WorldWideScience

Sample records for diesel engine injection

  1. Optimization of injection law for direct injection diesel engine

    International Nuclear Information System (INIS)

    Feola, M.; Bella, G.; Pelloni, P.; Casoli, P.; Toderi, G.; Cantore, G.

    1992-01-01

    This paper describes how different timing and shape of the injection law can influence pollutant emission of a direct injection diesel engine. The study was carried out making use of a multizone thermodynamic model as regards the closed valve phase, and a filling-emptying one as regards the open valve phase. After being calibrated by comparison with experimental data, the abovementioned model was used for injection law optimization as regards minimum pollutant concentration (NO x and soot) in the exhaust gases with the smallest engine performance reduction possible

  2. Super Turbocharging the Direct Injection Diesel engine

    Science.gov (United States)

    Boretti, Albert

    2018-03-01

    The steady operation of a turbocharged diesel direct injection (TDI) engine featuring a variable speed ratio mechanism linking the turbocharger shaft to the crankshaft is modelled in the present study. Key parameters of the variable speed ratio mechanism are range of speed ratios, efficiency and inertia, in addition to the ability to control relative speed and flow of power. The device receives energy from, or delivers energy to, the crankshaft or the turbocharger. In addition to the pistons of the internal combustion engine (ICE), also the turbocharger thus contributes to the total mechanical power output of the engine. The energy supply from the crankshaft is mostly needed during sharp accelerations to avoid turbo-lag, and to boost torque at low speeds. At low speeds, the maximum torque is drastically improved, radically expanding the load range. Additionally, moving closer to the points of operation of a balanced turbocharger, it is also possible to improve both the efficiency η, defined as the ratio of the piston crankshaft power to the fuel flow power, and the total efficiency η*, defined as the ratio of piston crankshaft power augmented of the power from the turbocharger shaft to the fuel flow power, even if of a minimal extent. The energy supply to the crankshaft is possible mostly at high speeds and high loads, where otherwise the turbine could have been waste gated, and during decelerations. The use of the energy at the turbine otherwise waste gated translates in improvements of the total fuel conversion efficiency η* more than the efficiency η. Much smaller improvements are obtained for the maximum torque, yet again moving closer to the points of operation of a balanced turbocharger. Adopting a much larger turbocharger (target displacement x speed 30% larger than a conventional turbocharger), better torque outputs and fuel conversion efficiencies η* and η are possible at every speed vs. the engine with a smaller, balanced turbocharger. This result

  3. The Effect of Ethanol-Diesel Blends on The Performance of A Direct Injection Diesel Engine

    OpenAIRE

    Arifin Nur; Yanuandri Putrasari; Iman Kartolaksono Reksowardojo

    2012-01-01

    The experiment was conducted on a conventional direct injection diesel engine. Performance test was carried out to evaluate the performance and emission characteristics of a conventional diesel engine that operates on ethanol-diesel blends. The test procedure was performed by coupling the diesel engine on the eddy current dynamometer. Fuel consumption was measured using the AVL Fuel Balance, and a hotwire anemometer was used to measure the air consumption. Some of the emission test devices we...

  4. Hydrogen Gas as a Fuel in Direct Injection Diesel Engine

    Science.gov (United States)

    Dhanasekaran, Chinnathambi; Mohankumar, Gabriael

    2016-04-01

    Hydrogen is expected to be one of the most important fuels in the near future for solving the problem caused by the greenhouse gases, for protecting environment and saving conventional fuels. In this study, a dual fuel engine of hydrogen and diesel was investigated. Hydrogen was conceded through the intake port, and simultaneously air and diesel was pervaded into the cylinder. Using electronic gas injector and electronic control unit, the injection timing and duration varied. In this investigation, a single cylinder, KIRLOSKAR AV1, DI Diesel engine was used. Hydrogen injection timing was fixed at TDC and injection duration was timed for 30°, 60°, and 90° crank angles. The injection timing of diesel was fixed at 23° BTDC. When hydrogen is mixed with inlet air, emanation of HC, CO and CO2 decreased without any emission (exhaustion) of smoke while increasing the brake thermal efficiency.

  5. Improvement of fuel injection system of locomotive diesel engine.

    Science.gov (United States)

    Li, Minghai; Cui, Hongjiang; Wang, Juan; Guan, Ying

    2009-01-01

    The traditional locomotive diesels are usually designed for the performance of rated condition and much fuel will be consumed. A new plunger piston matching parts of fuel injection pump and injector nozzle matching parts were designed. The experimental results of fuel injection pump test and diesel engine show that the fuel consumption rate can be decreased a lot in the most of the working conditions. The forced lubrication is adopted for the new injector nozzle matching parts, which can reduce failure rate and increase service life. The design has been patented by Chinese State Patent Office.

  6. The Effect of Ethanol-Diesel Blends on The Performance of A Direct Injection Diesel Engine

    Directory of Open Access Journals (Sweden)

    Arifin Nur

    2012-07-01

    Full Text Available The experiment was conducted on a conventional direct injection diesel engine. Performance test was carried out to evaluate the performance and emission characteristics of a conventional diesel engine that operates on ethanol-diesel blends. The test procedure was performed by coupling the diesel engine on the eddy current dynamometer. Fuel consumption was measured using the AVL Fuel Balance, and a hotwire anemometer was used to measure the air consumption. Some of the emission test devices were mounted on the exhaust pipe. The test of fuel variations started from 100% diesel fuel (D100 to 2.5% (DE2.5, 5% (DE5, 7.5% (DE7.5, and 10% (DE10 ethanol additions. Performance test was conducted at 1500 rpm with load variations from 0 to 60 Nm by increasing the load on each level by 10 Nm. The addition of 5% ethanol to diesel (DE5 increased the average pressure of combustion chamber indication to 48% as well as reduced the specific fuel consumption to 9.5%. There were better exhaust emission characteristics at this mixture ratio than diesel engine which used pure diesel fuel (D100, the reduction of CO to 37%, HC to 44% and opacity to 15.9%.

  7. Natural gas in a D. I. diesel engine. A comparison of two different ways. [Direct injection diesel enginer

    Energy Technology Data Exchange (ETDEWEB)

    Jun-ming, Qu; Sorenson, S.C.; Kofoed, E.

    1987-01-01

    A D.I. diesel engine was modified for natural gas operation with pilot injection and with spark ignition so that a comparative analysis of these two different ways of using natural gas could be made. The results of the experiments indicate that for a diesel engine, it is possible that the operating characteristics of a straight natural gas engine are comparable with those of a diesel/gas engine at the same compression ratio and speed. For a dual fuel engine with pilot injection the best diesel/gas ratio by energy content is approximately 20/80 at full load operation. For straight natural gas engine with spark ignition, quality governed natural gas operation has good efficiency but poor NOx emissions. This problem could be improved through throttle controlled operation. These two different ways of using natural gas are best suited to stationary engines.

  8. Influence of fuel injection pressures on Calophyllum inophyllum methyl ester fuelled direct injection diesel engine

    International Nuclear Information System (INIS)

    Nanthagopal, K.; Ashok, B.; Karuppa Raj, R. Thundil

    2016-01-01

    Highlights: • Effect of injection pressure of Calophyllum inophyllum biodiesel is investigated. • Engine characteristics of 100% Calophyllum inophyllum biodiesel has been performed. • Calophyllum inophyllum is a non-edible source for biodiesel production. • Increase in injection pressure of biodiesel, improves the fuel economy. • Incylinder pressure characteristics of biodiesel follows similar trend as of diesel. - Abstract: The trend of using biodiesels in compression ignition engines have been the focus in recent decades due to the promising environmental factors and depletion of fossil fuel reserves. This work presents the effect of Calophyllum inophyllum methyl ester on diesel engine performance, emission and combustion characteristics at different injection pressures. Experimental investigations with varying injection pressures of 200 bar, 220 bar and 240 bar have been carried out to analyse the parameters like brake thermal efficiency, specific fuel consumption, heat release rate and engine emissions of direct injection diesel engine fuelled with 100% biodiesel and compared with neat diesel. The experimental results revealed that brake specific fuel consumption of C. inophyllum methyl ester fuelled engine has been reduced to a great extent with higher injection pressure. Significant reduction in emissions of unburnt hydrocarbons, carbon monoxide and smoke opacity have been observed during fuel injection of biodiesel at 220 bar compared to other fuel injection pressures. However oxides of nitrogen increased with increase in injection pressures of C. inophyllum methyl ester and are always higher than that of neat diesel. In addition the combustion characteristics of biodiesel at all injection pressures followed a similar trend to that of conventional diesel.

  9. Computer simulation of a turbocharged direct injection diesel engine

    International Nuclear Information System (INIS)

    Bannikiv, M.G.; Saeed, M.

    2005-01-01

    Engine model described in this paper was developed to investigate the working process and overall performance of a heavy-duty turbocharged direct injection diesel engine. The primary focus was made on exploring the methods of engine power boosting, study of engine behaviour after their implementation and optimization of all engine parameters. Engine model is classified as on zone, zero dimensional and phenomenological and includes submodels for in cylinder heat transfer, heat release and valve flow processes. Turbocharger model is developed using the available maps of turbine and compressor. The whole engine system is zero dimensional and the different system components are liked by means of mean values for mass flow, temperatures, pressures and gas composition. NASA polynomials are used for computing thermal properties of mixture of gasses. Model is flexible and easy to accommodate additional submodels of various physical phenomena such as emission formation, fuel injection, ignition delay period calculation etc. The software is developed in MATLAB. Software was used to analyse an evaporative cooling of boost air as a method of an increase of engine power. Results of simulation are provided in the paper. For the augmented engine, mechanical and thermal loads required for the strength analyses were obtained. (author)

  10. Diesel Engine with Different Kind of Injection Systems Exhaust Gas Analysis

    OpenAIRE

    Mantas Smolnikovas; Gintas Viselga; Greta Viselgaitė; Algirdas Jasinskas

    2016-01-01

    The article presents an overview of structural evolution of diesel engines’ injection systems, air pollution caused by diesel engines and permissible emission rates. An analytical research on air pollution was also performed. Experimental studies evaluated air pollution during the emission of particulate matter according to diesel engine exploitation time and different constructions emissions.

  11. Diesel Engine with Different Kind of Injection Systems Exhaust Gas Analysis

    Directory of Open Access Journals (Sweden)

    Mantas Smolnikovas

    2016-02-01

    Full Text Available The article presents an overview of structural evolution of diesel engines’ injection systems, air pollution caused by diesel engines and permissible emission rates. An analytical research on air pollution was also performed. Experimental studies evaluated air pollution during the emission of particulate matter according to diesel engine exploitation time and different constructions emissions.

  12. Prediction and Validation of Heat Release Direct Injection Diesel Engine Using Multi-Zone Model

    Science.gov (United States)

    Anang Nugroho, Bagus; Sugiarto, Bambang; Prawoto; Shalahuddin, Lukman

    2014-04-01

    The objective of this study is to develop simulation model which capable to predict heat release of diesel combustion accurately in efficient computation time. A multi-zone packet model has been applied to solve the combustion phenomena inside diesel cylinder. The model formulations are presented first and then the numerical results are validated on a single cylinder direct injection diesel engine at various engine speed and timing injections. The model were found to be promising to fulfill the objective above.

  13. Study of In-Cylinder Reactions of High Power-Density Direct Injection Diesel Engines

    National Research Council Canada - National Science Library

    Jansons, M

    2004-01-01

    Direct-injection (DI) Diesel or compression-ignition (CI) engine combustion process is investigated when new design and operational strategies are employed in order to achieve a high power-density (HPD) engine...

  14. Combustion control for diesel engines with direct injection

    Energy Technology Data Exchange (ETDEWEB)

    Jeschke, J.; Henn, M.; Lang, T.; Wendt, J.; Nitzke, H.G.; Mannigel, D. [Volkswagen AG (Germany)

    2007-07-01

    This article looks at a new cylinder pressure-based combustion control for DI diesel engines that has been developed by Volkswagen. This cylinder pressure-based control uses cylinder pressure sensors that are integrated in the glow plugs. The description and the evaluation of these sensors form a main part of this article as they are a central element in the new diesel management system. The test and development phase in connection with a rapid prototyping system and the realisation of the combustion control algorithms in a diesel control unit are also described. Finally, results from use of the closed-loop combustion control with different applications on a diesel engine are presented. (orig.)

  15. Turbulence-combustion interaction in direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Bencherif Mohamed

    2014-01-01

    Full Text Available The experimental measures of chemical species and turbulence intensity during the closed part of the engine combustion cycle are today unattainable exactly. This paper deals with numerical investigations of an experimental direct injection Diesel engine and a commercial turbocharged heavy duty direct injection one. Simulations are carried out with the kiva3v2 code using the RNG (k-ε model. A reduced mechanism for n-heptane was adopted for predicting auto-ignition and combustion processes. From the calibrated code based on experimental in-cylinder pressures, the study focuses on the turbulence parameters and combustion species evolution in the attempt to improve understanding of turbulence-chemistry interaction during the engine cycle. The turbulent kinetic energy and its dissipation rate are taken as representative parameters of turbulence. The results indicate that chemistry reactions of fuel oxidation during the auto-ignition delay improve the turbulence levels. The peak position of turbulent kinetic energy coincides systematically with the auto-ignition timing. This position seems to be governed by the viscous effects generated by the high pressure level reached at the auto-ignition timing. The hot regime flame decreases rapidly the turbulence intensity successively by the viscous effects during the fast premixed combustion and heat transfer during other periods. It is showed that instable species such as CO are due to deficiency of local mixture preparation during the strong decrease of turbulence energy. Also, an attempt to build an innovative relationship between self-ignition and maximum turbulence level is proposed. This work justifies the suggestion to determine otherwise the self-ignition timing.

  16. An Optical Method for Measuring Injection Timing in Diesel Engines, Using a Single Port

    Science.gov (United States)

    2014-09-01

    injection, naturally aspirated marine diesel engine with mechanical unit injectors and showed satisfactory results with blends ranging from 25% HRD/75... injector technology, they further concluded that the mechanical unit injectors found throughout the naval fleet and on the Detroit Diesel 3–53 in the...injection timing in a pump-line- nozzle system of blending Fischer- Tropsch derived diesel fuel with low sulfur, ultra-low sulfur and biodiesel fuels. The

  17. Dual-fuelling of a direct-injection automotive diesel engine by diesel and compressed natural gas

    International Nuclear Information System (INIS)

    Pirouzpanah, V.; Mohammadi Kosha, A.; Mosseibi, A.; Moshirabadi, J.; Gangi, A.; Moghadaspour, M.

    2000-01-01

    Application of Compressed Natural Gas in diesel engines has always been important, especially in the field of automotive engineering. This is due to easy accessibility, better mixing quality and good combustion characteristics of the Compressed Natural Gas fuel. In this study the application of Compressed Natural Gas fuel along with diesel oil in a heavy duty direct-injection automotive diesel engine is experimentally investigated. In order to convert a diesel engine into a diesel-gas one, the so called m ixed diesel-gas a pproach has been used and for this purpose a carbureted Compressed Natural Gas fuel system has been designed and manufactured. For controlling quantity of Compressed Natural Gas, the gas valve is linked to the diesel fuel injection system by means of a set of rods. Then, the dual-fuel system is adjusted so that, at full load conditions, the quantity of diesel fuel is reduced to 20% and 80% of its equivalent energy is substituted by Compressed Natural Gas fuel. Also injection pressure of pilot jet is increased by 11.4%. Performance and emission tests are conducted under variation of load and speed on both diesel and diesel-gas engines. Results show that, with equal power and torque, the diesel-gas engine has the potential to improve overall engine performance and emission. For example, at rated power and speed, fuel economy increases by 5.48%, the amount of smoke decreases by 78%, amount of CO decreases by 64.3% and mean exhaust gas temperature decreases by 6.4%

  18. Performance of single cylinder, direct injection Diesel engine using water fuel emulsions

    International Nuclear Information System (INIS)

    Abu-Zaid, M.

    2004-01-01

    A single cylinder Diesel engine study of water-in-Diesel emulsions was conducted to investigate the effect of water emulsification on the engine performance and gases exhaust temperature. Emulsified Diesel fuels of 0, 5, 10, 15 and 20 water/Diesel ratios by volume, were used in a single cylinder, direct injection Diesel engine, operating at 1200-3300 rpm. The results indicate that the addition of water in the form of emulsion improves combustion efficiency. The engine torque, power and brake thermal efficiency increase as the water percentage in the emulsion increases. The average increase in the brake thermal efficiency for 20% water emulsion is approximately 3.5% over the use of Diesel for the engine speed range studied. The proper brake specific fuel consumption and gases exhaust temperature decrease as the percentage of water in the emulsion increases

  19. AN EXPERIMENTAL NOX REDUCTION POTENTIAL INVESTIGATION OF THE PARTIAL HCCI APPLICATION, ON A HIGH PRESSURE FUEL INJECTION EQUIPPED DIESEL ENGINE BY IMPLEMENTING FUMIGATION OF GASOLINE PORT INJECTION

    OpenAIRE

    ERGENÇ, Alp Tekin; YÜKSEK, Levent; ÖZENER, Orkun; IŞIN, Övün

    2016-01-01

    This work investigates the effects of partial HCCI (Homogeneous charge compression ignition) application on today's modern diesel engine tail pipe NOx emissions. Gasoline fumigation is supplied via a port fuel injection system located in the intake port of DI(Direct injection) diesel engine to maintain partial HCCI conditions and also diesel fuel injected directly into the combustion chamber before TDC(Top dead center). A single cylinder direct injection diesel research engine equipped w...

  20. Liquid sprays and flow studies in the direct-injection diesel engine under motored conditions

    Science.gov (United States)

    Nguyen, Hung Lee; Carpenter, Mark H.; Ramos, Juan I.; Schock, Harold J.; Stegeman, James D.

    1988-01-01

    A two dimensional, implicit finite difference method of the control volume variety, a two equation model of turbulence, and a discrete droplet model were used to study the flow field, turbulence levels, fuel penetration, vaporization, and mixing in diesel engine environments. The model was also used to study the effects of engine speed, injection angle, spray cone angle, droplet distribution, and intake swirl angle on the flow field, spray penetration and vaporization, and turbulence in motored two-stroke diesel engines. It is shown that there are optimum conditions for injection, which depend on droplet distribution, swirl, spray cone angle, and injection angle. The optimum conditions result in good spray penetration and vaporization and in good fuel mixing. The calculation presented clearly indicates that internal combustion engine models can be used to assess, at least qualitatively, the effects of injection characteristics and engine operating conditions on the flow field and on the spray penetration and vaporization in diesel engines.

  1. Emission Constrained Multiple-Pulse Fuel Injection Optimisation and Control for Fuel-Efficient Diesel Engines

    NARCIS (Netherlands)

    Luo, X.; Jager, B. de; Willems, F.P.T.

    2015-01-01

    With the application of multiple-pulse fuel injection profiles, the performance of diesel engines is enhanced in terms of low fuel consumption and low engine-out emission levels. However, the calibration effort increases due to a larger number of injection timing parameters. The difficulty of

  2. Direct injection of a diesel-butane blend in a heavy duty engine

    NARCIS (Netherlands)

    Leermakers, C.A.J.; van den Berge, B.; Luijten, C.C.M.; Somers, L.M.T.; Jaasma, S.A.M.; Goey, de L.P.H.

    2011-01-01

    LPG (Liquefied Petroleum Gas) has for long been used in passenger cars. Presently, LPG sup-ply systems have also attracted considerable at-tention for heavy duty use. LPG can be applied in these engines combining port fuel injected LPG with a direct injection of diesel. These engines equipped with a

  3. Investigation of the effects of steam injection on performance and NO emissions of a diesel engine running with ethanol–diesel blend

    International Nuclear Information System (INIS)

    Gonca, Guven

    2014-01-01

    Highlights: • A combustion simulation is conducted by using two-zone combustion model. • Effect of steam injection into engine fueled ethanol–diesel blend are investigated. • It is shown that this method improves performance and diminish NO emissions. - Abstract: The use of ethanol–diesel blends in diesel engines without any modifications negatively affects the engine performance and NOx emissions. However, steam injection method decreases NOx emissions and improves the engine performance. In this study, steam injection method is applied into a single cylinder, four-stroke, direct injection, naturally aspirated diesel engine fueled with ethanol–diesel blend in order improve the performance and NOx emissions by using two-zone combustion model for 15% ethanol addition and 20% steam ratios at full load condition. The results obtained are compared with conventional diesel engine (D), steam injected diesel engine (D + S20), diesel engine fueled with ethanol–diesel blend (E15) and steam injected diesel engine fueled with ethanol–diesel blend (E15 + S20) in terms of performance and NO emissions. The results showed that as NO emissions considerably decrease the performance significantly increases with steam injection method

  4. Effect of the Ethanol Injection Moment During Compression Stroke on the Combustion of Ethanol - Diesel Dual Direct Injection Engine

    Science.gov (United States)

    Liang, Yu; Zhou, Liying; Huang, Haomin; Xu, Mingfei; Guo, Mei; Chen, Xin

    2018-01-01

    A set of GDI system is installed on a F188 single-cylinder, air-cooled and direct injection diesel engine, which is used for ethanol injection, with the injection time controlled by the crank angle signal collected by AVL angle encoder. The injection of ethanol amounts to half of the thermal equivalent of an original diesel fuel. A 3D combustion model is established for the ethanol - diesel dual direct injection engine. Diesel was injected from the original fuel injection system, with a fuel supply advance angle of 20°CA. The ethanol was injected into the cylinder during compression process. Diesel injection began after the completion of ethanol injection. Ethanol injection starting point of 240°CA, 260°CA, 280°CA, 300°CA and 319.4°CA were simulated and analyzed. Due to the different timing of ethanol injection, the ignition of the ethanol mixture when diesel fires, results in non-uniform ignition distribution and flame propagation rate, since the distribution and concentration gradients of the ethanol mixture in the cylinder are different, thus affecting the combustion process. The results show that, when ethanol is injected at 319.4°CA, the combustion heat release rate and the pressure rise rate during the initial stage are the highest. Also, the maximum combustion pressure, with a relatively advance phase, is the highest. In case of later initial ethanol injection, the average temperature in the cylinder during the initial combustion period will have a faster rise. In case of initial injection at 319.4°CA, the average temperature in the cylinder is the highest, followed by 240°CA ethanol injection. In the post-combustion stage, the earlier ethanol injection will result in higher average temperature in the cylinder and more complete fuel combustion. The injection of ethanol at 319.4°CA produces earlier and highest NOX emissions.

  5. Effects of injection angles on combustion processes using multiple injection strategies in an HSDI diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Tiegang Fang; Robert E. Coverdill; Chia-fon F. Lee; Robert A. White [North Carolina State University, Raleigh, NC (United States). Department of Mechanical and Aerospace Engineering

    2008-11-15

    Effects of injection angles and injection pressure on the combustion processes employing multiple injection strategies in a high-speed direct-injection (HSDI) diesel engine are presented in this work. Whole-cycle combustion and liquid spray evolution processes were visualized using a high-speed video camera. NOx emissions were measured in the exhaust pipe. Different heat release patterns are seen for two different injectors with a 70-degree tip and a 150-degree tip. No evidence of fuel-wall impingement is found for the first injection of the 150-degree tip, but for the 70-degree tip, some fuel impinges on the bowl wall and a fuel film is formed. For the second injection, a large amount of fuel deposition is observed for the 70-degree tip. Weak flame is seen for the first injection of the 150-degree tip while two sorts of flames are seen for the first injection of the 70-degree tip including an early weak flame and a late luminous film combustion flame. Ignition occurs near the spray tip in the vicinity of the bowl wall for the second injection events of the 150-degree tip, however, it is near the injector tip in the central region of the bowl for the 70-degree tip. The flame is more homogeneous for the 150-degree tip with higher injection pressure with little soot formation similar to a premixed-charge-compression-ignition (PCCI) combustion. For other cases, liquid fuel is injected into flames showing diffusion flame combustion. More soot luminosity is seen for the 70-degree tip due to significant fuel film deposition on the piston wall with fuel film combustion for both injection events. Lower NOx emissions were obtained for the narrow-angle injector due to the rich air-fuel mixture near the bowl wall during the combustion process. 30 refs., 11 figs., 3 tabs.

  6. Diesel Combustion and Emission Using High Boost and High Injection Pressure in a Single Cylinder Engine

    Science.gov (United States)

    Aoyagi, Yuzo; Kunishima, Eiji; Asaumi, Yasuo; Aihara, Yoshiaki; Odaka, Matsuo; Goto, Yuichi

    Heavy-duty diesel engines have adopted numerous technologies for clean emissions and low fuel consumption. Some are direct fuel injection combined with high injection pressure and adequate in-cylinder air motion, turbo-intercooler systems, and strong steel pistons. Using these technologies, diesel engines have achieved an extremely low CO2 emission as a prime mover. However, heavy-duty diesel engines with even lower NOx and PM emission levels are anticipated. This study achieved high-boost and lean diesel combustion using a single cylinder engine that provides good engine performance and clean exhaust emission. The experiment was done under conditions of intake air quantity up to five times that of a naturally aspirated (NA) engine and 200MPa injection pressure. The adopted pressure booster is an external supercharger that can control intake air temperature. In this engine, the maximum cylinder pressure was increased and new technologies were adopted, including a monotherm piston for endurance of Pmax =30MPa. Moreover, every engine part is newly designed. As the boost pressure increases, the rate of heat release resembles the injection rate and becomes sharper. The combustion and brake thermal efficiency are improved. This high boost and lean diesel combustion creates little smoke; ISCO and ISTHC without the ISNOx increase. It also yields good thermal efficiency.

  7. Effect of injection timing on the exhaust emissions of a diesel engine using diesel-methanol blends

    Energy Technology Data Exchange (ETDEWEB)

    Sayin, Cenk; Gumus, Metin [Department of Mechanical Education, Marmara University, 34722 Istanbul (Turkey); Ilhan, Murat [Raytheon Training International GmbH, GM Academy, 34843 Istanbul (Turkey); Canakci, Mustafa [Department of Mechanical Education, Kocaeli University, 41380 Kocaeli (Turkey)]|[Alternative Fuels R and D Center, Kocaeli University, 41040 Kocaeli (Turkey)

    2009-05-15

    Environmental concerns and limited resource of petroleum fuels have caused interests in the development of alternative fuels for internal combustion (IC) engines. For diesel engines, alcohols are receiving increasing attention because they are oxygenated and renewable fuels. Therefore, in this study, the effect of injection timing on the exhaust emissions of a single cylinder, naturally aspirated, four-stroke, direct injection diesel engine has been experimentally investigated by using methanol-blended diesel fuel from 0% to 15% with an increment of 5%. The tests were conducted for three different injection timings (15 , 20 and 25 CA BTDC) at four different engine loads (5 Nm, 10 Nm, 15 Nm, 20 Nm) at 2200 rpm. The experimental test results showed that Bsfc, NO{sub x} and CO{sub 2} emissions increased as BTE, smoke opacity, CO and UHC emissions decreased with increasing amount of methanol in the fuel mixture. When compared the results to those of original injection timing, NO{sub x} and CO{sub 2} emissions decreased, smoke opacity, UHC and CO emissions increased for the retarded injection timing (15 CA BTDC). On the other hand, with the advanced injection timing (25 CA BTDC), decreasing smoke opacity, UHC and CO emissions diminished, and NO{sub x} and CO{sub 2} emissions boosted at all test conditions. In terms of Bsfc and BTE, retarded and advanced injection timings gave negative results for all fuel blends in all engine loads. (author)

  8. Combustion of jojoba methyl ester in an indirect injection diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Selim, M.Y.E. [United Arab Emirates University, Al-Ain (United Arab Emirates). Mechanical Engineering Dept.; Radwan, M.S.; Elfeky, S.M.S. [Helwan University, Cairo (Egypt). Mechanical Power Engineering Dept.

    2003-07-01

    An experimental investigation has been carried out to examine for the first time the performance and combustion noise of an indirect injection diesel engine running with new fuel derived from pure jojoba oil, jojoba methyl ester, and its blends with gas oil. A Ricardo E6 compression swirl diesel engine was fully instrumented for the measurement of combustion pressure and its rise rate and other operating parameters. Test parameters included the percentage of jojoba methyl ester in the blend, engine speed, load, injection timing and engine compression ratio. Results showed that the new fuel derived from jojoba is generally comparable and a good replacement to gas oil in diesel engine at most engine operating conditions, in terms of performance parameters and combustion noise produced. (author)

  9. An experimental study on the effects of high-pressure and multiple injection strategies on DI diesel engine emissions

    KAUST Repository

    Yang, Seung Yeon; Chung, Suk-Ho

    2013-01-01

    An experimental study on effects of high-pressure injections in conjunction with split fuel injections were conducted on an AVL single cylinder DI diesel engine. Various injection schemes were studied through the use of an electronically controlled

  10. Lubrication and wear in diesel engine injection equipment fuelled by dimethyl ether (DME)

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius

    2003-01-01

    Dimethyl ether (DME) has been recognised as an excellent fuel for diesel engines for over one decade now. DME fueled engines emit virtually no particulate matter even at low NOx levels. DME has thereby the potential of reducing the diesel engine emissions without filters or other devices...... that jeopardise the high efficiency of the engine and increase the manufacturing costs. DME has a low toxicity and can be made from anything containing carbon including biomass. If DME is produced from cheap natural gas from remote locations, the price of this new fuel could even become lower than that of diesel...... oil. Fueling diesel engines with DME presents two significant problems: The injection equipment can break down due to extensive wear and DME attacks nearly all known elastomers. The latter problem renders dynamic sealing diƣult whereas the first one involves the poor lubrication qualities of DME which...

  11. Effect of advanced injection timing on the performance of rapeseed oil in diesel engines

    International Nuclear Information System (INIS)

    Nwafor, O.M.I.; Rice, G.; Ogbonna, A.I.

    2000-01-01

    Combustion studies on both diesel fuel and vegetable oil fuels, with the standard and advanced injection timing, were carried out using the same engine and test procedures so that comparative assessments may be made. The diesel engine principle demands self-ignition of the fuel as it is injected at some degrees before top dead centre (BTDC) into the hot compressed cylinder gas. Longer delays between injection and ignition lead to unacceptable rates of pressure rise with the result of diesel knock because too much fuel is ready to take part in premixed combustion. Alternative fuels have been noted to exhibit longer delay periods and slower burning rate especially at low load operating conditions hence resulting in late combustion in the expansion stroke. Advanced injection timing is expected to compensate these effects. The engine has standard injection timing of 30degC BTDC. The injection was first advanced by 5.5degC given injection timing of 35.5degC BTDC. The engine performance was very erratic on this timing. The injection was then advanced by 3.5degC and the effects are presented in this paper. The engine performance was smooth especially at low load levels. The ignition delay was reduced through advanced injection but tended to incur a slight increase in fuel consumption. Moderate advanced injection timing is recommended for low speed operations. (Author)

  12. Cavitation phenomena in a fuel injection nozzle of a diesel engine by neutron radiography

    International Nuclear Information System (INIS)

    Takenaka, N.; Kawabata, Y.; Miyata, D.; Kawabata, Y.; Sim, C. M.; Lim, I. C.

    2005-01-01

    Visualization of cavitation phenomena in a Diesel engine fuel injection nozzle was carried out by using neutron radiography system in Research Reactor Institute in Kyoto University and HANARO in Korea Atomic Energy Research Institute. A neutron chopper was synchronized to the engine rotation for high shutter speed exposures. A multi exposure method was applied to obtain a clear image as an ensemble average of the synchronized images. Some images were successfully obtained and suggested new understanding of the cavitation phenomena in a Diesel engine fuel injection nozzle

  13. Comparison of the effect of biodiesel-diesel and ethanol-diesel on the gaseous emission of a direct-injection diesel engine

    Science.gov (United States)

    Di, Yage; Cheung, C. S.; Huang, Zuohua

    Experiments were conducted on a 4-cylinder direct-injection diesel engine using ultralow sulfur diesel blended with biodiesel and ethanol to investigate the gaseous emissions of the engine under five engine loads at the maximum torque engine speed of 1800 rev min -1. Four biodiesel blended fuels and four ethanol blended fuels with oxygen concentrations of 2%, 4%, 6% and 8% were used. With the increase of oxygen content in the blended fuels, the brake thermal efficiency improves slightly. For the diesel-biodiesel fuels, the brake specific HC and CO emissions decrease while the brake specific NO x and NO 2 emissions increase. The emissions of formaldehyde, 1,3-butadiene, toluene, xylene and overall BTX (benzene, toluene, xylene) in general decrease, however, acetaldehyde and benzene emissions increase. For the diesel-ethanol fuels, the brake specific HC and CO emissions increase significantly at low engine load, NO x emission decreases at low engine load but increases at high engine load. The emissions of benzene and BTX vary with engine load and ethanol content. Similar to the biodiesel-diesel fuels, the formaldehyde, 1,3-butadiene, toluene and xylene emissions decrease while the acetaldehyde and NO 2 emissions increase. Despite having the same oxygen contents in the blended fuels, there are significant differences in the gaseous emissions between the biodiesel-diesel blends and the ethanol-diesel blends.

  14. Emission constrained multiple-pulse fuel injection optimisation and control for fuel-efficient diesel engines

    NARCIS (Netherlands)

    Luo, X.; Jager, de A.G.; Willems, F.P.T.

    2015-01-01

    With the application of multiple-pulse fuel injec- tion profiles, the performance of diesel engines is enhanced in terms of low fuel consumption and low engine-out emission levels. However, the calibration effort increases due to a larger number of injection timing parameters. The difficulty of

  15. Comparative performance and emissions study of a direct injection Diesel engine using blends of Diesel fuel with vegetable oils or bio-diesels of various origins

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Antonopoulos, K.A.; Rakopoulos, D.C.; Hountalas, D.T.; Giakoumis, E.G.

    2006-01-01

    An extended experimental study is conducted to evaluate and compare the use of various Diesel fuel supplements at blend ratios of 10/90 and 20/80, in a standard, fully instrumented, four stroke, direct injection (DI), Ricardo/Cussons 'Hydra' Diesel engine located at the authors' laboratory. More specifically, a high variety of vegetable oils or bio-diesels of various origins are tested as supplements, i.e. cottonseed oil, soybean oil, sunflower oil and their corresponding methyl esters, as well as rapeseed oil methyl ester, palm oil methyl ester, corn oil and olive kernel oil. The series of tests are conducted using each of the above fuel blends, with the engine working at a speed of 2000 rpm and at a medium and high load. In each test, volumetric fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides (NO x ), carbon monoxide (CO) and total unburned hydrocarbons (HC) are measured. From the first measurement, specific fuel consumption and brake thermal efficiency are computed. The differences in the measured performance and exhaust emission parameters from the baseline operation of the engine, i.e. when working with neat Diesel fuel, are determined and compared. This comparison is extended between the use of the vegetable oil blends and the bio-diesel blends. Theoretical aspects of Diesel engine combustion, combined with the widely differing physical and chemical properties of these Diesel fuel supplements against the normal Diesel fuel, are used to aid the correct interpretation of the observed engine behavior

  16. Effects of biobutanol and biobutanol–diesel blends on combustion and emission characteristics in a passenger car diesel engine with pilot injection strategies

    International Nuclear Information System (INIS)

    Yun, Hyuntae; Choi, Kibong; Lee, Chang Sik

    2016-01-01

    Highlights: • Effects of biobutanol blends on NOx and soot emission characteristics in a diesel engine. • Comparison of combustion characteristics between biobutanol and diesel fuels. • Effect of pilot injection on combustion and emissions reduction in a diesel engine. - Abstract: In this study, we investigated the effect of biobutanol and biobutanol–diesel blends on the combustion and emission characteristics in a four-cylinder compression ignition engine using pilot injection strategies. The test fuels were a mixture of 10% biobutanol and 90% conventional diesel (Bu10), 20% biobutanol and 80% diesel (Bu20), and 100% diesel fuel (Bu0) based on mass. To study the combustion and emission characteristics of the biobutanol blended fuels, we carried out experimental investigations under various pilot injection timings from BTDC 20° to BTDC 60° with constant main injection timing. As the butanol content in the blended fuel increased, the experimental results indicated that the ignition delay was longer than that of diesel fuel for all pilot injection timings. Also, the indicated specific fuel consumption (ISFC) of the blended fuels was higher than that of diesel at all test conditions. However, the exhaust temperature was lower than that of diesel at all injection timings. Nitrogen oxide (NOx), carbon monoxide (CO) and soot from Bu20 were lower than those from diesel fuel at all test conditions and hydrocarbons (HC) were higher than that from diesel.

  17. Emission, efficiency, and influence in a diesel n-butanol dual-injection engine

    International Nuclear Information System (INIS)

    Zhu, Yanchun; Chen, Zheng; Liu, Jingping

    2014-01-01

    Highlights: • Dual-injection combustion for diesel n-butanol dual-fuel is investigated. • Higher EGR rate results in lower NOx and ITE, but higher smoke, HC and CO. • Larger butanol fraction results in lower smoke and ITE, but higher NOx, HC and CO. • Advanced injection can decrease smoke, HC and CO, and increase ITE. • Coupling of butanol fraction, EGR and injection timing makes for a better performance. - Abstract: In this work, a dual-injection combustion mode for diesel n-butanol dual-fuel, combined direct injection (DI) of diesel with port fuel injection (PFI) of n-butanol, was introduced. Effects of n-butanol fraction, EGR rate and injection timing on this mode were studied on a modified single-cylinder diesel engine at the speed of 1400 r/min and the IMEP of 1.0 MPa. The results indicate that with increased EGR rate, NOx emissions reduce, but smoke emissions increase. As n-butanol fraction is increased, smoke emissions decrease with a small increase in NOx. However, higher HC and CO emissions, higher indicated specific fuel consumption (ISFC) and lower indicated thermal efficiency (ITE) have to be paid with increased n-butanol fraction, especially at high EGR condition. Advancing diesel injection timing suitably has the capacity of mitigating those costs and further decreasing smoke emissions with a small penalty in NOx emissions. Coupling of large butanol fraction, high EGR rate, and advanced injection suitably contributes to a better balance between emissions and efficiency in the diesel n-butanol dual-injection engine

  18. Modeling the effects of auxiliary gas injection and fuel injection rate shape on diesel engine combustion and emissions

    Science.gov (United States)

    Mather, Daniel Kelly

    1998-11-01

    The effect of auxiliary gas injection and fuel injection rate-shaping on diesel engine combustion and emissions was studied using KIVA a multidimensional computational fluid dynamics code. Auxiliary gas injection (AGI) is the injection of a gas, in addition to the fuel injection, directly into the combustion chamber of a diesel engine. The objective of AGI is to influence the diesel combustion via mixing to reduce emissions of pollutants (soot and NO x). In this study, the accuracy of modeling high speed gas jets on very coarse computational grids was addressed. KIVA was found to inaccurately resolve the jet flows near walls. The cause of this inaccuracy was traced to the RNG k - ɛ turbulence model with the law-of-the-wall boundary condition used by KIVA. By prescribing the lengthscale near the nozzle exit, excellent agreement between computed and theoretical jet penetration was attained for a transient gas jet into a quiescent chamber at various operating conditions. The effect of AGI on diesel engine combustion and emissions was studied by incorporating the coarse grid gas jet model into a detailed multidimensional simulation of a Caterpillar 3401 heavy-duty diesel engine. The effects of AGI timing, composition, amount, orientation, and location were investigated. The effects of AGI and split fuel injection were also investigated. AGI was found to be effective at reducing soot emissions by increasing mixing within the combustion chamber. AGI of inert gas was found to be effective at reducing emissions of NOx by depressing the peak combustion temperatures. Finally, comparison of AGI simulations with experiments were conducted for a TACOM-LABECO engine. The results showed that AGI improved soot oxidation throughout the engine cycle. Simulation of fuel injection rate-shaping investigated the effects of three injection velocity profiles typical of unit-injector type, high-pressure common-rail type, and accumulator-type fuel injectors in the Caterpillar 3401 heavy

  19. Influence of injection timing on DI diesel engine characteristics fueled with waste transformer oil

    Directory of Open Access Journals (Sweden)

    S. Prasanna Raj Yadav

    2015-12-01

    Full Text Available This research work targets on the effective utilization of WTO (waste transformer oil in a diesel engine, which would rather reduce environmental problems caused by disposing of it in the open land. The waste transformer oil was compared with the conventional diesel fuel and found that it can also be used as fuel in compression ignition engines since the WTO is also a derivative of crude oil. In this present work, the WTO has been subjected to traditional base-catalyzed trans-esterification process in order to reduce the high viscosity of the WTO which helps to effectively utilize WTO as a fuel in DI diesel engine. The objective of the work is to study the influence of injection timing on the performance, emission and combustion characteristics of a single cylinder, four stroke, direct injection diesel engine using TWTO (trans-esterified waste transformer oil as a fuel. Experiments were performed at four injection timings (23°, 22°, 21°, and 20° bTDC. The results indicate that the retarded injection timing of 20° bTDC resulted in decreased oxides of nitrogen, carbon monoxide and unburned hydrocarbon by 11.57%, 17.24%, and 10% respectively while the brake thermal efficiency and smoke increased under all the load conditions when compared to that of standard injection timing.

  20. Use of tobacco seed oil methyl ester in a turbocharged indirect injection diesel engine

    International Nuclear Information System (INIS)

    Usta, N.

    2005-01-01

    Vegetable oils and their methyl/ethyl esters are alternative renewable fuels for compression ignition engines. Different kinds of vegetable oils and their methyl/ethyl esters have been tested in diesel engines. However, tobacco seed oil and tobacco seed oil methyl ester have not been tested in diesel engines, yet. Tobacco seed oil is a non-edible vegetable oil and a by-product of tobacco leaves production. To the author's best knowledge, this is the first study on tobacco seed oil methyl ester as a fuel in diesel engines. In this study, potential tobacco seed production throughout the world, the oil extraction process from tobacco seed and the transesterification process for biodiesel production were examined. The produced tobacco seed oil methyl ester was characterized by exposing its major properties. The effects of tobacco seed oil methyl ester addition to diesel No. 2 on the performance and emissions of a four cycle, four cylinder turbocharged indirect injection (IDI) diesel engine were examined at both full and partial loads. Experimental results showed that tobacco seed oil methyl ester can be partially substituted for the diesel fuel at most operating conditions in terms of performance parameters and emissions without any engine modification and preheating of the blends. (Author)

  1. Theoretical investigation of heat balance in direct injection (DI) diesel engines for neat diesel fuel and gasoline fumigation

    International Nuclear Information System (INIS)

    Durgun, O.; Sahin, Z.

    2009-01-01

    The main purpose of the presented study is to evaluate energy balance theoretically in direct injection (DI) diesel engines at different conditions. To analyze energy balance, a zero-dimensional multi-zone thermodynamic model has been developed and used. In this thermodynamic model, zero-dimensional intake and exhaust approximations given by Durgun, zero-dimensional compression and expansion model given by Heywood and quasi-dimensional phenomenological combustion model developed by Shahed and then improved Ottikkutti have been used and developed with new approximations and assumptions. By using the developed model, complete diesel engine cycle, engine performance parameters and exhaust emissions can be determined easily. Also, by using this model energy balance can be analyzed for neat diesel fuel and for light fuel fumigation easily. In the presented study, heat balance has been investigated theoretically for three different engines and various numerical applications have been conducted. In the numerical applications two different turbocharged DI diesel engines and a naturally aspirated DI diesel engine have been used. From these numerical applications, it is determined that, what portion of available fuel energy is converted to useful work, what amount of fuel energy is lost by exhaust gases or lost by heat transfer. In addition, heat balance has been analyzed for gasoline fumigation and some numerical results have been given. Brake effective power and brake specific fuel consumption increase and brake effective efficiency decreases for gasoline fumigation for turbocharged diesel engines used in numerical applications. Combustion duration increases with increasing fumigation ratio and thus heat transfer to the walls increases. Because exhaust temperature increases, exhaust losses also increases for fumigation case

  2. Computational study of the effect of different injection angle on heavy duty diesel engine combustion

    Directory of Open Access Journals (Sweden)

    Ranjbar Ali Akbar

    2009-01-01

    Full Text Available Diesel engines exhausting gaseous emission and particulate matter have long been regarded as one of the major air pollution sources, particularly in metropolitan areas, and have been a source of serious public concern for a long time. The choosing various injection strategies is not only motivated by cost reduction but is also one of the potentially effective techniques to reduce exhaust emission from diesel engines. The purpose of this study is to investigate the effect of different injection angles on a heavy duty diesel engine and emission characteristics. The varieties of injection angle were simulated and the emissions like soot and NO is calculated. The comparison between the different injection strategies was also investigated. A combustion chamber for three injection strategies (injection direction with angles of α=67.5, 70, and 72.5 degree was simulated. The comparative study involving rate of heat release, in-cylinder temperature, in-cylinder pressure, NO and soot emissions were also reported for different injection strategies. The case of α=70 is optimum because in this manner the emissions are lower in almost most of crank angle than two other cases and the in-cylinder pressure, which is a representation of engine power, is higher than in the case of α=67.5 and just a little lower than in the case of α=72.5.

  3. Optimization experiment of gas oil direct injection valve for CNG dual fuel diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.Y. [Chonnam National University Graduate School, Jeonju (Korea); Park, C. K. [Chonnam National University, Jeonju (Korea)

    1999-04-01

    In this study, we studied for a conversion from diesel engine to natural gas dual fuel engine. For this experimental, we tested about the injection quantity characteristics of pilot valve with the plunger diameter at the retraction volume and investigated to the engine performance and exhaust emissions with the nozzle hole number and injection nozzle diameter. As a result, when the plunger diameter is 7.5 mm at the retraction volume, 25 mm{sup 3}/st, the injection quantity characteristics develop. Also, when a nozzle type is 4*{phi} 0.24, total hydrocarbon(THC) emission reduce at low equivalence ratio. (author). 5 refs., 10 figs., 2 tabs.

  4. Combustion characteristics of a charcoal slurry in a direct injection diesel engine and the impact on the injection system performance

    International Nuclear Information System (INIS)

    Soloiu, Valentin; Lewis, Jeffery; Yoshihara, Yoshinobu; Nishiwaki, Kazuie

    2011-01-01

    The paper presents the research results pertaining to the renewable biomass charcoal-diesel slurries and their use as alternative fuels for combustion in diesel generating plants. The utilization of charcoal slurry fuel aims to reduce diesel oil consumption and would decrease fossil green house emissions into the atmosphere. The paper investigates the formulation, emulsification, sprays, combustion, injection system operation, and subsequent wear with charcoal-diesel slurries. In the research, cedar wood chips were used for the production of charcoal to be emulsified with diesel oil. The slurry's viscosity of 27 cP achieved the target ( o C. Charcoal slurry displayed a high vaporization rate of 75% by wt. at 300 o C. Engine investigations showed that the top combustion pressure at 1200 rpm and 100% load (7.8 brake mean effective pressure (bmep)) was 79 bar for diesel fuel and 78 bar for the charcoal slurry fuel. From the injection and heat release history was found an ignition delay of 1.7 ms for diesel that increased to 2.1 ms for the slurry fuel. A higher net heat release for charcoal slurry was observed, up to 180 J/crank angle degrees (CAD) compared with the diesel at 145 J/CAD The maximum combustion temperature reached 2300 K for diesel and 2330 K for slurry. The heat fluxes for both fuels have similar values and trends during the entire cycle showing the good compatibility of charcoal slurry with a diesel type combustion and low soot radiation. The exhaust temperatures were about 40-50 o C higher for charcoal slurry at 19 o before top dead center (BTDC) injection timing. The engine's bsfc increased as expected due to the lower heating value of the slurry fuel. The smoke Bosch no. was lower for the slurry fuel at any load, and is believed that the oxygen from the charcoal had a beneficial effect. The measured emissions of slurry fuel were better at 13 o BTDC than those of diesel fuel with the original engine settings and the remaining 6-10% oxygen content in

  5. Characteristics of pressure wave in common rail fuel injection system of high-speed direct injection diesel engines

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Herfatmanesh

    2016-05-01

    Full Text Available The latest generation of high-pressure common rail equipment now provides diesel engines possibility to apply as many as eight separate injection pulses within the engine cycle for reducing emissions and for smoothing combustion. With these complicated injection arrangements, optimizations of operating parameters for various driving conditions are considerably difficult, particularly when integrating fuel injection parameters with other operating parameters such as exhaust gas recirculation rate and boost pressure together for evaluating calibration results. Understanding the detailed effects of fuel injection parameters upon combustion characteristics and emission formation is therefore particularly critical. In this article, the results and discussion of experimental investigations on a high-speed direct injection light-duty diesel engine test bed are presented for evaluating and analyzing the effects of main adjustable parameters of the fuel injection system on all regulated emission gases and torque performance. Main injection timing, rail pressure, pilot amount, and particularly pilot timing have been examined. The results show that optimization of each of those adjustable parameters is beneficial for emission reduction and torque improvement under different operating conditions. By exploring the variation in the interval between the pilot injection and the main injection, it is found that the pressure wave in the common rail has a significant influence on the subsequent injection. This suggests that special attentions must be paid for adjusting pilot timing or any injection interval when multi-injection is used. With analyzing the fuel amount oscillation of the subsequent injections to pilot separation, it demonstrates that the frequency of regular oscillations of the actual fuel amount or the injection pulse width with the variation in pilot separation is always the same for a specified fuel injection system, regardless of engine speed

  6. Injection and Combustion of RME with Water Emulsions in a Diesel Engine

    Directory of Open Access Journals (Sweden)

    J. Cisek

    2010-01-01

    Full Text Available This paper presents ways of using the fully-digitised triggerable AVL VideoScope 513D video system for analysing the injection and combustion inside a diesel engine cylinder fuelled by RME with water emulsions.The research objects were: standard diesel fuel, rapeseed methyl ester (RME and RME – water emulsions. With the aid of a helical flow reactor, stable emulsions with the water fraction up to 30 % weight were obtained, using an additive to prevent the water from separating out of the emulsion.An investigation was made of the effect of the emulsions on exhaust gas emissions (NOX, CO and HC, particulate matter emissions, smoke and the fuel consumption of a one-cylinder HD diesel engine with direct injection. Additionally, the maximum cylinder pressure rise was calculated from the indicator diagram. The test engine was operated at a constant speed of 1 600 rpm and 4 bar BMEP load conditions. The fuel injection and combustion processes were observed and analysed using endoscopes and a digital camera. The temperature distribution in the combustion chamber was analysed quantitatively using the two-colour method. The injection and combustion phenomena were described and compared.A way to reduce NOX formation in the combustion chamber of diesel engines by adding water in the combustion zone was presented. Evaporating water efficiently lowers the peak flame temperature and the temperature in the post-flame zone. For diesel engines, there is an exponential relationship between NOX emissions and peak combustion temperatures. The energy needed to vaporize the water results in lower peak temperatures of the combusted gases, with a consequent reduction in nitrogen oxide formation. The experimental results show up to 50 % NOX emission reduction with the use of 30% water in an RME emulsion, with unchanged engine performance.

  7. Application of an EGR system in a direct injection diesel engine to reduce NOx emissions

    Science.gov (United States)

    De Serio, D.; De Oliveira, A.; Sodré, J. R.

    2016-09-01

    This work presents the application of an exhaust gas recirculation (EGR) system in a direct injection diesel engine operating with diesel oil containing 7% biodiesel (B7). EGR rates of up to 10% were applied with the primary aim to reduce oxides of nitrogen (NOx) emissions. The experiments were conducted in a 44 kW diesel power generator to evaluate engine performance and emissions for different load settings. The use of EGR caused a peak pressure reduction during the combustion process and a decrease in thermal efficiency, mainly at high engine loads. A reduction of NOx emissions of up to 26% was achieved, though penalizing carbon monoxide (CO) and total hydrocarbons (THC) emissions.

  8. Effect of advanced injection timing on emission characteristics of diesel engine running on natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Nwafor, O.M.I. [Department of Mechanical Engineering, Federal University of Technology, Owerri, Imo State (Nigeria)

    2007-11-15

    There has been a growing concern on the emission of greenhouse gases into the atmosphere, whose consequence is global warming. The sources of greenhouse gases have been identified, of which the major contributor is the combustion of fossil fuel. Researchers have intensified efforts towards identifying greener alternative fuel substitutes for the present fossil fuel. Natural gas is now being investigated as potential alternative fuel for diesel engines. Natural gas appears more attractive due to its high octane number and perhaps, due to its environmental friendly nature. The test results showed that alternative fuels exhibit longer ignition delay, with slow burning rates. Longer delays will lead to unacceptable rates of pressure rise with the result of diesel knock. This work examines the effect of advanced injection timing on the emission characteristics of dual-fuel engine. The engine has standard injection timing of 30 BTDC. The injection was first advanced by 5.5 and given injection timing of 35.5 BTDC. The engine performance was erratic on this timing. The injection was then advanced by 3.5 . The engine performance was smooth on this timing especially at low loading conditions. The ignition delay was reduced through advanced injection timing but tended to incur a slight increase in fuel consumption. The CO and CO{sub 2} emissions were reduced through advanced injection timing. (author)

  9. Test results of pongamia pinnata methyl esters with direct injection diesel engine

    International Nuclear Information System (INIS)

    Bannikov, MG.; Chattha, J.A.; Khan, A.F.

    2011-01-01

    Pongamia Pinnata oil is considered as a potential source of biodiesel production in Pakistan. When selecting source for commercial production of biodiesel several criteria are used. One of them is that biodiesel or biodiesel/diesel fuel blends must provide satisfactory performance and emissions of the diesel engine without or with a little engine modification. In this research performance and emissions characteristics of a direct injection diesel engine running on Pongamia Pinnata methyl esters were discussed. Discussion was supported by an analysis of combustion characteristics derived from in-cylinder pressure data. Engine running on a neat biodiesel showed higher brake specific fuel consumption and lower brake fuel conversion efficiency at all loads, whereas emissions were improved except of carbon monoxide emission at high loads. Decrease in brake efficiency and reduction of nitrogen oxides emissions were attributed solely to the change in the rate of heat release. Deposits on fuel infector nozzle were observed when engine was running on the neat biodiesel. Based on test results conclusion was made that Pongamia biodiesel/diesel fuel blends can effectively be used as a diesel oil substitute. (author)

  10. Effects of Injection Rate Profile on Combustion Process and Emissions in a Diesel Engine

    Directory of Open Access Journals (Sweden)

    Fuqiang Bai

    2017-01-01

    Full Text Available When multi-injection is implemented in diesel engine via high pressure common rail injection system, changed interval between injection pulses can induce variation of injection rate profile for sequential injection pulse, though other control parameters are the same. Variations of injection rate shape which influence the air-fuel mixing and combustion process will be important for designing injection strategy. In this research, CFD numerical simulations using KIVA-3V were conducted for examining the effects of injection rate shape on diesel combustion and emissions. After the model was validated by experimental results, five different shapes (including rectangle, slope, triangle, trapezoid, and wedge of injection rate profiles were investigated. Modeling results demonstrate that injection rate shape can have obvious influence on heat release process and heat release traces which cause different combustion process and emissions. It is observed that the baseline, rectangle (flat, shape of injection rate can have better balance between NOx and soot emissions than the other investigated shapes. As wedge shape brings about the lowest NOx emissions due to retarded heat release, it produces the highest soot emissions among the five shapes. Trapezoid shape has the lowest soot emissions, while its NOx is not the highest one. The highest NOx emissions were produced by triangle shape due to higher peak injection rate.

  11. Diesel Engine Convert to Port Injection CNG Engine Using Gaseous Injector Nozzle Multi Holes Geometries Improvement: A Review

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2009-01-01

    The objective of this study was to review the previous research in the development of gaseous fuel injector for port injection CNG engine converted from diesel engine. Problem statement: The regular development of internal combustion engines change direction to answer the two most important problems determining the development trends of engines technology and in particular, their combustion systems. They were environmental protection against emission and noise, shortage of hydrocarbon fuels, ...

  12. Effect of intake swirl on the performance of single cylinder direct injection diesel engine

    Science.gov (United States)

    Sharma, Vinod Kumar; Mohan, Man; Mouli, Chandra

    2017-11-01

    In the present work, the effect of inlet manifold geometry and swirl intensity on the direct injection (DI) diesel engine performance was investigated experimentally. Modifications in inlet manifold geometry have been suggested to achieve optimized swirl for the better mixing of fuel with air. The intake swirl intensities of modified cylinder head were measured in swirl test rig at different valve lifts. Later, the overall performance of 435 CC DI diesel engine was measured using modified cylinder head. In addition, the performance of engine was compared for both modified and old cylinder head. For same operating conditions, the brake power and brake specific fuel consumption was improved by 6% and 7% respectively with modified cylinder head compared to old cylinder head. The maximum brake power of 9 HP was achieved for modified cylinder head. The results revealed that the intake swirl has great influence on engine performance.

  13. Performance and exhaust emission characteristics of direct-injection Diesel engine when operating on shale oil

    International Nuclear Information System (INIS)

    Labeckas, Gvidonas; Slavinskas, Stasys

    2005-01-01

    This article presents the comparative bench testing results of a naturally aspirated, four stroke, four cylinder, water cooled, direct injection Diesel engine when running on Diesel fuel and shale oil that is produced in Estonia from local oil shale. The purpose of this research is to investigate the possibility of practical usage of the shale oil as the alternative fuel for a high speed Diesel engine as well as to evaluate the combustion efficiency, brake specific fuel consumption, emission composition changes and the smoke opacity of the exhausts. Test results show that when fuelling a fully loaded engine with shale oil, the brake specific fuel consumption at the maximum torque and rated power is correspondingly higher by 12.3% and 20.4%. However, the brake thermal efficiencies do not differ widely and their maximum values remain equal to 0.36-0.37 for Diesel fuel and 0.32-0.33 for shale oil. The total nitrogen oxide emissions from the shale oil at engine partial loads remain considerably lower although when running at the maximum torque and rated power, the NO x emissions become correspondingly higher by 21.8% and 27.6%. The smoke opacity of the fully loaded engine at a wide range of speeds is lower by 30-35%, whereas the carbon monoxide and unburned hydrocarbon emissions in the exhausts at moderate and full load regimes do not undergo significant changes

  14. Effect of injection timing on combustion and performance of a direct injection diesel engine running on Jatropha methyl ester

    Energy Technology Data Exchange (ETDEWEB)

    Jindal, S. [Mechanical Engineering Department, College of Technology & Engineering, Maharana Pratap University of Agriculture and Technology, Udaipur 313001 (India)

    2011-07-01

    The present study aims at evaluation of effect of injection timing on the combustion, performance and emissions of a small power diesel engine, commonly used for agriculture purpose, running on pure biodiesel, prepared from Jatropha (Jatropha curcas) vegetable oil. The effect of varying injection timing was evaluated in terms of thermal efficiency, specific fuel consumption, power and mean effective pressure, exhaust temperature, cylinder pressure, rate of pressure rise and the heat release rate. It was found that retarding the injection timing by 3 degrees enhances the thermal efficiency by about 8 percent.

  15. Modelling the effect of injection pressure on heat release parameters and nitrogen oxides in direct injection diesel engines

    Directory of Open Access Journals (Sweden)

    Yüksek Levent

    2014-01-01

    Full Text Available Investigation and modelling the effect of injection pressure on heat release parameters and engine-out nitrogen oxides are the main aim of this study. A zero-dimensional and multi-zone cylinder model was developed for estimation of the effect of injection pressure rise on performance parameters of diesel engine. Double-Wiebe rate of heat release global model was used to describe fuel combustion. extended Zeldovich mechanism and partial equilibrium approach were used for modelling the formation of nitrogen oxides. Single cylinder, high pressure direct injection, electronically controlled, research engine bench was used for model calibration. 1000 and 1200 bars of fuel injection pressure were investigated while injection advance, injected fuel quantity and engine speed kept constant. The ignition delay of injected fuel reduced 0.4 crank angle with 1200 bars of injection pressure and similar effect observed in premixed combustion phase duration which reduced 0.2 crank angle. Rate of heat release of premixed combustion phase increased 1.75 % with 1200 bar injection pressure. Multi-zone cylinder model showed good agreement with experimental in-cylinder pressure data. Also it was seen that the NOx formation model greatly predicted the engine-out NOx emissions for both of the operation modes.

  16. The effect of rapeseed oil methyl ester on direct injection Diesel engine performance and exhaust emissions

    International Nuclear Information System (INIS)

    Labeckas, Gvidonas; Slavinskas, Stasys

    2006-01-01

    This article presents the comparative bench testing results of a four stroke, four cylinder, direct injection, unmodified, naturally aspirated Diesel engine when operating on neat RME and its 5%, 10%, 20% and 35% blends with Diesel fuel. The purpose of this research is to examine the effects of RME inclusion in Diesel fuel on the brake specific fuel consumption (bsfc) of a high speed Diesel engine, its brake thermal efficiency, emission composition changes and smoke opacity of the exhausts. The brake specific fuel consumption at maximum torque (273.5 g/kW h) and rated power (281 g/kW h) for RME is higher by 18.7% and 23.2% relative to Diesel fuel. It is difficult to determine the RME concentration in Diesel fuel that could be recognised as equally good for all loads and speeds. The maximum brake thermal efficiency varies from 0.356 to 0.398 for RME and from 0.373 to 0.383 for Diesel fuel. The highest fuel energy content based economy (9.36-9.61 MJ/kW h) is achieved during operation on blend B10, whereas the lowest ones belong to B35 and neat RME. The maximum NO x emissions increase proportionally with the mass percent of oxygen in the biofuel and engine speed, reaching the highest values at the speed of 2000 min -1 , the highest being 2132 ppm value for the B35 blend and 2107 ppm for RME. The carbon monoxide, CO, emissions and visible smoke emerging from the biodiesel over all load and speed ranges are lower by up to 51.6% and 13.5% to 60.3%, respectively. The carbon dioxide, CO 2 , emissions along with the fuel consumption and gas temperature, are slightly higher for the B20 and B35 blends and neat RME. The emissions of unburned hydrocarbons, HC, for all biofuels are low, ranging at 5-21 ppm levels

  17. Prediction of emissions and exhaust temperature for direct injection diesel engine with emulsified fuel using ANN

    OpenAIRE

    KÖKKÜLÜNK, Görkem; AKDOĞAN, Erhan; AYHAN, Vezir

    2014-01-01

    Exhaust gases have many effects on human beings and the environment. Therefore, they must be kept under control. The International Convention for the Prevention of Pollution from Ships (MARPOL), which is concerned with the prevention of marine pollution, limits the emissions according to the regulations. In Emission Control Area (ECA) regions, which are determined by MARPOL as ECAs, the emission rates should be controlled. Direct injection (DI) diesel engines are commonly used as a prop...

  18. Combustion characteristics and optimal factors determination with Taguchi method for diesel engines port-injecting hydrogen

    International Nuclear Information System (INIS)

    Wu, Horng-Wen; Wu, Zhan-Yi

    2012-01-01

    This study applies the L 9 orthogonal array of the Taguchi method to find out the best hydrogen injection timing, hydrogen-energy-share ratio, and the percentage of exhaust gas circulation (EGR) in a single DI diesel engine. The injection timing is controlled by an electronic control unit (ECU) and the quantity of hydrogen is controlled by hydrogen flow controller. For various engine loads, the authors determine the optimal operating factors for low BSFC (brake specific fuel consumption), NO X , and smoke. Moreover, net heat-release rate involving variable specific heat ratio is computed from the experimental in-cylinder pressure. In-cylinder pressure, net heat-release rate, A/F ratios, COV (coefficient of variations) of IMEP (indicated mean effective pressure), NO X , and smoke using the optimum condition factors are compared with those by original baseline diesel engine. The predictions made using Taguchi's parameter design technique agreed with the confirmation results on 95% confidence interval. At 45% and 60% loads the optimum factor combination compared with the original baseline diesel engine reduces 14.52% for BSFC, 60.5% for NO X and for 42.28% smoke and improves combustion performance such as peak in-cylinder pressure and net heat-release rate. Adding hydrogen and EGR would not generate unstable combustion due to lower COV of IMEP. -- Highlights: ► We use hydrogen injector controlled by ECU and cooled EGR system in a diesel engine. ► Optimal factors by Taguchi method are determined for low BSFC, NO X and smoke. ► The COV of IMEP is lower than 10% so it will not cause the unstable combustion. ► We improve A/F ratio, in-cylinder pressure, and heat-release at optimized engine. ► Decrease is 14.5% for BSFC, 60.5% for NO X , and 42.28% for smoke at optimized engine.

  19. Modeling analysis of urea direct injection on the NOx emission reduction of biodiesel fueled diesel engines

    International Nuclear Information System (INIS)

    An, H.; Yang, W.M.; Li, J.; Zhou, D.Z.

    2015-01-01

    Highlights: • The effects of urea direct injection on NO x emissions reduction was investigated. • Aqueous urea solution was proposed to be injected after the fuel injection process. • The optimized injection strategy achieved a reduction efficiency of 58%. • There were no severe impacts on the CO emissions and BSFC. - Abstract: In this paper, a numerical simulation study was conducted to explore the possibility of an alternative approach: direct aqueous urea solution injection on the reduction of NO x emissions of a biodiesel fueled diesel engine. Simulation studies were performed using the 3D CFD simulation software KIVA4 coupled with CHEMKIN II code for pure biodiesel combustion under realistic engine operating conditions of 2400 rpm and 100% load. The chemical behaviors of the NO x formation and urea/NO x interaction processes were modeled by a modified extended Zeldovich mechanism and urea/NO interaction sub-mechanism. To ensure an efficient NO x reduction process, various aqueous urea injection strategies in terms of post injection timing, injection angle, and injection rate and urea mass fraction were carefully examined. The simulation results revealed that among all the four post injection timings (10 °ATDC, 15 °ATDC, 20 °ATDC and 25 °ATDC) that were evaluated, 15 °ATDC post injection timing consistently demonstrated a lower NO emission level. The orientation of the aqueous urea injection was also shown to play a critical role in determining the NO x removal efficiency, and 50 degrees injection angle was determined to be the optimal injection orientation which gave the most NO x reduction. In addition, both the urea/water ratio and aqueous urea injection rate demonstrated important roles which affected the thermal decomposition of urea into ammonia and the subsequent NO x removal process, and it was suggested that 50% urea mass fraction and 40% injection rate presented the lowest NO emission levels. At last, with the optimized injection

  20. Possibilities of Simultaneous In-Cylinder Reduction of Soot and NOx Emissions for Diesel Engines with Direct Injection

    OpenAIRE

    Wagner, U.; Eckert, P.; Spicher, U.

    2008-01-01

    Up to now, diesel engines with direct fuel injection are the propulsion systems with the highest efficiency for mobile applications. Future targets in reducing CO2 -emissions with regard to global warming effects can be met with the help of these engines. A major disadvantage of diesel engines is the high soot and nitrogen oxide emissions which cannot be reduced completely with only engine measures today. The present paper describes two different possibilities for the sim...

  1. Effect of injection pressure on heat release rate and emissions in CI engine using orange skin powder diesel solution

    International Nuclear Information System (INIS)

    Purushothaman, K.; Nagarajan, G.

    2009-01-01

    Experiments have been conducted to study the effect of injection pressure on the combustion process and exhaust emissions of a direct injection diesel engine fueled with Orange Skin Powder Diesel Solution (OSPDS). Earlier investigation by the authors revealed that 30% OSPDS was optimum for better performance and emissions. In the present investigation the injection pressure was varied with 30% OSPDS and the combustion, performance and emissions characteristics were compared with those of diesel fuel. The different injection pressures studied were 215 bar, 235 bar and 255 bar. The results showed that the cylinder pressure with 30% OSPDS at 235 bar fuel injection pressure, was higher than that of diesel fuel as well as at other injection pressures. Similarly, the ignition delay was longer and with shorter combustion duration with 30% OSPDS at 235 bar injection pressure. The brake thermal efficiency was better at 235 bar than that of other fuel injection pressures with OSPDS and lower than that of diesel fuel. The NO x emission with 30% OSPDS was higher at 235 bar. The hydrocarbon and CO emissions were lower with 30% OSPDS at 235 bar. The smoke emission with 30% OSPDS was marginally lower at 235 bar and marginally higher at 215 bar than for diesel fuel. The combustion, performance and emission characteristics of the engine operating on the test fuels at 235 bar injection pressure were better than other injection pressures

  2. Soot and smoke emissions numerical evaluation for a direct injection (DI diesel engine

    Directory of Open Access Journals (Sweden)

    Radu Bogdan

    2017-01-01

    Full Text Available The reduction of Diesel internal combustion engines emissions is one of the major concerns of the engines manufacturers. Despite the fact that the efficiency of the gas post-treatment systems has been significantly improved, decreasing the smoke and the soot from the cylinder inside remains a main research goal. This work is proposing a theoretical study on these pollutants formation for different kinds of direct injection methods. By dividing the in-cylinder injection the heat release characteristic could be modified, leading to different temperature and pressure levels. Using exhaust gas recirculation (EGR the reduction of the gas temperatures might also be decreased, limiting NOx formation. To evaluate the level of the cylinder gas emissions formation a two-step procedure could be followed. First, by using a numerical calculation system the heat release characteristic can be highlighted concerning a Diesel engine with stratified injection; then, using an experimental relationship applying a large data base, the amount of the gas emissions can be subsequently provided. The authors propose some combinations between injection characteristics and EGR used fractions which could generate successfully results speaking in terms of NOx, soot and smoke formation.

  3. Baseline performance and emissions data for a single-cylinder, direct-injected diesel engine

    Science.gov (United States)

    Dezelick, R. A.; Mcfadden, J. J.; Ream, L. W.; Barrows, R. F.

    1983-01-01

    Comprehensive fuel consumption, mean effective cylinder pressure, and emission test results for a supercharged, single-cylinder, direct-injected, four-stroke-cycle, diesel test engine are documented. Inlet air-to-exhaust pressure ratios were varied from 1.25 to 3.35 in order to establish the potential effects of turbocharging techniques on engine performance. Inlet air temperatures and pressures were adjusted from 34 to 107 C and from 193 to 414 kPa to determine the effects on engine performance and emissions. Engine output ranged from 300 to 2100 kPa (brake mean effective pressure) in the speed range of 1000 to 3000 rpm. Gaseous and particulate emission rates were measured. Real-time values of engine friction and pumping loop losses were measured independently and compared with motored engine values.

  4. Effects of pilot injection timing and EGR on a modern V6 common rail direct injection diesel engine

    Science.gov (United States)

    Rosli Abdullah, Nik; Mamat, Rizalman; Wyszynski, Miroslaw L.; Tsolakis, Anthanasios; Xu, Hongming

    2013-12-01

    Nitric oxide and smoke emissions in diesel engine can be controlled by optimising the air/fuel mixture. Early injection produces premixed charge resulted in simultaneous NOx and smoke emissions reduction. However, there could be an increase in hydrocarbons and CO emissions due to fuel impinged to the cylinder wall. The focus of the present work is to investigate the effects of a variation of pilot injection timing with EGR to NOx and smoke level on a modern V6 common rail direct injection. This study is carried out at two different engine load conditions of 30 Nm and 55 Nm, at constant engine speed of 2000 rpm. The results show that the early pilot injection timing contributed to the lower smoke level and higher NOx emissions. The higher level of NOx is due to higher combustion temperatures resulting from the complete combustion. Meanwhile, the lower smoke level is due to complete fuel combustion and soot oxidation. The early pilot injection timing produces an intermediate main ignition delay which also contributed to complete combustion. The formation of smoke is higher at a high engine load compared with low engine load due to the higher amount of fuel being injected.

  5. Effects of injection timing on the engine performance and exhaust emissions of a dual-fuel diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Sayin, Cenk [Department of Mechanical Education, Marmara University, 34722 Istanbul (Turkey); Canakci, Mustafa [Department of Mechanical Education, Kocaeli University, 41380 Izmit (Turkey); Alternative Fuels R and D Center, Kocaeli University, 41040 Izmit (Turkey)

    2009-01-15

    In this study, influence of injection timing on the engine performance and exhaust emissions of a naturally aspirated, single cylinder diesel engine has been experimentally investigated when using ethanol blended diesel fuel from 0% to 15% with an increment of 5%. The engine load was selected as 15 and 30 Nm. The tests were conducted at five different injection timings (21 , 24 , 27 , 30 and 33 CA BTDC) by changing the thickness of advance shim. The experimental test results showed that BSFC and emissions of NO{sub x} and CO{sub 2} increased as BTE and emissions of CO and HC decreased with increasing amount of ethanol in the fuel mixture. When compared to the results of original injection timing (27 CA BTDC), NO{sub x} and CO{sub 2} emissions increased, and unburned HC and CO emissions decreased for the retarded injection timings (21 and 24 CA BTDC) at the all test conditions. On the other side, with the advanced injection timings (30 and 33 CA BTDC), decreasing HC and CO emissions diminished, and NO{sub x} and CO{sub 2} emissions boosted. In terms of BSFC and BTE, retarded and advanced injection timings compared to the original injection timing in the all fuel blends gave negative results for all engine speeds and loads. (author)

  6. Effects of injection timing on the engine performance and exhaust emissions of a dual-fuel diesel engine

    International Nuclear Information System (INIS)

    Sayin, Cenk; Canakci, Mustafa

    2009-01-01

    In this study, influence of injection timing on the engine performance and exhaust emissions of a naturally aspirated, single cylinder diesel engine has been experimentally investigated when using ethanol blended diesel fuel from 0% to 15% with an increment of 5%. The engine load was selected as 15 and 30 Nm. The tests were conducted at five different injection timings (21 deg., 24 deg., 27 deg., 30 deg. and 33 deg. CA BTDC) by changing the thickness of advance shim. The experimental test results showed that BSFC and emissions of NO x and CO 2 increased as BTE and emissions of CO and HC decreased with increasing amount of ethanol in the fuel mixture. When compared to the results of original injection timing (27 deg. CA BTDC), NO x and CO 2 emissions increased, and unburned HC and CO emissions decreased for the retarded injection timings (21 deg. and 24 deg. CA BTDC) at the all test conditions. On the other side, with the advanced injection timings (30 deg. and 33 deg. CA BTDC), decreasing HC and CO emissions diminished, and NO x and CO 2 emissions boosted. In terms of BSFC and BTE, retarded and advanced injection timings compared to the original injection timing in the all fuel blends gave negative results for all engine speeds and loads

  7. Fueling an D.I. agricultural diesel engine with waste oil biodiesel: Effects over injection, combustion and engine characteristics

    International Nuclear Information System (INIS)

    Radu, Rosca; Petru, Carlescu; Edward, Rakosi; Gheorghe, Manolache

    2009-01-01

    The paper presents the results of a research concerning the use of a biodiesel type fuel in D.I. Diesel engine; the fuel injection system and the engine were tested. The results indicated that the injection characteristics are affected when a blend containing 50% methyl ester and 50% petrodiesel is used as fuel (injection duration, pressure wave propagation time, average injection rate, peak injection pressure). As a result, the engine characteristics are also affected, the use of the biodiesel blend leading to lower output power and torque; the lower autoignition delay and pressure wave propagation time led to changes of the cylinder pressure and heat release traces and to lower peak combustion pressures.

  8. A Comparative Study of Engine Performance and Exhaust Emissions Characteristics of Linseed Oil Biodiesel Blends with Diesel Fuel in a Direct Injection Diesel Engine

    Science.gov (United States)

    Salvi, B. L.; Jindal, S.

    2013-01-01

    This paper is aimed at study of the performance and emissions characteristics of direct injection diesel engine fueled with linseed oil biodiesel blends and diesel fuel. The comparison was done with base fuel as diesel and linseed oil biodiesel blends. The experiments were conducted with various blends of linseed biodiesel at different engine loads. It was found that comparable mass fraction burnt, better rate of pressure rise and BMEP, improved indicated thermal efficiency (8-11 %) and lower specific fuel consumption (3.5-6 %) were obtained with LB10 blend at full load. The emissions of CO, un-burnt hydrocarbon and smoke were less as compared to base fuel, but with slight increase in the emission of NOx. Since, linseed biodiesel is renewable in nature, so practically negligible CO2 is added to the environment. The linseed biodiesel can be one of the renewable alternative fuels for transportation vehicles and blend LB10 is preferable for better efficiency.

  9. Influence of narrow fuel spray angle and split injection strategies on combustion efficiency and engine performance in a common rail direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Raouf Mobasheri

    2017-03-01

    Full Text Available Direct injection diesel engines have been widely used in transportation and stationary power systems because of their inherent high thermal efficiency. On the other hand, emission regulations such as NOx and particulates have become more stringent from the standpoint of preserving the environment in recent years. In this study, previous results of multiple injection strategies have been further investigated to analyze the effects of narrow fuel spray angle on optimum multiple injection schemes in a heavy duty common rail direct injection diesel engine. An advanced computational fluid dynamics simulation has been carried out on a Caterpillar 3401 diesel engine for a conventional part load condition in 1600 r/min at two exhaust gas recirculation rates. A good agreement of calculated and measured in-cylinder pressure, heat release rate and pollutant formation trends was obtained under various operating points. Three different included spray angles have been studied in comparison with the traditional spray injection angle. The results show that spray targeting is very effective for controlling the in-cylinder mixture distributions especially when it accompanied with various injection strategies. It was found that the optimum engine performance for simultaneous reduction of soot and NOx emissions was achieved with 105° included spray angle along with an optimized split injection strategy. The results show, in this case, the fuel spray impinges at the edge of the piston bowl and a counterclockwise flow motion is generated that pushes mixture toward the center of the piston bowl.

  10. Mechanism of hydrocarbon reduction using multiple injection in a natural gas fuelled/micro-pilot diesel ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Micklow, G.J.; Gong, W. [University of North Carolina, Charlotte, NC (United States)

    2002-03-01

    Research has shown that a large amount of natural gas (NG) is unburned at light loads in an NG fuelled/micro-pilot diesel compression ignition engine. A mechanism of unburned hydrocarbon (HC) reduction using multiple injections of micro-pilot diesel has been proposed in this paper. Multidimensional computations were carried out for a dual-fuel engine based on a modified CAT3401 engine configuration. The computations show that a split injection with a small percentage (e.g. 30 per cent of diesel in the second injection pulse) can significantly reduce HC, CO and NO{sub x} emissions. Based on parax metric studies to optimize the timing of both of the injection pulses, HC emissions could be reduced by 90 per cent, with a reduction in CO emissions of 50 per cent and NO{sub x} emissions of 70 per cent in comparison to a singlex injection pulse-base case configuration. (author)

  11. Effect of steam injection on nox emissions and performance of a single cylinder diesel engine fuelled with soy methyl ester

    Directory of Open Access Journals (Sweden)

    Manickam Madhavan V.

    2017-01-01

    Full Text Available Biodiesel attracts most of the researchers and automotive industries in recent years as an alternative fuel for diesel engines, because of its better lubricity property, higher cetane number, and less greenhouse gas emissions. The use of bio diesel leads to reduction in hydro carbons, carbon monoxide, and particulate matter, but increase in NOx emissions. Increase in biodiesel blends in standard diesel leads to increase in NOx emission. In this study, an attempt is made to reduce the NOx emis-sions of a diesel engine fueled with pure soy methyl ester (B100 with low pressure steam injection. Experiments were carried out and studied for both standard diesel and pure biodiesel of soy methyl ester with steam injection ratio of 5, 10, and 15% on mass ratio basis of air in the inlet manifold. The present study has shown that around 30% reduction in NOx can be achieved for the steam injection rate of 10% and considerable reduction for all other steam injection rates when compared to standard diesel and B100. It is also observed that steam injection having signifi-cant impact on reduction of other emissions such as HC, CO, and CO2. The study also noted marginal improvement in the engine brake power, brake thermal effi-ciency and reduction in specific fuel consumption at part loads and minor increase during peak load operation for the low pressure steam injection on B100.

  12. A comparison of water-diesel emulsion and timed injection of water into the intake manifold of a diesel engine for simultaneous control of NO and smoke emissions

    International Nuclear Information System (INIS)

    Subramanian, K.A.

    2011-01-01

    Experiments were conducted to compare the effects of water-diesel emulsion and water injection into the intake manifold on performance, combustion and emission characteristics of a DI diesel engine under similar operating conditions. The water to diesel ratio for the emulsion was 0.4:1 by mass. The same water-diesel ratio was maintained for water injection method in order to assess both potential benefits. All tests were done at the constant speed of 1500 rpm at different outputs. The static injection timing of 23 o BTDC was kept as constant for all experimental tests. In the first phase, experiments were carried out to asses the performance, combustion and emission characteristics of the engine using the water-diesel emulsion. The emulsion was prepared using the surfactant of HLB:7. The emulsion was injected using the conventional injection system during the compression stroke. The second phase of work was that water was injected into the intake manifold of the engine using an auxiliary injector during the suction stroke. An electronic control unit (ECU) was developed to control the injector operation such as start of injection and water injection duration with respect to the desired crank angle. The experimental result indicates the both methods (emulsion and injection) could reduce NO emission drastically in diesel engines. At full load, NO emission decreased drastically from 1034 ppm with base diesel to 645 ppm with emulsion and 643 ppm with injection. But, NO emission reduction is lesser with injection than emulsion at part loads. Smoke emission is lower with the emulsion (2.7 BSU) than with water injection (3.2 BSU) as compared to base diesel (3.6 BSU). However, CO and HC levels were higher with emulsion than water injection. As regards NO and smoke reduction, the emulsion was superior to injection at all loads. Peak pressure, ignition delay and maximum rate of pressure rise were lesser with water injection as compared to the emulsion. It is well demonstrated

  13. Particulate matter emission modelling based on soot and SOF from direct injection diesel engines

    International Nuclear Information System (INIS)

    Tan, P.Q.; Hu, Z.Y.; Deng, K.Y.; Lu, J.X.; Lou, D.M.; Wan, G.

    2007-01-01

    Particulate matter (PM) emission is one of the major pollutants from diesel engines, and it is harmful for human health and influences the atmospheric visibility. In investigations for reducing PM emission, a simulation model for PM emission is a useful tool. In this paper, a phenomenological, composition based PM model of direct injection (DI) diesel engines has been proposed and formulated to simulate PM emission. The PM emission model is based on a quasi-dimensional multi-zone combustion model using the formation mechanisms of the two main compositions of PM: soot and soluble organic fraction (SOF). First, the quasi-dimensional multi-zone combustion model is given. Then, two models for soot and SOF emissions are established, respectively, and after that, the two models are integrated into a single PM emission model. The soot emission model is given by the difference between a primary formation model and an oxidation model of soot. The soot primary formation model is the Hiroyasu soot formation model, and the Nagle and Strickland-Constable model is adopted for soot oxidation. The SOF emission model is based on an unburned hydrocarbons (HC) emission model, and the HC emission model is given by the difference between a HC primary formation model and a HC oxidation model. The HC primary formation model considers fuel injected and mixed beyond the lean combustion limit during ignition delay and fuel effusing from the nozzle sac volume at low pressure and low velocity. In order to validate the PM emission model, experiments were performed on a six cylinder, turbocharged and intercooled DI diesel engine. The simulation results show good agreement with the experimental data, which indicates the validity of the PM emission model. The calculation results show that the distinctions between PM and soot formation rates are mainly in the early combustion stage. The SOF formation has an important influence on the PM formation at lower loads, and soot formation dominates the

  14. Investigations of effects of pilot injection with change in level of compression ratio in a common rail diesel engine

    Directory of Open Access Journals (Sweden)

    Gajarlawar Nilesh

    2013-01-01

    Full Text Available These day diesel engines are gaining lots of attention as prime movers for various source of transportation. It offers better drive ability, very good low end torque and importantly the lower CO2 emission. Diesel engines are bridging the gap between gasoline and diesel engines. Better noise vibration and harshness levels of gasoline engine are realized to great extent in diesel engine, thanks to common rail direct injection system. Common rail injection system is now well known entity. Its unique advantage is flexible in operation. In common rail injection system, number of injection prior and after main injection at different injection pressure is possible. Due to multiple injections, gain in emission reduction as well as noise has been already experienced and demonstrated by researcher in the past. However, stringent emission norms for diesel engine equipped vehicle demands for further lower emission of oxides of nitrogen (NOx and particulate matter (PM. In the present paper, authors attempted to study the effect of multiple injections in combination with two level of compression ratio. The aim was to study the combustion behavior with the reduced compression ratio which is going to be tried out as low temperature combustion concept in near future. The results were compared with the current level of compression ratio. Experiments were carried out in 2.2L cubic capacity engine with two levels of compression ratios. Pilot injection separation and quantities were varied keeping the main injection, rail pressure, boost pressure and EGR rate constant. Cylinder pressure traces and gross heat release rates were measured and analyzed to understand the combustion behavior.

  15. Effects of injection timing, before and after top dead center on the propulsion and power in a diesel engine

    Directory of Open Access Journals (Sweden)

    Nader Raeie

    2014-06-01

    Full Text Available It is well known that injection strategies including the injection timing and pressure play the most important role in determining engine performance, especially in pollutant emissions. However, the injection timing and pressure quantitatively affect the performance of diesel engine with a turbo charger are not well understood. In this paper, the fire computational fluid dynamics (CFD code with an improved spray model has been used to simulate the spray and combustion processes of diesel with early and late injection timings and six different injection pressure (from 275 bar to 1000 bar. It has been concluded that the use of early injection provides lower soot and higher NOx emissions than the late injection. In this study, it has been tried using the change of fuel injection time at these two next steps: before top dead center (BTDC and after top dead center (ATDC in order to achieving optimum emission and power in a specific point.

  16. Experimental investigation of timed manifold injection of acetylene in direct injection diesel engine in dual fuel mode

    International Nuclear Information System (INIS)

    Lakshmanan, T.; Nagarajan, G.

    2010-01-01

    The increase in demand and decrease in availability of fossil fuels with more stringent emission norms have led to research in finding an alternative fuel for internal combustion (IC) engines. Among the alternative fuels, gaseous fuels find a great potential. The gaseous fuel taken up for the present study is acetylene, which possesses excellent combustion properties. Preignition is the major problem with this fuel. In the present study, timed manifold injection technique is adopted to induct the fuel into the IC engine. A four-stroke, 4.4 kW diesel engine is selected, with slight modification in intake manifold for holding the gas injector, which is controlled by an electronic control unit (ECU). By using an ECU, an optimized injection timing of 10 o after top dead center and 90 o crank angle duration are arrived. At this condition, experiments were conducted for the various gas flow rates of 110 g/s, 180 g/s and 240 g/s. The performance was nearer to diesel at full load. Oxides of nitrogen, hydrocarbon and carbon monoxide emission decreased due to lean operation with marginal increase in smoke emission. To conclude, a safe operation of acetylene replacement up to 24% was possible with reduction in emission parameters.

  17. The Influence of Injection Timing on Performance Characteristics of Diesel Engine Using Jatropha Biodiesel with and without Partial Hydrogenation

    Directory of Open Access Journals (Sweden)

    Rizqon Fajar

    2014-07-01

    Full Text Available Experimental research has been conducted to investigate the effects of blend of hydrogenated and unhydrogenated Jatropha biodiesel with diesel fuel in volume ratio of 30:70 (B30 on combustion characteristics (BSFC, thermal efficiency and smoke emission of single cylinder diesel engine. In this experiment, engine speed was kept constant at 1,500, 2,500, and 3,500 rpm with maximum engine load at BMEP 5 bar and injection timings were varied. Experimental result showed that at engine speed 1,500 rpm, BSFC of B30 hydrogenated and unhydrogenated Jatropha biodiesel were higher than it of diesel fuel at all injection timings (10° to 18° BTDC. At the same condition, partial hydrogenated Jatropha biodiesel showed higher BSFC than unhydrogenated Jatropha biodiesel. However, the difference in BSFC became smaller for all fuels at engine speed 2,500 rpm and 3,500 rpm at all injection timing. Jatropha biodiesel with and without partial hydrogenation tend to have higher thermal efficiency compared with diesel fuel at all engine speed and injection timing. The best injection timings to operate B30 Jatropha biodiesel with and without hydrogenation were 14°, 18° and 24° BTDC at engine speed 1,500, 2,500, and 3,500 rpm respectively. This conclusion was deduced based on the minimum value of BSFC and the maximum value of thermal efficiency. Smoke emissions for all fuels were in the same level for all conditions.

  18. Photoelectric schlieren method used to study the properties of diesel engine injection systems

    International Nuclear Information System (INIS)

    Reznicek, R.

    1987-01-01

    The time dependence of the fuel flow rate issuing from the injector nozzle represents very important information concerning the properties of Diesel engine injection systems. By analysing the delivery rate, it is possible to judge a new design, and the modifications and adjustments of Diesel engine injection systems. A number of devices for measuring the delivery rate, frequently founded on mechanical principles, have also been constructed. Mechanical methods are laborious, require complicated measuring instruments, and the analysis of the results is quite tedious. For investigating the delivery rate, one can also use the intensity of the luminous flux of the light ray which is intersected, and consequently its intensity decreased, by the flow of the delivered fuel. The schlieren method can be used for this purpose, employing a thin beam of parallel light rays and a photoelectric sensor placed immediately beyond the cut-off slit. After adjustment and calibration, the variations of the original electric signal represent the time variation of the delivery rate by the nozzle

  19. Effect of injection pressure on performance, emission, and combustion characteristics of diesel-acetylene-fuelled single cylinder stationary CI engine.

    Science.gov (United States)

    Srivastava, Anmesh Kumar; Soni, Shyam Lal; Sharma, Dilip; Jain, Narayan Lal

    2018-03-01

    In this paper, the effect of injection pressure on the performance, emission, and combustion characteristics of a diesel-acetylene fuelled single cylinder, four-stroke, direct injection (DI) diesel engine with a rated power of 3.5 kW at a rated speed of 1500 rpm was studied. Experiments were performed in dual-fuel mode at four different injection pressures of 180, 190, 200, and 210 bar with a flow rate of 120 LPH of acetylene and results were compared with that of baseline diesel operation. Experimental results showed that highest brake thermal efficiency of 27.57% was achieved at injection pressure of 200 bar for diesel-acetylene dual-fuel mode which was much higher than 23.32% obtained for baseline diesel. Carbon monoxide, hydrocarbon, and smoke emissions were also measured and found to be lower, while the NO x emissions were higher at 200 bar in dual fuel mode as compared to those in other injection pressures in dual fuel mode and also for baseline diesel mode. Peak cylinder pressure, net heat release rate, and rate of pressure rise were also calculated and were higher at 200 bar injection pressure in dual fuel mode.

  20. 3-D steady state thermomechanical analysis of a piston of a direct injection diesel engine

    International Nuclear Information System (INIS)

    Abid, M.; Bannikov, M.G.; Ali, H.

    2005-01-01

    Piston of internal combustion engine is subjected to the coupled action of the thermal and the mechanical loads. Piston distortion due to temperature nonuniformities has a significant impact on the piston component of the engine friction. In regions of high heat flux, thermal stresses can reach levels that would cause fatigue cracking. Any change of engine design and/or operating conditions resulting in an increased heat flux through the piston may cause engine performance deterioration and even engine failure. This work presents a three-dimensional finite element analysis of a piston of a high power direct injection diesel engine. The goal of such analysis was the prediction of the piston behavior in conditions of the increased brake mean effective pressure and engine speed. Thermal and mechanical loads required for analysis were obtained from the engine cycle simulation. Thermal boundary conditions were determined in the form of the cycle averaged temperature of combustion chamber content and cycle averaged spatially distributed heat transfer coefficients. Mechanical load was represented by the combined gas pressure and inertia forces. Using ANSYS software temperature and stress distributions within the piston body as well as piston deformation were obtained. Analysis was performed for separate as well as combined load. It was shown that contribution of mechanical load is insignificant and can be neglected. Main emphasis is given to scuffing and strength analysis of the piston. Results obtained at various thermal loads are discussed. (author)

  1. The injection equipment of future high-speed DI diesel engines with respect to power and pollution requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dolenc, A. (Monobloc Dieselmotoren GmbH, Vienna (AT))

    1990-01-01

    The development of high specific output DI diesel engines started at the low-speed end some 50 years ago primarily for marine and traction applications. Movement towards the high-speed end has been slow but steady with the majority of truck engines being very conservatively rated. There has been recent major effort on the automotive car and light commercial vehicle diesel application leading to lightweight DI diesel engines with an engine speed of 4000-5000 r/min and a rated power of 50 kW/litre displacement. These are expected to be on the market in a short period of time. The key point of this development has been the injection equipment including combustion control. In this area the use of modulated injection has the possibility of solving power and pollution requirements. (author).

  2. Noise Optimization in Diesel Engines

    Directory of Open Access Journals (Sweden)

    S. Narayan

    2014-04-01

    Full Text Available Euro 6 norms emphasize on reduction of emissions from the engines. New injection methods are being adopted for homogenous mixture formation in diesel engines. During steady state conditions homogenous combustion gave noise levels in lower frequencies. In this work noise produced in a 440 cc diesel engine has been investigated. The engine was run under various operating conditions varying various injection parameters.

  3. Investigation of In-Cylinder Steam Injection in a Turbocharged Diesel Engine for Waste Heat Recovery and NOx Emission Control

    OpenAIRE

    Zhongbo Zhang; Lifu Li

    2018-01-01

    In this study, an in-cylinder steam injection method is introduced and applied to a turbocharged diesel engine for waste heat recovery and NOx emission reduction. In the method, cool water was first heated into superheated steam by exhaust. Then the superheated steam was directly injected into the cylinder during the compression stroke. The potential for fuel savings and NOx emission reduction obtained by this method was investigated. First, a two-zone combustion model for the baseline engine...

  4. Diesel engine management systems and components

    CERN Document Server

    2014-01-01

    This reference book provides a comprehensive insight into todays diesel injection systems and electronic control. It focusses on minimizing emissions and exhaust-gas treatment. Innovations by Bosch in the field of diesel-injection technology have made a significant contribution to the diesel boom. Calls for lower fuel consumption, reduced exhaust-gas emissions and quiet engines are making greater demands on the engine and fuel-injection systems. Contents History of the diesel engine.- Areas of use for diesel engines.- Basic principles of the diesel engine.- Fuels: Diesel fuel.- Fuels: Alternative fuels.- Cylinder-charge control systems.- Basic principles of diesel fuel-injection.- Overview of diesel fuel-injection systems.- Fuel supply to the low pressure stage.- Overview of discrete cylinder systems.- Unit injector system.- Unit pump system.- Overview of common-rail systems.- High pressure components of the common-rail system.- Injection nozzles.- Nozzle holders.- High pressure lines.- Start assist systems.-...

  5. Effects of Alumina Nano Metal Oxide Blended Palm Stearin Methyl Ester Bio-Diesel on Direct Injection Diesel Engine Performance and Emissions

    Science.gov (United States)

    Krishna, K.; Kumar, B. Sudheer Prem; Reddy, K. Vijaya Kumar; Charan Kumar, S.; Kumar, K. Ravi

    2017-08-01

    The Present Investigation was carried out to study the effect of Alumina Metal Oxide (Al2O3) Nano Particles as additive for Palm Stearin Methyl Ester Biodiesel (B 100) and their blends as an alternate fuel in four stroke single cylinder water cooled, direct injection diesel engine. Alumina Nano Particles has high calorific value and relatively high thermal conductivity (30-1 W m K-1) compare to diesel, which helps to promote more combustion in engines due to their higher thermal efficiency. In the experimentation Al2O3 were doped in various proportions with the Palm Stearin Methyl Ester Biodiesel (B-100) using an ultrasonicator and a homogenizer with cetyl trimethyl ammonium bromide (CTAB) as the cationic surfactant. The test were performed on a Kirsloskar DI diesel engine at constant speed of 1500 rpm using different Nano Biodiesel Fuel blends (psme+50 ppm, psme+150 ppm, and psme+200 ppm) and results were compared with those of neat conventional diesel and Palm Stearin Methyl Ester Bio diesel. It was observed that for Nano Biodiesel Fuel blend (psme+50ppm) there is an significant reduction in carbon monoxide (CO) emissions and Nox emissions compared to diesel and the brake thermal efficiency for (psme+50ppm) was almost same as diesel.

  6. A numerical study of the effects of injection rate shape on combustion and emission of diesel engines

    Directory of Open Access Journals (Sweden)

    He Zhixia

    2014-01-01

    Full Text Available The spray characteristics including spray droplet sizes, droplet distribution, spray tip penetration length and spray diffusion angle directly affects the mixture process of fuel and oxygen and then plays an important role for the improvement of combustion and emission performance of diesel engines. Different injection rate shapes may induce different spray characteristics and then further affect the subsequent combustion and emission performance of diesel engines. In this paper, the spray and combustion processes based on four different injection rate shapes with constant injection duration and injected fuel mass were simulated in the software of AVL FIRE. The numerical models were validated through comparing the results from the simulation with those from experiment. It was found that the dynamic of diesel engines with the new proposed hump shape of injection rate and the original saddle shape is better than that with the injection rate of rectangle and triangle shape, but the emission of NOX is higher. And the soot emission is lowest during the late injection period for the new hump-shape injection rate because of a higher oxidation rate with a better mixture between fuel and air under the high injection pressure.

  7. Investigation on the effects of pilot injection on low temperature combustion in high-speed diesel engine fueled with n-butanol–diesel blends

    International Nuclear Information System (INIS)

    Huang, Haozhong; Liu, Qingsheng; Yang, Ruzhi; Zhu, Tianru; Zhao, Ruiqing; Wang, Yaodong

    2015-01-01

    Highlights: • The effects of pre-injected timing and pre-injected mass were studied in CI engine. • The addition of n-butanol consumed OH free radicals, which delayed the ignition time. • With the increase of n-butanol, the BSFC and MPRR increased, NO_x and soot decreased. • With the advance of pilot injection timing, the BSFC increased, NO_x and soot decreased. • With the increase of pilot injection mass, NO_x increased, soot decreased then increased. - Abstract: The effect of pilot injection timing and pilot injection mass on combustion and emission characteristics under medium exhaust gas recirculation (EGR (25%)) condition were experimentally investigated in high-speed diesel engine. Diesel fuel (B0), two blends of butanol and diesel fuel denoted as B20 (20% butanol and 80% diesel in volume), and B30 (30% butanol and 70% diesel in volume) were tested. The results show that, for all fuels, when advancing the pilot injection timing, the peak value of heat release rate decreases for pre-injection fuel, but increases slightly for the main-injection fuel. Moreover, the in-cylinder pressure peak value reduces with the rise of maximum pressure rise rate (MPRR), while NO_x and soot emissions reduce. Increasing the pilot injection fuel mass, the peak value of heat release rate for pre-injected fuel increases, but for the main-injection, the peak descends, and the in-cylinder pressure peak value and NO_x emissions increase, while soot emission decreases at first and then increases. Blending n-butanol in diesel improves soot emissions. When pilot injection is adopted, the increase of n-butanol ratio causes the MPRR increasing and the crank angle location for 50% cumulative heat release (CA50) advancing, as well as NO_x and soot emissions decreasing. The simulation of the combustion of n-butanol–diesel fuel blends, which was based on the n-heptane–n-butanol–PAH–toluene mixing mechanism, demonstrated that the addition of n-butanol consumed OH free radicals

  8. Effect of fumigation methanol and ethanol on the gaseous and particulate emissions of a direct-injection diesel engine

    Science.gov (United States)

    Zhang, Z. H.; Tsang, K. S.; Cheung, C. S.; Chan, T. L.; Yao, C. D.

    2011-02-01

    Experiments were conducted on a four-cylinder direct-injection diesel engine with methanol or ethanol injected into the air intake of each cylinder, to compare their effect on the engine performance, gaseous emissions and particulate emissions of the engine under five engine loads at the maximum torque speed of 1800 rev/min. The methanol or ethanol was injected to top up 10% and 20% of the engine loads under different engine operating conditions. The experimental results show that both fumigation methanol and fumigation ethanol decrease the brake thermal efficiency (BTE) at low engine load but improves it at high engine load; however the fumigation methanol has higher influence on the BTE. Compared with Euro V diesel fuel, fumigation methanol or ethanol could lead to reduction of both NOx and particulate mass and number emissions of the diesel engine, with fumigation methanol being more effective than fumigation ethanol in particulate reduction. The NOx and particulate reduction is more effective with increasing level of fumigation. However, in general, fumigation fuels increase the HC, CO and NO 2 emissions, with fumigation methanol leading to higher increase of these pollutants. Compared with ethanol, the fumigation methanol has stronger influence on the in-cylinder gas temperature, the air/fuel ratio, the combustion processes and hence the emissions of the engine.

  9. Experimental facility and methodology for systematic studies of cold startability in direct injection Diesel engines

    Science.gov (United States)

    Pastor, J. V.; García-Oliver, J. M.; Pastor, J. M.; Ramírez-Hernández, J. G.

    2009-09-01

    Cold start at low temperatures in current direct injection (DI) Diesel engines is a problem which has not yet been properly solved and it becomes particularly critical with the current trend to reduce the engine compression ratio. Although it is clear that there are some key factors whose control leads to a proper cold start process, their individual relevance and relationships are not clearly understood. Thus, efforts on optimization of the cold start process are mainly based on a trial-and-error procedure in climatic chambers at low ambient temperature, with serious limitations in terms of measurement reliability during such a transient process, low repeatability and experimental cost. This paper presents a novel approach for an experimental facility capable of simulating real engine cold start, at room temperature and under well-controlled low speed and low temperature conditions. It is based on an optical single cylinder engine adapted to reproduce in-cylinder conditions representative of those of a real engine during start at cold ambient temperatures (of the order of -20 °C). Such conditions must be realistic, controlled and repeatable in order to perform systematic studies in the borderline between ignition success and misfiring. An analysis methodology, combining optical techniques and heat release analysis of individual cycles, has been applied.

  10. Experimental facility and methodology for systematic studies of cold startability in direct injection Diesel engines

    International Nuclear Information System (INIS)

    Pastor, J V; García-Oliver, J M; Pastor, J M; Ramírez-Hernández, J G

    2009-01-01

    Cold start at low temperatures in current direct injection (DI) Diesel engines is a problem which has not yet been properly solved and it becomes particularly critical with the current trend to reduce the engine compression ratio. Although it is clear that there are some key factors whose control leads to a proper cold start process, their individual relevance and relationships are not clearly understood. Thus, efforts on optimization of the cold start process are mainly based on a trial-and-error procedure in climatic chambers at low ambient temperature, with serious limitations in terms of measurement reliability during such a transient process, low repeatability and experimental cost. This paper presents a novel approach for an experimental facility capable of simulating real engine cold start, at room temperature and under well-controlled low speed and low temperature conditions. It is based on an optical single cylinder engine adapted to reproduce in-cylinder conditions representative of those of a real engine during start at cold ambient temperatures (of the order of −20 °C). Such conditions must be realistic, controlled and repeatable in order to perform systematic studies in the borderline between ignition success and misfiring. An analysis methodology, combining optical techniques and heat release analysis of individual cycles, has been applied

  11. Experimental investigation of gasoline fumigation in a single cylinder direct injection (DI) diesel engine

    International Nuclear Information System (INIS)

    Sahin, Z.; Durgun, O.; Bayram, C.

    2008-01-01

    In the presented study, the effects of gasoline fumigation have been investigated experimentally in a single cylinder direct injection (DI) diesel engine. Gasoline has been introduced into the inlet air flow using an elementary carburetor and no other modification on the engine has been done. The effects of 2%, 4%, 6%, 8% and 10% (by vol.) gasoline fumigation have been investigated experimentally at the speeds of (900-1600) (rpm) and at the selected compression ratios of (18-23). From the experimental results it is determined that by application of gasoline fumigation effective power output increases at the levels of 4-9%, effective efficiency increases by approximately 1.5-4% and specific fuel consumption decreases by approximately 1.5-4%. It is also determined that 4-6% fumigation ratio range is the most favorable percentage interval of gasoline at the selected compression ratios for this engine. Because cost of gasoline is higher than diesel fuel in Turkey as well as in many of the other countries and the decrease ratio of specific fuel consumption is low, gasoline fumigation is not economic for this engine. In the presented study, heat balance tests have also been performed for 18 and 21 compression ratios. The heat balance has been investigated experimentally in respect of effective power, heat rejected to the cooling water, heat lost through exhaust, and other losses (unaccounted-for losses). Heat lost through exhaust decreases until 4-6% gasoline fumigation ratios and after these fumigation ratios it starts to increase because of increasing exhaust gas temperature. Heat rejected to the cooling water decreases at low fumigation ratios, but at high fumigation ratios it increases. Other losses generally exhibit an increasing tendency at low fumigation ratios

  12. STUDY ON THE NITROGEN OXIDES EMISSIONS GENERATED BY THE DIRECT INJECTION DIESEL ENGINES RUNNING WITH BIODIESEL

    Directory of Open Access Journals (Sweden)

    Doru Cosofret

    2016-05-01

    Full Text Available Currently, research results on the use of mixtures of biofuels with fossil fuels to power diesel engines are controversial in terms of reducing emissions of NO in the exhaust gases of diesel engines. This diversity on the results is due to possibly different type of biodiesel used, the type of engine on which the tests were carried out and the methods and conditions for obtaining these results. Therefore research on biodiesel mixed with diesel is still a matter of study. In this regard, we conducted a laboratory study on a 4-stroke diesel engine naturally aspirated, using different mixtures (10, 15, 20, 25, 30, 40 and 50% of diesel with biodiesel made from rapeseed oil. The study results revealed that the NO emissions of the mixtures used are lower than the same emissions produced when the engine is powered with diesel. Also, the emissions of NO do not have a significant drop in the case of mixtures compared with the diesel fuel.

  13. Effect of two-stage injection on combustion and emissions under high EGR rate on a diesel engine by fueling blends of diesel/gasoline, diesel/n-butanol, diesel/gasoline/n-butanol and pure diesel

    International Nuclear Information System (INIS)

    Zheng, Zunqing; Yue, Lang; Liu, Haifeng; Zhu, Yuxuan; Zhong, Xiaofan; Yao, Mingfa

    2015-01-01

    Highlights: • Two-stage injection using diesel blended fuel at high EGR (46%) was studied. • Blending fuels induce retarded pilot heat release and have less effect on MPRR. • Effects of injection parameters of blended fuels on emissions are similar to diesel. • Different fuels have little influence on post combustion heat release. • Small quantity post injection close to main results in better efficiency and emissions. - Abstract: The effect of two-stage injection on combustion and emission characteristics under high EGR (46%) condition were experimentally investigated. Four different fuels including pure diesel and blended fuels of diesel/gasoline, diesel/n-butanol, diesel/gasoline/n-butanol were tested. Results show that blending gasoline or/and n-butanol in diesel improves smoke emissions while induces increase in maximum pressure rise rate (MPRR). Adopting pilot injection close to main injection can effectively reduce the peak of premixed heat release rate and MPRR. However, for fuels blends with high percentage of low cetane number fuel, the effect of pilot fuel on ignition can be neglected and the improvement of MPRR is not that obvious. Pilot-main interval presents more obvious effect on smoke than pilot injection rate does, and the smoke emissions decrease with increasing pilot-main interval. A longer main-post interval results in a lower post heat release rate and prolonged combustion duration. While post injection rate has little effect on the start of ignition for post injection. The variation in fuel properties caused by blending gasoline or/and n-butanol into diesel does not impose obvious influence on post combustion. The smoke emission increases first and then declines with retard of post injection timing. Compared to diesel, the smoke emissions of blended fuels are more sensitive to the variation of post injection strategy

  14. Experimental investigation and combustion analysis of a direct injection dual-fuel diesel-natural gas engine

    Energy Technology Data Exchange (ETDEWEB)

    Carlucci, A.P.; De Risi, A.; Laforgia, D.; Naccarato, F. [Department of Engineering for Innovation, University of Salento, CREA, via per Arnesano, 73100 Lecce (Italy)

    2008-02-15

    A single-cylinder diesel engine has been converted into a dual-fuel engine to operate with natural gas together with a pilot injection of diesel fuel used to ignite the CNG-air charge. The CNG was injected into the intake manifold via a gas injector on purpose designed for this application. The main performance of the gas injector, such as flow coefficient, instantaneous mass flow rate, delay time between electrical signal and opening of the injector, have been characterized by testing the injector in a constant-volume optical vessel. The CNG jet structure has also been characterized by means of shadowgraphy technique. The engine, operating in dual-fuel mode, has been tested on a wide range of operating conditions spanning different values of engine load and speed. For all the tested operating conditions, the effect of CNG and diesel fuel injection pressure, together with the amount of fuel injected during the pilot injection, were analyzed on the combustion development and, as a consequence, on the engine performance, in terms of specific emission levels and fuel consumption. (author)

  15. Effect of turbo charging and steam injection methods on the performance of a Miller cycle diesel engine (MCDE)

    International Nuclear Information System (INIS)

    Gonca, Guven; Sahin, Bahri

    2017-01-01

    Highlights: • Performance of a diesel engine is simulated by finite time thermodynamics. • Effect of steam injection on performance of a Miller cycle engine is examined. • Model results are verified with the experimental data with less than 7% error. - Abstract: In this study, application of the steam injection method (SIM), Miller cycle (MC) and turbo charging (TC) techniques into a four stroke, direct-injection diesel engine has been numerically and empirically conducted. NOx emissions have detrimental influences on the environment and living beings. They are formed at the high temperatures, thus the Diesel engines are serious NOx generation sources since they have higher compression ratios and higher combustion temperatures. The international regulations have decreased the emission limits due to environmental reasons. The Miller cycle (MC) application and steam injection method (SIM) have been popular to abate NOx produced from the internal combustion engines (ICEs), in the recent years. However, the MC application can cause a reduction in power output. The most known technique which maximizes the engine power and abates exhaust emissions is TC. Therefore, if these three techniques are combined, the power loss can be tolerated and pollutant emissions can be minimized. While the application of the MC and SIM causes to diminish in the brake power and brake thermal efficiency of the engine up to 6.5% and 10%, the TC increases the brake power and brake thermal efficiency of the engine up to 18% and 12%. The experimental and theoretical results have been compared in terms of the torque, the specific fuel consumption (SFC), the brake power and the brake thermal efficiency. The results acquired from theoretical modeling have been validated with empirical data with less than 7% maximum error. The results showed that developed combination can increase the engine performance and the method can be easily applied to the Diesel engines.

  16. STRATEGY DETERMINATION FOR DIESEL INJECTION USING AVL ESE DIESEL

    Directory of Open Access Journals (Sweden)

    Vrublevskiy, A.

    2012-06-01

    Full Text Available Based on the design of research AVL FIRE ESE DIESEL environment they proposed to reduce noise and NOx emissions in the exhaust gases of the automobile diesel engine using two-stage injection. The parameters of the fuel for idling are determined.

  17. Combustion and emission characteristics of a diesel engine with DME as port premixing fuel under different injection timing

    International Nuclear Information System (INIS)

    Wang, Ying; Zhao, Yuwei; Xiao, Fan; Li, Dongchang

    2014-01-01

    Highlights: • Combustion and emission of diesel engine with DME as premixing fuel were examined. • Injection timing has profound effect on HRR of diffusive combustion in PCCI engine. • DME introduction drastically influenced HRR of PCCI combustion, especially for HTR. • Effect of injection timing on emission of PCCI engine is similar to that of DICI engine. - Abstract: This work dealt with the combustion and exhaust performance of a DME premixed charge compression ignition diesel engine. With the port premixing DME, the heat-release process was made up of the premixed charge homogeneous charge compression ignition combustion and diffusion combustion. The in-cylinder fuel injection timing and port premixing DME quantity played the important roles in combustion and emission control. They had little impact on the peak position of heat-release rate (HRR) during LTR phase. However, they had great effects on the peak values and the crank-angle positions corresponding to the HRR peaks during HTR and diffusion combustion phase. The peak value of HRR increased and the crank-angle corresponding to the HRR peak advanced with an incremental DME quantity or an early injection during HTR phase. However, the peak value of HRR dropped with an incremental DME quantity or a late injection during the diffusion combustion phase. p max and T max increased with an incremental DME quantity or an early injection. At the fixed direct-injection timing, BSFC decreased slightly with a rise of DME quantity due to CA50 closer to TDC. At a fixed DME quantity, BSFC was lowest when diesel was injected into cylinder at 7°CA BTDC. Moreover, as more DME was aspirated from port, NO x emissions decreased firstly but this decreasing trend ceased later. Smoke reduced, but CO and HC increased with a rise of DME quantity. Meanwhile, like the conventional DICI operation, NO x increased, but smoke, CO and HC declined with an early direct-injection

  18. Experimental investigation of pistacia lentiscus biodiesel as a fuel for direct injection diesel engine

    International Nuclear Information System (INIS)

    Khiari, K.; Awad, S.; Loubar, K.; Tarabet, L.; Mahmoud, R.; Tazerout, M.

    2016-01-01

    Highlights: • Biodiesel is prepared from Pistacia Lentiscus oil. • Biodiesel yield is 94% when using 6:1 methanol/oil and 1% KOH catalyst at 50 °C. • BSFC and NOx emissions have increased with the use of biodiesel and its blends. • Biodiesel reduces significantly HC, CO and particulate emissions at high engine load. - Abstract: Biodiesel is currently seen as an interesting substitute for diesel fuel due to the continuing depletion of petroleum reserves and the environment pollution emerging from exhaust emissions. The present work is an experimental study conducted on a DI diesel engine running with either pistacia lentiscus (PL) biodiesel or its blends with conventional diesel fuel. PL biodiesel is obtained by converting PL seed oil via a single-step homogenous alkali catalyzed transesterification process. The PL biodiesel physicochemical properties, which are measured via standard methods, are similar to those of diesel fuel. A single cylinder, naturally aspirated DI diesel engine is operated at 1500 rpm with either PL biodiesel or its blends with diesel fuel for several ratios (50, 30 and 5 by v%) and engine load conditions. The combustion parameters, performance and pollutant emissions of PL biodiesel and its blends are compared with those of diesel fuel. The results show that the thermal efficiency is 3% higher for PL biodiesel than for diesel fuel. The emission levels of carbon monoxide (CO), unburned hydrocarbon (HC) and particulate matter are considerably reduced at full engine load (around 25%, 45% and 17% respectively). On the other hand, the brake specific fuel consumption (BSFC) and the nitrogen oxide (NOx) emissions increase (around 10% and 4% respectively).

  19. Effect of diesel pre-injection timing on combustion and emission characteristics of compression ignited natural gas engine

    International Nuclear Information System (INIS)

    Xu, Min; Cheng, Wei; Zhang, Hongfei; An, Tao; Zhang, Shaohua

    2016-01-01

    Highlights: • Pre-injection timing on combustion and emission of CING engine are studied. • Closely pre-injection operations leads to increase of combustion intensity. • Early pre-injection operations leads to lower combustion intensity. • Early pre-injection modes provide better NO x emission. - Abstract: Pre-injection strategy is considered to be one of the most important ways to improve diesel engine performance, emission and combustion. It is the same important factor in pilot diesel compression ignition natural gas (CING) engine. In this study, effects of pre-injection timing on combustion and emission performances were experimentally studied in a CING engine which was modified from a turbocharged six-cylinder diesel engine. The experiments were conducted at constant speed of 1400 rpm and different engine loads with a constant fuel injection pressure of 1100 bar. Main injection timing was fixed at 10 °CA BTDC in the advance process of pre-injection timing. The cylinder pressure, heart release rate (HRR), pressure rise rate (PRR), start of combustion (SOC) and coefficient of variation (COV IMEP ), as well as NO x , HC and CO emissions were analyzed. The results indicated that closely pre-injection operations lead to the advance of SOC which intensified combustion of in-cylinder mixture, thereby resulting in higher cylinder pressure, HRR and PRR, as well higher NO x emissions and lower HC and CO emissions. However, early pre-injection operations lead to lower cylinder pressure, HRR and PRR due to decreasing in combustion intensity. Pre-injection timing of 70 °CA BTDC is a conversion point in which influence of pre-injection fuel on ignition and combustion of natural gas nearly disappeared and lowest NO x emission could be obtained. Compared with single injection ignition mode, NO x emissions at the conversion point were reduced by 33%, 38% and 7% at engine load of 38%, 60% and 80% respectively. This is important for the conditions that ignition fuel

  20. Effects of Pilot Injection Timing and EGR on Combustion, Performance and Exhaust Emissions in a Common Rail Diesel Engine Fueled with a Canola Oil Biodiesel-Diesel Blend

    Directory of Open Access Journals (Sweden)

    Jun Cong Ge

    2015-07-01

    Full Text Available Biodiesel as a clean energy source could reduce environmental pollution compared to fossil fuel, so it is becoming increasingly important. In this study, we investigated the effects of different pilot injection timings from before top dead center (BTDC and exhaust gas recirculation (EGR on combustion, engine performance, and exhaust emission characteristics in a common rail diesel engine fueled with canola oil biodiesel-diesel (BD blend. The pilot injection timing and EGR rate were changed at an engine speed of 2000 rpm fueled with BD20 (20 vol % canola oil and 80 vol % diesel fuel blend. As the injection timing advanced, the combustion pressure, brake specific fuel consumption (BSFC, and peak combustion pressure (Pmax changed slightly. Carbon monoxide (CO and particulate matter (PM emissions clearly decreased at BTDC 20° compared with BTDC 5°, but nitrogen oxide (NOx emissions increased slightly. With an increasing EGR rate, the combustion pressure and indicated mean effective pressure (IMEP decreased slightly at BTDC 20° compared to other injection timings. However, the Pmax showed a remarkable decrease. The BSFC and PM emissions increased slightly, but the NOx emission decreased considerably.

  1. A comparative analysis on combustion and emissions of some next generation higher-alcohol/diesel blends in a direct-injection diesel engine

    International Nuclear Information System (INIS)

    Rajesh Kumar, B.; Saravanan, S.; Rana, D.; Nagendran, A.

    2016-01-01

    Highlights: • Four higher-alcohols namely, iso-butanol, n-pentanol, n-hexanol and n-octanol, were used. • Iso-butanol/diesel blend presented longest ignition delay, highest peak pressures and peak heat release rates. • NOx emissions were high for n-pentanol/diesel and n-hexanol/diesel blends at high load conditions. • Smoke opacity is highest for n-octanol/diesel blend and lowest for iso-butanol/diesel blend. • HC emissions are high for iso-butanol/diesel and n-pentanol/diesel blends. - Abstract: Higher alcohols are attractive next generation biofuels that can be extracted from sugary, starchy and ligno-cellulosic biomass feedstocks using sustainable pathways. Their viability for use in diesel engines has greatly improved ever since extended bio-synthetic pathways have achieved substantial yields of these alcohols using engineered micro-organisms. This study sets out to compare and analyze the effects of some higher alcohol/diesel blends on combustion and emission characteristics of a direct-injection diesel engine. Four test fuels containing 30% by vol. of iso-butanol, n-pentanol, n-hexanol and n-octanol (designated as ISB30, PEN30, HEX30 and OCT30 respectively) in ultra-low sulfur diesel (ULSD) were used. Results indicated that ISB30 experienced longest ignition delay and produced highest peaks of pressure and heat release rates (HRR) compared to other higher-alcohol blends. The ignition delay, peak pressure and peak HRR are found to be in the order of (from highest to lowest): ISB30 > PEN30 > HEX30 > OCT30 > ULSD. The combustion duration (CD) for all test fuels is in the sequence (from shortest to longest): ISB30 OCT30 > HEX30 > PEN30 > ISB30. HC emissions are high for ISB30 and PEN30 while it decreased favorably for HEX30 and OCT30. It was of the order (from highest to lowest): ISB30 > PEN30 > ULSD > HEX30 > OCT30. CO emissions of the blends followed the trend of smoke emissions and remained lower than ULSD with the following order (from highest to

  2. Effect of Diesel Engine Converted to Sequential Port Injection Compressed Natural Gas Engine on the Cylinder Pressure vs Crank Angle in Variation Engine Speeds

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2009-01-01

    The diesel engine converted to compressed natural gas (CNG) engine effect is lower in performance. Problem statement: The hypothesis is that the lower performance of CNG engine is caused by the effect of lower in engine cylinder pressure. Are the CNG engine is lower cylinder pressure than diesel engine? This research is conducted to investigate the cylinder pressure of CNG engine as a new engine compared to diesel engine as a baseline engine. Approach: The research approach in this study is b...

  3. Analysis the effect of advanced injection strategies on engine performance and pollutant emissions in a heavy duty DI-diesel engine by CFD modeling

    International Nuclear Information System (INIS)

    Mobasheri, Raouf; Peng, Zhijun; Mirsalim, Seyed Mostafa

    2012-01-01

    Highlights: ► Explore the effects of advanced multiple injection strategies in a DI-diesel engine. ► Achieving good agreement between the predicted results and experimental values. ► Analyzing three factors for optimization including pilot, main and post-injection. ► Injecting adequate fuel in each pulse accompanied with an appropriate EGR rate. ► Beneficial effects for significant soot reduction without a NOx penalty rate. - Abstract: An Advanced CFD simulation has been carried out in order to explore the combined effects of pilot-, post- and multiple-fuel injection strategies and EGR on engine performance and emission formation in a heavy duty DI-diesel engine. An improved version of the ECFM-3Z combustion model has been applied coupled with advanced models for NOx and soot formation. The model was validated with experimental data achieved from a Caterpillar 3401 DI diesel engine and good agreement between predicted and measured in-cylinder pressure, heat release rate, NOx and soot emissions was obtained. The optimizations were conducted separately for different split injection cases without pilot injection and then, for various multiple injection cases. Totally, three factors were considered for the injection optimization, which included EGR rate, the separation between main injection and post-injection and the amount of injected fuel in each pulse. For the multiple injection cases, two more factors (including double and triple injections during main injection) were also added. Results show that using pilot injection accompanied with an optimized main injection has a significant beneficial effect on combustion process so that it could form a separate 2nd stage of heat release which could reduce the maximum combustion temperature, which leads to the reduction of the NOx formation. In addition, it has found that injecting adequate fuel in post-injection at an appropriate EGR allows significant soot reduction without a NOx penalty rate.

  4. IN-SITU Optical Diagnostics Of Diesel Spray Injection And Combustion For Engine-Like Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bougie, B.; Tulej, M.; Dreier, T.; Gerber, T.

    2004-03-01

    A combination of shadowgraphy, laser elastic scattering, laser-induced incandescence and chemiluminescence imaging was conducted to characterize the propagation, vaporization and soot formation due to combustion of Diesel fuel injection into a hot (550-850 K), high pressure (4-6 MPa) gaseous environment as provided by the PSI high temperature pressure vessel (HTDZ). (author)

  5. Study on a small diesel engine with direct injection impinging distribution spray combustion system. Optimum of injection system and combustion chamber; Shototsu kakusan hoshiki kogata diesel kikan ni kansuru kenkyu. Funshakei to nenshoshitsu no saitekika

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, K; Kato, S; Saito, T [Kanazawa Institute of Technology, Ishikawa (Japan); Tanabe, H [Gunma University, Gunma (Japan)

    1997-10-01

    This study is concerned with a small bore (93mm) diesel engine using impinged fuel spray, named OSKA system. The higher rate of injection show lower smoke emission with higher NOx Emission. The exhaust emission and performance were investigated under different compression ratio with higher rate of injection. The experimental results show that this OSKA system is capable for reducing the smoke emission without the deterioration of NOx emission and fuel consumption compared with the conventional DI diesel engine. 5 refs., 8 figs., 3 tabs.

  6. Comparative performance of direct injection diesel engine operating on ethanol, petrol and rapeseed oil blends

    International Nuclear Information System (INIS)

    Labeckas, Gvidonas; Slavinskas, Stasys

    2009-01-01

    This article presents the bench testing results of a four stroke, four cylinder, direct injection, unmodified, diesel engine operating on pure rapeseed oil (RO) and its 2.5 vol%, 5 vol%, 7.5 vol% and 10 vol% blends with ethanol (ERO), petrol (PRO) and both improving agents applied in equal proportions as 50:50 vol% (EPRO). The purpose of the research is to examine the effect of ethanol and petrol addition into RO on the biofuel kinematical viscosity, brake mean effective pressure (bmep), brake specific fuel consumption (bsfc) of a diesel engine and its brake thermal efficiency (bte). Addition into RO from 2.5 to 7.5 vol% of ethanol and petrol its viscosity at ambient temperature of 20 deg. C diminishes by 9.2-28.3% and 14.1-31.7%, respectively. Heating up to the temperature of 60 deg. C the viscosity of pure RO, blends ERO2.5-7.5 and PRO2.5-10 further diminishes 4.2, 3.9-3.8 and 3.9-3.6 times. At 1800 min -1 speed, the maximum brake mean effective pressure (bmep) higher up to 1.6% comparing with that of pure RO (0.77 MPa) ensure three agent blends EPRO5-7.5, whereas at rated 2200 min -1 speed, the bmep higher by 5.6% can be obtained when fuelling the engine with blend PRO2.5. Brake specific fuel consumption (bsfc) at maximum torque (240.2 g/kWh) and rated power (234.0 g/kWh) is correspondingly lower by 3.4% and 5.5% in comparison with pure RO when biofuel blends EPRO5 and PRO2.5 are used. The biggest brake thermal efficiency at maximum torque (0.40-0.41) and rated power (0.42-0.43) relative to that of RO (0.39) suggest blends PRO2.5 and EPRO5-7.5, respectively

  7. Effect of palm methyl ester-diesel blends performance and emission of a single-cylinder direct-injection diesel engine

    Science.gov (United States)

    Said, Mazlan; Aziz, Azhar Abdul; Said, Mohd Farid Muhamad

    2012-06-01

    The purpose of this study is to investigate engine performance and exhaust emission when using several blends of neat palm oil methyl ester (POME) with conventional diesel (D2) in a small direct injection diesel engine, and to compare the outcomes to that of the D2 fuel. Engine performances, exhaust emissions, and some other important parameters were observed as a function of engine load and speed. In addition, the effect of modifying compression ratio was also carried out in this study. From the engine experimental work, neat and blended fuels behaved comparably to diesel (D2) in terms of fuel consumption, thermal efficiency and rate of heat released. Smoke density showed better results than that emitted by D2, operating under similar conditions due to the presence of inherited oxygen and lower sulphur content in the biofuel and its blends. The emissions of CO, CO2, and HC were also lower using blended mixtures and in its neat form. However, NOx concentrations were found to be slight higher for POME and its blends and this was largely due to higher viscosity of POME and possibly the presence of nitrogen in the palm methyl ester. General observation indicates that biofuel blends can be use without many difficulties in this type of engine but for optimized operation minor modifications to the engine and its auxiliaries are required.

  8. The investigation of soot and temperature distributions in a visualized direct injection diesel engine using laser diagnostics

    Science.gov (United States)

    Han, Yong-taek; Kim, Ki-bum; Lee, Ki-hyung

    2008-11-01

    Based upon the method of temperature calibration using the diffusion flame, the temperature and soot concentrations of the turbulent flame in a visualized diesel engine were qualitatively measured. Two different cylinder heads were used to investigate the effect of swirl ratio within the combustion chamber. From this experiment, we find that the highest flame temperature of the non-swirl head engine is approximately 2400 K and that of the swirl head engine is 2100 K. In addition, as the pressure of fuel injection increases, the in-cylinder temperature increases due to the improved combustion of a diesel engine. This experiment represented the soot quantity in the KL factor and revealed that the KL factor was high when the fuel collided with the cylinder wall. Moreover, the KL factor was also high in the area of the chamber where the temperature dropped rapidly.

  9. An experimental study on the effects of high-pressure and multiple injection strategies on DI diesel engine emissions

    KAUST Repository

    Yang, Seung Yeon

    2013-03-25

    An experimental study on effects of high-pressure injections in conjunction with split fuel injections were conducted on an AVL single cylinder DI diesel engine. Various injection schemes were studied through the use of an electronically controlled, common rail injection system capable of injection pressures up to 200 MPa and a maximum of six injections per combustion event. Up to 100 MPa of the fuel injection pressure, the higher injection pressures create faster combustion rates that result in the higher in-cylinder gas temperatures as compared to conventional low-pressure fuel injection systems. When applying high-pressure injections, particulate emission reductions of up to 50% were observed with no change in hydrocarbon emissions, reductions of CO emissions and only slightly higher NOx emissions. Over 100 MPa, on the other hand, the higher injection pressures still reduced up to almost zero-level of particulate emission, at the same time that the NO emission is reduced greatly. Under these high-pressure injection conditions, strong correlations between soot and CO emissions were observed, which compete for the oxidizing OH species. Multiple or split high-pressure injections also investigated as a means to decrease particulate emissions. As a result, a four-split injection strategy resulted in a 55% reduction in particulates and with little or no penalty on NOx emissions. The high pressure split injection strategy with EGR was more effective in reducing particulate and CO emissions simultaneously. Copyright © 2013 SAE International and Copyright © 2013 TSAE.

  10. Numerical study on steam injection in a turbocompound diesel engine for waste heat recovery

    International Nuclear Information System (INIS)

    Zhao, Rongchao; Li, Weihua; Zhuge, Weilin; Zhang, Yangjun; Yin, Yong

    2017-01-01

    Highlights: • Steam injection was adopted in a turbocompound engine to further recover waste heat. • Thermodynamics model for the turbocompound engine was established and calibrated. • Steam injection at CT inlet obtained lower engine BSFC than injection at PT inlet. • The optimal injected steam mass at different engine speeds was presented. • Turbocompounding combined with steam injection can reduce the BSFC by 6.0–11.2%. - Abstract: Steam injection and turbocompouding are both effective methods for engine waste heat recovery. The fuel saving potential obtained by the combination of the two methods is not clear. Based on a turbocompound engine developed in the previous study, the impacts of pre-turbine steam injection on the fuel saving potentials of the turbocompound engine were investigated in this paper. Firstly, thermodynamic cycle model for the baseline turbocompound engine is established using commercial software GT-POWER. The cycle model is calibrated with the experiment data of the turbocompound engine and achieves high accuracy. After that, the influences of steam mass flow rate, evaporating pressure and injection location on the engine performance are studied. In addition, the impacts of hot liquid water injection are also investigated. The results show that steam injection at the turbocharger turbine inlet can reduce the turbocompound engine BSFC at all speed conditions. The largest fuel reduction 6.15% is obtained at 1000 rpm condition. However, steam injection at power turbine inlet can only lower the BSFC at high speed conditions. Besides, it is found that hot liquid water injection in the exhaust cannot improve the engine performance. When compared with the conventional turbocharged engine, the combination of turbocompounding and steam injection can reduce the BSFC by 6.0–11.2% over different speeds.

  11. Theoretical study of the effects of pilot fuel quantity and its injection timing on the performance and emissions of a dual fuel diesel engine

    International Nuclear Information System (INIS)

    Papagiannakis, R.G.; Hountalas, D.T.; Rakopoulos, C.D.

    2007-01-01

    Various solutions have been proposed for improving the combustion process of conventional diesel engines and reducing the exhaust emissions without making serious modifications on the engine, one of which is the use of natural gas as a supplement for the conventional diesel fuel, the so called dual fuel natural gas diesel engines. The most common type of these is referred to as the pilot ignited natural gas diesel engine (PINGDE). Here, the primary fuel is natural gas that controls the engine power output, while the pilot diesel fuel injected near the end of the compression stroke auto-ignites and creates ignition sources for the surrounding gaseous fuel mixture to be burned. Previous research studies have shown that the main disadvantage of this dual fuel combustion is its negative impact on engine efficiency compared to the normal diesel operation, while carbon monoxide emissions are also increased. The pilot diesel fuel quantity and injection advance influence significantly the combustion mechanism. Then, in order to examine the effect of these two parameters on the performance and emissions, a comprehensive two-zone phenomenological model is employed and applied on a high-speed, pilot ignited, natural gas diesel engine located at the authors' laboratory. According to the results, the simultaneously increase of the pilot fuel quantity accompanied with an increase of its injection timing results to an improvement of the engine efficiency (increase) and of the emitted CO emissions (decrease) while it has a negative effect (increase) of NO emissions

  12. Effects of preheating of crude palm oil (CPO) on injection system, performance and emission of a diesel engine

    International Nuclear Information System (INIS)

    Bari, S.; Lim, T.H.; Yu, C.W.

    2002-01-01

    Crude palm oil (CPO) is one of the vegetable oils that have potential for use as fuels for diesel engines. CPO is renewable, and is safe and easy to handle. However, at room temperature (30-32 deg C) CPO has a viscosity about 10 times higher than that of diesel. To lower CPO's viscosity to the level of diesel's viscosity, a heating temperature of at least 92 deg C is needed. At this temperature, there is a concern that the close-fitting parts of the injection system might be affected. This study focused on finding out the effects of preheating of fuel on the injection system utilising a modified method of friction test, which involves injecting fuel outside the combustion chamber during motoring. Results show that preheating of CPO lowered CPO's viscosity and provided smooth fuel flow, but did not affect the injection system, even heating up to 100 deg C. Nevertheless, heating up to such a high temperature offered no benefits in terms of engine performance. However, heating is necessary for smooth flow and to avoid fuel filter clogging. Both can be achieved by heating CPO to 60 deg C. Combustion analyses comparisons between CPO and diesel found that CPO produced a higher peak pressure of 6%, a shorter ignition delay of 2.6 deg, a lower maximum heat release rate and a longer combustion period. Over the entire load range, CPO combustion produced average CO and NO emissions that were 9.2 and 29.3% higher, respectively, compared with those from diesel combustion. (Author)

  13. PERFORMANCE AND EMISSION STUDIES ON DI-DIESEL ENGINE FUELED WITH PONGAMIA METHYL ESTER INJECTION AND METHANOL CARBURETION

    Directory of Open Access Journals (Sweden)

    HARIBABU, N.

    2010-03-01

    Full Text Available The target of the present study is to clarify ignition characteristics, combustion process and knock limit of methanol premixture in a dual fuel diesel engine, and also to improve the trade-off between NOx and smoke markedly without deteriorating the high engine performance. Experiment was conducted to evaluate the performance and emission characteristics of direct injection diesel engine operating in duel fuel mode using Pongamia methyl ester injection and methanol carburetion. Methanol is introduced into the engine at different throttle openings along with intake air stream by a carburetor which is arranged at bifurcated air inlet. Pongamia methyl ester fuel was supplied to the engine by conventional fuel injection. The experimental results show that exhaust gas temperatures are moderate and there is better reduction of NOx, HC, CO and CO2 at methanol mass flow rate of 16.2 mg/s. Smoke level was observed to be low and comparable. Improved thermal efficiency of the engine was observed.

  14. Prediction of major pollutants emission in direct injection dual-fuel diesel and natural-gas engines

    International Nuclear Information System (INIS)

    Pirouzpanah, V.; Kashani, B.O.

    2000-01-01

    The dual-fuel diesel engine is a conventional diesel engine in which much of the energy released, hence power, comes from the combustion of gaseous fuel such as natural gas. The exhaust emission characteristics of the dual-fuel diesel engine needs further refinements, particularly in terms of reduction of Unburnt Hydrocarbons and Carbon Monoxide (CO) emission, because the concentration of these pollutants are higher than that of the baseline diesel engine. Furthermore, the combustion process in a typical dual-fuel diesel engine tends to be complex, showing combination of the problems encountered both in diesel and spark ignition engines. In this work, a computer code has been modified for simulation of dual-fuel diesel engine combustion process. This model simulates dual-fuel diesel engine combustion by using a Multi-Zone Combustion Model for diesel pilot jet combustion and a conventional spark ignition combustion model for modelling of combustion of premixed gas/air charge. Also, in this model, there are four submodels for prediction of major emission pollutants such as: Unburnt Hydrocarbons, No, Co and soot which are emitted from dual-fuel diesel engine. For prediction of formation and oxidation rates of pollutants, relevant s conventional kinetically-controlled mechanisms and mass balances are used. the model has been verified by experimental data obtained from a heavy-duty truck and bus diesel engines. The comparison shows that, there exist good agreements between the experimental and predicted results from the dual-fuel diesel engine

  15. The effect of insulated combustion chamber surfaces on direct-injected diesel engine performance, emissions, and combustion

    Science.gov (United States)

    Dickey, Daniel W.; Vinyard, Shannon; Keribar, Rifat

    1988-01-01

    The combustion chamber of a single-cylinder, direct-injected diesel engine was insulated with ceramic coatings to determine the effect of low heat rejection (LHR) operation on engine performance, emissions, and combustion. In comparison to the baseline cooled engine, the LHR engine had lower thermal efficiency, with higher smoke, particulate, and full load carbon monoxide emissions. The unburned hydrocarbon emissions were reduced across the load range. The nitrous oxide emissions increased at some part-load conditions and were reduced slightly at full loads. The poor LHR engine performance was attributed to degraded combustion characterized by less premixed burning, lower heat release rates, and longer combustion duration compared to the baseline cooled engine.

  16. The effect of nozzle diameter, injection pressure and ambient temperature on spray characteristics in diesel engine

    Science.gov (United States)

    Rhaodah Andsaler, Adiba; Khalid, Amir; Sharifhatul Adila Abdullah, Nor; Sapit, Azwan; Jaat, Norrizam

    2017-04-01

    Mixture formation of the ignition process is a key element in the diesel combustion as it influences the combustion process and exhaust emission. Aim of this study is to elucidate the effects of nozzle diameter, injection pressure and ambient temperature to the formation of spray. This study investigated diesel formation spray using Computational Fluid Dynamics. Multiphase volume of fluid (VOF) behaviour in the chamber are determined by means of transient simulation, Eulerian of two phases is used for implementation of mixing fuel and air. The detail behaviour of spray droplet diameter, spray penetration and spray breakup length was visualised using the ANSYS 16.1. This simulation was done in different nozzle diameter 0.12 mm and 0.2 mm performed at the ambient temperature 500 K and 700 K with different injection pressure 40 MPa, 70 MPa and 140 MPa. Results show that high pressure influence droplet diameter become smaller and the penetration length longer with the high injection pressure apply. Smaller nozzle diameter gives a shorter length of the breakup. It is necessary for nozzle diameter and ambient temperature condition to improve the formation of spray. High injection pressure is most effective in improvement of formation spray under higher ambient temperature and smaller nozzle diameter.

  17. Investigation of split injection in a single cylinder optical diesel engine

    OpenAIRE

    Díez Rodríguez, Álvaro

    2009-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. Over the last decade, the diesel engine has made dramatic progress in its performance and market penetration. However, in order to meet future emissions legislations, Nitrogen Oxide (NOx) and particulate matter (PM) emissions will need to be reduced simultaneously. Nowadays researchers are focused on different combustion modes like homogeneous charge compression ignition (HCCI) combustion and...

  18. Experimental study on fuel economies and emissions of direct-injection premixed combustion engine fueled with gasoline/diesel blends

    International Nuclear Information System (INIS)

    Du, Jiakun; Sun, Wanchen; Guo, Liang; Xiao, Senlin; Tan, Manzhi; Li, Guoliang; Fan, Luyan

    2015-01-01

    Highlights: • A compound combustion concept was proposed and investigated. • Premixed combustion near the top dead center was investigated using blended fuels. • Increasing gasoline blend ratio was found to enhance the mixture preparation. • Too much addition of gasoline decreases indicated thermal efficiency. • Gasoline/diesel blends may be a promising alternative for premixed combustion. - Abstract: The effects of gasoline/diesel blended fuel composed of diesel fuel with gasoline as additives in volume basis, on combustion, fuel economies and exhaust emissions were experimentally investigated. Tests were carried out based on a turbocharged Common-rail Direct Injection engine at a constant engine speed of 1800 r/min and different loads of 3.2 bar, 5.1 bar Indicated Mean Effective Pressure. Additionally, the effect of combustion phasing and Exhaust Gas Recirculation were evaluated experimentally for various fuels. The results indicated that with the fraction of gasoline increasing in blends, the ignition delay was prolonged and the combustion phasing was retarded with the common injection timing. This led to a significant increase of premixed burning phase, which was in favor of smoke reduction; although, too much gasoline might be adverse to fuel consumption. An optimum combustion phasing was identified, leading to a higher thermal efficiency and better premixed combustion with blended fuels. A combined application of Exhaust Gas Recirculation and blended fuel with a high gasoline fraction was confirmed effective in reducing the oxides of nitrogen and smoke emissions simultaneously at the optimum combustion phasing without giving significant penalty of fuel consumption. A compound combustion mode with its emission lower than the conventional Compression Ignition engines, and efficiency higher than the typical Spark Ignition engines, could be achieved with a cooperative control of Exhaust Gas Recirculation and combustion phasing of the gasoline/diesel

  19. Three-dimensional analysis of internal flow characteristics in the injection nozzle tip of direct-injection diesel engines; Sanjigen suchi kaiseki ni yoru DI diesel kikan no nenryo funsha nozzle nai ryudo tokusei no kaimei

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, H; Matsui, Y; Kimura, S [Nissan Motor Co. Ltd. Tokyo (Japan)

    1997-10-01

    To reduce the exhaust emissions and fuel consumption of direct-injection diesel engines, it is essential to optimize the fuel injection equipment closely related to combustion and emission characteristics. In this study, three-dimensional computation has been applied to investigate the effects of the injection nozzle specifications (e.g., sac volume, round shape at the inlet of the nozzle hole) and needle tip deviation on internal flow characteristics. The computational results revealed that the effects of the nozzle specifications and needle tip deviation with a smaller needle lift on internal flow characteristics and a general approach to optimize the injection nozzle specifications were obtained. 3 refs., 10 figs., 1 tab.

  20. The effect of ethanol–diesel–biodiesel blends on combustion, performance and emissions of a direct injection diesel engine

    International Nuclear Information System (INIS)

    Labeckas, Gvidonas; Slavinskas, Stasys; Mažeika, Marius

    2014-01-01

    Highlights: • Ethanol–diesel–biodiesel blends were tested at the same air–fuel ratios and three ranges of speed. • The fuel oxygen mass content reflects changes in the autoignition delay more predictably than the cetane number does. • Using of composite blend E15B suggests the brake thermal efficiency the same as the normal diesel fuel. • Adding of ethanol to diesel fuel reduces the NO x emission for richer air–fuel mixtures at all engine speeds. • The ethanol effect on CO, HC emissions and smoke opacity depends on the air–fuel ratio and engine speed. - Abstract: The article presents the test results of a four-stroke, four-cylinder, naturally aspirated, DI 60 kW diesel engine operating on diesel fuel (DF) and its 5 vol% (E5), 10 vol% (E10), and 15 vol% (E15) blends with anhydrous (99.8%) ethanol (E). An additional ethanol–diesel–biodiesel blend E15B was prepared by adding the 15 vol% of ethanol and 5 vol% of biodiesel (B) to diesel fuel (80 vol%). The purpose of the research was to examine the influence of the ethanol and RME addition to diesel fuel on start of injection, autoignition delay, combustion and maximum heat release rate, engine performance efficiency and emissions of the exhaust when operating over a wide range of loads and speeds. The test results were analysed and compared with a base diesel engine running at the same air–fuel ratios of λ = 5.5, 3.0 and 1.5 corresponding to light, medium and high loads. The same air–fuel ratios predict that the energy content delivered per each engine cycle will be almost the same for various ethanol–diesel–biodiesel blends that eliminate some side effects and improve analyses of the test results. A new approach revealed an important role of the fuel bound oxygen, which reflects changes of the autoignition delay more predictably than the cetane number does. The influence of the fuel oxygen on maximum heat release rate, maximum combustion pressure, NO x , CO emissions and smoke opacity

  1. Analyse de la sensibilité aux paramètres gazoles d'un moteur diesel d'automobile à injection directe Small Direct Injection Diesel Engine Sensitivity to the Diesel Fuel Characteristics

    Directory of Open Access Journals (Sweden)

    Montagne X.

    2006-12-01

    particules totales sont plutôt dépendantes de la viscosité et des fractions légères des carburants. Les émissions sonores sont étroitement liées à l'indice de cétane. Par ailleurs, l'ensemble des résultats acquis semble indiquer que les paramètres pilotant le délai d'auto-inflammation sont importants sur ce type de convertisseur. Il serait cependant nécessaire de disposer de mesures directes des caractéristiques des jets d'injection (taille des gouttelettes, pénétration du spray en fonction des différents carburants pour pouvoir quantifier l'effet des paramètres tels que la viscosité et la densité sur la partie physique du délai d'auto-inflammation. Among the technical solutions that can lead to energy converters with low pollutant emissions and low fuel consumption, diesel engines rank, by nature, in a good position. On this base, direct injection diesel engine has been developed and are now spreading in private passanger cars because of their performances, especially in terms of fuel consumption. However, this equipment requires an efficient injection system, electronically driven, needs EGR and an oxidation catalyst to improve the pollutant emissions and the noise level. Thus, it is a major concern to be able to assess precisely the sensitivity to fuel characteristics of direct injection engines as to take the best advantage of this technology. With a set of fuels formulated to cover a large range of chemical nature, viscosity, cetane number and density, an Audi direct injection engine (1Z model was run at the test bench. The impact of the fuel characteristics on pollutant emissions, regulated or unregulated (PAH, aldehydes, and on noise levels was assessed either under standard tuning conditions, either by changing the EGR rate and the injection timing. The results obtained at the end of this program point out the main criteria that have an influence on emissions. They also allow a comparison between direct injection engines and their homologues

  2. Co-combustion of biodiesel with oxygenated fuels in direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Tutak Wojciech

    2017-01-01

    Full Text Available The paper presents results of experimental investigation of cocombustion process of biodiesel (B100 blended with oxygenated fuels with 20% in volume. As the alternative fuels ware used hydrated ethanol, methanol, 1-butanol and 2-propanol. It was investigated the influence of used blends on operating parameters of the test engine and exhaust emission (NOx, CO, THC, CO2. It is observed that used blends are characterized by different impact on engine output power and its efficiency. Using biodiesel/alcohol blend it is possible to improve engine efficiency with small drop in indicated mean effective pressure (IMEP. Due to combustion characteristic of biodiesel/alcohol obtained a slightly larger specific NOx emission. It was also observed some differences in combustion phases due to various values of latent heat of evaporation of used alcohols and various oxygen contents. Test results confirmed that the combustion process occurring in the diesel engine powered by blend takes place in a shorter time than in the typical diesel engine.

  3. Effects of port fuel injection (PFI) of n-butanol and EGR on combustion and emissions of a direct injection diesel engine

    International Nuclear Information System (INIS)

    Chen, Zheng; Liu, Jingping; Wu, Zhenkuo; Lee, Chiafon

    2013-01-01

    Highlights: • A DI diesel engine with PFI of n-butanol in combination with EGR is investigated. • Butanol concentration and EGR have a coupled impact on combustion process. • A combination of butanol PFI and EGR can break through tradeoff between NOx and soot. • DI diesel with butanol PFI has lower ITE than DI of diesel–butanol blends. - Abstract: An experimental investigation was conducted on a direct injection (DI) diesel engine with exhaust gas recirculation (EGR), coupled with port fuel injection (PFI) of n-butanol. Effects of butanol concentration and EGR rate on combustion, efficiency, and emissions of the tested engine were evaluated, and also compared to a DI mode of diesel–butanol blended fuel. The results show butanol concentration and EGR rate have a coupled impact on combustion process. Under low EGR rate condition, both the peak cylinder pressure and the peak heat release rate increase with increased butanol concentration, but no visible influence was found on the ignition delay. Under high EGR rate condition, however, the peak cylinder pressure and the peak heat release rate both decrease with increased butanol concentration, accompanied by longer ignition delay and longer combustion duration. As regard to the regulated emissions, HC and CO emissions increase with increased butanol concentration, causing higher indicated specific fuel consumption (ISFC) and lower indicated thermal efficiency (ITE). It is also noted that butanol PFI in combination with EGR can change the trade-off relationship between NOx and soot, and simultaneously reduce both into a very low level. Compared with the DI mode of diesel–butanol blended fuel, however, the DI diesel engine with butanol PFI has higher HC and CO emissions and lower ITE. Therefore, future research should be focused on overcoming the identified shortcomings by an improved injection strategy of butanol PFI

  4. Numerical Investigation on Effects of Assigned EGR Stratification on a Heavy Duty Diesel Engine with Two-Stage Fuel Injection

    Directory of Open Access Journals (Sweden)

    Zhaojie Shen

    2018-02-01

    Full Text Available External exhaust gas recirculation (EGR stratification in diesel engines contributes to reduction of toxic emissions. Weak EGR stratification lies in that strong turbulence and mixing between EGR and intake air by current introduction strategies of EGR. For understanding of ideal EGR stratification combustion, EGR was assigned radically at −30 °CA after top dead center (ATDC to organize strong EGR stratification using computational fluid dynamics (CFD. The effects of assigned EGR stratification on diesel performance and emissions are discussed in this paper. Although nitric oxides (NOx and soot emissions are both reduced by means of EGR stratification compared to uniform EGR, the trade-off between NOx and soot still exists under the condition of arranged EGR stratification with different fuel injection strategies. A deterioration of soot emissions was observed when the interval between main and post fuel injection increased, while NO emissions increased first then reduced. The case with a 4 °CA interval between main and post fuel injection is suitable for acceptable NO and soot emissions. Starting the main fuel injection too early and too late is not acceptable, which results in high NO emissions and high soot emissions respectively. The start of the main fuel injection −10 °CA ATDC is suitable.

  5. Effect of hydrogen on ethanol-biodiesel blend on performance and emission characteristics of a direct injection diesel engine.

    Science.gov (United States)

    Parthasarathy, M; Isaac JoshuaRamesh Lalvani, J; Dhinesh, B; Annamalai, K

    2016-12-01

    Environment issue is a principle driving force which has led to a considerable effort to develop and introduce alternative fuels for transportation. India has large potential for production of biofuels like biodiesel from vegetable seeds. Use of biodiesel namely, tamanu methyl ester (TME) in unmodified diesel engines leads to low thermal Efficiency and high smoke emission. To encounter this problem hydrogen was inducted by a port fueled injection system. Hydrogen is considered to be low polluting fuel and is the most promising among alternative fuel. Its clean burning characteristic and better performance attract more interest compared to other fuels. It was more active in reducing smoke emission in biodiesel. A main drawback with hydrogen fuel is the increased NO x emission. To reduce NO x emission, TME-ethanol blends were used in various proportions. After a keen study, it was observed that ethanol can be blended with biodiesel up to 30% in unmodified diesel engine. The present work deals with the experimental study of performance and emission characteristic of the DI diesel engine using hydrogen and TME-ethanol blends. Hydrogen and TME-ethanol blend was used to improve the brake thermal efficiency and reduction in CO, NO x and smoke emissions. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Influence of alumina oxide nanoparticles on the performance and emissions in a methyl ester of neem oil fuelled direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Balaji Gnanasikamani

    2017-01-01

    Full Text Available The experimental investigation of the influence of Al2O3 nanoadditive on performance and emissions in a methyl ester of neem oil fueled direct injection Diesel engine is reported in this paper. The Al2O3 nanoparticles are mixed in various proportions (100 to 300 ppm with methyl ester of neem oil. The performance and emissions are tested in a single cylinder computerized, 4-stroke, stationary, water-cooled Diesel engine of 3.5 kW rated power. Results show that the nanoadditive is effective in increasing the performance and controlling the NO emissions of methyl ester of neem oil fueled Diesel engines.

  7. Development of High Efficiency and Low Emission Low Temperature Combustion Diesel Engine with Direct EGR Injection

    Science.gov (United States)

    Ho, R. J.; Kumaran, P.; Yusoff, M. Z.

    2016-03-01

    Focus on energy and environmental sustainability policy has put automotive research & development directed to developing high efficiency and low pollutant power train. Diffused flame controlled diesel combustion has reach its limitation and has driven R&D to explore other modes of combustions. Known effective mode of combustion to reduce emission are Low temperature combustion (LTC) and homogeneous charge combustion ignition by suppressing Nitrogen Oxide(NOx) and Particulate Matter (PM) formation. The key control to meet this requirement are chemical composition and distribution of fuel and gas during a combustion process. Most research to accomplish this goal is done by manipulating injected mass flow rate and varying indirect EGR through intake manifold. This research paper shows viable alternative direct combustion control via co-axial direct EGR injection with fuel injection process. A simulation study with OpenFOAM is conducted by varying EGR injection velocity and direct EGR injector diameter performed with under two conditions with non-combustion and combustion. n-heptane (C7H16) is used as surrogate fuel together with 57 species 290 semi-detailed chemical kinetic model developed by Chalmers University is used for combustion simulation. Simulation result indicates viability of co-axial EGR injection as a method for low temperature combustion control.

  8. Two-dimensional analysis of two-phase reacting flow in a firing direct-injection diesel engine

    Science.gov (United States)

    Nguyen, H. Lee

    1989-01-01

    The flow field, spray penetration, and combustion in two-stroke diesel engines are described. Fuel injection begins at 345 degrees after top dead center (ATDC) and n-dodecane is used as the liquid fuel. Arrhenius kinetics is used to calculate the reaction rate term in the quasi-global combustion model. When the temperature, fuel, and oxygen mass fraction are within suitable flammability limits, combustion begins spontaneously. No spark is necessary to ignite a localized high temperature region. Compression is sufficient to increase the gaseous phase temperature to a point where spontaneous chemical reactions occur. Results are described for a swirl angle of 22.5 degrees.

  9. Investigation of Diesel combustion using multiple injection strategies for idling after cold start of passenger-car engines

    Energy Technology Data Exchange (ETDEWEB)

    Payri, F.; Broatch, A.; Salavert, J.M.; Martin, J. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Aptdo. 22012, E-46071 Valencia (Spain)

    2010-10-15

    A comprehensive investigation was carried out in order to better understand the combustion behaviour in a low compression ratio DI Diesel engine when multiple injection strategies are applied just after the engine cold starts in low temperature conditions (idling). More specifically, the aim of this study was twofold: on one hand, to understand the effect of the multiple injection strategies on the indicated mean effective pressure; on the other hand, to contribute to the understanding of combustion stability characterized by the coefficient of variation of indicated mean effective pressure. The first objective was fulfilled by analyzing the rate of heat release obtained by in-cylinder pressure diagnosis. The results showed that the timing of the pilot injection closest to the main injection was the most influential parameter based on the behaviour of the rate of heat release (regardless of the multiple injection strategy applied). For the second objective, the combustion stability was found to be correlated with the combustion centroid angle. The results showed a trend between them and the existence of a range of centroid angles where the combustion stability is strong enough. In addition, it was also evident that convenient split injection allows shifting the centroid to such a zone and improves combustion stability after start. (author)

  10. Emulation study on system characteristic of high pressure common-rail fuel injection system for marine medium-speed diesel engine

    Science.gov (United States)

    Wang, Qinpeng; Yang, Jianguo; Xin, Dong; He, Yuhai; Yu, Yonghua

    2018-05-01

    In this paper, based on the characteristic analyzing of the mechanical fuel injection system for the marine medium-speed diesel engine, a sectional high-pressure common rail fuel injection system is designed, rated condition rail pressure of which is 160MPa. The system simulation model is built and the performance of the high pressure common rail fuel injection system is analyzed, research results provide the technical foundation for the system engineering development.

  11. The effect of injection timing on energy and exergy analysis of a diesel engine with biodiesel fuel

    Directory of Open Access Journals (Sweden)

    A Farhadi

    2017-05-01

    Full Text Available Introduction Nowadays, due to higher environmental pollution and decreasing fossil fuels many countries make decisions to use renewable fuels and restrict using of fossil fuels. Renewable fuels generally produce from biological sources. Biodiesel is an alternative diesel fuel derived from the transesterification of vegetable oils, animal fats, or waste frying oils. Considering the differences between diesel and biodiesel fuels, engine condition should be modified based on the fuel or fuel blends to achieve optimum performance. One of the simplest and yet the most widely used models is the thermodynamic model. After verification of the data obtained by model with experimental data it is possible to generalize the extracted data to an unlimited number of functional conditions or unlimited number of fuel types which saves time and reduces costs for experimental engine tests. Using the second law of thermodynamics, it is possible to calculate and analyze the exergy of the engine.4 Materials and Methods In this work, the zero-dimensional model was used to account for internal energy variations, pressure work, heat transfer losses to the solid walls and heat release. The applied assumptions include: The cylinder mixture temperature, pressure and composition were assumed uniform throughout the cylinder. Furthermore, the one-zone thermodynamic model assumes instantaneous mixing between the burned and unburned gases. The cylinder gases were assumed to behave as an ideal gas mixture, Gas properties, include enthalpy, internal energy modeled using polynomial equations associated with temperature. In this research, the equations 1 to 20 were used in Fortran programming language. The results of incylinder pressure obtained by the model were validated by the results of experimental test of OM314 engine. Then the effects of injection timing on Energy and Exergy of the engine were analyzed for B20 fuel. Results and Discussion Comparing the results of the model

  12. Development and application of multi-zone model for combustion and pollutants formation in direct injection diesel engine running with vegetable oil or its bio-diesel

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Antonopoulos, K.A.; Rakopoulos, D.C.

    2007-01-01

    A multi-zone model for calculation of the closed cycle of a direct injection (DI) Diesel engine is presented and applied for the interesting case of its operation with vegetable oil (cottonseed) or its derived bio-diesel (methyl ester) as fuels, which recently are considered as promising alternatives (bio-fuels) to petroleum distillates. Although there are many experimental studies, there is an apparent scarcity of theoretical models scrutinizing the formation mechanisms of combustion generated emissions when using these fuels. The model is two dimensional, multi-zone with the issuing jets (from the nozzle) divided into several discrete volumes, called 'zones', formed along the direction of the fuel injection and across it. The model follows each zone, with its own time history, as the spray penetrates into the swirling air environment (forming the non-burning zone) of the combustion chamber, before and after wall impingement. Droplet evaporation and jet mixing models are used to determine the amount of fuel and entrained air in each zone available for combustion. The mass, energy and state equations are applied in each zone to yield local temperatures and cylinder pressure histories. The concentrations of the various constituents are calculated by adopting a chemical equilibrium scheme for the C-H-O-N system of 11 species considered, together with the chemical rate equations for the calculation of nitric oxide (NO). A model for evaluation of soot formation and oxidation rates is included. The results from the relevant computer program for the in cylinder pressure, exhaust nitric oxide concentration (NO) and soot density are compared favorably with the corresponding measurements from an experimental investigation conducted on a fully automated test bed, standard 'Hydra', DI Diesel engine installed at the authors' laboratory. Iso-contour plots of equivalence ratio, temperature, NO and soot inside the combustion chamber at various instants of time when using these

  13. Effects of pilot injection parameters on low temperature combustion diesel engines equipped with solenoid injectors featuring conventional and rate-shaped main injection

    International Nuclear Information System (INIS)

    D’Ambrosio, S.; Ferrari, A.

    2016-01-01

    Highlights: • The influence of the principal pilot injection parameters is discussed for low-temperature combustion systems. • Swirl-sweep and dwell-time sweep results are combined to analyze soot emissions. • The pilot injection effects are investigated in injection profiles featuring rate-shaped main injections. - Abstract: The potential of pilot injection has been assessed on a low-temperature combustion diesel engine for automotive applications, which was characterized by a reduced compression-ratio, high EGR rates and postponed main injection timings. Dwell time sweeps have been carried out for pilot injections with distinct energizing times under different representative steady-state working conditions of the medium load and speed area of the New European Driving Cycle. The results of in-cylinder analyses of the pressure, heat-release rate, temperature and emissions are presented. Combustion noise has been shown to decrease significantly when the pilot injected mass increases, while it is scarcely affected by the dwell time between the pilot and main injections. The HC, CO and fuel consumption trends, with respect to both the pilot injection dwell time and mass, are in line with those of conventional combustion systems, and in particular decreasing trends occur as the pilot injection energizing time is increased. Furthermore, a reduced sensitivity of NO_x emissions to both dwell time and pilot injected mass has been found, compared to conventional combustion systems. Finally, it has been observed that soot emissions diminish as the energizing time is shortened, and their dependence on dwell time is influenced to a great extent by the presence of local zones with reduced air-to-fuel ratios within the cylinder. A combined analysis of the results of swirl sweeps and dwell time sweeps is here proposed as a methodology for the detection of any possible interference between pilot combustion burned gases and the main injected fuel. The effect of pilot

  14. Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine

    International Nuclear Information System (INIS)

    Oener, Cengiz; Altun, Sehmus

    2009-01-01

    In this study, a substitute fuel for diesel engines was produced from inedible animal tallow and its usability was investigated as pure biodiesel and its blends with petroleum diesel fuel in a diesel engine. Tallow methyl ester as biodiesel fuel was prepared by base-catalyzed transesterification of the fat with methanol in the presence of NaOH as catalyst. Fuel properties of methyl ester, diesel fuel and blends of them (5%, 20% and 50% by volume) were determined. Viscosity and density of fatty acid methyl ester have been found to meet ASTM D6751 and EN 14214 specifications. Viscosity and density of tallow methyl esters are found to be very close to that of diesel. The calorific value of biodiesel is found to be slightly lower than that of diesel. An experimental study was carried out in order to investigate of its usability as alternative fuel of tallow methyl ester in a direct injection diesel engine. It was observed that the addition of biodiesel to the diesel fuel decreases the effective efficiency of engine and increases the specific fuel consumption. This is due to the lower heating value of biodiesel compared to diesel fuel. However, the effective engine power was comparable by biodiesel compared with diesel fuel. Emissions of carbon monoxide (CO), oxides of nitrogen (NO x ), sulphur dioxide (SO 2 ) and smoke opacity were reduced around 15%, 38.5%, 72.7% and 56.8%, respectively, in case of tallow methyl esters (B100) compared to diesel fuel. Besides, the lowest CO, NO x emissions and the highest exhaust temperature were obtained for B20 among all other fuels. The reductions in exhaust emissions made tallow methyl esters and its blends, especially B20 a suitable alternative fuel for diesel and thus could help in controlling air pollution. Based on this study, animal tallow methyl esters and its blends with petroleum diesel fuel can be used a substitute for diesel in direct injection diesel engines without any engine modification. (author)

  15. An Insight into the Effect of Advanced Injection Strategies on Pollutant Emissions of a Heavy-Duty Diesel Engine

    Directory of Open Access Journals (Sweden)

    Vincenzo Naso

    2013-08-01

    Full Text Available An advanced numerical investigation has been carried out in order to study the effect of multiple injection strategies on Caterpillar heavy-duty diesel engine emissions. Both different injected fuel percentages for each pulse and several dwells between main and post phase were investigated via computational fluid dynamics (CFD and large eddy simulation (LES. Two sets of simulations were taken into account for 10% and 20% exhaust gas recirculation (EGR fractions. In the first one, the main injection was split into two identical phases, while in the second one into three pulses. Within each set, three strategies were considered, increasing the amount of fuel injected during the main and concurrently decreasing the post pulse. Overall, 48 simulations were employed, since four different dwells between the last phase of the main and post injection were considered. Results show that the pollutant emissions minimization has been obtained for the Schemes injecting 65% and 70% of fuel for both two and three split strategies, but for different values of dwell. In fact, emissions very close to each other for NOx and particulate matter have been reached for these cases. Reductions of about −30% and −71% were respectively obtained for NOx and soot in comparison with experimental emissions related to the single injection case.

  16. Effects of pilot injection pressure on the combustion and emissions characteristics in a diesel engine using biodiesel–CNG dual fuel

    International Nuclear Information System (INIS)

    Ryu, Kyunghyun

    2013-01-01

    Highlights: • Injection pressure of pilot fuel in dual fuel combustion (DFC) affects the engine power and exhaust emissions. • In the biodiesel–CNG DFC mode, the combustion begins and ends earlier as the pilot-fuel injection pressure increases. • The ignition delay in the DFC mode is about 1.2–2.6 °CA longer than that in the diesel single fuel combustion (SFC) mode. • The smoke and NOx emissions are significantly reduced in the DFC mode. - Abstract: Biodiesel–compressed natural gas (CNG) dual fuel combustion (DFC) system is studied for the simultaneous reduction of particulate matters (PM) and nitrogen oxides (NOx) from diesel engine. In this study, biodiesel is used as a pilot injection fuel to ignite the main fuel, CNG of DFC system. In particular, the pilot injection pressure is controlled to investigate the characteristics of engine performance and exhaust emissions in a single cylinder diesel engine. The results show that the indicated mean effective pressure (IMEP) of biodiesel–CNG DFC mode is lower than that of diesel single fuel combustion (SFC) mode at higher injection pressure. However, the combustion stability of biodiesel–CNG DFC mode is increased with the increase of pilot injection pressure. At the same injection pressure, the start of combustion of biodiesel–CNG DFC is delayed compared to diesel SFC due to the increase of ignition delay of pilot fuel. On the contrary, it is observed that as the pilot injection pressure increase, the combustion process begins and ends a little earlier for biodiesel–CNG DFC. The ignition delay in the DFC is about 1.2–2.6 °CA longer compared to diesel SFC, but decreases with increases of pilot injection pressure. Smoke and NOx emissions are decreased and increased, respectively, as the pilot injection pressure increases in the biodiesel–CNG DFC. In comparison to diesel SFC, smoke emissions are significantly reduced over all the operating conditions and NOx emissions also exhibited similar

  17. Preliminary study on the control of direct injection diesel engine for better fuel flexibility and emissions control. Pt. 3

    Energy Technology Data Exchange (ETDEWEB)

    Egnell, R.; Kassem, N.; Bohlin, T.

    1985-01-01

    This report summarizes the results of a preliminary study on turbocharged direct injection diesel engines. The objectives and scope of this study are: 1. To explore the potential of using electronic control systems based on dynamic models of the engine in order to reduce fuel consumption, while maintaining good driveability. 2. To analyze the transient response of a turbocharged diesel engine based on experimental data collected from one of SAAB-SCANIA's test cells. 3. To survey the hardware components that would satisfy the requirements of the electronic control systems mentioned above. Part III discusses the transient response measurements obtained from two sets of experiments conducted on a six-cylinder motor working under varying conditions of load and speed. The objective of the first set of experiments was to quantify the difference in ignition delay between the transient and steady state operating conditions. The second set of experiments were aimed to provide a basis on which the engine efficiency obtained under transient conditions can be compared to that obtained from a single-cylinder motor working under steady state conditions.

  18. Influence of engine speed and the course of the fuel injection characteristics on forming the average combustion temperature in the cylinder of turbo diesel engine

    Directory of Open Access Journals (Sweden)

    Piotr GUSTOF

    2007-01-01

    Full Text Available Average combustion temperatures inside a turbo diesel engine for the same load and the same total doze of fuel for two rotational speeds: 2004 [rpm] and 4250 [rpm] are presented in this paper. The aim of this work is also the evaluation of the influence of the temporary course of the fuel injection characteristics on forming temperature in theengine cylinder space for these temperatures. The calculations were carried out by means of two zone combustion model.

  19. Experimental Investigation of Embedded Controlled Diesel Engine

    OpenAIRE

    R.Govindaraju; M.Bharathiraja; Dr. K.Ramani; Dr.K.R.Govindan

    2012-01-01

    Diesel engines are widely used in Automobiles, Agriculture and Power generation sectors in a large scale. The modern techniques have contributed a lot in the saving of fuel in these diesel engines. However, from 1970 onwards the fuel consumption becomes a serious concern because of a manifold increase of automobiles and fast depletion of non renewable sources of energy. Since the fuel injection system plays a major role in the consumption of fuel in diesel engines, various control measures we...

  20. Application of macro-cellular SiC reactor to diesel engine-like injection and combustion conditions

    Science.gov (United States)

    Cypris, Weclas, M.; Greil, P.; Schlier, L. M.; Travitzky, N.; Zhang, W.

    2012-05-01

    One of novel combustion technologies for low emissions and highly efficient internal combustion engines is combustion in porous reactors (PM). The heat release process inside combustion reactor is homogeneous and flameless resulting in a nearly zero emissions level. Such combustion process, however is non-stationary, is performed under high pressure with requirement of mixture formation directly inside the combustion reactor (high pressure fuel injection). Reactor heat capacity resulting in lowering of combustion temperature as well as internal heat recuperation during the engine cycle changes the thermodynamic conditions of the process as compared to conventional engine. For the present investigations a macro-cellular lattice structure based on silicon carbide (non-foam structure) with 600 vertical cylindrical struts was fabricated and applied to engine-like combustion conditions (combustion chamber). The lattice design with a high porosity > 80% was shaped by indirect three-dimensional printing of a SiC powder mixed with a dextrin binder which also serves as a carbon precursor. In order to perform detailed investigations on low-and high-temperature oxidation processes in porous reactors under engine-like conditions, a special combustion chamber has been built and equipped with a Diesel common-rail injection system. This system simulates the thermodynamic conditions at the time instance of injection onset (corresponding to the nearly TDC of compression in a real engine). Overall analysis of oxidation processes (for variable initial pressure, temperature and air excess ratio) for free Diesel spray combustion and for combustion in porous reactor allows selection of three regions representing different characteristics of the oxidation process represented by a single-step and multi-step reactions Another characteristic feature of investigated processes is reaction delay time. There are five characteristic regions to be selected according to the delay time (t) duration

  1. An insight on hydrogen fuel injection techniques with SCR system for NO{sub X} reduction in a hydrogen-diesel dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, N. [ERC Engines, Hall 11A, Tata Motors, Pimpri, Pune 411019, Maharashtra (India); Nagarajan, G. [Department of Mechanical Engineering, ICE Division, College of Engineering, Guindy, Anna University-Chennai, Chennai 600 025 (India)

    2009-11-15

    Internal combustion engines continue to dominate in many fields like transportation, agriculture and power generation. Among the various alternative fuels, hydrogen is a long-term renewable and less polluting fuel (Produced from renewable energy sources). In the present experimental investigation, the performance and emission characteristics were studied on a direct injection diesel engine in dual fuel mode with hydrogen inducted along with air adopting carburetion, timed port and manifold injection techniques. Results showed that in timed port injection, the specific energy consumption reduces by 15% and smoke level by 18%. The brake thermal efficiency and NO{sub X} increases by 17% and 34% respectively compared to baseline diesel. The variation in performance between port and manifold injection is not significant. The unburnt hydrocarbons and carbon monoxide emissions are lesser in port injection. The oxides of nitrogen are higher in hydrogen operation (both port and manifold injection) compared to diesel engine. In order to reduce the NO{sub X} emissions, a selective catalytic converter was used in hydrogen port fuel injection. The NO{sub X} emission reduced upto a maximum of 74% for ANR (ratio of flow rate of ammonia to the flow rate of NO) of 1.1 with a marginal reduction in efficiency. Selective catalytic reduction technique has been found to be effective in reducing the NO{sub X} emission from hydrogen fueled diesel engines. (author)

  2. Effect of Exhaust Gas Recirculation (EGR on the Performance Characteristics of a Direct Injection Multi Cylinders Diesel Engine

    Directory of Open Access Journals (Sweden)

    Khalil Ibrahim Abaas

    2016-07-01

    Full Text Available Owing  to  the  energy  crisis  and  pollution  problems  of  today  investigations  have  concentrated  on decreasing  fuel  consumption  and  on  lowering  the  concentration  of  toxic  components  in  combustion products by using exhaust gas after treatments methods like PM filters and EGR for NOx reduction. In this study, the combustion characteristics of diesel fuel were compared with that pr oduced from adding EGR at several percentages to air manifold. The tests were performed in a four-cylinder direct injection (DI diesel engine at constant engine speed (1500 rpm and variable loads (from no load to 86 kN/m2, the tests were repeated with constant load (77 kN/m2 and variable engine speeds (from 1250 to 3000 rpm.The experimental results showed that adding EGR to diesel engine provided significant reductions in brake power (bp, brake thermal efficiency and exhaust gas temperatures, while high increments in brake specific  fuel  consumption  (bsfc.  High  EGR  percentage  (as  30%  in  this  article  caused  an  11.7% reduction  in  brake  thermal  efficiency,  26.38%  reduction  in  exhaust  gas  temperatures  and  12.28%  in volumetric efficiency at full load conditions.

  3. Continuous injection rate-shaping for passenger-car diesel engines. Potential, limits and feasibility; Kontinuierliche Einspritzverlaufsformung in Pkw-Dieselmotoren. Potenziale, Grenzen und Realisierungschancen

    Energy Technology Data Exchange (ETDEWEB)

    Predelli, Oliver; Gratzke, Ralf; Sommer, Ansgar; Marohn, Ralf [Ingenieurgesellschaft Auto und Verkehr GmbH, Berlin (Germany); Atzler, Frank; Schuele, Harry; Kastner, Oliver; Nozeran, Nicolas [Continental Automotive GmbH, Regensburg (Germany)

    2010-07-01

    Injection-rate shaping for passenger-car diesel engines is a technique on the verge of a breakthrough. In addition to reducing particulate emission, the method is capable of significantly cutting combustion noise, the Achilles heel of the DI diesel combustion process. As a result, injection-rate shaping shows clear advantages over alternative lowemission combustion processes, such as PCCI, which, although also capable of improving raw emissions in relation to NO{sub x} and soot, are less convincing from the aspect of diesel knock and the emission of CO and CO{sub 2}. Of the modern Common-Rail injection systems, only two permit continuous injection-rate shaping in addition to the hitherto customary strategy of multiple injection. One of them is the Continental PCR NG system. This uses piezo-actuated Common-Rail injectors with direct actuation of the injector nozzle needle. The electronic engine control system provides the capability of determining how far the injector nozzle needle opens. The ability to control the injection curve of each individual injection event gives the engine developer new degrees of freedom in optimizing the combustion process. This paper investigates the way in which the operating behavior of a passenger-car diesel engine is affected by an injection-rate that can be shaped flexibly across broad ranges. Injection-rate shaping aims to use high injection pressures at part load without affecting acoustics and with a view to achieving a significant improvement in emission behavior. The investigation also points out this technique's limits in individual operating points. It furthermore demonstrates approaches suitable for use in mass production with regard to controlling injection-rate shaping in real time in the engine control unit as a way of providing combustion-process stability over the life of the engine. (orig.)

  4. A control-oriented approach to estimate the injected fuel mass on the basis of the measured in-cylinder pressure in multiple injection diesel engines

    International Nuclear Information System (INIS)

    Finesso, Roberto; Spessa, Ezio

    2015-01-01

    Highlights: • Control-oriented method to estimate injected quantities from in-cylinder pressure. • Able to calculate the injected quantities for multiple injection strategies. • Based on the inversion of a heat-release predictive model. • Low computational time demanding. - Abstract: A new control-oriented methodology has been developed to estimate the injected fuel quantities, in real-time, in multiple injection DI diesel engines on the basis of the measured in-cylinder pressure. The method is based on the inversion of a predictive combustion model that was previously developed by the authors, and that is capable of estimating the heat release rate and the in-cylinder pressure on the basis of the injection rate. The model equations have been rewritten in order to derive the injected mass as an output quantity, starting from use of the measured in-cylinder pressure as input. It has been verified that the proposed method is capable of estimating the injected mass of pilot pulses with an uncertainty of the order of ±0.15 mg/cyc, and the total injected mass with an uncertainty of the order of ±0.9 mg/cyc. The main sources of uncertainty are related to the estimation of the in-cylinder heat transfer and of the isentropic coefficient γ = c_p/c_v. The estimation of the actual injected quantities in the combustion chamber can represent a powerful means to diagnose the behavior of the injectors during engine operation, and offers the possibility of monitoring effects, such as injector ageing and injector coking, as well as of allowing an accurate control of the pilot injected quantities to be obtained; the latter are in fact usually characterized by a large dispersion, with negative consequences on the combustion quality and emission formation. The approach is characterized by a very low computational time, and is therefore suitable for control-oriented applications.

  5. Fundamentals of Diesel Engines.

    Science.gov (United States)

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the fundamentals of diesel engine mechanics. Addressed in the three individual units of the course are the following topics: basic principles of diesel mechanics; principles, mechanics, and…

  6. Measurement and Simulation of Pollutant Emissions from Marine Diesel Combustion Engine and Their Reduction by Ammonia Injection

    Directory of Open Access Journals (Sweden)

    Nader Larbi

    2009-01-01

    Full Text Available Taking into account the complexity and cost of a direct experimental approach, the recourse to a tool of simulation, which can also predict inaccessible information by measurement, offers an effective and fast alternative to apprehend the problem of pollutant emissions from internal combustion engines. An analytical model based on detailed chemical kinetics employed to calculate the pollutant emissions of a marine diesel engine gave satisfactory results, in general, compared to experimentally measured results. Especially the NO emission values are found to be higher than the limiting values tolerated by the International Maritime Organization (IMO. Thus, this study is undertaken in order to reduce these emissions to the maximum level. The reduction of pollutant emissions is apprehended with ammonia injection.

  7. The Diesel as a Vehicle Engine

    Science.gov (United States)

    Neumann, Kurt

    1928-01-01

    The thorough investigation of a Dorner four-cylinder, four-stroke-cycle Diesel engine with mechanical injection led me to investigate more thoroughly the operation of the Diesel as a vehicle engine. Aside from the obvious need of reliability of functioning, a high rotative speed, light weight and economy in heat consumption per horsepower are also indispensable requirements.

  8. Influence of Advanced Injection Timing and Fuel Additive on Combustion, Performance, and Emission Characteristics of a DI Diesel Engine Running on Plastic Pyrolysis Oil

    Directory of Open Access Journals (Sweden)

    Ioannis Kalargaris

    2017-01-01

    Full Text Available This paper presents the investigation of engine optimisation when plastic pyrolysis oil (PPO is used as the primary fuel of a direct injection diesel engine. Our previous investigation revealed that PPO is a promising fuel; however the results suggested that control parameters should be optimised in order to obtain a better engine performance. In the present work, the injection timing was advanced, and fuel additives were utilised to overcome the issues experienced in the previous work. In addition, spray characteristics of PPO were investigated in comparison with diesel to provide in-depth understanding of the engine behaviour. The experimental results on advanced injection timing (AIT showed reduced brake thermal efficiency and increased carbon monoxide, unburned hydrocarbons, and nitrogen oxides emissions in comparison to standard injection timing. On the other hand, the addition of fuel additive resulted in higher engine efficiency and lower exhaust emissions. Finally, the spray tests revealed that the spray tip penetration for PPO is faster than diesel. The results suggested that AIT is not a preferable option while fuel additive is a promising solution for long-term use of PPO in diesel engines.

  9. STUDY ON THE CARBON MONOXYDE AND HC EMISSIONS GENERATED BY THE DIRECT INJECTION DIESEL ENGINES, RUNNING WITH BIODIESEL

    Directory of Open Access Journals (Sweden)

    DORU COSOFRET

    2016-06-01

    Full Text Available Currently, the research results on the use of mixtures of biofuels with fossil fuels to power diesel engines are controversial in terms of reducing emissions of CO and HC which are contained in the exhaust gases of diesel engines. The diversity of the results is due to possibly different type of biodiesel used, the type of engine on which the tests were carried out and the methods and conditions for obtaining these results. Therefore, researches on regular diesel - biodiesel mixtures in various ratio is still a matter of study. In this regard, we conducted a laboratory study on a 4-stroke diesel engine, by using different mixtures (10, 15, 20, 25, 30, 40 and 50% of diesel with biodiesel made from rapeseed oil. The study results reveals that the CO and HC emissions will decrease within creasing load.

  10. Improvement of combustion in a direct injection diesel engine by the use of a combustion-hole injection nozzle; Kumiawase funko nozzle ni yoru chokusetsu funshashiki diesel engine no nensho kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, T. [Mitsubishi Motors Corp., Tokyo (Japan); Kamimoto, T. [Tokyo Institute of Technology, Tokyo (Japan)

    1998-04-25

    Suppression of pre-mixed combustion and activation of diffusion combustion in DI diesel engines are known to be effective in reducing both NOx and fuel consumption. To achieve this concept, the authors have proposed a new type of fuel injection nozzle named combination-hole nozzle. This nozzle has very small holes with a diameter of 0.13 mm below (sub holes) for reducing ignition delay and normal holes (main holes) for keeping reasonable injection duration. The experiments conducted with a single cylinder research engine revealed that the combination-hole nozzle reduced the ignition delay and the peak value of the rate of heat release during the premixed combustion by 10% and 40% respectively compared with the experimental results of conventional nozzles and that the trade-off curve between NOx and fuel consumption sifted to the low level corner at half and full load conditions at a low engine speed. The reason for this improvement was investigated by the measurement of flame temperature distribution in the combustion chamber by means of the two colors method. The result revealed that the flame temperature in regions between sub and main hole`s flames of the nozzle was lower than that of the flames of a conventional nozzle at a full load and a low speed condition. 13 refs., 10 figs., 3 tabs.

  11. Analysis of noise emitted from diesel engines

    Science.gov (United States)

    Narayan, S.

    2015-12-01

    In this work combustion noise produced in diesel engines has been investigated. In order to reduce the exhaust emissions various injection parameters need to be studied and optimized. The noise has been investigated by mean of data obtained from cylinder pressure measurements using piezo electric transducers and microphones on a dual cylinder diesel engine test rig. The engine was run under various operating conditions varying various injection parameters to investigate the effects of noise emissions under various testing conditions.

  12. Improvement of combustion in a direct injection diesel engine by micro-hole nozzle; Micro hole nozzle wo mochiita chokusetsu funshashiki diesel kikan no nensho kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Murata, M. [Keio University, Tokyo (Japan); Kobori, S. [Tokyo Institute of Technology, Tokyo (Japan); Iida, N. [Keio University, Tokyo (Japan). Faculty of Science and Technology

    2000-07-25

    In an attempt to promote the atomization of fuel spray and the mixing of fuel and air in diesel engines, a micro-hole nozzle which has orifices with a diameter smaller than 0.10mm was developed. In this study, the combustion tests were carried out using a single cylinder diesel engine equipped with a micro-hole nozzle and a common rail type high-pressure fuel injection system. A comparison with the results of a conventional nozzle experiment showed that the peak of initial premixed combustion increased, but the peak of diffusion combustion decreased. As a result, when nozzle orifice diameter become small from {phi} 0.15 mm to {phi} 0.10 mm, the combustion was accompanied by smokeless with the same levels of NO{sub x} emission and fuel economy. And results of a comparison the toroidal type chamber with the shallow dish type chamber revealed that the optimization of combustion chamber is necessary for the increase of the injection stage with increasing of the number of nozzle orifice. If an orifice diameter becomes {phi} 0.06 mm, the diffusion combustion can not be observed and the combustion is formed of only premixed combustion. The combustion in the case of {phi} 0.06 mm was accompanied with the drastic deterioration of fuel economy, smoke and HC with all over load. But the micro-hole nozzle has a potential for the formation of the lean and homogeneous premixed mixture until the fuel-air mixture ignites. (author)

  13. Numerical Analysis of the Combustion and Emission Characteristics of Diesel Engines with Multiple Injection Strategies Using a Modified 2-D Flamelet Model

    Directory of Open Access Journals (Sweden)

    Gyujin Kim

    2017-08-01

    Full Text Available The multiple injection strategy has been widely used in diesel engines to reduce engine noise, NOx and soot formation. Fuel injection developments such as the common-rail and piezo-actuator system provide more precise control of the injection quantity and time under higher injection pressures. As various injection strategies become accessible, it is important to understand the interaction of each fuel stream and following combustion process under the multiple injection strategy. To investigate these complex processes quantitatively, numerical analysis using CFD is a good alternative to overcome the limitation of experiments. A modified 2-D flamelet model is further developed from previous work to model multi-fuel streams with higher accuracy. The model was validated under various engine operating conditions and captures the combustion and emissions characteristics as well as several parametric variations. The model is expected to be used to suggest advanced injection strategies in engine development processes.

  14. Intake flow and time step analysis in the modeling of a direct injection Diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Zancanaro Junior, Flavio V.; Vielmo, Horacio A. [Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Mechanical Engineering Dept.], E-mails: zancanaro@mecanica.ufrgs.br, vielmoh@mecanica.ufrgs.br

    2010-07-01

    This paper discusses the effects of the time step on turbulence flow structure in the intake and in-cylinder systems of a Diesel engine during the intake process, under the motored condition. The three-dimensional modeling of a reciprocating engine geometry comprising a bowl-in-piston combustion chamber, intake port of shallow ramp helical type and exhaust port of conventional type. The equations are numerically solved, including a transient analysis, valves and piston movements, for engine speed of 1500 rpm, using a commercial Finite Volumes CFD code. A parallel computation is employed. For the purpose of examining the in-cylinder turbulence characteristics two parameters are observed: the discharge coefficient and swirl ratio. This two parameters quantify the fluid flow characteristics inside cylinder in the intake stroke, therefore, it is very important their study and understanding. Additionally, the evolution of the discharge coefficient and swirl ratio, along crank angle, are correlated and compared, with the objective of clarifying the physical mechanisms. Regarding the turbulence, computations are performed with the Eddy Viscosity Model k-u SST, in its Low-Reynolds approaches, with standard near wall treatment. The system of partial differential equations to be solved consists of the Reynolds-averaged compressible Navier-Stokes equations with the constitutive relations for an ideal gas, and using a segregated solution algorithm. The enthalpy equation is also solved. A moving hexahedral trimmed mesh independence study is presented. In the same way many convergence tests are performed, and a secure criterion established. The results of the pressure fields are shown in relation to vertical plane that passes through the valves. Areas of low pressure can be seen in the valve curtain region, due to strong jet flows. Also, it is possible to note divergences between the time steps, mainly for the smaller time step. (author)

  15. Advanced diesel electronic fuel injection and turbocharging

    Science.gov (United States)

    Beck, N. J.; Barkhimer, R. L.; Steinmeyer, D. C.; Kelly, J. E.

    1993-12-01

    The program investigated advanced diesel air charging and fuel injection systems to improve specific power, fuel economy, noise, exhaust emissions, and cold startability. The techniques explored included variable fuel injection rate shaping, variable injection timing, full-authority electronic engine control, turbo-compound cooling, regenerative air circulation as a cold start aid, and variable geometry turbocharging. A Servojet electronic fuel injection system was designed and manufactured for the Cummins VTA-903 engine. A special Servojet twin turbocharger exhaust system was also installed. A series of high speed combustion flame photos was taken using the single cylinder optical engine at Michigan Technological University. Various fuel injection rate shapes and nozzle configurations were evaluated. Single-cylinder bench tests were performed to evaluate regenerative inlet air heating techniques as an aid to cold starting. An exhaust-driven axial cooling air fan was manufactured and tested on the VTA-903 engine.

  16. Experimental investigation of urea injection parameters influence on NOx emissions from blended biodiesel-fueled diesel engines.

    Science.gov (United States)

    Mehregan, Mina; Moghiman, Mohammad

    2018-02-01

    The present work submits an investigation about the effect of urea injection parameters on NO x emissions from a four-stroke four-cylinder diesel engine fueled with B20 blended biodiesel. An L 9 (3 4 ) Taguchi orthogonal array was used to design the test plan. The results reveal that increasing urea concentration leads to lower NO x emissions. Urea flow rate increment has the same influence on NO x emission. The same result is obtained by an increase in spray angle. Also, according to the analysis of variance (ANOVA), urea concentration and then urea flow rate are the most effective design parameters on NO x emissions, while spray angle and mixing length have less influence on this pollutant emission. Finally, since the result of confirmation test is in good agreement with the predicted value based on the Taguchi technique, the predictive capability of this method in the present study could be deduced.

  17. Experimental studies on the combustion characteristics and performance of a direct injection engine fueled with biodiesel/diesel blends

    International Nuclear Information System (INIS)

    Qi, D.H.; Chen, H.; Geng, L.M.; Bian, Y. ZH.

    2010-01-01

    Biodiesel is an alternative diesel fuel that can be produced from different kinds of vegetable oils. It is an oxygenated, non-toxic, sulphur-free, biodegradable, and renewable fuel and can be used in diesel engines without significant modification. However, the performance, emissions and combustion characteristics will be different for the same biodiesel used in different types of engine. In this study, the biodiesel produced from soybean crude oil was prepared by a method of alkaline-catalyzed transesterification. The effects of biodiesel addition to diesel fuel on the performance, emissions and combustion characteristics of a naturally aspirated DI compression ignition engine were examined. Biodiesel has different properties from diesel fuel. A minor increase in brake specific fuel consumption (BSFC) and decrease in brake thermal efficiency (BTE) for biodiesel and its blends were observed compared with diesel fuel. The significant improvement in reduction of carbon monoxide (CO) and smoke were found for biodiesel and its blends at high engine loads. Hydrocarbon (HC) had no evident variation for all tested fuels. Nitrogen oxides (NOx) were slightly higher for biodiesel and its blends. Biodiesel and its blends exhibited similar combustion stages to diesel fuel. The use of transesterified soybean crude oil can be partially substituted for the diesel fuel at most operating conditions in terms of the performance parameters and emissions without any engine modification.

  18. Study of exhaust emissions of direct injection diesel engine operating on ethanol, petrol and rapeseed oil blends

    International Nuclear Information System (INIS)

    Labeckas, Gvidonas; Slavinskas, Stasys

    2009-01-01

    This article presents the bench testing results of a four stroke, four cylinder, direct injection, unmodified, diesel engine operating on pure rapeseed oil (RO) and its 2.5 vol%, 5 vol%, 7.5 vol% and 10 vol% blends with ethanol (ERO), petrol (PRO) and both improving agents applied in equal proportions as 50:50 vol% (EPRO). The purpose of the research is to examine the effect of ethanol and petrol addition into RO on diesel engine emission characteristics and smoke opacity of the exhausts. The biggest NO x emissions, 1954 and 2078 ppm, at 2000 min -1 speed generate blends PRO10 (9.72%) and EPRO5 (11.13%) against, 1731 and 1411 ppm, produced from ERO5 (12%) and ERO10 (13.2% oxygen) blends. The carbon monoxide, CO, emissions emitted from a fully loaded engine fuelled with three agent blends EPRO5-7.5 at maximum torque and rated speed are higher by 39.5-18.8% and 27.5-16.1% and smoke opacity lower by 3.3-9.0% and 24.1-17.6% comparing with RO case. When operating at rated 2200 min -1 mode, the carbon dioxide, CO 2 , emissions are lower, 6.9-6.3 vol%, from blends EPRO5-7.5 relative to that from RO, 7.8 vol%, accompanied by a slightly higher emission of unburned hydrocarbons HC, 16 ppm, and residual oxygen contents O 2 , 10.4-12.0 vol%, in the exhausts

  19. Diesel Engine Technician

    Science.gov (United States)

    Tech Directions, 2010

    2010-01-01

    Diesel engine technicians maintain and repair the engines that power transportation equipment such as heavy trucks, trains, buses, and locomotives. Some technicians work mainly on farm machines, ships, compressors, and pumps. Others work mostly on construction equipment such as cranes, power shovels, bulldozers, and paving machines. This article…

  20. Diesel Engine Mechanics.

    Science.gov (United States)

    Foutes, William A.

    Written in student performance terms, this curriculum guide on diesel engine repair is divided into the following eight sections: an orientation to the occupational field and instructional program; instruction in operating principles; instruction in engine components; instruction in auxiliary systems; instruction in fuel systems; instruction in…

  1. Performance of bio fuels in diesel engines

    International Nuclear Information System (INIS)

    Nunez I, Manuel L; Prada V, Laura P

    2007-01-01

    This paper shows the preliminary results of pilot plant tests developed in oil catalytic hydrotreating process, where the crude palm oil or a mixture of crude palm oil and mineral diesel is treated with an injection of 99% pure hydrogen flux, in a fixed bed reactor at high pressures and temperatures, in a presence of Nickel Molybdenum catalyst supported on alumina bed. The main product of this process is a fuel (bio diesel) which has the same or better properties than the diesel obtained by petroleum refining. It has been made some performance fuel tests in diesel engine? with good results in terms of power, torque and fuel consumption, without any changes in engine configuration. Considering the characteristics of the Catalytic hydrotreated bio diesel compare to conventional diesel, both fuels have similar distillation range? however, bio diesel has better flash point, cetane index and thermal stability. Gas fuels (methane, ethane, and propane) CO 2 and water are the secondary products of the process.

  2. Performance and emission analysis on blends of diesel, restaurant yellow grease and n-pentanol in direct-injection diesel engine.

    Science.gov (United States)

    Ravikumar, J; Saravanan, S

    2017-02-01

    Yellow grease from restaurants is typically waste cooking oil (WCO) free from suspended food particles with free fatty acid (FFA) content less than 15%. This study proposes an approach to formulate a renewable, eco-friendly fuel by recycling WCO with diesel (D) and n-pentanol (P) to improve fuel-spray characteristics. Three ternary blends (D50-WCO45-P5, D50-WCO40-P10 and D50-WCO30-P20) were selected based on the stability tests and prepared with an objective to substitute diesel by 50% with up to 45% recycled component (WCO) and up to 20% bio-component (n-pentanol) by volume. The fuel properties of these ternary blends were measured and compared. The emission impacts of these blends on a diesel engine were analysed in comparison with diesel and D50-WCO50 (50% of diesel + 50% of WCO) under naturally articulated and EGR (exhaust gas recirculation) approaches. Doping of n-pentanol showed improved fuel properties when compared to D50-WCO50. Viscosity is reduced up to 45%. Cetane number and density were comparable to that of diesel. Addition of n-pentanol to D50-WCO50 presented improved brake specific fuel consumption (BSFC) for all ternary blends. Brake thermal efficiency (BTE) of D50-WCO30-P20 blend is comparable to diesel due to improved atomization. Smoke opacity reduced, HC emissions increased and CO emissions remained unchanged with doping n-pentanol in the WCO. NOx emission increases with increase in n-pentanol and remained lower than diesel and all load conditions. However, NOx can be decreased by up to threefold using EGR. By adopting this approach, WCO can be effectively reused as a clean energy source by negating environmental hazards before and after its use in diesel engines, instead of being dumped into sewers and landfills.

  3. Development and Validation of 3D-CFD Injection and Combustion Models for Dual Fuel Combustion in Diesel Ignited Large Gas Engines

    Directory of Open Access Journals (Sweden)

    Lucas Eder

    2018-03-01

    Full Text Available This paper focuses on improving the 3D-Computational Fluid Dynamics (CFD modeling of diesel ignited gas engines, with an emphasis on injection and combustion modeling. The challenges of modeling are stated and possible solutions are provided. A specific approach for modeling injection is proposed that improves the modeling of the ballistic region of the needle lift. Experimental results from an inert spray chamber are used for model validation. Two-stage ignition methods are described along with improvements in ignition delay modeling of the diesel ignited gas engine. The improved models are used in the Extended Coherent Flame Model with the 3 Zones approach (ECFM-3Z. The predictive capability of the models is investigated using data from single cylinder engine (SCE tests conducted at the Large Engines Competence Center (LEC. The results are discussed and further steps for development are identified.

  4. 3-D simulation of soot formation in a direct-injection diesel engine based on a comprehensive chemical mechanism and method of moments

    Science.gov (United States)

    Zhong, Bei-Jing; Dang, Shuai; Song, Ya-Na; Gong, Jing-Song

    2012-02-01

    Here, we propose both a comprehensive chemical mechanism and a reduced mechanism for a three-dimensional combustion simulation, describing the formation of polycyclic aromatic hydrocarbons (PAHs), in a direct-injection diesel engine. A soot model based on the reduced mechanism and a method of moments is also presented. The turbulent diffusion flame and PAH formation in the diesel engine were modelled using the reduced mechanism based on the detailed mechanism using a fixed wall temperature as a boundary condition. The spatial distribution of PAH concentrations and the characteristic parameters for soot formation in the engine cylinder were obtained by coupling a detailed chemical kinetic model with the three-dimensional computational fluid dynamic (CFD) model. Comparison of the simulated results with limited experimental data shows that the chemical mechanisms and soot model are realistic and correctly describe the basic physics of diesel combustion but require further development to improve their accuracy.

  5. Transformation of a car diesel engine with direct injection and common rail into a dual fuel engine; Trasformazione di un motore automobilistico diesel ad iniezione diretta dotato di common rail in un motore dual fuel

    Energy Technology Data Exchange (ETDEWEB)

    De Risi, A.; Laforgia, D. [Lecce Univ. (Italy). Dipt. di Scienza dei Materiali

    1999-08-01

    The reduced polluting emissions make natural gas a quite interesting alternative fuel for automotive applications. Therefore a car diesel engine has been transformed into a dual fuel engine with pilot injection via the common rail injection system used to ignite the methane-air charge. Standard injection pumps show a certain instability at low flow rates and high engine speed. On the opposite the new common rail system allows to ignite the fuel in all conditions with an amount of gas oil less than 8% of the entire energy required by the engine was enough to ignite the fuel. Furthermore, a power increase has been obtained, with an overall efficiency equal to or even higher than a conventional engine. The article deals with a series of test carried out on 1929 cm{sup 3} direct injection turbo-charged engine and presents the preliminary results. [Italian] La riduzione delle emissioni inquinanti rende il metano un combustibile alternativo piuttosto interessante per applicazioni automobilistiche. Per quasta ragione e' stata realizzata la trasformazione di un motore automobilitico diesel ad iniezione diretta in un motore dual fuel con iniezione pilota prodotta da un sistema common rail. L'adozione del sistema common rail consente l'accensione in ogni condizione con una quantita' di combustibile inferiore all'8% dell'intera energia richiesta alla potenza nominale del motore risolvendo i problemi di instabilita' che una pompa normale presenta a basse portate e ad alta velocita'. In alcuni casi e' stato sufficiente il 3% dell'energia totale richiesta dal motore per accendere la carica. Inoltre si e' ottenuto un aumento della potenza con un'efficienza globale analoga a qualla del motore tradizionale o addirittura migliore. Si riportano i risultati di una campagna di prove condotta su un motore sovralimentato ad iniezione diretta (1929 cm{sup 3}).

  6. Diesel Engine Tribology

    DEFF Research Database (Denmark)

    Christiansen, Christian Kim

    Recent years have seen an increase in the wear rate of engine bearings, subsequently followed by bearing failure, for the large two-stroke diesel engines used for ship propulsion. Here, the engine bearings include main, big end and crosshead bearings, with the bearing type used being the journal...... bearing, belonging to the class of ‘hydrodynamic bearings’. This implies that the load carrying capacity is generated by a relative movement of the involved components, i.e. avelocity-driven operation. For the engine application, the velocity stems from the engine RPM. However, to comply with the latest...

  7. METHOD OF CONVERSION OF HIGH- AND MIDDLE-SPEED DIESEL ENGINES INTO GAS DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Mikhail G. Shatrov

    2017-12-01

    Full Text Available The paper aims at the development of fuel supply and electronic control systems for boosted high- and middle-speed transport engines. A detailed analysis of different ways of converting diesel engine to operate on natural gas was carried out. The gas diesel process with minimized ignition portion of diesel fuel injected by the Common Rail (CR system was selected. Electronic engine control and modular gas feed systems which can be used both on high- and middle-speed gas diesel engines were developed. Also diesel CR fuel supply systems were developed in cooperation with the industrial partner, namely, those that can be mounted on middle-speed diesel and gas diesel engines. Electronic control and gas feed systems were perfected using modeling and engine tests. The high-speed diesel engine was converted into a gas diesel one. After perfection of the gas feed and electronic control systems, bench tests of the high-speed gas diesel engine were carried out showing a high share of diesel fuel substitution with gas, high fuel efficiency and significant decrease of NOх and СО2 emissions.

  8. Simulation and Optimization of SCR System for Direct-injection Diesel Engine

    Directory of Open Access Journals (Sweden)

    Guanqiang Ruan

    2014-11-01

    Full Text Available The turbo diesel SCR system has been researched and analyzed in this paper. By using software of CATIA, three-dimensional physical model of SCR system has been established, and with software of AVL-FIRE, the boundary conditions have been set, simulated and optimized. In the process of SCR system optimizing, it mainly optimized the pray angle. Compare the effects of processing NO to obtain batter optimization results. At last the optimization results are compared by bench test, and the experimental results are quite consistent with simulation.

  9. Emission characteristics of a diesel engine using waste cooking oil ...

    African Journals Online (AJOL)

    In this study, the use of waste cooking oil (WCO) methyl ester as an alternative fuel in a four-stroke turbo diesel engine with four cylinders, direct injection and 85 HP was analyzed. A test was applied in which an engine was fueled with diesel and three different blends of diesel/biodiesel (B25, B50 and B75) made from WCO.

  10. Comparative studies on the performance and emissions of a direct injection diesel engine fueled with neem oil and pumpkin seed oil biodiesel with and without fuel preheater.

    Science.gov (United States)

    Ramakrishnan, Muneeswaran; Rathinam, Thansekhar Maruthu; Viswanathan, Karthickeyan

    2018-02-01

    In the present experimental analysis, two non-edible oils namely neem oil and pumpkin seed oil were considered. They are converted into respective biodiesels namely neem oil methyl ester (B1) and pumpkin seed oil methyl ester (B2) through transesterification process and their physical and chemical properties were examined using ASTM standards. Diesel was used as a baseline fuel in Kirloskar TV1 model direct injection four stroke diesel engine. A fuel preheater was designed and fabricated to operate at various temperatures (60, 70, and 80 °C). Diesel showed higher brake thermal efficiency (BTE) than biodiesel samples. Lower brake specific fuel consumption (BSFC) was obtained with diesel than B1 sample. B1 exhibited lower BSFC than B2 sample without preheating process. High preheating temperature (80 °C) results in lower fuel consumption for B1 sample. The engine emission characteristics like carbon monoxide (CO), hydrocarbon (HC), and smoke were found lower with B1 sample than diesel and B2 except oxides of nitrogen (NOx) emission. In preheating of fuel, B1 sample with high preheating temperature showed lower CO, HC, and smoke emission (except NOx) than B2 sample.

  11. Developing the Model of Fuel Injection Process Efficiency Analysis for Injector for Diesel Engines

    Science.gov (United States)

    Anisimov, M. Yu; Kayukov, S. S.; Gorshkalev, A. A.; Belousov, A. V.; Gallyamov, R. E.; Lysenko, Yu D.

    2018-01-01

    The article proposes an assessment option for analysing the quality of fuel injection by the injector constituting the development of calculation blocks in a common injector model within LMS Imagine.Lab AMESim. The parameters of the injector model in the article correspond to the serial injector Common Rail-type with solenoid. The possibilities of this approach are demonstrated with providing the results using the example of modelling the modified injector. Following the research results, the advantages of the proposed approach to analysing assessing the fuel injection quality were detected.

  12. Engine performance and emissions characteristics of a diesel engine fueled with diesel-biodiesel-bioethanol emulsions

    International Nuclear Information System (INIS)

    Tan, Yie Hua; Abdullah, Mohammad Omar; Nolasco-Hipolito, Cirilo; Zauzi, Nur Syuhada Ahmad; Abdullah, Georgie Wong

    2017-01-01

    Highlights: • Different composition of diesel fuel, biodiesel and bioethanol emulsions were examined. • The fuels were tested in a direct injection diesel engine and parameters were evaluated. • Engine power, torque, exhaust gas temperature & fuel consumptions were compared. • Emulsions fuels emitted lower CO and CO_2 than fossil diesel. • Lower NOx emission was observed at medium engine speeds and loads for emulsion fuels. - Abstract: In this research work, the experimental investigation of the effect of diesel-biodiesel-bioethanol emulsion fuels on combustion, performance and emission of a direct injection (DI) diesel engine are reported. Four kind of emulsion fuels were employed: B (diesel-80%, biodiesel-20% by volume), C (diesel-80%, biodiesel-15%, bioethanol-5%), D (diesel-80%, biodiesel-10%, bioethanol-10%) and E (diesel-80%, biodiesel-5%, bioethanol-15%) to compare its’ performance with the conventional diesel, A. These emulsion fuels were prepared by mechanical homogenizer machine with the help of Tween 80 (1% v/v) and Span 80 (0.5% v/v) as surfactants. The emulsion characteristics were determined by optical electron microscope, emulsification stability test, FTIR, and the physiochemical properties of the emulsion fuels which were all done by following ASTM test methods. The prepared emulsion fuels were then tested in diesel engine test bed to obtain engine performance and exhaust emissions. All the engine experiments were conducted with engine speeds varying from 1600 to 2400 rpm. The results showed the heating value and density of the emulsion fuels decrease as the bioethanol content in the blend increases. The total heating value of the diesel-biodiesel-bioethanol fuels were averagely 21% higher than the total heating value of the pure biodiesel and slightly lower (2%) than diesel fuel. The engine power, torque and exhaust gas temperature were reduced when using emulsion fuels. The brake specific fuel consumption (BSFC) for the emulsion fuels

  13. Effect of fuel injection timing and intake pressure on the performance of a DI diesel engine - A parametric study using CFD

    International Nuclear Information System (INIS)

    Jayashankara, B.; Ganesan, V.

    2010-01-01

    This paper presents the computational fluid dynamics (CFD) modeling to study the effect of fuel injection timing and intake pressure (naturally aspirated as well as supercharged condition) on the performance of a direct injection (DI) diesel engine. The performance characteristics of the engine are investigated under transient conditions. A single cylinder direct injection diesel engine with two directed intake ports whose outlet is tangential to the wall of the cylinder and two exhaust ports has been taken up for the study. Effect of injection timing (start of injection 16, 12 and 8 CAD bTDC) and intake pressure (1.01, 1.21 and 1.71 bar) on the performance of the engine has been investigated for an engine speed of 1000 rpm. CFD predicted results during both suction and compression strokes under motoring conditions have been validated with experimental results available in the literature. Magnusson's eddy break-up model is used for combustion simulation. Predicted performance and emission characteristics such as pressure, temperature, heat release, NO x , and soot are presented and discussed. The predicted values reveal that retarding the injection timing results in increase in-cylinder pressure, temperature, heat release rate, cumulative heat release and NO x emissions. Decreasing trend is observed by advancing the injection timing. In case of soot emission the increasing trend is observed up to certain crank angle then reverse trend is seen. The supercharged with inter-cooled cases show lower peak heat release rate and maximum cumulative heat release, shorter ignition delay, higher NO x and lower soot emissions.

  14. Numerical study of the influence of Diesel post injection and exhaust gas expansion on the thermal cycle of an automobile engine

    OpenAIRE

    2010-01-01

    Abstract This study deals with the development of a numerical tool developed to analyze the thermo-management of the heat rejection from the fuel combustion in the case of a four cylinder 2 L ? 110 HP direct injection Diesel engine. It is composed of two main elements: the first one simulates all the phenomena linked to the combustion, the second one is about thermal exchanges in the heart of the engine. We only deal with the first one here. The combustion study is based...

  15. Multidimensional modeling of the effect of fuel injection pressure on temperature distribution in cylinder of a turbocharged DI diesel engine

    Directory of Open Access Journals (Sweden)

    Sajjad Emami

    2013-06-01

    Full Text Available In this study, maintaining a constant fuel rate, injection pressure of 275 bar to 1000 bar (275×102 kPa to 1000×102 kPa, has been changed. Effect of injection pressure, the pressure inside the cylinder on the free energy, power, engine indicators, particularly indicators of fuel consumption, pollutants and their effects on parameters affecting the output of the engine combustion chamber have been studied in droplet diameter. Finally, the effects of fuel mixture equivalence, Cantor temperature, soot and NOx due to the increase of injection pressure, engine efficiency and emissions have been examined.

  16. Development and validation of double and single Wiebe function for multi-injection mode Diesel engine combustion modelling for hardware-in-the-loop applications

    International Nuclear Information System (INIS)

    Maroteaux, Fadila; Saad, Charbel; Aubertin, Fabrice

    2015-01-01

    Highlights: • Modelling of Diesel engine combustion with multi-injection mode was conducted. • Double and single Wiebe correlations for pilot, main and post combustion processes were calibrated. • Ignition delay time correlations have been developed and calibrated using experimental data for each injection. • The complete in-cylinder model has been applied successfully to real time simulations on HiL test bed. - Abstract: The improvement of Diesel engine performances in terms of fuel consumption and pollutant emissions has a huge impact on management system and diagnostic procedure. Validation and testing of engine performances can benefit from the use of theoretical models, for the reduction of development time and costs. Hardware in the Loop (HiL) test bench is a suitable way to achieve these objectives. However, the increasing complexity of management systems rises challenges for the development of very reduced physical models able to run in real time applications. This paper presents an extension of a previously developed phenomenological Diesel combustion model suitable for real time applications on a HiL test bench. In the earlier study, the modelling efforts have been targeted at high engine speeds with a very short computational time window, and where the engine operates with single injection. In the present work, a modelling of in-cylinder processes at low and medium engine speeds with multi-injection is performed. In order to reach an adequate computational time, the combustion progress during the pilot and main injection periods has been treated through a double Wiebe function, while the post combustion period has required a single Wiebe function. This paper describes the basic system models and their calibration and validation against experimental data. The use of the developed correlations of Wiebe coefficients and ignition delay times for each combustion phase, included in the in-cylinder crank angle global model, is applied for the prediction

  17. Emission Characterization of Diesel Engine Run on Coconut Oil ...

    African Journals Online (AJOL)

    PROF HORSFALL

    KEYWORDS: Diesel engine, diesel, coconut oil biodiesel, blends, emissions. Introduction ... Automobile exhaust ... power loss, the increase in fuel consumption and the increase in ... diesel fuel in terms of power and torque and none or ... gas analyzer (Motorscan 8050) made in Italy which .... different injection pressures.

  18. Formation and emission of organic pollutants from diesel engines

    International Nuclear Information System (INIS)

    Bertoli, C.; Ciajolo, A.; D'Anna, A.; Barbella, R.

    1993-01-01

    The emission of soot and polycyclic aromatic hydrocarbons (PAH) from diesel engines results from the competition between oxidative and pyrolytic routes which the fuel takes in the unsteady, heterogeneous conditions of the diesel combustion process. In-cylinder sampling and analysis of particulate (soot and condensed hydrocarbon species), light hydrocarbons and gaseous inorganic species were carried out in two locations of a single cylinder direct injection diesel engine by means of a fast sampling valve in order to follow the behaviour of a diesel fuel during the engine cycle. The effect of fuel quality (volatility, aromatic content, cetane number) and air/fuel mass feed ratio on soot, PAH, and light and heavy hydrocarbons was also investigated by direct sampling and chemical analysis of the exhausts emitted from a direct injection diesel engine (D.I.) and an indirect injection diesel engine (I.D.I.)

  19. Preliminary study on the control of direct injection diesel engine for better fuel flexibility and emissions control. Pt. 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Egnell, R.; Kassem, N.; Bohlin, T.

    1985-01-01

    This report summarizes the results of a preliminary study on turbocharged direct injection diesel engines. Part I reviews the qualitative dynamic aspects of turbocharged diesel engine and the factors that affect its transient behaviour. It gives a brief account of the model structure and the interrelationships between the different components of the model as well as the different types of engine models and the methods of simulation. The transient response of a turbocharged engine under changing load, speed, and ambient conditions are discussed. Methods to improve the transient response, thus reducing fuel consumption and smoke emissions are briefly reviewed. Finally, both conventional and advanced control strategies are discussed with emphasis on the control of fuel injection (Delta-control), injection time (Alfa-control), and exhaust gas recirculation (EGR-control). Part II (in Swedish) consists of a literature survey on hardware components such as sensors, actuators, and injection systems that are, or expect to be, available with reasonable commercial costs. The objective of this survey is to provide the grounds on which to decide if these components satisfy the requirements of electronic control systems. Part III (in Swedish) discusses the transient response measurements obtained from two sets of experiments conducted on a six-cylinder motor working under varying conditions of load and speed. The objective of the first set of experiments was to quantify the difference in ignition delay between the transient and steady state operating conditions. The second set of experiments were aimed to provide a basis on which the engine efficiency obtained under transient conditions can be compared to that obtained from a single-cylinder motor working under steady state conditions.

  20. Rapid prototyping systems for the development of new fuel-injection concepts for diesel engines; Einspritz-Prototyping-System zur Entwicklung neuer Einspritzkonzepte bei Dieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Kasper, M. [ETAS GmbH, Stuttgart (Germany)

    2004-10-01

    The article uses the example of solenoid-based fuel injectors for diesel engines to demonstrate how a combination of reconfigurable logic and microcontrollers may be employed towards the rapid implementation of new control concepts for timely testing either directly on the engine or in the vehicle. Emphasis is given to the development and optimization of electronic engine management components. In contrast to the nonexistent modification options on conventional production ECUs, the new concept allows for the modification and fine-tuning of a number of injection parameters. The rapid prototyping system is a joint development of the Research and Advanced Engineering Department of Robert Bosch GmbH and ETAS GmbH. (orig.)

  1. Developments in Spray Modeling in Diesel and Direct-Injection Gasoline Engines Progrès de la modélisation des sprays dans les moteurs Diesel et à essence

    Directory of Open Access Journals (Sweden)

    Kong S. C.

    2006-12-01

    Full Text Available In direct-injection engines, the fuel spray characteristics influence the combustion efficiency and exhaust emissions. The performance of available spray models for predicting liquid and vapor fuel distributions, and their influence on combustion is reviewed for both diesel and gasoline direct injection engines. A phenomenological nozzle flow model is described for simulating the effects of diesel injector nozzle internal geometry on the fuel injection and spray processes. The flow model provides initial conditions for the liquid jet breakup model that considers wave instabilities due to Kelvin-Helmholtz (KH and Rayleigh-Taylor (RT mechanisms. A linearized instability analysis has also been extended to consider the breakup of liquid sheets for modeling pressure-swirl gasoline injectors. Diesel engine predictions have been compared with extensive data from in-cylinder laser diagnostics carried out in optically accessible heavy-duty, DI Diesel engines over a wide range of operating conditions. The results show that the nozzle flow model used in combination with the KH and RT models gives realistic spray predictions. In particular, the limited liquid fuel penetration length observed experimentally and the flame shape details are captured accurately. The liquid sheet breakup model has also been compared favorably with experimental spray penetration and drop size data for gasoline hollow-cone sprays. This model is currently being applied to study stratified charge combustion in GDI engines. Dans les moteurs à injection directe, les caractéristiques du spray de carburant influent directement sur le rendement et les émissions. Les performances des modèles de spray existants et leur influence sur la combustion pour les moteurs Diesel et essence à injection directe sont analysées. Un modèle phénoménologique d'écoulement dans les injecteurs indiquant les effets de la géométrie sur les processus d'injection est présenté. Ce modèle donne les

  2. Power Balancing of Inline Multicylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    S. H. Gawande

    2012-01-01

    Full Text Available In this work, a simplified methodology is presented for power balancing by reducing the amplitude of engine speed variation, which result in excessive torsional vibrations of the crankshaft of inline six-cylinder diesel engine. In modern fuel injection systems for reciprocating engines, nonuniform cylinder-wise torque contribution is a common problem due to nonuniform fuel supply due to a defect in fuel injection system, causing increased torsional vibration levels of the crankshaft and stress of mechanical parts. In this paper, a mathematical model for the required fuel adjustment by using amplitude of engine speed variation applied on the flywheel based on engine dynamics is suggested. From the found empirical relations and FFT analysis, the amplitude of engine speed variation (i.e., torsional vibration levels of the crankshaft of inline six-cylinder diesel engine genset can be reduced up to 55%. This proposed methodology is simulated by developing MATALB code for uniform and nonuniform working of direct injection diesel engine of SL90 type manufactured by Kirloskar Oil Engine Ltd., Pune, India.

  3. Effects of a 70% biodiesel blend on the fuel injection system operation during steady-state and transient performance of a common rail diesel engine

    International Nuclear Information System (INIS)

    Tziourtzioumis, Dimitrios; Stamatelos, Anastassios

    2012-01-01

    Highlights: ► We demonstrate how the fuel injection system responds to different fuel properties. ► Improvements to the ECU maps of the engine are suggested. ► These allow operation at high biodiesel blends without loss in engine performance. ► Continued operation with high biodiesel fuel blend, resulted in fuel pump failure. - Abstract: The results of steady state and transient engine bench tests of a 2.0l common-rail passenger car diesel engine fuelled by B70 biodiesel blend are compared with the corresponding results of baseline tests with standard EN 590 diesel fuel. The macroscopic steady-state performance and emissions of the same engine has already been presented elsewhere. The current study demonstrates how the engine management system responds to different fuel properties, with focus to the fuel system dynamics and the engine’s transient response. A set of characteristic transient operation points was selected for the tests. Data acquisition of engine ECU variables was made by means of INCA software/ETAS Mac2 interface. Additional data acquisition regarding engine performance was based on external sensors. The results indicate significant differences in fuel system dynamics and transient engine operation with the B70 blend at high fuel flow rates. Certain modifications to engine ECU maps and control parameters are proposed, aimed at improvement of transient performance of modern engines run on high percentage biodiesel blends. However, a high pressure pump failure that was observed after prolonged operation with the B70 blend, hints to the use of more conservative biodiesel blending in fuel.

  4. New perspectives for advanced automobile diesel engines

    Science.gov (United States)

    Tozzi, L.; Sekar, R.; Kamo, R.; Wood, J. C.

    1983-01-01

    Computer simulation results are presented for advanced automobile diesel engine performance. Four critical factors for performance enhancement were identified: (1) part load preheating and exhaust gas energy recovery, (2) fast heat release combustion process, (3) reduction in friction, and (4) air handling system efficiency. Four different technology levels were considered in the analysis. Simulation results are compared in terms of brake specific fuel consumption and vehicle fuel economy in km/liter (miles per gallon). Major critical performance sensitivity areas are: (1) combustion process, (2) expander and compressor efficiency, and (3) part load preheating and compound system. When compared to the state of the art direct injection, cooled, automobile diesel engine, the advanced adiabatic compound engine concept showed the unique potential of doubling the fuel economy. Other important performance criteria such as acceleration, emissions, reliability, durability and multifuel capability are comparable to or better than current passenger car diesel engines.

  5. Performance of Diesel Engine Using Blended Crude Jatropha Oil

    Science.gov (United States)

    Kamarudin, Kamarul Azhar; Mohd Sazali, Nor Shahida Akma; Mohd Ali, Mas Fauzi; Alimin, Ahmad Jais; Khir, Saffiah Abdullah

    2010-06-01

    Vegetable oil presents a very promising alternative to diesel oil since it is renewable and has similar properties to the diesel. In view of this, crude jatropha oil is selected and its viscosity is reduced by blending it with diesel. Since jatropha oil has properties which are similar to mineral diesel, it can be used in compression ignition engines without any engine modification. This paper presents the results of investigation carried out on a four-cylinder, four strokes and indirect-injection diesel engine. The engine, operated using composition blends of crude jatropha oil and diesel, were compared with mineral diesel. An experimental investigation has been carried out to analyze the performance characteristics of a compression ignition engine from the blended fuel (5%, 10%, 20% and 30%). A naturally aspirated four-stroke indirect injection diesel engine was tested at full load conditions, speeds between 1000 and 3500 rpm with intervals of 500 rpm. Results obtained from the measures of torque, power, specific fuel consumptions, thermal efficiency and brake mean effective pressure are nearly the same between blended and diesel fuel. An overall graph shows that the performance of relevant parameters from blended fuel is most likely similar to the performance produced from diesel. The experimental results proved that the use of crude jatropha oil in compression ignition engines is a viable alternative to diesel.

  6. Utilization of alternative fuels in diesel engines

    Science.gov (United States)

    Lestz, S. A.

    1984-01-01

    Performance and emission data are collected for various candidate alternate fuels and compare these data to that for a certified petroleum based number two Diesel fuel oil. Results for methanol, ethanol, four vegetable oils, two shale derived oils, and two coal derived oils are reported. Alcohol fumigation does not appear to be a practical method for utilizing low combustion quality fuels in a Diesel engine. Alcohol fumigation enhances the bioactivity of the emitted exhaust particles. While it is possible to inject many synthetic fuels using the engine stock injection system, wholly acceptable performance is only obtained from a fuel whose specifications closely approach those of a finished petroleum based Diesel oil. This is illustrated by the contrast between the poor performance of the unupgraded coal derived fuel blends and the very good performance of the fully refined shale derived fuel.

  7. An Experimental Investigation on Performance and Emissions Characteristics of Jatropha Oil Blends with Diesel in a Direct Injection Compression Ignition Engine

    Science.gov (United States)

    De, B.; Bose, P. K.; Panua, R. S.

    2012-07-01

    Continuous effort to reducing pollutant emissions, especially smoke and nitrogen oxides from internal combustion engines, have promoted research for alternative fuels. Vegetable oils, because of their agricultural origin and due to less carbon content compared to mineral diesel are producing less CO2 emissions to the atmosphere. It also reduces import of petroleum products. In the present contribution, experiments were conducted using Jatropha oil blends with diesel to study the effect on performance and emissions characteristics of a existing diesel engine. In this study viscosity of Jatropha oil was reduced by blending with diesel. A single cylinder, four stroke, constant speed, water cooled, diesel engine was used. The results show that for lower blend concentrations various parameters such as thermal efficiency, brake specific fuel consumption, smoke opacity, CO2, and NO x emissions are acceptable compared to that of mineral diesel. But, it was observed that for higher blend concentrations, performance and emissions were much inferior compared to diesel.

  8. Ventajas del uso de la inyección electrónica en Cuba para vehículos diesel ligeros. // Advantages of injection electronic control systems for cars with Diesel engines.

    Directory of Open Access Journals (Sweden)

    J. L. Reyes González

    2002-05-01

    Full Text Available Se presenta un análisis sobre las ventajas que brinda el control electrónico en la inyección Diesel en vehículos ligeros enfunción de las condiciones de clima y explotación en nuestro país. En nuestro trabajo se hace un análisis experimental y sedemuestra la influencia notable que presenta esta novedosa técnica en la contaminación ambiental y el consumo decombustible.Palabras claves: Inyección Diesel, control electrónico, contaminación ambiental, gases de escape.______________________________________________________________________Abstract.This paper deals with the advantages of the electronic control systems in Diesel engines in cars, taking intoconsideration the weather and exploitation conditions in our country. The experimental analysis shows the influence ofelectronic injections systems in the fuel consumption and the environmental impact of the exhaust gases.Key words: Diesel inyection, electronic control, ambiental pollution, exhaust gases.

  9. Etudes théoriques et expérimentales de la combustion dans les moteurs Diesel d'automobiles à injection directe et à préchambre Theoretical and Experimental Research on Combustion in Diesel Automotive Engines with Direct Injection and a Prechamber

    Directory of Open Access Journals (Sweden)

    Douaud A.

    2006-11-01

    Full Text Available Certaines techniques récemment développées pour la modélisation mathématique et les investigations expérimentales sur moteur Diesel sont présentées. On insiste sur l'importance de la validation croisée entre calcul et mesure. Taux d'injection, aérodynamique interne, développement du spray sont analysés en relation avec la géométrie des chambres de combustion. Des exemples, portant principalement sur des considérations de rendement énergétiques et d'émissions polluantes sont présentés à la fois sur le moteur Diesel à préchambre et le moteur Diesel à injection directe. Various techniques developed recently for the mathematical modeling and experimental investigating of diesel engines are described. Emphasis is placed on the importance of crosschecking between computing and measuring. The injection rate, internal aerodynamics and spray development are analyzed in relation to the geometry of combustion chambers. Examples mainly concerning matters of energy efficiency and pollutant emissions are given for diesel engines both with a prechamber and with direct injection.

  10. Effect of fuel injection parameters on combustion stability and emissions of a mineral diesel fueled partially premixed charge compression ignition (PCCI) engine

    International Nuclear Information System (INIS)

    Jain, Ayush; Singh, Akhilendra Pratap; Agarwal, Avinash Kumar

    2017-01-01

    Highlights: • NOx and PM emissions were lowest at 700 bar fuel injection pressure (FIP). • PCCI showed lower knocking than compression ignition combustion mode. • Increasing FIP reduced emissions of nitrogen oxides and smoke opacity in PCCI mode. • Increasing FIP reduced nucleation mode particle concentration. • Increasing FIP with advanced main injection timings improved PCCI combustion. - Abstract: This experimental study focuses on developing new combustion concept for compression ignition (CI) engines by achieving partially homogeneous charge, leading to low temperature combustion (LTC). Partially premixed charge compression ignition (PCCI) combustion is a single-stage phenomenon, with combustion shifting towards increasingly premixed combustion phase, resulting in lower in-cylinder temperatures. PCCI leads to relatively lower emissions of oxides of nitrogen (NOx) and particulate matter (PM) simultaneously. To investigate combustion, performance and emission characteristics of the PCCI engine, experiments were performed in a mineral diesel fueled single cylinder research engine, which was equipped with flexible fuel injection equipment (FIE). Effects of fuel injection pressure (FIP) were investigated by changing the FIP from 400 bar to 1000 bar. Experiments were carried out by varying start of main injection (SoMI) timings (from 12° to 24° before top dead center (bTDC)), when using single pilot injection. This experimental study included detailed investigations of particulate characteristics such as particulate number-size distribution using engine exhaust particle sizer (EEPS), particulate bound trace metal analysis using inductively coupled plasma-optical emission spectrometer (ICP-OES), and soot morphology using transmission electron microscopy (TEM). PCCI combustion improved with increasing FIP (up to 700 bar) due to superior fuel atomization however further increasing FIP deteriorated PCCI combustion and engine performance due to intense

  11. Dimethyl Ether in Diesel Fuel Injection Systems

    DEFF Research Database (Denmark)

    Sorenson, Spencer C.; Glensvig, M.; Abata, D. L.

    1998-01-01

    A study of the behaviour of DME in diesel injection systems. A discussion of the effects of compressibility of DME on compression work and wave propagation.DME spray shapes and penetration rates......A study of the behaviour of DME in diesel injection systems. A discussion of the effects of compressibility of DME on compression work and wave propagation.DME spray shapes and penetration rates...

  12. Separate direct injection of diesel and ethanol: A numerical analysis

    Directory of Open Access Journals (Sweden)

    Burnete Nicolae V.

    2017-01-01

    Full Text Available The purpose of this study is to investigate the theoretical possibility of using a pilot diesel injection for the auto-ignition of a main ethanol injection in a compression ignition engine. To this effect a predictive simulation model has been built based on experimental results for a diesel cycle (pilot and main injection at 1500 and 2500 min–1, respectively. For every engine speed, in addition to the diesel reference cycle, two more simulations were done: one with the same amount of fuel injected into the cylinder and one with the same amount of energy, which required an increase in the quantity of ethanol proportional to the ratio of its lower heating value and that of diesel. The simulations showed that in all cases the pilot diesel led to the auto-ignition of ethanol. The analysis of the in-cylinder traces at 1500 min–1 showed that combustion efficiency is improved, the peak temperature value decrease with approximately 240 K and, as a result, the NO emissions are 3.5-4 times lower. The CO and CO2 values depend on the amount of fuel injected into the cylinder. At 2500 min–1 there are similar trends but with the following observations: the ignition delay increases, while the pressure and temperature are lower.

  13. Reeds diesel engine troubleshooting handbook

    CERN Document Server

    Pickthall, Barry

    2013-01-01

    Most diesel engines will develop a problem at some point in their lives, but armed with the right knowledge a skipper needn't worry. The Reeds Diesel Engine Troubleshooting Handbook is a compact, pocket-sized guide to finding solutions to all of the most common engine problems, and many of the less common ones too. The perfect format for quick reference on board, this book will help skippers fix troublesome engines themselves, avoiding costly engineer fees if the problem is simple to sort out, or enabling an emergency patch-up for a more serious problem until they can get back to port. Each to

  14. EFFECTS OF ETHANOL BLENDED DIESEL FUEL ON EXHAUST EMISSIONS FROM A DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    Özer CAN

    2005-02-01

    Full Text Available Diesel engine emissions can be improved by adding organic oxygenated compounds to the No. 2 diesel fuel. In this study, effects of 10 % and 15 % (in volume ethanol addition to Diesel No. 2 on exhaust emissions from an indirect injection turbocharged diesel engine running at different engine speeds and loads were investigated. Experimental results showed that the ethanol addition reduced CO, soot and SO2 emissions, although it caused some increase in NOx emission and some power reductions due to lower heating value of ethanol. Improvements on emissions were more significant at full load rather than at partial loads.

  15. Combustion Noise and Pollutants Prediction for Injection Pattern and Exhaust Gas Recirculation Tuning in an Automotive Common-Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Arsie Ivan

    2015-01-01

    Full Text Available In the last years, emissions standards for internal combustion engines are becoming more and more restrictive, particularly for NOx and soot emissions from Diesel engines. In order to comply with these requirements, OEMs have to face with innovative combustion concepts and/or sophisticate after-treatment devices. In both cases, the role of the Engine Management System (EMS is increasingly essential, following the large number of actuators and sensors introduced and the need to meet customer expectations on performance and comfort. On the other hand, the large number of control variables to be tuned imposes a massive recourse to the experimental testing which is poorly sustainable in terms of time and money. In order to reduce the experimental effort and the time to market, the application of simulation models for EMS calibration has become fundamental. Predictive models, validated against a limited amount of experimental data, allow performing detailed analysis on the influence of engine control variables on pollutants, comfort and performance. In this paper, a simulation analysis on the impact of injection pattern and Exhaust Gas Recirculation (EGR rate on fuel consumption, combustion noise, NO and soot emissions is presented for an automotive Common-Rail Diesel engine. Simulations are accomplished by means of a quasi-dimensional multi-zone model of in-cylinder processes. Furthermore a methodology for in-cylinder pressure processing is presented to estimate combustion noise contribution to radiated noise. Model validation is carried out by comparing simulated in-cylinder pressure traces and exhaust emissions with experimental data measured at the test bench in steady-state conditions. Effects of control variables on engine performance, noise and pollutants are analyzed by imposing significant deviation of EGR rate and injection pattern (i.e. rail pressure, start-of-injection, number of injections. The results evidence that quasi-dimensional in

  16. Bio diesel- the Clean, Green Fuel for Diesel Engines

    International Nuclear Information System (INIS)

    Elkareish, S.M.M.

    2004-01-01

    Natural, renewable resources such as vegetable oils, animal fats and recycled restaurant greases can be chemically transformed into clean burning bio diesel fuels (1). Just like petroleum diesel, bio diesel operates in combustion-ignition engines. Blends of up to 20% bio diesel (mixed with petroleum diesel fuels) can be used in nearly all diesel equipment and are compatible with most storage and distribution equipment. Using bio diesel in a conventional diesel engine substantially reduces emissions of unburned hydrocarbons, carbon monoxide, sulphates, polycyclic aromatic hydrocarbons, nitrated polycyclic aromatic hydrocarbons, and particulate matter. The use of bio diesel has grown dramatically during the last few years. Egypt has a promising experiment in promoting forestation by cultivation of Jatropha plant especially in luxor and many other sites of the country. The first production of the Egyptian Jatropha seeds oil is now under evaluation to produce a cost-competitive bio diesel fuel

  17. Emission Characteristics for a Homogeneous Charged Compression Ignition Diesel Engine with Exhaust Gas Recirculation Using Split Injection Methodology

    Directory of Open Access Journals (Sweden)

    Changhee Lee

    2017-12-01

    Full Text Available Due to the serious issues caused by air pollution and global warming, emission regulations are becoming stricter. New technologies that reduce NOx and PM emissions are needed. To cope with these social exhaust gas regulation demands, many advanced countries are striving to develop eco-friendly vehicles in order to respond to stricter emissions regulations. The homogeneous charged compression ignition engine (HCCI incorporates a multi-stage combustion engine with multiple combustion modes, catalyst, direct fuel injection and partial mixing combustion. In this study, the HCCI combustion was applied to analyze and review the results of engines applying HCCI combustion without altering the conventional engine specifications. The optimization of exhaust gas recirculation (EGR and compression ratio changes provides an optimal fuel economy. In this study, potential for optimum economy within the range of IMEP 0.8 MPa has been evaluated.

  18. Optimization of the combustion system of a medium duty direct injection diesel engine by combining CFD modeling with experimental validation

    International Nuclear Information System (INIS)

    Benajes, Jesus; Novella, Ricardo; Pastor, Jose Manuel; Hernández-López, Alberto; Hasegawa, Manabu; Tsuji, Naohide; Emi, Masahiko; Uehara, Isshoh; Martorell, Jordi; Alonso, Marcos

    2016-01-01

    Highlights: • A DOE-based optimization of the combustion system of a CI engine has been performed. • Improving efficiency controlling emissions needs optimizing bowl design and settings. • Swirl-supported with re-entrant bowl combustion system is required after optimizing. • Computationally optimized combustion system has been validated by engine tests. - Abstract: The research in the field of internal combustion engines is currently driven by the needs of decreasing fuel consumption and CO_2 emissions, while fulfilling the increasingly stringent pollutant emissions regulations. In this framework, this research work focuses on describing a methodology for optimizing the combustion system of Compression Ignition (CI) engines, by combining Computational Fluid Dynamics (CFD) modeling, and the statistical Design of Experiments (DOE) technique known as Response Surface Method (RSM). As a key aspect, in addition to the definition of the optimum set of values for the input parameters, this methodology is extremely useful to gain knowledge on the cause/effect relationships between the input and output parameters under investigation. This methodology is applied in two sequential studies to the optimization of the combustion system of a 4-cylinder 4-stroke Medium Duty Direct Injection (DI) CI engine, minimizing the fuel consumption while fulfilling the emission limits in terms of NO_x and soot. The first study targeted four optimization parameters related to the engine hardware including piston bowl geometry, injector nozzle configuration and mean swirl number (MSN) induced by the intake manifold design. After the analysis of the results, the second study extended to six parameters, limiting the optimization of the engine hardware to the bowl geometry, but including the key air management and injection settings. For both studies, the simulation plans were defined following a Central Composite Design (CCD), providing 25 and 77 simulations respectively. The results

  19. Emission potentials of future diesel fuel injection systems; Emissionspotentiale zukuenftiger Diesel-Einspritzsysteme

    Energy Technology Data Exchange (ETDEWEB)

    Schommers, J.; Breitbach, H.; Stotz, M.; Schnabel, M. [DaimlerChrysler AG (Germany)

    2007-07-01

    The historical evolution of the diesel engine correlates strongly with fuel injection system developments. Mercedes-Benz contributed significantly to the recent success of the diesel engine, being one of the first car manufacturers to introduce a modern common rail diesel engine in the Mercedes C220 CDI in 1997. The excellent characteristics of modern diesel engines resulted in a 50% market share in newly registered cars in Germany. These characteristics have to be further improved in the next years to keep the diesel engine attractive. Emissions and at the same time fuel consumption and noise need to be further reduced, while engine power has to go up. For Mercedes-Benz key steps to reach these goals are lower compression ratio, higher boost pressures, higher exhaust gas recirculation rates and better EGR cooling, multiple injection patterns and components with stable application parameters over lifetime. Important requirements for future fuel injection systems are high spray momentum, good stability over lifetime, good robustness of injected quantities for varying injection patterns and a low shot-to-shot variation of injected quantities. The high spray momentum has to be achieved especially for small injections and for part load operating points with low pressures. Therefore, the needle opening and closing velocities are of special importance. With special focus on the above requirements, different injector concepts were hydraulically evaluated. Both concepts in serial production and under development from system suppliers, as well as Mercedes-Benz developed prototype injector concepts were chosen. The concepts analysed are a servo-hydraulically driven injector with control piston, two servo-hydraulically driven injectors without control piston with differently adjusted hydraulics, and a direct driven injector, where the needle is driven directly from an actuator without servo-hydraulic amplification. The hydraulic investigations show an excellent performance of

  20. Computational Study of Stratified Combustion in an Optical Diesel Engine

    KAUST Repository

    Jaasim, Mohammed; Hernandez Perez, Francisco; Vallinayagam, R.; Vedharaj, S.; Johansson, Bengt; Im, Hong G.

    2017-01-01

    Full cycle simulations of KAUST optical diesel engine were conducted in order to provide insights into the details of fuel spray, mixing, and combustion characteristics at different start of injection (SOI) conditions. Although optical diagnostics

  1. Quantitative analysis of the near-wall mixture formation process in a passenger car direct-injection diesel engine by using linear raman spectroscopy.

    Science.gov (United States)

    Taschek, Marco; Egermann, Jan; Schwarz, Sabrina; Leipertz, Alfred

    2005-11-01

    Optimum fuel preparation and mixture formation are core issues in the development of modern direct-injection (DI) Diesel engines, as these are crucial for defining the border conditions for the subsequent combustion and pollutant formation process. The local fuel/air ratio can be seen as one of the key parameters for this optimization process, as it allows the characterization and comparison of the mixture formation quality. For what is the first time to the best of our knowledge, linear Raman spectroscopy is used to detect the fuel/air ratio and its change along a line of a few millimeters directly and nonintrusively inside the combustion bowl of a DI Diesel engine. By a careful optimization of the measurement setup, the weak Raman signals could be separated successfully from disturbing interferences. A simultaneous measurement of the densities of air and fuel was possible along a line of about 10 mm length, allowing a time- and space-resolved measurement of the local fuel/air ratio. This could be performed in a nonreacting atmosphere as well as during fired operating conditions. The positioning of the measurement volume next to the interaction point of one of the spray jets with the wall of the combustion bowl allowed a near-wall analysis of the mixture formation process for a six-hole nozzle under varying injection and engine conditions. The results clearly show the influence of the nozzle geometry and preinjection on the mixing process. In contrast, modulation of the intake air temperature merely led to minor changes of the fuel concentration in the measurement volume.

  2. Evaluation of carcinogenic hazard of diesel engine exhaust needs to consider revolutionary changes in diesel technology.

    Science.gov (United States)

    McClellan, Roger O; Hesterberg, Thomas W; Wall, John C

    2012-07-01

    Diesel engines, a special type of internal combustion engine, use heat of compression, rather than electric spark, to ignite hydrocarbon fuels injected into the combustion chamber. Diesel engines have high thermal efficiency and thus, high fuel efficiency. They are widely used in commerce prompting continuous improvement in diesel engines and fuels. Concern for health effects from exposure to diesel exhaust arose in the mid-1900s and stimulated development of emissions regulations and research to improve the technology and characterize potential health hazards. This included epidemiological, controlled human exposure, laboratory animal and mechanistic studies to evaluate potential hazards of whole diesel exhaust. The International Agency for Research on Cancer (1989) classified whole diesel exhaust as - "probably carcinogenic to humans". This classification stimulated even more stringent regulations for particulate matter that required further technological developments. These included improved engine control, improved fuel injection system, enhanced exhaust cooling, use of ultra low sulfur fuel, wall-flow high-efficiency exhaust particulate filters, exhaust catalysts, and crankcase ventilation filtration. The composition of New Technology Diesel Exhaust (NTDE) is qualitatively different and the concentrations of particulate constituents are more than 90% lower than for Traditional Diesel Exhaust (TDE). We recommend that future reviews of carcinogenic hazards of diesel exhaust evaluate NTDE separately from TDE. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. ALTERNATIVE FUELS FOR DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Jacek Caban

    2013-12-01

    Full Text Available This paper presents the development and genesis of the use of alternative fuels in internal combustion ignition engines. Based on the analysis of the literature, this article shows various alternative fuels used in Poland and all over the world. Furthermore, this article describes the research directions for alternative fuels use in road transport powered by diesel engines.

  4. Image processing analysis of combustion for D. I. diesel engine with high pressure fuel injection. ; Effects of air swirl and injection pressure. Nensho shashin no gazo shori ni yoru koatsu funsha diesel kikan no nensho kaiseki. ; Swirl oyobi funsha atsuryoku no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, I. (Japan Automobile Research Institute, Inc., Tsukuba (Japan)); Tsujimura, K.

    1994-02-25

    This paper reports an image processing analysis of combustion for a high-pressure direct injection diesel engine on the effects of air swirl and injection pressure upon combustion in the diesel engine. The paper summarizes a method to derive gas flow and turbulence strengths, and turbulent flow mixing velocity. The method derives these parameters by detecting movement of brightness unevenness on two flame photographs through utilizing the mutual correlative coefficients of image concentrations. Five types of combustion systems having different injection pressures, injection devices, and swirl ratios were used for the experiment. The result may be summarized as follows: variation in the average value of the turbulent flow mixing velocities due to difference in the swirl ratio is small in the initial phase of diffusion combustion; the difference is smaller in the case of high swirl ratio than in the case of low swirl ratio after the latter stage of the injection; the average value is larger with the higher the injection pressure during the initial stage of the combustion; after termination of the injection, the value is larger in the low pressure injection; and these trends agree with the trend in the time-based change in heat generation rates measured simultaneously. 6 refs., 14 figs., 2 tabs.

  5. Numerical investigation on the combined effects of varying piston bowl geometries and ramp injection rate-shapes on the combustion characteristics of a kerosene-diesel fueled direct injection compression ignition engine

    International Nuclear Information System (INIS)

    Tay, Kun Lin; Yang, Wenming; Zhao, Feiyang; Yu, Wenbin; Mohan, Balaji

    2017-01-01

    Highlights: • Effect of injection rate-shaping on heat-release is significant with less turbulence. • Two peak heat-releases are seen for the shallow-depth re-entrant piston. • Significant combustion phasing occurs with kerosene usage and high turbulence. - Abstract: In this work, the combustion characteristics of a direct injection compression ignition (DICI) engine fueled with kerosene-diesel blends, using different piston bowl geometries together with varying injection rate-shapes were investigated. A total of three combustion bowl geometries, namely the omega combustion chamber (OCC), the shallow-depth combustion chamber (SCC) and the shallow-depth re-entrant combustion chamber (SRCC), were used together with six different ramp injection rate-shapes and pure diesel, kerosene-diesel and pure kerosene fuels. It is seen that the SRCC geometry, which has the shortest throat length, gives the highest turbulence kinetic energy (TKE) and this resulted in two peak heat-releases, with a primary peak heat-release during the premixed combustion phase and a secondary peak heat-release during the mixing-controlled combustion phase. In addition, the SCC geometry gives rather distinct premixed combustion and mixing-controlled combustion phases due to the fact that combustion is predominantly controlled by the injected fuel spray itself because of less turbulence. Also, when kerosene is used in place of diesel, the heat-release during the premixed combustion phase increases and diminishes during the mixing-controlled and late combustion phases. It is interesting to note that the effect of injection rate-shaping on the heat-release rate is more obvious for bowl geometries that generate less TKE. Moreover, bowl geometries that generate higher TKEs as well as fuels with lower viscosities generally give lower carbon monoxide (CO) emissions and higher nitrogen oxide (NO) emissions. More importantly, it is possible to achieve low NO and CO emissions simultaneously by using the

  6. Ignition assist systems for direct-injected, diesel cycle, medium-duty alternative fuel engines: Final report phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Chan, A.K.

    2000-02-23

    This report is a summary of the results of Phase 1 of this contract. The objective was to evaluate the potential of assist technologies for direct-injected alternative fuel engines vs. glow plug ignition assist. The goal was to demonstrate the feasibility of an ignition system life of 10,000 hours and a system cost of less than 50% of the glow plug system, while meeting or exceeding the engine thermal efficiency obtained with the glow plug system. There were three tasks in Phase 1. Under Task 1, a comprehensive review of feasible ignition options for DING engines was completed. The most promising options are: (1) AC and the ''SmartFire'' spark, which are both long-duration, low-power (LDLP) spark systems; (2) the short-duration, high-power (SDHP) spark system; (3) the micropilot injection ignition; and (4) the stratified charge plasma ignition. Efforts concentrated on investigating the AC spark, SmartFire spark, and short-duration/high-power spark systems. Using proprietary pricing information, the authors predicted that the commercial costs for the AC spark, the short-duration/high-power spark and SmartFire spark systems will be comparable (if not less) to the glow plug system. Task 2 involved designing and performing bench tests to determine the criteria for the ignition system and the prototype spark plug for Task 3. The two most important design criteria are the high voltage output requirement of the ignition system and the minimum electrical insulation requirement for the spark plug. Under Task 3, all the necessary hardware for the one-cylinder engine test was designed. The hardware includes modified 3126 cylinder heads, specially designed prototype spark plugs, ignition system electronics, and parts for the system installation. Two 3126 cylinder heads and the SmartFire ignition system were procured, and testing will begin in Phase 2 of this subcontract.

  7. Ion currents in diesel engines

    OpenAIRE

    Rao, Rahul

    2017-01-01

    This thesis documents an experimental and modelling investigation into ion formation in diesel engines, its uses in the field of engine performance and emissions prediction and the mechanisms by which these uses are made possible. Ion sensors have been employed in engines for a variety of purposes, including estimation of air-fuel ratio, start of combustion and in-cylinder pressure, detection of knock, misfire and combustion resonance, prediction of soot formation, and control of spark ...

  8. Fuel supply system for diesel engines. Kraftstoffzufuhrsystem fuer Dieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Mowbray, D F; Jarrett, B A

    1979-10-05

    The invention deals with a fuel feeding system, in particular for diesel engines with direct injection, provided with electromagnetic fuel pumps and injection nozzles for every combustion chamber. The pumps are equiped with control systems, which are actuated during the injection process. Switch valves with magnetic control devices serve as controllers.

  9. 发动机早喷过程中燃油喷射混合的大涡模拟%Large eddy simulation for fuel injection and mixing of early-injection in diesel engine

    Institute of Scientific and Technical Information of China (English)

    周磊; 解茂昭; 贾明; 史俊瑞

    2012-01-01

    The feasibility of large eddy simulation (LES) for predicting fuel injection and mixing of early injection in diesel engine was studied. LES turbulent model was implemented into KTVA3V code to make numerical simulation of the atomization and evaporation processes of early injection timing in a constant volume chamber and a ford high-speed direct-injection diesel engine. The results show that the predictive vapor mass fraction and liquid penetration using LES is obviously better than those using RANS model and good agreement with the experiment results. In combustion chamber, the sub-grid turbulent kinetic energy and viscosity using LES is less than those of the RANS models', and with the increase of time, the sub-grid turbulent kinetic energy and viscosity also increase and concentrate on the spray area. Meantime, advancing the injection timing can help to achieve more homogenous mixture between the fuel and ambient gas. The distribution of the mixture is more uniform and the tree-dimension and disorder structures are more obvious using LES model. Compared to RANS model, LES model can better reflect the real spray flow field of early injection process in diesel engine.%对大涡模型在预测发动机早喷中燃料和空气混合过程的适用性进行研究.将大涡模拟(LES)湍流模型加入KIVA3V程序中,对定容弹中燃油短喷以及在1台Ford高速直喷柴油发动机中的早喷过程进行数值模拟.研究结果表明:LES模型预测的喷雾浓度分布和贯穿距与实验结果较相符,明显比RANS模型的优;在燃烧室中LES模型得到的湍动能和黏性都要比RANS模型的小,而且随着喷射时间的增加,亚网格湍动能和黏性都增加并集中在喷射区域;同时,喷油时刻提前有利于燃油与空气的均质混合,LES模型得到的混合气分布更加均匀,三维紊乱的结构更加明显;与RANS模型相比,ES模型更能真实反映柴油机早喷过程中的喷雾流场.

  10. A probabilistic maintenance model for diesel engines

    Science.gov (United States)

    Pathirana, Shan; Abeygunawardane, Saranga Kumudu

    2018-02-01

    In this paper, a probabilistic maintenance model is developed for inspection based preventive maintenance of diesel engines based on the practical model concepts discussed in the literature. Developed model is solved using real data obtained from inspection and maintenance histories of diesel engines and experts' views. Reliability indices and costs were calculated for the present maintenance policy of diesel engines. A sensitivity analysis is conducted to observe the effect of inspection based preventive maintenance on the life cycle cost of diesel engines.

  11. A study on the amount of pilot injection and its effects on rich and lean boundaries of the premixed CNG/air mixture for a CNG/diesel dual-fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Zhiqiang Lin; Wanhua Su [Tianjin University (China). State Key Laboratory of Engines

    2003-07-01

    A sequential port injection, lean-burn, fully electronically-controlled compressed natural gas (CNG)/diesel dual-fuel engine has been developed based on a turbo-charged and inter-cooled direct injection (D.I.) diesel engine. During the optimisation of engine overall performance, the effects of pilot diesel and premixed CNG/air mixture equivalence ratio on emissions (CO, HC, NO{sub x}, soot), knocking, misfire and fuel economy are studied. The rich and lean boundaries of the premixed CNG/air mixture versus engine load are also provided, considering the acceptable values of NO{sub x} and THC emissions, respectively. It is interesting to find that there is a critical amount of pilot diesel for each load and speed point, which proved to be the optimum amount of pilot fuel. Any decrease in the amount of pilot diesel from this optimum amount results in an increase of NO{sub x} emissions, because the premixed CNG/air mixture must be made richer, otherwise THC emissions would increase. However, the soot emissions remain almost unchanged at a very low level. (author)

  12. Prospects of biogas as dual fuel in small diesel engines

    International Nuclear Information System (INIS)

    Singh, Irvinder; Mittal, V.K.

    1992-01-01

    A study was conducted on diesel engines to find out the effect of induction rate of biogas on engine performance indices. The results of dual fuel engine performance was compared with diesel mode for various levels of biogas induction rate (0.3 to 7.2 l/s) engine load (20% to full load) and injection timing (20.6 to 48 before top dead centre). At full and 80% brake load, the best energy mix between diesel and biogas was 1.5:1 and 4:1 respectively. (author). 7 refs., 7 figs., 4 tabs

  13. Assessment of n-pentanol/Calophyllum inophyllum/diesel blends on the performance, emission, and combustion characteristics of a constant-speed variable compression ratio direct injection diesel engine.

    Science.gov (United States)

    Ramakrishnan, Purnachandran; Kasimani, Ramesh; Peer, Mohamed Shameer; Rajamohan, Sakthivel

    2018-05-01

    Alcohol is used as an additive for a long time with the petroleum-based fuels. In this study, the higher alcohol, n-pentanol, was used as an additive to Calophyllum inophyllum (CI) biodiesel/diesel blends at 10, 15, and 20% by volume. In all blends, the ratio of CI was maintained at 20% by volume. The engine characteristics of the pentanol fuel blends were compared with the diesel and CI20 (Calophyllum inophyllum 20% and diesel 80%) biodiesel blend. The nitrogen oxide (NO) emission of the pentanol fuel blends showed an increased value than CI20 and neat diesel fuel. The carbon dioxide (CO 2 ) also increased with increase in pentanol addition with the fuel blends than CI20 fuel blend and diesel. The carbon monoxide (CO) and hydrocarbon (HC) emissions were decreased with increase in pentanol proportion in the blend than the CI20 fuel and diesel. The smoke emission was reduced and the combustion characteristics of the engine were also improved by using pentanol blended fuels. From this investigation, it is suggested that 20% pentanol addition with the biodiesel/diesel fuel is suitable for improved performance and combustion characteristics of a diesel engine without any engine modifications, whereas CO 2 and NO emissions increased with addition of pentanol due to effective combustion.

  14. Cleaner emissions from a DI diesel engine fueled with waste plastic oil derived from municipal solid waste under the influence of n-pentanol addition, cold EGR, and injection timing.

    Science.gov (United States)

    Damodharan, Dillikannan; Sathiyagnanam, Amudhavalli Paramasivam; Rajesh Kumar, Babu; Ganesh, Kuttalam Chidambaradhanu

    2018-05-01

    Urban planning and development is a decisive factor that increases the automobile numbers which leads to increased energy demand across the globe. In order to meet the escalating requirements of energy, it is necessary to find viable alternatives. Waste plastic oil (WPO) is one such alternative which has dual benefits as it reduces the environmental pollution caused by plastic waste and it could possibly meet the energy requirement along with fossil fuels. The study attempted to reduce emissions from a DI diesel engine fueled with WPO using 30% by volume of n-pentanol with fossil diesel (WPO70P30). EGR (10, 20, and 30%) and injection timing modifications were made with the intention to find optimum engine operating conditions. The experimental results indicated that addition of renewable component like n-pentanol had improved the combustion characteristics by igniting WPO more homogeneously producing a higher premixed combustion phase. Smoke density for WPO70P30 was found to be twice lower than that of neat WPO at standard injection timing of 23°CA bTDC at any given EGR rate, NOx emissions were slightly on the higher side about 12% for WPO70P30 blend against WPO at same operating conditions. WPO70P30 showed lowest smoke and carbon monoxide emissions than diesel and WPO while delivering BTE's higher than WPO and closer to diesel at all EGR and injection timings. However NOx and HC emissions increased with n-pentanol addition. The use of EGR reduced NOx emissions but was found to aggravate other emissions. It was concluded WPO70P30 can be favorably used in a DI diesel engine at the engines advanced injection timing for better performance than diesel with a slight penalty in NOx emissions.

  15. Sound engineering for diesel engines; Sound Engineering an Dieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Enderich, A.; Fischer, R. [MAHLE Filtersysteme GmbH, Stuttgart (Germany)

    2006-07-01

    The strong acceptance for vehicles powered by turbo-charged diesel engines encourages several manufacturers to think about sportive diesel concepts. The approach of suppressing unpleasant noise by the application of distinctive insulation steps is not adequate to satisfy sportive needs. The acoustics cannot follow the engine's performance. This report documents, that it is possible to give diesel-powered vehicles a sportive sound characteristic by using an advanced MAHLE motor-sound-system with a pressure-resistant membrane and an integrated load controlled flap. With this the specific acoustic disadvantages of the diesel engine, like the ''diesel knock'' or a rough engine running can be masked. However, by the application of a motor-sound-system you must not negate the original character of the diesel engine concept, but accentuate its strong torque characteristic in the middle engine speed range. (orig.)

  16. Simulation of diesel engine energy conversion processes

    Directory of Open Access Journals (Sweden)

    А. С. Афанасьев

    2016-12-01

    Full Text Available In order to keep diesel engines in good working order the troubleshooting methods shall be improved. For their further improvement by parameters of associated processes a need has arisen to develop a diesel engine troubleshooting method based on time parameters of operating cycle. For such method to be developed a computational experiment involving simulation of diesel engine energy conversion processes has been carried out. The simulation was based on the basic mathematical model of reciprocating internal combustion engines, representing a closed system of equations and relationships. The said model has been supplemented with the engine torque dynamics taking into account the current values of in-cylinder processes with different amounts of fuel injected, including zero feed.The torque values obtained by the in-cylinder pressure conversion does not account for mechanical losses, which is why the base simulation program has been supplemented with calculations for the friction and pumping forces. In order to determine the indicator diagram of idle cylinder a transition to zero fuel feed mode and exclusion of the combustion process from calculation have been provisioned.

  17. Influence of using emulsified diesel fuel on the performance and pollutants emitted from diesel engine

    International Nuclear Information System (INIS)

    Alahmer, Ali

    2013-01-01

    Highlights: • Emulsified diesel fuels with water content of range 0–30% by volume were prepared. • Effect emulsified diesel fuel on diesel engine performance and pollutant emissions. • Using emulsified fuel improves the diesel engine performance and reduces emissions. - Abstract: This manuscript investigates the effect of emulsified diesel fuel on the engine performance and on the main pollutant emissions for a water-cooled, four stroke, four cylinders, and direct injection diesel engine. Emulsified diesel fuels with water content of range 0–30% by volume were used. The experiments were conducted in the speed range from 1000 to 3000 rpm. It was found that, in general, the using emulsified fuel improves the engine performance and reduces emissions. While the brake specific fuel consumption (BSFC) has a minimum value at 5% water content and 2000 rpm. The torque (T), the break mean effective pressure (BMEP) and thermal efficiency (η th ) are found to have maximum values under these conditions. The emission CO 2 was found to increase with engine speed and to decrease with water content. NO x produced from emulsified fuel is significantly less than that produced from pure diesel under the same conditions. And as the percentage of water content in the emulsion increases, the emitted amount of oxygen also increases

  18. Studies of valve lifter for automotive heavy duty diesel engine by ceramic materials. II. Development of SiC valve lifter by injection molding method

    Energy Technology Data Exchange (ETDEWEB)

    Yun, H W [Technical Centre of KIA-ASIA MOTORS (Korea, Republic of); Han, I S [Korea Institute of Energy Research, Tajeon (Korea, Republic of); Lim, Y S; Chung, Y J [Myong Ji University (Korea, Republic of)

    1998-02-01

    Valve lifter, namely tappet, is supported by lifter hole which is located upper side of camshaft in cylinder block, transforms rotatic movement of camshaft into linear movement and helps to open and shut the engine valve as an engine parts. The face of valve lifter, which is continuously contacting with camshaft, brings about abnormal wears, such as unfair wear and early wear, because it is severely loaded in the valve train system. These wears act as a defect like over-clearance and cause imperfect combustion of fuel during the valve lifting in the combustion chamber. Consequently, this imperfect combustion makes the engine out-put decrease and has cause on air pollution. To prevent these wears, therefore, the valve lifter cast in metal developed into SiC ceramics valve lifter which has an excellence in wear and impact resistance. As a result, the optimum process conditions like injection condition, mixture ratio and debonding process could be established. After sintering, fine-sinered dual microstructure in which prior {alpha}-SiC, carbon and silicon was obtained. Based on the new SiC({beta}-SiC) produced by reaction among the {alpha}-SiC, carbon and silicon was obtained. Based on the study, it is verified that mechanical properties of SiC valve lifter are excellent in Vickers hardness 1100{approx}1200 bending strength (300{approx}350 Pa), fracture toughness (1.5{approx}1.7 MPacentre dotm{sup 1/2}). Through engine dynamo testing, SiC valve lifter and metal valve lifter are examined and compared into abnormal phenomena such early fracture, unfair and early wear. It is hoped that this research will serve as an important springboard for the future study of heavy duty diesel engine parts developed by ceramics which has a good wear resistance, reliability, and lightability.

  19. Diesel Engine Light Truck Application

    Energy Technology Data Exchange (ETDEWEB)

    None

    2007-12-31

    The Diesel Engine Light Truck Application (DELTA) program consists of two major contracts with the Department of Energy (DOE). The first one under DE-FC05-97-OR22606, starting from 1997, was completed in 2001, and consequently, a final report was submitted to DOE in 2003. The second part of the contract was under DE-FC05-02OR22909, covering the program progress from 2002 to 2007. This report is the final report of the second part of the program under contract DE-FC05-02OR22909. During the course of this contract, the program work scope and objectives were significantly changed. From 2002 to 2004, the DELTA program continued working on light-duty engine development with the 4.0L V6 DELTA engine, following the accomplishments made from the first part of the program under DE-FC05-97-OR22606. The program work scope in 2005-2007 was changed to the Diesel Particulate Filter (DPF) soot layer characterization and substrate material assessment. This final report will cover two major technical tasks. (1) Continuation of the DELTA engine development to demonstrate production-viable diesel engine technologies and to demonstrate emissions compliance with significant fuel economy advantages, covering progress made from 2002 to 2004. (2) DPF soot layer characterization and substrate material assessment from 2005-2007.

  20. 77 FR 4678 - Nonconformance Penalties for On-Highway Heavy Heavy-Duty Diesel Engines

    Science.gov (United States)

    2012-01-31

    ...), optimized turbo-charging, optimized fuel injection, diesel particulate filters), plus liquid urea based...-Highway Heavy Heavy-Duty Diesel Engines AGENCY: Environmental Protection Agency (EPA). ACTION: Interim... manufacturers of heavy heavy-duty diesel engines in model years 2012 and 2013 for emissions of oxides of...

  1. Analysis of Oxygenated Component (butyl Ether) and Egr Effect on a Diesel Engine

    Science.gov (United States)

    Choi, Seung-Hun; Oh, Young-Taig

    Potential possibility of the butyl ether (BE, oxygenates of di-ether group) was analyzed as an additives for a naturally aspirated direct injection diesel engine fuel. Engine performance and exhaust emission characteristics were analyzed by applying the commercial diesel fuel and oxygenates additives blended diesel fuels. Smoke emission decreased approximately 26% by applying the blended fuel (diesel fuel 80 vol-% + BE 20vol-%) at the engine speed of 25,000 rpm and with full engine load compared to the diesel fuel. There was none significant difference between the blended fuel and the diesel fuel on the power, torque, and brake specific energy consumption rate of the diesel engine. But, NOx emission from the blended fuel was higher than the commercial diesel fuel. As a counter plan, the EGR method was employed to reduce the NOx. Simultaneous reduction of the smoke and the NOx emission from the diesel engine was achieved by applying the BE blended fuel and the cooled EGR method.

  2. Diesel Technology: Engines. [Teacher and Student Editions.

    Science.gov (United States)

    Barbieri, Dave; Miller, Roger; Kellum, Mary

    Competency-based teacher and student materials on diesel engines are provided for a diesel technology curriculum. Seventeen units of instruction cover the following topics: introduction to engine principles and procedures; engine systems and components; fuel systems; engine diagnosis and maintenance. The materials are based on the…

  3. Standardized Curriculum for Diesel Engine Mechanics.

    Science.gov (United States)

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized curricula are provided for two courses for the secondary vocational education program in Mississippi: diesel engine mechanics I and II. The eight units in diesel engine mechanics I are as follows: orientation; shop safety; basic shop tools; fasteners; measurement; engine operating principles; engine components; and basic auxiliary…

  4. Combustion Noise and Pollutants Prediction for Injection Pattern and Exhaust Gas Recirculation Tuning in an Automotive Common-Rail Diesel Engine

    OpenAIRE

    Arsie Ivan; Di Leo Rocco; Pianese Cesare; De Cesare Matteo

    2015-01-01

    In the last years, emissions standards for internal combustion engines are becoming more and more restrictive, particularly for NOx and soot emissions from Diesel engines. In order to comply with these requirements, OEMs have to face with innovative combustion concepts and/or sophisticate after-treatment devices. In both cases, the role of the Engine Management System (EMS) is increasingly essential, following the large number of actuators and sensors introduced and the need to meet customer ...

  5. Reducing Diesel Engine Emission Using Reactivity Controlled Approach

    Directory of Open Access Journals (Sweden)

    Osama Hasib Ghazal

    2018-01-01

    Full Text Available Several automobile manufacturers are interested in investigating of dual fuel internal combustion engines, due to high efficiencand low emissions. Many alternative fuels have been used in dual fuel mode for IC engine, such as methane, hydrogen, and natural gas. In the present study, a reactivity controlled compression ignition (RCCI engine using gasoline/diesel (G/D dual fuel has been investigated. The effectof mixing gasoline with diesel fuel on combustion characteristic, engine performance and emissions has been studied. The gasoline was injected in the engine intake port, to produce a homogeneous mixture with air. The diesel fuel was injected directly to the combustion chamber during compression stroke to initiate the combustion process. A direct injection compression ignition engine has been built and simulated using ANSYS Forte professional code. The gasoline amount in the simulation varied from (50%-80% by volume. The diesel fuel was injected to the cylinder in two stages. The model has been validated and calibrated for neat diesel fuel using available data from the literature. The results show that the heat release rate and the cylinder pressure increased when the amount of added gasoline is between 50%-60% volume of the total injected fuels, compared to the neat diesel fuel. Further addition of gasoline will have a contrary effect. In addition, the combustion duration is extended drastically when the gasoline ratio is higher than 60% which results in an incomplete combustion. The NO emission decreased drastically as the gasoline ratio increased. Moreover, addition of gasoline to the mixture increased the engine power, thermal efficienc and combustion efficienc compared to neat diesel fuel.

  6. LPG diesel dual fuel engine – A critical review

    Directory of Open Access Journals (Sweden)

    B. Ashok

    2015-06-01

    Full Text Available The engine, which uses both conventional diesel fuel and LPG fuel, is referred to as ‘LPG–diesel dual fuel engines’. LPG dual fuel engines are modified diesel engines which use primary fuel as LPG and secondary fuel as diesel. LPG dual fuel engines have a good thermal efficiency at high output but the performance is less during part load conditions due to the poor utilization of charges. This problem can be overcome by varying factors such as pilot fuel quantity, injection timing, composition of the gaseous fuel and intake charge conditions, for improving the performance, combustion and emissions of dual fuel engines. This article reviews about the research work done by the researchers in order to improve the performance, combustion and emission parameters of a LPG–diesel dual fuel engines. From the studies it is shown that the use of LPG in diesel engine is one of the capable methods to reduce the PM and NOx emissions but at same time at part load condition there is a drop in efficiency and power output with respect to diesel operation.

  7. Effect of Exhaust Gas Recirculation (EGR) on the Performance Characteristics of a Direct Injection Multi Cylinders Diesel Engine

    OpenAIRE

    Khalil Ibrahim Abaas

    2016-01-01

    Owing  to  the  energy  crisis  and  pollution  problems  of  today  investigations  have  concentrated  on decreasing  fuel  consumption  and  on  lowering  the  concentration  of  toxic  components  in  combustion products by using exhaust gas after treatments methods like PM filters and EGR for NOx reduction. In this study, the combustion characteristics of diesel fuel were compared with that pr oduced from adding EGR at several percentages to air manifold. The tests were performed in a fo...

  8. Efficient EGR technology for future HD diesel engine emission targets

    NARCIS (Netherlands)

    Baert, R.S.G.; Beckman, D.E.; Veen, A.

    1999-01-01

    Different systems for achieving short-route cooled EGR on turbocharged and aftercooled heavy-duty diesel engines have been tested on a 12 litre 315 kW engine with 4 valves per cylinder and an electronically controlled unit pump fuel injection system. In all of these systems the exhaust gas was

  9. Lubricant transport across the piston ring with flat and triangular lubrication injection profiles on the liner in large two-stroke marine diesel engines

    DEFF Research Database (Denmark)

    Overgaard, H.; Klit, P.; Vølund, A.

    2018-01-01

    A theoretical investigation of the lubricant transport across the top compression piston ring in a large two-stroke marine diesel engine is presented. A numerical model for solving Reynolds equation between the piston ring and cylinder liner based on the finite difference method in one dimension...

  10. Experimental investigations on mixing of two biodiesels blended with diesel as alternative fuel for diesel engines

    Directory of Open Access Journals (Sweden)

    K. Srithar

    2017-01-01

    Full Text Available The world faces the crises of energy demand, rising petroleum prices and depletion of fossil fuel resources. Biodiesel has obtained from vegetable oils that have been considered as a promising alternate fuel. The researches regarding blend of diesel and single biodiesel have been done already. Very few works have been done with the combination of two different biodiesel blends with diesel and left a lot of scope in this area. The present study brings out an experiment of two biodiesels from pongamia pinnata oil and mustard oil and they are blended with diesel at various mixing ratios. The effects of dual biodiesel works in engine and exhaust emissions were examined in a single cylinder, direct injection, air cooled and high speed diesel engine at various engine loads with constant engine speed of 3000 rpm. The influences of blends on CO, CO2, HC, NOx and smoke opacity were investigated by emission tests. The brake thermal efficiency of blend A was found higher than diesel. The emissions of smoke, hydro carbon and nitrogen oxides of dual biodiesel blends were higher than that of diesel. But the exhaust gas temperature for dual biodiesel blends was lower than diesel.

  11. Direct Injection Compression Ignition Diesel Automotive Technology Education GATE Program

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Carl L

    2006-09-25

    The underlying goal of this prqject was to provide multi-disciplinary engineering training for graduate students in the area of internal combustion engines, specifically in direct injection compression ignition engines. The program was designed to educate highly qualified engineers and scientists that will seek to overcome teclmological barriers preventing the development and production of cost-effective high-efficiency vehicles for the U.S. market. Fu1iher, these highly qualified engineers and scientists will foster an educational process to train a future workforce of automotive engineering professionals who are knowledgeable about and have experience in developing and commercializing critical advanced automotive teclmologies. Eight objectives were defmed to accomplish this goal: 1. Develop an interdisciplinary internal co1nbustion engine curriculum emphasizing direct injected combustion ignited diesel engines. 2. Encourage and promote interdisciplinary interaction of the faculty. 3. Offer a Ph.D. degree in internal combustion engines based upon an interdisciplinary cuniculum. 4. Promote strong interaction with indusuy, develop a sense of responsibility with industry and pursue a self sustaining program. 5. Establish collaborative arrangements and network universities active in internal combustion engine study. 6. Further Enhance a First Class educational facility. 7. Establish 'off-campus' M.S. and Ph.D. engine programs of study at various indusuial sites. 8. Extend and Enhance the Graduate Experience.

  12. Tomorrows diesel engines: towards a new equilibrium; Moteurs diesel de demain: vers un nouvel equilibre

    Energy Technology Data Exchange (ETDEWEB)

    Bastenhof, D. [SEMT Pielstick, 93 - Saint Denis (France)

    1997-12-31

    This paper analyzes the different ways of reducing the pollutants emissions from diesel engines in order to follow the future French environmental regulations. The combustion in diesel engines is analyzed first: principle and consequences, calculated combustion, pollution units, influences of ambient air conditions on NO{sub x} production, maximum legal pollutant concentration limits (French regulation for fixed installations, NO{sub x}, CO, HC and dust limit values), influence of fuel composition. Then the existing methods for the reduction of pollutants emissions are analyzed and compared with respect to their cost: mechanical adjustment of engines, water injection, exhaust gases recirculation, treatment of fumes. (J.S.) 4 refs.

  13. Experimental evaluation of the performance and emissions of diesel engines using blends of crude castor oil and diesel; Avaliacao experimental do desempenho e emissoes de motores diesel usando misturas de oleo de mamona e oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, Valeria Said de Barros; Pereira, Pedro Paulo [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Mecanica; Belchior, Carlos Rodrigues Pereira [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. de Engenharia Oceanica

    2004-07-01

    This work refers to the experimental evaluation of diesel generators operating with blend of crude castor oil and diesel. Performance and emissions tests were accomplished in a diesel engine of direct injection. Because of the high viscosity of the blend a device was installed on the engine in order to lower the blend viscosity. A comprehensive analysis of the results obtained in these tests indicates the possibility of use of the blend of castor oil and diesel as fuel for diesel-generators, with modifications introduced in the engines. (author)

  14. Wood pyrolysis oil for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Paro, D.; Gros, S.; Hellen, G.; Jay, D.; Maekelae, T.; Rantanen, O.; Tanska, T. [Wartsila Diesel International Ltd Oy, Vaasa (Finland)

    1996-12-01

    Wood Pyrolysis oil (WPO) has been identified by the Technical Research Centre of Finland (VTT) as the most competitive biofuel product which can be produced from biomass. The fuel is produced by a fast pyrolysis technique, using wood chipping`s or sawdust. The process can be applied to other recycling products such as straw etc. The use of WPO as a Diesel power plant fuel has been studied, and a fuel specification has been developed. The fuel characteristics have been analysed. There are several fuel properties addressed in the paper which have had to be overcome. New materials have been used in the fuel injection system. The fuel injection system development has progressed from a pump-line-pipe system to a common rail system. The fuel requires a pilot fuel oil injection to initiate combustion. The targets for the fuel injection system have been 1500 bar and 30 deg C injection period with a fuel of 15 MJ/kg lower heating value and 1220 Kg/m{sup 3} density. The combustion characteristics from both a small 80 mm bore engine initially, and then later with a single cylinder test of a 320 mm bore Waertsilae engine, have been evaluated. (author)

  15. Experimental investigation of a diesel engine with methyl ester of mango seed oil and diesel blends

    Directory of Open Access Journals (Sweden)

    K. Vijayaraj

    2016-03-01

    Full Text Available Petroleum based fuels worldwide have not only resulted in the rapid depletion of conventional energy sources, but have also caused severe air pollution. The search for an alternate fuel has led to many findings due to which a wide variety of alternative fuels are available at our disposal now. The existing studies have revealed the use of vegetable oils for engines as an alternative for diesel fuel. However, there is a limitation in using straight vegetable oils in diesel engines due to their high viscosity and low volatility. In the present work, neat mango seed oil is converted into their respective methyl ester through transesterification process. Experiments are conducted using various blends of methyl ester of mango seed oil with diesel in a single cylinder, four stroke vertical and air cooled Kirloskar diesel engine. The experimental results of this study showed that the MEMSO biodiesel has similar characteristics to those of diesel. The brake thermal efficiency, unburned hydrocarbon and smoke density are observed to be lower in case of MEMSO biodiesel blends than diesel. The CO emission for B25, B50 and B75 is observed to be lower than diesel at full load, whereas for B100 it is higher at all loads. On the other hand, BSFC and NOx of MEMSO biodiesel blends are found to be higher than diesel. It is found that the combustion characteristics of all blends of methyl ester of mango seed oil showed similar trends with those of the baseline diesel. From this study, it is concluded that optimized blend is B25 and could be used as a viable alternative fuel in a single cylinder direct injection diesel engine without any modifications.

  16. Diesel Engine Valve Clearance Detection Using Acoustic Emission

    Directory of Open Access Journals (Sweden)

    Fathi Elamin

    2010-01-01

    Full Text Available This paper investigated, using experimental method, the suitability of acoustic emission (AE technique for the condition monitoring of diesel engine valve faults. The clearance fault was adjusted experimentally in an exhaust valve and successfully detected and diagnosed in a Ford FSD 425 four-cylinder, four-stroke, in-line OHV, direct injection diesel engine. The effect of faulty exhaust valve clearance on engine performance was monitored and the difference between the healthy and faulty engine was observed from the recorded AE signals. The measured results from this technique show that using only time domain and frequency domain analysis of acoustic emission signals can give a superior measure of engine condition. This concludes that acoustic emission is a powerful and reliable method of detection and diagnosis of the faults in diesel engines and this is considered to be a unique approach to condition monitoring of valve performance.

  17. Cylinder-Pressure Based Injector Calibration for Diesel Engines

    OpenAIRE

    König, Johan

    2008-01-01

    One way of complying with future emission restrictions for diesel engines is to use pressure sensors for improved combustion control. Implementation of pressure sensors into production engines would lead to new possibilities for fuel injection monitoring where one potential use is injector calibration. The scope of this thesis is to investigate the possibility of using pressure sensors for finding the minimal energizing time necessary for fuel injection. This minimal energizing time varies ov...

  18. An experimental study of the combusition and emission performances of 2,5-dimethylfuran diesel blends on a diesel engine

    Directory of Open Access Journals (Sweden)

    Xiao Helin

    2017-01-01

    Full Text Available Experiments were carried out in a direct injection compression ignition engine fueled with diesel-dimethylfuran blends. The combustion and emission performances of diesel-dimethylfuran blends were investigated under various loads ranging from 0.13 to 1.13 MPa brake mean effective pressure, and a constant speed of 1800 rpm. Results indicate that diesel-dimethylfuran blends have different combustion performance and produce longer ignition delay and shorter combustion duration compared with pure diesel. Moreover, a slight increase of brake specific fuel consumption and brake thermal efficiency occurs when a Diesel engine operates with blended fuels, rather than diesel fuel. Diesel-dimethylfuran blends could lead to higher NOx emissions at medium and high engine loads. However, there is a significant reduction in soot emission when engines are fueled with diesel-dimethylfuran blends. Soot emissions under each operating conditions are similar and close to zero except for D40 at 0.13 MPa brake mean effective pressure. The total number and mean geometric diameter of emitted particles from diesel-dimethylfuran blends are lower than pure diesel. The tested fuels exhibit no significant difference in either CO or HC emissions at medium and high engine loads. Nevertheless, diesel fuel produces the lowest CO emission and higher HC emission at low loads of 0.13 to 0.38 MPa brake mean effective pressure.

  19. Performance of jatropha oil blends in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Forson, F.K.; Oduro, E.K.; Hammond-Donkoh, E. [Kwame Nkrumah University of Science and Technology, Kumasi (Ghana). Dept. of Mechanical Engineering

    2004-06-01

    Results are presented on tests on a single-cylinder direct-injection engine operating on diesel fuel, jatropha oil, and blends of diesel and jatropha oil in proportions of 97.4%/2.6%; 80%120%; and 50%150% by volume. The results covered a range of operating loads on the engine. Values are given for the chemical and physical properties of the fuels, brake specific fuel consumption, brake power, brake thermal efficiency, engine torque, and the concentrations of carbon monoxide, carbon dioxide and oxygen in the exhaust gases. Carbon dioxide emissions were similar for all fuels, the 97.4% diesel/2.6% jatropha fuel blend was observed to be the lower net contributor to the atmospheric level. The trend of carbon monoxide emissions was similar for the fuels but diesel fuel showed slightly lower emissions to the atmosphere. The test showed that jatropha oil could be conveniently used as a diesel substitute in a diesel engine. The test further showed increases in brake thermal efficiency, brake power and reduction of specific fuel consumption for jatropha oil and its blends with diesel generally, but the most significant conclusion from the study is that the 97.4% diesel/2.6% jatropha fuel blend produced maximum values of the brake power and brake thermal efficiency as well as minimum values of the specific fuel consumption. The 97.4%12.6% fuel blend yielded the highest cetane number and even better engine performance than the diesel fuel suggesting that jatropha oil can be used as an ignition- accelerator additive for diesel fuel. (author)

  20. Researches on direct injection in internal-combustion engines

    Science.gov (United States)

    Tuscher, Jean E

    1941-01-01

    These researches present a solution for reducing the fatigue of the Diesel engine by permitting the preservation of its components and, at the same time, raising its specific horsepower to a par with that of carburetor engines, while maintaining for the Diesel engine its perogative of burning heavy fuel under optimum economical conditions. The feeding of Diesel engines by injection pumps actuated by engine compression achieves the required high speeds of injection readily and permits rigorous control of the combustible charge introduced into each cylinder and of the peak pressure in the resultant cycle.

  1. A methodology to identify the intake charge cylinder-to-cylinder distribution in turbocharged direct injection Diesel engines

    Science.gov (United States)

    Luján, José M.; Galindo, José; Serrano, José R.; Pla, Benjamín

    2008-06-01

    Exhaust gas recirculation (EGR) is currently the most important NOx emission control system. During the last few years the EGR rate has increased progressively as pollutant emission regulations have become more restrictive. High EGR rate levels have given the effect of the unsuitable EGR and air distribution between cylinders away, which causes undesirable engine behavior. In this sense, the study of the EGR distribution between cylinders achieves high importance. However, despite the fact that the EGR is continuously under study, not many studies have been undertaken to approach its distribution between cylinders. In concordance with the aspects outlined before, the aim of this paper is to propose a methodology that permits us to identify the EGR cylinder-to-cylinder dispersion in a commercial engine. In order to achieve this objective, experimental tests have been combined with both one-dimensional and three-dimensional fluid dynamic models.

  2. Research into operational parameters of diesel engines running on RME biodiesel

    Directory of Open Access Journals (Sweden)

    S. Lebedevas

    2006-12-01

    Full Text Available The results of motor experimental researches on operational parameters of diesel engines F2L511 and A41 are presented in the publication. Change of harmful emission of exhaust gases was determined and evaluated, fuel economy and thrust characteristics of diesel engines running on RME biodiesel compared to diesel fuel. The influence of technical condition of fuel injection aggregates was evaluated for parameters of harmful emission of diesel engines running on biodiesel by simulation of setback of fuel injection in alowable range of technical conditions – the coking of nozzles of fuel injector. The complex improvement of all ecological parameters was evaluated by optimisation of fuel injection phase of diesel engines running on RME biodiesel. Objectives and aspects of further researches on indicator process of diesel engines were determined.

  3. Experimental Investigation of the Effects of Some Operating Diesel Engine Variables on Emitted Particulate Matters (PM

    Directory of Open Access Journals (Sweden)

    Adel M. Saleh

    2012-03-01

    Full Text Available The diesel engine is the most efficient prime mover commonly available today. Diesel engines move a large portion of the world’s goods, power much of the world’s equipment, and generate electricity more economically than any other device in their size range. But the diesel is one of the largest contributors to environmental pollution problems worldwide, and will remain so, with large increases expected in vehicle population. This experimental study has been conducted with direct injection diesel engine and particulate matters (PM concentrations were measured at variable operating variables. The results show that PM concentrations influence by changing equivalence ratio, load, engine speed and injection timing

  4. Study of hydrocarbon emission in small direct injection engines; Kogata DI diesel kikan ni okeru teifukaji HC haishutsu ni kansuru kiso kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Tsurushima, T; Zhang, L; Ueda, T; Fujino, R; Yokota, K [Isuzu Advanced Engineering Center, Tokyo (Japan)

    1997-10-01

    The cause of unburned hydrocarbon emission in small DI diesel engines at light load was studied. An optically accessible engine which was enabled to visualize the squish area was used to investigate the behavior of spray, mixture distribution and so on. Based on these observations and engine tests, the factors such as the direct impingement of liquid phase fuel spray to the combustion chamber wall the unevenness of fuel spray among holes and spreading of the fuel droplets, mixture and flame to the squish area were supposed to be the cause of forming HC emission. 18 refs., 10 figs., 2 tabs.

  5. Ventajas del uso de la inyección electrónica para vehículos diesel pesados en las condiciones de Cuba. // Advantages of electronic injection for diesel engines in heavy duty equipment.

    Directory of Open Access Journals (Sweden)

    J. Luis Reyes González

    2002-09-01

    Full Text Available Tomando en cuenta la importancia que tiene para Cuba el obtener una eficiencia energética elevada en los motores decombustión interna, al igual que el control de las emanaciones de gases tóxicos en los mismos, se realizó este trabajo dondese demuestran las ventajas tanto en el orden económico como ecológico de los motores diesel con mando electrónico paraequipos pesados empleados en la transportación de carga por camiones en la empresa Cubalse.Por medio de métodos experimentales y estadísticos, se obtuvo el consumo de combustible y la humosidad en motores coninyección electrónica (Detroit y en motores que utilizan los métodos tradicionales (Cummins. Los rresultadosdemostraron la superioridad en ambos aspectos de los motores con inyección electrónica.Se realizó una valoración del tiempo de amortización de la inversión inicial necesaria para utilizar en el parque existenteesta novedosa técnica de la inyección electrónica.Palabras claves: Eficiencia energética, inyección electrónica, consumo de combustible, motores de combustióninterna.__________________________________________________________________Abstract.Taking into consideration the importance of achieving a high efficiency in the internal combustion engines and emissioncontrol of the exhaust gases, this paper deals with economical and environmental advantages of the electronic controlleddiesel engines in heavy-duty trucks, which are used by Cubalse in the transportation. The fuel consumption and the sootemission in Detroit motors (with electronic injection system and Cummins (with traditional system, were studied usingstatistic and experimental methods, and the Detroit proved to be superior in both parameters. The pay back time for theinvestment needed to change the systems of all the existent trucks were calculatedKey words: Energetic efficiency, electronic injection, fuel consumption, internal combustion engine.

  6. Displacing the dinosaurs. [Diesel engine electric generators

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1992-05-01

    This article describes how giant power stations are being replaced by smaller, cleaner units. These include plants using combined-cycle gas turbines and diesel engines of low, medium and high speeds. The use of these diesel engines in power generation is discussed. (UK).

  7. Combustion and emission characteristics of diesel engine fueled with diesel-like fuel from waste lubrication oil

    International Nuclear Information System (INIS)

    Wang, Xiangli; Ni, Peiyong

    2017-01-01

    Highlights: • 100% diesel-like fuel from waste lubricating oil was conducted in a diesel engine. • Good combustion and fuel economy are achieved without engine modifications. • Combustion duration of DLF is shorter than diesel. • NOx and smoke emissions with the DLF are slightly higher than pure diesel. - Abstract: Waste lubricant oil (WLO) is one of the most important types of the energy sources. WLO cannot be burned directly in diesel engines, but can be processed to be used as diesel-like fuel (DLF) to minimize its harmful effect and maximize its useful values. Moreover, there are some differences in physicochemical properties between WLO and diesel fuel. In order to identify the differences in combustion and emission performance of diesel engine fueled with the two fuels, a bench test of a single-cylinder direct injection diesel engine without any engine modification was investigated at four engine speeds and five engine loads. The effects of the fuels on fuel economic performance, combustion characteristics, and emissions of hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx) and smoke were discussed. The DLF exhibits longer ignition delay period and shorter combustion duration than diesel fuel. The test results indicate that the higher distillation temperatures of the DLF attribute to the increase of combustion pressure, temperature and heat release rate. The brake specific fuel consumption (BSFC) of the DLF compared to diesel is reduced by about 3% at 3000 rpm under light and medium loads. The DLF produces slightly higher NOx emissions at middle and heavy loads, somewhat more smoke emissions at middle loads, and notably higher HC and CO emissions at most measured points than diesel fuel. It is concluded that the DLF can be used as potential available fuel in high-speed diesel engines without any problems.

  8. Simulation and control of a HD diesel engine equipped with new EGR technology

    NARCIS (Netherlands)

    Dekker, H.J.; Sturm, W.L.

    1996-01-01

    A dynamic model of a Heavy Duty (HD) turbocharged and aftercooled diesel engine was developed. The engine was equipped with high pressure diesel injection, a Variable Geometry Turbine (VGT) and an Exhaust Gas Recirculation (EGR) system. This engine was targeted at meeting EURO4 emission

  9. Experimental investigation review of biodiesel usage in bus diesel engine

    Directory of Open Access Journals (Sweden)

    Kegl Breda

    2017-01-01

    Full Text Available This paper assembles and analyses extensive experimental research work conducted for several years in relation to biodiesel usage in a MAN bus Diesel engine with M injection system. At first the most important properties of the actually used neat rapeseed biodiesel fuel and its blends with mineral diesel are discussed and compared to that of mineral diesel. Then the injection, fuel spray, and engine characteristics for various considered fuel blends are compared at various ambient conditions, with special emphasis on the influence of low temperature on fueling. Furthermore, for each tested fuel the optimal injection pump timing is determined. The obtained optimal injection pump timings for individual fuels are then used to determine and discuss the most important injection and combustion characteristics, engine performance, as well as the emission, economy, and tribology characteristics of the engine at all modes of emission test cycles test. The results show that for each tested fuel it is possible to find the optimized injection pump timing, which enables acceptable engine characteristics at all modes of the emission test cycles test.

  10. LPG as a Fuel for Diesel Engines-Experimental Investigations

    Science.gov (United States)

    Cristian Nutu, Nikolaos; Pana, Constantin; Negurescu, Niculae; Cernat, Alexandru; Mirica, Ionel

    2017-10-01

    The main objective of the paper is to reduce the pollutant emissions of a compression ignition engine, fuelling the engine with liquefied petroleum gas (LPG), aiming to maintain the energetic performances of the engine. To optimise the engine operation a corelation between the substitute ratio of the diesel fuel with LPG and the adjustments for the investigated regimens must be made in order to limit the maximum pressure and smoke level, knock and rough engine functioning, fuel consumption and the level of the pollutant emissions. The test bed situated in the Thermotechnics, Engines, Thermal Equipments and Refrigeration Instalations Department was adapted to be fuelled with liquefied petroleum gas. A conventional LPG fuelling instalation was adopted, consisting of a LPG tank, a vaporiser, conections between the tank and the vaporiser and a valve to adjust the gaseous fuel flow. Using the diesel-gas methode, in the intake manifold of the engine is injected LPG in gaseous aggregation state and the airr-LPG homogeneous mixture is ignited from the flame appeared in the diesel fuel sprays. To maintain the engine power at the same level like in the standard case of fuelling only with diesel fuel, for each investigated operate regimen the diesel fuel dose was reduced, being energetically substituted with LPG. The engine used for experimental investigations is a turbocharged truck diesel engine with a 10.34 dm3 displacement. The investigated working regimen was 40% load and 1750 rpm and the energetic substitute ratios of the diesel fuel with LPG was situated between [0-25%].

  11. 30 CFR 250.510 - Diesel engine air intakes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Diesel engine air intakes. 250.510 Section 250... engine air intakes. Diesel engine air intakes must be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines that are continuously attended must be equipped with...

  12. 30 CFR 250.610 - Diesel engine air intakes.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Diesel engine air intakes. 250.610 Section 250... engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines which are continuously...

  13. Particulate morphology of waste cooking oil biodiesel and diesel in a heavy duty diesel engine

    Science.gov (United States)

    Hwang, Joonsik; Jung, Yongjin; Bae, Choongsik

    2014-08-01

    The effect of biodiesel produced from waste cooking oil (WCO) on the particulate matters (PM) of a direct injection (DI) diesel engine was experimentally investigated and compared with commercial diesel fuel. Soot agglomerates were collected with a thermophoretic sampling device installed in the exhaust pipe of the engine. The morphology of soot particles was analyzed using high resolution transmission electron microscopy (TEM). The elemental and thermogravimetric analysis (TGA) were also conducted to study chemical composition of soot particles. Based on the TEM images, it was revealed that the soot derived from WCO biodiesel has a highly graphitic shell-core arrangement compared to diesel soot. The mean size was measured from averaging 400 primary particles for WCO biodiesel and diesel respectively. The values for WCO biodiesel indicated 19.9 nm which was smaller than diesel's 23.7 nm. From the TGA results, WCO biodiesel showed faster oxidation process. While the oxidation of soot particles from diesel continued until 660°C, WCO biodiesel soot oxidation terminated at 560°C. Elemental analysis results showed that the diesel soot was mainly composed of carbon and hydrogen. On the other hand, WCO biodiesel soot contained high amount of oxygen species.

  14. Effect of partial replacement of diesel or biodiesel with gas from biomass gasification in a diesel engine

    International Nuclear Information System (INIS)

    Hernández, J.J.; Lapuerta, M.; Barba, J.

    2015-01-01

    The injected diesel fuel used in a diesel engine was partially replaced with biomass-derived gas through the intake port, and the effect on performance and pollutant emissions was studied. The experimental work was carried out in a supercharged, common-rail injection, single-cylinder diesel engine by replacing diesel fuel up to 20% (by energy), keeping constant the engine power. Three engine loads (60, 90, 105 Nm), three different EGR (exhaust gas recirculation) ratios (0, 7.5, 15%) and two intake temperatures (45, 60 °C) were tested. Finally, some of the tested conditions were selected to replace diesel injection fuel with biodiesel injection. Although the brake thermal efficiency was decreased and hydrocarbons and carbon monoxide emissions increased with increasing fuel replacement, particulate emissions decreased significantly and NO x emissions decreased slightly at all loads and EGR ratios. Thermodynamic diagnostic results showed higher premixed ratio and lower combustion duration for increasing diesel fuel replacement. High EGR ratios improved both engine performance and emissions, especially when intake temperature was increased, which suggest removing EGR cooling when diesel fuel is replaced. Finally, when biodiesel was used instead of diesel fuel, the gas replacement improved the efficiency and reduced the hydrocarbon, carbon monoxide and particulate emissions. - Highlights: • Replacing injected fuel with gas permits an efficient valorization of waste biomass. • Inlet gas was inefficiently burned after the end of liquid fuel injection. • Engine parameters were combined to simultaneously reduce particle and NO x emissions. • Hot EGR (exhaust gas recirculation) and biodiesel injection are proposed to improve efficiency and emissions

  15. The role of the fuel injection system for combustion process optimization of highly turbocharged PC diesel engines; Die Rolle des Einspritzsystems bei der Brennverfahrensoptimierung von hochaufgeladenen Pkw-Dieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Gerhardt, Juergen; Leonhard, Rolf; Krueger, Michael; Naber, Dirk; Pitt, J. [Robert Bosch GmbH, Stuttgart (Germany)

    2008-07-01

    In order to comply with continuously rising requirements from emission legislation and fuel economy enhancement, modern Diesel engines for passenger cars still offer a variety of measures. Focus of this paper is the importance of a highly flexible fuel-injection system and an optimized injection strategy as direct measures to improve both, tail-pipe emission as well as vehicle fuel economy. An integrated system approach of high pressure pump, injector and nozzle provides the latest injection patterns combined with an increased rail pressure level with a best-in-class hydraulic efficiency. The resulting improvement in the injection system and thus in the combustion also enables the introduction of additional indirect, very effective measures for fuel consumption reduction, such as downsizing and downspeeding. In order to fully utilize the potent of the mentioned approaches, the application of advanced boosting technology is an additional key factor. Bosch Diesel injection technology and optimized combustion systems pave the way to achieve the goal of efficient emission reduction. (orig.)

  16. Diesel engines for independent power producers

    International Nuclear Information System (INIS)

    Berc, Dj.

    1999-01-01

    During recent years an increasing demand has been experienced in the stationary diesel engine market for 10-70 MW diesel units. For larger units this demand is being met by two-stroke low-speed crosshead uniflow scavenged diesel engines, capable of burning almost any fuel available on the market, both liquid of gaseous. The paper deals with service experience gained from such engines and their fuel capability. Examples of actual installations for IPPs and captive plants, together with an example of a typical feasibility study of such plants, is presented in the Appendix. (author)

  17. Diesel engine emission deterioration - a preliminary study

    CSIR Research Space (South Africa)

    Pretorius, Cecilia J

    2016-04-01

    Full Text Available The objective of this study was to find a parameter in diesel and oil analysis of underground mining vehicles that can be correlated with personal diesel particulate matter (DPM) exposure and used as part of an engine maintenance programme. A number...

  18. Effects of diesel/ethanol dual fuel on emission characteristics in a heavy-duty diesel engine

    Science.gov (United States)

    Liu, Junheng; Sun, Ping; Zhang, Buyun

    2017-09-01

    In order to reduce emissions and diesel consumption, the gas emissions characteris-tics of diesel/aqueous ethanol dual fuel combustion (DFC) were carried out on a heavy-duty turbocharged and intercooled automotive diesel engine. The aqueous ethanol is prepared by a blend of anhydrous ethanol and water in certain volume proportion. In DFC mode, aqueous ethanol is injected into intake port to form homogeneous charge, and then ignited by the diesel fuel. Results show that DFC can reduce NOx emissions but increase HC and CO emissions, and this trend becomes more prominent with the increase of water blending ratio. Increased emissions of HC and CO could be efficiently cleaned by diesel oxidation catalytic converter (DOC), even better than those of diesel fuel. It is also found that DFC mode reduces smoke remarkably, while increases some unconventional emissions such as formaldehyde and acetal-dehyde. However, unconventional emissions could be reduced approximately to the level of baseline engine with a DOC.

  19. Diesel/CNG Mixture Autoignition Control Using Fuel Composition and Injection Gap

    Directory of Open Access Journals (Sweden)

    Firmansyah

    2017-10-01

    Full Text Available Combustion phasing is the main obstacle to the development of controlled auto-ignition based (CAI engines to achieve low emissions and low fuel consumption operation. Fuel combinations with substantial differences in reactivity, such as diesel/compressed natural gas (CNG, show desirable combustion outputs and demonstrate great possibility in controlling the combustion. This paper discusses a control method for diesel/CNG mixture combustion with a variation of fuel composition and fuel stratification levels. The experiments were carried out in a constant volume combustion chamber with both fuels directly injected into the chamber. The mixture composition was varied from 0 to 100% CNG/diesel at lambda 1 while the fuel stratification level was controlled by the injection phasing between the two fuels, with gaps between injections ranging from 0 to 20 ms. The results demonstrated the suppressing effect of CNG on the diesel combustion, especially at the early combustion stages. However, CNG significantly enhanced the combustion performance of the diesel in the later stages. Injection gaps, on the other hand, showed particular behavior depending on mixture composition. Injection gaps show less effect on combustion phasing but a significant effect on the combustion output for higher diesel percentage (≥70%, while it is contradictive for lower diesel percentage (<70%.

  20. Tomorrow`s diesel engines: towards a new equilibrium; Moteurs diesel de demain: vers un nouvel equilibre

    Energy Technology Data Exchange (ETDEWEB)

    Bastenhof, D. [SEMT Pielstick, 93 - Saint Denis (France)

    1997-12-31

    After a review of the main principles governing combustion in diesel engines and the influence of ambient air conditions on pollutant emissions (and more especially NOx), emission level limits concerning NOx, CO, HC and ashes are presented and discussed according to their applications in the various types of diesel engines. The influence of fuel type is also examined and several ways to reduce NOx emissions in liquid fuel diesel engines are reported: mechanical modifications (compression ratio), water injection, exhaust gas recirculation, exhaust gas processing, fume and ash filtration. Cost issues are also discussed, through comparisons with gas turbines

  1. The use of tyre pyrolysis oil in diesel engines.

    Science.gov (United States)

    Murugan, S; Ramaswamy, M C; Nagarajan, G

    2008-12-01

    Tests have been carried out to evaluate the performance, emission, and combustion characteristics of a single cylinder direct injection diesel engine fueled with 10%, 30%, and 50% of tyre pyrolysis oil (TPO) blended with diesel fuel (DF). The TPO was derived from waste automobile tyres through vacuum pyrolysis. The combustion parameters such as heat release rate, cylinder peak pressure, and maximum rate of pressure rise also analysed. Results showed that the brake thermal efficiency of the engine fueled with TPO-DF blends increased with an increase in blend concentration and reduction of DF concentration. NO(x), HC, CO, and smoke emissions were found to be higher at higher loads due to the high aromatic content and longer ignition delay. The cylinder peak pressure increased from 71 bars to 74 bars. The ignition delays were longer than with DF. It is concluded that it is possible to use tyre pyrolysis oil in diesel engines as an alternate fuel in the future.

  2. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT VII, ENGINE TUNE-UP--DETROIT DIESEL ENGINE.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF TUNE-UP PROCEDURES FOR DIESEL ENGINES. TOPICS ARE SCHEDULING TUNE-UPS, AND TUNE-UP PROCEDURES. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "ENGINE TUNE-UP--DETROIT DIESEL ENGINE" AND OTHER MATERIALS. SEE VT 005 655 FOR FURTHER INFORMATION.…

  3. Comparison of carbonyl compounds emissions from diesel engine fueled with biodiesel and diesel

    Science.gov (United States)

    He, Chao; Ge, Yunshan; Tan, Jianwei; You, Kewei; Han, Xunkun; Wang, Junfang; You, Qiuwen; Shah, Asad Naeem

    The characteristics of carbonyl compounds emissions were investigated on a direct injection, turbocharged diesel engine fueled with pure biodiesel derived from soybean oil. The gas-phase carbonyls were collected by 2,4-dinitrophenylhydrazine (DNPH)-coated silica cartridges from diluted exhaust and analyzed by HPLC with UV detector. A commercial standard mixture including 14 carbonyl compounds was used for quantitative analysis. The experimental results indicate that biodiesel-fueled engine almost has triple carbonyls emissions of diesel-fueled engine. The weighted carbonyls emission of 8-mode test cycle of biodiesel is 90.8 mg (kW h) -1 and that of diesel is 30.7 mg (kW h) -1. The formaldehyde is the most abundant compound of carbonyls for both biodiesel and diesel, taking part for 46.2% and 62.7% respectively. The next most significant compounds are acetaldehyde, acrolein and acetone for both fuels. The engine fueled with biodiesel emits a comparatively high content of propionaldehyde and methacrolein. Biodiesel, as an alternative fuel, has lower specific reactivity (SR) caused by carbonyls compared with diesel. When fueled with biodiesel, carbonyl compounds make more contribution to total hydrocarbon emission.

  4. Thermographic study of the preheating plugs in diesel engines

    OpenAIRE

    Royo Pastor, Rafael; Albertos Arranz, M.A.; CÁRCEL CUBAS, JUAN ANTONIO; Payá Herrero, Jorge

    2012-01-01

    The use of direct injection diesel engines has been widely applied during the past ten years. In such engines, the preheating plugs are a key element which has a significant contribution in the pollutant emissions. In this paper, two different plug designs from Renault are analyzed. The new plug reduces substantially the required electrical consumption. Nevertheless, the pollutant emissions are higher (fundamentally CO and HCs) and hereby a thorough analysis is required to underst...

  5. Trend and future of diesel engine: Development of high efficiency and low emission low temperature combustion diesel engine

    International Nuclear Information System (INIS)

    Ho, R J; Yusoff, M Z; Palanisamy, K

    2013-01-01

    Stringent emission policy has put automotive research and development on developing high efficiency and low pollutant power train. Conventional direct injection diesel engine with diffused flame has reached its limitation and has driven R and D to explore other field of combustion. Low temperature combustion (LTC) and homogeneous charge combustion ignition has been proven to be effective methods in decreasing combustion pollutant emission. Nitrogen Oxide (NO x ) and Particulate Matter (PM) formation from combustion can be greatly suppressed. A review on each of method is covered to identify the condition and processes that result in these reductions. The critical parameters that allow such combustion to take place will be highlighted and serves as emphasis to the direction of developing future diesel engine system. This paper is written to explore potential of present numerical and experimental methods in optimizing diesel engine design through adoption of the new combustion technology.

  6. Trend and future of diesel engine: Development of high efficiency and low emission low temperature combustion diesel engine

    Science.gov (United States)

    Ho, R. J.; Yusoff, M. Z.; Palanisamy, K.

    2013-06-01

    Stringent emission policy has put automotive research & development on developing high efficiency and low pollutant power train. Conventional direct injection diesel engine with diffused flame has reached its limitation and has driven R&D to explore other field of combustion. Low temperature combustion (LTC) and homogeneous charge combustion ignition has been proven to be effective methods in decreasing combustion pollutant emission. Nitrogen Oxide (NOx) and Particulate Matter (PM) formation from combustion can be greatly suppressed. A review on each of method is covered to identify the condition and processes that result in these reductions. The critical parameters that allow such combustion to take place will be highlighted and serves as emphasis to the direction of developing future diesel engine system. This paper is written to explore potential of present numerical and experimental methods in optimizing diesel engine design through adoption of the new combustion technology.

  7. Particulate filter behaviour of a Diesel engine fueled with biodiesel

    International Nuclear Information System (INIS)

    Buono, D.; Senatore, A.; Prati, M.V.

    2012-01-01

    Biodiesel is an alternative and renewable fuel made from plant and animal fat or cooked oil through a transesterification process to produce a short chain ester (generally methyl ester). Biodiesel fuels have been worldwide studied in Diesel engines and they were found to be compatible in blends with Diesel fuel to well operate in modern Common Rail engines. Also throughout the world the diffusion of biofuels is being promoted in order to reduce greenhouse gas emissions and the environmental impact of transport, and to increase security of supply. To meet the current exhaust emission regulations, after-treatment devices are necessary; in particular Diesel Particulate Filters (DPFs) are essential to reduce particulate emissions of Diesel engines. A critical requirement for the implementation of DPF on a modern Biodiesel powered engine is the determination of Break-even Temperature (BET) which is defined as the temperature at which particulate deposition on the filter is balanced by particulate oxidation on the filter. To fit within the exhaust temperature range of the exhaust line and to require a minimum of active regeneration during the engine running, the BET needs to occur at sufficiently low temperatures. In this paper, the results of an experimental campaign on a modern, electronic controlled fuel injection Diesel engine are shown. The engine was fuelled either with petroleum ultralow sulphur fuel or with Biodiesel: BET was evaluated for both fuels. Results show that on average, the BET is lower for biodiesel than for diesel fuel. The final goal was to characterize the regeneration process of the DPF device depending on the adopted fuel, taking into account the different combustion process and the different nature of the particulate matter. Overall the results suggest significant benefits for the use of biodiesel in engines equipped with DPFs. - Highlights: ► We compare Diesel Particulate Trap (DPF) performance with Biodiesel and Diesel fuel. ► The Break

  8. Computational fluid dynamics simulation of the combustion process, emission formation and the flow field in an in-direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Barzegar Ramin

    2013-01-01

    Full Text Available In the present paper, the combustion process and emission formation in the Lister 8.1 I.D.I Diesel engine have been investigated using a Computational Fluid Dynamics (CFD code. The utilized model includes detailed spray atomization, mixture formation and distribution model which enable modeling the combustion process in spray/wall and spray/swirl interactions along with flow configurations. The analysis considers both part load and full load states. The global properties are presented separately resolved for the swirl chamber (pre-chamber and the main chamber. The results of model verify the fact that the equal amount of the fuel is burned in the main and pre-chamber at full load state while at part load the majority of the fuel is burned in the main chamber. Also, it is shown that the adherence of fuel spray on the pre-chamber walls is due to formation of a stagnation zone which prevents quick spray evaporation and plays an important role in the increase of soot mass fractions at this zone at full load conditions. The simulation results, such as the mean in-cylinder pressure, heat release rate and exhaust emissions are compared with the experimental data and show good agreement. This work also demonstrates the usefulness of multidimensional modeling for complex chamber geometries, such as in I.D.I Diesel engines, to gain more insight into the flow field, combustion process and emission formation.

  9. The all new BMW top diesel engines; Die neuen Diesel Spitzenmotorisierungen von BMW

    Energy Technology Data Exchange (ETDEWEB)

    Ardey, N.; Wichtl, R.; Steinmayr, T.; Kaufmann, M.; Hiemesch, D.; Stuetz, W. [BMW Motoren GmbH, Steyr (Austria)

    2012-11-01

    From the very beginning, diesel drivetrains have been important components of the BMW EfficientDynamics strategy. High levels of driving dynamics in combination with attractive fuel consumption have become features of a wide range of models. With the introduction of 2-stage turbocharging for passenger car diesel engines in 2004, BMW was able to significantly enhance the power density without increasing the number of cylinders or the cylinder capacity. In the meantime, the BMW TwinPower Turbo diesel engine variants achieve a rated power of up to 160 kW on the 2.0-litre 4-cylinder engine and 230 kW on the 3.0-litre 6-cylinder engine. In order to extend the leading position in the premium segment, a new BMW TwinPower Turbo variant has been developed. The major objectives were to achieve a range of power output, torque and comfort at least at the level of 8-cylinder competitors, but at the same time equal the lower fuel consumption and power/weight ratio that is typical for existing BMW 6-cylinder diesel engines. The new engine will be used for the first time in the emphatically sports-oriented BMW M Performance Automobiles (MPA) of the X5/X6 and 5 Series. The charging and injection technology as well as capability of high cylinder pressures in the core engine are key technologies for the enhancement of performance. The new BMW TwinPower Turbo diesel drivetrain is based on the main dimensions of the existing 3.0-litre 6-cylinder inline diesel engines. The core element of the new engine is a 2-stage turbocharging system, consisting of 3 exhaust turbochargers. A common rail injection system with a system pressure up to 2200 bar is deployed for the first time. The drive unit has been configured for a maximum cylinder pressure of 200 bar, an innovative feature is the aluminium crankcase with its screwed tension anchor connection. The cooling system contains an indirect 2-stage intercooler. The exhaust system of the new BMW diesel engine in the 5 Series is equipped as

  10. An investigation of the effects of spray angle and injection strategy on dimethyl ether (DME) combustion and exhaust emission characteristics in a common-rail diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Seung Hyun; Cha, June Pyo [Graduate School of Hanyang University, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul, 133-791 (Korea); Lee, Chang Sik [Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791 (Korea)

    2010-11-15

    An experimental investigation was performed on the effects of spray angle and injection strategies (single and multiple) on the combustion characteristics, concentrations of exhaust emissions, and the particle size distribution in a direct-injection (DI) compression ignition engine fueled with dimethyl ether (DME) fuel. In this study, two types of narrow spray angle injectors ({theta}{sub spray} = 70 and 60 ) were examined and its results were compared with the results of conventional spray angle ({theta}{sub spray} = 156 ). In addition, to investigate the optimal operating conditions, early single-injection and multiple-injection strategies were employed to reduce cylinder wall-wetting of the injected fuels and to promote the ignition of premixed charge. The engine test was performed at 1400 rpm, and the injection timings were varied from TDC to BTDC 40 of the crank angle. The experimental results showed that the combustion pressure from single combustion for narrow-angle injectors ({theta}{sub spray} = 70 and 60 ) is increased, as compared to the results of the wide-angle injector ({theta}{sub spray} = 156 ) with advanced injection timing of BTDC 35 . In addition, two peaks of the rate of heat release (ROHR) are generated by the combustion of air-fuel premixed mixtures. DME combustion for all test injectors indicated low levels of soot emissions at all injection timings. The NO{sub x} emissions for narrow-angle injectors simultaneously increased in proportion to the advance in injection timing up to BTDC 25 , whereas BTDC 20 for the wide-angle injector. For multiple injections, the combustion pressure and ROHR of the first injection with narrow-angle injectors are combusted more actively, and the ignition delay of the second injected fuel is shorter than with the wide-angle injector. However, the second combustion pressure and ROHR were lower than during the first injection, and combustion durations are prolonged, as compared to the wide-angle injector. With

  11. An investigation of the effects of spray angle and injection strategy on dimethyl ether (DME) combustion and exhaust emission characteristics in a common-rail diesel engine

    International Nuclear Information System (INIS)

    Yoon, Seung Hyun; Cha, June Pyo; Lee, Chang Sik

    2010-01-01

    An experimental investigation was performed on the effects of spray angle and injection strategies (single and multiple) on the combustion characteristics, concentrations of exhaust emissions, and the particle size distribution in a direct-injection (DI) compression ignition engine fueled with dimethyl ether (DME) fuel. In this study, two types of narrow spray angle injectors (θ spray = 70 and 60 ) were examined and its results were compared with the results of conventional spray angle (θ spray = 156 ). In addition, to investigate the optimal operating conditions, early single-injection and multiple-injection strategies were employed to reduce cylinder wall-wetting of the injected fuels and to promote the ignition of premixed charge. The engine test was performed at 1400 rpm, and the injection timings were varied from TDC to BTDC 40 of the crank angle. The experimental results showed that the combustion pressure from single combustion for narrow-angle injectors (θ spray = 70 and 60 ) is increased, as compared to the results of the wide-angle injector (θ spray = 156 ) with advanced injection timing of BTDC 35 . In addition, two peaks of the rate of heat release (ROHR) are generated by the combustion of air-fuel premixed mixtures. DME combustion for all test injectors indicated low levels of soot emissions at all injection timings. The NO x emissions for narrow-angle injectors simultaneously increased in proportion to the advance in injection timing up to BTDC 25 , whereas BTDC 20 for the wide-angle injector. For multiple injections, the combustion pressure and ROHR of the first injection with narrow-angle injectors are combusted more actively, and the ignition delay of the second injected fuel is shorter than with the wide-angle injector. However, the second combustion pressure and ROHR were lower than during the first injection, and combustion durations are prolonged, as compared to the wide-angle injector. With advanced timing of the first injection, narrow

  12. Analysis of combustion performance and emission of extended expansion cycle and iEGR for low heat rejection turbocharged direct injection diesel engines

    Directory of Open Access Journals (Sweden)

    Shabir Mohd F.

    2014-01-01

    Full Text Available Increasing thermal efficiency in diesel engines through low heat rejection concept is a feasible technique. In LHR engines the high heat evolution is achieved by insulating the combustion chamber surfaces and coolant side of the cylinder with partially stabilized zirconia of 0.5 mm thickness and the effective utilization of this heat depend on the engine design and operating conditions. To make the LHR engines more suitable for automobile and stationary applications, the extended expansion was introduced by modifying the inlet cam for late closing of intake valve through Miller’s cycle for extended expansion. Through the extended expansion concept the actual work done increases, exhaust blow-down loss reduced and the thermal efficiency of the LHR engine is improved. In LHR engines, the formation of nitric oxide is more, to reduce the nitric oxide emission, the internal EGR is incorporated using modified exhaust cam with secondary lobe. Modifications of gas exchange with internal EGR resulted in decrease in nitric oxide emissions. In this work, the parametric studies were carried out both theoretically and experimentally. The combustion, performance and emission parameters were studied and were found to be satisfactory.

  13. Visualization techniques in diesel engine research. Diesel Engine kenkyu ni okeru kashika gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Komori, M.; Tsujimura, K. (New ACE., Tsukuba (Japan))

    1993-04-01

    In order to grasp the phenomena actually occurring in the combustion chamber for improving the combustion and for reducing the exhaust gas emission of the diesel engines, the visualization techniques are becoming to be essential and indispensable. The authors have observed the spray and combustion, when proceeding the combustion improvement by the high pressure injection, and then have performed the image processing and simulation calculation based on them. The high pressure injection devices used for the experiment are the intensifier type and accumulator type which can generate the injection pressure more than 200MPa, and both of them are the electronic controlled hydraulic drive type, and are driven separately from the engine. Since it was found that the analysis of high pressure injection by the hologram is limited in the conditions, as for the spray, the spray analysis was performed by the transmitted light attenuation method and laser sheet method. As for the combustion, the engine for observing the combustion was trially made, and then the combustion state was observed by the high speed photograph. Furthermore, the flame temperature analysis by the image processing using the combustion photograph and the analysis of flow and turbulence of the flame were carried out. 9 refs., 16 figs.

  14. Desempenho de motor ciclo Diesel em bancada dinamométrica utilizando misturas diesel/biodiesel Performance of cycle Diesel engine in dynamometer using diesel/biodiesel mixtures

    Directory of Open Access Journals (Sweden)

    Marcio Castellanelli

    2008-03-01

    Full Text Available Diante da previsão de escassez do petróleo, o éster etílico (biodiesel tem-se apresentado como excelente opção de combustível alternativo para motores ciclo Diesel. As características do biodiesel são semelhantes às do diesel em termos de viscosidade e poder calorífico, podendo ser utilizado sem adaptações nos motores. Para a realização deste trabalho, utilizou-se de motor ciclo Diesel, de injeção direta, com quatro cilindros, sem adaptações. O motor foi acoplado a um dinamômetro e sistemas de aquisição de dados auxiliares. Avaliaram-se os desempenhos de torque, de potência e de consumo específico de combustível para as seguintes misturas diesel/éster etílico de soja: B2, B5, B10, B20, B50, B75 e B100. O melhor desempenho registrado deu-se com a mistura B20.Given the prediction of the scarcity of oil, the ethyl ester (biodiesel has presented as an excellent alternative fuel option for cycle diesel engine. The characteristics of biodiesel are similar of diesel in terms of viscosity and the calorific power, being able to be used without adaptations in the engines. For the accomplishment of this work it was used a cycle diesel engine, of direct injection with four cylinders, without adaptations. The engine was connected to a dynamometer and acquisition systems of auxiliary data. The performances of torque, power and specific fuel consumption for the following mixtures diesel/soy ethyl ester had been evaluated: B2, B5, B10, B20, B50, B75 and B100. The best registered performance was given with the B20 mixture.

  15. New concept of combustion technology in small DI diesel engines. 4th Report. Effects of fuel injection rates on MK combustion; Kogata chokufun diesel kikan no shinnensho concept. 4. Funsharitsu no MK nensho eno eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, S; Matsui, Y; Kamihara, T [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    A previous paper showed that EGR cooling and a low compression ratio which prolongs the ignition delay can expand the area of the new combustion concept. Experimental investigations were conducted in this research to examine the effects of the fuel injection rates, the injection pressure and the injection duration, on the exhaust emissions of an engine incorporating the MK concept The results showed that a higher injection pressure was effective in reducing NOx and particulate matter (PM) under MK combustion conditions. 10 refs., 9 figs., 1 tab.

  16. Experimental evaluation of Diesel engine performance and emission using blends of jojoba oil and Diesel fuel

    International Nuclear Information System (INIS)

    Huzayyin, A.S.; Bawady, A.H.; Rady, M.A.; Dawood, A.

    2004-01-01

    An experimental evaluation of using jojoba oil as an alternate Diesel engine fuel has been conducted in the present work. Measurements of jojoba oil chemical and physical properties have indicated a good potential of using jojoba oil as an alternative Diesel engine fuel. Blending of jojoba oil with gas oil has been shown to be an effective method to reduce engine problems associated with the high viscosity of jojoba oil. Experimental measurements of different performance parameters of a single cylinder, naturally aspirated, direct injection, Diesel engine have been performed using gas oil and blends of gas oil with jojoba oil. Measurements of engine performance parameters at different load conditions over the engine speed range have generally indicated a negligible loss of engine power, a slight increase in brake specific fuel consumption and a reduction in engine NO x and soot emission using blends of jojoba oil with gas oil as compared to gas oil. The reduction in engine soot emission has been observed to increase with the increase of jojoba oil percentage in the fuel blend

  17. Experimental evaluation of diesel engine performance and emission using blends of jojoba oil and diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Huzayyin, A.S.; Rady, M.A.; Dawood, A. [Benha High Inst. of Technology (Egypt). Dept. of Mechanical Engineering Technology; Bawady, A.H. [University of Ain Shams, Cairo (Egypt). Faculty of Engineering

    2004-08-01

    An experimental evaluation of using jojoba oil as an alternate diesel engine fuel has been conducted in the present work. Measurements of jojoba oil chemical and physical properties have indicated a good potential of using jojoba oil as an alternative diesel engine fuel. Blending of jojoba oil with gas oil has been shown to be an effective method to reduce engine problems associated with the high viscosity of jojoba oil. Experimental measurements of different performance parameters of a single cylinder, naturally aspirated, direct injection, diesel engine have been performed using gas oil and blends of gas oil with jojoba oil. Measurements of engine performance parameters at different load conditions over the engine speed range have generally indicated a negligible loss of engine power, a slight increase in brake specific fuel consumption and a reduction in engine NO{sub x} and soot emission using blends of jojoba oil with gas oil as compared to gas oil. The reduction in engine soot emission has been observed to increase with the increase of jojoba oil percentage in the fuel blend. (Author)

  18. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXIII, I--MAINTAINING THE FUEL SYSTEM, PART II--CATERPILLAR DIESEL ENGINE, II--UNDERSTANDING STEERING SYSTEMS.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL INJECTION SYSTEM AND THE STEERING SYSTEM OF DIESEL POWERED VEHICLES. TOPICS ARE FUEL INJECTION SECTION, AND DESCRIPTION OF THE STEERING SYSTEM. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…

  19. Effects of butanol-diesel fuel blends on the performance and emissions of a high-speed DI diesel engine

    International Nuclear Information System (INIS)

    Rakopoulos, D.C.; Rakopoulos, C.D.; Giakoumis, E.G.; Dimaratos, A.M.; Kyritsis, D.C.

    2010-01-01

    An experimental investigation is conducted to evaluate the effects of using blends of n-butanol (normal butanol) with conventional diesel fuel, with 8%, 16% and 24% (by volume) n-butanol, on the performance and exhaust emissions of a standard, fully instrumented, four-stroke, high-speed, direct injection (DI), Ricardo/Cussons 'Hydra' diesel engine located at the authors' laboratory. The tests are conducted using each of the above fuel blends or neat diesel fuel, with the engine working at a speed of 2000 rpm and at three different loads. In each test, fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides, carbon monoxide and total unburned hydrocarbons are measured. The differences in the measured performance and exhaust emission parameters of the three butanol-diesel fuel blends from the baseline operation of the diesel engine, i.e., when working with neat diesel fuel, are determined and compared. It is revealed that this fuel, which can be produced from biomass (bio-butanol), forms a challenging and promising bio-fuel for diesel engines. The differing physical and chemical properties of butanol against those for the diesel fuel are used to aid the correct interpretation of the observed engine behavior.

  20. Cleaning the Diesel Engine Emissions

    DEFF Research Database (Denmark)

    Christensen, Thomas Budde

    This paper examines how technologies for cleaning of diesel emission from road vehicles can be supported by facilitating a technology push in the Danish automotive emission control industry. The European commission is at present preparing legislation for the euro 5 emission standard (to be enforced...... in 2010). The standard is expected to include an 80% reduction of the maximum particulate emissions from diesel cars. The fulfillment of this requirement entails development and production of particulate filters for diesel cars and trucks. Theoretically the paper suggests a rethinking of public industry...

  1. Thermal barrier coatings application in diesel engines

    Science.gov (United States)

    Fairbanks, J. W.

    1995-01-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70's by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also provide protection. Roy Kamo introduced thermal barrier coatings in his 'Adiabatic Diesel Engine' in the late 70's. Kamo's concept was to eliminate the engine block water cooling system and reduce heat losses. Roy reported significant performance improvements in his thermally insulated engine at the SAE Congress in 1982. Kamo's work stimulates major programs with insulated engines, particularly in Europe. Most of the major diesel engine manufacturers conducted some level of test with insulated combustion chamber components. They initially ran into increased fuel consumption. The German engine consortium had Prof. Woschni of the Technical Institute in Munich. Woschni conducted testing with pistons with air gaps to provide the insulation effects. Woschni indicated the hot walls of the insulated engine created a major increase in heat transfer he refers to as 'convection vive.' Woschni's work was a major factor in the abrupt curtailment of insulated diesel engine work in continental Europe. Ricardo in the UK suggested that combustion should be reoptimized for the hot-wall effects of the insulated combustion chamber and showed under a narrow range of conditions fuel economy could be improved. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the

  2. A fully variable, piezo-actuated research injection system as a tool in diesel engine combustion process development; Ein vollvariables, piezoaktuiertes Foschungs-Einspritzsystem als Werkzeug in der dieselmotorischen Brennverfahrensentwicklung

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, S.; Stegemann, J.; Seebode, J.; Merker, G.P. [Hannover Univ. (Germany). Inst. fuer Technische Verbrennung

    2004-07-01

    The injection process is a central optimisation approach for low-cost, low-emission diesel engines. An injection system is presented which comprises a pressure modulator and a research injector with piezo-actuated direct actuation of the nozzle. The high flexibility of the system enables systematic investigations of different combustion processes. (orig.) [German] Die Einspritzverlaufsformung als Mittel zur Minimierung von Rohemissionen bleibt auch im heutigen, von Diskussionen und Partikelfilter und Entstickungstechnologien gepraegten Umfeld ein zentraler Optimierungsansatz fuer kostenguenstige und emissionsarme Dieselmotoren. Das hier vorgestellte Einspritzsystem, bestehend aus einer Druckmodulationseinheit und einem Forschungsinjektor mit piezogesteuerter Direktansteuerung der Duesennadel, dient zur Potenzialanalyse einer freien Einspritzverlaufsformung als Mittel zur innermotorischen Brennverfahrensoptimierung. Dank der hohen Flexibilitaet des Systems sind systematische Untersuchungen in Bezug auf unterschiedliche Brennverfahren moeglich. (orig.)

  3. Regulated and unregulated emissions from a diesel engine fueled with diesel fuel blended with diethyl adipate

    Science.gov (United States)

    Zhu, Ruijun; Cheung, C. S.; Huang, Zuohua; Wang, Xibin

    2011-04-01

    Experiments were carried out on a four-cylinder direct-injection diesel engine operating on Euro V diesel fuel blended with diethyl adipate (DEA). The blended fuels contain 8.1%, 16.4%, 25% and 33.8% by volume fraction of DEA, corresponding to 3%, 6%, 9% and 12% by mass of oxygen in the blends. The engine performance and exhaust gas emissions of the different fuels were investigated at five engine loads at a steady speed of 1800 rev/min. The results indicated an increase of brake specific fuel consumption and brake thermal efficiency when the engine was fueled with the blended fuels. In comparison with diesel fuel, the blended fuels resulted in an increase in hydrocarbon (HC) and carbon monoxide (CO), but a decrease in particulate mass concentrations. The nitrogen oxides (NO x) emission experienced a slight variation among the test fuels. In regard to the unregulated gaseous emissions, formaldehyde and acetaldehyde increased, while 1,3-butadiene, ethene, ethyne, propylene and BTX (benzene, toluene and xylene) in general decreased. A diesel oxidation catalyst (DOC) was found to reduce significantly most of the investigated unregulated pollutants when the exhaust gas temperature was sufficiently high.

  4. Experimental Study of Using Emulsified Diesel Fuel on the Performance and Pollutants Emitted from Four Stroke Water Cooled Diesel Engine

    Science.gov (United States)

    Sakhrieh, A.; Fouad, R. H.; Yamin, J. A.

    2009-08-01

    A water-cooled, four stroke, four cylinder, direct injection diesel engine was used to study the effect of emulsified diesel fuel on the engine performance and on the main pollutant emissions. Emulsified diesel fuels of 0%, 5%, 10%, 15%, 20%, 25% and 30% water by volume were used. The experiments were conducted in the speed range from 1000 to 3000 rpm. It was found that, in general, using emulsified fuel improves the engine performance and reduces emissions. While the BSFC has a minimum value at 5% water and 2000 rpm, the torque, the BMEP and efficiency are found to have maximum values under these conditions. CO2 was found to increase with engine speed and to decrease with water content. NOx produced from emulsified fuel is significantly less than that produced from pure diesel under the same conditions.

  5. Performance and emissions of a heavy duty diesel engine fuelled whit palm oil biodiesel and premium diesel

    International Nuclear Information System (INIS)

    Acevedo, Helmer; Mantilla, Juan

    2011-01-01

    Biodiesels are promoted as alternative fuels due their potential to reduce dependency on fossil fuels and carbon emissions. Research has been addressed in order to study the emissions of light duty vehicles. However, the particle matter and gaseous emissions emitted from heavy-duty diesel engines fueled with palm-biodiesel and premium diesel fuel have seldom been addressed. The objective of this study was to explore the performance and emission levels of a Cummins 4-stroke, 9.5 liter, 6-cylinder diesel engine with common rail fuel injection, and a cooled exhaust gas recirculation (EGR). The palm-biodiesel lowered maximum engine output by much as 10 %. The engine emissions data is compared to standards from 2004, and is determined to pass all standards for diesel fuel, but does not meet emissions standards for PM or NOx for palm-biodiesel.

  6. Screw expander for light duty diesel engines

    Science.gov (United States)

    1983-01-01

    Preliminary selection and sizing of a positive displacement screw compressor-expander subsystem for a light-duty adiabatic diesel engine; development of a mathematical model to describe overall efficiencies for the screw compressor and expander; simulation of operation to establish overall efficiency for a range of design parameters and at given engine operating points; simulation to establish potential net power output at light-duty diesel operating points; analytical determination of mass moments of inertia for the rotors and inertia of the compressor-expander subsystem; and preparation of engineering layout drawings of the compressor and expander are discussed. As a result of this work, it was concluded that the screw compressor and expander designed for light-duty diesel engine applications are viable alternatives to turbo-compound systems, with acceptable efficiencies for both units, and only a moderate effect on the transient response.

  7. Cummins Light Truck Diesel Engine Progress Report

    International Nuclear Information System (INIS)

    John H. Stang

    2000-01-01

    The Automotive Market in the United States is moving in the direction of more Light Trucks and fewer Small Cars. The customers for these vehicles have not changed, only their purchase decisions. Cummins has studied the requirements of this emerging market. Design and development of an engine system that will meet these customer needs has started. The engine system is a difficult one, since the combined requirements of a very fuel-efficient commercial diesel, and the performance and sociability requirements of a gasoline engine are needed. Results of early testing are presented which show that the diesel is possibly a good solution

  8. 46 CFR 58.10-10 - Diesel engine installations.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Diesel engine installations. 58.10-10 Section 58.10-10... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-10 Diesel engine installations. (a) The requirements of § 58.10-5 (a), (c), and (d) shall apply to diesel engine installations...

  9. Carbonyl compound emissions from a heavy-duty diesel engine fueled with diesel fuel and ethanol-diesel blend.

    Science.gov (United States)

    Song, Chonglin; Zhao, Zhuang; Lv, Gang; Song, Jinou; Liu, Lidong; Zhao, Ruifen

    2010-05-01

    This paper presents an investigation of the carbonyl emissions from a direct injection heavy-duty diesel engine fueled with pure diesel fuel (DF) and blended fuel containing 15% by volume of ethanol (E/DF). The tests have been conducted under steady-state operating conditions at 1200, 1800, 2600 rpm and idle speed. The experimental results show that acetaldehyde is the most predominant carbonyl, followed by formaldehyde, acrolein, acetone, propionaldehyde and crotonaldehyde, produced from both fuels. The emission factors of total carbonyls vary in the range 13.8-295.9 mg(kWh)(-1) for DF and 17.8-380.2mg(kWh)(-1) for E/DF, respectively. The introduction of ethanol into diesel fuel results in a decrease in acrolein emissions, while the other carbonyls show general increases: at low engine speed (1200 rpm), 0-55% for formaldehyde, 4-44% for acetaldehyde, 38-224% for acetone, and 5-52% for crotonaldehyde; at medium engine speed (1800 rpm), 106-413% for formaldehyde, 4-143% for acetaldehyde, 74-113% for acetone, 114-1216% for propionaldehyde, and 15-163% for crotonaldehyde; at high engine speed (2600 rpm), 36-431% for formaldehyde, 18-61% for acetaldehyde, 22-241% for acetone, and 6-61% for propionaldehyde. A gradual reduction in the brake specific emissions of each carbonyl compound from both fuels is observed with increase in engine load. Among three levels of engine speed employed, both DF and E/DF emit most CBC emissions at high engine speed. On the whole, the presence of ethanol in diesel fuel leads to an increase in aldehyde emissions. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. IMPLEMENTATION OF DIOXANE AND DIESEL FUEL BLENDS TO REDUCE EMISSION AND TO IMPROVE PERFORMANCE OF THE COMPRESSION IGNITION ENGINE

    OpenAIRE

    SENDILVELAN S.; SUNDAR RAJ C.

    2017-01-01

    Performance of a compression ignition engine fuelled with 1, 4 Dioxane- diesel blends is evaluated. A single-cylinder, air-cooled, direct injection diesel engine developing a power output of 5.2 kW at 1500 rev/min is used. Base data is generated with standard diesel fuel subsequently; five fuel blends namely 90:10, 80:20, 70:30, 60:40 and 50:50 percentages by volume of diesel and dioxane were prepared and tested in the diesel engine. Engine performance and emission data were used to optimize ...

  11. Model of predicting proportion of diesel fuel and engine oil in diesel ...

    African Journals Online (AJOL)

    Viscosity of diesel adulterated SAE 40 engine oil at varying proportions of the mixture is presented. Regression, variation of intercept and the power parameters methods are used for developing polynomial and power law functions for predicting proportion of either diesel or engine oil in diesel adulterated SAE 40 engine oil ...

  12. Challenges for injection systems and combustion processes of large diesel engines for keeping the emission limits IMO TIER3 in 2016; Herausforderungen bei Einspritzsystemen und Brennverfahren von Grossdieselmotoren zur Einhaltung der Emissionsgrenzwerte IMO TIER3 in 2016

    Energy Technology Data Exchange (ETDEWEB)

    Harndorf, Horst; Rabe, Jean Rom; Wichmann, Volker; Fink, Christian [Rostock Univ. (Germany). Lehrstuhl fuer Kolbenmaschinen und Verbrennungsmotoren; Buchholz, Bert [Forschungszentrum Thermodynamik und Verbrennungsmotoren Rostock GmbH, Rostock (Germany)

    2011-07-01

    More stringent emission limits for large engines are dominating research and development activities of engine and component manufacturers during the next years. This is especially the case with respect to the introduction of the IMO-TIER 3 limits in the emission control areas in 2016. Then a reduction of nitrogen oxides emissions of roughly 80% compared to today is required. In particular in combination with new regulations on the fuel sulfur content or on the sulfur oxide emissions respectively totally new technological approaches have to be applied to marine diesel engines and their periphery. Technical solutions based on exhaust gas treatment like SCR-catalysts or sulfur scrubbers as well as exhaust gas recirculation concepts are discussed in this paper. Depending on the specific method there is a need to handle different operating materials such as heavy fuel oil, distillate fuels, urea solution, caustic soda lye or lime. Furthermore specific challenges for the development and application of advanced fuel injection systems and injection strategies are mentioned. It is to be assumed that several emission reduction concepts will be available in 2016. Depending on the skip type and the characteristic deployment an optimum concept has to be selected. Because of the complexity of the different technologies strong repercussions are implied on the ship layout and marine engine operation. (orig.)

  13. Performance and emission studies on port injection of hydrogen with varied flow rates with Diesel as an ignition source

    International Nuclear Information System (INIS)

    Saravanan, N.; Nagarajan, G.

    2010-01-01

    Automobiles are one of the major sources of air pollution in the environment. In addition CO 2 emission, a product of complete combustion also has become a serious issue due to global warming effect. Hence the search for cleaner alternative fuels has become mandatory. Hydrogen is expected to be one of the most important fuels in the near future for solving the problems of air pollution and greenhouse gas problems (carbon dioxide), thereby protecting the environment. Hence in the present work, an experimental investigation has been carried out using hydrogen in the dual fuel mode in a Diesel engine system. In the study, a Diesel engine was converted into a dual fuel engine and hydrogen fuel was injected into the intake port while Diesel was injected directly inside the combustion chamber during the compression stroke. Diesel injected inside the combustion chamber will undergo combustion first which in-turn would ignite the hydrogen that will also assist the Diesel combustion. Using electronic control unit (ECU), the injection timings and injection durations were varied for hydrogen injection while for Diesel the injection timing was 23 o crank angle (CA) before injection top dead centre (BITDC). Based on the performance, combustion and emission characteristics, the optimized injection timing was found to be 5 o CA before gas exchange top dead centre (BGTDC) with injection duration of 30 o CA for hydrogen Diesel dual fuel operation. The optimum hydrogen flow rate was found to be 7.5 lpm. Results indicate that the brake thermal efficiency in hydrogen Diesel dual fuel operation increases by 15% compared to Diesel fuel at 75% load. The NO X emissions were higher by 1-2% in dual fuel operation at full load compared to Diesel. Smoke emissions are lower in the entire load spectra due to the absence of carbon in hydrogen fuel. The carbon monoxide (CO), carbon dioxide (CO 2 ) emissions were lesser in hydrogen Diesel dual fuel operation compared to Diesel. The use of hydrogen

  14. Performance and emission studies on port injection of hydrogen with varied flow rates with Diesel as an ignition source

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, N. [ERC Engines, Tata Motors, Pimpri, Pune (India); Nagarajan, G. [Internal Combustion Engineering Division, Department of Mechanical Engineering, College of Engineering, Guindy, Anna University, Chennai (India)

    2010-07-15

    Automobiles are one of the major sources of air pollution in the environment. In addition CO{sub 2} emission, a product of complete combustion also has become a serious issue due to global warming effect. Hence the search for cleaner alternative fuels has become mandatory. Hydrogen is expected to be one of the most important fuels in the near future for solving the problems of air pollution and greenhouse gas problems (carbon dioxide), thereby protecting the environment. Hence in the present work, an experimental investigation has been carried out using hydrogen in the dual fuel mode in a Diesel engine system. In the study, a Diesel engine was converted into a dual fuel engine and hydrogen fuel was injected into the intake port while Diesel was injected directly inside the combustion chamber during the compression stroke. Diesel injected inside the combustion chamber will undergo combustion first which in-turn would ignite the hydrogen that will also assist the Diesel combustion. Using electronic control unit (ECU), the injection timings and injection durations were varied for hydrogen injection while for Diesel the injection timing was 23 crank angle (CA) before injection top dead centre (BITDC). Based on the performance, combustion and emission characteristics, the optimized injection timing was found to be 5 CA before gas exchange top dead centre (BGTDC) with injection duration of 30 CA for hydrogen Diesel dual fuel operation. The optimum hydrogen flow rate was found to be 7.5 lpm. Results indicate that the brake thermal efficiency in hydrogen Diesel dual fuel operation increases by 15% compared to Diesel fuel at 75% load. The NO{sub X} emissions were higher by 1-2% in dual fuel operation at full load compared to Diesel. Smoke emissions are lower in the entire load spectra due to the absence of carbon in hydrogen fuel. The carbon monoxide (CO), carbon dioxide (CO{sub 2}) emissions were lesser in hydrogen Diesel dual fuel operation compared to Diesel. The use of

  15. Presumptions of effective operation of diesel engines running on rme biodiesel. Research on kinetics of combustion of RME biodiesel

    Directory of Open Access Journals (Sweden)

    A. Vaicekauskas

    2007-06-01

    Full Text Available The results of experimental research on kinetics of fuel combustion of diesel engine A41are presented in the publication. The change of characteristics of indicated work (in-cylinder pressure and temperature, period of induction, heat release and heat release rate and fuel injection (fuel injection pressure, fuel injection phases was determined in diesel engine running on RME biodiesel being compared to diesel fuel. The results of researches were used to explain experimentally determined changes of operational and ecological characteristics of diesel engine running on RME biodiesel. In addition, the reliability of diesel engine A41 running on RME biodiesel was evaluated. The presumptions of effective operation of diesel engines running on RME biodiesel were formulated.

  16. Experimental Analysis of DI Diesel Engine Performance with Blend Fuels of Oxygenated Additive and COME Biodiesel

    OpenAIRE

    P. Venkateswara Rao; B.V. Appa Rao; D. Radhakrishna

    2012-01-01

    An experimental investigation was carried out to evaluate the effect of using Triacetin (T) as an additive with biodiesel on direct injection diesel engine for performance and combustion characteristics. Normally in the usage of diesel fuel and neat biodiesel, knocking can be detected to some extent. By adding triacetin [C9H14O6] additive to biodiesel, this problem can be alleviated to some extent and the tail pipe emissions are reduced. Comparative study was conducted using petro-diesel, bio...

  17. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Science.gov (United States)

    2010-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... vehicles or nonroad diesel engines? No person may introduce used motor oil, or used motor oil blended with... later nonroad diesel engines (not including locomotive or marine diesel engines), unless both of the...

  18. Finite element analysis of a crankshaft of diesel engine

    International Nuclear Information System (INIS)

    Bannikiv, M.G.

    2005-01-01

    This research was a part of the project aimed at the increase in power of the direct injection turbocharged twelve- cylinder V-type diesel engine. Crankshaft of a high power high speed diesel engine is subjected to complex loading conditions and undergoes high cyclic loads of the order of 107 to 108 cycles. Therefore, durability of this component is of critical importance. Strength analysis was based on the assessment of factor of safety (FOS) of the engine augmented by brake mean effective pressure (bmep) and/or engine speed. In the first part of the study, mechanical loads due to gas pressure and inertia forces were obtained from engine cycle simulation. Relationships for displacement, velocity and acceleration of an articulated connecting rod piston as a function of engine geometry and crank angle were derived. In the second part, the range of bmep and engine speed was determined over which engine performance is satisfactory on the basis of fatigue. It was shown that with limitations imposed (unchanged design and material of the crankshaft) the crankshaft of the given engine can withstand increase in power up to 15%. It was recommended, that required increase in engine power should be realized by the increase in bmep, since the increase in engine speed would deteriorate combustion efficiency. Finite Element Analysis was used to verify stresses calculations. New features of procedure used and relationships obtained in this research apply to strength analysis of other types of internal combustion engines. (author)

  19. Utilization of diesel fuel, anhydrous ethanol and additives blend of a stationary diesel engine with rotatory pump; Utilizacao de mistura ternaria alcool, diesel e aditivo em motores do ciclo diesel com bomba de injecao rotativa

    Energy Technology Data Exchange (ETDEWEB)

    Reyes Cruz, Yordanka; Cavado Osorio, Alberto [Centro de Pesquisas de Petroleo (CEINPET), Havana (Cuba); Belchior, Carlos Rodrigues Pereira; Pereira, Pedro P.; Pinto, Nauberto Rodrigues [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Centro de Tecnologia. Dept. de Engenharia Naval e Mecanica; Aranda, Donato A. Gomes [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica

    2008-07-01

    In this paper is analyzed the performance and fuel consumption of a stationary Diesel engine, with rotary diesel fuel injection pump, using (diesel fuel + anhydrous ethanol + 0.5% additive) blend. The engine performance parameters and fuel consumption tests were performed at the Termic Machine Laboratory, located in Federal University of Rio de Janeiro, and evaluated using a MWM Series 10 model 4.10 TCA. Two test cycles were used for this test program: the tests were carried out starting from the base diesel S-500, used as a reference; the engine operated with (diesel fuel S-500 - 8% anhydrous ethanol - DIOLEFECT additive (0,5% SPAN80 + 0,1% Biomix-D)) blend. The results indicate that: the reduction levels in power and torque of engine are approximately the same which is (2,55{+-}2%), the brake specific fuel consumption increased in 1,8%. (author)

  20. METHODS FOR ORGANIZATION OF WORKING PROCESS FOR GAS-DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    G. A. Vershina

    2017-01-01

    Full Text Available Over the past few decades reduction in pollutant emissions has become one of the main directions for further deve- lopment of engine technology. Solution of such problems has led to implementation of catalytic post-treatment systems, new technologies of fuel injection, technology for regulated phases of gas distribution, regulated turbocharger system and, lately, even system for variable compression ratio of engine. Usage of gaseous fuel, in particular gas-diesel process, may be one of the means to reduce air pollution caused by toxic substances and meet growing environmental standards and regulations. In this regard, an analysis of methods for organization of working process for a gas-diesel engine has been conducted in the paper. The paper describes parameters that influence on the nature of gas diesel process, it contains graphics of specific total heat consumption according to ignition portion of diesel fuel and dependence of gas-diesel indices on advance angle for igni-tion portion injection of the diesel fuel. A modern fuel system of gas-diesel engine ГД-243 has been demonstrated in the pa- per. The gas-diesel engine has better environmental characteristics than engines running on diesel fuel or gasoline. According to the European Natural & bio Gas Vehicle Association a significant reduction in emissions is reached at a 50%-substitution level of diesel fuel by gas fuel (methane and in such a case there is a tendency towards even significant emission decrease. In order to ensure widespread application of gaseous fuel as fuel for gas-diesel process it is necessary to develop a new wor- king process, to improve fuel equipment, to enhance injection strategy and fuel supply control. A method for organization of working process for multi-fuel engine has been proposed on the basis of the performed analysis. An application has been submitted for a patent.

  1. DIESEL ENGINE RETROFIT TECHNOLOGY VERIFICATION

    Science.gov (United States)

    This presentation wil be given at the EPA Science Forum 2005 in Washington, DC. According to recent estimates, there are approximately 7.9 million heavy-duty diesel trucks and buses in use in the United States. Emissions from these vehicles account for substantial portions of t...

  2. Application of diagnostic system for diesel engine

    International Nuclear Information System (INIS)

    Yoshinaga, Takeshi; Hayashi, Haruji; Usui, Hiromi; Tsuruzono, Atsuya; Matsuda, Takafumi

    2008-01-01

    The Japan Atomic Power Company (JAPC) began to implement Condition Based Maintenance (CBM) for rotating components (pumps, fans and electric motors) from 1999 and, also has begun to apply diesel engine diagnostic techniques at our three nuclear power plants since 2004. This paper provides a description of the CBM methods used for diesel engines in nuclear standby service, a summary of the procedures to introduce these diagnostic techniques to our nuclear power plants, and experience with the application of these methods to JAPC nuclear power plants. (author)

  3. Combustion and emission characteristics of diesel engine fuelled with rice bran oil methyl ester and its diesel blends

    Directory of Open Access Journals (Sweden)

    Gattamaneni Rao Narayana Lakshmi

    2008-01-01

    Full Text Available There has been a worldwide interest in searching for alternatives to petroleum-derived fuels due to their depletion as well as due to the concern for the environment. Vegetable oils have capability to solve this problem because they are renewable and lead to reduction in environmental pollution. The direct use of vegetable oils as a diesel engine fuel is possible but not preferable because of their extremely higher viscosity, strong tendency to polymerize and bad cold start properties. On the other hand, Biodiesels, which are derived from vegetable oils, have been recently recognized as a potential alternative to diesel oil. This study deals with the analysis of rice bran oil methyl ester (RBME as a diesel fuel. RBME is derived through the transesterification process, in which the rice bran oil reacts with methanol in the presence of KOH. The properties of RBME thus obtained are comparable with ASTM biodiesel standards. Tests are conducted on a 4.4 kW, single-cylinder, naturally aspirated, direct-injection air-cooled stationary diesel engine to evaluate the feasibility of RBME and its diesel blends as alternate fuels. The ignition delay and peak heat release for RBME and its diesel blends are found to be lower than that of diesel and the ignition delay decreases with increase in RBME in the blend. Maximum heat release is found to occur earlier for RBME and its diesel blends than diesel. As the amount of RBME in the blend increases the HC, CO, and soot concentrations in the exhaust decreased when compared to mineral diesel. The NOx emissions of the RBME and its diesel blends are noted to be slightly higher than that of diesel.

  4. Lubricity Additives and Wear with DME in Diesel Injection Pumps

    DEFF Research Database (Denmark)

    Nielsen, Kasper; Sorenson, Spencer C.

    1999-01-01

    In recent years it has been demonstrated that Dimethyl Ether (DME) possess many characteristics that could make it a successful alternative to diesel in the next century. High wear of the fuel injection system has been reported. This is caused by lack of natural protective constituents of Dimethyl...... wear of standard diesel jerk pump plungers elements were made with weight measurements, diameter measurements, 2-D and 3-D surface roughness measurements, and photography by a Michelson interferometer. Several lubricity additives were tested, but none reduced wear levels to those for diesel fuel...

  5. Combustion Characterization and Ignition Delay Modeling of Low- and High-Cetane Alternative Diesel Fuels in a Marine Diesel Engine

    OpenAIRE

    Petersen, John; Seivwright, Doug; Caton, Patrick; Millsaps, Knox

    2014-01-01

    The article of record as published may be found at http://dx.doi.org/10.1021/ef500565t In support of an ongoing U.S. Navy alternative fuel evaluation program, the combustion characteristics of two very different alternative diesel fuels were evaluated in a direct-injection marine diesel engine across a variety of speeds and loads. The fuels were an algal-based hydrotreated renewable diesel fuel (HRD) with cetane number of ∼75 and a synthetic paraffinic kerosene (SPK) with cetane n...

  6. Development of compressed natural gas/diesel dual-fuel turbocharged compressed ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Shenghua, L.; Ziyan, W.; Jiang, R. [Xi' an Jiaotong Univ. (China). Dept. of Automotive Engineering

    2003-09-01

    A natural gas and diesel dual-fuel turbocharged compression ignition (CI) engine is developed to reduce emissions of a heavy-duty diesel engine. The compressed natural gas (CNG) pressure regulator is specially designed to feed back the boost pressure to simplify the fuel metering system. The natural gas bypass improves the engine response to acceleration. The modes of diesel injection are set according to the engine operating conditions. The application of honeycomb mixers changes the flowrate shape of natural gas and reduces hydrocarbon (HC) emission under low-load and lowspeed conditions. The cylinder pressures of a CI engine fuelled with diesel and dual fuel are analysed. The introduction of natural gas makes the ignition delay change with engine load. Under the same operating conditions, the emissions of smoke and NO{sub x} from the dual-fuel engine are both reduced. The HC and CO emissions for the dual-fuel engine remain within the range of regulation. (Author)

  7. Light-duty diesel engine development status and engine needs

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    This report reviews, assesses, and summarizes the research and development status of diesel engine technology applicable to light-duty vehicles. In addition, it identifies specific basic and applied research and development needs in light-duty diesel technology and related health areas where initial or increased participation by the US Government would be desirable. The material presented in this report updates information provided in the first diesel engine status report prepared by the Aerospace Corporation for the Department of Energy in September, 1978.

  8. Thermal barrier coatings - Technology for diesel engines

    International Nuclear Information System (INIS)

    Harris, D.H.; Lutz, J.

    1988-01-01

    Thermal Barrier Coatings (TBC) are a development of the aerospace industry primarily aimed at hot gas flow paths in turbine engines. TBC consists of zirconia ceramic coatings applied over (M)CrAlY. These coatings can provide three benefits: (1) a reduction of metal surface operating temperatures, (2) a deterrent to hot gas corrosion, and (3) improved thermal efficiencies. TBC brings these same benefits to reciprocal diesel engines but coating longevity must be demonstrated. Diesels require thicker deposits and have challenging geometries for the arc-plasma spray (APS) deposition process. Different approaches to plasma spraying TBC are required for diesels, especially where peripheral edge effects play a major role. Bondcoats and ceramic top coats are modified to provide extended life as determined by burner rig tests, using ferrous and aluminum substrates

  9. Adaptive vibration isolation system for diesel engine

    Institute of Scientific and Technical Information of China (English)

    YANG Tie-jun; ZHANG Xin-yu; XIAO You-hong; HUANG Jin-e; LIU Zhi-gang

    2004-01-01

    An active two-stage isolation mounting, on which servo-hydraulic system is used as the actuator (secondary vibration source) and a diesel engine is used as primary vibration source, has been built. The upper mass of the mounting is composed of a 495diesel and an electrical eddy current dynamometer. The lower mass is divided into four small masses to which servo-hydraulic actuator and rubber isolators are attached. According to the periodical characteristics of diesel vibration signals, a multi-point adaptive strategy based on adaptive comb filtered algorithm is applied to active multi-direction coupled vibrations control for the engine. The experimental results demonstrate that a good suppression in the effective range of phase compensation in secondary path (within 100Hz) at different operation conditions is achieved, and verify that this strategy is effective. The features of the active system, the development activities carried out on the system and experimental results are discussed in the paper.

  10. Effects of ethanol-diesel fuel blends on the performance and exhaust emissions of heavy duty DI diesel engine

    International Nuclear Information System (INIS)

    Rakopoulos, D.C.; Rakopoulos, C.D.; Kakaras, E.C.; Giakoumis, E.G.

    2008-01-01

    An experimental investigation is conducted to evaluate the effects of using blends of ethanol with conventional diesel fuel, with 5% and 10% (by vol.) ethanol, on the performance and exhaust emissions of a fully instrumented, six-cylinder, turbocharged and after-cooled, heavy duty, direct injection (DI), Mercedes-Benz engine, installed at the authors' laboratory, which is used to power the mini-bus diesel engines of the Athens Urban Transport Organization sub-fleet with a view to using bio-ethanol produced from Greek feedstock. The tests are conducted using each of the above fuel blends, with the engine working at two speeds and three loads. Fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides, carbon monoxide and total unburned hydrocarbons are measured. The differences in the measured performance and exhaust emissions of the two ethanol-diesel fuel blends from the baseline operation of the engine, i.e. when working with neat diesel fuel, are determined and compared. Theoretical aspects of diesel engine combustion combined with the widely differing physical and chemical properties of the ethanol against those for the diesel fuel, are used to aid the correct interpretation of the observed engine behavior

  11. Servo-driven piezo common rail diesel injection system; Servogetriebene Piezo-Common-Rail-Dieseleinspritzung

    Energy Technology Data Exchange (ETDEWEB)

    Schoeppe, Detlev; Stahl, Christian; Krueger, Grit; Dian, Vincent [Continental Automotive GmbH, Regensburg (Germany). Geschaeftsbereich Engine Systems

    2012-03-15

    The requirements to be met by future diesel engines represent major challenges for fuel injection technology: Fuel consumption, emissions and noise development are to be further reduced without impairing driving enjoyment. To address these challenges, Continental has developed a new fuel injection system that features a high level of precision and accuracy. The key component is a servo-driven injector that is operated in a closed control circuit. (orig.)

  12. Diesel engines vs. spark ignition gasoline engines -- Which is ``greener``?

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W. [Dept. of Energy, Washington, DC (United States)

    1997-12-31

    Criteria emissions, i.e., NO{sub x}, PM, CO, CO{sub 2}, and H{sub 2}, from recently manufactured automobiles, compared on the basis of what actually comes out of the engines, the diesel engine is greener than spark ignition gasoline engines and this advantage for the diesel engine increases with time. SI gasoline engines tend to get out of tune more than diesel engines and 3-way catalytic converters and oxygen sensors degrade with use. Highway measurements of NO{sub 2}, H{sub 2}, and CO revealed that for each model year, 10% of the vehicles produce 50% of the emissions and older model years emit more than recent model year vehicles. Since 1974, cars with SI gasoline engines have uncontrolled emission until the 3-way catalytic converter reaches operating temperature, which occurs after roughly 7 miles of driving. Honda reports a system to be introduced in 1998 that will alleviate this cold start problem by storing the emissions then sending them through the catalytic converter after it reaches operating temperature. Acceleration enrichment, wherein considerable excess fuel is introduced to keep temperatures down of SI gasoline engine in-cylinder components and catalytic converters so these parts meet warranty, results in 2,500 times more CO and 40 times more H{sub 2} being emitted. One cannot kill oneself, accidentally or otherwise, with CO from a diesel engine vehicle in a confined space. There are 2,850 deaths per year attributable to CO from SI gasoline engine cars. Diesel fuel has advantages compared with gasoline. Refinery emissions are lower as catalytic cracking isn`t necessary. The low volatility of diesel fuel results in a much lower probability of fires. Emissions could be improved by further reducing sulfur and aromatics and/or fuel additives. Reformulated fuel has become the term covering reducing the fuels contribution to emissions. Further PM reduction should be anticipated with reformulated diesel and gasoline fuels.

  13. Diesel and gas engines: evolution facing new regulations; Moteurs diesel et gaz: evolution face aux nouvelles reglementations

    Energy Technology Data Exchange (ETDEWEB)

    Daverat, Ph. [Bergetat Monnoyeur (France)

    1997-12-31

    This paper analyzes the influence of new pollution regulations on the new design of diesel and gas engines with the example of Caterpillar`s experience, one of the leaders of diesel and gas engines manufacturers worldwide. The technical problems to solve are introduced first (reduction of NO{sub x}, SO{sub 2}, CO, unburned compounds and dusts), and then the evolution of engines and of exhaust gas treatment systems are described (fuel injection systems, combustion and ignition control, sensors, catalytic conversion and filtering systems). (J.S.)

  14. Analysis of BJ493 diesel engine lubrication system properties

    Science.gov (United States)

    Liu, F.

    2017-12-01

    The BJ493ZLQ4A diesel engine design is based on the primary model of BJ493ZLQ3, of which exhaust level is upgraded to the National GB5 standard due to the improved design of combustion and injection systems. Given the above changes in the diesel lubrication system, its improved properties are analyzed in this paper. According to the structures, technical parameters and indices of the lubrication system, the lubrication system model of BJ493ZLQ4A diesel engine was constructed using the Flowmaster flow simulation software. The properties of the diesel engine lubrication system, such as the oil flow rate and pressure at different rotational speeds were analyzed for the schemes involving large- and small-scale oil filters. The calculated values of the main oil channel pressure are in good agreement with the experimental results, which verifies the proposed model feasibility. The calculation results show that the main oil channel pressure and maximum oil flow rate values for the large-scale oil filter scheme satisfy the design requirements, while the small-scale scheme yields too low main oil channel’s pressure and too high. Therefore, application of small-scale oil filters is hazardous, and the large-scale scheme is recommended.

  15. Dual fuel operation of used transformer oil with acetylene in a DI diesel engine

    International Nuclear Information System (INIS)

    Behera, Pritinika; Murugan, S.; Nagarajan, G.

    2014-01-01

    Highlights: • Utilisation of Used transformer oil (UTO) as a fuel in a diesel engine. • UTO with acetylene in a diesel engine, on a dual fuel mode technique. • Analysis of combustion characteristics of the diesel engine. • Analysis of performance and emission characteristics of the diesel engine. - Abstract: Used transformer oil (UTO) is a waste oil obtained from power transformers and welding transformers. It possesses considerable heating value and properties similar to diesel fuel. A preliminary investigation on the utilization of the UTO in a single cylinder, four stroke small powered direct injection (DI) diesel engine revealed that at an optimum injection timing of 20°CA the engine exhibited lower nitric oxide (NO) and higher smoke emissions, compared to that of diesel operation. In order to improve the performance and reduce the smoke emission, a dual fuel operation was attempted in the present investigation. Acetylene was inducted as a primary fuel at four different flow rates viz 132 g/h, 198 g/h, 264 g/h and 330 g/h along with the air, to study the combustion, performance and emission behavior of a four-stroke, 4.4 kW diesel engine, while the UTO was injected as pilot fuel with the optimized injection timing. The experimental results were compared with diesel-acetylene dual fuel operation in the same engine. Acetylene aspiration reduced the ignition delay and maximum cylinder pressure by about 3°CA, and 25% respectively at full load in comparison with the sole UTO operation. Higher thermal efficiency and lower exhaust gas were also observed at full load. Smoke was reduced by about 13.7%, in comparison with the UTO operation at full load

  16. Compressed Biogas-Diesel Dual-Fuel Engine Optimization Study for Ultralow Emission

    Directory of Open Access Journals (Sweden)

    Hasan Koten

    2014-06-01

    Full Text Available The aim of this study is to find out the optimum operating conditions in a diesel engine fueled with compressed biogas (CBG and pilot diesel dual-fuel. One-dimensional (1D and three-dimensional (3D computational fluid dynamics (CFD code and multiobjective optimization code were employed to investigate the influence of CBG-diesel dual-fuel combustion performance and exhaust emissions on a diesel engine. In this paper, 1D engine code and multiobjective optimization code were coupled and evaluated about 15000 cases to define the proper boundary conditions. In addition, selected single diesel fuel (dodecane and dual-fuel (CBG-diesel combustion modes were modeled to compare the engine performances and exhaust emission characteristics by using CFD code under various operating conditions. In optimization study, start of pilot diesel fuel injection, CBG-diesel flow rate, and engine speed were optimized and selected cases were compared using CFD code. CBG and diesel fuels were defined as leading reactants using user defined code. The results showed that significantly lower NOx emissions were emitted under dual-fuel operation for all cases compared to single-fuel mode at all engine load conditions.

  17. Exploring Low Emission Lubricants for Diesel Engines

    Energy Technology Data Exchange (ETDEWEB)

    Perez, J. M.

    2000-07-06

    A workshop to explore the technological issues involved with the removal of sulfur from lubricants and the development of low emission diesel engine oils was held in Scottsdale, Arizona, January 30 through February 1, 2000. It presented an overview of the current technology by means of panel discussions and technical presentations from industry, government, and academia.

  18. Experimental Investigations on Conventional and Semi-Adiabatic Diesel Engine Using Simarouba Biodiesel as Fuel

    Science.gov (United States)

    Ravi, M. U.; Reddy, C. P.; Ravindranath, K.

    2013-04-01

    In view of fast depletion of fossil fuels and the rapid rate at which the fuel consumption is taking place all over the world, scientists are searching for alternate fuels for maintaining the growth industrially and economically. Hence search for alternate fuel(s) has become imminent. Out of the limited options for internal combustion engines, the bio diesel fuel appears to be the best. Many advanced countries are implementing several biodiesel initiatives and developmental programmes in order to become self sufficient and reduce the import bills. Biodiesel is biodegradable and renewable fuel with the potential to enhance the performance and reduce engine exhaust emissions. This is due to ready usage of existing diesel engines, fuel distribution pattern, reduced emission profiles, and eco-friendly properties of biodiesel. Simarouba biodiesel (SBD), the methyl ester of Simarouba oil is one such alternative fuel which can be used as substitute to conventional petro-diesel. The present work involves experimental investigation on the use of SBD blends as fuel in conventional diesel engine and semi-adiabatic diesel engine. The oil was triple filtered to eliminate particulate matter and then transesterified to obtain biodiesel. The project envisaged aims at conducting analysis of diesel with SBD blends (10, 20, 30 and 40 %) in conventional engine and semi-adiabatic engine. Also it was decided to vary the injection pressure (180, 190 and 200 bar) and observe its effect on performance and also suggest better value of injection pressure. The engine was made semi adiabatic by coating the piston crown with partially stabilized zirconia (PSZ). Kirloskar AV I make (3.67 kW) vertical, single cylinder, water cooled diesel engine coupled to an eddy current dynamometer with suitable measuring instrumentation/accessories used for the study. Experiments were initially carried out using pure diesel fuel to provide base line data. The test results were compared based on the performance

  19. Study on biogas premixed charge diesel dual fuelled engine

    International Nuclear Information System (INIS)

    Duc, Phan Minh; Wattanavichien, Kanit

    2007-01-01

    This paper presents an experimental investigation of a small IDI biogas premixed charge diesel dual fuelled CI engine used in agricultural applications. Engine performance, diesel fuel substitution, energy consumption and long term use have been concerned. The attained results show that biogas-diesel dual fuelling of this engine revealed almost no deterioration in engine performance but lower energy conversion efficiency which was offset by the reduced fuel cost of biogas over diesel. The long term use of this engine with biogas-diesel dual fuelling is feasible with some considerations

  20. Performance of ceramic coatings on diesel engines

    International Nuclear Information System (INIS)

    MacAdam, S.; Levy, A.

    1986-01-01

    Partially stabilized zirconia ceramic thermal barrier coatings were plasma sprayed on the valve faces and tulips and the piston crowns and cylinder heads of a locomotive size diesel engine at a designated thickness of 375μm (0.015''). They were tested over a range of throttle settings for 500 hours using No. 2 diesel oil fuel. Properly applied coatings performed with no change in composition, morphology or thickness. Improperly applied coatings underwent spalling durability was dependent on quality control of the plasma spray process

  1. Use of calophyllum inophyllum biofuel blended with diesel in DI diesel engine modified with nozzle holes and its size

    Science.gov (United States)

    Vairamuthu, G.; Sundarapandian, S.; Thangagiri, B.

    2016-05-01

    Improved thermal efficiency, reduction in fuel consumption and pollutant emissions from biodiesel fueled diesel engines are important issues in engine research. To achieve these, fast and perfect air-biodiesel mixing are the most important requirements. The mixing quality of biodiesel spray with air can be improved by better design of the injection system. The diesel engine tests were conducted on a 4-stroke tangentially vertical single cylinder (TV1) kirloskar 1500 rpm water cooled direct injection diesel engine with eddy current dynamometer. In this work, by varying different nozzles having spray holes of 3 (base, Ø = 0.280 mm), 4 (modified, Ø = 0.220 mm) and 5 (modified, Ø = 0.240 mm) holes, with standard static injection timing of 23° bTDC and nozzle opening pressure (NOP) of 250 bar maintained as constant throughout the experiment under steady state at full load condition of the engine. The effect of varying different nozzle configuration (number of holes), on the combustion, performance and exhaust emissions, using a blend of calophyllum inophyllum methyl ester by volume in diesel were evaluated. The test results showed that improvement in terms of brake thermal efficiency and specific fuel consumption for 4 holes and 5 holes nozzle operated at NOP 250 bar. Substantial improvements in the reduction of emissions levels were also observed for 5 holes nozzle operated at NOP 250 bar.

  2. Exhaust emissions of DI diesel engine using unconventional fuels

    Science.gov (United States)

    Sudrajad, Agung; Ali, Ismail; Hamdan, Hazmie; Hamzah, Mohd. Herzwan

    2012-06-01

    Optimization of using waste plastic and tire disposal fuel on diesel engine were observed. The experimental project was comparison between using both of unconventional fuel and base diesel fuel. The engine experiment was conducted with YANMAR TF120 single cylinder four stroke diesel engine set-up at variable engine speed at 2100, 1900, 1700, 1500 and 1300 rpm. The data have been taken at each point of engine speed during the stabilized engine-operating regime. Measurement of emissions parameters at different engine speed conditions have generally indicated lower in emission COfor waste plastic fuel, lower NOx for tire disposal fuel and lower SOx for diesel fuel.

  3. Pressure-time characteristics in diesel engine fueled with natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Selim, Mohamed Y.E. [Helwan Univ., Mechanical Power Engineering Dept., Cairo (Egypt)

    2001-04-01

    Combustion pressure data are measured and presented for a dual fuel engine running on dual fuel of diesel and compressed natural gas, and compared to the diesel engine case. The maximum pressure rise rate during combustion is presented as a measure of combustion noise. Experimental investigation on diesel and dual fuel engines revealed the noise generated from combustion in both cases. A Ricardo E6 diesel version engine is converted to run on dual fuel of diesel and compressed natural gas and is used throughout the work. The engine is fully computerized and the cylinder pressure data, crank angle data are stored in a PC for off-line analysis. The effect of engine speeds, loads, pilot injection angle, and pilot fuel quantity on combustion noise is examined for both diesel and dual engine. Maximum pressure rise rate and some samples of ensemble averaged pressure-crank angle data are presented in the present work. The combustion noise, generally, is found to increase for the dual fuel engine case as compared to the diesel engine case. (Author)

  4. An injection limiting thrustor control device for internal combustion engines

    International Nuclear Information System (INIS)

    Givaudan, B.

    1993-01-01

    The aim of this device is the automatic limitation, without any command circuit, of the injection in large diesel engines (16 or 20 cylinders) during a compressed air assisted start-up. The thrustor is driven directly by the compressed air. The limitation may be extended and regulated by the means of valves. Application to start-up of diesel generating sets for nuclear power plants

  5. Role of biodiesel-diesel blends in alteration of particulate matter emanated by diesel engine

    International Nuclear Information System (INIS)

    Shah, A.N.; Shahid, E.M.

    2015-01-01

    The current study is focused on the investigation of the role of biodiesel in the alteration of particulate matter (PM) composition emitted from a direct injection-compression ignition. Two important blends of biodiesel with commercial diesel known as B20 (20% biodiesel and 80% diesel by volume) and B50 were used for the comparative analysis of their pollutants with those of 100% or traditional diesel (D). The experiments were performed under the auspices of the Chinese 8-mode steady-state cycle on a test bench by coupling the engine with an AC electrical dynamometer. As per experimental results, over-50 nm aerosols were abated by 8.7-47% and 6-51% with B20 and B50, respectively, on account of lofty nitrogen dioxide to nitrogen oxides (NO2/NO) ratios. In case of B50, sub-50 nm aerosols and sulphates were higher at maximum load modes of the test, owing to adsorption phenomenon of inorganic nuclei leading to heterogeneous nucleation. Moreover, trace metal emissions (TME) were substantially reduced reflecting the reduction rates of 42-57% and 64-80% with B20 and B50, respectively, relative to baseline measurements taken with diesel. In addition to this, individual elements such as Ca and Fe were greatly minimised, while Na was enhanced with biodiesel blended fuels. (author)

  6. Acoustical monitoring of diesel engines in reverberant environment

    International Nuclear Information System (INIS)

    Mein, M.

    1995-10-01

    The feed-back knowledge of emergency diesel generators in nuclear power plants shows that some malfunctions, mainly affecting fuel-injection or distribution system of the engine can be heard and detected by experienced maintenance agents. This study consists in the feasibility,v of acoustical monitoring of those diesel engines, taking into account the reverberant environment of the machine. The operating cycle of the diesel is composed of transient events (injection, combustion, valve closure...) which generate highly non stationary acoustical signals. The detection of a malfunction appearing on such transients requires the use of adapted signal processing techniques. Visual analysis of the phenomena is first proceeded using time-frequency and time-scale representations. The second step will be parametric modeling of acoustical signatures for the extraction of characteristic parameters, in order to characterize the fault and to use an automatic classification system. The lest part of the study will concern the evaluation of the robustness of the detection methods in regard to acoustical reverberation. (author). 10 refs., 6 figs

  7. Experimental investigation of the performance and emissions of diesel engines by a novel emulsified diesel fuel

    International Nuclear Information System (INIS)

    Chen, Zhenbin; Wang, Xiaochen; Pei, Yiqiang; Zhang, Chengliang; Xiao, Mingwei; He, Jinge

    2015-01-01

    Highlights: • A novel bio-fuel, glucose solution emulsified diesel fuel, is evaluated. • Emulsified diesel has comparable brake thermal efficiency. • NO X emissions decrease with emulsified fuel at all loads. • Soot emissions decrease with emulsified fuel except at a few operating points. - Abstract: The subject of this paper was to study the performance and emissions of two typical diesel engines using glucose solution emulsified diesel fuel. Emulsified diesel with a 15% glucose solution by mass fraction was used in diesel engines and compared with pure diesel. For the agricultural diesel engine, performance and emission characteristics were measured under various engine loads. The results showed that the brake thermal efficiencies were improved using emulsified diesel fuel. Emulsified fuel decreased NO x and soot emissions except at a few specific operating conditions. HydroCarbon (HC) and CO emissions were increased. For the automotive diesel engine, performance and emissions were measured using the 13-mode European Stationary Cycle (ESC). It was found that brake thermal efficiencies of emulsified diesel and pure diesel were comparable at 75% and 100% load. Soot emissions decreased significantly while NO x emissions decreased slightly. HC emissions increased while CO emissions decreased at some operating conditions

  8. Analysis of Engine Parameters at Using Diesel-LPG and Diesel-CNG Mixture in Compression-ignition Engine

    Directory of Open Access Journals (Sweden)

    Michal Jukl

    2014-01-01

    Full Text Available This work is aimed on influence of diesel engine parameters that is used with mixture of gas and diesel fuel. The first part of the article describes diesel fuel systems where small part of diesel fuel is replaced by LPG or CNG fuel. These systems are often called as Diesel-Gas systems. Next part of the article focuses on tested car and measurement equipment. Measurement was performed by common-rail diesel engine in Fiat Doblň. Tests were carried out in laboratories of the Department of Engineering and Automobile Transport at the Mendel University in Brno. They were observed changes between emissions of used fuels – diesel without addition of gas, diesel + LPG and diesel + CNG mixture. It was found that that the addition of gas had positive effect on the performance parameters and emissions.

  9. A concise wall temperature model for DI Diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Torregrosa, A.; Olmeda, P.; Degraeuwe, B. [CMT-Motores Termicos, Universidad Politecnica de Valencia (Spain); Reyes, M. [Centro de Mecanica de Fluidos y Aplicaciones, Universidad Simon Bolivar (Venezuela)

    2006-08-15

    A concise resistor model for wall temperature prediction in diesel engines with piston cooling is presented here. The model uses the instantaneous in-cylinder pressure and some usually measured operational parameters to predict the temperature of the structural elements of the engine. The resistor model was adjusted by means of temperature measurements in the cylinder head, the liner and the piston. For each model parameter, an expression as a function of the engine geometry, operational parameters and material properties was derived to make the model applicable to other similar engines. The model predicts well the cylinder head, liner and piston temperature and is sensitive to variations of operational parameters such as the start of injection, coolant and oil temperature and engine speed and load. (author)

  10. Integrated diesel engine NOx reduction technology development

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzer, J.; Zhu, J.; Savonen, C.L. [Detroit Diesel Corp., MI (United States); Kharas, K.C.C.; Bailey, O.H.; Miller, M.; Vuichard, J. [Allied Signal Environmental Catalysts, Tulsa, OK (United States)

    1997-12-31

    The effectiveness of catalyst performance is a function of the inlet exhaust gas temperature, gas flow rate, concentration of NO{sub x} and oxygen, and reductant quantity and species. Given this interrelationship, it becomes immediately clear that an integrated development approach is necessary. Such an approach is taken in this project. As such, the system development path is directed by an engine-catalyst engineering team. Of the tools at the engine engineer`s disposal the real-time aspects of computer assisted subsystem modeling is valuable. It will continue to be the case as ever more subtle improvements are needed to meet competitive performance, durability, and emission challenges. A review of recent prototype engines has shown that considerable improvements to base diesel engine technology are being made. For example, HSDI NO{sub x} has been reduced by a factor of two within the past ten years. However, additional substantial NO{sub x}/PM reduction is still required for the future. A viable lean NO{sub x} catalyst would be an attractive solution to this end. The results of recent high and low temperature catalyst developments were presented. High temperature base metal catalysts have been formulated to produce very good conversion efficiency and good thermal stability, albeit at temperatures near the upper range of diesel engine operation. Low temperature noble metal catalysts have been developed to provide performance of promising 4-way control but need increased NO{sub x} reduction efficiency.

  11. Design and Performance of LPG Fuel Mixer for Dual Fuel Diesel Engine

    Science.gov (United States)

    Desrial; Saputro, W.; Garcia, P. P.

    2018-05-01

    Small horizontal diesel engines are commonly used for agricultural machinery, however, availability of diesel fuel become one of big problems especially in remote area. Conversely, in line with government policy for conversion of kerosene into LPG for cooking, then LPG become more popular and available even in remote area. Therefore, LPG is potential fuel to replace the shortage of diesel fuel for operating diesel engine in remote area. The purpose of this study was to design mixing device for using dual fuel i.e. LPG and diesel fuel and evaluate its performance accordingly. Simulation by using CFD was done in order to analyze mixture characteristics of LPG in air intake manifold. The performance test was done by varying the amount of LPG injected in intake air at 20%, 25%, 30%, 35%, until 40%, respectively. Result of CFD contour simulation showed the best combination when mixing 30% LPG into the intake air. Performance test of this research revealed that mixing LPG in air intake can reduce the diesel fuel consumption about 0.7 l/hour (without load) and 1.14 l/hour (with load). Diesel engine revolution increases almost 300 rpm faster than when using diesel fuel only. Based on economic analysis, using the fuel combination (diesel fuel – LPG) is not recommended in the area near SPBU where the price of diesel fuel is standard. However, using the fuel combination LPG-diesel fuel is highly recommended in the remote areas in Indonesia where price of diesel fuel is comparatively expensive which will provide cheaper total fuel cost for diesel engine operation.

  12. Experimental study on the performance and emissions of a compression ignition engine fuelled with butanol diesel blends

    International Nuclear Information System (INIS)

    Maki, Duraid F.; Prabhakaran, P.

    2010-01-01

    An experimental investigation on the application of the blends of butanol with diesel to a direct injection diesel engine was carried out. Experimental tests were carried out to study the performance and emissions of the engine fuelled with the blends compared with those fuelled by diesel. The test results show that it is feasible and applicable for the blends with butanol to replace conventional diesel as the fuel for diesel engine; the fuel consumption, brake efficiency, exhaust temperature, and volumetric efficiency of the engine fuelled by the blends were comparable with that fuelled by diesel. The characteristics of the emissions were also studied. CO, CO 2 , HC and NO X are measured and compared with the base fuel case when the conventional diesel is used alone. The results were different for different speeds, loads and blends. (author)

  13. Common rail fuel injection system for improvement of engine performance and reduction of exhaust emission on heavy duty diesel engine; Common rail system ni yoru seino haishutsu gas no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T; Koyama, T; Sasaki, K; Mori, K; Mori, K [Mitsubishi Motor Corp., Tokyo (Japan)

    1997-10-01

    With the objective of improvement of engine performance and reduction of exhaust emissions, influence of control method to decrease initial injection rate and effect of injector types on fuel leakage of common rail fuel injection system (Common Rail System) were investigated. As a results, it became clear that injector with 2-way valve brings improvement of engine performance and reduction of exhaust emissions as compared with injector with 3-way valve because injector with 2-way valve has lower fuel leakage and is able to use higher injection pressure than injector with 3-way valve. 5 refs., 13 figs., 1 tab.

  14. The diesel engine and the environment

    International Nuclear Information System (INIS)

    1991-01-01

    For more than 15 years, the development of engines has been oriented towards reducing the emissions of exhaust substances that are harmful to the environment. In the case of diesel engines, emission control is mainly concentrated to nitrogen oxides (NO x ) and particulates. Exhaust emission control has already advanced so far that the results achieved would have been regarded unrealistic a mere ten years ago. Diesel exhaust gases also include hydrocarbons (HC) and carbon monoxide (CO), although technology is approaching the stage at which these substances will have been eliminated. This report summarizes problem areas of exhaust emission control, exhaust emission theory, exhaust gas substances and environmental chemistry, emission regulations, risks of automotive exhaust gases, among others. 33 refs

  15. Experimental Study of Combustion and Emissions Characteristics of Methyl Oleate, as a Surrogate for Biodiesel, in a Direct injection Diesel Engine

    Science.gov (United States)

    This study evaluates the combustion and emissions characteristics of methyl oleate (C19H36O2 CAS# 112-62) produced by transesterification from oleic acid, one of the main fatty acid components of biodiesel. The ignition delay of ultra-low sulfur diesel#2 (ULSD) and its blends with methyl oleate (O20...

  16. Hygroscopic properties of Diesel engine soot particles

    Energy Technology Data Exchange (ETDEWEB)

    Weingartner, E.; Baltensperger, U. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Burtscher, H. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-11-01

    The hygroscopic properties of combustion particles, freshly emitted from a Diesel engine were investigated. It was found that these particles start to grow by water condensation at a relative humidity (RH)>80%. The hygroscopicity of these particles was enhanced when the sulfur content of the fuel was increased or when the particles were artificially aged (i.e. particles were subjected to an ozone or UV pre-treatment). (author) 2 figs., 5 refs.

  17. Complete modeling for systems of a marine diesel engine

    Science.gov (United States)

    Nahim, Hassan Moussa; Younes, Rafic; Nohra, Chadi; Ouladsine, Mustapha

    2015-03-01

    This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations. The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).

  18. Evaluation of hazelnut kernel oil of Turkish origin as alternative fuel in diesel engines

    International Nuclear Information System (INIS)

    Gumus, M.

    2008-01-01

    In the present study, hazelnut kernel oil of Turkish origin was evaluated as alternative fuel in a diesel engine. Potential hazelnut production throughout the world and the status of Turkey were examined. Hazelnut (Corylus avellana L.) kernel oil was transesterified with methanol using potassium hydroxide as catalyst to obtain hazelnut kernel oil methyl ester (HOME) and a comprehensive experimental investigation was carried out to examine performance and emissions of a direct injection diesel engine running with HOME and its blends with diesel fuel. Experimental parameters included the percentage of HOME in the blend, engine load, injection timing, compression ratio, and injector. The cost analysis of HOME production comparing to the price of conventional diesel fuel was performed for last decade was performed. Results showed that HOME and its blends with diesel fuel are generally comparable to diesel fuel and small modifications such as increasing injection timing, compression ratio and injector opening pressure provide significant improvement in performance and emissions. It is also expected that the price of HOME will be lower than the price of conventional diesel fuel in the near future. (author)

  19. Particulate emissions from diesel engines: correlation between engine technology and emissions.

    Science.gov (United States)

    Fiebig, Michael; Wiartalla, Andreas; Holderbaum, Bastian; Kiesow, Sebastian

    2014-03-07

    In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted.Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions.Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the

  20. Performance of Diesel Engine Using Diesel B3 Mixed with Crude Palm Oil

    Science.gov (United States)

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5–17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7–33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6–52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NOX) emissions when using mixed fuels were 10–39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine). PMID:24688402

  1. Performance of diesel engine using diesel B3 mixed with crude palm oil.

    Science.gov (United States)

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5-17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7-33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6-52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NO X ) emissions when using mixed fuels were 10-39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine).

  2. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XX, CUMMINS DIESEL ENGINE, MAINTENANCE SUMMARY.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF THE REASONS AND PROCEDURES FOR DIESEL ENGINE MAINTENANCE. TOPICS ARE WHAT ENGINE BREAK-IN MEANS, ENGINE BREAK-IN, TORQUING BEARINGS (TEMPLATE METHOD), AND THE NEED FOR MAINTENANCE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "CUMMINS DIESEL ENGINE…

  3. One dimensional modeling of a diesel-CNG dual fuel engine

    Science.gov (United States)

    Azman, Putera Adam; Fawzi, Mas; Ismail, Muammar Mukhsin; Osman, Shahrul Azmir

    2017-04-01

    Some of the previous studies have shown that the use of compressed natural gas (CNG) in diesel engines potentially produce engine performance improvement and exhaust gas emission reduction, especially nitrogen oxides, unburned hydrocarbons, and carbon dioxide. On the other hand, there are other researchers who claimed that the use of CNG increases exhaust gas emissions, particularly nitrogen oxides. In this study, a one-dimensional model of a diesel-CNG dual fuel engine was made based on a 4-cylinder 2.5L common rail direct injection diesel engine. The software used is GT-Power, and it was used to analyze the engine performance and exhaust gas emissions of several diesel-CNG dual fuel blend ratios, i.e. 100:0, 90:10, 80:20, 70:30, 60:40 and 50:50. The effect of 100%, 75%, 50% engine loads on the exhaust gas emissions were also studied. The result shows that all diesel-CNG fuel blends produces higher brake torque and brake power at engine speed of 2000-3000 rpm compared with 100% diesel. The 50:50 diesel-CNG blend produces the highest brake torque and brake power, but also has the highest brake specific fuel consumption. As a higher percentage of CNG added to the dual fuel blend, unburned hydrocarbons and carbon monoxide emission increased while carbon dioxide emission decreased. The nitrogen oxides emission concentration is generally unaffected by any change of the dual fuel ratio.

  4. Proceedings of the 1998 diesel engine emissions reduction workshop [DEER

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This workshop was held July 6--9, 1998 in Castine, Maine. The purpose of this workshop was to provide a multidisciplinary forum for exchange of state-of-the-art information on reduction of diesel engine emissions. Attention was focused on the following: agency/organization concerns on engine emissions; diesel engine issues and challenges; health risks from diesel engines emissions; fuels and lubrication technologies; non-thermal plasma and urea after-treatment technologies; and diesel engine technologies for emission reduction 1 and 2.

  5. Effect of Magnetic Field on Diesel Engine Power Fuelled with Jatropha-Diesel Oil

    Directory of Open Access Journals (Sweden)

    Sukarni Sukarni

    2017-08-01

    Full Text Available Jatropha oil has characteristics very close to the diesel fuel, so it has good prospects as a substitute or as a mixture of diesel fuel. Previous research showed that jatropha oil usage in diesel engines caused power to decrease. It was probably owing to the higher viscosity of the Jatropha oil compared to that of diesel oil. Installing the magnetic field in the fuel line of a diesel engine fueled with jatropha-diesel oil is expected to reduce the viscosity of jatropha-diesel oil mixture, hence improve the combustion reaction process. This research aims to know the influence of the magnetic field strength in the fuel lines to the power of diesel engines fueled with a mixture of jatropha-diesel oil. The composition of Jatropha oil-diesel was 20% jatropha oil and 80% diesel oil. Magnetic field variations were 0.122, 0.245 and 0.368 Tesla. The results showed that the higher the strength of the magnetic field was, the higher the average diesel engine’s power would be.

  6. Combustion and emission characteristics of a natural gas-fueled diesel engine with EGR

    International Nuclear Information System (INIS)

    Abdelaal, M.M.; Hegab, A.H.

    2012-01-01

    Highlights: ► An existed DI diesel engine has been modified to suit dual fuel operation with EGR. ► Comparative study has been conducted between different operating modes. ► Dual fuel mode exhibits better performance at high loads than diesel. ► Dual fuel mode exhibits lower NOx and higher HC emissions than diesel. ► EGR improves performance at part loads and emissions of dual fuel mode. - Abstract: The use of natural gas as a partial supplement for liquid diesel fuel is a very promising solution for reducing pollutant emissions, particularly nitrogen oxides (NOx) and particulate matters (PM), from conventional diesel engines. In most applications of this technique, natural gas is inducted or injected in the intake manifold to mix uniformly with air, and the homogenous natural gas–air mixture is then introduced to the cylinder as a result of the engine suction. This type of engines, referred to as dual-fuel engines, suffers from lower thermal efficiency and higher carbon monoxide (CO) and unburned hydrocarbon (HC) emissions; particularly at part load. The use of exhaust gas recirculation (EGR) is expected to partially resolve these problems and to provide further reduction in NOx emission as well. In the present experimental study, a single-cylinder direct injection (DI) diesel engine has been properly modified to run on dual-fuel mode with natural gas as a main fuel and diesel fuel as a pilot, with the ability to employ variable amounts of EGR. Comparative results are given for various operating modes; conventional diesel mode, dual-fuel mode without EGR, and dual-fuel mode with variable amounts of EGR, at different operating conditions; revealing the effect of utilization of EGR on combustion process and exhaust emission characteristics of a pilot ignited natural gas diesel engine.

  7. Performance and emission characteristics of biogas used in diesel engine operation

    International Nuclear Information System (INIS)

    Makareviciene, Violeta; Sendzikiene, Egle; Pukalskas, Saugirdas; Rimkus, Alfredas; Vegneris, Ricardas

    2013-01-01

    Highlights: • Biogas is an environmentally friendly biofuel for diesel engines. • Results of diesel engine tests when fuelling with biogas are presented. • Engine and environmental characteristics depends on carbon dioxide content in biogas. • Using biogas in a diesel engine requires certain operational modifications. - Abstract: The objective of this study it to evaluate the impact of the carbon dioxide concentration in biogas on the operating characteristics and exhaust gas emissions of a diesel engine running on a mixture of biogas and mineral diesel fuel. The tests were carried out in two stages. In the first stage, the impact of different biogas compositions and the exhaust gas recirculation system (EGR) on the engine parameters was determined. Lower pollutant levels were measured in the studies without the EGR system, except for the nitrogen oxides NO x levels. The NO x concentration decrease was directly proportional to the concentration of methane in the common fuel mixture. In the second stage, the gas with the highest methane content was used to determine the impact of the start of injection timing on the engine operating parameters. As the methane content in the common fuel mixture increased, the start of injection timing had to be progressively advanced to increase the thermal efficiency and to lower the fuel consumption, the CO and HC concentrations and the smokiness of the exhaust; however, advancing the start of injection timing increased NO x pollution

  8. Experimental studies on fumigation of ethanol in a small capacity Diesel engine

    International Nuclear Information System (INIS)

    Chauhan, Bhupendra Singh; Kumar, Naveen; Pal, Shyam Sunder; Du Jun, Yong

    2011-01-01

    To diversify the mix of domestic energy resources and to reduce dependence on imported oil, ethanol is widely investigated for applying in combination with Diesel fuel to reduce pollutants, including smoke and NO x . Present work aims at developing a fumigation system for introduction of ethanol in a small capacity Diesel engine and to determine its effects on emission. Fumigation was achieved by using a constant volume carburetor. Different percentages of ethanol fumes with air were then introduced in the Diesel engine, under various load conditions. Ethanol is an oxygenated fuel and lead to smooth and efficient combustion. Atomization of ethanol also results in lower combustion temperature. During the present study, gaseous emission has been found to be decreasing with ethanol fumigation. Results from the experiment suggest that ethanol fumigation can be effectively employed in existing compression ignition engine to achieve substantial saving of the limited Diesel oil. Results show that fumigated Diesel engine exhibit better engine performance with lower NOx, CO, CO 2 and exhaust temperature. Ethanol fumigation has resulted in increase of unburned hydrocarbon (HC) emission in the entire load range. Considering the parameters, the optimum percentage was found as 15% for ethanol fumigation. -- Research highlights: → To diversify energy resources and to reduce dependence on imported oil, ethanol is used in Diesel engine to reduce pollutants. → Developing a fumigation system to inject ethanol in a small capacity Diesel engine, to determine its effects on emissions. → Different percentages of ethanol fumes with air were introduced in Diesel engine, under various load conditions by using a constant volume carburetor. → Results show that fumigated Diesel engine exhibits better engine performance with lower NOx, CO, CO 2 and exhaust temperature. → Results show increase of unburned hydrocarbon emission in entire load range. Optimum percentage found as 15% for

  9. A Study of Spill Control Characteristics of JP-8 and Conventional Diesel Fuel with a Common Rail Direct Injection System

    Directory of Open Access Journals (Sweden)

    Seomoon Yang

    2017-12-01

    Full Text Available Diversification of energy sources is a key task for decreasing environmental impacts and global emission of gases. JP-8, a fuel derived from natural gas, coal, biomass, and waste plastics, is a bright prospect. JP-8 is considered a multi-source multi-purpose fuel, with several applications. A preliminary characterization of the JP-8 injection rate and injection quantity behavior was investigated based on the high-pressure common rail injection system used in a heavy-duty engine. According to the spill injection and injection pressure, a trade-off trend between injection rate and injection quantity was observed. As expected, pilot injection of JP-8 aviation fuel and diesel fuel affects the spray quantity and injection evolution of the subsequent operation without pilot injection. The difference in spilling between diesel and JP-8 aviation fuel is greater than the difference in injection amount per time; in the process of controlling the injector solenoid through ECU (Electric Control Units, the oil pressure valve and the needle valve operate to a higher extent in order to maintain the diesel fuel’s injection quantity volume. It was found that the total injection quantity was decreased by adding 20% pilot injection duration. Because the pilot injection quantity causes solenoid response, loss and needle lift stroke friction loss.

  10. Investigation of engine performance and emissions of a diesel engine with a blend of marine gas oil and synthetic diesel fuel.

    Science.gov (United States)

    Nabi, Md Nurun; Hustad, Johan Einar

    2012-01-01

    This paper investigates diesel engine performance and exhaust emissions with marine gas oil (MGO) and a blend of MGO and synthetic diesel fuel. Ten per cent by volume of Fischer-Tropsch (FT), a synthetic diesel fuel, was added to MGO to investigate its influence on the diesel engine performance and emissions. The blended fuel was termed as FT10 fuel, while the neat (100 vol%) MGO was termed as MGO fuel. The experiments were conducted with a fourstroke, six-cylinder, turbocharged, direct injection, Scania DC 1102 diesel engine. It is interesting to note that all emissions including smoke (filter smoke number), total particulate matter (TPM), carbon monoxide (CO), total unburned hydrocarbon (THC), oxides of nitrogen (NOx) and engine noise were reduced with FT10 fuel compared with the MGO fuel. Diesel fine particle number and mass emissions were measured with an electrical low pressure impactor. Like other exhaust emissions, significant reductions in fine particles and mass emissions were observed with the FT10 fuel. The reduction was due to absence of sulphur and aromatic compounds in the FT fuel. In-cylinder gas pressure and engine thermal efficiency were identical for both FT10 and MGO fuels.

  11. Impact of physical properties of mixture of diesel and biodiesel fuels on hydrodynamic characteristics of fuel injection system

    Directory of Open Access Journals (Sweden)

    Filipović Ivan M.

    2014-01-01

    Full Text Available One of the alternative fuels, originating from renewable sources, is biodiesel fuel, which is introduced in diesel engines without major construction modifications on the engine. Biodiesel fuel, by its physical and chemical properties, is different from diesel fuel. Therefore, it is expected that by the application of a biodiesel fuel, the characteristic parameters of the injection system will change. These parameters have a direct impact on the process of fuel dispersion into the engine cylinder, and mixing with the air, which results in an impact on the quality of the combustion process. Method of preparation of the air-fuel mixture and the quality of the combustion process directly affect the efficiency of the engine and the level of pollutant emissions in the exhaust gas, which today is the most important criterion for assessing the quality of the engine. The paper presents a detailed analysis of the influence of physical properties of a mixture of diesel and biodiesel fuels on the output characteristics of the fuel injection system. The following parameters are shown: injection pressure, injection rate, the beginning and duration of injection, transformation of potential into kinetic energy of fuel and increase of energy losses in fuel injection system of various mixtures of diesel and biodiesel fuels. For the analysis of the results a self-developed computer program was used to simulate the injection process in the system. Computational results are verified using the experiment, for a few mixtures of diesel and biodiesel fuels. This paper presents the verification results for diesel fuel and biodiesel fuel in particular.

  12. Modulated diesel fuel injection strategy for efficient-clean utilization of low-grade biogas

    International Nuclear Information System (INIS)

    Wang, Xiaole; Qian, Yong; Zhou, Qiyan; Lu, Xingcai

    2016-01-01

    Highlights: • Influences of direct injection strategy on biogas RCCI mode are researched. • Excessive early pilot injection timing leads to the retard of combustion. • Overall indicated thermal efficiency of low-grade biogas can be higher than 40%. • Pilot injection timing has strong influence on particle size distribution. • Composition of biogas has a great influence on the gas emissions. - Abstract: Recently, as a kind of renewable fuel, low-grade biogas has been researched to apply in internal combustion engine. In this paper, an experimental study was conducted to study the influence of injection strategies on the efficient utilization of low-grade biogas in Reactivity Controlled Compression Ignition (RCCI) mode with port fuel injection of biogas and in-cylinder direct injection of diesel based on a modified electronic controlled high-pressure directly injected compression ignition engine. Considered the high proportion of inert gas in biogas, a four-components simulated gas (H_2:CO:CH_4:N_2 = 5:40:5:50 vol%) has been selected as test fuels to simulate biogas. The effects of several injection control parameters such as pilot injection timing, main injection timing, common rail pressure and pilot injection ratio on the combustion and emissions are analyzed in detail. The research demonstrates that the main injection timing can effectively control the combustion phase and excessive early pilot injection timing leads to retard of combustion. CO emissions are relatively high due to homogenous charge of biogas. NOx and smoke emissions can be effectively controlled. In RCCI mode, the indicated thermal efficiency of biogas/diesel can reach 40%.

  13. Combustion and exhaust emission characteristics of a dual fuel compression ignition engine operated with pilot Diesel fuel and natural gas

    International Nuclear Information System (INIS)

    Papagiannakis, R.G.; Hountalas, D.T.

    2004-01-01

    Towards the effort of reducing pollutant emissions, especially soot and nitrogen oxides, from direct injection Diesel engines, engineers have proposed various solutions, one of which is the use of a gaseous fuel as a partial supplement for liquid Diesel fuel. These engines are known as dual fuel combustion engines, i.e. they use conventional Diesel fuel and a gaseous fuel as well. This technology is currently reintroduced, associated with efforts to overcome various difficulties of HCCI engines, using various fuels. The use of natural gas as an alternative fuel is a promising solution. The potential benefits of using natural gas in Diesel engines are both economical and environmental. The high autoignition temperature of natural gas is a serious advantage since the compression ratio of conventional Diesel engines can be maintained. The present contribution describes an experimental investigation conducted on a single cylinder DI Diesel engine, which has been properly modified to operate under dual fuel conditions. The primary amount of fuel is the gaseous one, which is ignited by a pilot Diesel liquid injection. Comparative results are given for various engine speeds and loads for conventional Diesel and dual fuel operation, revealing the effect of dual fuel combustion on engine performance and exhaust emissions

  14. Performance and emission study in manifold hydrogen injection with diesel as an ignition source for different start of injection

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, N. [ERC-Engines, TATA Motors Ltd, Pimpri, Pune, Maharashtra 411018 (India); Nagarajan, G. [Internal Combustion Engineering Division, Department of Mechanical Engineering, College of Engineering, Guindy, Anna University, Chennai, Tamil Nadu 600 025 (India)

    2009-01-15

    Over the past two decades there has been a considerable effort to develop and introduce alternative transportation fuels to replace conventional fuels, gasoline and diesel. Environmental issues are the principal driving forces behind this effort. To date the bulk of research has focused on the carbon-based fuels such as reformulated gasoline, methanol and natural gas. One alternative fuel to carbon-based fuels is hydrogen which is considered to be low polluting fuel. In the present experimental investigation hydrogen was injected into the intake manifold by using an injector. Using an electronic control unit (ECU) the injection timing and the duration were controlled. From the results it is observed that the optimum injection timing is at gas exchange top dead center (GTDC). The efficiency improved by about 15% with an increase in NO{sub X} emission by 3% compared to diesel. The smoke emission decreased by almost 100%. A net reduction in carbon emissions was also noticed due to the use of hydrogen. By adopting manifold injection technique the hydrogen-diesel dual fuel engine operates smoothly with a significant improvement in performance and reduction in emissions. (author)

  15. Emission characterization of diesel engine run on coconut oil ...

    African Journals Online (AJOL)

    The use of biodiesel in running diesel has been called for, with a view to mitigating the environmental pollution, depletion, cost and scarcity associated with the use diesel in running diesel engine. So the need to characterize the emissions from these biodiesel, cannot be overemphasized, hence this paper presents the ...

  16. Gear ratting noise reduction of diesel engine; Diesel engine no gear hauchi soon teigen

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, S; Miura, Y [Hino Motors, Ltd., Tokyo (Japan)

    1997-10-01

    Gear raffling noise of diesel engine at idling condition is required to reduce for keeping quiet environment and comfort of driver and passengers on track and bus. Decrease of gear backlash is generally adopted for reducing gear rattling noise. On the other hand, it has been found that newly devised measurement of gear teeth speed and gear meshing error has clarified phenomena of gear rattling between the crankshaft gear and the camshaft gear of the diesel engine. And it has been also found that gear ratting noise is reduced by changing meshing between the crankshaft gear and the camshaft gear. 2 refs., 10 figs.

  17. Design and evaluation of fluidized bed heat recovery for diesel engine systems

    Science.gov (United States)

    Hamm, J. R.; Newby, R. A.; Vidt, E. J.; Lippert, T. E.

    1985-01-01

    The potential of utilizing fluidized bed heat exchangers in place of conventional counter-flow heat exchangers for heat recovery from adiabatic diesel engine exhaust gas streams was studied. Fluidized bed heat recovery systems were evaluated in three different heavy duty transport applications: (1) heavy duty diesel truck; (2) diesel locomotives; and (3) diesel marine pushboat. The three applications are characterized by differences in overall power output and annual utilization. For each application, the exhaust gas source is a turbocharged-adiabatic diesel core. Representative subposed exhaust gas heat utilization power cycles were selected for conceptual design efforts including design layouts and performance estimates for the fluidized bed heat recovery heat exchangers. The selected power cycles were: organic rankine with RC-1 working fluid, turbocompound power turbine with steam injection, and stirling engine. Fuel economy improvement predictions are used in conjunction with capital cost estimates and fuel price data to determine payback times for the various cases.

  18. Performance and emissions of a dual-fuel pilot diesel ignition engine operating on various premixed fuels

    International Nuclear Information System (INIS)

    Yousefi, Amin; Birouk, Madjid; Lawler, Benjamin; Gharehghani, Ayatallah

    2015-01-01

    Highlights: • Natural gas/diesel, methanol/diesel, and hydrogen/diesel cases were investigated. • For leaner mixtures, the hydrogen/diesel case has the highest IMEP and ITE. • The methanol/diesel case has the maximum IMEP and ITE for richer mixtures. • Hydrogen/diesel case experiences soot and CO free combustion at rich regions. - Abstract: A multi-dimensional computational fluid dynamics (CFD) model coupled with chemical kinetics mechanisms was applied to investigate the effect of various premixed fuels and equivalence ratios on the combustion, performance, and emissions characteristics of a dual-fuel indirect injection (IDI) pilot diesel ignition engine. The diesel fuel is supplied via indirect injection into the cylinder prior to the end of the compression stroke. Various premixed fuels were inducted into the engine through the intake manifold. The results showed that the dual-fuel case using hydrogen/diesel has a steeper pressure rise rate, higher peak heat release rate (PHRR), more advanced ignition timing, and shorter ignition delay compared to the natural gas/diesel and methanol/diesel dual-fuel cases. For leaner mixtures (Φ_P 0.32). For instance, with an equivalence ratio of 0.35, the ITE is 56.24% and 60.85% for hydrogen/diesel and methanol/diesel dual-fuel cases, respectively. For an equivalence ratio of 0.15, the natural gas/diesel simulation exhibits partial burn combustion and thus results in a negative IMEP. At equivalence ratios of 0.15, 0.2, and 0.25, the methanol/diesel case experiences misfiring phenomenon which consequently deteriorates the engine performance considerably. As for the engine-out emissions, the hydrogen/diesel results display carbon monoxide (CO) free combustion relative to natural gas/diesel and methanol/diesel engines; however, considerable amount of nitrogen oxides (NO_x) emissions are produced at an equivalence ratio of 0.35 which exceeds the Euro 6 NO_x limit. Due to the larger area exposed to high temperature regions

  19. Combustion Performance and Exhaust Emission of DI Diesel Engine Using Various Sources of Waste Cooking Oil

    Science.gov (United States)

    Afiq, Mohd; Azuhairi, Mohd; Jazair, Wira

    2010-06-01

    In Malaysia, more than 200-tone of cooking oil are used by domestic users everyday. After frying process, about a quarter of these cooking oil was remained and drained into sewage system. This will pollutes waterways and affects the ecosystem. The use of waste cooking oil (WCO) for producing bio-diesel was considered in economical factor which current production cost of bio-diesel production is higher in Malaysia due to higher price of palm oil. Thus, the aim of this study is to investigate the most suitable source of WCO to become a main source of bio-diesel for bio-diesel production in this country. To perform this research, three type of WCO were obtained from house's kitchen, cafeteria and mamak's restaurant. In this study, prospect of these bio-diesel source was evaluated based on its combustion performance and exhaust emissions operated in diesel engine in the form of waste cooking oil methyl ester (WCOME) and have been compared with pure diesel fuel. A 0.6 liter, single-cylinder, air-cooled direct injection diesel engine was used to perform this experiment. Experiment was done at variable engine loads and constant engine speed. As the result, among three stated WCOMEs, the one collected from house's kitchen gives the best performance in term of brake specific fuel consumption (bsfc) and brake power (BP) with lowest soot emission.

  20. Fuel system for diesel engine with multi-stage heated

    Science.gov (United States)

    Ryzhov, Yu N.; Kuznetsov, Yu A.; Kolomeichenko, A. V.; Kuznetsov, I. S.; Solovyev, R. Yu; Sharifullin, S. N.

    2017-09-01

    The article describes a fuel system of a diesel engine with a construction tractor multistage heating, allowing the use of pure rapeseed oil as a diesel engine fuel. The paper identified the kinematic viscosity depending on the temperature and composition of the mixed fuel, supplemented by the existing recommendations on the use of mixed fuels based on vegetable oils and developed the device allowing use as fuel for diesel engines of biofuels based on vegetable oils.

  1. Lignocellulosic Biobutanol as Fuel for Diesel Engines

    Directory of Open Access Journals (Sweden)

    Martin Pexa

    2016-05-01

    Full Text Available Energy recovery of lignocellulosic waste material in the form of liquid fractions can yield alcohol-based fuels such as bioethanol or biobutanol. This study examined biobutanol derived from lignocellulosic material that was then used as an additive for diesel engines. Biobutanol was used in fuel mixtures with fatty acid methyl ester (FAME obtained by esterification of animal fat (also a waste material in the amounts of 10%, 30%, and 50% butanol. 100% diesel and 100% FAME were used as reference fuels. The evaluation concerned the fuel’s effect on the external speed characteristics, harmful exhaust emissions, and fuel consumption while using the Non-Road Steady Cycle test. When the percentage of butanol was increased, the torque and the power decreased and the brake specific fuel consumption increased. The main advantage of using biobutanol in fuel was its positive effect on reducing the fuel’s viscosity.

  2. Ethanol-fueled low temperature combustion: A pathway to clean and efficient diesel engine cycles

    International Nuclear Information System (INIS)

    Asad, Usman; Kumar, Raj; Zheng, Ming; Tjong, Jimi

    2015-01-01

    Highlights: • Concept of ethanol–diesel fueled Premixed Pilot Assisted Combustion (PPAC). • Ultra-low NOx and soot with diesel-like thermal efficiency across the load range. • Close to TDC pilot injection timing for direct combustion phasing control. • Minimum pilot quantity (15% of total energy input) for clean, stable operation. • Defined heat release profile distribution (HRPD) to optimize pilot-ethanol ratio. - Abstract: Low temperature combustion (LTC) in diesel engines offers the benefits of ultra-low NOx and smoke emissions but suffers from lowered energy efficiency due to the high reactivity and low volatility of diesel fuel. Ethanol from renewable biomass provides a viable alternate to the petroleum based transportation fuels. The high resistance to auto-ignition (low reactivity) and its high volatility make ethanol a suitable fuel for low temperature combustion (LTC) in compression-ignition engines. In this work, a Premixed Pilot Assisted Combustion (PPAC) strategy comprising of the port fuel injection of ethanol, ignited with a single diesel pilot injection near the top dead centre has been investigated on a single-cylinder high compression ratio diesel engine. The impact of the diesel pilot injection timing, ethanol to diesel quantity ratio and exhaust gas recirculation on the emissions and efficiency are studied at 10 bar IMEP. With the lessons learnt, successful ethanol–diesel PPAC has been demonstrated up to a load of 18 bar IMEP with ultra-low NOx and soot emissions across the full load range. The main challenge of PPAC is the reduced combustion efficiency especially at low loads; therefore, the authors have presented a combustion control strategy to allow high efficiency, clean combustion across the load range. This work entails to provide a detailed framework for the ethanol-fueled PPAC to be successfully implemented.

  3. Development of a robust and compact kerosene–diesel reaction mechanism for diesel engines

    International Nuclear Information System (INIS)

    Tay, Kun Lin; Yang, Wenming; Mohan, Balaji; An, Hui; Zhou, Dezhi; Yu, Wenbin

    2016-01-01

    Highlights: • An approach is used to develop a robust kerosene–diesel reaction mechanism. • Ignition delay of the kerosene sub-mechanism is well validated with experiments. • The kerosene sub-mechanism reproduces the flame lift-off lengths of Jet-A reasonably well. • The kerosene sub-mechanism performs reasonably well under engine conditions. - Abstract: The use of kerosene fuels in internal combustion engines is getting more widespread. The North Atlantic Treaty Organization military is pushing for the use of a single fuel on the battlefield in order to reduce logistical issues. Moreover, in some countries, fuel adulteration is a serious matter where kerosene is blended with diesel and used in diesel engines. So far, most investigations done regarding the use of kerosene fuels in diesel engines are experimental and there is negligible simulation work done in this area possibly because of the lack of a robust and compact kerosene reaction mechanism. This work focuses on the development of a small but reliable kerosene–diesel reaction mechanism, suitable to be used for diesel engine simulations. The new kerosene–diesel reaction mechanism consists only of 48 species and 152 reactions. Furthermore, the kerosene sub-mechanism in this new mechanism is well validated for its ignition delay times and has proven to replicate kerosene combustion well in a constant volume combustion chamber and an optical engine. Overall, this new kerosene–diesel reaction mechanism is proven to be robust and practical for diesel engine simulations.

  4. 40 CFR 86.336-79 - Diesel engine test cycle.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Diesel engine test cycle. 86.336-79... Diesel engine test cycle. (a) The following 13-mode cycle shall be followed in dynamometer operation... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for...

  5. Multi-zone modeling of Diesel engine fuel spray development with vegetable oil, bio-diesel or Diesel fuels

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Antonopoulos, K.A.; Rakopoulos, D.C.

    2006-01-01

    This work presents a model of fuel sprays development in the cylinders of Diesel engines that is two-dimensional, multi-zone, with the issuing jet (from the nozzle) divided into several discrete volumes, called 'zones', formed along the direction of the fuel injection as well as across it. The model follows each zone, with its own time history, as the spray penetrates into the swirling air environment of the combustion chamber before and after wall impingement. After the jet break up time, a group of droplets is generated in each zone, with the model following their motion during heating, evaporation and mixing with the in-cylinder air. The model is applied for the interesting case of using vegetable oils or their derived bio-diesels as fuels, which recently are considered as promising alternatives to petroleum distillates since they are derived from biological sources. Although there are numerous experimental studies that show curtailment of the emitted smoke with possible increase of the emitted NO x against the use of Diesel fuel, there is an apparent scarcity of theoretical models scrutinizing the formation mechanisms of combustion generated emissions when using these biologically derived fuels. Thus, in the present work, a theoretical detailed model of spray formation is developed that is limited to the related investigation of the physical processes by decoupling it from the chemical effects after combustion initiation. The analysis results show how the widely differing physical properties of these fuels, against the normal Diesel fuel, affect greatly the spray formation and consequently the combustion mechanism and the related emissions

  6. Experimental investigation of regulated and unregulated emissions from a diesel engine fueled with Euro V diesel fuel and fumigation methanol

    Science.gov (United States)

    Zhang, Z. H.; Cheung, C. S.; Chan, T. L.; Yao, C. D.

    2010-03-01

    Experiments were conducted on a four-cylinder direct-injection diesel engine with part of the engine load taken up by fumigation methanol injected into the air intake of each cylinder to investigate the regulated and unregulated gaseous emissions and particulate emission of the engine under five engine loads at an engine speed of 1920 rev min -1. The fumigation methanol was injected to top up 10%, 20% and 30% of the engine load under different engine operating conditions. The experimental results show that at low engine loads, the brake thermal efficiency (BTE) decreases with increase in fumigation methanol; but at high engine loads, the BTE is not significantly affected by fumigation methanol. The fumigation methanol results in significant increase in hydrocarbon (HC), carbon monoxide (CO) and nitrogen dioxide (NO 2) emissions, but decrease in nitrogen oxides (NO x). For the unregulated gaseous emissions, unburned methanol, formaldehyde and BTX (benzene, toluene and xylene) emissions increase but ethyne, ethene and 1,3-butadiene emissions decrease. Particulate mass and number concentrations also decrease with increase in fumigation methanol. A diesel oxidation catalyst (DOC) is found to reduce significantly most of the pollutants, including the air toxics, when the exhaust gas temperature is sufficiently high.

  7. Fueling diesel engines with methyl-ester soybean oil

    International Nuclear Information System (INIS)

    Schumacher, L.G.; Hires, W.G.; Borgelt, S.C.

    1993-01-01

    Two 5.9 liter Cummins engines were fueled for a combined total of more than 80,467 km (50,000 miles). One truck, a 1991 Dodge, has been driven approximately 48,280 km (30,000 miles). The other, a 1992 Dodge, has been driven approximately 32,187 km (20,000 miles). Fueling these engines with soydiesel increase engine power by 3 percent (1991 engine) and reduced power by 6 percent (1992 engine). The pickups averaged more than 7.1 km/L (16.7 mpg). Analysis of used engine oil samples indicated that the engines were wearing at normal rate. The black exhaust smoke normally observed when a diesel engine accelerates was reduced as much as 86 percent when the diesel engine was fueled with 100% soydiesel. Increased EPA exhaust emissions requirements for diesel engines have created much interest in the use of soydiesel as fuel for diesel engines

  8. Conversion of diesel engines to dual fuel (propane/diesel) operations

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, S W; DeMaere, D A

    1984-02-01

    A device to convert a diesel engine to dual fuel (propane/diesel) operation was developed and evaluated. Preliminary experimentation has indicated that as much as 30% of the diesel fuel consumed in diesel engines could be displaced with propane, accompanied by an improvement in fuel efficiency, engine maintenance and an overall reduction in emission levels. Dual fuel operations in both transportation and stationary applications would then project a saving of ca 90,000 barrels of diesel fuel per day by the year 1990. A turbo-charged 250 hp diesel engine was directly coupled to a dynamometer under laboratory conditions, and operated at speeds between 500 and 2500 rpm and at various torque levels. At each rpm/torque point the engine first operated on diesel fuel alone, and then increasing quantities of propane were induced into the air intake until detonation occured. Results indicate that the proportion of propane that can be safely induced into a diesel engine varies considerably with rpm and torque so that a sophisticated metering system would be required to maximize diesel oil displacement by propane. Conversion is not cost effective at 1983 price levels.

  9. Effect of Alcohol on Diesel Engine Combustion Operating with Biodiesel-Diesel Blend at Idling Conditions

    Science.gov (United States)

    Mahmudul, H. M.; Hagos, Ftwi. Y.; A, M. Mukhtar N.; Mamat, Rizalman; Abdullah, A. Adam

    2018-03-01

    Biodiesel is a promising alternative fuel to run the automotive engine. However, its blends have not been properly investigated during idling as it is the main problem to run the vehicles in a big city. The purpose of this study is to evaluate the impact of alcohol additives such as butanol and ethanol on combustion parameters under idling conditions when a single cylinder diesel engine operates with diesel, diesel-biodiesel blends, and diesel biodiesel-alcohol blends. The engine combustion parameters such as peak pressure, heat release rate and ignition delay were computed. This investigation has revealed that alcohol blends with diesel and biodiesel, BU20 blend yield higher maximum peak cylinder pressure than diesel. B5 blend was found with the lowest energy release among all. B20 was slightly lower than diesel. BU20 blend was seen with the highest peak energy release where E20 blend was found advance than diesel. Among all, the blends alcohol component revealed shorter ignition delay. B5 and B20 blends were influenced by biodiesel interference and the burning fraction were found slightly slower than conventional diesel where BU20 and E20 blends was found slightly faster than diesel So, based on the result, it can be said that among the alcohol blends butanol and ethanol can be promising alternative at idling conditions and can be used without any engine modifications.

  10. Crude palm oil as fuel extender for diesel engines

    International Nuclear Information System (INIS)

    Mohamed M El-Awad; Fuad Abas; Mak Kian Sin

    2000-01-01

    In this work an investigation has been conducted into the use of Crude Palm Oil (CPO) as an extender fuel for diesel engines. Mixtures of CPO with normal diesel fuel (with a percentage of 25%, 50% and 75% CPO by volume) were used to fuel a stationary diesel engine and the engine performance variables, i.e., power output, fuel consumption, and exhaust-gas emission, were compared to those of normal diesel fuel. The results obtained, for a fixed throttle opening and variable speed, indicate that at high engine speeds, the engine performance with CP0/diesel mixtures with up to 50% CPO is comparable to that of diesel fuel. However, the results of the 75% CPO mixture showed a higher temperature and emission of CO and NO compared to the diesel fuel. At low engine speeds, the engine performance with CPO mixtures gave higher power output and lower emission of NO compared to that with diesel fuel, but showed higher specific fuel consumption and higher emission of CO. Based on these results, the study recommends that CPO can be used to extend diesel fuel in a mixture of up to 50% CPO by volume for an unmodified engine. (Author)

  11. FUEL FORMULATION EFFECTS ON DIESEL FUEL INJECTION, COMBUSTION, EMISSIONS AND EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Boehman, A; Alam, M; Song, J; Acharya, R; Szybist, J; Zello, V; Miller, K

    2003-08-24

    This paper describes work under a U.S. DOE sponsored Ultra Clean Fuels project entitled ''Ultra Clean Fuels from Natural Gas,'' Cooperative Agreement No. DE-FC26-01NT41098. In this study we have examined the incremental benefits of moving from low sulfur diesel fuel and ultra low sulfur diesel fuel to an ultra clean fuel, Fischer-Tropsch diesel fuel produced from natural gas. Blending with biodiesel, B100, was also considered. The impact of fuel formulation on fuel injection timing, bulk modulus of compressibility, in-cylinder combustion processes, gaseous and particulate emissions, DPF regeneration temperature and urea-SCR NOx control has been examined. The primary test engine is a 5.9L Cummins ISB, which has been instrumented for in-cylinder combustion analysis and in-cylinder visualization with an engine videoscope. A single-cylinder engine has also been used to examine in detail the impacts of fuel formulation on injection timing in a pump-line-nozzle fueling system, to assist in the interpretation of results from the ISB engine.

  12. Performance, emission, and combustion characteristics of twin-cylinder common rail diesel engine fuelled with butanol-diesel blends.

    Science.gov (United States)

    Lamani, Venkatesh Tavareppa; Yadav, Ajay Kumar; Gottekere, Kumar Narayanappa

    2017-10-01

    Nitrogen oxides and smoke are the substantial emissions for the diesel engines. Fuels comprising high-level oxygen content can have low smoke emission due to better oxidation of soot. The objective of the paper is to assess the potential to employ oxygenated fuel, i.e., n-butanol and its blends with the neat diesel from 0 to 30% by volume. The experimental and computational fluid dynamic (CFD) simulation is carried out to estimate the performance, combustion, and exhaust emission characteristics of n-butanol-diesel blends for various injection timings (9°, 12°, 15°, and 18°) using modern twin-cylinder, four-stroke, common rail direct injection (CRDI) engine. Experimental results reveal the increase in brake thermal efficiency (BTE) by ~ 4.5, 6, and 8% for butanol-diesel blends of 10% (Bu10), 20% (Bu20), and 30% (Bu30), respectively, compared to neat diesel (Bu0). Maximum BTE for Bu0 is 38.4%, which is obtained at 12° BTDC; however, for Bu10, Bu20 and Bu30 are 40.19, 40.9, and 41.7%, which are obtained at 15° BTDC, respectively. Higher flame speed of n-butanol-diesel blends burn a large amount of fuel in the premixed phase, which improves the combustion as well as emission characteristics. CFD and experimental results are compared and validated for all fuel blends for in-cylinder pressure and nitrogen oxides (NO x ), and found to be in good agreement. Both experimental and simulation results witnessed in reduction of smoke opacity, NO x , and carbon monoxide emissions with the increasing n-butanol percentage in diesel fuel.

  13. Petroleum Diesel Fuel and Linseed Oil Mixtures as Engine Fuels

    Science.gov (United States)

    Markov, V. A.; Kamaltdinov, V. G.; Savastenko, A. A.

    2018-01-01

    The actual problem is the use of alternative biofuels in automotive diesel engines. Insufficiently studied are the indicators of toxicity of exhaust gases of these engines operating on biofuel. The aim of the study is to identify indicators of the toxicity of exhaust gases when using of petroleum diesel fuel and linseed oil mixtures as a fuel for automotive diesel engines. Physical and chemical properties of linseed oil and its mixtures with petroleum diesel fuel are considered. Experimental researches of D-245.12C diesel are carried out on mixtures of diesel fuel and corn oil with a different composition. An opportunity of exhaust toxicity indexes improvement using these mixtures as a fuel for automobiles engine is shown.

  14. Two-stroke engine with gaseous and liquid fuel injection

    Energy Technology Data Exchange (ETDEWEB)

    Laursen, Rene Sejer [MAN Diesel and Turbo SE, Copenhagen (Denmark)

    2012-08-15

    The need to lower emissions of CO{sub 2}, NO{sub x}, SO{sub x} and particulates as well as rising oil prices have increased engine operators' interest in alternative fuels and fuel flexibility. The low speed two-stroke ME-GI and ME-LGI dual-fuel engines with diesel pilot injection from MAN Diesel and Turbo offer the opportunity of utilising fuels such as LNG, LPG, and methanol in a wide range of liquid to gaseous fuel ratios. (orig.)

  15. EXPERIMENTAL COMBUSTION ANALYSIS OF A HSDI DIESEL ENGINE FUELLED WITH PALM OIL BIODIESEL-DIESEL FUEL BLENDS

    Directory of Open Access Journals (Sweden)

    JOHN AGUDELO

    2009-01-01

    Full Text Available Differences in the chemical nature between petroleum diesel fuels and vegetable oils-based fuels lead to differences in their physical properties affecting the combustion process inside the engine. In this work a detailed combustion diagnosis was applied to a turbocharged automotive diesel engine operating with neat palm oil biodiesel (POB, No. 2 diesel fuel and their blends at 20 and 50% POB by volume (B20 and B50 respectively. To isolate the fuel effect, tests were executed at constant power output without carrying out any modification of the engine or its fuel injection system. As the POB content in the blend increased, there was a slight reduction in the fuel/air equivalence ratio from 0.39 (B0 to 0.37 (B100, an advance of injection timing and of start of combustion. Additionally, brake thermal efficiency, combustion duration, maximum mean temperature, temperature at exhaust valve opening and exhaust gas efficiency decreased; while the peak pressure, exergy destruction rate and specific fuel consumption increased. With diesel fuel and the blends B20 and B50 the same combustion stages were noticed. However, as a consequence of the differences pointed out, the thermal history of the process was affected. The diffusion combustion stage became larger with POB content. For B100 no premixed stage was observed.

  16. Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator

    Energy Technology Data Exchange (ETDEWEB)

    Elsner, N. B. [Hi-Z Technology, Inc., San Diego, CA (United States); Bass, J. C. [Hi-Z Technology, Inc., San Diego, CA (United States); Ghamaty, S. [Hi-Z Technology, Inc., San Diego, CA (United States); Krommenhoek, D. [Hi-Z Technology, Inc., San Diego, CA (United States); Kushch, A. [Hi-Z Technology, Inc., San Diego, CA (United States); Snowden, D. [Hi-Z Technology, Inc., San Diego, CA (United States); Marchetti, S. [Hi-Z Technology, Inc., San Diego, CA (United States)

    2005-03-16

    Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCAR's test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of

  17. Comparative study of oxihydrogen injection in turbocharged compression ignition engines

    Science.gov (United States)

    Barna, L.; Lelea, D.

    2018-01-01

    This document proposes for analysis, comparative study of the turbocharged, compression-ignition engine, equipped with EGR valve, operation in case the injection in intake manifold thereof a maximum flow rate of 1l/min oxyhydrogen resulted of water electrolysis, at two different injection pressures, namely 100 Pa and 3000 Pa, from the point of view of flue gas opacity. We found a substantial reduction of flue gas opacity in both cases compared to conventional diesel operation, but in different proportions.

  18. Oil soot measurement system of diesel engine; Diesel engine no oil sutsu sokutei sochi

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Y; Moritsugu, M; Kato, N [Nippon Soken, Inc., Tokyo (Japan); Osaki, R [Denso Corp., Aichi (Japan)

    1997-10-01

    For use evaluate diesel engine in laboratory, we have developed a apparatus which can measure soot density in engine oil instantly and accurately. We have achieved accuracy of 0.03 wt% by employing the following; (1) utilize a ligh-reflecting oil soot sensor, (2) regurate the temperature and flow of the in-coming oil to be constant. 4 refs., 12 figs., 2 tabs.

  19. The performance and emissions of diesel engines with biodiesel of sunan pecan seed and diesel oil blends

    Science.gov (United States)

    Ariani, F.; Sitorus, T. B.; Ginting, E.

    2017-12-01

    An observation was performed to evaluate the performance of direct injection stationary diesel engine which used a blends of biodiesel of Sunan pecan seed. The experiments were done with diesel oil, B5, B10, B15 and B20 in the engine speed variety. Results showed that the values of torque, power and thermal efficiency tend to decrease when the engine is using B5, B10, B15 and B20, compared to diesel oil. It also shown that the specific fuel consumption is increased when using B5, B10, B15 and B20. From the results of experiments and calculations, the maximum power of 3.08 kW, minimum specific fuel consumption of 189.93 g/kWh and maximum thermal efficiency of 45.53% when engine using diesel oil. However, exhaust gases were measured include opacity, carbon monoxide and hydrocarbon when the engine using biodiesel B5, B10, B15 and B20 decreased.

  20. An experimental study of injection and spray characteristics of diesel and gasoline blends on a common rail injection system

    International Nuclear Information System (INIS)

    Han, Dong; Wang, Chunhai; Duan, Yaozong; Tian, Zhisong; Huang, Zhen

    2014-01-01

    The injection and spray characteristics of diesel and gasoline blends are investigated on a common rail injection system. The injection rate, fuel spray evolution process (tip penetration distance, spray cone angle, projected spray area and relative brightness intensity contour) and microscopic droplet features are analyzed. The results show that diesel and gasoline blends have higher volumetric injection rates, earlier starts of injection and shorter injection delays, but little variances are observed in the mass injection rates for different test fuels. Increased gasoline proportion in the test blends causes slightly decreased spray tip penetration distance but increased spray cone angle. Also, more smaller-size droplets are observed in the fuel jet of the diesel and gasoline blends, indicating that the spray breakup and atomization processes are promoted. - Highlights: • Injection rate and spray characteristics of diesel and gasoline blends are studied. • Diesel and gasoline blends have higher volumetric injection rates. • Earlier starts of injection are found when using diesel and gasoline blends. • Diesel and gasoline blends produce shorter spray penetration but higher cone angle. • The number of small droplets increases in the spray of diesel and gasoline blends

  1. Picosecond ballistic imaging of diesel injection in high-temperature and high-pressure air

    Science.gov (United States)

    Duran, Sean P.; Porter, Jason M.; Parker, Terence E.

    2015-04-01

    The first successful demonstration of picosecond ballistic imaging using a 15-ps-pulse-duration laser in diesel sprays at temperature and pressure is reported. This technique uses an optical Kerr effect shutter constructed from a CS2 liquid cell and a 15-ps pulse at 532 nm. The optical shutter can be adjusted to produce effective imaging pulses between 7 and 16 ps. This technique is used to image the near-orifice region (first 3 mm) of diesel sprays from a high-pressure single-hole fuel injector. Ballistic imaging of dodecane and methyl oleate sprays injected into ambient air and diesel injection at preignition engine-like conditions are reported. Dodecane was injected into air heated to 600 °C and pressurized to 20 atm. The resulting images of the near-orifice region at these conditions reveal dramatic shedding of the liquid near the nozzle, an effect that has been predicted, but to our knowledge never before imaged. These shedding structures have an approximate spatial frequency of 10 mm-1 with lengths from 50 to 200 μm. Several parameters are explored including injection pressure, liquid fuel temperature, air temperature and pressure, and fuel type. Resulting trends are summarized with accompanying images.

  2. COMBUSTION CHARACTERISTICS OF DIESEL ENGINE OPERATING ON JATROPHA OIL METHYL ESTER

    Directory of Open Access Journals (Sweden)

    Doddayaraganalu Amasegoda Dhananjaya

    2010-01-01

    Full Text Available Fuel crisis because of dramatic increase in vehicular population and environmental concerns have renewed interest of scientific community to look for alternative fuels of bio-origin such as vegetable oils. Vegetable oils can be produced from forests, vegetable oil crops, and oil bearing biomass materials. Non-edible vegetable oils such as jatropha oil, linseed oil, mahua oil, rice bran oil, karanji oil, etc., are potentially effective diesel substitute. Vegetable oils have reasonable energy content. Biodiesel can be used in its pure form or can be blended with diesel to form different blends. It can be used in diesel engines with very little or no engine modifications. This is because it has combustion characteristics similar to petroleum diesel. The current paper reports a study carried out to investigate the combustion, performance and emission characteristics of jatropha oil methyl ester and its blend B20 (80% petroleum diesel and 20% jatropha oil methyl ester and diesel fuel on a single-cylinder, four-stroke, direct injections, water cooled diesel engine. This study gives the comparative measures of brake thermal efficiency, brake specific energy consumption, smoke opacity, HC, NOx, ignition delay, cylinder peak pressure, and peak heat release rates. The engine performance in terms of higher thermal efficiency and lower emissions of blend B20 fuel operation was observed and compared with jatropha oil methyl ester and petroleum diesel fuel for injection timing of 20° bTDC, 23° bTDC and 26° bTDC at injection opening pressure of 220 bar.

  3. Numerical Modeling of a Jet Ignition Direct Injection (JI DI LPG Engine

    Directory of Open Access Journals (Sweden)

    Albert Boretti

    2017-01-01

    Full Text Available The paper presents indirectly validated simulations of the operation of a LPG engine fitted with Direct Injection (DI and Jet Ignition (JI. It is demonstrated that the engine may have diesel like efficiencies and load control by quantity of fuel injected.  As the liquid propane quickly evaporates after injection in the main chamber, the main chamber mixture may be much closer to stoichiometry than a diesel for a better specific power at low engine speeds. This design also works at the high engine speeds impossible for the diesel, as combustion within the main chamber is controlled by the turbulent mixing rather than the vaporization and diffusion processes of the injected fuel of the diesel

  4. Embarked diagnosis applied to a mechanical system "diesel engine ...

    African Journals Online (AJOL)

    The implementation of OBD (on-board diagnostic) systems for diesel engines has become an unavoidable necessity. From the models described in the literature, the latest generation diesel engine models as well as defects affecting it were established. A board diagnostic system based on the use of fuzzy pattern ...

  5. Experimental investigations of the effect of pilot injection on performance, emissions and combustion characteristics of Karanja biodiesel fuelled CRDI engine

    International Nuclear Information System (INIS)

    Dhar, Atul; Agarwal, Avinash Kumar

    2015-01-01

    Highlights: • Effect of multiple injections on CRDI engine performance, emission and combustion. • Effect of multiple injections, injection pressures and injection timings on biodiesel. • Lower biodiesel blends showed lower BSCO, BSHC but higher BSNOx emissions. • Maximum cylinder pressure at higher FIP was higher at same SOPI and SOMI. • Combustion duration of KOME50 was higher than mineral diesel. - Abstract: Pilot and post injections are being used in modern diesel engines for improving engine performance in addition to meeting stringent emission norms. Biodiesel produced from different feedstocks is gaining global recognition as partial replacement for mineral diesel in compression ignition (CI) engines. In this study, 10%, 20% and 50% Karanja biodiesel blends were used for investigation of pilot injections, injection pressures and injection timings on biodiesel blends. Experiments were carried out in a single cylinder CRDI research engine in multiple injection mode at 500 and 1000 bar fuel injection pressure (FIP) under varying start of pilot injection (SOPI) and start of main injection (SOMI) timings. Brake specific fuel consumption (BSFC) increased with increasing Karanja biodiesel concentration in test fuels however brake thermal efficiency (BTE) of biodiesel blends was slightly higher than mineral diesel. Lower biodiesel blends showed lower brake specific carbon monoxide (BSCO) and brake specific hydrocarbon (BSHC) emissions than mineral diesel. Brake specific nitrogen oxides (BSNOx) emissions from KOME20 and KOME10 were higher than mineral diesel. Combustion duration of KOME50 was also higher than mineral diesel

  6. Experimental study of DI diesel engine performance using biodiesel blends with kerosene

    Energy Technology Data Exchange (ETDEWEB)

    Azad, A.K.; Ameer Uddin, S.M.; Alam, M.M. [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh)

    2013-07-01

    The experimental investigation offers a comprehensive study of DI diesel engine performance using bio-diesel from mustard oil blends with kerosene. The vegetable oil without trans-esterification reaction have been blended with kerosene oil by volume in some percentage like 20%, 30%, 40% and 50% which have been named as M20 (20% mustard, 80% kerosene), M30 (30% mustard, 70% kerosene), M40 (40% mustard, 60% kerosene) and M50 (50% mustard, 50% kerosene). The properties of the bio-fuel blended with kerosene have been tested in the laboratories with maintaining different ASTM standards. Then a four stroke, single cylinder, direct injection diesel engine has been mounted on the dynamometer bed for testing the performance of the engine using the bio-diesel blends. Several engine parameters like bsfc, bhp, break mean effective pressure, exhaust gas temperature, lube oil temperature, sound level etc. have been determined. A comparison has been made for engine performance of different bio-diesel blends with kerosene with the engine performance of diesel fuel.

  7. Energy and Exergy Analysis of a Diesel Engine Fuelled with Diesel and Simarouba Biodiesel Blends

    Science.gov (United States)

    Panigrahi, Nabnit; Mohanty, Mahendra Kumar; Mishra, Sruti Ranjan; Mohanty, Ramesh Chandra

    2018-02-01

    This article intends to determine the available work and various losses of a diesel engine fuelled with diesel and SB20 (20 % Simarouba biodiesel by volume blended with 80 % diesel by volume). The energy and exergy analysis were carried out by using first law and second law of thermodynamics respectively. The experiments were carried out on a 3.5 kW compression ignition engine. The analysis was conducted on per mole of fuel basis. The energy analysis indicates that about 37.23 and 37.79 % of input energy is converted into the capacity to do work for diesel and SB20 respectively. The exergetic efficiency was 34.8 and 35 % for diesel and Simarouba respectively. Comparative study indicates that the energetic and exergetic performance of SB20 resembles with that of diesel fuel.

  8. Influences of diesel pilot injection on ethanol autoignition - a numerical analysis

    Science.gov (United States)

    Burnete, N. V.; Burnete, N.; Jurchis, B.; Iclodean, C.

    2017-10-01

    The aim of this study is to highlight the influences of the diesel pilot quantity as well as the timing on the autoignition of ethanol and the pollutant emissions resulting from the combustion process. The combustion concept presented in this paper requires the injection of a small quantity of diesel fuel in order to create the required autoignition conditions for ethanol. The combustion of the diesel droplets injected in the combustion chamber lead to the creation of high temperature locations that favour the autoignition of ethanol. However, due to the high vaporization enthalpy and the better distribution inside the combustion chamber of ethanol, the peak temperature values are reduced. Due to the lower temperature values and the high burning velocity of ethanol (combined with the fact that there are multiple ignition sources) the conditions required for the formation of nitric oxides are not achieved anymore, thus leading to significantly lower NOx emissions. This way the benefits of the Diesel engine and of the constant volume combustion are combined to enable a more efficient and environmentally friendly combustion process.

  9. Composition and comparative toxicity of particulate matter emitted from a diesel and biodiesel fuelled CRDI engine

    Science.gov (United States)

    Gangwar, Jitendra N.; Gupta, Tarun; Agarwal, Avinash K.

    2012-01-01

    There is a global concern about adverse health effects of particulate matter (PM) originating from diesel engine exhaust. In the current study, parametric investigations were carried out using a CRDI (Common Rail Direct Injection) diesel engine operated at different loads at two different engine speeds (1800 and 2400 rpm), employing diesel and 20% biodiesel blends (B20) produced from Karanja oil. A partial flow dilution tunnel was employed to collect and measure the mass of the primary particulates from diesel and biodiesel blend collected on a 47 mm quartz substrate. The collected PM (particulate matter) was subjected to chemical analyses in order to assess the amount of Benzene Soluble Organic Fraction (BSOF) and trace metals using Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES). For both diesel and biodiesel, BSOF results showed decreasing levels with increasing engine load. B20 showed higher BSOF as compared to those measured with diesel. The concentration of different trace metals analyzed also showed decreasing trends with increasing engine loads. In addition, real-time measurements for Organic Carbon (OC), Elemental Carbon (EC) and total particle-bound Polycyclic Aromatic Hydrocarbons (PAHs) were carried out on the primary engine exhaust coming out of the partial flow dilution tunnel. Analysis of OC/EC data suggested that the ratio of OC to EC decreases with corresponding increase in engine load for both fuels. A peak in PAH concentration was observed at 60% engine load at 1800 rpm and 20% engine load at 2400 rpm engine speeds almost identical for both kinds of fuels. Comparison of chemical components of PM emitted from this CRDI engine provides new insight in terms of PM toxicity for B20 vis-a-vis diesel.

  10. Diagnostics and Identification of Injection Duration of Common Rail Diesel Injectors

    Directory of Open Access Journals (Sweden)

    Krogerus Tomi R.

    2018-02-01

    Full Text Available In this paper, we study the diagnostics and identification of injection duration of common rail (CR diesel pilot injectors of dual-fuel engines. In these pilot injectors, the injected volume is small and the repeatability of the injections and identification of the drifts of the injectors are important factors, which need to be taken into account in achieving good repeatability (shot-to-shot with every cylinder and therefore a well-balanced engine and reduced overall wear. A diagnostics method based on analysis of CR pressure signal with experimental verification results is presented. Using the developed method, the relative duration of injection events can be identified. In the method, the pressure signal during the injection is first extracted after the control of each injection event. After that, the signal is normalized and filtered. Then a derivative of the filtered signal is calculated. Change in the derivative of the filtered signal larger than a predefined threshold indicates an injection event which can be detected and its relative duration can be identified. The efficacy of the proposed diagnostics method is presented with the experimental results, which show that the developed method detects drifts in injection duration and the magnitude of drift. According to the result, ≥ 10 μs change (2%, 500 μs in injection time can be identified.

  11. Diagnostics and Identification of Injection Duration of Common Rail Diesel Injectors

    Science.gov (United States)

    Krogerus, Tomi R.; Huhtala, Kalevi J.

    2018-02-01

    In this paper, we study the diagnostics and identification of injection duration of common rail (CR) diesel pilot injectors of dual-fuel engines. In these pilot injectors, the injected volume is small and the repeatability of the injections and identification of the drifts of the injectors are important factors, which need to be taken into account in achieving good repeatability (shot-to-shot with every cylinder) and therefore a well-balanced engine and reduced overall wear. A diagnostics method based on analysis of CR pressure signal with experimental verification results is presented. Using the developed method, the relative duration of injection events can be identified. In the method, the pressure signal during the injection is first extracted after the control of each injection event. After that, the signal is normalized and filtered. Then a derivative of the filtered signal is calculated. Change in the derivative of the filtered signal larger than a predefined threshold indicates an injection event which can be detected and its relative duration can be identified. The efficacy of the proposed diagnostics method is presented with the experimental results, which show that the developed method detects drifts in injection duration and the magnitude of drift. According to the result, ≥ 10 μs change (2%, 500 μs) in injection time can be identified.

  12. Theoretical modeling of combustion characteristics and performance parameters of biodiesel in DI diesel engine with variable compression ratio

    Energy Technology Data Exchange (ETDEWEB)

    Al-Dawody, Mohamed F.; Bhatti, S.K. [Department of Mechanical Engineering, Andhra University (India)

    2013-07-01

    Increasing of costly and depleting fossil fuels are prompting researchers to use edible as well as non-edible vegetable oils as a promising alternative to petro-diesel fuels. A comprehensive computer code using ''Quick basic'' language was developed for the diesel engine cycle to study the combustion and performance characteristics of a single cylinder, four stroke, direct injection diesel engine with variable compression ratio. The engine operates on diesel fuel and 20% (mass basis) of biodiesel (derived from soybean oil) blended with diesel. Combustion characteristics such as cylinder pressure, heat release fraction, heat transfer and performance characteristics such as brake power; and brake specific fuel consumption (BSFC) were analyzed. On the basis of the first law of thermodynamics the properties at each degree crank angle was calculated. Wiebe function is used to calculate the instantaneous heat release rate. The computed results are validated through the results obtained in the simulation Diesel-rk software.

  13. Energy Analysis of a Diesel Engine Using Diesel and Biodiesel from Waste Cooking Oil

    OpenAIRE

    S Abbasi; H Bahrami; B Ghobadian; M Kiani Deh Kiani

    2018-01-01

    Introduction The extensive use of diesel engines in agricultural activities and transportation, led to the emergence of serious challenges in providing and evaluating alternative fuels from different sources in addition to the chemical properties close to diesel fuel, including properties such as renewable, inexpensive and have fewer emissions. Biodiesel is one of the alternative fuels. Many studies have been carried out on the use of biodiesel in pure form or blended with diesel fuel a...

  14. Reduction of exhaust gas emission for marine diesel engine. Hakuyo engine no taisaku (hakuyo engine no mondaiten to tenbo)

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Y. (Mitsui Engineering and Shipbuilding Co. Ltd., Tokyo (Japan))

    1992-05-05

    Since bunker fuel became extremely expensive through the first and second oil crisis, the share of steam turbines having lower thermal efficiency than diesel engines became less, and at present, almost all ships and vessels are equipped with Diesel engines. Also fuel consumption of a diesel engine has successfully been reduced by 24% in about 10 years, but the discharge of air pollutant in the exhaust gas has shown a trend of increase. Air pollutant in exhaust gas of marine engines which has not drawn attention so far has also begun attracting notice, and as marine traffic increases, some control of it will be made sooner or later. Hence economical and effective counter measures against exhaust gas are necessary. In this article, as measures for reducing NO {sub x}, discussions are made on water-emulsion fuel, humidification of air supply, multi-nozzle atomization, injection time delaying and SCR (selective catalitic reduction). Also measures for reducing SO {sub x} is commented upon and the continuation of superiority of Diesel engines in the future is predicted. 5 figs.

  15. Experimental investigation on a Common Rail Diesel engine partially fuelled by syngas

    International Nuclear Information System (INIS)

    Rinaldini, Carlo Alberto; Allesina, Giulio; Pedrazzi, Simone; Mattarelli, Enrico; Savioli, Tommaso; Morselli, Nicolò; Puglia, Marco; Tartarini, Paolo

    2017-01-01

    Highlights: • A current automotive Diesel engine is tested running on both Diesel fuel and syngas. • The syngas HHV is about 5 MJ/Nm"3, allowing a 60% of Diesel substitution. • The engine brake efficiency is slightly increased running on syngas at high load. • In-cylinder pressure do not change very much even if Diesel fuel is strongly reduced. - Abstract: The high efficiency, reliability and flexibility of modern passenger car Diesel engines makes these power units quite attractive for steady power plants totally or partially running on fuels derived from biomass, in particular on syngas. The engine cost, which is obviously higher than that of current industrial engines, may not be a big obstacle, provided that the re-engineering work is limited and that performance and efficiency are enhanced. The goal of this work is to explore the potential of a current automotive turbocharged Diesel engine running on both Diesel fuel and syngas, by means of a comprehensive experimental investigation focused on the combustion process. The engine is operated at the most typical speed employed in steady power plants (3000 rpm), considering three different loads (50–100–300 Nm/16–31–94 kW). For each operating condition, the syngas rate is progressively increased until it provides a maximum heating power of 85 kW, while contemporarily reducing the amount of injected Diesel oil. Maximum care is applied to guarantee a constant quality of the syngas flow throughout the tests, as well as to maintain the same engine control parameters, in particular the boost pressure. It is found that in-cylinder pressure traces do not change very much, even when drastically reducing the amount of Diesel fuel: this is a very encouraging result, because it demonstrates that there is no need to radically modify the standard stock engine design. Another promising outcome is the slight but consistent enhancement of the engine brake efficiency: the use of syngas not only reduces the

  16. Study of a fuel injection quantity sensor in diesel engine. Part 3. Experimental evaluation of the improved type micro turbine sensor; Diesel kikan ni okeru nenryo funsharyo sensor no kenkyu. 3. Funsharyo keisoku no seido kojo ni kansuru jikken hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Maehara, H; Iwasaki, T; Kobayashi, T [Zexel Corp., Tokyo (Japan)

    1997-10-01

    A Micro Turbine Sensor has been developed to measure fuel injection quantity and injection rate. Previous reports described results of experiments on the MTS which were carried out under steady and unsteady flow conditions. The MTS has been improved in shape of a holder tip and a detecting procedure for rotating speed of a turbine. As a result revolution speed of the turbine increased 18% over the conventional type holder under steady flow condition. Furthermore the measurement resolution of the MTS came up to about 2(mm{sup 3}/pulse) at 20(mm{sup 3}/stroke) under intermittent spray conditions using fuel injection pump. 11 refs., 11 figs., 1 tab.

  17. Combustion Property Analysis and Control System for the Dynamics of a Single Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2013-12-01

    Full Text Available Corresponding to global environment problems in recent year, the technology for reducing fuel consumption and exhaust gas emission of engine was needed. Simulation of transient engine response is needed to predict engine performance that frequently experience rapid changes of speed. The aim of this research is to develop a non-linear dynamic control model for direct injection single cylinder diesel engine which can simulate engine performance under transient conditions. In this paper, the combustion model with multistage injection and conducted experiments in the transient conditions to clarify the combustion characteristics was proposed. In order to perform the analysis of acceleration operation characteristics, it was built a Model Predictive Control (MPC to reproduce the characteristic values of the exhaust gas and fuel consumption from the control parameters in particular. Finally, MPC is an effective method to perform the analysis of characteristic in diesel engine under transient conditions.

  18. Exergy and Energy Analysis of Combustion of Blended Levels of Biodiesel, Ethanol and Diesel Fuel in a DI Diesel Engine

    International Nuclear Information System (INIS)

    Khoobbakht, Golmohammad; Akram, A.; Karimi, Mahmoud; Najafi, G.

    2016-01-01

    Highlights: • Exergy analysis showed that thermal efficiency of diesel engine was 36.61%. • Energy loss and work output rates were 71.36 kW and 41.22 kW, respectively. • Exergy efficiency increased with increasing engine load and speed. • Exergy efficiency increased with increasing biodiesel and bioethanol. • 0.17 L of biodiesel, 0.08 L of ethanol in 1 L of diesel at 1900 rpm and 94% load had maximum exergy efficiency. - Abstract: In this study, the first and second laws of thermodynamics are employed to analyze the energy and energy in a four-cylinder, direct injection diesel engine using blended levels of biodiesel and ethanol in diesel fuel. Also investigated the effect of operating factors of engine load and speed as well as blended levels of biodiesel and ethanol in diesel fuel on the exergy efficiency. The experiments were designed using a statistical tool known as Design of Experiments (DoE) based on central composite rotatable design (CCRD) of response surface methodology (RSM). The resultant quadratic models of the response surface methodology were helpful to predict the response parameter (exergy efficiency) further to identify the significant interactions between the input factors on the responses. The results depicted that the exergy efficiency decreased with increasing percent by volume biodiesel and ethanol fuel. The fuel blend of 0.17 L biodiesel and 0.08 L of ethanol added to 1 L of diesel (equivalent with D80B14E6) at 1900 rpm and 94% load was realized have the most exergy efficiency. The results of energy and exergy analyses showed that 43.09% of fuel exergy was destructed and the average thermal efficiency was approximately 36.61%, and the exergetic efficiency was approximately 33.81%.

  19. Performance characteristics of a glowplug assisted low heat rejection diesel engine using ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Karthikeyan, B.; Srithar, K. [Department of Mechanical Engineering, Thiagarajar College of Engineering, Madurai, Tamilnadu 625 015 (India)

    2011-01-15

    Conventional diesel engines with ethanol as fuel are associated with problems due to high self-ignition temperature of the fuel. The hot surface ignition method, wherein a part of the injected fuel is made to touch an electrically heated hot surface (glowplug) for ignition, is an effective way of utilizing ethanol in conventional diesel engines. The purpose of the present study is to investigate the effect of thermal insulation on ethanol fueled compression ignition engine. One of the important ethanol properties to be considered in the high compression ratio engine is the long ignition delay of the fuel, normally characterized by lower cetane number. In the present study, the ignition delay was controlled by partial insulation of the combustion chamber (low heat rejection engine) by plasma spray coating of yttria stabilized zirconia for a thickness of 300 {mu}m. Experiments were carried out on the glowplug assisted engine with and without insulation in order to find out the possible benefits of combustion chamber insulation in ethanol and diesel operation. Highest brake thermal efficiency of 32% was obtained with ethanol fuel by insulating the combustion chamber. Emissions of the unburnt hydrocarbons, oxides of nitrogen and carbon monoxides were higher than that of diesel. But the smoke intensity and was less than that of diesel engine. Volumetric efficiency of the engine was reduced by a maximum of 9% in LHR mode of operation. (author)

  20. Combustion Temperature Effect of Diesel Engine Convert to Compressed Natural Gas Engine

    OpenAIRE

    Semin; Abdul R. Ismail; Rosli A. Bakar

    2009-01-01

    Effect of combustion temperature in the engine cylinder of diesel engine convert to Compressed Natural Gas (CNG) engine was presents in this study. The objective of this study was to investigate the engine cylinder combustion temperature effect of diesel engine convert to CNG engine on variation engine speed. Problem statement: The hypothesis was that the lower performance of CNG engine was caused by the effect of lower in engine cylinder temperature. Are the CNG engine is lower cylinder temp...

  1. High Fidelity Simulation of Primary Atomization in Diesel Engine Sprays

    Science.gov (United States)

    Ivey, Christopher; Bravo, Luis; Kim, Dokyun

    2014-11-01

    A high-fidelity numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at ambient conditions has been performed. A full understanding of the primary atomization process in fuel injection of diesel has not been achieved for several reasons including the difficulties accessing the optically dense region. Due to the recent advances in numerical methods and computing resources, high fidelity simulations of atomizing flows are becoming available to provide new insights of the process. In the present study, an unstructured un-split Volume-of-Fluid (VoF) method coupled to a stochastic Lagrangian spray model is employed to simulate the atomization process. A common rail fuel injector is simulated by using a nozzle geometry available through the Engine Combustion Network. The working conditions correspond to a single orifice (90 μm) JP-8 fueled injector operating at an injection pressure of 90 bar, ambient condition at 29 bar, 300 K filled with 100% nitrogen with Rel = 16,071, Wel = 75,334 setting the spray in the full atomization mode. The experimental dataset from Army Research Lab is used for validation in terms of spray global parameters and local droplet distributions. The quantitative comparison will be presented and discussed. Supported by Oak Ridge Associated Universities and the Army Research Laboratory.

  2. 40 CFR 86.347-79 - Alternative calculations for diesel engines.

    Science.gov (United States)

    2010-07-01

    ... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.347-79 Alternative calculations for diesel engines. (a) This section applies to Diesel engines only. Gasoline-fueled engines must use the calculations in § 86.345. (b) For Diesel engines, the...

  3. Influence of metallic based fuel additives on performance and exhaust emissions of diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Ali [Tarsus Technical Education Faculty, Mersin University, 33500 Mersin (Turkey); Guerue, Metin, E-mail: mguru@gazi.edu.t [Engineering and Architectural Faculty, Gazi University, 06570 Maltepe, Ankara (Turkey); Altiparmak, Duran [Technical Education Faculty, Gazi University, 06500 Ankara (Turkey)

    2011-01-15

    In this experimental study, influence of the metallic-based additives on fuel consumption and exhaust emissions of diesel engine were investigated. The metallic-based additives were produced by synthesizing of resin acid (abietic acid) with MnO{sub 2} or MgO. These additives were doped into diesel fuel at the rate of 8 {mu}mol/l and 16 {mu}mol/l for preparing test fuels. Both additives improved the properties of diesel fuel such as viscosity, flash point, cloud point and pour point. The fuels with and without additives were tested in a direct injection diesel engine at full load condition. Maximum reduction of specific fuel consumption was recorded as 4.16%. CO emission and smoke opacity decreased by 16.35% and by 29.82%, respectively. NO{sub x} emission was measured higher and CO{sub 2} emission was not changed considerably with the metallic-based additives.

  4. An investigation of the performance of an electronic in-line pump system for diesel engines

    Science.gov (United States)

    Fan, Li-Yun; Zhu, Yuan-Xian; Long, Wu-Qiang; Ma, Xiu-Zhen; Xue, Ying-Ying

    2008-12-01

    WIT Electronic Fuel System Co., Ltd. has developed a new fuel injector, the Electronic In-line Pump (EIP) system, designed to meet China’s diesel engine emission and fuel economy regulations. It can be used on marine diesel engines and commercial vehicle engines through different EIP systems. A numerical model of the EIP system was built in the AMESim environment for the purpose of creating a design tool for engine application and system optimization. The model was used to predict key injection characteristics under different operating conditions, such as injection pressure, injection rate, and injection duration. To validate these predictions, experimental tests were conducted under the conditions that were modeled. The results were quite encouraging and in agreement with model predictions. Additional experiments were conducted to study the injection characteristics of the EIP system. These results show that injection pressure and injection quantity are insensitive to injection timing variations, this is due to the design of the constant velocity cam profile. Finally, injection quantity and pressure vs. pulse width at different cam speeds are presented, an important injection characteristic for EIP system calibration.

  5. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT I, GENERAL INTRODUCTION TO DIESEL ENGINES.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    ONE OF A 30-MODULE COURSE DESIGNED TO UPGRADE THE JOB SKILLS AND TECHNICAL KNOWLEDGE OF DIESEL MAINTENANCE MECHANICS, THIS MATERIAL WAS DEVELOPED BY INDUSTRIAL TRAINING AND SUBJECT-MATTER SPECIALISTS AND TESTED IN INDUSTRIAL TRAINING SITUATIONS. THE PURPOSE OF THIS FIRST UNIT IS TO PROVIDE AN INTRODUCTION TO DIESEL ENGINES BY DEVELOPING AN…

  6. Diesel engine development in view of reduced emission standards

    International Nuclear Information System (INIS)

    Knecht, Walter

    2008-01-01

    Diesel engine development for use in light-, medium- and heavy-duty road vehicles is mainly driven by more and more stringent emission standards. Apart from air quality related emissions such as nitrogen oxides and particulates, also greenhouse gas (GHG) emissions are likely to become of more and more importance. Furthermore, oil-based fuel availability might become a problem due to limited reserves or due to political influences which leads to significantly increased fuel costs. Based on the above aspects, advanced engine technologies become essential and are discussed. Fuel injection with rate shaping capability and elevated injection pressures, air handling systems to increase the brake mean effective pressures (BMEPs) and specific power with a downsizing approach, while retaining a good dynamic response using possibly two-stage turbocharging. Heterogeneous and near-homogeneous combustion processes where the latter could possibly reduce the requirements on the exhaust gas aftertreatment system. Improvement and further development of engine management and control systems, exhaust gas aftertreatment for a reduction of nitrogen oxides and especially particulates and last but not least, energy recovery from the exhaust gas. Furthermore, alternative fuel usage in road vehicles is becoming important and their application in internal combustion engines is discussed

  7. Modeling pollution formation in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    Modeling combustion under conditions that prevail in Diesel engine presents a great challenge. Lawrence Berkeley National Laboratory has invested Laboratory Directed Research and Development Funds to accelerate progress in this area. Research has been concerned with building a chemical mechanism to interface with a high fidelity fluid code to describe aspects of Diesel combustion. The complexity of these models requires implementation on massively parallel machines. The author will describe his efforts concerned with building such a complex mechanism. He begins with C and CO{sub 2} chemistry and adds sequentially higher hydrocarbon chemistry, aromatic production chemistry, soot chemistry, and chemistry describing NO{sub x} production. The metrics against which this chemistry is evaluated are flame velocities, induction times, ignition delay times, flammability limits, flame structure measurements, and light scattering. He assembles a set of elementary reactions, kinetic rate coefficients, and thermochemistry. He modifies existing Sandia codes to be able to investigate the behavior of the mechanism in well-stirred reactors, plug flow reactors, and one-dimensional flames. The modified combustion code with a chemical mechanism at the appropriate level of complexity is then interfaced with the high fidelity fluids code. The fluids code is distinguished by its ability to solve the requisite partial differential equations with adaptively refined grids necessary to describe the strong variation in spatial scales in combustion.

  8. Modal extraction on a diesel engine in operation

    DEFF Research Database (Denmark)

    Møller, Nis; Herlufsen, Henrik; Brincker, Rune

    2000-01-01

    In this paper an output only modal testing and identification of a diesel engine is presented. The only loading on the engine is the unknown loading from the engine itself. Two test cases were considered: engine run-up, and engine Run-Down. The response data were analyzed using two different...

  9. Cyclic oxygenates : a new class of second-generation biofuels for diesel engines?

    NARCIS (Netherlands)

    Boot, M.D.; Frijters, P.J.M.; Luijten, C.C.M.; Somers, L.M.T.; Baert, R.S.G.; Donkerbroek, A.J.; Klein-Douwel, R.J.H.; Dam, N.J.

    2009-01-01

    Combustion behavior of various oxygenated fuels has been studied in a DAF heavy-duty (HD) direct-injection (DI) diesel engine. From these fuels, it is well-known that they lead to lower particle (PM) emissions; however, for a given fuel oxygen mass fraction, there are significant differences in PM

  10. Potentials and limits of downsizing a diesel engine; Potenziale und Grenzen des Downsizings beim Dieselmotor

    Energy Technology Data Exchange (ETDEWEB)

    Mauch, Andreas; Tophoven, Jens; Trzebiatowski, Tobias; Raatz, Thorsten [Robert Bosch GmbH, Stuttgart (Germany). Bereich Forschung und Vorausentwicklung

    2011-07-15

    In order to reach lowest CO{sub 2} emissions, Bosch modified a three-cylinder diesel engine regarding its turbo-charging and fuel injection system and integrated it into a mid-size luxury car. So it is possible to determine both, the potentials concerning fuel consumption and emissions of this downsizing approach as well as its limits. (orig.)

  11. PENGARUH TEMPERATUR SOLAR TERHADAP PERFORMA MESIN DIESEL DIRECK INJECTION PUTARAN KONSTAN

    Directory of Open Access Journals (Sweden)

    Murni Murni

    2012-07-01

    Full Text Available The imperfect combustion process will be a problem in the development effort of diesel engine’s performance.Nonhomogen air–fuel mixing process is one of the factors which cause the imperfect combustion.By heating upthe diesel solar up to a certain temperature before it goes through the high pressure injection pump will lowerits density and viscosity. Therefore, when injected in the combustion chamber, it will formed smaller droplets offuel spray which result in a more homogenious air–fuel mixture. Also by using higher temperature will make thediesel fuel easier to ignite in order to compensate the limited time which is available in high speed operatingconditions. Diesel engine Dong Feng 1 cylinder direct injection at constant speed was used in this research. Thefuel used are solar with temperature variations in the range from 30oC to 70oC . The best thermal efficiency forsolar fuel is 30 % at 60oC with 28 % BSFC. In this condition, the fuel consumption was decreased 4 % bycomparing with that at 30oC.

  12. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXX, I--CATERPILLAR DIESEL ENGINE MAINTENANCE SUMMARY, II--REIEWING FACTS ABOUT ALTERNATORS.

    Science.gov (United States)

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF DIESEL ENGINE MAINTENANCE FACTORS AND A REVIEW OF DIESEL ENGINE ALTERNATOR OPERATION. THE SEVEN SECTIONS COVER DIESEL ENGINE TROUBLESHOOTING AND THE OPERATION, TESTING, AND ADJUSTING OF ALTERNATORS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM…

  13. Performance and emission of generator Diesel engine using methyl esters of palm oil and diesel blends at different compression ratio

    Science.gov (United States)

    Aldhaidhawi, M.; Chiriac, R.; Bădescu, V.; Pop, H.; Apostol, V.; Dobrovicescu, A.; Prisecaru, M.; Alfaryjat, A. A.; Ghilvacs, M.; Alexandru, A.

    2016-08-01

    This study proposes engine model to predicate the performance and exhaust gas emissions of a single cylinder four stroke direct injection engine which was fuelled with diesel and palm oil methyl ester of B7 (blends 7% palm oil methyl ester with 93% diesel by volume) and B10. The experiment was conducted at constant engine speed of 3000 rpm and different engine loads operations with compression ratios of 18:1, 20:1 and 22:1. The influence of the compression ratio and fuel typeson specific fuel consumption and brake thermal efficiency has been investigated and presented. The optimum compression ratio which yields better performance has been identified. The result from the present work confirms that biodiesel resulting from palm oil methyl ester could represent a superior alternative to diesel fuel when the engine operates with variable compression ratios. The blends, when used as fuel, result in a reduction of the brake specific fuel consumption and brake thermal efficiency, while NOx emissions was increased when the engine is operated with biodiesel blends.

  14. Experimental and numerical investigation of sprays in two stroke diesel Engines

    DEFF Research Database (Denmark)

    Dam, Bjarke Skovgård

    2007-01-01

    . The latter is the subject of this dissertation. The theory and experimental findings on diesel sprays are investigated, including e.g. spray parameters and droplet break up. It is found that no complete theory is yet present and large challenges lie ahead. Generally, there is fairly good consensus on which......The control of the injected spray is important when optimizing performance and reducing emissions from diesel engines. The research community has conducted extensive research especially on smaller four stroke engines, but so far only little has been done on sprays in large two stroke engines...... have different scales and other designs than those used in the literature, so extending results from the literature will require experiments on this particular type of setup. Numerical investigations of diesel sprays are performed using the Eulerian/Lagrangian engine CFD code Kiva. In agreement...

  15. Particulate Matter Emission from Dual Fuel Diesel Engine Fuelled with Natural Gas

    Directory of Open Access Journals (Sweden)

    Stelmasiak Zdzisław

    2017-06-01

    Full Text Available The paper presents the results of examination of particulate matter emission from the Diesel engine FPT 1.3 MJT simultaneously fuelled with diesel oil and natural gas CNG. The basic premise for engine adaptation was the addition of a small amount of CNG to reduce exhaust gas opacity and particulate matter emission. At this assumption, diesel oil remained the basic fuel, with contribution amounting to 0,70-0,85 of total energy delivered to the engine. The dual fuel engine was examined using an original controller installed in the Diesel engine FPT 1.3 MJT which controlled the diesel fuel dose. The dose of the injected natural gas was controlled by changing the opening time of gas injectors at constant pressure in the gas collector. The examined issues included the exhaust gas opacity, and the total number and fractional distribution of the emitted particles. The measurements were performed at twenty selected measuring points corresponding to the New European Driving Cycle (NEDC test. The performed tests have demonstrated a positive effect of gas addition on exhaust gas opacity and particulate matter emission. Depending on test conditions, the exhaust gas opacity was reduced by 10÷92%, and the total number of particles by 30÷40%. The performed tests have revealed that a small addition of gas can reduce the load of the DPF filter, extend its lifetime, and increase engine reliability. Longer time intervals between successive DPF filter regenerations improve ecological properties of the engine.

  16. Effect of variation in LPG composition on emissions and performance in a dual fuel diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    H.E. Saleh [Mattaria, Helwan University, Cairo (Egypt). Department of Mechanical Power Engineering

    2008-10-15

    This paper investigates the effect of variation in LPG composition on emissions and performance characteristics in a dual fuel engine run on diesel fuel and five gaseous fuel of LPG with different composition. To quantify the best LPG composition for dual fuel operation especially in order to improve the exhaust emissions quality while maintaining high thermal efficiency comparable to a conventional diesel engine, a two-cylinder, naturally aspirated, four-stroke, DI diesel engine converted to run as pilot-injected dual fuel engine. The tests and data collection were performed under various conditions of load at constant engine speed. From the results, it is observed that the exhaust emissions and fuel conversion efficiency of the dual fuel engine are found to be affected when different LPG composition is used as higher butane content lead to lower NOx levels while higher propane content reduces CO levels. Fuel No. 3 (70% propane, 30% butane) with mass fraction 40% substitution of the diesel fuel was the best LPG composition in the dual fuel operation except that at part loads. Also, tests were made for fuel No. 3-diesel blend in the dual fuel operation at part loads to improve the engine performances and exhaust emissions by using the Exhaust Gas Recirculation (EGR) method. 26 refs., 15 figs., 5 tabs.

  17. Effect of exhaust gas recirculation on diesel engine nitrogen oxide reduction operating with jojoba methyl ester

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, H.E. [Mechanical Power Department, Faculty of Engineering, Mattaria, Helwan University, 9 k Eltaaweniat, Nasr Road, P.O. Box 11718, Cairo (Egypt)

    2009-10-15

    Jojoba methyl ester (JME) has been used as a renewable fuel in numerous studies evaluating its potential use in diesel engines. These studies showed that this fuel is good gas oil substitute but an increase in the nitrogenous oxides emissions was observed at all operating conditions. The aim of this study mainly was to quantify the efficiency of exhaust gas recirculation (EGR) when using JME fuel in a fully instrumented, two-cylinder, naturally aspirated, four-stroke direct injection diesel engine. The tests were carried out in three sections. Firstly, the measured performance and exhaust emissions of the diesel engine operating with diesel fuel and JME at various speeds under full load are determined and compared. Secondly, tests were performed at constant speed with two loads to investigate the EGR effect on engine performance and exhaust emissions including nitrogenous oxides (NO{sub x}), carbon monoxide (CO), unburned hydrocarbons (HC) and exhaust gas temperatures. Thirdly, the effect of cooled EGR with high ratio at full load on engine performance and emissions was examined. The results showed that EGR is an effective technique for reducing NO{sub x} emissions with JME fuel especially in light-duty diesel engines. With the application of the EGR method, the CO and HC concentration in the engine-out emissions increased. For all operating conditions, a better trade-off between HC, CO and NO{sub x} emissions can be attained within a limited EGR rate of 5-15% with very little economy penalty. (author)

  18. The use of Koroch seed oil methyl ester blends as fuel in a diesel engine

    International Nuclear Information System (INIS)

    Gogoi, T.K.; Baruah, D.C.

    2011-01-01

    An experimental investigation was carried out on a small direct injection (DI) diesel engine, fuelling the engine with 10% (B10), 20% (B20), 30% (B30) and 40% (B40) blending of Koroch seed oil methyl ester (KSOME) with diesel. The performance and combustion characteristics of the engine at various loads are compared and analyzed. The results showed higher brake specific fuel consumption (BSFC) and lower brake thermal efficiency (BTE) for the KSOME blends. The engine indicated power (IP) was more for the blends up to B30, but found to be reduced for the blend B40 when compared to that of diesel. The engine combustion parameters such as pressure crank angle diagram, peak pressure, time of occurrence of peak pressure, net heat-release rate, cumulative heat release, ignition delay and combustion duration were computed. The KSOME blends exhibited similar combustion trend with diesel. However, the blends showed an early start of combustion with shorter ignition delay period. The study reveals the suitability of KSOME blends up to B30 as fuel for a diesel engine mainly used in generating sets and the agricultural applications in India without any significant drop in engine performance.

  19. Investigation of microalgae HTL fuel effects on diesel engine performance and exhaust emissions using surrogate fuels

    International Nuclear Information System (INIS)

    Hossain, Farhad M.; Nabi, Md. Nurun; Rainey, Thomas J.; Bodisco, Timothy; Rahman, Md. Mostafizur; Suara, Kabir; Rahman, S.M.A.; Van, Thuy Chu; Ristovski, Zoran; Brown, Richard J.

    2017-01-01

    Highlights: • Development of a microalgae HTL surrogate of biocrude fuel using chemical compounds. • Physiochemical properties of surrogate blends were analysed. • Experimentally investigated diesel engine performance and emissions using surrogate fuels. • No significant changes in engine performance were observed with HTL surrogate blends. • Major emissions including PM, PN and CO were reduced significantly with increasing of NOx emission. - Abstract: This paper builds on previous work using surrogate fuel to investigate advanced internal combustion engine fuels. To date, a surrogate fuel of this nature has not been used for microalgae hydrothermal liquefaction (HTL) biocrude. This research used five different chemical groups found in microalgae HTL biocrude to design a surrogate fuel. Those five chemical groups constitute around 65% (by weight) of a microalgae biocrude produced by HTL. Weight percentage of the microalgae HTL biocrude chemical compounds were used to design the surrogate fuel, which was miscible with diesel at all percentages. The engine experiments were conducted on a EURO IIIA turbocharged common-rail direct-injection six-cylinder diesel engine to test engine performance and emissions. Exhaust emissions, including particulate matter and other gaseous emissions, were measured with the surrogate fuel and a reference diesel fuel. Experimental results showed that without significantly deteriorating engine performance, lower particulate mass, particulate number and CO emissions were observed with a penalty in NOx emissions for all surrogate blends compared to those of the reference diesel.

  20. Emission testing of jatropha and pongamia mixed bio diesel fuel in a diesel engine

    International Nuclear Information System (INIS)

    Ali, M.; Shaikh, A.A.

    2012-01-01

    The present investigation is based on the emission characteristics of mixed bio diesel fuel in a four stroke single cylinder compression ignition engine at constant speed. Refined oils of jatropha and pongamia are converted into bio diesel by acid catalyzed esterification and base catalyzed transesterification reactions. The jatropha and pongamia bio diesel were mixed in equal proportions with conventional mineral diesel fuel. Four samples of fuel were tested namely, diesel fuel, B10, B20 and B40. The emission analysis showed B20 mixed bio diesel fuel blend having better results as compared to other samples. There is 60% and 35% lower emission of carbon monoxide and in sulphur dioxide observed while consuming B20 blended fuel respectively. The test result showed NOx emissions were 10% higher from bio diesel fuel, as compared to conventional diesel fuel. However, these emissions may be reduced by EGR (Exhaust Gas Recirculation) technology. Present research also revealed that that B20 mixed bio diesel fuel can be used, without any modification in a CI engine. (author)

  1. Biodiesel as an Alternative Fuel for Diesel Engines

    OpenAIRE

    F. Halek; A. Kavousi; M. Banifatemi

    2009-01-01

    There is growing interest in biodiesel (fatty acid methyl ester or FAME) because of the similarity in its properties when compared to those of diesel fuels. Diesel engines operated on biodiesel have lower emissions of carbon monoxide, unburned hydrocarbons, particulate matter, and air toxics than when operated on petroleum-based diesel fuel. Production of fatty acid methyl ester (FAME) from rapeseed (nonedible oil) fatty acid distillate having high free fatty acids (FFA) ...

  2. An experimental investigation of performance of diesel to CNG engine

    Science.gov (United States)

    Misra, Sheelam; Gupta, Ayush; Garg, Ashutosh

    2018-05-01

    Over the past few decades, diesel engines are widely used in automobiles which is responsible for hazardous increase in pollution. Around the world, many countries are trying to reduce it by replacing diesel with CNG as a fuel which is more economical and leads to pollution free environment. Engineers came up with an idea to convert diesel engine to CNG engine. This conversion is possible by doing some alteration of engine components and it also include adding some extra components to the system which includes spark plug, valves etc. and by decreasing the compression ratio of the engine. It is used worldwide today and many countries have many programs to convert older, polluting diesel vehicles to CNG enable vehicles so that they can run on clean, economical natural gas. This is, an excellent way to reduce fuel cost, reduce pollution, reduce noise with minimum possible capital costs.first, second, and third level headings.

  3. Etudes théoriques et expérimentales de la combustion dans les moteurs Diesel d'automobiles à injection directe et à préchambre Theoretical and Experimental Research on Combustion in Diesel Automotive Engines with Direct Injection and a Prechamber

    OpenAIRE

    Douaud A.; Pinchon P.

    2006-01-01

    Certaines techniques récemment développées pour la modélisation mathématique et les investigations expérimentales sur moteur Diesel sont présentées. On insiste sur l'importance de la validation croisée entre calcul et mesure. Taux d'injection, aérodynamique interne, développement du spray sont analysés en relation avec la géométrie des chambres de combustion. Des exemples, portant principalement sur des considérations de rendement énergétiques et d'émissions polluantes sont présentés à la foi...

  4. Biogas Production and Engine Conversion From Diesel Engine to Biogas Engine for Lighting in Rural Area

    OpenAIRE

    Tun, Seint Thandar

    2012-01-01

    The research of alternative fuels implemented in internal combustion engines are becoming the subjects of interest nowadays. This paper describes a production of biogas from cow dung, diesel engine conversion process with piston modification of ZH1115 diesel engine. To produce biogas, the usual practice is to mix water with some organic material, such as cow dung (a free source of the appropriate micro-organisms). The slurry is placed in a leak-proof container (called a digester) and leaves i...

  5. Acoustic Emission Sensing for Maritime Diesel Engine Performance and Health

    Science.gov (United States)

    2016-05-01

    system does not provide direct current power to the preamplifier, equivalent pre-amplifiers with external power inputs were purchased , but the... behaviour of piston ring/cylinder liner interaction in diesel engines using acoustic emission. Tribology International 39 (12) 12 / 01 / 1634-1642...diesel engine using in-cylinder pressure and acoustic emission techniques. Dyanmics for Sustainable Engineering 1 454-463 26. Lowe, D. P., et al

  6. Synthetic lubrication oil influences on performance and emission characteristic of coated diesel engine fuelled by biodiesel blends

    International Nuclear Information System (INIS)

    Mohamed Musthafa, M.

    2016-01-01

    Highlights: • Synthetic lubricant provides the maximum performance benefits. • Synthetic lubricant is capable of retaining satisfactory viscosity. • Synthetic lubricant is to increase the life of the engine. • Improvement in efficiency of the coated engine with synthetic lubrication. • No significant changes in the coated engine emission with synthetic lubricants. - Abstract: In this study, the effects of using synthetic lubricating oil on the performance and exhaust emissions in a low heat rejection diesel engine running on Pongamia methyl ester blends and diesel have been investigated experimentally compared to those obtained from a conventional diesel engine with SAE 40 lubrication oil fuelled by diesel. For this purpose, direct injection diesel engine was converted to Yttria-stabilized zirconia (YSZ) coated engine. The results showed 5–9% increase in engine efficiency and 8–17% decrease in specific fuel consumption, as well as significant improvements in exhaust gas emissions (except NO_X) for all tested fuels (pure diesel, B10 and B20) used in coated engine with synthetic lubricants compared to that of the uncoated engine with SAE 40 lubricant running on diesel fuel.

  7. Experimental analysis on thermally coated diesel engine with neem oil methyl ester and its blends

    Science.gov (United States)

    Karthickeyan, V.

    2018-01-01

    Depletion of fossil fuel has created a threat to the nation's energy policy, which in turn led to the development of new source renewable of energy. Biodiesel was considered as the most promising alternative to the traditional fossil fuel. In the present study, raw neem oil was considered as a principle source for the production of biodiesel and converted into Neem Oil Methyl Ester (NOME) using two stage transesterification process. The chemical compositions of NOME was analysed using Fourier Transform Infra-Red Spectroscopy (FTIR) and Gas Chromatography- Mass Spectrometry (GC-MS). Baseline readings were recorded with diesel, 25NOME (25% NOME with 75% diesel) and 50NOME (50% NOME with 50% diesel) in a direct injection, four stroke, water cooled diesel engine. Thermal Barrier Coating (TBC) was considered as a better technique for emission reduction in direct injection diesel engine. In the present study, Partially Stabilized Zirconia (PSZ) was used as a TBC material to coat the combustion chamber components like cylinder head, piston head and intake and exhaust valves. In coated engine, 25NOME showed better brake thermal efficiency and declined brake specific fuel consumption than 50NOME. Decreased exhaust emissions like CO, HC and smoke were observed with 25NOME in coated engine except NOx. [Figure not available: see fulltext.

  8. Experimental investigation on dual fuel operation of acetylene in a DI diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmanan, T. [Department of Mechanical Engineering, Rajarajeswari Engineering College, Adayalampattu, Chennai, 600095 (India); Nagarajan, G. [Internal Combustion Engineering Division, College of Engineering, Anna University, Chennai, 600025 (India)

    2010-05-15

    Depletion of fossils fuels and environmental degradation have prompted researchers throughout the world to search for a suitable alternative fuel for diesel engine. One such step is to utilize renewable fuels in diesel engines by partial or total replacement of diesel in dual fuel mode. In this study, acetylene gas has been considered as an alternative fuel for compression ignition engine, which has excellent combustion properties. Investigation has been carried out on a single cylinder, air cooled, direct injection (DI), compression ignition engine designed to develop the rated power output of 4.4 kW at 1500 rpm under variable load conditions, run on dual fuel mode with diesel as injected primary fuel and acetylene inducted as secondary gaseous fuel at various flow rates. Acetylene aspiration resulted in lower thermal efficiency. Smoke, HC and CO emissions reduced, when compared with baseline diesel operation. With acetylene induction, due to high combustion rates, NO{sub x} emission significantly increased. Peak pressure and maximum rate of pressure rise also increased in the dual fuel mode of operation due to higher flame speed. It is concluded that induction of acetylene can significantly reduce smoke, CO and HC emissions with a small penalty on efficiency. (author)

  9. Effect of beadles from soybean on the exhaust emission of a turbocharged diesel engine

    International Nuclear Information System (INIS)

    Shan, G.E.; Jian, T.; Shah, A.N.

    2009-01-01

    This paper presents the regulated emissions in the light of cylinder pressure and heat release rate (HRR) from a 4-stroke direct injection (DI) diesel engine fuelled with neat soybean oil-based biodiesel, commercial diesel and 20% biodiesel-diesel blend. The engine was run using electrical dynamometer at four different engine conditions. The experimental results revealed that brake power (BP) of the engine decreased but brake specific fuel consumption (BSFC) increased with biodiesel as compared to diesel. Relative to diesel, the maximum combustion pressure (MCP) was higher; however, HRR curves were not much deeper in the ignition delay (ID) periods and the premixed combustion peaks were lower with biodiesel. Carbon monoxide (CO), total hydrocarbons (HC), smoke opacity, and particulate matter (PM) emissions decreased by 3% to 14%, 32.6% to 46%, 56.5% to 83%, and 71% to 87.8%, respectively; however, oxides of nitrogen (NOx) increased by 2% to 10% with biodiesel, compared to the commercial diesel. Both smoke and NOx pollutants were greatly influenced by the MCP, CO, HC, and PM emissions were higher at lower load conditions compared to higher load conditions, but NO/sub x/ and smoke pollutants were higher at higher load conditions relative to lower load conditions. (author)

  10. Advanced diesel engine component development program, tasks 4-14

    Science.gov (United States)

    Kaushal, Tony S.; Weber, Karen E.

    1994-01-01

    This report summarizes the Advanced Diesel Engine Component Development (ADECD) Program to develop and demonstrate critical technology needed to advance the heavy-duty low heat rejection engine concept. Major development activities reported are the design, analysis, and fabrication of monolithic ceramic components; vapor phase and solid film lubrication; electrohydraulic valve actuation; and high pressure common rail injection. An advanced single cylinder test bed was fabricated as a laboratory tool in studying these advanced technologies. This test bed simulates the reciprocator for a system having no cooling system, turbo compounding, Rankine bottoming cycle, common rail injection, and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr). The advanced concepts were successfully integrated into the test engine. All ceramic components met their functional and reliability requirements. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and piston ring were made from silicon nitride. Breakthroughs required to implement a 'ceramic' engine included the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port liners, implementation of vapor phase lubrication, and elimination of the engine coolant system. Silicon nitride valves were successfully developed to meet several production abuse test requirements and incorporated into the test bed with a ceramic valve guide and solid film lubrication. The ADECD cylinder head features ceramic port shields to increase insulation and exhaust energy recovery. The combustion chamber includes a ceramic firedeck and piston cap. The tribological challenge posed by top ring reversal temperatures of 550 C was met through the development of vapor phase lubrication using tricresyl phosphate at the ring-liner interface. A solenoid-controlled, variable valve actuation system

  11. Advanced diesel engine component development program, tasks 4-14

    Science.gov (United States)

    Kaushal, Tony S.; Weber, Karen E.

    1994-11-01

    This report summarizes the Advanced Diesel Engine Component Development (ADECD) Program to develop and demonstrate critical technology needed to advance the heavy-duty low heat rejection engine concept. Major development activities reported are the design, analysis, and fabrication of monolithic ceramic components; vapor phase and solid film lubrication; electrohydraulic valve actuation; and high pressure common rail injection. An advanced single cylinder test bed was fabricated as a laboratory tool in studying these advanced technologies. This test bed simulates the reciprocator for a system having no cooling system, turbo compounding, Rankine bottoming cycle, common rail injection, and variable valve actuation to achieve fuel consumption of 160 g/kW-hr (.26 lb/hp-hr). The advanced concepts were successfully integrated into the test engine. All ceramic components met their functional and reliability requirements. The firedeck, cast-in-place ports, valves, valve guides, piston cap, and piston ring were made from silicon nitride. Breakthroughs required to implement a 'ceramic' engine included the fabrication of air-gap cylinder heads, elimination of compression gaskets, machining of ceramic valve seats within the ceramic firedeck, fabrication of cast-in-place ceramic port liners, implementation of vapor phase lubrication, and elimination of the engine coolant system. Silicon nitride valves were successfully developed to meet several production abuse test requirements and incorporated into the test bed with a ceramic valve guide and solid film lubrication. The ADECD cylinder head features ceramic port shields to increase insulation and exhaust energy recovery. The combustion chamber includes a ceramic firedeck and piston cap. The tribological challenge posed by top ring reversal temperatures of 550 C was met through the development of vapor phase lubrication using tricresyl phosphate at the ring-liner interface. A solenoid-controlled, variable valve actuation system

  12. Combustion and exhaust emission characteristics of a compression ignition engine using liquefied petroleum gas-Diesel blended fuel

    International Nuclear Information System (INIS)

    Qi, D.H.; Bian, Y.ZH.; Ma, ZH.Y.; Zhang, CH.H.; Liu, SH.Q.

    2007-01-01

    Towards the effort of reducing pollutant emissions, especially smoke and nitrogen oxides, from direct injection (DI) Diesel engines, engineers have proposed various solutions, one of which is the use of a gaseous fuel as a partial supplement for liquid Diesel fuel. The use of liquefied petroleum gas (LPG) as an alternative fuel is a promising solution. The potential benefits of using LPG in Diesel engines are both economical and environmental. The high auto-ignition temperature of LPG is a serious advantage since the compression ratio of conventional Diesel engines can be maintained. The present contribution describes an experimental investigation conducted on a single cylinder DI Diesel engine, which has been properly modified to operate under LPG-Diesel blended fuel conditions, using LPG-Diesel blended fuels with various blended rates (0%, 10%, 20%, 30%, 40%). Comparative results are given for various engine speeds and loads for conventional Diesel and blended fuels, revealing the effect of blended fuel combustion on engine performance and exhaust emissions

  13. Experimental investigation of particulate emissions from a diesel engine fueled with ultralow-sulfur diesel fuel blended with diglyme

    Science.gov (United States)

    Di, Yage; Cheung, C. S.; Huang, Zuohua

    2010-01-01

    Experiments are conducted on a 4-cylinder direct-injection diesel engine using ultralow-sulfur diesel as the base fuel and diglyme as the oxygenate component to investigate the particulate emissions of the engine under five engine loads at two engine speeds of 1800 rev min -1 and 2400 rev min -1. Blended fuels containing 5%, 10.1%, 15.2%, 20.4%, 25.7% and 53% by volume of diglyme, corresponding to 2%, 4%, 6%, 8%, 10% and 20% by mass of oxygen, are studied. The study shows that with the increase of oxygen in the fuel blends, smoke opacity, particulate mass concentration, NO x concentration and brake specific particulate emission are reduced at the two engine speeds. However, the proportion of soluble organic fraction is increased. For each blended fuel, the total particle number concentration is higher while the geometric mean diameter is smaller, compared with that of ultralow-sulfur diesel, though the particle number decreases with the oxygen content of the blended fuel. Furthermore, the blended fuels also increase the number concentrations of particles smaller than 100 nm.

  14. Diesel engine performance and emission analysis using soybean ...

    African Journals Online (AJOL)

    Biodiesel presents a large potential for replacing other fossil-based fuels. Thus, the present work aimed to assess the specific fuel consumption (SFC), thermal efficiency and emissions of nitric oxide (NO) and nitrogen oxides (NOx), in a cycle diesel engine-generator set, using soybean biodiesel and diesel as fuels.

  15. Diesel engines and air pollution: facts and figures

    International Nuclear Information System (INIS)

    Chaaban, Farid

    1998-01-01

    Traffic densities and resulting air pollution, in any country are directly related to the degree of urbanization and the size and characteristics of the transportation sector. In Lebanon, the car ownership rate is among the highest in the world and its consequence is the drastic deterioration in ambient air quality in Greater Beirut and other organized regions. In this article, features of diesel engines are described. The environmental impacts of diesel engines, in relation of petrol engines are briefly presented. Pollutants provocated by diesel fuel, due to its contents in Carbon , Sulfur and gaseous emissions (noise level, smoke, Carbon Monoxide emissions, smell) as well as the economical aspects are given in comparison with petrol engines. Conclusion is given that diesel engines will help in reducing air pollution caused by transport sector in Lebanon, only if some required vehicles conditions are satisfied

  16. Improvement of ecological characteristics of the hydrogen diesel engine

    Science.gov (United States)

    Natriashvili, T.; Kavtaradze, R.; Glonti, M.

    2018-02-01

    In the article are considered the questions of influence of a swirl intensity of the shot and injector design on the ecological indices of the hydrogen diesel, little-investigated till now. The necessity of solution of these problems arises at conversion of the serial diesel engine into the hydrogen diesel. The mathematical model consists of the three-dimensional non-stationary equations of transfer and also models of turbulence and combustion. The numerical experiments have been carried out with the use of program code FIRE. The optimal values of parameters of the working process, ensuring improvement of the effective and ecological indices of the hydrogen diesel are determined.

  17. The influence of engine speed and load on the heat transfer between gases and in-cylinder walls at fired and motored conditions of an IDI diesel engine

    International Nuclear Information System (INIS)

    Sanli, Ali; Ozsezen, Ahmet N.; Kilicaslan, Ibrahim; Canakci, Mustafa

    2008-01-01

    In this study, the heat transfer characteristics between gases and in-cylinder walls at fired and motored conditions in a diesel engine were investigated by using engine data obtained experimentally. For this investigation, a four-cylinder, indirect injection (IDI) diesel engine was tested under different engine speeds and loads. The heat transfer coefficient was calculated by using Woschni expression correlated for the IDI diesel engines, and also using Annand and Hohenberg expressions. The temperature of in-cylinder gases were determined from a basic model based on the first law of thermodynamics after measuring in-cylinder pressure experimentally. The results show that the heat transfer characteristics of the IDI diesel engine strongly depend on the engine speed and load as a function of crank angle at fired and motored conditions

  18. The influence of engine speed and load on the heat transfer between gases and in-cylinder walls at fired and motored conditions of an IDI diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Sanli, Ali; Kilicaslan, Ibrahim [Department of Mechanical Education, Kocaeli University, 41380 Izmit (Turkey); Ozsezen, Ahmet N.; Canakci, Mustafa [Department of Mechanical Education, Kocaeli University, 41380 Izmit (Turkey); Alternative Fuels R and D Center, Kocaeli University, 41040 Izmit (Turkey)

    2008-08-15

    In this study, the heat transfer characteristics between gases and in-cylinder walls at fired and motored conditions in a diesel engine were investigated by using engine data obtained experimentally. For this investigation, a four-cylinder, indirect injection (IDI) diesel engine was tested under different engine speeds and loads. The heat transfer coefficient was calculated by using Woschni expression correlated for the IDI diesel engines, and also using Annand and Hohenberg expressions. The temperature of in-cylinder gases were determined from a basic model based on the first law of thermodynamics after measuring in-cylinder pressure experimentally. The results show that the heat transfer characteristics of the IDI diesel engine strongly depend on the engine speed and load as a function of crank angle at fired and motored conditions. (author)

  19. Injection and spray characteristics of a variable orifice nozzle applied the jerk type fuel injection pump for DI diesel engine; Jerk shiki nenryo funsha pump wo mochiita kahen funko nozzle no funsha funmu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, T; Matsui, K; Iwasaki, T; Kobayashi, T [Zexel Corp., Tokyo (Japan); Matsumoto, Y [The University of Tokyo, Tokyo (Japan)

    1997-10-01

    A Variable Orifice Nozzle (VON) by changing a cross-sectional area of the nozzle injection hole, for improving a rate of injection and injection duration, has been developed to study its injection and spray characteristics. The nozzle geometry was optimized to analyze a nozzle internal flow by computational method. Results show that, injection and spray pattern responded to the nozzle orifice cross-sectional area which is changing larger to smaller in the part load range. This results suggest to contribute a combustion improvement which decreasing NOx and soot. 14 refs., 10 figs.

  20. An Experimental Investigation of Ethanol-Diesel Blends on Performance and Exhaust Emissions of Diesel Engines

    Directory of Open Access Journals (Sweden)

    Tarkan Sandalcı

    2014-08-01

    Full Text Available Ethanol is a promising alternative fuel, due to its renewable biobased origin. Also, it has lower carbon content than diesel fuel and it is oxygenated. For this reason, ethanol is providing remarkable potential to reduce particulate emulsions in compression-ignition engines. In this study, performance of ethanol-diesel blends has been investigated experimentally. Tested fuels were mineral diesel fuel (E0D100, 15% (v/v ethanol/diesel fuel blend (E15D85, and 30% (v/v ethanol/diesel fuel blend (E30D70. Firstly, the solubility of ethanol and diesel was experienced. Engine tests were carried out to reveal the performance and emissions of the engine fuelled with the blends. Full load operating conditions at various engine speeds were investigated. Engine brake torque, brake power, brake specific fuel consumption, brake thermal efficiency, exhaust gas temperature, and finally exhaust emissions were measured. Performance of the tested engine decreased substantially while improvement on smoke and gaseous emissions makes ethanol blend favorable.

  1. Fuel composition impact on heavy duty diesel engine combustion & emissions

    NARCIS (Netherlands)

    Frijters, P.J.M.

    2012-01-01

    The Heavy Duty Diesel or compression ignition (CI) engine plays an important economical role in societies all over the world. Although it is a fuel efficient internal combustion engine design, CI engine emissions are an important contributor to global pollution. To further reduce engine emissions

  2. A Study on the Influence of Fuel Pipe on Fuel Injection Characteristics of Each Nozzle Hole in Diesel Injector

    Directory of Open Access Journals (Sweden)

    Luo Fuqiang

    2016-01-01

    Full Text Available The inner diameter of high pressure fuel pipe has a significant effect on the fuel injection process and the performance of a diesel engine. The spray impact force of each nozzle hole of a conventional injection system of pump-line-nozzle for diesel engine (based on the spray momentum flux and the injection pressure (on a fuel injection pump test rig were measured. With varying fuel injection quantities and pump speed, the effects of the inner diameter of the high pressure fuel pipe on fuel injection process and the fuel injection characteristics of each nozzle hole were analyzed. It was noted from experimental results that the fuel injection pressure changes with variations in the inner diameter of the high pressure fuel pipe and also the injection duration gradually increases with increase in the inner diameter. At low injection pump speed, even with the same geometric fuel deliver rate, the injection duration also increases gradually. Due to throttling effect and reduction in injection pressure, the fuel injection quantities of the injection nozzle were relatively minimal when the inner diameters of the high pressure fuel pipe were respectively small and large. The optimum injection pipe inner diameter for the right quantity for fuel injection falls between the two cases (between small and large. In addition, the injection rate of each nozzle hole increases with the decrease in angle between the needle axis and each of the nozzle hole axis. The fuel injection quantity of each nozzle hole increases while their relative difference decreases with increasing pump speed.

  3. Temperature field measurement research in high-speed diesel engine using laser induced fluorescence technology

    Science.gov (United States)

    Liu, Yongfeng; Zhang, You-tong; Gou, Chenhua; Tian, Hongsen

    2008-12-01

    Temperature laser- induced- fluorescence (LIF) 2-D imaging measurements using a new multi-spectral detection strategy are reported for high pressure flames in high-speed diesel engine. Schematic of the experimental set-up is outlined and the experimental data on the diesel engine is summarized. Experiment injection system is a third generation Bosch high-pressure common rail featuring a maximum pressure of 160 MPa. The injector is equipped with a six-hole nozzle, where each hole has a diameter of 0.124 mm. and slightly offset (by 1.0 mm) to the center of the cylinder axis to allow a better cooling of the narrow bridge between the exhaust valves. The measurement system includes a blower, which supplied the intake flow rate, and a prototype single-valve direct injection diesel engine head modified to lay down the swirled-type injector. 14-bit digital CCD cameras are employed to achieve a greater level of accuracy in comparison to the results of previous measurements. The temperature field spatial distributions in the cylinder for different crank angle degrees are carried out in a single direct-injection diesel engine.

  4. Diesel Engine Exhaust: Basis for Occupational Exposure Limit Value.

    Science.gov (United States)

    Taxell, Piia; Santonen, Tiina

    2017-08-01

    Diesel engines are widely used in transport and power supply, making occupational exposure to diesel exhaust common. Both human and animal studies associate exposure to diesel exhaust with inflammatory lung effects, cardiovascular effects, and an increased risk of lung cancer. The International Agency for Research on Cancer has evaluated diesel exhaust as carcinogenic to humans. Yet national or regional limit values for controlling occupational exposure to diesel exhaust are rare. In recent decades, stricter emission regulations have led to diesel technologies evolving significantly, resulting in changes in exhaust emissions and composition. These changes are also expected to influence the health effects of diesel exhaust. This review provides an overview of the current knowledge on the health effects of diesel exhaust and the influence of new diesel technologies on the health risk. It discusses the relevant exposure indicators and perspectives for setting occupational exposure limit values for diesel exhaust, and outlines directions for future research. The review is based on a collaborative evaluation report by the Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals and the Dutch Expert Committee on Occupational Safety. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Experimental investigation of CI engine combustion, performance and emissions in DEE–kerosene–diesel blends of high DEE concentration

    International Nuclear Information System (INIS)

    Patil, K.R.; Thipse, S.S.

    2015-01-01

    Highlights: • First ever study on DEE–kerosene–diesel blends used in CI engine. • DEE–diesel blends have reduced the trade-off between PM and NOx of diesel engine. • Optimum performance blend has been found as DE15D. • Adulteration effects of kerosene with diesel have also been investigated. • Additions of kerosene with DE15D blend have deteriorated the overall engine performance. - Abstract: An experimental investigation had been carried out to evaluate the effects of oxygenated cetane improver diethyl ether (DEE) blends with kerosene and diesel on the combustion, performance and emission characteristics of a direct injection diesel engine. Initially, 2%, 5%, 8%, 10%, 15%, 20% and 25% DEE (by volume) were blended into diesel. The DEE–diesel blends have reduced the trade-off between PM and NOx of diesel engine and the optimum performance blend has been found as DE15D. Similarly, 5%, 10% and 15% kerosene (by volume) were blended into diesel to investigate the adulteration effect. In addition, a study was carried out to evaluate the effects of kerosene adulteration on DE15D by blending with 5%, 10% and 15% kerosene (by volume). The engine tests were carried out at 10%, 25%, 50%, 75% and 100% of full load for all test fuels. Laboratory fuel tests showed that the DEE is completely miscible with diesel and kerosene in any proportion. It was observed that the density, kinematic viscosity and calorific value of the blends decreases, while the oxygen content and cetane number of the blends increases with the concentration of DEE addition. The experimental test results showed that the DEE–kerosene–diesel blends have low brake thermal efficiency, high brake specific fuel consumption, high smoke at full load, low smoke at part load, overall low NO, almost similar CO, high HC at full load and low HC at part load as compared to DE15D blend

  6. Evaluation of a diesel engine running with stationary mixtures of soybean oil and reused oil diesel; Avaliacao de um motor diesel estacionario funcionando com misturas de oleo de soja reutilizado e oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Maronhas, Maite E.S.; Fernandes, Haroldo C.; Siqueira, Wagner C.; Figueiredo, Augusto C. [Universidade Federal de Vicosa (UFV), MG (Brazil)], Emails: maronhas@gmail.com, haroldo@ufv.br, augusto.figueiredo@ufv.br

    2009-07-01

    The tests were conducted at the Laboratory of Agricultural Mechanization Department of Agricultural Engineering, Federal University of Vicosa using a stationary diesel engine Yanmar brand NS{sub B} 75, with nominal power of 5.8 kw at 2400 rpm, direct injection, and water cooled. This work aimed to examine the reuse of soybean oil to drive the engine stationary. Were used as fuel five mixtures of diesel oil (DO) and soybean oil (OS) re-used in the kitchen of the restaurant of the university in the proportions of 0-100%, 25-75%, 50-50%, 75-25 % and 100-0% respectively. The power and torque of the engine is higher for the mixture showed a 75% OD and 25% OS and 25% lower for DO and 75% OS. The lowest hourly consumption was with a mixture of 25% and 75% OD and OS was 15% lower than for the pure diesel. The values found justifying the use of mixtures of diesel and soybean oil reused, but the technical aspects, especially regarding the wear of the engine, must be evaluated to indicate the use after a long period of engine operation. (author)

  7. The potential of using vegetable oil fuels as fuel for diesel engines

    International Nuclear Information System (INIS)

    Altin, Recep; Cetinkaya, Selim; Yucesu, Huseyin Serdar

    2001-01-01

    Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. The effects of vegetable oil fuels and their methyl esters (raw sunflower oil, raw cottonseed oil, raw soybean oil and their methyl esters, refined corn oil, distilled opium poppy oil and refined rapeseed oil) on a direct injected, four stroke, single cylinder diesel engine performance and exhaust emissions was investigated in this paper. The results show that from the performance viewpoint, both vegetable oils and their esters are promising alternatives as fuel for diesel engines. Because of their high viscosity, drying with time and thickening in cold conditions, vegetable oil fuels still have problems, such as flow, atomisation and heavy particulate emissions. (Author)

  8. The potential of using vegetable oil fuels as fuel for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Altin, Recep [Ministry of Education, Projects Coordination Unit, Ankara (Turkey); Cetinkaya, Selim [Gazi Univ., Technical Education Faculty, Ankara (Turkey); Yucesu, Huseyin Serdar [Karaelmas Univ., Technical Education Faculty, Karabuk (Turkey)

    2001-03-01

    Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. The effects of vegetable oil fuels and their methyl esters (raw sunflower oil, raw cottonseed oil, raw soybean oil and their methyl esters, refined corn oil, distilled opium poppy oil and refined rapeseed oil) on a direct injected, four stroke, single cylinder diesel engine performance and exhaust emissions was investigated in this paper. The results show that from the performance viewpoint, both vegetable oils and their esters are promising alternatives as fuel for diesel engines. Because of their high viscosity, drying with time and thickening in cold conditions, vegetable oil fuels still have problems, such as flow, atomisation and heavy particulate emissions. (Author)

  9. The Influence of Hydrogen Gas on the Measures of Efficiency of Diesel Internal Combustion Engine

    Directory of Open Access Journals (Sweden)

    Jurgis Latakas

    2014-12-01

    Full Text Available In this research paper energy and ecological parameters of diesel engine which works under addition of hydrogen (10, 20, 30 l/ min are presented. A survey of research literature has shown that addition of hydrogen gases improve diesel combustion; increase indicated pressure; decrease concentration of carbon dioxide (CO2, hydrocarbons (HC, particles; decrease fuel consumptions. Results of the experiment revealed that hydrogen gas additive decreased pressure in cylinder in kinetic combustion phase. Concentration of CO2 and nitrous oxides (NOx decreased not significantly, HC – increased. Concentration of particles in engine exhaust gases significantly decreased. In case when hydrogen gas as additive was supplied, the fuel consumptions decreased a little. Using AVL BOOST software combustion process analysis was made. It was determined that in order to optimize engine work process under hydrogen additive usage, it is necessary to adjust diesel injection angle.

  10. Experimental investigation and performance evaluation of DI diesel engine fueled by waste oil-diesel mixture in emulsion with water

    Directory of Open Access Journals (Sweden)

    Nanthagopal Kasianantham

    2009-01-01

    Full Text Available Exploitation of the natural reserves of petroleum products has put a tremendous onus on the automotive industry. Increasing pollution levels and the depletion of the petroleum reserves have lead to the search for alternate fuel sources for internal combustion engines. Usage of vegetable oils poses some challenges like poor spray penetration, valve sticking and clogging of injector nozzles. Most of these problems may be solved by partial substitution of diesel with vegetable oil. In this work, the performance and emission characteristics of a direct injection diesel engine fueled by waste cooking oil-diesel emulsion with different water contents are evaluated. The use of waste cooking oil-diesel emulsion lowers the peak temperature, which reduces the formation of NOx. Moreover the phenomenon of micro explosion that results during the combustion of an emulsified fuel finely atomizes the fuel droplets and thus enhances combustion. Experiments show that CO concentration is reduced as the water content is increased and it is seen that 20% water content gives optimum results. Also, there is a significant reduction in NOx emissions.

  11. Diesel engine emissions and performance from blends of karanja methyl ester and diesel

    International Nuclear Information System (INIS)

    Raheman, H.; Phadatare, A.G.

    2004-01-01

    This paper presents the results of investigations carried out in studying the fuel properties of karanja methyl ester (KME) and its blend with diesel from 20% to 80% by volume and in running a diesel engine with these fuels. Engine tests have been carried out with the aim of obtaining comparative measures of torque, power, specific fuel consumption and emissions such as CO, smoke density and NO x to evaluate and compute the behaviour of the diesel engine running on the above-mentioned fuels. The reduction in exhaust emissions together with increase in torque, brake power, brake thermal efficiency and reduction in brake-specific fuel consumption made the blends of karanja esterified oil (B20 and B40) a suitable alternative fuel for diesel and could help in controlling air pollution. (author)

  12. [Particulate distribution characteristics of Chinese phrase V diesel engine based on butanol-diesel blends].

    Science.gov (United States)

    Lou, Di-Ming; Xu, Ning; Fan, Wen-Jia; Zhang, Tao

    2014-02-01

    With a common rail diesel engine without any modification and the engine exhaust particle number and particle size analyzer EEPS, this study used the air-fuel ratio to investigate the particulate number concentration, mass concentration and number distribution characteristics of a diesel engine fueled with butanol-diesel blends (Bu10, Bu15, Bu20, Bu30 and Bu40) and petroleum diesel. The results show: for all test fuels, the particle number distributions turn to be unimodal. With the increasing of butanol, numbers of nucleation mode particles and small accumulation mode particle decrease. At low speed and low load conditions, the number of large accumulation mode particle increases slightly, but under higher speed and load conditions, the number does not increase. When the fuels contain butanol, the total particle number concentration and mass concentration in all conditions decrease and that is more obvious at high speed load.

  13. Development and validation of spray models for investigating diesel engine combustion and emissions

    Science.gov (United States)

    Som, Sibendu

    Diesel engines intrinsically generate NOx and particulate matter which need to be reduced significantly in order to comply with the increasingly stringent regulations worldwide. This motivates the diesel engine manufacturers to gain fundamental understanding of the spray and combustion processes so as to optimize these processes and reduce engine emissions. Strategies being investigated to reduce engine's raw emissions include advancements in fuel injection systems, efficient nozzle orifice design, injection and combustion control strategies, exhaust gas recirculation, use of alternative fuels such as biodiesel etc. This thesis explores several of these approaches (such as nozzle orifice design, injection control strategy, and biodiesel use) by performing computer modeling of diesel engine processes. Fuel atomization characteristics are known to have a significant effect on the combustion and emission processes in diesel engines. Primary fuel atomization is induced by aerodynamics in the near nozzle region as well as cavitation and turbulence from the injector nozzle. The breakup models that are currently used in diesel engine simulations generally consider aerodynamically induced breakup using the Kelvin-Helmholtz (KH) instability model, but do not account for inner nozzle flow effects. An improved primary breakup (KH-ACT) model incorporating cavitation and turbulence effects along with aerodynamically induced breakup is developed and incorporated in the computational fluid dynamics code CONVERGE. The spray simulations using KH-ACT model are "quasi-dynamically" coupled with inner nozzle flow (using FLUENT) computations. This presents a novel tool to capture the influence of inner nozzle flow effects such as cavitation and turbulence on spray, combustion, and emission processes. Extensive validation is performed against the non-evaporating spray data from Argonne National Laboratory. Performance of the KH and KH-ACT models is compared against the evaporating and

  14. Development of production technology for bio diesel fuel and feasibility test of bio diesel engine (II)

    Energy Technology Data Exchange (ETDEWEB)

    Na, Y J; Ju, U S; Park, Y C [National Kyung Sang University (Korea, Republic of)

    1996-02-01

    At the beginning of the 21 st century two urgent tasks which our global countries would face with could be the security of the alternative energy source as a preparation against the fossil energy exhaustion and the development of the clean energy source to protect the environment from pollution. The above two problems should be solved together. The bio diesel oil which is made by methylesterfication of bio oil has very low sulfur content than does the diesel oil. Therefore, there is a great possibility to solve the pollution problem caused by the exhaust gas from diesel engine vehicles. So, bio oil has been attracted with attentions as an alternative and clean energy source. Advanced countries began early to develop the bio diesel oil suitable to their respective conditions. Recently their production stage have reached to the commercial level partially. The sudden increase of energy demand followed by a rapid growth of industry and the serious situation about the environmental pollution caused by the exhaust has from diesel engine vehicles occupying 42% of distribution among all vehicles have called attention of our government to consider the importance of alternative and clean energy sources for the future on the national scale. This study is consisted of three main parts; - The development of production technology for bio diesel oil. - The development of the atomization improvement method and nozzle for high viscous vegetable oils. - Feasibility test of bio diesel engine. (author) 119 refs., 52 tabs., 88 figs.

  15. The characteristic of spray using diesel water emulsified fuel in a diesel engine

    International Nuclear Information System (INIS)

    Park, Sangki; Woo, Seungchul; Kim, Hyungik; Lee, Kihyung

    2016-01-01

    Highlights: • Water in oil emulsion is produced using ceramic membrane. • Surfactant type affect stability performance and droplet size distribution. • Evaporation characteristic of DE is poor compared with neat diesel. • Coefficient of variation maintains below 2.0% both DE and neat diesel. - Abstract: In this study, it was applied to the diesel–water emulsified (DE) fuel that carried out the experiment for the characteristic of sprat using diesel water emulsified fuel in a diesel engine, and the possibility of its application to conventional diesel engines was evaluated from the fundamental characteristics of diesel–water emulsified fuel. According to the results of the spray characteristics such as spray penetration and spray distribution were measured in the experiment, and then analyzed through digital image processing. The DEs were applied to actual diesel engines and their combustion, emission, and fuel consumption characteristics were compared with those of diesel. The results showed that the experiments were confirmed as the spray atomization characteristics at the various emulsified fuels.

  16. Imitating model of the electronic regulator frequencies of rotation of the automobile diesel engine

    OpenAIRE

    Тырловой, С. И.

    2011-01-01

    The imitating model of an frequency electronic regulator of rotation of high-speed diesel engine an automobile diesel engine with the distributive fuel pump of Bosch company is resulted. Is executed simulation transitive modes of a diesel engine with mechanic and electronic regulators. Deterioration influence plungers steams on dinamic and economic indicators of a diesel engine is analysed. Operational indicators of a diesel engine with mechanic and electronic regulators are compared. The obt...

  17. Remanufacture Systems for Category 1 and 2 Marine Diesel Engines

    Science.gov (United States)

    EPA maintains a list of remanufacture systems, or “kits”, certified for use with Category 1 and 2 marine diesel engines according to the provisions of 40 CFR Part 1042, Subpart I, and is periodically updated.

  18. Experimental investigations on CRDI diesel engine fuelled with acid ...

    African Journals Online (AJOL)

    reported that NOx emission amplified by means of an amplification in the proportion ... performance and emission characteristics of CRDI engine when fuelled with diesel, ..... rate of NOx formation is primarily a function of flame temperature, the ...

  19. Oxygenated fuels for clean heavy-duty diesel engines

    NARCIS (Netherlands)

    Frijters, P.J.M.; Baert, R.S.G.

    2006-01-01

    Abstract: For diesel engines, changing the fuel composition is an alternative route towards achieving lower emission levels. The potential of oxygenated fuels to significantly reduce particulate matter emissions has already been demonstrated earlier. In this study, this research has been

  20. Methods for Organization of Working Process for Gas-Diesel Engine

    OpenAIRE

    Вершина, Г. А.; Быстренков, О. С.

    2017-01-01

    Over the past few decades reduction in pollutant emissions has become one of the main directions for further deve- lopment of engine technology. Solution of such problems has led to implementation of catalytic post-treatment systems, new technologies of fuel injection, technology for regulated phases of gas distribution, regulated turbocharger system and, lately, even system for variable compression ratio of engine. Usage of gaseous fuel, in particular gas-diesel process, may be one of the me...

  1. Light extinction method on high-pressure diesel injection

    Science.gov (United States)

    Su, Tzay-Fa; El-Beshbeeshy, Mahmound S.; Corradini, Michael L.; Farrell, Patrick V.

    1995-09-01

    A two dimensional optical diagnostic technique based on light extinction was improved and demonstrated in an investigation of diesel spray characteristics at high injection pressures. Traditional light extinction methods require the spray image to be perpendicular to the light path. In the improved light extinction scheme, a tilted spray image which has an angle with the light path is still capable of being processed. This technique utilizes high speed photography and digital image analysis to obtain qualitative and quantitative information of the spray characteristics. The injection system used was an electronically controlled common rail unit injector system with injection pressures up to 100 MPa. The nozzle of the injector was a mini-sac type with six holes on the nozzle tip. Two different injection angle nozzles, 125 degree(s) and 140 degree(s), producing an in-plane tilted spray and an out of plane tilted spray were investigated. The experiments were conducted on a constant volume spray chamber with the injector mounted tilted at an angle of 62.5 degree(s)$. Only one spray plume was viewed, and other sprays were free to inject to the chamber. The spray chamber was pressurized with argon and air under room temperature to match the combustion chamber density at the start of the injection. The experimental results show that the difference in the spray tip penetration length, spray angle, and overall average Sauter mean diameter is small between the in- plane tilted spray and the out of plane tilted spray. The results also show that in-plane tilted spray has a slightly larger axial cross- section Sauter mean diameter than the out of plane tilted spray.

  2. Spray combustion of biomass-based renewable diesel fuel using multiple injection strategy in a constant volume combustion chamber

    KAUST Repository

    Jing, Wei; Wu, Zengyang; Roberts, William L.; Fang, Tiegang

    2016-01-01

    Effect of a two-injection strategy associated with a pilot injection on the spray combustion process was investigated under conventional diesel combustion conditions (1000 K and 21% O2 concentration) for a biomass-based renewable diesel fuel, i

  3. Experimental Investigation of the Effect of Hydrogen Manifold Injection on the Performance of Compression Ignition Engines

    OpenAIRE

    Haroun A.K. Shahad; Nabeel Abdul-Hadi

    2011-01-01

    Experiments were carried out to evaluate the influence of the addition of hydrogen to the inlet air on the performance of a single cylinder direct injection diesel engine. Hydrogen was injected in the inlet manifold. The addition of hydrogen was done on energy replacement basis. It was found that the addition of hydrogen improves the combustion process due to superior combustion characteristics of hydrogen in comparison to conventional diesel fuels. It was also found that...

  4. Acoustical monitoring of diesel engines in reverberant environment; Methodes de surveillance acoustique des diesels en milieu reverberant

    Energy Technology Data Exchange (ETDEWEB)

    Mein, M.

    1995-10-01

    The feed-back knowledge of emergency diesel generators in nuclear power plants shows that some malfunctions, mainly affecting fuel-injection or distribution system of the engine can be heard and detected by experienced maintenance agents. This study consists in the feasibility,v of acoustical monitoring of those diesel engines, taking into account the reverberant environment of the machine. The operating cycle of the diesel is composed of transient events (injection, combustion, valve closure...) which generate highly non stationary acoustical signals. The detection of a malfunction appearing on such transients requires the use of adapted signal processing techniques. Visual analysis of the phenomena is first proceeded using time-frequency and time-scale representations. The second step will be parametric modeling of acoustical signatures for the extraction of characteristic parameters, in order to characterize the fault and to use an automatic classification system. The lest part of the study will concern the evaluation of the robustness of the detection methods in regard to acoustical reverberation. (author). 10 refs., 6 figs.

  5. Effect of ethanol/water blends addition on diesel fuel combustion in RCM and DI diesel engine

    International Nuclear Information System (INIS)

    Nour, Mohamed; Kosaka, Hidenori; Sato, Susumu; Bady, Mahmoud; Abdel-Rahman, Ali K.; Uchida, Kenta

    2017-01-01

    Highlights: • Effect of ethanol/water addition on diesel combustion studied using optical diagnostics. • The addition of water to ethanol improves engine combustion and soot oxidation. • Ethanol/water injection into exhaust manifold eliminates their endothermic effect. • Ethanol with high water content is recommended for better engine combustion. • Soot concentration reduced by 50% and NO x emissions reduced by 88%. - Abstract: The effect of ethanol/water blends addition on diesel fuel combustion and emissions is investigated experimentally in this study using optical diagnostics. Basic study is performed using rapid compression machine (RCM) under CI conditions. The tested ethanol energy fractions varied in the range of 10–40% of the total added fuel energy, while water volume ratios varied in the range of 10–40% of the injected ethanol. Ethanol and water were evaporated before entering the combustion chamber to eliminate their endothermic effect. Results reveal that addition of ethanol/water blends to diesel fuel results in longer ignition delay and promote the apparent heat release rate (AHRR) at the premixed combustion phase compared to absolute ethanol addition. Additionally, soot and NO x emissions are reduced with ethanol/water addition compared to absolute ethanol addition and neat diesel combustion. The basic study is then extended to investigate the effect ethanol/water blends addition on diesel fuel combustion using single cylinder diesel engine. Waste heat in exhaust manifold is utilized to vaporize ethanol/water blends before combustion. Results reveal that ethanol/water blends injection leads to increase in peak cylinder pressure, indicated mean effective pressure (IMEP), and AHRR at premixed combustion phase. Additionally, the ignition delay increased with ethanol/water addition. NO x emission is decreased up to 88% along with a reduction in soot by 50%. The lower ethanol to water volume ratios show better combustion efficiency, IMEP

  6. The influence of propylene glycol ethers on base diesel properties and emissions from a diesel engine

    International Nuclear Information System (INIS)

    Gómez-Cuenca, F.; Gómez-Marín, M.; Folgueras-Díaz, M.B.

    2013-01-01

    Highlights: • Effect of propylene glycol ethers on diesel fuel properties. • Effect of these compounds on diesel engine performance and emissions. • Blends with ⩽4 wt.% of oxygen do not change substantially diesel fuel quality. • Blends with ⩽2.5 wt.% of oxygen reduce CO, HC and NOx emissions, but not smoke. • These compounds are helpful to reach a cleaner combustion in a diesel engine. - Abstract: The oxygenated additives propylene glycol methyl ether (PGME), propylene glycol ethyl ether (PGEE), dipropylene glycol methyl ether (DPGME) were studied to determine their influence on both the base diesel fuel properties and the exhaust emissions from a diesel engine (CO, NOx, unburnt hydrocarbons and smoke). For diesel blends with low oxygen content (⩽4.0 wt.%), the addition of these compounds to base diesel fuel decreases aromatic content, kinematic viscosity, cold filter plugging point and Conradson carbon residue. Also, each compound modifies the distillation curve at temperatures below the corresponding oxygenated compound boiling point, the distillate percentage being increased. The blend cetane number depends on the type of propylene glycol ether added, its molecular weight, and the oxygen content of the fuel. The addition of PGME decreased slightly diesel fuel cetane number, while PGEE and DPGME increased it. Base diesel fuel-propylene glycol ether blends with 1.0 and 2.5 wt.% oxygen contents were used in order to determine the performance of the diesel engine and its emissions at both full and medium loads and different engine speeds (1000, 2500 and 4000 rpm). In general, at full load and in comparison with base diesel fuel, the blends show a slight reduction of oxygen-free specific fuel consumption. CO emissions are reduced appreciably for 2.5 wt.% of oxygen blends, mainly for PGEE and DPGME. NOx emissions are reduced slightly, but not the smoke. Unburnt hydrocarbon emissions decrease at 1000 and 2500 rpm, but not at 4000 rpm. At medium load

  7. Application of wear resistant spraying for diesel engine; Diesel kikan eno taimamo yosha no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Kitajima, Y. [Mitsui Engineering and Shipbuliding Co. Ltd., Tokyo (Japan)

    1999-03-31

    Diesel engines used widely as propelling engines of ships have increasingly been provided with a high output and a high thermal efficiency; their structural members, particularly, the component parts for combustion chambers are therefore used under severe conditions, giving rise to the need of surface treatment and surface reforming of the members. Parts for marine diesel engines are huge, so that the technology applicable to the surface treatment and reforming are limited in point of facility and cost; therefore, most suitable is thermal spraying. This paper primarily discusses, among marine diesel engines, a 2-cycle low-speed engine with a 260-980mm bore used for the main engine of a merchant ship such as a container ship, bulk carrier or a tanker, and a 4-cycle medium-speed engine with a 300-420mm bore used for the main engine of a naval vessel; the paper explains the application status of a thermal spraying technology which is in progress to cope with the high output and high thermal efficiency of the diesel engines, explaining particularly the story of the development and the technological features of the wear resistant thermal spraying, which has been put to practical use, on the cylinder liner and the piston ring of the 4-cycle medium-speed engine. (NEDO)

  8. Chemiluminescence analysis of the effect of butanol-diesel fuel blends on the spray-combustion process in an experimental common rail diesel engine

    Directory of Open Access Journals (Sweden)

    Merola Simona Silvia S.

    2015-01-01

    Full Text Available Combustion process was studied from the injection until the late combustion phase in an high swirl optically accessible combustion bowl connected to a single cylinder 2-stroke high pressure common rail compression ignition engine. Commercial diesel and blends of diesel and n-butanol (20%: BU20 and 40%: BU40 were used for the experiments. A pilot plus main injection strategy was investigated fixing the injection pressure and fuel mass injected per stroke. Two main injection timings and different pilot-main dwell times were explored achieving for any strategy a mixing controlled combustion. Advancing the main injection start, an increase in net engine working cycle (>40% together with a strong smoke number decrease (>80% and NOx concentration increase (@50% were measured for all pilot injection timings. Compared to diesel fuel, butanol induced a decrease in soot emission and an increase in net eng