WorldWideScience

Sample records for dielectric wake field

  1. DIELECTRIC WAKE FIELD RESONATOR ACCELERATOR MODULE

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L.

    2013-11-06

    Results are presented from experiments, and numerical analysis of wake fields set up by electron bunches passing through a cylindrical or rectangular dielectric-lined structure. These bunches excite many TM-modes, with Ez components of the wake fields sharply localized on the axis of the structure periodically behind the bunches. The experiment with the cylindrical structure, carried out at ATF Brookhaven National Laboratory, used up to three 50 MeV bunches spaced by one wake field period (21 cm) to study the superposition of wake fields by measuring the energy loss of each bunch after it passed through the 53-cm long dielectric element. The millimeter-wave spectrum of radiation excited by the passage of bunches is also studied. Numerical analysis was aimed not only to simulate the behavior of our device, but in general to predict dielectric wake field accelerator performance. It is shown that one needs to match the radius of the cylindrical dielectric channel with the bunch longitudinal rms-length to achieve optimal performance.

  2. Longitudinal- and transverse-wake-field effects in dielectric structures

    International Nuclear Information System (INIS)

    Rosing, M.; Gai, W.

    1990-01-01

    A dielectric-loaded circular waveguide structure is a potential high-gradient linear wake-field accelerator. A complete solution is given for the longitudinal electric and magnetic fields excited by a δ function and a Gaussian charge distribution moving parallel to the guide axis. The fields are then given in the limit of particle velocity equal to the speed of light. Example calculations are given for a structure with inner radius of 2 mm, outer radius of 5 mm, dielectric constant of 3, and total charge of 100 nC. Peak wake fields in excess of 200 MV/m are found. Azimuthal modes 0 and 1 are investigated for the particular interest of acceleration and deflection problems

  3. Calculation of longitudinal and transverse wake-field effects in dielectric structures

    International Nuclear Information System (INIS)

    Gai, W.

    1989-01-01

    The electro-magnetic radiation of a charged particle passing through a dielectric structure has many applications to accelerator physics. Recently a new acceleration scheme, called the dielectric wake field accelerator, has been proposed. It also can be used as a pick up system for a storage ring because of its slow wave characteristics. In order to study these effects in detail, in this paper we will calculate the wake field effects produced in a dielectric structure by a charged particle. 8 refs., 2 figs

  4. COAXIAL TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L. [Omega-P, Inc.

    2013-04-30

    Theory, computations, and experimental apparatus are presented that describe and are intended to confirm novel properties of a coaxial two-channel dielectric wake field accelerator. In this configuration, an annular drive beam in the outer coaxial channel excites multimode wakefields which, in the inner channel, can accelerate a test beam to an energy much higher than the energy of the drive beam. This high transformer ratio is the result of judicious choice of the dielectric structure parameters, and of the phase separation between drive bunches and test bunches. A structure with cm-scale wakefields has been build for tests at the Argonne Wakefield Accelerator Laboratory, and a structure with mm-scale wakefields has been built for tests at the SLAC FACET facility. Both tests await scheduling by the respective facilities.

  5. Femtosecond planar electron beam source for micron-scale dielectric wake field accelerator

    Directory of Open Access Journals (Sweden)

    T. C. Marshall

    2001-12-01

    Full Text Available A new accelerator, LACARA (laser-driven cyclotron autoresonance accelerator, under construction at the Accelerator Test Facility at Brookhaven National Laboratory, is to be powered by a 1 TW CO_{2} laser beam and a 50 MeV injected electron pulse. LACARA will produce inside a 2 m, 6 T solenoid a 100 MeV gyrating electron bunch, with ∼3% energy spread, approximately 1 psec in length with particles advancing in phase at the laser frequency, executing one cycle each 35 fsec. A beamstop with a small off axis channel will transmit a short beam pulse every optical cycle, thereby producing a train of about 30, 3.5 fsec long, 1–3 pC microbunches for each laser pulse. We describe here a novel accelerator, a micron-scale dielectric wake field accelerator driven by a 500 MeV LACARA-type injector that takes the output train of microbunches and transforms them into a near-rectangular cross section having a narrow dimension of ∼10 μm and height of ∼150 μm using a magnetic quadrupole; these bunches may be injected into a planar dielectric-lined waveguide (slightly larger than the bunch where cumulative buildup of wake fields can lead to an accelerating gradient >1 GV/m. This proposed vacuum-based wake field structure is physically rigid and capable of microfabrication accuracy, factors important in staging a large number of accelerator modules. Furthermore, the accelerating gradients it promises are comparable with those for plasma accelerators. A LACARA unit for preparing suitable bunches at 500 MeV is described. Physics issues are discussed, including bunch spreading and transport, bunch shaping, coherent diffraction radiation from the aperture, dielectric breakdown, and bunch stability in the rectangular wake field structure.

  6. Femtosecond Planar Electron Beam Source for Micron-Scale Dielectric Wake Field Accelerator. Final report

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2006-01-01

    A new accelerator LACARA is under construction at ATF, Brookhaven National Laboratory. LACARA is to be powered by a 1 TW CO2 laser, and will utilize a 6-T 2-m long solenoidal magnetic field. For a 50 MeV injected electron bunch, LACARA is expected to produce a 100 MeV 1 ps gyrating beam with ∼ 3% energy spread. Beam electrons advance in phase at the laser frequency, executing one cycle each 35 fs. A beam stop with a small off-axis channel will transmit a short beam pulse every optical cycle, thereby producing a train of about 30, 3.5 fs, 1-3 pC microbunches for each laser pulse. One application for this train of microbunches obtained from a LACARA-type device involves focusing a portion of the beam using a magnetic quadrupole into a rectangular cross-section having a narrow dimension of a few microns and a height of a few hundred microns. These microbunches may be injected into a planar dielectric-lined waveguide where cumulative buildup of wake fields can lead to an accelerating gradient > 1 GV/m. This proposed vacuum-based wake field structure is mechanically rigid and capable of accurate microfabrication, factors important in staging a large number of accelerator modules. Furthermore, the accelerating gradients it promises are comparable with those for plasma accelerators. A LACARA unit for preparing suitable bunches at 500 MeV is described. Physics issues are discussed including bunch spreading and transport, bunch shaping, aperture radiation, dielectric breakdown, and bunch stability in the rectangular wake field structure. In appendices to this report, three supporting documents are attached. These include a set of drawings that show the layout of the beam line and optical line for LACARA at ATF-BNL; and two reprints of recent articles published in PRST-AB. The first article describes measurements of the coherent superposition of wake fields that arise from a periodic train of bunches, with supporting analysis. The second article presents theory that

  7. Multi-stage wake-field accelerator

    International Nuclear Information System (INIS)

    Gai, Wei.

    1989-01-01

    In this paper we propose a multi-stage wake field acceleration scheme to overcome the low transformer ratio problem and still provide high accelerating gradients. The idea is very simple. We use a train of several electron bunches from a linear accelerator (main linac) with well defined separations between the bunches (tens of ns) to drive wake field devices. Here we have made the assumption that the wake field devices are available, whether plasma, iris-loaded metallic or dielectric wake field structures. 10 refs

  8. Accelerating field step-up transformer in wake-field accelerators

    International Nuclear Information System (INIS)

    Chojnacki, E.; Gai, W.; Schoessow, P.; Simpson, J.

    1991-01-01

    In the wake-field scheme of particle acceleration, a short, intense drive bunch of electrons passes through a slow-wave structure, leaving behind high rf power in its wake field. The axial accelerating electric field associated with the rf can be quite large, > 100 MeV/m, and is used to accelerate a much less intense ''witness'' beam to eventual energies > 1 TeV. The rf power is deposited predominantly in the fundamental mode of the structure, which, for dielectric-lined waveguide as used at Argonne, is the TM 01 mode. In all likelihood on the field amplitude will be limited only by rf breakdown of the dielectric material, the limit of which is currently unknown in the short time duration, high frequency regime of wake-field acceleration operation. To obtain such strong electric fields with given wake-field rf power, the dimensions of the dielectric-lined waveguide have to be fairly small, OD of the order of a cm and ID of a few mm, and this gives rise to the generation of strong deflection modes with beam misalignment. While a scheme exists to damp such deflection modes on a bunch-to-bunch time scale, head-tail beam deflection could still be a problem and BNS damping as well as FODO focusing are incomplete cures. Presented here are details of a scheme by which the rf power is generated by in a large-diameter wake-field tube, where deflection mode generation by the intense drive beam is tolerable, and then fed into a small-diameter acceleration tube where the less intense witness beam is accelerated by the greatly enhanced axial electric field. The witness beam generates little deflection-mode power itself, even in the small acceleration tube, thus a final high-quality, high-energy electron beam is produced

  9. Wake fields and wake field acceleration

    International Nuclear Information System (INIS)

    Bane, K.L.F.; Wilson, P.B.; Weiland, T.

    1984-12-01

    In this lecture we introduce the concepts of wake fields and wake potentials, examine some basic properties of these functions, show how they can be calculated, and look briefly at a few important applications. One such application is wake field acceleration. The wake field accelerator is capable of producing the high gradients required for future very high energy e + e - linear colliders. The principles of wake field acceleration, and a brief description of experiments in progress in this area, are presented in the concluding section. 40 references, 27 figures

  10. Wake-field studies on photonic band gap accelerator cavities

    International Nuclear Information System (INIS)

    Li, D.; Kroll, N.; Stanford Linear Accelerator Center, M/S 26, P.O. Box 4349, Stanford, California; Smith, D.R.; Schultz, S.

    1997-01-01

    We have studied the wake-field of several metal Photonic Band Gap (PBG) cavities which consist of either a square or a hexagonal array of metal cylinders, bounded on top and bottom by conducting or superconducting sheets, surrounded by placing microwave absorber at the periphery or by replacing outer rows of metal cylinders with lossy dielectric ones, or by metallic walls. A removed cylinder from the center of the array constitutes a site defect where a localized electromagnetic mode can occur. While both monopole and dipole wake-fields have been studied, we confine our attention here mainly to the dipole case. The dipole wake-field is produced by modes in the propagation bands which tend to fill the entire cavity more or less uniformly and are thus easy to damp selectively. MAFIA time domain simulation of the transverse wake-field has been compared with that of a cylindrical pill-box comparison cavity. Even without damping the wake-field of the metal PBG cavity is substantially smaller than that of the pill-box cavity and may be further reduced by increasing the size of the lattice. By introducing lossy material at the periphery we have been able to produce Q factors for the dipole modes in the 40 to 120 range without significantly degrading the accelerating mode. copyright 1997 American Institute of Physics

  11. HIGH-GRADIENT, HIGH-TRANSFORMER-RATIO, DIELECTRIC WAKE FIELD ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L

    2012-04-12

    The Phase I work reported here responds to DoE'ss stated need "...to develop improved accelerator designs that can provide very high gradient (>200 MV/m for electrons...) acceleration of intense bunches of particles." Omega-P's approach to this goal is through use of a ramped train of annular electron bunches to drive a coaxial dielectric wakefield accelerator (CDWA) structure. This approach is a direct extension of the CDWA concept from acceleration in wake fields caused by a single drive bunch, to the more efficient acceleration that we predict can be realized from a tailored (or ramped) train of several drive bunches. This is possible because of a much higher transformer ratio for the latter. The CDWA structure itself has a number of unique features, including: a high accelerating gradient G, potentially with G > 1 GeV/m; continuous energy coupling from drive to test bunches without transfer structures; inherent transverse focusing forces for particles in the accelerated bunch; highly stable motion of high charge annular drive bunches; acceptable alignment tolerances for a multi-section system. What is new in the present approach is that the coaxial dielectric structure is now to be energized by-not one-but by a short train of ramped annular-shaped drive bunches moving in the outer coaxial channel of the structure. We have shown that this allows acceleration of an electron bunch traveling along the axis in the inner channel with a markedly higher transformer ratio T than for a single drive bunch. As described in this report, the structure will be a GHz-scale prototype with cm-scale transverse dimensions that is expected to confirm principles that can be applied to the design of a future THz-scale high gradient (> 500 MV/m) accelerator with mm-scale transverse dimensions. We show here a new means to significantly increase the transformer ratio T of the device, and thereby to significantly improve its suitability as a flexible and effective component in

  12. Wake field accelerators

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1986-02-01

    In a wake field accelerator a high current driving bunch injected into a structure or plasma produces intense induced fields, which are in turn used to accelerate a trailing charge or bunch. The basic concepts of wake field acceleration are described. Wake potentials for closed cavities and periodic structures are derived, as are wake potentials on a collinear path with a charge distribution. Cylindrically symmetric structures excited by a beam in the form of a ring are considered

  13. Electron-Cloud Wake Fields

    CERN Document Server

    Rumolo, Giovanni

    2002-01-01

    The electron cloud gives rise to coherent and incoherent single-bunch wake fields, both in the longitudinal and in the transverse direction, and to coherent coupled-bunch wakes. These wake fields can be computed using the simulation programs ECLOUD and HEADTAIL developed at CERN. We present the wake fields simulated for the LHC beam in the CERN SPS and at injection into the LHC in different magnetic field configurations (field-free region, dipole, and solenoid), where the magnetic field affects both the elec-tron motion during a bunch passage and the overall electron distribution in the beam pipe.

  14. Wake fields in semiconductor plasmas

    International Nuclear Information System (INIS)

    Berezhiani, V.I.; Mahajan, S.M.

    1994-05-01

    It is shown that an intense short laser pulse propagating through a semiconductor plasma will generated longitudinal Langmuir waves in its wake. The measurable wake field can be used as a diagnostic to study nonlinear optical phenomena. For narrow gap semiconductors (for examples InSb) with Kane-type dispersion relation, the system can simulate, at currently available laser powers, the physics underlying wake-field accelerators. (author). 9 refs, 1 fig

  15. Two-Channel Dielectric Wake Field Accelerator

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2012-01-01

    Experimental results are reported for test beam acceleration and deflection in a two-channel, cm-scale, rectangular dielectric-lined wakefield accelerator structure energized by a 14-MeV drive beam. The dominant waveguide mode of the structure is at ∼30 GHz, and the structure is configured to exhibit a high transformer ratio (∼12:1). Accelerated bunches in the narrow secondary channel of the structure are continuously energized via Cherenkov radiation that is emitted by a drive bunch moving in the wider primary channel. Observed energy gains and losses, transverse deflections, and changes in the test bunch charge distribution compare favorably with predictions of theory.

  16. Dielectrics in electric fields

    CERN Document Server

    Raju, Gorur G

    2003-01-01

    Discover nontraditional applications of dielectric studies in this exceptionally crafted field reference or text for seniors and graduate students in power engineering tracks. This text contains more than 800 display equations and discusses polarization phenomena in dielectrics, the complex dielectric constant in an alternating electric field, dielectric relaxation and interfacial polarization, the measurement of absorption and desorption currents in time domains, and high field conduction phenomena. Dielectrics in Electric Fields is an interdisciplinary reference and text for professionals and students in electrical and electronics, chemical, biochemical, and environmental engineering; physical, surface, and colloid chemistry; materials science; and chemical physics.

  17. Collinear wake field acceleration

    International Nuclear Information System (INIS)

    Bane, K.L.F.; Chen, P.; Wilson, P.B.

    1985-04-01

    In the Voss-Weiland scheme of wake field acceleration a high current, ring-shaped driving bunch is used to accelerate a low current beam following along on axis. In such a structure, the transformer ratio, i.e., the ratio of maximum voltage that can be gained by the on-axis beam and the voltage lost by the driving beam, can be large. In contrast, it has been observed that for an arrangement in which driving and driven bunches follow the same path, and where the current distribution of both bunches is gaussian, the transformer ratio is not normally greater than two. This paper explores some of the possibilities and limitations of a collinear acceleration scheme. In addition to its application to wake field acceleration in structures, this study is also of interest for the understanding of the plasma wake field accelerator. 11 refs., 4 figs

  18. Wake field in electron-positron plasmas

    International Nuclear Information System (INIS)

    Avinash, K.; Berezhiani, V.I.

    1993-03-01

    We study the creation of wake field in cold electron positron plasma by electron bunches. In the resulting plasma inhomogeneity we study the propagation of short electromagnetic pulse. In is found that wake fields can change the frequency of the radiation substantially. (author). 7 refs, 1 fig

  19. Conformal FDTD modeling wake fields

    Energy Technology Data Exchange (ETDEWEB)

    Jurgens, T.; Harfoush, F.

    1991-05-01

    Many computer codes have been written to model wake fields. Here we describe the use of the Conformal Finite Difference Time Domain (CFDTD) method to model the wake fields generated by a rigid beam traveling through various accelerating structures. The non- cylindrical symmetry of some of the problems considered here requires the use of a three dimensional code. In traditional FDTD codes, curved surfaces are approximated by rectangular steps. The errors introduced in wake field calculations by such an approximation can be reduced by increasing the mesh size, therefore increasing the cost of computing. Another approach, validated here, deforms Ampere and Faraday contours near a media interface so as to conform to the interface. These improvements of the FDTD method result in better accuracy of the fields at asymptotically no computational cost. This method is also capable of modeling thin wires as found in beam profile monitors, and slots and cracks as found in resistive wall motions. 4 refs., 5 figs.

  20. Fast particle tracking with wake fields

    Energy Technology Data Exchange (ETDEWEB)

    Dohlus, M.; Floettmann, K.; Henning, C.

    2012-01-15

    Tracking calculations of charged particles in electromagnetic fields require in principle the simultaneous solution of the equation of motion and of Maxwell's equations. In many tracking codes a simpler and more efficient approach is used: external fields like that of the accelerating structures are provided as field maps, generated in separate computations and for the calculation of self fields the model of a particle bunch in uniform motion is used. We describe how an externally computed wake function can be approximated by a table of Taylor coefficients and how the wake field kick can be calculated for the particle distribution in a tracking calculation. The integrated kick, representing the effect of a distributed structure, is applied at a discrete time. As an example, we use our approach to calculate the emittance growth of a bunch in an undulator beam pipe due to resistive wall wake field effects. (orig.)

  1. Numerical challenges of short range wake field calculations

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Thomas; Gjonaj, Erion; Weiland, Thomas [Technische Universitaet Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder (TEMF)

    2011-07-01

    For present and future accelerator projects with ultra short bunches the accurate and reliable calculation of short range wake fields is an important issue. However, the numerical calculation of short range wake fields is a numerical challenging task. The presentation gives an overview over the numerical challenges and techniques for short range wake field calculations. Finally, some simulation results obtained by the program PBCI developed at the TU Darmstadt are presented.

  2. Wake field in matched kicker magnet

    International Nuclear Information System (INIS)

    Miyahara, Y.

    1979-01-01

    Coherent transverse instability observed in KEK booster proton synchrotron has been reported previously. This instability is induced by the interaction of the beam with kicker magnet for the fast beam extraction. To understand the mechanism completely, it is necessary to know the wake field in detail. Here, the wake field or induced current in the kicker magnet which is terminated with matched resistance is considered

  3. Detailed field test of yaw-based wake steering

    DEFF Research Database (Denmark)

    Fleming, P.; Churchfield, M.; Scholbrock, A.

    2016-01-01

    production. In the first phase, a nacelle-mounted scanning lidar was used to verify wake deflection of a misaligned turbine and calibrate wake deflection models. In the second phase, these models were used within a yaw controller to achieve a desired wake deflection. This paper details the experimental......This paper describes a detailed field-test campaign to investigate yaw-based wake steering. In yaw-based wake steering, an upstream turbine intentionally misaligns its yaw with respect to the inflow to deflect its wake away from a downstream turbine, with the goal of increasing total power...... design and setup. All data collected as part of this field experiment will be archived and made available to the public via the U.S. Department of Energy’s Atmosphere to Electrons Data Archive and Portal....

  4. Wake field acceleration experiments

    International Nuclear Information System (INIS)

    Simpson, J.D.

    1988-01-01

    Where and how will wake field acceleration devices find use for other than, possibly, accelerators for high energy physics? I don't know that this can be responsibly answered at this time. What I can do is describe some recent results from an ongoing experimental program at Argonne which support the idea that wake field techniques and devices are potentially important for future accelerators. Perhaps this will spawn expanded interest and even new ideas for the use of this new technology. The Argonne program, and in particular the Advanced Accelerator Test Facility (AATF), has been reported in several fairly recent papers and reports. But because this is a substantially new audience for the subject, I will include a brief review of the program and the facility before describing experiments. 10 refs., 7 figs

  5. The resonant wake field transformer (RWT)-collider

    International Nuclear Information System (INIS)

    Weiland, T.; Holtkamp, N.; Schuett, P.; Wanzenberg, R.

    1990-01-01

    Future e + e - Linear Colliders with center of mass energies of 2 TeV need average accelerating gradients of 100 MeV/m to be built within a length of 20 km. The gradients required by colliders at this energy range can be economically provided by resonant Wake Field Transformers. At the Wake Field Experiment at DESY (Deutsches Elektronen-Synchrotron) a 20 cm long transformer section was investigated and the most recent results are presented. The second part gives a short overview of the present status of research concerning the proposed next stage of a multibunch driver linac with superconducting cavities and long Wake Field Transformer sections. (author) 9 refs.; 5 figs.; 1 tab

  6. Wake Field of the e-Cloud

    International Nuclear Information System (INIS)

    Heifets, Samuel A

    2001-01-01

    The wake field of the cloud is derived analytically taking into account the finite size of the cloud and nonlinearity of the electron motion. The analytic expression for the effective transverse wake field caused by the electron cloud in a positron storage ring is derived. The derivation includes the frequency spread in the cloud, which is the main effect of the nonlinearity of electron motion in the cloud. This approach allows calculation of the Q-factor and study the tune spread in a bunch

  7. Dielectric effect on electric fields in the vicinity of the metal–vacuum–dielectric junction

    International Nuclear Information System (INIS)

    Chung, M.S.; Mayer, A.; Miskovsky, N.M.; Weiss, B.L.; Cutler, P.H.

    2013-01-01

    The dielectric effect was theoretically investigated in order to describe the electric field in the vicinity of a junction of a metal, dielectric, and vacuum. The assumption of two-dimensional symmetry of the junction leads to a simple analytic form and to a systematic numerical calculation for the field. The electric field obtained for the triple junction was found to be enhanced or reduced according to a certain criterion determined by the contact angles and dielectric constant. Further numerical calculations of the dielectric effect show that an electric field can experience a larger enhancement or reduction for a quadruple junction than that achieved for the triple junction. It was also found that even though it changes slowly in comparison with the shape effect, the dielectric effect was noticeably large over the entire range of the shape change. - Highlights: ► This work explains how a very strong electric field can be produced due to the dielectric in the vicinity of metal–dielectric contact. ► This work deals with configurations which enhance electric fields using the dielectric effect. The configuration is a type of junction at which metal, vacuum and dielectric meet. ► This work suggests the criterion to determine whether field enhancement occurs or not in the triple junction of metal, vacuum and dielectric. ► This work suggests that a quadruple junction is more effective in enhancing the electric field than a triple junction. The quadruple junction is formed by an additional vacuum portion to the triple junction. ► This work suggests that a triple junction can be a breakthrough candidate for a cold electron source

  8. Conformal FDTD modeling of 3-D wake fields

    International Nuclear Information System (INIS)

    Jurgens, T.G.; Harfoush, F.A.

    1991-01-01

    Many computer codes have been written to model wake fields. Here the authors describe the use of the Conformal Finite Difference Time Domain (CFDTD) method to model the wake fields generated by a rigid beam traveling through various accelerating structures. The non-cylindrical symmetry of some of the problems considered here requires the use of a three dimensional code. In traditional FDTD codes, curved surfaces are approximated by rectangular steps. The errors introduced in wake field calculations by such an approximation can be reduced by increasing the mesh size, therefore increasing the cost of computing. Another approach, validated here, deforms Ampere and Faraday contours near a media interface so as to conform to the interface. These improvements so as to conform to the interface. These improvements to the FDTD method result in better accuracy of the fields at asymptotically no computational cost. This method is also capable of modeling thin wires as found in beam profile monitors, and slots and cracks as found in resistive wall monitors

  9. Theory of the dielectric wakefield accelerator

    International Nuclear Information System (INIS)

    Mtingwa, S.K.

    1990-10-01

    The general theory for all angular modes m of the dielectric wakefield accelerator is reformulated. The expressions for the accelerating electric fields and transverse wake forces are written in terms of matrices, the zeros of one of which determine the excitation frequencies of the dielectric structure. In this scheme it is possible to obtain a maximum accelerating gradient of 2.0 megavolts per meter per nanoCoulomb of driver beam charge, for a driver beam of 0.7 millimeters rms bunch length. 29 refs., 5 figs

  10. Experimental studies of plasma wake-field acceleration and focusing

    International Nuclear Information System (INIS)

    Rosenzweig, J.B.; Cole, B.; Ho, C.; Argonne National Lab., IL

    1989-01-01

    More than four years after the initial proposal of the Plasma Wake-field Accelerator (PWFA), it continues to be the object of much investigation, due to the promise of the ultra-high accelerating gradients that can exist in relativistic plasma waves driven in the wake of charged particle beams. These large amplitude plasma wake-fields are of interest in the laboratory, both for the wealth of basic nonlinear plasma wave phenomena which can be studied, as well as for the applications of acceleration of focusing of electrons and positrons in future linear colliders. Plasma wake-field waves are also of importance in nature, due to their possible role in direct cosmic ray acceleration. The purpose of the present work is to review the recent experimental advances made in PWFA research at Argonne National Laboratory, in which many interesting beam and plasma phenomena have been observed. Emphasis is given to discussion of the nonlinear aspects of the PWFA beam-plasma interaction. 29 refs., 13 figs

  11. Wakefield excitation by a sequence of relativistic electron bunches in dielectric waveguides of rectangular cross-section of various configurations

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Mirnyj, V.I.; Onishchenko, I.N.; Sotnikov, G.V.; Uskov, V.V.

    2008-01-01

    The possibility to enhance the efficiency of wake wave excitation in dielectric waveguides of rectangular cross-section was investigated by increase of electron bunches coupling with excited wakefield that was achieved by decrease of transit channel cross-section. At that for each configuration the required changes of dielectric plates size were made to for maintain the coincidence concurrence of bunch repetition frequency and frequency of the principal transverse mode of the corresponding dielectric waveguide. It is established, the decrease of transit channel leading to essential changing of topography of total field excited wake wave

  12. Axial electric wake field inside the induction gap exited by the intense electron beam

    International Nuclear Information System (INIS)

    Zhang Kaizhi; Zhang Huang; Long Jidong; Yang Guojun; He Xiaozhong; Wang Huacen

    2008-01-01

    While an intense electron beam passes through the accelerating gaps of a linear induction accelerator, a strong wake field will be excited. In this paper a relatively simple model is established based on the interaction between the transverse magnetic wake field and the electron beam, and the numerical calculation in succession generates a magnetic wake field distribution along the accelerator and along the beam pulse as well. The axial electric wake field is derived based on the relation between field components of a resonant mode. According to some principles in existence, the influence of this field on the high voltage properties of the induction gap is analyzed. The Dragon-I accelerator is taken as an example, and its maximum electric wake field is about 17 kV/cm, which means the effect of the wake field is noticeable. (authors)

  13. Evaluation of Fast-Time Wake Models Using Denver 2006 Field Experiment Data

    Science.gov (United States)

    Ahmad, Nash’at N.; Pruis, Matthew J.

    2015-01-01

    The National Aeronautics and Space Administration conducted a series of wake vortex field experiments at Denver in 2003, 2005, and 2006. This paper describes the lidar wake vortex measurements and associated meteorological data collected during the 2006 deployment, and includes results of recent reprocessing of the lidar data using a new wake vortex algorithm and estimates of the atmospheric turbulence using a new algorithm to estimate eddy dissipation rate from the lidar data. The configuration and set-up of the 2006 field experiment allowed out-of-ground effect vortices to be tracked in lateral transport further than any previous campaign and thereby provides an opportunity to study long-lived wake vortices in moderate to low crosswinds. An evaluation of NASA's fast-time wake vortex transport and decay models using the dataset shows similar performance as previous studies using other field data.

  14. Field test of wake steering at an offshore wind farm

    Directory of Open Access Journals (Sweden)

    P. Fleming

    2017-05-01

    Full Text Available In this paper, a field test of wake-steering control is presented. The field test is the result of a collaboration between the National Renewable Energy Laboratory (NREL and Envision Energy, a smart energy management company and turbine manufacturer. In the campaign, an array of turbines within an operating commercial offshore wind farm in China have the normal yaw controller modified to implement wake steering according to a yaw control strategy. The strategy was designed using NREL wind farm models, including a computational fluid dynamics model, Simulator fOr Wind Farm Applications (SOWFA, for understanding wake dynamics and an engineering model, FLOw Redirection and Induction in Steady State (FLORIS, for yaw control optimization. Results indicate that, within the certainty afforded by the data, the wake-steering controller was successful in increasing power capture, by amounts similar to those predicted from the models.

  15. Electrostatic field in inhomogeneous dielectric media. I. Indirect boundary element method

    International Nuclear Information System (INIS)

    Goel, N.S.; Gang, F.; Ko, Z.

    1995-01-01

    A computationally fast method is presented for calculating electrostatic field in arbitrary inhomogeneous dielectric media with open boundary condition. The method involves dividing the whole space into cubical cells and then finding effective dielectric parameters for interfacial cells consisting of several dielectrics. The electrostatic problem is then solved using either the indirect boundary element method described in this paper or the so-called volume element method described in the companion paper. Both methods are tested for accuracy by comparing the numerically calculated electrostatic fields against those analytically obtained for a dielectric sphere and dielectric ellipsoid in a uniform field and for a dielectric sphere in a point charge field

  16. Analysis of a high brightness photo electron beam with self field and wake field effects

    International Nuclear Information System (INIS)

    Parsa, Z.

    1991-01-01

    High brightness sources are the basic ingredients in the new accelerator developments such as Free-Electron Laser experiments. The effects of the interactions between the highly charged particles and the fields in the accelerating structure, e.g. R.F., Space charge and Wake fields can be detrimental to the beam and the experiments. We present and discuss the formulation used, some simulation and results for the Brookhaven National Laboratory high brightness beam that illustrates effects of the accelerating field, space charge forces (e.g. due to self field of the bunch), and the wake field (e.g. arising from the interaction of the cavity surface and the self field of the bunch)

  17. Longitudinal effects of near-uniform beam-wall wake fields

    International Nuclear Information System (INIS)

    Ruggiero, A.G.; Talmann, R.

    1979-01-01

    Several theories have been developed in the past to explain longitudinal instabilities of individual bunches in particle accelerators and storage rings. But they are less than satisfactory because in one way or another they rely on some mathematical approximation of doubtful physical meaning. Here, the basic physical model is simplified in order to help to understand a little better the physics involved. Initially, the motion of two particles executing phase oscillations in the same bunch under the influence of the wake field generated by the other is investigated. This motion is stable and bounded even for the case of a slowly varying wake field. But the distortions of the trajectories can, nevertheless, be significant and can be interpreted as bunch lengthening and widening. These models generalized to an N particle model. If the wake field is constant, the equations are simple enough that it is possible to solve exactly for the intensity-limited, self-consistent, longitudinal particle distribution. It is not necessary to solve, or even introduce, the Vlasov equation. These models exhibit effects like dipole and quadrupole oscillations and bunch lengthening, in qualitative agreement with observed behavior, but no attempt has been made at quantitative comparison with observation

  18. Electron acceleration by laser produced wake field: Pulse shape effect

    Science.gov (United States)

    Malik, Hitendra K.; Kumar, Sandeep; Nishida, Yasushi

    2007-12-01

    Analytical expressions are obtained for the longitudinal field (wake field: Ex), density perturbations ( ne') and the potential ( ϕ) behind a laser pulse propagating in a plasma with the pulse duration of the electron plasma period. A feasibility study on the wake field is carried out with Gaussian-like (GL) pulse, rectangular-triangular (RT) pulse and rectangular-Gaussian (RG) pulse considering one-dimensional weakly nonlinear theory ( ne'/n0≪1), and the maximum energy gain acquired by an electron is calculated for all these three types of the laser pulse shapes. A comparative study infers that the RT pulse yields the best results: In its case maximum electron energy gain is 33.5 MeV for a 30 fs pulse duration whereas in case of GL (RG) pulse of the same duration the gain is 28.6 (28.8)MeV at the laser frequency of 1.6 PHz and the intensity of 3.0 × 10 18 W/m 2. The field of the wake and hence the energy gain get enhanced for the higher laser frequency, larger pulse duration and higher laser intensity for all types of the pulses.

  19. Traversing field of view and AR-PIV for mid-field wake vortex investigation in a towing tank

    Science.gov (United States)

    Scarano, F.; van Wijk, C.; Veldhuis, L. L. M.

    2002-08-01

    Wake vortex flow experiments are performed in a water tank where a 1:48 scaled model of a large transport aircraft A340-300 is towed at the speed of 3 and 5 ms-1 with values of the angle of attack α={2°, 4°, 8°}. Particle image velocimetry (PIV) measurements are performed in a plane perpendicular to the towing direction describing the streamwise component of the wake vorticity. The instantaneous field of view (I-FOV) is traversed vertically with an underwater moving-camera device tracking the vortex core during the downward motion. An adaptive resolution (AR) image-processing technique is introduced that enhances the PIV interrogation in terms of spatial resolution and accuracy. The main objectives of the investigation are to demonstrate the applicability of PIV diagnostics in wake vortex research with towing-tank facilities. The specific implementation of the traversing field-of-view (T-FOV) technique and the AR image processing are driven by the need to characterize the vortex wake global properties as well as the vortex decay phenomenon in the mid- and far-field. Relevant aerodynamic information is obtained in the mid-field where the time evolution of the vortex structure (core radius and tangential velocity) and of the overall vortex wake (vortex trajectory, descent velocity, circulation) are discussed.

  20. Field measurements in the wake of a model wind turbine

    International Nuclear Information System (INIS)

    Pol, Suhas; Taylor, Amelia; Doostalab, Ali; Novoa, Santiago; Castillo, Luciano; Bilbao, Argenis; Sheng, Jian; Giesselmann, Michael; Westergaard, Carsten; Hussain, Fazle; Ren, Beibei; Glauser, Mark

    2014-01-01

    As a first step to study the dynamics of a wind farm' we experimentally explored the flow field behind a single wind turbine of diameter 1.17 m at a hub height of 6.25 m. A 10 m tower upstream of the wind farm characterizes the atmospheric conditions and its influence on the wake evolution. A vertical rake of sonic anemometers is clustered around the hub height on a second tower' 6D downstream of the turbine. We present preliminary observations from a 1- hour block of data recorded in near-neutral atmospheric conditions. The ratio of the standard deviation of power to the inflow velocity is greater than three' revealing adverse effects of inflow turbulence on the power and load fluctuations. Furthermore' the wake defect and Reynolds stress and its gradient are pronounced at 6D. The flux of energy due to Reynolds stresses is similar to that reported in wind tunnel studies. The swirl and mixing produces a constant temperature wake which results in a density jump across the wake interface. Further field measurements will explore the dynamics of a model wind farm' including the effects of atmospheric variability

  1. Wake-field generation by the ponderomotive memory effect

    International Nuclear Information System (INIS)

    Wolf, U.; Schamel, H.

    1997-01-01

    An analytical and numerical investigation of the plasma response to an imposed high frequency wave packet with a slow explicit time-dependent envelope is presented. An underlying picture of ponderomotive effects is developed, which shows that the explicit time dependence forces us to treat the problem kinetically, and furthermore, that a wake field is generated by the ponderomotive memory effect. The latter supplements the well-known ponderomotive force and fake heating effect. Several perturbation schemes are compared showing that the influence of resonant particles, treated by the method of characteristics, has to be taken into account for Langmuir wave packets with kλ d ≥0.2, where k is the wave number and λ d the Debye length. A self-consistent Vlasov simulation shows the disappearance of the density depression in the case of immobile ions, whereas the wake-field pattern survives self-consistency. copyright 1997 The American Physical Society

  2. Investigation on wind turbine wakes: wind tunnel tests and field experiments with LIDARs

    Science.gov (United States)

    Iungo, Giacomo; Wu, Ting; Cöeffé, Juliette; Porté-Agel, Fernando; WIRE Team

    2011-11-01

    An investigation on the interaction between atmospheric boundary layer flow and wind turbines is carried out with wind tunnel and LIDAR measurements. The former were carried out using hot-wire anemometry and multi-hole pressure probes in the wake of a three-bladed miniature wind turbine. The wind turbine wake is characterized by a strong velocity defect in the proximity of the rotor, and its recovery is found to depend on the characteristics of the incoming atmospheric boundary layer (mean velocity and turbulence intensity profiles). Field experiments were performed using three wind LIDARs. Bi-dimensional scans are performed in order to analyse the wake wind field with different atmospheric boundary layer conditions. Furthermore, simultaneous measurements with two or three LIDARs allow the reconstruction of multi-component velocity fields. Both LIDAR and wind tunnel measurements highlight an increased turbulence level at the wake boundary for heights comparable to the top-tip of the blades; this flow feature can produce dangerous fatigue loads on following wind turbines.

  3. TE/TM alternating direction scheme for wake field calculation in 3D

    Energy Technology Data Exchange (ETDEWEB)

    Zagorodnov, Igor [Institut fuer Theorie Elektromagnetischer Felder (TEMF), Technische Universitaet Darmstadt, Schlossgartenstrasse 8, D-64289 Darmstadt (Germany)]. E-mail: zagor@temf.de; Weiland, Thomas [Institut fuer Theorie Elektromagnetischer Felder (TEMF), Technische Universitaet Darmstadt, Schlossgartenstrasse 8, D-64289 Darmstadt (Germany)

    2006-03-01

    In the future, accelerators with very short bunches will be used. It demands developing new numerical approaches for long-time calculation of electromagnetic fields in the vicinity of relativistic bunches. The conventional FDTD scheme, used in MAFIA, ABCI and other wake and PIC codes, suffers from numerical grid dispersion and staircase approximation problem. As an effective cure of the dispersion problem, a numerical scheme without dispersion in longitudinal direction can be used as it was shown by Novokhatski et al. [Transition dynamics of the wake fields of ultrashort bunches, TESLA Report 2000-03, DESY, 2000] and Zagorodnov et al. [J. Comput. Phys. 191 (2003) 525]. In this paper, a new economical conservative scheme for short-range wake field calculation in 3D is presented. As numerical examples show, the new scheme is much more accurate on long-time scale than the conventional FDTD approach.

  4. Do dielectric nanostructures turn metallic in high-electric dc fields?

    Science.gov (United States)

    Silaeva, E P; Arnoldi, L; Karahka, M L; Deconihout, B; Menand, A; Kreuzer, H J; Vella, A

    2014-11-12

    Three-dimensional dielectric nanostructures have been analyzed using field ion microscopy (FIM) to study the electric dc field penetration inside these structures. The field is proved to be screened within a few nanometers as theoretically calculated taking into account the high-field impact ionization process. Moreover, the strong dc field of the order of 0.1 V/Å at the surface inside a dielectric nanostructure modifies its band structure leading to a strong band gap shrinkage and thus to a strong metal-like optical absorption near the surface. This metal-like behavior was theoretically predicted using first-principle calculations and experimentally proved using laser-assisted atom probe tomography (APT). This work opens up interesting perspectives for the study of the performance of all field-effect nanodevices, such as nanotransistor or super capacitor, and for the understanding of the physical mechanisms of field evaporation of dielectric nanotips in APT.

  5. A prescribed wake rotor inflow and flow field prediction analysis, user's manual and technical approach

    Science.gov (United States)

    Egolf, T. A.; Landgrebe, A. J.

    1982-01-01

    A user's manual is provided which includes the technical approach for the Prescribed Wake Rotor Inflow and Flow Field Prediction Analysis. The analysis is used to provide the rotor wake induced velocities at the rotor blades for use in blade airloads and response analyses and to provide induced velocities at arbitrary field points such as at a tail surface. This analysis calculates the distribution of rotor wake induced velocities based on a prescribed wake model. Section operating conditions are prescribed from blade motion and controls determined by a separate blade response analysis. The analysis represents each blade by a segmented lifting line, and the rotor wake by discrete segmented trailing vortex filaments. Blade loading and circulation distributions are calculated based on blade element strip theory including the local induced velocity predicted by the numerical integration of the Biot-Savart Law applied to the vortex wake model.

  6. Numerical simulation of the leaky dielectric microdroplet generation in electric fields

    Science.gov (United States)

    Kamali, Reza; Manshadi, Mohammad Karim Dehghan

    2016-07-01

    Microdroplet generation has a vast range of applications in the chemical, biomedical, and biological sciences. Several devices are applied to produce microdroplets, such as Co-flow, T-junction and Flow-focusing. The important point in the producing process is controlling the separated fluid volume in these devices. On the other hand, a large number of liquids, especially aqueous one, are influenced by electric or magnetic fields. As a consequence, an electric field could be used in order to affect the separated fluid volume. In this study, effects of an electric field on the microdroplet generation in a Co-flow device are investigated numerically. Furthermore, effects of some electrical properties such as permittivity on the separating process of microdroplets are studied. Leaky dielectric and perfect dielectric models are used in this investigation. According to the results, in the microdroplet generating process, leaky dielectric fluids show different behaviors, when an electric field is applied to the device. In other words, in a constant electric field strength, the volume of generated microdroplets can increase or decrease, in comparison with the condition without the electric field. However, for perfect dielectric fluids, droplet volume always decreases with increasing the electric field strength. In order to validate the numerical method of this study, deformation of a leaky dielectric droplet in an electric field is investigated. Results are compared with Taylor theoretical model.

  7. High field dielectric properties of anisotropic polymer-ceramic composites

    International Nuclear Information System (INIS)

    Tomer, V.; Randall, C. A.

    2008-01-01

    Using dielectrophoretic assembly, we create anisotropic composites of BaTiO 3 particles in a silicone elastomer thermoset polymer. We study a variety of electrical properties in these composites, i.e., permittivity, dielectric breakdown, and energy density as function of ceramic volume fraction and connectivity. The recoverable energy density of these electric-field-structured composites is found to be highly dependent on the anisotropy present in the system. Our results indicate that x-y-aligned composites exhibit higher breakdown strengths along with large recoverable energy densities when compared to 0-3 composites. This demonstrates that engineered anisotropy can be employed to control dielectric breakdown strengths and nonlinear conduction at high fields in heterogeneous systems. Consequently, manipulation of anisotropy in high-field dielectric properties can be exploited for the development of high energy density polymer-ceramic systems

  8. Evidence of circular Rydberg states in beam-foil experiments: Role of the surface wake field

    Science.gov (United States)

    Sharma, Gaurav; Puri, Nitin K.; Kumar, Pravin; Nandi, T.

    2017-12-01

    We have employed the concept of the surface wake field to model the formation of the circular Rydberg states in the beam-foil experiments. The experimental studies of atomic excitation processes show the formation of circular Rydberg states either in the bulk of the foil or at the exit surface, and the mechanism is explained by several controversial theories. The present model is based on the interesting fact that the charge state fraction as well as the surface wake field depend on the foil thickness and it resolves a long-standing discrepancy on the mechanism of the formation of circular Rydberg states. The influence of exit layers is twofold. Initially, the high angular momentum Rydberg states are produced in the last layers of the foil by the Stark switching due to the bulk wake field and finally, they are transferred to the circular Rydberg states as a single multiphoton process due to the influence of the surface wake field.

  9. Hysteresis behaviour of low-voltage organic field-effect transistors employing high dielectric constant polymer gate dielectrics

    International Nuclear Information System (INIS)

    Kim, Se Hyun; Yun, Won Min; Kwon, Oh-Kwan; Hong, Kipyo; Yang, Chanwoo; Park, Chan Eon; Choi, Woon-Seop

    2010-01-01

    Here, we report on the fabrication of low-voltage-operating pentacene-based organic field-effect transistors (OFETs) that utilize crosslinked cyanoethylated poly(vinyl alcohol) (CR-V) gate dielectrics. The crosslinked CR-V-based OFET could be operated successfully at low voltages (below 4 V), but abnormal behaviour during device operation, such as uncertainty in the field-effect mobility (μ) and hysteresis, was induced by the slow polarization of moieties embedded in the gate dielectric (e.g. polar functionalities, ionic impurities, water and solvent molecules). In an effort to improve the stability of OFET operation, we measured the dependence of μ and hysteresis on dielectric thickness, CR-V crosslinking conditions and sweep rate of the gate bias. The influence of the CR-V surface properties on μ, hysteresis, and the structural and morphological features of the pentacene layer grown on the gate dielectric was characterized and compared with the properties of pentacene grown on a polystyrene surface.

  10. Poly(methyl methacrylate) as a self-assembled gate dielectric for graphene field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Sanne, A.; Movva, H. C. P.; Kang, S.; McClellan, C.; Corbet, C. M.; Banerjee, S. K. [Microelectronics Research Center, University of Texas, Austin, Texas 78758 (United States)

    2014-02-24

    We investigate poly(methyl methacrylate) (PMMA) as a low thermal budget organic gate dielectric for graphene field effect-transistors (GFETs) based on a simple process flow. We show that high temperature baking steps above the glass transition temperature (∼130 °C) can leave a self-assembled, thin PMMA film on graphene, where we get a gate dielectric almost for “free” without additional atomic layer deposition type steps. Electrical characterization of GFETs with PMMA as a gate dielectric yields a dielectric constant of k = 3.0. GFETs with thinner PMMA dielectrics have a lower dielectric constant due to decreased polarization arising from neutralization of dipoles and charged carriers as baking temperatures increase. The leakage through PMMA gate dielectric increases with decreasing dielectric thickness and increasing electric field. Unlike conventional high-k gate dielectrics, such low-k organic gate dielectrics are potentially attractive for devices such as the proposed Bilayer pseudoSpin Field-Effect Transistor or flexible high speed graphene electronics.

  11. Dielectric constant of ionic solutions: a field-theory approach.

    Science.gov (United States)

    Levy, Amir; Andelman, David; Orland, Henri

    2012-06-01

    We study the variation of the dielectric response of a dielectric liquid (e.g. water) when a salt is added to the solution. Employing field-theoretical methods, we expand the Gibbs free energy to first order in a loop expansion and calculate self-consistently the dielectric constant. We predict analytically the dielectric decrement which depends on the ionic strength in a complex way. Furthermore, a qualitative description of the hydration shell is found and is characterized by a single length scale. Our prediction fits rather well a large range of concentrations for different salts using only one fit parameter related to the size of ions and dipoles.

  12. Hydrodynamical flows in dielectric liquid in strong inhomogeneous pulsed electric field

    International Nuclear Information System (INIS)

    Tereshonok, Dmitry V; Babaeva, Natalia Yu; Naidis, George V; Smirnov, Boris M

    2016-01-01

    We consider a hydrodynamical flow of dielectric liquid near a high voltage needle-shaped electrode in a strong inhomogeneous pulsed electric field. It was shown that under a small rise time, a negative pressure area (pressure is less than critical pressure) appears near the electrode leading to the formation of a cavity in which electric breakdown can develop. A comparison of the dependence of the velocity of fluid near an electrode for two cases (taking into account the dependence of dielectric permeability of the liquid on the electric field and without taking it into account) was made. A field-dependent dielectric coefficient leads to the appearance of two local maximums of the velocities and increases the minimum pressure, thus lowering the possibility of cavitation. While under the constant value of dielectric permeability only one local maximum appears. (paper)

  13. Wake field of electron beam accelerated in a RF-gun of free electron laser 'ELSA'

    CERN Document Server

    Salah, W

    1999-01-01

    Wake field effects driven by a coasting relativistic charged particle beam have been studied for various cavity geometries. In the particular case of a cylindrical 'pill-box' cavity, an analytical expression of the (E, B)(x, t) map has been obtained as a development on the complete base cavity normal modes. We extend this method to the case of an accelerated beam, which leaves the downstream face of the cavity with a thermal velocity, and becomes relativistic in a few cm. This situation is very different from the classical wake of an ultrarelativistic beam for two reasons: (a) in the case of an ultrarelativistic beam, the field directly generated by beam particles in their wake can be neglected, and the so-called wake field is the electromagnetic linear response of the cavity to the exciting signal which is the beam. For a transrelativistic beam, the direct field must be taken into account and added to cavity response, which is no longer linear, except for low-intensity beam; (b) causality prevents any beam's...

  14. Modal analysis of wake fields and its application to elliptical pill-box cavity with finite aperture

    International Nuclear Information System (INIS)

    Kim, S.H.; Chen, K.W.; Yang, J.S.

    1990-01-01

    The potential of the wake-field produced by a bunch of relativistic charged particles passing through a pill-box cavity is expressed by using Floquet's theorem, and an obvious requirement that the energy gain over all acceleration cavity of many pill boxes must be proportional to the number of pill boxes, based on the previous modal approach (BWW theory). It is found that the wake-field is consisted of two classes of modes: the longitudinal modes which are independent of the aperture and the pill-box gap, the hybrid (pill-box) modes which are dependent of the pill-box gap. The wake field is predominated by the fundamental longitudinal mode whose wavelength is on the order of the effective diameter of the cavity, and its magnitude is inversely proportional to the cross sectional area of the cavity for practical cavities with small apertures. Both longitudinal and transverse wake fields due to the longitudinal modes in an elliptical pill box cavity are expressed analytically in a closed series form by solving exactly the longitudinal eigenmode equation in the elliptical cylindrical coordinates in terms of Mathieu functions. It is found that both longitudinal and transverse wake fields whose amplitudes per driving charge are greater than 100 MV/m/μC can be generated in an elliptical cavity

  15. Axion-photon conversion caused by dielectric interfaces: quantum field calculation

    Energy Technology Data Exchange (ETDEWEB)

    Ioannisian, Ara N. [Yerevan Physics Institute, Alikhanian Br. 2, 375036 Yerevan (Armenia); Kazarian, Narine [Institute for Theoretical Physics and Modeling, 375036 Yerevan (Armenia); Millar, Alexander J.; Raffelt, Georg G., E-mail: ara.ioannisyan@cern.ch, E-mail: narinkaz@gmail.com, E-mail: millar@mpp.mpg.de, E-mail: raffelt@mpp.mpg.de [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany)

    2017-09-01

    Axion-photon conversion at dielectric interfaces, immersed in a near-homogeneous magnetic field, is the basis for the dielectric haloscope method to search for axion dark matter. In analogy to transition radiation, this process is possible because the photon wave function is modified by the dielectric layers ('Garibian wave function') and is no longer an eigenstate of momentum. A conventional first-order perturbative calculation of the transition probability between a quantized axion state and these distorted photon states provides the microwave production rate. It agrees with previous results based on solving the classical Maxwell equations for the combined system of axions and electromagnetic fields. We argue that in general the average photon production rate is given by our result, independently of the detailed quantum state of the axion field. Moreover, our result provides a new perspective on axion-photon conversion in dielectric haloscopes because the rate is based on an overlap integral between unperturbed axion and photon wave functions, in analogy to the usual treatment of microwave-cavity haloscopes.

  16. Analysis of the temporal electric fields in lossy dielectric media

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson; Crichton, George C

    1991-01-01

    The time-dependent electric fields associated with lossy dielectric media are examined. The analysis illustrates that, with respect to the basic time constant, these lossy media can take a considerable time to attain a steady-state condition. Time-dependent field enhancement factors are considered......, and inherent surface-charge densities quantified. The calculation of electrostatic forces on a free, lossy dielectric particle is illustrated. An extension to the basic analysis demonstrates that, on reversal of polarity, the resultant tangential field at the interface could play a decisive role...

  17. Critical electric field for maximum tunability in nonlinear dielectrics

    Science.gov (United States)

    Akdogan, E. K.; Safari, A.

    2006-09-01

    The authors develop a self-consistent thermodynamic theory to compute the critical electric field at which maximum tunability is attained in a nonlinear dielectric. They then demonstrate that the stored electrostatic free energy functional has to be expanded at least up to the sixth order in electric field so as to define the critical field, and show that it depends solely on the fourth and sixth order permittivities. They discuss the deficiency of the engineering tunability metric in describing nonlinear dielectric phenomena, introduce a critical field renormalized tunability parameter, and substantiate the proposed formalism by computing the critical electric field for prototypical 0.9Pb(Mg1/3,Nb2/3)-0.1PbTiO3 and Ba(Ti0.85,Sn0.15)O3 paraelectrics.

  18. Ion-wake Field inside a Glass Box

    OpenAIRE

    Chen, Mudi; Dropmann, Michael; Zhang, Bo; Matthews, Lorin S.; Hyde, Truell W.

    2016-01-01

    The confinement provided by a glass box is proving ideal for the formation of vertically aligned structures and a convenient method for controlling the number of dust particles comprising these dust structures, as well as their size and shape. In this paper, the electronic confinement of the glass box is mapped and the particle interactions between the particle pairs inside the glass box are measured. The ion-wake field is shown to exist within the glass box and its vertical and horizontal ex...

  19. Longitudinal wake field for an electron beam accelerated through a ultra-high field gradient

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, G.; Saldin, E.; Schneidmiller, E.; Yurkov, M.

    2006-12-15

    Electron accelerators with higher and higher longitudinal field gradients are desirable, as they allow for the production of high energy beams by means of compact and cheap setups. The new laser-plasma acceleration technique appears to constitute the more promising breakthrough in this direction, delivering unprecedent field gradients up to TV/m. In this article we give a quantitative description of the impact of longitudinal wake fields on the electron beam. Our paper is based on the solution of Maxwell's equations for the longitudinal field. Our conclusions are valid when the acceleration distance is much smaller than the the overtaking length, that is the length that electrons travel as a light signal from the tail of the bunch overtakes the head of the bunch. This condition is well verified for laser-plasma devices. We calculate a closed expression for the impedance and the wake function that may be evaluated numerically. It is shown that the rate of energy loss in the bunch due to radiative interaction is equal to the energy emitted through coherent radiation in the far-zone. Furthermore, an expression is found for the asymptotic limit of a large distance of the electron beam from the accelerator compared with the overtaking length. Such expression allows us to calculate analytical solutions for a Gaussian transverse and longitudinal bunch shape. Finally, we study the feasibility of Table-Top Free-Electron Lasers in the Vacuum Ultra-Violet (TT-VUV FEL) and X-ray range (TT-XFEL), respectively based on 100 MeV and 1 GeV laser-plasma accelerator drivers. Numerical estimations presented in this paper indicate that the effects of the time-dependent energy change induced by the longitudinal wake pose a serious threat to the operation of these devices. (orig.)

  20. Manipulation of dielectric Rayleigh particles using highly focused elliptically polarized vector fields.

    Science.gov (United States)

    Gu, Bing; Xu, Danfeng; Rui, Guanghao; Lian, Meng; Cui, Yiping; Zhan, Qiwen

    2015-09-20

    Generation of vectorial optical fields with arbitrary polarization distribution is of great interest in areas where exotic optical fields are desired. In this work, we experimentally demonstrate the versatile generation of linearly polarized vector fields, elliptically polarized vector fields, and circularly polarized vortex beams through introducing attenuators in a common-path interferometer. By means of Richards-Wolf vectorial diffraction method, the characteristics of the highly focused elliptically polarized vector fields are studied. The optical force and torque on a dielectric Rayleigh particle produced by these tightly focused vector fields are calculated and exploited for the stable trapping of dielectric Rayleigh particles. It is shown that the additional degree of freedom provided by the elliptically polarized vector field allows one to control the spatial structure of polarization, to engineer the focusing field, and to tailor the optical force and torque on a dielectric Rayleigh particle.

  1. Observation of high-resolution wind fields and offshore wind turbine wakes using TerraSAR-X imagery

    Science.gov (United States)

    Gies, Tobias; Jacobsen, Sven; Lehner, Susanne; Pleskachevsky, Andrey

    2014-05-01

    1. Introduction Numerous large-scale offshore wind farms have been built in European waters and play an important role in providing renewable energy. Therefore, knowledge of behavior of wakes, induced by large wind turbines and their impact on wind power output is important. The spatial variation of offshore wind turbine wake is very complex, depending on wind speed, wind direction, ambient atmospheric turbulence and atmospheric stability. In this study we demonstrate the application of X-band TerraSAR-X (TS-X) data with high spatial resolution for studies on wind turbine wakes in the near and far field of the offshore wind farm Alpha Ventus, located in the North Sea. Two cases which different weather conditions and different wake pattern as observed in the TS-X image are presented. 2. Methods The space-borne synthetic aperture radar (SAR) is a unique sensor that provides two-dimensional information on the ocean surface. Due to their high resolution, daylight and weather independency and global coverage, SARs are particularly suitable for many ocean and coastal applications. SAR images reveal wind variations on small scales and thus represent a valuable means in detailed wind-field analysis. The general principle of imaging turbine wakes is that the reduced wind speed downstream of offshore wind farms modulates the sea surface roughness, which in turn changes the Normalized Radar Cross Section (NRCS, denoted by σ0) in the SAR image and makes the wake visible. In this study we present two cases at the offshore wind farm Alpha Ventus to investigate turbine-induced wakes and the retrieved sea surface wind field. Using the wind streaks, visible in the TS-X image and the shadow behind the offshore wind farm, induced by turbine wake, the sea surface wind direction is derived and subsequently the sea surface wind speed is calculated using the latest generation of wind field algorithm XMOD2. 3. Case study alpha ventus Alpha Ventus is located approximately 45 km from the

  2. Three-dimensional wake field analysis by boundary element method

    International Nuclear Information System (INIS)

    Miyata, K.

    1987-01-01

    A computer code HERTPIA was developed for the calculation of electromagnetic wake fields excited by charged particles travelling through arbitrarily shaped accelerating cavities. This code solves transient wave problems for a Hertz vector. The numerical analysis is based on the boundary element method. This program is validated by comparing its results with analytical solutions in a pill-box cavity

  3. Surface wake in the random-phase approximation

    International Nuclear Information System (INIS)

    Garcia de Abajo, F.J.; Echenique, P.M.

    1993-01-01

    The scalar-electric-potential distribution set up by an ion traveling in the vicinity of a plane solid-vacuum interface, that is, the surface-wake potential, is investigated with the specular-reflection model to describe the response of the surface and with the random-phase approximation for the dielectric function of the bulk material. This permits us to address the study of the low-velocity surface wake: the static potential is found to have a dip at the position of the ion; that dip is shifted towards the direction opposite to the velocity vector for velocities smaller than the threshold of creation of plasmons (∼1.3v F ). Extensive numerical calculations are presented for an ion both inside and outside aluminum. Comparison to the results obtained with the plasmon-pole dielectric function indicates excellent agreement for velocities larger than ∼1.3v F . On the other side, the possibility of surface-wake riding is suggested, by analogy with bulk-wake riding postulated in the past. In it, the electron would be bound in the first trough of the surface-wake potential set up when the ion describes a grazing trajectory. The main feature introduced by the surface with respect to the bulk consists of allowing the use of ions of higher charge, reducing in this way the relative importance of the electron self-energy, and in addition, giving rise to larger binding energies. When the ion beam is directed along a special direction of an oriented crystal surface, the mechanism of resonant coherent excitation could provide a way for experimentally detecting this phenomenon through the emission of the bound electron with well-defined energy and around a preferential direction

  4. Prediction of multi-wake problems using an improved Jensen wake model

    DEFF Research Database (Denmark)

    Tian, Linlin; Zhu, Wei Jun; Shen, Wen Zhong

    2017-01-01

    The improved analytical wake model named as 2D_k Jensen model (which was proposed to overcome some shortcomes in the classical Jensen wake model) is applied and validated in this work for wind turbine multi-wake predictions. Different from the original Jensen model, this newly developed 2D_k Jensen...... model uses a cosine shape instead of the top-hat shape for the velocity deficit in the wake, and the wake decay rate as a variable that is related to the ambient turbulence as well as the rotor generated turbulence. Coupled with four different multi-wake combination models, the 2D_k Jensen model...... is assessed through (1) simulating two wakes interaction under full wake and partial wake conditions and (2) predicting the power production in the Horns Rev wind farm for different wake sectors around two different wind directions. Through comparisons with field measurements, results from Large Eddy...

  5. arXiv Axion-photon conversion caused by dielectric interfaces: quantum field calculation

    CERN Document Server

    Ioannisian, Ara N.; Millar, Alexander J.; Raffelt, Georg G.

    2017-09-05

    Axion-photon conversion at dielectric interfaces, immersed in a near-homogeneous magnetic field, is the basis for the dielectric haloscope method to search for axion dark matter. In analogy to transition radiation, this process is possible because the photon wave function is modified by the dielectric layers ("Garibian wave function") and is no longer an eigenstate of momentum. A conventional first-order perturbative calculation of the transition probability between a quantized axion state and these distorted photon states provides the microwave production rate. It agrees with previous results based on solving the classical Maxwell equations for the combined system of axions and electromagnetic fields. We argue that in general the average photon production rate is given by our result, independently of the detailed quantum state of the axion field. Moreover, our result provides a new perspective on axion-photon conversion in dielectric haloscopes because the rate is based on an overlap integral between unpertu...

  6. Measurements of Wake-Riding Electrons in Antiproton-Carbon-Foil Collisions

    CERN Multimedia

    2002-01-01

    When a charged particle passes through dielectric media, e.g. a thin carbon foil, a ``wake'' is induced. The characteristic wake-potential shows an oscillatory behaviour, with a wavelength of about $ 2 \\pi v _{p} / \\omega _{p} _{l} $ where $ v _{p} $ is the projectile velocity and $ \\omega _{p} _{l} $ the plasmon energy of the target. This induced wake potential is superimposed on the Coulomb potential of the projectile, the latter leading to a pronounced ``cusp'' of electrons leaving the solid at $ v _{e} app v _{p} $ for positively charged projectiles in the MeV region. Correspondingly, an ``anti-cusp'' is expected for antiprotons. \\\\ \\\\ In the solid, the wake-potential leads to an attractive force on electrons, and a dynamic electronic state is predicted both for proton and antiproton projectiles. In the solid, the wake-riding electrons are travelling with the projectile speed $ v _{p} $ Upon exit of the foil, the electron released from the wake-riding state of an antiproton will suddenly find itself in th...

  7. Modulation of continuous electron beams in plasma wake-fields

    International Nuclear Information System (INIS)

    Rosenzweig, J.B.

    1988-01-01

    In this paper we discuss the interaction of a continuous electron beam with wake-field generated plasma waves. Using a one-dimensional two fluid model, a fully nonlinear analytical description of the interaction is obtained. The phenomena of continuous beam modulation and wave period shortening are discussed. The relationship between these effects and the two-stream instability is also examined. 12 refs., 1 fig

  8. Partial discharges and bulk dielectric field enhancement

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson; Johansson, Torben

    2000-01-01

    A consequence of partial discharge activity within a gaseous void is the production of a field enhancement in the solid dielectric in the proximity of the void. This situation arises due to the charge created by the partial discharges accumulating at the void wall. The influence of the spatial...

  9. Self-consistent field model for strong electrostatic correlations and inhomogeneous dielectric media.

    Science.gov (United States)

    Ma, Manman; Xu, Zhenli

    2014-12-28

    Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.

  10. Self-consistent field model for strong electrostatic correlations and inhomogeneous dielectric media

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Manman, E-mail: mmm@sjtu.edu.cn; Xu, Zhenli, E-mail: xuzl@sjtu.edu.cn [Department of Mathematics, Institute of Natural Sciences, and MoE Key Laboratory of Scientific and Engineering Computing, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-12-28

    Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.

  11. Wake-Field Wave Resonant Excitation in Magnetized Plasmas by Electromagnetic Pulse

    International Nuclear Information System (INIS)

    Milant'ev, V.P.; Turikov, V.A.

    2006-01-01

    In this paper the space charge wave excitation process at electromagnetic pulse propagation along external magnetic field in vicinity of electron cyclotron resonance. In hydrodynamic approach it is obtained an equation for plasma density under ponderomotive force action. With help of this equation we investigated a wake-field wave amplitude dependence from resonance detuning. The numerical simulation using a PIC method electromagnetic pulse propagation process in the resonant conditions was done

  12. Field dependent dielectric behaviour of BaxSr1-xTiO3 perovskites

    International Nuclear Information System (INIS)

    Kukreti, Ashish; Ashok Kumar; Naithani, U.C.

    2008-01-01

    Using the method of double time thermal Green's function and Kubo formalism, a general expression has been derived for the electric field dependence of the complex dielectric constant of Ba x Sr 1-x TiO 3 ferroelectric crystal in the paraelectric phase from the Silverman-Joseph Hamiltonian augmented with fourth order phonon co-ordinates. The change of mass as well as harmonic force constant between impurity atom and host lattice atoms are taken into account. The frequency, temperature and electric field dependent dielectric constant of Ba x Sr 1-x TiO 3 crystal has been discussed. Dielectric constant increases with increase of applied field. The results are compared with previous experimental and theoretical results. (author)

  13. Rectifying the Optical-Field-Induced Current in Dielectrics: Petahertz Diode.

    Science.gov (United States)

    Lee, J D; Yun, Won Seok; Park, Noejung

    2016-02-05

    Investigating a theoretical model of the optical-field-induced current in dielectrics driven by strong few-cycle laser pulses, we propose an asymmetric conducting of the current by forming a heterojunction made of two distinct dielectrics with a low hole mass (m_{h}^{*}≪m_{e}^{*}) and low electron mass (m_{e}^{*}≪m_{h}^{*}), respectively. This proposition introduces the novel concept of a petahertz (10^{15}  Hz) diode to rectify the current in the petahertz domain, which should be a key ingredient for the electric signal manipulation of future light-wave electronics. Further, we suggest the candidate dielectrics for the heterojunction.

  14. Comparison of the Dynamic Wake Meandering Model, Large-Eddy Simulation, and Field Data at the Egmond aan Zee Offshore Wind Plant: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Churchfield, M. J.; Moriarty, P. J.; Hao, Y.; Lackner, M. A.; Barthelmie, R.; Lundquist, J.; Oxley, G. S.

    2014-12-01

    The focus of this work is the comparison of the dynamic wake meandering model and large-eddy simulation with field data from the Egmond aan Zee offshore wind plant composed of 36 3-MW turbines. The field data includes meteorological mast measurements, SCADA information from all turbines, and strain-gauge data from two turbines. The dynamic wake meandering model and large-eddy simulation are means of computing unsteady wind plant aerodynamics, including the important unsteady meandering of wakes as they convect downstream and interact with other turbines and wakes. Both of these models are coupled to a turbine model such that power and mechanical loads of each turbine in the wind plant are computed. We are interested in how accurately different types of waking (e.g., direct versus partial waking), can be modeled, and how background turbulence level affects these loads. We show that both the dynamic wake meandering model and large-eddy simulation appear to underpredict power and overpredict fatigue loads because of wake effects, but it is unclear that they are really in error. This discrepancy may be caused by wind-direction uncertainty in the field data, which tends to make wake effects appear less pronounced.

  15. Low mass planets in protoplanetary disks with net vertical magnetic fields: the Planetary Wake and Gap Opening

    OpenAIRE

    Zhu, Zhaohuan; Stone, James M.; Rafikov, Roman R.

    2013-01-01

    We study wakes and gap opening by low mass planets in gaseous protoplanetary disks threaded by net vertical magnetic fields which drive magnetohydrodynamical (MHD) turbulence through the magnetorotational instabilty (MRI), using three dimensional simulations in the unstratified local shearing box approximation. The wakes, which are excited by the planets, are damped by shocks similar to the wake damping in inviscid hydrodynamic (HD) disks. Angular momentum deposition by shock damping opens ga...

  16. High resolution imaging of dielectric surfaces with an evanescent field optical microscope

    NARCIS (Netherlands)

    van Hulst, N.F.; Segerink, Franciscus B.; Bölger, B.

    1992-01-01

    An evanescent field optical microscope (EFOM) is presented which employs frustrated total internal reflection o­n a localized scale by scanning a dielectric tip in close proximity to a sample surface. High resolution images of dielectric gratings and spheres containing both topographic and

  17. Fourier spectral simulations for wake fields in conducting cavities

    International Nuclear Information System (INIS)

    Min, M.; Chin, Y.-H.; Fischer, P.F.; Chae, Y.-Chul; Kim, K.-J.

    2007-01-01

    We investigate Fourier spectral time-domain simulations applied to wake field calculations in two-dimensional cylindrical structures. The scheme involves second-order explicit leap-frogging in time and Fourier spectral approximation in space, which is obtained from simply replacing the spatial differentiation operator of the YEE scheme by the Fourier differentiation operator on nonstaggered grids. This is a first step toward investigating high-order computational techniques with the Fourier spectral method, which is relatively simple to implement.

  18. The Effect of External Magnetic Field on Dielectric Permeability of Multiphase Ferrofluids

    Science.gov (United States)

    Dotsenko, O. A.; Pavlova, A. A.; Dotsenko, V. S.

    2018-03-01

    Nowadays, ferrofluids are applied in various fields of science and technology, namely space, medicine, geology, biology, automobile production, etc. In order to investigate the feasibility of applying ferrofluids in magnetic field sensors, the paper presents research into the influence of the external magnetic field on dielectric permeability of ferrofluids comprising magnetite nanopowder, multiwall carbon nanotubes, propanetriol and deionized water. The real and imaginary parts of the dielectric permeability change respectively by 3.7 and 0.5% when applying the magnetic field parallel to the electric. The findings suggest that the considered ferrofluid can be used as a magnetic level gauge or in design of variable capacitors.

  19. Tailoring the Dielectric Layer Structure for Enhanced Performance of Organic Field-Effect Transistors: The Use of a Sandwiched Polar Dielectric Layer

    Directory of Open Access Journals (Sweden)

    Shijiao Han

    2016-07-01

    Full Text Available To investigate the origins of hydroxyl groups in a polymeric dielectric and its applications in organic field-effect transistors (OFETs, a polar polymer layer was inserted between two polymethyl methacrylate (PMMA dielectric layers, and its effect on the performance as an organic field-effect transistor (OFET was studied. The OFETs with a sandwiched dielectric layer of poly(vinyl alcohol (PVA or poly(4-vinylphenol (PVP containing hydroxyl groups had shown enhanced characteristics compared to those with only PMMA layers. The field-effect mobility had been raised more than 10 times in n-type devices (three times in the p-type one, and the threshold voltage had been lowered almost eight times in p-type devices (two times in the n-type. The on-off ratio of two kinds of devices had been enhanced by almost two orders of magnitude. This was attributed to the orientation of hydroxyl groups from disordered to perpendicular to the substrate under gate-applied voltage bias, and additional charges would be induced by this polarization at the interface between the semiconductor and dielectrics, contributing to the accumulation of charge transfer.

  20. Low dielectric constant-based organic field-effect transistors and metal-insulator-semiconductor capacitors

    Science.gov (United States)

    Ukah, Ndubuisi Benjamin

    This thesis describes a study of PFB and pentacene-based organic field-effect transistors (OFET) and metal-insulator-semiconductor (MIS) capacitors with low dielectric constant (k) poly(methyl methacrylate) (PMMA), poly(4-vinyl phenol) (PVP) and cross-linked PVP (c-PVP) gate dielectrics. A physical method -- matrix assisted pulsed laser evaporation (MAPLE) -- of fabricating all-polymer field-effect transistors and MIS capacitors that circumvents inherent polymer dissolution and solvent-selectivity problems, is demonstrated. Pentacene-based OFETs incorporating PMMA and PVP gate dielectrics usually have high operating voltages related to the thickness of the dielectric layer. Reduced PMMA layer thickness (≤ 70 nm) was obtained by dissolving the PMMA in propylene carbonate (PC). The resulting pentacene-based transistors exhibited very low operating voltage (below -3 V), minimal hysteresis in their transfer characteristics, and decent electrical performance. Also low voltage (within -2 V) operation using thin (≤ 80 nm) low-k and hydrophilic PVP and c-PVP dielectric layers obtained via dissolution in high dipole moment and high-k solvents -- PC and dimethyl sulfoxide (DMSO), is demonstrated to be a robust means of achieving improved electrical characteristics and high operational stability in OFETs incorporating PVP and c-PVP dielectrics.

  1. Self-modulated dynamics of a relativistic charged particle beam in plasma wake field excitation

    Energy Technology Data Exchange (ETDEWEB)

    Akhter, T.; Fedele, R. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Nicola, S. De [CNR-SPIN and INFN Sezione di Napoli, Napoli (Italy); Tanjia, F. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Jovanović, D. [Institute of Physics, University of Belgrade, Belgrade (Serbia); Mannan, A. [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2016-09-01

    The self-modulated dynamics of a relativistic charged particle beam is provided within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.

  2. Indirect methods for wake potential integration

    International Nuclear Information System (INIS)

    Zagorodnov, I.

    2006-05-01

    The development of the modern accelerator and free-electron laser projects requires to consider wake fields of very short bunches in arbitrary three dimensional structures. To obtain the wake numerically by direct integration is difficult, since it takes a long time for the scattered fields to catch up to the bunch. On the other hand no general algorithm for indirect wake field integration is available in the literature so far. In this paper we review the know indirect methods to compute wake potentials in rotationally symmetric and cavity-like three dimensional structures. For arbitrary three dimensional geometries we introduce several new techniques and test them numerically. (Orig.)

  3. The wake field acceleration using a cavity of elliptical cross section, part 1: WELL

    International Nuclear Information System (INIS)

    Chin, Yongho.

    1983-11-01

    A computer code WELL is developed for the calculation of the wake fields in a cavity of elliptical cross section. The method is basically an extention of that of BCI to the 3-dimensional computation, i.e., Maxwell's equations are solved in the time domain with boundary conditions. Open boundary conditions are used so as to simulate infinitely long beam pipes. Good agreements within a few percents are shown between the results of the computation by WELL and BCI in a cylindrically symmetrical structure. An example of computation in an elliptical structure gives a reasonable result and points out that the deflection of particles by the transverse wake field is severe. (author)

  4. Dielectric properties of gadolinium molybdate in low- and infralow frequency electric fields

    International Nuclear Information System (INIS)

    Galiyarova, N.M.; Gorin, S.V.; Dontsova, L.I.; Shil'nikov, A.V.; Shuvalov, L.A.; AN SSSR, Moscow

    1992-01-01

    Temperature dependences of complex dielectric permittivity of gadolinium molybdate (GMO) in low- (LF) and infralow-frequency (ILF) electric fields with 0.1 V·cm -1 amplitude within 0.25-10 4 Hz frequency range are studied. Substantial effect of the crystal prehistory on LF and ILF dielectric properties and domain structure state is revealed. An anomalous reduction of complex dielectric permittivity accompanied by the occurrence of the Debye LF-dispersion of permittivity is detected under the sample cooling from a nonpolar phase

  5. Pulsed laser deposition of oxide gate dielectrics for pentacene organic field-effect transistors

    International Nuclear Information System (INIS)

    Yaginuma, S.; Yamaguchi, J.; Itaka, K.; Koinuma, H.

    2005-01-01

    We have fabricated Al 2 O 3 , LaAlO 3 (LAO), CaHfO 3 (CHO) and CaZrO 3 (CZO) thin films for the dielectric layers of field-effect transistors (FETs) by pulsed laser deposition (PLD). The films exhibited very smooth surfaces with root-mean-squares (rms) roughnesses of ∼1.3 A as evaluated by using atomic force microscopy (AFM). The breakdown electric fields of Al 2 O 3 , LAO, CHO and CZO films were 7, 6, 10 and 2 MV/cm, respectively. The magnitude of the leak current in each film was low enough to operate FET. We performed a comparative study of pentacene FET fabricated using these oxide dielectrics as gate insulators. High field-effect mobility of 1.4 cm 2 /V s and on/off current ratio of 10 7 were obtained in the pentacene FET using LAO gate insulating film. Use of the LAO films as gate dielectrics has been found to suppress the hysteresis of pentacene FET operations. The LAO films are relevant to the dielectric layer of organic FETs

  6. Application of Learning Methods to Local Electric Field Distributions in Defected Dielectric Materials

    Science.gov (United States)

    Ferris, Kim; Jones, Dumont

    2014-03-01

    Local electric fields reflect the structural and dielectric fluctuations in a semiconductor, and affect the material performance both for electron transport and carrier lifetime properties. In this paper, we use the LOCALF methodology with periodic boundary conditions to examine the local electric field distributions and its perturbations for II-VI (CdTe, Cd(1-x)Zn(x)Te) semiconductors, containing Te inclusions and small fluctuations in the local dielectric susceptibility. With inclusion of the induced-field term, the electric field distribution shows enhancements and diminishments compared to the macroscopic applied field, reflecting the microstructure characteristics of the dielectric. Learning methods are applied to these distributions to assess the spatial extent of the perturbation, and determine an electric field defined defect size as compared to its physical dimension. Critical concentrations of defects are assessed in terms of defect formation energies. This work was supported by the US Department of Homeland Security, Domestic Nuclear Detection Office, under competitively awarded contract/IAA HSHQDC-08-X-00872-e. This support does not constitute an express or implied endorsement on the part of the Gov't.

  7. Disclosed dielectric and electromechanical properties of hydrogenated nitrile–butadiene dielectric elastomer

    International Nuclear Information System (INIS)

    Yang, Dan; Tian, Ming; Dong, Yingchao; Liu, Haoliang; Yu, Yingchun; Zhang, Liqun

    2012-01-01

    This paper presents a comprehensive study of the effects of acrylonitrile content, crosslink density and plasticization on the dielectric and electromechanical performances of hydrogenated nitrile–butadiene dielectric elastomer. It was found that by increasing the acrylonitrile content of hydrogenated nitrile–butadiene dielectric elastomer, the dielectric constant will be improved accompanied with a sharp decrease of electrical breakdown strength leading to a small actuated strain. At a fixed electric field, a high crosslink density increased the elastic modulus of dielectric elastomer, but it also enhanced the electrical breakdown strength leading to a high actuated strain. Adding a plasticizer into the dielectric elastomer decreased the dielectric constant and electrical breakdown strength slightly, but reduced the elastic modulus sharply, which was beneficial for obtaining a large strain at low electric field from the dielectric elastomer. The largest actuated strain of 22% at an electric field of 30 kV mm −1 without any prestrain was obtained. Moreover, the hydrogenated nitrile–butadiene dielectric actuator showed good history dependence. This proposed material has great potential to be an excellent dielectric elastomer. (paper)

  8. Electric field of not completely symmetric systems earthed sphere-uniformly charged dielectric plan

    International Nuclear Information System (INIS)

    Vila, F.

    1994-07-01

    In this paper we study theoretically the electric field in the not completely symmetric system, earthed metallic sphere-uniformly charged dielectric plan, for sphere surface points situated in the plan that contains sphere's center and vertical symmetry axe of dielectric plan. (author). 11 refs, 1 fig

  9. Heisenberg representation for secondary-quantized fields in nonstationary external fields and dielectric nonlinear medium

    International Nuclear Information System (INIS)

    Lobashev, A.A.; Mostepanenko, V.M.

    1993-01-01

    Heisenberg formalism is developed for creation-annihilation operators of quantum fields propagating in nonstationary external fields. Quantum fields with spin 0,1/2, 1 are considered in the presence of such external fields as electromagnetic, scalar and the field of nonstationary dielectric properties of nonlinear medium. Elliptic operator parametrically depending on time is constructed. In Heisenberg representation field variables are decomposed over eigenfunction of this operator. The relation between Heisenberg creation-annihilation operators and the operators obtained in the frame of diagonalization of Hamiltonian with Bogoliubov transformations is set up

  10. Wake Conference 2017

    International Nuclear Information System (INIS)

    2017-01-01

    The 52 papers in this volume constitute the proceedings of the 2017 Wake Conference, held in Visby on the island of Gotland, Sweden. The Wake Conference series began in Visby, where it was held in 2009 and 2011. In 2013 the conference took place in Copenhagen where it was combined with the International Conference on Offshore Wind Energy and Ocean Energy. In 2015 it went back to where it started, Visby, and this time it once again takes place at Uppsala University’s Gotland campus, May 30 th - June 1 st . Modern wind turbines are today clustered in large farms with a total production capacity reaching those of a nuclear power plant. When placed in a wind farm, the turbines will be fully or partially influenced by the wake of upstream turbines. This wake interaction results in a decreased power production, caused by the lower kinetic energy in the wind, and an increase in the turbulence intensity. Therefore, understanding the physical nature of vortices and their dynamics in the wake of a turbine is important for the optimal design of wind farms. The increased importance and interest in the field of wake and wind farm aerodynamics can be seen in the increased number of scientific articles on the subject. For example, on the Web of Science citation index, the number citations on the topic ‘wind turbine wakes’ increased from about 50 in 2006 to more than 3800 in 2016. This citation growth essentially shows that the growth in the global production of electrical energy has become a scientific problem to be solved by scientists and engineers. In order to make a substantial impact on one of the most significant challenges of our time, global climate change, the wind industry’s growth must continue. A part of making this growth possible will require research into the physics of wind turbine wakes and wind farms. This conference is aimed at scientists and PhD students working in the field of wake dynamics. The conference covers the following subject areas: Wake and

  11. Nonequilibrium forces between atoms and dielectrics mediated by a quantum field

    International Nuclear Information System (INIS)

    Behunin, Ryan O.; Hu, Bei-Lok

    2011-01-01

    In this paper we give a first principles microphysics derivation of the nonequilibrium forces between an atom, treated as a three-dimensional harmonic oscillator, and a bulk dielectric medium modeled as a continuous lattice of oscillators coupled to a reservoir. We assume no direct interaction between the atom and the medium but there exist mutual influences transmitted via a common electromagnetic field. By employing concepts and techniques of open quantum systems we introduce coarse-graining to the physical variables--the medium, the quantum field, and the atom's internal degrees of freedom, in that order--to extract their averaged effects from the lowest tier progressively to the top tier. The first tier of coarse-graining provides the averaged effect of the medium upon the field, quantified by a complex permittivity (in the frequency domain) describing the response of the dielectric to the field in addition to its back action on the field through a stochastic forcing term. The last tier of coarse-graining over the atom's internal degrees of freedom results in an equation of motion for the atom's center of mass from which we can derive the force on the atom. Our nonequilibrium formulation provides a fully dynamical description of the atom's motion including back-action effects from all other relevant variables concerned. In the long-time limit we recover the known results for the atom-dielectric force when the combined system is in equilibrium or in a nonequilibrium stationary state.

  12. A simple stationary semi-analytical wake model

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.

    We present an idealized simple, but fast, semi-analytical algorithm for computation of stationary wind farm wind fields with a possible potential within a multi-fidelity strategy for wind farm topology optimization. Basically, the model considers wakes as linear perturbations on the ambient non......-linear. With each of these approached, a parabolic system are described, which is initiated by first considering the most upwind located turbines and subsequently successively solved in the downstream direction. Algorithms for the resulting wind farm flow fields are proposed, and it is shown that in the limit......-uniform mean wind field, although the modelling of the individual stationary wake flow fields includes non-linear terms. The simulation of the individual wake contributions are based on an analytical solution of the thin shear layer approximation of the NS equations. The wake flow fields are assumed...

  13. Reduced dielectric response in spatially varying electric fields

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt

    2015-01-01

    relations between the flux and the gradient of the polarization. Comparison between the theory and molecular dynamics simulations confirms this effect. The effect is significant for small length scale electric field variations and the inclusion of the flux is thus important in nanoscale modeling......In this paper, the dynamical equation for polarization is derived. From this the dielectric response to a spatially varying electric field is analyzed showing a reduced response due to flux of polarization in the material. This flux is modeled as a diffusive process through linear constitutive...

  14. The study of field and density cavity in the near wake region of a space vehicle

    International Nuclear Information System (INIS)

    Luo Qing; Wang Jing; Hu Taoping

    2011-01-01

    Under the static limit,using the method of Fourier transformation, the non-steady, nonlinear interactions between plasma and field in the near wake region of a space vehicle are investigated. Numerical calculations are performed and the results show that there are the formation of the electromagnetic soliton and density caviton in the near wake region of the space vehicle, which can be detected due to the collapse of electric field. Therefore, we can trace out the space vehicle by means of observing the structure and intensity of the density caviton and electromagnetic soliton although the space vehicle may be have a disguised characteristic. (authors)

  15. Surface impedance of superconductors in wide frequency ranges for wake field calculations

    International Nuclear Information System (INIS)

    Davidovskii, V.G.

    2006-01-01

    The problem of the surface impedance of superconductors in wide frequency ranges for calculations of wake fields, generated by bunches of charged particles moving axially inside a metallic vacuum chambers, is solved. The case of specular electron reflection at the superconductor surface is considered. The expression for the surface impedance of superconductors suitable for numerical computation is derived [ru

  16. Electric field strength in a silicon surface barrier detector with the presence of a dielectric plasma column

    International Nuclear Information System (INIS)

    Kanno, Ikuo

    1994-01-01

    The dynamic change of the electric field strength in a silicon surface barrier detector (SSBD) is studied. With the presence of a dielectric plasma column in the depletion layer of the SSBD, the electric field strength inside/outside the plasma column is suppressed/enhanced. As the length and the dielectric constant of the plasma column become shorter and smaller, the suppression and enhancement of the electric field strength become less. The electric field strength recovers the initial state, when the plasma column disappears. When the electrons and holes are inside/outside the dielectric plasma column, they have less/more electric potential than the one they have when there is no plasma column. During the movement of the electron/hole outside the plasma column to the positive/negative electrode, the enhanced electric field strength becomes smaller. Electron and hole pairs, which are the parts of the dielectric plasma column, arrive at positive and negative electrodes, having insufficient electric potential to induce the unit charge. This paper shows that the presence of a dielectric plasma column explains the main part of the residual defect in a SSBD. ((orig.))

  17. TBCI and URMEL - New computer codes for wake field and cavity mode calculations

    International Nuclear Information System (INIS)

    Weiland, T.

    1983-01-01

    Wake force computation is important for any study of instabilities in high current accelerators and storage rings. These forces are generated by intense bunches of charged particles passing cylindrically symmetric structures on or off axis. The adequate method for computing such forces is the time domain approach. The computer Code TBCI computes for relativistic as well as for nonrelativistic bunches of arbitrary shape longitudinal and transverse wake forces up to the octupole component. TBCI is not limited to cavity-like objects and thus applicable to bellows, beam pipes with varying cross sections and any other nonresonant structures. For the accelerating cavities one also needs to know the resonant modes and frequencies for the study of instabilities and mode couplers. The complementary code named URMEL computes these fields for any azimuthal dependence of the fields in ascending order. The mathematical procedure being used is very safe and does not miss modes. Both codes together represent a unique tool for accelerator design and are easy to use

  18. Numerical simulation and experimental research on wake field of ships under off-design conditions

    Science.gov (United States)

    Guo, Chun-yu; Wu, Tie-cheng; Zhang, Qi; Gong, Jie

    2016-10-01

    Different operating conditions (e.g. design and off-design) may lead to a significant difference in the hydrodynamics performance of a ship, especially in the total resistance and wake field of ships. This work investigated the hydrodynamic performance of the well-known KRISO 3600 TEU Container Ship (KCS) under three different operating conditions by means of Particle Image Velocimetry (PIV) and Computational Fluid Dynamics (CFD). The comparison results show that the use of PIV to measure a ship's nominal wake field is an important method which has the advantages of being contactless and highly accurate. Acceptable agreements between the results obtained by the two different methods are achieved. Results indicate that the total resistances of the KCS model under two off-design conditions are 23.88% and 13.92% larger than that under the designed condition, respectively.

  19. Effect of dielectric layers on device stability of pentacene-based field-effect transistors.

    Science.gov (United States)

    Di, Chong-an; Yu, Gui; Liu, Yunqi; Guo, Yunlong; Sun, Xiangnan; Zheng, Jian; Wen, Yugeng; Wang, Ying; Wu, Weiping; Zhu, Daoben

    2009-09-07

    We report stable organic field-effect transistors (OFETs) based on pentacene. It was found that device stability strongly depends on the dielectric layer. Pentacene thin-film transistors based on the bare or polystyrene-modified SiO(2) gate dielectrics exhibit excellent electrical stabilities. In contrast, the devices with the octadecyltrichlorosilane (OTS)-treated SiO(2) dielectric layer showed the worst stabilities. The effects of the different dielectrics on the device stabilities were investigated. We found that the surface energy of the gate dielectric plays a crucial role in determining the stability of the pentacene thin film, device performance and degradation of electrical properties. Pentacene aggregation, phase transfer and film morphology are also important factors that influence the device stability of pentacene devices. As a result of the surface energy mismatch between the dielectric layer and organic semiconductor, the electronic performance was degraded. Moreover, when pentacene was deposited on the OTS-treated SiO(2) dielectric layer with very low surface energy, pentacene aggregation occurred and resulted in a dramatic decrease of device performance. These results demonstrated that the stable OFETs could be obtained by using pentacene as a semiconductor layer.

  20. Measurement of surface charges on the dielectric film based on field mills under the HVDC corona wire

    Science.gov (United States)

    Donglai, WANG; Tiebing, LU; Yuan, WANG; Bo, CHEN; Xuebao, LI

    2018-05-01

    The ion flow field on the ground is one of the significant parameters used to evaluate the electromagnetic environment of high voltage direct current (HVDC) power lines. HVDC lines may cross the greenhouses due to the restricted transmission corridors. Under the condition of ion flow field, the dielectric films on the greenhouses will be charged, and the electric fields in the greenhouses may exceed the limit value. Field mills are widely used to measure the ground-level direct current electric fields under the HVDC power lines. In this paper, the charge inversion method is applied to calculate the surface charges on the dielectric film according to the measured ground-level electric fields. The advantages of hiding the field mill probes in the ground are studied. The charge inversion algorithm is optimized in order to decrease the impact of measurement errors. Based on the experimental results, the surface charge distribution on a piece of quadrate dielectric film under a HVDC corona wire is studied. The enhanced effect of dielectric film on ground-level electric field is obviously weakened with the increase of film height. Compared with the total electric field strengths, the normal components of film-free electric fields at the corresponding film-placed positions have a higher effect on surface charge accumulation.

  1. Analysis of the wake field effects in the PEP-II storage rings with extremely high currents

    Energy Technology Data Exchange (ETDEWEB)

    Novokhatski, A., E-mail: novo@slac.stanford.edu; Seeman, J.; Sullivan, M.

    2014-01-21

    We present the history and analysis of different wake field effects throughout the operational life of the PEP-II SLAC B-factory. Although the impedance of the high and low energy rings is small, the intense high-current beams generated a lot of power. The effects from these wake fields are: heating and damage of vacuum beam chamber elements like RF seals, vacuum valves, shielded bellows, BPM buttons and ceramic tiles; vacuum spikes, vacuum instabilities and high detector background; and beam longitudinal and transverse instabilities. We also discuss the methods used to eliminate these effects. Results of this analysis and the PEP-II experience may be very useful in the design of new storage rings and light sources.

  2. Method of making dielectric capacitors with increased dielectric breakdown strength

    Science.gov (United States)

    Ma, Beihai; Balachandran, Uthamalingam; Liu, Shanshan

    2017-05-09

    The invention is directed to a process for making a dielectric ceramic film capacitor and the ceramic dielectric laminated capacitor formed therefrom, the dielectric ceramic film capacitors having increased dielectric breakdown strength. The invention increases breakdown strength by embedding a conductive oxide layer between electrode layers within the dielectric layer of the capacitors. The conductive oxide layer redistributes and dissipates charge, thus mitigating charge concentration and micro fractures formed within the dielectric by electric fields.

  3. Fast wake measurements with LiDAR at Risø test field

    DEFF Research Database (Denmark)

    Bingöl, Ferhat; Trujillo, J.J.; Mann, Jakob

    2008-01-01

    . Downstream wind speed can be quantified spatially in one and two dimensions. Data analysis allows us to identify the wake transversal position, thus enabling us to quantify the wake meandering as well as the instantaneous wake expansion expressed in a meandering frame of reference. The experimental results...

  4. Acceleration of electrons by the wake field of proton bunches

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1986-01-01

    This paper discusses a novel idea to accelerate low-intensity bunches of electrons (or positrons) by the wake field of intense proton bunches travelling along the axis of a cylindrical rf structure. Accelerating gradients in excess of 100 MeV/m and large ''transformer ratios'', which allow for acceleration of electrons to energies in the TeV range, are calculated. A possible application of the method is an electron-positron linear collider with luminosity of 10 33 cm -2 s -1 . The relatively low cost and power consumption of the method is emphasized

  5. Multi-Model Ensemble Wake Vortex Prediction

    Science.gov (United States)

    Koerner, Stephan; Holzaepfel, Frank; Ahmad, Nash'at N.

    2015-01-01

    Several multi-model ensemble methods are investigated for predicting wake vortex transport and decay. This study is a joint effort between National Aeronautics and Space Administration and Deutsches Zentrum fuer Luft- und Raumfahrt to develop a multi-model ensemble capability using their wake models. An overview of different multi-model ensemble methods and their feasibility for wake applications is presented. The methods include Reliability Ensemble Averaging, Bayesian Model Averaging, and Monte Carlo Simulations. The methodologies are evaluated using data from wake vortex field experiments.

  6. Dynamic wake meandering modeling

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Gunner C.; Aagaard Madsen, H.; Bingoel, F. (and others)

    2007-06-15

    well as of control strategies for the individual turbine. Implementation of the methodology with aeroelastic codes is straight forward and performed simply by replacing traditional turbulence input files with wind field files containing the combined effect of atmospheric turbulence and wake meandering. (au)

  7. Reduction of ambipolar characteristics of vertical channel tunneling field-effect transistor by using dielectric sidewall

    International Nuclear Information System (INIS)

    Park, Chun Woong; Cho, Il Hwan; Choi, Woo Young; Lee, Jong-Ho

    2013-01-01

    Ambipolar characteristics of tunneling FETs have been improved by introducing a novel structure which contains dielectric sidewall in the gate region. In the ambipolar operation mode, gate field effect on intrinsic-drain junction region can be reduced with dielectric sidewall. As a result, ambipolar state tunneling probability is decreased at the intrinsic-drain junction. Since the sidewall region is located near the drain region, tunneling probability of source-intrinsic region is not affected by dielectric sidewall. This asymmetric characteristics means only ambipolar current of tunneling FETs can be prohibited by dielectric sidewall. Reduction of ambipolar characteristic of proposed structure has been evaluated with dimension and location of dielectric sidewall. Quantitative analysis of ambipolar characteristics is also investigated with tunneling. (paper)

  8. Shellac Films as a Natural Dielectric Layer for Enhanced Electron Transport in Polymer Field-Effect Transistors.

    Science.gov (United States)

    Baek, Seung Woon; Ha, Jong-Woon; Yoon, Minho; Hwang, Do-Hoon; Lee, Jiyoul

    2018-06-06

    Shellac, a natural polymer resin obtained from the secretions of lac bugs, was evaluated as a dielectric layer in organic field-effect transistors (OFETs) on the basis of donor (D)-acceptor (A)-type conjugated semiconducting copolymers. The measured dielectric constant and breakdown field of the shellac layer were ∼3.4 and 3.0 MV/cm, respectively, comparable with those of a poly(4-vinylphenol) (PVP) film, a commonly used dielectric material. Bottom-gate/top-contact OFETs were fabricated with shellac or PVP as the dielectric layer and one of three different D-A-type semiconducting copolymers as the active layer: poly(cyclopentadithiophene- alt-benzothiadiazole) with p-type characteristics, poly(naphthalene-bis(dicarboximide)- alt-bithiophene) [P(NDI2OD-T2)] with n-type characteristics, and poly(dithienyl-diketopyrrolopyrrole- alt-thienothiophene) [P(DPP2T-TT)] with ambipolar characteristics. The electrical characteristics of the fabricated OFETs were then measured. For all active layers, OFETs with a shellac film as the dielectric layer exhibited a better mobility than those with PVP. For example, the mobility of the OFET with a shellac dielectric and n-type P(NDI2OD-T2) active layer was approximately 2 orders of magnitude greater than that of the corresponding OFET with a PVP insulating layer. When P(DPP2T-TT) served as the active layer, the OFET with shellac as the dielectric exhibited ambipolar characteristics, whereas the corresponding OFET with the PVP dielectric operated only in hole-accumulation mode. The total density of states was analyzed using technology computer-aided design simulations. The results revealed that compared with the OFETs with PVP as the dielectric, the OFETs with shellac as the dielectric had a lower trap-site density at the polymer semiconductor/dielectric interface and much fewer acceptor-like trap sites acting as electron traps. These results demonstrate that shellac is a suitable dielectric material for D-A-type semiconducting

  9. On the nature of high field charge transport in reinforced silicone dielectrics: Experiment and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanhui, E-mail: huangy12@rpi.edu; Schadler, Linda S. [Department of Material Science and Engineering, Rensselaer Polytechnic Institute, 110 8th street, Troy, New York 12180 (United States)

    2016-08-07

    The high field charge injection and transport properties in reinforced silicone dielectrics were investigated by measuring the time-dependent space charge distribution and the current under dc conditions up to the breakdown field and were compared with the properties of other dielectric polymers. It is argued that the energy and spatial distribution of localized electronic states are crucial in determining these properties for polymer dielectrics. Tunneling to localized states likely dominates the charge injection process. A transient transport regime arises due to the relaxation of charge carriers into deep traps at the energy band tails and is successfully verified by a Monte Carlo simulation using the multiple-hopping model. The charge carrier mobility is found to be highly heterogeneous due to the non-uniform trapping. The slow moving electron packet exhibits a negative field dependent drift velocity possibly due to the spatial disorder of traps.

  10. Exposure of Ontario workers to radiofrequency fields from dielectric heaters

    International Nuclear Information System (INIS)

    Bitran, M.E.; Nishio, J.M.; Charron, D.E.

    1992-01-01

    As part of a program to assess and reduce the exposure of Ontario workers to non-ionizing radiations, stray electric and magnetic fields from 383 dielectric heaters were measured in 71 industrial establishments from 1988 to 1990. This represents a population of over 800 workers potentially exposed to radiofrequency (RE) electromagnetic fields. Electric and magnetic field strengths at the head, waist, and thigh levels of the operators, corrected by duty cycle, are presented for the different heater types surveyed. Worker exposure data and compliance with Ontario radiofrequency exposure guidelines are discussed. (author)

  11. Dielectric permittivity of a plasma in an external electric field

    International Nuclear Information System (INIS)

    Schweigert, V.A.

    2001-01-01

    The ion contribution to the dielectric function of a plasma in an external electric field is determined by applying a kinetic approach to the ions in a parent gas in which the main mechanism for ion scattering is resonant charge exchange. The ion scattering frequency is assumed to be constant

  12. The solvation reaction field for a hydrogen atom in a dielectric continuum

    International Nuclear Information System (INIS)

    Chipman, D.M.

    1996-01-01

    A reaction field exists even for a nonpolar solute embedded in a spherical cavity within a surrounding homogeneous dielectric continuum. This arises from the tail of the electronic wave function that penetrates beyond the cavity boundary into the dielectric region. This effect, which is neglected or treated only in cursory fashion in most reaction field implementations, is examined in detail for the simple case of a ground state hydrogen atom, where very accurate solutions of the relevant equations can be obtained. Properties considered include the penetration of the electron outside the cavity, the electronic density at the nucleus, the electron binding energy, the electrostatic free energy of solvation, the polarizability, and the vertical 1s→2p excitation energy. Also, the effect of the common approximation of neglecting the volume polarization and treating only the surface polarization contribution to the reaction field is critically evaluated. copyright 1996 American Institute of Physics

  13. Direct Effect of Dielectric Surface Energy on Carrier Transport in Organic Field-Effect Transistors.

    Science.gov (United States)

    Zhou, Shujun; Tang, Qingxin; Tian, Hongkun; Zhao, Xiaoli; Tong, Yanhong; Barlow, Stephen; Marder, Seth R; Liu, Yichun

    2018-05-09

    The understanding of the characteristics of gate dielectric that leads to optimized carrier transport remains controversial, and the conventional studies applied organic semiconductor thin films, which introduces the effect of dielectric on the growth of the deposited semiconductor thin films and hence only can explore the indirect effects. Here, we introduce pregrown organic single crystals to eliminate the indirect effect (semiconductor growth) in the conventional studies and to undertake an investigation of the direct effect of dielectric on carrier transport. It is shown that the matching of the polar and dispersive components of surface energy between semiconductor and dielectric is favorable for higher mobility. This new empirical finding may show the direct relationship between dielectric and carrier transport for the optimized mobility of organic field-effect transistors and hence show a promising potential for the development of next-generation high-performance organic electronic devices.

  14. CFD simulation on Kappel propeller with a hull wake field

    DEFF Research Database (Denmark)

    Shin, Keun Woo; Andersen, Poul; Møller Bering, Rasmus

    2013-01-01

    Marine propellers are designed not for the open-water operation, but for the operation behind a hull due to the inhomogeneous hull wake and thrust deduction. The adaptation for the hull wake is important for the propulsive efficiency and cavitation risk especially on single-screw ships. CFD...... simulations for a propeller with a hull model have showed acceptable agreement with a model test result in the thrust and torque (Larsson et al. 2010). In the current work, a measured hull wake is applied to the simulation instead of modelling a hull, because the hull geometry is mostly not available...... for propeller designers and the computational effort can be reduced by excluding the hull. The CFD simulation of a propeller flow with a hull wake is verified in order to use CFD as a propeller design tool. A Kappel propeller, which is an innovative tip-modified propeller, is handled. Kappel propellers...

  15. Olfactory Bulb Field Potentials and Respiration in Sleep-Wake States of Mice.

    Science.gov (United States)

    Jessberger, Jakob; Zhong, Weiwei; Brankačk, Jurij; Draguhn, Andreas

    2016-01-01

    It is well established that local field potentials (LFP) in the rodent olfactory bulb (OB) follow respiration. This respiration-related rhythm (RR) in OB depends on nasal air flow, indicating that it is conveyed by sensory inputs from the nasal epithelium. Recently RR was found outside the olfactory system, suggesting that it plays a role in organizing distributed network activity. It is therefore important to measure RR and to delineate it from endogenous electrical rhythms like theta which cover similar frequency bands in small rodents. In order to validate such measurements in freely behaving mice, we compared rhythmic LFP in the OB with two respiration-related biophysical parameters: whole-body plethysmography (PG) and nasal temperature (thermocouple; TC). During waking, all three signals reflected respiration with similar reliability. Peak power of RR in OB decreased with increasing respiration rate whereas power of PG increased. During NREM sleep, respiration-related TC signals disappeared and large amplitude slow waves frequently concealed RR in OB. In this situation, PG provided a reliable signal while breathing-related rhythms in TC and OB returned only during microarousals. In summary, local field potentials in the olfactory bulb do reliably reflect respiratory rhythm during wakefulness and REM sleep but not during NREM sleep.

  16. Olfactory Bulb Field Potentials and Respiration in Sleep-Wake States of Mice

    Directory of Open Access Journals (Sweden)

    Jakob Jessberger

    2016-01-01

    Full Text Available It is well established that local field potentials (LFP in the rodent olfactory bulb (OB follow respiration. This respiration-related rhythm (RR in OB depends on nasal air flow, indicating that it is conveyed by sensory inputs from the nasal epithelium. Recently RR was found outside the olfactory system, suggesting that it plays a role in organizing distributed network activity. It is therefore important to measure RR and to delineate it from endogenous electrical rhythms like theta which cover similar frequency bands in small rodents. In order to validate such measurements in freely behaving mice, we compared rhythmic LFP in the OB with two respiration-related biophysical parameters: whole-body plethysmography (PG and nasal temperature (thermocouple; TC. During waking, all three signals reflected respiration with similar reliability. Peak power of RR in OB decreased with increasing respiration rate whereas power of PG increased. During NREM sleep, respiration-related TC signals disappeared and large amplitude slow waves frequently concealed RR in OB. In this situation, PG provided a reliable signal while breathing-related rhythms in TC and OB returned only during microarousals. In summary, local field potentials in the olfactory bulb do reliably reflect respiratory rhythm during wakefulness and REM sleep but not during NREM sleep.

  17. Influence of gate dielectric on the ambipolar characteristics of solution-processed organic field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Ribierre, J C; Ghosh, S; Takaishi, K; Muto, T; Aoyama, T, E-mail: jcribierre@ewha.ac.kr, E-mail: taoyama@riken.jp [Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2011-05-25

    Solution-processed ambipolar organic field-effect transistors based on dicyanomethylene-substituted quinoidal quaterthiophene derivative [QQT(CN)4] are fabricated using various gate dielectric materials including cross-linked polyimide and poly-4-vinylphenol. Devices with spin-coated polymeric gate dielectric layers show a reduced hysteresis in their transfer characteristics. Among the insulating polymers examined in this study, a new fluorinated polymer with a low dielectric constant of 2.8 significantly improves both hole and electron field-effect mobilities of QQT(CN)4 thin films to values as high as 0.04 and 0.002 cm{sup 2} V{sup -1} s{sup -1}. These values are close to the best mobilities obtained in QQT(CN)4 devices fabricated on SiO{sub 2} treated with octadecyltrichlorosilane. The influence of the metal used for source/drain metal electrodes on the device performance is also investigated. Whereas best device performances are achieved with gold electrodes, more balanced electron and hole field-effect mobilities could be obtained using chromium.

  18. Dielectric response of a relativistic degenerate electron plasma in a strong magnetic field

    International Nuclear Information System (INIS)

    Delsante, A.E.; Frankel, N.E.

    1979-01-01

    The longitudinal dielectric response of a relativistic ultradegenerate electron plasma in a strong magnetic field is obtained via a relativistic generalization of the Hartree self-consistent field method. Dispersion relations and damping conditions for plasma oscillations both parallel and perpendicular to the magnetic field are obtained. Detailed results for the zero-field case, and applications to white dwarf stars and pulsars are given

  19. Flow control over a NACA 0012 airfoil using dielectric-barrier-discharge plasma actuator with a Gurney flap

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Li-Hao [Beijing University of Aeronautics and Astronautics, Fluid Mechanics Key Laboratory of Education Ministry, Beijing (China); University of Nottingham, University Park, Faculty of Engineering, Nottingham (United Kingdom); Jukes, Timothy N. [University of Nottingham, University Park, Faculty of Engineering, Nottingham (United Kingdom); AIST, Research Centre for New Fuels and Vehicle Technology, Tsukuba (Japan); Choi, Kwing-So [University of Nottingham, University Park, Faculty of Engineering, Nottingham (United Kingdom); Wang, Jin-Jun [Beijing University of Aeronautics and Astronautics, Fluid Mechanics Key Laboratory of Education Ministry, Beijing (China)

    2012-06-15

    Flow control study of a NACA 0012 airfoil with a Gurney flap was carried out in a wind tunnel, where it was demonstrated that a dielectric-barrier-discharge (DBD) plasma actuator attached to the flap could increase the lift further, but with a small drag penalty. Time-resolved PIV measurements of the near-wake region indicated that the plasma forcing shifted the wake downwards, reducing its recirculation length. Analysis of wake vortex dynamics suggested that the plasma actuator initially amplified the lower wake shear layer by adding momentum along the downstream surface of the Gurney flap. This enhanced mutual entrainment between the upper and lower wake vortices, leading to an increase in lift on the airfoil. (orig.)

  20. Visualization of dielectric constant-electric field-temperature phase maps for imprinted relaxor ferroelectric thin films

    International Nuclear Information System (INIS)

    Frederick, J. C.; Kim, T. H.; Maeng, W.; Brewer, A. A.; Podkaminer, J. P.; Saenrang, W.; Vaithyanathan, V.; Schlom, D. G.; Li, F.; Chen, L.-Q.; Trolier-McKinstry, S.; Rzchowski, M. S.; Eom, C. B.

    2016-01-01

    The dielectric phase transition behavior of imprinted lead magnesium niobate–lead titanate relaxor ferroelectric thin films was mapped as a function of temperature and dc bias. To compensate for the presence of internal fields, an external electric bias was applied while measuring dielectric responses. The constructed three-dimensional dielectric maps provide insight into the dielectric behaviors of relaxor ferroelectric films as well as the temperature stability of the imprint. The transition temperature and diffuseness of the dielectric response correlate with crystallographic disorder resulting from strain and defects in the films grown on strontium titanate and silicon substrates; the latter was shown to induce a greater degree of disorder in the film as well as a dielectric response lower in magnitude and more diffuse in nature over the same temperature region. Strong and stable imprint was exhibited in both films and can be utilized to enhance the operational stability of piezoelectric devices through domain self-poling.

  1. Field Enhancement in a Grounded Dielectric Slab by Using a Single Superstrate Layer

    OpenAIRE

    Valagiannopoulos, Constantinos A.; Tsitsas, Nikolaos L.

    2012-01-01

    The addition of a dielectric layer on a slab configuration is frequently utilized in various electromagnetic devices in order to give them certain desired operational characteristics. In this work, we consider a grounded dielectric film-slab, which is externally excited by a normally-incident Gaussian beam. On top of the film-slab, we use an additional suitably selected single isotropic superstrate layer in order to increase the field concentration inside the slab and hence achieve optimal po...

  2. Streamer discharge inception in a sub-breakdown electric field from a dielectric body with a frequency dependent dielectric permittivity

    NARCIS (Netherlands)

    A. A. Dubinova (Anna); C. Rutjes (Casper); U. M. Ebert (Ute)

    2015-01-01

    htmlabstractWe study positive streamer inception from the tip of an elongated ice particle. The dielectric permittivity of ice drops from 93 to 3 for electric fields changing on the millisecond timescale [1]. We demonstrate that this effect can be important on the nanosecond time scale of

  3. Polarization-induced transport in organic field-effect transistors: the role of ferroelectric dielectrics

    Science.gov (United States)

    Guha, Suchismita; Laudari, Amrit

    2017-08-01

    The ferroelectric nature of polymer ferroelectrics such as poly(vinylidene fluoride) (PVDF) has been known for over 45 years. However, its role in interfacial transport in organic/polymeric field-effect transistors (FETs) is not that well understood. Dielectrics based on PVDF and its copolymers are a perfect test-bed for conducting transport studies where a systematic tuning of the dielectric constant with temperature may be achieved. The charge transport mechanism in an organic semiconductor often occurs at the intersection of band-like coherent motion and incoherent hopping through localized states. By choosing two small molecule organic semiconductors - pentacene and 6,13 bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) - along with a copolymer of PVDF (PVDF-TrFe) as the dielectric layer, the transistor characteristics are monitored as a function of temperature. A negative coefficient of carrier mobility is observed in TIPS-pentacene upwards of 200 K with the ferroelectric dielectric. In contrast, TIPS-pentacene FETs show an activated transport with non-ferroelectric dielectrics. Pentacene FETs, on the other hand, show a weak temperature dependence of the charge carrier mobility in the ferroelectric phase of PVDF-TrFE, which is attributed to polarization fluctuation driven transport resulting from a coupling of the charge carriers to the surface phonons of the dielectric layer. Further, we show that there is a strong correlation between the nature of traps in the organic semiconductor and interfacial transport in organic FETs, especially in the presence of a ferroelectric dielectric.

  4. On the phase velocity of plasma waves in a self-modulated laser wake-field accelerator

    NARCIS (Netherlands)

    Andreev, N. E.; Kirsanov, V. I.; Sakharov, A. S.; van Amersfoort, P. W.; Goloviznin, V. V.

    1996-01-01

    The properties of the wake field excited by a flattop laser pulse with a sharp leading edge and a power below the critical one for relativistic self-focusing are studied analytically and numerically with emphasis on the phase velocity of the plasma wave. The paraxial model describing modulation of

  5. Extended definitions of wake fields and their influence on beam dynamics

    Directory of Open Access Journals (Sweden)

    V. Danilov

    2000-01-01

    Full Text Available Based on experience gained from present machines, a new generation of accelerators with high intensities and low losses is being designed. For example, the design for the Spallation Neutron Source storage ring specifies fractional beam losses of the order of 10^{-4}, so that even small instabilities or resonances can lead to the violation of this number. The purpose of this paper is to show that there exist potentially important beam fields, missing from standard analyses, that can lead either to instabilities or to large deviations of instability thresholds from their conventional values. Some of these fields and related effects, e.g., “fast damping,” were discovered earlier and are presented here in more standard form as an extension of the wake field's definition. In addition, nonrelativistic collective phenomena are analyzed. It is shown that the nonrelativistic case could be significantly different from the relativistic case.

  6. Characterization of a dielectric phantom for high-field magnetic resonance imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Qi, E-mail: Qi.Duan@nih.gov; Duyn, Jeff H.; Gudino, Natalia; Zwart, Jacco A. de; Gelderen, Peter van [Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892 (United States); Sodickson, Daniel K.; Brown, Ryan [The Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016 (United States)

    2014-10-15

    Purpose: In this work, a generic recipe for an inexpensive and nontoxic phantom was developed within a range of biologically relevant dielectric properties from 150 MHz to 4.5 GHz. Methods: The recipe includes deionized water as the solvent, NaCl to primarily control conductivity, sucrose to primarily control permittivity, agar–agar to gel the solution and reduce heat diffusivity, and benzoic acid to preserve the gel. Two hundred and seventeen samples were prepared to cover the feasible range of NaCl and sucrose concentrations. Their dielectric properties were measured using a commercial dielectric probe and were fitted to a 3D polynomial to generate a recipe describing the properties as a function of NaCl concentration, sucrose concentration, and frequency. Results: Results indicated that the intuitive linear and independent relationships between NaCl and conductivity and between sucrose and permittivity are not valid. A generic polynomial recipe was developed to characterize the complex relationship between the solutes and the resulting dielectric values and has been made publicly available as a web application. In representative mixtures developed to mimic brain and muscle tissue, less than 2% difference was observed between the predicted and measured conductivity and permittivity values. Conclusions: It is expected that the recipe will be useful for generating dielectric phantoms for general magnetic resonance imaging (MRI) coil development at high magnetic field strength, including coil safety evaluation as well as pulse sequence evaluation (including B{sub 1}{sup +} mapping, B{sub 1}{sup +} shimming, and selective excitation pulse design), and other non-MRI applications which require biologically equivalent dielectric properties.

  7. Wind farm array wake losses

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.W. [Impact Weather, Washougal, WA (United States); McCarthy, E.F. [Wind Economics & Technology, Inc., Martinez, CA (United States)

    1997-12-31

    A wind turbine wake study was conducted in the summer of 1987 at an Altamont Pass wind electric generating facility. The wind speed deficits, turbulence, and power deficits from an array consisting of several rows of wind turbines is discussed. A total of nine different test configurations were evaluated for a downwind spacing ranging from 7 rotor diameters (RD) to 34 RD and a cross wind spacing of 1.3 RD and 2.7 RD. Wake power deficits of 15% were measured at 16 RD and power losses of a few percent were even measurable at 27 RD for the closer cross wind spacing. For several rows of turbines separated by 7-9 RD the wake zones overlapped and formed compound wakes with higher velocity deficits. The wind speed and direction turbulence in the wake was much higher than the ambient turbulence. The results from this study are compared to the findings from other similar field measurements.

  8. Potential load reductions on megawatt turbines exposed to wakes using individual-pitch wake compensator and trailing-edge flaps

    DEFF Research Database (Denmark)

    Markou, Helen; Andersen, Peter Bjørn; Larsen, Gunner Chr.

    2011-01-01

    that typically focus on either load or power prediction. As a consequence, the wake affected inflow field generated by the DWM formulation opens for control strategies for the individual turbine. Two different control approaches for load reduction on the individual turbines are implemented in the multi-body aero-servo-elastic...... tool HAWC2, developed at Risø-DTU in Denmark, and their potential load reduction capabilities compared: (1) full-blade ‘individual-pitch controllers’ acting as wake compensators and (2) controllers using trailing-edge flaps. Information on the wake inflow conditions, induced by upstream turbines...... for the loading conditions of the individual turbines in the farm. The dynamic wake meandering model (DWM) is believed to capture the essential physics of the wake problem, and thus, both load and production aspects can be predicted, which is contrary to the traditional engineering wake prediction methods...

  9. The plasma wake field excitation: Recent developments from thermal to quantum regime

    Science.gov (United States)

    Fedele, Renato; Tanjia, Fatema; de Nicola, Sergio; Jovanović, Dušan; Jovanović

    2013-12-01

    To describe the transverse nonlinear and collective self-consistent interaction of a long relativistic electron or positron beam with an unmagnetized plasma, a pair of coupled nonlinear differential equations were proposed by Fedele and Shukla in 1992 (Fedele, R. and Shukla, P. K. 1992a Phys. Rev. A 45, 4045). They were obtained within the quantum-like description provided by the thermal wave model and the theory of plasma wake field excitation. The pair of equations comprises a 2D Schrödinger-like equation for a complex wave function (whose squared modulus is proportional to beam density) and a Poisson-like equation for the plasma wake potential. The dispersion coefficient of the Schrödinger-like equation is proportional to the beam thermal emittance. More recently, Fedele-Shukla equations have been further applied to magnetized plasmas, and solutions were found in the form of nonlinear vortex states and ring solitons. They have been also applied to plasma focusing problems and extended from thermal to quantum regimes. We present here a review of the original approach, and subsequent developments.

  10. Diffraction of an impulsive line source with wake

    International Nuclear Information System (INIS)

    Ayub, M; Naeem, A; Nawaz, Rab

    2010-01-01

    The problem of diffraction due to an impulse line source by an absorbing half-plane with wake using Myres' impedance condition (Myers 1980 J. Sound Vib. 71 429-34) in the presence of a subsonic fluid flow is studied. The time dependence of the field requires a temporal Fourier transform in addition to the spatial Fourier transform. The solution of the problem in the presence of wake is obtained by using Greens' function method, Fourier transform, the Wiener-Hopf technique and the modified stationary phase method. Expressions for the total far field for the trailing edge (wake present) situation are given. It is observed that the field produced by the Kutta-Joukowski condition will be substantially in excess of the field when this condition is ignored. Finally, a simple procedure is devised to calculate the inverse temporal Fourier transform. The solution for the leading edge situation can be obtained if the wake, and consequently a Kutta-Joukowski edge condition, is ignored. This can also be seen from the numerical results.

  11. Comments on the impedances of the SSC shielded bellows at low frequencies due to the truncation of the wake fields

    International Nuclear Information System (INIS)

    Ng, K.Y.

    1986-09-01

    The behavior of the longitudinal impedance of the SSC shielded bellow at low frequencies depends very much on the length of the wake field used in the Fourier transformation. We show analytically and numerically that, regardless of the difference, single-bunch effects are independent of the actual shape of the impedance when the length of the wake used is bigger than the bunch length

  12. Characterization of an Actively Controlled Three-Dimensional Turret Wake

    Science.gov (United States)

    Shea, Patrick; Glauser, Mark

    2012-11-01

    Three-dimensional turrets are commonly used for housing optical systems on airborne platforms. As bluff bodies, these geometries generate highly turbulent wakes that decrease the performance of the optical systems and the aircraft. The current experimental study looked to use dynamic suction in both open and closed-loop control configurations to actively control the turret wake. The flow field was characterized using dynamic pressure and stereoscopic PIV measurements in the wake of the turret. Results showed that the suction system was able to manipulate the wake region of the turret and could alter not only the spatial structure of the wake, but also the temporal behavior of the wake flow field. Closed-loop, feedback control techniques were used to determine a more optimal control input for the flow control. Similar control effects were seen for both the steady open-loop control case and the closed-loop feedback control configuration with a 45% reduction in the suction levels when comparing the closed-loop to the open-loop case. These results provide unique information regarding the development of the baseline three-dimensional wake and the wake with three different active flow control configurations.

  13. Improvements in ECN Wake Model

    Energy Technology Data Exchange (ETDEWEB)

    Versteeg, M.C. [University of Twente, Enschede (Netherlands); Ozdemir, H.; Brand, A.J. [ECN Wind Energy, Petten (Netherlands)

    2013-08-15

    Wind turbines extract energy from the flow field so that the flow in the wake of a wind turbine contains less energy and more turbulence than the undisturbed flow, leading to less energy extraction for the downstream turbines. In large wind farms, most turbines are located in the wake of one or more turbines causing the flow characteristics felt by these turbines differ considerably from the free stream flow conditions. The most important wake effect is generally considered to be the lower wind speed behind the turbine(s) since this decreases the energy production and as such the economical performance of a wind farm. The overall loss of a wind farm is very much dependent on the conditions and the lay-out of the farm but it can be in the order of 5-10%. Apart from the loss in energy production an additional wake effect is formed by the increase in turbulence intensity, which leads to higher fatigue loads. In this sense it becomes important to understand the details of wake behavior to improve and/or optimize a wind farm layout. Within this study improvements are presented for the existing ECN wake model which constructs the fundamental basis of ECN's FarmFlow wind farm wake simulation tool. The outline of this paper is as follows: first, the governing equations of the ECN wake farm model are presented. Then the near wake modeling is discussed and the results compared with the original near wake modeling and EWTW (ECN Wind Turbine Test Site Wieringermeer) data as well as the results obtained for various near wake implementation cases are shown. The details of the atmospheric stability model are given and the comparison with the solution obtained for the original surface layer model and with the available data obtained by EWTW measurements are presented. Finally the conclusions are summarized.

  14. Transparent field-effect transistors based on AlN-gate dielectric and IGZO-channel semiconductor

    International Nuclear Information System (INIS)

    Besleaga, C.; Stan, G.E.; Pintilie, I.; Barquinha, P.; Fortunato, E.; Martins, R.

    2016-01-01

    Highlights: • TFTs based on IGZO channel semiconductor and AlN gate dielectric were fabricated. • AlN films – a viable and cheap gate dielectric alternative for transparent TFTs. • Influence of gate dielectric layer thickness on TFTs electrical characteristics. • No degradation of AlN gate dielectric was observed during devices stress testing. - Abstract: The degradation of thin-film transistors (TFTs) caused by the self-heating effect constitutes a problem to be solved for the next generation of displays. Aluminum nitride (AlN) is a viable alternative for gate dielectric of TFTs due to its good thermal conductivity, matching coefficient of thermal expansion to indium–gallium–zinc-oxide, and excellent stability at high temperatures. Here, AlN thin films of different thicknesses were fabricated by a low temperature reactive radio-frequency magnetron sputtering process, using a low cost, metallic Al target. Their electrical properties have been thoroughly assessed. Furthermore, the 200 nm and 500 nm thick AlN layers have been integrated as gate-dielectric in transparent TFTs with indium–gallium–zinc-oxide as channel semiconductor. Our study emphasizes the potential of AlN thin films for transparent electronics, whilst the functionality of the fabricated field-effect transistors is explored and discussed.

  15. Transparent field-effect transistors based on AlN-gate dielectric and IGZO-channel semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Besleaga, C.; Stan, G.E.; Pintilie, I. [National Institute of Materials Physics, 405A Atomistilor, 077125 Magurele-Ilfov (Romania); Barquinha, P.; Fortunato, E. [CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, and CEMOP-UNINOVA, 2829-516 Caparica (Portugal); Martins, R., E-mail: rm@uninova.pt [CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, and CEMOP-UNINOVA, 2829-516 Caparica (Portugal)

    2016-08-30

    Highlights: • TFTs based on IGZO channel semiconductor and AlN gate dielectric were fabricated. • AlN films – a viable and cheap gate dielectric alternative for transparent TFTs. • Influence of gate dielectric layer thickness on TFTs electrical characteristics. • No degradation of AlN gate dielectric was observed during devices stress testing. - Abstract: The degradation of thin-film transistors (TFTs) caused by the self-heating effect constitutes a problem to be solved for the next generation of displays. Aluminum nitride (AlN) is a viable alternative for gate dielectric of TFTs due to its good thermal conductivity, matching coefficient of thermal expansion to indium–gallium–zinc-oxide, and excellent stability at high temperatures. Here, AlN thin films of different thicknesses were fabricated by a low temperature reactive radio-frequency magnetron sputtering process, using a low cost, metallic Al target. Their electrical properties have been thoroughly assessed. Furthermore, the 200 nm and 500 nm thick AlN layers have been integrated as gate-dielectric in transparent TFTs with indium–gallium–zinc-oxide as channel semiconductor. Our study emphasizes the potential of AlN thin films for transparent electronics, whilst the functionality of the fabricated field-effect transistors is explored and discussed.

  16. Charge transfer to a dielectric target by guided ionization waves using electric field measurements

    NARCIS (Netherlands)

    Slikboer, E.T.; Garcia-Caurel, E.; Guaitella, O.; Sobota, A.

    2017-01-01

    A kHz-operated atmospheric pressure plasma jet is investigated by measuring charge transferred to a dielectric electro-optic surface (BSO crystal) allowing for the measurement of electric field by exploiting the Pockels effect. The electric field values, distribution of the surface discharge and

  17. Velocity field in the wake of a hydropower farm equipped with Achard turbines

    International Nuclear Information System (INIS)

    Georgescu, A-M; Cosoiu, C I; Alboiu, N; Hamzu, Al; Georgescu, S C

    2010-01-01

    The study consists of experimental and numerical investigations related to the water flow in the wake of a hydropower farm, equipped with three Achard turbines. The Achard turbine is a French concept of vertical axis cross-flow marine current turbine, with three vertical delta-blades, which operates irrespective of the water flow direction. A farm model built at 1:5 scale has been tested in a water channel. The Achard turbines run in stabilized current, so the flow can be assumed to be almost unchanged in horizontal planes along the vertical z-axis, thus allowing 2D numerical modelling, for different farm configurations: the computational domain is a cross-section of all turbines at a certain z-level. The two-dimensional numerical model of that farm has been used to depict the velocity field in the wake of the farm, with COMSOL Multiphysics and FLUENT software, to compute numerically the overall farm efficiency. The validation of the numerical models with experimental results is performed via the measurement of velocity distribution, by Acoustic Doppler Velocimetry, in the wake of the middle turbine within the farm. Three basic configurations were studied experimentally and numerically, namely: with all turbines aligned on a row across the upstream flow direction; with turbines in an isosceles triangular arrangement pointing downstream; with turbines in an isosceles triangular arrangement pointing upstream. As long as the numerical flow in the wake fits the experiments, the numerical results for the power coefficient (turbine efficiency) are trustworthy. The farm configuration with all turbines aligned on a same row leads to lower values of the experimental velocities than the numerical ones, while the farm configurations where the turbines are in isosceles triangular arrangement, pointing downstream or upstream, present a better match between numerical and experimental data.

  18. High-k dielectrics as bioelectronic interface for field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Borstlap, D

    2007-03-15

    Ion-sensitive field-effect transistors (ISFETs) are employed as bioelectronic sensors for the cell-transistor coupling and for the detection of DNA sequences. For these applications, thermally grown SiO{sub 2} films are used as standard gate dielectric. In the first part of this dissertation, the suitability of high-k dielectrics was studied to increase the gate capacitance and hence the signal-to-noise ratio of bioelectronic ISFETs: Upon culturing primary rat neurons on the corresponding high-k dielectrics, Al{sub 2}O{sub 3}, yttria stabilised zirkonia (YSZ), DyScO{sub 3}, CeO{sub 2}, LaAlO{sub 3}, GdScO{sub 3} and LaScO{sub 3} proved to be biocompatible substrates. Comprehensive electrical and electrochemical current-voltage measurements and capacitance-voltage measurements were performed for the determination of the dielectric properties of the high-k dielectrics. In the second part of the dissertation, standard SiO{sub 2} ISFETs with lower input capacitance and high-k dielectric Al{sub 2}O{sub 3}, YSZ und DyScO{sub 3} ISFETs were comprehensively characterised and compared with each other regarding their signal-to-noise ratio, their ion sensitivity and their drift behaviour. The ion sensitivity measurements showed that the YSZ ISFETs were considerably more sensitive to K{sup +} and Na{sup +} ions than the SiO{sub 2}, Al{sub 2}O{sub 3} und DyScO{sub 3} ISFETs. In the final third part of the dissertation, bioelectronic experiments were performed with the high-k ISFETs. The shape of the signals, which were measured from HL-1 cells with YSZ ISFETs, differed considerably from the corresponding measurements with SiO{sub 2} and DyScO{sub 3} ISFETs: After the onset of the K{sup +} current, the action potentials measured with YSZ ISFETs showed a strong drift in the direction opposite to the K{sup +} current signal. First coupling experiments between HEK 293 cells, which were transfected with a K{sup +} ion channel, and YSZ ISFETs affirmed the assumption from the HL-1

  19. Comparing offshore wind farm wake observed from satellite SAR and wake model results

    Science.gov (United States)

    Bay Hasager, Charlotte

    2014-05-01

    Offshore winds can be observed from satellite synthetic aperture radar (SAR). In the FP7 EERA DTOC project, the European Energy Research Alliance project on Design Tools for Offshore Wind Farm Clusters, there is focus on mid- to far-field wind farm wakes. The more wind farms are constructed nearby other wind farms, the more is the potential loss in annual energy production in all neighboring wind farms due to wind farm cluster effects. It is of course dependent upon the prevailing wind directions and wind speed levels, the distance between the wind farms, the wind turbine sizes and spacing. Some knowledge is available within wind farm arrays and in the near-field from various investigations. There are 58 offshore wind farms in the Northern European seas grid connected and in operation. Several of those are spaced near each other. There are several twin wind farms in operation including Nysted-1 and Rødsand-2 in the Baltic Sea, and Horns Rev 1 and Horns Rev 2, Egmond aan Zee and Prinses Amalia, and Thompton 1 and Thompton 2 all in the North Sea. There are ambitious plans of constructing numerous wind farms - great clusters of offshore wind farms. Current investigation of offshore wind farms includes mapping from high-resolution satellite SAR of several of the offshore wind farms in operation in the North Sea. Around 20 images with wind farm wake cases have been retrieved and processed. The data are from the Canadian RADARSAT-1/-2 satellites. These observe in microwave C-band and have been used for ocean surface wind retrieval during several years. The satellite wind maps are valid at 10 m above sea level. The wakes are identified in the raw images as darker areas downwind of the wind farms. In the SAR-based wind maps the wake deficit is found as areas of lower winds downwind of the wind farms compared to parallel undisturbed flow in the flow direction. The wind direction is clearly visible from lee effects and wind streaks in the images. The wind farm wake cases

  20. Wind field re-construction of 3D Wake measurements from a turbine-installed scanning lidar

    DEFF Research Database (Denmark)

    Mikkelsen, Torben Krogh; Herges, Tommy; Astrup, Poul

    High-resolution wake flow measurements obtained from a turbine-mounted scanning lidar have been obtained from 1D to 5D behind a V27 test turbine. The measured line-of-sight projected wind speeds have, in connection with a fast CFD wind field reconstruction model, been used to generate 3D wind fie...

  1. Comparing satellite SAR and wind farm wake models

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Vincent, P.; Husson, R.

    2015-01-01

    . These extend several tens of kilometres downwind e.g. 70 km. Other SAR wind maps show near-field fine scale details of wake behind rows of turbines. The satellite SAR wind farm wake cases are modelled by different wind farm wake models including the PARK microscale model, the Weather Research and Forecasting...... (WRF) model in high resolution and WRF with coupled microscale parametrization....

  2. Self-similar potential in the near wake

    International Nuclear Information System (INIS)

    Diebold, D.; Hershkowitz, N.; Intrator, T.; Bailey, A.

    1987-01-01

    The plasma potential is measured near the edge of an electrically floating obstacle placed in a steady-state, supersonic, unmagnetized, neutral plasma flow. Equipotential contours show the sheath of the upstream side of the obstacle wrapping around the edge of the obstacle and fanning out into the near wake. Both fluid theory and the data find the near-wake plasma potential to be self-similar when ionization, charge exchange, and magnetic field can be neglected. The theory also finds that fluid velocity is self-similar, the near wake is nonneutral, and plasma density is not self-similar. Strong electric fields are found near the obstacle and equipotential contours are found to conform to all boundaries

  3. Toward Development of a Stochastic Wake Model: Validation Using LES and Turbine Loads

    Directory of Open Access Journals (Sweden)

    Jae Sang Moon

    2017-12-01

    Full Text Available Wind turbines within an array do not experience free-stream undisturbed flow fields. Rather, the flow fields on internal turbines are influenced by wakes generated by upwind unit and exhibit different dynamic characteristics relative to the free stream. The International Electrotechnical Commission (IEC standard 61400-1 for the design of wind turbines only considers a deterministic wake model for the design of a wind plant. This study is focused on the development of a stochastic model for waked wind fields. First, high-fidelity physics-based waked wind velocity fields are generated using Large-Eddy Simulation (LES. Stochastic characteristics of these LES waked wind velocity field, including mean and turbulence components, are analyzed. Wake-related mean and turbulence field-related parameters are then estimated for use with a stochastic model, using Multivariate Multiple Linear Regression (MMLR with the LES data. To validate the simulated wind fields based on the stochastic model, wind turbine tower and blade loads are generated using aeroelastic simulation for utility-scale wind turbine models and compared with those based directly on the LES inflow. The study’s overall objective is to offer efficient and validated stochastic approaches that are computationally tractable for assessing the performance and loads of turbines operating in wakes.

  4. Light-induced space-charge fields for the structuration of dielectric materials

    International Nuclear Information System (INIS)

    Eggert, H.A.

    2006-11-01

    Light-induced space-charge fields in lithium-niobate crystals are used for patterning of dielectric materials. This includes tailored ferroelectric domains in the bulk of the crystal, different sorts of micro and nanoparticles on a crystal surface, as well as poling of electrooptic chromophores. A stochastical model is introduced, which can describe the spatial inhomogeneous domain inversion. (orig.)

  5. [Determination of electric field distribution in dielectric barrier surface glow discharge by spectroscopic method].

    Science.gov (United States)

    Li, Xue-chen; Jia, Peng-ying; Liu, Zhi-hui; Li, Li-chun; Dong, Li-fang

    2008-12-01

    In the present paper, stable glow discharges were obtained in air at low pressure with a dielectric barrier surface discharge device. Light emission from the discharge was detected by photomultiplier tubes and the research results show that the light signal exhibited one discharge pulse per half cycle of the applied voltage. The light pulses were asymmetric between the positive half cycle and the negative one of the applied voltage. The images of the glow surface discharge were processed by Photoshop software and the results indicate that the emission intensity remained almost constant for different places with the same distance from the powered electrode, while the emission intensity decreased with the distance from the powered electrode increasing. In dielectric barrier discharge, net electric field is determined by the applied voltage and the wall charges accumulated on the dielectric layer during the discharge, and consequently, it is important to obtain information about the net electric field distribution. For this purpose, optical emission spectroscopy method was used. The distribution of the net electric field can be deduced from the intensity ratio of spectral line 391.4 nm emitted from the first negative system of N2+ (B 2sigma u+ -->X 2sigma g+) to 337.1 nm emitted from the second positive system of N2 (C 3IIu-B 3IIg). The research results show that the electric field near the powered electric field is higher than at the edge of the discharge. These experimental results are very important for numerical study and industrial application of the surface discharge.

  6. Effects of magnetic field treatment on dielectric properties of CCTO@Ni/PVDF composite with low concentration of ceramic fillers

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Q. G., E-mail: qgchi@hotmail.com, E-mail: empty-cy@l63.com [Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080 (China); State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049 (China); Gao, L. [Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080 (China); College of Electrical Engineering, Suihua University, Suihua 152061 (China); Wang, X.; Chen, Y., E-mail: qgchi@hotmail.com, E-mail: empty-cy@l63.com; Dong, J. F.; Cui, Y.; Lei, Q. Q. [Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080 (China)

    2015-11-15

    Using melt mixing, we produced a ceramic/polymer composite with a matrix of polyvinylidene fluoride (PVDF) and a filler of 5 vol.% Ni-deposited CaCu{sub 3}Ti{sub 4}O{sub 12} core-shell ceramic particles (CCTO@Ni), and studied its prominent dielectric characteristics for the first. Its phase composition and morphology were analyzed by X-ray diffraction and scanning electron microscopy, respectively. After treating the composite films with various durations of a magnetic field treatment, we compared their dielectric properties. We found that the CCTO@Ni ceramic had a typical urchin-like core-shell structure, and that different durations of the magnetic field treatment produced different distributions of ceramic particles in the PVDF matrix. The dielectric permittivity of the untreated CCTO@Ni/PVDF composite was 20% higher than that of neat PVDF, and it had a low loss tangent. However, only the composite treated for 30 min in the magnetic field had an ultra-high dielectric permittivity of 1.41 × 10{sup 4} at 10 Hz, three orders of magnitude higher than the untreated composite, which declined dramatically with increasing frequency, accompanied by an insulating-conducting phase transition and an increase in loss tangent. Our results demonstrate that changes in the dielectric properties of PVDF composites with magnetic field treatment are closely related to the percolation effect and interfacial polarization.

  7. Nonlinear electroelastic deformations of dielectric elastomer composites: II - Non-Gaussian elastic dielectrics

    Science.gov (United States)

    Lefèvre, Victor; Lopez-Pamies, Oscar

    2017-02-01

    This paper presents an analytical framework to construct approximate homogenization solutions for the macroscopic elastic dielectric response - under finite deformations and finite electric fields - of dielectric elastomer composites with two-phase isotropic particulate microstructures. The central idea consists in employing the homogenization solution derived in Part I of this work for ideal elastic dielectric composites within the context of a nonlinear comparison medium method - this is derived as an extension of the comparison medium method of Lopez-Pamies et al. (2013) in nonlinear elastostatics to the coupled realm of nonlinear electroelastostatics - to generate in turn a corresponding solution for composite materials with non-ideal elastic dielectric constituents. Complementary to this analytical framework, a hybrid finite-element formulation to construct homogenization solutions numerically (in three dimensions) is also presented. The proposed analytical framework is utilized to work out a general approximate homogenization solution for non-Gaussian dielectric elastomers filled with nonlinear elastic dielectric particles that may exhibit polarization saturation. The solution applies to arbitrary (non-percolative) isotropic distributions of filler particles. By construction, it is exact in the limit of small deformations and moderate electric fields. For finite deformations and finite electric fields, its accuracy is demonstrated by means of direct comparisons with finite-element solutions. Aimed at gaining physical insight into the extreme enhancement in electrostriction properties displayed by emerging dielectric elastomer composites, various cases wherein the filler particles are of poly- and mono-disperse sizes and exhibit different types of elastic dielectric behavior are discussed in detail. Contrary to an initial conjecture in the literature, it is found (inter alia) that the isotropic addition of a small volume fraction of stiff (semi

  8. Experimentally obtained values of electric field of an atmospheric pressure plasma jet impinging on a dielectric surface

    NARCIS (Netherlands)

    Sobota, A.; Guaitella, O.; Garcia-Caurel, E.

    2013-01-01

    We report on experimentally obtained values of the electric field magnitude on a dielectric surface induced by an impinging atmospheric pressure plasma jet. The plasma plume was striking the dielectric surface at an angle of 45¿, at 5mm from the surface measured at the axis of the jet. The results

  9. Dielectric Wakefield Accelerator to drive the future FEL Light Source.

    Energy Technology Data Exchange (ETDEWEB)

    Jing, C.; Power, J.; Zholents, A. (Accelerator Systems Division (APS)); ( HEP); (LLC)

    2011-04-20

    X-ray free-electron lasers (FELs) are expensive instruments and a large part of the cost of the entire facility is driven by the accelerator. Using a high-energy gain dielectric wake-field accelerator (DWA) instead of the conventional accelerator may provide a significant cost saving and reduction of the facility size. In this article, we investigate using a collinear dielectric wakefield accelerator to provide a high repetition rate, high current, high energy beam to drive a future FEL x-ray light source. As an initial case study, a {approx}100 MV/m loaded gradient, 850 GHz quartz dielectric based 2-stage, wakefield accelerator is proposed to generate a main electron beam of 8 GeV, 50 pC/bunch, {approx}1.2 kA of peak current, 10 x 10 kHz (10 beamlines) in just 100 meters with the fill factor and beam loading considered. This scheme provides 10 parallel main beams with one 100 kHz drive beam. A drive-to-main beam efficiency {approx}38.5% can be achieved with an advanced transformer ratio enhancement technique. rf power dissipation in the structure is only 5 W/cm{sup 2} in the high repetition rate, high gradient operation mode, which is in the range of advanced water cooling capability. Details of study presented in the article include the overall layout, the transform ratio enhancement scheme used to increase the drive to main beam efficiency, main wakefield linac design, cooling of the structure, etc.

  10. Numerical simulations of a sounding rocket in ionospheric plasma: Effects of magnetic field on the wake formation and rocket potential

    Science.gov (United States)

    Darian, D.; Marholm, S.; Paulsson, J. J. P.; Miyake, Y.; Usui, H.; Mortensen, M.; Miloch, W. J.

    2017-09-01

    The charging of a sounding rocket in subsonic and supersonic plasma flows with external magnetic field is studied with numerical particle-in-cell (PIC) simulations. A weakly magnetized plasma regime is considered that corresponds to the ionospheric F2 layer, with electrons being strongly magnetized, while the magnetization of ions is weak. It is demonstrated that the magnetic field orientation influences the floating potential of the rocket and that with increasing angle between the rocket axis and the magnetic field direction the rocket potential becomes less negative. External magnetic field gives rise to asymmetric wake downstream of the rocket. The simulated wake in the potential and density may extend as far as 30 electron Debye lengths; thus, it is important to account for these plasma perturbations when analyzing in situ measurements. A qualitative agreement between simulation results and the actual measurements with a sounding rocket is also shown.

  11. Field Enhancement in a Grounded Dielectric Slab by Using a Single Superstrate Layer

    Directory of Open Access Journals (Sweden)

    Constantinos A. Valagiannopoulos

    2012-01-01

    Full Text Available The addition of a dielectric layer on a slab configuration is frequently utilized in various electromagnetic devices in order to give them certain desired operational characteristics. In this work, we consider a grounded dielectric film-slab, which is externally excited by a normally-incident Gaussian beam. On top of the film-slab, we use an additional suitably selected single isotropic superstrate layer in order to increase the field concentration inside the slab and hence achieve optimal power transfer from the external source to the internal region. We define a quantity of interest, called “enhancement factor,” expressing the increase of the field concentration in the film-slab when the superstrate is present compared to the case that it is absent. It is shown that large enhancement factor values may be achieved by choosing properly the permittivity, the permeability, and the thickness of the superstrate. In particular, it is demonstrated that the field in the film-slab is significantly enhanced when the slab is composed by an ϵ-near-zero (ENZ or low-index metamaterial.

  12. Modulational instability for an induced field in the far-wake region of a space vehicle

    International Nuclear Information System (INIS)

    Liao Jingjing; Deng Qian; Qu Wen

    2012-01-01

    The behavior of the induced field and the generation of density cavitons in the far-wake region (|k 0 | → 0) of a space vehicle can be described by a set of nonlinear coupling equations. Modulational instability of the induced field is investigated on the basis of the nonlinear equations. The results show that the induced field is modulationally unstable and will collapse into spatial localized structures; meanwhile, density cavitons will be generated. The characteristic scale and the maximum growth rate of the induced field depend not only on the angle between the amplitude of pump waves E 0 and the perturbation wave vector k, but also on the energy density of pump waves |E 0 | 2 . (paper)

  13. Plasma wake and nuclear forces on fragmented H+ transport

    International Nuclear Information System (INIS)

    Barriga-Carrasco, Manuel D; Deutsch, Claude

    2006-01-01

    The objective of the present work is to study the target electronic and nuclear interactions produced when a H + ion traverses classical plasma matter. Electronic interactions are treated by means of the dielectric formalism while nuclear interactions are dealt within the classical dispersion theory through a Monte Carlo computer code. The interactions through plasma electronic medium among close ions are called wake forces. We checked that these forces screen the Coulomb explosions of the two fragmented protons from the same H + ion decreasing their relative distance in the analysed cases. These forces align the interproton vector along the motion direction. They also tend the two-proton energy loss to the value of two isolated protons when at early times it is rather larger. Nevertheless most parts of these wake effects cannot be corroborated experimentally as they are masked by the projectile collisions with target nuclei in our numerical experiment. These collisions cancel the screening produced by the wake forces, increasing the interproton distance even faster than for bare Coulomb explosion. Also they misalign the interproton vector along the motion direction and contribute moderately to increase the energy loss of the fragmented H + ion. These nuclear collisions effects are more significant in reducing projectile velocity

  14. Impact of bubble wakes on a developing bubble flow in a vertical pipe

    International Nuclear Information System (INIS)

    Tomiyama, A.; Makino, Y.; Miyoshi, K.; Tamai, H.; Serizawa, A.; Zun, I.

    1998-01-01

    Three-dimensional two-way bubble tracking simulation of single large air bubbles rising through a stagnant water filled in a vertical pipe was conducted to investigate the structures of bubble wakes. Spatial distributions of time-averaged liquid velocity field, turbulent intensity and Reynolds stress caused by bubble wakes were deduced from the calculated local instantaneous liquid velocities. It was confirmed that wake structures are completely different from the ones estimated by a conventional wake model. Then, we developed a simple wake model based on the predicted time-averaged wake velocity fields, and implemented it into a 3D one-way bubble tracking method to examine the impact of bubble wake structures on time-spatial evolution of a developing air-water bubble flow in a vertical pipe. As a results, we confirmed that the developed wake model can give better prediction for flow pattern evolution than a conventional wake model

  15. Dielectric-spectroscopy approach to ferrofluid nanoparticle clustering induced by an external electric field.

    Science.gov (United States)

    Rajnak, Michal; Kurimsky, Juraj; Dolnik, Bystrik; Kopcansky, Peter; Tomasovicova, Natalia; Taculescu-Moaca, Elena Alina; Timko, Milan

    2014-09-01

    An experimental study of magnetic colloidal particles cluster formation induced by an external electric field in a ferrofluid based on transformer oil is presented. Using frequency domain isothermal dielectric spectroscopy, we study the influence of a test cell electrode separation distance on a low-frequency relaxation process. We consider the relaxation process to be associated with an electric double layer polarization taking place on the particle surface. It has been found that the relaxation maximum considerably shifts towards lower frequencies when conducting the measurements in the test cells with greater electrode separation distances. As the electric field intensity was always kept at a constant value, we propose that the particle cluster formation induced by the external ac electric field accounts for that phenomenon. The increase in the relaxation time is in accordance with the Schwarz theory of electric double layer polarization. In addition, we analyze the influence of a static electric field generated by dc bias voltage on a similar shift in the relaxation maximum position. The variation of the dc electric field for the hysteresis measurements purpose provides understanding of the development of the particle clusters and their decay. Following our results, we emphasize the utility of dielectric spectroscopy as a simple, complementary method for detection and study of clusters of colloidal particles induced by external electric field.

  16. Optimal Super Dielectric Material

    Science.gov (United States)

    2015-09-01

    plate capacitor will reduce the net field to an unprecedented extent. This family of materials can form materials with dielectric values orders of... Capacitor -Increase Area (A)............8 b. Multi-layer Ceramic Capacitor -Decrease Thickness (d) .......10 c. Super Dielectric Material-Increase...circuit modeling, from [44], and B) SDM capacitor charge and discharge ...................................................22 Figure 15. Dielectric

  17. Ponderomotive force of a uniform electromagnetic wave in a time varying dielectric medium

    International Nuclear Information System (INIS)

    Mori, W.B.; Katsouleas, T.

    1992-01-01

    A ponderomotive force associated with a uniform electromagnetic wave propagating in a medium with time varying dielectric properties [e.g., ε=ε(x-v 0 t)] is identified. In particular, when a laser ionizes a gas through which it propagates, a force is exerted on the medium at the ionization front that is proportional to (∇ε)E 2 rather than the usual (ε-1)∇E 2 . This force excites a wake in the plasma medium behind the ionization front. The ponderomotive force and wake amplitude are derived and tested with 1D particle-in-cell simulations

  18. Hysteresis mechanism and control in pentacene organic field-effect transistors with polymer dielectric

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2013-05-01

    Full Text Available Hysteresis mechanism of pentacene organic field-effect transistors (OFETs with polyvinyl alcohol (PVA and/or polymethyl methacrylate (PMMA dielectrics is studied. Through analyzing the electrical characteristics of OFETs with various PVA/PMMA arrangements, it shows that charge, which is trapped in PVA bulk and at the interface of pentacene/PVA, is one of the origins of hysteresis. The results also show that memory window is proportional to both trap amount in PVA and charge density at the gate/PVA or PVA/pentacene interfaces. Hence, the controllable memory window of around 0 ∼ 10 V can be realized by controlling the thickness and combination of triple-layer polymer dielectrics.

  19. Magnetic field effect on indole exciplexes: an anomalous dielectric dependence

    International Nuclear Information System (INIS)

    Sengupta, Tamal; Basu, Samita

    2004-01-01

    Individual exciplex formation between various aromatic hydrocarbons, anthracene, pyrene, all-s-trans-1,4-diphenylbuta-1,3-diene and a heteroaromatic amine, 1,2-dimethylindole, was investigated by steady-state fluorescence and magnetic field effect (MFE). A comparative study was carried out with two other exciplex systems 9-cyanophenanthrene-1,2-dimethylindole and 9-cyanophenanthrene-N-methylindole. The extent of charge transfer and dielectric dependence of MFE reveals the potential role of specific interactions related to exciplex geometry

  20. Imaging axial and radial electric field components in dielectric targets under plasma exposure

    NARCIS (Netherlands)

    Slikboer, E.T.; Sobota, A.; Guaitella, O.; Garcia-Caurel, E.

    2018-01-01

    This work presents new ways to investigate the individual electric field components in a dielectric target induced by a non thermal atmospheric pressure plasma jet. Mueller polarimetry is applied to investigate electro-optic crystals under exposure of guided ionization waves produced by a plasma

  1. Pulsed electromagnetic field radiation from a narrow slot antenna with a dielectric layer

    NARCIS (Netherlands)

    Štumpf, M.; De Hoop, A.T.; Lager, I.E.

    2010-01-01

    Analytic time domain expressions are derived for the pulsed electromagnetic field radiated by a narrow slot antenna with a dielectric layer in a two?dimensional model configuration. In any finite time window of observation, exact pulse shapes for the propagated, reflected, and refracted wave

  2. Field investigation of a wake structure downwind of a VANT (Vertical-Axis Wind Turbine) in a wind farm array

    Science.gov (United States)

    Liu, H. T.; Buck, J. W.; Germain, A. C.; Hinchee, M. E.; Solt, T. S.; Leroy, G. M.; Srnsky, R. A.

    1988-09-01

    The effects of upwind turbine wakes on the performance of a FloWind 17-m vertical-axis wind turbine (VAWT) were investigated through a series of field experiments conducted at the FloWind wind farm on Cameron Ridge, Tehachapi, California. From the field measurements, we derived the velocity and power/energy deficits under various turbine on/off configurations. Much information was provided to characterize the structure of VAWT wakes and to assess their effects on the performance of downwind turbines. A method to estimate the energy deficit was developed based on the measured power deficit and the wind speed distributions. This method may be adopted for other turbine types and sites. Recommendations are made for optimizing wind farm design and operations, as well as for wind energy management.

  3. Conceptual Design of Dielectric Accelerating Structures for Intense Neutron and Monochromatic X-ray Sources

    Science.gov (United States)

    Blanovsky, Anatoly

    2004-12-01

    Bright compact photon sources, which utilize electron beam interaction with periodic structures, may benefit a broad range of medical, industrial and scientific applications. A class of dielectric-loaded periodic structures for hard and soft X-ray production has been proposed that would provide a high accelerating gradient when excited by an external RF and/or primary electron beam. Target-distributed accelerators (TDA), in which an additional electric field compensates for lost beam energy in internal targets, have been shown to provide the necessary means to drive a high flux subcritical reactor (HFSR) for nuclear waste transmutation. The TDA may also be suitable for positron and nuclear isomer production, X-ray lithography and monochromatic computer tomography. One of the early assumptions of the theory of dielectric wake-field acceleration was that, in electrodynamics, the vector potential was proportional to the scalar potential. The analysis takes into consideration a wide range of TDA design aspects including the wave model of observed phenomena, a layered compound separated by a Van der Waals gap and a compact energy source based on fission electric cells (FEC) with a multistage collector. The FEC is a high-voltage power source that directly converts the kinetic energy of the fission fragments into electrical potential of about 2MV.

  4. Dynamics of plasma ions motion in ultra-intense laser-excited plasma wakes

    International Nuclear Information System (INIS)

    Zhou Suyun; Li Jing

    2013-01-01

    The effects of heavy ions and protons motion in an ultra-intense laser-driven plasma wake are compared by rebuilding a plasma wake model. It is shown that with the same laser and plasma background electron density n 0 , the heavy ions' motion suppresses wake-field resonant excitation less than the protons' motion in their own plasma wake. Though heavy ions obtain more kinetic energy from the plasma wake, its energy density is less than that of the protons due to the ion density being far less than the proton density. As a result, the total energy of heavy ions obtained from the wake-field is far less than that of protons. The dependence of the kinetic energy and the energy density of protons and heavy ions on n 0 is discussed. (paper)

  5. Flow Structures within a Helicopter Rotor Hub Wake

    Science.gov (United States)

    Elbing, Brian; Reich, David; Schmitz, Sven

    2015-11-01

    A scaled model of a notional helicopter rotor hub was tested in the 48'' Garfield Thomas Water Tunnel at the Applied Research Laboratory Penn State. The measurement suite included total hub drag and wake velocity measurements (LDV, PIV, stereo-PIV) at three downstream locations. The main objective was to understand the spatiotemporal evolution of the unsteady wake between the rotor hub and the nominal location of the empennage (tail). Initial analysis of the data revealed prominent two- and four-per-revolution fluid structures linked to geometric hub features persisting into the wake far-field. In addition, a six-per-revolution fluid structure was observed in the far-field, which is unexpected due to the lack of any hub feature with the corresponding symmetry. This suggests a nonlinear interaction is occurring within the wake to generate these structures. This presentation will provide an overview of the experimental data and analysis with particular emphasis on these six-per-revolution structures.

  6. Short bunch wake potentials for a chain of TESLA cavities

    International Nuclear Information System (INIS)

    Novokhatski, Alexander; Mosnier, Alban

    2014-01-01

    The modification of wake fields from a single cavity to a quasi-periodic structure of cavities is of great concern, especially for applications using very short bunches. We extend our former study (Novokhatski, 1997 [1]). A strong modification of wake fields along a train of cavities was clearly found for bunch lengths lower than 1 mm. In particular, the wakes induced by the bunch, as it proceeds down the successive cavities, decrease in amplitude and become more linear around the bunch center, with a profile very close to the integral of the charge density. The loss factor, decreasing also with the number of cells, becomes independent of bunch length for very short bunches and tends asymptotically to a finite value. This nice behavior of wake fields for short bunches presents good opportunity for application of very short bunches in Linear Colliders and X-ray Free Electron Lasers

  7. Numerical simulation of high-energy-electron gerated field in dielectrics of various geometries. Final report, June 1, 1979-May 15, 1980

    International Nuclear Information System (INIS)

    Yee, K.S.

    1980-01-01

    It has been observed that the exposure of dielectrics to electron beams can produce an electric field of sufficient magnitude to cause dielectric breakdown. The present investigations will be directed to calculate the electric field intensity in dielectrics under spherical and cylindrical geometries. In the spherical geometry the method of multiple images renders the full numerical calculation unnecessary, whereas in a finite length cylindrical geometry the full numerical calculation seems to be inevitable. A description and results of the spherical geometry are presented and a more detailed presentation of the finite cylinder geometry is given

  8. A coupled CFD and wake model simulation of helicopter rotor in hover

    Science.gov (United States)

    Zhao, Qinghe; Li, Xiaodong

    2018-03-01

    The helicopter rotor wake plays a dominant role since it affects the flow field structure. It is very difficult to predict accurately of the flow-field. The numerical dissipation is so excessive that it eliminates the vortex structure. A hybrid method of CFD and prescribed wake model was constructed by applying the prescribed wake model as much as possible. The wake vortices were described as a single blade tip vortex in this study. The coupling model is used to simulate the flow field. Both non-lifting and lifting cases have been calculated with subcritical and supercritical tip Mach numbers. Surface pressure distributions are presented and compared with experimental data. The calculated results agree well with the experimental data.

  9. Canopy wake measurements using multiple scanning wind LiDARs

    Science.gov (United States)

    Markfort, C. D.; Carbajo Fuertes, F.; Iungo, V.; Stefan, H. G.; Porte-Agel, F.

    2014-12-01

    Canopy wakes have been shown, in controlled wind tunnel experiments, to significantly affect the fluxes of momentum, heat and other scalars at the land and water surface over distances of ˜O(1 km), see Markfort et al. (EFM, 2013). However, there are currently no measurements of the velocity field downwind of a full-scale forest canopy. Point-based anemometer measurements of wake turbulence provide limited insight into the extent and details of the wake structure, whereas scanning Doppler wind LiDARs can provide information on how the wake evolves in space and varies over time. For the first time, we present measurements of the velocity field in the wake of a tall patch of forest canopy. The patch consists of two uniform rows of 40-meter tall deciduous, plane trees, which border either side of the Allée de Dorigny, near the EPFL campus. The canopy is approximately 250 m long, and it is approximately 40 m wide, along the direction of the wind. A challenge faced while making field measurements is that the wind rarely intersects a canopy normal to the edge. The resulting wake flow may be deflected relative to the mean inflow. Using multiple LiDARs, we measure the evolution of the wake due to an oblique wind blowing over the canopy. One LiDAR is positioned directly downwind of the canopy to measure the flow along the mean wind direction and the other is positioned near the canopy to evaluate the transversal component of the wind and how it varies with downwind distance from the canopy. Preliminary results show that the open trunk space near the base of the canopy results in a surface jet that can be detected just downwind of the canopy and farther downwind dissipates as it mixes with the wake flow above. A time-varying recirculation zone can be detected by the periodic reversal of the velocity near the surface, downwind of the canopy. The implications of canopy wakes for measurement and modeling of surface fluxes will be discussed.

  10. Sandia Wake Imaging System Field Test Report: 2015 Deployment at the Scaled Wind Farm Technology (SWiFT) Facility.

    Energy Technology Data Exchange (ETDEWEB)

    Naughton, Brian Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Herges, Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    This report presents the objectives, configuration, procedures, reporting , roles , and responsibilities and subsequent results for the field demonstration of the Sandia Wake Imaging System (SWIS) at the Sandia Scaled Wind Farm Technology (SWiFT) facility near Lubbock, Texas in June and July 2015.

  11. Application of staring lidars to study the dynamics of wind turbine wakes

    Directory of Open Access Journals (Sweden)

    Davide Trabucchi

    2015-11-01

    Full Text Available Standard anemometry or vertical profiling remote sensing are not always a convenient approach to study the dynamics of wind turbines wake. One or more lidar windscanner can be applied for this purpose. In this paper a measurement strategy is presented, which permits the characterization of the wake dynamics using two long range wind lidars operated in a stationary mode. In this approach two pulsed devices are staring with low elevation obliquely across the wake. The lidar beams are supposed to cross each other on the downstream axis of the wake to perform simultaneous measurements in the wake field from side to side. The deflection of the wake is identified fitting a model to the average data. Spectral analysis provide the frequency content of the measurements at different distances from the wake center. This setup was implemented in a full-field measurement campaign where the wake of a multi-MW wind turbine was analysed. The tracking of the wake centre was applied successfully to this measurement. Moreover the spectral analysis showed increased energy content close to the wake lateral edges. This can be connected both to the higher turbulence level due to the tip vorteces and to the large scale dynamics of the wake.

  12. Characterization of wake region by using and emissive probe

    International Nuclear Information System (INIS)

    Jeong, Yong Ho

    1993-02-01

    An emissive probe was designed and manufactured to measure the floating and the space potentials of plasma in the wake region. The floating potential method' among various schemes was used for the measurement and analysis. To generate the wake, a plane artificial satellite with circular shape was introduced in a simply discharged argon plasma without the magnetic field. Potentials along the radial direction in and out of the wake regions of artificial satellite were measured, and plasma parameters were compared in the both regions. In the wake region, the floating potential was higher than that out of the wake, the space potential was approximately equal to that out of the wake, when the positive voltage was applied to artificial satellite, the floating and the space potentials were lower than that out of the wake and when the negative voltage was applied to artificial satellite, the floating potential was higher, the space potential was lower than that out of the wake

  13. Numerical investigation of dielectric barrier discharges

    Science.gov (United States)

    Li, Jing

    1997-12-01

    A dielectric barrier discharge (DBD) is a transient discharge occurring between two electrodes in coaxial or planar arrangements separated by one or two layers of dielectric material. The charge accumulated on the dielectric barrier generates a field in a direction opposite to the applied field. The discharge is quenched before an arc is formed. It is one of the few non-thermal discharges that operates at atmospheric pressure and has the potential for use in pollution control. In this work, a numerical model of the dielectric barrier discharge is developed, along with the numerical approach. Adaptive grids based on the charge distribution is used. A self-consistent method is used to solve for the electric field and charge densities. The Successive Overrelaxation (SOR) method in a non-uniform grid spacing is used to solve the Poisson's equation in the cylindrically-symmetric coordinate. The Flux Corrected Transport (FCT) method is modified to solve the continuity equations in the non-uniform grid spacing. Parametric studies of dielectric barrier discharges are conducted. General characteristics of dielectric barrier discharges in both anode-directed and cathode-directed streamer are studied. Effects of the dielectric capacitance, the applied field, the resistance in external circuit and the type of gases (O2, air, N2) are investigated. We conclude that the SOR method in an adaptive grid spacing for the solution of the Poisson's equation in the cylindrically-symmetric coordinate is convergent and effective. The dielectric capacitance has little effect on the g-factor of radical production, but it determines the strength of the dielectric barrier discharge. The applied field and the type of gases used have a significant role on the current peak, current pulse duration and radical generation efficiency, discharge strength, and microstreamer radius, whereas the external series resistance has very little effect on the streamer properties. The results are helpful in

  14. Near-field diffraction of laser light by dielectric corner step

    Science.gov (United States)

    Stafeev, S.; Kotlyar, V.; Kovalev, A.

    2014-01-01

    The diffraction of a linearly polarized plane wave by a corner dielectric microstep of height equals of two incident wavelengths was studied using finite-difference time domain method and near-field scanning optical microscopy. It was shown that the corner step generates an elongated region of enhanced intensity, termed as a curved laser microjet. The curved laser microjet has a length of about DOF = 9.5λ and the smallest diameter FWHM = (1.94+/-0.15)λ at distance z = 5.5λ.

  15. Dielectric response of particle-antiparticle plasmas in a magnetic field

    International Nuclear Information System (INIS)

    Frankel, N.E.; Hines, K.C.; Kowalenko, V.

    1982-01-01

    We have considered the longitudinal dielectric response of an ultra-degenerate relativistic plasma composed of electrons and positrons. We have used the relativistic Hartree self-consistent field method to investigate the dispersion relations and damping parameters of such a plasma in the presence of a magnetic field. These properties must be studied in the various regimes appropriate for a relativistic plasma as detailed by Tsytovich and Jancovici. Although it is hoped that this work will yield new insight into certain astrophysical phenomena (such as pulsars), it is interesting to note that laboratory electron-positron plasmas may be a thing of the immediate future as a result of suggested new experiments using an intense relativistic electron beam. (author)

  16. Numerical Analysis of the Unsteady Propeller Performance in the Ship Wake Modified By Different Wake Improvement Devices

    Directory of Open Access Journals (Sweden)

    Bugalski Tomasz

    2014-10-01

    Full Text Available The paper presents the summary of results of the numerical analysis of the unsteady propeller performance in the non-uniform ship wake modified by the different wake improvement devices. This analysis is performed using the lifting surface program DUNCAN for unsteady propeller analysis. Te object of the analysis is a 7000 ton chemical tanker, for which four different types of the wake improvement devices have been designed: two vortex generators, a pre-swirl stator, and a boundary layer alignment device. These produced five different cases of the ship wake structure: the original hull and hull equipped alternatively with four wake improvement devices. Two different propellers were analyzed in these five wake fields, one being the original reference propeller P0 and the other - a specially designed, optimized propeller P3. Te analyzed parameters were the pictures of unsteady cavitation on propeller blades, harmonics of pressure pulses generated by the cavitating propellers in the selected points and the fluctuating bearing forces on the propeller shaft. Some of the calculated cavitation phenomena were confronted with the experimental. Te objective of the calculations was to demonstrate the differences in the calculated unsteady propeller performance resulting from the application of different wake improvement devices. Te analysis and discussion of the results, together with the appropriate conclusions, are included in the paper.

  17. Inductive dielectric analyzer

    International Nuclear Information System (INIS)

    Agranovich, Daniel; Popov, Ivan; Ben Ishai, Paul; Feldman, Yuri; Polygalov, Eugene

    2017-01-01

    One of the approaches to bypass the problem of electrode polarization in dielectric measurements is the free electrode method. The advantage of this technique is that, the probing electric field in the material is not supplied by contact electrodes, but rather by electromagnetic induction. We have designed an inductive dielectric analyzer based on a sensor comprising two concentric toroidal coils. In this work, we present an analytic derivation of the relationship between the impedance measured by the sensor and the complex dielectric permittivity of the sample. The obtained relationship was successfully employed to measure the dielectric permittivity and conductivity of various alcohols and aqueous salt solutions. (paper)

  18. Resistive-wall wake and impedance for nonultrarelativistic beams

    Directory of Open Access Journals (Sweden)

    Frank Zimmermann

    2004-04-01

    Full Text Available The usual formulas for the resistive-wall wake field are derived considering ultrarelativistic beams, traveling at the speed of light. This simplifies the calculation, and it leads to a cancellation between electric and magnetic fields. However, for proton beams below 10 GeV and for many heavy-ion beams, the velocities may significantly differ from the speed of light. In this paper, we compute the longitudinal and transverse wake fields for velocities smaller than c and examine under which conditions nonrelativistic effects become important. We illustrate our results by a few examples.

  19. High carrier mobility of CoPc wires based field-effect transistors using bi-layer gate dielectric

    Directory of Open Access Journals (Sweden)

    Murali Gedda

    2013-11-01

    Full Text Available Polyvinyl alcohol (PVA and anodized Al2O3 layers were used as bi-layer gate for the fabrication of cobalt phthalocyanine (CoPc wire base field-effect transistors (OFETs. CoPc wires were grown on SiO2 surfaces by organic vapor phase deposition method. These devices exhibit a field-effect carrier mobility (μEF value of 1.11 cm2/Vs. The high carrier mobility for CoPc molecules is attributed to the better capacitive coupling between the channel of CoPc wires and the gate through organic-inorganic dielectric layer. Our measurements also demonstrated the way to determine the thicknesses of the dielectric layers for a better process condition of OFETs.

  20. Behavior of pentacene initial nucleation on various dielectrics and its effect on carrier transport in organic field-effect transistor.

    Science.gov (United States)

    Qi, Qiong; Yu, Aifang; Wang, Liangmin; Jiang, Chao

    2010-11-01

    The influence of dielectric surface energy on the initial nucleation and the growth of pentacene films as well as the electrical properties of the pentacene-based field-effect transistors are investigated. We have examined a range of organic and inorganic dielectrics with different surface energies, such as polycarbonate/SiO2, polystyrene/SiO2, and PMMA/SiO2 bi-layered dielectrics and also the bare SiO2 dielectric. Atomic force microscopy measurements of sub-monolayer and thick pentacene films indicated that the growth of pentacene film was in Stranski-Kranstanow growth mode on all the dielectrics. However, the initial nucleation density and the size of the first-layered pentacene islands deposited on different dielectrics are drastically influenced by the dielectric surface energy. With the increasing of the surface energy, the nucleation density increased and thus the average size of pentacene islands for the first mono-layer deposition decreased. The performance of fabricated pentacene-based thin film transistors was found to be highly related to nucleation density and the island size of deposited Pentacene film, and it had no relationship to the final particle size of the thick pentacene film. The field effect mobility of the thin film transistor could be achieved as high as 1.38 cm2Ns with on/off ratio over 3 x 10(7) on the PS/SiO2 where the lowest surface energy existed among all the dielectrics. For comparison, the values of mobility and on/off ratio were 0.42 cm2Ns and 1 x 10(6) for thin film transistor deposited directly on bare SiO2 having the highest surface energy.

  1. Electrostatics of proteins in dielectric solvent continua. I. An accurate and efficient reaction field description.

    Science.gov (United States)

    Bauer, Sebastian; Mathias, Gerald; Tavan, Paul

    2014-03-14

    We present a reaction field (RF) method which accurately solves the Poisson equation for proteins embedded in dielectric solvent continua at a computational effort comparable to that of an electrostatics calculation with polarizable molecular mechanics (MM) force fields. The method combines an approach originally suggested by Egwolf and Tavan [J. Chem. Phys. 118, 2039 (2003)] with concepts generalizing the Born solution [Z. Phys. 1, 45 (1920)] for a solvated ion. First, we derive an exact representation according to which the sources of the RF potential and energy are inducible atomic anti-polarization densities and atomic shielding charge distributions. Modeling these atomic densities by Gaussians leads to an approximate representation. Here, the strengths of the Gaussian shielding charge distributions are directly given in terms of the static partial charges as defined, e.g., by standard MM force fields for the various atom types, whereas the strengths of the Gaussian anti-polarization densities are calculated by a self-consistency iteration. The atomic volumes are also described by Gaussians. To account for covalently overlapping atoms, their effective volumes are calculated by another self-consistency procedure, which guarantees that the dielectric function ε(r) is close to one everywhere inside the protein. The Gaussian widths σ(i) of the atoms i are parameters of the RF approximation. The remarkable accuracy of the method is demonstrated by comparison with Kirkwood's analytical solution for a spherical protein [J. Chem. Phys. 2, 351 (1934)] and with computationally expensive grid-based numerical solutions for simple model systems in dielectric continua including a di-peptide (Ac-Ala-NHMe) as modeled by a standard MM force field. The latter example shows how weakly the RF conformational free energy landscape depends on the parameters σ(i). A summarizing discussion highlights the achievements of the new theory and of its approximate solution particularly by

  2. Electrostatics of proteins in dielectric solvent continua. I. An accurate and efficient reaction field description

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Sebastian; Mathias, Gerald; Tavan, Paul, E-mail: paul.tavan@physik.uni-muenchen.de [Lehrstuhl für BioMolekulare Optik, Ludwig–Maximilians Universität München, Oettingenstr. 67, 80538 München (Germany)

    2014-03-14

    We present a reaction field (RF) method which accurately solves the Poisson equation for proteins embedded in dielectric solvent continua at a computational effort comparable to that of an electrostatics calculation with polarizable molecular mechanics (MM) force fields. The method combines an approach originally suggested by Egwolf and Tavan [J. Chem. Phys. 118, 2039 (2003)] with concepts generalizing the Born solution [Z. Phys. 1, 45 (1920)] for a solvated ion. First, we derive an exact representation according to which the sources of the RF potential and energy are inducible atomic anti-polarization densities and atomic shielding charge distributions. Modeling these atomic densities by Gaussians leads to an approximate representation. Here, the strengths of the Gaussian shielding charge distributions are directly given in terms of the static partial charges as defined, e.g., by standard MM force fields for the various atom types, whereas the strengths of the Gaussian anti-polarization densities are calculated by a self-consistency iteration. The atomic volumes are also described by Gaussians. To account for covalently overlapping atoms, their effective volumes are calculated by another self-consistency procedure, which guarantees that the dielectric function ε(r) is close to one everywhere inside the protein. The Gaussian widths σ{sub i} of the atoms i are parameters of the RF approximation. The remarkable accuracy of the method is demonstrated by comparison with Kirkwood's analytical solution for a spherical protein [J. Chem. Phys. 2, 351 (1934)] and with computationally expensive grid-based numerical solutions for simple model systems in dielectric continua including a di-peptide (Ac-Ala-NHMe) as modeled by a standard MM force field. The latter example shows how weakly the RF conformational free energy landscape depends on the parameters σ{sub i}. A summarizing discussion highlights the achievements of the new theory and of its approximate solution

  3. 2014 CERN Accelerator Schools: Plasma Wake Acceleration

    CERN Multimedia

    2014-01-01

    A specialised school on Plasma Wake Acceleration will be held at CERN, Switzerland from 23-29 November, 2014.   This course will be of interest to staff and students in accelerator laboratories, university departments and companies working in or having an interest in the field of new acceleration techniques. Following introductory lectures on plasma and laser physics, the course will cover the different components of a plasma wake accelerator and plasma beam systems. An overview of the experimental studies, diagnostic tools and state of the art wake acceleration facilities, both present and planned, will complement the theoretical part. Topical seminars and a visit of CERN will complete the programme. Further information can be found at: http://cas.web.cern.ch/cas/PlasmaWake2014/CERN-advert.html http://indico.cern.ch/event/285444/

  4. Charge accumulation in lossy dielectrics: a review

    DEFF Research Database (Denmark)

    Rasmussen, Jørgen Knøster; McAllister, Iain Wilson; Crichton, George C

    1999-01-01

    At present, the phenomenon of charge accumulation in solid dielectrics is under intense experimental study. Using a field theoretical approach, we review the basis for charge accumulation in lossy dielectrics. Thereafter, this macroscopic approach is applied to planar geometries such that the mat......At present, the phenomenon of charge accumulation in solid dielectrics is under intense experimental study. Using a field theoretical approach, we review the basis for charge accumulation in lossy dielectrics. Thereafter, this macroscopic approach is applied to planar geometries...

  5. Optical bistability and multistability driven by external magnetic field in a dielectric slab doped with nanodiamond nitrogen vacancy centres

    Science.gov (United States)

    Nasehi, R.; Norouzi, F.

    2016-08-01

    The theoretical investigation of controlling the optical bistability (OB) and optical multistability (OM) in a dielectric medium doped with nanodiamond nitrogen vacancy centres under optical excitation are reported. The shape of the OB curve from dielectric slab can be tuned by changing the external magnetic field and polarization of the control beam. The effect of the intensity of the control laser field and the frequency detuning of probe laser field on the OB and OM behaviour are also discussed in this paper. The results obtained can be used for realizing an all-optical bistable switching or development of nanoelectronic devices.

  6. Computation of Dielectric Response in Molecular Solids for High Capacitance Organic Dielectrics.

    Science.gov (United States)

    Heitzer, Henry M; Marks, Tobin J; Ratner, Mark A

    2016-09-20

    The dielectric response of a material is central to numerous processes spanning the fields of chemistry, materials science, biology, and physics. Despite this broad importance across these disciplines, describing the dielectric environment of a molecular system at the level of first-principles theory and computation remains a great challenge and is of importance to understand the behavior of existing systems as well as to guide the design and synthetic realization of new ones. Furthermore, with recent advances in molecular electronics, nanotechnology, and molecular biology, it has become necessary to predict the dielectric properties of molecular systems that are often difficult or impossible to measure experimentally. In these scenarios, it is would be highly desirable to be able to determine dielectric response through efficient, accurate, and chemically informative calculations. A good example of where theoretical modeling of dielectric response would be valuable is in the development of high-capacitance organic gate dielectrics for unconventional electronics such as those that could be fabricated by high-throughput printing techniques. Gate dielectrics are fundamental components of all transistor-based logic circuitry, and the combination high dielectric constant and nanoscopic thickness (i.e., high capacitance) is essential to achieving high switching speeds and low power consumption. Molecule-based dielectrics offer the promise of cheap, flexible, and mass producible electronics when used in conjunction with unconventional organic or inorganic semiconducting materials to fabricate organic field effect transistors (OFETs). The molecular dielectrics developed to date typically have limited dielectric response, which results in low capacitances, translating into poor performance of the resulting OFETs. Furthermore, the development of better performing dielectric materials has been hindered by the current highly empirical and labor-intensive pace of synthetic

  7. Diffraction of a plane electromagnetic wave on a dielectric plate of variable density. [Field equatios, diffracted-wave angular distributions

    Energy Technology Data Exchange (ETDEWEB)

    Aivazyan, Yu M; Mergelyan, O S; Poulatov, M P

    1974-01-01

    Aproblem for the diffraction of a plane electromagnetic wave on a dielectric plate between two other dielectrics is solved. The dielectric constant of the plate depends periodically on three coordinates. From this solution it is possible to obtain the equations for fields and the angular distribution of diffracted waves for the particular cases of a crystal plate and a dielectric surface fluted in all directions. If the expansion is made in the variable of the electron density in crystals, the results will correspond to the problem for the X-ray diffraction on a crystal lattice, the values of the coefficient ..cap alpha -->..sub(tau) being determined by the lattice parameters.

  8. Wake-up effects in Si-doped hafnium oxide ferroelectric thin films

    International Nuclear Information System (INIS)

    Zhou, Dayu; Xu, Jin; Li, Qing; Guan, Yan; Cao, Fei; Dong, Xianlin; Müller, Johannes; Schenk, Tony; Schröder, Uwe

    2013-01-01

    Hafnium oxide based ferroelectric thin films have shown potential as a promising alternative material for non-volatile memory applications. This work reports the switching stability of a Si-doped HfO 2 film under bipolar pulsed-field operation. High field cycling causes a “wake-up” in virgin “pinched” polarization hysteresis loops, demonstrated by an enhancement in remanent polarization and a shift of negative coercive voltage. The rate of wake-up is accelerated by either reducing the frequency or increasing the amplitude of the cycling field. We suggest de-pinning of domains due to reduction of the defect concentration at bottom electrode interface as origin of the wake-up

  9. Electric field measurements in a dielectric barrier nanosecond pulse discharge with sub-nanosecond time resolution

    International Nuclear Information System (INIS)

    Goldberg, Benjamin M; Shkurenkov, Ivan; Adamovich, Igor V; Lempert, Walter R; O’Byrne, Sean

    2015-01-01

    The paper presents the results of time-resolved electric field measurements in a nanosecond discharge between two plane electrodes covered by dielectric plates, using picosecond four-wave mixing diagnostics. For absolute calibration, the IR signal was measured in hydrogen at a pressure of 440 Torr, for electrostatic electric field ranging from 0 to 8 kV cm −1 . The calibration curve (i.e. the square root of IR signal intensity versus electric field) was shown to be linear. By measuring the intensities of the pump, Stokes, and IR signal beam for each laser shot during the time sweep across the high-voltage pulse, temporal evolution of the electric field in the nanosecond pulse discharge was determined with sub-nanosecond time resolution. The results are compared to kinetic modeling predictions, showing good agreement, including non-zero electric field offset before the main high voltage pulse, breakdown moment, and reduction of electric field in the plasma after breakdown. The difference between the experimental results and model predictions is likely due to non-1D structure of the discharge. Comparison with the kinetic modeling predictions shows that electric field in the nanosecond pulse discharge is controlled primarily by electron impact excitation and charge accumulation on the dielectric surfaces. (paper)

  10. The color dielectric model of QCD

    International Nuclear Information System (INIS)

    Pirner, H.-J.; Massachusetts Inst. of Tech., Cambridge, MA; Massachusetts Inst. of Tech., Cambridge, MA

    1992-01-01

    This paper demonstrates the emergence of valence gluons and their bound states, the glueballs from perturbative quantum chromodynamics (QCD). We discuss the phenomenological constraints and theoretical method needed to generate effective glueballs actions. We show how color dielectric confinement works naively and in the lattice model of color dielectrics. This lattice model is derived for SU(2) color by a blockspinning Monte Carlo renormalization group procedure. We interpret the resulting long-distance as a strongly interacting lattice string theory where the valence link gluon fields randomize in the color dielectric background which mimics the integrated out high-frequency gluon modes in the vacuum. The fluctuations of the color dielectric fields are related to color neutral glueballs modes. We give the extension of this color dielectric SU(2) theory for general SU(N) with quarks and address the problems associated with combining confinement and chiral symmetry breaking. Finally we prove the efficiency of the effective theory in applications to the heavy quark system, the the baryon, to the nucleon-nucleon interaction, to baryon models and the gluon plasma transition. In all those cases the behavior of the higher energy gluons can be monitored via the color dielectric fields. An increase in the energy density from ''deconfining'' the higher frequency modes inside the flux tube or in thermally excited matter shows up as an increase in the value of the color dielectric field and its associated energy density. (Author)

  11. Optical investigation of effective permeability of dilute magnetic dielectrics with magnetic field

    Science.gov (United States)

    Banerjee, Ananya; Sarkar, A.

    2016-05-01

    The prime objective of this paper is to investigate the magnetic nature of dilute magnetic dielectrics (DMD) under variation of external magnetic field. The said variation is studied over developed nano-sized Gadolinium Oxide as a DMD system. The observed experimental field variation of the effective magnetic permeability is analyzed results of optical experiment. The experiment records the variation of Brewster angle of incident polarized LASER beam from the surface of developed DMD specimen with applied out of plane external magnetic field. The effective refractive index and hence relative magnetic permeability were estimated following electro-magnetic theory. The overall results obtained and agreement between theory and experiment are good.

  12. Optical investigation of effective permeability of dilute magnetic dielectrics with magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Ananya, E-mail: banerjee.ananya2008@gmail.com; Sarkar, A. [Dept. of Physics, Bijoy Krishna Girls’ College, 5/3 M.G. Road, Howrah 711101, W.B. (India)

    2016-05-06

    The prime objective of this paper is to investigate the magnetic nature of dilute magnetic dielectrics (DMD) under variation of external magnetic field. The said variation is studied over developed nano-sized Gadolinium Oxide as a DMD system. The observed experimental field variation of the effective magnetic permeability is analyzed results of optical experiment. The experiment records the variation of Brewster angle of incident polarized LASER beam from the surface of developed DMD specimen with applied out of plane external magnetic field. The effective refractive index and hence relative magnetic permeability were estimated following electro-magnetic theory. The overall results obtained and agreement between theory and experiment are good.

  13. TRANSVERSE MODES FOR FLAT INTER-BUNCH WAKES*

    CERN Document Server

    Burov, A

    2013-01-01

    If inter-bunch wake fields are flat, i.e. their variations over a bunch length can be neglected, all coherent modes have the same coupled-bunch structure, provided the bunches can be treated as identical by their inner qualities (train theorem). If a flat feedback is strong enough, the transverse modes are single-bunch, provided the inter-bunch wakes are also flat (damper theorem).

  14. CFD three dimensional wake analysis in complex terrain

    Science.gov (United States)

    Castellani, F.; Astolfi, D.; Terzi, L.

    2017-11-01

    Even if wind energy technology is nowadays fully developed, the use of wind energy in very complex terrain is still challenging. In particular, it is challenging to characterize the combination effects of wind ow over complex terrain and wake interactions between nearby turbines and this has a practical relevance too, for the perspective of mitigating anomalous vibrations and loads as well improving the farm efficiency. In this work, a very complex terrain site has been analyzed through a Reynolds-averaged CFD (Computational Fluid Dynamics) numerical wind field model; in the simulation the inuence of wakes has been included through the Actuator Disk (AD) approach. In particular, the upstream turbine of a cluster of 4 wind turbines having 2.3 MW of rated power is studied. The objective of this study is investigating the full three-dimensional wind field and the impact of three-dimensionality on the evolution of the waked area between nearby turbines. A post-processing method of the output of the CFD simulation is developed and this allows to estimate the wake lateral deviation and the wake width. The reliability of the numerical approach is inspired by and crosschecked through the analysis of the operational SCADA (Supervisory Control and Data Acquisition) data of the cluster of interest.

  15. Nonlinear Eddy Viscosity Models applied to Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan

    2013-01-01

    The linear k−ε eddy viscosity model and modified versions of two existing nonlinear eddy viscosity models are applied to single wind turbine wake simulations using a Reynolds Averaged Navier-Stokes code. Results are compared with field wake measurements. The nonlinear models give better results...

  16. Self-Resonant Plasma Wake-Field Excitation by a Laser-Pulse with a Steep Leading-Edge for Particle-Acceleration

    NARCIS (Netherlands)

    Goloviznin, V. V.; van Amersfoort, P. W.

    1995-01-01

    The self-modulational instability of a relatively long laser pulse with a power close to or less than the critical power for relativistic self-focusing in plasma is considered. Strong wake-field excitation occurs as the result of a correlated transverse and longitudinal evolution of the pulse. The

  17. PREFACE: Wake Conference 2015

    Science.gov (United States)

    Barney, Andrew; Nørkær Sørensen, Jens; Ivanell, Stefan

    2015-06-01

    at scientists and PhD students working in the field of wake dynamics. The conference covers the following subject areas: Wake and vortex dynamics, instabilities in trailing vortices and wakes, simulation and measurements of wakes, analytical approaches for modeling wakes, wake interaction and other wind farm investigations. Many people have been involved in producing the 2015 Wake Conference proceedings. The work by the more than 60 reviewers ensuring the quality of the papers is greatly appreciated. The timely evaluation and coordination of the reviews would not have been possible without the work of the section editors: Christian Masson, ÉTS, Fernando Porté-Agel, EPFL, Gerard Schepers, ECN Wind Energy, Gijs Van Kuik, Delft University, Gunner Larsen, DTU Wind Energy, Jakob Mann, DTU Wind Energy, Javier Sanz Rodrigo, CENER, Johan Meyers, KU Leuven, Rebecca Barthelmie, Cornell University, Sandrine Aubrun-Sanches, Université d'Orléans and Thomas Leweke, IRPHE-CNRS. We are also immensely indebted to the very responsive support from the editorial team at IOP Publishing, especially Sarah Toms, during the review process of these proceedings. Visby, Sweden, June 2015 Andrew Barney, Jens Nørkær Sørensen and Stefan Ivanell Uppsala University - Campus Gotland

  18. Dielectric lattice gauge theory

    International Nuclear Information System (INIS)

    Mack, G.

    1983-06-01

    Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)epsilong that are attached to the links b = (x+esub(μ),x) of the lattice and take their values in the linear space g which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)osub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportionalosub(i)osub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson loop expectation values show an area law decay, if the Euclidean action has certain qualitative features which imply that PHI = 0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)

  19. Dielectric lattice gauge theory

    International Nuclear Information System (INIS)

    Mack, G.

    1984-01-01

    Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)element ofG that are attached to the links b = (x+esub(μ), x) of the lattice and take their values in the linear space G which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)sigmasub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportional sigmasub(i)sigmasub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder-Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson-loop expectation values show an area law decay, if the euclidean action has certain qualitative features which imply that PHI=0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)

  20. Experimental Characterization of Electron-Beam-Driven Wakefield Modes in a Dielectric-Woodpile Cartesian Symmetric Structure

    Science.gov (United States)

    Hoang, P. D.; Andonian, G.; Gadjev, I.; Naranjo, B.; Sakai, Y.; Sudar, N.; Williams, O.; Fedurin, M.; Kusche, K.; Swinson, C.; Zhang, P.; Rosenzweig, J. B.

    2018-04-01

    Photonic structures operating in the terahertz (THz) spectral region enable the essential characteristics of confinement, modal control, and electric field shielding for very high gradient accelerators based on wakefields in dielectrics. We report here an experimental investigation of THz wakefield modes in a three-dimensional photonic woodpile structure. Selective control in exciting or suppressing of wakefield modes with a nonzero transverse wave vector is demonstrated by using drive beams of varying transverse ellipticity. Additionally, we show that the wakefield spectrum is insensitive to the offset position of strongly elliptical beams. These results are consistent with analytic theory and three-dimensional simulations and illustrate a key advantage of wakefield systems with Cartesian symmetry: the suppression of transverse wakes by elliptical beams.

  1. Multiple Turbine Wakes

    DEFF Research Database (Denmark)

    Machefaux, Ewan; Mann, Jakob

    and to obtain an estimate of the wake expansion in a fixed frame of reference. A comparison of selected datasets from the campaign showed good far wake agreements of mean wake expansion with Actuator Line CFD computations and simpler engineering models. An empirical relationship, relating maximum wake induction...... for modeling the resulting double wake deficit is only relevant at high turbine thrust coefficients. For high wind speed and low thrust coefficient, linear summation should be primarily used. The first iteration of a new engineering model capable of modeling the overlapped wake deficit is formulated and its...... measurement and simulation is seen in both the fixed and the meandering frame of reference. A benchmark of several wake accumulation models is performed as a basis for the subsequent development of an engineering model for wake interaction.Finally, the validated numerical CFD model is used as part...

  2. Self-guiding of high-intensity laser pulses for laser wake field acceleration

    International Nuclear Information System (INIS)

    Umstader, D.; Liu, X.

    1992-01-01

    A means of self-guiding an ultrashort and high-intensity laser pulse is demonstrated both experimentally and numerically. Its relevance to the laser wake field accelerator concept is discussed. Self-focusing and multiple foci formation are observed when a high peak power (P>100 GW), 1 μm, subpicosecond laser is focused onto various gases (air or hydrogen). It appears to result from the combined effects of self-focusing by the gas, and de-focusing both by diffraction and the plasma formed in the central high-intensity region. Quasi-stationary computer simulations show the same multiple foci behavior as the experiments. The results suggest much larger nonlinear electronic susceptibilities of a gas near or undergoing ionization in the high field of the laser pulse. Although self-guiding of a laser beam by this mechanism appears to significantly extend its high-intensity focal region, small-scale self-focusing due to beam non-uniformity is currently a limitation

  3. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness.

    Science.gov (United States)

    Zhai, Xiaochun; Wu, Songhua; Liu, Bingyi

    2017-06-12

    Four field experiments based on Pulsed Coherent Doppler Lidar with different surface roughness have been carried out in 2013-2015 to study the turbulent wind field in the vicinity of operating wind turbine in the onshore and offshore wind parks. The turbulence characteristics in ambient atmosphere and wake area was analyzed using transverse structure function based on Plane Position Indicator scanning mode. An automatic wake processing procedure was developed to determine the wake velocity deficit by considering the effect of ambient velocity disturbance and wake meandering with the mean wind direction. It is found that the turbine wake obviously enhances the atmospheric turbulence mixing, and the difference in the correlation of turbulence parameters under different surface roughness is significant. The dependence of wake parameters including the wake velocity deficit and wake length on wind velocity and turbulence intensity are analyzed and compared with other studies, which validates the empirical model and simulation of a turbine wake for various atmosphere conditions.

  4. Plasma wake and nuclear forces on fragmented H{sub {sup +}} transport

    Energy Technology Data Exchange (ETDEWEB)

    Barriga-Carrasco, Manuel D [E.T.S.I. Industriales, Universidad de Castilla-La Mancha, E-13071 Ciudad Real (Spain); Deutsch, Claude [Laboratoire de Physique des Gaz et des Plasmas, UMR-8578, Bat. 210, Universite Paris XI, F-91405 Orsay (France)

    2006-12-15

    The objective of the present work is to study the target electronic and nuclear interactions produced when a H{sub {sup +}} ion traverses classical plasma matter. Electronic interactions are treated by means of the dielectric formalism while nuclear interactions are dealt within the classical dispersion theory through a Monte Carlo computer code. The interactions through plasma electronic medium among close ions are called wake forces. We checked that these forces screen the Coulomb explosions of the two fragmented protons from the same H{sub {sup +}} ion decreasing their relative distance in the analysed cases. These forces align the interproton vector along the motion direction. They also tend the two-proton energy loss to the value of two isolated protons when at early times it is rather larger. Nevertheless most parts of these wake effects cannot be corroborated experimentally as they are masked by the projectile collisions with target nuclei in our numerical experiment. These collisions cancel the screening produced by the wake forces, increasing the interproton distance even faster than for bare Coulomb explosion. Also they misalign the interproton vector along the motion direction and contribute moderately to increase the energy loss of the fragmented H{sub {sup +}} ion. These nuclear collisions effects are more significant in reducing projectile velocity.

  5. Crosswind Shear Gradient Affect on Wake Vortices

    Science.gov (United States)

    Proctor, Fred H.; Ahmad, Nashat N.

    2011-01-01

    Parametric simulations with a Large Eddy Simulation (LES) model are used to explore the influence of crosswind shear on aircraft wake vortices. Previous studies based on field measurements, laboratory experiments, as well as LES, have shown that the vertical gradient of crosswind shear, i.e. the second vertical derivative of the environmental crosswind, can influence wake vortex transport. The presence of nonlinear vertical shear of the crosswind velocity can reduce the descent rate, causing a wake vortex pair to tilt and change in its lateral separation. The LES parametric studies confirm that the vertical gradient of crosswind shear does influence vortex trajectories. The parametric results also show that vortex decay from the effects of shear are complex since the crosswind shear, along with the vertical gradient of crosswind shear, can affect whether the lateral separation between wake vortices is increased or decreased. If the separation is decreased, the vortex linking time is decreased, and a more rapid decay of wake vortex circulation occurs. If the separation is increased, the time to link is increased, and at least one of the vortices of the vortex pair may have a longer life time than in the case without shear. In some cases, the wake vortices may never link.

  6. Coupled modes, frequencies and fields of a dielectric resonator and a cavity using coupled mode theory

    Science.gov (United States)

    Elnaggar, Sameh Y.; Tervo, Richard; Mattar, Saba M.

    2014-01-01

    Probes consisting of a dielectric resonator (DR) inserted in a cavity are important integral components of electron paramagnetic resonance (EPR) spectrometers because of their high signal-to-noise ratio. This article studies the behavior of this system, based on the coupling between its dielectric and cavity modes. Coupled-mode theory (CMT) is used to determine the frequencies and electromagnetic fields of this coupled system. General expressions for the frequencies and field distributions are derived for both the resulting symmetric and anti-symmetric modes. These expressions are applicable to a wide range of frequencies (from MHz to THz). The coupling of cavities and DRs of various sizes and their resonant frequencies are studied in detail. Since the DR is situated within the cavity then the coupling between them is strong. In some cases the coupling coefficient, κ, is found to be as high as 0.4 even though the frequency difference between the uncoupled modes is large. This is directly attributed to the strong overlap between the fields of the uncoupled DR and cavity modes. In most cases, this improves the signal to noise ratio of the spectrometer. When the DR and the cavity have the same frequency, the coupled electromagnetic fields are found to contain equal contributions from the fields of the two uncoupled modes. This situation is ideal for the excitation of the probe through an iris on the cavity wall. To verify and validate the results, finite element simulations are carried out. This is achieved by simulating the coupling between a cylindrical cavity's TE011 and the dielectric insert's TE01δ modes. Coupling between the modes of higher order is also investigated and discussed. Based on CMT, closed form expressions for the fields of the coupled system are proposed. These expressions are crucial in the analysis of the probe's performance.

  7. Analytical drain current formulation for gate dielectric engineered dual material gate-gate all around-tunneling field effect transistor

    Science.gov (United States)

    Madan, Jaya; Gupta, R. S.; Chaujar, Rishu

    2015-09-01

    In this work, an analytical drain current model for gate dielectric engineered (hetero dielectric)-dual material gate-gate all around tunnel field effect transistor (HD-DMG-GAA-TFET) has been developed. Parabolic approximation has been used to solve the two-dimensional (2D) Poisson equation with appropriate boundary conditions and continuity equations to evaluate analytical expressions for surface potential, electric field, tunneling barrier width and drain current. Further, the analog performance of the device is studied for three high-k dielectrics (Si3N4, HfO2, and ZrO2), and it has been investigated that the problem of lower ION, can be overcome by using the hetero-gate architecture. Moreover, the impact of scaling the gate oxide thickness and bias variations has also been studied. The HD-DMG-GAA-TFET shows an enhanced ION of the order of 10-4 A. The effectiveness of the proposed model is validated by comparing it with ATLAS device simulations.

  8. Wake interaction and power production of variable height model wind farms

    International Nuclear Information System (INIS)

    Vested, M H; Sørensen, J N; Hamilton, N; Cal, R B

    2014-01-01

    Understanding wake dynamics is an ongoing research topic in wind energy, since wakes have considerable effects on the power production when wind turbines are placed in a wind farm. Wind tunnel experiments have been conducted to study the wake to wake interaction in a model wind farm in tandem with measurements of the extracted power. The aim is to investigate how alternating mast height influences the interaction of the wakes and the power production. Via the use of stereo-particle image velocimetry, the flow field was obtained in the first and last rows of the wind turbine array as a basis of comparison. It was found that downstream of the exit row wind turbine, the power was increased by 25% in the case of a staggered height configuration. This is partly due to the fact that the taller turbines reach into a flow area with a softened velocity gradient. Another aspect is that the wake downstream of a tall wind turbine to some extent passes above the standard height wind turbine. Overall the experiments show that the velocity field downstream of the exit row changes considerably when the mast height is alternating

  9. Temperature fields occurring in dielectric capillaries for the transport of of ion beams

    International Nuclear Information System (INIS)

    Urbanovich, A.I.

    2012-01-01

    This paper presents the results of computing the temperature fields occurring in dielectric capillaries of glass for the transport of accelerated charged particles. It is shown that on the transport of ion beams with a power of several watts the capillary is heated intensively, whereas heat stresses may approach the lower bound associated with a real strength of glass. (authors)

  10. Cylinder wakes in flowing soap films

    International Nuclear Information System (INIS)

    Vorobieff, P.; Ecke, R.E.; Vorobieff, P.

    1999-01-01

    We present an experimental characterization of cylinder wakes in flowing soap films. From instantaneous velocity and thickness fields, we find the vortex-shedding frequency, mean-flow velocity, and mean-film thickness. Using the empirical relationship between the Reynolds and Strouhal numbers obtained for cylinder wakes in three dimensions, we estimate the effective soap-film viscosity and its dependence on film thickness. We also compare the decay of vorticity with that in a simple Rankine vortex model with a dissipative term to account for air drag. copyright 1999 The American Physical Society

  11. Properties of dielectric barrier discharges in different arrangements

    International Nuclear Information System (INIS)

    Pietsch, G.J.

    2001-01-01

    Dielectric barrier discharges (DBDs) occur in arrangements where at least one dielectric is positioned in a gas space in between conducting electrodes. When breakdown field strength is reached in such a device, charge carriers are created in the gas region, accelerated, multiplied and finally collected on the surface(s) of the dielectric(s). The charge accumulation on the dielectric creates a counter field to that resulting from the power supply and as all of these processes are rather fast, the discharge quenches rapidly. The dielectric has two tasks, it limits the transferred charge and by this the energy conversion and distributes the discharge over the electrode area. That is why DBDs are non-thermal discharges which exist even at atmospheric pressure

  12. Polymer/metal oxide hybrid dielectrics for low voltage field-effect transistors with solution-processed, high-mobility semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Held, Martin; Schießl, Stefan P.; Gannott, Florentina [Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen D-91058 (Germany); Institute for Physical Chemistry, Universität Heidelberg, Heidelberg D-69120 (Germany); Miehler, Dominik [Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen D-91058 (Germany); Zaumseil, Jana, E-mail: zaumseil@uni-heidelberg.de [Institute for Physical Chemistry, Universität Heidelberg, Heidelberg D-69120 (Germany)

    2015-08-24

    Transistors for future flexible organic light-emitting diode (OLED) display backplanes should operate at low voltages and be able to sustain high currents over long times without degradation. Hence, high capacitance dielectrics with low surface trap densities are required that are compatible with solution-processable high-mobility semiconductors. Here, we combine poly(methyl methacrylate) (PMMA) and atomic layer deposition hafnium oxide (HfO{sub x}) into a bilayer hybrid dielectric for field-effect transistors with a donor-acceptor polymer (DPPT-TT) or single-walled carbon nanotubes (SWNTs) as the semiconductor and demonstrate substantially improved device performances for both. The ultra-thin PMMA layer ensures a low density of trap states at the semiconductor-dielectric interface while the metal oxide layer provides high capacitance, low gate leakage and superior barrier properties. Transistors with these thin (≤70 nm), high capacitance (100–300 nF/cm{sup 2}) hybrid dielectrics enable low operating voltages (<5 V), balanced charge carrier mobilities and low threshold voltages. Moreover, the hybrid layers substantially improve the bias stress stability of the transistors compared to those with pure PMMA and HfO{sub x} dielectrics.

  13. Quantum optics of dispersive dielectric media

    International Nuclear Information System (INIS)

    Lenac, Z.

    2003-01-01

    We quantize the electromagnetic field in a polar medium starting with the fundamental equations of motion. In our model the medium is described by a Lorenz-type dielectric function ε(r,ω) appropriate, e.g., for ionic crystals, metals, and inert dielectrics. There are no restrictions on the spatial behavior of the dielectric function, i.e., there can be many different polar media with arbitrary shapes. We assume no losses in our system so the dielectric function for the whole space is assumed as real. The quantization procedure is based on an expansion of the total field (transverse and longitudinal) in terms of the coupled (polariton) eigenmodes, and this approach incorporates all previous results derived for similar but restricted systems (e.g., without spatial or frequency dependence of coupled modes). Within the same model, we also quantize the Hamiltonian of a nonretarded electromagnetic field in polar media. Particular attention is paid to the derivation of the orthogonality and closure relations, which are used in a discussion of the fundamental (equal-time) commutation relations between the conjugate field operators

  14. Comparison study between wind turbine and power kite wakes

    Science.gov (United States)

    Haas, T.; Meyers, J.

    2017-05-01

    Airborne Wind Energy (AWE) is an emerging technology in the field of renewable energy that uses kites to harvest wind energy. However, unlike for conventional wind turbines, the wind environment in AWE systems has not yet been studied in much detail. We propose a simulation framework using Large Eddy Simulation to model the wakes of such kite systems and offer a comparison with turbine-like wakes. In order to model the kite effects on the flow, a lifting line technique is used. We investigate different wake configurations related to the operation modes of wind turbines and airborne systems in drag mode. In the turbine mode, the aerodynamic torque of the blades is directly added to the flow. In the kite drag mode, the aerodynamic torque of the wings is directly balanced by an opposite torque induced by on-board generators; this results in a total torque on the flow that is zero. We present the main differences in wake characteristics, especially flow induction and vorticity fields, for the depicted operation modes both with laminar and turbulent inflows.

  15. A Concept of Plasma Wake Field Acceleration Linear Collider (PWFA-LC)

    International Nuclear Information System (INIS)

    Seryi, Andrei; Hogan, Mark; Pei, Shilun; Raubenheimer, Tor; Tenenbaum, Peter; Katsouleas, Tom; Huang, Chengkun; Joshi, Chan; Mori, Warren; Muggli, Patric

    2009-01-01

    Plasma Wake-Field Acceleration (PWFA) has demonstrated acceleration gradients above 50 GeV/m. Simulations have shown drive/witness bunch configurations that yield small energy spreads in the accelerated witness bunch and high energy transfer efficiency from the drive bunch to the witness bunch, ranging from 30% for a Gaussian drive bunch to 95% for a shaped longitudinal profile. These results open the opportunity for a linear collider that could be compact, efficient and more cost effective that the present microwave technologies. A concept of a PWFA-based Linear Collider (PWFA-LC) has been developed and is described in this paper. The drive beam generation and distribution, requirements on the plasma cells, and optimization of the interaction region parameters are described in detail. The R and D steps needed for further development of the concept are also outlined.

  16. Dissipation of Turbulence in the Wake of a Wind Turbine

    Science.gov (United States)

    Lundquist, J. K.; Bariteau, L.

    2015-02-01

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-rate turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.

  17. Calculation of the Dielectric Constant as a Function of Temperature Close to the Smectic A-Smectic B Transition in B5 Using the Mean Field Model

    Directory of Open Access Journals (Sweden)

    Hamit Yurtseven

    2012-01-01

    Full Text Available The temperature dependence of the static dielectric constant ( is calculated close to the smectic A-smectic B ( transition ( = 71.3°C for the liquid crystal compound B5. By expanding the free energy in terms of the order parameter in the mean field theory, the expression for the dielectric susceptibility (dielectric constant is derived and is fitted to the experimental data for which was obtained at the field strengths of 0 and 67 kV/cm from literature. Coefficients in the free energy expansion are determined from our fit for the transition of B5. Our results show that the observed behaviour of the dielectric constant close to the transition in B5 can be described satisfactorily by our mean field model.

  18. Blunt body near wake flow field at Mach 6

    Science.gov (United States)

    Horvath, Thomas J.; McGinley, Catherine B.; Hannemann, Klaus

    1996-01-01

    Tests were conducted in a Mach 6 flow to examine the reattachment process of an axisymmetric free shear layer associated with the near wake of a 70 deg. half angle, spherically blunted cone with a cylindrical after body. Model angle of incidence was fixed at 0 deg. and free-stream Reynolds numbers based on body diameter ranged from 0.5 x 10(exp 6) to 4 x 10(exp 6). The sensitivity of wake shear layer transition on reattachment heating was investigated. The present perfect gas study was designed to compliment results obtained previously in facilities capable of producing real gas effects. The instrumented blunted cone model was designed primarily for testing in high enthalpy hypervelocity shock tunnels in both this country and abroad but was amenable for testing in conventional hypersonic blowdown wind tunnels as well. Surface heating rates were inferred from temperature - time histories from coaxial surface thermocouples on the model forebody and thin film resistance gages along the model base and cylindrical after body. General flow feature (bow shock, wake shear layer, and recompression shock) locations were visually identified by schlieren photography. Mean shear layer position and growth were determined from intrusive pitot pressure surveys. In addition, wake surveys with a constant temperature hot-wire anemometer were utilized to qualitatively characterize the state of the shear layer prior to reattachment. Experimental results were compared to laminar perfect gas predictions provided by a 3-D Navier Stokes code (NSHYP). Shear layer impingement on the instrumented cylindrical after body resulted in a localized heating maximum that was 21 to 29 percent of the forebody stagnation point heating. Peak heating resulting from the reattaching shear layer was found to be a factor of 2 higher than laminar predictions, which suggested a transitional shear layer. Schlieren flow visualization and fluctuating voltage time histories and spectra from the hot wire surveys

  19. Accelerating Dielectrics Design Using Thinking Machines

    Science.gov (United States)

    Ramprasad, R.

    2013-03-01

    High energy density capacitors are required for several pulsed power and energy storage applications, including food preservation, nuclear test simulations, electric propulsion of ships and hybrid electric vehicles. The maximum electrostatic energy that can be stored in a capacitor dielectric is proportional to its dielectric constant and the square of its breakdown field. The current standard material for capacitive energy storage is polypropylene which has a large breakdown field but low dielectric constant. We are involved in a search for new classes of polymers superior to polypropylene using first principles computations combined with statistical and machine learning methods. Essential to this search are schemes to efficiently compute the dielectric constant of polymers and the intrinsic dielectric breakdown field, as well as methods to determine the stable structures of new classes of polymers and strategies to efficiently navigate through the polymer chemical space offered by the periodic table. These methodologies have been combined with statistical learning paradigms in order to make property predictions rapidly, and promising classes of polymeric systems for energy storage applications have been identified. This work is being supported by the Office of Naval Research.

  20. Dielectric nanoresonators for light manipulation

    Science.gov (United States)

    Yang, Zhong-Jian; Jiang, Ruibin; Zhuo, Xiaolu; Xie, Ya-Ming; Wang, Jianfang; Lin, Hai-Qing

    2017-07-01

    Nanostructures made of dielectric materials with high or moderate refractive indexes can support strong electric and magnetic resonances in the optical region. They can therefore function as nanoresonators. In addition to plasmonic metal nanostructures that have been widely investigated, dielectric nanoresonators provide a new type of building blocks for realizing powerful and versatile nanoscale light manipulation. In contrast to plasmonic metal nanostructures, nanoresonators made of appropriate dielectric materials are low-cost, earth-abundant and have very small or even negligible light energy losses. As a result, they will find potential applications in a number of photonic devices, especially those that require low energy losses. In this review, we describe the recent progress on the experimental and theoretical studies of dielectric nanoresonators. We start from the basic theory of the electromagnetic responses of dielectric nanoresonators and their fabrication methods. The optical properties of individual dielectric nanoresonators are then elaborated, followed by the coupling behaviors between dielectric nanoresonators, between dielectric nanoresonators and substrates, and between dielectric nanoresonators and plasmonic metal nanostructures. The applications of dielectric nanoresonators are further described. Finally, the challenges and opportunities in this field are discussed.

  1. Wind turbine wake visualization and characteristics analysis by Doppler lidar.

    Science.gov (United States)

    Wu, Songhua; Liu, Bingyi; Liu, Jintao; Zhai, Xiaochun; Feng, Changzhong; Wang, Guining; Zhang, Hongwei; Yin, Jiaping; Wang, Xitao; Li, Rongzhong; Gallacher, Daniel

    2016-05-16

    Wind power generation is growing fast as one of the most promising renewable energy sources that can serve as an alternative to fossil fuel-generated electricity. When the wind turbine generator (WTG) extracts power from the wind, the wake evolves and leads to a considerable reduction in the efficiency of the actual power generation. Furthermore, the wake effect can lead to the increase of turbulence induced fatigue loads that reduce the life time of WTGs. In this work, a pulsed coherent Doppler lidar (PCDL) has been developed and deployed to visualize wind turbine wakes and to characterize the geometry and dynamics of wakes. As compared with the commercial off-the-shelf coherent lidars, the PCDL in this work has higher updating rate of 4 Hz and variable physical spatial resolution from 15 to 60 m, which improves its capability to observation the instantaneous turbulent wind field. The wind speed estimation method from the arc scan technique was evaluated in comparison with wind mast measurements. Field experiments were performed to study the turbulent wind field in the vicinity of operating WTGs in the onshore and offshore wind parks from 2013 to 2015. Techniques based on a single and a dual Doppler lidar were employed for elucidating main features of turbine wakes, including wind velocity deficit, wake dimension, velocity profile, 2D wind vector with resolution of 10 m, turbulence dissipation rate and turbulence intensity under different conditions of surface roughness. The paper shows that the PCDL is a practical tool for wind energy research and will provide a significant basis for wind farm site selection, design and optimization.

  2. Dielectric polarization and electric field distortion due to heavy ions impinging on silicon detectors

    International Nuclear Information System (INIS)

    Parlog, M.; Wieleczko, J.P.; Parlog, M.; Hamrita, H.; Borderie, B.; Lavergne, L.; Rivet, M.F.

    2003-01-01

    The polarization of the electron-hole pairs induced by 80 MeV 12 C in a silicon detector was considered and connected to the relative dielectric permittivity, locally increased. The exact coordinate dependence of the modified electric field - inside and outside the ion range - was found as the solution of the one dimension Poisson's equation for the electric potential in this inhomogeneous medium. The improvement of the signal simulation is encouraging, as compared to an undisturbed electric field case. (authors)

  3. Advanced Accelerator Test Facility (AATF) upgrade plan

    International Nuclear Information System (INIS)

    Gai, W.; Ho, C.; Konecny, R.

    1989-01-01

    We have successfully demonstrated the principles of wake-field acceleration using structures (cavity, dielectric) and plasmas as wake-field devices using the AATF at Argonne National Laboratory. Due to the limited driver electron pulse intensity and relative long pulse length, only modest accelerating gradients were observed. In order to study the wake field effects in much greater detail and demonstrate the feasibility of wake-field accelerator for high energy physics, we are considering construction of a laser photocathode injector on the existing 20 MeV Chem-Linac to produce very intense and short electron pulses. 10 refs., 5 figs

  4. Wake Survey of a Marine Current Turbine Under Steady Conditions

    Science.gov (United States)

    Lust, Ethan; Luznik, Luksa; Flack, Karen

    2016-11-01

    A submersible particle image velocimetry (PIV) system was used to study the wake of a horizontal axis marine current turbine. The turbine was tested in a large tow tank facility at the United States Naval Academy. The turbine is a 1/25th scale model of the U.S. National Renewable Energy Laboratory's Reference Model 1 (RM1) tidal turbine. It is a two-bladed turbine measuring 0.8 m in diameter and featuring a NACA 63-618 airfoil cross section. Separate wind tunnel testing has shown the foil section used on the turbine to be Reynolds number independent with respect to lift at the experimental parameters of tow carriage speed (Utow = 1 . 68 m/s) and tip speed ratio (TSR = 7). The wake survey was conducted over an area extending 0.25D forward of the turbine tip path to 2.0D aft, and to a depth of 1.0D beneath the turbine output shaft in the streamwise plane. Each field of view was approximately 30 cm by 30 cm, and each overlapped the adjacent fields of view by 5 cm. The entire flow field was then reconstructed into a single field of investigation. Results include streamwise and vertical ensemble average velocity fields averaged over approximately 1,000 realizations, as well as higher-order statistics. Turbine tip vortex centers were identified and plotted showing increasing aperiodicity with wake age. keywords: horizontal axis marine current turbine, particle image velocimetry, towing tank, wake survey

  5. Noise emission from wind turbines in wake. Project report

    Energy Technology Data Exchange (ETDEWEB)

    Dam Madsen, K.; Plovsing, B. (DELTA, Hoersholm (Denmark)); Soerensen, Thomas (EMD International A/S, Aalborg (Denmark)); Aagaard Madsen, H.; Bertagnolio, F. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark))

    2011-03-15

    When installing wind turbines in clusters or wind farms the inflow conditions to the wind turbines can be disturbed due to wake effects from other wind turbines. The effect of wake on noise generation from wind turbines are described in this report. The work is based on measurements carried out on a M80 2 MW wind turbine. To investigate the relationship between the far field noise levels and the surface pressure and inflow angles measured by sensors on an instrumented wind turbine blade, a parabolic measurement system (PMMS) was designed and tested as part of this project. Based on the measurement results obtained with surface pressure sensors and results from the far field measurements using the PMMS it is concluded that: The variance of surface pressure at the trailing edge (TE) agrees with the theory with regard to variation of pressure spectra with varying inflow angle (AoA) to the blade. Low frequency TE surface pressure increases with increased AoA and high frequency surface pressure decreases with increased AoA. It seems that the TE surface pressure remains almost unaltered during wake operation. Results from the surface transducers at the leading edge (LE) and the inflow angles determined from the pitot tube indicates that the inflow at LE is more turbulent in wake for the same AoA and with a low frequency characteristic, thereby giving rise to more low frequency noise generated during wake operation. The far field measurements supports that on one hand there will be produced relative more low frequency noise due to a turbulent inflow to the blade and on the other hand there will be produced less noise in the broader frequency range/high frequency range due to a lower inflow angle caused by the wind deficit in the wake. The net effect of wake on the total noise level is unresolved. As a secondary result it is seen that noise observed from a position on the ground is related to directional effects of the noise radiated from the wind turbine blade. For an

  6. Preliminary Analysis on Linac Oscillation Data LI05-19 and Wake Field Energy Loss in FACET Commissioning 2012

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yipeng; /SLAC

    2012-07-23

    In this note, preliminary analysis on linac ocsillation data in FACET linac LI05-09 plus LI11-19 is presented. Several quadrupoles are identified to possibly have different strength, compared with their designed strength in the MAD optics model. The beam energy loss due to longitudinal wake fields in the S-band linac is also analytically calculated, also by LITRACK numerical simulations.

  7. Bluff Body Flow Control Using Dielectric Barrier Discharge Plasma Actuators

    Science.gov (United States)

    Thomas, Flint; Kozlov, Alexey

    2008-11-01

    The results of an experimental investigation involving the use of dielectric barrier discharge plasma actuators to control bluff body flow is presented. The motivation for the work is plasma landing gear noise control for commercial transport aircraft. For these flow control experiments, the cylinder in cross-flow is chosen for study since it represents a generic flow geometry that is similar in all essential aspects to a landing gear strut. The current work is aimed both at extending the plasma flow control concept to Reynolds numbers typical of landing approach and take-off and on the development of optimum plasma actuation strategies. The cylinder wake flow with and without actuation are documented in detail using particle image velocimetry (PIV) and constant temperature hot-wire anemometry. The experiments are performed over a Reynolds number range extending to ReD=10^5. Using either steady or unsteady plasma actuation, it is demonstrated that even at the highest Reynolds number Karman shedding is totally eliminated and turbulence levels in the wake decrease by more than 50%. By minimizing the unsteady flow separation from the cylinder and associated large-scale wake vorticity, the radiated aerodynamic noise is also reduced.

  8. Shaping of pulses in optical grating-based laser systems for optimal control of electrons in laser plasma wake-field accelerator

    International Nuclear Information System (INIS)

    Toth, Cs.; Faure, J.; Geddes, C.G.R.; Tilborg, J. van; Leemans, W.P.

    2003-01-01

    In typical chirped pulse amplification (CPA) laser systems, scanning the grating separation in the optical compressor causes the well know generation of linear chirp of frequency vs. time in a laser pulse, as well as a modification of all the higher order phase terms. By setting the compressor angle slightly different from the optimum value to generate the shortest pulse, a typical scan around this value will produce significant changes to the pulse shape. Such pulse shape changes can lead to significant differences in the interaction with plasmas such as used in laser wake-field accelerators. Strong electron yield dependence on laser pulse shape in laser plasma wake-field electron acceleration experiments have been observed in the L'OASIS Lab of LBNL [1]. These experiments show the importance of pulse skewness parameter, S, defined here on the basis of the ratio of the ''head-width-half-max'' (HWHM) and the ''tail-width-halfmax'' (TWHM), respectively

  9. Light detection and ranging measurements of wake dynamics. Part II: two-dimensional scanning

    DEFF Research Database (Denmark)

    Trujillo, Juan-José; Bingöl, Ferhat; Larsen, Gunner Chr.

    2011-01-01

    the instantaneous transversal wake position which is quantitatively compared with the prediction of the Dynamic Wake Meandering model. The results, shown for two 10-min time series, suggest that the conjecture of the wake behaving as a passive tracer is a fair approximation; this corroborates and expands...... the results of one-dimensional measurements already presented in the first part of this paper. Consequently, it is now possible to separate the deterministic and turbulent parts of the wake wind field, thus enabling capturing the wake in the meandering frame of reference. The results correspond, qualitatively...

  10. Evaluation of Fast-Time Wake Vortex Models using Wake Encounter Flight Test Data

    Science.gov (United States)

    Ahmad, Nashat N.; VanValkenburg, Randal L.; Bowles, Roland L.; Limon Duparcmeur, Fanny M.; Gloudesman, Thijs; van Lochem, Sander; Ras, Eelco

    2014-01-01

    This paper describes a methodology for the integration and evaluation of fast-time wake models with flight data. The National Aeronautics and Space Administration conducted detailed flight tests in 1995 and 1997 under the Aircraft Vortex Spacing System Program to characterize wake vortex decay and wake encounter dynamics. In this study, data collected during Flight 705 were used to evaluate NASA's fast-time wake transport and decay models. Deterministic and Monte-Carlo simulations were conducted to define wake hazard bounds behind the wake generator. The methodology described in this paper can be used for further validation of fast-time wake models using en-route flight data, and for determining wake turbulence constraints in the design of air traffic management concepts.

  11. Magnetic field and dielectric environment effects on an exciton trapped by an ionized donor in a spherical quantum dot

    Science.gov (United States)

    Aghoutane, N.; Feddi, E.; El-Yadri, M.; Bosch Bailach, J.; Dujardin, F.; Duque, C. A.

    2017-11-01

    Magnetic field and host dielectric environment effects on the binding energy of an exciton trapped by an ionized donor in spherical quantum dot are investigated. In the framework of the effective mass approximation and by using a variational method, the calculations have been performed by developing a robust ten-terms wave function taking into account the different inter-particles correlations and the distortion of symmetry induced by the orientation of the applied magnetic field. The binding and the localization energies are determined as functions of dot size and magnetic field strength. It appears that the variation of magnetic shift obeys a quadratic law for low magnetic fields regime while, for strong magnetic fields, this shift tends to be linear versus the magnetic field strength. The stability of this complex subjected to a magnetic field is also discussed according to the electron-hole ratio and the dielectric constant of the surrounding medium. A last point to highlight is that the Haynes' rule remains valid even in the presence of an applied magnetic field.

  12. Dielectric properties of lunar surface

    Science.gov (United States)

    Yushkova, O. V.; Kibardina, I. N.

    2017-03-01

    Measurements of the dielectric characteristics of lunar soil samples are analyzed in the context of dielectric theory. It has been shown that the real component of the dielectric permittivity and the loss tangent of rocks greatly depend on the frequency of the interacting electromagnetic field and the soil temperature. It follows from the analysis that one should take into account diurnal variations in the lunar surface temperature when interpreting the radar-sounding results, especially for the gigahertz radio range.

  13. Wake structure of a single vertical axis wind turbine

    International Nuclear Information System (INIS)

    Posa, Antonio; Parker, Colin M.; Leftwich, Megan C.; Balaras, Elias

    2016-01-01

    Highlights: • The wake structure of an isolated Vertical Axis Wind Turbine is studied by both Particle Imaging Velocimetry and Large Eddy Simulation. • The wake structure is investigated for two values of tip speed ratio, TSR_1=1.35 and TSR_2=2.21. • A displacement of the momentum deficit towards the windward side is verified in the wake. • Higher turbulence and coherence is observed on the leeward side of the wake, due to the upwind stall of the blades. • Coherence in the wake core, associated to the downwind stall, decays quickly downstream. - Abstract: The wake structure behind a vertical axis wind turbine (VAWT) is both measured in a wind tunnel using particle imaging velocimetry (PIV) and computed with large-eddy simulation (LES). Geometric and dynamic conditions are closely matched to typical applications of VAWTs (Re_D ∼ 1.8 × 10"5). The experiments and computations were highly coordinated with continuous two-way feedback to produce the most insightful results. Good qualitative agreement is seen between the computational and experimental results. The dependence of the wake structure on the tip speed ratio, TSR, is investigated, showing higher asymmetry and larger vortices at the lower rotational speed, due to stronger dynamic stall phenomena. Instantaneous, ensemble-averaged and phase-averaged fields are discussed, as well as the dynamics of coherent structures in the rotor region and downstream wake.

  14. Electrostatics of proteins in dielectric solvent continua. II. Hamiltonian reaction field dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Sebastian; Tavan, Paul; Mathias, Gerald, E-mail: gerald.mathias@physik.uni-muenchen.de [Lehrstuhl für BioMolekulare Optik, Ludig-Maximilians Universität München, Oettingenstr. 67, 80538 München (Germany)

    2014-03-14

    In Paper I of this work [S. Bauer, G. Mathias, and P. Tavan, J. Chem. Phys. 140, 104102 (2014)] we have presented a reaction field (RF) method, which accurately solves the Poisson equation for proteins embedded in dielectric solvent continua at a computational effort comparable to that of polarizable molecular mechanics (MM) force fields. Building upon these results, here we suggest a method for linearly scaling Hamiltonian RF/MM molecular dynamics (MD) simulations, which we call “Hamiltonian dielectric solvent” (HADES). First, we derive analytical expressions for the RF forces acting on the solute atoms. These forces properly account for all those conditions, which have to be self-consistently fulfilled by RF quantities introduced in Paper I. Next we provide details on the implementation, i.e., we show how our RF approach is combined with a fast multipole method and how the self-consistency iterations are accelerated by the use of the so-called direct inversion in the iterative subspace. Finally we demonstrate that the method and its implementation enable Hamiltonian, i.e., energy and momentum conserving HADES-MD, and compare in a sample application on Ac-Ala-NHMe the HADES-MD free energy landscape at 300 K with that obtained in Paper I by scanning of configurations and with one obtained from an explicit solvent simulation.

  15. Oscillatory wake potential with exchange-correlation in plasmas

    Science.gov (United States)

    Khan, Arroj A.; Zeba, I.; Jamil, M.; Asif, M.

    2017-12-01

    The oscillatory wake potential of a moving test charge is studied in quantum dusty plasmas. The plasma system consisting of electrons, ions and negatively charged dust species is embedded in an ambient magnetic field. The modified equation of dispersion is derived using a Quantum Hydrodynamic Model for magnetized plasmas. The quantum effects are inculcated through Fermi degenerate pressure, the tunneling effect and exchange-correlation effects. The study of oscillatory wake is important to know the existence of silence zones in space and astrophysical objects as well as for crystal formation. The graphical description of the potential depicts the significance of the exchange and correlation effects arising through spin and other variables on the wake potential.

  16. Kirchhoff's Integral Representation and a Cavity Wake Potential

    Energy Technology Data Exchange (ETDEWEB)

    Novokhatski, Alexander; /SLAC

    2012-02-17

    A method is proposed for the calculation of the short-range wake field potentials of an ultra-relativistic bunch passing near some irregularities in a beam pipe. The method is based on the space-time domain integration of Maxwell's equations using Kirchhoff's formulation. We demonstrate this method on two cases where we obtain the wake potentials for the energy loss of a bunch traversing an iris-collimator in a beam pipe and for a cavity. Likewise, formulas are derived for Green's functions that describe the transverse force action of wake fields. Simple formulas for the total energy loss of a bunch with a Gaussian charge density distribution are derived as well. The derived estimates are compared with computer results and predictions of other models.

  17. CFD Study on Effective Wake of Conventional and Tip-modified Propellers

    DEFF Research Database (Denmark)

    Shin, K. W.; Andersen, Poul

    2016-01-01

    result and the effective wake fractions from integrating CFD velocity fields, 5-15% higher effective wake fractions of tip-modified propellers from the existing estimation method based on the open-water correlation at thrust or torque identity can be related mainly to the effects of Reynolds number...

  18. A non-linear theory for the bubble regime of plasma wake fields in tailored plasma channels

    CERN Document Server

    Thomas, Johannes

    2016-01-01

    We introduce a first full analytical bubble and blow-out model for a radially inhomogeneous plasma in a quasi-static approximation. For both cases we calculate the accelerating and the focusing fields. In our model we also assume a thin electron layer that surrounds the wake field and calculate the field configuration within. Our theory holds for arbitrary radial density profiles and reduces to known models in the limit of a homogeneous plasma. From a previous study of hollow plasma channels with smooth boundaries for laser-driven electron acceleration in the bubble regime we know that pancake-like laser pulses lead to highest electron energies [Pukhov et al, PRL 113, 245003 (2014)]. As it was shown, the bubble fields can be adjusted to balance the laser depletion and dephasing lengths by varying the plasma density profile inside a deep channel. Now we show why the radial fields in the vacuum part of a channel become defocussing.

  19. Stochastic Wake Modelling Based on POD Analysis

    Directory of Open Access Journals (Sweden)

    David Bastine

    2018-03-01

    Full Text Available In this work, large eddy simulation data is analysed to investigate a new stochastic modeling approach for the wake of a wind turbine. The data is generated by the large eddy simulation (LES model PALM combined with an actuator disk with rotation representing the turbine. After applying a proper orthogonal decomposition (POD, three different stochastic models for the weighting coefficients of the POD modes are deduced resulting in three different wake models. Their performance is investigated mainly on the basis of aeroelastic simulations of a wind turbine in the wake. Three different load cases and their statistical characteristics are compared for the original LES, truncated PODs and the stochastic wake models including different numbers of POD modes. It is shown that approximately six POD modes are enough to capture the load dynamics on large temporal scales. Modeling the weighting coefficients as independent stochastic processes leads to similar load characteristics as in the case of the truncated POD. To complete this simplified wake description, we show evidence that the small-scale dynamics can be captured by adding to our model a homogeneous turbulent field. In this way, we present a procedure to derive stochastic wake models from costly computational fluid dynamics (CFD calculations or elaborated experimental investigations. These numerically efficient models provide the added value of possible long-term studies. Depending on the aspects of interest, different minimalized models may be obtained.

  20. Actuation response of polyacrylate dielectric elastomers

    DEFF Research Database (Denmark)

    Kofod, G.; Kornbluh, R.; Pelrine, R.

    2001-01-01

    Polyacrylate dielectric elastomers have yielded extremely large strain and elastic energy density suggesting that they are useful for many actuator applications. A thorough understanding of the physics underlying the mechanism of the observed response to an electric field can help develop improved......, though there are discrepancies. Further analysis suggests that these arise mostly from imperfect manufacture of the actuators, though there is a small contribution from an explicitly electrostrictive behavior of the acrylic adhesive. Measurements of the dielectric constant of stretched polymer reveal...... that the dielectric constant drops, when the polymer is strained, indicating the existence of a small electrostrictive effect. Finally, measurements of the electric breakdown field were made. These also show a dependence upon the strain. In the unstrained state the breakdown field is 20 WV/m, which grows to 218MV...

  1. Low frequency modelling of hysteresis behaviour and dielectric permittivity in ferroelectric ceramics under electric field

    International Nuclear Information System (INIS)

    Ducharne, B; Guyomar, D; Sebald, G

    2007-01-01

    The properties of ferroelectric ceramics strongly depend on the electromechanical loading and their measurement conditions. In this paper, a nonlinear phenomenological one-dimensional model based on the dry friction concept is presented to describe the hysteretic polarization behaviour. Dielectric permittivities versus dc electric field (or capacitance C versus voltage V) loops are determined for the characterization of ferroelectric material. The ε 33 coefficient is used for the ceramic characterization because it is strongly correlated with the ceramic quality. The purpose of this paper is to develop a model of reversal polarization behaviour close to physical realities, able to provide good performances on the simulation of dielectric permittivity loop ε 33 (E dc ). Simulated behaviours are finally compared with experimental results on a typically soft PZT ferroelectric ceramic

  2. Breakdown of coupling dielectrics for Si microstrip detectors

    International Nuclear Information System (INIS)

    Candelori, A.; Paccagnella, A.; Padova Univ.; Saglimbeni, G.

    1999-01-01

    Double-layer coupling dielectrics for AC-coupled Si microstrip detectors have been electrically characterized in order to determine their performance in a radiation-harsh environment, with a focus on the dielectric breakdown. Two different dielectric technologies have been investigated: SiO 2 /TEOS and SiO 2 /Si 3 N 4 . Dielectrics have been tested by using a negative gate voltage ramp of 0.2 MV/(cm·s). The metal/insulator/Si I-V characteristics show different behaviours depending on the technology. The extrapolated values of the breakdown field for unirradiated devices are significantly higher for SiO 2 /Si 3 N 4 dielectrics, but the data dispersion is lower for SiO 2 /TEOS devices. No significant variation of the breakdown field has been measured after a 10 Mrad (Si) γ irradiation for SiO 2 /Si 3 N 4 dielectrics. Finally, the SiO 2 /Si 3 N 4 DC conduction is enhanced if a positive gate voltage ramp is applied with respect to the negative one, due to the asymmetric conduction of the double-layer dielectric

  3. Controlling Chain Conformations of High-k Fluoropolymer Dielectrics to Enhance Charge Mobilities in Rubrene Single-Crystal Field-Effect Transistors.

    Science.gov (United States)

    Adhikari, Jwala M; Gadinski, Matthew R; Li, Qi; Sun, Kaige G; Reyes-Martinez, Marcos A; Iagodkine, Elissei; Briseno, Alejandro L; Jackson, Thomas N; Wang, Qing; Gomez, Enrique D

    2016-12-01

    A novel photopatternable high-k fluoropolymer, poly(vinylidene fluoride-bromotrifluoroethylene) P(VDF-BTFE), with a dielectric constant (k) between 8 and 11 is demonstrated in thin-film transistors. Crosslinking P(VDF-BTFE) reduces energetic disorder at the dielectric-semiconductor interface by controlling the chain conformations of P(VDF-BTFE), thereby leading to approximately a threefold enhancement in the charge mobility of rubrene single-crystal field-effect transistors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. On AC-Field-Induced Nonlinear Electroosmosis next to the Sharp Corner-Field-Singularity of Leaky Dielectric Blocks and Its Application in on-Chip Micro-Mixing

    Directory of Open Access Journals (Sweden)

    Yukun Ren

    2018-02-01

    Full Text Available Induced-charge electroosmosis has attracted lots of attention from the microfluidic community over the past decade. Most previous researches on this subject focused on induced-charge electroosmosis (ICEO vortex streaming actuated on ideally polarizable surfaces immersed in electrolyte solutions. Starting from this point, we conduct herein a linear asymptotic analysis on nonlinear electroosmotic flow next to leaky dielectric blocks of arbitrary electrical conductivity and dielectric permittivity in harmonic AC electric fields, and theoretically demonstrate that observable ICEO fluid motion can be generated at high field frequencies in the vicinity of nearly insulating semiconductors, a very low electrical conductivity, of which can evidently increase the double-layer relaxation frequency (inversely proportional to the solid permittivity to be much higher than the typical reciprocal RC time constant for induced double-layer charging on ideally polarizable surfaces. A computational model is developed to study the feasibility of this high-frequency vortex flow field of ICEO for sample mixing in microfluidics, in which the usage of AC voltage signal at high field frequencies may be beneficial to suppress electrochemical reactions to some extent. The influence of various parameters for developing an efficient mixer is investigated, and an integrated arrangement of semiconductor block array is suggested for achieving a reliable mixing performance at relatively high sample fluxes. Our physical demonstration with high-frequency ICEO next to leaky dielectric blocks using a simple channel structure offers valuable insights into the design of high-throughput micromixers for a variety of lab-on-a-chip applications.

  5. Pulsed EM Field Response of a Thin, High-Contrast, Finely Layered Structure With Dielectric and Conductive Properties

    NARCIS (Netherlands)

    De Hoop, A.T.; Jiang, L.

    2009-01-01

    The response of a thin, high-contrast, finely layered structure with dielectric and conductive properties to an incident, pulsed, electromagnetic field is investigated theoretically. The fine layering causes the standard spatial discretization techniques to solve Maxwell's equations numerically to

  6. Joyce the Deconstructionist: Finnegans Wake in Context

    Directory of Open Access Journals (Sweden)

    Zangouei J.

    2012-01-01

    Full Text Available Had Finnegans Wake not been written, some seminal post-1950s innovations in the field of modern literary theory and criticism would have been impossible. James Joyce, who seems to have inspiringly influenced the entire sphere of modern literary theory and criticism greatly, is a pioneer of deconstruction too. His last novel, which reflects his deconstructive tendencies, has played a seminal role in the formation of 20th century deconstruction, and comprises an inchoate mass of implicit ideas on the subject. It was perhaps not until Jacques Derrida and his deconstruction techniques that the theory implied by Finnegans Wake really came into focus. This article seeks to delineate Derrida’s theory of deconstruction as well as Joyce's deconstructive aesthetics; and taking a diachronic approach to literary theory and criticism it glances at Finnegans Wake in the light of deconstruction.

  7. Features of dielectric response in PMN-PT ferroelectric ceramics

    International Nuclear Information System (INIS)

    Guerra, J D S; Araujo, E B; Guarany, C A; Reis, R N; Lima, E C

    2008-01-01

    In this paper, electrical and structural properties were reported for pyrochlore free (1 - x)[Pb(Mg 1/3 Nb 2/3 )O 3 ] - xPbTiO 3 (PMN-PT) (with 35 mol% PbTiO 3 ) ceramics obtained from fine powders. Dielectric studies were focused on the investigation of the complex dielectric permittivity (ε' - iε'') as a function of frequency and temperature. The effects of the dc applied electric field on dielectric response were also investigated. Results revealed a field dependence dielectric anomaly in the dielectric permittivity curves (ε(T)) in the low dc electric field region, which in turn prevails in the whole analysed frequency interval. To the best of our knowledge, these properties for the PMN-PT ceramic system have not been reported before as in this work. The results were analysed within the framework of the current models found in the literature.

  8. Dielectric properties of gadolinium molybdate in low- and infralow frequency electric fields. Diehlektricheskie svojstva molibdata gadoliniya v nizko- i infranizkochastotnykh ehlektricheskikh polyakh

    Energy Technology Data Exchange (ETDEWEB)

    Galiyarova, N M; Gorin, S V; Dontsova, L I; Shil' nikov, A V; Shuvalov, L A [Volgogradskij Inzhenerno-Stroitel' nyj Inst., Volgograd (Russian Federation) AN SSSR, Moscow (Russian Federation). Inst. Kristallografii

    1992-10-01

    Temperature dependences of complex dielectric permittivity of gadolinium molybdate (GMO) in low- (LF) and infralow-frequency (ILF) electric fields with 0.1 V[center dot]cm[sup -1] amplitude within 0.25-10[sup 4] Hz frequency range are studied. Substantial effect of the crystal prehistory on LF and ILF dielectric properties and domain structure state is revealed. An anomalous reduction of complex dielectric permittivity accompanied by the occurrence of the Debye LF-dispersion of permittivity is detected under the sample cooling from a nonpolar phase.

  9. Wake meandering of a model wind turbine operating in two different regimes

    Science.gov (United States)

    Foti, Daniel; Yang, Xiaolei; Campagnolo, Filippo; Maniaci, David; Sotiropoulos, Fotis

    2018-05-01

    The flow behind a model wind turbine under two different turbine operating regimes (region 2 for turbine operating at optimal condition with the maximum power coefficient and 1.4-deg pitch angle and region 3 for turbine operating at suboptimal condition with a lower power coefficient and 7-deg pitch angle) is investigated using wind tunnel experiments and numerical experiments using large-eddy simulation (LES) with actuator surface models for turbine blades and nacelle. Measurements from the model wind turbine experiment reveal that the power coefficient and turbine wake are affected by the operating regime. Simulations with and without a nacelle model are carried out for each operating condition to study the influence of the operating regime and nacelle on the formation of the hub vortex and wake meandering. Statistics and energy spectra of the simulated wakes are in good agreement with the measurements. For simulations with a nacelle model, the mean flow field is composed of an outer wake, caused by energy extraction by turbine blades, and an inner wake directly behind the nacelle, while for the simulations without a nacelle model, the central region of the wake is occupied by a jet. The simulations with the nacelle model reveal an unstable helical hub vortex expanding outward toward the outer wake, while the simulations without a nacelle model show a stable and columnar hub vortex. Because of the different interactions of the inner region of the wake with the outer region of the wake, a region with higher turbulence intensity is observed in the tip shear layer for the simulation with a nacelle model. The hub vortex for the turbine operating in region 3 remains in a tight helical spiral and intercepts the outer wake a few diameters further downstream than for the turbine operating in region 2. Wake meandering, a low-frequency large-scale motion of the wake, commences in the region of high turbulence intensity for all simulations with and without a nacelle model

  10. The Electrical Breakdown of Thin Dielectric Elastomers

    DEFF Research Database (Denmark)

    Zakaria, Shamsul Bin; Morshuis, Peter H. F.; Yahia, Benslimane Mohamed

    2014-01-01

    Dielectric elastomers are being developed for use in actuators, sensors and generators to be used in various applications, such as artificial eye lids, pressure sensors and human motion energy generators. In order to obtain maximum efficiency, the devices are operated at high electrical fields....... This increases the likelihood for electrical breakdown significantly. Hence, for many applications the performance of the dielectric elastomers is limited by this risk of failure, which is triggered by several factors. Amongst others thermal effects may strongly influence the electrical breakdown strength....... In this study, we model the electrothermal breakdown in thin PDMS based dielectric elastomers in order to evaluate the thermal mechanisms behind the electrical failures. The objective is to predict the operation range of PDMS based dielectric elastomers with respect to the temperature at given electric field...

  11. Simulation of wake potentials induced by relativistic proton bunches in electron clouds

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Fedor; Boine-Frankenheim, Oliver; Weiland, Thomas [Technische Universitaet Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder (TEMF)

    2012-07-01

    Electron clouds limit the intensity of modern high intensity hadron accelerators. Presently electron clouds are the main limiting factor for the LHC operation with 25 ns bunch trains. The bunches passing through an electron cloud induce a wake field. When the electron cloud density exceeds a certain threshold beam instabilities occur. The presence of electron clouds results in a shift of the synchronous phase, which increases if the bunch spacing is reduced. For LHC and SPS conditions we compare the longitudinal electron cloud wake potentials and stopping powers obtained using a simplified 2D electrostatic Particle-in-Cell code with fully electromagnetic simulations using VORPAL. In addition we analyze the wake fields induced by displaced or tilted bunches.

  12. Optics of dielectric microstructures

    DEFF Research Database (Denmark)

    Søndergaard, Thomas

    2002-01-01

    From the work carried out within the ph.d. project two topics have been selected for this thesis, namely emission of radiation by sources in dielectric microstructures, and planar photonic crystal waveguides. The work done within the first topic, emission of radiation by sources in dielectric...... microstructures, will be presented in the part I of this thesis consisting of the chapters 2-5. An introductions is given in chapter 2. In part I three methods are presented for calculating spontaneous and classical emission from sources in dielectric microstructures. The first method presented in chapter 3...... is based on the Fermi Golden Rule, and spontaneous emission from emitters in a passive dielectric microstructure is calculated by summing over the emission into each electromagnetic mode of the radiation field. This method is applied to investigate spontaneous emission in a two-dimensional photonic crystal...

  13. A Survey of the Scattering Characteristics and Detection of Aircraft Wake Vortices

    Directory of Open Access Journals (Sweden)

    Li Jianbing

    2017-12-01

    Full Text Available Aircraft wake vortex is a pair of strong counter-rotating vortices and has attracted considerable attention in various fields including aviation safety and atmospheric physics. The characteristics and detection of wake vortex act as the basis for both behavior prediction as well as hazard assessment. This paper provides a short survey of the characteristics and detection researches. Initially, the wake vortex is classified as clear-air wake vortex (i.e., wake turbulence and contrail and precipitation wake vortex (i.e., under rainy, foggy or snowy condition. Subsequently, the dynamics and scattering are introduced, and the main verdicts are: the radar (radio detection and ranging scattering of wake vortex is relatively weak under clear air conditions, but the Lidar (Light detection and ranging scattering is appreciable owing to the presence of particles such as aerosols. Wake vortices under precipitation conditions and contrails possess relatively good radar reflectivity owing the strong scattering characteristics of precipitation droplets and ice crystals. Furthermore, we have introduced a joint detection scheme of Lidar and radar for wake vortex along with parameter-retrieval algorithms. Finally, we have presented our conclusions and intended future research.

  14. Three-dimensional structure of wind turbine wakes as measured by scanning lidar

    Science.gov (United States)

    Bodini, Nicola; Zardi, Dino; Lundquist, Julie K.

    2017-08-01

    The lower wind speeds and increased turbulence that are characteristic of turbine wakes have considerable consequences on large wind farms: turbines located downwind generate less power and experience increased turbulent loads. The structures of wakes and their downwind impacts are sensitive to wind speed and atmospheric variability. Wake characterization can provide important insights for turbine layout optimization in view of decreasing the cost of wind energy. The CWEX-13 field campaign, which took place between June and September 2013 in a wind farm in Iowa, was designed to explore the interaction of multiple wakes in a range of atmospheric stability conditions. Based on lidar wind measurements, we extend, present, and apply a quantitative algorithm to assess wake parameters such as the velocity deficits, the size of the wake boundaries, and the location of the wake centerlines. We focus on wakes from a row of four turbines at the leading edge of the wind farm to explore variations between wakes from the edge of the row (outer wakes) and those from turbines in the center of the row (inner wakes). Using multiple horizontal scans at different elevations, a three-dimensional structure of wakes from the row of turbines can be created. Wakes erode very quickly during unstable conditions and can in fact be detected primarily in stable conditions in the conditions measured here. During stable conditions, important differences emerge between the wakes of inner turbines and the wakes of outer turbines. Further, the strong wind veer associated with stable conditions results in a stretching of the wake structures, and this stretching manifests differently for inner and outer wakes. These insights can be incorporated into low-order wake models for wind farm layout optimization or for wind power forecasting.

  15. SiO2/AlON stacked gate dielectrics for AlGaN/GaN MOS heterojunction field-effect transistors

    Science.gov (United States)

    Watanabe, Kenta; Terashima, Daiki; Nozaki, Mikito; Yamada, Takahiro; Nakazawa, Satoshi; Ishida, Masahiro; Anda, Yoshiharu; Ueda, Tetsuzo; Yoshigoe, Akitaka; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2018-06-01

    Stacked gate dielectrics consisting of wide bandgap SiO2 insulators and thin aluminum oxynitride (AlON) interlayers were systematically investigated in order to improve the performance and reliability of AlGaN/GaN metal–oxide–semiconductor (MOS) devices. A significantly reduced gate leakage current compared with that in a single AlON layer was achieved with these structures, while maintaining the superior thermal stability and electrical properties of the oxynitride/AlGaN interface. Consequently, distinct advantages in terms of the reliability of the gate dielectrics, such as an improved immunity against electron injection and an increased dielectric breakdown field, were demonstrated for AlGaN/GaN MOS capacitors with optimized stacked structures having a 3.3-nm-thick AlON interlayer.

  16. Dielectric-Lined High-Gradient Accelerator Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2012-04-24

    Rectangular particle accelerator structures with internal planar dielectric elements have been studied, with a view towards devising structures with lower surface fields for a given accelerating field, as compared with structures without dielectrics. Success with this concept is expected to allow operation at higher accelerating gradients than otherwise on account of reduced breakdown probabilities. The project involves studies of RF breakdown on amorphous dielectrics in test cavities that could enable high-gradient structures to be built for a future multi-TeV collider. The aim is to determine what the limits are for RF fields at the surfaces of selected dielectrics, and the resulting acceleration gradient that could be achieved in a working structure. The dielectric of principal interest in this study is artificial CVD diamond, on account of its advertised high breakdown field ({approx}2 GV/m for dc), low loss tangent, and high thermal conductivity. Experimental studies at mm-wavelengths on materials and structures for achieving high acceleration gradient were based on the availability of the 34.3 GHz third-harmonic magnicon amplifier developed by Omega-P, and installed at the Yale University Beam Physics Laboratory. Peak power from the magnicon was measured to be about 20 MW in 0.5 {micro}s pulses, with a gain of 54 dB. Experiments for studying RF high-field effects on CVD diamond samples failed to show any evidence after more than 10{sup 5} RF pulses of RF breakdown up to a tangential surface field strength of 153 MV/m; studies at higher fields were not possible due to a degradation in magnicon performance. A rebuild of the tube is underway at this writing. Computed performance for a dielectric-loaded rectangular accelerator structure (DLA) shows highly competitive properties, as compared with an existing all-metal structure. For example, comparisons were made of a DLA structure having two planar CVD diamond elements with a all-metal CERN structure HDS

  17. Dielectric-Lined High-Gradient Accelerator Structure

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2012-01-01

    Rectangular particle accelerator structures with internal planar dielectric elements have been studied, with a view towards devising structures with lower surface fields for a given accelerating field, as compared with structures without dielectrics. Success with this concept is expected to allow operation at higher accelerating gradients than otherwise on account of reduced breakdown probabilities. The project involves studies of RF breakdown on amorphous dielectrics in test cavities that could enable high-gradient structures to be built for a future multi-TeV collider. The aim is to determine what the limits are for RF fields at the surfaces of selected dielectrics, and the resulting acceleration gradient that could be achieved in a working structure. The dielectric of principal interest in this study is artificial CVD diamond, on account of its advertised high breakdown field (∼2 GV/m for dc), low loss tangent, and high thermal conductivity. Experimental studies at mm-wavelengths on materials and structures for achieving high acceleration gradient were based on the availability of the 34.3 GHz third-harmonic magnicon amplifier developed by Omega-P, and installed at the Yale University Beam Physics Laboratory. Peak power from the magnicon was measured to be about 20 MW in 0.5 (micro)s pulses, with a gain of 54 dB. Experiments for studying RF high-field effects on CVD diamond samples failed to show any evidence after more than 10 5 RF pulses of RF breakdown up to a tangential surface field strength of 153 MV/m; studies at higher fields were not possible due to a degradation in magnicon performance. A rebuild of the tube is underway at this writing. Computed performance for a dielectric-loaded rectangular accelerator structure (DLA) shows highly competitive properties, as compared with an existing all-metal structure. For example, comparisons were made of a DLA structure having two planar CVD diamond elements with a all-metal CERN structure HDS operating at 30

  18. Experimental investigation of an actively controlled three-dimensional turret wake

    Science.gov (United States)

    Shea, Patrick R.

    Hemispherical turrets are bluff bodies commonly used to house optical systems on airborne platforms. These bluff bodies develop complex, three-dimensional flow fields that introduce high mean and fluctuating loads to the turret as well as the airframe support structure which reduce the performance of both the optical systems and the aircraft. An experimental investigation of the wake of a three-dimensional, non-conformal turret was performed in a low-speed wind tunnel at Syracuse University to develop a better understanding of the fundamental flow physics associated with the turret wake. The flow field was studied at a diameter based Reynolds number of 550,000 using stereoscopic particle image velocimetry and dynamic pressure measurements both with and without active flow control. Pressure measurements were simultaneously sampled with the PIV measurements and taken on the surrounding boundary layer plate and at several locations on the turret geometry. Active flow control of the turret wake was performed around the leading edge of the turret aperture using dynamic suction in steady open-loop, unsteady open-loop, and simple closed-loop configurations. Analysis of the uncontrolled wake provided insight into the complex three-dimensional wake when evaluated spatially using PIV measurements and temporally using spectral analysis of the pressure measurements. Steady open-loop suction was found to significantly alter the spatial and temporal nature of the turret wake despite the control being applied locally to the aperture region of the turret. Unsteady open-loop and simple closed-loop control were found to provide similar levels of control to the steady open-loop forcing with a 45% reduction in the control input as calculated using the jet momentum coefficient. The data set collected provides unique information regarding the development of the baseline three-dimensional wake and the wake with three different active flow control configurations. These data can be used to

  19. Electrode/Dielectric Strip For High-Energy-Density Capacitor

    Science.gov (United States)

    Yen, Shiao-Ping S.

    1994-01-01

    Improved unitary electrode/dielectric strip serves as winding in high-energy-density capacitor in pulsed power supply. Offers combination of qualities essential for high energy density: high permittivity of dielectric layers, thinness, and high resistance to breakdown of dielectric at high electric fields. Capacitors with strip material not impregnated with liquid.

  20. Effect of a uniform magnetic field on dielectric two-phase bubbly flows using the level set method

    International Nuclear Information System (INIS)

    Ansari, M.R.; Hadidi, A.; Nimvari, M.E.

    2012-01-01

    In this study, the behavior of a single bubble in a dielectric viscous fluid under a uniform magnetic field has been simulated numerically using the Level Set method in two-phase bubbly flow. The two-phase bubbly flow was considered to be laminar and homogeneous. Deformation of the bubble was considered to be due to buoyancy and magnetic forces induced from the external applied magnetic field. A computer code was developed to solve the problem using the flow field, the interface of two phases, and the magnetic field. The Finite Volume method was applied using the SIMPLE algorithm to discretize the governing equations. Using this algorithm enables us to calculate the pressure parameter, which has been eliminated by previous researchers because of the complexity of the two-phase flow. The finite difference method was used to solve the magnetic field equation. The results outlined in the present study agree well with the existing experimental data and numerical results. These results show that the magnetic field affects and controls the shape, size, velocity, and location of the bubble. - Highlights: ►A bubble behavior was simulated numerically. ► A single bubble behavior was considered in a dielectric viscous fluid. ► A uniform magnetic field is used to study a bubble behavior. ► Deformation of the bubble was considered using the Level Set method. ► The magnetic field affects the shape, size, velocity, and location of the bubble.

  1. Broadening of Distribution of Trap States in PbS Quantum Dot Field-Effect Transistors with High-k Dielectrics.

    Science.gov (United States)

    Nugraha, Mohamad I; Häusermann, Roger; Watanabe, Shun; Matsui, Hiroyuki; Sytnyk, Mykhailo; Heiss, Wolfgang; Takeya, Jun; Loi, Maria A

    2017-02-08

    We perform a quantitative analysis of the trap density of states (trap DOS) in PbS quantum dot field-effect transistors (QD-FETs), which utilize several polymer gate insulators with a wide range of dielectric constants. With increasing gate dielectric constant, we observe increasing trap DOS close to the lowest unoccupied molecular orbital (LUMO) of the QDs. In addition, this increase is also consistently followed by broadening of the trap DOS. We rationalize that the increase and broadening of the spectral trap distribution originate from dipolar disorder as well as polaronic interactions, which are appearing at strong dielectric polarization. Interestingly, the increased polaron-induced traps do not show any negative effect on the charge carrier mobility in our QD devices at the highest applied gate voltage, giving the possibility to fabricate efficient low-voltage QD devices without suppressing carrier transport.

  2. Wake modeling and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.; Aagaard Madsen, H.; Larsen, T.J.; Troldborg, N.

    2008-07-15

    We present a consistent, physically based theory for the wake meandering phenomenon, which we consider of crucial importance for the overall description of wind turbine loadings in wind farms. In its present version the model is confined to single wake situations. The model philosophy does, however, have the potential to include also mutual wake interaction phenomenons. The basic conjecture behind the dynamic wake meandering (DWM) model is that wake transportation in the atmospheric boundary layer is driven by the large scale lateral- and vertical turbulence components. Based on this conjecture a stochastic model of the downstream wake meandering is formulated. In addition to the kinematic formulation of the dynamics of the 'meandering frame of reference', models characterizing the mean wake deficit as well as the added wake turbulence, described in the meandering frame of reference, are an integrated part the DWM model complex. For design applications, the computational efficiency of wake deficit prediction is a key issue. A computationally low cost model is developed for this purpose. Likewise, the character of the added wake turbulence, generated by the up-stream turbine in the form of shed and trailed vorticity, has been approached by a simple semi-empirical model essentially based on an eddy viscosity philosophy. Contrary to previous attempts to model wake loading, the DWM approach opens for a unifying description in the sense that turbine power- and load aspects can be treated simultaneously. This capability is a direct and attractive consequence of the model being based on the underlying physical process, and it potentially opens for optimization of wind farm topology, of wind farm operation as well as of control strategies for the individual turbine. To establish an integrated modeling tool, the DWM methodology has been implemented in the aeroelastic code HAWC2, and example simulations of wake situations, from the small Tjaereborg wind farm, have

  3. Mass of polaritons in different dielectric media

    International Nuclear Information System (INIS)

    Dzedolik, I V; Lapayeva, S N

    2011-01-01

    Some models of electromagnetic field interactions with linear and nonlinear dielectric media based on the approach of polarization and electromagnetic wave propagation in media are considered. It is shown that quasi-particles generated in the dielectric medium, called polaritons, have mass whose quantity depends on the efficiency of the electromagnetic field and interaction with the medium. The mass and velocity of polaritons can be controlled by the external electric field. The value of the mass of polaritons was measured in a transparent crystal

  4. Learning to classify wakes from local sensory information

    Science.gov (United States)

    Alsalman, Mohamad; Colvert, Brendan; Kanso, Eva; Kanso Team

    2017-11-01

    Aquatic organisms exhibit remarkable abilities to sense local flow signals contained in their fluid environment and to surmise the origins of these flows. For example, fish can discern the information contained in various flow structures and utilize this information for obstacle avoidance and prey tracking. Flow structures created by flapping and swimming bodies are well characterized in the fluid dynamics literature; however, such characterization relies on classical methods that use an external observer to reconstruct global flow fields. The reconstructed flows, or wakes, are then classified according to the unsteady vortex patterns. Here, we propose a new approach for wake identification: we classify the wakes resulting from a flapping airfoil by applying machine learning algorithms to local flow information. In particular, we simulate the wakes of an oscillating airfoil in an incoming flow, extract the downstream vorticity information, and train a classifier to learn the different flow structures and classify new ones. This data-driven approach provides a promising framework for underwater navigation and detection in application to autonomous bio-inspired vehicles.

  5. Thermodynamics and instability of dielectric elastomer (Conference Presentation)

    Science.gov (United States)

    Liu, Liwu; Liu, Yanju; Leng, Jinsong; Mu, Tong

    2017-04-01

    Dielectric elastomer is a kind of typical soft active material. It can deform obviously when subjected to an external voltage. When a dielectric elastomer with randomly oriented dipoles is subject to an electric field, the dipoles will rotate to and align with the electric field. The polarization of the dielectric elastomer may be saturated when the voltage is high enough. When subjected to a mechanical force, the end-to-end distance of each polymer chain, which has a finite contour length, will approach the finite value, reaching a limiting stretch. On approaching the limiting stretch, the elastomer stiffens steeply. Here, we develop a thermodynamic constitutive model of dielectric elastomers undergoing polarization saturation and strain-stiffening, and then investigate the stability (electromechanical stability, snap-through stability) and voltage induced deformation of dielectric elastomers. Analytical solution has been obtained and it reveals the marked influence of the extension limit and polarization saturation limit on its instability. The developed thermodynamic constitutive model and simulation results would be helpful in future to the research of dielectric elastomer based high-performance transducers.

  6. PREFACE: Dielectrics 2009: Measurement Analysis and Applications

    Science.gov (United States)

    Vaughan, Alun; Williams, Graham

    2009-07-01

    The conference Dielectrics 2009: Measurements, Analysis and Applications represents a significant milestone in the evolution of dielectrics research in the UK. It is reasonable to state that the academic study of dielectrics has led to many fundamental advances and that dielectric materials underpin the modern world in devices ranging from field effect transistors, which operate at extremely high fields, albeit low voltages, to the high voltage plants that provide the energy that powers our economy. The origins of the Dielectrics Group of the Institute of Physics (IOP), which organized this conference, can be traced directly back to the early 1960s, when Professor Mansel Davies was conducting research into the dielectric relaxation behaviour of polar liquids and solids at The Edward Davies Chemical Laboratories of the University College of Wales, Aberystwyth. He was already well-known internationally for his studies of molecular structure and bonding of small molecules, using infra-red-spectroscopy, and of the physical properties of hydrogen-bonded liquids and solids, using thermodynamic methods. Dielectric spectroscopy was a fairly new area for him and he realized that opportunities for scientists in the UK to gather together and discuss their research in this developing area of physical chemistry/chemical physics were very limited. He conceived the idea of forming a Dielectrics Discussion Group (DDG), which would act as a meeting point and provide a platform for dielectrics research in the UK and beyond and, as a result, a two-day Meeting was convened in the spring of 1968 at Gregynog Hall of the University of Wales, near Newtown, Montgomeryshire. It was organized by Mansel Davies, Alun Price and Graham Williams, all physical chemists from the UCW, Aberystwyth. Fifty scientists attended, being a mix of physical chemists, theoretical chemists, physicists, electrical engineers, polymer and materials scientists, all from the UK, except Dr Brendan Scaife of Trinity

  7. Characterization of wind velocities in the wake of a full scale wind turbine using three ground-based synchronized WindScanners

    DEFF Research Database (Denmark)

    Yazicioglu, Hasan; Angelou, Nikolas; Mikkelsen, Torben Krogh

    2016-01-01

    The wind energy community is in need of detailed full-field measurements in the wake of wind turbines. Here, three dimensional(3D) wind vector field measurements obtained in the near-wake region behind a full-scale test turbine are presented. Specifically, the wake of a NEG Nordtank turbine...

  8. Spectral coherence in windturbine wakes

    Energy Technology Data Exchange (ETDEWEB)

    Hojstrup, J. [Riso National Lab., Roskilde (Denmark)

    1996-12-31

    This paper describes an experiment at a Danish wind farm to investigate the lateral and vertical coherences in the nonequilibrium turbulence of a wind turbine wake. Two meteorological masts were instrumented for measuring profiles of mean speed, turbulence, and temperature. Results are provided graphically for turbulence intensities, velocity spectra, lateral coherence, and vertical coherence. The turbulence was somewhat influenced by the wake, or possibly from aggregated wakes further upstream, even at 14.5 diameters. Lateral coherence (separation 5m) seemed to be unaffected by the wake at 7.5 diameters, but the flow was less coherent in the near wake. The wake appeared to have little influence on vertical coherence (separation 13m). Simple, conventional models for coherence appeared to be adequate descriptions for wake turbulence except for the near wake situation. 3 refs., 7 figs., 1 tab.

  9. Wake deficit measurements on the Jess and Souza Ranches, Altamont Pass

    Energy Technology Data Exchange (ETDEWEB)

    Nierenburg, R. (Altamont Energy Corp., San Rafael, CA (USA))

    1990-04-01

    This report is ninth in a series of documents presenting the findings of field test under DOE's Cooperative Field Test Program (CFTP) with the wind industry. This report provides results of a project conducted by Altamont Energy Corp. (AEC) to measure wake deficits on the Jess and Sousa Ranches in Altamont Pass, CA. This research enhances and complements other DOE-funded projects to refine estimates of wind turbine array effects. This project will help explain turbine performance variability caused by wake effects. 4 refs., 28 figs., 106 tabs.

  10. Materials Fundamentals of Gate Dielectrics

    CERN Document Server

    Demkov, Alexander A

    2006-01-01

    This book presents materials fundamentals of novel gate dielectrics that are being introduced into semiconductor manufacturing to ensure the continuous scalling of the CMOS devices. This is a very fast evolving field of research so we choose to focus on the basic understanding of the structure, thermodunamics, and electronic properties of these materials that determine their performance in device applications. Most of these materials are transition metal oxides. Ironically, the d-orbitals responsible for the high dielectric constant cause sever integration difficulties thus intrinsically limiting high-k dielectrics. Though new in the electronics industry many of these materials are wel known in the field of ceramics, and we describe this unique connection. The complexity of the structure-property relations in TM oxides makes the use of the state of the art first-principles calculations necessary. Several chapters give a detailed description of the modern theory of polarization, and heterojunction band discont...

  11. Functional silicone copolymers and elastomers with high dielectric permittivity

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Daugaard, Anders Egede; Hvilsted, Søren

    Dielectric elastomers (DEs) are a new and promising transducer technology and are often referred to as ‘artificial muscles’, due to their ability to undergo large deformations when stimulated by electric fields. DEs consist of a soft and thin elastomeric film sandwiched between compliant electrodes......, thereby forming a capacitor [1]. Silicone elastomers are one of the most used materials for DEs due to their high efficiency, fast response times and low viscous losses. The major disadvantage of silicone elastomers is that they possess relatively low dielectric permittivity, which means that a high...... electrical field is necessary to operate the DE. The necessary electrical field can be lowered by creating silicone elastomers with higher dielectric permittivity, i.e. with a higher energy density.The aim of this work is to create new and improved silicone elastomers with high dielectric permittivity...

  12. Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics

    NARCIS (Netherlands)

    Svetovoy, Vitaly; van Zwol, P.J.; Chevrier, J.

    2012-01-01

    It is shown that a graphene layer on top of a dielectric slab can dramatically influence the ability of this dielectric for radiative heat exchange turning a poor heat emitter/absorber into a good one and vice versa. The effect of graphene is related to thermally excited plasmons. The frequency of

  13. A soft x-ray free electron laser (FEL) using a two-beam elliptical pill-box wake-field cavity

    International Nuclear Information System (INIS)

    Kim, S.H.; Chen, K.W.

    1988-01-01

    Stimulated bremsstrahlung in an undulating electric field in the lasing beam direction (electric wiggler) was shown to be possible from the quantum- mechanical viewpoint. Herein, this possibility is scrutinized from the viewpoint of classical electrodynamics. It is found that if stimulated bremsstrahlung in a transverse undulating magnetic field (magnetic wiggler) occurs, stimulated bremsstrahlung in the electric wiggler must also occur. We further show that a free electron laser (FEL) using a magnetic wiggler to provide a catalyzer field for stimulated bremsstrahlung cannot serve as a practical FEL operating in the soft x-ray region from both theoretical and experimental viewpoints. On the other hand, the authors demonstrate that the FEL using a traveling wake field in a two-beam elliptical pill-box cavity is well suited as a source of coherent radiation in the soft x-ray region

  14. Quantitative nanometer-scale mapping of dielectric tunability

    Energy Technology Data Exchange (ETDEWEB)

    Tselev, Alexander [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Klein, Andreas [Technische Univ. Darmstadt (Germany); Gassmann, Juergen [Technische Univ. Darmstadt (Germany); Jesse, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Li, Qian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kalinin, Sergei V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wisinger, Nina Balke [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-21

    Two scanning probe microscopy techniques—near-field scanning microwave microscopy (SMM) and piezoresponse force microscopy (PFM)—are used to characterize and image tunability in a thin (Ba,Sr)TiO3 film with nanometer scale spatial resolution. While sMIM allows direct probing of tunability by measurement of the change in the dielectric constant, in PFM, tunability can be extracted via electrostrictive response. The near-field microwave imaging and PFM provide similar information about dielectric tunability with PFM capable to deliver quantitative information on tunability with a higher spatial resolution close to 15 nm. This is the first time that information about the dielectric tunability is available on such length scales.

  15. Study on the effects of ion motion on laser-induced plasma wakes

    International Nuclear Information System (INIS)

    Zhou Suyun; Yu Wei; Yuan Xiao; Xu Han; Cao, L. H.; Cai, H. B.; Zhou, C. T.

    2012-01-01

    A 2D analytical model is presented for the generation of plasma wakes (or bubbles) with an ultra-intense laser pulse by taking into account the response of plasma ions. It is shown that the effect of ion motion becomes significant at the laser intensity exceeding 10 21 W/cm 2 and plasma background density below 10 19 cm −3 . In this regime, ion motion tends to suppress the electrostatic field induced by charge separation and makes the electron acceleration less effective. As a result, the assumption of immobile ions overestimates the efficiency of laser wake-field acceleration of electrons. Based on the analytical model, the dynamics of plasma ions in laser-induced wake field is investigated. It is found that only one bubble appears as the plasmas background density exceeds the resonant density and the deposited laser energy is concentrated into the bubble, resulting in the generation of an ion bunch with extremely high energy density.

  16. Flow Characteristics of Ground Vehicle Wake and Its Response to Flow Control

    Science.gov (United States)

    Sellappan, Prabu; McNally, Jonathan; Alvi, Farrukh

    2017-11-01

    Air pollution, fuel shortages, and cost savings are some of the many incentives for improving the aerodynamics of vehicles. Reducing wake-induced aerodynamic drag, which is dependent on flow topology, on modern passenger vehicles is important for improving fuel consumption rates which directly affect the environment. In this research, an active flow control technique is applied on a generic ground vehicle, a 25°Ahmed model, to investigate its effect on the flow topology in the near-wake. The flow field of this canonical bluff body is extremely rich, with complex and unsteady flow features such as trailing wake vortices and c-pillar vortices. The spatio-temporal response of these flow features to the application of steady microjet actuators is investigated. The responses are characterized independently through time-resolved and volumetric velocity field measurements. The accuracy and cost of volumetric measurements in this complex flow field through Stereoscopic- and Tomographic- Particle Image Velocimetry (PIV) will also be commented upon. National Science Foundation PIRE Program.

  17. Study of Super Dielectric Material for Novel Paradigm Capacitors

    Science.gov (United States)

    2018-03-01

    density, power density, dielectric constant, constant current, constant voltage, electric field minimization, dipole 15. NUMBER OF PAGES 85 16. PRICE... Technology and Strategies for Improvement ..................................................................................6 4. Super Dielectric...ds infinitesimal displacement dt infinitesimal time DT discharge time dV infinitesimal voltage E electric field Etot total energy EC Lab

  18. Spectral function calculation of angle wakes, wake moments, and misalignment wakes for the SLAC Damped Detuned Structures (DDS)

    International Nuclear Information System (INIS)

    Jones, R.M.; Miller, R.H.; Kroll, N.M.

    1997-05-01

    Transverse wake functions so far reported for the SLAC DDS have been limited to those caused by uniform offset of the drive beam in a straight perfectly aligned structure. The complete description of the betatron oscillations of wake coupled bunches requires an array of wake functions, referred to as moments. Modifications of these arrays induced by structure misalignments are also of interest. In this paper we express the array elements in terms of a spectral function array. Examples are given based upon DDS1

  19. Color Dielectric Models from the Lattice SU(N)c Gauge Theory

    International Nuclear Information System (INIS)

    Arodz, H.; Pirner, H.J.

    1999-01-01

    The idea of coarse-grained gluon field is discussed. We recall motivation for introducing such a field. Next, we outline the approach to small momenta limit of lattice coarse-grained gluon field presented in our paper hep-ph/9803392. This limit points to color dielectric type models with a number of scalar and tensor fields instead of single scalar dielectric field. (author)

  20. High performance unipolar inverters by utilizing organic field-effect transistors with ultraviolet/ozone treated polystyrene dielectric

    International Nuclear Information System (INIS)

    Huang, Wei; Yu, Xinge; Fan, Huidong; Yu, Junsheng

    2014-01-01

    High performance unipolar inverters based on a significant variation of threshold voltage (V th ) of organic field-effect transistors (OFETs), which was realized by introducing UV/ozone (UVO) treatment to polystyrene (PS) dielectric, were fabricated. A controllable V th shift of more than 10 V was obtained in the OFETs by adjusting the UVO treating time, and the unipolar inverters exhibited inverting voltage near 1/2 driving voltage and a noise margin of more than 70% of ideal value. From the analysis of scanning electron microscopy, atom force microscopy, and X-ray photoelectron spectroscopy, the dramatic controllable V th of OFETs, which played a key role in high performance unipolar inverters, was attributed to the newly generated oxygen functional groups in the PS dielectric induced by UVO treatment.

  1. Ferromagnetic resonance in a single crystal of iron borate and magnetic field tuning of hybrid oscillations in a composite structure with a dielectric: Experiment and theory

    International Nuclear Information System (INIS)

    Popov, M. A.; Zavislyak, I. V.; Chumak, H. L.; Strugatsky, M. B.; Yagupov, S. V.; Srinivasan, G.

    2015-01-01

    The high-frequency properties of a composite resonator comprised single crystal iron borate (FeBO 3 ), a canted antiferromagnet with a weak ferromagnetic moment, and a polycrystalline dielectric were investigated at 9–10 GHz. Ferromagnetic resonance in this frequency range was observed in FeBO 3 for bias magnetic fields of ∼250 Oe. In the composite resonator, the magnetic mode in iron borate and dielectric mode are found to hybridize strongly. It is shown that the hybrid mode can be tuned with a static magnetic field. Our studies indicate that coupling between the magnetic mode and the dielectric resonance can be altered from maximum hybridization to a minimum by adjusting the position of resonator inside the waveguide. Magnetic field tuning of the resonance frequency by a maximum of 145 MHz and a change in the transmitted microwave power by as much as 16 dB have been observed for a bias field of 250 Oe. A model is discussed for the magnetic field tuning of the composite resonator and theoretical estimates are in reasonable agreement with the data. The composite resonator with a weak ferromagnet and a dielectric is of interest for application in frequency agile devices with electronically tunable electrodynamic characteristics for the mm and sub-mm wave bands

  2. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  3. Numerical study of the influence of dielectric tube on propagation of atmospheric pressure plasma jet based on coplanar dielectric barrier discharge

    Science.gov (United States)

    Haixin, HU; Feng, HE; Ping, ZHU; Jiting, OUYANG

    2018-05-01

    A 2D fluid model was employed to simulate the influence of dielectric on the propagation of atmospheric pressure helium plasma jet based on coplanar dielectric barrier discharge (DBD). The spatio-temporal distributions of electron density, ionization rate, electrical field, spatial charge and the spatial structure were obtained for different dielectric tubes that limit the helium flow. The results show that the change of the relative permittivity of the dielectric tube where the plasma jet travels inside has no influence on the formation of DBD itself, but has great impact on the jet propagation. The velocity of the plasma jet changes drastically when the jet passes from a tube of higher permittivity to one of lower permittivity, resulting in an increase in jet length, ionization rate and electric field, as well as a change in the distribution of space charges and discharge states. The radius of the dielectric tube has a great influence on the ring-shaped or solid bullet structure. These results can well explain the behavior of the plasma jet from the dielectric tube into the ambient air and the hollow bullet in experiments.

  4. Wake effects on Middelgrund Windfarm

    DEFF Research Database (Denmark)

    Ejsing Jørgensen, Hans; Frandsen, S.; Vølund, P.

    2003-01-01

    This report describes the data analysis of the Middelgrund Wind Farm online collected data with the purpose of calculating the wake effects and turbulence intensities within the wind farm when maximum wake effects are present. The data are compared to themost commonly used wake model PARK...... decreasing wind speed through the array when the wind iscoming from north. The turbulence intensity is enhanced up to 0.3 due to the wake effects. The analysis has shown that this enhancement is nearly independent of the number of turbines involved in the wake creation....

  5. Determination of Wind Turbine Near-Wake Length Based on Stability Analysis

    International Nuclear Information System (INIS)

    Sørensen, Jens N; Mikkelsen, Robert; Sarmast, Sasan; Ivanell, Stefan; Henningson, Dan

    2014-01-01

    A numerical study on the wake behind a wind turbine is carried out focusing on determining the length of the near-wake based on the instability onset of the trailing tip vortices shed from the turbine blades. The numerical model is based on large-eddy simulations (LES) of the Navier-Stokes equations using the actuator line (ACL) method. The wake is perturbed by applying stochastic or harmonic excitations in the neighborhood of the tips of the blades. The flow field is then analyzed to obtain the stability properties of the tip vortices in the wake of the wind turbine. As a main outcome of the study it is found that the amplification of specific waves (traveling structures) along the tip vortex spirals is responsible for triggering the instability leading to wake breakdown. The presence of unstable modes in the wake is related to the mutual inductance (vortex pairing) instability where there is an out-of-phase displacement of successive helix turns. Furthermore, using the non-dimensional growth rate, it is found that the pairing instability has a universal growth rate equal to π/2. Using this relationship, and the assumption that breakdown to turbulence occurs once a vortex has experienced sufficient growth, we provide an analytical relationship between the turbulence intensity and the stable wake length. The analysis leads to a simple expression for determining the length of the near wake. This expression shows that the near wake length is inversely proportional to thrust, tip speed ratio and the logarithmic of the turbulence intensity

  6. Wakes behind surface-mounted obstacles: Impact of aspect ratio, incident angle, and surface roughness

    Science.gov (United States)

    Tobin, Nicolas; Chamorro, Leonardo P.

    2018-03-01

    The so-called wake-moment coefficient C˜h and lateral wake deflection of three-dimensional windbreaks are explored in the near and far wake. Wind-tunnel experiments were performed to study the functional dependence of C˜h with windbreak aspect ratio, incidence angle, and the ratio of the windbreak height and surface roughness (h /z0 ). Supported with the data, we also propose basic models for the wake deflection of the windbreak in the near and far fields. The near-wake model is based on momentum conservation considering the drag on the windbreak, whereas the far-wake counterpart is based on existing models for wakes behind surface-mounted obstacles. Results show that C˜h does not change with windbreak aspect ratios of 10 or greater; however, it may be lower for an aspect ratio of 5. C˜h is found to change roughly with the cosine of the incidence angle, and to depend strongly on h /z0 . The data broadly support the proposed wake-deflection models, though better predictions could be made with improved knowledge of the windbreak drag coefficient.

  7. Dielectric properties of layered FeGaInS{sub 4} single crystals in an alternating electric field

    Energy Technology Data Exchange (ETDEWEB)

    Mammadov, F. M. [Azerbaijan National Academy of Sciences, Nagiyev Institute of Catalysis and Inorganic Chemistry (Azerbaijan); Niftiyev, N. N., E-mail: namiq7@bk.ru [Azerbaijan State Pedagogical University (Azerbaijan)

    2016-09-15

    The results of investigations of the frequency and temperature dependences of dielectric losses and the imaginary part of the dielectric permittivity in FeGaInS{sub 4} single crystals are presented. Their experimental values are determined. It is established that the loss tangent and the imaginary part of the permittivity of FeGaInS{sub 4} single crystals in a field with frequencies of 10{sup 4}–10{sup 6} Hz decrease inversely proportional to the frequency (tanδ ~ 1/ω), and the conductivity is characterized by the band–hopping mechanism. For FeGaInS{sub 4}, the relaxation time is calculated, and it is established that there is a mechanism of electron polarization caused by thermal motion in this crystal.

  8. An overview of experimental results and dispersion modelling of nanoparticles in the wake of moving vehicles

    International Nuclear Information System (INIS)

    Carpentieri, Matteo; Kumar, Prashant; Robins, Alan

    2011-01-01

    Understanding the transformation of nanoparticles emitted from vehicles is essential for developing appropriate methods for treating fine scale particle dynamics in dispersion models. This article provides an overview of significant research work relevant to modelling the dispersion of pollutants, especially nanoparticles, in the wake of vehicles. Literature on vehicle wakes and nanoparticle dispersion is reviewed, taking into account field measurements, wind tunnel experiments and mathematical approaches. Field measurements and modelling studies highlighted the very short time scales associated with nanoparticle transformations in the first stages after the emission. These transformations strongly interact with the flow and turbulence fields immediately behind the vehicle, hence the need of characterising in detail the mixing processes in the vehicle wake. Very few studies have analysed this interaction and more research is needed to build a basis for model development. A possible approach is proposed and areas of further investigation identified. - Research highlights: → Nanoparticle emissions experience very short transformation time scales. → Vehicle wakes need to be characterised to analyse nanoparticle dispersion. → Fast response measurements of nanoparticle evolution in vehicle wakes are very rare. → Wind tunnel methodologies can be further improved to include nanoparticle dynamics. → A simple mathematical approach has been proposed for future development. - The transformation of nanoparticles and the flow characteristics in both the near and far wake regions must be understood in order to develop mathematical models.

  9. Surface Treatment of Polypropylene Films Using Dielectric Barrier Discharge with Magnetic Field

    International Nuclear Information System (INIS)

    Wang Changquan; Zhang Guixin; Wang Xinxin; Chen Zhiyu

    2012-01-01

    Atmospheric pressure non-thermal plasma is of interest for industrial applications. In this study, polypropylene (PP) films are modified by a dielectric barrier discharge (DBD) with a non-uniform magnetic field in air at atmospheric pressure. The surface properties of the PP films before and after a DBD treatment are studied by using contact angle measurement, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The effect of treatment time on the surface modification with and without a magnetic field is investigated. It is found that the hydrophilic improvement depends on the treatment time and magnetic field. It is also found that surface roughness and oxygen-containing groups are introduced onto the PP film surface after the DBD treatment. Surface roughness and oxygen-containing polar functional groups of the PP films increase with the magnetic induction density. The functional groups are identified as C-O, C=O and O-C=O by using XPS analysis. It is concluded that the hydrophilic improvement of PP films treated with a magnetic field is due to a greater surface roughness and more oxygen-containing groups. (plasma technology)

  10. Numerical study on wake characteristics of high-speed trains

    Science.gov (United States)

    Yao, Shuan-Bao; Sun, Zhen-Xu; Guo, Di-Long; Chen, Da-Wei; Yang, Guo-Wei

    2013-12-01

    Intensive turbulence exists in the wakes of high speed trains, and the aerodynamic performance of the trailing car could deteriorate rapidly due to complicated features of the vortices in the wake zone. As a result, the safety and amenity of high speed trains would face a great challenge. This paper considers mainly the mechanism of vortex formation and evolution in the train flow field. A real CRH2 model is studied, with a leading car, a middle car and a trailing car included. Different running speeds and cross wind conditions are considered, and the approaches of unsteady Reynold-averaged Navier-Stokes (URANS) and detached eddy simulation (DES) are utilized, respectively. Results reveal that DES has better capability of capturing small eddies compared to URANS. However, for large eddies, the effects of two approaches are almost the same. In conditions without cross winds, two large vortex streets stretch from the train nose and interact strongly with each other in the wake zone. With the reinforcement of the ground, a complicated wake vortex system generates and becomes strengthened as the running speed increases. However, the locations of flow separations on the train surface and the separation mechanism keep unchanged. In conditions with cross winds, three large vortices develop along the leeward side of the train, among which the weakest one has no obvious influence on the wake flow while the other two stretch to the tail of the train and combine with the helical vortices in the train wake. Thus, optimization of the aerodynamic performance of the trailing car should be aiming at reducing the intensity of the wake vortex system.

  11. Super Dielectric Materials.

    Science.gov (United States)

    Fromille, Samuel; Phillips, Jonathan

    2014-12-22

    Evidence is provided here that a class of materials with dielectric constants greater than 10⁵ at low frequency (dielectric materials (SDM), can be generated readily from common, inexpensive materials. Specifically it is demonstrated that high surface area alumina powders, loaded to the incipient wetness point with a solution of boric acid dissolved in water, have dielectric constants, near 0 Hz, greater than 4 × 10⁸ in all cases, a remarkable increase over the best dielectric constants previously measured for energy storage capabilities, ca. 1 × 10⁴. It is postulated that any porous, electrically insulating material (e.g., high surface area powders of silica, titania, etc. ), filled with a liquid containing a high concentration of ionic species will potentially be an SDM. Capacitors created with the first generated SDM dielectrics (alumina with boric acid solution), herein called New Paradigm Super (NPS) capacitors display typical electrostatic capacitive behavior, such as increasing capacitance with decreasing thickness, and can be cycled, but are limited to a maximum effective operating voltage of about 0.8 V. A simple theory is presented: Water containing relatively high concentrations of dissolved ions saturates all, or virtually all, the pores (average diameter 500 Å) of the alumina. In an applied field the positive ionic species migrate to the cathode end, and the negative ions to the anode end of each drop. This creates giant dipoles with high charge, hence leading to high dielectric constant behavior. At about 0.8 V, water begins to break down, creating enough ionic species to "short" the individual water droplets. Potentially NPS capacitor stacks can surpass "supercapacitors" in volumetric energy density.

  12. Transitions in the vortex wake behind the plunging profile

    Science.gov (United States)

    Kozłowski, Tomasz; Kudela, Henryk

    2014-12-01

    In this study we investigate numerically the vortex wake formation behind the profile performing simple harmonic motion known in the literature as plunging. This research was inspired by the flapping motion which is appropriate for birds, insects and fishes. We assume the two dimensional model of flow. Depending on the parameters such as plunging amplitude, frequency and the Reynolds number, we demonstrate many different types of vortex street behind the profile. It is well known that the type of vortex wake determines the hydrodynamic forces acting on the profile. Dependences of the plunging amplitude, the Strouhal number and various topology vortices are established by constructing the phase transition diagram. The areas in the diagram related to the drag, thrust, and lift force generation are captured. We notice also the areas where the vorticity field is disordered. The disordered vorticity field does not allow maintenance of the periodic forces on the profile. An increase in the Reynolds number leads to the transition of the vortex wake behind the profile. The transition is caused by the phenomenon of boundary layer eruption. Further increase of the Reynolds number causes the vortex street related to the generation of the lift force to vanish.

  13. Experimental study of dielectric characteristics of rocks in a high-frequency field

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, S.

    1982-01-01

    Dielectric permeability (epsilon) as an electrical property of rocks has been used in recent years as the new parameter of well logging. Consequently a study was made of the dependence of epsilon of rocks on different factors. It was found that epsilon of rocks depends not only on minerals contained in them, their properties and distribution, but also on the frequency of the field, temperature and content of the mineralized water in the bed. It was indicated that for sedimentary rocks with low content of clay, their epsilon depends mainly on the content of water, and between epsilon and water saturation there is an approximately rectilinear relationship. The epsilon of dry and wet rocks differs 3-5-fold, so that with the help of epsilon one can determine flooding of the bed. Since epsilon increases with a rise in the content of clay in the rocks, with dielectric logging of the flooded bed it is necessary to make the corresponding correction. Under conditions of frequency of the field 60 Mz, epsilon in the NaCl solution decreases with an increase in mineralization, but the epsilon of the soda-containing rocks increases with an increase in mineralization. However, with mineralization less than 1 x 10/sup -2/, its influence on epsilon does not exceed 10%. The epsilon of water containing rocks diminishes with a rise in temperature. In addition, the epsilon of rocks drops with an increase in field frequency. With an increase in frequency, there is a decrease in influence of different factors (mineralization, distribution of minerals, content of clay, etc.) on the epsilon of rocks. At high frequencies, a distinct relationship is observed only between the epsilon and the water content of the rocks. Consequently it is expedient to improve the frequency of measurement to reveal the flooded beds. According to the data of dispersion of epsilon with different frequencies, one can determine the content of quality of the bed using electromagnetic logging.

  14. Oblique surface waves at an interface between a metal-dielectric superlattice and an isotropic dielectric

    International Nuclear Information System (INIS)

    Vuković, Slobodan M; Miret, Juan J; Zapata-Rodriguez, Carlos J; Jakšić, Zoran

    2012-01-01

    We investigate the existence and dispersion characteristics of surface waves that propagate at an interface between a metal-dielectric superlattice and an isotropic dielectric. Within the long-wavelength limit, when the effective-medium (EM) approximation is valid, the superlattice behaves like a uniaxial plasmonic crystal with the main optical axes perpendicular to the metal-dielectric interfaces. We demonstrate that if such a semi-infinite plasmonic crystal is cut normally to the layer interfaces and brought into contact with a semi-infinite dielectric, a new type of surface mode can appear. Such modes can propagate obliquely to the optical axes if favorable conditions regarding the thickness of the layers and the dielectric permittivities of the constituent materials are met. We show that losses within the metallic layers can be substantially reduced by making the layers sufficiently thin. At the same time, a dramatic enlargement of the range of angles for oblique propagation of the new surface modes is observed. This can lead, however, to field non-locality and consequently to failure of the EM approximation.

  15. Dielectric resonance in ErFeO3 in the region of spin reorientation

    International Nuclear Information System (INIS)

    Dan'shin, N.K.; Kovtun, N.M.; Sdvizhkov, M.A.

    1984-01-01

    In the region of spin reorientation in ErFeO 3 in the millimetre wave range a dielectric resonance has been found - excitation of electromaqnetic field natural oscillations in spherical samples. The fregurncies of dielectric resonance in samples from ErFeO 3 possess strong independence of temperature and magnetic field in the vicinity of the spin reorientation for account of a strong growth in the magnetic susceptibility. The frequencies change most considerably in the region of low-temperature spin reorientation related to antiferromagnetic rare earth ordering. Strong anisotropy of magnetic susceptibility cases various temperature and field dependences of the dielectric resonance frequencies at different orientations of the exciting electromagnetic field relative to the crystal axes. It is shown that the method of dielectric resonance permits to determine with high accuracy the temperatures of spontaneous - and crystal fields of induced phase transformations. The crystal dielectric permittivity and magnetic permeability dispersion are determined

  16. Complex dielectric modulus and relaxation response at low microwave frequency region of dielectric ceramic Ba6-3xNd8+2xTi18O54

    Directory of Open Access Journals (Sweden)

    Chian Heng Lee

    2014-10-01

    Full Text Available The desirable characteristics of Ba6-3xNd8+2xTi18O54 include high dielectric constant, low loss tangent, and high quality factor developed a new field for electronic applications. The microwave dielectric properties of Ba6-3xNd8+2xTi18O54, with x = 0.15 ceramics at different sintering temperatures (600–1300°C were investigated. The phenomenon of polarization produced by the applied electric field was studied. The dielectric properties with respect to frequency from 1 MHz to 1.5 GHz were measured using Impedance Analyzer, and the results were compared and analyzed. The highest dielectric permittivity and lowest loss factor were defined among the samples. The complex dielectric modulus was evaluated from the measured parameters of dielectric measurement in the same frequency range, and used to differentiate the contribution of grain and grain boundary.

  17. A FDTD solution of scattering of laser beam with orbital angular momentum by dielectric particles: Far-field characteristics

    Science.gov (United States)

    Sun, Wenbo; Hu, Yongxiang; Weimer, Carl; Ayers, Kirk; Baize, Rosemary R.; Lee, Tsengdar

    2017-02-01

    Electromagnetic (EM) beams with orbital angular momentum (OAM) may have great potential applications in communication technology and in remote sensing of the Earth-atmosphere system and outer planets. Study of their interaction with optical lenses and dielectric or metallic objects, or scattering of them by particles in the Earth-atmosphere system, is a necessary step to explore the advantage of the OAM EM beams. In this study, the 3-dimensional (3D) scattered-field (SF) finite-difference time domain (FDTD) technique with the convolutional perfectly matched layer (CPML) absorbing boundary conditions (ABC) is applied to calculate the scattering of the purely azimuthal (the radial mode number is assumed to be zero) Laguerre-Gaussian (LG) beams with the OAM by dielectric particles. We found that for OAM beam's interaction with dielectric particles, the forward-scattering peak in the conventional phase function (P11) disappears, and light scattering peak occurs at a scattering angle of 15° to 45°. The disappearance of forward-scattering peak means that, in laser communications most of the particle-scattered noise cannot enter the receiver, thus the received light is optimally the original OAM-encoded signal. This feature of the OAM beam also implies that in lidar remote sensing of the atmospheric particulates, most of the multiple-scattering energy will be off lidar sensors, and this may result in an accurate profiling of particle layers in the atmosphere or in the oceans by lidar, or even in the ground when a ground penetration radar (GPR) with the OAM is applied. This far-field characteristics of the scattered OAM light also imply that the optical theorem, which is derived from plane-parallel wave scattering case and relates the forward scattering amplitude to the total cross section of the scatterer, is invalid for the scattering of OAM beams by dielectric particles.

  18. Dielectric properties of agricultural materials and their applications

    CERN Document Server

    Nelson, Stuart

    2015-01-01

    Dielectric Properties of Agricultural Materials and Their Applications provides an understanding of the fundamental principles governing dielectric properties of materials, describes methods for measuring such properties, and discusses many applications explored for solving industry problems. The information in this reference stimulates new research for solving problems associated with production, handling, and processing of agricultural and food products. Anyone seeking a better understanding of dielectric properties of materials and application of radio-frequency and microwave electromagnetic energy for solution of problems in agriculture and related fields will find this an essential resource. Presents applications of dielectric properties for sensing moisture in grain and seed and the use of such properties in radio-frequency and microwave dielectric heating of agricultural materials Offers information for finding correlations between dielectric properties and quality attributes such as sweetness in melon...

  19. Generalized dielectric permittivity tensor

    International Nuclear Information System (INIS)

    Borzdov, G.N.; Barkovskii, L.M.; Fedorov, F.I.

    1986-01-01

    The authors deal with the question of what is to be done with the formalism of the electrodynamics of dispersive media based on the introduction of dielectric-permittivity tensors for purely harmonic fields when Voigt waves and waves of more general form exist. An attempt is made to broaden and generalize the formalism to take into account dispersion of waves of the given type. In dispersive media, the polarization, magnetization, and conduction current-density vectors of point and time are determined by the values of the electromagnetic field vectors in the vicinity of this point (spatial dispersion) in the preceding instants of time (time dispersion). The dielectric-permittivity tensor and other tensors of electrodynamic parameters of the medium are introduced in terms of a set of evolution operators and not the set of harmonic function. It is noted that a magnetic-permeability tensor and an elastic-modulus tensor may be introduced for an acoustic field in dispersive anisotropic media with coupling equations of general form

  20. Sensitivity Analysis to Control the Far-Wake Unsteadiness Behind Turbines

    Directory of Open Access Journals (Sweden)

    Esteban Ferrer

    2017-10-01

    Full Text Available We explore the stability of wakes arising from 2D flow actuators based on linear momentum actuator disc theory. We use stability and sensitivity analysis (using adjoints to show that the wake stability is controlled by the Reynolds number and the thrust force (or flow resistance applied through the turbine. First, we report that decreasing the thrust force has a comparable stabilising effect to a decrease in Reynolds numbers (based on the turbine diameter. Second, a discrete sensitivity analysis identifies two regions for suitable placement of flow control forcing, one close to the turbines and one far downstream. Third, we show that adding a localised control force, in the regions identified by the sensitivity analysis, stabilises the wake. Particularly, locating the control forcing close to the turbines results in an enhanced stabilisation such that the wake remains steady for significantly higher Reynolds numbers or turbine thrusts. The analysis of the controlled flow fields confirms that modifying the velocity gradient close to the turbine is more efficient to stabilise the wake than controlling the wake far downstream. The analysis is performed for the first flow bifurcation (at low Reynolds numbers which serves as a foundation of the stabilization technique but the control strategy is tested at higher Reynolds numbers in the final section of the paper, showing enhanced stability for a turbulent flow case.

  1. Field-emitting Townsend regime of surface dielectric barrier discharges emerging at high pressure up to supercritical conditions

    International Nuclear Information System (INIS)

    Pai, David Z; Stauss, Sven; Terashima, Kazuo

    2015-01-01

    Surface dielectric barrier discharges (DBDs) in CO 2 from atmospheric pressure up to supercritical conditions generated using 10 kHz ac excitation are investigated experimentally. Using current–voltage and charge–voltage measurements, imaging, optical emission spectroscopy, and spontaneous Raman spectroscopy, we identify and characterize a field-emitting Townsend discharge regime that emerges above 0.7 MPa. An electrical model enables the calculation of the discharge-induced capacitances of the plasma and the dielectric, as well as the space-averaged values of the surface potential and the potential drop across the discharge. The space-averaged Laplacian field is accounted for in the circuit model by including the capacitance due to the fringe electric field from the electrode edge. The electrical characteristics are demonstrated to fit the description of atmospheric-pressure Townsend DBDs (Naudé et al 2005 J. Phys. D: Appl. Phys. 38 530–8), i.e. self-sustained DBDs with minimal space-charge effects. The purely continuum emission spectrum is due to electron–neutral bremsstrahlung corresponding to an average electron temperature of 2600 K. Raman spectra of CO 2 near the critical point demonstrate that the average gas temperature increases by less than 1 K. (paper)

  2. Light-induced space-charge fields for the structuration of dielectric materials; Lichtinduzierte Raumladungsfelder zur Strukturierung dielektrischer Materialien

    Energy Technology Data Exchange (ETDEWEB)

    Eggert, H A

    2006-11-15

    Light-induced space-charge fields in lithium-niobate crystals are used for patterning of dielectric materials. This includes tailored ferroelectric domains in the bulk of the crystal, different sorts of micro and nanoparticles on a crystal surface, as well as poling of electrooptic chromophores. A stochastical model is introduced, which can describe the spatial inhomogeneous domain inversion. (orig.)

  3. An Improved Wake Vortex Tracking Algorithm for Multiple Aircraft

    Science.gov (United States)

    Switzer, George F.; Proctor, Fred H.; Ahmad, Nashat N.; LimonDuparcmeur, Fanny M.

    2010-01-01

    The accurate tracking of vortex evolution from Large Eddy Simulation (LES) data is a complex and computationally intensive problem. The vortex tracking requires the analysis of very large three-dimensional and time-varying datasets. The complexity of the problem is further compounded by the fact that these vortices are embedded in a background turbulence field, and they may interact with the ground surface. Another level of complication can arise, if vortices from multiple aircrafts are simulated. This paper presents a new technique for post-processing LES data to obtain wake vortex tracks and wake intensities. The new approach isolates vortices by defining "regions of interest" (ROI) around each vortex and has the ability to identify vortex pairs from multiple aircraft. The paper describes the new methodology for tracking wake vortices and presents application of the technique for single and multiple aircraft.

  4. Tomo-PIV measurements of the flow field in the wake of a sphere

    Science.gov (United States)

    Eshbal, Lior; David, Tom; Rinsky, Vladislav; van Hout, Rene; Greenblatt, David

    2017-11-01

    A sphere can be considered as a prototypical 3D bluff body. In order to improve our understanding of its 3D wake flow, a combination of time-resolved planar particle image velocimetry (PIV) and tomographic PIV (tomo-PIV) was implemented. Experiments were performed in a closed-loop water channel facility and sphere Reynolds numbers ReD = UD/ ν = 400, 800, 1200 and 2000, where U is the free-stream velocity, ν the kinematic viscosity and D the sphere diameter. The measurement volume (Height x Length x Width, 5 x 5 x 1.5 D3) comprised the sphere and the downstream wake. Tomo-PIV snap-shots were correlated with the time-resolved PIV such that the 3D temporal evolution of the shed vortices became clear. At ReD = 400, this procedure revealed shed hairpin vortices having a vertical plane of symmetry in agreement with many dye visualization studies. However, the measurements also revealed weaker induced hairpins resulting from the interaction of the near-wake flow and the surrounding free stream. These induced vortices were not visible in previous dye and smoke visualizations and have only been observed in simulations. Data processing of the data at higher ReD is currently ongoing. Israel Science Foundation Grant No. 1596/14.

  5. Evolution and breakdown of helical vortex wakes behind a wind turbine

    International Nuclear Information System (INIS)

    Nemes, A; Jacono, D Lo; Sheridan, J; Blackburn, H M; Sherry, M

    2014-01-01

    The wake behind a three-bladed Glauert model rotor in a water channel was investigated. Planar particle image velocimetry was used to measure the velocity fields on the wake centre-line, with snapshots phase-locked to blade position of the rotor. Phase- locked averages of the velocity and vorticity fields are shown, with tip vortex interaction and entanglement of the helical filaments elucidated. Proper orthogonal decomposition and topology-based vortex identification are used to filter the PIV images for coherent structures and locate vortex cores. Application of these methods to the instantaneous data reveals unsteady behaviour of the helical filaments that is statistically quantifiable

  6. On equilibrium charge distribution above dielectric surface

    Directory of Open Access Journals (Sweden)

    Yu.V. Slyusarenko

    2009-01-01

    Full Text Available The problem of the equilibrium state of the charged many-particle system above dielectric surface is formulated. We consider the case of the presence of the external attractive pressing field and the case of its absence. The equilibrium distributions of charges and the electric field, which is generated by these charges in the system in the case of ideally plane dielectric surface, are obtained. The solution of electrostatic equations of the system under consideration in case of small spatial heterogeneities caused by the dielectric surface, is also obtained. These spatial inhomogeneities can be caused both by the inhomogeneities of the surface and by the inhomogeneous charge distribution upon it. In particular, the case of the "wavy" spatially periodic surface is considered taking into account the possible presence of the surface charges.

  7. Polyimide Dielectric Layer on Filaments for Organic Field Effect Transistors: Choice of Solvent, Solution Composition and Dip-Coating Speed

    Directory of Open Access Journals (Sweden)

    Rambausek Lina

    2014-09-01

    Full Text Available In today’s research, smart textiles is an established topic in both electronics and the textile fields. The concept of producing microelectronics directly on a textile substrate is not a mere idea anymore and several research institutes are working on its realisation. Microelectronics like organic field effect transistor (OFET can be manufactured with a layered architecture. The production techniques used for this purpose can also be applied on textile substrates. Besides gate, active and contact layers, the isolating or dielectric layer is of high importance in the OFET architecture. Therefore, generating a high quality dielectric layer that is of low roughness and insulating at the same time is one of the fundamental requirements in building microelectronics on textile surfaces. To evaluate its potential, we have studied polyimide as a dielectric layer, dip-coated onto copper-coated polyester filaments. Accordingly, the copper-coated polyester filament was dip-coated from a polyimide solution with two different solvents, 1-methyl-2-pyrrolidone (NMP and dimethylformaldehyde. A variety of dip-coating speeds, solution concentrations and solvent-solute combinations have been tested. Their effect on the quality of the layer was analysed through microscopy, leak current measurements and atomic force microscopy (AFM. Polyimide dip-coating with polyimide resin dissolved in NMP at a concentration of 15w% in combination with a dip-coating speed of 50 mm/min led to the best results in electrical insulation and roughness. By optimising the dielectric layer’s properties, the way is paved for applying the subsequent semi-conductive layer. In further research, we will be working with the organic semiconductor material TIPS-Pentacene

  8. Experimental investigation on the repetitively nanosecond pulsed dielectric barrier discharge with the parallel magnetic field

    Science.gov (United States)

    Liu, Yidi; Yan, Huijie; Guo, Hongfei; Fan, Zhihui; Wang, Yuying; Ren, Chunsheng

    2018-02-01

    The effects of a parallel magnetic field on the unipolar positive nanosecond pulsed dielectric barrier discharge are experimentally investigated through electrical and spectral measurements. The discharge is produced between two parallel-plate electrodes in the ambient air with a parallel magnetic field of 1.4 T. Experimental results show that both the discharge intensity and uniformity are improved in the discharge with the parallel magnetic field. The intensity ratio of the spectrum at 371.1 nm and 380.5 nm, which describes the average electron density, is increased by the parallel magnetic field. Meanwhile, the intensity ratio of the spectrum at 391.4 nm and 337.1 nm, which describes the electron temperature, is also increased. It is speculated that both the average electron density and the electron temperature are increased by the parallel magnetic field. The aforementioned phenomena have been explained by the confinement effect of the parallel magnetic field on the electrons.

  9. Composite magnetorheological elastomers as dielectrics for plane capacitors: Effects of magnetic field intensity

    Directory of Open Access Journals (Sweden)

    Maria Balasoiu

    Full Text Available The fabrication of composite magnetorheological elastomers (MRECs based on silicone rubber, carbonyl iron microparticles (10% vol. and polyurethane elastomer doped with 0%, 10% and 20% volume concentration TiO2 microparticles is presented. The obtained MRECs have the shape of thin foils and are used as dielectric materials for manufacturing plane capacitors. Using the plane capacitor method and expression of capacitance as a function of magnetic field intensity, combined with linear elasticity theory, the static magnetoelastic model of the composite is obtained and analyzed. Keywords: Magnetorheological elastomer, TiO2 microparticles, Silicone rubber, Carbonyl iron, Plane capacitor, Magnetoelasticity

  10. Infrared and THz spectroscopy of nanostructured dielectrics

    Directory of Open Access Journals (Sweden)

    Jan Petzelt

    2009-09-01

    Full Text Available Results achieved using the infrared/THz spectroscopy of various inhomogeneous dielectrics in the Department of Dielectrics, Institute of Physics, Prague, during the last decade are briefly reviewed. The discussion concerns high-permittivity ceramics with inevitable low-permittivity dead layers along the grain boundaries, relaxor ferroelectrics with highly anisotropic polar nano-regions, classical matrix-type composites, core-shell composites, filled nanoporous glasses, polycrystalline and epitaxial thin films, heterostructures and superlattices on dielectric substrates. The analysis using models based on the effective medium approach is discussed. The importance of depolarizing field and of the percolation of components on the effective ac dielectric response and the excitations contributing to it are emphasized.

  11. Incubation temperature and hemoglobin dielectric of chicken embryos incubated under the influence of electric field.

    Science.gov (United States)

    Shafey, T M; Al-Batshan, H A; Shalaby, M I; Ghannam, M M

    2006-01-01

    Eggs from a layer-type breeder flock (Baladi, King Saud University) between 61 and 63 weeks of age were used in 3 trials to study the effects of electric field (EF) during incubation on the internal temperature of incubation, and eggs and hemoglobin (Hb) dielectric of chicken embryos at 18 days of age. Dielectric relative permittivity (epsilon') and conductivity (sigma) of Hb were examined in the range of frequency from 20 to 100 kHz. The values of dielectric increment (Deltaepsilon') and the relaxation times (tau) of Hb molecules were calculated. The internal temperature of eggs was measured in empty (following the removal of egg contents) and fertilized eggs in trials 1 and 2, respectively. The level of the EF was 30 kV/m, 60 Hz. EF incubation of embryos influenced the temperature of incubation and electrical properties of Hb molecules and did not influence the temperature of incubation and internal environment of eggs when empty eggs were incubated. EF incubation of fertilized eggs significantly raised the temperature of incubation, egg air cell, and at the surface of the egg yolk by approximately 0.09, 0.60, and 0.61 degrees F, respectively and Hb epsilon', sigma, Deltaepsilon', and tau as a function of the range of frequency of 20 to 100 kHz when compared with their counterparts of the control group. It was concluded that the exposure of fertilized chicken eggs to EF of 30 kV/m, 60 Hz, during incubation altered dielectric properties of Hb and that probably affected cell to cell communication and created the right environment for enhancing the growing process and heat production of embryos consequently increasing the temperature of the internal environment of the egg, and incubation.

  12. The analytical solution of wake-fields in an elliptical pillbox cavity

    International Nuclear Information System (INIS)

    Yang, J.S.; Chen, K.W.

    1991-01-01

    The wake potential of a bunch of relativistic charged particles traversing an elliptical pillbox cavity is derived analytically in the limit of vanishing aperture. It is found that the resonant modes of an elliptical cavity can be expressed in terms of Mathieu functions. Calculation results are presented and compared with numerical ones. (author) 10 refs., 10 figs., 2 tabs

  13. A FDTD solution of scattering of laser beam with orbital angular momentum by dielectric particles: Far-field characteristics

    International Nuclear Information System (INIS)

    Sun, Wenbo; Hu, Yongxiang; Weimer, Carl; Ayers, Kirk; Baize, Rosemary R.; Lee, Tsengdar

    2017-01-01

    Electromagnetic (EM) beams with orbital angular momentum (OAM) may have great potential applications in communication technology and in remote sensing of the Earth-atmosphere system and outer planets. Study of their interaction with optical lenses and dielectric or metallic objects, or scattering of them by particles in the Earth-atmosphere system, is a necessary step to explore the advantage of the OAM EM beams. In this study, the 3-dimensional (3D) scattered-field (SF) finite-difference time domain (FDTD) technique with the convolutional perfectly matched layer (CPML) absorbing boundary conditions (ABC) is applied to calculate the scattering of the purely azimuthal (the radial mode number is assumed to be zero) Laguerre–Gaussian (LG) beams with the OAM by dielectric particles. We found that for OAM beam's interaction with dielectric particles, the forward-scattering peak in the conventional phase function (P11) disappears, and light scattering peak occurs at a scattering angle of ~15° to 45°. The disappearance of forward-scattering peak means that, in laser communications most of the particle-scattered noise cannot enter the receiver, thus the received light is optimally the original OAM-encoded signal. This feature of the OAM beam also implies that in lidar remote sensing of the atmospheric particulates, most of the multiple-scattering energy will be off lidar sensors, and this may result in an accurate profiling of particle layers in the atmosphere or in the oceans by lidar, or even in the ground when a ground penetration radar (GPR) with the OAM is applied. This far-field characteristics of the scattered OAM light also imply that the optical theorem, which is derived from plane-parallel wave scattering case and relates the forward scattering amplitude to the total cross section of the scatterer, is invalid for the scattering of OAM beams by dielectric particles. - Highlights: • Scattering of orbital angular momentum (OAM) laser beam by dielectric

  14. Electron holes observed in the Moon Plasma Wake

    Science.gov (United States)

    Hutchinson, I. H.; Malaspina, D.; Zhou, C.

    2017-10-01

    Electrostatic instabilities are predicted in the magnetized wake of plasma flowing past a non-magnetic absorbing object such as a probe or the moon. Analysis of the data from the Artemis satellites, now orbiting the moon at distances ten moon radii and less, shows very clear evidence of fast-moving isolated solitary potential structures causing bipolar electric field excursions as they pass the satellite's probes. These structures have all the hallmarks of electron holes: BGK solitons typically a few Debye-lengths in size, self-sustaining by a deficit of phase-space density on trapped orbits. Electron holes are now observed to be widespread in space plasmas. They have been observed in PIC simulations of the moon wake to be the non-linear consequence of the predicted electron instabilities. Simulations document hole prevalence, speed, length, and depth; and theory can explain many of these features from kinetic analysis. The solar wind wake is certainly the cause of the overwhelming majority of the holes observed by Artemis, because we observe almost all holes to be in or very near to the wake. We compare theory and simulation of the hole generation, lifetime, and transport mechanisms with observations. Work partially supported by NASA Grant NNX16AG82G.

  15. Super Dielectric Materials

    Directory of Open Access Journals (Sweden)

    Samuel Fromille

    2014-12-01

    Full Text Available Evidence is provided here that a class of materials with dielectric constants greater than 105 at low frequency (<10−2 Hz, herein called super dielectric materials (SDM, can be generated readily from common, inexpensive materials. Specifically it is demonstrated that high surface area alumina powders, loaded to the incipient wetness point with a solution of boric acid dissolved in water, have dielectric constants, near 0 Hz, greater than 4 × 108 in all cases, a remarkable increase over the best dielectric constants previously measured for energy storage capabilities, ca. 1 × 104. It is postulated that any porous, electrically insulating material (e.g., high surface area powders of silica, titania, etc., filled with a liquid containing a high concentration of ionic species will potentially be an SDM. Capacitors created with the first generated SDM dielectrics (alumina with boric acid solution, herein called New Paradigm Super (NPS capacitors display typical electrostatic capacitive behavior, such as increasing capacitance with decreasing thickness, and can be cycled, but are limited to a maximum effective operating voltage of about 0.8 V. A simple theory is presented: Water containing relatively high concentrations of dissolved ions saturates all, or virtually all, the pores (average diameter 500 Å of the alumina. In an applied field the positive ionic species migrate to the cathode end, and the negative ions to the anode end of each drop. This creates giant dipoles with high charge, hence leading to high dielectric constant behavior. At about 0.8 V, water begins to break down, creating enough ionic species to “short” the individual water droplets. Potentially NPS capacitor stacks can surpass “supercapacitors” in volumetric energy density.

  16. Wake structure and similar behavior of wake profiles downstream of a plunging airfoil

    Directory of Open Access Journals (Sweden)

    Ali R. DAVARI

    2017-08-01

    Full Text Available Very limited attention has already been paid to the velocity behavior in the wake region in unsteady aerodynamic problems. A series of tests has been performed on a flapping airfoil in a subsonic wind tunnel to study the wake structure for different sets of mean angle of attack, plunging amplitude and reduced frequency. In this study, the velocity profiles in the wake for various oscillation parameters have been measured using a wide shoulder rake, especially designed for the present experiments. The airfoil under consideration was a critical section of a 660 kW wind turbine. The results show that for a flapping airfoil the wake structure can be of drag producing type, thrust producing or neutral, depending on the mean angle of attack, oscillation amplitude and reduced frequency. In a thrust producing wake, a high-momentum high-velocity jet flow is formed in the core region of the wake instead of the conventional low-momentum flow. As a result, the drag force normally experienced by the body due to the momentum deficit would be replaced by a thrust force. According to the results, the momentum loss in the wake decreases as the reduced frequency increases. The thrust producing wake pattern for the flapping airfoil has been observed for sufficiently low angles of attack in the absence of the viscous effects. This phenomenon has also been observed for either high oscillation amplitudes or high reduced frequencies. According to the results, for different reduced frequencies and plunging amplitudes, such that the product of them be a constant, the velocity profiles exhibit similar behavior and coalesce on each other. This similarity parameter works excellently at small angles of attack. However, at near stall boundaries, the similarity is not as evident as before.

  17. Beam emittance and the effects of the rf, space charge and wake fields: Application to the ATF photoelectron beam

    International Nuclear Information System (INIS)

    Parsa, Z.

    1991-01-01

    Laser driven photoelectron guns are of interest for use in new methods of accelerations, future development of Linear Colliders and new experiments such as Free Electron laser (IFEL). Such guns are potential source of low emittance-high current and short bunch length electron beams, where the emitted electrons are accelerated quickly to a relativistic energy by a strong rf, electric field in the cavity. We present a brief overview of the beam dynamic studies, e.g. emittance for the Brookhaven National Laboratory (BNL) ATF high brightness photocathode radio frequency gun (now in operation), and show the effects of the rf, Space Charge, and Wake fields on the photoelectrons. 4 refs., 7 figs

  18. Dielectric tensor elements for the description of waves in rotating inhomogeneous magnetized plasma spheroids

    Science.gov (United States)

    Abdoli-Arani, A.; Ramezani-Arani, R.

    2012-11-01

    The dielectric permittivity tensor elements of a rotating cold collisionless plasma spheroid in an external magnetic field with toroidal and axial components are obtained. The effects of inhomogeneity in the densities of charged particles and the initial toroidal velocity on the dielectric permittivity tensor and field equations are investigated. The field components in terms of their toroidal components are calculated and it is shown that the toroidal components of the electric and magnetic fields are coupled by two differential equations. The influence of thermal and collisional effects on the dielectric tensor and field equations in the rotating plasma spheroid are also investigated. In the limiting spherical case, the dielectric tensor of a stationary magnetized collisionless cold plasma sphere is presented.

  19. Multi-Point Velocity Correlations in the Wake of a Three-Dimensional Bluff Body

    Science.gov (United States)

    Shea, Patrick; Glauser, Mark

    2013-11-01

    Three-dimensional bluff-bodies known as turrets are commonly used for housing optical systems on airborne platforms. These geometries generate highly turbulent wakes that decrease the performance of the optical systems and the aircraft. The current experimental study used dynamic suction in both open and closed-loop control configurations to actively control the wake turret. The experiments were carried out at a Reynolds number of 5 × 105, and the flow field was characterized using stereoscopic PIV measurements acquired in the wake of the turret. These data were processed using traditional single-point statistics which showed that the active control system was able to significantly alter the wake of the turret. Using multi-point correlations, turbulent characteristics such as the integral length scale can be calculated. For the turret wake, estimates of the integral length scales were found to be highly dependent upon the region of the flow that was evaluated, especially when comparing the shear layers to the center of the wake. With the application of the active control, the integral length scales were generally found to increase.

  20. Finite-temperature Casimir effect in the presence of nonlinear dielectrics

    DEFF Research Database (Denmark)

    Kheirandish, Fardin; Amooghorban, Ehsan; Soltani, Morteza

    2011-01-01

    Starting from a Lagrangian, the electromagnetic field in the presence of a nonlinear dielectric medium is quantized using path-integral techniques, and correlation functions of different fields are calculated. The susceptibilities of the nonlinear medium are obtained, and their relations to coupl......Starting from a Lagrangian, the electromagnetic field in the presence of a nonlinear dielectric medium is quantized using path-integral techniques, and correlation functions of different fields are calculated. The susceptibilities of the nonlinear medium are obtained, and their relations...

  1. Dielectric relaxation dependent memory elements in pentacene/[6,6]-phenyl-C61-butyric acid methyl ester bi-layer field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoungnam

    2015-03-02

    We fabricate a pentacene/[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) bi-layer field effect transistor (FET) featuring large hysteresis that can be used as memory elements. Intentional introduction of excess electron traps in a PCBM layer by exposure to air caused large hysteresis in the FET. The memory window, characterized by the threshold voltage difference, increased upon exposure to air and this is attributed to an increase in the number of electron trapping centers and (or) an increase in the dielectric relaxation time in the underlying PCBM layer. Decrease in the electron conduction in the PCBM close to the SiO{sub 2} gate dielectric upon exposure to air is consistent with the increase in the dielectric relaxation time, ensuring that the presence of large hysteresis in the FET originates from electron trapping at the PCBM not at the pentacene. - Highlights: • Charge trapping-induced memory effect was clarified using transistors. • The memory window can be enhanced by controlling charge trapping mechanism. • Memory transistors can be optimized by controlling dielectric relaxation time.

  2. ASRS Reports on Wake Vortex Encounters

    Science.gov (United States)

    Connell, Linda J.; Taube, Elisa Ann; Drew, Charles Robert; Barclay, Tommy Earl

    2010-01-01

    ASRS is conducting a structured callback research project of wake vortex incidents reported to the ASRS at all US airports, as well as wake encounters in the enroute environment. This study has three objectives: (1) Utilize the established ASRS supplemental data collection methodology and provide ongoing analysis of wake vortex encounter reports; (2) Document event dynamics and contributing factors underlying wake vortex encounter events; and (3) Support ongoing FAA efforts to address pre-emptive wake vortex risk reduction by utilizing ASRS reporting contributions.

  3. Do building wakes increase ground level concentrations?

    International Nuclear Information System (INIS)

    Taylor, T.J.; Melbourne, W.H.

    1996-01-01

    As part of the EPRI Plume Rise and Downwash Project to develop and evaluate new mathematical algorithms representing plume rise and downwash, physical model studies were performed on the plume dispersion from Combustion Turbine Unit 4, (CT 4), at the Jersey Central Power and Light Sayreville Generating Station, Sayreville, New Jersey. Studies were performed both in neutral and stably stratified model atmospheric boundary layer conditions with the primary objective being to determine the behavior of the combustion turbine plume under high and low ambient wind speed conditions within the wake region produced by the combustion turbine itself. Field measurements were also performed at the site and to this end a base case wind direction of β = 335 degree was chosen for both the field and model studies in an attempt to minimize the effects of other building wakes on the plume. This paper looks at the flow and dispersion characteristics with and without these large structures in the model in an attempt to explain why the differences in concentration levels occurred

  4. Transitions in the vortex wake behind the plunging profile

    Energy Technology Data Exchange (ETDEWEB)

    Kozłowski, Tomasz; Kudela, Henryk, E-mail: tomasz.kozlowski@pwr.wroc.pl, E-mail: henryk.kudela@pwr.wroc.pl [Department of Numerical Modelling of Flows, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2014-12-01

    In this study we investigate numerically the vortex wake formation behind the profile performing simple harmonic motion known in the literature as plunging. This research was inspired by the flapping motion which is appropriate for birds, insects and fishes. We assume the two dimensional model of flow. Depending on the parameters such as plunging amplitude, frequency and the Reynolds number, we demonstrate many different types of vortex street behind the profile. It is well known that the type of vortex wake determines the hydrodynamic forces acting on the profile. Dependences of the plunging amplitude, the Strouhal number and various topology vortices are established by constructing the phase transition diagram. The areas in the diagram related to the drag, thrust, and lift force generation are captured. We notice also the areas where the vorticity field is disordered. The disordered vorticity field does not allow maintenance of the periodic forces on the profile. An increase in the Reynolds number leads to the transition of the vortex wake behind the profile. The transition is caused by the phenomenon of boundary layer eruption. Further increase of the Reynolds number causes the vortex street related to the generation of the lift force to vanish. (paper)

  5. Transitions in the vortex wake behind the plunging profile

    International Nuclear Information System (INIS)

    Kozłowski, Tomasz; Kudela, Henryk

    2014-01-01

    In this study we investigate numerically the vortex wake formation behind the profile performing simple harmonic motion known in the literature as plunging. This research was inspired by the flapping motion which is appropriate for birds, insects and fishes. We assume the two dimensional model of flow. Depending on the parameters such as plunging amplitude, frequency and the Reynolds number, we demonstrate many different types of vortex street behind the profile. It is well known that the type of vortex wake determines the hydrodynamic forces acting on the profile. Dependences of the plunging amplitude, the Strouhal number and various topology vortices are established by constructing the phase transition diagram. The areas in the diagram related to the drag, thrust, and lift force generation are captured. We notice also the areas where the vorticity field is disordered. The disordered vorticity field does not allow maintenance of the periodic forces on the profile. An increase in the Reynolds number leads to the transition of the vortex wake behind the profile. The transition is caused by the phenomenon of boundary layer eruption. Further increase of the Reynolds number causes the vortex street related to the generation of the lift force to vanish. (paper)

  6. Achievement of High-Response Organic Field-Effect Transistor NO₂ Sensor by Using the Synergistic Effect of ZnO/PMMA Hybrid Dielectric and CuPc/Pentacene Heterojunction.

    Science.gov (United States)

    Han, Shijiao; Cheng, Jiang; Fan, Huidong; Yu, Junsheng; Li, Lu

    2016-10-21

    High-response organic field-effect transistor (OFET)-based NO₂ sensors were fabricated using the synergistic effect the synergistic effect of zinc oxide/poly(methyl methacrylate) (ZnO/PMMA) hybrid dielectric and CuPc/Pentacene heterojunction. Compared with the OFET sensors without synergistic effect, the fabricated OFET sensors showed a remarkable shift of saturation current, field-effect mobility and threshold voltage when exposed to various concentrations of NO₂ analyte. Moreover, after being stored in atmosphere for 30 days, the variation of saturation current increased more than 10 folds at 0.5 ppm NO₂. By analyzing the electrical characteristics, and the morphologies of organic semiconductor films of the OFET-based sensors, the performance enhancement was ascribed to the synergistic effect of the dielectric and organic semiconductor. The ZnO nanoparticles on PMMA dielectric surface decreased the grain size of pentacene formed on hybrid dielectric, facilitating the diffusion of CuPc molecules into the grain boundary of pentacene and the approach towards the conducting channel of OFET. Hence, NO₂ molecules could interact with CuPc and ZnO nanoparticles at the interface of dielectric and organic semiconductor. Our results provided a promising strategy for the design of high performance OFET-based NO₂ sensors in future electronic nose and environment monitoring.

  7. Emittance growth due to the wake field driven by an electron beam accelerated in an RF-gun of free electron laser 'ELSA'

    CERN Document Server

    Salah, W

    2000-01-01

    It appears that the ease of the parameter chosen for 'ELSA' photo injector, the influence of the exit aperture, in terms of beam quality, is slight concerning the transverse emittance: (DELTA epsilon sub p sub e sub r sub p sub e sub n sub d sub i sub c sub u sub l sub a sub r /epsilon sub p sub e sub r sub p sub e sub n sub d sub i sub c sub u sub l sub a sub = = r)(z)approx 3% at maximum, and negligible concerning the axial emittance. To complete this paper, we recall the results previously obtained concerning the wake field of a closed or open cavity for a beam approaching the anode . They had quantitatively specified the expected deep asymmetry between the conducting walls regarding their contribution to the total wake field, besides the space-charge contribution. (Given that the radial walls have no time to contribute, these conducting walls are the cathode and the anode.) Thus, concerning the effects on whole-beam emittances, the correction (DELTA epsilon sub p sub e sub r sub p sub e sub n sub d sub i ...

  8. The total energy-momentum tensor for electromagnetic fields in a dielectric

    Science.gov (United States)

    Crenshaw, Michael E.

    2017-08-01

    Radiation pressure is an observable consequence of optically induced forces on materials. On cosmic scales, radiation pressure is responsible for the bending of the tails of comets as they pass near the sun. At a much smaller scale, optically induced forces are being investigated as part of a toolkit for micromanipulation and nanofabrication technology [1]. A number of practical applications of the mechanical effects of light-matter interaction are discussed by Qiu, et al. [2]. The promise of the nascent nanophotonic technology for manufacturing small, low-power, high-sensitivity sensors and other devices has likely motivated the substantial current interest in optical manipulation of materials at the nanoscale, see, for example, Ref. [2] and the references therein. While substantial progress toward optical micromanipulation has been achieved, e.g. optical tweezers [1], in this report we limit our consideration to the particular issue of optically induced forces on a transparent dielectric material. As a matter of electromagnetic theory, these forces remain indeterminate and controversial. Due to the potential applications in nanotechnology, the century-old debate regarding these forces, and the associated momentums, has ramped up considerably in the physics community. The energy-momentum tensor is the centerpiece of conservation laws for the unimpeded, inviscid, incompressible flow of non-interacting particles in the continuum limit in an otherwise empty volume. The foundations of the energy-momentum tensor and the associated tensor conservation theory come to electrodynamics from classical continuum dynamics by applying the divergence theorem to a Taylor series expansion of a property density field of a continuous flow in an otherwise empty volume. The dust tensor is a particularly simple example of an energy-momentum tensor that deals with particles of matter in the continuum limit in terms of the mass density ρm, energy density ρmc 2 , and momentum density

  9. Toward superlensing with metal-dielectric composites and multilayers

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Bundgaard; Thoreson, M.D.; Chen, W.

    2010-01-01

    We report on the fabrication of two types of adjustable, near-field superlens designs: metal–dielectric composites and metal–dielectric multilayer films. We fabricated a variety of films with different materials, thicknesses and compositions. These samples were characterized physically...... and optically to determine their film composition, quality, and optical responses. Our results on metal–dielectric composites indicate that although the real part of the effective permittivity generally follows effective medium theory predictions, the imaginary part does not and substantially higher losses...

  10. Analysis of the Induction and Wake Evolution of an Offshore Floating Wind Turbine

    Directory of Open Access Journals (Sweden)

    Matthew Lackner

    2012-04-01

    Full Text Available The degrees-of-freedom associated with offshore floating wind turbines (OFWTs result in a more dynamic flow field. The resulting aerodynamic loads may be significantly influenced by these motions via perturbations in the evolving wake. This is of great interest in terms of OFWT design, placement and simulation. This study presents free vortex wake method (FVM simulations of the NREL 5-MW wind turbine of a variety of platforms, operating in a range of wind speeds synthesized platform motion time series. Motion-induced wake perturbations are observed to affect induction. Transitions between windmill and propeller states are also observed.

  11. A dielectric tensor for magnetoplasmas comprising components with generalized Lorentzian distributions

    International Nuclear Information System (INIS)

    Mace, R.L.

    1996-01-01

    We report on a new form for the dielectric tensor for a plasma containing superthermal particles. The individual particle components are modelled by 3-dimensional isotropic kappa, or generalized Lorentzian, distributions with arbitrary real-valued index κ. The new dielectric tensor is valid for arbitrary wavevectors. The dielectric tensor, which resembles Trubnikov's dielectric tensor for a relativistic plasma, is compared with the familiar Maxwellian form. When the dielectric tensor is used in the plasma dispersion relation for waves propagating parallel to the magnetic field it reproduces previously derived dispersion relations for various electromagnetic and electrostatic waves in plasmas modelled by Lorentzian particle distributions. Within the constraints of propagation parallel to the ambient magnetic field, we extend the above results to incorporate loss-cone Lorentzian particle distributions, which have important applications in laboratory mirror devices, as well as in space and astrophysical environments. (orig.)

  12. Large low field room temperature magneto-dielectric response from (Sr_0_._5Ba_0_._5)Nb_2O_6/Co(Cr_0_._4Fe_1_._6)O_4 bulk 3-0 composites

    International Nuclear Information System (INIS)

    Rathore, Satyapal Singh; Vitta, Satish

    2016-01-01

    Highlights: • The essential highlights of this work are;. • Bulk composite with varying amounts of relaxor and ferromagnetic phases has been synthesized by simple steps. • Processing yields an optimal structure with 30% ferromagnetic phase to couple the two ferroic orders. • Magneto dielectric constant shows large changes, 3.2%, at room temperature in moderate magnetic fields. • Large changes in dielectric constant are due to configurational arrangement of the two phases. - Abstract: Bulk magneto-dielectric composites with a 3-0 configuration comprised of ferroelectric-magnetostrictive phases have been synthesized using (Sr_0_._5Ba_0_._5)Nb_2O_6–Co(Cr_0_._4Fe_1_._6)O_4 as the two constituents, respectively. The ferroelectric phase made by a dual stage sintering process has a uniform grain size of 15 μm while the magnetostrictive phase has a grain size of 2–3 μm. Composites synthesized by conventional solid state processing using these two constituents exhibit large magneto-dielectric coupling at room temperature which increases with increasing magnetic field. The composite with 30% magnetostrictive phase distributed uniformly in the ferroelectric phase has the most desirable microstructure and exhibits a large coupling with 3.2% change in the dielectric constant at 1 kHz and 8 kOe magnetic field. This change in dielectric constant was found to be a maximum with respect to variation of the fraction of magnetostrictive phase, indicating that 30% is the optimal value to realize large coupling between the two phases. The decrease in magneto-dielectric constant upon application of an external magnetic field is possibly due to the inherent magnetoresistance of the magnetic component. The resistivity of the magnetic component decreases in an external magnetic field leading to the formation of 3D percolating conducting paths. This causes the coupling to decrease in composites with >30% magnetostrictive phase.

  13. Effect of combined external uniaxial stress and dc bias on the dielectric property of BaTiO3-based dielectrics in multilayer ceramic capacitor: thermodynamics and experiments

    International Nuclear Information System (INIS)

    Yang Gang; Yue Zhenxing; Sun Tieyu; Gou Huanlin; Li Longtu

    2008-01-01

    The dielectric properties of (Nb, Y)-doped BaTiO 3 in a multilayer ceramic capacitor (MLCC) under combined external uniaxial compressive stress and dc bias field were investigated at room temperature by using a modified Ginsburg-Landau-Devonshire thermodynamic theory and the dielectric measurement. It is found that although dc bias decreases the dielectric properties dominantly, the influence of the external uniaixial compressive stress should not be neglected. When applied along a direction perpendicular to the internal electrode layer in the MLCC, the external uniaixal compressive stress will strengthen the negative effect of dc bias. In contrast, the external uniaxial compressive stress along a direction parallel to the internal electrode layer in the MLCC will increase the dielectric permittivity under dc bias field, i.e. improve the ε-V response of the MLCC. Furthermore, although there is a difference between the calculated permittivity and the measured permittivity, the effects of the combined external uniaxial compressive stress and dc bias field on the dielectric permittivity described through two approaches are in good agreement

  14. Local-Field Distribution of Two Dielectric Inclusions at Small Separation

    Science.gov (United States)

    Siu, Yuet-Lun; Yu, Kin-Wah

    2001-03-01

    When two dielectric inclusions approach to each other in a composite medium, significant mutual polarization effects must occur. These effects are multipolar in nature and are difficult to treat from first principles(J. D. Jackson, Classical Electrodynamics), 2nd edition, (Wiley, New York, 1975).. In this work, we employ the discrete-dipole theory(B. T. Draine and P. J. Flatau, J. Opt. Soc. Am. A 11) 1491 (1994). to account for the mutual polarization effects by dividing the inclusions into many small subparts. We begin the calculation at small inclusion sizes and large separation, where the point-dipole limit being valid, and proceed to larger inclusion sizes and small separation, for which the mutual polarization effect becomes important. Then, we apply the theory to determine the dipole moment of each subpart self-consistently. In this way, each dipole moment yields the local electric field, which in turn polarizes the neighboring dipoles. We also begin the calculation at small inclusion sizes and large separation, where the point-dipole limit being valid, and proceed to larger inclusion sizes and small separation. Our resluts indicate that convergence is achieved with moderate computational effects. The results produce valuable information about the local electric field distribution, which is relevant to optical absorption due to surface phonon-polaritons of ionic microcrystals.

  15. Experimental Demonstration of Anomalous Field Enhancement in All-Dielectric Transition Magnetic Metamaterials.

    Science.gov (United States)

    Sun, Jingbo; Liu, Xiaoming; Zhou, Ji; Kudyshev, Zhaxylyk; Litchinitser, Natalia M

    2015-11-04

    Anomalous field enhancement accompanied by resonant absorption phenomenon was originally discussed in the context of plasma physics and in applications related to radio-communications between the ground and spacecraft returning to Earth. Indeed, there is a critical period of time when all communications are lost due to the reflection/absorption of electromagnetic waves by the sheath of plasma created by a high speed vehicle re-entering the atmosphere. While detailed experimental studies of these phenomena in space are challenging, the emergence of electromagnetic metamaterials enables researchers exceptional flexibility to study them in the laboratory environment. Here, we experimentally demonstrated the strong localized field enhancement of magnetic field for an electromagnetic wave propagating in Mie-resonance-based inhomogeneous metamaterials with magnetic permeability gradually changing from positive to negative values. Although these experiments were performed in the microwave frequency range, the proposed all-dielectric approach to transition metamaterials can be extended to terahertz, infrared, and visible frequencies. We anticipate that these results, besides most basic science aspects, hold the potential for numerous applications, including low-intensity nonlinear transformation optics, topological photonics, and the broader area of surface and interface science.

  16. Preparation and Characterization of Pure Organic Dielectric Composites for Capacitors

    Directory of Open Access Journals (Sweden)

    Mao Xin

    2018-01-01

    Full Text Available This work reports the excellent dielectric composites were prepared from polyimide (PI and poly(vinylidene fluoride (PVDF via solution blending and thermal imidization or chemical imidization. The dielectric and thermal properties of the composites were studied. Results indicated that the dielectric properties of the composites synthesized by these two methods were enhanced through the introduction of PVDF, and the composites exhibited excellent thermal stability. Compared to the thermal imidization, the composites prepared by chemical imidization exhibited superior dielectric properties. This study demonstrated that the PI/PVDF composites were potential dielectric materials in the field of electronics.

  17. Wake modeling and simulation

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Madsen Aagaard, Helge; Larsen, Torben J.

    We present a consistent, physically based theory for the wake meandering phenomenon, which we consider of crucial importance for the overall description of wind turbine loadings in wind farms. In its present version the model is confined to single wake situations. The model philosophy does, howev...... methodology has been implemented in the aeroelastic code HAWC2, and example simulations of wake situations, from the small Tjæreborg wind farm, have been performed showing satisfactory agreement between predictions and measurements...

  18. Electromagnetic spin–orbit interaction and giant spin-Hall effect in dielectric particle clusters

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yineng [Department of Physics, Beijing Normal University, Beijing 100875 (China); Zhang, Xiangdong, E-mail: zhangxd@bit.edu.cn [School of Physics and Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, 100081, Beijing (China)

    2013-12-09

    We report a phenomenon that electromagnetic spin–orbit interactions can be tailored by dielectric nanoparticles, and self-similar giant spin-Hall effect has been observed in the dielectric particle cluster. The near-field phase singularities and phase vorticity in the longitudinal component of scattered field can also be controlled by such a dielectric structure. The origin of phenomena is believed to be due to the collective resonance excitation in the dielectric particle cluster. It is expected to find applications in optics information processing and designing new nanophotonic devices.

  19. Laser amplification in excited dielectrics

    Science.gov (United States)

    Winkler, Thomas; Haahr-Lillevang, Lasse; Sarpe, Cristian; Zielinski, Bastian; Götte, Nadine; Senftleben, Arne; Balling, Peter; Baumert, Thomas

    2018-01-01

    Wide-bandgap dielectrics such as glasses or water are transparent at visible and infrared wavelengths. This changes when they are exposed to ultrashort and highly intense laser pulses. Different interaction mechanisms lead to the appearance of various transient nonlinear optical phenomena. Using these, the optical properties of dielectrics can be controlled from the transparent to the metal-like state. Here we expand this range by a yet unexplored mechanism in excited dielectrics: amplification. In a two-colour pump-probe experiment, we show that a 400 nm femtosecond laser pulse is coherently amplified inside an excited sapphire sample on a scale of a few micrometres. Simulations strongly support the proposed two-photon stimulated emission process, which is temporally and spatially controllable. Consequently, we expect applications in all fields that demand strongly localized amplification.

  20. Pyroelectric response mechanism of barium strontium titanate ceramics in dielectric bolometer mode: The underlying essence of the enhancing effect of direct current bias field

    International Nuclear Information System (INIS)

    Mao, Chaoliang; Cao, Sheng; Yan, Shiguang; Yao, Chunhua; Cao, Fei; Wang, Genshui; Dong, Xianlin; Hu, Xu; Yang, Chunli

    2013-01-01

    Pyroelectric response mechanism of Ba 0.70 Sr 0.30 TiO 3 ceramics under dielectric bolometer (DB) mode was investigated by dielectric and pyroelectric properties measurement. The variations of total, intrinsic, and induced pyroelectric coefficients (p tot , p int , p ind ) with temperatures and bias fields were analyzed. p int plays the dominant role to p tot through most of the temperature range and p ind will be slightly higher than p int above T 0 . The essence of the enhancing effect of DC bias field on pyroelectric coefficient can be attributed to the high value of p int . This mechanism is useful for the pyroelectric materials (DB mode) applications.

  1. Experimental study of a wake behind a barrier

    Science.gov (United States)

    Tomáš, Dufek; Katarína, Ratkovská

    2017-09-01

    This article describes in detail an experiment which was carried out on a wind tunnel in the Laboratory of the Department of Power Machines, Faculty of Mechanical Engineering, at the University of West Bohemia (UWB), using Particle Image Velocimetry and Stereo Particle Image Velocimetry. PIV is a non-invasive method that allows you to simultaneously measure the flow velocity across the entire field under investigation. In the experiment, the field was located behind the exit of the wind tunnel. The experiment dealt with the measurement of the wake behind a barrier. Measurement with Stereo PIV was carried out in several vertical parallel planes perpendicular to the axis of the tunnel. Conventional PIV method was then used for a horizontal plane passing through the axis of the tunnel at half the height of the barrier. The velocities in the measured plane are expressed by a vector map. In areas not affected by the wake, the speed in the w direction is about 16 m / s. The wake is formed behind the barrier. A shear layer is formed at the boundary between the flowing air and the braked air. A backflow occurs in the area just behind the barrier. The highest speed in the area is achieved in places just behind the exit of the tunnel, where the current is not affected by the barrier. In the direction from the axis and the obstacle, the speed gradually rises from the negative values of the return flow through the zero speed. In addition to the velocity fields, the output from the experimental measurement was also the distribution of the sum of variances, standard deviation and correlation coefficient in the measured planes.

  2. Wide-scan dielectric dome antenna with reduced profile

    NARCIS (Netherlands)

    Gandini, E.; Silvestri, F.; Benini, A.; Gerini, G.; Martini, E.; Maci, S.; Viganò, M.C.; Toso, G.; Monni, S.

    2017-01-01

    In this contribution, a dielectric dome antenna design in Ka-band is presented. The dome antenna is based on the combination of a phased array and a dielectric lens. The goal of the combination of these structures is to enlarge the field of view of the antenna. In particular, the array is considered

  3. Low operating voltage n-channel organic field effect transistors using lithium fluoride/PMMA bilayer gate dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S.; Dhar, A., E-mail: adhar@phy.iitkgp.ernet.in

    2015-10-15

    Highlights: • Alternative to chemically crosslinking of PMMA to achieve low leakage in provided. • Effect of LiF in reducing gate leakage through the OFET device is studied. • Effect of gate leakage on transistor performance has been investigated. • Low voltage operable and low temperature processed n-channel OFETs were fabricated. - Abstract: We report low temperature processed, low voltage operable n-channel organic field effect transistors (OFETs) using N,N′-Dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C{sub 8}) organic semiconductor and poly(methylmethacrylate) (PMMA)/lithium fluoride (LiF) bilayer gate dielectric. We have studied the role of LiF buffer dielectric in effectively reducing the gate leakage through the device and thus obtaining superior performance in contrast to the single layer PMMA dielectric devices. The bilayer OFET devices had a low threshold voltage (V{sub t}) of the order of 5.3 V. The typical values of saturation electron mobility (μ{sub s}), on/off ratio and inverse sub-threshold slope (S) for the range of devices made were estimated to be 2.8 × 10{sup −3} cm{sup 2}/V s, 385, and 3.8 V/decade respectively. Our work thus provides a potential substitution for much complicated process of chemically crosslinking PMMA to achieve low leakage, high capacitance, and thus low operating voltage OFETs.

  4. Toward Automated Benchmarking of Atomistic Force Fields: Neat Liquid Densities and Static Dielectric Constants from the ThermoML Data Archive.

    Science.gov (United States)

    Beauchamp, Kyle A; Behr, Julie M; Rustenburg, Ariën S; Bayly, Christopher I; Kroenlein, Kenneth; Chodera, John D

    2015-10-08

    Atomistic molecular simulations are a powerful way to make quantitative predictions, but the accuracy of these predictions depends entirely on the quality of the force field employed. Although experimental measurements of fundamental physical properties offer a straightforward approach for evaluating force field quality, the bulk of this information has been tied up in formats that are not machine-readable. Compiling benchmark data sets of physical properties from non-machine-readable sources requires substantial human effort and is prone to the accumulation of human errors, hindering the development of reproducible benchmarks of force-field accuracy. Here, we examine the feasibility of benchmarking atomistic force fields against the NIST ThermoML data archive of physicochemical measurements, which aggregates thousands of experimental measurements in a portable, machine-readable, self-annotating IUPAC-standard format. As a proof of concept, we present a detailed benchmark of the generalized Amber small-molecule force field (GAFF) using the AM1-BCC charge model against experimental measurements (specifically, bulk liquid densities and static dielectric constants at ambient pressure) automatically extracted from the archive and discuss the extent of data available for use in larger scale (or continuously performed) benchmarks. The results of even this limited initial benchmark highlight a general problem with fixed-charge force fields in the representation low-dielectric environments, such as those seen in binding cavities or biological membranes.

  5. Self consistent hydrodynamic description of the plasma wake field excitation induced by a relativistic charged-particle beam in an unmagnetized plasma

    Science.gov (United States)

    Jovanović, Dušan; Fedele, Renato; De Nicola, Sergio; Akhter, Tamina; Belić, Milivoj

    2017-12-01

    A self-consistent nonlinear hydrodynamic theory is presented of the propagation of a long and thin relativistic electron beam, for a typical plasma wake field acceleration configuration in an unmagnetized and overdense plasma. The random component of the trajectories of the beam particles as well as of their velocity spread is modelled by an anisotropic temperature, allowing the beam dynamics to be approximated as a 3D adiabatic expansion/compression. It is shown that even in the absence of the nonlinear plasma wake force, the localisation of the beam in the transverse direction can be achieved owing to the nonlinearity associated with the adiabatic compression/rarefaction and a coherent stationary state is constructed. Numerical calculations reveal the possibility of the beam focussing and defocussing, but the lifetime of the beam can be significantly extended by the appropriate adjustments, so that transverse oscillations are observed, similar to those predicted within the thermal wave and Vlasov kinetic models.

  6. Gas dynamics, optics and chemistry of an aircraft condensable wake

    Energy Technology Data Exchange (ETDEWEB)

    Grinats, E.S.; Kashevarov, A.V.; Stasenko, A.L. [Central Aerohydrodynamic Inst., Zhukovsky (Russian Federation)

    1997-12-31

    Prediction of the properties of a jet-and-vortex wake from an individual airplane is of great interest as the first step to assessment of the possible global changes in the atmosphere due to the world civil aviation. Several mathematical models of the different regions of an aircraft wake and corresponding numerical results are presented. The axisymmetric exhaust jet was simulated on the base of the well-known k-{epsilon} model of turbulence. Jet chemistry was investigated on the base of kinetic scheme of the gas phase reactions of enriched by including chemisorption by water droplets of several species and by taking into account of the photochemical processes. In the 3D far wake model, the numerical results for distribution of species exhausted by the engines and entrapped by the velocity field of two parallel vortices are shown. (R.P.) 7 refs.

  7. Gas dynamics, optics and chemistry of an aircraft condensable wake

    Energy Technology Data Exchange (ETDEWEB)

    Grinats, E S; Kashevarov, A V; Stasenko, A L [Central Aerohydrodynamic Inst., Zhukovsky (Russian Federation)

    1998-12-31

    Prediction of the properties of a jet-and-vortex wake from an individual airplane is of great interest as the first step to assessment of the possible global changes in the atmosphere due to the world civil aviation. Several mathematical models of the different regions of an aircraft wake and corresponding numerical results are presented. The axisymmetric exhaust jet was simulated on the base of the well-known k-{epsilon} model of turbulence. Jet chemistry was investigated on the base of kinetic scheme of the gas phase reactions of enriched by including chemisorption by water droplets of several species and by taking into account of the photochemical processes. In the 3D far wake model, the numerical results for distribution of species exhausted by the engines and entrapped by the velocity field of two parallel vortices are shown. (R.P.) 7 refs.

  8. Appraisal of ALM predictions of turbulent wake features

    Science.gov (United States)

    Rocchio, Benedetto; Cilurzo, Lorenzo; Ciri, Umberto; Salvetti, Maria Vittoria; Leonardi, Stefano

    2017-11-01

    Wind turbine blades create a turbulent wake that may persist far downstream, with significant implications on wind farm design and on its power production. The numerical representation of the real blade geometry would lead to simulations beyond the present computational resources. We focus our attention on the Actuator Line Model (ALM), in which the blade is replaced by a rotating line divided into finite segments with representative aerodynamic coefficients. The total aerodynamic force is projected along the computational axis and, to avoid numerical instabilities, it is distributed among the nearest grid points by using a Gaussian regularization kernel. The standard deviation of this kernel is a fundamental parameter that strongly affects the characteristics of the wake. We compare here the wake features obtained in direct numerical simulations of the flow around 2D bodies (a flat plate and an airfoil) modeled using the Immersed Boundary Method with the results of simulations in which the body is modeled by ALM. In particular, we investigate whether the ALM is able to reproduce the mean velocity field and the turbulent kinetic energy in the wake for the considered bodies at low and high angles of attack and how this depends on the choice of the ALM kernel. S. Leonardi was supported by the National Science Foundation, Grant No. 1243482 (the WINDINSPIRE project).

  9. Dielectric properties of KDP-type ferroelectric crystals in the ...

    Indian Academy of Sciences (India)

    Hamiltonian for KDP-type ferroelectrics, expressions for field-dependent shift, width, ... For the calculation, method of statistical double-time temperature- ... roelectric phase transition and dielectric behaviour of KDP and its isomorphs is .... The dissipation of power in dielectric material can conveniently be expressed as.

  10. Electrical actuation of dielectric droplets

    International Nuclear Information System (INIS)

    Kumari, N; Bahadur, V; Garimella, S V

    2008-01-01

    Electrical actuation of liquid droplets at the microscale offers promising applications in the fields of microfluidics and lab-on-a-chip devices. Much prior research has targeted the electrical actuation of electrically conducting liquid droplets; however, the actuation of dielectric droplets has remained relatively unexplored, despite the advantages associated with the use of a dielectric droplet. This paper presents modeling and experimental results on the electrical actuation of dielectric droplets between two flat plates. A first-order analytical model, based on the energy-minimization principle, is developed to estimate the electrical actuation force on a dielectric droplet as it moves between two flat plates. Two versions of this analytical model are benchmarked for their suitability and accuracy against a detailed numerical model. The actuation force prediction is then combined with available semi-analytical expressions for predicting the forces opposing droplet motion to develop a model that predicts transient droplet motion under electrical actuation. Electrical actuation of dielectric droplets is experimentally demonstrated by moving transformer oil droplets between two flat plates under the influence of an actuation voltage. Droplet velocities and their dependence on the plate spacing and the applied voltage are experimentally measured and showed reasonable agreement with predictions from the models developed

  11. Dielectric behaviors of lead zirconate titanate ceramics with coplanar electrodes

    International Nuclear Information System (INIS)

    Wang, Y.; Cheng, Y.L.; Zhang, Y.W.; Chan, H.L.W.; Choy, C.L.

    2003-01-01

    This paper reports on the dielectric behaviors of lead zirconate titanate (PZT) capacitors with coplanar electrodes. Usually a ferroelectric device has a metal-ferroelectric-metal configuration (parallel plate capacitor); when both the electrodes are on one side of a ceramic to form a coplanar capacitor, different dielectric behaviors will be anticipated because of the change in the distribution of the test field inside the dielectrics. This paper describes how the capacitance and dielectric loss of PZT-based coplanar capacitors change with electrode distance, area and test frequency

  12. Dielectric elastomer actuators used for pneumatic valve technology

    International Nuclear Information System (INIS)

    Giousouf, Metin; Kovacs, Gabor

    2013-01-01

    Dielectric elastomer actuators have been investigated for applications in the field of pneumatic automation technology. We have developed different valve designs with stacked dielectric elastomer actuators and with integrated high voltage converters. The actuators were made using VHB-4910 material and a stacker machine for automated fabrication of the cylindrical actuators. Typical characteristics of pneumatic valves such as flow rate, power consumption and dynamic behaviour are presented. For valve construction the force and stroke parameters of the dielectric elastomer actuator have been measured. Further, benefits for valve applications using dielectric elastomers are shown as well as their potential operational area. Finally, challenges are discussed that are relevant for the use of elastomer actuators in valves for industrial applications. (paper)

  13. Experimental analysis on the dynamic wake of an actuator disc undergoing transient loads

    Science.gov (United States)

    Yu, W.; Hong, V. W.; Ferreira, C.; van Kuik, G. A. M.

    2017-10-01

    The Blade Element Momentum model, which is based on the actuator disc theory, is still the model most used for the design of open rotors. Although derived from steady cases with a fully developed wake, this approach is also applied to unsteady cases, with additional engineering corrections. This work aims to study the impact of an unsteady loading on the wake of an actuator disc. The load and flow of an actuator disc are measured in the Open Jet Facility wind tunnel of Delft University of Technology, for steady and unsteady cases. The velocity and turbulence profiles are characterized in three regions: the inner wake region, the shear layer region and the region outside the wake. For unsteady load cases, the measured velocity field shows a hysteresis effect in relation to the loading, showing differences between the cases when loading is increased and loading is decreased. The flow field also shows a transient response to the step change in loading, with either an overshoot or undershoot of the velocity in relation to the steady-state velocity. In general, a smaller reduced ramp time results in a faster velocity transient, and in turn a larger amplitude of overshoot or undershoot. Time constants analysis shows that the flow reaches the new steady-state slower for load increase than for load decrease; the time constants outside the wake are generally larger than at other radial locations for a given downstream plane; the time constants of measured velocity in the wake show radial dependence.The data are relevant for the validation of numerical models for unsteady actuator discs and wind turbines, and are made available in an open source database (see Appendix).

  14. Counter-rotating vortex pairs in the wake of a vertical axis wind turbine

    Science.gov (United States)

    Rolin, Vincent; Porté-Agel, Fernando

    2017-04-01

    Despite the rising popularity of vertical axis wind turbines, or VAWTs, the wakes behind these machines is much less well understood than those behind horizontal axis wind turbines, or HAWTs. A thorough understanding of wakes is important as they can cause turbines in wind farms to produce less power than anticipated and increase the fatigue loading on turbines due to vibrations. In order to gain a deeper understanding of the wake behind a vertical axis wind turbine in atmospheric flow stereo-PIV is implemented in a boundary-layer wind tunnel to produce snapshots of the 3-component velocity field in the wake at various downstream positions. The boundaries of the wake are readily observed due to the high velocity gradients and turbulence present here. Two pairs of counter-rotating vortices similar to those in the wake of yawed HAWTs are also observed. An examination of the momentum fluxes behind the turbine demonstrates that the mean flow induced by these vortices entrains a large quantity of momentum from the unperturbed boundary layer flow above the wake. This effect proves to play an even more significant role than turbulence in reintroducing momentum into the wake. In order to comprehend why the VAWT produces these vortices we modify the double-multiple stream-tube model typically used to predict VAWT performance to incorporate crosswind forces. The similarity between VAWT and yawed HAWT wakes is found not to be coincidental as both cases feature rotors which exert a lateral thrust on the incoming wind which leads to the creation of counter-rotating vortex pairs.

  15. Wake modelling combining mesoscale and microscale models

    DEFF Research Database (Denmark)

    Badger, Jake; Volker, Patrick; Prospathospoulos, J.

    2013-01-01

    In this paper the basis for introducing thrust information from microscale wake models into mesocale model wake parameterizations will be described. A classification system for the different types of mesoscale wake parameterizations is suggested and outlined. Four different mesoscale wake paramet...

  16. An experimental investigation of the dielectric properties of electrorheological fluids

    International Nuclear Information System (INIS)

    Sun, Y; Thomas, M; Masounave, J

    2009-01-01

    A home-made electrorheological (ER) fluid, known as ETSERF, has been created with suspension-based powders dispersed in silicone oil. Because of the special structure of their particles, ETSERF suspensions present a complex behavior. In the absence of an electric field, the ETSERF fluid manifests a near-Newtonian behavior, but when an electric field is applied, it exhibits a pseudoplastic behavior with yield stress. The ER effect under DC electric fields has been experimentally investigated using both hydrous and anhydrous ER fluids. The ER properties are strongly dependent on the dielectric properties of ETSERF suspensions, and hydrous ER fluids have a high dielectric constant and a high relaxation frequency which show a strong electrorheological effect. The relationship between the electrorheological effect and the permittivity of ER fluids has also been extensively studied. Experimental results show that the interfacial polarization plays an important role in the electrorheological phenomenon. The ageing of ETSERF fluids was also studied and it was found that the dielectric properties (mainly the dielectric loss tangent) and ER properties are strongly related to the duration of ageing. A fresh ETSERF suspension exhibits high relaxation frequency and high dielectric constant. These results are mainly explained by the effect of interfacial polarizations

  17. Achievement of High-Response Organic Field-Effect Transistor NO2 Sensor by Using the Synergistic Effect of ZnO/PMMA Hybrid Dielectric and CuPc/Pentacene Heterojunction

    Directory of Open Access Journals (Sweden)

    Shijiao Han

    2016-10-01

    Full Text Available High-response organic field-effect transistor (OFET-based NO2 sensors were fabricated using the synergistic effect the synergistic effect of zinc oxide/poly(methyl methacrylate (ZnO/PMMA hybrid dielectric and CuPc/Pentacene heterojunction. Compared with the OFET sensors without synergistic effect, the fabricated OFET sensors showed a remarkable shift of saturation current, field-effect mobility and threshold voltage when exposed to various concentrations of NO2 analyte. Moreover, after being stored in atmosphere for 30 days, the variation of saturation current increased more than 10 folds at 0.5 ppm NO2. By analyzing the electrical characteristics, and the morphologies of organic semiconductor films of the OFET-based sensors, the performance enhancement was ascribed to the synergistic effect of the dielectric and organic semiconductor. The ZnO nanoparticles on PMMA dielectric surface decreased the grain size of pentacene formed on hybrid dielectric, facilitating the diffusion of CuPc molecules into the grain boundary of pentacene and the approach towards the conducting channel of OFET. Hence, NO2 molecules could interact with CuPc and ZnO nanoparticles at the interface of dielectric and organic semiconductor. Our results provided a promising strategy for the design of high performance OFET-based NO2 sensors in future electronic nose and environment monitoring.

  18. Achievement of High-Response Organic Field-Effect Transistor NO2 Sensor by Using the Synergistic Effect of ZnO/PMMA Hybrid Dielectric and CuPc/Pentacene Heterojunction

    Science.gov (United States)

    Han, Shijiao; Cheng, Jiang; Fan, Huidong; Yu, Junsheng; Li, Lu

    2016-01-01

    High-response organic field-effect transistor (OFET)-based NO2 sensors were fabricated using the synergistic effect the synergistic effect of zinc oxide/poly(methyl methacrylate) (ZnO/PMMA) hybrid dielectric and CuPc/Pentacene heterojunction. Compared with the OFET sensors without synergistic effect, the fabricated OFET sensors showed a remarkable shift of saturation current, field-effect mobility and threshold voltage when exposed to various concentrations of NO2 analyte. Moreover, after being stored in atmosphere for 30 days, the variation of saturation current increased more than 10 folds at 0.5 ppm NO2. By analyzing the electrical characteristics, and the morphologies of organic semiconductor films of the OFET-based sensors, the performance enhancement was ascribed to the synergistic effect of the dielectric and organic semiconductor. The ZnO nanoparticles on PMMA dielectric surface decreased the grain size of pentacene formed on hybrid dielectric, facilitating the diffusion of CuPc molecules into the grain boundary of pentacene and the approach towards the conducting channel of OFET. Hence, NO2 molecules could interact with CuPc and ZnO nanoparticles at the interface of dielectric and organic semiconductor. Our results provided a promising strategy for the design of high performance OFET-based NO2 sensors in future electronic nose and environment monitoring. PMID:27775653

  19. A dielectric method for measuring early and late reactions in irradiated human skin

    International Nuclear Information System (INIS)

    Nuutinen, J.; Lahtinen, T.; Turunen, M.; Alanen, E.; Tenhunen, M.; Usenius, T.; Kolle, R.

    1998-01-01

    Background and purpose: To measure the dielectric constant of irradiated human skin in order to test the feasibility of the dielectric measurements in the quantitation of acute and late radiation reactions. Materials and methods: The dielectric constant of irradiated breast skin was measured at an electromagnetic frequency of 300 MHz in 21 patients during postmastectomy radiotherapy. The measurements were performed with an open-ended coaxial line reflection method. The irradiation technique consisted of an anterior photon field to the lymph nodes and a matched electron field to the chest wall using conventional fractionation of five fractions/week to 50 Gy. Fourteen out of the 21 patients were remeasured 2 years later and the skin was palpated for subcutaneous fibrosis. Results: At 5 weeks the dielectric constant had decreased by 31 and 39% for the investigated skin sites of the photon and electron fields, respectively. There was a statistically significant inverse correlation between the mean dielectric constant and the clinical score of erythema. An unexpected finding was a decrease of the dielectric constant of the contralateral healthy skin during radiotherapy. Two years later a statistically significant positive correlation was found between the dielectric constant at the irradiated skin sites and the clinical score of subcutaneous fibrosis. Conclusions: Dielectric measurements non-invasively yield quantitative information concerning radiation-induced skin reactions. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  20. Multipactor susceptibility on a dielectric with two carrier frequencies

    Science.gov (United States)

    Iqbal, Asif; Verboncoeur, John; Zhang, Peng

    2018-04-01

    This work investigates multipactor discharge on a single dielectric surface with two carrier frequencies of an rf electric field. We use Monte Carlo simulations and analytical calculations to obtain susceptibility diagrams in terms of the rf electric field and normal electric field due to the residual charge on the dielectric. It is found that in contrast to the single frequency case, in general, the presence of a second carrier frequency of the rf electric field increases the threshold of the magnitude of the rf electric field to initiate multipactor. The effects of the relative strength and phase, and the frequency separation of the two carrier frequencies are examined. The conditions to minimize mulitpactor are derived.

  1. Electrical response of relaxing dielectrics compressed by arbitrary stress pulses

    International Nuclear Information System (INIS)

    Lysne, P.C.

    1983-01-01

    The theoretical problem of the electric response of biased dielectrics and piezoelectrics subjected to planar stress pulse loading is considered. The materials are taken to exhibit dielectric relaxation in the sense that changes in the polarization induced by electric fields do not occur instantaneously with changes in the fields. While this paper considers arbitrary stress pulse loading of the specimen, examples that are amenable to projectile impact techniques are considered in detail. They are shock reverberation, thin pulse, and ramp loading experiments. It is anticipated that these experiments will play a role in investigations of dielectric relaxation caused by shock induced damage in insulators

  2. Flow structure and unsteadiness in the supersonic wake of a generic space launcher

    Science.gov (United States)

    Schreyer, Anne-Marie; Stephan, Sören; Radespiel, Rolf

    2015-11-01

    At the junction between the rocket engine and the main body of a classical space launcher, a separation-dominated and highly unstable flow field develops and induces strong wall-pressure oscillations. These can excite structural vibrations detrimental to the launcher. It is desirable to minimize these effects, for which a better understanding of the flow field is required. We study the wake flow of a generic axisymmetric space-launcher model with and without propulsive jet (cold air). Experimental investigations are performed at Mach 2.9 and a Reynolds number ReD = 1 . 3 .106 based on model diameter D. The jet exits the nozzle at Mach 2.5. Velocity measurements by means of Particle Image Velocimetry and mean and unsteady wall-pressure measurements on the main-body base are performed simultaneously. Additionally, we performed hot-wire measurements at selected points in the wake. We can thus observe the evolution of the wake flow along with its spectral content. We describe the mean and turbulent flow topology and evolution of the structures in the wake flow and discuss the origin of characteristic frequencies observed in the pressure signal at the launcher base. The influence of a propulsive jet on the evolution and topology of the wake flow is discussed in detail. The German Research Foundation DFG is gratefully acknowledged for funding this research within the SFB-TR40 ``Technological foundations for the design of thermally and mechanically highly loaded components of future space transportation systems.''

  3. Plane-wave diffraction by periodic structures with artificial anisotropic dielectrics

    International Nuclear Information System (INIS)

    Kazerooni, Azadeh Semsar; Shahabadi, Mahmoud

    2010-01-01

    Periodic structures with artificial anisotropic dielectrics are studied. The artificial anisotropic dielectric material in this work is made of two alternating isotropic dielectric layers. By a proper choice of the dielectric constant of the layers, we can realize a uniaxial anisotropic medium with controllable anisotropy. The artificial anisotropic dielectric is then used in periodic structures. For these structures, the optical axis of the artificial dielectric is assumed to be parallel or perpendicular to the period of the structure. Diffraction of plane waves by these structures is analyzed by a fully vectorial rigorous matrix method based on a generalized transmission line (TL) formulation. The propagation constants and field distributions are computed and diffraction properties of such structures are studied to show that, by a proper choice of structural parameters, these periodic structures with artificial anisotropic dielectrics can be used as polarizers or polarizing mirrors

  4. NASA AVOSS Fast-Time Models for Aircraft Wake Prediction: User's Guide (APA3.8 and TDP2.1)

    Science.gov (United States)

    Ahmad, Nash'at N.; VanValkenburg, Randal L.; Pruis, Matthew J.; Limon Duparcmeur, Fanny M.

    2016-01-01

    NASA's current distribution of fast-time wake vortex decay and transport models includes APA (Version 3.8) and TDP (Version 2.1). This User's Guide provides detailed information on the model inputs, file formats, and model outputs. A brief description of the Memphis 1995, Dallas/Fort Worth 1997, and the Denver 2003 wake vortex datasets is given along with the evaluation of models. A detailed bibliography is provided which includes publications on model development, wake field experiment descriptions, and applications of the fast-time wake vortex models.

  5. On the estimation of the wake potential for an ultrarelativistic charge in an accelerating structure

    International Nuclear Information System (INIS)

    Novokhatskij, A.V.

    1988-01-01

    The method to derive the analytic estimations for wake fields of an ultrarelativistic charge in an accelerating structure, that are valid in the range of distances smalller or compared to the effective structure dimensions. The method is based on the approximate space-time domain integrating of the maxwell equations in the Kirchhoff formulation. the method is demonstrated on the examples of obtaining the wake potentials for energy loss of a bunch traversing a scraper, a cavity or periodic iris-loaded structure. Likewise formulae are derived for Green functions that describe transverse force action of wake fields. Simple formulae for the total energy loss evaluation of a bunch with the Gaussian charge density distribution are derived as well. The derived estimations are compared with the computer results and predictions of other models

  6. Organic dielectrics in high voltage cables

    Energy Technology Data Exchange (ETDEWEB)

    Vermeer, J

    1962-03-01

    It appears that the limit has been reached in the applicability of oil-impregnated paper as the dielectric for ehv cables, as with rising voltages the prevention of conductor losses becomes increasingly difficult, while the dielectric losses of the insulation, increasing as the square of the voltage, contribute to a greater extent to the temperature rise of the conductor. The power transmitting capacity of ehv cables reaches a maximum at 500 to 600 kV for these reasons. Apart from artificial cooling, a substantial improvement can be obtained only with the use of insulating materials with much lower dielectric losses; these can moreover be applied with a smaller wall thickness, but this means higher field strengths. Synthetic polymer materials meet these requirements but can be used successfully only in the form of lapped film tapes impregnated with suitable liquids. The electrical properties of these heterogeneous dielectrics, in particular, their impulse breakdown strengths are studied in detail.

  7. Dielectric behavior and ac electrical conductivity of nanocrystalline nickel aluminate

    International Nuclear Information System (INIS)

    Kurien, Siby; Mathew, Jose; Sebastian, Shajo; Potty, S.N.; George, K.C.

    2006-01-01

    Nanocrystalline nickel aluminate was prepared by chemical co-precipitation, and nanoparticles having different particle size were obtained by annealing the precursor at different temperatures. The TG/DTA measurements showed thermal decomposition was a three-step process with crystallisation of the spinel phase started at a temperature 420 deg. C. The X-ray diffraction analysis confirmed that the specimen began to crystallise on annealing above 420 deg. C and became almost crystalline at about 900 deg. C. The particle sizes were calculated from XRD. Dielectric properties of nickel aluminate were studied as a function of the frequency of the applied ac signal at different temperatures. It was seen the real dielectric constant ε', and dielectric loss tan δ decreased with frequency of applied field while the ac conductivity increased as the frequency of the applied field increased. The dielectric relaxation mechanism is explained by considering nanostructured NiAl 2 O 4 as a carrier-dominated dielectric with high density of hopping charge carriers. The variation of ε' with different particle size depends on several interfacial region parameters, which change with the average particle size

  8. Theoretical approach of the photoinjector exit aperture influence on the wake field driven by an electron beam accelerated in an RF gun of free-electron laser 'ELSA'

    CERN Document Server

    Salah, W

    2000-01-01

    The wake field generated in the cylindrical cavity of an RF photoinjector, by a strongly accelerated electron beam, has been analytically calculated (Salah, Dolique, Nucl. Instr. and Meth. A 437 (1999) 27) under the assumption that the perturbation of the field map by the exit hole is negligible as long as the ratio: exit hole radius/cavity radius is lower than approximately 1/3. Shown experimentally in the different context of a long accelerating structure formed by a sequence of bored pill-box cavity (Figuera et al., Phys. Rev. Lett. 60 (1988) 2144; Kim et al., J. Appl. Phys. 68 (1990) 4942), this often-quoted result must be checked for the wake field map excited in a photo injector cavity. Further, in the latter case, the empirical rule in question can be broken more easily because, due to causality, the cavity radius to be considered is not the physical radius but that of the part of the anode wall around the exit hole reached by the beam electromagnetic influence. We present an analytical treatment of th...

  9. Super dielectric capacitor using scaffold dielectric

    OpenAIRE

    Phillips, Jonathan

    2018-01-01

    Patent A capacitor having first and second electrodes and a scaffold dielectric. The scaffold dielectric comprises an insulating material with a plurality of longitudinal channels extending across the dielectric and filled with a liquid comprising cations and anions. The plurality of longitudinal channels are substantially parallel and the liquid within the longitudinal channels generally has an ionic strength of at least 0.1. Capacitance results from the migrations of...

  10. Dynamics of dielectric barrier discharges in coplanar arrangements

    International Nuclear Information System (INIS)

    Gibalov, Valentin I; Pietsch, Gerhard J

    2004-01-01

    The development of a discharge channel in coplanar dielectric barrier arrangements is investigated numerically. Its behaviour in oxygen, like the spatial and temporal distributions of the field strength, charged and neutral particles and energy density, is described in detail. It is found that the streamer development is mainly determined by photoemission. A cathode layer appears near the position where the cathode directed streamer touches the dielectric surface. Secondary electron emission by ion collisions becomes significant and the parameters of the cathode layer are near those of a normal glow discharge. The charge transfer and energy release happen in the conductive channel of the discharge, which appears on the dielectric surface as a result of the cathode streamer development. The field strength in the conductive channel is nearly constant and about 70-100 Td in oxygen and air

  11. Do trout swim better than eels? Challenges for estimating performance based on the wake of self-propelled bodies

    Science.gov (United States)

    Tytell, Eric D.

    Engineers and biologists have long desired to compare propulsive performance for fishes and underwater vehicles of different sizes, shapes, and modes of propulsion. Ideally, such a comparison would be made on the basis of either propulsive efficiency, total power output or both. However, estimating the efficiency and power output of self-propelled bodies, and particularly fishes, is methodologically challenging because it requires an estimate of thrust. For such systems traveling at a constant velocity, thrust and drag are equal, and can rarely be separated on the basis of flow measured in the wake. This problem is demonstrated using flow fields from swimming American eels, Anguilla rostrata, measured using particle image velocimetry (PIV) and high-speed video. Eels balance thrust and drag quite evenly, resulting in virtually no wake momentum in the swimming (axial) direction. On average, their wakes resemble those of self-propelled jet propulsors, which have been studied extensively. Theoretical studies of such wakes may provide methods for the estimation of thrust separately from drag. These flow fields are compared with those measured in the wakes of rainbow trout, Oncorhynchus mykiss, and bluegill sunfish, Lepomis macrochirus. In contrast to eels, these fishes produce wakes with axial momentum. Although the net momentum flux must be zero on average, it is neither spatially nor temporally homogeneous; the heterogeneity may provide an alternative route for estimating thrust. This review shows examples of wakes and velocity profiles from the three fishes, indicating challenges in estimating efficiency and power output and suggesting several routes for further experiments. Because these estimates will be complicated, a much simpler method for comparing performance is outlined, using as a point of comparison the power lost producing the wake. This wake power, a component of the efficiency and total power, can be estimated in a straightforward way from the flow

  12. Making Aircraft Vortices Visible to Radar by Spraying Water into the Wake

    Science.gov (United States)

    Shariff, Karim

    2016-01-01

    Aircraft trailing vortices pose a danger to following aircraft during take-off and landing. This necessitates spacing rules, based on aircraft type, to be enforced during approach in IFR (Instrument Flight Regulations) conditions; this can limit airport capacity. To help choose aircraft spacing based on the actual location and strength of the wake, it is proposed that wake vortices can be detected using conventional precipitation and cloud radars. This is enabled by spraying a small quantity water into the wake from near the wing. The vortex strength is revealed by the doppler velocity of the droplets. In the present work, droplet size distributions produced by nozzles used for aerial spraying are considered. Droplet trajectory and evaporation in the flow-field is numerically calculated for a heavy aircraft, followed by an evaluation of radar reflectivity at 6 nautical miles behind the aircraft. Small droplets evaporate away while larger droplets fall out of the wake. In the humid conditions that typically prevail during IFR, a sufficient number of droplets remain in the wake and give good signal-to-noise ratios (SNR). For conditions of average humidity, higher frequency radars combined with spectral processing gives good SNR.

  13. Dielectric Properties of Flocculated Water-in-Oil Emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Skodvin, T.

    1995-12-31

    When an offshore oil field is near completion, water occupies a large fraction of the available pore volume. Thus, in collecting the oil and gas reserves, one has to deal with a high co-production of either formation- or injected water. This doctoral thesis focuses on the effect of water-in-oil emulsions on the dielectric properties, in particular the effect of flocculation. Various dielectric models are applied to obtain methods for qualitative and quantitative characterization of the flocculated state. Permittivity and measurement of dielectric properties are discussed as a basis for the interpretation of the dielectric properties of the emulsions. Various flocculation models are presented. It is concluded that the dielectric properties of water-in-oil emulsions are strongly influenced by continuously ongoing processes in the system. Because of flocculation and sedimentation the traditional dielectric mixture models cannot satisfactorily predict the dielectric behaviour. The experimentally obtained permittivities for the emulsions can be reproduced by including flocculation in the models and treating the floc aggregates as spheroids or subsystems with dielectric properties given by the degree of flocculation. The models discussed have difficulties reproducing the complete frequency behaviour found experimentally. This is probably because the dielectric relaxation may be influenced by processes not included in the models, such as the effects of dipolar or multipolar interactions between the droplets. For further research it is recommended that rheological and dielectric measurements be combined. 227 refs., 61 figs., 16 tabs.

  14. Dielectric Properties of Flocculated Water-in-Oil Emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Skodvin, T

    1996-12-31

    When an offshore oil field is near completion, water occupies a large fraction of the available pore volume. Thus, in collecting the oil and gas reserves, one has to deal with a high co-production of either formation- or injected water. This doctoral thesis focuses on the effect of water-in-oil emulsions on the dielectric properties, in particular the effect of flocculation. Various dielectric models are applied to obtain methods for qualitative and quantitative characterization of the flocculated state. Permittivity and measurement of dielectric properties are discussed as a basis for the interpretation of the dielectric properties of the emulsions. Various flocculation models are presented. It is concluded that the dielectric properties of water-in-oil emulsions are strongly influenced by continuously ongoing processes in the system. Because of flocculation and sedimentation the traditional dielectric mixture models cannot satisfactorily predict the dielectric behaviour. The experimentally obtained permittivities for the emulsions can be reproduced by including flocculation in the models and treating the floc aggregates as spheroids or subsystems with dielectric properties given by the degree of flocculation. The models discussed have difficulties reproducing the complete frequency behaviour found experimentally. This is probably because the dielectric relaxation may be influenced by processes not included in the models, such as the effects of dipolar or multipolar interactions between the droplets. For further research it is recommended that rheological and dielectric measurements be combined. 227 refs., 61 figs., 16 tabs.

  15. Dielectric strength of SiO2 in a CMOS transistor structure

    International Nuclear Information System (INIS)

    Soden, J.M.

    1979-01-01

    The distribution of experimental dielectric strengths of SiO 2 gate dielectric in a CMOS transistor structure is shown to be composed of a primary, statistically-normal distribution of high dielectric strength and a secondary distribution spread through the lower dielectric strength region. The dielectric strength was not significantly affected by high level (1 x 10 6 RADS (Si)) gamma radiation or high temperature (200 0 C) stress. The primary distribution breakdowns occurred at topographical edges, mainly at the gate/field oxide interface, and the secondary distribution breakdowns occurred at random locations in the central region of the gate

  16. Total-dielectric-function approach to electron and phonon response in solids

    International Nuclear Information System (INIS)

    Penn, D.R.; Lewis, S.P.; Cohen, M.L.

    1995-01-01

    The interaction between two test charges, the response of a solid to an external field, and the normal modes of the solid can be determined from a total dielectric function that includes both electronic and lattice polarizabilities as well as local-field effects. In this paper we examine the relationship between superconductivity and the stability of a solid and derive sum rules for the electronic part of the dielectric function. It is also shown that there are negative eigenvalues of the total static dielectric function, implying the possibility of an attractive interaction between test charges. An attractive interaction is required for superconductivity

  17. Experimental Analysis of a Bubble Wake Influenced by a Vortex Street

    Directory of Open Access Journals (Sweden)

    Sophie Rüttinger

    2018-01-01

    Full Text Available Bubble column reactors are ubiquitous in engineering processes. They are used in waste water treatment, as well as in the chemical, pharmaceutical, biological and food industry. Mass transfer and mixing, as well as biochemical or chemical reactions in such reactors are determined by the hydrodynamics of the bubbly flow. The hydrodynamics of bubbly flows is dominated by bubble wake interactions. Despite the fact that bubble wakes have been investigated intensively in the past, there is still a lack of knowledge about how mass transfer from bubbles is influenced by bubble wake interactions in detail. The scientific scope of this work is to answer the question how bubble wakes are influenced by external flow structures like a vortex street behind a cylinder. For this purpose, the flow field in the vicinity of a single bubble is investigated systematically with high spatial and temporal resolution. High-speed Particle Image Velocimetry (PIV measurements are conducted monitoring the flow structure in the equatorial plane of the single bubble. It is shown that the root mean square (RMS velocity profiles downstream the bubble are influenced significantly by the interaction of vortices. In the presence of a vortex street, the deceleration of the fluid behind the bubble is compensated earlier than in the absence of a vortex street. This happens due to momentum transfer by cross-mixing. Both effects indicate that the interaction of vortices enhances the cross-mixing close to the bubble. Time series of instantaneous velocity fields show the formation of an inner shear layer and coupled vortices. In conclusion, this study shows in detail how the bubble wake is influenced by a vortex street and gives deep insights into possible effects on mixing and mass transfer in bubbly flows.

  18. Suppression of electromechanical instability in fiber-reinforced dielectric elastomers

    Directory of Open Access Journals (Sweden)

    Rui Xiao

    2016-03-01

    Full Text Available The electromechanical instability of dielectric elastomers has been a major challenge for the application of this class of active materials. In this work, we demonstrate that dielectric elastomers filled with soft fiber can suppress the electromechanical instability and achieve large deformation. Specifically, we developed a constitutive model to describe the dielectric and mechanical behaviors of fiber-reinforced elastomers. The model was applied to study the influence of stiffness, nonlinearity properties and the distribution of fiber on the instability of dielectric membrane under an electric field. The results show that there exists an optimal fiber distribution condition to achieve the maximum deformation before failure.

  19. Dynamic Hybrid Simulation of the Lunar Wake During ARTEMIS Crossing

    Science.gov (United States)

    Wiehle, S.; Plaschke, F.; Angelopoulos, V.; Auster, H.; Glassmeier, K.; Kriegel, H.; Motschmann, U. M.; Mueller, J.

    2010-12-01

    The interaction of the highly dynamic solar wind with the Moon is simulated with the A.I.K.E.F. (Adaptive Ion Kinetic Electron Fluid) code for the ARTEMIS P1 flyby on February 13, 2010. The A.I.K.E.F. hybrid plasma simulation code is the improved version of the Braunschweig code. It is able to automatically increase simulation grid resolution in areas of interest during runtime, which greatly increases resolution as well as performance. As the Moon has no intrinsic magnetic field and no ionosphere, the solar wind particles are absorbed at its surface, resulting in the formation of the lunar wake at the nightside. The solar wind magnetic field is basically convected through the Moon and the wake is slowly filled up with solar wind particles. However, this interaction is strongly influenced by the highly dynamic solar wind during the flyby. This is considered by a dynamic variation of the upstream conditions in the simulation using OMNI solar wind measurement data. By this method, a very good agreement between simulation and observations is achieved. The simulations show that the stationary structure of the lunar wake constitutes a tableau vivant in space representing the well-known Friedrichs diagram for MHD waves.

  20. Experimental Analysis and Evaluation of the Numerical Prediction of Wake Characteristics of Tidal Stream Turbine

    Directory of Open Access Journals (Sweden)

    Yuquan Zhang

    2017-12-01

    Full Text Available It is important to understand tidal stream turbine performance and flow field, if tidal energy is to advance. The operating condition of a tidal stream turbine with a supporting structure has a significant impact on its performance and wake recovery. The aim of this work is to provide an understanding of turbine submerged depth that governs the downstream wake structure and its recovery to the free-stream velocity profile. An experimentally validated numerical model, based on a computational fluid dynamics (CFD tool, was present to obtain longitudinal, transverse and vertical velocity profiles. Wake characteristics measurements have been carried out in an open channel at Hohai University. The results indicate that varying the turbine proximity to the water surface introduces differential mass flow rate around the rotor that could make the wake persist differently downstream. CFD shows the same predicted wake recovery tendency with the experiments, and an agreement from CFD and experiments is good in the far-wake region. The results presented demonstrate that CFD is a good tool to simulate the performance of tidal turbines particularly in the far-wake region and that the turbine proximity to the water surface has an effect on the wake recovery.

  1. On very-large-scale motions (VLSMs) and long-wavelength patterns in turbine wakes

    Science.gov (United States)

    Önder, Asim; Meyers, Johan

    2017-11-01

    It is now widely accepted that very-large-scale motions (VLSMs) are a prominent feature of thermally-neutral atmospheric boundary layers (ABL). Up to date, the influence of these very long active motions on wind-energy harvesting is not sufficiently explored. This work is an effort in this direction. We perform large-eddy simulation of a turbine row operating under neutral conditions. The ABL data is produced separately in a very long domain of 240 δ . VLSMs are isolated from smaller-scale ABL and wake motions using a spectral cutoff at streamwise wavelength λx = 3.125 δ . Reynolds-averaging of low-pass filtered fields shows that the interaction of VLSMs and turbines produce very-long-wavelength motions in the wake region, which contain about 20 % of the Reynolds-shear stress, and 30 % of the streamwise kinetic energy. A conditional analysis of filtered fields further reveals that these long-wavelength wakes are produced by modification of very long velocity streaks in ABL. In particular, the turbine row acts as a sharp boundary between low and high velocity streaks, and accompanying roller structures remain relatively unaffected. This reorganization creates a two-way flux towards the wake region, which elucidates the side-way domination in turbulent transport. The authors acknowledg funding from ERC Grant No 306471.

  2. Three-Phased Wake Vortex Decay

    Science.gov (United States)

    Proctor, Fred H.; Ahmad, Nashat N.; Switzer, George S.; LimonDuparcmeur, Fanny M.

    2010-01-01

    A detailed parametric study is conducted that examines vortex decay within turbulent and stratified atmospheres. The study uses a large eddy simulation model to simulate the out-of-ground effect behavior of wake vortices due to their interaction with atmospheric turbulence and thermal stratification. This paper presents results from a parametric investigation and suggests improvements for existing fast-time wake prediction models. This paper also describes a three-phased decay for wake vortices. The third phase is characterized by a relatively slow rate of circulation decay, and is associated with the ringvortex stage that occurs following vortex linking. The three-phased decay is most prevalent for wakes imbedded within environments having low-turbulence and near-neutral stratification.

  3. Pre-breakdown processes in a dielectric fluid in inhomogeneous pulsed electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Shneider, Mikhail N., E-mail: m.n.shneider@gmail.com [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Pekker, Mikhail [MMSolution, 6808 Walker Street, Philadelphia, Pennsylvania 19135 (United States)

    2015-06-14

    We consider the development of pre-breakdown cavitation nanopores appearing in the dielectric fluid under the influence of the electrostrictive stresses in the inhomogeneous pulsed electric field. It is shown that three characteristic regions can be distinguished near the needle electrode. In the first region, where the electric field gradient is greatest, the cavitation nanopores, occurring during the voltage nanosecond pulse, may grow to the size at which an electron accelerated by the field inside the pores can acquire enough energy for excitation and ionization of the liquid on the opposite pore wall, i.e., the breakdown conditions are satisfied. In the second region, the negative pressure caused by the electrostriction is large enough for the cavitation initiation (which can be registered by optical methods), but, during the voltage pulse, the pores do not reach the size at which the potential difference across their borders becomes sufficient for ionization or excitation of water molecules. And, in the third, the development of cavitation is impossible, due to an insufficient level of the negative pressure: in this area, the spontaneously occurring micropores do not grow and collapse under the influence of surface tension forces. This paper discusses the expansion dynamics of the cavitation pores and their most probable shape.

  4. Diffusion in building wakes

    International Nuclear Information System (INIS)

    Ramsdell, J.V.

    1988-03-01

    Straight-line Gaussian models adequately describe atmospheric diffusion for many applications. They have been modified for use in estimating diffusion in building wakes by adding terms that include projected building area and by redefining the diffusion coefficients so that the coefficients have minimum values that are related to building dimensions. In a recent study, Ramsdell reviewed the building-wake dispersion models used by the Nuclear Regulatory Commission (NRC) in its control room habitability assessments. The review included comparison of model estimates of centerline concentrations with concentrations observed in experiments at seven nuclear reactors. In general, the models are conservative in that they tend to predict concentrations that are greater than those actually observed. However, the models show little skill in accounting for variations in the observed concentrations. Subsequently, the experimental data and multiples linear regression techniques have been used to develop a new building wake diffusion model. This paper describes the new building wake model and compares it with other models. 8 refs., 2 figs

  5. Wake effect in rocket observation

    International Nuclear Information System (INIS)

    Matsumoto, Haruya; Kaya, Nobuyuki; Yamanaka, Akira; Hayashi, Tomomasa

    1975-01-01

    The mechanism of the wake phenomena due to a probe and in rocket observation is discussed on the basis of experimental data. In the low energy electron measurement performed with the L-3H-5 rocket, the electron count rate changed synchronously with the rocket spin. This seems to be a wake effect. It is also conceivable that the probe itself generates the wake of ion beam. The latter problem is considered in the first part. Experiment was performed with laboratory plasma, in which a portion of the electron component of the probe current was counted with a CEM (a channel type multiplier). The change of probe voltage-count rate charactersitics due to the change of relative position of the ion source was observed. From the measured angular distributions of electron density and electron temperature around the probe, it is concluded that anisotropy exists around the probe, which seems to be a kinds of wake structure. In the second part, the wake effect due to a rocket is discussed on the basis of the measurement of leaking electrons with L-3H-5 rocket. Comparison between the theory of wake formation and the measured results is also shortly made in the final part. (Aoki, K.)

  6. Wake flow characteristics at high wind speed

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Larsen, Torben J.; Larsen, Gunner Chr.

    2016-01-01

    Wake flow characteristic at high wind speeds is the main subject of this paper. Although the wake losses decrease at high wind speeds it has been found in a recent study that for multiple wake inflow the increase in loading due to wake effects are substantial even at wind speeds well above rated ...

  7. A simple experimental setup for magneto-dielectric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Manimuthu, P.; Shanker, N. Praveen; Kumar, K. Saravana; Venkateswaran, C., E-mail: cvunom@hotmail.com

    2014-09-01

    The increasing demand for the multiferroic materials calls for the need of an experimental setup that will facilitate magneto-dielectric coupling measurements. A connector setup designed makes it possible to measure and analyze the dielectric properties of the material under the influence of a magnetic field. The salient feature of this setup is in its incorporation with the already existing experimental facilities.

  8. A simple experimental setup for magneto-dielectric measurements

    International Nuclear Information System (INIS)

    Manimuthu, P.; Shanker, N. Praveen; Kumar, K. Saravana; Venkateswaran, C.

    2014-01-01

    The increasing demand for the multiferroic materials calls for the need of an experimental setup that will facilitate magneto-dielectric coupling measurements. A connector setup designed makes it possible to measure and analyze the dielectric properties of the material under the influence of a magnetic field. The salient feature of this setup is in its incorporation with the already existing experimental facilities

  9. Wake shed by an accelerating carangiform fish

    Science.gov (United States)

    Ting, Shang-Chieh; Yang, Jing-Tang

    2008-11-01

    We reveal an important fact that momentum change observed in the wake of an accelerating carangiform fish does not necessarily elucidate orientations of propulsive forces produced. An accelerating Crucian Carp (Carassius auratus) was found to shed a wake with net forward fluid momentum, which seemed drag-producing. Based on Newton's law, however, an accelerating fish is expected to shed a thrust wake with net rearward fluid momentum, rather than a drag wake. The unusual wake pattern observed is considered to be resulted primarily from the effect of pressure gradient created by accelerating movements of the fish. Ambient fluids tend to be sucked into low pressure zones behind an accelerating fish, resulting in forward orientations of jets recognizable in the wake. Accordingly, as to an accelerating fish, identifying force orientations from the wake requires considering also the effect of pressure gradient.

  10. 3D wake measurements from a scanning wind lidar in combination with a fast wind field reconstruction model

    DEFF Research Database (Denmark)

    Mikkelsen, Torben Krogh; Herges, T. G.; Astrup, Poul

    2017-01-01

    University of Denmark. The purpose of the SpinnerLidar measurements at SWIFT is to measure the response of a V27 turbine wake to varying inflow conditions and turbine operating states. Although our fast scanning SpinnerLidar is able to measure the line-of-sight projected wind speed at up to 400 points per......-Stokes CFD code “Lincom Cyclop-buster model,”3 the corresponding 3D wind vector field (u, v, w) can be reconstructed under constraints for conservation of mass and momentum. The resulting model calculated line-of-sight projections of the 3D wind velocity vectors will become consistent with the line...

  11. Electrohydrodynamic fibrillation governed enhanced thermal transport in dielectric colloids under a field stimulus.

    Science.gov (United States)

    Dhar, Purbarun; Maganti, Lakshmi Sirisha; Harikrishnan, A R

    2018-05-30

    Electrorheological (ER) fluids are known to exhibit enhanced viscous effects under an electric field stimulus. The present article reports the hitherto unreported phenomenon of greatly enhanced thermal conductivity in such electro-active colloidal dispersions in the presence of an externally applied electric field. Typical ER fluids are synthesized employing dielectric fluids and nanoparticles and experiments are performed employing an in-house designed setup. Greatly augmented thermal conductivity under a field's influence was observed. Enhanced thermal conduction along the fibril structures under the field effect is theorized as the crux of the mechanism. The formation of fibril structures has also been experimentally verified employing microscopy. Based on classical models for ER fluids, a mathematical formalism has been developed to predict the propensity of chain formation and statistically feasible chain dynamics at given Mason numbers. Further, a thermal resistance network model is employed to computationally predict the enhanced thermal conduction across the fibrillary colloid microstructure. Good agreement between the mathematical model and the experimental observations is achieved. The domineering role of thermal conductivity over relative permittivity has been shown by proposing a modified Hashin-Shtrikman (HS) formalism. The findings have implications towards better physical understanding and design of ER fluids from both 'smart' viscoelastic as well as thermally active materials points of view.

  12. Investigation of Vacuum Insulator Surface Dielectric Strength with Nanosecond Pulses

    International Nuclear Information System (INIS)

    Nunnally, W.C.; Krogh, M.; Williams, C.; Trimble, D.; Sampayan, S.; Caporaso, G.

    2003-01-01

    The maximum vacuum insulator surface dielectric strength determines the acceleration electric field gradient possible in a short pulse accelerator. Previous work has indicated that higher electric field strengths along the insulator-vacuum interface might be obtained as the pulse duration is decreased. In this work, a 250 kV, single ns wide impulse source was applied to small diameter, segmented insulators samples in a vacuum to evaluate the multi-layer surface dielectric strength of the sample construction. Resonances in the low inductance test geometry were used to obtain unipolar, pulsed electric fields in excess of 100 MV/m on the insulator surface. The sample construction, experimental arrangement and experimental results are presented for the initial data in this work. Modeling of the multi-layer structure is discussed and methods of improving insulator surface dielectric strength in a vacuum are proposed

  13. Influence of standing-wave fields on the laser damage resistance of dielectric films

    International Nuclear Information System (INIS)

    Newnam, B.E.; Gill, D.H.; Faulkner, G.

    1973-01-01

    The influence of standing-wave electric fields on the damage resistance of dielectric thin films was evaluated for the case of 30-ps laser pulses at 1.06 μm. Single-layer films of TiO 2 , ZrO 2 , SiO 2 , and MgF 2 were deposited by state-of-the-art electron-gun evaporation on BK-7 glass substrates with uniform surface preparation. The film thicknesses ranged from one to five quarter-wave increments. The thresholds for TiO 2 films of odd quarter-wave thickness were greater than for even multiples which correlated well with the calculated internal maximum electric fields. Threshold variations for ZrO 2 films were apparent but not as distinctly periodic with film thickness. Negligible variations were obtained for SiO 2 films, again correlating with electric-field calculations. Results of additional tests allowed comparisons of thresholds for 1) back-and front-surface films for normal incidence; 2) S- and P-polarized radiation at an incidence angle of 60 0 ; and 3) circular and linear polarizations for normal incidence. The thresholds were compared with calculated standing-wave field patterns at various locations in the films. A correlation was generally found between the internal field maxima and the thresholds, but in a few coatings, defects apparently decreased or prevented any correlation. (auth)

  14. SIMULATION OF SHIP GENERATED TURBULENT AND VORTICAL WAKE IMAGING BY SAR

    Institute of Scientific and Technical Information of China (English)

    Wang Aiming; Zhu Minhui

    2004-01-01

    Synthetic Aperture Radar (SAR) imaging of ocean surface features is studied. The simulation of the turbulent and vortical features generated by a moving ship and SAR imaging of these wakes is carried out. The turbulent wake damping the ocean surface capillary waves may be partially responsible for the suppression of surface waves near the ship track. The vortex pair generating a change in the lateral flow field behind the ship may be partially responsible for an enhancement of the waves near the edges of the smooth area. These hydrodynamic phenomena as well as the changes of radar backscatter generated by turbulence and vortex are simulated.An SAR imaging model is then used on such ocean surface features to provide SAR images.Comparison of two ships' simulated SAR images shows that the wake features are different for various ship parameters.

  15. Plasmonic and Dielectric Metasurfaces: Design, Fabrication and Applications

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2016-09-01

    Full Text Available Two-dimensional metasurfaces are widely focused on for their ability for flexible light manipulation (phase, amplitude, polarization over sub-wavelength propagation distances. Most of the metasurfaces can be divided into two categories by the material type of unit structure, i.e., plasmonic metasurfaces and dielectric metasurfaces. For plasmonic metasurfaces, they are made on the basis of metallic meta-atoms whose optical responses are driven by the plasmon resonances supported by metallic particles. For dielectric metasurfaces, the unit structure is constructed with high refractive index dielectric resonators, such as silicon, germanium or tellurium, which can support electric and magnetic dipole responses based on Mie resonances. The responses of plasmonic and dielectric metasurfaces are all relevant to the characteristics of unit structure, such as dimensions and materials. One can manipulate the electromagnetic field of light wave scattered by the metasurfaces through designing the dimension parameters of each unit structure in the metasurfaces. In this review article, we give a brief overview of our recent progress in plasmonic and dielectric metasurface-assisted nanophotonic devices and their design, fabrication and applications, including the metasurface-based broadband and the selective generation of orbital angular momentum (OAM carrying vector beams, N-fold OAM multicasting using a V-shaped antenna array, a metasurface on conventional optical fiber facet for linearly-polarized mode (LP11 generation, graphene split-ring metasurface-assisted terahertz coherent perfect absorption, OAM beam generation using a nanophotonic dielectric metasurface array, as well as Bessel beam generation and OAM multicasting using a dielectric metasurface array. It is believed that metasurface-based nanophotonic devices are one of the devices with the most potential applied in various fields, such as beam steering, spatial light modulator, nanoscale

  16. Four-dimensional characterization of inflow to and wakes from a multi-MW turbine: overview of the Turbine Wake and Inflow Characterization Study (TWICS2011)

    Science.gov (United States)

    Lundquist, J. K.; Banta, R. M.; Pichugina, Y.; Brewer, A.; Alvarez, R. J.; Sandberg, S. P.; Kelley, N. D.; Aitken, M.; Clifton, A.; Mirocha, J. D.

    2011-12-01

    To support substantial deployment of renewably-generated electricity from the wind, critical information about the variability of wind turbine wakes in the real atmosphere from multi-MW turbines is required. The assessment of the velocity deficit and turbulence associated with industrial-scale turbines is a major issue for wind farm design, particularly with respect to the optimization of the spacing between turbines. The significant velocity deficit and turbulence generated by upstream turbines can reduce the power production and produce harmful vibrations in downstream turbines, which can lead to excess maintenance costs. The complexity of wake effects depends on many factors arising from both hardware (turbine size, rotor speed, and blade geometry, etc.) and from meteorological considerations such as wind velocity, gradients of wind across the turbine rotor disk, atmospheric stability, and atmospheric turbulence. To characterize the relationships between the meteorological inflow and turbine wakes, a collaborative field campaign was designed and carried out at the Department of Energy's National Wind Technology Center (NREL/NWTC) in south Boulder, Colorado, in spring 2011. This site often experiences channeled flow with a consistent wind direction, enabling robust statistics of wake velocity deficits and turbulence enhancements. Using both in situ and remote sensing instrumentation, measurements upwind and downwind of multi-megawatt wind turbine in complex terrain quantified the variability of wind turbine inflow and wakes from an industrial-scale turbine. The turbine of interest has a rated power of 2.3 MW, a rotor diameter of 100m, and a hub height of 80m. In addition to several meteorological towers, one extending to hub height (80m) and another extending above the top of the rotor disk (135m), a Triton mini-sodar and a Windcube lidar characterized the inflow to the turbine and the variability across the site. The centerpiece instrument of the TWICS campaign

  17. Artificial magnetism and left-handed media from dielectric rings and rods

    International Nuclear Information System (INIS)

    Jelinek, L; Marques, R

    2010-01-01

    It is shown that artificial magnetism with relatively large frequency bandwidth can be obtained from periodic arrangements of dielectric rings. Combined with dielectric rods, dielectric rings can provide 3D isotropic left-handed metamaterials which are an advantageous alternative to metallic split ring resonators (SRRs) and/or metallic wires when undetectability by low frequency external magnetic fields is desired. Furthermore it is shown that, unlike conventional SRRs, dielectric rings can also be combined with natural plasma-like media to obtain a left-handed metamaterial.

  18. Artificial magnetism and left-handed media from dielectric rings and rods

    Energy Technology Data Exchange (ETDEWEB)

    Jelinek, L [Department of Electromagnetic Field, Czech Technical University in Prague, 166 27-Prague (Czech Republic); Marques, R, E-mail: l_jelinek@us.e [Departamento de Electronica y Electromagnetismo, Universidad de Sevilla, 41012-Sevilla (Spain)

    2010-01-20

    It is shown that artificial magnetism with relatively large frequency bandwidth can be obtained from periodic arrangements of dielectric rings. Combined with dielectric rods, dielectric rings can provide 3D isotropic left-handed metamaterials which are an advantageous alternative to metallic split ring resonators (SRRs) and/or metallic wires when undetectability by low frequency external magnetic fields is desired. Furthermore it is shown that, unlike conventional SRRs, dielectric rings can also be combined with natural plasma-like media to obtain a left-handed metamaterial.

  19. An overview of experimental results and dispersion modelling of nanoparticles in the wake of moving vehicles.

    Science.gov (United States)

    Carpentieri, Matteo; Kumar, Prashant; Robins, Alan

    2011-03-01

    Understanding the transformation of nanoparticles emitted from vehicles is essential for developing appropriate methods for treating fine scale particle dynamics in dispersion models. This article provides an overview of significant research work relevant to modelling the dispersion of pollutants, especially nanoparticles, in the wake of vehicles. Literature on vehicle wakes and nanoparticle dispersion is reviewed, taking into account field measurements, wind tunnel experiments and mathematical approaches. Field measurements and modelling studies highlighted the very short time scales associated with nanoparticle transformations in the first stages after the emission. These transformations strongly interact with the flow and turbulence fields immediately behind the vehicle, hence the need of characterising in detail the mixing processes in the vehicle wake. Very few studies have analysed this interaction and more research is needed to build a basis for model development. A possible approach is proposed and areas of further investigation identified. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Investigation of PVC physical ageing in field test specimens using ultrasonic and dielectric measurements

    NARCIS (Netherlands)

    Demcenko, A.; Ravanan, M.; Visser, Roy; Loendersloot, Richard; Akkerman, Remko

    2013-01-01

    Physical ageing in PVC is studied using two techniques: a) non-linear ultrasonic measurements based on the non-collinear wave interaction theory and b) dielectric measurements. The ultrasonic measurement results are compared with dielectric measurement results. The comparison shows that the used

  1. Dielectric properties of PLZT-x/65/35 (2≤x≤13 under mechanical stress, electric field and temperature loading

    Directory of Open Access Journals (Sweden)

    K. Pytel

    2013-01-01

    Full Text Available We investigated the effect of uniaxial pressure (0÷1000 bars applied parallely to the ac electric field on dielectric properties of PLZT-x/65/35 (2≤x≤13 ceramics. There was revealed a significant effect of the external stress on these properties. The application of uniaxial pressure leads to the change of the peak intensity of the electric permittivity (ϵ, of the frequency dispersion as well as of the dielectric hysteresis. The peak intensity ϵ becomes diffused/sharpened and shifts to a higher/lower temperatures with increasing the pressure. It was concluded that the application of uniaxial pressure induces similar effects as increasing the Ti ion concentration in PZT system. We interpreted our results based on the domain switching processes under the action of combined electromechanical loading.

  2. High resolution wind turbine wake measurements with a scanning lidar

    DEFF Research Database (Denmark)

    Herges, T. G.; Maniaci, D. C.; Naughton, B. T.

    2017-01-01

    High-resolution lidar wake measurements are part of an ongoing field campaign being conducted at the Scaled Wind Farm Technology facility by Sandia National Laboratories and the National Renewable Energy Laboratory using a customized scanning lidar from the Technical University of Denmark. One...

  3. Lagrangian transport and chaos in the near wake of the flow around an obstacle: a numerical implementation of lobe dynamics

    Directory of Open Access Journals (Sweden)

    J. Duan

    1997-01-01

    Full Text Available In this paper we study Lagrangian transport in the near wake of the flow around an obstacle, which we take to be a cylinder. In this case, for the range of Reynolds numbers investigated, the flow is two-dimensional and time periodic. We use ideas and methods from transport theory in dynamical systems to describe and quantify transport in the near wake. We numerically solve the Navier-Stokes equations for the velocity field and apply these methods to the resulting numerical representation of the velocity field. We show that the method of lobe dynamics can be used in conjunction with computational fluid dynamics methods to give very detailed and quantitative information about Lagrangian transport. In particular, we show how the stable and unstable manifolds of certain saddle-type stagnation points on the cylinder, and one in the wake, can be used to divide the flow into three distinct regions, an upper wake, a lower wake, and a wake cavity. The significance of the division using stable and unstable manifolds lies in the fact that these invariant manifolds form a template on which the transport occurs. Using this, we compute fluxes from the upper and lower wakes into the wake cavity using the associated turnstile lobes. We also compute escape time distributions as well as compare transport properties for two different Reynolds numbers.

  4. Thickness-Dependent Dielectric Constant of Few-Layer In 2 Se 3 Nanoflakes

    KAUST Repository

    Wu, Di

    2015-11-17

    © 2015 American Chemical Society. The dielectric constant or relative permittivity (εr) of a dielectric material, which describes how the net electric field in the medium is reduced with respect to the external field, is a parameter of critical importance for charging and screening in electronic devices. Such a fundamental material property is intimately related to not only the polarizability of individual atoms but also the specific atomic arrangement in the crystal lattice. In this Letter, we present both experimental and theoretical investigations on the dielectric constant of few-layer In2Se3 nanoflakes grown on mica substrates by van der Waals epitaxy. A nondestructive microwave impedance microscope is employed to simultaneously quantify the number of layers and local electrical properties. The measured εr increases monotonically as a function of the thickness and saturates to the bulk value at around 6-8 quintuple layers. The same trend of layer-dependent dielectric constant is also revealed by first-principles calculations. Our results of the dielectric response, being ubiquitously applicable to layered 2D semiconductors, are expected to be significant for this vibrant research field.

  5. Demonstration of hetero-gate-dielectric tunneling field-effect transistors (HG TFETs).

    Science.gov (United States)

    Choi, Woo Young; Lee, Hyun Kook

    2016-01-01

    The steady scaling-down of semiconductor device for improving performance has been the most important issue among researchers. Recently, as low-power consumption becomes one of the most important requirements, there have been many researches about novel devices for low-power consumption. Though scaling supply voltage is the most effective way for low-power consumption, performance degradation is occurred for metal-oxide-semiconductor field-effect transistors (MOSFETs) when supply voltage is reduced because subthreshold swing (SS) of MOSFETs cannot be lower than 60 mV/dec. Thus, in this thesis, hetero-gate-dielectric tunneling field-effect transistors (HG TFETs) are investigated as one of the most promising alternatives to MOSFETs. By replacing source-side gate insulator with a high- k material, HG TFETs show higher on-current, suppressed ambipolar current and lower SS than conventional TFETs. Device design optimization through simulation was performed and fabrication based on simulation demonstrated that performance of HG TFETs were better than that of conventional TFETs. Especially, enlargement of gate insulator thickness while etching gate insulator at the source side was improved by introducing HF vapor etch process. In addition, the proposed HG TFETs showed higher performance than our previous results by changing structure of sidewall spacer by high- k etching process.

  6. Breakdown, fractoemission, diffusion: role of defects in dielectrics

    International Nuclear Information System (INIS)

    Vigouroux, J.P.; Serruys, Y.

    1987-01-01

    During the surface analysis of dielectric materials, the impinging ionising particles induce point defects localised in the band gap and build an electrical charge. The electric field created by the charged defects modifies the physico-chemical properties of surface and bulk. We show that the fundamental study of defects allows a better understanding of technological phenomena such as dielectric breakdown, fracture and diffusion [fr

  7. PIV and LDA measurements of the wake behind a wind turbine model

    Science.gov (United States)

    Naumov, I. V.; Mikkelsen, R. F.; Okulov, V. L.; Sørensen, J. N.

    2014-06-01

    In the present work we review the results of a series of measurements of the flow behind a model scale of a horizontal axis wind turbine rotor carried out at the water flume at Technical University of Denmark (DTU). The rotor is three-bladed and designed using Glauert theory for tip speed ratio λ =5 with a constant design lift coefficient along the span, CLdesign= 0.8. The measurements include dye visualization, Particle Image Velocimetry and Laser Doppler Anemometry. The wake instability has been studied in the range λ =3 - 9 at different cross-sections from the very near wake up to 10 rotor diameters downstream from the rotor. The initial flume flow was subject to a very low turbulence level with a uniform velocity profile, limiting the influence of external disturbances on the development of the inherent vortex instability. Using PIV measurements and visualizations, special attention was paid to detect and categorize different types of wake instabilities and the development of the flow in the near and the far wake. In parallel to PIV, LDA measurements provided data for various rotor regimes, revealing the existence of three main regular frequencies governing the development of different processes and instabilities in the rotor wake. In the far wake a constant frequency corresponding to the Strouhal number was found for the long-scale instabilities. This Strouhal number is in good agreement with the well-known constant that usually characterizes the oscillation in wakes behind bluff bodies. From associated visualizations and reconstructions of the flow field, it was found that the dynamics of the far wake is associated with the precession (rotation) of a helical vortex core. The data indicate that Strouhal number of this precession is independent of the rotor angular speed.

  8. PIV and LDA measurements of the wake behind a wind turbine model

    International Nuclear Information System (INIS)

    Naumov, I V; Okulov, V L; Mikkelsen, R F; Sørensen, J N

    2014-01-01

    In the present work we review the results of a series of measurements of the flow behind a model scale of a horizontal axis wind turbine rotor carried out at the water flume at Technical University of Denmark (DTU). The rotor is three-bladed and designed using Glauert theory for tip speed ratio λ =5 with a constant design lift coefficient along the span, C Ldesign = 0.8. The measurements include dye visualization, Particle Image Velocimetry and Laser Doppler Anemometry. The wake instability has been studied in the range λ =3 – 9 at different cross-sections from the very near wake up to 10 rotor diameters downstream from the rotor. The initial flume flow was subject to a very low turbulence level with a uniform velocity profile, limiting the influence of external disturbances on the development of the inherent vortex instability. Using PIV measurements and visualizations, special attention was paid to detect and categorize different types of wake instabilities and the development of the flow in the near and the far wake. In parallel to PIV, LDA measurements provided data for various rotor regimes, revealing the existence of three main regular frequencies governing the development of different processes and instabilities in the rotor wake. In the far wake a constant frequency corresponding to the Strouhal number was found for the long-scale instabilities. This Strouhal number is in good agreement with the well-known constant that usually characterizes the oscillation in wakes behind bluff bodies. From associated visualizations and reconstructions of the flow field, it was found that the dynamics of the far wake is associated with the precession (rotation) of a helical vortex core. The data indicate that Strouhal number of this precession is independent of the rotor angular speed

  9. Semi-analytical fluid study of the laser wake field excitation in the strong intensity regime

    Energy Technology Data Exchange (ETDEWEB)

    Jovanović, D., E-mail: djovanov@ipb.ac.rs [Institute of Physics, University of Belgrade, Belgrade (Serbia); Fedele, R., E-mail: renato.fedele@na.infn.it [Dipartimento di Fisica, Universitá di Napoli Federico II, Napoli (Italy); INFN Sezione di Napoli, Napoli (Italy); Belić, M., E-mail: milivoj.belic@qatar.tamu.edu [Texas A & M University at Qatar, Doha (Qatar); De Nicola, S., E-mail: sergio.denicola@spin.cnr.it [Dipartimento di Fisica, Universitá di Napoli Federico II, Napoli (Italy); INFN Sezione di Napoli, Napoli (Italy); CNR-SPIN, Complesso Universitario di Monte S' Angelo, Napoli (Italy)

    2016-09-01

    We present an analytical and numerical study of the interaction of a multi-petawatt, pancake-shaped laser pulse with an unmagnetized plasma. The study has been performed in the ultrarelativistic regime of electron jitter velocities, in which the plasma electrons are almost completely expelled from the pulse region. The calculations are applied to a laser wake field acceleration scheme with specifications that may be available in the next generation of Ti:Sa lasers and with the use of recently developed pulse compression techniques. A set of novel nonlinear equations is derived using a three-timescale description, with an intermediate timescale associated with the nonlinear phase of the electromagnetic wave and with the spatial bending of its wave front. They describe, on an equal footing, both the strong and the moderate laser intensity regimes, pertinent to the core and to the edges of the pulse.

  10. Magnetic field integral equation analysis of surface plasmon scattering by rectangular dielectric channel discontinuities.

    Science.gov (United States)

    Chremmos, Ioannis

    2010-01-01

    The scattering of a surface plasmon polariton (SPP) by a rectangular dielectric channel discontinuity is analyzed through a rigorous magnetic field integral equation method. The scattering phenomenon is formulated by means of the magnetic-type scalar integral equation, which is subsequently treated through an entire-domain Galerkin method of moments (MoM), based on a Fourier-series plane wave expansion of the magnetic field inside the discontinuity. The use of Green's function Fourier transform allows all integrations over the area and along the boundary of the discontinuity to be performed analytically, resulting in a MoM matrix with entries that are expressed as spectral integrals of closed-form expressions. Complex analysis techniques, such as Cauchy's residue theorem and the saddle-point method, are applied to obtain the amplitudes of the transmitted and reflected SPP modes and the radiated field pattern. Through numerical results, we examine the wavelength selectivity of transmission and reflection against the channel dimensions as well as the sensitivity to changes in the refractive index of the discontinuity, which is useful for sensing applications.

  11. Dielectric spectroscopy as a sensor of membrane headgroup mobility and hydration

    DEFF Research Database (Denmark)

    Klösgen, B; Reichle, C; Kohlsmann, S

    1996-01-01

    Dielectric spectroscopy is based on the response of the permanent dipoles to a driving electric field. The phospholipid membrane systems of dimyristoylphosphatidylcholine and dioleoylphosphatidylcholine can be prepared as samples of multilamellar liposomes with a well known amount of interlamellar...... water. For optimal resolution in dielectric spectroscopy one has to design the experimental set-up so that the direction of the permanent headgroup dipole moment is mostly parallel to the field vector of the external radio frequency (rf) electric field in this layered system. A newly developed coaxial...... probe technique makes it possible to sweep the measuring frequency between 1 and 1000 MHz in the temperature range 286-323 K. The response yields both the dispersion (epsilon') and the absorption part (epsilon") of the complex dielectric permittivity, which are attributed to the rotational diffusions...

  12. Analytical Modeling of Triple-Metal Hetero-Dielectric DG SON TFET

    Science.gov (United States)

    Mahajan, Aman; Dash, Dinesh Kumar; Banerjee, Pritha; Sarkar, Subir Kumar

    2018-02-01

    In this paper, a 2-D analytical model of triple-metal hetero-dielectric DG TFET is presented by combining the concepts of triple material gate engineering and hetero-dielectric engineering. Three metals with different work functions are used as both front- and back gate electrodes to modulate the barrier at source/channel and channel/drain interface. In addition to this, front gate dielectric consists of high-K HfO2 at source end and low-K SiO2 at drain side, whereas back gate dielectric is replaced by air to further improve the ON current of the device. Surface potential and electric field of the proposed device are formulated solving 2-D Poisson's equation and Young's approximation. Based on this electric field expression, tunneling current is obtained by using Kane's model. Several device parameters are varied to examine the behavior of the proposed device. The analytical model is validated with TCAD simulation results for proving the accuracy of our proposed model.

  13. Non-linear dielectric signatures of entropy changes in liquids subject to time dependent electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Richert, Ranko [School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604 (United States)

    2016-03-21

    A model of non-linear dielectric polarization is studied in which the field induced entropy change is the source of polarization dependent retardation time constants. Numerical solutions for the susceptibilities of the system are obtained for parameters that represent the dynamic and thermodynamic behavior of glycerol. The calculations for high amplitude sinusoidal fields show a significant enhancement of the steady state loss for frequencies below that of the low field loss peak. Also at relatively low frequencies, the third harmonic susceptibility spectrum shows a “hump,” i.e., a maximum, with an amplitude that increases with decreasing temperature. Both of these non-linear effects are consistent with experimental evidence. While such features have been used to conclude on a temperature dependent number of dynamically correlated particles, N{sub corr}, the present result demonstrates that the third harmonic susceptibility display a peak with an amplitude that tracks the variation of the activation energy in a model that does not involve dynamical correlations or spatial scales.

  14. Linearised CFD models for wakes

    Energy Technology Data Exchange (ETDEWEB)

    Ott, S.; Berg, J.; Nielsen, Morten

    2011-12-15

    This report describes the development of a fast and reasonably accurate model for the prediction of energy production in offshore wind farms taking wake effects into account. The model has been implemented as a windows application called Fuga which can run in batch mode or as a graphical user interface. Fuga is briefly described. The model is based on a linearization technique which is described in some detail, and linearized, governing equations are derived and written in a standard form based on a mixed-spectral formulation. A new solution method is used to solve the equations which involves intensive use of look-up tables for storage of intermediate results. Due to the linearity of the model, multiple wakes from many turbines can be constructed from the wake of a single, solitary turbine. These are in turn constructed from Fourier components by a fast Fourier integral transform of results derived from generic look-up tables. Three different models, based on three different closures, are examined: 1) the 'simple closure' using an unperturbed eddy viscosity kucentre dotz. 2) the mixing length closure. 3) the E-epsilon closure. Model results are evaluated against offshore wind farm production data from Horns Rev I and the Nysted wind farm, and a comparison with direct wake measurements in an onshore turbine (Nibe B) is also made. A very satisfactory agreement with data is found for the simple closure. The exception is the near wake, just behind the rotor, where all three linearized models fail. The mixing length closure underestimates wake effects in all cases. The E-epsilon closure overestimates wake losses in the offshore farms while it predicts a too shallow and too wide the wake in the onshore case. The simple closure performs distinctly better than the other two. Wind speed data from the the Horns rev met masts are used to further validate Fuga results with the 'simple' closure. Finally, Roedsand 1 and 2 are used as an example to illustrate

  15. Spectral boundary conditions and solitonic solutions in a classical Sellmeier dielectric

    Energy Technology Data Exchange (ETDEWEB)

    Belgiorno, F. [Politecnico di Milano, Dipartimento di Matematica, Milan (Italy); INdAM-GNFM, Rome (Italy); INFN, Milan (Italy); Cacciatori, S.L. [Universita dell' Insubria, Department of Science and High Technology, Como (Italy); INFN, Milan (Italy); Vigano, A. [Universita degli Studi di Milano, Dipartimento di Fisica, Milan (Italy)

    2017-06-15

    Electromagnetic field interactions in a dielectric medium represent a longstanding field of investigation, both at the classical level and at the quantum one. We propose a 1+1 dimensional toy-model which consists of an half-line filling dielectric medium, with the aim to set up a simplified situation where technicalities related to gauge invariance and, as a consequence, physics of constrained systems are avoided, and still interesting features appear. In particular, we simulate the electromagnetic field and the polarization field by means of two coupled scalar fields φ, ψ, respectively, in a Hopfield-like model. We find that, in order to obtain a physically meaningful behavior for the model, one has to introduce spectral boundary conditions depending on the particle spectrum one is dealing with. This is the first interesting achievement of our analysis. The second relevant achievement is that, by introducing a nonlinear contribution in the polarization field ψ, with the aim of mimicking a third order nonlinearity in a nonlinear dielectric, we obtain solitonic solutions in the Hopfield model framework, whose classical behavior is analyzed too. (orig.)

  16. Coupled wake boundary layer model of windfarms

    Science.gov (United States)

    Stevens, Richard; Gayme, Dennice; Meneveau, Charles

    2014-11-01

    We present a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a windfarm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall windfarm boundary layer structure. Wake models capture the effect of turbine positioning, while the top-down approach represents the interaction between the windturbine wakes and the atmospheric boundary layer. Each portion of the CWBL model requires specification of a parameter that is unknown a-priori. The wake model requires the wake expansion rate, whereas the top-down model requires the effective spanwise turbine spacing within which the model's momentum balance is relevant. The wake expansion rate is obtained by matching the mean velocity at the turbine from both approaches, while the effective spanwise turbine spacing is determined from the wake model. Coupling of the constitutive components of the CWBL model is achieved by iterating these parameters until convergence is reached. We show that the CWBL model predictions compare more favorably with large eddy simulation results than those made with either the wake or top-down model in isolation and that the model can be applied successfully to the Horns Rev and Nysted windfarms. The `Fellowships for Young Energy Scientists' (YES!) of the Foundation for Fundamental Research on Matter supported by NWO, and NSF Grant #1243482.

  17. Experimental investigation of the turbulent axisymmetric wake with rotation generated by a wind turbine

    Science.gov (United States)

    Dufresne, Nathaniel P.

    An experimental investigation of the axial and azimuthal (swirl) velocity field in the wake of a single 3-bladed wind turbine with rotor diameter of 0.91m was conducted, up to 20 diameters downstream. The turbine was positioned in the free stream, near the entrance of the 6m x 2.7m cross section of the University of New Hampshire (UNH) Flow Physics Facility. Velocity measurements were conducted at different rotor loading conditions with blade tip-speed ratios from 2.0 to 2.8. A Pitot-static tube and constant temperature hot-wire anemometer with a multi-wire sensor were used to measure velocity fields. An equilibrium similarity theory for the turbulent axisymmetric wake with rotation was outlined, and first evidence for a new scaling function for the mean swirling velocity component, Wmax ∝ x-1 ∝ U3/2o a was found; where W represents swirl, x represents downstream distance, and Uo, represents the centerline velocity deficit in the wake.

  18. Measurement of potentials in the wake region of an unmagnetized plasma by using a DC-heated emissive probe

    International Nuclear Information System (INIS)

    Jung, Yong Ho; Chung, Kyu Sun

    1995-01-01

    An emissive probe was designed and manufactured to measure the floating and the space potentials of a plasma in the wake region. The 'floating potential method', among various schemes, was used for the measurement and analysis. To generate the wake, a plane artificial satellite with a circular shape was introduced into a simply discharged argon plasma without a magnetic field. Potentials along the radial direction in and out of the wake region of the artificial satellite were measured, and the plasma parameters were compared in both regions. In the wake region, the floating potential was higher than that out of the wake; the space potential was approximately equal to that out of the wake; when a positive voltage was applied to the artificial satellite, the floating and the space potentials were lower than those out of the wake; and when a negative voltage was applied to the artificial satellite, the floating potential was higher and the space potential was lower than the corresponding potentials out of the wake. (author)

  19. Wake Vortex Detection: Phased Microphone vs. Linear Infrasonic Array

    Science.gov (United States)

    Shams, Qamar A.; Zuckerwar, Allan J.; Sullivan, Nicholas T.; Knight, Howard K.

    2014-01-01

    Sensor technologies can make a significant impact on the detection of aircraft-generated vortices in an air space of interest, typically in the approach or departure corridor. Current state-of-the art sensor technologies do not provide three-dimensional measurements needed for an operational system or even for wake vortex modeling to advance the understanding of vortex behavior. Most wake vortex sensor systems used today have been developed only for research applications and lack the reliability needed for continuous operation. The main challenges for the development of an operational sensor system are reliability, all-weather operation, and spatial coverage. Such a sensor has been sought for a period of last forty years. Acoustic sensors were first proposed and tested by National Oceanic and Atmospheric Administration (NOAA) early in 1970s for tracking wake vortices but these acoustic sensors suffered from high levels of ambient noise. Over a period of the last fifteen years, there has been renewed interest in studying noise generated by aircraft wake vortices, both numerically and experimentally. The German Aerospace Center (DLR) was the first to propose the application of a phased microphone array for the investigation of the noise sources of wake vortices. The concept was first demonstrated at Berlins Airport Schoenefeld in 2000. A second test was conducted in Tarbes, France, in 2002, where phased microphone arrays were applied to study the wake vortex noise of an Airbus 340. Similarly, microphone phased arrays and other opto-acoustic microphones were evaluated in a field test at the Denver International Airport in 2003. For the Tarbes and Denver tests, the wake trajectories of phased microphone arrays and lidar were compared as these were installed side by side. Due to a built-in pressure equalization vent these microphones were not suitable for capturing acoustic noise below 20 Hz. Our group at NASA Langley Research Center developed and installed an

  20. Investigating wake patterns and propulsive frequencies of a flat plate under pitching motion

    Science.gov (United States)

    Moubogha Moubogha, Joseph; Astolfi, Jacques Andre

    Fundamental mechanisms of swimming are explored using a simple geometry device - flat plate - in pure-pitching motion in a hydrodynamic tunnel. The experiments are carried out at different Reynolds numbers based on the plate length c. Pitching motion is generated for reduced frequencies k between 0 and 2 and for an angular amplitude of 10 deg. Velocity fields are obtained in the wake of the plate using Particle Image Velocimetry and measurements of drag coefficients are estimated from mean velocity profiles. This study confirms the occurrence of a threshold oscillation frequency beyond which the plate enters a propulsive regime and the wake features organized structures. In this case an inversion of the typical Karman vortex street is observed. The evolution of mean transverse velocity profiles in the wake of the plate shows that the usual wake profile with velocity deficit - plate with drag - can be transformed into a jet - plate with thrust - above a certain reduced frequency. Phd Student Mechanical Engineering Departement.

  1. Sensitivity of radiation methods of diagnosis of electric potentials in dielectric materials

    International Nuclear Information System (INIS)

    Sapozhkov, Yu.I.; Smekalin, L.F.; Yagushkin, N.I.

    1985-01-01

    On the base of the albedo method the characteristics of radiation methods of diagnosis of electric potentials inside dielectrics, such as sensitivity and resolution are considered. Investigations are carried out for electron energies of tens keV. It is shown that with energy growth the sensitivity to electric field in the dielectrics volume drops. The target atomic number growth reduces the sensitivity approximately 1/lnz. The albedo method resolution in the investigated energy range is constant. The results obtained testify to the usability radiation methods of the diagnosis for control of electric fields of dielectric structural materials in the course of their operation

  2. Investigation of the effect of inflow turbulence on vertical axis wind turbine wakes

    International Nuclear Information System (INIS)

    Chatelain, P; Duponcheel, M; Buffin, S; Caprace, D-G; Winckelmans, G; Bricteux, L; Zeoli, S

    2017-01-01

    The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. In this paper, we perform large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines by means of a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation either from a precomputed synthetic turbulence field obtained using the Mann algorithm [1] or generated on the-fly using time-correlated synthetic velocity planes. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI and to the operating conditions is then assessed. (paper)

  3. Investigation of the effect of inflow turbulence on vertical axis wind turbine wakes

    Science.gov (United States)

    Chatelain, P.; Duponcheel, M.; Zeoli, S.; Buffin, S.; Caprace, D.-G.; Winckelmans, G.; Bricteux, L.

    2017-05-01

    The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. In this paper, we perform large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines by means of a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation either from a precomputed synthetic turbulence field obtained using the Mann algorithm [1] or generated on the-fly using time-correlated synthetic velocity planes. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI and to the operating conditions is then assessed.

  4. Electromechanical performance analysis of inflated dielectric elastomer membrane for micro pump applications

    Science.gov (United States)

    Saini, Abhishek; Ahmad, Dilshad; Patra, Karali

    2016-04-01

    Dielectric elastomers have received a great deal of attention recently as potential materials for many new types of sensors, actuators and future energy generators. When subjected to high electric field, dielectric elastomer membrane sandwiched between compliant electrodes undergoes large deformation with a fast response speed. Moreover, dielectric elastomers have high specific energy density, toughness, flexibility and shape processability. Therefore, dielectric elastomer membranes have gained importance to be applied as micro pumps for microfluidics and biomedical applications. This work intends to extend the electromechanical performance analysis of inflated dielectric elastomer membranes to be applied as micro pumps. Mechanical burst test and cyclic tests were performed to investigate the mechanical breakdown and hysteresis loss of the dielectric membrane, respectively. Varying high electric field was applied on the inflated membrane under different static pressure to determine the electromechanical behavior and nonplanar actuation of the membrane. These tests were repeated for membranes with different pre-stretch values. Results show that pre-stretching improves the electromechanical performance of the inflated membrane. The present work will help to select suitable parameters for designing micro pumps using dielectric elastomer membrane. However this material lacks durability in operation.This issue also needs to be investigated further for realizing practical micro pumps.

  5. Frequency and Temperature Dependent Dielectric Properties of Free-standing Strontium Titanate Thin Films.

    Science.gov (United States)

    Dalberth, Mark J.; Stauber, Renaud E.; Anderson, Britt; Price, John C.; Rogers, Charles T.

    1998-03-01

    We will report on the frequency and temperature dependence of the complex dielectric function of free-standing strontium titanate (STO) films. STO is an incipient ferroelectric with electric-field tunable dielectric properties of utility in microwave electronics. The films are grown epitaxially via pulsed laser deposition on a variety of substrates, including lanthanum aluminate (LAO), neodymium gallate (NGO), and STO. An initial film of yttrium barium cuprate (YBCO) is grown on the substrate, followed by deposition of the STO layer. Following deposition, the sacrificial YBCO layer is chemically etched away in dilute nitric acid, leaving the substrate and a released, free-standing STO film. Coplanar capacitor structures fabricated on the released films allow us to measure the dielectric response. We observe a peak dielectric function in excess of 5000 at 35K, change in dielectric constant of over a factor of 8 for 10Volt/micron electric fields, and temperature dependence above 50K that is very similar to bulk material. The dielectric loss shows two peaks, each with a thermally activated behavior, apparently arising from two types of polar defects. We will discuss the correlation between dielectric properties, growth conditions, and strain in the free-standing STO films.

  6. Reflection from a flat dielectric film with negative refractive index

    OpenAIRE

    Hillion, Pierre

    2007-01-01

    We analyse the reflection of a TM electromagnetic field first on a flat dielectric film and second on a Veselago film with negative refractive index, both films being deposited on a metallic substrat acting as a mirror. An incident harmonic plane wave generates inside a conventional dielectric film a refracted propagating wave and an evanescent wave that does not contribute to reflection on the metallic substrat so that part of the information conveyed by the incident field is lost. At the op...

  7. Dielectric Actuation of Polymers

    Science.gov (United States)

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP

  8. Probes, Moons, and Kinetic Plasma Wakes

    Science.gov (United States)

    Hutchinson, I. H.; Malaspina, D.; Zhou, C.

    2017-10-01

    Nonmagnetic objects as varied as probes in tokamaks or moons in space give rise to flowing plasma wakes in which strong distortions of the ion and electron velocity distributions cause electrostatic instabilities. Non-linear phenomena such as electron holes are then produced. Historic probe theory largely ignores the resulting unstable character of the wake, but since we can now simulate computationally the non-linear wake phenomena, a timely challenge is to reassess the influence of these instabilities both on probe measurements and on the wakes themselves. Because the electron instability wavelengths are very short (typically a few Debye-lengths), controlled laboratory experiments face serious challenges in diagnosing them. That is one reason why they have long been neglected as an influence in probe interpretation. Space-craft plasma observations, by contrast, easily obtain sub-Debye-length resolution, but have difficulty with larger-scale reconstruction of the plasma spatial variation. In addition to surveying our developing understanding of wakes in magnetized plasmas, ongoing analysis of Artemis data concerning electron holes observed in the solar-wind lunar wake will be featured. Work partially supported by NASA Grant NNX16AG82G.

  9. Organic Field-Effect Transistors Based on a Liquid-Crystalline Polymeric Semiconductor using SU-8 Gate Dielectrics onFlexible Substrates.

    Science.gov (United States)

    Tetzner, Kornelius; Bose, Indranil R; Bock, Karlheinz

    2014-10-29

    In this work, the insulating properties of poly(4-vinylphenol) (PVP) and SU-8 (MicroChem, Westborough, MA, USA) dielectrics are analyzed and compared with each other. We further investigate the performance behavior of organic field-effect transistors based on a semiconducting liquid-crystal polymer (LCP) using both dielectric materials and evaluate the results regarding the processability. Due to the lower process temperature needed for the SU-8 deposition, the realization of organic transistors on flexible substrates is demonstrated showing comparable charge carrier mobilities to devices using PVP on glass. In addition, a µ-dispensing procedure of the LCP on SU-8 is presented, improving the switching behavior of the organic transistors, and the promising stability data of the SU-8/LCP stack are verified after storing the structures for 60 days in ambient air showing negligible irreversible degradation of the organic semiconductor.

  10. Clinical Practice Guideline for the Treatment of Intrinsic Circadian Rhythm Sleep-Wake Disorders: Advanced Sleep-Wake Phase Disorder (ASWPD), Delayed Sleep-Wake Phase Disorder (DSWPD), Non-24-Hour Sleep-Wake Rhythm Disorder (N24SWD), and Irregular Sleep-Wake Rhythm Disorder (ISWRD). An Update for 2015

    Science.gov (United States)

    Auger, R. Robert; Burgess, Helen J.; Emens, Jonathan S.; Deriy, Ludmila V.; Thomas, Sherene M.; Sharkey, Katherine M.

    2015-01-01

    A systematic literature review and meta-analyses (where appropriate) were performed and the GRADE approach was used to update the previous American Academy of Sleep Medicine Practice Parameters on the treatment of intrinsic circadian rhythm sleep-wake disorders. Available data allowed for positive endorsement (at a second-tier degree of confidence) of strategically timed melatonin (for the treatment of DSWPD, blind adults with N24SWD, and children/ adolescents with ISWRD and comorbid neurological disorders), and light therapy with or without accompanying behavioral interventions (adults with ASWPD, children/adolescents with DSWPD, and elderly with dementia). Recommendations against the use of melatonin and discrete sleep-promoting medications are provided for demented elderly patients, at a second- and first-tier degree of confidence, respectively. No recommendations were provided for remaining treatments/ populations, due to either insufficient or absent data. Areas where further research is needed are discussed. Citation: Auger RR, Burgess HJ, Emens JS, Deriy LV, Thomas SM, Sharkey KM. Clinical practice guideline for the treatment of intrinsic circadian rhythm sleep-wake disorders: advanced sleep-wake phase disorder (ASWPD), delayed sleep-wake phase disorder (DSWPD), non-24-hour sleep-wake rhythm disorder (N24SWD), and irregular sleep-wake rhythm disorder (ISWRD). An update for 2015. J Clin Sleep Med 2015;11(10):1199–1236. PMID:26414986

  11. Studies of Particle Wake Potentials in Plasmas

    Science.gov (United States)

    Ellis, Ian; Graziani, Frank; Glosli, James; Strozzi, David; Surh, Michael; Richards, David; Decyk, Viktor; Mori, Warren

    2011-10-01

    Fast Ignition studies require a detailed understanding of electron scattering, stopping, and energy deposition in plasmas with variable values for the number of particles within a Debye sphere. Presently there is disagreement in the literature concerning the proper description of these processes. Developing and validating proper descriptions requires studying the processes using first-principle electrostatic simulations and possibly including magnetic fields. We are using the particle-particle particle-mesh (PPPM) code ddcMD and the particle-in-cell (PIC) code BEPS to perform these simulations. As a starting point in our study, we examine the wake of a particle passing through a plasma in 3D electrostatic simulations performed with ddcMD and with BEPS using various cell sizes. In this poster, we compare the wakes we observe in these simulations with each other and predictions from Vlasov theory. Prepared by LLNL under Contract DE-AC52-07NA27344 and by UCLA under Grant DE-FG52-09NA29552.

  12. Theory of the forces exerted by Laguerre-Gaussian light beams on dielectrics

    International Nuclear Information System (INIS)

    Loudon, Rodney

    2003-01-01

    The classical theory of the electromagnetic field associated with paraxial Laguerre-Gaussian light is generalized to apply to propagation in a bulk dielectric, and the theory is quantized to obtain expressions for the electric and magnetic field operators. The forms of the Poynting vector and angular momentum density operators are derived and their expectation values for a single-photon wave packet are obtained. The Lorentz force operator in the dielectric is resolved into longitudinal, radial, and azimuthal components. The theory is extended to apply to an interface between two semi-infinite dielectric media, one of which is transparent with an incident single-photon pulse, and the other of which is weakly attenuating. For a pulse that is much shorter than the attenuation length, the theory can separately identify the surface and bulk contributions to the Lorentz force on the attenuating dielectric. Particular attention is given to the transfer of longitudinal and angular momentum to the dielectric from light incident from free space. The resulting expressions for the shift and rotation of a transparent dielectric slab are shown to agree with those obtained from Einstein box theories

  13. Dielectric loss of strontium titanate thin films

    Science.gov (United States)

    Dalberth, Mark Joseph

    1999-12-01

    Interest in strontium titanate (STO) thin films for microwave device applications continues to grow, fueled by the telecommunications industry's interest in phase shifters and tunable filters. The optimization of these devices depends upon increasing the phase or frequency tuning and decreasing the losses in the films. Currently, the dielectric response of thin film STO is poorly understood through lack of data and a theory to describe it. We have studied the growth of STO using pulsed laser deposition and single crystal substrates like lanthanum aluminate and neodymium gallate. We have researched ways to use ring resonators to accurately measure the dielectric response as a function of temperature, electric field, and frequency from low radio frequencies to a few gigahertz. Our films grown on lanthanum aluminate show marked frequency dispersion in the real part of the dielectric constant and hints of thermally activated loss behavior. We also found that films grown with conditions that optimized the dielectric constant showed increased losses. In an attempt to simplify the system, we developed a technique called epitaxial lift off, which has allowed us to study films removed from their growth substrates. These free standing films have low losses and show obvious thermally activated behavior. The "amount of tuning," as measured by a figure of merit, KE, is greater in these films than in the films still attached to their growth substrates. We have developed a theory that describes the real and imaginary parts of the dielectric constant. The theory models the real part using a mean field description of the ionic motion in the crystal and includes the loss by incorporating the motion of charged defects in the films.

  14. Performance and wake conditions of a rotor located in the wake of an obstacle

    Science.gov (United States)

    Naumov, I. V.; Kabardin, I. K.; Mikkelsen, R. F.; Okulov, V. L.; Sørensen, J. N.

    2016-09-01

    Obstacles like forests, ridges and hills can strongly affect the velocity profile in front of a wind turbine rotor. The present work aims at quantifying the influence of nearby located obstacles on the performance and wake characteristics of a downstream located wind turbine. Here the influence of an obstacle in the form of a cylindrical disk was investigated experimentally in a water flume. A model of a three-bladed rotor, designed using Glauert's optimum theory at a tip speed ratio λ = 5, was placed in the wake of a disk with a diameter close to the one of the rotor. The distance from the disk to the rotor was changed from 4 to 8 rotor diameters, with the vertical distance from the rotor axis varied 0.5 and 1 rotor diameters. The associated turbulent intensity of the incoming flow to the rotor changed 3 to '6% due to the influence of the disk wake. In the experiment, thrust characteristics and associated pulsations as a function of the incoming flow structures were measured by strain gauges. The flow condition in front of the rotor was measured with high temporal accuracy using LDA and power coefficients were determine as function of tip speed ratio for different obstacle positions. Furthermore, PIV measurements were carried out to study the development of the mean velocity deficit profiles of the wake behind the wind turbine model under the influence of the wake generated by the obstacle. By use of regression techniques to fit the velocity profiles it was possible to determine velocity deficits and estimate length scales of the wake attenuation.

  15. Ionic Structure at Dielectric Interfaces

    Science.gov (United States)

    Jing, Yufei

    The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as biosensors, lithium-ion batteries double-layer supercapacitors for energy storage and seawater desalination. Electrostatics plays a critical role in the development of such functional materials. Many of the functions of these materials, result from charge and composition heterogeneities. There are great challenges in solving electrostatics problems in heterogeneous media with arbitrary shapes because electrostatic interactions remains unknown but depend on the particular density of charge distributions. Charged molecules in heterogeneous media affect the media's dielectric response and hence the interaction between the charges is unknown since it depends on the media and on the geometrical properties of the interfaces. To determine the properties of heterogeneous systems including crucial effects neglected in classical mean field models such as the hard core of the ions, the dielectric mismatch and interfaces with arbitrary shapes. The effect of hard core interactions accounts properly for short range interactions and the effect of local dielectric heterogeneities in the presence of ions and/or charged molecules for long-range interactions are both analyzed via an energy variational principle that enables to update charges and the medium's response in the same simulation time step. In particular, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric

  16. Endoplasmic reticulum stress in wake-active neurons progresses with aging.

    Science.gov (United States)

    Naidoo, Nirinjini; Zhu, Jingxu; Zhu, Yan; Fenik, Polina; Lian, Jie; Galante, Ray; Veasey, Sigrid

    2011-08-01

    Fragmentation of wakefulness and sleep are expected outcomes of advanced aging. We hypothesize that wake neurons develop endoplasmic reticulum dyshomeostasis with aging, in parallel with impaired wakefulness. In this series of experiments, we sought to more fully characterize age-related changes in wakefulness and then, in relevant wake neuronal populations, explore functionality and endoplasmic reticulum homeostasis. We report that old mice show greater sleep/wake transitions in the active period with markedly shortened wake periods, shortened latencies to sleep, and less wake time in the subjective day in response to a novel social encounter. Consistent with sleep/wake instability and reduced social encounter wakefulness, orexinergic and noradrenergic wake neurons in aged mice show reduced c-fos response to wakefulness and endoplasmic reticulum dyshomeostasis with increased nuclear translocation of CHOP and GADD34. We have identified an age-related unfolded protein response injury to and dysfunction of wake neurons. It is anticipated that these changes contribute to sleep/wake fragmentation and cognitive impairment in aging. © 2011 The Authors. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  17. Dielectric properties of carbon nanotubes/epoxy composites.

    Science.gov (United States)

    Peng, Jin-Ping; Zhang, Hui; Tang, Long-Cheng; Jia, Yu; Zhang, Zhong

    2013-02-01

    Material with high dielectric properties possesses the effect of energy storage and electric field homogenization, which plays an important role in the electrical and electronics domain, especially in the capacitor, electrical machinery and cable realm. In this paper, epoxy-based nanocomposites with high dielectric constant were fabricated by adding pristine and ozone functionalized multi-wall carbon nanotubes (MWCNTs). In the process-related aspect, the favorable technological parameter was obtained via reasonable arrangement and consideration of the dispersing methods including high-speed stirring and three-roller mill. As a result, a uniform dispersion status of MWCNTs in matrix has been guaranteed, which was observed by scanning and transmission electron microscopy. Meanwhile, the influence of different MWCNTs contents and diverse frequencies on the dielectric properties was compared. It was found that the dielectric constant of nano-composites decreased gradually with the increasing of frequency (10(3)-10(6) Hz). Moreover, as the content of MWCNTs increasing, the dielectric constant reached to a maximum of about 1,328 at 10(3) Hz when the pristine MWCNTs content was 0.5 wt.%. Accordingly, the DC conductivity results could interpret the peak value phenomenon by percolation threshold of MWCNTs. In addition, at the fixed content, the dielectric constant of epoxy-based nano-composites with ozone functionalized MWCNTs was lower than that of pristine ones.

  18. Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant.

    Science.gov (United States)

    Caleman, Carl; van Maaren, Paul J; Hong, Minyan; Hub, Jochen S; Costa, Luciano T; van der Spoel, David

    2012-01-10

    The chemical composition of small organic molecules is often very similar to amino acid side chains or the bases in nucleic acids, and hence there is no a priori reason why a molecular mechanics force field could not describe both organic liquids and biomolecules with a single parameter set. Here, we devise a benchmark for force fields in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant. Well over 1200 experimental measurements were used for comparison to the simulations of 146 organic liquids. Novel polynomial interpolations of the dielectric constant (32 molecules), heat capacity at constant pressure (three molecules), and the isothermal compressibility (53 molecules) as a function of the temperature have been made, based on experimental data, in order to be able to compare simulation results to them. To compute the heat capacities, we applied the two phase thermodynamics method (Lin et al. J. Chem. Phys.2003, 119, 11792), which allows one to compute thermodynamic properties on the basis of the density of states as derived from the velocity autocorrelation function. The method is implemented in a new utility within the GROMACS molecular simulation package, named g_dos, and a detailed exposé of the underlying equations is presented. The purpose of this work is to establish the state of the art of two popular force fields, OPLS/AA (all-atom optimized potential for liquid simulation) and GAFF (generalized Amber force field), to find common bottlenecks, i.e., particularly difficult molecules, and to serve as a reference point for future force field development. To make for a fair playing field, all molecules were evaluated with the same parameter settings, such as thermostats and barostats

  19. Analysis of turbulent wake behind a wind turbine

    DEFF Research Database (Denmark)

    Kermani, Nasrin Arjomand; Andersen, Søren Juhl; Sørensen, Jens Nørkær

    2013-01-01

    The aim of this study is to improve the classical analytical model for estimation of the rate of wake expansion and the decay of wake velocity deficit in the far wake region behind a wind turbine. The relations for a fully turbulent axisymmetric far wake were derived by applying the mass and mome...

  20. Method to characterize dielectric properties of powdery substances

    Science.gov (United States)

    Tuhkala, M.; Juuti, J.; Jantunen, H.

    2013-07-01

    An open ended coaxial cavity method for dielectric characterization of powdery substance operating at 4.5 GHz in TEM mode is presented. Classical mixing rules and electromagnetic modeling were utilized with measured effective permittivities and Q factors to determine the relative permittivity and dielectric loss tangent of different powders with ɛr up to 30. The modeling enabled determination of the correction factor for the simplified equation for the relative permittivity of an open ended coaxial resonator and mixing rules having the best correlation with experiments. SiO2, Al2O3, LTCC CT 2000, ZrO2, and La2O3 powders were used in the experiments. Based on the measured properties and Bruggeman symmetric and Looyenga mixing rules, the determined dielectric characteristics of the powders exhibited good correlation with values in the literature. The presented characterization method enabled the determination of dielectric properties of powdery substances within the presented range, and therefore could be applied to various research fields and applications where dielectric properties of powders need to be known and controlled.

  1. Dielectric platforms for surface-enhanced spectroscopies (Conference Presentation)

    Science.gov (United States)

    Maier, Stefan A.

    2016-03-01

    Plasmonic nanostructures serve as the main backbone of surface enhanced sensing methodologies, yet the associated optical losses lead to localized heating as well as quenching of molecules, complicating their use for enhancement of fluorescent emission. Additionally, conventional plasmonic materials are limited to operation in the visible part of the spectrum. We will elucidate how nanostructures consisting of conventional and polar dielectrics can be employed as a highly promising alternative platform. Dielectric nanostructures can sustain scattering resonances due to both electric and magnetic Mie modes. We have recently predicted high enhanced local electromagnetic field hot spots in dielectric nanoantenna dimers, with the hallmark of spot sizes comparable to those achievable with plasmonic antennas, but with lower optical losses. Here, we will present first experimental evidence for both fluorescence and Raman enhancement in dielectric nanoantennas, including a direct determination of localized heating, and compare to conventional Au dimer antennas. The second part of the talk will focus on the mid-infrared regime of the electromagnetic spectrum, outlining possibilities for surface enhanced infrared absorption spectroscopy based on polar and hyperbolic dielectrics.

  2. THE NEUROBIOLOGY OF SLEEP AND WAKEFULNESS

    Science.gov (United States)

    Schwartz, Michael D.; Kilduff, Thomas S.

    2015-01-01

    SYNOPSIS Since the discovery of Rapid Eye Movement (REM) sleep in the late 1950s, identification of the neural circuitry underlying wakefulness, sleep onset and the alternation between REM and non-REM (NREM) sleep has been an active area of investigation. Synchronization and desynchronization of cortical activity as detected in the electroencephalogram (EEG) is due to a corticothalamocortical loop, intrinsic cortical oscillators, monoaminergic and cholinergic afferent input to the thalamus, and the basal forebrain cholinergic input directly to the cortex. The monoaminergic and cholinergic systems are largely wake-promoting; the brainstem cholinergic nuclei are also involved in REM sleep regulation. These wake-promoting systems receive excitatory input from the hypothalamic hypocretin/orexin system. Sleep-promoting nuclei are GABAergic in nature and found in the preoptic area, brainstem and lateral hypothalamus. Although the pons is critical for the expression of REM sleep, recent research has suggested that melanin-concentrating hormone/GABAergic cells in the lateral hypothalamus "gate" REM sleep. The temporal distribution of sleep and wakefulness is due to interaction between the circadian system and the sleep homeostatic system. Although the hypothalamic suprachiasmatic nuclei contain the circadian pacemaker, the neural circuitry underlying the sleep homeostat is less clear. Prolonged wakefulness results in the accumulation of extracellular adenosine, possibly from glial sources, which is an important feedback molecule for the sleep homeostatic system. Cortical neuronal nitric oxide (nNOS) neurons may also play a role in propagating slow waves through the cortex in NREM sleep. Several neuropeptides and other neurochemicals likely play important roles in sleep/wake control. Although the control of sleep and wakefulness seemingly involves multiple redundant systems, each of these systems provides a vulnerability that can result in sleep/wake dysfunction that may

  3. Wake Measurements in ECN's Scaled Wind Farm

    Energy Technology Data Exchange (ETDEWEB)

    Wagenaar, J.W.; Schepers, J.G. [ECN Wind Energy, Petten (Netherlands)

    2013-02-15

    In ECN's scaled wind farm the wake evolution is studied in two different situations. A single wake is studied at two different locations downstream of a turbine and a single wake is studied in conjunction with a triple wake. Here, the wake is characterized by the wind speed ratio, the turbulence intensity, the vertical wind speed and the turbulence (an)isotropy. Per situation all wake measurements are taken simultaneously together with the inflow conditions.

  4. Structural, photoconductivity, and dielectric studies of polythiophene-tin oxide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Murugavel, S., E-mail: starin85@gmail.com; Malathi, M., E-mail: mmalathi@vit.ac.in

    2016-09-15

    Highlights: • Synthesis of polythiophene-tin oxide nanocomposites confirmed by FTIR and EDAX. • SEM shows SnO{sub 2} nanoparticles embedded within polythiophene matrix. • Stability and isoelectric point suggest nanoparticle–matrix interaction. • High dielectric constant due to high Maxwell–Wagner interfacial polarization. - Abstract: Polythiophene-tinoxide (PT-SnO{sub 2}) nanocomposites were prepared by in situ chemical oxidative polymerization, in the presence of various concentrations of SnO{sub 2} nanoparticles. Samples were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy and Zeta potential measurements. Morphologies and elemental compositions were investigated by transmission electron microscopy, field-emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. The photoconductivity of the nanocomposites was studied by field-dependent dark and photo conductivity measurements. Their dielectric properties were investigated using dielectric spectroscopy, in the frequency range of 1kHz–1 MHz. The results indicated that the SnO{sub 2} nanoparticles in the PT-SnO{sub 2} nanocomposite were responsible for its enhanced dielectric performance.

  5. Comparison of a Coupled Near and Far Wake Model With a Free Wake Vortex Code

    DEFF Research Database (Denmark)

    Pirrung, Georg; Riziotis, Vasilis; Aagaard Madsen, Helge

    2016-01-01

    to be updated during the computation. Further, the effect of simplifying the exponential function approximation of the near wake model to increase the computation speed is investigated in this work. A modification of the dynamic inflow weighting factors of the far wake model is presented that ensures good...... computations performed using a free wake panel code. The focus of the description of the aerodynamics model is on the numerical stability, the computation speed and the accuracy of 5 unsteady simulations. To stabilize the near wake model, it has to be iterated to convergence, using a relaxation factor that has...... and a BEM model is centered around the NREL 5 MW reference turbine. The response to pitch steps at different pitching speeds is compared. By means of prescribed vibration cases, the effect of the aerodynamic model on the predictions of the aerodynamic work is investigated. The validation shows that a BEM...

  6. Experimental investigation about the effect of non-axisymmetric wake impact on a low speed axial compressor

    Science.gov (United States)

    Liu, Jianyong; Lu, Yajun; Li, Zhiping

    2010-05-01

    Non-axisymmetric wake impact experiments were carried out after the best exciting frequency for a low speed axial compressor had been found by axisymmetric wake impact experiments. When the number and circumferential distribution of inlet guide vanes (IGV) are logical the wakes of non-axisymmetric IGVs can exert beneficial unsteady exciting effect on their downstream rotor flow fields and improve the compressor’s performance. In the present paper, four non-axisymmetric wake impact plans were found working better than the axisymmetric wake impact plan. Compared with the base plan, the best non-axisymmetric plan increased the compressor’s peak efficiency, and the total pressure rise by 1.1 and 2%, and enhanced the stall margin by 4.4%. The main reason why non-axisymmetric plans worked better than the axisymmetric plan was explained as the change of the unsteady exciting signal arising from IGV wakes. Besides the high-frequency components, the non-axisymmetric plan generated a beneficial low-frequency square-wave exciting signal and other secondary frequency components. Compared with the axisymmetric plan, multi-frequency exciting wakes arising from the non-axisymmetric plans are easier to get coupling relation with complex vortices such as clearance vortices, passage vortices and shedding vortices.

  7. Large Eddy Simulation of Vertical Axis Wind Turbine wakes; Part II: effects of inflow turbulence

    Science.gov (United States)

    Duponcheel, Matthieu; Chatelain, Philippe; Caprace, Denis-Gabriel; Winckelmans, Gregoire

    2017-11-01

    The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. Large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines have been performed using a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation from a precomputed synthetic turbulence field obtained using the Mann algorithm. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI level is assessed.

  8. Wake simulation for wind turbines with a free, prescribed- and hybrid-wake method

    Energy Technology Data Exchange (ETDEWEB)

    Bareiss, R.; Guidati, G.; Wagner, S. [Univ. Stuttgart, Inst. fuer Aerodynamik und Gasdynamik, Stuttgart (Germany)

    1997-08-01

    Calculations of the radial distribution and the time history of the induction factors have been performed with a number of different wake models implemented in a vortex-lattice method for tip-speed ratios in the range 1-13. The new models lead to a significant reduction of the computational effort down to 3-27% compared to a free-wake model with errors less than 5%. (au)

  9. Verification of the SLC wake potentials

    International Nuclear Information System (INIS)

    Bane, K.; Weiland, T.

    1983-01-01

    The accurate knowledge of the monopole, dipole, and quadrupole wake potentials is essential for SLC. These wake potentials were previously computed by the modal method. The time domain code TBCI allows independent verification of these results. This comparison shows that the two methods agree to within 10% for bunch lengths down to 1 mm. TBCI results also indicate that rounding the irises gives at least a 10% reduction in the wake potentials

  10. Simulation of dual-gate SOI MOSFET with different dielectric layers

    Science.gov (United States)

    Yadav, Jyoti; Chaudhary, R.; Mukhiya, R.; Sharma, R.; Khanna, V. K.

    2016-04-01

    The paper presents the process design and simulation of silicon-on-insulator (SOI)-based dual-gate metal oxide field-effect transistor (DG-MOSFET) stacked with different dielectric layers on the top of gate oxide. A detailed 2D process simulation of SOI-MOSFETs and its electrical characterization has been done using SILVACO® TCAD tool. A variation in transconductance was observed with different dielectric layers, AlN-gate MOSFET having the highest tranconductance value as compared to other three dielectric layers (SiO2, Si3N4 and Al2O3).

  11. Improvement in photoconductor film properties by changing dielectric layer structures

    International Nuclear Information System (INIS)

    Kim, S; Oh, K; Lee, Y; Jung, J; Cho, G; Jang, G; Cha, B; Nam, S; Park, J

    2011-01-01

    In recent times, digital X-ray detectors have been actively applied to the medical field; for example, digital radiography offers the potential of improved image quality and provides opportunities for advances in medical image management, computer-aided diagnosis and teleradiology. In this study, two candidate materials (HgI 2 and PbI 2 ) have been employed to study the influence of the dielectric structure on the performance of fabricated X-ray photoconducting films. Parylene C with high permittivity was deposited as a dielectric layer using a parylene deposition system (PDS 2060). The structural and morphological properties of the samples were evaluated field emission scanning electron microscopy and X-ray diffraction. Further, to investigate improvements in the electrical characteristics, a dark current in the dark room and sensitivity to X-ray exposure in the energy range of general radiography diagnosis were measured across the range of the operating voltage. The electric signals varied with the dielectric layer structure of the X-ray films. The PbI 2 film with a bottom dielectric layer showed optimized electric properties. On the other hand, in the case of HgI 2 , the film with a top dielectric layer showed superior electric characteristics. Further, although the sensitivity of the film decreased, the total electrical efficiency of the film improved as a result of the decrease in dark current. When a dielectric layer is deposited on a photoconductor, the properties of the photoconductor, such as hole-electron mobility, should be considered to improve the image quality in digital medical imaging application. In this study, we have thus demonstrated that the use of dielectric layer structures improves the performance of photoconductors.

  12. Organic Field-Effect Transistors Based on a Liquid-Crystalline Polymeric Semiconductor using SU-8 Gate Dielectrics onFlexible Substrates

    Directory of Open Access Journals (Sweden)

    Kornelius Tetzner

    2014-10-01

    Full Text Available In this work, the insulating properties of poly(4-vinylphenol (PVP and SU-8 (MicroChem, Westborough, MA, USA dielectrics are analyzed and compared with each other. We further investigate the performance behavior of organic field-effect transistors based on a semiconducting liquid-crystal polymer (LCP using both dielectric materials and evaluate the results regarding the processability. Due to the lower process temperature needed for the SU-8 deposition, the realization of organic transistors on flexible substrates is demonstrated showing comparable charge carrier mobilities to devices using PVP on glass. In addition, a µ-dispensing procedure of the LCP on SU-8 is presented, improving the switching behavior of the organic transistors, and the promising stability data of the SU-8/LCP stack are verified after storing the structures for 60 days in ambient air showing negligible irreversible degradation of the organic semiconductor.

  13. Organic Field-Effect Transistors Based on a Liquid-Crystalline Polymeric Semiconductor using SU-8 Gate Dielectrics on Flexible Substrates

    Science.gov (United States)

    Tetzner, Kornelius; Bose, Indranil R.; Bock, Karlheinz

    2014-01-01

    In this work, the insulating properties of poly(4-vinylphenol) (PVP) and SU-8 (MicroChem, Westborough, MA, USA) dielectrics are analyzed and compared with each other. We further investigate the performance behavior of organic field-effect transistors based on a semiconducting liquid-crystal polymer (LCP) using both dielectric materials and evaluate the results regarding the processability. Due to the lower process temperature needed for the SU-8 deposition, the realization of organic transistors on flexible substrates is demonstrated showing comparable charge carrier mobilities to devices using PVP on glass. In addition, a µ-dispensing procedure of the LCP on SU-8 is presented, improving the switching behavior of the organic transistors, and the promising stability data of the SU-8/LCP stack are verified after storing the structures for 60 days in ambient air showing negligible irreversible degradation of the organic semiconductor. PMID:28788243

  14. Laser-damage susceptibility of nodular defects in dielectric mirror coatings: AFM measurements and electric-field modeling

    International Nuclear Information System (INIS)

    Kozlowski, M.R.; DeFord, J.F.; Staggs, M.C.

    1993-01-01

    Atomic force microscopy (AFM) and electromagnetic field modeling were used to study the influence of nodular coating defects on laser-induced damage of multilayer dielectric coatings. In studies of HfO 2 /SiO 2 mirrors with 1.06 μm illumination, AFM results showed that nodular defects with high dome heights (>0.6 μm) were most susceptible to laser damage. Crater defects, formed by nodules ejected from the coating prior to illumination, were not damaged when illuminated over the same range of fluences. A finite-difference time-domain electromagnetic modeling code was used to study the influence of 3-D nodule defects on the E-field distribution within the interference coating. The modeling results show that Enfield enhancements as large as a factor of 4 can be present at the defects. Crater defects, however, result in minimal enhancement of the E-fields within the coating. These modeling results are consistent with the AFM experimental data, indicating that E-field enhancement is a contributing mechanism in defect-dominated laser damage of optical coatings

  15. Ultra-capacitor flexible films with tailored dielectric constants using electric field assisted assembly of nanoparticles.

    Science.gov (United States)

    Batra, Saurabh; Cakmak, Miko

    2015-12-28

    In this study, the chaining and preferential alignment of barium titanate nanoparticles (100 nm) through the thickness direction of a polymer matrix in the presence of an electric field is shown. Application of an AC electric field in a well-dispersed solution leads to the formation of chains of nanoparticles in discrete rows oriented with their primary axis in the E-field direction due to dielectrophoresis. The change in the orientation of these chains was quantified through statistical analysis of SEM images and was found to be dependent on E-field, frequency and viscosity. When a DC field is applied a distinct layer consisting of dense particles was observed with micro-computed tomography. These studies show that the increase in DC voltage leads to increase in the thickness of the particle rich layer along with the packing density also increasing. Increasing the mutual interactions between particles due to the formation of particle chains in the "Z"-direction decreases the critical percolation concentration above which substantial enhancement of properties occurs. This manufacturing method therefore shows promise to lower the cost of the products for a range of applications including capacitors by either enhancing the dielectric properties for a given concentration or reduces the concentration of nanoparticles needed for a given property.

  16. Implementation of a Particle Image Velocimetry (PIV) system. An example application of PIV to wake-flows behind objects

    International Nuclear Information System (INIS)

    Tokuhiro, A.; Hishida, K.; Ohki, Y.

    1996-10-01

    In the present work an introduction to PIV is given by way of an example. The selected flow configuration is that of wake-flow behind a bubble and its solid equivalent. By solid equivalent we mean a solid model with approximately the equivalent bubble breadth and volume. This two-component, two-phase flow aptly demonstrates the applicability of PIV to spatio-temporal flows. Use was additionally made of an Infrared Shadow Technique (IST) in order to capture the unlit image (shadow) of the bubble or solid within the flow field. By triggering both the laser and infrared light sources with the CCD camera, the shape of the object as well as the flow field was simultaneously recorded. Besides the 2D vector field, calculations of the vorticity, Reynolds stress and turbulent kinetic energy (tke) distributions were made. The results indicate that for counter-current flow (U avg ∼0.245m/s) of water in a square channel (100mm) with a single air bubble of roughly 10mm diameter (Re Db ∼10 4 ) one could conclude the following: 1) PIV can detect differences in the wake flow field behind a bubble and that behind an equivalently sized solid, 2) the wake flow field behind the bubble is spatio-temporal due to the oscillation of the bubble, 3) as the bubble tries to minimize the energy-loss associated with its inherent motion it does so by distributing the hydrodynamic tke uniformly in the wake-field whereas in the case of the solid, the energy is distributed in a confined region in the near-wake. The order of magnitude of the tke is however similar which strongly suggests leads us to believe that the energy dissipation mechanisms are different in the two cases. We also made a limited comparison of velocity data obtained via DPIV and ultrasound Doppler velocimetry. (J.P.N.)

  17. Electromechanical response of silicone dielectric elastomers

    Science.gov (United States)

    Cârlescu, V.; Prisăcaru, G.; Olaru, D.

    2016-08-01

    This paper presents an experimental technique to investigate the electromechanical properties of silicone dielectric elastomers actuated with high DC electric fields. A non-contact measurement technique is used to capture and monitor the thickness strain (contraction) of a circular film placed between two metallic disks electrodes. Two active fillers such as silica (10, 15 and 30 wt%) and barium titanate (5 and 15 wt%) were incorporated in order to increase the actuation performance. Thickness strain was measured at HV stimuli up to 4.5 kV and showed a quadratic dependence against applied electric field indicating that the induced strain is triggered by the Maxwell effect and/or electrostriction phenomenon as reported in literature. The actuation process evidences a rapid contraction upon HV activation and a slowly relaxation when the electrodes are short-circuit due to visco-elastic nature of elastomers. A maximum of 1.22 % thickness strain was obtained at low actuating field intensity (1.5 V/pm) comparable with those reported in literature for similar dielectric elastomer materials.

  18. Stereo particle image velocimetry set up for measurements in the wake of scaled wind turbines

    Science.gov (United States)

    Campanardi, Gabriele; Grassi, Donato; Zanotti, Alex; Nanos, Emmanouil M.; Campagnolo, Filippo; Croce, Alessandro; Bottasso, Carlo L.

    2017-08-01

    Stereo particle image velocimetry measurements were carried out in the boundary layer test section of Politecnico di Milano large wind tunnel to survey the wake of a scaled wind turbine model designed and developed by Technische Universität München. The stereo PIV instrumentation was set up to survey the three velocity components on cross-flow planes at different longitudinal locations. The area of investigation covered the entire extent of the wind turbines wake that was scanned by the use of two separate traversing systems for both the laser and the cameras. Such instrumentation set up enabled to gain rapidly high quality results suitable to characterise the behaviour of the flow field in the wake of the scaled wind turbine. This would be very useful for the evaluation of the performance of wind farm control methodologies based on wake redirection and for the validation of CFD tools.

  19. Wind Farm Wake

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Karagali, Ioanna; Volker, Patrick

    2017-01-01

    On 25 January 2016 at 12:45 UTC several photographs of the offshore wind farm Horns Rev 2 were taken by helicopter pilot Gitte Lundorff with an iPhone. A very shallow layer of fog covered the sea. The photos of the fog over the sea dramatically pictured the offshore wind farm wake. Researchers got...... together to investigate the atmospheric conditions at the time of the photos by analysing local meteorological observations and wind turbine information, satellite remote sensing and nearby radiosonde data. Two wake models and one mesoscale model were used to model the case and explain what was seen....

  20. Dielectric optical antenna thermal emitters and metamaterials

    Science.gov (United States)

    Schuller, Jonathan Aaron

    Optical antennas are critical components in nanophotonics research due to their unparalleled ability to concentrate electromagnetic energy into nanoscale volumes. Researchers typically construct such antennas from wavelength-size metallic structures. However, recent research has begun to exploit the scattering resonances of high-permittivity particles to realize all-dielectric optical antennas, emitters, and metamaterials. In this thesis, we experimentally and theoretically characterize the resonant modes of subwavelength rod-shaped dielectric particles and demonstrate their use in negative index metamaterials and novel infrared light emitters. At mid-infrared frequencies, Silicon Carbide (SiC) is an ideal system for studying the behavior of dielectric optical antennas. At frequencies below the TO phonon resonance, SiC behaves like a dielectric with very large refractive index. Using infrared spectroscopy and analytical Mie calculations we show that individual rod-shaped SiC particles exhibit a multitude of resonant modes. Detailed investigations of these SiC optical antennas reveal a wealth of new physics and applications. We discuss the distinct electromagnetic field profile for each mode, and demonstrate that two of the dielectric-type Mie resonances can be combined in a particle array to form a negative index metamaterial. We further show that these particles can serve as "broadcasting" antennas. Using a custom-built thermal emission microscope we collect emissivity spectra from single SiC particles at elevated temperatures, highlighting their use as subwavelength resonant light emitters. Finally, we derive and verify a variety of general analytical results applicable to all cylindrical dielectric antennas.

  1. Dielectric barrier discharges applied for soft ionization and their mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Sebastian; Klute, Felix David; Schütz, Alexander; Franzke, Joachim, E-mail: joachim.franzke@isas.de

    2017-01-25

    Dielectric barrier discharges are used for analytical applications as dissociative source for optical emission spectrometry and for ambient-ionization techniques. In the range of ambient-ionization techniques it has attracted much attention in fields like food safety, biological analysis, mass spectrometry for reaction monitoring and imaging forensic identification. In this review some examples are given for the application as desorption/ionization source as well as for the sole application as ionization source with different sample introductions. It will be shown that the detection might depend on the certain distance of the plasma in reference to the sample or the kind of discharge which might be produced by different shapes of the applied high voltage. Some attempts of characterization are presented. A more detailed characterization of the dielectric barrier discharge realized with two ring electrodes, each separately covered with a dielectric layer, is described. - Highlights: • Dielectric barrier discharge applied as desorption/ionization source. • Dielectric barrier discharge applied solely as ionization source. • Different geometries in order to maintain soft ionization. • Characterization of the LTP probe. • Dielectric barrier discharges with two dielectric barriers (ring-ring shape).

  2. Investigation of radiative charging of dielectrics irradiated by ions

    International Nuclear Information System (INIS)

    Dergobuzov, K.A.; Yalovets, A.P.

    1994-01-01

    Within the framework of the Gusel'nikov mathematical model are fulflled numerical investigations of charging dielectrics irradiated with ions and atoms. The model accounts for dynamics of quasi-free charge carriers of each sign with account of processes of dielectrics ionization with a beam, charge recombination and charge drift in an electric fields. The effective mobility of charge carriers is determined with account for its dependence on the dose rate

  3. Dielectric polarization in random media

    International Nuclear Information System (INIS)

    Ramshaw, J.D.

    1984-01-01

    The theory of dielectric polarization in random media is systematically formulated in terms of response kernels. The primary response kernel K(12) governs the mean dielectric response at the point r 1 to the external electric field at the point r 2 in an infinite system. The inverse of K(12) is denoted by L(12);. it is simpler and more fundamental than K(12) itself. Rigorous expressions are obtained for the effective dielectric constant epsilon( in terms of L(12) and K(12). The latter expression involves the Onsger-Kirkwood function (epsilon(-epsilon 0 (2epsilon(+epsilon 0 )/epsilon 0 epsilon( (where epsilon 0 is an arbitrary reference value), and appears to be new to the random medium context. A wide variety of series representations for epsilon( are generated by means of general perturbation expansions for K(12) and L(12). A discussion is given of certain pitfalls in the theory, most of which are related to the fact that the response kernels are long ranged. It is shown how the dielectric behavior of nonpolar molecular fluids may be treated as a special case of the general theory. The present results for epsilon( apply equally well to other effective phenomenological coefficients of the same generic type, such as thermal and electrical conductivity, magnetic susceptibility, and diffusion coefficients

  4. Dielectric Spectroscopy of Biomolecules up to 110 GHz

    Science.gov (United States)

    Laux, Eva-Maria; Ermilova, Elena; Pannwitz, Daniel; Gibbons, Jessica; Hölzel, Ralph; Bier, Frank F.

    2018-03-01

    Radio-frequency fields in the GHz range are increasingly applied in biotechnology and medicine. In order to fully exploit both their potential and their risks detailed information about the dielectric properties of biological material is needed. For this purpose a measuring system is presented that allows the acquisition of complex dielectric spectra over 4 frequency decade up to 110 GHz. Routines for calibration and for data evaluation according to physicochemical interaction models have been developed. The frequency dependent permittivity and dielectric loss of some proteins and nucleic acids, the main classes of biomolecules, and of their sub-units have been determined. Dielectric spectra are presented for the amino acid alanine, the proteins lysozyme and haemoglobin, the nucleotides AMP and ATP, and for the plasmid pET-21, which has been produced by bacterial culture. Characterisation of a variety of biomolecules is envisaged, as is the application to studies on protein structure and function.

  5. Temperature Effects of Dielectric Properties of ER Fluids

    Science.gov (United States)

    Qiu, Z. Y.; Hu, L.; Liu, M. W.; Bao, H. X.; Jiang, Y. G.; Zhou, L. W.; Tang, Y.; Gao, Z.; Sun, M.; Korobko, E. V.

    Under the consideration of the role that energy transfer and dissipation play in ER effect, an improved theory frame for ER effects, polarization-dissipation-structure-rheology, is suggested. The theory frame is substantiated by the basic physical laws and certain critical experimental facts. The dielectric response of a diatomite ER fluid to temperature is measured in the temperature range of 140 K to 400 K. By comparison of the DC conductivity with the AC effective conductivity of the sample, we found that the AC dielectric loss consists of two parts. One part comes from the DC conductivity, the other from the response of the bound charges in scope of particle to AC field. It is suggested that the response of bound charges is very important to ER effects. Besides, the effect of temperature on shear stress is measured, and interpreted based on the dielectric measurements. The source of two loss peaks in the curve of the dielectric loss versus temperature is not clear.

  6. TR-PIV measurement of the wake behind a grooved cylinder at low Reynolds number

    Science.gov (United States)

    Liu, Ying Zheng; Shi, Liu Liu; Yu, Jun

    2011-04-01

    A comparative study of the wakes behind cylinders with grooved and smooth surfaces was performed with a view to understand the wake characteristics associated with the adult Saguaro cacti. A low-speed recirculation water channel was established for the experiment; the Reynolds number, based on the free-stream velocity and cylinder diameter (D), was kept at ReD=1500. State-of-the-art time-resolved particle image velocimetry (TR-PIV) was employed to measure a total of 20 480 realizations of the wake field at a frame rate of 250 Hz, enabling a comprehensive view of the time- and phase-averaged wake pattern. In comparison to the wake behind the smooth cylinder, the length of the recirculation zone behind the grooved cylinder was extended by nearly 18.2%, yet the longitudinal velocity fluctuation intensity was considerably weakened. A global view of the peaked spectrum of the longitudinal velocity component revealed that the intermediate region for the grooved cylinder, which approximately corresponds to the transition region where the shear layer vortices interact, merge and shed before the formation of the Karman-like vortex street, was much wider than that for the smooth one. The unsteady events near St=0.3-0.4 were detected in the intermediate region behind the grooved cylinder, but no such events were found in the smooth cylinder system. Although the formation of the Karman-like vortex street was delayed by about 0.6D downstream for the grooved cylinder, no prominent difference in the vortex street region was found in the far wake for both cylinders. The Proper Orthogonal Decomposition (POD) method was used extensively to decompose the vector and swirling strength fields, which gave a close-up view of the vortices in the near wake. The first two POD modes of the swirling strength clarified the spatio-temporal characteristics of the shear layer vortices behind the grooved cylinder. The small-scale vortices superimposed on the shear layers behind the grooved cylinder

  7. Dielectric Optical Antenna Emitters and Metamaterials

    Science.gov (United States)

    Schuller, Jon

    2009-03-01

    Optical antennas are critical components in nanophotonics research due to their unparalleled ability to concentrate electromagnetic energy into nanoscale volumes. Researchers typically construct such antennas from wavelength-size metallic structures. However, recent research has begun to exploit the scattering resonances of high-permittivity particles to realize all-dielectric optical antennas, emitters, and metamaterials. In this talk, we experimentally and theoretically characterize the resonant modes of subwavelength rod-shaped dielectric particles and demonstrate their use in negative index metamaterials and novel infrared light emitters. At mid-infrared frequencies, Silicon Carbide (SiC) is an ideal system for studying the behavior of dielectric optical antennas. At frequencies below the TO phonon resonance, SiC behaves like a dielectric with very large refractive index. Using infrared spectroscopy and analytical Mie calculations we show that individual rod-shaped SiC particles exhibit a multitude of resonant modes. Detailed investigations of these SiC optical antennas reveal a wealth of new physics and applications. We discuss the distinct electromagnetic field profile for each mode, and demonstrate that two of the dielectric-type Mie resonances can be combined in a particle array to form a negative index metamaterial [1]. We further show that these particles can serve as ``broadcasting'' antennas. Using a custom-built thermal emission microscope we collect emissivity spectra from single SiC particles at elevated temperatures, highlighting their use as subwavelength resonant light emitters. Finally, we derive and verify a variety of general analytical results applicable to all cylindrical dielectric antennas and discuss extensions of the demonstrated concepts to different materials systems and frequency regimes. [1] J.A. Schuller, et al., Phys. Rev. Lett. 99, 107401 (2007)

  8. Mathematical Modeling of Electrical Conductivity of Dielectric with Dispersed Metallic Inclusions

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2015-01-01

    Full Text Available Composites are increasingly used for application in engineering as structural, thermal protection and functional materials, including dielectrics, because of a wide variety of properties. The relative dielectric constant and the dielectric loss tangent are basic functional characteristics of a composite used as a dielectric. The quantitative level of these characteristics is mainly affected by the properties of the composite matrix and inclusions as well as their shape and volume concentration. Metallic inclusions in a dielectric, which serves as a function of the composite matrix, expand electrical properties of the composite in particular increase its dielectric constant and dielectric loss tangent and thereby greatly expand its application field. Dielectric losses are defined by the imaginary component of the complex value of the relative dielectric constant of the dielectric. At a relatively low vibration frequency of electromagnetic field affecting the dielectric, this value is proportional to the electrical conductivity of the dielectric and inversely proportional to the frequency. In order to predict the expected value of the electric conductivity of the dielectric with metallic inclusions, a mathematical model that properly describes the structure of the composite and the electrical interaction of the matrix and inclusions is required.In the paper, a mathematical model of the electrical interaction of the representative element of the composite structure and a homogeneous isotropic medium with electrical conductivity, which is desired characteristics of the composite, is constructed. Globular shape of the metallic inclusions as an average statistical form of dispersed inclusions with a comparable size in all directions is adopted. The inclusion is covered with a globular layer of electrical insulation to avoid percolation with increasing volume concentration of inclusions. Outer globular layer of representative structure of composite

  9. An Engineering Tool for the Prediction of Internal Dielectric Charging

    Science.gov (United States)

    Rodgers, D. J.; Ryden, K. A.; Wrenn, G. L.; Latham, P. M.; Sorensen, J.; Levy, L.

    1998-11-01

    A practical internal charging tool has been developed. It provides an easy-to-use means for satellite engineers to predict whether on-board dielectrics are vulnerable to electrostatic discharge in the outer radiation belt. The tool is designed to simulate irradiation of single-dielectric planar or cylindrical structures with or without shielding. Analytical equations are used to describe current deposition in the dielectric. This is fast and gives charging currents to sufficient accuracy given the uncertainties in other aspects of the problem - particularly material characteristics. Time-dependent internal electric fields are calculated, taking into account the effect on conductivity of electric field, dose rate and temperature. A worst-case model of electron fluxes in the outer belt has been created specifically for the internal charging problem and is built into the code. For output, the tool gives a YES or NO decision on the susceptibility of the structure to internal electrostatic breakdown and if necessary, calculates the required changes to bring the system below the breakdown threshold. A complementary programme of laboratory irradiations has been carried out to validate the tool. The results for Epoxy-fibreglass samples show that the code models electric field realistically for a wide variety of shields, dielectric thicknesses and electron spectra. Results for Teflon samples indicate that some further experimentation is required and the radiation-induced conductivity aspects of the code have not been validated.

  10. A simplified approach for simulation of wake meandering

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, Kenneth; Aagaard Madsen, H.; Larsen, Gunner; Juul Larsen, T.

    2006-03-15

    This fact-sheet describes a simplified approach for a part of the recently developed dynamic wake model for aeroelastic simulations for wind turbines operating in wake. The part described in this fact-sheet concern the meandering process only, while the other part of the simplified approach the wake deficit profile is outside the scope of the present fact-sheet. Work on simplified models for the wake deficit profile is ongoing. (au)

  11. Interaction of metallic nanoparticles with dielectric substrates: effect of optical constants

    International Nuclear Information System (INIS)

    Hutter, Tanya; Elliott, Stephen R; Mahajan, Sumeet

    2013-01-01

    In this paper, we study the local-field enhancement in a system of a metallic nanoparticle placed very near to a dielectric substrate. In such systems, intense electric fields are localized in the gap between the particle and the substrate, creating a ‘hot-spot’ under appropriate excitation conditions. We use finite-element numerical simulations in order to study the field enhancement in this dielectric–metal system. More specifically, we show how the optical properties of the dielectric substrate (n and k) affect the plasmonic field enhancement in the nano-gap. We also analyze the degree of field confinement in the gap and discuss it in the context of utilization for surface-enhanced Raman scattering. We finally show the fields generated by real substrates and compare them to metallic ones. (paper)

  12. A modified Poisson-Boltzmann surface excess calculation with a field dependent dielectric constant

    International Nuclear Information System (INIS)

    Gordillo, G.J.; Molina, F.V.; Posadas, D.

    1990-01-01

    The Unequal Radius Modified Gouy-Chapman (URMGC) was applied to mixtures of electrolytes. It was considered that the two anions, (1) and (2), have different radius, r 1 and r 2 , being r 2 smaller than r 1 . The dielectric constant was taken as a function of the electric field, using the theoretical Booth equation, or as a linear dependence varying between 6 and 78 when r 2 1 . The results show that the surface excess of anion 2 is much greater than the one predicted by Gouy-Chapman theory when the proportion of 2 increases in the mixture, while both the other anion and the cation show negative deviation. This effect is more evident in mixtures than in the case of single electrolytes, and has a maximum for a composition that depends on the chosen parameters for the model. (Author) [es

  13. Nonexistence of Smooth Electromagnetic Fields in Nonlinear Dielectrics. II. Shock Development in a Half-Space.

    Science.gov (United States)

    1982-03-01

    NUMB9ER 00 AU THOR(s) 8. CON7RACT OR GRANT .%Uv3ERHj) Frederick Bloom AFOSR-81-0171 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PrOGRAK ELEMAE:NT...material coff -iceret which may be associated with a particular nonlinear dielectric substance. For most common nonlinear dielectric substance, e

  14. Magnetically coupled Fano resonance of dielectric pentamer oligomer

    International Nuclear Information System (INIS)

    Zhang, Fuli; Li, Chang; He, Xuan; Chen, Lei; Fan, Yuancheng; Zhao, Qian; Zhang, Weihong; Zhou, Ji

    2017-01-01

    We present magnetically induced Fano resonance inside a dielectric metamaterial pentamer composed of ceramic bricks. Unlike previous reports where different sizes of dielectric resonators were essential to produce Fano resonance, under external magnetic field excitation, central and outer dielectric bricks with identical sizes exhibit in-phase and out-of-phase magnetic Mie oscillations. An asymmetric line shape of Fano resonance along with enhanced group delay is observed due to the interference between the magnetic resonance of the central brick and the symmetric magnetic resonance of outer bricks. Besides, Fano resonance blueshifts with the increasing resonance of the smaller central brick. The thermal-dependent permittivity of ceramics allows Fano resonance to be reversibly tuned by 300 MHz when temperature varies by 60 °C. (paper)

  15. Muscle-like high-stress dielectric elastomer actuators with oil capsules

    International Nuclear Information System (INIS)

    La, Thanh-Giang; Lau, Gih-Keong; Shiau, Li-Lynn; Wei-Yee Tan, Adrian

    2014-01-01

    Despite being capable of generating large strains, dielectric elastomer actuators (DEAs) are short of strength. Often, they cannot produce enough stress or as much work as that achievable by human elbow muscles. Their maximum actuation capacity is limited by the electrical breakdown of dielectric elastomers. Often, failures of these soft actuators are pre-mature and localized at the weakest spot under high field and high stress. Localized breakdowns, such as electrical arcing, thermal runaway and punctures, could spread to ultimately cause rupture if they were not stopped. This work shows that dielectric oil immersion and self-clearable electrodes nibbed the buds of localized breakdowns from DEAs. Dielectric oil encapsulation in soft-membrane capsules was found to help the DEA sustain an ultra-high electrical breakdown field of 835 MVm −1 , which is 46% higher than the electrical breakdown strength of the dry DEA in air at 570 MV m −1 . Because of the increased apparent dielectric strength, this oil-capsuled DEA realizes a higher maximum isotonic work density of up to 31.51Jkg −1 , which is 43.8% higher than that realized by the DEA in air. Meanwhile, it produces higher maximum isometric stress of up to 1.05 MPa, which is 75% higher than that produced by the DEA in air. Such improved actuator performances are comparable to those achieved by human flexor muscles, which can exert up to 1.2 MPa during elbow flexion. This muscle-like, high-stress dielectric elastomeric actuation is very promising to drive future human-like robots. (paper)

  16. Collisional effects on interaction potential in complex plasma in presence of magnetic field

    International Nuclear Information System (INIS)

    Bezbaruah, Pratikshya; Das, Nilakshi

    2016-01-01

    Interaction potential in complex plasma with streaming ions is derived analytically in presence of ion-neutral collision and magnetic field. The linear dielectric response function obtained describes the behavior of charged micron sized dust particles in strong collisional limit. A new type of repulsive potential is found to be operative among the dust grains apart from the normal Debye–Hückel potential. The amplitude and shielding length involved in the potential are substantially affected by the parameters describing ion cyclotron frequency, collision frequency among ions and neutrals, and ion streaming. It is also observed that the usual mechanism of ion focusing surrounding the grain is inhibited due to collision. As a result, the attractive wake potential structure is destroyed in the ion flow direction. The horizontal interaction involves only Debye–Hückel potential.

  17. Collisional effects on interaction potential in complex plasma in presence of magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Bezbaruah, Pratikshya, E-mail: pratphd@tezu.ernet.in; Das, Nilakshi [Department of Physics, Tezpur University, Tezpur, Assam 784028 (India)

    2016-04-15

    Interaction potential in complex plasma with streaming ions is derived analytically in presence of ion-neutral collision and magnetic field. The linear dielectric response function obtained describes the behavior of charged micron sized dust particles in strong collisional limit. A new type of repulsive potential is found to be operative among the dust grains apart from the normal Debye–Hückel potential. The amplitude and shielding length involved in the potential are substantially affected by the parameters describing ion cyclotron frequency, collision frequency among ions and neutrals, and ion streaming. It is also observed that the usual mechanism of ion focusing surrounding the grain is inhibited due to collision. As a result, the attractive wake potential structure is destroyed in the ion flow direction. The horizontal interaction involves only Debye–Hückel potential.

  18. On AEP prediction and wake modelling at Anholt

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Hansen, Kurt Schaldemose; Volker, Patrick

    and direction. We show that the WRF model is able to reproduce such gradients relatively well by comparison to the wind farm’s SCADA. About 1.5 yr of such SCADA, further quality controlled and filtered, reveals an average wake loss of 3.87% only, whereas results from three wake models, Park, Larsen and FUGA......, show average wake losses of 3.46%, 3.69%, and 3.38%, respectively. We employ a bootstrap method to estimate the uncertainty of the wake models. As this is performed with reference to the SCADA, the results provide an idea of the uncertainty of the AEP prediction2. We find all wake models...

  19. Molecular Dynamic Studies of Particle Wake Potentials in Plasmas

    Science.gov (United States)

    Ellis, Ian; Graziani, Frank; Glosli, James; Strozzi, David; Surh, Michael; Richards, David; Decyk, Viktor; Mori, Warren

    2010-11-01

    Fast Ignition studies require a detailed understanding of electron scattering, stopping, and energy deposition in plasmas with variable values for the number of particles within a Debye sphere. Presently there is disagreement in the literature concerning the proper description of these processes. Developing and validating proper descriptions requires studying the processes using first-principle electrostatic simulations and possibly including magnetic fields. We are using the particle-particle particle-mesh (P^3M) code ddcMD to perform these simulations. As a starting point in our study, we examined the wake of a particle passing through a plasma. In this poster, we compare the wake observed in 3D ddcMD simulations with that predicted by Vlasov theory and those observed in the electrostatic PIC code BEPS where the cell size was reduced to .03λD.

  20. Electrostatic field and charge distribution in small charged dielectric droplets

    Science.gov (United States)

    Storozhev, V. B.

    2004-08-01

    The charge distribution in small dielectric droplets is calculated on the basis of continuum medium approximation. There are considered charged liquid spherical droplets of methanol in the range of nanometer sizes. The problem is solved by the following way. We find the free energy of some ion in dielectric droplet, which is a function of distribution of other ions in the droplet. The probability of location of the ion in some element of volume in the droplet is a function of its free energy in this element of volume. The same approach can be applied to other ions in the droplet. The obtained charge distribution differs considerably from the surface distribution. The curve of the charge distribution in the droplet as a function of radius has maximum near the surface. Relative concentration of charges in the vicinity of the center of the droplet does not equal to zero, and it is the higher, the less is the total charge of the droplet. According to the estimates the model is applicable if the droplet radius is larger than 10 nm.

  1. Electrostatic field and charge distribution in small charged dielectric droplets

    International Nuclear Information System (INIS)

    Storozhev, V.B.

    2004-01-01

    The charge distribution in small dielectric droplets is calculated on the basis of continuum medium approximation. There are considered charged liquid spherical droplets of methanol in the range of nanometer sizes. The problem is solved by the following way. We find the free energy of some ion in dielectric droplet, which is a function of distribution of other ions in the droplet. The probability of location of the ion in some element of volume in the droplet is a function of its free energy in this element of volume. The same approach can be applied to other ions in the droplet. The obtained charge distribution differs considerably from the surface distribution. The curve of the charge distribution in the droplet as a function of radius has maximum near the surface. Relative concentration of charges in the vicinity of the center of the droplet does not equal to zero, and it is the higher, the less is the total charge of the droplet. According to the estimates the model is applicable if the droplet radius is larger than 10 nm

  2. Brain mechanisms that control sleep and waking

    Science.gov (United States)

    Siegel, Jerome

    This review paper presents a brief historical survey of the technological and early research that laid the groundwork for recent advances in sleep-waking research. A major advance in this field occurred shortly after the end of World War II with the discovery of the ascending reticular activating system (ARAS) as the neural source in the brain stem of the waking state. Subsequent research showed that the brain stem activating system produced cortical arousal via two pathways: a dorsal route through the thalamus and a ventral route through the hypothalamus and basal forebrain. The nuclei, pathways, and neurotransmitters that comprise the multiple components of these arousal systems are described. Sleep is now recognized as being composed of two very different states: rapid eye movements (REMs) sleep and non-REM sleep. The major findings on the neural mechanisms that control these two sleep states are presented. This review ends with a discussion of two current views on the function of sleep: to maintain the integrity of the immune system and to enhance memory consolidation.

  3. Study on offshore wind farm wakes based on Envisat ASAR, Radarsat-2 and Sentinel-1

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Badger, Jake

    energy production in clustered wind farms. Envisat ASAR, Radarsat-2 and Sentinel-1 are used in the study covering wind farms in the North Sea and Kattegat Strait. Three types of analysis are performed. The first is a case based on a Radarsat-2 Scan-SAR wide VV scene (30th April 2013 at 17:41 UTC...... is rotation of the data such that all scenes are aligned with inflow and downstream (wake region) based on the wind direction in the wind field maps. The rotation is done at 1 degree intervals. The data from rotated circles (not geo-collocated) are normalized with the winds at the side-lobes. Side......-lobes are regions expected to be undisturbed by the wind farm wake. The key result of the analysis is the significant wind wake deficit at the inner circle, decreasing at outer circles, as expected. The SAR-based results strongly support the wake model results based on PARK and WRF (Hasager et al. 2015b). The third...

  4. Effect of nanocomposite gate-dielectric properties on pentacene microstructure and field-effect transistor characteristics.

    Science.gov (United States)

    Lee, Wen-Hsi; Wang, Chun-Chieh

    2010-02-01

    In this study, the effect of surface energy and roughness of the nanocomposite gate dielectric on pentacene morphology and electrical properties of pentacene OTFT are reported. Nanoparticles TiO2 were added in the polyimide matrix to form a nanocomposite which has a significantly different surface characteristic from polyimide, leading to a discrepancy in the structural properties of pentacene growth. A growth mode of pentacene deposited on the nanocomposite is proposed to explain successfully the effect of surface properties of nanocomposite gate dielectric such as surface energy and roughness on the pentacene morphology and electrical properties of OTFT. To obtain the lower surface energy and smoother surface of nanocomposite gate dielectric that is responsible for the desired crystalline, microstructure of pentacene and electrical properties of device, a bottom contact OTFT-pentacene deposited on the double-layer nanocomposite gate dielectric consisting of top smoothing layer of the neat polyimide and bottom layer of (PI+ nano-TiO2 particles) nanocomposite has been successfully demonstrated to exhibit very promising performance including high current on to off ratio of about 6 x 10(5), threshold voltage of -10 V and moderately high filed mobility of 0.15 cm2V(-1)s(-1).

  5. Atomic layer deposition of dielectrics for carbon-based electronics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J., E-mail: jiyoung.kim@utdallas.edu; Jandhyala, S.

    2013-11-01

    Carbon based nanomaterials like nanotubes and graphene have emerged as future generation electronic materials for device applications because of their interesting properties such as high-mobility and ability to carry high-current densities compared to conventional semiconductor materials like silicon. Therefore, there is a need to develop techniques to integrate robust gate dielectrics with high-quality interfaces for these materials in order to attain maximum performance. To date, a variety of methods including physical vapor deposition, atomic layer deposition (ALD), physical assembly among others have been employed in order to integrate dielectrics for carbon nanotube and graphene based field-effect transistors. Owing to the difficulty in wetting pristine surfaces of nanotubes and graphene, most of the ALD methods require a seeding technique involving non-covalent functionalization of their surfaces in order to nucleate dielectric growth while maintaining their intrinsic properties. A comprehensive review regarding the various dielectric integration schemes for emerging devices and their limitations with respect to ALD based methods along with a future outlook is provided. - Highlights: • We introduce various dielectric integration schemes for carbon-based devices. • Physical vapor deposition methods tend to degrade device performance. • Atomic layer deposition on pristine surfaces of graphene and nanotube is difficult. • We review different seeding techniques for atomic layer deposition of dielectrics. • Compare the performance of graphene top-gate devices with different dielectrics.

  6. Atomic layer deposition of dielectrics for carbon-based electronics

    International Nuclear Information System (INIS)

    Kim, J.; Jandhyala, S.

    2013-01-01

    Carbon based nanomaterials like nanotubes and graphene have emerged as future generation electronic materials for device applications because of their interesting properties such as high-mobility and ability to carry high-current densities compared to conventional semiconductor materials like silicon. Therefore, there is a need to develop techniques to integrate robust gate dielectrics with high-quality interfaces for these materials in order to attain maximum performance. To date, a variety of methods including physical vapor deposition, atomic layer deposition (ALD), physical assembly among others have been employed in order to integrate dielectrics for carbon nanotube and graphene based field-effect transistors. Owing to the difficulty in wetting pristine surfaces of nanotubes and graphene, most of the ALD methods require a seeding technique involving non-covalent functionalization of their surfaces in order to nucleate dielectric growth while maintaining their intrinsic properties. A comprehensive review regarding the various dielectric integration schemes for emerging devices and their limitations with respect to ALD based methods along with a future outlook is provided. - Highlights: • We introduce various dielectric integration schemes for carbon-based devices. • Physical vapor deposition methods tend to degrade device performance. • Atomic layer deposition on pristine surfaces of graphene and nanotube is difficult. • We review different seeding techniques for atomic layer deposition of dielectrics. • Compare the performance of graphene top-gate devices with different dielectrics

  7. Encapsulation methods and dielectric layers for organic electrical devices

    Science.gov (United States)

    Blum, Yigal D; Chu, William Siu-Keung; MacQueen, David Brent; Shi, Yijan

    2013-07-02

    The disclosure provides methods and materials suitable for use as encapsulation barriers and dielectric layers in electronic devices. In one embodiment, for example, there is provided an electroluminescent device or other electronic device with a dielectric layer comprising alternating layers of a silicon-containing bonding material and a ceramic material. The methods provide, for example, electronic devices with increased stability and shelf-life. The invention is useful, for example, in the field of microelectronic devices.

  8. Efficient Turbulence Modeling for CFD Wake Simulations

    DEFF Research Database (Denmark)

    van der Laan, Paul

    Wind turbine wakes can cause 10-20% annual energy losses in wind farms, and wake turbulence can decrease the lifetime of wind turbine blades. One way of estimating these effects is the use of computational fluid dynamics (CFD) to simulate wind turbines wakes in the atmospheric boundary layer. Since...... this flow is in the high Reynolds number regime, it is mainly dictated by turbulence. As a result, the turbulence modeling in CFD dominates the wake characteristics, especially in Reynolds-averaged Navier-Stokes (RANS). The present work is dedicated to study and develop RANS-based turbulence models...... verified with a grid dependency study. With respect to the standard k-ε EVM, the k-ε- fp EVM compares better with measurements of the velocity deficit, especially in the near wake, which translates to improved power deficits of the first wind turbines in a row. When the CFD metholody is applied to a large...

  9. Development of a new prototype system for measuring the permittivity of dielectric materials

    Directory of Open Access Journals (Sweden)

    Jiajia Jiang

    2014-06-01

    Full Text Available A simple prototype for measuring the properties of dielectric materials is introduced in this Letter. A homogeneous dielectric sample placed in a field produced by a nearby antenna will affect the input impedance of the antenna. The permittivity and the loss of the dielectric sample can then be determined from the change of the input impedance of the antenna. The prototype has been validated by experiments.

  10. Dispersion characteristics of two-dimensional unmagnetized dielectric plasma photonic crystal

    International Nuclear Information System (INIS)

    Li-Mei, Qi; Zi-Qiang, Yang; Feng, Lan; Xi, Gao; Da-Zhi, Li

    2010-01-01

    This paper studies dispersion characteristics of the transverse magnetic (TM) mode for two-dimensional unmagnetized dielectric plasma photonic crystal by a modified plane wave method. First, the cutoff behaviour is made clear by using the Maxwell–Garnett effective medium theory, and the influences of dielectric filling factor and dielectric constant on effective plasma frequency are analysed. Moreover, the occurence of large gaps in dielectric plasma photonic crystal is demonstrated by comparing the skin depth with the lattice constant, and the influence of plasma frequency on the first three gaps is also studied. Finally, by using the particle-in-cell simulation method, a transmission curve in the Γ – X direction is obtained in dielectric plasma photonic crystal, which is in accordance with the dispersion curves calculated by the modified plane wave method, and the large gap between the transmission points of 27 GHz and 47 GHz is explained by comparing the electric field patterns in particle-in-cell simulation

  11. The Theory for the Dielectric Slab Waveguide with Complex Refractive Index Applied to GaAs Lasers

    DEFF Research Database (Denmark)

    Buus, Jens

    1977-01-01

    In this paper we investigate the homogeneous dielectric slab waveguide in the case of complex dielectric constants. A method for calculating the field distribution in a dielectric waveguide with an arbitrary symmetrical variation in the refractive index is developed, and some of the results are p...

  12. Quantum-optical input-output relations for dispersive and lossy multilayer dielectric plates

    International Nuclear Information System (INIS)

    Gruner, T.; Welsch, D.

    1996-01-01

    Using the Green-function approach to the problem of quantization of the phenomenological Maxwell theory, the propagation of quantized radiation through dispersive and absorptive multilayer dielectric plates is studied. Input-output relations are derived, with special emphasis on the determination of the quantum noise generators associated with the absorption of radiation inside the dielectric matter. The input-output relations are used to express arbitrary correlation functions of the outgoing field in terms of correlation functions of the incoming field and those of the noise generators. To illustrate the theory, photons at dielectric tunneling barriers are considered. It is shown that inclusion in the calculations of losses in the photonic band gaps may substantially change the barrier traversal times. copyright 1996 The American Physical Society

  13. Dielectric response of planar relativistic quantum plasmas

    International Nuclear Information System (INIS)

    Bardos, D.C.; Frankel, N.E.

    1991-01-01

    The dielectric response of planar relativistic charged particle-antiparticle plasmas is investigated, treating Fermi and Bose plasmas. The conductivity tensor in each case is derived in the self-consistent Random Phase Approximation. The tensors are then evaluated at zero temperature for the case of no external fields, leading to explicit dispersion relations for the electrodynamic modes of the plasma. The longitudinal and transverse modes are in general coupled for plasma layers. This coupling vanishes, however, in the zero field case, allowing 'effective' longitudinal and transverse dielectric functions to be defined in terms of components of the conductivity tensor. Solutions to the longitudinal mode equations (i.e. plasmon modes) are exhibited, while purely transverse modes are found not to exist. In the case of the Bose plasma the screening of a test charge is investigated in detail. 41 refs., 1 fig

  14. Optical trapping of metal-dielectric nanoparticle clusters near photonic crystal microcavities.

    Science.gov (United States)

    Mejia, Camilo A; Huang, Ningfeng; Povinelli, Michelle L

    2012-09-01

    We predict the formation of optically trapped, metal-dielectric nanoparticle clusters above photonic crystal microcavities. We determine the conditions on particle size and position for a gold particle to be trapped above the microcavity. We then show that strong field redistribution and enhancement near the trapped gold nanoparticle results in secondary trapping sites for a pair of dielectric nanoparticles.

  15. Phase diagrams and radial distribution of the electric field components of coaxial discharges with outer dielectric tube at different wave modes

    International Nuclear Information System (INIS)

    Neichev, Z; Benova, E; Gamero, A; Sola, A

    2007-01-01

    The purpose of this work is to investigate phase diagrams and electric field radial distribution of coaxial discharges, sustained by a traveling electromagnetic wave, assuming finite and infinite thickness of the discharge chamber in the model. The calculations are made for azimuthally symmetric and dipolar wave modes. The phase diagrams and the radial profiles of the electric field at various thicknesses of the outer dielectric tube of the chamber and different discharge conditions are obtained. For the purpose of low pressure coaxial plasma modelling, radial profiles of the electric field at different discharge conditions have been investigated experimentally and compared with the theoretical results

  16. FDTD Method for Piecewise Homogeneous Dielectric Media

    Directory of Open Access Journals (Sweden)

    Zh. O. Dombrovskaya

    2016-01-01

    Full Text Available In this paper, we consider a numerical solution of Maxwell’s curl equations for piecewise uniform dielectric medium by the example of a one-dimensional problem. For obtaining the second order accuracy, the electric field grid node is placed into the permittivity discontinuity point of the medium. If the dielectric permittivity is large, the problem becomes singularly perturbed and a contrast structure appears. We propose a piecewise quasi-uniform mesh which resolves all characteristic solution parts of the problem (regular part, boundary layer and transition zone placed between them in detail. The features of the mesh are discussed. 

  17. Two optical bistability domains in composites of metal nanoparticles with nonlinear dielectric core

    Energy Technology Data Exchange (ETDEWEB)

    Shewamare, Sisay, E-mail: sisayshewa20@yahoo.com [Department of Physics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia); Mal' nev, V.N., E-mail: vadimnmalnev@yahoo.com [Department of Physics, Addis Ababa University, P.O. Box 1176, Addis Ababa (Ethiopia)

    2012-12-15

    It is shown that the local field in metal spherical particles with a dielectric core in an external varying electric field has two maxima at two different frequencies. The second maximum becomes more important with an increment in the metal fraction. Due to the nonlinear dielectric function of the core, the composite of these inclusions may have two optically induced bistability domains at different frequencies. At rather high metal fraction, two bistability domains merge and form one entire bistability domain. The parameters of these domains are studied numerically. The paper focuses on the second bistability domain, which has not been discussed in the literature so far. This domain exists in a comparatively narrow frequency range and its onset fields are lower than those of the first bistability domain. The lowest bistability onset fields are obtained in the entire domain. This peculiarity of the optical induced bistability in the metal composite with small dielectric cores can be attractive for possible applications.

  18. Two optical bistability domains in composites of metal nanoparticles with nonlinear dielectric core

    International Nuclear Information System (INIS)

    Shewamare, Sisay; Mal'nev, V.N.

    2012-01-01

    It is shown that the local field in metal spherical particles with a dielectric core in an external varying electric field has two maxima at two different frequencies. The second maximum becomes more important with an increment in the metal fraction. Due to the nonlinear dielectric function of the core, the composite of these inclusions may have two optically induced bistability domains at different frequencies. At rather high metal fraction, two bistability domains merge and form one entire bistability domain. The parameters of these domains are studied numerically. The paper focuses on the second bistability domain, which has not been discussed in the literature so far. This domain exists in a comparatively narrow frequency range and its onset fields are lower than those of the first bistability domain. The lowest bistability onset fields are obtained in the entire domain. This peculiarity of the optical induced bistability in the metal composite with small dielectric cores can be attractive for possible applications.

  19. Plasmon mediated inverse Faraday effect in a graphene-dielectric-metal structure.

    Science.gov (United States)

    Bychkov, Igor V; Kuzmin, Dmitry A; Tolkachev, Valentine A; Plaksin, Pavel S; Shavrov, Vladimir G

    2018-01-01

    This Letter shows the features of inverse Faraday effect (IFE) in a graphene-dielectric-metal (GDM) structure. The constants of propagation and attenuation of the surface plasmon-polariton modes are calculated. The effective magnetic field induced by surface plasmon modes in the dielectric due to the IFE is estimated to reach above 1 tesla. The possibility to control the distribution of the magnetic field by chemical potential of graphene is shown. The concept of strain-driven control of the IFE in the structure has been proposed and investigated.

  20. First Results from ARTEMIS, A New Two-Spacecraft Lunar Mission: Counter-Streaming Plasma Populations in the Lunar Wake

    Science.gov (United States)

    Halekas, J. S.; Angelopoulos, V.; Sibeck, D. G.; Khurana, K. K.; Russell, C. T.; Delory, G. T.; Farrell, W. M.; McFadden, J. P.; Bonnell, J. W.; Larson, D.; hide

    2014-01-01

    We present observations from the first passage through the lunar plasma wake by one of two spacecraft comprising ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun), a new lunar mission that re-tasks two of five probes from the THEMIS magnetospheric mission. On Feb 13, 2010, ARTEMIS probe P1 passed through the wake at approximately 3.5 lunar radii downstream from the Moon, in a region between those explored by Wind and the Lunar Prospector, Kaguya, Chandrayaan, and Chang'E missions. ARTEMIS observed interpenetrating proton, alpha particle, and electron populations refilling the wake along magnetic field lines from both flanks. The characteristics of these distributions match expectations from self-similar models of plasma expansion into vacuum, with an asymmetric character likely driven by a combination of a tilted interplanetary magnetic field and an anisotropic incident solar wind electron population. On this flyby, ARTEMIS provided unprecedented measurements of the interpenetrating beams of both electrons and ions naturally produced by the filtration and acceleration effects of electric fields set up during the refilling process. ARTEMIS also measured electrostatic oscillations closely correlated with counter-streaming electron beams in the wake, as previously hypothesized but never before directly measured. These observations demonstrate the capability of the comprehensively instrumented ARTEMIS spacecraft and the potential for new lunar science from this unique two spacecraft constellation.