice, without lessening steatosis. Conclusions the changes in the gut microbiota composition induced by FOS are different depending on the type of diet. We show that FOS may promote lactobacilli and counteract the catabolic status induced by n-3 PUFA depletion in mice, thereby contributing to restore efficient fat storage.

  17. Fish consumption and omega-3 polyunsaturated fatty acids in relation to depressive episodes: a cross-sectional analysis.

    Directory of Open Access Journals (Sweden)

    Anna Liisa Suominen-Taipale

    Full Text Available High fish consumption and omega-3 polyunsaturated fatty acid (PUFA intake are suggested to benefit mental well-being but the current evidence is conflicting. Our aim was to evaluate whether a higher level of fish consumption, a higher intake of omega-3 PUFAs, and a higher serum concentration of omega-3 PUFAs link to a lower 12-month prevalence of depressive episodes.We used data from the nationwide Health 2000 Survey (n = 5492 and the Fishermen Study on Finnish professional fishermen and their family members (n = 1265. Data were based on questionnaires, interviews, health examinations, and blood samples. Depressive episodes were assessed with the M-CIDI (the Munich version of the Composite International Diagnostic Interview and a self-report of two CIDI probe questions, respectively. Fish consumption was measured by a food frequency questionnaire (g/day and independent frequency questions (times/month. Dietary intake (g/day and serum concentrations (% from fatty acids of PUFAs were determined. Fish consumption was associated with prevalence of depressive episodes in men but not in women. The prevalence of depressive episodes decreased from 9% to 5% across the quartiles of fish consumption (g/day in men of the Health 2000 Survey (p for linear trend = 0.01, and from17% to 3% across the quartiles of fish consumption (times/month in men of the Fishermen Study (p for linear trend = 0.05. This association was modified by lifestyle; in the Health 2000 Survey a higher level of fish consumption was related to a lower prevalence of depressive episodes in men who consumed the most alcohol, were occasional or former smokers, or had intermediate physical activity. The associations between depressive episodes and the intake or serum concentrations of omega-3 PUFAs were not consistent.In men, fish consumption appears as a surrogate for underlying but unidentified lifestyle factors that protect against depression.

  18. Gene polymorphisms of desaturase enzymes of polyunsaturated fatty acid metabolism and adiponutrin and the increased risk of nonalcoholic fatty liver disease

    OpenAIRE

    Manvi Vernekar; Deepak Amarapurkar; Kalpana Joshi; Rekha Singhal

    2017-01-01

    Nonalcoholic fatty liver disease (NAFLD) is considered to be the hepatic manifestation of the metabolic syndrome (MetS). Adiponutrin gene polymorphisms have been associated with NAFLD worldwide. Polyunsaturated fatty acids (PUFAs) have been studied to have anti-inflammatory effects and plasma lipid lowering properties. PUFAs are endogenously synthesized with the help of delta-6-desaturase and delta-5-desaturase enzymes. They are encoded by FADS2 and FADS1 genes respectively. Polymorphisms in ...

  19. Echium acanthocarpum hairy root cultures, a suitable system for polyunsaturated fatty acid studies and production

    Directory of Open Access Journals (Sweden)

    Ravelo Ángel G

    2011-04-01

    Full Text Available Abstract Background The therapeutic and health promoting role of highly unsaturated fatty acids (HUFAs from fish, i.e. eicosapentaenoic acid (EPA, 20:5n-3 and docosahexaenoic acid (DHA, 22:6n-3 are well known. These same benefits may however be shared by some of their precursors, the polyunsaturated fatty acids (PUFAs, such as stearidonic acid (SDA, 18:4 n-3. In order to obtain alternative sources for the large-scale production of PUFAs, new searches are being conducted focusing on higher plants oils which can contain these n-3 and n-6 C18 precursors, i.e. SDA and GLA (18:3n-6, γ-linolenic acid. Results The establishment of the novel Echium acanthocarpum hairy root cultures represents a powerful tool in order to research the accumulation and metabolism of fatty acids (FAs in a plant particularly rich in GLA and SDA. Furthermore, this study constitutes the first example of a Boraginaceae species hairy root induction and establishment for FA studies and production. The dominant PUFAs, 18:2n-6 (LA, linoleic acid and 18:3n-6 (GLA, accounted for about 50% of total FAs obtained, while the n-3 PUFAs, 18:3n-3 (ALA, α-linolenic acid and 18:4n-3 (SDA, represented approximately 5% of the total. Production of FAs did not parallel hairy root growth, and the optimal productivity was always associated with the highest biomass density during the culture period. Assuming a compromise between FA production and hairy root biomass, it was determined that sampling times 4 and 5 gave the most useful FA yields. Total lipid amounts were in general comparable between the different hairy root lines (29.75 and 60.95 mg/g DW, with the major lipid classes being triacylglycerols. The FAs were chiefly stored in the hairy roots with very minute amounts being released into the liquid nutrient medium. Conclusions The novel results presented here show the utility and high potential of E. acanthocarpum hairy roots. They are capable of biosynthesizing and accumulating a large

  20. Early life exposure to polyunsaturated fatty acids and psychomotor development in children from the EDEN mother-child cohort

    Directory of Open Access Journals (Sweden)

    Bernard Jonathan Y.

    2016-01-01

    Full Text Available Epidemiological studies have reported that breastfed children have improved psychomotor development compared to never breastfed children. Human studies suggest that polyunsaturated fatty acids (PUFA, especially long chain PUFA (LC-PUFA which are highly contained in breast milk, could explain this link, since they are needed for pre- and postnatal brain development. Our aim was to study the relationships between several measures of pre- and postnatal exposures to PUFA and child’s psychomotor development at 2 and 3 years in the EDEN cohort. We evaluated breastfeeding duration, colostrum PUFA levels and maternal dietary PUFA intake during pregnancy, that we related with three scores of psychomotor development, after taking into account potential confounders. Breastfeeding duration was positively associated with psychomotor development. No relationship was found with both pre- and postnatal exposure to LC-PUFA. However, the maternal dietary omega-6/omega-3 ratio was negatively associated with psychomotor development, mainly driven by intake in linoleic acid (LA. Among breastfed children, linoleic acid levels were negatively associated with psychomotor development. Furthermore, children exposed to the highest colostrum LA levels tended to score closer to never breastfed children than to children exposed to the lowest colostrums LA levels. Taken together, these results do not provide evidence in favour of a positive role of pre- and postnatal exposure to LC-PUFA on later psychomotor development, but highlight a potential negative role of being exposed in early life to high LA levels. From a public health perspective, this work reiterates the need to promote breastfeeding duration, and to monitor the balance of PUFA intake during pregnancy and lactation periods.

  1. Sequestration of polyunsaturated fatty acids in membrane phospholipids of Caenorhabditis elegans dauer larva attenuates eicosanoid biosynthesis for prolonged survival

    Directory of Open Access Journals (Sweden)

    Sin Man Lam

    2017-08-01

    Full Text Available Mechanistic basis governing the extreme longevity and developmental quiescence of dauer juvenile, a “non-ageing” developmental variant of Caenorhabditis elegans, has remained largely obscure. Using a lipidomic approach comprising multiple reaction monitoring transitions specific to distinct fatty acyl moieties, we demonstrated that in comparison to other developmental stages, the membrane phospholipids of dauer larva contain a unique enrichment of polyunsaturated fatty acids (PUFAs. Esterified PUFAs in phospholipids exhibited temporal accumulation throughout the course of dauer endurance, followed by sharp reductions prior to termination of diapause. Reductions in esterified PUFAs were accompanied by concomitant increases in unbound PUFAs, as well as their corresponding downstream oxidized derivatives (i.e. eicosanoids. Global phospholipidomics has unveiled that PUFA sequestration in membrane phospholipids denotes an essential aspect of dauer dormancy, principally via suppression of eicosanoid production; and a failure to upkeep membrane lipid homeostasis is associated with termination of dauer endurance. Keywords: Dauer larva, Phospholipids, Polyunsaturated fatty acids, Eicosanoids, Lipidomics, Caenorhabditis elegans

  2. Omega-3 long-chain polyunsaturated fatty acids support aerial insectivore performance more than food quantity.

    Science.gov (United States)

    Twining, Cornelia W; Brenna, J Thomas; Lawrence, Peter; Shipley, J Ryan; Tollefson, Troy N; Winkler, David W

    2016-09-27

    Once-abundant aerial insectivores, such as the Tree Swallow (Tachycineta bicolor), have declined steadily in the past several decades, making it imperative to understand all aspects of their ecology. Aerial insectivores forage on a mixture of aquatic and terrestrial insects that differ in fatty acid composition, specifically long-chain omega-3 polyunsaturated fatty acid (LCPUFA) content. Aquatic insects contain high levels of both LCPUFA and their precursor omega-3 PUFA, alpha-linolenic acid (ALA), whereas terrestrial insects contain much lower levels of both. We manipulated both the quantity and quality of food for Tree Swallow chicks in a full factorial design. Diets were either high-LCPUFA or low in LCPUFA but high in ALA, allowing us to separate the effects of direct LCPUFA in diet from the ability of Tree Swallows to convert their precursor, ALA, into LCPUFA. We found that fatty acid composition was more important for Tree Swallow chick performance than food quantity. On high-LCPUFA diets, chicks grew faster, were in better condition, and had greater immunocompetence and lower basal metabolic rates compared with chicks on both low LCPUFA diets. Increasing the quantity of high-LCPUFA diets resulted in improvements to all metrics of performance while increasing the quantity of low-LCPUFA diets only resulted in greater immunocompetence and lower metabolic rates. Chicks preferentially retained LCPUFA in brain and muscle when both food quantity and LCPUFA were limited. Our work suggests that fatty acid composition is an important dimension of aerial insectivore nutritional ecology and reinforces the importance of high-quality aquatic habitat for these declining birds.

  3. Biosynthesis of Essential Polyunsaturated Fatty Acids in Wheat Triggered by Expression of Artificial Gene

    Directory of Open Access Journals (Sweden)

    Daniel Mihálik

    2015-12-01

    Full Text Available The artificial gene D6D encoding the enzyme ∆6desaturase was designed and synthesized using the sequence of the same gene from the fungus Thamnidium elegans. The original start codon was replaced by the signal sequence derived from the wheat gene for high-molecular-weight glutenin subunit and the codon usage was completely changed for optimal expression in wheat. Synthesized artificial D6D gene was delivered into plants of the spring wheat line CY-45 and the gene itself, as well as transcribed D6D mRNA were confirmed in plants of T0 and T1 generations. The desired product of the wheat genetic modification by artificial D6D gene was the γ-linolenic acid. Its presence was confirmed in mature grains of transgenic wheat plants in the amount 0.04%–0.32% (v/v of the total amount of fatty acids. Both newly synthesized γ-linolenic acid and stearidonic acid have been detected also in leaves, stems, roots, awns, paleas, rachillas, and immature grains of the T1 generation as well as in immature and mature grains of the T2 generation. Contents of γ-linolenic acid and stearidonic acid varied in range 0%–1.40% (v/v and 0%–1.53% (v/v from the total amount of fatty acids, respectively. This approach has opened the pathway of desaturation of fatty acids and production of essential polyunsaturated fatty acids in wheat.

  4. Inhibiting mitochondrial β-oxidation selectively reduces levels of nonenzymatic oxidative polyunsaturated fatty acid metabolites in the brain.

    Science.gov (United States)

    Chen, Chuck T; Trépanier, Marc-Olivier; Hopperton, Kathryn E; Domenichiello, Anthony F; Masoodi, Mojgan; Bazinet, Richard P

    2014-03-01

    Schönfeld and Reiser recently hypothesized that fatty acid β-oxidation is a source of oxidative stress in the brain. To test this hypothesis, we inhibited brain mitochondrial β-oxidation with methyl palmoxirate (MEP) and measured oxidative polyunsaturated fatty acid (PUFA) metabolites in the rat brain. Upon MEP treatment, levels of several nonenzymatic auto-oxidative PUFA metabolites were reduced with few effects on enzymatically derived metabolites. Our finding confirms the hypothesis that reduced fatty acid β-oxidation decreases oxidative stress in the brain and β-oxidation inhibitors may be a novel therapeutic approach for brain disorders associated with oxidative stress.

  5. Dietary fatty acid enrichment increases egg size and quality of yellow seahorse Hippocampus kuda.

    Science.gov (United States)

    Saavedra, M; Masdeu, M; Hale, P; Sibbons, C M; Holt, W V

    2014-02-01

    Seahorses populations in the wild have been declining and to restore them a better knowledge of seahorse reproduction is required. This study examines the effect of dietary quality on seahorse fecundity and egg quality. Two different diets were tested with Hippocampus kuda females: frozen mysis (control) and frozen mysis enriched with a liposome spray containing essential fatty acids. Diets were given to females (two groups of five) over a seven week period. After this period, males (fed the control diet) and females were paired and the eggs dropped by the females were collected. Fatty acid profile were analysed and eggs were counted and measured. Results showed that females fed on enriched mysis had larger eggs and that these had a higher content of total polyunsaturated fatty acids. The size of the egg was especially affected in the first spawn, where egg size for females fed the enriched diet was significantly higher than the egg size from control females. This effect was reduced in the following spawning where no significant differences were found. Egg size is an important quality descriptor as seahorse juveniles originating from smaller eggs and/or eggs of poor quality will have less chances of overcoming adverse conditions in the wild and consequently have lower survival and growth rates. This study shows that enriching frozen mysis with polyunsaturated fatty acids increases egg size and egg quality of H. kuda. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Perfluoroalkyl acid contamination and polyunsaturated fatty acid composition of French freshwater and marine fishes.

    Science.gov (United States)

    Yamada, Ami; Bemrah, Nawel; Veyrand, Bruno; Pollono, Charles; Merlo, Mathilde; Desvignes, Virginie; Sirot, Véronique; Oseredczuk, Marine; Marchand, Philippe; Cariou, Ronan; Antignac, Jean-Phillippe; Le Bizec, Bruno; Leblanc, Jean-Charles

    2014-07-30

    In this study, French marine and freshwater fish perfluoroalkyl acid (PFAA) contamination are presented along with their fatty acid (FA) composition to provide further elements for a risk/benefit balance of fish consumption to be assessed. The 29 most consumed marine fish species were collected in four metropolitan French coastal areas in 2004 to constitute composite samples. Geographical differences in terms of consumed species and contamination level were taken into account. Three hundred and eighty-seven composite samples corresponding to 16 freshwater fish species collected between 2008 and 2010 in the six major French rivers or their tributaries were selected among the French national agency for water and aquatic environments freshwater fish sample library. The raw edible parts were analyzed for FA composition and PFAA contamination. Results show that freshwater fishes are more contaminated by PFAAs than marine fishes and do not share the same contamination profile. Freshwater fish contamination is mostly driven by perfluorooctane sulfonate (PFOS) (75%), whereas marine fish contamination is split between perfluorooctanoic acid (PFOA) (24%), PFOS (20%), perfluorohexanoic acid (PFHxA) (15%), perfluoropentanoic acid (PFHpA) (11%), and perfluorobutanoic acid (PFBA) (11%). Common carp, pike-perch, European perch, thicklip grey mullet, and common roach presented the most unfavorable balance profile due to their high level of PFAAs and low level of n-3 long-chain polyunsaturated fatty acids (LC-PUFAs). These data could be used, if needed, in an updated opinion on fish consumption that takes into account PFAA contamination.

  7. Supplementation of polyunsaturated fatty acids, magnesium and zinc in children seeking medical advice for attention-deficit/hyperactivity problems - an observational cohort study.

    Science.gov (United States)

    Huss, Michael; Völp, Andreas; Stauss-Grabo, Manuela

    2010-09-24

    Polyunsaturated fatty acids are essential nutrients for humans. They are structural and functional components of cell membranes and pre-stages of the hormonally and immunologically active eicosanoids. Recent discoveries have shown that the long-chained omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) also play an important role in the central nervous system. They are essential for normal brain functioning including attention and other neuropsychological skills. In our large observational study we monitored 810 children from 5 to 12 years of age referred for medical help and recommended for consuming polyunsaturated fatty acids (PUFA) in combination with zinc and magnesium by a physician over a period of at least 3 months. The food supplement ESPRICO® (further on referred to as the food supplement) is developed on the basis of current nutritional science and containing a combination of omega-3 and omega-6 fatty acids as well as magnesium and zinc. Study objective was to evaluate the nutritional effects of the PUFA-zinc-magnesium combination on symptoms of attention deficit, impulsivity, and hyperactivity as well as on emotional problems and sleep related parameters. Assessment was performed by internationally standardised evaluation scales, i.e. SNAP-IV and SDQ. Tolerance (adverse events) and acceptance (compliance) of the dietary therapy were documented. After 12 weeks of consumption of a combination of omega-3 and omega-6 fatty acids as well as magnesium and zinc most subjects showed a considerable reduction in symptoms of attention deficit and hyperactivity/impulsivity assessed by SNAP-IV. Further, the assessment by SDQ revealed fewer emotional problems at the end of the study period compared to baseline and also sleeping disorders. Mainly problems to fall asleep, decreased during the 12 week nutritional therapy. Regarding safety, no serious adverse events occurred. A total of 16 adverse events with a possible causal relationship to

  8. Supplementation of polyunsaturated fatty acids, magnesium and zinc in children seeking medical advice for attention-deficit/hyperactivity problems - an observational cohort study

    Directory of Open Access Journals (Sweden)

    Völp Andreas

    2010-09-01

    Full Text Available Abstract Background Polyunsaturated fatty acids are essential nutrients for humans. They are structural and functional components of cell membranes and pre-stages of the hormonally and immunologically active eicosanoids. Recent discoveries have shown that the long-chained omega-3 fatty acids eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA also play an important role in the central nervous system. They are essential for normal brain functioning including attention and other neuropsychological skills. Materials and methods In our large observational study we monitored 810 children from 5 to 12 years of age referred for medical help and recommended for consuming polyunsaturated fatty acids (PUFA in combination with zinc and magnesium by a physician over a period of at least 3 months. The food supplement ESPRICO® (further on referred to as the food supplement is developed on the basis of current nutritional science and containing a combination of omega-3 and omega-6 fatty acids as well as magnesium and zinc. Study objective was to evaluate the nutritional effects of the PUFA-zinc-magnesium combination on symptoms of attention deficit, impulsivity, and hyperactivity as well as on emotional problems and sleep related parameters. Assessment was performed by internationally standardised evaluation scales, i.e. SNAP-IV and SDQ. Tolerance (adverse events and acceptance (compliance of the dietary therapy were documented. Results After 12 weeks of consumption of a combination of omega-3 and omega-6 fatty acids as well as magnesium and zinc most subjects showed a considerable reduction in symptoms of attention deficit and hyperactivity/impulsivity assessed by SNAP-IV. Further, the assessment by SDQ revealed fewer emotional problems at the end of the study period compared to baseline and also sleeping disorders. Mainly problems to fall asleep, decreased during the 12 week nutritional therapy. Regarding safety, no serious adverse events occurred. A

  9. Saturated Branched Chain, Normal Odd-Carbon-Numbered, and n-3 (Omega-3) Polyunsaturated Fatty Acids in Freshwater Fish in the Northeastern United States.

    Science.gov (United States)

    Wang, Dong Hao; Jackson, James R; Twining, Cornelia; Rudstam, Lars G; Zollweg-Horan, Emily; Kraft, Clifford; Lawrence, Peter; Kothapalli, Kumar; Wang, Zhen; Brenna, J Thomas

    2016-10-04

    The fatty acid profiles of wild freshwater fish are poorly characterized as a human food source for several classes of fatty acids, particularly for branched chain fatty acids (BCFA), a major bioactive dietary component known to enter the US food supply primarily via dairy and beef fat. We evaluated the fatty acid content of 27 freshwater fish species captured in the northeastern US with emphasis on the BCFA and bioactive polyunsaturated fatty acids (PUFA) most associated with fish, specifically n-3 (omega-3) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Mean BCFA content across all species was 1.0 ± 0.5% (mean ± SD) of total fatty acids in edible muscle, with rainbow smelt (Osmerus mordax) and pumpkinseed (Lepomis gibbosus) the highest at >2% BCFA. In comparison, EPA + DHA constituted 28% ± 7% of total fatty acids. Across all fish species, the major BCFA were iso-15:0, anteiso-15:0, iso-16:0, iso-17:0 and anteiso-17:0. Fish skin had significantly higher BCFA content than muscle tissues, at 1.8% ± 0.7%, but lower EPA and DHA. Total BCFA in fish skins was positively related with that in muscle (r 2 = 0.6). The straight chain saturates n-15:0 and n-17:0 which have been identified previously as markers for dairy consumption were relatively high with means of 0.4% and 0.6%, respectively, and may be an underappreciated marker for seafood intake. Consuming a standardized portion, 70 g (2.5 oz), of wild freshwater fish contributes only small amounts of BCFA, 2.5-24.2 mg, to the American diet, while it adds surprisingly high amounts of EPA + DHA (107 mg to 558 mg).

  10. Dietary fatty acid metabolism in prediabetes.

    Science.gov (United States)

    Noll, Christophe; Carpentier, André C

    2017-02-01

    Experimental evidences are strong for a role of long-chain saturated fatty acids in the development of insulin resistance and type 2 diabetes. Ectopic accretion of triglycerides in lean organs is a characteristic of prediabetes and type 2 diabetes and has been linked to end-organ complications. The contribution of disordered dietary fatty acid (DFA) metabolism to lean organ overexposure and lipotoxicity is still unclear, however. DFA metabolism is very complex and very difficult to study in vivo in humans. We have recently developed a novel imaging method using PET with oral administration of 14-R,S-F-fluoro-6-thia-heptadecanoic acid (FTHA) to quantify organ-specific DFA partitioning. Our studies thus far confirmed impaired storage of DFA per volume of fat mass in abdominal adipose tissues of individuals with prediabetes. They also highlighted the increased channeling of DFA toward the heart, associated with subclinical reduction in cardiac systolic and diastolic function in individuals with prediabetes. In the present review, we summarize previous work on DFA metabolism in healthy and prediabetic states and discuss these in the light of our novel findings using PET imaging of DFA metabolism. We herein provide an integrated view of abnormal organ-specific DFA partitioning in prediabetes in humans.

  11. N-3 polyunsaturated fatty acid DHA during IVM affected oocyte developmental competence in cattle.

    Science.gov (United States)

    Oseikria, Mouhamad; Elis, Sébastien; Maillard, Virginie; Corbin, Emilie; Uzbekova, Svetlana

    2016-06-01

    The positive effect of n-3 polyunsaturated fatty acids (FAs) on fertility in ruminants seems to be partly mediated through direct effects on the oocyte developmental potential. We aimed to investigate whether supplementation with physiological levels of docosahexaenoic acid (DHA, C22:6 n-3 polyunsaturated fatty acids) during IVM has an effect on oocyte maturation and in vitro embryo development in cattle. We reported that DHA (0, 1, 10, or 100 μM) had no effect on oocyte viability or maturation rate after 22-hour IVM. Incubation of oocyte-cumulus complexes with 1-μM DHA during IVM significantly increased (P DHA during IVM also induced a significant increase in the blastocyst rate at Day 7 after IVF as compared with control (30.6% vs. 17.6%, respectively) and tended to increase the number of cells in the blastocysts (97.1 ± 4.9 vs. 81.2 ± 5.3, respectively; P = 0.08). On the contrary, 10-μM DHA had no effects, whereas 100-μM DHA significantly decreased the cleavage rate compared with control (69.5% vs.78.8%, respectively) and the greater than 4-cell embryo rate at Day 2 after parthenogenetic activation (19.5% vs. 29.7%). As was shown by real-time polymerase chain reaction, negative effects of 100-μM DHA were associated with significant increase of progesterone synthesis by oocyte-cumulus complexes, a three-fold increase in expression level of FA transporter CD36 and a two-fold decrease of FA synthase FASN genes in cumulus cells (CCs) of corresponding oocytes. Docosahexaenoic acid at 1 and 10 μM had no effect on expression of those and other key lipid metabolism-related genes in CC. In conclusion, administration of a low physiological dose of DHA (1 μM) during IVM may have beneficial effects on oocyte developmental competence in vitro without affecting lipid metabolism gene expression in surrounding CCs, contrarily to 100 μM DHA which diminished oocyte quality associated with perturbation of lipid and steroid metabolism in CC. Copyright © 2016

  12. Development and validation of a food frequency questionnaire to assess omega-3 long chain polyunsaturated fatty acid intake in Australian children aged 9-13 years.

    Science.gov (United States)

    Rahmawaty, S; Charlton, K; Lyons-Wall, P; Meyer, B J

    2017-08-01

    The present study aimed to develop a food frequency questionnaire (FFQ) assessing dietary omega-3 long chain polyunsaturated fatty acid (n-3 LCPUFA) intake in Australian children and to validate the FFQ against a 7-day food diary. The investigation comprised a cross-sectional and validation study. The study setting was two private primary schools in the in the Illawarra region of New South Wales. Twenty-two Australian children, aged 9-13 years, who were not on a special diet or receiving medical care that limited their food choice in the 3 months prior to recruitment, were recruited into the study. A total of 131 items, classified according to seven food group categories, was included in the n-3 LCPUFA FFQ, as identified from published dietary surveys and a supermarket survey. Good correlations between the FFQ and the 7-day food diary were observed for eicosapentaenoic acid (EPA) [r = 0.691, 95% confidence interval (CI) = 0.51-0.83, P food diary. However, the mean EPA, DHA and total n-3 LCPUFA intakes estimated from the FFQ were significantly higher than those from the average 7-day food diary estimates (P < 0.001). A novel n-3 LCPUFA FFQ that has been developed to estimate dietary n-3 LCPUFA intakes in Australian children has been shown to have relative validity. The FFQ provides a useful contribution to dietary assessment methodology in this age group; however, reproducibility remains to be demonstrated. © 2016 The British Dietetic Association Ltd.

  13. An Investigation into the Association between DNA Damage and Dietary Fatty Acid in Men with Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Karen S. Bishop

    2015-01-01

    Full Text Available Prostate cancer is a growing problem in New Zealand and worldwide, as populations adopt a Western style dietary pattern. In particular, dietary fat is believed to be associated with oxidative stress, which in turn may be associated with cancer risk and development. In addition, DNA damage is associated with the risk of various cancers, and is regarded as an ideal biomarker for the assessment of the influence of foods on cancer. In the study presented here, 20 men with prostate cancer adhered to a modified Mediterranean style diet for three months. Dietary records, blood fatty acid levels, prostate specific antigen, C-reactive protein and DNA damage were assessed pre- and post-intervention. DNA damage was inversely correlated with dietary adherence (p = 0.013 and whole blood monounsaturated fatty acids (p = 0.009 and oleic acid (p = 0.020. DNA damage was positively correlated with the intake of dairy products (p = 0.043, red meat (p = 0.007 and whole blood omega-6 polyunsaturated fatty acids (p = 0.015. Both the source and type of dietary fat changed significantly over the course of the dietary intervention. Levels of DNA damage were correlated with various dietary fat sources and types of dietary fat.

  14. Evaluation of Novel Polyunsaturated Fatty Acid Derived Lipid Mediators of Inflammation to Ameliorate the Deleterious Effects of Blast Overpressure on Eye and Brain Visual Processing Centers in Rats

    Science.gov (United States)

    2014-10-01

    acid ( DHA ; 22:6ω-3) Eicosapentaenoic acid (EPA; 20:5ω-3) Lipoxin A4 Resolvin E1 Protectin DX Resolvin D1 LOX LOX LOX Structures and Endogenous Source...1 AD_________________ Award Number: W81XWH-12-2-0082 TITLE: Evaluation of Novel Polyunsaturated Fatty Acid Derived Lipid...Evaluation of Novel Polyunsaturated Fatty Acid Derived Lipid Mediators 5a. CONTRACT NUMBER of Inflammation to Ameliorate the Deleterious Effects of

  15. Lipid alterations in human colon epithelial cells induced to differentiation and/or apoptosis by butyrate and polyunsaturated fatty acids

    Czech Academy of Sciences Publication Activity Database

    Hofmanová, Jiřina; Ciganek, M.; Slavík, J.; Kozubík, Alois; Stixová, Lenka; Vaculová, Alena; Dušek, L.; Machala, M.

    2012-01-01

    Roč. 23, č. 6 (2012), s. 539-548 ISSN 0955-2863 R&D Projects: GA ČR(CZ) GA524/07/1178; GA ČR(CZ) GAP301/11/1730 Institutional research plan: CEZ:AV0Z50040507 Institutional support: RVO:68081707 Keywords : Colon cancer * Polyunsaturated fatty acids * Butyrate Subject RIV: BO - Biophysics Impact factor: 4.552, year: 2012

  16. Early life exposure to polyunsaturated fatty acids and psychomotor development in children from the EDEN mother-child cohort

    OpenAIRE

    Bernard Jonathan Y.; Armand Martine; Forhan Anne; De Agostini Maria; Charles Marie-Aline; Heude Barbara

    2016-01-01

    Epidemiological studies have reported that breastfed children have improved psychomotor development compared to never breastfed children. Human studies suggest that polyunsaturated fatty acids (PUFA), especially long chain PUFA (LC-PUFA) which are highly contained in breast milk, could explain this link, since they are needed for pre- and postnatal brain development. Our aim was to study the relationships between several measures of pre- and postnatal exposures to PUFA and child’s psychomotor...

  17. Oils of insects and larvae consumed in Africa: potential sources of polyunsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    Womeni Hilaire Macaire

    2009-07-01

    (8.56% and linoleic acid (6.59% are also present. These results show that these insects are considerable sources of fat. Their oils are rich in polyunsaturated fatty acids, of which essential fatty acids are linoleic and linolenic acids. The ratio PUFA/SFA, in the majority of cases is higher than 0.8, associated with desirable levels of cholesterol.

  18. The interaction between ApoA2 -265T>C polymorphism and dietary fatty acids intake on oxidative stress in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Zamani, Elham; Sadrzadeh-Yeganeh, Haleh; Sotoudeh, Gity; Keramat, Laleh; Eshraghian, Mohammadreza; Rafiee, Masoumeh; Koohdani, Fariba

    2017-08-01

    Apolipoprotein A2 (APOA2) -265T>C polymorphism has been studied in relation to oxidative stress and various dietary fatty acids. Since the interaction between APOA2 polymorphism and dietary fatty acids on oxidative stress has not yet discussed, we aimed to investigate the interaction on oxidative stress in type 2 diabetes mellitus (T2DM) patients. The subjects were 180 T2DM patients with known APOA2 genotype, either TT, TC or CC. Superoxide dismutase (SOD) activity was determined by colorimetric method. Total antioxidant capacity (TAC) and serum level of 8-isoprostane F2α were measured by spectrophotometry and ELISA, respectively. Dietary intake was collected through a food frequency questionnaire. Based on the median intake, fatty acids intake was dichotomized into high or low groups. The interaction between APOA2 polymorphism and dietary fatty acids intake was analyzed by ANCOVA multivariate interaction model. Higher than median intake of omega-6 polyunsaturated fatty acids (n-6 PUFA) was associated with increased serum level of 8-isoprostane F2α in subjects with TT/TC genotype (p = 0.004), and higher than median intake of omega-3 polyunsaturated fatty acids (n-3 PUFA) was associated with increased serum SOD activity in CC genotype (p fatty acids intake on oxidative stress. More investigations on different populations are required to confirm the interaction.

  19. Food frequency questionnaire as an indicator of the serum composition of essential n-3 and n-6 polyunsaturated fatty acids in early pregnancy, according to body mass index.

    Science.gov (United States)

    Lepsch, J; Vaz, J S; Moreira, J D; Pinto, T J P; Soares-Mota, M; Kac, G

    2015-02-01

    We investigated whether food frequency questionnaire (FFQ) may be indicative of the serum composition of essential n-3 and n-6 polyunsaturated fatty acids (PUFAs) in early pregnancy and if correlations are affected by body mass index (BMI). The present study comprised a prospective cohort conducted in Rio de Janeiro, Brazil. The sample was composed of 248 women, aged 20-40 years, between 6 and the 13 weeks of gestation. Dietary intake was assessed using a validated FFQ. Fatty acid serum compositions were determined in fasting serum samples, employing a high-throughput robotic direct methylation coupled with fast gas-liquid chromatography. Spearman's correlation (r(s)) was used to assess the relationship between fatty acid intake and corresponding serum composition. Women were classified according to BMI (kg m(-2) ) as underweight/normal weight (BMI < 25 kg m(-2) ; n = 139) or excessive weight (BMI ≥ 25 kg m(-2) ; n = 109). In the total sample, dietary report was significantly correlated with the serum composition of total polyunsaturated fatty acid (PUFA; r(s) = 0.232, P < 0.001), linoleic acid (LA; 18:2n-6; r(s) = 0.271, P < 0.001), eicosapentaenoic acid (EPA; 20:5n-3; r(s) = 0.263, P < 0.001) and docosahexaenoic acid (DHA; 22:6n-3; r(s) = 0.209, P = 0.001). When analyses were stratified by BMI, significant correlations between FFQ and serum composition among underweight/normal weight women were observed for total PUFA (r(s) = 0.323, P < 0.001), LA (r(s) = 0.322, P < 0.001), EPA (r(s) = 0.352, P < 0.001) and DHA (r(s) = 0.176, P = 0.039). Among women of excessive weight, significant correlations were observed only for alpha linolenic acid (ALA; 18:3n-3; r(s) = 0.199, P = 0.040) and DHA (r(s) = 0.236, P = 0.014). FFQ in early pregnancy may be used as a possible indicator of serum concentrations of fatty acids. Higher correlations were observed among underweight/normal weight women. © 2014 The British Dietetic Association Ltd.

  20. Polyunsaturated fatty acids and suicide risk in mood disorders: A systematic review.

    Science.gov (United States)

    Pompili, Maurizio; Longo, Lucia; Dominici, Giovanni; Serafini, Gianluca; Lamis, Dorian A; Sarris, Jerome; Amore, Mario; Girardi, Paolo

    2017-03-06

    Deficiency of omega-3 polyunsaturated fatty acids (PUFAs) and an alteration between the ratio of omega-3 and omega-6 PUFAs may contribute to the pathogenesis of bipolar disorder and unipolar depression. Recent epidemiological studies have also demonstrated an association between the depletion of PUFAs and suicide. Our aim was to investigate the relationship between PUFAs and suicide; assess whether the depletion of PUFAs may be considered a risk factor for suicidal behavior; in addition to detailing the potential use of PUFAs in clinical practice. We performed a systematic review on PUFAs and suicide in mood disorders, searching MedLine, Excerpta Medica, PsycLit, PsycInfo, and Index Medicus for relevant epidemiological, post-mortem, and clinical studies from January 1997 to September 2016. A total of 20 articles from peer-reviewed journals were identified and selected for this review. The reviewed studies suggest that subjects with psychiatric conditions have a depletion of omega-3 PUFAs compared to control groups. This fatty acid depletion has also been found to contribute to suicidal thoughts and behavior in some cases. However, large epidemiological studies have generally not supported this finding, as the depletion of omega-3 PUFAs was not statistically different between controls and patients diagnosed with a mental illness and/or who engaged in suicidal behavior. Increasing PUFA intake may be relevant in the treatment of depression, however in respect to the prevention of suicide, the data is currently not supportive of this approach. Changes in levels of PUFAs may however be a risk factor to evaluate when assessing for suicide risk. Clinical studies should be conducted to prospectively assess whether prescriptive long-term use of PUFAs in PUFA-deficient people with depression, may have a preventative role in attenuating suicide. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Correlates of whole-blood polyunsaturated fatty acids among young children with moderate acute malnutrition.

    Science.gov (United States)

    Yaméogo, C W; Cichon, B; Fabiansen, C; Rytter, M J H; Faurholt-Jepsen, D; Stark, K D; Briend, A; Shepherd, S; Traoré, A S; Christensen, V B; Michaelsen, K F; Friis, H; Lauritzen, L

    2017-07-13

    Severe acute malnutrition (SAM) has been associated with low polyunsaturated fatty acid (PUFA) status. However, investigations regarding PUFA status and correlates in children with moderate acute malnutrition (MAM) from low-income countries are scarce. The aim of this study was to describe whole-blood PUFA levels in children with moderate acute malnutrition (MAM) and to identify correlates of PUFAs. We conducted a cross-sectional study using baseline data from a prospective nutritional intervention trial among 1609 children with MAM aged 6-23 months in Burkina Faso,West Africa. Whole-blood PUFAs were measured by gas chromatography and expressed as percent of total whole-blood fatty acids (FA%). Potential correlates of PUFAs including infection, inflammation, hemoglobin, anthropometry (difference between children diagnosed as having MAM based on low mid-upper-arm-circumference (MUAC) only, low MUAC and weight-for-height z-score (WHZ), or low WHZ only) and diet were assessed by linear regression adjusted for age and sex. Children with MAM had low concentrations of whole-blood PUFAs, particularly n-3 PUFAs. Moreover, children diagnosed with MAM based only on low MUAC had 0.32 (95% confidence interval (CI), 0.14; 0.50) and 0.40 (95% CI, 0.16; 0.63) FA% lower arachidonic acid (AA) than those recruited based on both low WHZ as well as low MUAC and those recruited with low WHZ only, respectively. Infection and inflammation were associated with low levels of all long-chain (LC)-PUFAs, while hemoglobin was positively associated with whole-blood LC-PUFAs. While PUFA deficiency was not a general problem, overall whole-blood PUFA concentrations, especially of n-3 PUFAs, were low. Infection, inflammation, hemoglobin, anthropometry and diet were correlates of PUFAs concentrations in children with MAM. The trial is registered at http://www.isrctn.com ( ISRCTN42569496 ).

  2. Endogenous n-3 polyunsaturated fatty acids attenuate T cell-mediated hepatitis via autophagy activation

    Directory of Open Access Journals (Sweden)

    Yanli Li

    2016-09-01

    Full Text Available Omega-3 polyunsaturated fatty acids (n-3 PUFAs exert anti-inflammatory effects in several liver disorders, including cirrhosis, acute liver failure, and fatty liver disease. To date, little is known about their role in immune-mediated liver diseases. In this study, we used fat-1 transgenic mice rich in endogenous n-3 PUFAs to examine the role of n-3 PUFAs in immune-mediated liver injury. Concanavalin A (Con A was administered intravenously to wild-type (WT and fat-1 transgenic mice to induce T cell-mediated hepatitis. Reduced liver damage was shown in Con A-administrated fat-1 transgenic mice, as evidenced by decreased mortality, attenuated hepatic necrosis, lessened serum alanine aminotransferase (ALT activity, and inhibited production of pro-inflammatory cytokines (e.g. TNF-α, IL-6, IL-17A and IFN-γ. In vivo and in vitro studies demonstrated that n-3 PUFAs significantly inhibited the activation of hepatic T cells and the differentiation of Th1 cells after Con A challenge. Further studies showed that n-3 PUFAs markedly increased autophagy level in Con A-treated fat-1 T cells compared with the WT counterparts. Blocking hepatic autophagy activity with chloroquine diminished the differences in T cell activation and liver injury between Con A-injected WT and fat-1 transgenic mice. We conclude that n-3 PUFAs limit Con A-induced hepatitis via an autophagy-dependent mechanism, and could be exploited as a new therapeutic approach for autoimmune hepatitis.

  3. Immunoregulatory and anti-inflammatory effects of n-3 polyunsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    P.C. Calder

    1998-04-01

    Full Text Available 1. Fish oils are rich in the long-chain n-3 polyunsaturated fatty acids (PUFAs, eicosapentaenoic (20:5n-3 and docosahexaenoic (22:6n-3 acids. Linseed oil and green plant tissues are rich in the precursor fatty acid, a-linolenic acid (18:3n-3. Most vegetable oils are rich in the n-6 PUFA linoleic acid (18:2n-6, the precursor of arachidonic acid (20:4n-6. 2. Arachidonic acid-derived eicosanoids such as prostaglandin E2 are pro-inflammatory and regulate the functions of cells of the immune system. Consumption of fish oils leads to replacement of arachidonic acid in cell membranes by eicosapentaenoic acid. This changes the amount and alters the balance of eicosanoids produced. 3. Consumption of fish oils diminishes lymphocyte proliferation, T-cell-mediated cytotoxicity, natural killer cell activity, macrophage-mediated cytotoxicity, monocyte and neutrophil chemotaxis, major histocompatibility class II expression and antigen presentation, production of pro-inflammatory cytokines (interleukins 1 and 6, tumour necrosis factor and adhesion molecule expression. 4. Feeding laboratory animals fish oil reduces acute and chronic inflammatory responses, improves survival to endotoxin and in models of autoimmunity and prolongs the survival of grafted organs. 5. Feeding fish oil reduces cell-mediated immune responses. 6. Fish oil supplementation may be clinically useful in acute and chronic inflammatory conditions and following transplantation. 7. n-3 PUFAs may exert their effects by modulating signal transduction and/or gene expression within inflammatory and immune cells.

  4. Endogenous ω-3 polyunsaturated fatty acid production confers resistance to obesity, dyslipidemia, and diabetes in mice.

    Science.gov (United States)

    Li, Jie; Li, Fanghong R; Wei, Dong; Jia, Wei; Kang, Jing X; Stefanovic-Racic, Maja; Dai, Yifan; Zhao, Allan Z

    2014-08-01

    Despite the well-documented health benefits of ω-3 polyunsaturated fatty acids (PUFAs), their use in clinical management of hyperglycemia and obesity has shown little success. To better define the mechanisms of ω-3 PUFAs in regulating energy balance and insulin sensitivity, we deployed a transgenic mouse model capable of endogenously producing ω-3 PUFAs while reducing ω-6 PUFAs owing to the expression of a Caenorhabditis elegans fat-1 gene encoding an ω-3 fatty acid desaturase. When challenged with high-fat diets, fat-1 mice strongly resisted obesity, diabetes, hypercholesterolemia, and hepatic steatosis. Endogenous elevation of ω-3 PUFAs and reduction of ω-6 PUFAs did not alter the amount of food intake but led to increased energy expenditure in the fat-1 mice. The requirements for the levels of ω-3 PUFAs as well as the ω-6/ω-3 ratios in controlling blood glucose and obesity are much more stringent than those in lipid metabolism. These metabolic phenotypes were accompanied by attenuation of the inflammatory state because tissue levels of prostaglandin E2, leukotriene B4, monocyte chemoattractant protein-1, and TNF-α were significantly decreased. TNF-α-induced nuclear factor-κB signaling was almost completely abolished. Consistent with the reduction in chronic inflammation and a significant increase in peroxisome proliferator-activated receptor-γ activity in the fat-1 liver tissue, hepatic insulin signaling was sharply elevated. The activities of prolipogenic regulators, such as liver X receptor, stearoyl-CoA desaturase-1, and sterol regulatory element binding protein-1 were sharply decreased, whereas the activity of peroxisome proliferator-activated receptor-α, a nuclear receptor that facilitates lipid β-oxidation, was markedly increased. Thus, endogenous conversion of ω-6 to ω-3 PUFAs via fat-1 strongly protects against obesity, diabetes, inflammation, and dyslipidemia and may represent a novel therapeutic modality to treat these prevalent

  5. Long-Chain Polyunsaturated Fatty Acids and Clinical Outcomes of Preterm Infants.

    Science.gov (United States)

    Lapillonne, Alexandre; Moltu, Sissel J

    2016-01-01

    Long-chain polyunsaturated fatty acids (LCPUFAs) play specific roles during the perinatal period and are very important nutrients to consider. The possible effects of LCPUFAs, particularly docosahexaenoic acid (DHA), on various clinical outcomes of preterm infants are discussed in this paper. Since DHA accumulates in the central nervous system during development, a lot of attention has focused on the effects of DHA on neurodevelopment. Experimental studies as well as recent clinical trials show that providing larger amounts of DHA than currently and routinely provided is associated with better neurological outcomes at 18 months to 2 years. This early advantage, however, does not seem to translate into detectable change in visual and neurodevelopmental outcomes or behavior when assessed in childhood. There is growing evidence that, in addition to effects on development, omega-3 LCPUFAs may reduce the incidence or severity of neonatal morbidities by affecting different steps of the immune and anti-inflammatory response. Studies in preterm infants suggest that the omega-3 LCPUFAs may play a significant role by reducing the risk of bronchopulmonary dysplasia, necrotizing enterocolitis and possibly retinopathy of prematurity and sepsis. Overall, evidence is increasing to support the benefits of high-dose DHA for various health outcomes of preterm infants. These findings are of major clinical relevance mainly because infants born preterm are at particularly high risk for a nutritional deficit in omega-3 fatty acids, predisposing to adverse neonatal outcomes. Further studies are warranted to address these issues as well as to more precisely determine the LCPUFA requirement in order to favor the best possible outcomes of preterm infants. © 2016 S. Karger AG, Basel.

  6. Enhanced polyunsaturated fatty acids production in Mortierella alpina by SSF and the enrichment in chicken breasts

    Directory of Open Access Journals (Sweden)

    Shengli Yang

    2016-10-01

    Full Text Available Background: Distiller's dried grains with solubles (DDGS and soybean meal were used as the substrates for the production of polyunsaturated fatty acids (PUFA in solid-state fermentation (SSF by Mortierella alpine. These fermented products were fed to laying hens. PUFA enrichment from chicken breasts was studied. Methods: The maximum productivity of PUFA was achieved under optimized process condition, including 1% w/w yeast extract as additive, an incubation period of 5 days at 12°C, 10% v/w inoculum level, 75% moisture content, and pH 6.0. The hens were then fed with ration containing soybean DDGS, rapeseed oil, soybean oil, and peanut oil. The control group was fed with basal ration. Results: Under the optimal condition, M. alpine produced total fatty acids (TFA of 182.34 mg/g dry substrate. It has better mycelial growth when soybean meal was added to DDGS (SDDGS. PUFA in fermentation product increased with higher soybean meal content. The addition of 70% soybean meal to DDGS substrate yielded 175.16 mg of TFA, including 2.49 mg eicosapentaenoic acid (EPA and 5.26 mg docosahexaenoic acid (DHA. The ratios of ω-6/ω-3 found in chicken breasts fat were all lower than that found in control by 36.98, 31.51, 18.15, and 12.63% for SDDGS, rapeseed oil, soybean oil, and peanut oil, respectively. Conclusions: This study identified an optimized SSF process to maximize PUFA productivity by M. alpine as the strain. This PUFA-enriched feed increased the PUFA contents as well as the proportions of ω-6 and ω-3 in chicken breasts and liver.

  7. The effect of n-3/n-6 polyunsaturated fatty acids on acute reflux esophagitis in rats.

    Science.gov (United States)

    Zhuang, Ze-Hao; Xie, Jing-Jing; Wei, Jing-Jing; Tang, Du-Peng; Yang, Li-Yong

    2016-10-04

    Polyunsaturated fatty acids (PUFAs) play various roles in inflammation. However, the effect of PUFAs in the development of reflux esophagitis (RE) is unclear. This study is to investigate the potential effect of n-3/n-6 PUFAs on acute RE in rats along with the underlying protective mechanisms. Forty Sprague Dawley rats were randomly divided into four groups (n = 10 in each group). RE model was established by pyloric clip and section ligation. Fish oil- and soybean oil-based fatty emulsion (n-3 and n-6 groups), or normal saline (control and sham operation groups) was injected intraperitoneally 2 h prior to surgery and 24 h postoperatively (2 mL/kg, respectively). The expressions of interleukin (IL)-1β, IL-8, IL-6 and myeloid differentiation primary response gene 88 (MyD88) in esophageal tissues were evaluated by Western blot and immunohistochemistry after 72 h. The malondialdehyde (MDA) and superoxide dismutase (SOD) expression in the esophageal tissues were determined to assess the oxidative stress. The mildest macroscopic/microscopic esophagitis was found in the n-3 group (P < 0.05). The expression of IL-1β, IL-8, IL-6 and MyD88 were increased in all RE groups, while the lowest and highest expression were found in n-3 and n-6 group, respectively (P < 0.05). The MDA levels were increased in all groups (P < 0.05), in an ascending trend from n-3, n-6 groups to control group. The lowest and highest SOD levels were found in the control and n-3 group, respectively (P < 0.05). n-3 PUFAs may reduce acute RE in rats, which may be due to inhibition of the MyD88-NF-kB pathway and limit oxidative damage.

  8. Erythrocyte polyunsaturated fatty acid status, memory, cognition and mood in older adults with mild cognitive impairment and healthy controls.

    Science.gov (United States)

    Milte, Catherine M; Sinn, Natalie; Street, Steven J; Buckley, Jonathan D; Coates, Alison M; Howe, Peter R C

    2011-01-01

    Polyunsaturated fatty acid (PUFA) levels are altered in adults with cognitive decline and also depression. Depression facilitates progression from mild cognitive impairment (MCI) to dementia. We investigated associations between omega-3 (n-3) and omega-6 (n-6) PUFAs and cognition, memory and depression in 50 adults ≥65 years with MCI and 29 controls. Memory, depressive symptoms and erythrocyte PUFAs (% total fatty acids) were assessed. Eicosapentaenoic acid (EPA) was lower in MCI vs controls (.94% vs 1.26%, pcognitive decline in this population. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Biosynthesis of Polyunsaturated Fatty Acids in Marine Invertebrates: Recent Advances in Molecular Mechanisms

    Science.gov (United States)

    Monroig, Óscar; Tocher, Douglas R.; Navarro, Juan C.

    2013-01-01

    Virtually all polyunsaturated fatty acids (PUFA) originate from primary producers but can be modified by bioconversions as they pass up the food chain in a process termed trophic upgrading. Therefore, although the main primary producers of PUFA in the marine environment are microalgae, higher trophic levels have metabolic pathways that can produce novel and unique PUFA. However, little is known about the pathways of PUFA biosynthesis and metabolism in the levels between primary producers and fish that are largely filled by invertebrates. It has become increasingly apparent that, in addition to trophic upgrading, de novo synthesis of PUFA is possible in some lower animals. The unequivocal identification of PUFA biosynthetic pathways in many invertebrates is complicated by the presence of other organisms within them. These organisms include bacteria and algae with PUFA biosynthesis pathways, and range from intestinal flora to symbiotic relationships that can involve PUFA translocation to host organisms. This emphasizes the importance of studying biosynthetic pathways at a molecular level, and the continual expansion of genomic resources and advances in molecular analysis is facilitating this. The present paper highlights recent research into the molecular and biochemical mechanisms of PUFA biosynthesis in marine invertebrates, particularly focusing on cephalopod molluscs. PMID:24152561

  10. Alterations of polyunsaturated fatty acid metabolism in ovarian tissues of polycystic ovary syndrome rats.

    Science.gov (United States)

    Huang, Rong; Xue, Xinli; Li, Shengxian; Wang, Yuying; Sun, Yun; Liu, Wei; Yin, Huiyong; Tao, Tao

    2018-03-30

    The metabolism of polyunsaturated fatty acids (PUFAs) remains poorly characterized in ovarian tissues of patients with polycystic ovary syndrome (PCOS). This study aimed to explore alterations in the levels of PUFAs and their metabolites in serum and ovarian tissues in a PCOS rat model treated with a high-fat diet and andronate. Levels of PUFAs and their metabolites were measured using gas/liquid chromatography-mass spectrometry after the establishment of a PCOS rat model. Only 3 kinds of PUFAs [linoleic acid, arachidonic acid (AA) and docosahexaenoic acid] were detected in both the circulation and ovarian tissues of the rats, and their concentrations were lower in ovarian tissues than in serum. Moreover, significant differences in the ovarian levels of AA were observed between control, high-fat diet-fed and PCOS rats. The levels of prostaglandins, AA metabolites via the cyclooxygenase (COX) pathway, in ovarian tissues of the PCOS group were significantly increased compared to those in the controls. Further studies on the mechanism underlying this phenomenon showed a correlation between decreased expression of phosphorylated cytosolic phospholipase A2 (p-cPLA2) and increased mRNA and protein expression of COX2, potentially leading to a deeper understanding of altered AA and prostaglandin levels in ovarian tissues of PCOS rats. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  11. Synthesis and concentration of 2-monoacylglycerols rich in polyunsaturated fatty acids.

    Science.gov (United States)

    Zhang, Yu; Wang, Xiaosan; Xie, Dan; Zou, Shuo; Jin, Qingzhe; Wang, Xingguo

    2018-06-01

    Polyunsaturated fatty acids (PUFA) in 2-monoacylglycerols form exhibit various biological activities and have potential applications in food and pharmaceuticals. Preparation of 2-monoacylglycerols was conducted by enzymatic enthanolysis. The effects of lipase type, substrate weight ratio, reaction time and lipase load on the 2-monoacylglycerols content in the crude product were investigated. Lipozyme 435 behaved as 1,3-specific and high-catalytic-activity lipase in this reaction. Under the optimal conditions (ethanol:oil = 3:1 (w/w), 8% Lipozyme 435, 3 h), 27% 2-monoacylglycerols were obtained. After solvent extraction of 2-monoacylglycerols, the abilities of low temperature crystallization and molecular distillation to concentrate 2-PUFA-monoacylglycerols were compared. Low temperature crystallization concentrated 81.13% and 74.29% PUFA by acetonitrile and hexane, respectively, with over 90% in 2-monoacylglycerol forms. Conversely, molecular distillation yielded a PUFA concentration of 72% but decreased the 2-monoacylglycerols content to 69.81%. Thus, the method including enzymatic ethanolysis and low temperature crystallization is suitable for preparation of 2-monoacylglycerols rich in PUFA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Role of omega-3 polyunsaturated fatty acids in diet of patients with rheumatic diseases

    Directory of Open Access Journals (Sweden)

    P. Spinella

    2011-09-01

    Full Text Available The beneficial effects of ω-3 polyunsaturated fatty acids have been widely described in the literature in particular those on cardiovascular system. In the last decade there has been an increased interest in the role of these nutrients in the reduction of articular inflammation as well as in the improvement of clinical symptoms in subjects affected by rheumatic diseases, in particular rheumatoid arthritis (RA. Nutritional supplementation with ω-3 may represent an additional therapy to the traditional pharmacological treatment due to the anti-inflammatory properties which characterize this class of lipids: production of alternative eicosanoids, reduction of inflammatory cytochines, reduction of T-lymphocytes activation, reduction of catabolic enzymes activity. The encouraging results of dietetic therapy based on ω- 3 in RA are leading researchers to test their effectiveness on patients with other rheumatic conditions such as systemic lupus erythematosus and ankylosing spondylitis. Nutritional therapy based on food rich in ω-3 or on supplementation with fish oil capsules, proved to be a valid support to he treatment of chronic inflammatory rheumatic diseases.

  13. Vitamin E and essential polyunsaturated fatty acids supplementation in schizophrenia patients treated with haloperidol.

    Science.gov (United States)

    Bošković, Marija; Vovk, Tomaž; Koprivšek, Jure; Plesničar, Blanka Kores; Grabnar, Iztok

    2016-05-01

    Previously, oxidative damage has been associated with severity of clinical symptoms and supplementation with antioxidants and essential polyunsaturated fatty acids (EPUFAs) was proposed to have beneficial effects in schizophrenia. We evaluated the effects of supplementation with EPUFAs and vitamin E in patients treated with haloperidol depot injection. This was a double-blind randomized placebo-controlled study with four arms (Placebo, vitamin E, EPUFAs, and vitamin E + EPUFAs). Biomarkers of oxidative stress, neurochemistry, psychopathology, and extrapyramidal symptoms were assessed at baseline and after 4 months. In EPUFAs group of patients, reduced glutathione concentration was increased compared to placebo. Concentration of oxidized glutathione was decreased in patients receiving vitamin E. In addition, compared to placebo a non-significant trend of increased activity of catalase and superoxide dismutase was observed in all three treatment groups. Patients receiving vitamin E experienced less motor retardation. No difference in extrapyramidal symptoms was found. Our study indicates that supplementation with vitamin E and EPUFAs may improve the antioxidative defense, especially glutathione system, while there is no major effect on symptoms severity. Supplemental treatment with EPUFAs and vitamin E in schizophrenia patients treated with haloperidol is potentially beneficial and a larger independent study appears warranted.

  14. Omega-3 Polyunsaturated Fatty Acids Attenuate Radiation-induced Oxidative Stress and Organ Dysfunctions in Rats

    International Nuclear Information System (INIS)

    Abdel Aziz, N.; Yacoub, S.F.

    2013-01-01

    The Aim of the present study was to determine the possible protective effect of omega-3 polyunsaturated fatty acids (omega-3 PUFA) against radiation-induced oxidative stress associated with organ dysfunctions. Omega-3 PUFA was administered by oral gavages to male albino rats at a dose of 0.4 g/ kg body wt daily for 4 weeks before whole body γ-irradiation with 4Gy. Significant increase of serum lipid peroxidation end product as malondialdehyde (MDA) along with the reduction in blood glutathione (GSH) content, superoxide dismutase (SOD) and glutathione peroxidase (GPX) enzyme activities were recorded on 3rd and 8th days post-irradiation. Oxidative stress was associated with a significant increase in lactate dehydrogenase (LDH) and creatine phosphokinase (CPK) enzyme activities, markers of heart damage, significant increases in uric acid, urea and creatinine levels, markers of kidney damage, significant increases of alkaline phosphatase (ALP) and transaminases (ALT and AST) activities, markers of liver damage. Moreover significant increases in total cholesterol and triglycerides levels were recorded. Omega-3 PUFA administration pre-irradiation significantly attenuated the radiation-induced oxidative stress and organ dysfunctions tested in this study. It could be concluded that oral supplementation of omega-3 PUFA before irradiation may afford protection against radiation-induced oxidative stress and might preserve the integrity of tissue functions of the organs under investigations.

  15. An Improvement of Cardiovascular Risk Factors by Omega-3 Polyunsaturated Fatty Acids.

    Science.gov (United States)

    Yanai, Hidekatsu; Masui, Yoshinori; Katsuyama, Hisayuki; Adachi, Hiroki; Kawaguchi, Akiko; Hakoshima, Mariko; Waragai, Yoko; Harigae, Tadanao; Sako, Akahito

    2018-04-01

    An epidemiological survey in the Northwest Greenland reported that the Greenlanders have a lower frequency of acute myocardial infarction and diabetes mellitus. The very low incidence of ischemic heart disease in the Greenlanders was explained by consumption of a diet rich in omega-3 polyunsaturated fatty acids (PUFAs). Possible anti-atherothrombotic effects of omega-3 PUFA include an improvement of lipid metabolism such as a reduction of triglyceride and an increase of high-density lipoprotein-cholesterol (HDL-C), and glucose metabolism, anti-platelet activity, anti-inflammatory effects, an improvement of endothelial function and stabilization of atherosclerotic plaque. The present study reviews an improvement of cardiovascular risk factors such as dyslipidemia and diabetes due to consumption of omega-3 PUFA. A sufficient number of studies suggest that omega-3 PUFA supplementation reduces serum triglyceride and increases HDL-cholesterol. The mechanisms for omega-3 PUFA-mediated improvements of lipid metabolism have been partially elucidated. The studies using experimental animals, part of trials in humans, have shown the beneficial effects of omega-3 PUFA on glucose metabolism and insulin sensitivity. The meta-analysis showed that omega-3 PUFA might prevent development of diabetes in part of population. Further studies should be performed to elucidate the association of omega-3 PUFA supplementation with diabetes, in the future.

  16. Omega-3 Polyunsaturated Fatty Acids Enhance Neuronal Differentiation in Cultured Rat Neural Stem Cells

    Directory of Open Access Journals (Sweden)

    Masanori Katakura

    2013-01-01

    Full Text Available Polyunsaturated fatty acids (PUFAs can induce neurogenesis and recovery from brain diseases. However, the exact mechanisms of the beneficial effects of PUFAs have not been conclusively described. We recently reported that docosahexaenoic acid (DHA induced neuronal differentiation by decreasing Hes1 expression and increasing p27kip1 expression, which causes cell cycle arrest in neural stem cells (NSCs. In the present study, we examined the effect of eicosapentaenoic acid (EPA and arachidonic acid (AA on differentiation, expression of basic helix-loop-helix transcription factors (Hes1, Hes6, and NeuroD, and the cell cycle of cultured NSCs. EPA also increased mRNA levels of Hes1, an inhibitor of neuronal differentiation, Hes6, an inhibitor of Hes1, NeuroD, and Map2 mRNA and Tuj-1-positive cells (a neuronal marker, indicating that EPA induced neuronal differentiation. EPA increased the mRNA levels of p21cip1 and p27kip1, a cyclin-dependent kinase inhibitor, which indicated that EPA induced cell cycle arrest. Treatment with AA decreased Hes1 mRNA but did not affect NeuroD and Map2 mRNA levels. Furthermore, AA did not affect the number of Tuj-1-positive cells or cell cycle progression. These results indicated that EPA could be involved in neuronal differentiation by mechanisms alternative to those of DHA, whereas AA did not affect neuronal differentiation in NSCs.

  17. Fucoxanthin and Polyunsaturated Fatty Acids Co-Extraction by a Green Process

    Directory of Open Access Journals (Sweden)

    Antoine Delbrut

    2018-04-01

    Full Text Available By their autotrophic nature and their molecular richness, microalgae are serious assets in the context of current environmental and societal challenges. Some species produce both omega-3 long chain polyunsaturated fatty acids (PUFAs and xanthophylls, two molecular families widely studied for their bioactivities in the fields of nutrition and cosmetics. Whereas most studies separately deal with the two families, synergies could be exploited with extracts containing both PUFAs and xanthophylls. The purpose of our work was to determine cost effective and eco-friendly parameters for their co-extraction. The effect of several parameters (solvent, solvent/biomass ratio, temperature, duration were studied, using two microalgal species, the non-calcifying Haptophyta Tisochrysis lutea, and the diatom Phaeodactylum tricornutum, that presents a silicified frustule. Analyses of PUFAs and fucoxanthin (Fx, the main xanthophyll, allowed to compare kinetics and extraction yields between experimental protocols. Co-extraction yields achieved using 96% ethanol as solvent were 100% for Fx and docosahexaenoic acid (DHA in one hour from T. lutea biomass, and respectively 95% and 89% for Fx and eicosapentaenoic acid (EPA in eight hours from P. tricornutum. These conditions are compatible with industrial applications.

  18. The effects of antioxidants on the content of polyunsaturated fatty acids in the hen's egg.

    Science.gov (United States)

    Kassab, A; Abrams, J T; Sainsbury, D W

    1979-01-01

    In experiments to see whether, in the possible interests of human health, the polyunsaturated fatty acid (PUFA) content of the chicken's egg can be increased by nutritional means, three strains of hen, light, medium, and heavy, each at the peak of lay, were first fed a basal, commercial, low-fat diet. The hens were then transferred to one of the following diets: basal + safflower oil (SO); basal + SO + butylated hydroxytoluene; or basal + SO + dl-a-toco-pheryl acetate. The diets were designated "Blank", "BHT", and "Vitamin E", respectively, the second and third containing the added antioxidants. The eggs produced were weighed, and their yolks weighed and analysed for lipid components. Additional of SO (7.5%) to the basal diet led to the PUFA content of the yolk lipids rising by 15.4% (linoleic acid, 14.1%), the magnitude of the increases being unaffected by the antioxidants. Diet "BHT" produced larger eggs and yolks than the other diets, but the proportion of yolk was the same on the three types of feed. The total cholesterol content of egg yolks was significantly affected neither by diet, nor by strain or age of hen. The implications of these results are discussed.

  19. Effect of omega-3 polyunsaturated fatty acids on the cytoskeleton: an open-label intervention study.

    Science.gov (United States)

    Schmidt, Simone; Willers, Janina; Riecker, Sabine; Möller, Katharina; Schuchardt, Jan Philipp; Hahn, Andreas

    2015-02-14

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) show beneficial effects on cardiovascular health and cognitive functions, but the underlying molecular mechanisms are not completely understood. Because of the fact that cytoskeleton dynamics affect almost every cellular process, the regulation of cytoskeletal dynamics could be a new pathway by which n-3 PUFAs exert their effects on cellular level. A 12-week open-label intervention study with 12 healthy men was conducted to determine the effects of 2.7 g/d n-3 PUFA on changes in mRNA expression of cytoskeleton-associated genes by quantitative real-time PCR in whole blood. Furthermore, the actin content in red blood cells was analyzed by immunofluorescence imaging. N-3 PUFA supplementation resulted in a significant down-regulation of cytoskeleton-associated genes, in particular three GTPases (RAC1, RHOA, CDC42), three kinases (ROCK1, PAK2, LIMK), two Wiskott-Aldrich syndrome proteins (WASL, WASF2) as well as actin related protein 2/3 complex (ARPC2, ARPC3) and cofilin (CFL1). Variability in F-actin content between subjects was high; reduced actin content was only reduced within group evaluation. Reduced cytoskeleton-associated gene expression after n-3 PUFA supplementation suggests that regulation of cytoskeleton dynamics might be an additional way by which n-3 PUFAs exert their cellular effects. Concerning F-actin, this analysis did not reveal unmistakable results impeding a generalized conclusion.

  20. Omega-3 Polyunsaturated Fatty Acids: Structural and Functional Effects on the Vascular Wall

    Directory of Open Access Journals (Sweden)

    Michela Zanetti

    2015-01-01

    Full Text Available Omega-3 polyunsaturated fatty acids (n-3 PUFA consumption is associated with reduced cardiovascular disease risk. Increasing evidence demonstrating a beneficial effect of n-3 PUFA on arterial wall properties is progressively emerging. We reviewed the recent available evidence for the cardiovascular effects of n-3 PUFA focusing on structural and functional properties of the vascular wall. In experimental studies and clinical trials n-3 PUFA have shown the ability to improve arterial hemodynamics by reducing arterial stiffness, thus explaining some of its cardioprotective properties. Recent studies suggest beneficial effects of n-3 PUFA on endothelial activation, which are likely to improve vascular function. Several molecular, cellular, and physiological pathways influenced by n-3 PUFA can affect arterial wall properties and therefore interfere with the atherosclerotic process. Although the relative weight of different physiological and molecular mechanisms and the dose-response on arterial wall properties have yet to be determined, n-3 PUFA have the potential to beneficially impact arterial wall remodeling and cardiovascular outcomes by targeting arterial wall stiffening and endothelial dysfunction.

  1. Menhaden oil, but not safflower or soybean oil, aids in restoring the polyunsaturated fatty acid profile in the novel delta-6-desaturase null mouse

    Science.gov (United States)

    2012-01-01

    Background Polyunsaturated fatty acids (PUFA) have diverse biological effects, from promoting inflammation to preventing cancer and heart disease. Growing evidence suggests that individual PUFA may have independent effects in health and disease. The individual roles of the two essential PUFA, linoleic acid (LA) and α-linolenic acid (ALA), have been difficult to discern from the actions of their highly unsaturated fatty acid (HUFA) downstream metabolites. This issue has recently been addressed through the development of the Δ-6 desaturase knock out (D6KO) mouse, which lacks the rate limiting Δ-6 desaturase enzyme and therefore cannot metabolize LA or ALA. However, a potential confounder in this model is the production of novel Δ-5 desaturase (D5D) derived fatty acids when D6KO mice are fed diets containing LA and ALA, but void of arachidonic acid. Objective The aim of the present study was to characterize how the D6KO model differentially responds to diets containing the essential n-6 and n-3 PUFA, and whether the direct provision of downstream HUFA can rescue the phenotype and prevent the production of D5D fatty acids. Methodology Liver and serum phospholipid (PL) fatty acid composition was examined in D6KO and wild type mice fed i) 10% safflower oil diet (SF, LA rich) ii) 10% soy diet (SO, LA+ALA) or iii) 3% menhaden oil +7% SF diet (MD, HUFA rich) for 28 days (n = 3-7/group). Results Novel D5D fatty acids were found in liver PL of D6KO fed SF or SO-fed mice, but differed in the type of D5D fatty acid depending on diet. Conversely, MD-fed D6KO mice had a liver PL fatty acid profile similar to wild-type mice. Conclusions Through careful consideration of the dietary fatty acid composition, and especially the HUFA content in order to prevent the synthesis of D5D fatty acids, the D6KO model has the potential to elucidate the independent biological and health effects of the parent n-6 and n-3 fatty acids, LA and ALA. PMID:22642787

  2. Menhaden oil, but not safflower or soybean oil, aids in restoring the polyunsaturated fatty acid profile in the novel delta-6-desaturase null mouse

    Directory of Open Access Journals (Sweden)

    Monteiro Jessica

    2012-05-01

    Full Text Available Abstract Background Polyunsaturated fatty acids (PUFA have diverse biological effects, from promoting inflammation to preventing cancer and heart disease. Growing evidence suggests that individual PUFA may have independent effects in health and disease. The individual roles of the two essential PUFA, linoleic acid (LA and α-linolenic acid (ALA, have been difficult to discern from the actions of their highly unsaturated fatty acid (HUFA downstream metabolites. This issue has recently been addressed through the development of the Δ-6 desaturase knock out (D6KO mouse, which lacks the rate limiting Δ-6 desaturase enzyme and therefore cannot metabolize LA or ALA. However, a potential confounder in this model is the production of novel Δ-5 desaturase (D5D derived fatty acids when D6KO mice are fed diets containing LA and ALA, but void of arachidonic acid. Objective The aim of the present study was to characterize how the D6KO model differentially responds to diets containing the essential n-6 and n-3 PUFA, and whether the direct provision of downstream HUFA can rescue the phenotype and prevent the production of D5D fatty acids. Methodology Liver and serum phospholipid (PL fatty acid composition was examined in D6KO and wild type mice fed i 10% safflower oil diet (SF, LA rich ii 10% soy diet (SO, LA+ALA or iii 3% menhaden oil +7% SF diet (MD, HUFA rich for 28 days (n = 3-7/group. Results Novel D5D fatty acids were found in liver PL of D6KO fed SF or SO-fed mice, but differed in the type of D5D fatty acid depending on diet. Conversely, MD-fed D6KO mice had a liver PL fatty acid profile similar to wild-type mice. Conclusions Through careful consideration of the dietary fatty acid composition, and especially the HUFA content in order to prevent the synthesis of D5D fatty acids, the D6KO model has the potential to elucidate the independent biological and health effects of the parent n-6 and n-3 fatty acids, LA and ALA.

  3. Differential effect of maternal diet supplementation with α-Linolenic adcid or n-3 long-chain polyunsaturated fatty acids on glial cell phosphatidylethanolamine and phosphatidylserine fatty acid profile in neonate rat brains

    Directory of Open Access Journals (Sweden)

    Cruz-Hernandez Cristina

    2010-01-01

    Full Text Available Abstract Background Dietary long-chain polyunsaturated fatty acids (LC-PUFA are of crucial importance for the development of neural tissues. The aim of this study was to evaluate the impact of a dietary supplementation in n-3 fatty acids in female rats during gestation and lactation on fatty acid pattern in brain glial cells phosphatidylethanolamine (PE and phosphatidylserine (PS in the neonates. Methods Sprague-Dawley rats were fed during the whole gestation and lactation period with a diet containing either docosahexaenoic acid (DHA, 0.55% and eicosapentaenoic acid (EPA, 0.75% of total fatty acids or α-linolenic acid (ALA, 2.90%. At two weeks of age, gastric content and brain glial cell PE and PS of rat neonates were analyzed for their fatty acid and dimethylacetal (DMA profile. Data were analyzed by bivariate and multivariate statistics. Results In the neonates from the group fed with n-3 LC-PUFA, the DHA level in gastric content (+65%, P Conclusion The present study confirms that early supplementation of maternal diet with n-3 fatty acids supplied as LC-PUFA is more efficient in increasing n-3 in brain glial cell PE and PS in the neonate than ALA. Negative correlation between n-6 DPA, a conventional marker of DHA deficiency, and DMA in PE suggests n-6 DPA that potentially be considered as a marker of tissue ethanolamine plasmalogen status. The combination of multivariate and bivariate statistics allowed to underline that the accretion pattern of n-3 LC-PUFA in PE and PS differ.

  4. Dietary fat intake, circulating and membrane fatty acid composition of healthy Norwegian men and women.

    Science.gov (United States)

    Min, Y; Blois, A; Geppert, J; Khalil, F; Ghebremeskel, K; Holmsen, H

    2014-02-01

    The present study aimed to assess the dietary fat intake and blood fatty acid status of healthy Norwegian men and women living in Bergen whose habitual diet is known to be high in long-chain omega-3 fat. Healthy men (n = 41) and women (n = 40) aged 20-50 years who were regular blood donors completed 7-day food diaries and their nutrient intake was analysed by Norwegian food database software, kbs, version 4.9 (kostberegningssystem; University of Oslo, Oslo, Norway). Blood samples were obtained before blood donation and assessed for the fatty acid composition of plasma triglycerides and cholesterol esters, phosphatidylcholine, and red cell phosphatidylcholine and phosphatidylethanolamine. There was no difference in dietary fat intake between men and women. Total and saturated fat intakes exceeded the upper limits of the recommendations of the National Nutrition Council of Norway. Although polyunsaturated fat intake was close to the lower limit of the recommended level, the intake varied greatly among individuals, partly as a result of the use of supplementary fish oil. Moreover, the proportional fatty acid composition of plasma and red cell lipids was similar between men and women. Enrichment of docosahexaenoic acid in red cell phosphatidylethanolamine was found in fish oil users. The results of the present study provide a snapshot of the current nutritional status of healthy Norwegian adults. Moreover, the detailed blood fatty acid composition of men and women whose habitual diet constitutes high long-chain polyunsaturated omega-3 fat as well as saturated fat could be used as reference value for population studies. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.

  5. Effects of n-3 Polyunsaturated Fatty Acid Supplementation on Serum Leptin Levels, Appetite Sensations, and Intake of Energy and Macronutrients in Obese People: A Randomized Clinical Trial.

    Science.gov (United States)

    Payahoo, L; Ostadrahimi, A; Farrin, N; Khaje-Bishak, Y

    2017-10-05

    Obesity is a common health problem. Appetite is one of the main obesity-controlling factors that can be influenced by leptin. Leptin reduces food intake and accelerates energy expenditure. Leptin levels can be affected by dietary factors such as fats, special amino acids, and fructose. This study aimed to determine the effects of polyunsaturated fatty acid n-3 (PUFA n-3) supplementation on serum leptin levels, appetite sensations, and dietary intakes in obese people. This study was performed on 60 obese individuals with body mass index (BMI) 30 (kg/m 2 ) and above in 2012 in Tabriz, Iran. The participants were randomly allocated to the intervention (consumed two capsules containing 1 g/day n-3 fatty acids [180 mg EPA, 120 mg DHA] for 4 weeks) and control groups. Serum leptin levels were assessed by ELISA method, and visual analogue scale (VAS) questionnaire was completed for evaluating appetite sensations. The mean caloric [before = 1,575.39 (600), after = 1,236.14 (448.40)] and macronutrient intakes were decreased significantly in the intervention group (p macronutrient intakes, probably through the modulating of satiety. The short period of study caused the nonsignificant changes in BMI and circulatory leptin. Further studies are needed to confirm these results.

  6. Dietary supplementation with dimethylglycine affects broiler performance and plasma metabolites depending on dose and dietary fatty acid profile.

    Science.gov (United States)

    Kalmar, I D; Cools, A; Verstegen, M W A; Huyghebaert, G; Buyse, J; Roose, P; Janssens, G P J

    2011-04-01

    The effect of dietary supplementation with N,N-dimethylglycine sodium salt (Na-DMG) was evaluated in a feeding trial with 1500 1-day-old broiler chicks (Cobb 500). DMG was supplemented at 0, 0.1, 0.2, 0.5 or 1 g Na-DMG/kg feed to a ration with either animal fat (chicken fat) or vegetal fat (soy oil) as main fat source. In the vegetal fat diets, production value was significantly linearly improved by supplementation with DMG up to 11%. Irrespective of dietary fat source, abdominal fat percentage was significantly linearly reduced up to 24% and meat yield tended to increase linearly with DMG level up to 4%. In the vegetal fat groups, DMG significantly lowered abdominal fat pad by up to 38% and tended to increase meat yield up to 6% at the highest dose. Fasted non-esterified fatty acid level significantly decreased with increasing DMG level up to 36% and thiobarbituric acid reactive species (TBARS) decreased with a statistical trend up to 46% at the highest dose. In vegetal fat diets, addition of DMG resulted in significant lower TBARS level by 56% at the highest dose. Finally, a significant quadratic effect on ascites heart index was present in the vegetal fat diets, with a minimal value at 0.5 g Na-DMG/kg. In conclusion, dietary supplementation with DMG may improve technical and slaughter performance, and may reduce oxidative stress and pulmonary hypertension, but the degree of effects is modulated by fatty acid profile of the diet. Herewith, effects are more pronounced in a diet rich in polyunsaturated fatty acids compared with a diet rich in saturated and monounsaturated fatty acids. © 2010 Blackwell Verlag GmbH.

  7. The effect of linoleic acid on the whole body synthesis rates of polyunsaturated fatty acids from α-linolenic acid and linoleic acid in free-living rats.

    Science.gov (United States)

    Domenichiello, Anthony F; Kitson, Alex P; Chen, Chuck T; Trépanier, Marc-Olivier; Stavro, P Mark; Bazinet, Richard P

    2016-04-01

    Docosahexaenoic acid (DHA) is thought to be important for brain function. The main dietary source of DHA is fish, however, DHA can also be synthesized from precursor omega-3 polyunsaturated fatty acids (n-3 PUFA), the most abundantly consumed being α-linolenic acid (ALA). The enzymes required to synthesize DHA from ALA are also used to synthesize longer chain omega-6 (n-6) PUFA from linoleic acid (LNA). The large increase in LNA consumption that has occurred over the last century has led to concern that LNA and other n-6 PUFA outcompete n-3 PUFA for enzymes involved in DHA synthesis, and therefore, decrease overall DHA synthesis. To assess this, rats were fed diets containing LNA at 53 (high LNA diet), 11 (medium LNA diet) or 1.5% (low LNA diet) of the fatty acids with ALA being constant across all diets (approximately 4% of the fatty acids). Rats were maintained on these diets from weaning for 8 weeks, at which point they were subjected to a steady-state infusion of labeled ALA and LNA to measure DHA and arachidonic acid (ARA) synthesis rates. DHA and ARA synthesis rates were generally highest in rats fed the medium and high LNA diets, while the plasma half-life of DHA was longer in rats fed the low LNA diet. Therefore, increasing dietary LNA, in rats, did not impair DHA synthesis; however, low dietary LNA led to a decrease in DHA synthesis with tissue concentrations of DHA possibly being maintained by a longer DHA half-life. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Fads1 and 2 are promoted to meet instant need for long-chain polyunsaturated fatty acids in goose fatty liver.

    Science.gov (United States)

    Osman, Rashid H; Liu, Long; Xia, Lili; Zhao, Xing; Wang, Qianqian; Sun, Xiaoxian; Zhang, Yihui; Yang, Biao; Zheng, Yun; Gong, Daoqing; Geng, Tuoyu

    2016-07-01

    Global prevalence of non-alcoholic fatty liver disease (NAFLD) constitutes a threat to human health. Goose is a unique model of NAFLD for discovering therapeutic targets as its liver can develop severe steatosis without overt injury. Fatty acid desaturase (Fads) is a potential therapeutic target as Fads expression and mutations are associated with liver fat. Here, we hypothesized that Fads was promoted to provide a protection for goose fatty liver. To test this, goose Fads1 and Fads2 were sequenced. Fads1/2/6 expression was determined in goose liver and primary hepatocytes by quantitative PCR. Liver fatty acid composition was also analyzed by gas chromatography. Data indicated that hepatic Fads1/2/6 expression was gradually increased with the time of overfeeding. In contrast, trans-C18:1n9 fatty acid (Fads inhibitor) was reduced. However, enhanced Fads capacity for long-chain polyunsaturated fatty acid (LC-PUFA) synthesis was not sufficient to compensate for the depleted LC-PUFAs in goose fatty liver. Moreover, cell studies showed that Fads1/2/6 expression was regulated by fatty liver-associated factors. Together, these findings suggest Fads1/2 as protective components are promoted to meet instant need for LC-PUFAs in goose fatty liver, and we propose this is required for severe hepatic steatosis without liver injury.

  9. Association of Blood Fatty Acid Composition and Dietary Pattern with the Risk of Non-Alcoholic Fatty Liver Disease in Patients Who Underwent Cholecystectomy.

    Science.gov (United States)

    Shim, Poyoung; Choi, Dongho; Park, Yongsoon

    2017-01-01

    The relationship between diet and non-alcoholic fatty liver disease (NAFLD) in patients with gallstone disease and in those who have a high risk for NAFLD has not been investigated. This study was conducted to investigate the association between the risk of NAFLD and dietary pattern in patients who underwent cholecystectomy. Additionally, we assessed the association between erythrocyte fatty acid composition, a marker for diet, and the risk of NAFLD. Patients (n = 139) underwent liver ultrasonography to determine the presence of NAFLD before laparoscopic cholecystectomy, reported dietary intake using food frequency questionnaire, and were assessed for blood fatty acid composition. Fifty-eight patients were diagnosed with NAFLD. The risk of NAFLD was negatively associated with 2 dietary patterns: consuming whole grain and legumes and consuming fish, vegetables, and fruit. NAFLD was positively associated with the consumption of refined grain, meat, processed meat, and fried foods. Additionally, the risk of NAFLD was positively associated with erythrocyte levels of 16:0 and 18:2t, while it was negatively associated with 20:5n3, 22:5n3, and Omega-3 Index. The risk of NAFLD was negatively associated with a healthy dietary pattern of consuming whole grains, legumes, vegetables, fish, and fruit and with an erythrocyte level of n-3 polyunsaturated fatty acids rich in fish. © 2017 S. Karger AG, Basel.

  10. Lower n-3 long-chain polyunsaturated fatty acid values in patients with phenylketonuria: a systematic review and meta-analysis.

    Science.gov (United States)

    Lohner, Szimonetta; Fekete, Katalin; Decsi, Tamás

    2013-07-01

    The mainstream of phenylketonuria (PKU) management is lifelong restriction of protein intake; however, this dietary restriction may be accompanied by insufficient dietary intake of long-chain polyunsaturated fatty acids (LCPUFA). The objective of this review was to assess whether significant depletion of LCPUFA can be detected in PKU patients on low-protein diet and whether LCPUFA supplementation is an effective way to increase the availability of LCPUFA in PKU patients. The method included structured search strategy on Ovid MEDLINE, Scopus, LILACS, and the Cochrane Library CENTRAL databases, with formal inclusion/exclusion criteria, data extraction procedure, and meta-analysis. We evaluated 9 case-control studies and 6 randomized controlled trials, dated from the inception of the databases to 2012. The meta-analysis of the case-control studies showed significantly lower values of both eicosapentaenoic acid and docosahexaenoic acid (DHA) in all biomarkers investigated and that of arachidonic acid in total plasma lipids in PKU patients as compared with healthy controls. There were sufficient data to demonstrate that dietary DHA supplementation of patients with PKU significantly increases the contribution of DHA to total plasma lipids. In summary, suboptimal LCPUFA status, especially that of n-3 LCPUFA, can be detected in PKU patients. Supplementing DHA to the diet of PKU patients may improve their LCPUFA status; however, further research is needed to determine the optimal supplementation dosage and to establish beneficial functional outcomes. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Biosynthesis of Polyunsaturated Fatty Acids in Octopus vulgaris: Molecular Cloning and Functional Characterisation of a Stearoyl-CoA Desaturase and an Elongation of Very Long-Chain Fatty Acid 4 Protein.

    Science.gov (United States)

    Monroig, Óscar; de Llanos, Rosa; Varó, Inmaculada; Hontoria, Francisco; Tocher, Douglas R; Puig, Sergi; Navarro, Juan C

    2017-03-21

    Polyunsaturated fatty acids (PUFAs) have been acknowledged as essential nutrients for cephalopods but the specific PUFAs that satisfy the physiological requirements are unknown. To expand our previous investigations on characterisation of desaturases and elongases involved in the biosynthesis of PUFAs and hence determine the dietary PUFA requirements in cephalopods, this study aimed to investigate the roles that a stearoyl-CoA desaturase (Scd) and an elongation of very long-chain fatty acid 4 (Elovl4) protein play in the biosynthesis of essential fatty acids (FAs). Our results confirmed the Octopus vulgaris Scd is a ∆9 desaturase with relatively high affinity towards saturated FAs with ≥ C 18 chain lengths. Scd was unable to desaturate 20:1 n- 15 ( ∆5 20:1) suggesting that its role in the biosynthesis of non-methylene interrupted FAs (NMI FAs) is limited to the introduction of the first unsaturation at ∆9 position. Interestingly, the previously characterised ∆5 fatty acyl desaturase was indeed able to convert 20:1 n- 9 ( ∆11 20:1) to ∆5,11 20:2, an NMI FA previously detected in octopus nephridium. Additionally, Elovl4 was able to mediate the production of 24:5 n- 3 and thus can contribute to docosahexaenoic acid (DHA) biosynthesis through the Sprecher pathway. Moreover, the octopus Elovl4 was confirmed to play a key role in the biosynthesis of very long-chain (>C 24 ) PUFAs.

  12. Low dietary intake of n-3 fatty acids, niacin, folate, and vitamin C in Korean patients with schizophrenia and the development of dietary guidelines for schizophrenia.

    Science.gov (United States)

    Kim, Eun Jin; Lim, So Young; Lee, Hee Jae; Lee, Ju-Yeon; Choi, Seunggi; Kim, Seon-Young; Kim, Jae-Min; Shin, Il-Seon; Yoon, Jin-Sang; Yang, Soo Jin; Kim, Sung-Wan

    2017-09-01

    Inappropriate dietary intake and poor nutritional status are reported to be associated with metabolic syndrome and psychopathology in patients with schizophrenia. We hypothesized that inappropriate dietary habits and insufficient dietary intake of specific nutrients are associated with schizophrenia. To test the hypothesis, we assessed the dietary habits and nutritional intake of patients with schizophrenia and then developed suitable dietary guidelines. In total, 140 subjects (73 controls and 67 patients with schizophrenia from community mental health centers) were included, and dietary intakes were analyzed using a semi-quantitative food frequency questionnaire. As a result, the proportion of overweight or obese patients was significantly higher in schizophrenia subjects (64.2%) compared with control subjects (39.7%) (P=.004). The male schizophrenia patients had significantly lower dietary intakes of protein, polyunsaturated fatty acids (PUFAs), vitamin K, niacin, folate, and vitamin C than the male control subjects. In all multiple logistic regression models, subjects with the "low" dietary intake of protein, n-3 PUFAs, niacin, folate, and vitamin C had a significantly higher odds ratios for schizophrenia compared with those with the "high" dietary intake category of each nutrient. Therefore, maintenance of a healthy body weight and sufficient dietary intake of protein, PUFAs, niacin, folate, and vitamin C are recommended for Korean patients with schizophrenia. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Dietary fat, fatty acid intakes and colorectal cancer risk in Chinese adults: a case-control study.

    Science.gov (United States)

    Zhong, Xiao; Fang, Yu-Jing; Pan, Zhi-Zhong; Li, Bin; Wang, Lian; Zheng, Mei-Chun; Chen, Yu-Ming; Zhang, Cai-Xia

    2013-09-01

    The associations between dietary fat intakes and the risk of colorectal cancer have been examined in many epidemiological studies, but the results have remained inconsistent. This study aimed to examine the associations of total fat and fatty acid intakes with the risk of colorectal cancer in Guangzhou, China. A case-control study was carried out between July 2010 and May 2012 in Guangzhou, China. Four hundred and eighty-nine consecutively recruited colorectal cancer cases were frequency matched to 976 controls by age (5-year interval) and sex. A validated food frequency questionnaire was used to collect dietary information by face-to-face interviews. Multivariate logistic regression models were used to estimate the odds ratios (ORs) and 95% confidence intervals (CIs). The total fat intake was not related to the risk of colorectal cancer, with an OR (95% CI) of 0.95 (0.68-1.32) comparing the highest with the lowest quartiles. Intakes of saturated fat, monounsaturated fat, and n-6 polyunsaturated fat were also not associated with the risk of colorectal cancer. However, a significant inverse association was found between total n-3 polyunsaturated fat, α-linolenic acid, and long-chain n-3 polyunsaturated fat consumption and the risk of colorectal cancer. The adjusted ORs of the highest versus the lowest quartile were 0.45 (95% CI=0.32-0.64, Ptrendcolorectal cancer. However, increased consumption of n-3 polyunsaturated fat might reduce the risk.

  14. Long-Chain Omega-3 Polyunsaturated Fatty Acids Modulate Mammary Gland Composition and Inflammation.

    Science.gov (United States)

    Khadge, Saraswoti; Thiele, Geoffrey M; Sharp, John Graham; McGuire, Timothy R; Klassen, Lynell W; Black, Paul N; DiRusso, Concetta C; Talmadge, James E

    2018-03-25

    Studies in rodents have shown that dietary modifications as mammary glands (MG) develop, regulates susceptibility to mammary tumor initiation. However, the effects of dietary PUFA composition on MGs in adult life, remains poorly understood. This study investigated morphological alterations and inflammatory microenvironments in the MGs of adult mice fed isocaloric and isolipidic liquid diets with varying compositions of omega (ω)-6 and long-chain (Lc)-ω3FA that were pair-fed. Despite similar consumption levels of the diets, mice fed the ω-3 diet had significantly lower body-weight gains, and abdominal-fat and mammary fat pad (MFP) weights. Fatty acid analysis showed significantly higher levels of Lc-ω-3FAs in the MFPs of mice on the ω-3 diet, while in the MFPs from the ω-6 group, Lc-ω-3FAs were undetectable. Our study revealed that MGs from ω-3 group had a significantly lower ductal end-point density, branching density, an absence of ductal sprouts, a thinner ductal stroma, fewer proliferating epithelial cells and a lower transcription levels of estrogen receptor 1 and amphiregulin. An analysis of the MFP and abdominal-fat showed significantly smaller adipocytes in the ω-3 group, which was accompanied by lower transcription levels of leptin, IGF1, and IGF1R. Further, MFPs from the ω-3 group had significantly decreased numbers and sizes of crown-like-structures (CLS), F4/80+ macrophages and decreased expression of proinflammatory mediators including Ptgs2, IL6, CCL2, TNFα, NFκB, and IFNγ. Together, these results support dietary Lc-ω-3FA regulation of MG structure and density and adipose tissue inflammation with the potential for dietary Lc-ω-3FA to decrease the risk of mammary gland tumor formation.

  15. Breastfeeding, long-chain polyunsaturated fatty acids in colostrum, and infant mental development.

    Science.gov (United States)

    Guxens, Mònica; Mendez, Michelle A; Moltó-Puigmartí, Carolina; Julvez, Jordi; García-Esteban, Raquel; Forns, Joan; Ferrer, Muriel; Vrijheid, Martine; López-Sabater, M Carmen; Sunyer, Jordi

    2011-10-01

    Breastfeeding has been associated with improved neurodevelopment in children. However, it remains unknown to what extent nutritional advantages of breast milk may explain this relationship. We assessed the role of parental psychosocial factors and colostrum long-chain polyunsaturated fatty acid (LC-PUFA) levels in the relationship between breastfeeding and children's neurodevelopment. A population-based birth cohort was established in the city of Sabadell (Catalonia, Spain) as part of the INMA-INfancia y Medio Ambiente Project. A total of 657 women were recruited during the first trimester of pregnancy. Information about parental characteristics and breastfeeding was obtained by using a questionnaire, and trained psychologists assessed mental and psychomotor development by using the Bayley Scales of Infant Development in 504 children at 14 months of age. A high percentage of breastfeeds among all milk feeds accumulated during the first 14 months was positively related with child mental development (0.37 points per month of full breastfeeding [95% confidence interval: 0.06-0.67]). Maternal education, social class, and intelligence quotient only partly explained this association. Children with a longer duration of breastfeeding also exposed to higher ratios between n-3 and n-6 PUFAs in colostrum had significantly higher mental scores than children with low breastfeeding duration exposed to low levels. Greater levels of accumulated breastfeeding during the first year of life were related to higher mental development at 14 months, largely independently from a wide range of parental psychosocial factors. LC-PUFA levels seem to play a beneficial role in children's mental development when breastfeeding levels are high.

  16. Are There the Antiarrhythmic Effects of Omega3 Polyunsaturated Fatty Acids in Cardiosurgical Patients?

    Directory of Open Access Journals (Sweden)

    V. V. Lomivorotov

    2014-01-01

    Full Text Available Objective: to test the hypothesis that the perioperative use of omega3 polyunsaturated fatty acids (ω3PUFA as intravenous infusion will reduce the risk of postoperative atrial fibrillation (POAF in patients with coronary heart disease operated on under extracorporeal circulation.Subjects and methods. A doubleblind prospective controlled study was conducted in 39 patients who were randomized into two groups: 1 18 patients were infused with ω3PUFA (Omegaven, Fresenius Kabi, Germany, beginning before inducing anesthesia in a dose of 200 mg/kg/day within the first 24 hours and 100 mg/kg/day on days 2 to 7 postsurgery; 2 21 received placebo (Intralipid, Fresenius Kabi, Germany in the equivalent dose. The primary end point was freedom from POAF during 2 months after surgery. POAF was examined using a subcutaneously implanted continuous cardiac rhythm monitoring device (Reveal XT, Medtronic, USA. Monitoring readings were taken on day 10 at 3, 6, 12, and 24 months following surgery.Results. POAF was observed in 4 (19% patients in the placebo group and in 5 (27.8% in the ω3PUFA group on days 10 postsurgery (p=0.88. During 2year followup, POAF was revealed in 5 (27.8% patients in the control group and in 6 (35.3% in the ω3PUFA group (p=0.9. The duration of POAF was associated with the risk of rehospitalizations for decompensated heart failure (regression coefficient, 0.24; standard error, 0.02; p<0.0001; R2=0.74.Conclusion. The results of the study do not support the efficiency of perioperatively using ω3PUFA to prevent POAF

  17. Efficacies of vitamin D and omega-3 polyunsaturated fatty acids on experimental endometriosis.

    Science.gov (United States)

    Akyol, Alpaslan; Şimşek, Memet; İlhan, Raşit; Can, Behzat; Baspinar, Melike; Akyol, Hadice; Gül, H Fatih; Gürsu, Ferit; Kavak, Burçin; Akın, Mustafa

    2016-12-01

    The aim of this study was to investigate the effects of 1,25-dihydroxyvitamin-D3 (vitamin D) and omega-3 polyunsaturated fatty acids (omega-3 PUFA) on experimentally induced endometriosis in a rat model. A prospective, single-blind, randomized, controlled experimental study was performed on 30 Wistar female rats. Endometriosis was surgically induced by implanting endometrial tissue on the abdominal peritoneum. Four weeks later, a second laparotomy was performed to assess pre-treatment implant volumes and cytokine levels. The rats were randomized into three groups: vitamin D group (42 μg/kg/day), omega-3 PUFA group (450 mg/kg/day), and control group (saline 0.1 mL/rat/day). These treatments were administered for 4 weeks. At the end of treatment, a third laparotomy was performed for the assessment of cytokine levels, implant volumes (post-treatment) and implants were totally excised for histopathologic examination. Pre- and post-treatment volumes, cytokine levels within the groups, as well as stromal and glandular tissues between the groups were compared. The mean post-treatment volume was statistically significantly reduced in the omega-3 PUFA group (p=0.02) and the level of the interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), vascular endothelial growth factor (VEGF) in the peritoneal fluid were significantly decreased at the end of treatment in the omega-3 PUFA group (p=0.02, p=0.03, and p=0.03, respectively). In the vitamin D group, only IL-6 levels were significantly decreased. In the histopathologic examination, the glandular tissue and stromal tissue scores of the implants were significant lower in the omega-3 PUFA group (p=0.03 and p=0.02). Omega-3 PUFA caused significant regression of endometriotic implants. Vitamin D has not been as effective as omega-3 PUFA on endometriosis. Copyright © 2016. Published by Elsevier B.V.

  18. Omega-3 polyunsaturated fatty acid supplementation for improving peripheral nerve health: protocol for a systematic review.

    Science.gov (United States)

    Zhang, Alexis Ceecee; MacIsaac, Richard J; Roberts, Leslie; Kamel, Jordan; Craig, Jennifer P; Busija, Lucy; Downie, Laura E

    2018-03-25

    Damage to peripheral nerves occurs in a variety of health conditions. Preserving nerve integrity, to prevent progressive nerve damage, remains a clinical challenge. Omega-3 polyunsaturated fatty acids (PUFAs) are implicated in the development and maintenance of healthy nerves and may be beneficial for promoting peripheral nerve health. The aim of this systematic review is to assess the effects of oral omega-3 PUFA supplementation on peripheral nerve integrity, including both subjective and objective measures of peripheral nerve structure and/or function. A systematic review of randomised controlled trials that have evaluated the effects of omega-3 PUFA supplementation on peripheral nerve assessments will be conducted. Comprehensive electronic database searches will be performed in Ovid MEDLINE, Embase, the Cochrane Central Register of Controlled Trials (CENTRAL), US National Institutes of Health Clinical Trials Registry and the WHO International Clinical Trials Registry Platform. The title, abstract and keywords of identified articles will be assessed for eligibility by two reviewers. Full-text articles will be obtained for all studies judged as eligible or potentially eligible; these studies will be independently assessed by two reviewers to determine eligibility. Disagreements will be resolved by consensus. Risk of bias assessment will be performed using the Cochrane Collaboration risk of bias tool to appraise the quality of included studies. If clinically meaningful, and there are a sufficient number of eligible studies, a meta-analysis will be conducted and a summary of findings table will be provided. This is a systematic review that will involve the analysis of previously published data, and therefore ethics approval is not required. A manuscript reporting the results of this systematic review will be published in a peer-reviewed journal and may also be presented at relevant scientific conferences. CRD42018086297. © Article author(s) (or their employer

  19. Omega-3 Polyunsaturated Fatty Acids Enriched Hen Eggs Consumption Enhances Microvascular Reactivity in Young Healthy Individuals.

    Science.gov (United States)

    Stupin, Ana; Rasic, Lidija; Matic, Anita; Stupin, Marko; Kralik, Zlata; Kralik, Gordana; Grcevic, Manuela; Drenjancevic, Ines

    2018-04-10

    Whilst the beneficial effect of omega-3 polyunsaturated fatty acids (PUFAs) supplementation on cardiovascular (CV) system is well supported in CV patients, the effect of consumption of omega-3 PUFAs enriched functional food in healthy individuals is still not fully elucidated. This study aimed to determine the effect of consumption of omega-3 PUFAs enriched hen eggs on microvascular reactivity (primary outcome), blood pressure (BP) and serum lipid profile in young healthy individuals. Control group (N=16) ate three ordinary hen eggs (277 mg omega-3 PUFAs/day), and OMEGA-3 group (N=20) ate three omega-3 PUFAs enriched eggs containing 259 mg of omega-3 PUFAs/egg daily (ALA 167 mg/egg, EPA 7 mg/egg, DHA 84 mg/egg) for 3 weeks (777 mg omega-3 PUFAs/day). Post-occlusive reactive hyperemia (PORH) in skin microcirculation assessed by laser Doppler flowmetry, serum lipid profile, fasting blood glucose, high-sensitivity C-reactive protein (hsCRP) and arterial BP were measured in all subjects before and after the protocol. PORH was significantly enhanced, and triglycerides, hsCRP and BP were significantly decreased in OMEGA-3 group compared to baseline measurement, while there was no significant difference in Control group after the protocol compared to baseline. This is the first study to demonstrate that consumption of a mixture of omega-3 PUFAs (ALA+EPA+DHA), provided via enriched hen eggs, elicits changes in microvascular reactivity, BP and triglycerides level in healthy subjects that are associated with CV benefits, thus suggesting that daily consumption of omega-3 PUFAs enriched eggs in healthy individuals may potentially contribute to CV risk factors attenuation and disease prevention.

  20. Red blood cell polyunsaturated fatty acids and mortality in the Women's Health Initiative Memory Study.

    Science.gov (United States)

    Harris, William S; Luo, Juhua; Pottala, James V; Espeland, Mark A; Margolis, Karen L; Manson, Joann E; Wang, Lu; Brasky, Theodore M; Robinson, Jennifer G

    The prognostic value of circulating polyunsaturated fatty acid (PUFA) levels is unclear. To determine the associations between red blood cell (RBC) PUFA levels and risk for death. This prospective cohort study included 6501 women aged 65 to 80 years who participated in the Women's Health Initiative Memory Study (enrolment began 1996). RBC PUFA levels were measured at baseline and expressed as a percent of total RBC PUFAs. PUFAs of primary interest were the n-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and their sum (the Omega-3 Index). PUFAs of secondary interest included the 2 major n-6 PUFAs, linoleic acid and arachidonic acid, and the PUFA factor score (a calculated variable including 6 PUFAs that accounts for their intercorrelations). The primary outcome was total mortality through August 2014. After a median of 14.9 years of follow-up, 1851 women (28.5%) had died. RBC levels of EPA and DHA were higher in the survivors (P < .002 for each). In the fully adjusted models, the hazard ratios (99% confidence intervals) for mortality associated with a 1 standard deviation PUFA increase for total mortality were 0.92 (0.85, 0.98) for the Omega-3 Index, 0.89 (0.82, 0.96) for EPA, 0.93 (0.87, 1.0) for DHA, and 0.76 (0.64, 0.90) for the PUFA factor score. There were no significant associations of alpha-linolenic acid, arachidonic acid or linoleic acid with total mortality. Higher RBC levels of marine n-3 PUFAs were associated with reduced risk for all-cause mortality. These findings support the beneficial relationship between the Omega-3 Index and health outcomes. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  1. Metabolites derived from omega-3 polyunsaturated fatty acids are important for cardioprotection.

    Science.gov (United States)

    Gilbert, Kim; Malick, Mandy; Madingou, Ness; Touchette, Charles; Bourque-Riel, Valérie; Tomaro, Leandro; Rousseau, Guy

    2015-12-15

    Although controversial, some data suggest that omega-3 polyunsaturated fatty acids (PUFA) are beneficial to cardiovascular diseases, and could reduce infarct size. In parallel, we have reported that the administration of Resolvin D1 (RvD1), a metabolite of docosahexaenoic acid, an omega-3 PUFA, can reduce infarct size. The present study was designed to determine if the inhibition of two important enzymes involved in the formation of RvD1 from omega-3 PUFA could reduce the cardioprotective effect of omega-3 PUFA. Sprague-Dawley rats were fed with a diet rich in omega-3 PUFA during 10 days before myocardial infarction (MI). Two days before MI, rats received a daily dose of Meloxicam, an inhibitor of cyclooxygenase-2, PD146176, an inhibitor of 15-lipoxygenase, both inhibitors or vehicle. MI was induced by the occlusion of the left coronary artery for 40min followed by reperfusion. Infarct size and neutrophil accumulation were evaluated after 24h of reperfusion while caspase-3, -8 and Akt activities were assessed at 30min of reperfusion. Rats receiving inhibitors, alone or in combination, showed a larger infarct size than those receiving omega-3 PUFA alone. Caspase-3 and -8 activities are higher in ischemic areas with inhibitors while Akt activity is diminished in groups treated with inhibitors. Moreover, the study showed that RvD1 restores cardioprotection when added to the inhibitors. Results from this study indicate that the inhibition of the metabolism of Omega-3 PUFA attenuate their cardioprotective properties. Then, resolvins seem to be an important mediator in the cardioprotection conferred by omega-3 PUFA in our experimental model of MI. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Effects of the polyunsaturated fatty acids, EPA and DHA, on hematological malignancies: a systematic review.

    Science.gov (United States)

    Moloudizargari, Milad; Mortaz, Esmaeil; Asghari, Mohammad Hossein; Adcock, Ian M; Redegeld, Frank A; Garssen, Johan

    2018-02-20

    Omega-3 polyunsaturated fatty acids (PUFAs) have well established anti-cancer properties. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are among this biologically active family of macromolecules for which various anti-cancer effects have been explained. These PUFAs have a high safety profile and can induce apoptosis and inhibit growth of cancer cells both in vitro and in vivo , following a partially selective manner. They also increase the efficacy of chemotherapeutic agents by increasing the sensitivity of different cell lines to specific anti-neoplastic drugs. Various mechanisms have been proposed for the anti-cancer effects of these omega-3 PUFAs; however, the exact mechanisms still remain unknown. While numerous studies have investigated the effects of DHA and EPA on solid tumors and the responsible mechanisms, there is no consensus regarding the effects and mechanisms of action of these two FAs in hematological malignancies. Here, we performed a systematic review of the beneficial effects of EPA and DHA on hematological cell lines as well as the findings of related in vivo studies and clinical trials. We summarize the key underlying mechanisms and the therapeutic potential of these PUFAs in the treatment of hematological cancers. Differential expression of apoptosis-regulating genes and Glutathione peroxidase 4 (Gp-x4), varying abilities of different cancerous and healthy cells to metabolize EPA into its more active metabolites and to uptake PUFAS are among the major factors that determine the sensitivity of cells to DHA and EPA. Considering the abundance of data on the safety of these FAs and their proven anti-cancer effects in hematological cell lines and the lack of related human studies, further research is warranted to find ways of exploiting the anticancer effects of DHA and EPA in clinical settings both in isolation and in combination with other therapeutic regimens.

  3. Polyunsaturated fatty acids and calcaneal ultrasound parameters among Inuit women from Nuuk (Greenland): a longitudinal study.

    Science.gov (United States)

    Paunescu, Alexandra-Cristina; Ayotte, Pierre; Dewailly, Eric; Dodin, Sylvie; Pedersen, Henning S; Mulvad, Gert; Côté, Suzanne

    2013-01-01

    The traditional diet of Inuit people comprises large amounts of fish and marine mammals that are rich in omega-3 polyunsaturated fatty acids (PUFAs). Results from in vitro studies, laboratory animal experiments and population studies suggest that omega-3 PUFA intake and a high omega-3/omega-6 ratio exert a positive effect on bone health. This longitudinal study was conducted to examine the relationship between omega-3 and omega-6 PUFA status and quantitative ultrasound (QUS) parameters in Greenlandic Inuit women. The study included 118 Inuit women from Nuuk (Greenland), aged 49-64 years, whose QUS parameters measured at baseline (year 2000), along with PUFA status and covariates, and follow-up QUS measurements 2 years later (year 2002). QUS parameters [speed of sound (SOS); broadband ultrasound attenuation (BUA)] were measured at the right calcaneus with a water-bath Lunar Achilles instrument. Omega-3 and omega-6 PUFA contents of erythrocyte membrane phospholipids were measured after transmethylation by gas chromatography coupled with a flame ionization detector. Relationships between QUS parameters and different PUFAs were studied in multiple linear regression models. Increasing values of EPA, DHA and the omega-3/omega-6 PUFA ratio were associated with increased BUA values measured at follow-up (year 2002). These associations were still present in models adjusted for several confounders and covariates. We found little evidence of associations between PUFAs and SOS values. The omega-3 PUFA intake from marine food consumption seems to have a positive effect on bone intrinsic quality and strength, as revealed by higher BUA values in this group of Greenlandic Inuit women.

  4. Polyunsaturated fatty acids and inflammatory markers in major depressive episodes during pregnancy.

    Science.gov (United States)

    Chang, Jane Pei-Chen; Lin, Chih-Ying; Lin, Pan-Yen; Shih, Yin-Hua; Chiu, Tsan-Hung; Ho, Ming; Yang, Hui-Ting; Huang, Shih-Yi; Gałecki, Piotr; Su, Kuan-Pin

    2018-01-03

    Prenatal depression (PND) is a common psychiatric disorder in pregnant women and leads to psychosocial dysfunction, high suicidal rate, and adverse childcare. Patients with PND have omega-3 polyunsaturated fatty acid (omega-3 or n-3 PUFAs) deficits, which might link to chronic low-grade inflammatory process and the pathophysiological mechanisms of depression. In this case-control study, we examined the levels of PUFAs and inflammatory cytokines in PND. Blood samples were obtained and analyzed from 16 healthy controls and 17 depressed cases (PND group) diagnosed with Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV). Independent sample t-test and correlation analysis were performed with Statistical Package for the Social Sciences (SPSS) logistics correlation analysis. PND group had significantly lower levels of total n-3 (p=0.026), docosahexaenoic acid (DHA) (p=0.020) and eicosapentaenoic (EPA) (p=0.019) but a higher omega-6 (n-6)/n-3 PUFAs ratio (p=0.007) and tumor necrosis factor alpha (TNF-α) (p=0.016) level. Moreover, the duration of current PND episodes were also significantly correlated with DHA, EPA, n-3 PUFAs, n-6/n-3 ratio and TNF-α. In terms of PUFAs and cytokine levels, only DHA was inversely correlated with TNF-α. PND is significantly associated with lower DHA, EPA, and total n-3 PUFAs levels and an increased n-6/n-3 PUFAs ratio, while the duration of PND is associated with lower levels of n-3 PUFAs, including DHA and EPA. The correlation of PUFAs levels with depression and TNF-α level grant further investigation into the inflammatory process underlying PND, mediated by PUFAs. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Fatty Acids Composition of Vegetable Oils and Its Contribution to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids

    Directory of Open Access Journals (Sweden)

    Jana Orsavova

    2015-06-01

    Full Text Available Characterizations of fatty acids composition in % of total methylester of fatty acids (FAMEs of fourteen vegetable oils—safflower, grape, silybum marianum, hemp, sunflower, wheat germ, pumpkin seed, sesame, rice bran, almond, rapeseed, peanut, olive, and coconut oil—were obtained by using gas chromatography (GC. Saturated (SFA, monounsaturated (MUFA and polyunsaturated fatty acids (PUFA, palmitic acid (C16:0; 4.6%–20.0%, oleic acid (C18:1; 6.2%–71.1% and linoleic acid (C18:2; 1.6%–79%, respectively, were found predominant. The nutritional aspect of analyzed oils was evaluated by determination of the energy contribution of SFAs (19.4%–695.7% ERDI, PUFAs (10.6%–786.8% ERDI, n-3 FAs (4.4%–117.1% ERDI and n-6 FAs (1.8%–959.2% ERDI, expressed in % ERDI of 1 g oil to energy recommended dietary intakes (ERDI for total fat (ERDI—37.7 kJ/g. The significant relationship between the reported data of total fat, SFAs, MUFAs and PUFAs intakes (% ERDI for adults and mortality caused by coronary heart diseases (CHD and cardiovascular diseases (CVD in twelve countries has not been confirmed by Spearman’s correlations.

  6. Fatty acid desaturase (FADS gene polymorphisms and insulin resistance in association with serum phospholipid polyunsaturated fatty acid composition in healthy Korean men: cross-sectional study

    Directory of Open Access Journals (Sweden)

    Yang Long In

    2011-04-01

    Full Text Available Abstract Background We investigated the relationship between fatty acid desaturase (FADS gene polymorphisms and insulin resistance (IR in association with serum phospholipid polyunsaturated fatty acid (FA composition in healthy Korean men. Methods Healthy men (n = 576, 30 ~ 79 years old were genotyped for rs174537 near FADS1 (FEN1-10154G>T, FADS2 (rs174575C>G, rs2727270C>T, and FADS3 (rs1000778C>T SNPs. Dietary intake, serum phospholipid FA composition and HOMA-IR were measured. Results Fasting insulin and HOMA-IR were significantly higher in the rs174575G allele carriers than the CC homozygotes, but lower in the rs2727270T allele carriers than the CC homozygotes. The proportion of linoleic acid (18:2ω-6, LA was higher in the minor allele carriers of FEN1-10154G>T, rs174575C>G and rs2727270C>T than the major homozygotes, respectively. On the other hand, the proportions of dihomo-γ-linolenic acid (20:3ω-6, DGLA and arachidonic acid (20:4ω-6, AA in serum phospholipids were significantly lower in the minor allele carriers of FEN1-10154 G>T carriers and rs2727270C>T than the major homozygotes respectively. AA was also significantly lower in the rs1000778T allele carriers than the CC homozygotes. HOMA-IR positively correlated with LA and DGLA and negatively with AA/DGLA in total subjects. Interestingly, rs174575G allele carriers showed remarkably higher HOMA-IR than the CC homozygotes when subjects had higher proportions of DLGA (≥1.412% in total serum phospholipid FA composition (P for interaction = 0.009 or of AA (≥4.573% (P for interaction = 0.047. Conclusion HOMA-IR is associated with FADS gene cluster as well as with FA composition in serum phospholipids. Additionally, HOMA-IR may be modulated by the interaction between rs174575C>G and the proportion of DGLA or AA in serum phospholipids.

  7. Impact of diesel exhaust exposure on the liver of mice fed on omega-3 polyunsaturated fatty acids-deficient diet.

    Science.gov (United States)

    Umezawa, Masakazu; Nakamura, Masayuki; El-Ghoneimy, Ashraf A; Onoda, Atsuto; Shaheen, Hazem M; Hori, Hiroshi; Shinkai, Yusuke; El-Sayed, Yasser S; El-Far, Ali H; Takeda, Ken

    2018-01-01

    Exposure to diesel exhaust (DE) exacerbates non-alcoholic fatty liver disease, and may systemically affect lipid metabolism. Omega-3 polyunsaturated fatty acids (n-3 PUFA) have anti-inflammatory activity and suppresses hepatic triacylglycerol accumulation, but many daily diets are deficient in this nutrient. Therefore, the effect of DE exposure in mice fed n-3 PUFA-deficient diet was investigated. Mice were fed control chow or n-3 PUFA-deficient diet for 4 weeks, then exposed to clean air or DE by inhalation for further 4 weeks. Liver histology, plasma parameters, and expression of fatty acid synthesis-related genes were evaluated. N-3 PUFA-deficient diet increased hepatic lipid droplets accumulation and expression of genes promoting fatty acid synthesis: Acaca, Acacb, and Scd1. DE further increased the plasma leptin and the expression of fatty acid synthesis-related genes: Acacb, Fasn, and Scd1. N-3 PUFA-deficient diet and DE exposure potentially enhanced hepatic fatty acid synthesis and subsequently accumulation of lipid droplets. The combination of low-dose DE exposure and intake of n-3 PUFA-deficient diet may be an additional risk factor for the incidence of non-alcoholic fatty liver disease. The present study suggests an important mechanism for preventing toxicity of DE on the liver through the incorporation of n-3 PUFAs in the diet. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Dietary patterns in Brazilian patients with nonalcoholic fatty liver disease: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Silvia Marinho Ferolla

    2013-01-01

    Full Text Available OBJECTIVE: Recent evidence suggests that non-alcoholic fatty liver disease is associated with diet. Our aim was to investigate the dietary patterns of a Brazilian population with this condition and compare them with the recommended diet. METHODS: A cross-sectional study was conducted on 96 non-alcoholic fatty liver disease patients before any dietetic counseling. All patients underwent abdominal ultrasound, biochemical tests, dietary evaluations, and anthropometric evaluations. Their food intake was assessed by a semi-quantitative food-frequency questionnaire and 24-hour food recall. RESULTS: The median patient age was 53 years, and 77% of the individuals were women. Most (67.7% participants were obese, and a large waist circumference was observed in 80.2% subjects. Almost 70% of the participants had metabolic syndrome, and 62.3% presented evidence of either insulin resistance or overt diabetes. Most patients (51.5, 58.5, and 61.7%, respectively exceeded the recommendations for energy intake, as well as total and saturated fat. All patients consumed less than the amount of recommended monounsaturated fatty acids, and 52.1 and 76.6% of them consumed less polyunsaturated fatty acids and fiber, respectively, than recommended. In most patients, the calcium, sodium, potassium, pyridoxine, and vitamin C intake did not meet the recommendations, and in 10.5-15.5% of individuals, the tolerable upper limit intake for sodium was exceeded. The patients presented a significantly high intake of meats, fats, sugars, legumes (beans, and vegetables and a low consumption of cereals, fruits, and dairy products compared with the recommendations. CONCLUSIONS: Although patients with non-alcoholic fatty liver disease exhibited high energy and lipid consumption, most of them had inadequate intake of some micronutrients. The possible role of nutrient-deficient intake in the development of non-alcoholic fatty liver disease warrants investigation.

  9. Immune dysfunction and increased oxidative stress state in diet-induced obese mice are reverted by nutritional supplementation with monounsaturated and n-3 polyunsaturated fatty acids.

    Science.gov (United States)

    Hunsche, Caroline; Hernandez, Oskarina; Gheorghe, Alina; Díaz, Ligia Esperanza; Marcos, Ascensión; De la Fuente, Mónica

    2018-04-01

    Obesity is associated with impaired immune defences and chronic low levels of inflammation and oxidation. In addition, this condition may lead to premature aging. The aim of the study was to evaluate the effects of a nutritional supplementation with monounsaturated and n-3 polyunsaturated fatty acids on several functions and oxidative stress parameters in peritoneal immune cells of obese mice, as well as on the life span of these animals. Obesity was induced in adult female ICR/CD1 by the administration of a high-fat diet (HFD) for 14 weeks. During the last 6 weeks of HFD feeding, one group of obese mice received the same HFD, supplemented with 1500 mg of 2-hydroxyoleic acid (2-OHOA) and another with 3000 mg of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Several functions and oxidative stress parameters of peritoneal leukocytes were evaluated. The groups of obese mice treated with 2-OHOA or with EPA and DHA showed a significant improvement in several functions such as chemotaxis, phagocytosis, digestion capacity, Natural killer activity and lymphoproliferation in response to mitogens. All of these functions, which were decreased in obese mice, increased reaching similar levels to those found in non-obese controls. Both treatments also improved oxidative stress parameters such as xanthine oxidase activity, which decreased, catalase activity and glutathione levels, which increased. These data suggest that dietary supplementation with monounsaturated and n-3 polyunsaturated fatty acids could be an effective nutritional intervention to restore the immune response and oxidative stress state, which are impaired in obese mice.

  10. High Endogenous Accumulation of ω-3 Polyunsaturated Fatty Acids Protect against Ischemia-Reperfusion Renal Injury through AMPK-Mediated Autophagy in Fat-1 Mice

    Directory of Open Access Journals (Sweden)

    Do Hyeong Gwon

    2017-09-01

    Full Text Available Regulated autophagy is involved in the repair of renal ischemia-reperfusion injury (IRI. Fat-1 transgenic mice produce ω3-Polyunsaturated fatty acids (ω3-PUFAs from ω6-Polyunsaturated fatty acids (ω6-PUFAs without a dietary ω3-PUFAs supplement, leading to a high accumulation of omega-3 in various tissues. ω3-PUFAs show protective effects against various renal injuries and it has recently been reported that ω3-PUFAs regulate autophagy. We assessed whether ω3-PUFAs attenuated IR-induced acute kidney injury (AKI and evaluated its associated mechanisms. C57Bl/6 background fat-1 mice and wild-type mice (wt were divided into four groups: wt sham (n = 10, fat-1 sham (n = 10, wt IRI (reperfusion 35 min after clamping both the renal artery and vein; n = 15, and fat-1 IRI (n = 15. Kidneys and blood were harvested 24 h after IRI and renal histological and molecular data were collected. The kidneys of fat-1 mice showed better renal cell survival, renal function, and pathological damage than those of wt mice after IRI. In addition, fat-1 mice showed less oxidative stress and autophagy impairment; greater amounts of microtubule-associated protein 1A/1B-light chain 3 (LC3-II, Beclin-1, and Atg7; lower amounts of p62; and, higher levels of renal cathepsin D and ATP6E than wt kidneys. They also showed more adenosine monophosphate-activated protein kinase (AMPK activation, which resulted in the inhibition of phosphorylation of the mammalian target of rapamycin (mTOR. Collectively, ω3-PUFAs in fat-1 mice contributed to AMPK mediated autophagy activation, leading to a renoprotective response.

  11. High Endogenous Accumulation of ω-3 Polyunsaturated Fatty Acids Protect against Ischemia-Reperfusion Renal Injury through AMPK-Mediated Autophagy in Fat-1 Mice.

    Science.gov (United States)

    Gwon, Do Hyeong; Hwang, Tae Woong; Ro, Ju-Ye; Kang, Yoon-Joong; Jeong, Jin Young; Kim, Do-Kyung; Lim, Kyu; Kim, Dong Woon; Choi, Dae Eun; Kim, Jwa-Jin

    2017-09-30

    Regulated autophagy is involved in the repair of renal ischemia-reperfusion injury (IRI). Fat-1 transgenic mice produce ω3-Polyunsaturated fatty acids (ω3-PUFAs) from ω6-Polyunsaturated fatty acids (ω6-PUFAs) without a dietary ω3-PUFAs supplement, leading to a high accumulation of omega-3 in various tissues. ω3-PUFAs show protective effects against various renal injuries and it has recently been reported that ω3-PUFAs regulate autophagy. We assessed whether ω3-PUFAs attenuated IR-induced acute kidney injury (AKI) and evaluated its associated mechanisms. C57Bl/6 background fat-1 mice and wild-type mice (wt) were divided into four groups: wt sham ( n = 10), fat-1 sham ( n = 10), wt IRI (reperfusion 35 min after clamping both the renal artery and vein; n = 15), and fat-1 IRI ( n = 15). Kidneys and blood were harvested 24 h after IRI and renal histological and molecular data were collected. The kidneys of fat-1 mice showed better renal cell survival, renal function, and pathological damage than those of wt mice after IRI. In addition, fat-1 mice showed less oxidative stress and autophagy impairment; greater amounts of microtubule-associated protein 1A/1B-light chain 3 (LC3)-II, Beclin-1, and Atg7; lower amounts of p62; and, higher levels of renal cathepsin D and ATP6E than wt kidneys. They also showed more adenosine monophosphate-activated protein kinase (AMPK) activation, which resulted in the inhibition of phosphorylation of the mammalian target of rapamycin (mTOR). Collectively, ω3-PUFAs in fat-1 mice contributed to AMPK mediated autophagy activation, leading to a renoprotective response.

  12. n-3 polyunsaturated fatty acids supplementation enhances hippocampal functionality in aged mice

    Directory of Open Access Journals (Sweden)

    Debora eCutuli

    2014-08-01

    Full Text Available As major components of neuronal membranes, omega-3 polyunsaturated acids (n-3 PUFA exhibit a wide range of regulatory functions, modulating from synaptic plasticity to neuroinflammation, from oxidative stress to neuroprotection. Recent human and animal studies indicated the n-3 PUFA neuroprotective properties in aging, with a clear negative correlation between n-3 PUFA levels and hippocampal deficits. The present multidimensional study was aimed at associating cognition, hippocampal neurogenesis, volume, neurodegeneration and metabolic correlates to verify n-3 PUFA neuroprotective effects in aging. To this aim 19 month-old mice were given n-3 PUFA mixture, or olive oil or no dietary supplement for 8 weeks during which hippocampal-dependent mnesic functions were tested. At the end of behavioral testing morphological and metabolic correlates were analyzed. n-3 PUFA supplemented aged mice exhibited better object recognition memory, spatial and localizatory memory, and aversive response retention, without modifications in anxiety levels in comparison to controls. These improved hippocampal cognitive functions occurred in the context of an enhanced cellular plasticity and a reduced neurodegeneration. In fact, n-3 PUFA supplementation increased hippocampal neurogenesis and dendritic arborization of newborn neurons, volume, neuronal density and microglial cell number, while it decreased apoptosis, astrocytosis and lipofuscin accumulation in the hippocampus. The increased levels of some metabolic correlates (blood Acetyl-L-Carnitine and brain n-3 PUFA concentrations found in n-3 PUFA supplemented mice also pointed towards an effective neuroprotection.On the basis of the present results n-3 PUFA supplementation appears to be a useful tool in health promotion and cognitive decline prevention during aging.

  13. Reproductive performance and gestational effort in relation to dietary fatty acids in guinea pigs.

    Science.gov (United States)

    Nemeth, Matthias; Millesi, Eva; Siutz, Carina; Wagner, Karl-Heinz; Quint, Ruth; Wallner, Bernard

    2017-01-01

    Dietary saturated (SFAs) and polyunsaturated (PUFAs) fatty acids can highly affect reproductive functions by providing additional energy, modulating the biochemical properties of tissues, and hormone secretions. In precocial mammals such as domestic guinea pigs the offspring is born highly developed. Gestation might be the most critical reproductive period in this species and dietary fatty acids may profoundly influence the gestational effort. We therefore determined the hormonal status at conception, the reproductive success, and body mass changes during gestation in guinea pigs maintained on diets high in PUFAs or SFAs, or a control diet. The diets significantly affected the females' plasma fatty acid status at conception, while cortisol and estrogen levels did not differ among groups. SFA females exhibited a significantly lower body mass and litter size, while the individual birth mass of pups did not differ among groups and a general higher pup mortality rate in larger litters was diminished by PUFAs and SFAs. The gestational effort, determined by a mother's body mass gain during gestation, increased with total litter mass, whereas this increase was lowest in SFA and highest in PUFA individuals. The mother's body mass after parturition did not differ among groups and was positively affected by the total litter mass in PUFA females. While SFAs reduce the litter size, but also the gestational effort as a consequence, PUFA supplementation may contribute to an adjustment of energy accumulations to the total litter mass, which may both favor a mother's body condition at parturition and perhaps increase the offspring survival at birth.

  14. Validity of food frequency questionnaire-based estimates of long-term long-chain n-3 polyunsaturated fatty acid intake.

    Science.gov (United States)

    Wallin, Alice; Di Giuseppe, Daniela; Burgaz, Ann; Håkansson, Niclas; Cederholm, Tommy; Michaëlsson, Karl; Wolk, Alicja

    2014-01-01

    To evaluate how long-term dietary intake of long-chain n-3 polyunsaturated fatty acids (LCn-3 PUFAs), estimated by repeated food frequency questionnaires (FFQs) over 15 years, is correlated with LCn-3 PUFAs in adipose tissue (AT). Subcutaneous adipose tissue was obtained in 2003-2004 (AT-03) from 239 randomly selected women, aged 55-75 years, after completion of a 96-item FFQ (FFQ-03). All participants had previously returned an identical FFQ in 1997 (FFQ-97) and a 67-item version in 1987-1990 (FFQ-87). Pearson product-moment correlations were used to evaluate associations between intake of total and individual LCn-3 PUFAs as estimated by the three FFQ assessments and AT-03 content (% of total fatty acids). FFQ-estimated mean relative intake of LCn-3 PUFAs (% of total fat intake) increased between all three assessments (FFQ-87, 0.55 ± 0.34; FFQ-97, 0.74 ± 0.64; FFQ-03, 0.88 ± 0.56). Validity, in terms of Pearson correlations between FFQ-03 estimates and AT-03 content, was 0.41 (95% CI 0.30-0.51) for total LCn-3 PUFA and ranged from 0.29 to 0.48 for individual fatty acids; lower correlation was observed among participants with higher percentage body fat. With regard to long-term intake estimates, past dietary intake was also correlated with AT-03 content, with correlation coefficients in the range of 0.21-0.33 and 0.21-0.34 for FFQ-97 and FFQ-87, respectively. The correlations were improved by using average estimates from two or more FFQ assessments. Exclusion of fish oil supplement users (14%) did not alter the correlations. These data indicate reasonable validity of FFQ-based estimates of long-term (up to 15 years) LCn-3 PUFA intake, justifying their use in studies of diet-disease associations.

  15. Interaction of Dietary Fatty Acids with Tumour Necrosis Factor Family Cytokines during Colon Inflammation and Cancer

    Science.gov (United States)

    Straková, Nicol; Vaculová, Alena Hyršlová; Tylichová, Zuzana; Šafaříková, Barbora; Kozubík, Alois

    2014-01-01

    Intestinal homeostasis is precisely regulated by a number of endogenous regulatory molecules but significantly influenced by dietary compounds. Malfunction of this system may result in chronic inflammation and cancer. Dietary essential n-3 polyunsaturated fatty acids (PUFAs) and short-chain fatty acid butyrate produced from fibre display anti-inflammatory and anticancer activities. Both compounds were shown to modulate the production and activities of TNF family cytokines. Cytokines from the TNF family (TNF-α, TRAIL, and FasL) have potent inflammatory activities and can also regulate apoptosis, which plays an important role in cancer development. The results of our own research showed enhancement of apoptosis in colon cancer cells by a combination of either docosahexaenoic acid (DHA) or butyrate with TNF family cytokines, especially by promotion of the mitochondrial apoptotic pathway and modulation of NFκB activity. This review is focused mainly on the interaction of dietary PUFAs and butyrate with these cytokines during colon inflammation and cancer development. We summarised recent knowledge about the cellular and molecular mechanisms involved in such effects and outcomes for intestinal cell behaviour and pathologies. Finally, the possible application for the prevention and therapy of colon inflammation and cancer is also outlined. PMID:24876678

  16. Brain and Hepatic Mt mRNA Is Reduced in Response to Mild Energy Restriction and n-3 Polyunsaturated Fatty Acid Deficiency in Juvenile Rats

    Directory of Open Access Journals (Sweden)

    Aaron A. Mehus

    2017-10-01

    Full Text Available Metallothioneins (MTs perform important regulatory and cytoprotective functions in tissues including the brain. While it is known that energy restriction (ER and dietary n-3 polyunsaturated fatty acid (PUFA deficiency impact postnatal brain growth and development, little data exist regarding the impact of undernutrition upon MT expression in growing animals. We tested the hypothesis that ER with and without dietary n-3 PUFA deficiency reduces MT expression in juvenile rats. ER rats were individually pair-fed at 75% of the ad libitum (AL intake of control rats provided diets consisting of either soybean oil (SO that is α-linolenic acid (ALA; 18:3n-3 sufficient or corn oil (CO; ALA-deficient. Fatty acids (FA and metal concentrations of liver and brain regions were analyzed. Tissue expression of MTs (Mt1-3 and modulators of MT expression including glucocorticoid receptors (Nr3c1 and Nr3c2 and several mediators of thyroid hormone regulation (Dio1-3, Mct8, Oatp1c1, Thra, and Thrb were measured. Plasma corticosterone and triiodothyronine levels were also evaluated. ER, but not metal deficiency, reduced Mt2 expression in the cerebellum (50% and cerebral cortex (23%. In liver, a reduction in dietary n-3 PUFA reduced Mt1, Mt2, Nr3c1, Mct8, and Thrb. ER elevated Nr3c1, Dio1, and Thrb and reduced Thra in the liver. Given MT’s role in cellular protection, further studies are needed to evaluate whether ER or n-3 PUFA deficiency may leave the juvenile brain and/or liver more susceptible to endogenous or environmental stressors.

  17. Dietary omega 6 fatty acids and the effects of hyperthyroidism in mice.

    Science.gov (United States)

    Deshpande, N; Hulbert, A J

    1995-03-01

    The influence of the type of dietary fat on the effects of thyroid hormones was investigated in mice. Hyperthyroidism was achieved by providing thyroid hormones (T3 and T4) in the drinking water. Both hyperthyroid and euthyroid mice (Mus musculus) were fed isoenergetic diets containing 18% (w/w) total lipid but differing in fatty acid composition. Diets were either low in the polyunsaturated linoleic acid (18:2, omega 6) and high in saturated fatty acids (SFAs) or low in saturated fats and high in the polyunsaturated fatty acid (PUFA), linoleic acid. Treatments were maintained for 21-22 days. Plasma thyroid hormone levels, standard metabolic rate (SMR), changes in body mass, specific activities of malic enzyme (ME), Na-K-ATPase and glycerolphosphate dehydrogenase (GPDH) of the liver were measured. Fatty acid composition of the liver phospholipids was also determined. Levels of T3 (15-17 nM) and T4 (250-255 nM) were significantly higher in the respective hyperthyroid groups. There was no significant influence of the diet on hormone levels. Hyperthyroidism increased the SMR 37-44% above the euthyroid levels. A significant body weight loss of 14-18% was observed in hyperthyroid mice on the PUFA diet but not in those on the SFA diet. PUFA diet significantly reduced the activity of ME but had no effect on Na-K-ATPase or GPDH activity. Activities of Na-K-ATPase and GPDH were significantly elevated in all hyperthyroid groups. Mice on T4 and PUFA diet showed a highly significant 399% increase in GPDH activity above the euthyroid level.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Effect of dietary fat type on the fatty acids composition of irradiated and frozen storage japanese quails meat

    International Nuclear Information System (INIS)

    Abd EI-Wahab, S. A.

    2009-01-01

    The effect of substitution of dietary cotton seed oil (CSO) by used restaurant oil (URO) with different percentages 25% group 2 (G2), 50% group 3 (G3) and 100% group 4 (G4) in Japanese quail diets on the fatty acids composition of their meat especially polyunsaturated fatty acids (PUFA). The effect of gamma irradiation doses (1.5, 3 and 5 kGy) at frozen storage -18 C (degree) for 2 and 4 months in comparison with unirradiated and un storage were studied. The total saturated fatty acids (SFA) in quail meat fed G4 diet (100% URO) increased significantly in comparison with SFA in G2 (25% URO) and G3 (50% URO) but there is no significant effect with G2 and G3 in comparison with G1 (100% CSO).The monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) were not affected by G2 and G3 diet. Also, linoleic acid (C 18:2, n-6) had the same trend in those groups with range (32.75% to 33.35%). It is concluded that feeding a diet with URO 25% and 50% conserve the content of linoleic acid and the content of PUFA in quail meat. The irradiation doses and storage periods had no significant effect on the linoleic acid, MUFA and PUFA content.

  19. Clinical efficacy ofω-3 polyunsaturated fatty acids in perioperative period of radical operation for gastric cancer

    Directory of Open Access Journals (Sweden)

    Wei-Xue Li

    2018-01-01

    Full Text Available Objective: To study the regulating effect of application of ω-3 polyunsaturated fatty acids in perioperative period of radical surgery for gastric cancer on patients’ nutritional status, inflammatory response and immune function. Methods: A total of 86 cases of patients receiving radical operation for gastric cancer in our hospital were selected for study and randomly divided into two groups, ω-3 PUFAs group received ω-3 polyunsaturated fatty acids combined with conventional intravenous nutritional support and control group only received conventional intravenous nutritional support. Serum nutrition indicators of two groups were detected before and after surgery, and inflammation indicators in serum as well as immune molecules in tumor tissue of tow groups were detected after surgery. Results: 1d before operation and 3 d after operation, serum RBP, PA, RTF, PEPT1 and ghrelin contents of ω-3 PUFAs group were significantly higher than those of control group; 3 d after operation, serum CC16, α-MSH and HSP70 contents of ω-3 PUFAs group were significantly higher than those of control group, and LBP and sCD14 contents were significantly lower than those of control group; B7-H1, B7-H4, CD157 and CD133 contents in tumor tissue of ω-3 PUFAs group were significantly lower than those of control group, and CD11c content was significantly higher than that of control group. Conclusion: Application of ω-3 polyunsaturated fatty acids in perioperative period of radical operation for gastric cancer can improve patients’ nutritional status, reduce postoperative inflammatory response caused by surgical trauma and regulate the expression of immune molecules in tumor tissue.

  20. Plasma polyunsaturated fatty acids are directly associated with cognition in overweight children but not in normal weight children.

    Science.gov (United States)

    Haapala, E A; Viitasalo, A; Venäläinen, T; Eloranta, A-M; Ågren, J; Lindi, V; Lakka, T A

    2016-12-01

    Polyunsaturated fatty acids are essential nutrients for the normal development of the brain. We investigated the associations between plasma polyunsaturated fatty acids and cognition in normal weight and overweight children. The study recruited 386 normal weight children and 58 overweight children aged six to eight years and blood samples were drawn after a 12-hour fast. We assessed plasma polyunsaturated fatty acids using gas chromatography, cognition using Raven's Coloured Progressive Matrices, and overweight and obesity using the age-specific and sex-specific cut-offs from the International Obesity Task Force. The data were analysed by linear regression analyses adjusted for age and sex. Higher proportions of eicosapentaenoic acid in plasma triacylglycerols (β = 0.311, p = 0.020, p = 0.029 for interaction) and docosahexaenoic acid in plasma triacylglycerols (β = 0.281, p = 0.038, p = 0.049 for interaction) were both associated with higher Raven's scores in overweight children but not in normal weight children. Higher eicosapentaenoic acid to arachidonic acid ratios in triacylglycerols (β = 0.317, p = 0.019) and phospholipids (β = 0.273, p = 0.046) were directly associated with the Raven's score in overweight children but not in normal weight children. These findings suggest that increasing the consumption of fish and other sources of eicosapentaenoic acid and docosahexaenoic acid may improve cognition among overweight children. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  1. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina.

    Science.gov (United States)

    SanGiovanni, John Paul; Chew, Emily Y

    2005-01-01

    In this work we advance the hypothesis that omega-3 (omega-3) long-chain polyunsaturated fatty acids (LCPUFAs) exhibit cytoprotective and cytotherapeutic actions contributing to a number of anti-angiogenic and neuroprotective mechanisms within the retina. omega-3 LCPUFAs may modulate metabolic processes and attenuate effects of environmental exposures that activate molecules implicated in pathogenesis of vasoproliferative and neurodegenerative retinal diseases. These processes and exposures include ischemia, chronic light exposure, oxidative stress, inflammation, cellular signaling mechanisms, and aging. A number of bioactive molecules within the retina affect, and are effected by such conditions. These molecules operate within complex systems and include compounds classified as eicosanoids, angiogenic factors, matrix metalloproteinases, reactive oxygen species, cyclic nucleotides, neurotransmitters and neuromodulators, pro-inflammatory and immunoregulatory cytokines, and inflammatory phospholipids. We discuss the relationship of LCPUFAs with these bioactivators and bioactive compounds in the context of three blinding retinal diseases of public health significance that exhibit both vascular and neural pathology. How is omega-3 LCPUFA status related to retinal structure and function? Docosahexaenoic acid (DHA), a major dietary omega-3 LCPUFA, is also a major structural lipid of retinal photoreceptor outer segment membranes. Biophysical and biochemical properties of DHA may affect photoreceptor membrane function by altering permeability, fluidity, thickness, and lipid phase properties. Tissue DHA status affects retinal cell signaling mechanisms involved in phototransduction. DHA may operate in signaling cascades to enhance activation of membrane-bound retinal proteins and may also be involved in rhodopsin regeneration. Tissue DHA insufficiency is associated with alterations in retinal function. Visual processing deficits have been ameliorated with DHA supplementation

  2. Marine n-3 Polyunsaturated Fatty Acids in Psoriatic Arthritis – Inflammation and Cardiac Autonomic and Hemodynamic Function

    DEFF Research Database (Denmark)

    Kristensen, Salome

    This thesis is based on three studies of patients with established psoriatic arthritis (PsA) aiming at investigating the effect of marine n-3 polyunsaturated fatty acids (PUFA) on clinical symptoms and selected measures of inflammation, cardiac autonomic and hemodynamic function in these patients...... with either 3 g of marine n-3 PUFA (6 capsules of fish oil) or 3 g of olive oil daily for 24 weeks. A total of 133 patients (92%) completed the study. The difference in the outcomes between baseline and 24 weeks was analysed within and between the two supplemented groups. In Study II, the effects of n-3 PUFA...

  3. Role of ω3 long-chain polyunsaturated fatty acids in reducing cardio-metabolic risk factors.

    Science.gov (United States)

    Abeywardena, Mahinda Y; Patten, Glen S

    2011-09-01

    Cardiovascular disease is the leading cause of mortality in many economically developed nations, and its incidence is increasing at a rapid rate in emerging economies. Diet and lifestyle issues are closely associated with a myriad of cardiovascular disease risk factors including abnormal plasma lipids, hypertension, insulin resistance, diabetes and obesity, suggesting that diet-based approaches may be of benefit. Omega-3 longchain-polyunsaturated fatty acids (ω3 LC-PUFA) are increasingly being used in the prevention and management of several cardiovascular risk factors. Both the ω3 and ω6 PUFA families are considered essential, as the human body is itself unable to synthesize them. The conversion of the two precursor fatty acids - linoleic acid (18:2ω6) and α-linoleic acid (α18:3ω3) - of these two pathways to longer (≥C(20)) PUFA is inefficient. Although there is an abundance of ω6 PUFA in the food supply; in many populations the relative intake of ω3 LC-PUFA is low with health authorities advocating increased consumption. Fish oil, rich in eicosapentaenoic (EPA, 20:5ω3) and docosahexaenoic (DHA, 22:6ω3) acids, has been found to cause a modest reduction in blood pressure at a dose level of >3g/d both in untreated and treated hypertensives. Whilst a multitude of mechanisms may contribute to the blood pressure lowering action of ω3 LC-PUFA, improved vascular endothelial cell function appears to play a central role. Recent studies which evaluated the potential benefits of fish oil in type-2 diabetes have helped to alleviate concerns raised in some previous studies which used relatively large dose (5-8 g/d) and reported a worsening of glycemic control. Several meta-analyses have confirmed that the most consistent action of ω3 LC-PUFA in insulin resistance and type-2 diabetes is the reduction in triglycerides. In some studies, fish oil has been found to cause a small rise in LDL-cholesterol, but a change in the LDL particle size, from the smaller more

  4. Habitual dietary intake of fatty acids are associated with leptin gene expression in subcutaneous and visceral adipose tissue of patients without diabetes.

    Science.gov (United States)

    Rostami, Hosein; Samadi, Mohammad; Yuzbashian, Emad; Zarkesh, Maryam; Asghari, Golaleh; Hedayati, Mehdi; Daneshafrooz, Afsoon; Mirmiran, Parvin; Khalaj, Alireza

    2017-11-01

    The purpose of the study was to investigate the association of leptin gene expression in visceral and subcutaneous adipose tissues with habitual fatty acid intake and its subtypes in adults. Visceral and subcutaneous adipose tissues were gathered from 97 participants aged ≥ 20, who had undergone elective abdominal surgery. Dietary fatty acid intakes including total fatty acids (TFA), saturated fatty acid (SFA), monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), n-3, n-6, and n-9 fatty acids were collected using a valid and reliable food-frequency questionnaire (FFQ). The leptin gene expression in visceral and subcutaneous adipose tissues was measured by Real-Time PCR. After controlling for body mass index (BMI) and insulin, energy-adjusted dietary intake of SFA was positively and MUFA and n-3 fatty acids were negatively associated with subcutaneous and visceral adipose tissues leptin gene expression. Besides, a significant negative association of PUFA, n-6, and n-9 fatty acids with leptin mRNA from visceral adipose tissue were observed. In order to better interpretations of the results, the participants were allocated two groups including non-obese (BMI fatty acids had a negative association with visceral leptin gene expression. Habitual intake of SFA, MUFA, and n-3 fatty acids were associated with leptin gene expression in visceral and subcutaneous adipose tissues, suggesting an important role of quality and quantity of fatty acids intake in adipose tissue to regulate leptin expression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Selection in Europeans on fatty acid desaturases associated with dietary changes

    DEFF Research Database (Denmark)

    Buckley, Matthew T.; Racimo, Fernando; Allentoft, Morten Erik

    2017-01-01

    FADS genes encode fatty acid desaturases that are important for the conversion of short chain polyunsaturated fatty acids (PUFAs) to long chain fatty acids. Prior studies indicate that the FADS genes have been subjected to strong positive selection in Africa, South Asia, Greenland, and Europe. By...

  6. Identification and Functional Characterization of Genes Encoding Omega-3 Polyunsaturated Fatty Acid Biosynthetic Activities from Unicellular Microalgae

    Directory of Open Access Journals (Sweden)

    Royah Vaezi

    2013-12-01

    Full Text Available In order to identify novel genes encoding enzymes involved in the biosynthesis of nutritionally important omega-3 long chain polyunsaturated fatty acids, a database search was carried out in the genomes of the unicellular photoautotrophic green alga Ostreococcus RCC809 and cold-water diatom Fragilariopsis cylindrus. The search led to the identification of two putative “front-end” desaturases (Δ6 and Δ4 from Ostreococcus RCC809 and one Δ6-elongase from F. cylindrus. Heterologous expression of putative open reading frames (ORFs in yeast revealed that the encoded enzyme activities efficiently convert their respective substrates: 54.1% conversion of α-linolenic acid for Δ6-desaturase, 15.1% conversion of 22:5n-3 for Δ4-desaturase and 38.1% conversion of γ-linolenic acid for Δ6-elongase. The Δ6-desaturase from Ostreococcus RCC809 displays a very strong substrate preference resulting in the predominant synthesis of stearidonic acid (C18:4Δ6,9,12,15. These data confirm the functional characterization of omega-3 long chain polyunsaturated fatty acid biosynthetic genes from these two species which have until now not been investigated for such activities. The identification of these new genes will also serve to expand the repertoire of activities available for metabolically engineering the omega-3 trait in heterologous hosts as well as providing better insights into the synthesis of eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA in marine microalgae.

  7. Visual functions in phenylketonuria-evaluating the dopamine and long-chain polyunsaturated fatty acids depletion hypotheses.

    Science.gov (United States)

    Gramer, Gwendolyn; Förl, Birgit; Springer, Christina; Weimer, Petra; Haege, Gisela; Mackensen, Friederike; Müller, Edith; Völcker, Hans Eberhard; Hoffmann, Georg Friedrich; Lindner, Martin; Krastel, Hermann; Burgard, Peter

    2013-01-01

    In phenylketonuria presymptomatic treatment following newborn screening prevents severe mental and physical impairment. The reasons for subtle impairments of cerebral functions despite early treatment remain unclear. We assessed a broad spectrum of visual functions in early-treated patients with phenylketonuria and evaluated two hypotheses-the dopamine and the long-chain polyunsaturated fatty acids (LCPUFAs) depletion hypotheses. Contrast sensitivity, colour vision, electroretinography, frequency doubling technology campimetry (FDT), and their relation with blood phenylalanine and docosahexaenoic acid levels were assessed in 36 patients with phenylketonuria and 18 age-matched healthy controls. Contrast sensitivity was significantly lower and total error scores in colour vision significantly higher in patients than controls. Electroretinography results differed significantly between patients and controls. We found a trend for the effect of phenylalanine-levels on contrast sensitivity and a significant effect on colour vision/FDT results. Docosahexaenoic acid levels in erythrocytes were not associated with visual functions. This is the first evaluation of visual functions in phenylketonuria using a comprehensive ophthalmological test battery. We found no evidence supporting the long-chain polyunsaturated fatty acids depletion hypothesis. However, the effect of phenylalanine-levels on visual functions suggests that imbalance between phenylalanine and tyrosine may affect retinal dopamine levels in phenylketonuria. This is supported by the similar patterns of visual functions in patients with phenylketonuria observed in our study and patients with Parkinson's disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Dietary monounsaturated fatty acids intake and risk of skin photoaging.

    Directory of Open Access Journals (Sweden)

    Julie Latreille

    Full Text Available Intake of monounsaturated fatty acids has been reported to reduce oxidative stress, insulin resistance and related inflammatory processes and may thus protect from skin photoaging. The objective of this study was to investigate the association between the risk of photoaging, monounsaturated fatty acids intake and the sources of monounsaturated fatty acids.A cross sectional study was conducted within the framework of the SUVIMAX cohort. The survey included 1264 women and 1655 men aged between 45 and 60 years old. Dietary monounsaturated fatty acids intakes were estimated by dietary source through at least ten 24-h diet records completed during the first 2.5 years of the follow-up period. Severity of facial skin photoaging was graded by trained investigators at baseline during a clinical examination using a 6-grade scale illustrated by photographs. A lower risk of severe photoaging was associated with higher intakes of monounsaturated fatty acids from olive oil in both sexes. Strikingly, no association was found with intake of monounsaturated fatty acids from animal sources whether from dairy products, meat or processed meat.These findings support the beneficial effect of dietary olive oil or healthy diet habits associated with olive oil consumption on the severity of facial photoaging.

  9. The Influence of Different Vegetable Oils on Some ω-3 Polyunsaturated Fatty Acids in Broiler Chickens Breast

    Directory of Open Access Journals (Sweden)

    Dragoş-Sorin Fota

    2011-05-01

    Full Text Available Taking into consideration that the vegetable oils added to the combined fodder can significantly modify the fatty acids profile in broiler food, through its redirection even the fatty acids profile of carcasses can be modified through enrichment in certain fatty acids and obtaining functional foods. Therefore an experiment was conduced on broilers, made up of three experimental groups, fed with a combined base fodder in which 2% of different fat sources have been incorporated (sunflower oil, soybean oil, linseed oil. After the 42 days growth period, the fatty acids profile, % of fatty acids in 100 g product (EPA, DPA, DHA, ∑ SFA, ∑ MUFA, ∑ PUFA of the chicken from the experimental groups, were determined. Fatty acids were determined using gascromatography. The data obtained after statistic processing and interpretation have highlighted the fact that, concerning the fatty acids profile in the chickens breast, we can observe variations of the determined fatty acids content, what shows us that they can be influenced through dietary factors, but there quantity being determined by the participation % of the energy sources (vegetable oils, but also by the fatty acids content of the participating raw materials.

  10. Up-Regulation of Mitochondrial Antioxidant Superoxide Dismutase Underpins Persistent Cardiac Nutritional-Preconditioning by Long Chain n-3 Polyunsaturated Fatty Acids in the Rat

    Directory of Open Access Journals (Sweden)

    Grace G. Abdukeyum

    2016-03-01

    Full Text Available Reactive oxygen species paradoxically underpin both ischaemia/reperfusion (I/R damage and ischaemic preconditioning (IPC cardioprotection. Long-chain omega-3 polyunsaturated fatty acids (LCn-3 PUFA are highly susceptible to peroxidation, but are paradoxically cardioprotective. This study tested the hypothesis that LCn-3 PUFA cardioprotection is underpinned by peroxidation, upregulating antioxidant activity to reduce I/R-induced lipid oxidation, and the mechanisms of this nutritional preconditioning contrast to mechanisms of IPC. Rats were fed: fish oil (LCn-3 PUFA; sunflower seed oil (n-6 PUFA; or beef tallow (saturated fat, SF enriched diets for six weeks. Isolated hearts were subject to: 180 min normoxic perfusion; a 30 min coronary occlusion ischaemia protocol then 120 min normoxic reperfusion; or a 3 × 5 min global IPC protocol, 30 min ischaemia, then reperfusion. Dietary LCn-3 PUFA raised basal: membrane docosahexaenoic acid (22:6n-3 DHA; fatty acid peroxidisability index; concentrations of lipid oxidation products; and superoxide dismutase (MnSOD activity (but not CuZnSOD or glutathione peroxidase. Infarct size correlated inversely with basal MnSOD activity (r2 = 0.85 in the ischaemia protocol and positively with I/R-induced lipid oxidation (lipid hydroperoxides (LPO, r2 = 0.475; malondialdehyde (MDA, r2 = 0.583 across ischaemia and IPC protocols. While both dietary fish oil and IPC infarct-reduction were associated with reduced I/R-induced lipid oxidation, fish oil produced nutritional preconditioning by prior LCn-3 PUFA incorporation and increased peroxidisability leading to up-regulated mitochondrial SOD antioxidant activity.

  11. Assessment of a land-locked Atlantic salmon (Salmo salar L.) population as a potential genetic resource with a focus on long-chain polyunsaturated fatty acid biosynthesis.

    Science.gov (United States)

    Betancor, M B; Olsen, R E; Solstorm, D; Skulstad, O F; Tocher, D R

    2016-03-01

    The natural food for Atlantic salmon (Salmo salar) in freshwater has relatively lower levels of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA) than found in prey for post-smolt salmon in seawater. Land-locked salmon such as the Gullspång population feed exclusively on freshwater type lipids during its entire life cycle, a successful adaptation derived from divergent evolution. Studying land-locked populations may provide insights into the molecular and genetic control mechanisms that determine and regulate n-3 LC-PUFA biosynthesis and retention in Atlantic salmon. A two factorial study was performed comparing land-locked and farmed salmon parr fed diets formulated with fish or rapeseed oil for 8 weeks. The land-locked parr had higher capacity to synthesise n-3 LC-PUFA as indicated by higher expression and activity of desaturase and elongase enzymes. The data suggested that the land-locked salmon had reduced sensitivity to dietary fatty acid composition and that dietary docosahexaenoic acid (DHA) did not appear to suppress expression of LC-PUFA biosynthetic genes or activity of the biosynthesis pathway, probably an evolutionary adaptation to a natural diet lower in DHA. Increased biosynthetic activity did not translate to enhanced n-3 LC-PUFA contents in the flesh and diet was the only factor affecting this parameter. Additionally, high lipogenic and glycolytic potentials were found in land-locked salmon, together with decreased lipolysis which in turn could indicate increased use of carbohydrates as an energy source and a sparing of lipid. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Curcumin and long-chain Omega-3 polyunsaturated fatty acids for Prevention of type 2 Diabetes (COP-D): study protocol for a randomised controlled trial.

    Science.gov (United States)

    Thota, Rohith N; Acharya, Shamasunder H; Abbott, Kylie A; Garg, Manohar L

    2016-11-29

    Lifestyle interventions, including increase in physical activity and dietary counselling, have shown the ability to prevent type 2 diabetes (T2D) in high-risk state individuals, but the prevalence is still skyrocketing in Australia, in line with global prevalence. Currently, no medicines are approved by the Therapeutic Goods Administration in Australia for the management of prediabetes. Therefore, there is a need of developing a safer, biologically efficacious and cost-effective alternative for delaying the transition of individual health state from prediabetes into T2D. In the current trial we propose to evaluate the effects of curcumin and/or long-chain omega-3 polyunsaturated fatty acids on improving glycosylated haemoglobin as a primary outcome, along with secondary outcomes of glycaemic indices, lipid profile and inflammatory parameters. Eighty individuals diagnosed with prediabetes, aged between 30 and 70 years, will be randomly assigned to double placebo, curcumin alone, fish oil alone or double active groups according to a computer-generated randomisation sequence for 12 weeks. At baseline and post-intervention visits participants will be asked to provide blood samples and undergo body composition measurements. A blood sample is used for estimating glycaemic profiles, lipid profiles and inflammatory parameters (C-reactive protein, whole blood cell count, adiponectin, leptin, interleukin-6). The interim visit includes review on compliance with supplements based on capsule log and capsule count, adverse events and anthropometric measurements. In addition to these procedures, participants provide self-reported questionnaires on dietary intake (using a 3-day food record), a physical activity questionnaire and medical history. This trial aims to determine whether curcumin and/or long-chain omega-3 polyunsaturated fatty acids affect surrogate markers of glycaemic control which is relevant to delaying T2D. To date 38 participants completed the trial. No changes

  13. Tachikawa project for prevention of posttraumatic stress disorder with polyunsaturated fatty acid (TPOP): study protocol for a randomized controlled trial.

    Science.gov (United States)

    Matsuoka, Yutaka; Nishi, Daisuke; Yonemoto, Naohiro; Hamazaki, Kei; Matsumura, Kenta; Noguchi, Hiroko; Hashimoto, Kenji; Hamazaki, Tomohito

    2013-01-05

    Preclinical and clinical studies suggest that supplementation with omega-3 fatty acids after trauma might reduce subsequent posttraumatic stress disorder (PTSD). To date, we have shown in an open trial that PTSD symptoms in critically injured patients can be reduced by taking omega-3 fatty acids, hypothesized to stimulate hippocampal neurogenesis. The primary aim of the present randomized controlled trial is to examine the efficacy of omega-3 fatty acid supplementation in the secondary prevention of PTSD following accidental injury, as compared with placebo. This paper describes the rationale and protocol of this trial. The Tachikawa Project for Prevention of Posttraumatic Stress Disorder with Polyunsaturated Fatty Acid (TPOP) is a double-blinded, parallel group, randomized controlled trial to assess whether omega-3 fatty acid supplementation can prevent PTSD symptoms among accident-injured patients consecutively admitted to an intensive care unit. We plan to recruit accident-injured patients and follow them prospectively for 12 weeks. Enrolled patients will be randomized to either the omega-3 fatty acid supplement group (1,470 mg docosahexaenoic acid and 147 mg eicosapentaenoic acid daily) or placebo group. Primary outcome is score on the Clinician-Administered PTSD Scale (CAPS). We will need to randomize 140 injured patients to have 90% power to detect a 10-point difference in mean CAPS scores with omega-3 fatty acid supplementation compared with placebo. Secondary measures are diagnosis of PTSD and major depressive disorder, depressive symptoms, physiologic response in the experiment using script-driven imagery and acoustic stimulation, serum brain-derived neurotrophic factor, health-related quality of life, resilience, and aggression. Analyses will be by intent to treat. The trial was initiated on December 13 2008, with 104 subjects randomized by November 30 2012. This study promises to be the first trial to provide a novel prevention strategy for PTSD among

  14. Tissue Fatty Acid Profile is Differently Modulated from Olive Oil and Omega-3 Polyunsaturated Fatty Acids in ApcMin/+ Mice.

    Science.gov (United States)

    Tutino, Valeria; Caruso, Maria G; De Leonardis, Giampiero; De Nunzio, Valentina; Notarnicola, Maria

    2017-11-16

    Fatty acid profile can be considered an appropriate biomarker for investigating the relations between the patterns of fatty acid metabolism and specific diseases, as cancer, cardiovascular and degenerative diseases. Aim of this study was to test the effects of diets enriched with olive oil and omega-3 Polyunsaturated Fatty Acids (PUFAs) on fatty acid profile in intestinal tissue of ApcMin/+ mice. Three groups of animals were considered: control group, receiving a standard diet; olive oilgroup, receiving a standard diet enriched with olive oil; omega-3 group, receiving a standard diet enriched with salmon fish. Tissue fatty acid profile was evaluated by gas chromatography method. Olive oil and omega-3 PUFAs in the diet differently affect the tissue fatty acid profile. Compared to control group, the levels of Saturated Fatty Acids (SFAs) were lower in olive oil group, while an increase of SFAs was found in omega-3 group. Monounsaturated Fatty Acids (MUFAs) levels were enhanced after olive oil treatment, and in particular, a significant increase of oleic acid levels was detected; MUFAs levels were instead reduced in omega-3 group in line with the decrease of oleic acid levels. The total PUFAs levels were lower in olive oil respect to control group. Moreover, a significant induction of Saturation Index (SI) levels was observed after omega-3 PUFAs treatment, while its levels were reduced in mice fed with olive oil. Our data demonstrated a different effect of olive oil and omega-3 PUFAs on tissue lipid profile in APCMin/+ mice. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Flexibility of "polyunsaturated fatty acid chains" and peptide backbones: A comparative ab initio study.

    Science.gov (United States)

    Law, Jacqueline M S; Setiadi, David H; Chass, Gregory A; Csizmadia, Imre G; Viskolcz, Béla

    2005-01-27

    The conformational properties of omega-3 type of polyunsaturated fatty acid (PUFA) chains and their fragments were studied using Hartree-Fock (RHF/3-21G) and DFT (B3LYP/6-31G(d)) methods. Comparisons between a unit (U) fragment of the PUFA chain and a mono N-Ac-glycine-NHMe residue show that both structures have the same sequence of sp2-sp3-sp2 atoms. The flexibility of PUFA originates in the internal rotation about the above pairs of sigma bonds. Therefore, potential energy surfaces (PESs) were generated by a scan around the terminal dihedral angles (phi t1 and phi t2) as well as the phi 1 and psi 1 dihedrals of both 1U congeners (Me-CHCH-CH2-CHCHMe and MeCONH-CH2-CONHMe) at the RHF/3-21G level of theory. An interesting similarity was found in the flexibility between the cis allylic structure and the trans peptide models. A flat landscape can be seen in the cis 1U (hepta-2,5-diene) surface, implying that several conformations are expected to be found in this (PES). An exhaustive search carried out on the 1U and 2U models revealed that straight chain structures such as trans and cis beta (phi 1 approximately psi 1 approximately 120 degrees; phi 2 approximately psi 2 approximately -120 degrees) or trans and cis extended (phi 1 approximately psi 1 approximately phi 2 approximately psi 2 approximately 120 degrees) can be formed at the lowest energy of both isomers. However, forming helical structures, such as trans helix (phi 1 approximately -120 degrees, psi 1 approximately 12 degrees; phi 2 approximately -120 degrees, psi 2 approximately 12 degrees) or cis helix (phi 1 approximately -130 degrees, psi 1 approximately 90 degrees; phi 2 approximately -145 degrees, psi 2 approximately 90 degrees) will require more energy. These six conformations, found in 2U, were selected to construct longer chains such as 3U, 4U, 5U, and 6U to obtain the thermochemistry of secondary structures. The variation in the extension or compression of the chain length turned out to be a factor

  16. ANALYSIS OF ω-3 FATTY ACID CONTENT OF POLISH FISH OIL DRUG AND DIETARY SUPPLEMENTS.

    Science.gov (United States)

    Osadnik, Kamila; Jaworska, Joanna

    2016-07-01

    Study results indicate that a diet rich in polyunsaturated fatty acids ω-3 (PUFA n-3) exerts favorable effect on human health, accounting for reduced cardiovascular morbidity and mortality. PUFA n-3 contained in marine fish oils, particularly eicosapentaenoic (EPA, 20:5 n-3) and docosahexaenoic (DHA, 22:6 n-3) acids, are attributed antithrombotic, anti-inflammatory, anti-atherosclerotic and anti-arrhythmic effects. They have also beneficial effects on cognitive functions and immunological mechanisms of an organism. Considering the fact that marine fish are not abundant in Western diet, the pharmaceutical industry reacts with a broad selection of PUFA n-3 containing dietary supplements and drugs. Increased consumers' interest with those products has been observed recently. Therefore, their quality, understood as reliability of manufacturer's declaration of composition of offered dietary supplements, is highly important. We have tested 22 products available in pharmacies and supermarkets, manufacturers of which declared content of n-3 fatty acids (21 dietary supplements and I drug). Identity and content of DHA and EPA were assessed using ¹H NMR spectroscopy, based on characteristic signals from protons in methylene groups. Almost one in five of the examined dietary supplements contains content was consistent with the actual composition. It is notable that more cases of discrepancy between the declared and the actual content regarded DHA than EPA, which indicates a less favorable balance, considering the pro-health effect of those acids. Over a half of tested products provides the supplementary dose (250 mg/day) with one capsule taken daily, and in 27% of cases the daily dosage should be doubled. Only 10% of those products ensure the appropriate dose for cardiovascular patients (1 g/day) with the use of I capsule a day. Correct information provided by a manufacturer on a label regarding the total amount of DHA and EPA is a basis for selection of an appropriate

  17. Ameliorative effects of polyunsaturated fatty acids against palmitic acid-induced insulin resistance in L6 skeletal muscle cells

    Directory of Open Access Journals (Sweden)

    Sawada Keisuke

    2012-03-01

    Full Text Available Abstract Background Fatty acid-induced insulin resistance and impaired glucose uptake activity in muscle cells are fundamental events in the development of type 2 diabetes and hyperglycemia. There is an increasing demand for compounds including drugs and functional foods that can prevent myocellular insulin resistance. Methods In this study, we established a high-throughput assay to screen for compounds that can improve myocellular insulin resistance, which was based on a previously reported non-radioisotope 2-deoxyglucose (2DG uptake assay. Insulin-resistant muscle cells were prepared by treating rat L6 skeletal muscle cells with 750 μM palmitic acid for 14 h. Using the established assay, the impacts of several fatty acids on myocellular insulin resistance were determined. Results In normal L6 cells, treatment with saturated palmitic or stearic acid alone decreased 2DG uptake, whereas unsaturated fatty acids did not. Moreover, co-treatment with oleic acid canceled the palmitic acid-induced decrease in 2DG uptake activity. Using the developed assay with palmitic acid-induced insulin-resistant L6 cells, we determined the effects of other unsaturated fatty acids. We found that arachidonic, eicosapentaenoic and docosahexaenoic acids improved palmitic acid-decreased 2DG uptake at lower concentrations than the other unsaturated fatty acids, including oleic acid, as 10 μM arachidonic acid showed similar effects to 750 μM oleic acid. Conclusions We have found that polyunsaturated fatty acids, in particular arachidonic and eicosapentaenoic acids prevent palmitic acid-induced myocellular insulin resistance.

  18. An Overview of Dietary Interventions and Strategies to Optimize the Management of Non-Alcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Brandon J. Perumpail

    2017-10-01

    Full Text Available Aim: To investigate the efficacy of lifestyle adjustment strategies as a preventive measure and/or treatment of obesity-related non-alcoholic fatty liver disease in adults. Method: A systematic review of literature through 1 July 2017 on the PubMed Database was performed. A comprehensive search was conducted using key terms, such as non-alcoholic fatty liver disease (NAFLD, combined with lifestyle intervention, diet, and exercise. All of the articles and studies obtained from the search were reviewed. Redundant literature was excluded. Results: Several types of dietary compositions and exercise techniques were identified. Most studies concluded and recommended reduction in the intake of saturated and trans fatty acids, carbohydrates, and animal-based protein, and increased intake of polyunsaturated fatty acids (PUFAs, monounsaturated fatty acids (MUFAs, plant-based proteins, antioxidants, and other nutrients was recommended. The Mediterranean and Paleo diet both seem to be promising schemes for NAFLD patients to follow. Exercise was also encouraged, but the type of exercise did not affect its efficacy as a NAFLD treatment when the duration is consistent. Conclusions: Although these different dietary strategies and exercise regimens can be adopted to treat NAFLD, current literature on the topic is limited in scope. Further research should be conducted to truly elucidate which lifestyle adjustments individually, and in combination, may facilitate patients with obesity-related NAFLD.

  19. An Overview of Dietary Interventions and Strategies to Optimize the Management of Non-Alcoholic Fatty Liver Disease.

    Science.gov (United States)

    Perumpail, Brandon J; Cholankeril, Rosann; Yoo, Eric R; Kim, Donghee; Ahmed, Aijaz

    2017-10-22

    Aim : To investigate the efficacy of lifestyle adjustment strategies as a preventive measure and/or treatment of obesity-related non-alcoholic fatty liver disease in adults. Method : A systematic review of literature through 1 July 2017 on the PubMed Database was performed. A comprehensive search was conducted using key terms, such as non-alcoholic fatty liver disease (NAFLD), combined with lifestyle intervention, diet, and exercise. All of the articles and studies obtained from the search were reviewed. Redundant literature was excluded. Results : Several types of dietary compositions and exercise techniques were identified. Most studies concluded and recommended reduction in the intake of saturated and trans fatty acids, carbohydrates, and animal-based protein, and increased intake of polyunsaturated fatty acids (PUFAs), monounsaturated fatty acids (MUFAs), plant-based proteins, antioxidants, and other nutrients was recommended. The Mediterranean and Paleo diet both seem to be promising schemes for NAFLD patients to follow. Exercise was also encouraged, but the type of exercise did not affect its efficacy as a NAFLD treatment when the duration is consistent. Conclusions : Although these different dietary strategies and exercise regimens can be adopted to treat NAFLD, current literature on the topic is limited in scope. Further research should be conducted to truly elucidate which lifestyle adjustments individually, and in combination, may facilitate patients with obesity-related NAFLD.

  20. Beneficial effects of enrichment of chicken meat with n-3 polyunsaturated fatty acids, vitamin E and selenium on health parameters: a study on male rats.

    Science.gov (United States)

    Konieczka, P; Rozbicka-Wieczorek, A J; Czauderna, M; Smulikowska, S

    2017-08-01

    Consumption of chicken meat enriched with bioactive compounds such as n-3 polyunsaturated fatty acids (PUFAn-3), vitamin E (vE) and selenium (Se) can help prevent many diseases and can be used to deliver those substances to humans. This might be of importance as chicken meat consumption is increasing worldwide. The effects of enriching chicken meat with PUFAn-3, vE and Se through dietary interventions were studied in rats. Four groups of Ross 308 female broilers from day 22 to day 35 of age were fed control diet (L) that contained lard and 80 mg vE and 0.3 mg Se/kg, or diets that contained rape seeds and fish oil with the same level of Se and vE as in the control diet, the same level of Se as in the control and 150 mg vE/kg, or 150 mg of vE and 0.7 mg Se/kg. Broiler carcasses were boiled, deboned, lyophilized and pooled by group. Boiled edible components of chicken carcass (BECC) were included (240 g/kg) in the diets fed to four groups of ten 10-week-old Wistar male rats for 8 weeks. Inclusion of BECCs modulated dietary fatty acid profile in the rat diets. Feeding these diets did not influence parameters related to growth or relative weights of internal organs in the rats. Feeding BECCs with lower PUFAn-6/n-3 decreased the n-6/n-3 ratio in the rat brain and liver, and increased the proportion of docosahexaenoic acid in the brain lipids. Liver cholesterol level was similar among the experimental groups, whereas the concentration of vE in the liver of rats fed BECC with increased vE levels was higher than that in the rats fed BECC with the basal vE level. Haematological and biochemical parameters in blood were within the normal range for rats, but a few rats showed a tendency towards increased levels because of the higher vE and Se level. The health-promoting effect of feeding rats PUFAn-3 enriched BECC was more pronounced when an increased dietary level of vE was used, but the increased level of Se did not provide the rats with additional benefits. Thus, the

  1. The Role of Omega-3 Polyunsaturated Fatty Acids in the Treatment of Patients with Acute Respiratory Distress Syndrome: A Clinical Review

    Directory of Open Access Journals (Sweden)

    M. García de Acilu

    2015-01-01

    Full Text Available Acute respiratory distress syndrome (ARDS is defined as the acute onset of noncardiogenic edema and subsequent gas-exchange impairment due to a severe inflammatory process. Recent report on the prognostic value of eicosanoids in patients with ARDS suggests that modulating the inflammatory response through the use of polyunsaturated fatty acids may be a useful strategy for ARDS treatment. The use of enteral diets enriched with eicosapentaenoic acid (EPA and gamma-linolenic acid (GLA has reported promising results, showing an improvement in respiratory variables and haemodynamics. However, the interpretation of the studies is limited by their heterogeneity and methodology and the effect of ω-3 fatty acid-enriched lipid emulsion or enteral diets on patients with ARDS remains unclear. Therefore, the routine use of ω-3 fatty acid-enriched nutrition cannot be recommended and further large, homogeneous, and high-quality clinical trials need to be conducted to clarify the effectiveness of ω-3 polyunsaturated fatty acids.

  2. Supplementation of polyunsaturated fatty acids, magnesium and zinc in children seeking medical advice for attention-deficit/hyperactivity problems - an observational cohort study

    OpenAIRE

    Huss, Michael; V?lp, Andreas; Stauss-Grabo, Manuela

    2010-01-01

    Abstract Background Polyunsaturated fatty acids are essential nutrients for humans. They are structural and functional components of cell membranes and pre-stages of the hormonally and immunologically active eicosanoids. Recent discoveries have shown that the long-chained omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) also play an important role in the central nervous system. They are essential for normal brain functioning including attention and other neuropsy...

  3. Association of Plasma Phospholipid n-3 and n-6 Polyunsaturated Fatty Acids with Type 2 Diabetes: The EPIC-InterAct Case-Cohort Study

    NARCIS (Netherlands)

    Forouhi, N.G.; Imamura, Fumiaki; Sharp, S.J.; Koulman, A.; Schulze, M.B.; Feskens, E.J.M.

    2016-01-01

    Background
    Whether and how n-3 and n-6 polyunsaturated fatty acids (PUFAs) are related to type 2 diabetes (T2D) is debated. Objectively measured plasma PUFAs can help to clarify these associations.

    Methods and Findings
    Plasma phospholipid PUFAs were measured by gas chromatography

  4. Association of Plasma Phospholipid n-3 and n-6 Polyunsaturated Fatty Acids with Type 2 Diabetes : The EPIC-InterAct Case-Cohort Study

    NARCIS (Netherlands)

    Forouhi, Nita G.; Imamura, Fumiaki; Sharp, Stephen J.; Koulman, Albert; Schulze, Matthias B.; Zheng, Jusheng; Ye, Zheng; Sluijs, Ivonne; Guevara, Marcela; Huerta, José María; Kröger, Janine; Wang, Laura Yun; Summerhill, Keith; Griffin, Julian L.; Feskens, Edith J M; Affret, Aurélie; Amiano, Pilar; Boeing, Heiner; Dow, Courtney; Fagherazzi, Guy; Franks, Paul W.; Gonzalez, Carlos; Kaaks, Rudolf; Key, Timothy J.; Khaw, Kay Tee; Kühn, Tilman; Mortensen, Lotte Maxild; Nilsson, Peter M.; Overvad, Kim; Pala, Valeria; Palli, Domenico; Panico, Salvatore; Quirós, J. Ramón; Rodriguez-Barranco, Miguel; Rolandsson, Olov; Sacerdote, Carlotta; Scalbert, Augustin; Slimani, Nadia; Spijkerman, Annemieke M W; Tjonneland, Anne; Tormo, Maria Jose; Tumino, Rosario; van der A, Daphne L.; van der Schouw, Yvonne T.; Langenberg, Claudia; Riboli, Elio; Wareham, Nicholas J.

    2016-01-01

    Background: Whether and how n-3 and n-6 polyunsaturated fatty acids (PUFAs) are related to type 2 diabetes (T2D) is debated. Objectively measured plasma PUFAs can help to clarify these associations. Methods and Findings: Plasma phospholipid PUFAs were measured by gas chromatography among 12,132

  5. Development of low birthweight infants at 19 months of age correlates with early intake and status of long-chain polyunsaturated fatty acids

    NARCIS (Netherlands)

    Woltil, HA; van Beusekom, CM; Okken-Beukens, M; Schaafsma, A; Muskiet, FAJ; Okken, A

    1999-01-01

    We investigated the influence of early nutrition with and without long-chain polyunsaturated fatty acids (LCP) on later development of less than or equal to 2500 g newborns receiving preterm formula without LCP (n=75), preterm formula with 18:3 omega 6 and LCP omega 3 (at two doses; n=26) or their

  6. Does supplementation of formula with evening primrose and fish oils augment long chain polyunsaturated fatty acid status of low birthweight infants to that of breast-fed counterparts?

    NARCIS (Netherlands)

    Woltil, HA; van Beusekom, CM; Schaafsma, A; Okken, A; Muskiet, FAJ

    We investigated whether formulae with evening primrose and fish oils raise long chain polyunsaturated fatty acids (LCPUFA) in plasma cholesterol esters (CE), erythrocytes (RSC) and platelets (PLT) to levels encountered in breast-fed infants. Low birthweight infants (less than or equal to 2500 g)

  7. A Review of Recruitment, Adherence and Drop-Out Rates in Omega-3 Polyunsaturated Fatty Acid Supplementation Trials in Children and Adolescents

    NARCIS (Netherlands)

    Van der Wurff, Inge; Meyer, Barbara; De Groot, Renate

    2017-01-01

    Introduction: The influence of n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) supplementation on health outcomes has been studied extensively with randomized controlled trials (RCT). In many research fields, difficulties with recruitment, adherence and high drop-out rates have been

  8. Effects of long-chain polyunsaturated fatty acid supplementation of infant formula on cognition and behaviour at 9 years of age

    NARCIS (Netherlands)

    De Jong, Corina; Kikkert, Hedwig K.; Fidler, Vaclav; Hadders-Algra, Mijna

    2012-01-01

    AIM: Long-chain polyunsaturated fatty acid (LCPUFA) supplementation of infant formula may have a beneficial effect on cognitive development. This study aimed to investigate the effect of LCPUFA formula supplementation primarily on cognition and secondarily on behaviour at age 9 years. Special

  9. Effects of different n-6 to n-3 polyunsaturated fatty acids ratio on reproductive performance, fecal microbiota and nutrient digestibility of gestation-lactating sows and suckling piglets.

    Science.gov (United States)

    Yin, Jia; Lee, Kwang Yong; Kim, Jong Keun; Kim, In Ho

    2017-11-01

    This study was conducted to evaluate the effects of dietary ratios of n-6:n-3 polyunsaturated fatty acids (PUFA) on reproductive performance, fecal microbiota and nutrient digestibility of gestation-lactating sows and suckling piglets. Fifteen primiparous sows (Landrace × Yorkshire) were randomly allotted into three treatments. Fed diets contained different ratios of n-6:n-3 PUFA, including 20:1, 15:1 and 10:1. No differences were detected among the treatments for average daily feed intake (ADFI) of sows and the back fat levels during lactation (P > 0.05). Body weight (BW) loss of sows after farrowing to weanling was greater in the 10:1 treatment compared with 15:1 or 20:1 (P  0.05). A great significant difference for fecal microbiota was in the 10:1 treatment compared with 20:1 and 15:1 treatments (P < 0.01). In conclusion, altering the ratio of n-6:n-3 PUFA in gestation-lactating sow diet had no difference on nutrient digestibility in gestation-lactating sows, but it can partially improve reproductive performance. © 2017 Japanese Society of Animal Science.

  10. n-3 Polyunsaturated Fatty Acid Supplementation Has No Effect on Postprandial Triglyceride-Rich Lipoprotein Kinetics in Men with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    André J. Tremblay

    2016-01-01

    Full Text Available Dietary n-3 polyunsaturated fatty acids (PUFAs have been proposed to modulate plasma lipids, lipoprotein metabolism, and inflammatory state and to reduce triglyceride (TG concentrations. The present double-blind, randomized, placebo-controlled, crossover study investigated the effects of n-3 PUFA supplementation at 3 g/d for 8 weeks on the intravascular kinetics of intestinally derived apolipoprotein (apo B-48-containing lipoproteins in 10 men with type 2 diabetes. In vivo kinetics of the TG-rich lipoprotein (TRL apoB-48 and VLDL apoB-100 were assessed using a primed-constant infusion of L-[5,5,5-D3] leucine for 12 hours in a fed state. Compared with the placebo, n-3 PUFA supplementation significantly reduced fasting TG concentrations by −9.7% (P=0.05 but also significantly increased plasma levels of cholesterol (C (+6.0%, P=0.05, LDL-C (+12.2%, P=0.04, and HDL-C (+8.4, P=0.007. n-3 PUFA supplementation had no significant impact on postprandial TRL apoB-48 and VLDL apoB-100 levels or on the production or catabolic rates of these lipoproteins. These data indicate that 8-week supplementation with n-3 PUFAs in men with type 2 diabetes has no beneficial effect on TRL apoB-48 and VLDL apoB-100 levels or kinetics.

  11. ω-3 Polyunsaturated fatty acids prevent pressure overload-induced ventricular dilation and decrease in mitochondrial enzymes despite no change in adiponectin

    Directory of Open Access Journals (Sweden)

    O'Shea Karen M

    2010-09-01

    Full Text Available Abstract Background Pathological left ventricular (LV hypertrophy frequently progresses to dilated heart failure with suppressed mitochondrial oxidative capacity. Dietary marine ω-3 polyunsaturated fatty acids (ω-3 PUFA up-regulate adiponectin and prevent LV dilation in rats subjected to pressure overload. This study 1 assessed the effects of ω-3 PUFA on LV dilation and down-regulation of mitochondrial enzymes in response to pressure overload; and 2 evaluated the role of adiponectin in mediating the effects of ω-3 PUFA in heart. Methods Wild type (WT and adiponectin-/- mice underwent transverse aortic constriction (TAC and were fed standard chow ± ω-3 PUFA for 6 weeks. At 6 weeks, echocardiography was performed to assess LV function, mice were terminated, and mitochondrial enzyme activities were evaluated. Results TAC induced similar pathological LV hypertrophy compared to sham mice in both strains on both diets. In WT mice TAC increased LV systolic and diastolic volumes and reduced mitochondrial enzyme activities, which were attenuated by ω-3 PUFA without increasing adiponectin. In contrast, adiponectin-/- mice displayed no increase in LV end diastolic and systolic volumes or decrease in mitochondrial enzymes with TAC, and did not respond to ω-3 PUFA. Conclusion These findings suggest ω-3 PUFA attenuates cardiac pathology in response to pressure overload independent of an elevation in adiponectin.

  12. Human peripheral blood mononuclear cell in vitro system to test the efficacy of food bioactive compounds: Effects of polyunsaturated fatty acids and their relation with BMI

    KAUST Repository

    Cifre, Margalida

    2016-11-22

    Scope: To analyse the usefulness of isolated human peripheral blood mononuclear cells (PBMC) to rapidly/easily reflect n-3 long-chain polyunsaturated fatty acid (LCPUFA) effects on lipid metabolism/inflammation gene profile, and evaluate if these effects are body mass index (BMI) dependent. Methods and results: PBMC from normoweight (NW) and overweight/obese (OW/OB) subjects were incubated with physiological doses of docosahexaenoic (DHA), eicosapentaenoic acid (EPA), or their combination. PBMC reflected increased beta-oxidation-like capacity (CPT1A expression) in OW/OB but only after DHA treatment. However, insensitivity to n-3 LCPUFA was evident in OW/OB for lipogenic genes: both PUFA diminished FASN and SREBP1C expression in NW, but no effect was observed for DHA in PBMC from high-BMI subjects. This insensitivity was also evident for inflammation gene profile: all treatments inhibited key inflammatory genes in NW; nevertheless, no effect was observed in OW/OB after DHA treatment, and EPA effect was impaired. SLC27A2, IL6 and TNFα PBMC expression analysis resulted especially interesting to determine obesity-related n-3 LCPUFA insensitivity. Conclusion: A PBMC-based human in vitro system reflects n-3 LCPUFA effects on lipid metabolism/inflammation which is impaired in OW/OB. These results confirm the utility of PBMC ex vivo systems for bioactive-compound screening to promote functional food development and to establish appropriate dietary strategies for obese population.

  13. Interplay Between n-3 and n-6 Long-Chain Polyunsaturated Fatty Acids and the Endocannabinoid System in Brain Protection and Repair.

    Science.gov (United States)

    Dyall, Simon C

    2017-11-01

    The brain is enriched in arachidonic acid (ARA) and docosahexaenoic acid (DHA), long-chain polyunsaturated fatty acids (LCPUFAs) of the n-6 and n-3 series, respectively. Both are essential for optimal brain development and function. Dietary enrichment with DHA and other long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA), has shown beneficial effects on learning and memory, neuroinflammatory processes, and synaptic plasticity and neurogenesis. ARA, DHA and EPA are precursors to a diverse repertoire of bioactive lipid mediators, including endocannabinoids. The endocannabinoid system comprises cannabinoid receptors, their endogenous ligands, the endocannabinoids, and their biosynthetic and degradation enzymes. Anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are the most widely studied endocannabinoids and are both derived from phospholipid-bound ARA. The endocannabinoid system also has well-established roles in neuroinflammation, synaptic plasticity and neurogenesis, suggesting an overlap in the neuroprotective effects observed with these different classes of lipids. Indeed, growing evidence suggests a complex interplay between n-3 and n-6 LCPUFA and the endocannabinoid system. For example, long-term DHA and EPA supplementation reduces AEA and 2-AG levels, with reciprocal increases in levels of the analogous endocannabinoid-like DHA and EPA-derived molecules. This review summarises current evidence of this interplay and discusses the therapeutic potential for brain protection and repair.

  14. Long-Chain Omega-3 Polyunsaturated Fatty Acids Have Developmental Effects on the Crop Pest, the Cabbage White Butterfly Pieris rapae.

    Directory of Open Access Journals (Sweden)

    Stefanie M Hixson

    Full Text Available Nutritional enhancement of crops using genetic engineering can potentially affect herbivorous pests. Recently, oilseed crops have been genetically engineered to produce the long-chain omega-3 polyunsaturated fatty acids, eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA at levels similar to that found in fish oil; to provide a more sustainable source of these compounds than is currently available from wild fish capture. We examined some of the growth and development impacts of adding EPA and DHA to an artificial diet of Pieris rapae, a common pest of Brassicaceae plants. We replaced 1% canola oil with EPA: DHA (11:7 ratio in larval diets, and examined morphological traits and growth of larvae and ensuing adults across 5 dietary treatments. Diets containing increasing amounts of EPA and DHA did not affect developmental phenology, larval or pupal weight, food consumption, nor larval mortality. However, the addition of EPA and DHA in larval diets resulted in progressively heavier adults (F 4, 108 = 6.78; p = 0.011, with smaller wings (p < 0.05 and a higher frequency of wing deformities (R = 0.988; p = 0.001. We conclude that the presence of EPA and DHA in diets of larval P. rapae may alter adult mass and wing morphology; therefore, further research on the environmental impacts of EPA and DHA production on terrestrial biota is advisable.

  15. Long-chain n-3 polyunsaturated fatty acids in plasma in British meat-eating, vegetarian, and vegan men.

    Science.gov (United States)

    Rosell, Magdalena S; Lloyd-Wright, Zouë; Appleby, Paul N; Sanders, Thomas A B; Allen, Naomi E; Key, Timothy J

    2005-08-01

    Plasma concentrations of long-chain n-3 polyunsaturated fatty acids are lower in vegetarians and in vegans than in omnivores. No data are available on whether these concentrations differ between long- and short-term vegetarians and vegans. We compared plasma fatty acid composition in meat-eaters, vegetarians, and vegans and examined whether the proportions of eicosapentaenoic acid (20:5n-3; EPA), docosapentaenoic acid (22:5n-3; DPA), and docosahexaenoic acid (22:6n-3; DHA) were related to the subjects' duration of adherence to their diets or to the proportions of plasma linoleic acid (18:2n-6; LA) and alpha-linolenic acid (18:3n-3; ALA). The present cross-sectional study included 196 meat-eating, 231 vegetarian, and 232 vegan men in the United Kingdom. Information on anthropometry, diet, and smoking habits was obtained through a questionnaire. Total fatty acid composition in plasma was measured. The proportions of plasma EPA and DHA were lower in the vegetarians and in the vegans than in the meat-eaters, whereas only small differences were seen for DPA. Plasma EPA, DPA, and DHA proportions were not significantly associated with the duration of time since the subjects became vegetarian or vegan, which ranged from 20 y. In the vegetarians and the vegans, plasma DHA was inversely correlated with plasma LA. The proportions of plasma long-chain n-3 fatty acids were not significantly affected by the duration of adherence to a vegetarian or vegan diet. This finding suggests that when animal foods are wholly excluded from the diet, the endogenous production of EPA and DHA results in low but stable plasma concentrations of these fatty acids.

  16. Deleterious effect of n-3 polyunsaturated fatty acids in non-alcoholic steatohepatitis in the fat-1 mouse model

    Directory of Open Access Journals (Sweden)

    Diana Shefer-Weinberg

    2017-04-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD represents a spectrum of pathologies, ranging from hepatocellular steatosis to non-alcoholic steatohepatitis (NASH, fibrosis and cirrhosis. It has been suggested that fish oil containing n-3 polyunsaturated fatty acids (n-3 PUFA induce beneficial effects in NAFLD. However, n-3 PUFA are sensitive to peroxidation that generate free radicals and reactive aldehydes. We aimed at determining whether changing the tissue ratio of n-3 to n-6 PUFA may be beneficial or alternatively harmful to the etiology of NAFLD. The transgenic Fat-1 mouse model was used to determine whether n-3 PUFA positively or negatively affect the development of NAFLD. fat-1mice express the fat-1 gene of Caenorhabditis elegans, which encodes an n-3 fatty-acid desaturase that converts n-6 to n-3 fatty acids. Wild-type C57BL/6 mice served as the control group. Both groups of mice were fed methionine and choline deficient (MCD diet, which induces NASH within 4 weeks. The study shows that NASH developed faster and was more severe in mice from the fat-1 group when compared to control C57BL/6 mice. This was due to enhanced lipid peroxidation of PUFA in the liver of the fat-1 mice as compared to the control group. Results of our mice study suggest that supplementing the diet of individuals who develop or have fatty livers with n-3 PUFA should be carefully considered and if recommended adequate antioxidants should be added to the diet in order to reduce such risk.

  17. Non-enzymatic lipid oxidation products in biological systems: assessment of the metabolites from polyunsaturated fatty acids.

    Science.gov (United States)

    Vigor, Claire; Bertrand-Michel, Justine; Pinot, Edith; Oger, Camille; Vercauteren, Joseph; Le Faouder, Pauline; Galano, Jean-Marie; Lee, Jetty Chung-Yung; Durand, Thierry

    2014-08-01

    Metabolites of non-enzymatic lipid peroxidation of polyunsaturated fatty acids notably omega-3 and omega-6 fatty acids have become important biomarkers of lipid products. Especially the arachidonic acid-derived F2-isoprostanes are the classic in vivo biomarker for oxidative stress in biological systems. In recent years other isoprostanes from eicosapentaenoic, docosahexaenoic, adrenic and α-linolenic acids have been evaluated, namely F3-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes and F1-phytoprostanes, respectively. These have been gaining interest as complementary specific biomarkers in human diseases. Refined extraction methods, robust analysis and elucidation of chemical structures have improved the sensitivity of detection in biological tissues and fluids. Previously the main reliable instrumentation for measurement was gas chromatography-mass spectrometry (GC-MS), but now the use of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunological techniques is gaining much attention. In this review, the types of prostanoids generated from non-enzymatic lipid peroxidation of some important omega-3 and omega-6 fatty acids and biological samples that have been determined by GC-MS and LC-MS/MS are discussed. Copyright © 2014. Published by Elsevier B.V.

  18. Anti-inflammatory effects of omega 3 and omega 6 polyunsaturated fatty acids in cardiovascular disease and metabolic syndrome.

    Science.gov (United States)

    Tortosa-Caparrós, Esther; Navas-Carrillo, Diana; Marín, Francisco; Orenes-Piñero, Esteban

    2017-11-02

    A lipid excess produces a systemic inflammation process due to tumor necrosis factor-α, interleukin-6 and C-reactive protein synthesis. Simultaneously, this fat excess promotes the appearance of insulin resistance. All this contributes to the development of atherosclerosis and increases the risk of cardiovascular diseases (CVDs). On the other hand, polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid and docosahexaenoic acid (omega 3), and arachidonic acid (omega 6) have shown anti-inflammatory properties. Lately, an inverse relationship between omega-3 fatty acids, inflammation, obesity and CVDs has been demonstrated. To check fatty acids effect, the levels of some inflammation biomarkers have been analyzed. Leptin, adiponectin and resistin represent a group of hormones associated with the development of CVDs, obesity, type 2 diabetes mellitus and insulin resistance and are modified in obese/overweight people comparing to normal weight people. Omega-3 PUFAs have been shown to decrease the production of inflammatory mediators, having a positive effect in obesity and diabetes mellitus type-2. Moreover, they significantly decrease the appearance of CVD risk factors. Regarding omega-6 PUFA, there is controversy whether their effects are pro- or anti-inflammatory. The aim of this manuscript is to provide a comprehensive overview about the role of omega-3 and omega-6 PUFAs in CVDs and metabolic syndrome.

  19. Dietary fat type, meat quality and fatty acid metabolism in swine

    NARCIS (Netherlands)

    Mitchaothai, J.

    2007-01-01

    This thesis focuses on the replacement of animal fat by vegetable oil in the diet for growing-finishing pigs. Generally, but not exclusively, fats of animal origin contain higher proportions of saturated fatty acids (SFA) than vegetable oils that are commonly rich in polyunsaturated fatty acids

  20. Dietary trans-fatty acids and metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Zdzisław Kochan

    2010-12-01

    Full Text Available Trans-fatty acids (TFAs, products of partial hydrogenation of vegetable oils, have become more prevalent in our diet since the 1960s, when they replaced animal fats. TFAs also occur naturally in meat and dairy products from ruminants. There is growing evidence that dietary trans-fatty acids may increase the risk of metabolic syndrome. Several studies have demonstrated adverse effects of TFAs on plasma lipids and lipoproteins. In dietary trials, trans-fatty acids have been shown to raise the total cholesterol/HDL cholesterol ratio and Lp(a levels in blood. Moreover, a high intake of TFAs has been associated with an increased risk of coronary heart disease. Prospective cohort studies have shown that dietary trans-fatty acids promote abdominal obesity and weight gain. In addition, it appears that TFA consumption may be associated with the development of insulin resistance and type 2 diabetes. The documented adverse health effects of TFAs emphasise the importance of efforts to reduce the content of partially hydrogenated vegetable oils in foods.

  1. The effects of n-3 long-chain polyunsaturated fatty acids on bone formation and growth factors in adolescent boys

    DEFF Research Database (Denmark)

    Damsgaard, C. T.; Mølgaard, C.; Gyldenløve, S. N.

    2012-01-01

    NTRODUCTION: Animal studies indicate that n-3 long-chain polyunsaturated fatty acids (LCPUFAs) increase bone formation. To our knowledge, no studies have examined this in growing humans. This study investigated whether bone mass and markers of bone formation and growth were (i) associated...... with docosahexaenoic acid (DHA) status and (ii) affected by fish oil supplementation, in adolescent boys. METHODS: Seventy-eight healthy, slightly overweight 13- to 15-y-old boys were randomly assigned to breads with DHA-rich fish oil (1.1 g/d n-3 LCPUFA) or control for 16 wk. Whole-body bone mineral content (BMC......), bone area (BA), bone mineral density (BMD), plasma osteocalcin, and growth factors were measured at wk 0 and wk 16, as well as diet, physical activity, and n-3 LCPUFA status in erythrocytes. RESULTS: Fish oil strongly increased DHA status (P = 0.0001). No associations were found between DHA status...

  2. No effect on oxidative stress biomarkers by modified intakes of polyunsaturated fatty acids or vegetables and fruit

    DEFF Research Database (Denmark)

    Freese, R; Dragsted, L O; Loft, S

    2007-01-01

    Diet may both increase and decrease oxidative stress in the body. We compared the effects of four strictly controlled isocaloric diets with different intakes of polyunsaturated fatty acids (PUFA, 11 or 3% of energy) and vegetables and fruit (total amount of vegetables and fruit 516 or 1059 g/10 MJ......) on markers associated with oxidative stress in 77 healthy volunteers (19-52 years). Plasma protein carbonyls (2-aminoadipic semialdehyde residues) and whole-body DNA and nucleotide oxidation (urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine excretion) tended to decrease in all treatment groups with no differences...... between the diets. The diets did not differ in their effects on red blood cell antioxidative enzyme activities, either. The results suggest that in healthy volunteers with adequate nutrient intakes, 6-week diets differing markedly in the amount of PUFA or vegetables and fruit do not differ...

  3. Autoxidation of polyunsaturated fatty acids. Part I. Effect of ozone on the autoxidation of neat methyl linoleate and methyl linolenate

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, W.A.; Stanley, J.P.; Blair, E.; Cullen, G.B.

    Neat samples of polyunsaturated fatty acids were exposed to ozone in air in a flow system, and the formation of peroxides, conjugated dienes and thiobarbituric acid (TBA)-reactive material was followed as a function of time. The effect of ozone is to shorten the induction period normally observed in autoxidation studies, but the ozone, at the concentrations used here (0-1.5 ppm), appears to have no effect on the rates of product formation after the induction period. During the induction period, increasing ozone concentrations gives rise to substantially increased rates of peroxide (or materials which titrate like peroxide) formation, a slightly increased rate of conjugated diene formation, and no significant increase in the rate of production of TBA-reactive material. Vitamin E lengthens the induction period but appears to have no other effect. Some of these data are in conflict with earlier reports of Menzel et al.

  4. Effects of long-term thyroid hormone level alterations, n-3 polyunsaturated fatty acid supplementation and statin administration in rats

    Czech Academy of Sciences Publication Activity Database

    Soukup, Tomáš

    2014-01-01

    Roč. 63, Suppl.1 (2014), S119-S131 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA304/08/0256; GA ČR(CZ) GA305/09/1228; GA ČR(CZ) GAP304/12/0259; GA MŠk(CZ) LH12058; GA MŠk(CZ) 7AMB12SK158; GA MŠk(CZ) 7AMB14SK123 Grant - others:EC(XE) LSH-CT-2004-511978 Institutional support: RVO:67985823 Keywords : thyroid hormones * n-3 polyunsaturated fatty acids (n-3 PUFA) * statin s * rat muscle proteins * cardiac remodeling Subject RIV: ED - Physiology Impact factor: 1.293, year: 2014

  5. Modulation of hepatic steatosis by dietary fatty acids.

    Science.gov (United States)

    Ferramosca, Alessandra; Zara, Vincenzo

    2014-02-21

    Non-alcoholic fatty liver disease (NAFLD) describes a range of conditions caused by fat deposition within liver cells. Liver fat content reflects the equilibrium between several metabolic pathways involved in triglyceride synthesis and disposal, such as lipolysis in adipose tissue and de novo lipogenesis, triglyceride esterification, fatty acid oxidation and very-low-density lipoprotein synthesis/secretion in hepatic tissue. In particular, it has been demonstrated that hepatic de novo lipogenesis plays a significant role in NAFLD pathogenesis. It is widely known that the fatty acid composition of the diet influences hepatic lipogenesis along with other metabolic pathways. Therefore, dietary fat may not only be involved in the pathogenesis of hepatic steatosis, but may also prevent and/or reverse hepatic fat accumulation. In this review, major data from the literature about the role of some dietary fats as a potential cause of hepatic fat accumulation or as a potential treatment for NAFLD are described. Moreover, biochemical mechanisms responsible for an increase or decrease in hepatic lipid content are critically analyzed. It is noteworthy that both quantitative and qualitative aspects of dietary fat influence triglyceride deposition in the liver. A high-fat diet or the dietary administration of conjugated linoleic acids induced hepatic steatosis. In contrast, supplementation of the diet with krill oil or pine nut oil helped in the prevention and/or in the treatment of steatotic liver. Quite interesting is the "case" of olive oil, since several studies have often provided different and/or conflicting results in animal models.

  6. Impairment of lysophospholipid metabolism in obesity: altered plasma profile and desensitization to the modulatory properties of n-3 polyunsaturated fatty acids in a randomized controlled trial.

    Science.gov (United States)

    Del Bas, Josep M; Caimari, Antoni; Rodriguez-Naranjo, Maria Isabel; Childs, Caroline E; Paras Chavez, Carolina; West, Annette L; Miles, Elizabeth A; Arola, Lluis; Calder, Philip C

    2016-08-01

    Plasma lysophospholipids have emerged as signaling molecules with important effects on inflammation, insulin resistance, and fatty liver disease, each of which is linked closely to obesity. Dietary n-3 (ω-3) polyunsaturated fatty acids (PUFAs) may be able to improve these conditions. The objective of this study was to assess the response of plasma lysophospholipids to obesity, n-3 PUFA consumption, and a high-fat meal challenge to better understand the role of lysophospholipid metabolism in the progression of obesity-related disorders. We determined the concentrations of 8 lysophosphatidylcholines, 11 lysophosphatidylethanolamines, and 7 lysophosphatidylinositols in the plasma of 34 normal-weight and 38 obese subjects randomly assigned to consume corn oil (control) or n-3 PUFA-rich fish oil (3 g/d; n = 15-19/group) for 90 d. Blood samples were collected on the last day of the study under fasting conditions and 6 h after a high-fat meal (1135 kcal, 86 g fat) challenge. The profile of secreted lysophospholipids was studied in HepG2 cells under palmitate-induced steatosis. Obese and normal-weight subjects had different profiles of plasma lysophospholipids. A multivariate combination of the 26 lysophospholipids could discriminate between normal-weight and obese subjects with an accuracy of 98%. The high-fat meal challenge altered the concentration of plasma lysophosphatidylcholines in an oil treatment-dependent manner in normal-weight but not obese subjects, suggesting that obesity impairs the sensitivity of lysophospholipid metabolism to n-3 PUFAs. Noncytotoxic steatosis in HepG2 cells affected the secretion pattern of lysophospholipids, partially resembling the changes observed in the plasma of obese subjects. Obesity has a substantial impact on lysophospholipid metabolism, altering the plasma lysophospholipid profile and abolishing its sensitivity to dietary n-3 PUFAs. These effects could contribute to the onset or progression of alterations associated with obesity

  7. Endogenous n-3 Polyunsaturated Fatty Acids Delay Progression of Pancreatic Ductal Adenocarcinoma in Fat-1-p48Cre/+-LSL-KrasG12D/+ Mice

    Directory of Open Access Journals (Sweden)

    Altaf Mohammed

    2012-12-01

    Full Text Available Preclinical studies suggest that diets rich in omega-3 polyunsaturated fatty acids (n-3 PUFAs may be beneficial for prevention of pancreatic cancer. Nutritional intervention studies are often complex, and there is no clear evidence, without potential confounding factors, on whether conversion of n-6 PUFAs to n-3 PUFAs in pancreatic tissues would provide protection. Experiments were designed using n-3 fatty acid desaturase (Fat-1 transgenic mice, which can convert n-6 PUFA to n-3 FAs endogenously, to determine the impact of n-3 PUFAs on pancreatic intraepithelial neoplasms (PanINs and their progression to pancreatic ductal adenocarcinoma (PDAC. Six-weekold female p48Cre/+-LSL-KrasG12D/+ andcompoundFat-1-p48Cre/+-LSL-KrasG12D/+ mice were fed (AIN-76A diets containing 10% safflower oil for 35 weeks. Pancreata were evaluated histopathologically for PanINs and PDAC. Results showed a dramatic reduction in incidence of PDAC (84%; P 85%; P < .05–0.01 in pancreas of compound transgenic mice than in those of p48Cre/+-LSL-KrasG12D/+ mice. Molecular analysis of the pancreas showed a significant down-regulation of proliferating cell nuclear antigen, cyclooxygenase-2, 5-lipoxygenase (5-LOX, 5-LOX-activating protein, Bcl-2, and cyclin D1 expression levels in Fat-1-p48Cre/+-LSL-KrasG12D/+ mice compared to p48Cre/+-LSL-KrasG12D/+ mice. These data highlight the promise of dietary n-3 FAs for chemoprevention of pancreatic cancer in high-risk individuals.

  8. Omega-3 polyunsaturated fatty acids for cardiovascular diseases: present, past and future.

    Science.gov (United States)

    Watanabe, Yasuhiro; Tatsuno, Ichiro

    2017-08-01

    Large-scale epidemiological studies on Greenlandic, Canadian and Alaskan Eskimos have examined the health benefits of omega-3 fatty acids consumed as part of the diet, and found statistically significant relative reduction in cardiovascular risk in people consuming omega-3 fatty acids. Areas covered: This article reviews studies on omega-3 fatty acids during the last 50 years, and identifies issues relevant to future studies on cardiovascular (CV) risk. Expert commentary: Although a meta-analysis of large-scale prospective cohort studies and randomized studies reported that fish and fish oil consumption reduced coronary heart disease-related mortality and sudden cardiac death, omega-3 fatty acids have not yet been shown to be effective in secondary prevention trials on patients with multiple cardiovascular disease (CVD) risk factors. The ongoing long-term CV interventional outcome studies investigate high-dose, prescription-strength omega-3 fatty acids. The results are expected to clarify the potential role of omega-3 fatty acids in reducing CV risk. The anti-inflammatory properties of omega-3 fatty acids are also important. Future clinical trials should also focus on the role of these anti-inflammatory mediators in human arteriosclerotic diseases as well as inflammatory diseases.

  9. Biosynthesis of Polyunsaturated Fatty Acids in the Razor Clam Sinonovacula constricta: Characterization of Δ5 and Δ6 Fatty Acid Desaturases.

    Science.gov (United States)

    Ran, Zhaoshou; Xu, Jilin; Liao, Kai; Li, Shuang; Chen, Shubing; Yan, Xiaojun

    2018-05-09

    To investigate the endogenous long-chain polyunsaturated fatty acid (LC-PUFA) biosynthetic ability in Sinonovacula constricta, fatty acid desaturases (Fads) of this bivalve, namely, Scfad5a, Scfad5b, and Scfad6, were cloned and characterized in the current study. Meanwhile, the tissue distributions of S. constricta Fads and fatty acids (FAs) were examined. Heterologous expression in yeasts confirmed that Scfad5a and Scfad5b were both Δ5 Fads, while Scfad6 was a Δ6 Fad. However, compared with Fads in other organisms, the desaturation activities of S. constricta Fads were relatively low (especially for Scfad6), indicating an adaptation to living conditions. S. constricta Fads were expressed in all tissues examined, and particularly high expressions were found in intestine and gonad. Moreover, FAs were differently distributed among tissues, which might be correlated with their corresponding physiological roles. Taken together, the results provided an insight into LC-PUFA biosynthesis in S. constricta. Notably, Scfad6 was the first functionally characterized Δ6 Fad in marine molluscs to date.

  10. Field trial evaluation of the accumulation of omega-3 long chain polyunsaturated fatty acids in transgenic Camelina sativa: Making fish oil substitutes in plants

    Directory of Open Access Journals (Sweden)

    Sarah Usher

    2015-12-01

    Full Text Available The global consumption of fish oils currently exceeds one million tonnes, with the natural de novo source of these important fatty acids forming the base of marine foodwebs. Here we describe the first field-based evaluation of a terrestrial source of these essential nutrients, synthesised in the seeds of transgenic Camelina sativa plants via the heterologous reconstitution of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway. Our data demonstrate the robust nature of this novel trait, and the feasibility of making fish oils in genetically modified crops. Moreover, to our knowledge, this is the most complex example of plant genetic engineering to undergo environmental release and field evaluation. Keywords: Plant metabolic engineering, GM field trials, Omega-3 long chain polyunsaturated fatty acids, Fish oils, Camelina, Oilseeds

  11. Evaluation of cyclosporine-sparing effects of polyunsaturated fatty acids in the treatment of canine atopic dermatitis.

    Science.gov (United States)

    Müller, M R; Linek, M; Löwenstein, C; Röthig, A; Doucette, K; Thorstensen, K; Mueller, R S

    2016-04-01

    A randomised, double-blinded, placebo-controlled multicentre trial was conducted in 36 dogs with atopic dermatitis to evaluate the cyclosporine-sparing effect of polyunsaturated fatty acids. Dogs were stable on their individual cyclosporine dosage and received either a mainly omega-3 fatty acid product with a minor omega-6 fatty acid fraction or placebo, orally for 12 weeks. Dogs were examined every 4 weeks and the Canine Atopic Dermatitis Extent and Severity Index (CADESI-03) was determined by a clinician. Pruritus, quality of life, global condition and coat quality were scored by the owner. If the dog's CADESI-03 and/or pruritus score improved by at least 25% compared with the previous visit, the cyclosporine dosage was decreased by approximately 25%. If the scores deteriorated by at least 25%, the cyclosporine dosage was increased by the same percentage. The median daily cyclosporine dosage/kg bodyweight decreased in the active group from 4.1 mg to 2.6 mg and in the placebo group from 3.5 mg to 3.3 mg over the study period. The difference between the two groups was significant (P = 0.009). The improvement in median pruritus score from inclusion to completion was significantly greater in the active group than in the placebo group (P = 0.04). There was no significant difference in CADESI-03 changes between groups (P = 0.38). The results of this study indicate a cyclosporine-sparing effect of a mainly omega-3 fatty acid supplement in dogs with atopic dermatitis. Copyright © 2016. Published by Elsevier Ltd.

  12. DNA methylation perturbations in genes involved in polyunsaturated Fatty Acid biosynthesis associated with depression and suicide risk.

    Science.gov (United States)

    Haghighi, Fatemeh; Galfalvy, Hanga; Chen, Sean; Huang, Yung-Yu; Cooper, Thomas B; Burke, Ainsley K; Oquendo, Maria A; Mann, J John; Sublette, M Elizabeth

    2015-01-01

    Polyunsaturated fatty acid (PUFA) status has been associated with neuropsychiatric disorders, including depression and risk of suicide. Long-chain PUFAs (LC-PUFAs) are obtained in the diet or produced by sequential desaturation and elongation of shorter-chain precursor fatty acids linoleic acid (LA, 18:2n-6) and α-linolenic acid (ALA, 18:3n-3). We compared DNA methylation patterns in genes involved in LC-PUFA biosynthesis in major depressive disorder (MDD) with (n = 22) and without (n = 39) history of suicide attempt, and age- and sex-matched healthy volunteers (n = 59). Plasma levels of selected PUFAs along the LC-PUFA biosynthesis pathway were determined by transesterification and gas chromatography. CpG methylation levels for the main human LC-PUFA biosynthetic genes, fatty acid desaturases 1 (Fads1) and 2 (Fads2), and elongation of very long-chain fatty acids protein 5 (Elovl5), were assayed by bisulfite pyrosequencing. Associations between PUFA levels and diagnosis or suicide attempt status did not survive correction for multiple testing. However, MDD diagnosis and suicide attempts were significantly associated with DNA methylation in Elovl5 gene regulatory regions. Also the relative roles of PUFA levels and DNA methylation with respect to diagnostic and suicide attempt status were determined by least absolute shrinkage and selection operator logistic regression analyses. We found that PUFA associations with suicide attempt status were explained by effects of Elovl5 DNA methylation within the regulatory regions. The observed link between plasma PUFA levels, DNA methylation, and suicide risk may have implications for modulation of disease-associated epigenetic marks by nutritional intervention.

  13. DNA methylation perturbations in genes involved in polyunsaturated fatty acid biosynthesis associated with depression and suicide risk

    Directory of Open Access Journals (Sweden)

    Fatemeh eHaghighi

    2015-04-01

    Full Text Available Polyunsaturated fatty acid (PUFA status has been associated with neuropsychiatric disorders, including depression and risk of suicide. Long-chain PUFAs (LC-PUFAs are obtained in the diet or produced by sequential desaturation and elongation of shorter-chain precursor fatty acids linoleic acid (LA, 18:2n-6 and α-linolenic acid (ALA, 18:3n-3. We compared DNA methylation patterns in genes involved in LC-PUFA biosynthesis in major depressive disorder (MDD with (n=22 and without (n=39 history of suicide attempt, and age- and sex-matched healthy volunteers (n=59. Plasma levels of selected PUFAs along the LC-PUFA biosynthesis pathway were determined by transesterification and gas chromatography. CpG methylation levels for the main human LC-PUFA biosynthetic genes, fatty acid desaturases 1 (Fads1 and 2 (Fads2, and elongation of very long chain fatty acids protein 5 (Elovl5, were assayed by bisulfite pyrosequencing. Associations between PUFA levels and diagnosis or suicide attempt status did not survive correction for multiple testing. However, MDD diagnosis and suicide attempts were significantly associated with DNA methylation in Elovl5 gene regulatory regions. Also the relative roles of PUFA levels and DNA methylation with respect to diagnostic and suicide attempt status were determined by least absolute shrinkage and selection operator (LASSO logistic regression analyses. We found that PUFA associations with suicide attempt status were explained by effects of Elovl5 DNA methylation within the regulatory regions. The observed link between plasma PUFA levels, DNA methylation, and suicide risk may have implications for modulation of disease-associated epigenetic marks by nutritional intervention.

  14. Effects of dietary omega-3 and -6 supplementations on phospholipid fatty acid composition in mice uterus during window of pre-implantation.

    Science.gov (United States)

    Fattahi, Amir; Darabi, Masoud; Farzadi, Laya; Salmassi, Ali; Latifi, Zeinab; Mehdizadeh, Amir; Shaaker, Maghsood; Ghasemnejad, Tohid; Roshangar, Leila; Nouri, Mohammad

    2018-03-01

    Since fatty acid composition of uterus phospholipids is likely to influence embryo implantation, this study was conducted to investigate the effects of dietary omega-3 and -6 fatty acids on implantation rate as well as uterine phospholipid fatty acids composition during mice pre-implantation period. Sixty female mice were randomly distributed into:1) control (standard pellet), 2) omega-3 (standard pellet + 10% w/w of omega-3 fatty acids) and 3) omega-6 (standard pellet + 10% w/w of omega-6 fatty acids). Uterine phospholipid fatty acid composition during the pre-implantation window (days 1-5 of pregnancy) was analyzed using gas-chromatography. The implantation rate on the fifth day of pregnancy was also determined. Our results showed that on days 1, 2 and 3 of pregnancy, the levels of arachidonic acid (ARA) as well as total omega-6 fatty acids were significantly higher and the levels of linolenic acid and total omega-3 fatty acids were statistically lower in the omega-6 group compared to the omega-3 group (p omega-6 fatty acids, and poly-unsaturated fatty acids levels were significantly different between the two dietary supplemented groups (p omega-6 fatty acids, especially ARA, with the implantation rate. The present study showed that diets rich in omega-3 and -6 fatty acids could differently modify uterine phospholipid fatty acid composition and uterine levels of phospholipid ARA, and that the total omega-6 fatty acids had a positive association with the implantation rate. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Free polyunsaturated fatty acids cause taste deterioration of salmon during frozen storage

    DEFF Research Database (Denmark)

    Refsgaard, Hanne; Brockhoff, P.M.B.; Jensen, Benny

    2000-01-01

    Increased intensity of train oil taste, bitterness, and metal taste are the most pronounced sensory changes during frozen storage of salmon (Refsgaard, H. H. F.; Brockhoff, P. B.; Jensen, B. Sensory and Chemical Changes in Farmed Atlantic Salmon (Salmo salar) during Frozen Storage. J. Agric. Food...... Chem. 1998a, 46, 3473-3479). Addition of each of the unsaturated fatty acids: palmitoleic acid (16:1, n - 7), linoleic acid (C18:2, it - 6), eicosapentaenoic acid (EPA; C20:5, it - 3) and docosahexaenoic acid (DHA; C22:6, n. - 3) to fresh minced salmon changed the sensory perception and increased...... the intensity of train oil taste, bitterness, and metal taste. The added level of each fatty acid (similar to 1 mg/g salmon meat) was equivalent to the concentration of the fatty acids determined in salmon stored as fillet at -10 degrees C for 6 months. The effect of addition of the fatty acids on the intensity...

  16. Histone Deacetylase Inhibition and Dietary Short-Chain Fatty Acids

    OpenAIRE

    Licciardi, Paul V.; Ververis, Katherine; Karagiannis, Tom C.

    2011-01-01

    Changes in diet can also have dramatic effects on the composition of gut microbiota. Commensal bacteria of the gastrointestinal tract are critical regulators of health and disease by protecting against pathogen encounter whilst also maintaining immune tolerance to certain allergens. Moreover, consumption of fibre and vegetables typical of a non-Western diet generates substantial quantities of short-chain fatty acids (SCFAs) which have potent anti-inflammatory properties. Dietary interventions...

  17. In ovo exposure to omega-3 fatty acids does not enhance omega-3 long-chain polyunsaturated fatty acid metabolism in broiler chickens.

    Science.gov (United States)

    Kanakri, K; Carragher, J; Muhlhausler, B; Hughes, R; Gibson, R

    2017-10-01

    The content of omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) in chicken meat can be boosted by feeding broilers a diet containing α-linolenic acid (ALA, from flaxseed oil), some of which is converted by hepatic enzymes to n-3 LCPUFA. However, most of the accumulated n-3 polyunsaturated fatty acid (PUFA) in meat tissues is still in the form of ALA. Despite this, the levels of chicken diets are being enhanced by the inclusion of vegetable and marine sources of omega-3 fats. This study investigated whether the capacity of chicken for n-3 LCPUFA accumulation could be enhanced or inhibited by exposure to an increased supply of ALA or n-3 LCPUFA in ovo. Breeder hens were fed either flaxseed oil (High-ALA), fish oil (high n-3 LCPUFA) or tallow- (low n-3 PUFA, Control) based diets. The newly hatched chicks in each group were fed either the High-ALA or the Control diets until harvest at 42 days' post-hatch. The n-3 PUFA content of egg yolk and day-old chick meat closely matched the n-3 PUFA composition of the maternal diet. In contrast, the n-3 PUFA composition of breast and leg meat tissues of the 42-day-old offspring closely matched the diet fed post-hatch, with no significant effect of maternal diet. Indeed, there was an inhibition of n-3 LCPUFA accumulation in meat of the broilers from the maternal Fish-Oil diet group when fed the post-hatch High-ALA diet. Therefore, this approach is not valid to elevate n-3 LCPUFA in chicken meat.

  18. One-pot synthesis of polyunsaturated fatty acid amides with anti-proliferative properties.

    Science.gov (United States)

    Tremblay, Hugo; St-Georges, Catherine; Legault, Marc-André; Morin, Caroline; Fortin, Samuel; Marsault, Eric

    2014-12-15

    A one-pot environmentally friendly transamidation of ω-3 fatty acid ethyl esters to amides and mono- or diacylglycerols was investigated via the use of a polymer-supported lipase. The method was used to synthesize a library of fatty acid monoglyceryl esters and amides. These new derivatives were found to have potent growth inhibition effects against A549 lung cancer cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Identification and functional characterisation of genes encoding the omega-3 polyunsaturated fatty acid biosynthetic pathway from the coccolithophore Emiliania huxleyi.

    Science.gov (United States)

    Sayanova, Olga; Haslam, Richard P; Calerón, Monica Venegas; López, Noemi Ruiz; Worthy, Charlotte; Rooks, Paul; Allen, Michael J; Napier, Johnathan A

    2011-05-01

    The Prymnesiophyceae coccolithophore Emiliania huxleyi is one of the most abundant alga in our oceans and therefore plays a central role in marine foodwebs. E. huxleyi is notable for the synthesis and accumulation of the omega-3 long chain polyunsaturated fatty acid docosahexaenoic acid (DHA; 22:6Δ(4,7,10,13,16,19), n-3) which is accumulated in fish oils and known to have health-beneficial properties to humans, preventing cardiovascular disease and related pathologies. Here we describe the identification and functional characterisation of the five E. huxleyi genes which direct the synthesis of docosahexaenoic acid in this alga. Surprisingly, E. huxleyi does not use the conventional Δ6-pathway, instead using the alternative Δ8-desaturation route which has previously only been observed in a few unrelated microorganisms. Given that E. huxleyi accumulates significant levels of the Δ6-desaturated fatty acid stearidonic acid (18:4Δ(6,9,12,15), n-3), we infer that the biosynthesis of DHA is likely to be metabolically compartmentalised from the synthesis of stearidonic acid. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Metabonomics reveals drastic changes in anti-inflammatory/pro-resolving polyunsaturated fatty acids-derived lipid mediators in leprosy disease.

    Directory of Open Access Journals (Sweden)

    Julio J Amaral

    Full Text Available Despite considerable efforts over the last decades, our understanding of leprosy pathogenesis remains limited. The complex interplay between pathogens and hosts has profound effects on host metabolism. To explore the metabolic perturbations associated with leprosy, we analyzed the serum metabolome of leprosy patients. Samples collected from lepromatous and tuberculoid patients before and immediately after the conclusion of multidrug therapy (MDT were subjected to high-throughput metabolic profiling. Our results show marked metabolic alterations during leprosy that subside at the conclusion of MDT. Pathways showing the highest modulation were related to polyunsaturated fatty acid (PUFA metabolism, with emphasis on anti-inflammatory, pro-resolving omega-3 fatty acids. These results were confirmed by eicosanoid measurements through enzyme-linked immunoassays. Corroborating the repertoire of metabolites altered in sera, metabonomic analysis of skin specimens revealed alterations in the levels of lipids derived from lipase activity, including PUFAs, suggesting a high lipid turnover in highly-infected lesions. Our data suggest that omega-6 and omega-3, PUFA-derived, pro-resolving lipid mediators contribute to reduced tissue damage irrespectively of pathogen burden during leprosy disease. Our results demonstrate the utility of a comprehensive metabonomic approach for identifying potential contributors to disease pathology that may facilitate the development of more targeted treatments for leprosy and other inflammatory diseases.

  1. Role of Inflammatory Signaling in the Differential Effects of Saturated and Poly-unsaturated Fatty Acids on Peripheral Circadian Clocks

    Directory of Open Access Journals (Sweden)

    Sam-Moon Kim

    2016-05-01

    Full Text Available Inflammatory signaling may play a role in high-fat diet (HFD-related circadian clock disturbances that contribute to systemic metabolic dysregulation. Therefore, palmitate, the prevalent proinflammatory saturated fatty acid (SFA in HFD and the anti-inflammatory, poly-unsaturated fatty acid (PUFA, docosahexaenoic acid (DHA, were analyzed for effects on circadian timekeeping and inflammatory responses in peripheral clocks. Prolonged palmitate, but not DHA, exposure increased the period of fibroblast Bmal1-dLuc rhythms. Acute palmitate treatment produced phase shifts of the Bmal1-dLuc rhythm that were larger in amplitude as compared to DHA. These phase-shifting effects were time-dependent and contemporaneous with rhythmic changes in palmitate-induced inflammatory responses. Fibroblast and differentiated adipocyte clocks exhibited cell-specific differences in the time-dependent nature of palmitate-induced shifts and inflammation. DHA and other inhibitors of inflammatory signaling (AICAR, cardamonin repressed palmitate-induced proinflammatory responses and phase shifts of the fibroblast clock, suggesting that SFA-mediated inflammatory signaling may feed back to modulate circadian timekeeping in peripheral clocks.

  2. A critical assessment of transmethylation procedures for n-3 long-chain polyunsaturated fatty acid quantification of lipid classes.

    Science.gov (United States)

    Sehl, Anthony; Couëdelo, Leslie; Fonseca, Laurence; Vaysse, Carole; Cansell, Maud

    2018-06-15

    Lipid transmethylation methods described in the literature are not always evaluated with care so to insure that the methods are effective, especially on food matrix or biological samples containing polyunsaturated fatty acid (PUFA). The aim of the present study was to select a method suitable for all lipid species rich in long chain n-3 PUFA. Three published methods were adapted and applied on individual lipid classes. Lipid (trans)methylation efficiency was characterized in terms of reaction yield and gas chromatography (GC) analysis. The acid-catalyzed method was unable to convert triglycerides and sterol esters, while the method using an incubation at a moderate temperature was ineffective on phospholipids and sterol esters. On the whole only the method using sodium methoxide and sulfuric acid was effective on lipid classes taken individually or in a complex medium. This study highlighted the use of an appropriate (trans)methylation method for insuring an accurate fatty acid composition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Comparative effects of curcumin and its analog on alcohol- and polyunsaturated fatty acid-induced alterations in circulatory lipid profiles.

    Science.gov (United States)

    Rukkumani, Rajagopalan; Aruna, Kode; Varma, Penumathsa Suresh; Rajasekaran, Kallikat Narayanan; Menon, Venugopal P

    2005-01-01

    Excessive alcohol intake induces hyperlipidemia. Studies suggest that natural principles and their analogs are known to possess anti-hyperlipidemic properties. In the present work we tested the effect of curcumin, an active principle of turmeric (Curcuma longa), and a curcumin analog on alcohol- and thermally oxidized polyunsaturated fatty acid (deltaPUFA)- induced hyperlipidemia. Male albino Wistar rats were used for the experimental study. Anti-hyperlipidemic activity of curcumin and curcumin analog was evaluated by analyzing the levels of cholesterol, triglycerides (TGs), phospholipids (PLs), and free fatty acids (FFAs). The results showed that the levels of cholesterol, TGs, PLs, and FFAs were increased significantly in alcohol-, deltaPUFA-, and alcohol + deltaPUFA-treated groups, which were brought down significantly on treatment with either of the curcuminoids. Curcumin analog treatment was found to be more effective than curcumin treatment. From the results obtained, we conclude that both curcumin and its analog effectively protect the system against alcohol- and deltaPUFA-induced hyperlipidemia and are possible candidates for the treatment of hyperlipidemia.

  4. Beneficial Effects of Omega-3 Polyunsaturated Fatty Acids in Gestational Diabetes: Consequences in Macrosomia and Adulthood Obesity

    Directory of Open Access Journals (Sweden)

    Akadiri Yessoufou

    2015-01-01

    Full Text Available Omega-3 polyunsaturated fatty acids (PUFAs are increasingly being used to prevent cardiovascular diseases, including diabetes and obesity. In this paper, we report data on the observed effects of omega-3 PUFA on major metabolic disorders and immune system disruption during gestational diabetes and their consequences on macrosomia. While controversies still exist about omega-3 PUFA effects on antioxidant status regarding the level of omega-3 PUFA in diet supplementation, their lipid-lowering effects are unanimously recognized by researchers. Animal studies have shown that omega-3 PUFA contributes to the maintenance of the immune defense system by promoting the differentiation of T helper (Th cell to a Th2 phenotype in diabetic pregnancy and by shifting the Th1/Th2 ratio from a deleterious proinflammatory Th1 phenotype to a protective anti-inflammatory Th2 phenotype in macrosomia and in adulthood obesity that results from macrosomia at birth. Based on the available evidence, international nutritional and food agencies recommend administration of omega-3 PUFA as triglyceride-lowering agents, for the prevention of cardiovascular disease risk and during human pregnancy and lactation. Furthermore, studies targeting humans are still required to explore application of the fatty acids as supplement in the management of gestational diabetes and inflammatory and immune diseases.

  5. Effect of dietary oil supplementation on fatty acid profile of backfat and intramuscular fat in finishing pigs

    Directory of Open Access Journals (Sweden)

    Giuseppe Pulina

    2010-01-01

    Full Text Available Two groups of finishing gilts were fed, for 4 weeks, a commercial feed enriched (2% with either rapeseed oil or sunflower oil. Pig growth was monitored bi-weekly and the fatty acid composition of backfat and Longissimus muscle was determined after slaughtering. Type of dietary oil affected significantly the fatty acid profile of pork fat, especially the C18:3n-3 concentration which was higher in pigs fed rapeseed oil than in those fed sunflower oil. The content of monounsaturated fatty acids (MUFA of Longissimus muscle was significantly higher than that of backfat, due to the its higher concentration of C18:1cis9 and C16:1. Differently, the long-chain n-3 polyunsaturated fatty acids (PUFA content was higher in backfat than in Longissimus muscle. These results confirm that it is possible to manipulate the fatty acid composition of the diet, in order to improve the health properties of the adipose tissues of pork meat.

  6. Effect of a high monounsaturated vs high polyunsaturated fat hypocaloric diets in nonalcoholic fatty liver disease.

    Science.gov (United States)

    Aller, R; de Luis, D A; Izaola, O; de la Fuente, B; Bachiller, R

    2014-01-01

    Hyperaminotransferasemia is an important problem in obese patients. We decide to examine the changes in hyperaminotransferasemia after weight reduction in obese patients with and without NAFLD secondary to a high monounsaturated fat vs. a high polyunsaturated fat hypocaloric diets. A population of 306 obese patients was randomly allocated to two groups: Diet M (high monounsaturated fat hypocaloric diet) and Diet P (high polyunsaturated fat hypocaloric diet). Patients were classified as group I (obese subjects; n=262) when serum ALT activity was normal or group II (NAFLD patients; n=44) when serum ALT activity was (≥ 43 UI/L). In NAFLD group with diet M, BMI, weight, fat mass, waist circumference, systolic blood pressure, total cholesterol, LDL cholesterol), insulin and HOMA-R decreased. In NAFLD group with diet P, BMI, weight, fat mass, waist circumference, systolic blood pressure, total cholesterol, LDL cholesterol), insulin and HOMA-R decreased, too. In NAFLD group, alanine aminotransferase [(diet M) -20.3±19.2 UI/L vs. (diet P) -14.2±20.1 UI/L], aspartate aminotransferase [(diet M) -11.3±12.2 UI/L vs. (diet P) -11.1±10.1 UI/L], and gammaglutamyl transferase [(diet M) -18.1±12.2 UI/L vs. (diet P) -10.9±20.1 UI/L] improved with both diets. We showed that weight reduction secondary to two hypocaloric diets was associated with improvement in hypertransaminasemia and insulin resistance in NAFLD patients.

  7. Association between neurotrophin 4 and long-chain polyunsaturated fatty acid levels in mid-trimester amniotic fluid.

    Science.gov (United States)

    Benn, Kiesha; Passos, Mariana; Jayaram, Aswathi; Harris, Mary; Bongiovanni, Ann Marie; Skupski, Daniel; Witkin, Steven S

    2014-11-01

    The omega-3 long-chain polyunsaturated fatty acid (LCPUFA) docosahexaenoic acid (DHA) and the omega-6 LCPUFA arachidonic acid (AA) are essential nervous system components that increase in concentration throughout gestation. The neurotrophins, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin 3 (NT3), and neurotrophin 4 (NT4) are small basic peptides crucial for fetal brain development. The DHA supplementation during pregnancy has been suggested to enhance neural development. We evaluated whether amniotic fluid DHA and AA concentrations correlated with intra-amniotic neurotrophin levels. Amniotic fluid, obtained at 15 to 19 weeks gestation from 62 women, was tested for BDNF, NGF, NT3, and NT4 by enzyme-linked immunosorbent assay. Concentrations of DHA and AA, and saturated and monounsaturated fatty acids, were determined by gas chromatography. Associations were analyzed by the Spearman rank correlation test. Median levels of AA and DHA were 2.3% and 1.3% of the total intra-amniotic fatty acids, respectively. Median neurotrophin levels (pg/mL) were 36.7 for NT3, 26.8 for BDNF, 5.2 for NT4, and 0.8 for NGF. Intra-amniotic NT4 and BDNF levels were correlated (P = .0016), while NT3 and NGF levels were unrelated to each other or to BDNF or NT4. Only NT4 was positively correlated with amniotic fluid DHA (P neurotrophin and maternal age, gestational age at time of amniocentesis, amniocentesis indication, parity, or gestational age at delivery. Elevations in intra-amniotic NT4 with increasing levels of DHA and AA suggest that these LCPUFAs may specifically influence the extent of NT4-mediated fetal brain neurogenesis. © The Author(s) 2014.

  8. Supplementing long-chain n-3 polyunsaturated fatty acids in canned wild Pacific pink salmon with Alaska salmon oil

    Science.gov (United States)

    Lapis, Trina J; Oliveira, Alexandra C M; Crapo, Charles A; Himelbloom, Brian; Bechtel, Peter J; Long, Kristy A

    2013-01-01

    Establishing n-3 polyunsaturated fatty acid contents in canned wild Alaska pink salmon products is challenging due to ample natural variation found in lipid content of pink salmon muscle. This study investigated the effect of adding salmon oil (SO) to canned pink salmon produced from fish exhibiting two opposite degrees of skin watermarking, bright (B) and dark (D). Specific goals of the study were to evaluate the benefits of adding SO to canned pink salmon with regard to nutritional value of the product, sensory characteristics, and the oxidative and hydrolytic stability of the lipids over thermal processing. Six groups of canned pink salmon were produced with variable levels of SO, either using bright (with 0, 1, or 2% SO) or dark (with 0, 2, or 4% SO) pink salmon. Compositional analysis revealed highest (P  0.05) ranging from 5.7% to 6.8%. Consequently, addition of SO to canned pink salmon allowed for consistent lipid content between bright and dark fish. Addition of 1% or 2% SO to canned bright pink salmon was not detrimental to the sensory properties of the product. It is recommended that canned bright pink salmon be supplemented with at least 1% SO, while supplementation with 2% SO would guarantee a minimum quantity of 1.9 g of n-3 fatty acids per 100 g of product. Addition of 4% SO to canned dark pink salmon was detrimental to product texture and taste, while supplementation with 2% SO did not negatively affect sensorial properties of the product. Accordingly, canned dark pink salmon should be supplemented with 2% SO so that a minimum n-3 fatty acids content of 1.5 g per 100 g of product. PMID:24804010

  9. Higher de novo synthesized fatty acids and lower omega 3-and omega 6-long-chain polyunsaturated fatty acids in umbilical vessels of women with preeclampsia and high fish intakes

    NARCIS (Netherlands)

    Huiskes, Victor J. B.; Kuipers, Remko S.; Velzing-Aarts, Francien V.; Dijck-Brouwer, D. A. Janneke; van der Meulen, Jan; Muskiet, Frits A. J.

    2009-01-01

    Umbilical veins (UV) and arteries (UA) of preeclamptic women in Curacao harbor lower long-chain polyunsaturated fatty acids (LCP). The present aim was to test these findings in Mwanza (Tanzania), whose inhabitants have high LCP omega 3 and LCP omega 6 intakes from Lake Victoria fish. Women with

  10. A randomised controlled trial investigating the effect of n-3 long-chain polyunsaturated fatty acid supplementation on cognitive and retinal function in cognitively healthy older people: the Older People And n-3 Long-chain polyunsaturated fatty acids (OPAL study protocol [ISRCTN72331636

    Directory of Open Access Journals (Sweden)

    Letley Louise

    2006-08-01

    Full Text Available Abstract The number of individuals with age-related cognitive impairment is rising dramatically in the UK and globally. There is considerable interest in the general hypothesis that improving the diet of older people may slow the progression of cognitive decline. To date, there has been little attention given to the possible protective role of n-3 long-chain polyunsaturated fatty acids (n-3 LCPs most commonly found in oily fish, in age-related loss of cognitive function. The main research hypothesis of this study is that an increased dietary intake of n-3 LCPs will have a positive effect on cognitive performance in older people in the UK. To test this hypothesis, a double-blind randomised placebo-controlled trial will be carried out among adults aged 70–79 years in which the intervention arm will receive daily capsules containing n-3 LCP (0.5 g/day docosahexaenoic acid and 0.2 g/day eicosapentaenoic acid while the placebo arm will receive daily capsules containing olive oil. The main outcome variable assessed at 24 months will be cognitive performance and a second major outcome variable will be retinal function. Retinal function tests are included as the retina is a specifically differentiated neural tissue and therefore represents an accessible window into the functioning of the brain. The overall purpose of this public-health research is to help define a simple and effective dietary intervention aimed at maintaining cognitive and retinal function in later life. This will be the first trial of its kind aiming to slow the decline of cognitive and retinal function in older people by increasing daily dietary intake of n-3 LCPs. The link between cognitive ability, visual function and quality of life among older people suggests that this novel line of research may have considerable public health importance.

  11. Omega-3 polyunsaturated fatty acid blood biomarkers increase linearly in men and women after tightly controlled intakes of 0.25, 0.5, and 1 g/d of EPA + DHA.

    Science.gov (United States)

    Patterson, Ashley C; Chalil, Alan; Aristizabal Henao, Juan J; Streit, Isaac T; Stark, Ken D

    2015-12-01

    Blood levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been related to coronary heart disease risk. Understanding the response of EPA + DHA in blood to dietary intake of EPA + DHA would facilitate the use of blood measures as markers of adherence and enable the development of dietary recommendations. The objective of this study is examine the blood response to intakes of EPA + DHA ≤1 g/d with an intervention designed for dietary adherence. It was hypothesized this relationship would be linear and that intakes of EPA + DHA DHA intake of men and women (n = 20) was determined by food frequency questionnaire and adherence was monitored by weekly fingertip blood sampling for fatty acid determinations. Participants consumed nutraceuticals to achieve intakes of 0.25 g/d and 0.5 g/d EPA + DHA for successive four-week periods. A subgroup (n = 5) had intakes of 1.0 g/d EPA + DHA for an additional 4 weeks. Fatty acid composition of whole blood, erythrocytes, and plasma phospholipids were determined at each time point. Blood levels of EPA and DHA increased linearly in these pools. A comprehensive review of the literature was used to verify the blood-intake relationship. Blood levels of long chain omega-3 polyunsaturated fatty acids reached blood levels associated with the highest levels of primary cardiac arrest reduction and sudden cardiac death risk only with intakes of 1.0 g/d of EPA + DHA. The blood biomarker response to intakes of EPA + DHA ≤1 g/d is linear in a small but highly adherent study sample and this information can assist in determining adherence in clinical studies and help identify dietary intake targets from associations between blood and disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Modulation of hepatic steatosis by dietary fatty acids

    Science.gov (United States)

    Ferramosca, Alessandra; Zara, Vincenzo

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD) describes a range of conditions caused by fat deposition within liver cells. Liver fat content reflects the equilibrium between several metabolic pathways involved in triglyceride synthesis and disposal, such as lipolysis in adipose tissue and de novo lipogenesis, triglyceride esterification, fatty acid oxidation and very-low-density lipoprotein synthesis/secretion in hepatic tissue. In particular, it has been demonstrated that hepatic de novo lipogenesis plays a significant role in NAFLD pathogenesis. It is widely known that the fatty acid composition of the diet influences hepatic lipogenesis along with other metabolic pathways. Therefore, dietary fat may not only be involved in the pathogenesis of hepatic steatosis, but may also prevent and/or reverse hepatic fat accumulation. In this review, major data from the literature about the role of some dietary fats as a potential cause of hepatic fat accumulation or as a potential treatment for NAFLD are described. Moreover, biochemical mechanisms responsible for an increase or decrease in hepatic lipid content are critically analyzed. It is noteworthy that both quantitative and qualitative aspects of dietary fat influence triglyceride deposition in the liver. A high-fat diet or the dietary administration of conjugated linoleic acids induced hepatic steatosis. In contrast, supplementation of the diet with krill oil or pine nut oil helped in the prevention and/or in the treatment of steatotic liver. Quite interesting is the “case” of olive oil, since several studies have often provided different and⁄or conflicting results in animal models. PMID:24587652

  13. Decreased Polyunsaturated Fatty Acid Content Contributes to Increased Survival in Human Colon Cancer

    Directory of Open Access Journals (Sweden)

    Manuela Oraldi

    2009-01-01

    Full Text Available Among diet components, some fatty acids are known to affect several stages of colon carcinogenesis, whereas others are probably helpful in preventing tumors. In light of this, our aim was to determine the composition of fatty acids and the possible correlation with apoptosis in human colon carcinoma specimens at different Duke's stages and to evaluate the effect of enriching human colon cancer cell line with the possible reduced fatty acid(s. Specimens of carcinoma were compared with the corresponding non-neoplastic mucosa: a significant decrease of arachidonic acid, PPARα, Bad, and Bax and a significant increase of COX-2, Bcl-2, and pBad were found. The importance of arachidonic acid in apoptosis was demonstrated by enriching a Caco-2 cell line with this fatty acid. It induced apoptosis in a dose- and time-dependent manner via induction of PPARα that, in turn, decreased COX-2. In conclusion, the reduced content of arachidonic acid is likely related to carcinogenic process decreasing the susceptibility of cancer cells to apoptosis.

  14. Polyunsaturated fatty acid consumption, plasma cholesterol concentration and neuroendocrine response to mental and physical task load

    NARCIS (Netherlands)

    Odink, J.; Kramer, F.M.; Beek, E.J. van der; Thissen, J.T.N.M.; Kempen, H.J.M.; Berg, H. van den; Egger, R.J.; Wientjes, C.J.E.

    1989-01-01

    This study was designed to investigate the relation between fatty acid consumption, total plama cholesterol and neuroendocrine response to exposure to stress, factors thought to play a role in the development of coronary heart disease. For this purpose 32 apparently healthy male volunteers were

  15. N-3 polyunsaturated fatty acids do not affect the cytokine response to strenuous exercise

    DEFF Research Database (Denmark)

    Toft, A.D.; Thorn, Mette; Ostrowski, Kenneth

    2000-01-01

    (PUFA), for 6 wk or to receive no supplementation (n = 10) before participating in The Copenhagen Marathon 1998. Blood samples were collected before the race, immediately after, and 1.5 and 3 h postexercise. The fatty acid composition in blood mononuclear cells (BMNC) differed between the fish oil...

  16. Fatty Acid Composition and Levels of Selected Polyunsaturated Fatty Acids in Four Commercial Important Freshwater Fish Species from Lake Victoria, Tanzania

    Directory of Open Access Journals (Sweden)

    Agnes Robert

    2014-01-01

    Full Text Available Fatty acids (FAs particularly ω3 and ω6 polyunsaturated fatty acids (PUFAs play important role in human health. This study aimed to investigate the composition and levels of selected ω3 PUFAs in four commercial fish species, Nile perch (Lates niloticus, Nile tilapia (Oreochromis niloticus, Tilapia zillii, and dagaa (Rastrineobola argentea from Mwanza Gulf in Lake Victoria. The results indicated that 36 types of FAs with different saturation levels were detected. These FAs were dominated by docosahexaenoic (DHA, eicosapentaenoic (EPA, docosapentaenoic (DPA, and eicosatetraenoic acids. O. niloticus had the highest composition of FAs (34 compared to L. niloticus (27, T. zillii (26, and R. argentea (21. The levels of EPA differed significantly among the four commercial fish species (F=6.19,  P=0.001. The highest EPA levels were found in R. argentea followed by L. niloticus and O. niloticus and the lowest in T. zillii. The DPA levels showed no significant difference among the four fish species studied (F=0.652,  P=0.583. The study concluded that all four commercial species collected from Mwanza Gulf are good for human health, but R. argentea is the best for consumption because it contains higher levels of ω3 FAs, mainly EPA.

  17. Lipid functions in skin: Differential effects of n-3 polyunsaturated fatty acids on cutaneous ceramides, in a human skin organ culture model.

    Science.gov (United States)

    Kendall, Alexandra C; Kiezel-Tsugunova, Magdalena; Brownbridge, Luke C; Harwood, John L; Nicolaou, Anna

    2017-09-01

    Ceramides are important for skin health, with a multitude of species found in both dermis and epidermis. The epidermis contains linoleic acid-Ester-linked Omega-hydroxylated ceramides of 6-Hydroxy-sphingosine, Sphingosine and Phytosphingosine bases (CER[EOH], CER[EOS] and CER[EOP], respectively), that are crucial for the formation of the epidermal barrier, conferring protection from environmental factors and preventing trans-epidermal water loss. Furthermore, a large number of ceramides, derivatives of the same sphingoid bases and various fatty acids, are produced by dermal and epidermal cells and perform signalling roles in cell functions ranging from differentiation to apoptosis. Supplementation with the n-3 polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have shown promise as therapeutic agents in a number of inflammatory skin conditions, altering the lipid profile of the skin and production of bioactive lipids such as the eicosanoids, docosanoids and endocannabinoids. In this study we wished to investigate whether EPA and DHA could also affect the ceramide profile in epidermis and dermis, and, in this way, contribute to formation of a robust lipid barrier and ceramide-mediated regulation of skin functions. Ex vivo skin explants were cultured for 6days, and supplemented with EPA or DHA (50μM). Liquid chromatography coupled to tandem mass spectrometry with electrospray ionisation was used to assess the prevalence of 321 individual ceramide species, and a number of sphingoid bases, phosphorylated sphingoid bases, and phosphorylated ceramides, within the dermis and epidermis. EPA augmented dermal production of members of the ceramide families containing Non-hydroxy fatty acids and Sphingosine or Dihydrosphingosine bases (CER[NS] and CER[NDS], respectively), while epidermal CER[EOH], CER[EOS] and CER[EOP] ceramides were not affected. DHA did not significantly affect ceramide production. Ceramide-1-phosphate levels in

  18. Association of Plasma Phospholipid n-3 and n-6 Polyunsaturated Fatty Acids with Type 2 Diabetes: The EPIC-InterAct Case-Cohort Study.

    Directory of Open Access Journals (Sweden)

    Nita G Forouhi

    2016-07-01

    Full Text Available Whether and how n-3 and n-6 polyunsaturated fatty acids (PUFAs are related to type 2 diabetes (T2D is debated. Objectively measured plasma PUFAs can help to clarify these associations.Plasma phospholipid PUFAs were measured by gas chromatography among 12,132 incident T2D cases and 15,919 subcohort participants in the European Prospective Investigation into Cancer and Nutrition (EPIC-InterAct study across eight European countries. Country-specific hazard ratios (HRs were estimated using Prentice-weighted Cox regression and pooled by random-effects meta-analysis. We also systematically reviewed published prospective studies on circulating PUFAs and T2D risk and pooled the quantitative evidence for comparison with results from EPIC-InterAct. In EPIC-InterAct, among long-chain n-3 PUFAs, α-linolenic acid (ALA was inversely associated with T2D (HR per standard deviation [SD] 0.93; 95% CI 0.88-0.98, but eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA were not significantly associated. Among n-6 PUFAs, linoleic acid (LA (0.80; 95% CI 0.77-0.83 and eicosadienoic acid (EDA (0.89; 95% CI 0.85-0.94 were inversely related, and arachidonic acid (AA was not significantly associated, while significant positive associations were observed with γ-linolenic acid (GLA, dihomo-GLA, docosatetraenoic acid (DTA, and docosapentaenoic acid (n6-DPA, with HRs between 1.13 to 1.46 per SD. These findings from EPIC-InterAct were broadly similar to comparative findings from summary estimates from up to nine studies including between 71 to 2,499 T2D cases. Limitations included potential residual confounding and the inability to distinguish between dietary and metabolic influences on plasma phospholipid PUFAs.These large-scale findings suggest an important inverse association of circulating plant-origin n-3 PUFA (ALA but no convincing association of marine-derived n3 PUFAs (EPA and DHA with T2D. Moreover, they highlight that the most abundant n6-PUFA (LA is inversely

  19. Growth Performance, Meat Quality and Fatty Acid Metabolism Response of Growing Meat Rabbits to Dietary Linoleic Acid

    Directory of Open Access Journals (Sweden)

    R. G. Li

    2012-08-01

    Full Text Available An experiment was conducted to determine the effects of different amounts of dietary linoleic acid (LA on growth performance, serum biochemical traits, meat quality, fatty acids composition of muscle and liver, acetyl-CoA carboxylase (ACC and carnitine palmitoyl transferase 1 (CPT 1 mRNA expression in the liver of 9 wks old to 13 wks old growing meat rabbits. One hundred and fifty 9 wks old meat rabbits were allocated to individual cages and randomly divided into five groups. Animals in each group were fed with a diet with the following LA addition concentrations: 0, 3, 6, 9 and 12 g/kg diet (as-fed basis and LA concentrations were 0.84, 1.21, 1.34, 1.61 and 1.80% in the diet, respectively. The results showed as follows: the dietary LA levels significantly affected muscle color of LL included a* and b* of experimental rabbits (p<0.05. The linear effect of LA on serum high density lipoprotein cholesterol was obtained (p = 0.0119. The saturated fatty acids (SFAs and monounsaturated fatty acids (MUFAs contents of LL decreased and the polyunsaturated fatty acids (PUFAs content of LL increased with dietary LA increase (p<0.0001. The PUFA n-6 content and PUFA n-3 content in the LL was significantly affected by the dietary LA levels (p<0.01, p<0.05. The MUFAs content in the liver decreased and the PUFAs contents in the liver increased with dietary LA increase (p<0.0001. The PUFA n-6 content and the PUFA n-6/n-3 ratio in the liver increased and PUFA n-3 content in the liver decreased with dietary LA increase (p<0.01. The linear effect of LA on CPT 1 mRNA expression in the liver was obtained (p = 0.0081. In summary, dietary LA addition had significant effects on liver and muscle fatty acid composition (increased PUFAs of 9 wks old to 13 wks old growing meat rabbits, but had little effects on growth performance, meat physical traits and mRNA expression of liver relative enzyme of experimental rabbits.

  20. Involvement of Resveratrol and ω-3 Polyunsaturated Fatty Acids on Sirtuin 1 Gene Expression in THP1 Cells.

    Science.gov (United States)

    Tsuchiya, Takafumi; Endo, Ayano; Tsujikado, Kyoko; Inukai, Toshihiko

    2017-10-01

    Resveratrol, a kind of polyphenol, has the potential to activate the longevity gene in several cells, in the same manner as calorie restriction. We investigated the effect of resveratrol and ω-3-line polyunsaturated fatty acid on surtuin 1 (SIRT1) gene expression in human monocytes (THP1) cells. We examined the gene expression of THP1 cells using real-time polymerase chain reaction and Western blotting analysis. Resveratol, eicosapentaenoic acid (EPA) and docosahexaeanoic acid (DHA) as n-3 polyunsaturated fatty acid were added on THP1 cells. We observed the changes in the SIRT1 gene expression in those cells, under various doses of agents and in time courses. Then, we examined the interaction of glucose and mannitol on those agents׳ effect of the gene expression. The concentration range of glucose and mannitol was from 5-20mM, respectively. The SIRT1 gene expression could be defined in 24 and 48 hours both in real-time polymerase chain reaction analysis and in Western blotting. Resveratrol showed SIRT1 gene expression in a dose-dependent manner in the range of 0-20μM in both analyses. Although EPA at 10μM showed marked increase in SIRT1 gene expression compared to control condition in Western blotting, this phenomenon was not in dose-dependent manner. DHA did not exhibit any augmentation of SIRT1 gene expression in a dose-dependent manner in the range of 0-20μM in both analyses. We refined the dose-dependent inhibition of the SIRT1 gene expression within 20mM glucose medium. Although 20mM did not exhibit any inhibition, 10μM resveratrol induced the gene expression compared to control medium. Both 5 and 15mM mannitol medium did not significantly alter basic gene expression and 10μM resveratrol-induced gene expression. The present results suggest that resveratrol and EPA, but not DHA, markedly activated the SIRT1 gene expression in THP1 cells, and that high glucose medium could inhibit the basic gene expression, but not powerful resveratrol-induced gene

  1. Production, composition, and oxidative stability of milk highly enriched in polyunsaturated fatty acids from dairy cows fed alfalfa protein concentrate or supplemental vitamin E.

    Science.gov (United States)

    Fauteux, M-C; Gervais, R; Rico, D E; Lebeuf, Y; Chouinard, P Y

    2016-06-01

    Given its elevated content of carotenoids, alfalfa protein concentrates (APC) have the potential to prevent oxidation of milk enriched in polyunsaturated fatty acids. The effects of feeding APC or supplemental vitamin E on production, composition, and oxidative stability of milk enriched in polyunsaturated fatty acids were evaluated using 6 lactating Holstein cows (224±18d in milk) in a replicated 3×3 Latin square (21-d periods, 14d for adaptation). Treatment diets contained (dry matter basis) (1) 9% soybean meal (control, CTL); (2) 9% soybean meal + 300 IU of vitamin E/kg (VitE treatment); or (3) 9% APC (APC treatment). Cows received a continuous abomasal infusion of 450g/d of linseed oil. As a result, milk fat content of cis-9,cis-12 18:2 increased from 1.08±0.13 to 3.9±0.40% (mean ± SD), whereas cis-9,cis-12,cis-15 18:3 increased from 0.40±0.04 to 14.27±1.81% during the experimental period compared with the pretrial period. Milk yield tended to be higher for APC (14.7kg/d) compared with CTL (13.4kg/d), and was greater than that for VitE (13.0kg/d). Protein yield was higher in cows fed APC (518g/d) compared with VitE (445g/d) but was not different from that in cows fed CTL (483g/d). These effects resulted in improved milk N efficiency in cows fed APC (26.1% of N intake secreted in milk) compared with CTL (23.0%) and VitE (22.9%). Feeding APC increased milk fat content of lutein (252μg/g) compared with CTL (204μg/g) and VitE (190μg/g). Milk fat content of vitamin E was higher for APC (34.5μg/g) compared with CTL (19.0μg/g) and tended to be lower than that with VitE (44.9μg/g). Redox potential of fresh milk from cows fed APC (152mV) was similar to that of VitE (144mV), but lower than that of CTL (189mV). Treatments had no effect on fresh milk contents of dissolved oxygen (8.1±1.5mg/L), and conjugated diene hydroperoxides (2.7±0.5mmol/L). The concentrations of volatile lipid oxidation products (propanal, hexanal, hept-cis-4-enal, 1-octen-3-one) tended

  2. Contributions of polyunsaturated fatty acids (PUFA) on cerebral neurobiology: an integrated omics approach with epigenomic focus

    Science.gov (United States)

    2016-12-01

    increase in N-3/n-6 fatty acid ratio reduces maternal obesity - associated inflammation and limits adverse developmental programming in mice. PLoS One...reduced transcriptional expressions. The majority of miRNAs overexpressed by BLD are associated with Alzheimer’s and schizophrenia. BLD implicated long-term...requires choline, other methyl donors and sufficient amounts of energy [7,8]. Hence, foods enriched with or deprived of such supplements enable control of

  3. Polymorphisms in Fatty Acid Desaturase (FADS) Gene Cluster: Effects on Glycemic Controls Following an Omega-3 Polyunsaturated Fatty Acids (PUFA) Supplementation

    Science.gov (United States)

    Cormier, Hubert; Rudkowska, Iwona; Thifault, Elisabeth; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2013-01-01

    Changes in desaturase activity are associated with insulin sensitivity and may be associated with type 2 diabetes mellitus (T2DM). Polymorphisms (SNPs) in the fatty acid desaturase (FADS) gene cluster have been associated with the homeostasis model assessment of insulin sensitivity (HOMA-IS) and serum fatty acid composition. Objective: To investigate whether common genetic variations in the FADS gene cluster influence fasting glucose (FG) and fasting insulin (FI) responses following a 6-week n-3 polyunsaturated fatty acids (PUFA) supplementation. Methods: 210 subjects completed a 2-week run-in period followed by a 6-week supplementation with 5 g/d of fish oil (providing 1.9 g–2.2 g of EPA + 1.1 g of DHA). Genotyping of 18 SNPs of the FADS gene cluster covering 90% of all common genetic variations (minor allele frequency ≥ 0.03) was performed. Results: Carriers of the minor allele for rs482548 (FADS2) had increased plasma FG levels after the n-3 PUFA supplementation in a model adjusted for FG levels at baseline, age, sex, and BMI. A significant genotype*supplementation interaction effect on FG levels was observed for rs482548 (p = 0.008). For FI levels, a genotype effect was observed with one SNP (rs174456). For HOMA-IS, several genotype*supplementation interaction effects were observed for rs7394871, rs174602, rs174570, rs7482316 and rs482548 (p = 0.03, p = 0.01, p = 0.03, p = 0.05 and p = 0.07; respectively). Conclusion: Results suggest that SNPs in the FADS gene cluster may modulate plasma FG, FI and HOMA-IS levels in response to n-3 PUFA supplementation. PMID:24705214

  4. Polymorphisms in Fatty Acid Desaturase (FADS Gene Cluster: Effects on Glycemic Controls Following an Omega-3 Polyunsaturated Fatty Acids (PUFA Supplementation

    Directory of Open Access Journals (Sweden)

    Patrick Couture

    2013-09-01

    Full Text Available Changes in desaturase activity are associated with insulin sensitivity and may be associated with type 2 diabetes mellitus (T2DM. Polymorphisms (SNPs in the fatty acid desaturase (FADS gene cluster have been associated with the homeostasis model assessment of insulin sensitivity (HOMA-IS and serum fatty acid composition. Objective: To investigate whether common genetic variations in the FADS gene cluster influence fasting glucose (FG and fasting insulin (FI responses following a 6-week n-3 polyunsaturated fatty acids (PUFA supplementation. Methods: 210 subjects completed a 2-week run-in period followed by a 6-week supplementation with 5 g/d of fish oil (providing 1.9 g–2.2 g of EPA + 1.1 g of DHA. Genotyping of 18 SNPs of the FADS gene cluster covering 90% of all common genetic variations (minor allele frequency ≥ 0.03 was performed. Results: Carriers of the minor allele for rs482548 (FADS2 had increased plasma FG levels after the n-3 PUFA supplementation in a model adjusted for FG levels at baseline, age, sex, and BMI. A significant genotype*supplementation interaction effect on FG levels was observed for rs482548 (p = 0.008. For FI levels, a genotype effect was observed with one SNP (rs174456. For HOMA-IS, several genotype*supplementation interaction effects were observed for rs7394871, rs174602, rs174570, rs7482316 and rs482548 (p = 0.03, p = 0.01, p = 0.03, p = 0.05 and p = 0.07; respectively. Conclusion: Results suggest that SNPs in the FADS gene cluster may modulate plasma FG, FI and HOMA-IS levels in response to n-3 PUFA supplementation.

  5. In-house SIRAS phasing of the polyunsaturated fatty-acid isomerase from Propionibacterium acnes

    International Nuclear Information System (INIS)

    Liavonchanka, Alena; Hornung, Ellen; Feussner, Ivo; Rudolph, Markus

    2006-01-01

    Low iodide concentrations were sufficient to allow SAD and SIRAS phasing of cubic crystals of a novel fatty acid isomerase using Cu Kα radiation. The polyenoic fatty-acid isomerase from Propionibacterium acnes (PAI) catalyzes the double-bond isomerization of linoleic acid to conjugated linoleic acid, which is a dairy- or meat-derived fatty acid in the human diet. PAI was overproduced in Escherichia coli and purified to homogeneity as a yellow-coloured protein. The nature of the bound cofactor was analyzed by absorption and fluorescence spectroscopy. Single crystals of PAI were obtained in two crystal forms. Cubic shaped crystals belong to space group I2 1 3, with a unit-cell parameter of 160.4 Å, and plate-like crystals belong to the monoclinic space group C2, with unit-cell parameters a = 133.7, b = 60.8, c = 72.2 Å, β = 115.8°. Both crystal forms contain one molecule per asymmetric unit and diffract to a resolution of better than 2.0 Å. Initial phases were obtained by SIRAS from in-house data from a cubic crystal that was soaked with an unusually low KI concentration of 0.25 M

  6. Activating omega-6 polyunsaturated fatty acids and inhibitory purine nucleotides are high affinity ligands for novel mitochondrial uncoupling proteins UCP2 and UCP3

    Czech Academy of Sciences Publication Activity Database

    Žáčková, Markéta; Škobisová, Eva; Urbánková, Eva; Ježek, Petr

    2003-01-01

    Roč. 278, č. 23 (2003), s. 20761-20769 ISSN 0021-9258 R&D Projects: GA AV ČR IAA5011106; GA ČR GA301/02/1215; GA MŠk ME 389 Institutional research plan: CEZ:AV0Z5011922 Keywords : uncoupling protein-2 * polyunsaturated fatty acids * recombinant yeast expression Subject RIV: CE - Biochemistry Impact factor: 6.482, year: 2003

  7. Human peripheral blood mononuclear cell in vitro system to test the efficacy of food bioactive compounds: Effects of polyunsaturated fatty acids and their relation with BMI.

    Science.gov (United States)

    Cifre, Margalida; Díaz-Rúa, Rubén; Varela-Calviño, Rubén; Reynés, Bàrbara; Pericás-Beltrán, Jordi; Palou, Andreu; Oliver, Paula

    2017-04-01

    To analyse the usefulness of isolated human peripheral blood mononuclear cells (PBMC) to rapidly/easily reflect n-3 long-chain polyunsaturated fatty acid (LCPUFA) effects on lipid metabolism/inflammation gene profile, and evaluate if these effects are body mass index (BMI) dependent. PBMC from normoweight (NW) and overweight/obese (OW/OB) subjects were incubated with physiological doses of docosahexaenoic (DHA), eicosapentaenoic acid (EPA), or their combination. PBMC reflected increased beta-oxidation-like capacity (CPT1A expression) in OW/OB but only after DHA treatment. However, insensitivity to n-3 LCPUFA was evident in OW/OB for lipogenic genes: both PUFA diminished FASN and SREBP1C expression in NW, but no effect was observed for DHA in PBMC from high-BMI subjects. This insensitivity was also evident for inflammation gene profile: all treatments inhibited key inflammatory genes in NW; nevertheless, no effect was observed in OW/OB after DHA treatment, and EPA effect was impaired. SLC27A2, IL6 and TNFα PBMC expression analysis resulted especially interesting to determine obesity-related n-3 LCPUFA insensitivity. A PBMC-based human in vitro system reflects n-3 LCPUFA effects on lipid metabolism/inflammation which is impaired in OW/OB. These results confirm the utility of PBMC ex vivo systems for bioactive-compound screening to promote functional food development and to establish appropriate dietary strategies for obese population. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Study on the Efficiency of Grape Seed Meals Used as Antioxidants in Layer Diets Enriched with Polyunsaturated Fatty Acids Compared with Vitamin E

    Directory of Open Access Journals (Sweden)

    M Olteanu

    Full Text Available ABSTRACT The 4-week study was conducted with 180 Lohmann Brown layers (52 weeks of age. The layers were assigned to three groups (C, E1 and E2. The basal diet (group C consisted mainly of corn, soybean meal and corn gluten, and contained 19% crude protein and 11.58 MJ/kg metabolizable energy. The diets for groups E1 and E2 differed from group C by the inclusion of 5% flax meal and of dietary antioxidants. The concentration of α-linolenic acid in the fat of E1 and E2 diets was almost 10 times higher than in group C. E1 diet was supplemented with vitamin E (100 mg/kg feed, DM, while E2 diet was supplemented with 2% grape seed meal (polyphenols: 630.890 µg gallic acid equivalents/g sample; flavonoids: 5.065 µg rutin equivalents/g sample; antioxidant capacity: 28.468 mM trolox equivalents/g sample. The antioxidant capacity of E2 was higher than in C, but lower than in E1. Haugh units of the eggs (18 eggs/group harvested during the last experimental week were not significantly different among groups. The ω-6/ω-3 polyunsaturated fatty acids (PUFAs ratio in the fat from the eggs was 4.46 ± 0.11 (E1 and 4.52 ± 0.21 (E2, three times lower (p<0.05 than the control group (14.70 ± 0.43. In group E1 in particular, but also in group E2, the concentration of total polyphenols in the egg yolk was higher (p<0.05 than in group C.

  9. Effect of marine-derived n-3 polyunsaturated fatty acids on C-reactive protein, interleukin 6 and tumor necrosis factor α: a meta-analysis.

    Science.gov (United States)

    Li, Kelei; Huang, Tao; Zheng, Jusheng; Wu, Kejian; Li, Duo

    2014-01-01

    Previous studies did not draw a consistent conclusion about the effects of marine-derived n-3 polyunsaturated fatty acids (PUFAs) on fasting blood level of C-reactive protein (CRP), interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α). A comprehensive search of Web of Science, PubMed, Embase and Medline (from 1950 to 2013) and bibliographies of relevant articles was undertaken. Sixty-eight RCTs with a total of 4601 subjects were included in the meta-analysis. Marine-derived n-3 PUFAs supplementation showed a lowering effect on Marine-derived n-3 PUFAs supplementation had a significant lowering effect on TNF-α, IL-6 and CRP in three groups of subjects (subjects with chronic non-autoimmune disease, subjects with chronic autoimmune disease and healthy subjects). A significant negative linear relationship between duration and effect size of marine-derived n-3 PUFAs supplementation on fasting blood levels of TNF-α and IL-6 in subjects with chronic non-autoimmune disease was observed, indicating that longer duration of supplementation could lead to a greater lowering effect. A similar linear relationship was also observed for IL-6 levels in healthy subjects. Restricted cubic spline analysis and subgroup analysis showed that the lowering effect of marine-derived n-3 PUFAs on CRP, IL-6 and TNF-α in subjects with chronic non-autoimmune disease became weakened when body mass index was greater than 30 kg/m². The effect of marine-derived n-3 PUFAs from dietary intake was only assessed in subjects with chronic non-autoimmune disease, and a significant lowering effect was observed on IL-6, but not on CRP and TNF-α. Marine-derived n-3 PUFAs supplementation had a significant lowering effect on CRP, IL-6 and TNF-α level. The lowering effect was most effective in non-obese subjects and consecutive long-term supplementation was recommended.

  10. Marine omega-3 polyunsaturated fatty acids induce sex-specific changes in reinforcer-controlled behaviour and neurotransmitter metabolism in a spontaneously hypertensive rat model of ADHD

    Directory of Open Access Journals (Sweden)

    Dervola Kine S

    2012-12-01

    Full Text Available Abstract Background Previous reports suggest that omega-3 (n-3 polyunsaturated fatty acids (PUFA supplements may reduce ADHD-like behaviour. Our aim was to investigate potential effects of n-3 PUFA supplementation in an animal model of ADHD. Methods We used spontaneously hypertensive rats (SHR. SHR dams were given n-3 PUFA (EPA and DHA-enriched feed (n-6/n-3 of 1:2.7 during pregnancy, with their offspring continuing on this diet until sacrificed. The SHR controls and Wistar Kyoto (WKY control rats were given control-feed (n-6/n-3 of 7:1. During postnatal days (PND 25–50, offspring were tested for reinforcement-dependent attention, impulsivity and hyperactivity as well as spontaneous locomotion. The animals were then sacrificed at PND 55–60 and their neostriata were analysed for monoamine and amino acid neurotransmitters with high performance liquid chromatography. Results n-3 PUFA supplementation significantly enhanced reinforcement-controlled attention and reduced lever-directed hyperactivity and impulsiveness in SHR males whereas the opposite or no effects were observed in females. Analysis of neostriata from the same animals showed significantly enhanced dopamine and serotonin turnover ratios in the male SHRs, whereas female SHRs showed no change, except for an intermediate increase in serotonin catabolism. In contrast, both male and female SHRs showed n-3 PUFA-induced reduction in non-reinforced spontaneous locomotion, and sex-independent changes in glycine levels and glutamate turnover. Conclusions Feeding n-3 PUFAs to the ADHD model rats induced sex-specific changes in reinforcement-motivated behaviour and a sex-independent change in non-reinforcement-associated behaviour, which correlated with changes in presynaptic striatal monoamine and amino acid signalling, respectively. Thus, dietary n-3 PUFAs may partly ameliorate ADHD-like behaviour by reinforcement-induced mechanisms in males and partly via reinforcement-insensitive mechanisms

  11. Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia-hyperaminoacidaemia in healthy young and middle-aged men and women.

    Science.gov (United States)

    Smith, Gordon I; Atherton, Philip; Reeds, Dominic N; Mohammed, B Selma; Rankin, Debbie; Rennie, Michael J; Mittendorfer, Bettina

    2011-09-01

    Increased dietary LCn-3PUFA (long-chain n-3 polyunsaturated fatty acid) intake stimulates muscle protein anabolism in individuals who experience muscle loss due to aging or cancer cachexia. However, it is not known whether LCn-3PUFAs elicit similar anabolic effects in healthy individuals. To answer this question, we evaluated the effect of 8 weeks of LCn-3PUFA supplementation (4 g of Lovaza®/day) in nine 25-45-year-old healthy subjects on the rate of muscle protein synthesis (by using stable isotope-labelled tracer techniques) and the activation (phosphorylation) of elements of the mTOR (mammalian target of rapamycin)/p70S6K (p70 S6 kinase) signalling pathway during basal post-absorptive conditions and during a hyperinsulinaemic-hyperaminoacidaemic clamp. We also measured the concentrations of protein, RNA and DNA in muscle to obtain indices of the protein synthetic capacity, translational efficiency and cell size. Neither the basal muscle protein fractional synthesis rate nor basal signalling element phosphorylation changed in response to LCn-3PUFA supplementation, but the anabolic response to insulin and amino acid infusion was greater after LCn-3PUFA [i.e. the muscle protein fractional synthesis rate during insulin and amino acid infusion increased from 0.062±0.004 to 0.083±0.007%/h and the phospho-mTOR (Ser2448) and phospho-p70S6K (Thr389) levels increased by ∼50%; all Panabolic properties in healthy young and middle-aged adults.

  12. The impact of probiotics and n-3 long-chain polyunsaturated fatty acids on intestinal permeability in pregnancy: a randomised clinical trial.

    Science.gov (United States)

    Mokkala, K; Pussinen, P; Houttu, N; Koivuniemi, E; Vahlberg, T; Laitinen, K

    2018-02-27

    A disruption in intestinal barrier integrity may predispose individuals to metabolic aberrations, particularly during the vulnerable period of pregnancy. We investigated whether intestinal permeability, as measured by serum zonulin concentration, changes over the duration of pregnancy and whether this change is reflected in lipopolysaccharide (LPS) activity. Second, we tested in a randomised double-blind placebo controlled clinical trial the impact of consuming dietary probiotics and/or long chain polyunsaturated fatty acid (LC-PUFA) supplements in lowering serum zonulin concentration and LPS activity. The probiotic supplement was a combination of two bacteria, Bifidobacterium animalis ssp. lactis 420 and Lactobacillus rhamnosus HN001. This study included 200 overweight pregnant women participating in an on-going study; participants were randomised to consume either (1) probiotics, (2) LC-PUFA, (3) probiotics and LC-PUFA, or (4) placebo for each supplement. Blood samples were obtained at early, the baseline, and late pregnancy (mean 14 and 35 weeks of gestation, respectively). Serum zonulin concentration increased from early (mean (standard deviation): 62.7 (12.9) ng/ml) to late pregnancy by 5.3 (95%CI 3.7-6.9) ng/ml, and LPS activity increased from (0.16 (0.04) EU/ml) by 0.04 (95%CI 0.03-0.05) EU/ml. No differences among the intervention groups were detected in the change from early to late pregnancy in serum zonulin concentration (P=0.8) or LPS activity (P=0.2). The change in serum zonulin concentration during the pregnancy was associated with the weeks of follow up (r=0.25, Pzonulin concentration or LPS activity.

  13. Macular xanthophylls and ω-3 long-chain polyunsaturated fatty acids in age-related macular degeneration: a randomized trial.

    Science.gov (United States)

    Arnold, Christin; Winter, Lisa; Fröhlich, Kati; Jentsch, Susanne; Dawczynski, Jens; Jahreis, Gerhard; Böhm, Volker

    2013-05-01

    It has been shown that the functionality of the macula lutea depends on the nutritional uptake of lutein and zeaxanthin and that it is inversely associated with the risk of age-related macular degeneration (AMD). Additionally, ω-3 long-chain polyunsaturated fatty acids (LC-PUFAs) may also be protective. To investigate the effect of a 12-month intervention with macular xanthophylls and ω-3 LC-PUFAs on xanthophylls and fatty acids in plasma, antioxidant capacity, and optical density of the macular pigment of patients with nonexudative AMD. The LUTEGA study was a randomized, double-blind, placebo-controlled, parallel clinical trial that was conducted for 12 months. University Eye Hospital and Institute of Nutrition, Friedrich Schiller University Jena, Germany. A total of 172 individuals with nonexudative AMD. Individuals were enrolled and randomly divided as follows: placebo group, group 1 (a capsule containing 10 mg of lutein, 1 mg of zeaxanthin, 100 mg of docosahexaenoic acid, and 30 mg of eicosapentaenoic acid administered each day), and group 2 (same substances but twice the dose used in group 1). One hundred forty-five participants completed the study successfully. Plasma xanthophyll concentrations and fatty acid profiles, optical density of the macular pigment, and antioxidant capacity in plasma (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid [Trolox] equivalent antioxidant capacity and photochemiluminescence). The concentrations of the administered carotenoids in plasma as well as the optical density of the macular pigment increased significantly in the groups randomized to receive supplementary macular xanthophylls and ω-3 LC-PUFAs after 1 month of intervention and remained at this level through the end of the study. Use of the double dose resulted in a beneficial alteration of the fatty acid profile in the plasma of patients with AMD in comparison with the dose in group 1. The lipophilic antioxidant capacity in plasma was significantly elevated

  14. The effect of long chain polyunsaturated fatty acid supplementation on intelligence in low birth weight infant during lactation: A meta-analysis

    Science.gov (United States)

    Song, Yuan; Liu, Ya; Pan, Yun; Yuan, Xiaofeng; Chang, Pengyu; Tian, Yuan; Cui, Weiwei

    2018-01-01

    Background Low birth weight infant (LBWIs) are prone to mental and behavioural problems. As an important constituent of the brain and retina, long chain polyunsaturated fatty acids are essential for foetal infant mental and visual development. The effect of lactation supplemented with long chain polyunsaturated fatty acids (LCPUFA) on the improvement of intelligence in low birth weight children requires further validation. Methods In this study, a comprehensive search of multiple databases was performed to identify studies focused the association between intelligence and long chain polyunsaturated fatty acid supplementation in LBWIs. Studies that compared the Bayley Scales of Infant Development (BSID) or the Wechsler Abbreviated Scale of Intelligence for Children (WISC) scores between LBWIs who were supplemented and controls that were not supplemented with LCPUFA during lactation were selected for inclusion in the meta-analysis. Results The main outcome was the mean difference in the mental development index (MDI) and psychomotor development index (PDI) of the BSID and the full scale intelligence quotient (FSIQ), verbal intelligence quotient (VIQ) and performance intelligence quotient (PIQ) of the WISC between LBWIs and controls. Our findings indicated that the mean BSID or WISC scores in LBWIs did not differ between the supplemented groups and controls. Conclusion This meta-analysis does not reveal that LCPUFA supplementation has a significant impact on the level of intelligence in LBWIs. PMID:29634752

  15. 1,4-Dihydroxy fatty acids: Artifacts by reduction of di- and polyunsaturated fatty acids with sodium borohydride

    Science.gov (United States)

    Thiemt, Simone; Spiteller, Gerhard

    1997-01-01

    In an effort to detect lipid peroxidation products in human blood plasma, samples were treated with NaBH4 to reduce the reactive hydroperoxides to hydroxy compounds. After saponification of the lipids, the free fatty acid fraction obtained by extraction was methylated and separated by TLC. The fractions containing polar compounds were trimethylsilylated and subjected to gas chromatography-mass spectrometry (GC/MS). Mass spectra allowed us to detect previously unknown 1,4-dihydroxy fatty acids due to their typical fragmentation pattern. If the reduction was carried out with NaBD4 instead of NaBH4, incorporation of two deuterium atoms was observed (appropriate mass shift). The two oxygen atoms of the hydroxyl groups were incorporated from air as shown by an experiment in 18O2 atmosphere. The reaction required the presence of free acids, indicating that BH3 was liberated, added to a 1,4-pentadiene system, and finally produced 1,4-diols by air oxidation.

  16. Different response of normal and cancer colonic epithelial cells to butyrate and polyunsaturated fatty acids

    Czech Academy of Sciences Publication Activity Database

    Hofmanová, Jiřina; Vaculová, Alena; Hýžďalová, Martina; Koubková, Zuzana; Netíková, Jaromíra; Kozubík, Alois

    2006-01-01

    Roč. 18, č. 1 (2006), S51-S51 ISSN 1107-3756. [The 11th World Congress on Advances in Oncology and 9th International Symposium on Molecular Medicine . 12.10.2006-14.10.2006, Hersonissos] R&D Projects: GA ČR(CZ) GA524/04/0895; GA AV ČR(CZ) 1QS500040507 Institutional research plan: CEZ:AV0Z50040507 Keywords : dietary lipids * colon cancer * cellular lipids Subject RIV: BO - Biophysics

  17. Impact of botanical oils on polyunsaturated fatty acid metabolism and leukotriene generation in mild asthmatics

    Science.gov (United States)

    2013-01-01

    Background Dietary supplementation with botanical oils that contain n-6 and n-3 eighteen carbon chain (18C)-PUFA such as γ linolenic acid (GLA, 18:3n-6), stearidonic acid (SDA, 18:4n-3) and α linolenic acid (ALA, 18:3n-3) have been shown to impact PUFA metabolism, alter inflammatory processes including arachidonic acid (AA) metabolism and improve inflammatory disorders. Methods The diet of mild asthmatics patients was supplemented for three weeks with varying doses of two botanical seed oils (borage oil [Borago officinalis, BO] and echium seed oil [Echium plantagineum; EO]) that contain SDA, ALA and GLA. A three week wash out period followed. The impact of these dietary manipulations was evaluated for several biochemical endpoints, including in vivo PUFA metabolism and ex vivo leukotriene generation from stimulated leukocytes. Results Supplementation with several EO/BO combinations increased circulating 20–22 carbon (20–22C) PUFAs, including eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and dihommo-gammalinolenic acid (DGLA), which have been shown to inhibit AA metabolism and inflammation without impacting circulating AA levels. BO/EO combinations also inhibited ex vivo leukotriene generation with some combinations attenuating cysteinyl leukotriene generation in stimulated basophils by >50% and in stimulated neutrophils by >35%. Conclusions This study shows that dietary supplementation with BO/EO alters 20–22C PUFA levels and attenuates leukotriene production in a manner consistent with a reduction in inflammation. PMID:24088297

  18. Omega-3 polyunsaturated fatty acids provided during embryonic development improve the growth performance and welfare of Muscovy ducks (Cairina moschata).

    Science.gov (United States)

    Baéza, E; Chartrin, P; Bordeau, T; Lessire, M; Thoby, J M; Gigaud, V; Blanchet, M; Alinier, A; Leterrier, C

    2017-09-01

    The welfare of ducks can be affected by unwanted behaviors such as excessive reactivity and feather pecking. Providing long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) during gestation and early life has been shown to improve the brain development and function of human and rodent offspring. The aim of this study was to test whether the pecking behavior of Muscovy ducks during rearing could be reduced by providing LC n-3 PUFA during embryonic and/or post-hatching development of ducklings. Enrichment of eggs, and consequently embryos, with LC n-3 PUFA was achieved by feeding female ducks (n-3F) a diet containing docosahexaenoic (DHA) and linolenic acids (microalgae and linseed oil). A control group of female ducks (CF) was fed a diet containing linoleic acid (soybean oil). Offspring from both groups were fed starter and grower diets enriched with DHA and linolenic acid or only linoleic acid, resulting in four treatment groups with 48 ducklings in each. Several behavioral tests were performed between 1 and 3 weeks of age to analyze the adaptation ability of ducklings. The growth performance, time budget, social interactions, feather growth, and pecking behavior of ducklings were recorded regularly during the rearing period. No significant interaction between maternal and duckling feeding was found. Ducklings from n-3F ducks had a higher body weight at day 0, 28, and 56, a lower feed conversion ratio during the growth period, and lower reactivity to stress than ducklings from CF ducks. Ducklings from n-3F ducks also exhibited a significantly reduced feather pecking frequency at 49 and 56 days of age and for the whole rearing period. Moreover, consumption of diets enriched with n-3 PUFA during the starter and grower post-hatching periods significantly improved the tibia mineralization of ducklings and the fatty acid composition of thigh muscles at 84 days of age by increasing the n-3 FA content. © 2017 Poultry Science Association Inc.

  19. Neuroprotective Effects of Omega-3 Polyunsaturated Fatty Acids in a Rat Model of Anterior Ischemic Optic Neuropathy.

    Science.gov (United States)

    Georgiou, Tassos; Wen, Yao-Tseng; Chang, Chung-Hsing; Kolovos, Panagiotis; Kalogerou, Maria; Prokopiou, Ekatherine; Neokleous, Anastasia; Huang, Chin-Te; Tsai, Rong-Kung

    2017-03-01

    The purpose of this study was to investigate the therapeutic effect of omega-3 polyunsaturated fatty acid (ω-3 PUFA) administration in a rat model of anterior ischemic optic neuropathy (rAION). The level of blood arachidonic acid/eicosapentaenoic acid (AA/EPA) was measured to determine the suggested dosage. The rAION-induced rats were administered fish oil (1 g/day EPA) or phosphate-buffered saline (PBS) by daily gavage for 10 consecutive days to evaluate the neuroprotective effects. Blood fatty acid analysis showed that the AA/EPA ratio was reduced from 17.6 to ≤1.5 after 10 days of fish oil treatment. The retinal ganglion cell (RGC) densities and the P1-N2 amplitude of flash visual-evoked potentials (FVEP) were significantly higher in the ω-3 PUFA-treated group, compared with the PBS-treated group (P optic nerve (ON) by 3.17-fold in the rAION model. The M2 macrophage markers, which decrease inflammation, were induced in the ω-3 PUFA-treated group in contrast to the PBS-treated group. In addition, the mRNA levels of tumor necrosis factor-alpha, interleukin-1 beta, and inducible nitric oxide synthase were significantly reduced in the ω-3 PUFA-treated group. The administration of ω-3 PUFAs has neuroprotective effects in rAION, possibly through dual actions of the antiapoptosis of RGCs and anti-inflammation via decreasing inflammatory cell infiltration, as well as the regulation of macrophage polarization to decrease the cytokine-induced injury of the ON.

  20. Insights into the role of oxidative stress in the pathology of Friedreich ataxia using peroxidation resistant polyunsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    M. Grazia Cotticelli

    2013-01-01

    Full Text Available Friedreich ataxia is an autosomal recessive, inherited neuro- and cardio-degenerative disorder characterized by progressive ataxia of all four limbs, dysarthria, areflexia, sensory loss, skeletal deformities, and hypertrophic cardiomyopathy. Most disease alleles have a trinucleotide repeat expansion in the first intron of the FXN gene, which decreases expression of the encoded protein frataxin. Frataxin is involved in iron–sulfur-cluster (ISC assembly in the mitochondrial matrix, and decreased frataxin is associated with ISC-enzyme and mitochondrial dysfunction, mitochondrial iron accumulation, and increased oxidative stress. To assess the role of oxidative stress in lipid peroxidation in Friedreich ataxia we used the novel approach of treating Friedreich ataxia cell models with polyunsaturated fatty acids (PUFAs deuterated at bis-allylic sites. In ROS-driven oxidation of PUFAs, the rate-limiting step is hydrogen abstraction from a bis-allylic site; isotopic reinforcement (deuteration of bis-allylic sites slows down their peroxidation. We show that linoleic and α-linolenic acids deuterated at the peroxidation-prone bis-allylic positions actively rescue oxidative-stress-challenged Friedreich ataxia cells. The protective effect of the deuterated PUFAs is additive in our models with the protective effect of the CoQ10 analog idebenone, which is thought to decrease the production of free radicals. Moreover, the administration of deuterated PUFAs resulted in decreased lipid peroxidation as measured by the fluorescence of the fatty acid analog C11-BODIPY (581/591 probe. Our results are consistent with a role for lipid peroxidation in Friedreich ataxia pathology, and suggest that the novel approach of oral delivery of isotope-reinforced PUFAs may have therapeutic potential in Friedreich ataxia and other disorders involving oxidative stress and lipid peroxidation.

  1. Omega-3 polyunsaturated fatty acids in the prevention of postoperative complications in colorectal cancer: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Xie H

    2016-12-01

    Full Text Available Hai Xie,1 Yan-na Chang2 1Department of Emergency, The First Hospital of Lanzhou University, 2Department of Anesthesiology, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China Objective: To evaluate systematically the clinical efficacy of omega-3 polyunsaturated fatty acids (PUFAs in the prevention of postoperative complications in colorectal cancer (CRC patients.Materials and methods: Published articles were identified by using search terms in online databases – PubMed, Embase, and the Cochrane Library – up to March 2016. Only randomized controlled trials investigating the efficacy of omega-3 PUFAs in CRC were selected and analyzed through a meta-analysis. Subgroup, sensitivity, and inverted funnel-plot analyses were also conducted. Results: Eleven articles with 694 CRC patients were finally included. Compared with control, omega-3 PUFA-enriched enteral or parenteral nutrition during the perioperative period reduced infectious complications (risk ratio [RR] 0.63, 95% confidence interval [CI] 0.47–0.86; P=0.004, tumor necrosis factor alpha (standard mean difference [SMD] -0.37, 95% CI -0.66 to -0.07; P=0.01, interleukin-6 (SMD -0.36, 95% CI -0.66 to -0.07; P=0.02, and hospital stay (MD -2.09, 95% CI -3.71 to -0.48; P=0.01. No significant difference was found in total complications, surgical site infection, or CD4+:CD8+ cell ratio. Conclusion: Short-term omega-3 PUFA administration was associated with reduced postoperative infectious complications, inflammatory cytokines, and hospital stay after CRC surgery. Due to heterogeneity and relatively small sample size, the optimal timing and route of administration deserve further study. Keywords: omega-3, fatty acids, fish oil, colorectal surgery, meta-analysis 

  2. Protective effects of fish intake and interactive effects of long-chain polyunsaturated fatty acid intakes on hip bone mineral density in older adults: the Framingham Osteoporosis Study123

    Science.gov (United States)

    Farina, Emily K; Kiel, Douglas P; Roubenoff, Ronenn; Schaefer, Ernst J; Cupples, L Adrienne

    2011-01-01

    Background: Polyunsaturated fatty acids and fish may influence bone health. Objective: We aimed to examine associations between dietary polyunsaturated fatty acid and fish intakes and hip bone mineral density (BMD) at baseline (1988–1989; n = 854) and changes 4 y later in adults (n = 623) with a mean age of 75 y in the Framingham Osteoporosis Study. Design: BMD measures were regressed on energy-adjusted quartiles of fatty acid intakes [n−3 (omega-3): α-linolenic acid, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and EPA+ DHA; n−6 (omega-6): linoleic acid (LA) and arachidonic acid (AA); and n−6:n−3 ratio] and on categorized fish intakes, with adjustment for covariates. Effect modification by EPA+DHA intake was tested for n−6 exposures. Results: High intakes (≥3 servings/wk) of fish relative to lower intakes were associated with maintenance of femoral neck BMD (FN-BMD) in men (dark fish + tuna, dark fish, and tuna) and in women (dark fish) (P < 0.05). Significant interactions between AA and EPA+DHA intakes were observed cross-sectionally in women and longitudinally in men. In women with EPA+DHA intakes at or above the median, those with the highest AA intakes had a higher mean baseline FN-BMD than did those with the lowest intakes (quartile 4 compared with quartile 1: P = 0.03, P for trend = 0.02). In men with the lowest EPA+DHA intakes (quartile 1), those with the highest intakes of AA (quartile 4) lost more FN-BMD than did men with the lowest intakes of AA (quartile 1; P = 0.04). LA intake tended to be associated with FN-BMD loss in women (P for trend < 0.06). Conclusions: Fish consumption may protect against bone loss. The protective effects of a high AA intake may be dependent on the amount of EPA+DHA intake. PMID:21367955

  3. Achieving definitive results in long-chain polyunsaturated fatty acid supplementation trials of term infants: factors for consideration.

    Science.gov (United States)

    Meldrum, Suzanne J; Smith, Michael A; Prescott, Susan L; Hird, Kathryn; Simmer, Karen

    2011-04-01

    Numerous randomized controlled trials (RCTs) have been undertaken to determine whether supplementation with long-chain polyunsaturated fatty acids (LCPUFAs) in infancy would improve the developmental outcomes of term infants. The results of such trials have been thoroughly reviewed with no definitive conclusion as to the efficacy of LCPUFA supplementation. A number of reasons for the lack of conclusive findings in this area have been proposed. This review examines such factors with the aim of determining whether an optimal method of investigation for RCTs of LCPUFA supplementation in term infants can be ascertained from previous research. While more research is required to completely inform a method that is likely to achieve definitive results, the findings of this literature review indicate future trials should investigate the effects of sex, genetic polymorphisms, the specific effects of LCPUFAs, and the optimal tests for neurodevelopmental assessment. The current literature indicates a docosahexaenoic acid dose of 0.32%, supplementation from birth to 12 months, and a total sample size of at least 286 (143 per group) should be included in the methodology of future trials. © 2011 International Life Sciences Institute.

  4. Omega-6 polyunsaturated fatty acids, serum zinc, delta-5- and delta-6-desaturase activities and incident metabolic syndrome.

    Science.gov (United States)

    Yary, T; Voutilainen, S; Tuomainen, T-P; Ruusunen, A; Nurmi, T; Virtanen, J K

    2017-08-01

    The associations of n-6 polyunsaturated fatty acids (PUFA) with metabolic syndrome have been poorly explored. We investigated the associations of the serum n-6 PUFA and the activities of enzymes involved in the PUFA metabolism, delta-5-desaturase (D5D) and delta-6-desaturase (D6D) with risk of incident metabolic syndrome. We also investigated whether zinc, a cofactor for these enzymes, modifies these associations. A prospective follow-up study was conducted on 661 men who were aged 42-60 years old at baseline in 1984-1989 and who were re-examined in 1998-2001. Men in the highest versus the lowest serum total omega-6 PUFA tertile had a 70% lower multivariate-adjusted risk of incident metabolic syndrome [odds ratio (OR) = 0.30; 95% confidence interval (CI) = 0.18-0.51, P trend metabolic syndrome components at the re-examinations. Most associations were attenuated after adjustment for body mass index. Finally, the associations of D6D and LA were stronger among those with a higher serum zinc concentration. Higher serum total n-6 PUFA, linoleic acid and arachidonic acid concentrations and D5D activity were associated with a lower risk of developing metabolic syndrome and higher D6D activity was associated with a higher risk. The role of zinc also needs to be investigated in other populations. © 2016 The British Dietetic Association Ltd.

  5. Hormonal and metabolic effects of polyunsaturated fatty acid (omega-3 on polycystic ovary syndrome induced rats under diet

    Directory of Open Access Journals (Sweden)

    Elaheh Ouladsahebmadarek

    2014-02-01

    Full Text Available Objective(s: PCOS (polycystic ovary syndrome produces symptoms in approximately 5% to 10% of women of reproductive age (12–45 years old. It is thought to be one of the leading causes of female subfertility. This study aimed to confirm the role of nutrition containing omega-3 (polyunsaturated fatty acid on control of experimental PCO induced by estradiol-valerat in rats. Materials and Methods: Wistar female rats (n=40 were allocated into control (n=10 and test groups (n= 30, test group was subdivided into 3 groups: G1, received omega-3 (240 mg/kg/orally/daily; G2 and G3 groups were induced PCO by single injection of estradiol-valerate (16 mg/kg/IM. Group 3 received omega-3 (240 mg/kg/orally/daily and low carbohydrate feeding for 60 subsequent days; on sixtieth day 5 ml blood samples and ovarian tissues of all rats in the group were removed and prepared for biochemical and hormonal analysis. Results: Catalase, GPX (Glutathione peroxidase, SOD (Superoxide dismutase in groups that received omega-3showed higher levels, but MDA (malondialdehyde level was significantly decreased (P

  6. Lysophosphatidylcholines containing polyunsaturated fatty acids were found as Na+,K+-ATPase inhibitors in acutely volume-expanded hog

    International Nuclear Information System (INIS)

    Tamura, M.; Harris, T.M.; Higashimori, K.; Sweetman, B.J.; Blair, I.A.; Inagami, T.

    1987-01-01

    Na + ,K + -ATPase inhibitors activities against the specific binding of ouabain to Na + ,K + -ATPase and 86 Rb uptake into hog erythrocytes have been purified from the plasma of acutely saline-infused hog. The purifications were performed by a combination of Amberlite XAD-2 adsorption chromatography and four steps of high-performance liquid chromatography with four different types of columns. Fast atom bombardment (FAB) mass and proton NMR spectrometric studies identified the purified substances as γ-arachidoyl- [LPCA(γ), 34%], β-arachidoyl- [LPCA(β), 4%], γ-linoleoyl- (LPCL, 33%), and γ-oleoyl- (LPCO, 25%) lysophosphatidylcholine, expressed in molar ratio in the plasma. Small amounts of γ-docosapentaenoyl-, γ-eicosatrienoyl-, and γpalmitoyllysophosphatidylcholine were also detected by both FAB mass and 1 H NMR spectrometric studies. The inhibition of Na + ,K + -ATPase activity due to these compounds was always more sensitive than that of both ouabain-binding and 86 Rb uptake activities. The ouabain-displacing activity in plasma due to these compounds increased with time during saline infusion. The maximal plasma level was approximately 10 times higher than that in the preinfusion plasma sample. Although these results suggest that γ-acyl-LPC's with long-chain polyunsaturated fatty acids are not simple competitive inhibitors to Na + ,K + -ATPase, these compounds could be implicated in the pathogenesis of the circulation abnormality through the modulation of membrane enzyme

  7. n-3 polyunsaturated fatty acid supplementation reduces insulin resistance in hepatitis C virus infected patients: a randomised controlled trial.

    Science.gov (United States)

    Freire, T O; Boulhosa, R S S B; Oliveira, L P M; de Jesus, R P; Cavalcante, L N; Lemaire, D C; Toralles, M B P; Lyra, L G C; Lyra, A C

    2016-06-01

    Insulin resistance promotes liver disease progression and may be associated with a lower response rate in treated hepatitis C virus (HCV) infected patients. n-3 polyunsaturated fatty acid (PUFA) supplementation may reduce insulin resistance. The present study aimed to evaluate the effect of n-3 PUFA supplementation on insulin resistance in these patients. In a randomised, double-blind clinical trial, 154 patients were screened. After applying inclusion criteria, 52 patients [homeostasis model assessment index of insulin resistance (HOMA-IR ≥2.5)] were randomly divided into two groups: n-3 PUFA (n = 25/6000 mg day(-1) of fish oil) or control (n = 27/6000 mg day(-1) of soybean oil). Both groups were supplemented for 12 weeks and underwent monthly nutritional consultation. Biochemical tests were performed at baseline and after intervention. Statistical analysis was performed using the Wilcoxon Mann-Whitney test for comparisons and the Wilcoxon test for paired data. Statistical package r, version 3.02 (The R Project for Statistical Computing) was used and P resistance in genotype 1 HCV infected patients. © 2015 The British Dietetic Association Ltd.

  8. FTIR microspectroscopy for rapid screening and monitoring of polyunsaturated fatty acid production in commercially valuable marine yeasts and protists.

    Science.gov (United States)

    Vongsvivut, Jitraporn; Heraud, Philip; Gupta, Adarsha; Puri, Munish; McNaughton, Don; Barrow, Colin J

    2013-10-21

    The increase in polyunsaturated fatty acid (PUFA) consumption has prompted research into alternative resources other than fish oil. In this study, a new approach based on focal-plane-array Fourier transform infrared (FPA-FTIR) microspectroscopy and multivariate data analysis was developed for the characterisation of some marine microorganisms. Cell and lipid compositions in lipid-rich marine yeasts collected from the Australian coast were characterised in comparison to a commercially available PUFA-producing marine fungoid protist, thraustochytrid. Multivariate classification methods provided good discriminative accuracy evidenced from (i) separation of the yeasts from thraustochytrids and distinct spectral clusters among the yeasts that conformed well to their biological identities, and (ii) correct classification of yeasts from a totally independent set using cross-validation testing. The findings further indicated additional capability of the developed FPA-FTIR methodology, when combined with partial least squares regression (PLSR) analysis, for rapid monitoring of lipid production in one of the yeasts during the growth period, which was achieved at a high accuracy compared to the results obtained from the traditional lipid analysis based on gas chromatography. The developed FTIR-based approach when coupled to programmable withdrawal devices and a cytocentrifugation module would have strong potential as a novel online monitoring technology suited for bioprocessing applications and large-scale production.

  9. Formation of volatile compounds in kefir made of goat and sheep milk with high polyunsaturated fatty acid content.

    Science.gov (United States)

    Cais-Sokolińska, D; Wójtowski, J; Pikul, J; Danków, R; Majcher, M; Teichert, J; Bagnicka, E

    2015-10-01

    This article explored the formation of volatile compounds during the production of kefir from goat and sheep milks with high polyunsaturated fatty acids (PUFA) as a result of feeding animals forage supplemented with maize dried distillers grains with solubles (DDGS). The increased PUFA content of the goat and sheep milks resulted in significant changes to the fermentation process. In particular, apart from an increase in the time taken to ferment sheep milk, fermentation yielded less 2,3-butanedione. The highest quantities of this compound were assayed in kefir produced from goat milk with an increased content of PUFA. An increase of PUFA significantly elevated ethanal synthesis during lactose-alcohol fermentation of sheep milk. Neither the origin of milk (sheep or goat) nor the level of PUFA had any statistical effect on the amount of ethanal assayed during the fermentation of milk and within the finished product. The proportion of l(+)-lactic acid was higher in kefirs produced using goat milk compared with sheep milk and did not depend on the content of PUFA in milk fat. The content of PUFA had a significant effect on the aroma profile of the resulting kefirs. An increase in PUFA content resulted in the loss of whey aroma in goat milk kefirs and the animal odor in sheep milk kefirs, and a creamy aroma became more prevalent in kefirs made from sheep milk. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Alterations of N-3 polyunsaturated fatty acid-activated K2P channels in hypoxia-induced pulmonary hypertension

    DEFF Research Database (Denmark)

    Nielsen, Gorm; Wandall-Frostholm, Christine; Sadda, Veeranjaneyulu

    2013-01-01

    Polyunsaturated fatty acid (PUFA)-activated two-pore domain potassium channels (K2P ) have been proposed to be expressed in the pulmonary vasculature. However, their physiological or pathophysiological roles are poorly defined. Here, we tested the hypothesis that PUFA-activated K2P are involved...... in pulmonary vasorelaxation and that alterations of channel expression are pathophysiologically linked to pulmonary hypertension. Expression of PUFA-activated K2P in the murine lung was investigated by quantitative reverse-transcription polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC), by patch...... clamp (PC) and myography. K2P -gene expression was examined in chronic hypoxic mice. qRT-PCR showed that the K2P 2.1 and K2P 6.1 were the predominantly expressed K2P in the murine lung. IHC revealed protein expression of K2P 2.1 and K2P 6.1 in the endothelium of pulmonary arteries and of K2P 6...

  11. Effect of Vitamin E and Polyunsaturated Fatty Acids on Cryopreserved Sperm Quality in Bos taurus Bulls Under Testicular Heat Stress.

    Science.gov (United States)

    Losano, João D A; Angrimani, Daniel S R; Dalmazzo, Andressa; Rocha, Carolina C; Brito, Maíra M; Perez, Eduardo G A; Tsunoda, Roberta H; Góes, Paola A A; Mendes, Camilla M; Assumpção, Mayra E O A; Barnabe, Valquiria H; Nichi, Marcilio

    2018-04-03

    Taurine bulls are highly susceptible to heat stress, leading to increased oxidative stress (OS) and impaired sperm viability. Polyunsaturated fatty acids (PUFAs) supplementation can be an alternative to improve semen quality, which also results in more sperm susceptibility to lipid peroxidation. Moreover, this deleterious effect can be exacerbated in animals affected by heat stress. Vitamin E is a key antioxidant that counteracts lipid peroxidation of sperm membrane caused by OS. Thus, combining PUFAs with vitamin E may improve sperm quality. In this context, this study aimed to evaluate the effect of interaction between PUFAs and vitamin E on sperm quality in Bos taurus bulls under testicular heat stress. Sixteen taurine bulls under testicular heat stress were randomly assigned in four groups: Control, Vitamin E, PUFA, and PUFA + Vitamin E. All groups lasted for 60 days. Samples were cryopreserved/thawed and analyzed for motility variables (CASA), membrane and acrosome integrity, mitochondrial activity, susceptibility to oxidative stress, DNA integrity, and sperm-binding capacity. Results showed that vitamin E had a beneficial effect on some sperm characteristics, whereas PUFA supplementation had an adverse effect when the two treatments were evaluated separately. Finally, the association between PUFAs and vitamin E did not improve sperm quality.

  12. Effects of supplementation with protected polyunsaturated fatty acids on productive and hormonal parameters of embryo recipient heifers

    Directory of Open Access Journals (Sweden)

    Juan Camilo Angel Cardona

    2016-06-01

    Full Text Available Supplementation with protected polyunsaturated fatty acids (PPUFA has positive effects on cow reproduction. Therefore, the aim of this study was to evaluate the effects of adding a source of PPUFA to energy supplements for embryo recipient heifers on productive performance and plasma concentrations of progesterone, cholesterol and insulin. For this purpose, 44 Angus x Hereford embryo recipient heifers (average body weight = 385 kg raised on pasture were studied in a completely randomized design. The effects of PPUFA added to isocaloric energy supplements for 60 days on production parameters and serum concentrations of cholesterol, progesterone and insulin were evaluated. The treatments consisted of individual supplementation with: 1 control (no supplement; 2 corn (corn, 70%; soybean meal, 30%; 3 PPUFA supplement (Megalac-E®, 30%; soybean meal, 20%; commercial ration, 50%. The treatments did not affect (P>0.05 dry matter intake, pregnancy rates, or serum insulin concentration. However, PPUFA supplement increased (P0.05 in dry matter intake between treatments, PPUFA supplement increased (P<0.05 average daily gain compared to the control and corn treatments. The inclusion of PPUFA in energy supplements offered to heifers used in an embryo transfer program increased average daily gain and serum concentrations of cholesterol and progesterone, but did not affect pregnancy rates.

  13. Monooxygenase system in Guerin’s carcinoma of rats under conditions of ω-3 polyunsaturated fatty acids administration

    Directory of Open Access Journals (Sweden)

    M. M. Marchenko

    2016-08-01

    Full Text Available The aim of the study was to determine the variations of function in components of monooxygenase system (MOS of rat Guerin’s carcinoma under ω-3 polyunsaturated fatty acids (PUFAs administration. The activity of Guerin’s carcinoma microsomal NADH-cytochrome b5 reductase, the content and the rate of cytochrome b5 oxidation-reduction, the content and the rate of cytochrome Р450 oxidation-reduction have been investigated in rats with tumor under conditions of ω-3 PUFAs administration. ω-3 PUFAs supplementation before and after transplantation of Guerin’s carcinoma resulted in the increase of NADH-cytochrome b5 reductase activity and decrease of cytochrome b5 level in the Guerin’s carcinoma microsomal fraction in the logarithmic phases of carcinogenesis as compared to the tumor-bearing rats. Increased activity of NADH-cytochrome b5 reductase facilitates higher electron flow in redox-chain of MOS. Under decreased cytochrome b5 levels the electrons are transferred to oxygen, which leads to heightened generation of superoxide (O2•- in comparison to control. It was shown, that the decrease of cytochrome P450 level in the Guerin’s carcinoma microsomal fraction in the logarithmic phases of oncogenesis under ω-3 PUFAs administration may be associated with its transition into an inactive form – cytochrome P420. This decrease in cytochrome P450 coincides with increased generation of superoxide by MOS oxygenase chain.

  14. Autism as a disorder of deficiency of brain-derived neurotrophic factor and altered metabolism of polyunsaturated fatty acids.

    Science.gov (United States)

    Das, Undurti N

    2013-10-01

    Autism has a strong genetic and environmental basis in which inflammatory markers and factors concerned with synapse formation, nerve transmission, and information processing such as brain-derived neurotrophic factor (BDNF), polyunsaturated fatty acids (PUFAs): arachidonic (AA), eicosapentaenoic (EPA), and docosahexaenoic acids (DHA) and their products and neurotransmitters: dopamine, serotonin, acetylcholine, γ-aminobutyric acid, and catecholamines and cytokines are altered. Antioxidants, vitamins, minerals, and trace elements are needed for the normal metabolism of neurotrophic factors, eicosanoids, and neurotransmitters, supporting reports of their alterations in autism. But, the exact relationship among these factors and their interaction with genes and proteins concerned with brain development and growth is not clear. It is suggested that maternal infections and inflammation and adverse events during intrauterine growth of the fetus could lead to alterations in the gene expression profile and proteomics that results in dysfunction of the neuronal function and neurotransmitters, alteration(s) in the metabolism of PUFAs and their metabolites resulting in excess production of proinflammatory eicosanoids and cytokines and a deficiency of anti-inflammatory cytokines and bioactive lipids that ultimately results in the development of autism. Based on these evidences, it is proposed that selective delivery of BDNF and methods designed to augment the production of anti-inflammatory cytokines and eicosanoids and PUFAs may prevent, arrest, or reverse the autism disease process. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. A novel processing system of sterol regulatory element-binding protein-1c regulated by polyunsaturated fatty acid.

    Science.gov (United States)

    Nakakuki, Masanori; Kawano, Hiroyuki; Notsu, Tatsuto; Imada, Kazunori; Mizuguchi, Kiyoshi; Shimano, Hitoshi

    2014-05-01

    The proteolytic cascade is the key step in transactivation of sterol regulatory element-binding proteins (SREBPs), a transcriptional factor of lipid synthesis. Proteolysis of SREBP-2 is strictly regulated by sterols, but that of SREBP-1c was not strongly sterol-regulated, but inhibited by polyunsaturated fatty acids (PUFAs). In this study, the proteolytic processing of SREBP-1 and -2 was examined by transfection studies of cDNA-encoding mutants in which all the known cleavage sites were disrupted. In cultured cells, sterol-regulated SREBP-2 processing was completely eliminated by mutation of cleavage sites. In contrast, the corresponding SREBP-1c mutants as well as wild type exhibited large amounts of cleaved products in the nuclear extracts from culture cells and murine liver in vivo. The nuclear form of the mutant SREBP-1c was induced by delipidated condition and suppressed by eicosapentaenoic acid, an n-3 PUFA, but not by sterols. This novel processing mechanism was affected by neither SREBP cleavage-activating protein (SCAP) nor insulin-induced gene (Insig)-1, unlike SREBP-2, but abolished by a serine protease inhibitor. Through analysis of deletion mutant, a site-2 protease recognition sequence (DRSR) was identified to be involved in this novel processing. These findings suggest that SREBP-1c cleavage could be subjected to a novel PUFA-regulated cleavage system in addition to the sterol-regulatory SCAP/Insig system.

  16. BIOTECHNOLOGY AS A USEFUL TOOL FOR NUTRITIONAL IMPROVEMENT OF CEREAL-BASED MATERIALS ENRICHED WITH POLYUNSATURATED FATTY ACIDS AND PIGMENTS

    Directory of Open Access Journals (Sweden)

    M. Čertík

    2008-09-01

    Full Text Available Cereals represent a major food supply for humanity. Although these sources are rich in proteins and carbohydrates, many of them are deficient in several essential nutrients, such as polyunsaturated fatty acids (PUFAs and carotenoid pigments. One possible approach how to enhance the content of PUFAs or carotenoids in cereal diet is based on biotechnological transformation of cereal materials by solid state fermentations. This technique is powerful tool for effective valorisation of these resources to various types of value-added bioproducts with demanded properties and functions. Selected filamentous Mucorales fungi were applied for conversion of numerous agroindustrial substrates to bioproducts enriched with PUFAs, such as gamma-linolenic acid (GLA, dihomo-gamma-linolenic acid (DGLA, arachidonic acid (AA and eicosapentaenoic acid (EPA. On the other hand, a range of yeast species utilizing agroindustrial substrates were employed for formation of carotenoids, such as β-carotene, torulene, torularhodine and astaxanthin. Such naturally prepared cereal based bioproducts enriched with either PUFAs or carotenoid pigments may be used as an inexpensive food and feed supplement. The work was supported by grant VEGA No. 1/0747/08 from the Grant Agency of Ministry of Education, Slovak Republic.

  17. Catecholaminergic and cholinergic systems of mouse brain are modulated by LMN diet, rich in theobromine, polyphenols and polyunsaturated fatty acids.

    Science.gov (United States)

    Fernández-Fernández, Laura; Esteban, Gerard; Giralt, Mercedes; Valente, Tony; Bolea, Irene; Solé, Montse; Sun, Ping; Benítez, Susana; Morelló, José Ramón; Reguant, Jordi; Ramírez, Bartolomé; Hidalgo, Juan; Unzeta, Mercedes

    2015-04-01

    The possible modulatory effect of the functional LMN diet, rich in theobromine, polyphenols and polyunsaturated fatty acids, on the catecholaminergic and cholinergic neurotransmission, affecting cognition decline during aging has been studied. 129S1/SvlmJ mice were fed for 10, 20, 30 and 40 days with either LMN or control diets. The enzymes involved in catecholaminergic and cholinergic metabolism were determined by both immunohistological and western blot analyses. Noradrenalin, dopamine and other metabolites were quantified by HPLC analysis. Theobromine, present in cocoa, the main LMN diet component, was analysed in parallel using SH-SY5Y and PC12 cell lines. An enhanced modulatory effect on both cholinergic and catecholaminergic transmissions was observed on 20 day fed mice. Similar effect was observed with theobromine, besides its antioxidant capacity inducing SOD-1 and GPx expression. The enhancing effect of the LMN diet and theobromine on the levels of acetylcholine-related enzymes, dopamine and specially noradrenalin confirms the beneficial role of this diet on the "cognitive reserve" and hence a possible reducing effect on cognitive decline underlying aging and Alzheimer's disease.

  18. Role of omega-3 polyunsaturated fatty acids for the treatment of patients with major depression disorder

    Directory of Open Access Journals (Sweden)

    Ali Al Hussain

    2014-01-01

    Full Text Available A rising number of studies have raised questions regarding the association of mental illness in a particular mood disorders such as depression with low intake of omega-3 fatty acids. Given all the side-effects that traditional antidepressants put patients at risk for, omega-3 is certainly a better alternative that might improve depressive symptoms and patient′s compliance to treatment by removing the stigma of psychiatric drugs. This study critically reviewed 12 relevant studies from PubMed published between 1992 - 2013 in order to determine whether omega-3 supplements or diet rich in fish were likely to show affectivity in reducing depressive symptoms. Most of the studies showed clear association between omega-3 and reduced depressive symptoms. Studies support the adjunctive role of omega-3 and high fish consumption in reducing depression. Omega-3 fatty acids have also shown to be safe when used during pregnancy to prevent postpartum depression. Although some studies showed mixed results of positive findings, the use of omega-3 supplements could not be an absolute substitute of antidepressants due to limitation in their studies. Minority of the studies reviewed did not correlate omega-3 with the improvement of depressive symptoms for many reasons such as the healthy life-style of subjects, etc. Given the fact that depression has various causes, this puts the testing of omega-3 in a lot of bias due to several variables such as dose, formula, period administered as well as the candidates′ state of health. Further research is definitely warranted on a larger sample size with close follow-up using proper assessment tools. Omega-3 has shown to have minimal or no side-effects at all, which makes it important for mental health professional to at least ensure that patients diagnosed with depression have adequate amounts of omega-3 fatty acids whether by supplementation or in their daily diet.

  19. Improvement of Neutral Lipid and Polyunsaturated Fatty Acid Biosynthesis by Overexpressing a Type 2 Diacylglycerol Acyltransferase in Marine Diatom Phaeodactylum tricornutum

    Directory of Open Access Journals (Sweden)

    Ying-Fang Niu

    2013-11-01

    Full Text Available Microalgae have been emerging as an important source for the production of bioactive compounds. Marine diatoms can store high amounts of lipid and grow quite quickly. However, the genetic and biochemical characteristics of fatty acid biosynthesis in diatoms remain unclear. Glycerophospholipids are integral as structural and functional components of cellular membranes, as well as precursors of various lipid mediators. In addition, diacylglycerol acyltransferase (DGAT is a key enzyme that catalyzes the last step of triacylglyceride (TAG biosynthesis. However, a comprehensive sequence-structure and functional analysis of DGAT in diatoms is lacking. In this study, an isoform of diacylglycerol acyltransferase type 2 of the marine diatom Phaeodactylum tricornutum was characterized. Surprisingly, DGAT2 overexpression in P. tricornutum stimulated more oil bodies, and the neutral lipid content increased by 35%. The fatty acid composition showed a significant increase in the proportion of polyunsaturated fatty acids; in particular, EPA was increased by 76.2%. Moreover, the growth rate of transgenic microalgae remained similar, thereby maintaining a high biomass. Our results suggest that increased DGAT2 expression could alter fatty acid profile in the diatom, and the results thus represent a valuable strategy for polyunsaturated fatty acid production by genetic manipulation.

  20. Cytoprotective effect of tocopherols in hepatocytes cultured with polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    Mikkelsen, L.; Hansen, Harald S.; Grunnet, N.

    1994-01-01

    When highly unsaturated fatty acids are added to cell cultures, it can become important to include antioxidants in the culture medium to prevent cytotoxic peroxidation. To find an optimal antioxidant for this purpose, the effect of 50 µM a-tocopherol, ¿-tocopherol, a-tocopheryl acetate, a...... of thiobarbituric acid reactive substances in the cultures was also measured. a-Tocopheryl acid succinate was found to be the most effective cytoprotective compound, followed by N,N'-diphenyl-1,4-phenylenediamine, a- tocopherol, ¿-tocopherol and a-tocopheryl acetate, and a-tocopheryl phosphate was without effect....

  1. The implication of omega-3 polyunsaturated fatty acids in retinal physiology

    Directory of Open Access Journals (Sweden)

    Acar Niyazi

    2007-05-01

    Full Text Available Neuronal tissues such as the retina and the brain are characterized by their high content in phospholipids. In the retina, phospholipids can account for until 80% of total lipids and are mainly composed by species belonging to phosphatidyl-choline and phosphatidyl-ethanolamine sub-classes. Within fatty acids esterified on retinal phospholipids, omega-3 PUFAs are major components since docosahexaenoic acid (DHA can represent until 50% of total fatty acids in the photoreceptor outer segments. For long time, DHA is known to play a major role in membrane function and subsequently in visual processes by affecting permeability, fluidity, thickness and the activation of membrane-bound proteins. Today, more and more studies show that PUFAs from the omega-3 series may also operate as protective factors in retinal vascular and immuno-regulatory processes, in maintaining the physiologic redox balance and in cell survival. They may operate within complex systems involving eicosanoids, angiogenic factors, inflammatory factors and matrix metalloproteinases. This new and emerging concept based on the interrelationship of omega-3 PUFAs with neural and vascular structure and function appears to be essential when considering retinal diseases of public health significance such as age-related macular degeneration.

  2. The Role for Dietary Omega-3 Fatty Acids Supplementation in Older Adults

    Directory of Open Access Journals (Sweden)

    Alessio Molfino

    2014-10-01

    Full Text Available Optimal nutrition is one of the most important determinants of healthier ageing, reducing the risk of disability, maintaining mental and physical functions, and thus preserving and ensuring a better quality of life. Dietary intake and nutrient absorption decline with age, thus increasing the risk of malnutrition, morbidity and mortality. Specific nutrients, particularly long-chain omega-3 polyunsaturated fatty acids (PUFAs, might have the potential of preventing and reducing co-morbidities in older adults. Omega-3 PUFAs are able to modulate inflammation, hyperlipidemia, platelet aggregation, and hypertension. Different mechanisms contribute to these effects, including conditioning cell membrane function and composition, eicosanoid production, and gene expression. The present review analyzes the influence of omega-3 PUFAs status and intake on brain function, cardiovascular system, immune function, muscle performance and bone health in older adults. Omega-3 FAs may have substantial benefits in reducing the risk of cognitive decline in older people. The available data encourage higher intakes of omega-3 PUFAs in the diet or via specific supplements. More studies are needed to confirm the role of omega-3 FAs in maintaining bone health and preventing the loss of muscle mass and function associated with ageing. In summary, omega-3 PUFAs are now identified as potential key nutrients, safe and effective in the treatment and prevention of several negative consequences of ageing.

  3. The role for dietary omega-3 fatty acids supplementation in older adults.

    Science.gov (United States)

    Molfino, Alessio; Gioia, Gianfranco; Rossi Fanelli, Filippo; Muscaritoli, Maurizio

    2014-10-03

    Optimal nutrition is one of the most important determinants of healthier ageing, reducing the risk of disability, maintaining mental and physical functions, and thus preserving and ensuring a better quality of life. Dietary intake and nutrient absorption decline with age, thus increasing the risk of malnutrition, morbidity and mortality. Specific nutrients, particularly long-chain omega-3 polyunsaturated fatty acids (PUFAs), might have the potential of preventing and reducing co-morbidities in older adults. Omega-3 PUFAs are able to modulate inflammation, hyperlipidemia, platelet aggregation, and hypertension. Different mechanisms contribute to these effects, including conditioning cell membrane function and composition, eicosanoid production, and gene expression. The present review analyzes the influence of omega-3 PUFAs status and intake on brain function, cardiovascular system, immune function, muscle performance and bone health in older adults. Omega-3 FAs may have substantial benefits in reducing the risk of cognitive decline in older people. The available data encourage higher intakes of omega-3 PUFAs in the diet or via specific supplements. More studies are needed to confirm the role of omega-3 FAs in maintaining bone health and preventing the loss of muscle mass and function associated with ageing. In summary, omega-3 PUFAs are now identified as potential key nutrients, safe and effective in the treatment and prevention of several negative consequences of ageing.

  4. Dietary structured triacylglycerols containing docosahexaenoic acid given from birth affect visual and auditory performance and tissue fatty acid profiles of rats

    DEFF Research Database (Denmark)

    Christensen, M. M.; Lund, S. P.; Simonsen, L.

    1998-01-01

    To examine whether it is possible to enhance the level of 22:6(n-3) in the central nervous system, newborn rats were fed dietary supplements containing oils with either specific or random triacylglycerol structure, but similar concentrations of polyunsaturated fatty acids. In the specific structu...... in differences in learning ability, but caused changes in visual function, evidenced by higher latency of the b-wave and lower oscillatory potential, and in auditory brainstem response, evidenced by generally greater amplitude of wave la in the group fed specific structured oil....

  5. Mammary inflammation around parturition appeared to be attenuated by consumption of fish oil rich in n-3 polyunsaturated fatty acids.

    Science.gov (United States)

    Lin, Sen; Hou, Jia; Xiang, Fang; Zhang, Xiaoling; Che, Lianqiang; Lin, Yan; Xu, Shengyu; Tian, Gang; Zeng, Qiufeng; Yu, Bing; Zhang, Keying; Chen, Daiwen; Wu, De; Fang, Zhengfeng

    2013-12-31

    Mastitis endangers the health of domestic animals and humans, and may cause problems concerning food safety. It is documented that n-3 polyunsaturated fatty acids (PUFA) play significant roles in attenuating saturated fatty acids (SFA)-induced inflammation. This study was therefore conducted to determine whether mammary inflammation could be affected by consumption of diets rich in n-3 PUFA. Forty-eight rats after mating began to receive diets supplemented with 5% fish oil (FO) or 7% soybean oil (SO). Blood and mammary tissue samples (n = 6) at day 0 and 14 of gestation and day 3 postpartum were collected 9 hours after intramammary infusion of saline or lipopolysaccharide (LPS) to determine free fatty acids (FFA) concentration and FA composition in plasma and inflammation mediators in mammary tissues. At day 14 of gestation and day 3 postpartum, the FO-fed rats had lower plasma concentrations of C18:2n6, C20:4n6, total n-6 PUFA and SFA, and higher plasma concentrations of C20:5n3 and total n-3 PUFA than the SO-fed rats. Plasma C22:6n3 concentration was also higher in the FO-fed than in the SO-fed rats at day 3 postpartum. Compared with the SO-fed rats, the FO-fed rats had lower mammary mRNA abundance of xanthine oxidoreductase (XOR) and protein level of tumor necrosis factor (TNF)-α, but had higher mammary mRNA abundances of interleukin (IL)-10 and peroxisome proliferator-activated receptor (PPAR)-γ at day 14 of gestation. Following LPS infusion at day 3 postpartum, the SO-fed rats had increased plasma concentrations of FFA, C18:1n9, C18:3n3, C18:2n6 and total n-6 PUFA, higher mammary mRNA abundances of IL-1β, TNF-α and XOR but lower mammary mRNA abundance of IL-10 than the FO-fed rats. Mammary inflammation around parturition appeared to be attenuated by consumption of a diet rich in n-3 PUFA, which was associated with up-regulated expression of IL-10 and PPAR-γ.

  6. Brain omega-3 polyunsaturated fatty acids modulate microglia cell number and morphology in response to intracerebroventricular amyloid-β 1-40 in mice.

    Science.gov (United States)

    Hopperton, Kathryn E; Trépanier, Marc-Olivier; Giuliano, Vanessa; Bazinet, Richard P

    2016-09-29

    Neuroinflammation is a proposed mechanism by which Alzheimer's disease (AD) pathology potentiates neuronal death and cognitive decline. Consumption of omega-3 polyunsaturated fatty acids (PUFA) is associated with a decreased risk of AD in human observational studies and exerts protective effects on cognition and pathology in animal models. These fatty acids and molecules derived from them are known to have anti-inflammatory and pro-resolving properties, presenting a potential mechanism for these protective effects. Here, we explore this mechanism using fat-1 transgenic mice and their wild type littermates weaned onto either a fish oil diet (high in n-3 PUFA) or a safflower oil diet (negligible n-3 PUFA). The fat-1 mouse carries a transgene that enables it to convert omega-6 to omega-3 PUFA. At 12 weeks of age, mice underwent intracerebroventricular (icv) infusion of amyloid-β 1-40. Brains were collected between 1 and 28 days post-icv, and hippocampal microglia, astrocytes, and degenerating neurons were quantified by immunohistochemistry with epifluorescence microscopy, while microglia morphology was assessed with confocal microscopy and skeleton analysis. Fat-1 mice fed with the safflower oil diet and wild type mice fed with the fish oil diet had higher brain DHA in comparison with the wild type mice fed with the safflower oil diet. Relative to the wild type mice fed with the safflower oil diet, fat-1 mice exhibited a lower peak in the number of labelled microglia, wild type mice fed with fish oil had fewer degenerating neurons, and both exhibited alterations in microglia morphology at 10 days post-surgery. There were no differences in astrocyte number at any time point and no differences in the time course of microglia or astrocyte activation following infusion of amyloid-β 1-40. Increasing brain DHA, through either dietary or transgenic means, decreases some elements of the inflammatory response to amyloid-β in a mouse model of AD. This supports the

  7. Serum phospholipid omega-3 polyunsaturated fatty acids and insulin resistance in type 2 diabetes mellitus and non-alcoholic fatty liver disease.

    Science.gov (United States)

    Lou, Da-Jun; Zhu, Qi-Qian; Si, Xu-Wei; Guan, Li-Li; You, Qiao-Ying; Yu, Zhong-Ming; Zhang, Ai-Zhen

    2014-01-01

    To investigate the relationship between serum phospholipid omega-3 polyunsaturated fatty acids (ω-3 PUFAs) and insulin resistance (IR) in patients with type 2 diabetes mellitus (T2DM) and non-alcoholic fatty liver disease (NAFLD). 51 patients with T2DM and NAFLD (T2DM+NAFLD group), 50 with T2DM alone (T2DM group), 45 with NAFLD alone (NAFLD group), and 42 healthy control subjects (NC group) were studied. Serum ω-3 PUFA profiles were analyzed by gas chromatography, and alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyltransferase (GGT), and serum lipid concentrations were measured. Insulin resistance was assessed by the homeostasis model assessment method (HOMA-IR). HOMA-IR levels were higher in the T2DM+NAFLD group than in the T2DM, NAFLD and NC groups (p<0.05), as were ALT, AST, GGT, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) concentrations (p<0.05). Conversely, serum ω-3 PUFA levels were significantly lower in the T2DM+NAFLD group than in the other groups (p<0.05). The ω-3 PUFA level was negatively correlated with HOMA-IR, TC, LDL-C and TG. Serum phospholipid ω-3 PUFA levels were significantly decreased in patients with T2DM and NAFLD, and were negatively related with insulin resistance. Thus, reduced ω-3 PUFAs may play an important role in the development of T2DM and NAFLD. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Hypothalamic fatty acid sensing in Senegalese sole (Solea senegalensis): response to long-chain saturated, monounsaturated, and polyunsaturated (n-3) fatty acids.

    Science.gov (United States)

    Conde-Sieira, Marta; Bonacic, Kruno; Velasco, Cristina; Valente, Luisa M P; Morais, Sofia; Soengas, José L

    2015-12-15

    We assessed the presence of fatty acid (FA)-sensing mechanisms in hypothalamus of Senegalese sole (Solea senegalensis) and investigated their sensitivity to FA chain length and/or level of unsaturation. Stearate (SA, saturated FA), oleate (OA, monounsaturated FA of the same chain length), α-linolenate [ALA, a n-3 polyunsaturated fatty acid (PUFA) of the same chain length], and eicosapentanoate (EPA, a n-3 PUFA of a larger chain length) were injected intraperitoneally. Parameters related to FA sensing and neuropeptide expression in the hypothalamus were assessed after 3 h and changes in accumulated food intake after 4, 24, and 48 h. Three FA sensing systems characterized in rainbow trout were also found in Senegalese sole and were activated by OA in a way similar to that previously characterized in rainbow trout and mammals. These hypothalamic FA sensing systems were also activated by ALA, differing from mammals, where n-3 PUFAs do not seem to activate FA sensors. This might suggest additional roles and highlights the importance of n-3 PUFA in fish diets, especially in marine species. The activation of FA sensing seems to be partially dependent on acyl chain length and degree of saturation, as no major changes were observed after treating fish with SA or EPA. The activation of FA sensing systems by OA and ALA, but not SA or EPA, is further reflected in the expression of hypothalamic neuropeptides involved in the control of food intake. Both OA and ALA enhanced anorexigenic capacity compatible with the activation of FA sensing systems. Copyright © 2015 the American Physiological Society.

  9. Brain histological changes in young mice submitted to diets with different ratios of n-6/n-3 polyunsaturated fatty acids during maternal pregnancy and lactation.

    Science.gov (United States)

    Tian, Chunyu; Fan, Chaonan; Liu, Xinli; Xu, Feng; Qi, Kemin

    2011-10-01

    N-3 polyunsaturated fatty acids (n-3 PUFAs) are essential for brain development and function, but the appropriate quantity of dietary n-3 PUFAs and ratio of n-6/n-3 PUFAs have not been clearly determined. In this study, we investigated the effects of different dietary ratios of n-6/n-3 PUFAs on the brain structural development in mice and the expression of associated transcription factors. C57 BL/6J mice were fed with one of two categories of n-3 PUFA-containing diets (a flaxseed oil diet and a flaxseed/fish oil mixed diet) or an n-3 PUFA-deficient diet. For each of the n-3 PUFA diets, flaxseed oil or flaxseed/fish oil was combined with other oils to yield three different n-6/n-3 ratios, which ranged from 15.7:1 to 1.6:1. The feeding regimens began two months before mouse conception and continued throughout lactation for new pups. As compared with the n-3 PUFA-deficient diet, both the flaxseed oil n-3 PUFA diets and the flaxseed/fish oil n-3 PUFA diets significantly increased the expression levels of brain neuron-specific enolase, glial fibrillary acidic protein and myelin basic protein, somewhat dose-dependently, in new pup mice at 21 d and 42 d of age. The expression of PPAR-γ in the brains of pup mice was increased only at 7 d of age with the n-3 PUFA diet, and no changes in the expression of PPAR-α and PPAR-β were found among all the diet groups. These results suggest that the higher intake amount of n-3 PUFAs with a low ratio of n-6/n-3 PUFAs at about 1-2:1, supplied during both maternal pregnancy and lactation, may be more beneficial for early brain development, and PPAR-γ may act in one of the pathways by which n-3 PUFAs promote early brain development. Copyright © 2011 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  10. Effect of fatty acid-binding protein 2 Ala54Thr genotype on weight loss and cardiovascular risk factors after a high-polyunsaturated fat diet in obese patients.

    Science.gov (United States)

    de Luis, Daniel; Aller, Rocio; Izaola, Olatz; Sagrado, Manuel Gonzalez; de la Fuente, Beatriz; Conde, Rosa; Primo, David

    2012-12-01

    It has been found that the expression of fatty acid-binding protein 2 messenger RNA is under dietary control. The aim of our study was to investigate the influence of Thr54 polymorphism in the FABP2 gene on weight loss and secondarily in cardiovascular risk factors and serum adipokine after an enriched polyunsaturated fat hypocaloric diet in obese patients. A sample of 111 obese patients was analyzed. The enriched polyunsaturated fat hypocaloric diet during 3 months' intervention consisted of 1459 kcal, 45.7% carbohydrates, 34.4% lipids, and 19.9% proteins. The distribution of fats was as follows: 21.8% saturated fats, 55.5% monounsaturated fats, and 22.7% polyunsaturated fats. Level of significance was P fat mass (-3.1 ± 3.5 kg), and waist circumference (-3.3 ± 2.1 cm) decreased. In carriers of the Thr54 allele, body mass index (-1.9 ± 1.6 kg/m(2)), weight (- 4.7 ± 1.4 kg), and waist circumference (-3.9 ± 3.7 cm) decreased. These changes were significantly higher in the carriers of the Thr54 allele than noncarriers. Only in the carriers of Thr54 allele, total cholesterol levels (-11.4 ± 20.6 mg/dl), low-density lipoprotein cholesterol levels (-5.4 ± 10.6 mg/dL), insulin (-2.6 ± 3.4 MUI/L), and the level of homeostasis model assessment for insulin sensitivity (-0.9 ± 1.7 U) decreased. Carriers of Thr54 allele have a better metabolic response than obese carriers with Ala54Ala genotype, with a decrease of total cholesterol, low-density lipoprotein cholesterol, insulin levels, leptin levels, and homeostasis model assessment for insulin sensitivity.

  11. Synthesis of 2-monoacylglycerols and structured triacylglycerols rich in polyunsaturated fatty acids by enzyme catalyzed reactions.

    Science.gov (United States)

    Rodríguez, Alicia; Esteban, Luis; Martín, Lorena; Jiménez, María José; Hita, Estrella; Castillo, Beatriz; González, Pedro A; Robles, Alfonso

    2012-08-10

    This paper studies the synthesis of structured triacylglycerols (STAGs) by a four-step process: (i) obtaining 2-monoacylglycerols (2-MAGs) by alcoholysis of cod liver oil with several alcohols, catalyzed by lipases Novozym 435, from Candida antartica and DF, from Rhizopus oryzae, (ii) purification of 2-MAGs, (iii) formation of STAGs by esterification of 2-MAGs with caprylic acid catalyzed by lipase DF, from R. oryzae, and (iv) purification of these STAGs. For the alcoholysis of cod liver oil, absolute ethanol, ethanol 96% (v/v) and 1-butanol were compared; the conditions with ethanol 96% were then optimized and 2-MAG yields of around 54-57% were attained using Novozym 435. In these 2-MAGs, DHA accounted for 24-31% of total fatty acids. In the operational conditions this lipase maintained a stable level of activity over at least 11 uses. These results were compared with those obtained with lipase DF, which deactivated after only three uses. The alcoholysis of cod liver oil and ethanol 96% catalyzed by Novozym 435 was scaled up by multiplying the reactant amounts 100-fold and maintaining the intensity of treatment constant (IOT=3g lipase h/g oil). In these conditions, the 2-MAG yield attained was about 67%; these 2-MAGs contained 36.6% DHA. The synthesized 2-MAGs were separated and purified from the alcoholysis reaction products by solvent extraction using solvents of low toxicity (ethanol and hexane); 2-MAG recovery yield and purity of the target product were approximately 96.4% and 83.9%, respectively. These 2-MAGs were transformed to STAGs using the optimal conditions obtained in a previous work. After synthesis and purification, 93% pure STAGs were obtained, containing 38% DHA at sn-2 position and 60% caprylic acid (CA) at sn-1,3 positions (of total fatty acids at these positions), i.e. the major TAG is the STAG with the structure CA-DHA-CA. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Effects of dietary conjugated linoleic acid, fish oil and soybean oil on ...

    African Journals Online (AJOL)

    Dear User!

    2013-12-18

    Dec 18, 2013 ... The chickens fed diets containing palm oil, soybean oil or fish oil as the ... polyunsaturated fatty acids; LDL, low density lipoprotein; HDL, .... content of muscles in broilers fed different dietary CLA levels. Javadi et al. (2007) ...

  13. Histone deacetylase inhibition and dietary short-chain Fatty acids.

    Science.gov (United States)

    Licciardi, Paul V; Ververis, Katherine; Karagiannis, Tom C

    2011-01-01

    Changes in diet can also have dramatic effects on the composition of gut microbiota. Commensal bacteria of the gastrointestinal tract are critical regulators of health and disease by protecting against pathogen encounter whilst also maintaining immune tolerance to certain allergens. Moreover, consumption of fibre and vegetables typical of a non-Western diet generates substantial quantities of short-chain fatty acids (SCFAs) which have potent anti-inflammatory properties. Dietary interventions such as probiotic supplementation have been investigated for their pleiotropic effects on microbiota composition and immune function. Probiotics may restore intestinal dysbiosis and improve clinical disease through elevated SCFA levels in the intestine. Although the precise mechanisms by which such dietary factors mediate these effects, SCFA metabolites such as butyrate also function as histone deacetylase inhibitors (HDACi), that can act on the epigenome through chromatin remodeling changes. The aim of this review is to provide an overview of HDAC enzymes and to discuss the biological effects of HDACi. Further, we discuss the important relationship between diet and the balance between health and disease and how novel dietary interventions such as probiotics could be alternative approach for the prevention and/or treatment of chronic inflammatory disease through modulation of the intestinal microbiome.

  14. Decreased n-6/n-3 polyunsaturated fatty acid ratio reduces chronic reflux esophagitis in rats.

    Science.gov (United States)

    Wei, Jing-Jing; Tang, Du-Peng; Xie, Jing-Jing; Yang, Li-Yong; Zhuang, Ze-Hao

    2016-09-01

    To investigate the effect of dietary ratio of n-6/n-3 PUFAs on chronic reflux esophagitis (RE) and lipid peroxidation. Rat RE model were established and then fed on a diet contained different n-6/n-3 PUFA ratios (1:1.5, 5:1, 10:1) or received pure n-6 PUFA diet for 14 days. Esophageal pathological changes were evaluated using macroscopic examination and hematoxyline-eosin staining. IL-1β, IL-8, and TNFα mRNA and protein levels of were determined using RT-PCR and Western blotting, respectively. Malondialdehyde (MDA) and superoxide dismutase (SOD) levels were determined using ELISA. The severity of esophagitis was lowest in the PUFA(1:1.5) group (P<0.05). IL-1β, IL-8, and TNFα mRNA and protein and MDA levels were significantly increased in model groups with the increasing n-6/n-3 PUFA ratios. SOD levels were significantly decreased in all RE PUFA groups (P<0.05). Esophageal injury and lipid peroxidation appeared to be ameliorated by increased n-3 PUFAs intake. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Effect of type of suckling and polyunsaturated fatty acid use on lamb production. 2. Chemical and fatty acid composition of raw and cooked meat

    Directory of Open Access Journals (Sweden)

    Francesco Toteda

    2010-01-01

    Full Text Available This study was carried out in order to examine the chemical and fatty acid composition of raw and cooked meat obtained fromlambs raised under mothers or reared by artificial suckling with acidified milk replacers with or without polyunsaturated fattyacid (PUFA supplementation. Meat samples were taken from twenty Gentile di Puglia male lambs subjected to the followingfeeding treatments: the control group received only maternal milk (MM, n.=6 while two groups were reared by artificial sucklingwith an acidified milk replacer (MR, n.=7 or with an acidified milk replacer supplemented with 10 ml/l of a PUFA enrichedoil (MR+PUFA, n.=7. Lambs were slaughtered at 45 days of age. After 24 hours of refrigeration at 4 °C, the lumbar regionwas dissected from each right half-carcass and split into pieces, one of which was used raw while the other was cooked in aventilated electric oven at 180 °C until an internal temperature of 75 °C was reached. Chemical and fatty acid analysis wereperformed on raw and cooked meat, while only raw meat was assessed for cholesterol. Cooking losses were also evaluated.Meat obtained from MR+PUFA fed lambs contained more fat (Punder mothers increased the total amount of saturated fatty acids (SFA, compared with both the MR group (Pthe MR+PUFA one (Pcomparison with both MR diets. The highest PUFA/SFA ratio of meat was recorded for the MR+PUFA group (0.27, with statisticaldifferences respect to the MR group (0.21; Pmilk produced meat containing more cholesterol than the MR+PUFA group (85.89 vs 76.26 mg/100 g; Pindex of meat was higher following natural rearing in comparison with the MR+PUFA treatment (1.34 vs 1.05;Pand 0.76, respectively; Pparameters evaluated. In conclusion, artificial suckling with acidified milk replacers improves some meat quality features.Supplementation of milk replacers with PUFAs, although in a limited way, may improve the dietetic properties of lamb meat.

  16. Perinatal supplementation with omega-3 polyunsaturated fatty acids improves sevoflurane-induced neurodegeneration and memory impairment in neonatal rats.

    Directory of Open Access Journals (Sweden)

    Xi Lei

    Full Text Available OBJECTIVES: To investigate if perinatal Omega-3 polyunsaturated fatty acids (n-3 PUFAs supplementation can improve sevoflurane-induced neurotoxicity and cognitive impairment in neonatal rats. METHODS: Female Sprague-Dawley rats (n = 3 each group were treated with or without an n-3 PUFAs (fish oil enriched diet from the second day of pregnancy to 14 days after parturition. The offspring rats (P7 were treated with six hours sevoflurane administration (one group without sevoflurane/prenatal n-3 PUFAs supplement as control. The 5-bromodeoxyuridine (Brdu was injected intraperitoneally during and after sevoflurane anesthesia to assess dentate gyrus (DG progenitor proliferation. Brain tissues were harvested and subjected to Western blot and immunohistochemistry respectively. Morris water maze spatial reference memory, fear conditioning, and Morris water maze memory consolidation were tested at P35, P63 and P70 (n = 9, respectively. RESULTS: Six hours 3% sevoflurane administration increased the cleaved caspase-3 in the thalamus, parietal cortex but not hippocampus of neonatal rat brain. Sevoflurane anesthesia also decreased the neuronal precursor proliferation of DG in rat hippocampus. However, perinatal n-3 PUFAs supplement could decrease the cleaved caspase-3 in the cerebral cortex of neonatal rats, and mitigate the decrease in neuronal proliferation in their hippocampus. In neurobehavioral studies, compared with control and n-3 PUFAs supplement groups, we did not find significant spatial cognitive deficit and early long-term memory impairment in sevoflurane anesthetized neonatal rats at their adulthood. However, sevoflurane could impair the immediate fear response and working memory and short-term memory. And n-3 PUFAs could improve neurocognitive function in later life after neonatal sevoflurane exposure. CONCLUSION: Our study demonstrated that neonatal exposure to prolonged sevoflurane could impair the immediate fear response, working

  17. Nutrition Modulation of Cardiotoxicity and Anticancer Efficacy Related to Doxorubicin Chemotherapy by Glutamine and ω-3 Polyunsaturated Fatty Acids

    Science.gov (United States)

    Xue, Hongyu; Ren, Wenhua; Denkinger, Melanie; Schlotzer, Ewald; Wischmeyer, Paul E.

    2015-01-01

    Background Doxorubicin (DOX) has been one of the most effective antitumor agents against a broad spectrum of malignancies. However, DOX-induced cardiotoxicity forms the major cumulative dose-limiting factor. Glutamine and ω-3 polyunsaturated fatty acids (PUFAs) are putatively cardioprotective during various stresses and/or have potential chemosensitizing effects during cancer chemotherapy. Methods Antitumor activity and cardiotoxicity of DOX treatment were evaluated simultaneously in a MatBIII mammary adenocarcinoma tumor-bearing rat model treated with DOX (cumulative dose 12 mg/kg). Single or combined treatment of parenteral glutamine (0.35 g/kg) and ω-3 PUFAs (0.19 g/kg eicosapentaenoic acid and 0.18 g/kg docosahexaenoic acid) was administered every other day, starting 6 days before chemotherapy initiation until the end of study (day 50). Results Glutamine alone significantly prevented DOX-related deterioration of cardiac function, reduced serum cardiac troponin I levels, and diminished cardiac lipid peroxidation while not affecting tumor inhibition kinetics. Single ω-3 PUFA treatment significantly enhanced antitumor activity of DOX associated with intensified tumoral oxidative stress and enhanced tumoral DOX concentration while not potentiating cardiac dysfunction or increasing cardiac oxidative stress. Intriguingly, providing glutamine and ω-3 PUFAs together did not consistently confer a greater benefit; conversely, individual benefits on cardiotoxicity and chemosensitization were mostly attenuated or completely lost when combined. Conclusions Our data demonstrate an interesting differentiality or even dichotomy in the response of tumor and host to single parenteral glutamine and ω-3 PUFA treatments. The intriguing glutamine × ω-3 PUFA interaction observed draws into question the common assumption that there are additive benefits of combinations of nutrients that are beneficial on an individual basis. PMID:25888676

  18. Omega-3 polyunsaturated Fatty acids suppress the cystic lesion formation of peritoneal endometriosis in transgenic mouse models.

    Directory of Open Access Journals (Sweden)

    Kensuke Tomio

    Full Text Available Omega-3 polyunsaturated fatty acids (omega-3 PUFAs play a role in controlling pathological inflammatory reactions. Endometriosis is characterized by the presence of endometrial tissue on the peritoneum and an exaggerated inflammatory environment around ectopic tissues. Here peritoneal endometriosis was reproduced using a mouse model in which murine endometrial fragments were inoculated into the peritoneal cavity of mice. Fat-1 mice, in which omega-6 can be converted to omega-3 PUFAs, or wild type mice, in which it cannot, were used for the endometriosis model to address the actions of omega-3 PUFAs on the development of endometriotic lesions. The number and weight of cystic endometriotic lesions in fat-1 mice two weeks after inoculation were significantly less than half to those of controls. Mediator lipidomics revealed that cystic endometriotic lesions and peritoneal fluids were abundant in 12/15-hydroxyeicosapentaenoic acid (12/15-HEPE, derived from eicosapentaenoic acid (EPA, and their amount in fat-1 mice was significantly larger than that in controls. 12/15-Lipoxygenase (12/15-LOX-knockout (KO and control mice with or without EPA administration were assessed for the endometriosis model. EPA administration decreased the number of lesions in controls but not in 12/15-LOX-KO mice. The peritoneal fluids in EPA-fed 12/15-LOX-KO mice contained reduced levels of EPA metabolites such as 12/15-HEPE and EPA-derived resolvin E3 even after EPA administration. cDNA microarrays of endometriotic lesions revealed that Interleukin-6 (IL-6 expression in fat-1 mice was significantly lower than that in controls. These results suggest that both endogenous and exogenous EPA-derived PUFAs protect against the development of endometriosis through their anti-inflammatory effects and, in particular, the 12/15-LOX-pathway products of EPA may be key mediators to suppress endometriosis.

  19. Omega-3 polyunsaturated Fatty acids suppress the cystic lesion formation of peritoneal endometriosis in transgenic mouse models.

    Science.gov (United States)

    Tomio, Kensuke; Kawana, Kei; Taguchi, Ayumi; Isobe, Yosuke; Iwamoto, Ryo; Yamashita, Aki; Kojima, Satoko; Mori, Mayuyo; Nagamatsu, Takeshi; Arimoto, Takahide; Oda, Katsutoshi; Osuga, Yutaka; Taketani, Yuji; Kang, Jing X; Arai, Hiroyuki; Arita, Makoto; Kozuma, Shiro; Fujii, Tomoyuki

    2013-01-01

    Omega-3 polyunsaturated fatty acids (omega-3 PUFAs) play a role in controlling pathological inflammatory reactions. Endometriosis is characterized by the presence of endometrial tissue on the peritoneum and an exaggerated inflammatory environment around ectopic tissues. Here peritoneal endometriosis was reproduced using a mouse model in which murine endometrial fragments were inoculated into the peritoneal cavity of mice. Fat-1 mice, in which omega-6 can be converted to omega-3 PUFAs, or wild type mice, in which it cannot, were used for the endometriosis model to address the actions of omega-3 PUFAs on the development of endometriotic lesions. The number and weight of cystic endometriotic lesions in fat-1 mice two weeks after inoculation were significantly less than half to those of controls. Mediator lipidomics revealed that cystic endometriotic lesions and peritoneal fluids were abundant in 12/15-hydroxyeicosapentaenoic acid (12/15-HEPE), derived from eicosapentaenoic acid (EPA), and their amount in fat-1 mice was significantly larger than that in controls. 12/15-Lipoxygenase (12/15-LOX)-knockout (KO) and control mice with or without EPA administration were assessed for the endometriosis model. EPA administration decreased the number of lesions in controls but not in 12/15-LOX-KO mice. The peritoneal fluids in EPA-fed 12/15-LOX-KO mice contained reduced levels of EPA metabolites such as 12/15-HEPE and EPA-derived resolvin E3 even after EPA administration. cDNA microarrays of endometriotic lesions revealed that Interleukin-6 (IL-6) expression in fat-1 mice was significantly lower than that in controls. These results suggest that both endogenous and exogenous EPA-derived PUFAs protect against the development of endometriosis through their anti-inflammatory effects and, in particular, the 12/15-LOX-pathway products of EPA may be key mediators to suppress endometriosis.

  20. Membrane Restructuring Events during the Enzymatic Generation of Ceramides with Very Long-Chain Polyunsaturated Fatty Acids.

    Science.gov (United States)

    Peñalva, Daniel A; Antollini, Silvia S; Ambroggio, Ernesto E; Aveldaño, Marta I; Fanani, María L

    2018-04-10

    In rat sperm heads, sphingomyelin (SM) species that contain very long-chain polyunsaturated fatty acid (V-SM) become ceramides (V-Cer) after inducing in vitro the acrosomal reaction. The reason for such a specific location of this conversion, catalyzed by a sphingomyelinase (SMase), has received little investigation so far. Here, the effects of SMase were compared in unilamellar vesicles (large unilamellar vesicles (LUVs), giant unilamellar vesicles (GUVs)) containing phosphatidylcholine, and either V-SM or a palmitate-rich SM (P-SM). In uniformly sized LUVs at 37 °C, more V-Cer was generated and more rapidly than P-Cer. Nephelometry and dynamic light scattering showed that LUVs tended to form large lipid particles more intensely, and Förster resonance energy transfer (FRET) increases suggested that lateral lipid mixing was more marked when V-Cer rather than P-Cer was produced. As reported by 6-dodecanoyl-2-dimethyl-aminopnaphthalene (Laurdan) and 1,6-diphenyl-1,3,5,-hexatriene (DPH), the production of V-Cer resulted in higher and faster restriction in lipid mobility than that of P-Cer, implying a stronger increase in membrane dehydration and microviscosity. Moreover, DPH anisotropy suggested a higher solubility of V-Cer than that of P-Cer in the liquid-disordered phase. At room temperature, liquid-condensed lateral domains appeared in P-SM- but not in V-SM-containing GUVs. The former maintained their size while losing their contents gradually during SMase action, whereas the latter became permeable earlier and reduced their size in few minutes until suddenly collapsing. The fast and potent generation of V-Cer may contribute to the membrane restructuring events that occur on the acrosome-reacted sperm head.

  1. Breastfeeding, Polyunsaturated Fatty Acid Levels in Colostrum and Child Intelligence Quotient at Age 5-6 Years.

    Science.gov (United States)

    Bernard, Jonathan Y; Armand, Martine; Peyre, Hugo; Garcia, Cyrielle; Forhan, Anne; De Agostini, Maria; Charles, Marie-Aline; Heude, Barbara

    2017-04-01

    To examine the relationship of polyunsaturated fatty acid (PUFA) in breast milk with children's IQ. In the French Etude des Déterminants pré- et postnatals précoces du développement et de la santé de l'Enfant (EDEN) mother-child cohort, colostrum samples were collected at the maternity unit. Colostrum omega-6 and omega-3 PUFA were analyzed by gas chromatography. At age 5-6 years, the IQs of 1080 children were assessed using the Wechsler Preschool and Primary Scale of Intelligence-III. The relationships of breastfeeding duration and PUFA levels with children's IQs were examined by linear regression. Full scale IQ of ever breastfed children was 4.5 (95% CI: 2.7, 6.2) higher than never breastfed children in the unadjusted model, but this was not statistically significant in the adjusted model (1.3 points higher [-0.4, 3.0]). Any breastfeeding duration was associated with full scale (0.20 [0.00, 0.41] points/month) and verbal (0.31 [0.09, 0.52]) IQ. Colostrum linoleic acid (LA) levels were negatively associated with Verbal IQ (-0.6 [-1.1, 0.0] points per 1% level increase). Children exposed to colostrum high in LA and low in docosahexaenoic acid (DHA) had lower IQs than those exposed to colostrum high in DHA (3.0 [0.5, 5.5] points) and those exposed to colostrum low in LA and DHA (4.4 [1.6, 7.3] points). Finally, the association between breastfeeding duration and child IQ was stronger when LA levels were high. Duration of breastfeeding and colostrum PUFA levels were associated with children's IQs in the EDEN cohort. These data support breastfeeding and add evidence for the role of early PUFA exposure on childhood cognition. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Omega-3 polyunsaturated fatty acids in cardiac surgery patients: An updated systematic review and meta-analysis.

    Science.gov (United States)

    Langlois, Pascal L; Hardy, Gil; Manzanares, William

    2017-06-01

    Omega-3 polyunsaturated fatty acids (ω-3 PUFA) supplementation is an attractive therapeutic option for patients undergoing open-heart surgery due to their anti-inflammatory and anti-arrhythmic properties. Several randomized controlled trials (RCT) have found contradictory results for perioperative ω-3 PUFA administration. Therefore, we conducted an updated systematic review and meta-analysis evaluating the effects of perioperative ω-3 PUFA on some clinically important outcomes for cardiac surgery. A systematic literature search was conducted to find RCT evaluating clinical outcomes after ω-3 PUFA therapy in adult patients undergoing cardiac surgery. Intensive care unit (ICU) length of stay (LOS) was the primary outcome; secondary outcomes were hospital LOS, postoperative atrial fibrillation (POAF), mortality and duration of mechanical ventilation (MV). Predefined subgroup analysis and sensibility analysis were performed. A total of 19 RCT including 4335 patients met inclusion criteria. No effect of ω-3 PUFA on ICU LOS was found (weighted mean difference WMD -2.95, 95% confidence interval, CI -10.28 to 4.39, P = 0.43). However, ω-3 PUFA reduced hospital LOS (WMD -1.37, 95% CI -2.41 to -0.33; P = 0.010) and POAF incidence (Odds Ratio OR = 0.78, 95% CI 0.68 to 0.90; P = 0.004). No effects were found on mortality or MV duration. Heterogeneity remained in subgroup analysis and we found a significant POAF reduction when ω-3 PUFA doses were administered to patients exposed to extra-corporeal circulation. Oral/enteral administration seemed to further reduce POAF. In patients undergoing cardiac surgery, ω-3 PUFA supplementation by oral/enteral and parenteral route reduces hospital LOS and POAF. Nonetheless considerable clinical and statistical heterogeneity weaken our findings. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  3. Chemotaxis toward carbohydrates and peptides by mixed ruminal protozoa when fed, fasted, or incubated with polyunsaturated fatty acids.

    Science.gov (United States)

    Diaz, H L; Karnati, S K R; Lyons, M A; Dehority, B A; Firkins, J L

    2014-01-01

    In contrast to the well-characterized chemotaxis and migratory behavior between the dorsal and ventral locations of the rumen by isotrichids, we hypothesized that chemotaxis toward soluble nutrients maintains entodiniomorphid protozoa in the particulate fraction. The objectives of these experiments were to compare the dose-responsive chemotaxis (1) toward different glucose concentrations when ruminal samples were harvested from fed versus fasted cows; (2) toward increasing concentrations of glucose compared with xylose when protozoa were harvested from a fed cow; (3) toward peptides of bacterial, protozoal, and soy origin; and (4) toward glucose when mixed ruminal protozoa were previously incubated for 0, 3, or 6h in the presence of emulsified polyunsaturated fatty acids (PUFA; Liposyn II, Hospira, Lake Forest, IL). In experiment 1, isotrichid protozoa decreased chemotaxis toward increasing glucose concentration when cows were fasted. Entodiniomorphids exhibited chemotaxis to similar concentrations of glucose as did isotrichids, but to a lesser magnitude of response. In experiment 2, xylose was chemotactic to both groups. Xylose might draw fibrolytic entodiniomorphid protozoa toward newly ingested feed. In contrast, even though isotrichids should not use xylose as an energy source, they were highly chemoattracted to xylose. In experiment 3, entodiniomorphids were not selectively chemoattracted toward bacterial or protozoal peptides compared with soy peptides. In experiment 4, despite isotrichid populations decreasing in abundance with increasing time of incubation in PUFA, chemotaxis to glucose remained unchanged. In contrast, entodiniomorphids recovered chemotaxis to glucose with increased time of PUFA incubation. Current results support isotrichid chemotaxis to sugars but also our hypothesis that a more moderate chemotaxis toward glucose and peptides explains how they swim in the fluid but pass from the rumen with the potentially digestible fraction of

  4. Promising perspectives for ruminal protection of polyunsaturated fatty acids through polyphenol-oxidase-mediated crosslinking of interfacial protein in emulsions.

    Science.gov (United States)

    De Neve, N; Vlaeminck, B; Gadeyne, F; Claeys, E; Van der Meeren, P; Fievez, V

    2018-03-16

    Previously, polyunsaturated fatty acids (PUFA) from linseed oil were effectively protected (>80%) against biohydrogenation through polyphenol-oxidase-mediated protein crosslinking of an emulsion, prepared with polyphenol oxidase (PPO) extract from potato tuber peelings. However, until now, emulsions of only 2 wt% oil have been successfully protected, which implies serious limitations both from a research perspective (e.g. in vivo trials) as well as for further upscaling toward practical applications. Therefore, the aim of this study was to increase the oil/PPO ratio. In the original protocol, the PPO extract served both an emulsifying function as well as a crosslinking function. Here, it was first evaluated whether alternative protein sources could replace the emulsifying function of the PPO extract, with addition of PPO extract and 4-methylcatechol (4MC) to induce crosslinking after emulsion preparation. This approach was then further used to evaluate protection of emulsions with higher oil content. Five candidate emulsifiers (soy glycinin, gelatin, whey protein isolate (WPI), bovine serum albumin and sodium caseinate) were used to prepare 10 wt% oil emulsions, which were diluted five times (w/w) with PPO extract (experiment 1). As a positive control, 2 wt% oil emulsions were prepared directly with PPO extract according to the original protocol. Further, emulsions of 2, 4, 6, 8 and 10 wt% oil were prepared, with 80 wt% PPO extract (experiment 2), or with 90, 80, 70, 60 and 50 wt% PPO extract, respectively (experiment 3) starting from WPI-stabilized emulsions. Enzymatic crosslinking was induced by 24-h incubation with 4MC. Ruminal protection efficiency was evaluated by 24-h in vitro batch simulation of the rumen metabolism. In experiment 1, protection efficiencies were equal or higher than the control (85.5% to 92.5% v. 81.3%). In both experiments 2 and 3, high protection efficiencies (>80%) were achieved, except for emulsions containing 10 wt% oil emulsions

  5. Metabolic and endocrine effects of long-chain versus essential omega-3 polyunsaturated fatty acids in polycystic ovary syndrome.

    Science.gov (United States)

    Vargas, M Luisa; Almario, Rogelio U; Buchan, Wendy; Kim, Kyoungmi; Karakas, Sidika E

    2011-12-01

    The objective of the study was to compare the effects of essential vs long-chain omega (n)-3 polyunsaturated fatty acids (PUFAs) in polycystic ovary syndrome. In this 6-week, prospective, double-blinded, placebo (soybean oil)-controlled study, 51 completers received 3.5 g n-3 PUFA per day (essential PUFA from flaxseed oil or long-chain PUFA from fish oil). Anthropometric variables, cardiovascular risk factors, and androgens were measured; oral glucose tolerance test (OGTT) and frequently sampled intravenous GTT (IVGTT) were conducted at baseline and 6 weeks. Between-group comparisons showed significant differences in serum triglyceride response (P = .0368), whereas the changes in disposition index also tended to differ (P = .0621). When within-group changes (after vs before intervention) were considered, fish oil and flaxseed oil lowered serum triglyceride (P = .0154 and P = .0176, respectively). Fish oil increased glucose at 120 minutes of OGTT (P = .0355), decreased the Matsuda index (P = .0378), and tended to decrease acute insulin response during IVGTT (P = .0871). Soybean oil increased glucose at 30 (P = .0030) and 60 minutes (P = .0121) and AUC for glucose (P = .0122) during OGTT, tended to decrease acute insulin response during IVGTT (P = .0848), reduced testosterone (P = .0216), and tended to reduce sex hormone-binding globulin (P = .0858). Fasting glucose, insulin, adiponectin, leptin, or high-sensitivity C-reactive protein did not change with any intervention. Long-chain vs essential n-3 PUFA-rich oils have distinct metabolic and endocrine effects in polycystic ovary syndrome; and therefore, they should not be used interchangeably. Published by Elsevier Inc.

  6. Metabolic and Endocrine Effects of Long Chain vs. Essential Omega-3 Polyunsaturated Fatty Acids in Polycystic Ovary Syndrome

    Science.gov (United States)

    Vargas, M. Luisa; Almario, Rogelio U.; Buchan, Wendy; Kim, Kyoungmi; Karakas, Sidika E.

    2011-01-01

    Objective To compare the effects of essential vs. long chain omega (n)-3 polyunsaturated fatty acids (PUFA) in polycystic ovary syndrome (PCOS). Materials/Methods In this 6-week, prospective, double-blinded, placebo (soybean oil) controlled study, 51 completers received 3.5 g n-3 PUFA/day (essential from flaxseed oil or long chain from fish oil). Anthropometric variables, cardiovascular risk factors and androgens were measured; oral glucose tolerance test (OGTT) and frequently sampled intravenous GTT (FSIVGTT) were conducted at the baseline and 6 wks. Results Between group comparisons showed significant differences in serum triglyceride response (p = 0.0368), while the changes in disposition index (DI) also tended to differ (p = 0.0621). When within group changes (after vs. before intervention) were considered, fish oil and flaxseed oil lowered serum triglyceride (p = 0.0154 and p = 0.0176, respectively). Fish oil increased glucose at 120 min of OGTT (p = 0.0355); decreased Matsuda index (p= 0.0378); and tended to decrease early insulin response during IVGTT (AIRg; p = 0.0871). Soybean oil increased glucose at 30 min (p = 0.0030) and 60 min (p = 0.0121) and AUC for glucose (p = 0.0122) during OGTT; tended to decrease AIRg during IVGTT (p= 0.0848); reduced testosterone (p = 0.0216) and tended to reduce SHBG (p = 0.0858). Fasting glucose, insulin, adiponectin, leptin or hs-CRP did not change with any intervention. Conclusions Long chain vs. essential n-3 PUFA rich oils have distinct metabolic and endocrine effects in PCOS, and therefore they should not be used inter-changeably. PMID:21640360

  7. Effect of polyunsaturated fatty acids and their metabolites on bleomycin-induced cytotoxic action on human neuroblastoma cells in vitro.

    Directory of Open Access Journals (Sweden)

    Sailaja Polavarapu

    Full Text Available In the present study, we noted that bleomycin induced growth inhibitory action was augmented by all the polyunsaturated fatty acids (PUFAs tested on human neuroblastoma IMR-32 (0.5 × 10(4 cells/100 µl of IMR cells (EPA > DHA > ALA = GLA = AA > DGLA = LA: ∼ 60, 40, 30, 10-20% respectively at the maximum doses used. Of all the prostaglandins (PGE1, PGE2, PGF2α, and PGI2 and leukotrienes (LTD4 and LTE4 tested; PGE1, PGE2 and LTD4 inhibited the growth of IMR-32 cells to a significant degree at the highest doses used. Lipoxin A4 (LXA4, 19,20-dihydroxydocosapentaenoate (19, 20 DiHDPA and 10(S,17(S-dihydroxy-4Z,7Z,11E,13Z,15E,19Z-docosahexaenoic acid (protectin: 10(S,17(SDiHDoHE, metabolites of DHA, significantly inhibited the growth of IMR-32 cells. Pre-treatment with AA, GLA, DGLA and EPA and simultaneous treatment with all PUFAs used in the study augmented growth inhibitory action of bleomycin. Surprisingly, both indomethacin and nordihydroguaiaretic acid (NDGA at 60 and 20 µg/ml respectively enhanced the growth of IMR-32 cells even in the presence of bleomycin. AA enhanced oxidant stress in IMR-32 cells as evidenced by an increase in lipid peroxides, superoxide dismutase levels and glutathione peroxidase activity. These results suggest that PUFAs suppress growth of human neuroblastoma cells, augment growth inhibitory action of bleomycin by enhancing formation of lipid peroxides and altering the status of anti-oxidants and, in all probability, increase the formation of lipoxins, resolvins and protectins from their respective precursors that possess growth inhibitory actions.

  8. Oral feeding with polyunsaturated fatty acids fosters hematopoiesis and thrombopoiesis in healthy and bone marrow-transplanted mice.

    Science.gov (United States)

    Limbkar, Kedar; Dhenge, Ankita; Jadhav, Dipesh D; Thulasiram, Hirekodathakallu V; Kale, Vaijayanti; Limaye, Lalita

    2017-09-01

    Hematopoietic stem cells play the vital role of maintaining appropriate levels of cells in blood. Therefore, regulation of their fate is essential for their effective therapeutic use. Here we report the role of polyunsaturated fatty acids (PUFAs) in regulating hematopoiesis which has not been explored well so far. Mice were fed daily for 10 days with n-6/n-3 PUFAs, viz. linoleic acid (LA), arachidonic acid (AA), alpha-linolenic acid and docosahexanoic acid (DHA) in four separate test groups with phosphate-buffered saline fed mice as control set. The bone marrow cells of PUFA-fed mice showed a significantly higher hematopoiesis as assessed using side population, Lin-Sca-1 + ckit+, colony-forming unit (CFU), long-term culture, CFU-spleen assay and engraftment potential as compared to the control set. Thrombopoiesis was also stimulated in PUFA-fed mice. A combination of DHA and AA was found to be more effective than when either was fed individually. Higher incorporation of PUFAs as well as products of their metabolism was observed in the bone marrow cells of PUFA-fed mice. A stimulation of the Wnt, CXCR4 and Notch1 pathways was observed in PUFA-fed mice. The clinical relevance of this study was evident when bone marrow-transplanted recipient mice, which were fed with PUFAs, showed higher engraftment of donor cells, suggesting that the bone marrow microenvironment may also be stimulated by feeding with PUFAs. These data indicate that oral administration of PUFAs in mice stimulates hematopoiesis and thrombopoiesis and could serve as a valuable supplemental therapy in situations of hematopoietic failure. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Metabolism of polyunsaturated (n-3) fatty acids by monkey seminal vesicles: isolation and biosynthesis of omega-3 epoxides.

    Science.gov (United States)

    Oliw, E H; Sprecher, H W

    1991-11-27

    Monooxygenases of monkey seminal vesicles can metabolize arachidonic acid (20:4(n-6)) by w3-hydroxylation to 18(R)-hydroxyeicosatetraenoic acid (18(R)-HETE) and eicosapentaenoic acid (20:5(n-3)) to 17,18-dihydroxyeicosatetraenoic acid (Oliw, E.H. (1989) J. Biol. Chem. 264, 17845-17853). The present study aimed to further characterize the oxygenation of (n-3) polyunsaturated fatty acids. 14C-Labelled 22:6(n-3), 20:5(n-3), 20:4-(n-3) and 18:3(n-3) were incubated with microsomes of seminal vesicles of the cynomolgus monkey, NADPH and a cyclooxygenase inhibitor, diclofenac, and the main metabolites were identified by capillary gas chromatography-mass spectrometry. 22:6(n-3) was slowly metabolized to 19,20-dihydroxy-4,7,10,13,16-docosapentaenoic acid, while 20:5(n-3), 20:4(n-3) and 18:3(n-3) were metabolized more efficiently to the corresponding w4,w3-diols. The w3 epoxides, which were obtained from 20:5(n-3) and 18:3(n-3), were isolated in the presence of an epoxide hydrolase inhibitor, 1(2)epoxy-3,3,3-trichloropropane, and the geometry of the epoxides was determined to be 17S, 18R and 15S, 16R, respectively. While 20:5(n-3) was metabolized almost exclusively to the epoxide and diol pair of metabolites, 18:3(n-3) was metabolized not only to the w3 epoxide and the corresponding diol, but also to the w2 alcohol, 17(R)-hydroxy-9,12,15-octadecatrienoic acid. 22:6(n-3) and 5,8,11,14-eicosatetraynoic acid inhibited the biosynthesis of 18(R)-HETE from arachidonic acid (IC50 0.16 and 0.14 mM, respectively). In comparison with 20:4 or 18:3(n-3), 18:1(n-9) and 22:5(n-6) appeared to be slowly metabolized by seminal monooxygenases, while 18:2(n-6) was converted to the w3 alcohol and to smaller amounts of the w2 alcohol (4:1). Together, the results indicate that the w3-hydroxylase and w3-epoxygenase enzyme(s) metabolize 20:4(n-6) and 20:5(n-3) almost exclusively to the w3(R) alcohol and the w3(R, S) epoxide, respectively, while longer and shorter fatty acids either are poor

  10. Towards the Industrial Production of Omega-3 Long Chain Polyunsaturated Fatty Acids from a Genetically Modified Diatom Phaeodactylum tricornutum.

    Directory of Open Access Journals (Sweden)

    Mary L Hamilton

    Full Text Available The marine diatom Phaeodactylum tricornutum can accumulate up to 30% of the omega-3 long chain polyunsaturated fatty acid (LC-PUFA eicosapentaenoic acid (EPA and, as such, is considered a good source for the industrial production of EPA. However, P. tricornutum does not naturally accumulate significant levels of the more valuable omega-3 LC-PUFA docosahexaenoic acid (DHA. Previously, we have engineered P. tricornutum to accumulate elevated levels of DHA and docosapentaenoic acid (DPA by overexpressing heterologous genes encoding enzyme activities of the LC-PUFA biosynthetic pathway. Here, the transgenic strain Pt_Elo5 has been investigated for the scalable production of EPA and DHA. Studies have been performed at the laboratory scale on the cultures growing in up to 1 L flasks a 3.5 L bubble column, a 550 L closed photobioreactor and a 1250 L raceway pond with artificial illumination. Detailed studies were carried out on the effect of different media, carbon sources and illumination on omega-3 LC-PUFAs production by transgenic strain Pt_Elo5 and wild type P. tricornutum grown in 3.5 L bubble columns. The highest content of DHA (7.5% of total fatty acids, TFA in transgenic strain was achieved in cultures grown in seawater salts, Instant Ocean (IO, supplemented with F/2 nutrients (F2N under continuous light. After identifying the optimal conditions for omega-3 LC-PUFA accumulation in the small-scale experiments we compared EPA and DHA levels of the transgenic strain grown in a larger fence-style tubular photobioreactor and a raceway pond. We observed a significant production of DHA over EPA, generating an EPA/DPA/DHA profile of 8.7%/4.5%/12.3% of TFA in cells grown in a photobioreactor, equivalent to 6.4 μg/mg dry weight DHA in a mid-exponentially growing algal culture. Omega-3 LC-PUFAs production in a raceway pond at ambient temperature but supplemented with artificial illumination (110 μmol photons m-2s-1 on a 16:8h light:dark cycle, in

  11. N-3 poly-unsaturated fatty acids shift estrogen signaling to inhibit human breast cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Wenqing Cao

    Full Text Available Although evidence has shown the regulating effect of n-3 poly-unsaturated fatty acid (n-3 PUFA on cell signaling transduction, it remains unknown whether n-3 PUFA treatment modulates estrogen signaling. The current study showed that docosahexaenoic acid (DHA, C22:6, eicosapentaenoic acid (EPA, C20:5 shifted the pro-survival and proliferative effect of estrogen to a pro-apoptotic effect in human breast cancer (BCa MCF-7 and T47D cells. 17 β-estradiol (E2 enhanced the inhibitory effect of n-3 PUFAs on BCa cell growth. The IC50 of DHA or EPA in MCF-7 cells decreased when combined with E2 (10 nM treatment (from 173 µM for DHA only to 113 µM for DHA+E2, and from 187 µm for EPA only to 130 µm for EPA+E2. E2 also augmented apoptosis in n-3 PUFA-treated BCa cells. In contrast, in cells treated with stearic acid (SA, C18:0 as well as cells not treated with fatty acid, E2 promoted breast cancer cell growth. Classical (nuclear estrogen receptors may not be involved in the pro-apoptotic effects of E2 on the n-3 PUFA-treated BCa cells because ERα agonist failed to elicit, and ERα knockdown failed to block E2 pro-apoptotic effects. Subsequent studies reveal that G protein coupled estrogen receptor 1 (GPER1 may mediate the pro-apoptotic effect of estrogen. N-3 PUFA treatment initiated the pro-apoptotic signaling of estrogen by increasing GPER1-cAMP-PKA signaling response, and blunting EGFR, Erk 1/2, and AKT activity. These findings may not only provide the evidence to link n-3 PUFAs biologic effects and the pro-apoptotic signaling of estrogen in breast cancer cells, but also shed new insight into the potential application of n-3 PUFAs in BCa treatment.

  12. Long-chain polyunsaturated fatty acids in breast-milk and erythrocytes and neurodevelopmental outcomes in Danish late-preterm infants

    DEFF Research Database (Denmark)

    Andersen, Stine Brøndum; Hellgren, Lars I; Larsen, Mette Krogh

    2015-01-01

    found that breast-milk content of arachidonic acid (AA) and docosahexaenoic acid (DHA) was similar to reported fatty acid compositions of term human milk. Infant RBC-AA decreased from 1 week to 1 month of age and the size of the decrease was associated with better NNNS-scores at 1 month, specifically......Background: The supply of long-chain polyunsaturated fatty acids (LC-PUFA) during pregnancy and early lactation has been shown to affect cognitive development in preterm infants, but the effect on early neurodevelopment of late-preterm infants has not yet been examined. Aim: To examine the fatty...... acid composition of late-preterm human milk and identify possible associations between infant LC-PUFA status and perinatal as well as 1-year neurobehavioral outcomes. Methods: Mother’s milk and erythrocytes (RBC) were sampled from 53 Danish late-preterm infants (33-36 weeks of gestation) 1 week and 1...

  13. Effect of Omega-3 Fatty Acids Dietary Supplementation on Ocular Surface and Tear Film in Diabetic Patients with Dry Eye.

    Science.gov (United States)

    Georgakopoulos, Constantine D; Makri, Olga E; Pagoulatos, Dionisios; Vasilakis, Panagiotis; Peristeropoulou, Politimi; Kouli, Vasiliki; Eliopoulou, Maria I; Psachoulia, Caterina

    2017-01-01

    The objective of this study was to investigate the effect of dietary supplementation with omega-3 fatty acids on ocular surface and tear film in patients with type 2 diabetes suffering from dry eye. Thirty-six patients suffering from type 2 diabetes and moderate to severe dry eye syndrome were included in the study. Patients were assigned to receive omega-3 long-chain polyunsaturated fatty acids for 3 months. Tear film break-up time test, Schirmer-I test, and conjunctival impression cytology analysis were performed on all patients at baseline and after 1 and 3 months. The subjective symptoms of dry eye were evaluated with the Ocular Surface Disease Index (OSDI) questionnaire at the same time points. Patients' average age was 65.57 ± 4.27 years and the mean duration of diabetes was 14.85 ± 5.4 years. There was a statistically significant increase in Schirmer-I test results and tear break-up time score after 3 months of supplementary intake of omega-3 fatty acids compared to baseline (p dry eye syndrome in patients with type 2 diabetes.

  14. Dietary saturated and monounsaturated fats protect against acute acetaminophen hepatotoxicity by altering fatty acid composition of liver microsomal membrane in rats

    Directory of Open Access Journals (Sweden)

    Shim Eugene

    2011-10-01

    Full Text Available Abstract Background Dietary polyunsaturated fats increase liver injury in response to ethanol feeding. We evaluated the effect of dietary corn oil (CO, olive oil (OO, and beef tallow (BT on fatty acid composition of liver microsomal membrane and acute acetaminophen hepatotoxicity. Methods Male Sprague-Dawley rats were fed 15% (wt/wt CO, OO or BT for 6 weeks. After treatment with acetaminophen (600 mg/kg, samples of plasma and liver were taken for analyses of the fatty acid composition and toxicity. Results Treatment with acetaminophen significantly elevated levels of plasma GOT and GPT as well as hepatic TBARS but reduced hepatic GSH levels in CO compared to OO and BT groups. Acetaminophen significantly induced protein expression of cytochrome P450 2E1 in the CO group. In comparison with the CO diet, lower levels of linoleic acid, higher levels of oleic acids and therefore much lower ratios of linoleic to oleic acid were detected in rats fed OO and BT diets. Conclusions Dietary OO and BT produces similar liver microsomal fatty acid composition and may account for less severe liver injury after acetaminophen treatment compared to animals fed diets with CO rich in linoleic acid. These findings imply that types of dietary fat may be important in the nutritional management of drug-induced hepatotoxicity.

  15. [IMPACT OF DIETARY FATTY ACIDS ON LIPID PROFILE, INSULIN SENSITIVITY AND FUNCTIONALITY OF PANCREATIC β CELLS IN TYPE 2 DIABETIC SUBJECTS].

    Science.gov (United States)

    Sambra Vásquez, Verónica; Rojas Moncada, Pamela; Basfi-Fer, Karen; Valencia, Alejandra; Codoceo, Juana; Inostroza, Jorge; Carrasco, Fernando; Ruz Ortiz, Manuel

    2015-09-01

    the quality of fats could influence the metabolic control of patients with Type 2 Diabetes Mellitus (DM2). to determine the relationship between intake and quality of dietary fatty acids to lipid profile, metabolic control, functionality of pancreatic cells and insulin sensivity in subjects with DM2. we studied 54 subjects with DM2, anthropometric measurements were performed, body composition and dietary lipid intake, saturated fatty acids (SFA), trans, monounsaturated, polyunsaturated, omega 3, omega 6 and dietary cholesterol. Laboratory parameters related to their metabolic control were determined (fasting blood glucose, glycated hemoglobin, and lipid profile). The insulin secretion and insulin sensitivity was determined with the insulin-modified intravenous glucose tolerance test according to the Bergman's minimal model. 28 men and 26 women were studied (BMI of 29.5 ± 3.7 kg/m2; age 55.6 ± 6.8 y.), 48% had LDL-C 40 mg/dL and 7.4% of women c-HDL > 50 mg/dL. 32% consumed > 10% of AGS and > 300 mg/day of dietary cholesterol. The SFA intake and percentage of calories from fat (G%) were significantly associated with insulin resistance and fasting plasma glucose concentration. The G% predicted 84% variability on c-VLDL. in patients with DM2 a greater intake of fat and saturated fatty acids it associated with greater fasting glycemia and insulin resistance. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  16. Survey of n-3 and n-6 polyunsaturated fatty acids in fish and fish products.

    Science.gov (United States)

    Strobel, Claudia; Jahreis, Gerhard; Kuhnt, Katrin

    2012-10-30

    The imbalance of the n-3/n-6 ratio in the Western diet is characterised by a low intake of n-3 long-chain (LC) PUFA and a concurrent high intake of n-6 PUFA. Fish, in particular marine fish, is a unique source of n-3 LC PUFA. However, FA composition of consumed fish changed, due to the increasing usage of n-6 PUFA-rich vegetable oils in aquaculture feed and in fish processing (frying) which both lead to a further shift in n-6 PUFA to the detriment of n-3 LC PUFA.The aim of this study was to determine the ratio of n-3/n-6 including the contents of EPA and DHA in fish fillets and fish products from the German market (n=123). Furthermore, the study focussed on the FA content in farmed salmon compared to wild salmon as well as in processed Alaska pollock fillet, e.g., fish fingers. Total fat and FA content in fish products varied considerably depending on fish species, feed management, and food processing. Mackerel, herring and trout fillets characteristically contained adequate dietary amounts of absolute EPA and DHA, due to their high fat contents. However, despite a lower fat content, tuna, pollock, and Alaska pollock can contribute considerable amounts of EPA and DHA to the human supply.Farmed salmon are an appropriate source of EPA and DHA owing to their higher fat content compared to wild salmon (12.3 vs. 2.1 wt %), however with elevated SFA, n-9 and n-6 FA contents representing the use of vegetable oils and oilseeds in aquaculture feed. The n-3/n-6 ratio was deteriorated (2.9 vs. 12.4) but still acceptable. Compared to pure fish fillets, breaded and pre-fried Alaska pollock fillet contained extraordinarily high fat and n-6 PUFA levels. Since fish species vary with respect to their n-3 LC PUFA contents, eating a variety of fish is advisable. High n-6 PUFA containing pre-fried fish support the imbalance of n-3/n-6 ratio in the Western diet. Thus, consumption of pure fish fillets is to be favoured. The lower n-3 PUFA portion in farmed fish can be offset by the

  17. Survey of n-3 and n-6 polyunsaturated fatty acids in fish and fish products

    Directory of Open Access Journals (Sweden)

    Strobel Claudia

    2012-10-01

    Full Text Available Abstract Background The imbalance of the n-3/n-6 ratio in the Western diet is characterised by a low intake of n-3 long-chain (LC PUFA and a concurrent high intake of n-6 PUFA. Fish, in particular marine fish, is a unique source of n-3 LC PUFA. However, FA composition of consumed fish changed, due to the increasing usage of n-6 PUFA-rich vegetable oils in aquaculture feed and in fish processing (frying which both lead to a further shift in n-6 PUFA to the detriment of n-3 LC PUFA. The aim of this study was to determine the ratio of n-3/n-6 including the contents of EPA and DHA in fish fillets and fish products from the German market (n=123. Furthermore, the study focussed on the FA content in farmed salmon compared to wild salmon as well as in processed Alaska pollock fillet, e.g., fish fingers. Results Total fat and FA content in fish products varied considerably depending on fish species, feed management, and food processing. Mackerel, herring and trout fillets characteristically contained adequate dietary amounts of absolute EPA and DHA, due to their high fat contents. However, despite a lower fat content, tuna, pollock, and Alaska pollock can contribute considerable amounts of EPA and DHA to the human supply. Farmed salmon are an appropriate source of EPA and DHA owing to their higher fat content compared to wild salmon (12.3 vs. 2.1 wt %, however with elevated SFA, n-9 and n-6 FA contents representing the use of vegetable oils and oilseeds in aquaculture feed. The n-3/n-6 ratio was deteriorated (2.9 vs. 12.4 but still acceptable. Compared to pure fish fillets, breaded and pre-fried Alaska pollock fillet contained extraordinarily high fat and n-6 PUFA levels. Conclusions Since fish species vary with respect to their n-3 LC PUFA contents, eating a variety of fish is advisable. High n-6 PUFA containing pre-fried fish support the imbalance of n-3/n-6 ratio in the Western diet. Thus, consumption of pure fish fillets is to be favoured. The lower

  18. Myocardial protection during elective coronary artery bypasses grafting by pretreatment with omega-3 polyunsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    Veljović Milić

    2013-01-01

    Full Text Available Background/Aim. Despite recent advances in coronary artery bypass grafting (CABG, cardioplegic cardiac arrest and cardiopulmonary bypass (CPB are still associated with myocardial injury. Accordingly, the efforts have been made lately to improve the outcome of CPB by glucose-insulinpotassium, adenosine, Ca2+-channel antagonists, L-arginine, N-acetylcysteine, coenzyme Q10, diazoxide, Na+/H+ exchange inhibitors, but with an unequal results. Since omega-3 polyunsatutated fatty acids (PUFAs have shown remarkable cardioprotection in preclinical researches, the aim of our study was to check their effects in prevention of ischemia reperfusion injury in patients with CPB. Methods. This prospective, randomized, placebo-controlled study was performed with parallel groups. The patients undergoing elective CABG were randomized to receive preoperative intravenous omega-3 PUFAs infusion (n = 20 or the same volume of 0.9% saline solution infusion (n = 20. Blood samples were collected simultaneously from the radial artery and the coronary sinus before starting CPB and at 10, 20 and 30 min after the release of the aortic cross clamp. Lactate extraction/excretion and myocardial oxygen extraction were calculated and compared between the two groups. The levels of troponin I (TnT and creatine kinase-myocardial band (CK-MB were determined before starting CPB and 4 and 24 h postoperatively. Results. Demographic and operative characteristics, including CPB and aortic cross-clamp time, were similar between the two groups of patients. The level of lactate extraction 10 and 20 min after aortic cross-clamp time has shown negative values in the control group, but positive values in the PUFAs group with statistically significant differences (-19.6% vs 7.9%; p < 0.0001 and -19.9% vs 8.2%; p < 0.0008, respectively. The level of lactate extraction 30 minutes after reperfusion was not statistically different between the two groups (6.9% vs 4.2%; p < 0.54. Oxygen extraction in the

  19. Metabolism of dietary fatty alcohol, fatty acid, and wax ester in carp

    International Nuclear Information System (INIS)

    Mankura, Mitsumasa; Kayama, Mitsu; Iijima, Noriaki.

    1987-01-01

    Lipids in various tissues of the carp, Cyprinus carpio were analyzed. The fates of force-fed [1- 14 C]palmitic acids, [1- 14 C]cetyl alcohol, and oleyl[1- 14 C]linoleate, were compared with those given in vitro experiments. Major lipid classes in all except adipose tissue were found to be polar lipids (phospholipids) and triacylglycerols. The major fatty acids in nearly all the tissues were 16 : 0, 18 : 1, 18 : 2, and 22 : 6. Although the radioactivity incorporation into wax esters from [1- 14 C]palmitic acid and [1- 14 C]cetyl alcohol for various tissue homogenates was quite high, in vivo incorporation of these labelled compounds into wax esters was very low and radioactivity was distributed mainly in the lipids of muscle, skin, hepatopancreas, intestine, and gill. Almost all the radioactivity in various tissues was present in phospatidylcholine and triacylglycerols. Most of the oleyl[1- 14 C]linoleate was easily hydrolyzed by various tissue homogenates. Force-fed oleyl[1- 14 C]linoleate was hydrolyzed in the intestine and then transported to other tissues, such as muscle, kin, gill, and hepatopancreas. Moreover, released radioactivity from oleyl[1- 14 C]linoleate was present in mainly phosphatidylcholine and triacylglycerols. Radioactivity was also detected in wax esters in plasma. Certain amounts for fatty acids released from [1- 14 C]triolein in the hepatopancreas homogenates were incorporated into wax esters; this was stimulated by the addition of oleyl alcohol. The present results indicate extensive hydrolysis of wax ester to possibly occur in the intestine and certain portions of the fatty alcohol moiety to be resterfied. The portions may be oxidized to fatty acids and which subsequently behave as dietary fatty acids. (author) 50 ref

  20. Evidence from in vivo 31-phosphorus magnetic resonance spectroscopy phosphodiesters that exhaled ethane is a biomarker of cerebral n-3 polyunsaturated fatty acid