WorldWideScience

Sample records for dielectric relaxation behavior

  1. Anomalous behavior of secondary dielectric relaxation in polypropylene glycols

    Energy Technology Data Exchange (ETDEWEB)

    Grzybowska, K; Grzybowski, A; Ziolo, J; Rzoska, S J; Paluch, M [Institute of Physics, Silesian University, Uniwersytecka 4, 40-007 Katowice (Poland)

    2007-09-19

    A surprising slow down in the dielectric secondary {gamma}-relaxation with temperature increasing near the glass transition is confirmed for several polypropylene glycols. The peculiar behavior diminishes as the molecular weight grows. The minimal model (Dyre and Olsen 2003 Phys. Rev. Lett. 91 155703) is applied successfully to describe the temperature dependences of the {gamma}-relaxation times. The minimal model parameters are analyzed for different molecular weights. A molecular explanation of the {gamma}-process anomaly for polypropylene glycols is proposed on the basis of the minimal model prediction.

  2. Dielectric relaxation behavior and impedance studies of Cu2+ ion doped Mg - Zn spinel nanoferrites

    Science.gov (United States)

    Choudhary, Pankaj; Varshney, Dinesh

    2018-03-01

    Cu2+ substituted Mg - Zn nanoferrites is synthesized by low temperature fired sol gel auto combustion method. The spinel nature of nanoferrites was confirmed by lab x-ray technique. Williamson - Hall (W-H) analysis estimate the average crystallite size (22.25-29.19 ± 3 nm) and micro strain induced Mg0.5Zn0.5-xCuxFe2O4 (0.0 ≤ x ≤ 0.5). Raman scattering measurements confirm presence of four active phonon modes. Red shift is observed with enhanced Cu concentration. Dielectric parameters exhibit a non - monotonous dispersion with Cu concentration and interpreted with the support of hopping mechanism and Maxwell-Wagner type of interfacial polarization. The ac conductivity of nanoferrites increases with raising the frequency. Complex electrical modulus reveals a non - Debye type of dielectric relaxation present in nanoferrites. Reactive impedance (Z″) detected an anomalous behavior and is related with resonance effect. Complex impedance demonstrates one semicircle corresponding to the intergrain (grain boundary) resistance and also explains conducting nature of nanoferrites. For x = 0.2, a large semicircle is observed revealing the ohmic nature (minimum potential drop at electrode surface). Dielectric properties were improved for nanoferrites with x = 0.2 and is due to high dielectric constant, conductivity and minimum loss value (∼0.009) at 1 MHz.

  3. Sintering behavior, ac conductivity and dielectric relaxation of Li1.3Ti1.7Al0.3(PO43 NASICON compound

    Directory of Open Access Journals (Sweden)

    Tasiu Zangina

    Full Text Available The phenomenon of relaxation in dielectric materials is described as one of the powerful tools to determine the behavior and properties of ion transport. The kinetics of ionic species and dipole in solid-state electrolyte are dependent on frequency, temperature, and dielectric relaxation. Li1+xTi2−xAlx(PO43 conducting solid state electrolyte with x = 0.3 was synthesized via conventional solid state technique using the raw materials Li2CO3, TiO2, Al2O3, and NH4H2PO4 as starting materials. TGA/DTG and X-ray diffraction measurements were carried out to study the thermal behavior and phases of the composition. It was observed from the TGA/DTA curves that there is no mass loss above 500 °C. The XRD peaks were observed to start appearing at 500 °C which corresponds to small peaks in TGA. It was also pointed out that at increasing sintering temperatures from 700 °C to 1000 °C the number of phases drastically decreased which is attributed to the complete chemical reaction. Temperature and frequency dependence of dielectric relaxation and electric modulus of the compounds were investigated at temperatures 30–230 °C and at frequencies of 40 kHz–1 MHz. The findings showed that the dielectric relaxation peaks shift to higher temperature as frequency increases and the change in ac conductivity with frequency is in agreement with Jonscher’s power law. Keywords: Sintering behavior, Dielectric permittivity, Universal power law, Electric modulus

  4. Multiscale dipole relaxation in dielectric materials

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt

    2016-01-01

    Dipole relaxation from thermally induced perturbations is investigated on different length scales for dielectric materials. From the continuum dynamical equations for the polarisation, expressions for the transverse and longitudinal dipole autocorrelation functions are derived in the limit where ...

  5. Dielectric relaxation in AgI doped silver selenomolybdate glasses

    Science.gov (United States)

    Palui, A.; Shaw, A.; Ghosh, A.

    2016-05-01

    We report the study of dielectric properties of some silver ion conducting silver selenomolybdate mixed network former glasses in a wide frequency and temperature range. The experimental data have been analyzed in the framework of complex dielectric permittivity. The dielectric permittivity data have been well interpreted using the Cole-Cole function. The temperature dependence of relaxation time obtained from real part of dielectric permittivity data shows an Arrhenius behavior. The activation energy shows a decreasing trend with the increase of doping content. Values of stretched exponential parameter are observed to be independent of temperature and composition.

  6. Dielectric Relaxation Behavior of Bismuth Doped (Ba0.2Sr0.8 TiO3 Ceramics

    Directory of Open Access Journals (Sweden)

    Baptista, J. L.

    1999-12-01

    Full Text Available The dielectric properties of bismuth doped (Ba0.2Sr0.8TiO3 ceramics are investigated. The temperature dependence of the dielectric permittivity and loss factor were measured from 102 to 106Hz in the temperature range 12-320K. As the amount of Bi increases, the ferroelectric-paraelectric phase transition gets diffused and relaxed. In addition to this ferroelectric-paraelectric phase transition, other two sets of dielectric anomalies, located at 50-100K and 200-300K respectively, are also found. The possible relaxation mechanisms are briefly discussed.Las propiedades dieléctricas de cerámicos dopados con bismuto son investigadas. La dependencia con la temperatura de la permitividad dieléctrica y el factor de pérdidas se midieron entre 02 y 106Hz en el rango de temperatura 12-320K. Con el aumento del contenido en Bi, la transición de fase ferroeléctrica-paraléctrica se hace difusa y reloja. Junto a esta transición de fase los conjuntos de anomalías dieléctricas, localizados a 50-100k y 200-300k respectivamente, también se encontraron. Se discute brevemente los posibles mecanismos de relajación.

  7. Dielectric Relaxation of Water: Theory and Experiment

    International Nuclear Information System (INIS)

    Adhikari, Narayan Prasad; Paudyal, Harihar; Johri, Manoj

    2010-06-01

    We have studied the hydrogen bond dynamics and methods for evaluation of probability and relaxation time for hydrogen bond network. Further, dielectric relaxation time has been calculated by using a diagonalization procedure by obtaining eigen values (inverse of relaxation time) of a master equation framed on the basis of Fokker-Planck equations. Microwave cavity spectrometer has been described to make measurements of relaxation time. Slater's perturbation equations are given for the analysis of the data. A comparison of theoretical and experimental data shows that there is a need for improvements in the theoretical model and experimental techniques to provide exact information about structural properties of water. (author)

  8. Identification of structural relaxation in the dielectric response of water

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; Kisliuk, Alexander; Solokov, Alexei P.

    2016-01-01

    One century ago pioneering dielectric results obtained for water and n-alcohols triggered the advent of molecular rotation diffusion theory considered by Debye to describe the primary dielectric absorption in these liquids. Comparing dielectric, viscoelastic, and light scattering results, we...... unambiguously demonstrate that the structural relaxation appears only as a high-frequency shoulder in the dielectric spectra of water. In contrast, the main dielectric peak is related to a supramolecular structure, analogous to the Debye-like peak observed in monoalcohols....

  9. Stretched exponential relaxation and ac universality in disordered dielectrics

    DEFF Research Database (Denmark)

    Milovanov, Alexander V.; Rypdal, Kristoffer; Juul Rasmussen, Jens

    2007-01-01

    This paper is concerned with the connection between the properties of dielectric relaxation and alternating-current (ac) conduction in disordered dielectrics. The discussion is divided between the classical linear-response theory and a self-consistent dynamical modeling. The key issues are stretc......This paper is concerned with the connection between the properties of dielectric relaxation and alternating-current (ac) conduction in disordered dielectrics. The discussion is divided between the classical linear-response theory and a self-consistent dynamical modeling. The key issues...

  10. Dielectric relaxation studies of dilute solutions of amides

    Energy Technology Data Exchange (ETDEWEB)

    Malathi, M.; Sabesan, R.; Krishnan, S

    2003-11-15

    The dielectric constants and dielectric losses of formamide, acetamide, N-methyl acetamide, acetanilide and N,N-dimethyl acetamide in dilute solutions of 1,4-dioxan/benzene have been measured at 308 K using 9.37 GHz, dielectric relaxation set up. The relaxation time for the over all rotation {tau}{sub (1)} and that for the group rotation {tau}{sub (2)} of (the molecules were determined using Higasi's method. The activation energies for the processes of dielectric relaxation and viscous flow were determined by using Eyring's rate theory. From relaxation time behaviour of amides in non-polar solvent, solute-solvent and solute-solute type of molecular association is proposed.

  11. Dielectric and mechanical relaxation in isooctylcyanobiphenyl (8*OCB)

    Energy Technology Data Exchange (ETDEWEB)

    Pawlus, S; Mierzwa, M; Paluch, M; Rzoska, S J [Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice (Poland); Roland, C M, E-mail: michal.mierzwa@us.edu.p [Chemistry Division, Naval Research Laboratory, Code 6120, Washington, DC 20375-5342 (United States)

    2010-06-16

    The dynamics of isooctylcyanobiphenyl (8*OCB) was characterized using dielectric and mechanical spectroscopies. This isomer of the liquid crystalline octylcyanobiphenyl (8OCB) vitrifies during cooling or on application of pressure, exhibiting the typical features of glass-forming liquids: non-Debye relaxation function, non-Arrhenius temperature dependence of the relaxation times, {tau}{sub {alpha}}, a dynamic crossover at T {approx} 1.6T{sub g}. This crossover is evidenced by changes in the behavior of both the peak shape and the temperature dependence of {tau}{sub {alpha}}. The primary relaxation time at the crossover, 2 ns at ambient pressure, is the smallest value reported to date for any molecular liquid or polymer. Interestingly, at all temperatures below this crossover, {tau}{sub {alpha}}and the dc conductivity remain coupled (i.e., conform to the Debye-Stokes-Einstein relation). Two secondary relaxations are observed in the glassy state, one of which is identified as the Johari-Goldstein process. Unlike the case for 8OCB, no liquid crystalline phase could be attained for 8*OCB, demonstrating that relatively small differences in chemical structure can effect substantial changes in the intermolecular potential.

  12. Dielectric Relaxation Studies of Alkyl Methacrylate–Phenol Mixtures ...

    African Journals Online (AJOL)

    The Kirkwood correlation factor and the excess inverse relaxation time were determined and they yield information on the molecular interactions occurring in the systems. The values of the static permittivity and the relaxation time increase with an increase in the percentage of phenol in the mixtures. KEYWORDS: Dielectric ...

  13. Electrical response of relaxing dielectrics compressed by arbitrary stress pulses

    International Nuclear Information System (INIS)

    Lysne, P.C.

    1983-01-01

    The theoretical problem of the electric response of biased dielectrics and piezoelectrics subjected to planar stress pulse loading is considered. The materials are taken to exhibit dielectric relaxation in the sense that changes in the polarization induced by electric fields do not occur instantaneously with changes in the fields. While this paper considers arbitrary stress pulse loading of the specimen, examples that are amenable to projectile impact techniques are considered in detail. They are shock reverberation, thin pulse, and ramp loading experiments. It is anticipated that these experiments will play a role in investigations of dielectric relaxation caused by shock induced damage in insulators

  14. Dielectric relaxation studies of some primary alcohols and their mixture with water

    International Nuclear Information System (INIS)

    Ahmad, S.S.; Yaqub, M.

    2003-01-01

    The complex dielectric constant of ethyl alcohol, methyl alcohol and 1- propanol and their mixtures with water of different concentration, (0 to 100% by weight) at the temperature of 303K has been evaluated, within the frequency range of (100KHz- 100 MHz). Moreover, the viscosity mu of each alcohol and its mixture with water have been measured at this temperature. The dielectric properties have been evaluated by Hartshorn and Ward apparatus. The purpose of this work is to study the influence of aliphatic group, size and shape on the extent of hydrogen bonding and also to obtain the thermodynamic data on hydrogen bond formation in the pure liquid state and its mixture. The width of the semicircle plot determines the distribution of average relaxation time. Dielectric relaxation time in pure alcohols and their water mixture has been calculated from the respected Cole-Cole plot and dielectric data. A single relaxation time of 117.16ps has been obtained for the molecules of pure methanol, whereas, the dielectric data of prophyl alcohol which indicates the viscosity water have been measured at the temperature 303 K. The dielectric properties in distribution of relaxation time, which is in good agreement with the Davidson-cole representation. The molecules in liquid mixture within frequency range, the mixture has more than one relaxation item, leading to the shortening of main relaxation time as compared with the pure alcohol and broadening of the complex permitivity spectra. The dependence of the dielectric relaxation on composition shows a remarkable behavior. Results are discussed in the light of H-bonded molecules. (author)

  15. Dielectric relaxation of glass particles with conductive nano-coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Shahid [Applied Technologies Department, QinetiQ Limited, Cody Technology Park, Farnborough, Hampshire, GU14 0LX (United Kingdom)

    2009-03-21

    This research focuses on the dielectric properties of particles consisting of glass cores with nanometre conductive coatings. The effects of the core glass particle shape (sphere, flake and fibre) and size are investigated for different coating characteristics over the frequency range 0.5-18 GHz. Experimental results for the coated glass particle combinations show the existence of a dielectric loss peak. This feature is associated with interfacial relaxation between the insulating core glass particle and the nanoscale conductive coating. The relaxation mechanism provides enhanced loss that is not observed in conventional solid metal particle composites. The results are fitted to a model, which shows that the relaxation frequency increases with increasing coating conductivity and thickness, with additional parameters identified for further particle optimizations.

  16. Dielectric relaxations above room temperature in DMPU derived polyaniline film

    International Nuclear Information System (INIS)

    Mallya, Ashwini N.; Yashavanth Kumar, G.S.; Ranjan, Rajeev; Ramamurthy, Praveen C.

    2012-01-01

    Dielectric measurements carried out on drop casted from solution of emeraldine base form of polyaniline films in the temperature range 30-300 °C revealed occurrence of two maxima in the loss tangent as a function of temperature. The activation energies corresponding to these two relaxation processes were found to be ∼0.5 eV and ∼1.5 eV. The occurrence of one relaxation peak in the dispersion curve of the imaginary part of the electric modulus suggests the absence of microphase separation in the film. Thermogravimetric analysis and infrared spectroscopic measurements showed that the films retained its integrity up to 300 °C. The dielectric relaxation at higher temperatures with large activation energy of 1.5 eV is attributed to increase in the barrier potential due to decrease in the polymer conjugation as a result of wide amplitude motion of the chain segments well above the glass transition temperature.

  17. Dielectric relaxation of selenium-tellurium mixed former glasses

    Science.gov (United States)

    Palui, A.; Ghosh, A.

    2017-05-01

    We report the study of dielectric properties of mixed network former glasses of composition 0.3Ag2O-0.7(xSeO2-(1-x)TeO2); x=0, 0.1, 0.3, 0.4, 0.5 and 0.6 in a wide frequency 10 Hz - 2 MHz and temperature range 223 K - 403 K. The experimental data have been analyzed in the framework of complex dielectric permittivity. The dielectric permittivity data have been analyzed using the Cole-Cole function. The inverse temperature dependence of relaxation time obtained from real part of dielectric permittivity data follows the Arrhenius relation. The activation energy shows mixed glass former effect with variation of mixed former ratio. A non-zero value of shape parameters is observed and it is almost independent of temperature and composition.

  18. Dielectric relaxations above room temperature in DMPU derived polyaniline film

    Energy Technology Data Exchange (ETDEWEB)

    Mallya, Ashwini N.; Yashavanth Kumar, G.S.; Ranjan, Rajeev [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Ramamurthy, Praveen C., E-mail: onegroupb203@gmail.com [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2012-09-15

    Dielectric measurements carried out on drop casted from solution of emeraldine base form of polyaniline films in the temperature range 30-300 Degree-Sign C revealed occurrence of two maxima in the loss tangent as a function of temperature. The activation energies corresponding to these two relaxation processes were found to be {approx}0.5 eV and {approx}1.5 eV. The occurrence of one relaxation peak in the dispersion curve of the imaginary part of the electric modulus suggests the absence of microphase separation in the film. Thermogravimetric analysis and infrared spectroscopic measurements showed that the films retained its integrity up to 300 Degree-Sign C. The dielectric relaxation at higher temperatures with large activation energy of 1.5 eV is attributed to increase in the barrier potential due to decrease in the polymer conjugation as a result of wide amplitude motion of the chain segments well above the glass transition temperature.

  19. A thermodynamic derivation of equations for dielectric-relaxation phenomena in anisotropic polarizable media

    NARCIS (Netherlands)

    Ciancio, V.; Kluitenberg, G.A.

    1990-01-01

    Using the general methods of non-equilibrium thermodynamics, a theory for anisotropic polarizable media in which dielectric relaxation phenomena occur is developed. Assuming that ii microscopic phenomena give rise to dielectric relaxation, the contributions of these phenomena to the macroscopic

  20. Study of observed broad dielectric relaxation and compatibility of polysulfone - Polyvinylidenefluoride blends

    Science.gov (United States)

    Patel, Swarnim; Shrivas, Sandhya; Dubey, R. K.; Keller, J. M.

    2018-05-01

    Short circuit thermally stimulated depolarization current measurement techniques has been employed to investigate the dielectric relaxation behavior of PSF: PVDF blends. The samples taken were blends of composition PSF: PVDF:: 80:20; 85:15; 90:10 and 95:05 percent by weight. The thermograms were characterized by a high value of initial current, a low temperature peak around 75-80°C and a prominent broad peak in the temperature interval 130 to 160°C. The two polymers are found to form compatible blend in the studied composition range.

  1. The dielectric α relaxation at a temperature close to T sub(g)

    International Nuclear Information System (INIS)

    Gomez Ribelles, J.L.; Diaz Calleja, R.

    1985-01-01

    It is shown in this work how the dependence of the mean relaxation times of the dielectric α relaxation on temperature deviates from the Williams, Landel and Ferry model at a temperature close to T sub(g). In some cases, an Arrhenius-like relationship for this relaxation can be observed for temperatures below T sub(g)

  2. A New Vogel-Like Law: Ionic Conductivity, Dielectric Relaxation and Viscosity Near the Glass Transition

    National Research Council Canada - National Science Library

    Bendler, John

    2001-01-01

    A model, based on defect diffusion, is developed that describes temperature and pressure dependence of dielectric relaxation, ionic conductivity and viscosity of glass-forming liquids near the glass...

  3. Relaxations and fast dynamics of the plastic crystal cyclo-octanol investigated by broadband dielectric spectroscopy

    OpenAIRE

    Lunkenheimer, Peter

    1997-01-01

    Relaxations and fast dynamics of the plastic crystal cyclo-octanol investigated by broadband dielectric spectroscopy / R. Brand, P. Lunkenheimer, A. Loidl. - In: Physical review. B. 56. 1997. S. R5713-R5716

  4. Dielectric relaxation in Yb-doped SrZrO3

    International Nuclear Information System (INIS)

    Kamishima, O; Abe, Y; Ishii, T; Kawamura, J; Hattori, T

    2004-01-01

    The dielectric constant of the proton conductor SrZr 1-x Yb x O 3 (x 0-0.1) was measured as a function of temperature and frequency. Two well-defined relaxation peaks were observed in SrZrO 3 doped with more than 1 mol% of Yb. The assignment of the two dielectric relaxations is discussed in terms of IR spectra and by free energy calculation for a miscibility of dopant Yb ions. The Yb concentration dependence of the relaxation strength of the two dielectric relaxations is in agreement with the results calculated from the free energy. The two relaxations can be assigned to a reorientation of a single Yb-OH dipole and of Yb-OH dipoles associated with Yb-clusters. The attractive energy for Yb-clustering in SrZrO 3 is evaluated at about -85 meV

  5. Dielectric relaxation and hydrogen bonding interaction in xylitol-water mixtures using time domain reflectometry

    Science.gov (United States)

    Rander, D. N.; Joshi, Y. S.; Kanse, K. S.; Kumbharkhane, A. C.

    2016-01-01

    The measurements of complex dielectric permittivity of xylitol-water mixtures have been carried out in the frequency range of 10 MHz-30 GHz using a time domain reflectometry technique. Measurements have been done at six temperatures from 0 to 25 °C and at different weight fractions of xylitol (0 xylitol-water can be well described by Cole-Davidson model having an asymmetric distribution of relaxation times. The dielectric parameters such as static dielectric constant and relaxation time for the mixtures have been evaluated. The molecular interaction between xylitol and water molecules is discussed using the Kirkwood correlation factor ( g eff ) and thermodynamic parameter.

  6. Low temperature dielectric relaxation and charged defects in ferroelectric thin films

    Directory of Open Access Journals (Sweden)

    A. Artemenko

    2013-04-01

    Full Text Available We report a dielectric relaxation in BaTiO3-based ferroelectric thin films of different composition and with several growth modes: sputtering (with and without magnetron and sol-gel. The relaxation was observed at cryogenic temperatures (T < 100 K for frequencies from 100 Hz up to 10 MHz. This relaxation activation energy is always lower than 200 meV and is very similar to the relaxation that we reported in the parent bulk perovskites. Based on our Electron Paramagnetic Resonance (EPR investigation, we ascribe this dielectric relaxation to the hopping of electrons among Ti3+-V(O charged defects. Being dependent on the growth process and on the amount of oxygen vacancies, this relaxation can be a useful probe of defects in actual integrated capacitors with no need for specific shaping.

  7. Stretched-exponential decay functions from a self-consistent model of dielectric relaxation

    International Nuclear Information System (INIS)

    Milovanov, A.V.; Rasmussen, J.J.; Rypdal, K.

    2008-01-01

    There are many materials whose dielectric properties are described by a stretched exponential, the so-called Kohlrausch-Williams-Watts (KWW) relaxation function. Its physical origin and statistical-mechanical foundation have been a matter of debate in the literature. In this Letter we suggest a model of dielectric relaxation, which naturally leads to a stretched exponential decay function. Some essential characteristics of the underlying charge conduction mechanisms are considered. A kinetic description of the relaxation and charge transport processes is proposed in terms of equations with time-fractional derivatives

  8. Dielectric Relaxation Studies of 2-Butoxyethanol with Aniline and Substituted Anilines Using Time Domain Reflectometry

    Directory of Open Access Journals (Sweden)

    P. Jeevanandham

    2014-01-01

    Full Text Available The complex dielectric spectra of 2-butoxyethanol with aniline and substituted anilines like aniline, o-chloroaniline, m-chloroaniline, o-anisidine and m-anisidine binary mixtures in the composition of different volumes of percent (0%, 25%, 50%, 75%, and 100% have been measured as a function of frequency between 10 MHz and 30 GHz at 298.15 K. The dielectric parameters like static dielectric constant ε0 and relaxation time τ have been obtained by using least square fit method. By using these parameters ε0,τ, effective Kirkwood correlation factor geff, corrective Kirkwood correlation factor gf, Bruggeman factor fB, excess dielectric constant εE, and excess inverse relaxation time 1/τE values are calculated and discussed to yield information on the dipolar alignment and molecular rotation of the binary liquid mixtures. From all the derived dielectric parameters, molecular interactions are interpreted through hydrogen bonding.

  9. Dielectric relaxation in Li2SO4 in the intermedia-temperature regime

    Science.gov (United States)

    Diosa, J. E.; Vargas, R. A.; Fernández, M. E.; Albinsson, I.; Mellander, B.-E.

    2005-08-01

    The dielectric permittivity of polycrystalline Li2SO4 was measured from 5 Hz to 13 MHz and over the temperature range 235-460 °C. The corrected imaginary part of permittivity, , and its real part vs. frequency clearly show a new dielectric relaxation around fmax = 2 × 104 Hz at T = 256 °C, which shifts to higher frequencies (1 MHz) as the temperatures increases. The relaxation frequency (calculated from the peak position of ) vs. reciprocal T shows an activated relaxation process with activation energy Ea= 0.9 eV, which is very close to that derived from the dc conductivity, E (0.87 eV). We suggest that this dielectric relaxation could be due to the Li+ jump and SO4- reorientation that cause distortion and change of the local lattice polarizability inducing dipoles like LiSO4-.

  10. Temperature dependent dielectric relaxation and ac-conductivity of alkali niobate ceramics studied by impedance spectroscopy

    Science.gov (United States)

    Yadav, Abhinav; Mantry, Snigdha Paramita; Fahad, Mohd.; Sarun, P. M.

    2018-05-01

    Sodium niobate (NaNbO3) ceramics is prepared by conventional solid state reaction method at sintering temperature 1150 °C for 4 h. The structural information of the material has been investigated by X-ray diffraction (XRD) and Field emission scanning electron microscopy (FE-SEM). The XRD analysis of NaNbO3 ceramics shows an orthorhombic structure. The FE-SEM micrograph of NaNbO3 ceramics exhibit grains with grain sizes ranging between 1 μm to 5 μm. The surface coverage and average grain size of NaNbO3 ceramics are found to be 97.6 % and 2.5 μm, respectively. Frequency dependent electrical properties of NaNbO3 is investigated from room temperature to 500 °C in wide frequency range (100 Hz-5 MHz). Dielectric constant, ac-conductivity, impedance, modulus and Nyquist analysis are performed. The observed dielectric constant (1 kHz) at transition temperature (400 °C) are 975. From conductivity analysis, the estimated activation energy of NaNbO3 ceramics is 0.58 eV at 10 kHz. The result of Nyquist plot shows that the electrical behavior of NaNbO3 ceramics is contributed by grain and grain boundary responses. The impedance and modulus spectrum asserts that the negative temperature coefficient of resistance (NTCR) behavior and non-Debye type relaxation in NaNbO3.

  11. Dielectric relaxation in biological systems physical principles, methods, and applications

    CERN Document Server

    Feldman, Yuri

    2015-01-01

    This title covers the theoretical basis and practical aspects of the study of dielectric properties of biological systems, such as water, electrolyte and polyelectrolytes, solutions of biological macromolecules, cells suspensions and cellular systems.

  12. Dielectric relaxation phenomena of rigid polar liquid molecules ...

    Indian Academy of Sciences (India)

    The probability of showing double relaxation is ... liquids can, however, be inferred from the measured relaxation time τ by Cole–Cole [3], ... A graphical method [13] was, soon employed from Fr¨ohlich's distribution function [14] to ...... tive to choose a few data for some systems for which chi-square values were adjusted to.

  13. Dielectric Relaxation of Bound Water versus Soil Matric Pressure

    NARCIS (Netherlands)

    Hilhorst, M.A.; Dirksen, C.; Kampers, F.W.H.; Feddes, R.A.

    2001-01-01

    The electrical permittivity of soil is a function of the water content, which facilitates water content measurements. The permittivity of soil is also a function of the frequency of the applied electric field. This frequency dependence can be described by the relationship between the dielectric

  14. Dielectric relaxation of ethanol and N-methyl acetamide polar ...

    Indian Academy of Sciences (India)

    is used in agriculture and food industry [5]. Dielectric ... state of molecular environment [11] within the framework of Debye model for binary ... Onsager equation [7] may be a better choice due to the strong intermolecular interac- tions as a result ...

  15. Synergic nature of dielectric relaxation process in the layered perovskite halide salts: The case of 1,3- diammoniumpropylenetetrabromocadmate compound

    Science.gov (United States)

    Staśkiewicz, Beata

    2018-06-01

    The negative thermal expansion (NTE) property was a prototype to discuss the origin of difference between classical Debye relaxation process and the non-Debye behavior in the layered perovskite halide salt of chemical formula NH3(CH2)3NH3CdBr4. The analysis has been taken by dielectric relaxation spectroscopy measurements in almost six decades in frequency 5 × 102 ≤ f(ω) ≤ 1.2 × 108 and in the temperature range 315 ≤ T(K) ≤ 390. It was shown that the investigated sample exhibit an antiferrodistortive nature of phase transition between two orthorhombic structural modifications i.e. Pnma (phase I) and Ima2 (phase II) at Tc1(I → II) = 326 K, leading from an antiferroelectric to a paraelectric phase. The involvement of an odd number of carbon atoms in the alkylammonium chains in dielectric properties of examined sample is proved. Higher structural modifications, i.e. Ima2 (phase II) and P21/m (phase III), have shown significant deviations from a regular circle on the Cole-Cole diagram. Presented experimental observations are essentially important for the theoretical explanation of relaxation processes in analyzed organic - inorganic compound crystallizing in a perovskite-like topology and may provide new perspective on the fundamental aspect of relaxation response in "diammonium" series.

  16. Dielectric relaxation in solid collagen over a wide temperature range

    International Nuclear Information System (INIS)

    Khan, Muhammad Abdullah; Rizvi, Tasneem Zahra; Janjua, Khalid Mehmood; Zaheer, Muhammad Yar

    2001-07-01

    Dielectric constant ε' and loss factor ε'' have been measured in bovine tendon collagen in the frequency range 30 Hz - 3 MHz and temperature range 30 deg. C to 200 deg. C. Frequency dependence curve of ε'' shows a low frequency strong α-dispersion attributed to phonon assisted proton hopping between localized sites and a weak high frequency. α 2 - dispersion attributed to reorientation of polar components of collagen molecules. Temperature dependence of the dielectric data show release of bound moisture as a three step process with discrete peaks at 50 deg. C, 90 deg. C and 125 deg. C. These peaks have been attributed to release of adsorbed surface water, water bound to exposed polar sites and strongly bound internal moisture respectively. A peak observed at 160 deg. C has been attributed to thermally induced helix-coil transition of collagen molecules. (author)

  17. Depolarization current relaxation process of insulating dielectrics after corona poling under different charging conditions

    Directory of Open Access Journals (Sweden)

    J. W. Zhang

    2017-10-01

    Full Text Available As an insulating dielectric, polyimide is favorable for the application of optoelectronics, electrical insulation system in electric power industry, insulating, and packaging materials in space aircraft, due to its excellent thermal, mechanical and electrical insulating stability. The charge storage profile of such insulating dielectric is utmost important to its application, when it is exposed to electron irradiation, high voltage corona discharge or other treatments. These treatments could induce changes in physical and chemical properties of treated samples. To investigate the charge storage mechanism of the insulating dielectrics after high-voltage corona discharge, the relaxation processes responsible for corona charged polyimide films under different poling conditions were analyzed by the Thermally Stimulated Discharge Currents method (TSDC. In the results of thermal relaxation process, the appearance of various peaks in TSDC spectra provided a deep insight into the molecular status in the dielectric material and reflected stored space charge relaxation process in the insulating polymers after corona discharge treatments. Furthermore, the different space charge distribution status under various poling temperature and different discharge voltage level were also investigated, which could partly reflect the influence of the ambiance condition on the functional dielectrics after corona poling.

  18. Depolarization current relaxation process of insulating dielectrics after corona poling under different charging conditions

    Science.gov (United States)

    Zhang, J. W.; Zhou, T. C.; Wang, J. X.; Yang, X. F.; Zhu, F.; Tian, L. M.; Liu, R. T.

    2017-10-01

    As an insulating dielectric, polyimide is favorable for the application of optoelectronics, electrical insulation system in electric power industry, insulating, and packaging materials in space aircraft, due to its excellent thermal, mechanical and electrical insulating stability. The charge storage profile of such insulating dielectric is utmost important to its application, when it is exposed to electron irradiation, high voltage corona discharge or other treatments. These treatments could induce changes in physical and chemical properties of treated samples. To investigate the charge storage mechanism of the insulating dielectrics after high-voltage corona discharge, the relaxation processes responsible for corona charged polyimide films under different poling conditions were analyzed by the Thermally Stimulated Discharge Currents method (TSDC). In the results of thermal relaxation process, the appearance of various peaks in TSDC spectra provided a deep insight into the molecular status in the dielectric material and reflected stored space charge relaxation process in the insulating polymers after corona discharge treatments. Furthermore, the different space charge distribution status under various poling temperature and different discharge voltage level were also investigated, which could partly reflect the influence of the ambiance condition on the functional dielectrics after corona poling.

  19. Conductivity relaxation and charge transport of trihexyl tetradecyl phosphonium dicyanamide ionic liquid by broadband dielectric spectroscopy

    Science.gov (United States)

    Thasneema K., K.; Thayyil, M. Shahin; Krishna Kumar N., S.; Govindaraj, G.; Saheer, V. C.

    2018-04-01

    Usually ionic liquids consists of a large organic cation with low symmetry such as imidazolium, pyridinium, quaternary ammonium or phosponium etc combined with enormously wide range of inorganic or organic symmetric anion with melting point below 100. Ionic liquids existing in an extremely large number of possible ion pair combinations. It offers a very wide range of thermo physical properties led to the concept of designer solvents for specific applications. Due to the features of high chemical and thermal stability, low vapor pressure non flammability high ionic conductivity, and they show a good solvent ability towards a great variety of organic or inorganic compounds, ionic liquids have a widespread use in many areas such as batteries, fuel cell, solar cells, super capacitors etc. The main focus of this work is the study of molecular dynamics and conductivity relaxation of amorphous Trihexyl tetradecyl phosphonium dicyanamide ([P14,6,6,6][N(CN)2]) ionic liquid which is proved as a better electrolyte in super capacitors, over a wide frequency 10-2 Hz to 107 Hz and the temperature range between 123k and 265 k by means of Broadband Dielectric Spectroscopy. We observe alpha conductivity relaxation and secondary relaxation above and below Glass Transition Temperature. The experimental results were analyzed using electric modulus representation. The analysis emphasis the inter molecular interaction and the nature of glass forming system, whether it is fragile or strong system. The ionic liquid shows a fragile behavior and the fragility index m=123.59. TGA result of the sample exhibit a good resistance to thermal decomposition, up to 300°C.

  20. Dielectric relaxation studies in 5CB nematic liquid crystal at 9 GHz ...

    Indian Academy of Sciences (India)

    Resonance width, shift in resonance frequency, relaxation time and activation energy of 5CB nematic liquid crystal are measured using microwave cavity technique under the influence of an external magnetic field at 9 GHz and at different temperatures. The dielectric response in liquid crystal at different temperatures and ...

  1. High temperature dielectric relaxation anomaly of Y3+ and Mn2+ doped barium strontium titanate ceramics

    International Nuclear Information System (INIS)

    Yan, Shiguang; Mao, Chaoliang; Wang, Genshui; Yao, Chunhua; Cao, Fei; Dong, Xianlin

    2014-01-01

    Relaxation like dielectric anomaly is observed in Y 3+ and Mn 2+ doped barium strontium titanate ceramics when the temperature is over 450 K. Apart from the conventional dielectric relaxation analysis method with Debye or modified Debye equations, which is hard to give exact temperature dependence of the relaxation process, dielectric response in the form of complex impedance, assisted with Cole-Cole impedance model corrected equivalent circuits, is adopted to solve this problem and chase the polarization mechanism in this paper. Through this method, an excellent description to temperature dependence of the dielectric relaxation anomaly and its dominated factors are achieved. Further analysis reveals that the exponential decay of the Cole distribution parameter n with temperature is confirmed to be induced by the microscopic lattice distortion due to ions doping and the interaction between the defects. At last, a clear sight to polarization mechanism containing both the intrinsic dipolar polarization and extrinsic distributed oxygen vacancies hopping response under different temperature is obtained.

  2. Dielectric relaxation of barium strontium titanate and application to thin films for DRAM capacitors

    Science.gov (United States)

    Baniecki, John David

    This thesis examines the issues associated with incorporating the high dielectric constant material Barium Strontium Titanate (BSTO) in to the storage capacitor of a dynamic random access memory (DRAM). The research is focused on two areas: characterizing and understanding the factors that control charge retention in BSTO thin films and modifying the electrical properties using ion implantation. The dielectric relaxation of BSTO thin films deposited by metal-organic chemical vapor deposition (MOCVD) is investigated in the time and frequency domains. It is shown that the frequency dispersion of the complex capacitance of BSTO thin films can be understood in terms of a power-law frequency dependence from 1mHz to 20GHz. From the correspondence between the time and frequency domain measurements, it is concluded that the power-law relaxation currents extend back to the nano second regime of DRAM operation. The temperature, field, and annealing dependence of the dielectric relaxation currents are also investigated and mechanisms for the observed power law relaxation are explored. An equivalent circuit model of a high dielectric constant thin film capacitor is developed based on the electrical measurements and implemented in PSPICE. Excellent agreement is found between the experimental and simulated electrical characteristics showing the utility of the equivalent circuit model in simulating the electrical properties of high dielectric constant thin films. Using the equivalent circuit model, it is shown that the greatest charge loss due to dielectric relaxation occurs during the first read after a refresh time following a write to the opposite logic state for a capacitor that has been written to the same logic state for a long time (opposite state write charge loss). A theoretical closed form expression that is a function of three material parameters is developed which estimates the opposite state write charge loss due to dielectric relaxation. Using the closed form

  3. AC electrical conductivity and dielectric relaxation studies on n-type organic thin films of N, N‧-Dimethyl-3,4,9,10-perylenedicarboximide (DMPDC)

    Science.gov (United States)

    Qashou, Saleem I.; Darwish, A. A. A.; Rashad, M.; Khattari, Z.

    2017-11-01

    Both Alternating current (AC) conductivity and dielectric behavior of n-type organic thin films of N, N‧-Dimethyl-3,4,9,10-perylenedicarboximide (DMPDC) have been investigated. Fourier transformation infrared (FTIR) spectroscopy is used for identifying both powder and film bonds which confirm that there are no observed changes in the bonds between the DMPDC powder and evaporated films. The dependence of AC conductivity on the temperature for DMPDC evaporated films was explained by the correlated barrier hopping (CBH) model. The calculated barrier height using CBH model shows a decreasing behavior with increasing temperature. The mechanism of dielectric relaxation was interpreted on the basis of the modulus of the complex dielectric. The calculated activation energy of the relaxation process was found to be 0.055 eV.

  4. Creep and relaxation behavior of Inconel-617

    International Nuclear Information System (INIS)

    Osthoff, W.; Ennis, P.J.; Nickel, H.; Schuster, H.

    1984-01-01

    The static and dynamic creep behavior of Inconel alloy 617 has been determined in constant load creep tests, relaxation tests, and stress reduction tests in the temperature range 1023 to 1273 K. The results have been interpreted using the internal stress concept: The dependence of the internal stress on the applied stress and test temperature was determined. In a few experiments, the influence of cold deformation prior to the creep test on the magnitude of the internal stress was also investigated. It was found that the experimentally observed relaxation behavior could be more satisfactorily described using the Norton creep equation modified by incorporation of the internal stress than by the conventional Norton creep equation

  5. Study of dielectric relaxation and AC conductivity of InP:S single crystal

    Science.gov (United States)

    El-Nahass, M. M.; Ali, H. A. M.; El-Shazly, E. A.

    2012-07-01

    The dielectric relaxation and AC conductivity of InP:S single crystal were studied in the frequency range from 100 to 5.25 × 105 Hz and in the temperature range from 296 to 455 K. The dependence of the dielectric constant (ɛ1) and the dielectric loss (ɛ2) on both frequency and temperature was investigated. Since no peak was observed on the dielectric loss, we used a method based on the electric modulus to evaluate the activation energy of the dielectric relaxation. Scaling of the electric modulus spectra showed that the charge transport dynamics is independent of temperature. The AC conductivity (σAC) was found to obey the power law: Aωs. Analysis of the AC conductivity data and the frequency exponent showed that the correlated barrier hopping (CBH) model is the dominant mechanism for the AC conduction. The variation of AC conductivity with temperature at different frequencies showed that σAC is a thermally activated process.

  6. Influence of E-beam irradiation on dielectric relaxation of recycled polypropylene

    International Nuclear Information System (INIS)

    Fazilova, Z.; Gafurov, U.; Tolstov, A.

    2004-01-01

    Full text: The dielectric relaxation connected with molecular groups and polymer chain mobility for un-irradiated and e-beam irradiated recycled polypropylene was investigated. It was studied films of samples produced from virgin (initial) and e- beam irradiated of the polymer granules (E-beam source with 5 MeV energy). The dielectric losses were measured with temperature increasing and decreasing regime. The losses were measured with E8-4 bridge help (the frequency is 1kH). Heating velocity was 2 grad/min. The dielectric losses did not appeared in minus temperature region for the initial polypropylene samples. The measurement in temperature increasing and decreasing shows that the relaxation peak at ∼ 35 o C for un-irradiated and ∼70 o C for irradiated polymer samples connected with macromolecular segments mobility with water molecular groups participation. The main relaxation peak (higher 100 o C) shifts after e-beam irradiation is result of the cross-links formation. ) The peak connected with macromolecular segments mobility in polymer amorphous regions (β-relaxation process). In irradiated polypropylene on IR spectroscopy data oxygen molecular groups is increased. The molecular groupings form inter-molecular hydrogen bonds. The intermolecular bonds also hindered molecular groups and macromolecular mobility. The e-beam stimulated cross-links formation was confirmed by method of sol-gel analyses. The work was supported by STCU Fund (Project No 3009)

  7. Anomalous dielectric relaxation in lithium-potassium tantalate crystals

    Science.gov (United States)

    Doussineau, P.; Farssi, Y.; Frénois, C.; Levelut, A.; Toulouse, J.; Ziolkiewicz, S.

    1994-08-01

    In order to describe the unusual dielectric properties observed in Ki{1-χ}Li{χ}TaO3. crystals a new approchh is proposed. The dynamical Glauber theory, previously applied to spinglasses, is modifiéd by the introduction of the spectral distribution of the random interactions between the dipoles associated with the Li+ ions. Moreover, the dipole corrélations are taken into account by the Onsager réaction field. As a result, the calculated dielectric constant reproduces well the unusual features of the Argand diagrams and, in particular, their finite slope at low frequencies and infinite slope at high frequencies (strophoidal shape). The temperature dépendance of some parameters shows, however, the limits of a spin-glass type model in describing the collective behaviour of randomly distributed dipoles in a highly polarizable medium. Une nouvelle approche est présentée qui permet de décrire les propriétés diélectriques particulières de cristaux mixtes de Ki{1-χ}Li{χ}TaO3. Elle s'appuie sur la théorie dynamique de Glauber, déjà utilisée pour les verres de spins, et modifiée par l'introduction d'une distribution spectrale spécifique aux interactions aléatoires des dipôles électriques associés aux ions Li+. En outre, les corrélations entre dipôles sont prises en compte par le champ de réaction d'Onsager. II s'ensuit que la constante diélectrique complexe ainsi calculée reproduit fidèlement les particularités des diagrammes d'Argand, telles que la pente finie aux basses fréquences et la pente infinie aux hautes fréquences (forme strophoïdale). La dépendance en température de certains paramètres déterminés par le calcul montre les limites de l'analogie avec les verres de spins et met en évidence le rôle d'un réseau très polarisable dans le comportement collectif d'une assemblée de dipôles électriques.

  8. Investigation of dielectric relaxation in systems with hierarchical organization: From time to frequency domain and back again

    Energy Technology Data Exchange (ETDEWEB)

    Yokoi, Koki [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI (United States); Raicu, Valerică, E-mail: vraicu@uwm.edu [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI (United States); Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI (United States)

    2017-06-28

    Relaxation in fractal structures was investigated theoretically starting from a simple model of a Cantorian tree and kinetic equations linking the change in the number of particles (e.g., electrical charges) populating each branch of the tree and their transfer to other branches or to the ground state. We numerically solved the system of differential equations obtained and determined the so-called cumulative distribution function of particles, which, in dielectric or mechanical relaxation parlance, is the same as the relaxation function of the system. As a physical application, we studied the relationship between the dielectric relaxation in time-domain and the dielectric dispersion in the frequency-domain. Upon choosing appropriate rate constants, our model described accurately well-known non-exponential and non-Debye time- and frequency-domain functions, such as stretched exponentials, Havrilliak–Negami, and frequency power law. Our approach opens the door to applying kinetic models to describe a wide array of relaxation processes, which traditionally have posed great challenges to theoretical modeling based on first principles. - Highlights: • Relaxation was investigated for a system of particles flowing through a Cantorian tree. • A set of kinetic equations was formulated and used to compute the relaxation function of the system. • The dispersion function of the system was computed from the relaxation function. • An analytical method was used to recover the original relaxation function from the dispersion function. • This formalism was used to study dielectric relaxation and dispersion in fractal structures.

  9. Excitations and relaxation dynamics in multiferroic GeV4S8 studied by terahertz and dielectric spectroscopy

    Science.gov (United States)

    Reschke, S.; Wang, Zhe; Mayr, F.; Ruff, E.; Lunkenheimer, P.; Tsurkan, V.; Loidl, A.

    2017-10-01

    We report on THz time-domain spectroscopy on multiferroic GeV4S8 , which undergoes orbital ordering at a Jahn-Teller transition at 30.5 K and exhibits antiferromagnetic order below 14.6 K. The THz experiments are complemented by dielectric experiments at audio and radio frequencies. We identify a low-lying excitation close to 0.5 THz, which is only weakly temperature dependent and probably corresponds to a molecular excitation within the electronic level scheme of the V4 clusters. In addition, we detect complex temperature-dependent behavior of a low-lying phononic excitation, closely linked to the onset of orbitally driven ferroelectricity. In the high-temperature cubic phase, which is paramagnetic and orbitally disordered, this excitation is of relaxational character becomes an overdamped Lorentzian mode in the orbitally ordered phase below the Jahn-Teller transition, and finally appears as well-defined phonon excitation in the antiferromagnetic state. Abrupt changes in the real and imaginary parts of the complex dielectric permittivity show that orbital ordering appears via a structural phase transition with strong first-order character and that the onset of antiferromagnetic order is accompanied by significant structural changes, which are of first-order character, too. Dielectric spectroscopy documents that at low frequencies, significant dipolar relaxations are present in the orbitally ordered, paramagnetic phase only. In contrast to the closely related GaV4S8 , this relaxation dynamics that most likely mirrors coupled orbital and polar fluctuations does not seem to be related to the dynamic processes detected in the THz regime.

  10. Dielectric relaxation of guest molecules in a clathrate structure of syndiotactic polystyrene.

    Science.gov (United States)

    Urakawa, Osamu; Kaneko, Fumitoshi; Kobayashi, Hideo

    2012-12-13

    Structure and dynamics of semicrystalline polymer films composed of syndiotactic polystyrene (sPS) and 2-butanone were examined through X-ray diffraction, polarized FTIR, and dielectric relaxation measurements. The X-ray and FTIR measurements revealed its crystal structure to be δ-clathrate containing 2-butanone molecules inside. The carbonyl group of 2-butanone in the crystal was found to orient preferentially parallel to the ac plane of the crystal through the polarized ATR FTIR measurements. Dielectric measurements were also conducted on these film samples to see only the relaxation dynamics of 2-butanone thanks to the high dielectric intensity of 2-butanone compared to sPS. Two relaxation modes denoted by slow and fast modes appeared. The former was assigned to the motion of 2-butanone molecules entrapped in the cavities of the crystalline (δ-form) and the latter to those in the amorphous region. We focused on the slow mode in order to elucidate the specific dynamics of the guest molecule confined in the crystalline region. The relaxation time of the slow mode was about 4 orders of magnitude longer than that of liquid 2-butanone. This suggests that the dynamics of guest molecules is highly restricted due to the high barrier to conformational and/or orientational change of the guest molecule in the cavity of δ-crystal. Furthermore, the dielectric intensity Δε of the slow mode was much smaller than the one calculated from that of bulk liquid 2-butanone and the guest concentration in the crystalline region (the intensity was only 10% of the estimated value from the bulk liquid data). This result also indicates that the free rotational motion of 2-butanone molecules is restricted inside the crystal. This will be consistently related to the weak uniplanar orientation of the carbonyl group of 2-butanone parallel to the ac plane revealed by the X-ray and polarized ATR FTIR measurements.

  11. Dielectric relaxation and ac conduction in γ-irradiated UHMWPE/MWCNTs nano composites: Impedance spectroscopy analysis

    International Nuclear Information System (INIS)

    Maqbool, Syed Asad; Mehmood, Malik Sajjad; Mukhtar, Saqlain Saqib; Baluch, Mansoor A.; Khan, Shamim; Yasin, Tariq; Khan, Yaqoob

    2017-01-01

    The dielectric behavior of γ-irradiated ultra-high molecular weight polyethylene (UHMWPE) and its nano composites (NCs) with γ-ray modified multi wall carbon nano tubes (γ-MWCNTs) and MWCNTs had been studied using impedance spectroscopy. The study had been carried out in the frequency range of 20–2 MHz at room temperature. All samples (pure and NCs) were prepared in the form of sheets and irradiated with γ-dose of 50 kGy and 100 kGy, respectively. The comprehensive analysis of results revealed that resistivity of UHMWPE for conduction decreased on irradiation and incorporation of MWCNTs (whether γ ray modified or un-modified) due to the radiation induced damage and conductive networks induced by MWCNTs. At low frequency range a significant increase in the dielectric constant had been observed because of irradiation and addition of MWNCTs. The trend of loss tangent and ac conductivity for each investigated sample depended on resistivity offered and had a decreasing trend as a function of frequency. Moreover, dissipation factor increased with the incorporation of MWNCTs and irradiation from 0.12 to 0.22. In addition to this, non-frequency dependent static dielectric constant was also found to increase with irradiation and incorporation of MWCNTs. The relaxation time was found to increase from 1.2 to 4.3 ms due to hindrance offered by radiation induced mutual cross linking of PE chains and polymer-MWNCTs bindings. - Highlights: • The resistivity for conduction in pristine UHMWPE is decreased with γ-irradiation. • Conduction in PE/MWCNTs nanocomposites increased due to MWCNTs addition. • Static dielectric constant of UHMWPE increased with γ-irradiation. • Static dielectric constant of UHMWPE increased due to MWCNTs incorporation.

  12. Dielectric relaxation spectra of liquid crystals in relation to molecular structure

    International Nuclear Information System (INIS)

    Wrobel, S.

    1986-07-01

    The dielectric spectra obtained for some members of two homologous series, i.e. for di-alkoxyazoxybenzenes and penthyl-alkoxythiobenzoates, are discussed qualitatively on the basis of the Nordio-Rigatti-Segre diffusion model. It is additionally assumed that the molecular reorientations take place about the principal axes of the inertia tensor. The distribution of correlation times, which is strongly temperature dependent in the vicinity of the clearing point, is interpreted as being caused by fluctuations of the principal axes frame which are due to conformation changes inside the end chains. The Bauer equation is used to describe both principal molecular reorientations, i.e. the reorientations about the long and short axis, observed in liquid crystalline structure by means of dielectric relaxation methods. The energies and entropies of activation have been computed for both principal reorientations. The differences between the high frequency limit of the dielectric permittivity and the refractive index squared of liquid crystals are explained in terms of two librational motions of the molecules observed by other experimental techniques, viz. far infra-red, Raman and inelastic neutron scattering spectroscopies, and found in this work on the basis of dielectrically measured energy barriers. It has been shown qualitatively that intramolecular libratory motions greatly effect the high frequency dielectric spectrum. Finally, molecular motions in liquid crystals are divided into two types: coherent and incoherent. 127 refs., 56 figs., 17 tabs. (author)

  13. Scaling parallels in the non-Debye dielectric relaxation of ionic glasses and dipolar supercooled liquids

    International Nuclear Information System (INIS)

    Sidebottom, D.L.; Green, P.F.; Brow, R.K.

    1997-01-01

    We compare the dielectric response of ionic glasses and dipolar liquids near the glass transition. Our work is divided into two parts. In the first section we examine ionic glasses and the two prominent approaches to analyzing the dielectric response. The conductivity of ion-conducting glasses displays a power law dispersion σ(ω)∝ω n , where n∼0.67, but frequently the dielectric response is analyzed using the electrical modulus M * (ω)=1/var-epsilon * (ω), where var-epsilon * (ω)=var-epsilon(ω)-iσ(ω)/ω is the complex permittivity. We reexamine two specific examples where the shape of M * (ω) changes in response to changes in (a) temperature and (b) ion concentration, to suggest fundamental changes in ion dynamics are occurring. We show, however, that these changes in the shape of M * (ω) occur in the absence of changes in the scaling properties of σ(ω), for which n remains constant. In the second part, we examine the dielectric relaxation found in dipolar liquids, for which var-epsilon * (ω) likewise exhibits changes in shape on approach to the glass transition. Guided by similarities of M * (ω) in ionic glasses and var-epsilon * (ω) in dipolar liquids, we demonstrate that a recent scaling approach proposed by Dixon and co-workers for var-epsilon * (ω) of dipolar relaxation also appears valid for M * (ω) in the ionic case. While this suggests that the Dixon scaling approach is more universal than previously recognized, we demonstrate how the dielectric response can be scaled in a linear manner using an alternative data representation. copyright 1997 The American Physical Society

  14. Effect of organo-clay on the dielectric relaxation response of silicone rubber

    International Nuclear Information System (INIS)

    Gharavi, N; Razzaghi-Kashani, M; Golshan-Ebrahimi, N

    2010-01-01

    Dielectric elastomers are light weight, low-cost, highly deformable and fast response smart materials capable of converting electrical energy into mechanical work or vice versa. Silicone rubber is a well-known dielectric elastomer which is used as actuator, and in order to enhance the efficiency of this smart material, compounding of silicone rubber with various fillers can be carried out. The effect of organically modified montmorillonite (OMMT) nano-clay on improvement of dielectric properties, actuation stress and its relaxation response was considered in this study. OMMT was dispersed in room temperature vulcanized (RTV) silicone rubber, and a composite film was cast. Using an in-house actuation set-up, it was shown that the actuation stress for a given electric field intensity is higher for composites than that for pristine silicone rubber. Also, the time-dependent actuation response of the samples was evaluated, and it was shown that the characteristic relaxation time of the actuation stress for composites is less than for the pristine rubber as a result of OMMT addition

  15. Conductorlike behavior of a photoemitting dielectric surface

    Science.gov (United States)

    De, B. R.

    1979-01-01

    It has been suggested in the past that a uniformly illuminated photoemitting dielectric surface of finite extent acquires in the steady state a surface charge distribution as if the surface were conducting (i.e., the surface becomes equipotential). In this paper an analytical proof of this conductorlike behavior is given. The only restrictions are that the photoelectron emission from the surface has azimuthal symmetry and that the photosheath may be assumed to be collisionless. It is tacitly assumed that a steady state is attainable, which means that the photoelectron spectrum has a high-energy cutoff.

  16. Complex dielectric permittivity and dielectric relaxation of heavy water along its curve of existence

    Energy Technology Data Exchange (ETDEWEB)

    Nabokov, O.A.; Lyubimov, Yu.A.

    1985-10-01

    The authors previously studied the complex dielectric permittivity of ordinary water at 70-200/sup 0/C. Similar measurements were performed in this work for D/sub 2/O by incomplete filling of a microwave resonator at a frequency of about 9.3 GHz. Distilled 99.8% D/sub 2/O was used. For D/sub 2/O, the value of tau/sub D/T/eta (where eta is the viscosity) increases with increasing temperature, so that at 140/sup 0/C its change goes beyond the limits of error of the measurement of tau/sub D/ and eta. The gradual increase in tau/sub D/T/eta and tau/sub D/D with temperature indicates weakening of the interaction between orientation and translation movements of the liquid D/sub 2/O molecules with increasing temperature. 11 references, 1 figure.

  17. Dielectric relaxation of 2-ethyl-1-hexanol around the glass transition by thermally stimulated depolarization currents.

    Science.gov (United States)

    Arrese-Igor, S; Alegría, A; Colmenero, J

    2015-06-07

    We explore new routes for characterizing the Debye-like and α relaxation in 2-ethyl-1-hexanol (2E1H) monoalcohol by using low frequency dielectric techniques including thermally stimulated depolarization current (TSDC) techniques and isothermal depolarization current methods. In this way, we have improved the resolution of the overlapped processes making it possible the analysis of the data in terms of a mode composition as expected for a chain-like response. Furthermore the explored ultralow frequencies enabled to study dynamics at relatively low temperatures close to the glass transition (Tg). Results show, on the one hand, that Debye-like and α relaxation timescales dramatically approach to each other upon decreasing temperature to Tg. On the other hand, the analysis of partial polarization TSDC data confirms the single exponential character of the Debye-like relaxation in 2E1H and rules out the presence of Rouse type modes in the scenario of a chain-like response. Finally, on crossing the glass transition, the Debye-like relaxation shows non-equilibrium effects which are further emphasized by aging treatment and would presumably emerge as a result of the arrest of the structural relaxation below Tg.

  18. Dielectric relaxations and conduction mechanisms in polyether-clay composite polymer electrolytes under high carbon dioxide pressure.

    Science.gov (United States)

    Kitajima, Shunsuke; Bertasi, Federico; Vezzù, Keti; Negro, Enrico; Tominaga, Yoichi; Di Noto, Vito

    2013-10-21

    The composite material P(EO/EM)-Sa consisting of synthetic saponite (Sa) dispersed in poly[ethylene oxide-co-2-(2-methoxyethoxy)ethyl glycidyl ether] (P(EO/EM)) is studied by "in situ" measurements using broadband electrical spectroscopy (BES) under pressurized CO2 to characterize the dynamic behavior of conductivity and the dielectric relaxations of the ion host polymer matrix. It is revealed that there are three dielectric relaxation processes associated with: (I) the dipolar motions in the short oxyethylene side chains of P(EO/EM) (β); and (II) the segmental motion of the main chains comprising the polyether components (αfast, αslow). αslow is attributed to the slow α-relaxation of P(EO/EM) macromolecules, which is hindered by the strong coordination interactions with the ions. Two conduction processes are observed, σDC and σID, which are attributed, respectively, to the bulk conductivity and the interdomain conductivity. The temperature dependence of conductivity and relaxation processes reveals that αfast and αslow are strongly correlated with σDC and σID. The "in situ" BES measurements under pressurized CO2 indicate a fast decrease in σDC at the initial CO2 treatment time resulting from the decrease in the concentration of polyether-M(n+) complexes, which is driven by the CO2 permeation. The relaxation frequency (fR) of αslow at the initial CO2 treatment time increases and shows a steep rise with time with the same behavior of the αfast mode. It is demonstrated that the interactions between polyether chains of P(EO/EM) and cations in the polymer electrolyte layers embedded in Sa are probably weakened by the low permittivity of CO2 (ε = 1.08). Thus, the formation of ion pairs in the polymer electrolyte domains of P(EO/EM)-Sa occurs, with a corresponding reduction in the concentration of ion carriers.

  19. The Dielectric Behavior of Cyano-Substituted Poly imides

    International Nuclear Information System (INIS)

    Elshazly, E.S.; Abdelrahman, A.A.M.; Elmasry, M.A.A.

    2013-01-01

    A number of amorphous poly imides containing polar functional groups, cyano group, have been synthesized and investigated for potential use as high temperature piezoelectric sensors. The piezoelectric constants are related to the polarization. The remanent polarization and hence piezoelectric response of a material is determined by dielectric relaxation strength which is the difference in dielectric constant at the glass transition temperature vicinity. The intent of this work is to clarify the mechanism and key components required for developing piezoelectricity in amorphous polymers and further to apply this understanding in designing a unique high temperature piezoelectric polyimide. In this paper, experimental investigations of dielectric constant of piezoelectric cyano -substituted poly imides have been tested as a function of temperature to measure the dielectric relaxation strength in the glass transition temperature region.

  20. Molecular relaxation behavior and isothermal crystallization above glass transition temperature of amorphous hesperetin.

    Science.gov (United States)

    Shete, Ganesh; Khomane, Kailas S; Bansal, Arvind Kumar

    2014-01-01

    The purpose of this paper was to investigate the relaxation behavior of amorphous hesperetin (HRN), using dielectric spectroscopy, and assessment of its crystallization kinetics above glass transition temperature (Tg ). Amorphous HRN exhibited both local (β-) and global (α-) relaxations. β-Relaxation was observed below Tg , whereas α-relaxation prominently emerged above Tg . β-Relaxation was found to be of Johari-Goldstein type and was correlated with α-process by coupling model. Secondly, isothermal crystallization experiments were performed at 363 K (Tg + 16.5 K), 373 K (Tg + 26.5 K), and 383 K (Tg + 36.5 K). The kinetics of crystallization, obtained from the normalized dielectric strength, was modeled using the Avrami model. Havriliak-Negami (HN) shape parameters, αHN and αHN .βHN , were analyzed during the course of crystallization to understand the dynamics of amorphous phase during the emergence of crystallites. HN shape parameters indicated that long range (α-like) were motions affected to a greater extent than short range (β-like) motions during isothermal crystallization studies at all temperature conditions. The variable behavior of α-like motions at different isothermal crystallization temperatures was attributed to evolving crystallites with time and increase in electrical conductivity with temperature. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  1. Dielectric relaxation and ac conductivity behaviour of polyvinyl alcohol–HgSe quantum dot hybrid films

    International Nuclear Information System (INIS)

    Sinha, Subhojyoti; Chatterjee, Sanat Kumar; Meikap, Ajit Kumar; Ghosh, Jiten

    2014-01-01

    Here we report a comparative study on the dielectric relaxation and ac conductivity behaviour of pure polyvinyl alcohol (PVA) and PVA–mercury selenide (HgSe) quantum dot hybrid films in the temperature range 298 K ⩽ T ⩽ 420 K and in the frequency range 100 Hz ⩽ f ⩽ 1 MHz. The prepared nanocomposite exhibits a larger dielectric constant as compared to the pure PVA. The real and imaginary parts of the dielectric constants were found to fit appreciably with the modified Cole–Cole equation, from which temperature-dependent values of the relaxation times, free charge carrier conductivity and space charge carrier conductivity were calculated. The relaxation time decreases with the quantum dot's inclusion in the PVA matrix and with an increase in temperature, whereas free charge carrier conductivity and space charge carrier conductivity increases with an increase in temperature. An increase in ac conductivity for the nanocomposites has also been observed, while the charge transport mechanism was found to follow the correlated barrier hopping model in both cases. An easy-path model with a suitable electrical equivalent circuit has been employed to analyse the temperature-dependent impedance spectra. The imaginary part of the complex electric modulus spectra exhibit an asymmetric nature and a non-Debye type of behaviour, which has been elucidated considering a generalized susceptibility function. The electric modulus spectra of the nanocomposite demonstrate a smaller amplitude and broader width, as compared to the pure PVA sample. (paper)

  2. Dielectric relaxations in non-metallic materials related to Y-Ba-Cu-O superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bennani, H.; Pilet, J.C. (Lab. Instrumentation, Rennes-1 Univ., 35 (France)); Guilloux-Viry, M.; Perrin, C.; Perrin, A.; Sergent, M. (Lab. de Chimie Minerale B, C.N.R.S., 35 - Rennes (France))

    1990-10-15

    In relation with high Tc superconducting material studies, dielectric measurements have been carried out, in the frequency range 10 Hz - 100 kHz, on two powdered compounds belonging to the Y-Ba-Cu-O system. The non-metallic tetragonal phases YBa{sub 2}Cu{sub 3}O{sub 6+x} exhibit dielectric relaxations: for the studied samples (x<0.4) the activation energy U is observed in the range 0.5dielectric relaxation has been detected at higher temperature, near 400 K. Additional measurements to 77 K at 1 MHz give a value of dielectric constant {epsilon}'=3 and a low loss factor tg{delta}=10{sup -3}: this latter value is comparable to the one of lanthanum gallate recently proposed as a substrate for high frequency uses. This result enhances the previously reported potential interest of this material as substrate or buffer layer for preparation of superconducting thin films for high frequency applications. (orig.).

  3. Influence of particle surface properties on the dielectric behavior of silica/epoxy nanocomposites

    International Nuclear Information System (INIS)

    Cheng Lihong; Zheng Liaoying; Li Guorong; Zeng Jiangtao; Yin Qingrui

    2008-01-01

    Silica/epoxy composites have been widely used in functional electric device applications. Silica nanoparticles, both unmodified and modified with the coupling agent KH-550, were used to prepare epoxy composites. Dielectric measurements showed that nanocomposites exhibit a higher dielectric constant than the control sample, and had more obvious dielectric relaxation characteristics. Results showed that particle surface properties have a profound effect on the dielectric behavior of the nanocomposites. These characteristics are attributed to the local ununiformity of the microstructure caused by the large interface area and the interaction between the filler and the matrix. This phenomenon is explained in terms of prolonging chemical chains created during the curing process. The mechanism is discussed with measurements of X-ray diffraction (XRD) and Fourier transform infrared (FTIR)

  4. Secondary relaxation in two engineering thermoplastics by neutron scattering and dielectric spectroscopy

    CERN Document Server

    Arrese, S; Alegria, A; Colmenero, J; Frick, B

    2002-01-01

    We present a preliminary investigation of the dynamics of glassy polycarbonate (PC) and polysulfone (PSF) by means of quasielastic neutron scattering and dielectric spectroscopy. Whereas the consideration of pure phenylene ring pi-flips is enough to explain the momentum-transfer (Q) dependence of the inelastic intensity measured for PSF, in the case of PC the Q dependence of both the coherent and the incoherent scattering functions reveal the existence in this polymer of some more complex motion of the phenylene ring. On the other hand, the similarity of the energy landscapes deduced from the different techniques points to a closely related molecular origin for all the relaxation/motions observed. (orig.)

  5. Secondary relaxation in two engineering thermoplastics by neutron scattering and dielectric spectroscopy

    International Nuclear Information System (INIS)

    Arrese-Igor, S.; Arbe, A.; Alegria, A.; Colmenero, J.; Frick, B.

    2002-01-01

    We present a preliminary investigation of the dynamics of glassy polycarbonate (PC) and polysulfone (PSF) by means of quasielastic neutron scattering and dielectric spectroscopy. Whereas the consideration of pure phenylene ring π-flips is enough to explain the momentum-transfer (Q) dependence of the inelastic intensity measured for PSF, in the case of PC the Q dependence of both the coherent and the incoherent scattering functions reveal the existence in this polymer of some more complex motion of the phenylene ring. On the other hand, the similarity of the energy landscapes deduced from the different techniques points to a closely related molecular origin for all the relaxation/motions observed. (orig.)

  6. Relaxation and excitation electronic processes in dielectrics irradiated by ultrafast IR and VUV pulses

    International Nuclear Information System (INIS)

    Gaudin, J.

    2005-11-01

    We studied excitation and relaxation of electrons involved during interaction of visible and VUV femtosecond pulses with dielectrics. The generated population of hot electrons, having energy of few eV to few tens of eV above the bottom of the conduction band, is responsible of phenomena ranging to defect creation to optical breakdown. Owing to two techniques: photoemission and transient photoconductivity we improve the understanding of the The first photoemission experiments deal with dielectrics irradiated by 30 fs IR pulses. The photoemission spectra measured show a large population of electrons which energy rise up to 40 eV. We interpret this result in terms of a new absorption process: direct multi-photons inter-branch transitions. The 2. type of photoemission experiments are time resolved 'pump/probe' investigation. We study the relaxation of electrons excited by a VUV pulses. We used the high order harmonics (HOH) as light sources. We found surprisingly long decay time in the range of ps timescale. Last type of experiments is photoconductivity studies of diamond samples. Using HOH as light source we measure the displacement current induced by excited electrons in the conduction band. Those electrons relax mainly by impact ionisation creating secondary electrons. Hence by probing the number of electrons we were able to measure the efficiency of these relaxation processes. We observe a diminution of this efficiency when the energy of exciting photons is above 20 eV. Owing to Monte-Carlo simulation we interpret this result in terms of band structure effect. (author)

  7. Crystallization Behavior and Relaxation Dynamics of Supercooled S‑Ketoprofen and the Racemic Mixture along an Isochrone

    DEFF Research Database (Denmark)

    Adrjanowicz, Karolina; Kaminski, Kamil; Paluch, Marian

    2015-01-01

    In this paper, we study crystallization behavior and molecular dynamics in the supercooled liquid state of the pharmaceutically important compound ketoprofen at various thermodynamic conditions. Dielectric relaxation for a racemic mixture was investigated in a wide range of temperatures and press...

  8. Dielectric anomaly and relaxation natures in a Zn-Cr pillar−layered metal−organic framework with cages and channels

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Chen; Yao, Zhi-Yuan; Liu, Shao-Xian; Luo, Hong-Bin [State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing 210009 (China); Zou, Yang, E-mail: zouyang@njtech.edu.cn [State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing 210009 (China); Li, Li [State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing 210009 (China); Ren, Xiao-Ming, E-mail: xmren@njtech.edu.cn [State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing 210009 (China); College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093 (China)

    2017-06-15

    The MOF displays novel dielectric anomaly and relaxation behaviors. • The dielectric anomaly arises from the stacking structure transformation of guests. • The dielectric relaxation is related to the dipole dynamics of guests.

  9. Dielectric behaviors of lead zirconate titanate ceramics with coplanar electrodes

    International Nuclear Information System (INIS)

    Wang, Y.; Cheng, Y.L.; Zhang, Y.W.; Chan, H.L.W.; Choy, C.L.

    2003-01-01

    This paper reports on the dielectric behaviors of lead zirconate titanate (PZT) capacitors with coplanar electrodes. Usually a ferroelectric device has a metal-ferroelectric-metal configuration (parallel plate capacitor); when both the electrodes are on one side of a ceramic to form a coplanar capacitor, different dielectric behaviors will be anticipated because of the change in the distribution of the test field inside the dielectrics. This paper describes how the capacitance and dielectric loss of PZT-based coplanar capacitors change with electrode distance, area and test frequency

  10. Dielectric relaxation study of the dynamics of monosaccharides: D-ribose and 2-deoxy-D-ribose

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, K; Kaminska, E; Wlodarczyk, P; Paluch, M; Ziolo, J [Institute of Physics, Silesian University, ulica Uniwersytecka 4, 40-007 Katowice (Poland); Ngai, K L [Naval Research Laboratory, Washington, DC 20375-5320 (United States)

    2008-08-20

    The dielectric loss spectra of two closely related monosaccharides, D-ribose and 2-deoxy-D-ribose, measured at ambient and elevated pressures are presented. 2-deoxy-D-ribose and D-ribose are respectively the building blocks of the backbone chains in the nucleic acids DNA (deoxyribonucleic acid) and RNA (ribonucleic acid). Small differences in the structure between D-ribose and 2-deoxy-D-ribose result in changes of the glass transition temperature T{sub g}, as well as the dielectric strength and activation enthalpy of the secondary relaxations. However, the frequency dispersion of the structural {alpha}-relaxation for the same relaxation time remains practically the same. Two secondary relaxations are present in both sugars. The slower secondary relaxation shifts to lower frequencies with increasing applied pressure, but not the faster one. This pressure dependence indicates that the slower secondary relaxation is the important and 'universal' Johari-Goldstein {beta}-relaxation of both sugars according to one of the criteria set up to classify secondary relaxations. Additional confirmation of this conclusion comes from good agreement of the observed relaxation time of the slower secondary relaxation with the primitive relaxation time calculated from the coupling model. All the dynamic properties of D-ribose and 2-deoxy-D-ribose are similar to the other monosaccharides, glucose, fructose, galactose and sorbose, except for the much larger relaxation strength of the {alpha}-relaxation of the former compared to the latter. The difference may distinguish the chemical and biological functions of D-ribose and 2-deoxy-D-ribose from the other monosaccharides.

  11. Dielectric behavior of MgO:Li+ crystals

    International Nuclear Information System (INIS)

    Puma, M.; Lorincz, A.; Andrews, J.F.; Crawford, J.H Jr.

    1980-01-01

    Measurements of the dielectric constant in crystals of MgO doped with Li + ions have been carried out after quenching from anneals at 1300 0 C in static air. Prior to heat treatment the crystals showed no discernible dielectric loss but afterwards the loss tangent exceeded 0.4. For 10 min anneals the dielectric relaxation is very close to a Debye process and the temperature dependence of the maximum of the loss peak corresponds to an activation energy of 0.72 eV. When plotted in the form of a Cole-Cole arc the data indicate that deviation from a Debye relaxation amounts to a distribution of relaxation time no greater than that which can be accounted for with a distribution of activation energies only 0.007 eV. For longer heating times overlapping relaxation processes appear. The lack of broadening of the loss peak and the magnitude of the relaxation time yield clues as to possible loss mechanisms

  12. Dielectric behavior of MgO:Li+ crystals

    International Nuclear Information System (INIS)

    Puma, M.; Lorincz, A.; Andrews, J.F.; Crawford, J.H. Jr.

    1982-01-01

    Measurements of the dielectric constant in crystals of MgO doped with Li + ions have been carried out after quenching from anneals at 1300 0 C in static air. Prior to heat treatment, the crystals showed no discernible dielectric loss, but afterwards, the loss tangent exceeded 0.4. For 10-min anneals, the dielectric relaxation is very close to a Debye process, and the temperature dependence of the maximum of the loss peak corresponds to an activation energy of 0.724 eV. When plotted in the form of a Cole-Cole arc, the data indicate that deviation from a Debye relaxation amounts to a distribution of relaxation time no greater than that which can be accounted for with a distribution of activation energies of only 0.007 eV. For longer heating times, overlapping relaxation processes appear. The lack of broadening of the loss peak, and the magnitude of the relaxation time, yield clues as to possible loss mechanisms

  13. Using Dielectric Relaxation Spectroscopy to Characterize the Glass Transition Time of Polydextrose.

    Science.gov (United States)

    Buehler, Martin G; Kindle, Michael L; Carter, Brady P

    2015-06-01

    Dielectric relaxation spectroscopy was used to characterize the glass transition time, tg , of polydextrose, where the glass transition temperature, Tg , and water activity, aw (relative humidity), were held constant during polydextrose relaxation. The tg was determined from a shift in the peak frequency of the imaginary capacitance spectrum with time. It was found that when the peak frequency reaches 30 mHz, polydextrose undergoes glass transition. Glass transition time, tg , is the time for polydextrose to undergo glass transition at a specific Tg and aw . Results lead to a modified state diagram, where Tg is depressed with increasing aw . This curve forms a boundary: (a) below the boundary, polydextrose does not undergo glass transition and (b) above the boundary, polydextrose rapidly undergoes glass transition. As the boundary curve is specified by a tg value, it can assist in the selection of storage conditions. An important point on the boundary curve is at aw = 0, where Tg0 = 115 °C. The methodology can also be used to calculate the stress-relaxation viscosity of polydextrose as a function of Tg and aw , which is important when characterizing the flow properties of polydextrose initially in powder form. © 2015 Institute of Food Technologists®

  14. Origin of dielectric relaxor behavior in PVDF-based copolymer and terpolymer films

    Science.gov (United States)

    Pramanick, Abhijit; Osti, Naresh C.; Jalarvo, Niina; Misture, Scott T.; Diallo, Souleymane Omar; Mamontov, Eugene; Luo, Y.; Keum, Jong-Kahk; Littrell, Ken

    2018-04-01

    Relaxor ferroelectrics exhibit frequency-dispersion of their dielectric permittivity peak as a function of temperature, the origin of which has been widely debated. Microscopic understanding of such behavior for polymeric ferroelectrics has presented new challenges since unlike traditional ceramic ferroelectrics, dielectric relaxation in polymers is a consequence of short-range molecular dynamics that are difficult to measure directly. Here, through careful analysis of atomic-level H-atom dynamics as determined by Quasi-elastic Neutron Scattering (QENS), we show that short-range molecular dynamics within crystalline domains cannot explain the macroscopic frequency-dispersion of dielectric properties observed in prototypical polyvinylidene-fluoride (PVDF)-based relaxor ferroelectrics. Instead, from multiscale quantitative microstructural characterization, a clear correlation between the amount of crystalline-amorphous interfaces and dielectric relaxation is observed, which indicates that such interfaces play a central role. These results provide critical insights into the role of atomic and microscopic structures towards relaxor behavior in ferroelectric polymers, which will be important for their future design.

  15. Origin of dielectric relaxor behavior in PVDF-based copolymer and terpolymer films

    Directory of Open Access Journals (Sweden)

    Abhijit Pramanick

    2018-04-01

    Full Text Available Relaxor ferroelectrics exhibit frequency-dispersion of their dielectric permittivity peak as a function of temperature, the origin of which has been widely debated. Microscopic understanding of such behavior for polymeric ferroelectrics has presented new challenges since unlike traditional ceramic ferroelectrics, dielectric relaxation in polymers is a consequence of short-range molecular dynamics that are difficult to measure directly. Here, through careful analysis of atomic-level H-atom dynamics as determined by Quasi-elastic Neutron Scattering (QENS, we show that short-range molecular dynamics within crystalline domains cannot explain the macroscopic frequency-dispersion of dielectric properties observed in prototypical polyvinylidene-fluoride (PVDF-based relaxor ferroelectrics. Instead, from multiscale quantitative microstructural characterization, a clear correlation between the amount of crystalline-amorphous interfaces and dielectric relaxation is observed, which indicates that such interfaces play a central role. These results provide critical insights into the role of atomic and microscopic structures towards relaxor behavior in ferroelectric polymers, which will be important for their future design.

  16. New modeling method for the dielectric relaxation of a DRAM cell capacitor

    Science.gov (United States)

    Choi, Sujin; Sun, Wookyung; Shin, Hyungsoon

    2018-02-01

    This study proposes a new method for automatically synthesizing the equivalent circuit of the dielectric relaxation (DR) characteristic in dynamic random access memory (DRAM) without frequency dependent capacitance measurement. Charge loss due to DR can be observed by a voltage drop at the storage node and this phenomenon can be analyzed by an equivalent circuit. The Havariliak-Negami model is used to accurately determine the electrical characteristic parameters of an equivalent circuit. The DRAM sensing operation is performed in HSPICE simulations to verify this new method. The simulation demonstrates that the storage node voltage drop resulting from DR and the reduction in the sensing voltage margin, which has a critical impact on DRAM read operation, can be accurately estimated using this new method.

  17. Stretched-exponential relaxation of the nonlinear dielectric effect in a critical binary solution

    Science.gov (United States)

    Rzoska, Sylwester J.; Górny, Michał; Zioło, Jerzy

    1991-01-01

    An experimental confirmation is given of the existence of a stretched-exponential relaxation of the form exp[-(t/τ)x] with x~=0.39 in a binary solution with an upper critical point. The nonlinear dielectric effect (NDE) method was used for this experiment. Results obtained are similar to those reported earlier by Piazza et al. [J. Opt. Soc. Am. B 3, 1642 (1986); Phys. Rev. B 38, 7223 (1988)] based on the Kerr-effect measurements in solutions with a lower critical point. Studies could be carried out in the immediate vicinity of the critical point, because the application of the NDE is not restricted by the appearance of the critical opalescence.

  18. Dielectric relaxation in SrTiO.sub.3./sub.-based solid solutions with heterovalent substitutions

    Czech Academy of Sciences Publication Activity Database

    Markovin, P.A.; Lemanov, V. V.; Guzhva, M.E.; Trepakov, Vladimír

    2014-01-01

    Roč. 469, č. 1 (2014), s. 43-49 ISSN 0015-0193 Institutional support: RVO:68378271 Keywords : quantum paraelectric * dielectric relaxation * local charge compensation Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.469, year: 2014

  19. Dielectric and shear mechanical relaxations in glass-forming liquids: A test of the Gemant-DiMarzio-Bishop model

    DEFF Research Database (Denmark)

    Niss, K.; Jakobsen, B.; Olsen, N.B.

    2005-01-01

    that the Gemant-DiMarzio-Bishop model is correct on a qualitative level. The quantitative agreement between the model and the data is on the other hand moderate to poor. It is discussed if a model-free comparison between the dielectric and shear mechanical relaxations is relevant, and it is concluded...

  20. Electrical conduction and dielectric relaxation in p-type PVA/CuI polymer composite

    Directory of Open Access Journals (Sweden)

    M.H. Makled

    2013-11-01

    Full Text Available PVA/CuI polymer composite samples have been prepared and subjected to characterizations using FT-IR spectroscopy, DSC analysis, ac spectroscopy and dc conduction. The FT-IR spectral analysis shows remarkable variation of the absorption peak positions whereas DSC illustrates a little decrease of both glass transition temperature, Tg, and crystallization fraction, χ, with increasing CuI concentration. An increase of dc conductivity for PVA/CuI nano composite by increasing CuI concentration is recoded up to 15 wt%, besides it obeys Arhenuis plot with an activation energy in the range 0.54–1.32 eV. The frequency dependence of ac conductivity showed power law with an exponent 0.33 < s < 0.69 which predicts hopping conduction mechanism. The frequency dependence of both dielectric permittivity and dielectric loss obeys Debye dispersion relations in wide range of temperatures and frequency. Significant values of dipole relaxation time obtained which are thermally activated with activation energies in the range 0.33–0.87 eV. A significant value of hopping distance in the range 3.4–1.2 nm is estimated in agreement with the value of Bohr radius of the exciton.

  1. Dielectric behavior and ac electrical conductivity of nanocrystalline nickel aluminate

    International Nuclear Information System (INIS)

    Kurien, Siby; Mathew, Jose; Sebastian, Shajo; Potty, S.N.; George, K.C.

    2006-01-01

    Nanocrystalline nickel aluminate was prepared by chemical co-precipitation, and nanoparticles having different particle size were obtained by annealing the precursor at different temperatures. The TG/DTA measurements showed thermal decomposition was a three-step process with crystallisation of the spinel phase started at a temperature 420 deg. C. The X-ray diffraction analysis confirmed that the specimen began to crystallise on annealing above 420 deg. C and became almost crystalline at about 900 deg. C. The particle sizes were calculated from XRD. Dielectric properties of nickel aluminate were studied as a function of the frequency of the applied ac signal at different temperatures. It was seen the real dielectric constant ε', and dielectric loss tan δ decreased with frequency of applied field while the ac conductivity increased as the frequency of the applied field increased. The dielectric relaxation mechanism is explained by considering nanostructured NiAl 2 O 4 as a carrier-dominated dielectric with high density of hopping charge carriers. The variation of ε' with different particle size depends on several interfacial region parameters, which change with the average particle size

  2. Electrical modulus and dielectric behavior of Cr{sup 3+} substituted Mg–Zn nanoferrites

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, S.F.; Abdo, M.A.

    2017-04-15

    The dielectric parameters and ac electrical conductivity of Mg{sub 0.8}Zn{sub 0.2}Cr{sub x}Fe{sub 2−x}O{sub 4}; (0≤x≤0.025) nanoferrites synthesized citrate–nitrate auto-combustion method were studied using the complex impedance technique in the frequency and temperature ranges 4 Hz–5 MHz and 303–873 K respectively. Hopping of charge carriers plus interfacial polarization could interpret the behaviors of dielectric constant (ε′), dielectric loss tangent (tanδ) and ac electrical conductivity (σ{sub ac}) with frequency, temperatures and composition. The up-normal behavior observed in tanδ trend with temperatures confirms the presence of relaxation loss (dipoles losses). Correlated barrier hopping (CBH) of electron is the conduction mechanism of the investigated nanoferrites. Cole-Cole plots at different temperatures emphasize the main role of grain and grain boundaries in the properties of the investigated nanoferrites. Cr{sup 3+} substitution can control the dielectric parameters and ac electrical conductivity of Mg-Zn nanoferrites making it candidates for versatile applications. - Highlights: • The composition dependence of ε′, tanδ, and σ{sub ac} showed the same trend. • CBH model is the conduction mechanism of the investigated nanoferrite. • Cole-Cole plots confirmed the role of grain and grain boundaries in our nanoferrites.

  3. Dielectric relaxation studies in super-cooled liquid and glassy phases of anti-cancerous alkaloid: Brucine

    Science.gov (United States)

    Afzal, Aboothahir; Shahin Thayyil, M.; Sulaiman, M. K.; Kulkarni, A. R.

    2018-05-01

    Brucine has good anti-tumor effects, on both liver cancer and breast cancer. It has bioavailability of 40.83%. Since the bioavailability of the drug is low, an alternative method to increase its bioavailability and solubility is by changing the drug into glassy form. We used Differential Scanning Calorimetry (DSC) for studying the glass forming ability of the drug. Brucine was found to be a very good glass former glass transition temperature 365 K. Based on the DSC analysis we have used broadband dielectric spectroscopy (BDS) for studying the drug in the super cooled and glassy state. BDS is an effective tool to probe the molecular dynamics in the super cooled and glassy state. Molecular mobility is found to be present even in the glassy state of this active pharmaceutical ingredient (API) which is responsible for the instability. Our aim is to study the factors responsible for instability of this API in amorphous form. Cooling curves for dielectric permittivity and dielectric loss revealed the presence of structural (α) and secondary relaxations (β and γ). Temperature dependence of relaxation time is fitted by Vogel-Fulcher-Tammann equation and found the values of activation energy of the α relaxation, fragility and glass transition temperature. Paluch's anti correlation is also verified, that the width of the α-loss peak at or near the glass transition temperature Tg is strongly anticorrelated with the polarity of the molecule. The larger the dielectric relaxation strength Δɛ (Tg) of the system, the narrower is the α-loss peak (higher value of βKWW).

  4. Dielectric dispersion, relaxation dynamics and thermodynamic studies of Beta-Alanine in aqueous solutions using picoseconds time domain reflectometry

    Science.gov (United States)

    Vinoth, K.; Ganesh, T.; Senthilkumar, P.; Sylvester, M. Maria; Karunakaran, D. J. S. Anand; Hudge, Praveen; Kumbharkhane, A. C.

    2017-09-01

    The aqueous solution of beta-alanine characterised and studied by their dispersive dielectric properties and relaxation process in the frequency domain of 10×106 Hz to 30×109 Hz with varying concentration in mole fractions and temperatures. The molecular interaction and dielectric parameters are discussed in terms of counter-ion concentration theory. The static permittivity (ε0), high frequency dielectric permittivity (ε∞) and excess dielectric parameters are accomplished by frequency depended physical properties and relaxation time (τ). Molecular orientation, ordering and correlation factors are reported as confirmation of intermolecular interactions. Ionic conductivity and thermo dynamical properties are concluded with the behaviour of the mixture constituents. Solute-solvent, solute-solute interaction, structure making and breaking abilities of the solute in aqueous medium are interpreted. Fourier Transform Infrared (FTIR) spectra of beta- alanine single crystal and liquid state have been studied. The 13C Nuclear Magnetic Resonance (NMR) spectral studies give the signature for resonating frequencies and chemical shifts of beta-alanine.

  5. Relaxorlike dielectric behavior in Ba0.7Sr0.3TiO3 thin films

    Science.gov (United States)

    Zednik, Ricardo J.; McIntyre, Paul C.; Baniecki, John D.; Ishii, Masatoshi; Shioga, Takeshi; Kurihara, Kazuaki

    2007-03-01

    We present the results of a systematic dielectric study for sputter deposited barium strontium titanate thin film planar capacitors measured over a wide temperature range of 20-575K for frequencies between 1kHz and 1MHz. Our observations of dielectric loss peaks in the temperature and frequency domains cannot be understood in the typical framework of intrinsic phonon losses. We find that the accepted phenomenological Curie-von Schweidler dielectric behavior (universal relaxation law) in our barium strontium titanate films is only applicable over a narrow temperature range. An excellent fit to the Vogel-Fulcher expression suggests relaxorlike behavior in these films. The activation energy of the observed phenomenon suggests that oxygen ion motion play a role in the apparent relaxor behavior, although further experimental work is required to test this hypothesis.

  6. Enhanced AC conductivity and dielectric relaxation properties of polypyrrole nanoparticles irradiated with Ni12+ swift heavy ions

    International Nuclear Information System (INIS)

    Hazarika, J.; Kumar, A.

    2014-01-01

    In this paper, we report the 160 MeV Ni 12+ swift heavy ions (SHIs) irradiation effects on AC conductivity and dielectric relaxation properties of polypyrrole (PPy) nanoparticles in the frequency range of 42 Hz–5 MHz. Four ion fluences of 5 × 10 10 , 1 × 10 11 , 5 × 10 11 and 1 × 10 12 ions/cm 2 have been used for the irradiation purpose. Transport properties in the pristine and irradiated PPy nanoparticles have been investigated with permittivity and modulus formalisms to study the polarization effects and conductivity relaxation. With increasing ion fluence, the relaxation peak in imaginary modulus (M ″ ) plots shifts toward high frequency suggesting long range motion of the charge carriers. The AC conductivity studies suggest correlated barrier hopping as the dominant transport mechanism. The hopping distance (R ω ) of the charge carriers decreases with increasing the ion fluence. Binding energy (W m ) calculations depict that polarons are the dominant charge carriers

  7. Relaxation behavior of ion conducting glasses

    International Nuclear Information System (INIS)

    Bunde, A.; Dieterich, W.; Maass, P.; Meyer, M.

    1997-01-01

    We investigate by Monte Carlo simulations the diffusion of ions in an energetically disordered lattice, where the Coulomb interaction between the mobile ions is explicitly taken into account. We show that the combined effect of Coulomb interaction and disorder can account for the ionic ac-conductivity in glasses and the recently discovered non-Arrhenius behavior of the dc-conductivity in glassy fast ionic conductors. Our results suggest that glassy ionic conductors can be optimized by lowering the strength of the energetic disorder but that the ionic interaction effects set an upper bound for the conductivity at high temperatures. (author)

  8. The effects of strain relaxation on the dielectric properties of epitaxial ferroelectric Pb(Zr0.2Ti0.8)TiO3 thin films

    Science.gov (United States)

    Khan, Asif Islam; Yu, Pu; Trassin, Morgan; Lee, Michelle J.; You, Long; Salahuddin, Sayeef

    2014-07-01

    We study the effects of strain relaxation on the dielectric properties of epitaxial 40 nm Pb(Zr0.2Ti0.8)TiO3 (PZT) films. A significant increase in the defect and dislocation density due to strain relaxation is observed in PZT films with tetragonality c/a fatigue in ferroelectric materials.

  9. Dielectric relaxation in glassy Se75In25− xPbx alloys

    Indian Academy of Sciences (India)

    In this paper we report the effect of Pb incorporation in the dielectric properties of a-Se75In25 glassy alloy. The temperature and frequency dependence of the dielectric constants and the dielectric losses in glassy Se75In25−Pb ( = 0, 5, 10 and 15) alloys in the frequency range (1 kHz–5 MHz) and temperature range ...

  10. Investigation on dielectric relaxation of PMMA-grafted natural rubber incorporated with LiCF3SO3

    International Nuclear Information System (INIS)

    Yap, K.S.; Teo, L.P.; Sim, L.N.; Majid, S.R.; Arof, A.K.

    2012-01-01

    Natural rubber (NR) grafted with 30 wt% poly (methyl methacrylate) (PMMA) and designated as MG30 has been added with varying amounts of LiCF 3 SO 3 . X-ray diffraction (XRD) shows the samples to be amorphous. Fourier transform infrared (FTIR) spectroscopy indicates complexation between the cation of the salt and the oxygen atom of the C=O and -COO- groups of MG30. From electrochemical impedance spectroscopy (EIS), MG30 with 30 wt% LiCF 3 SO 3 salt exhibits the highest ambient conductivity of 1.69×10 -6 S cm -1 and lowest activation energy of 0.24 eV. The dielectric behavior has been analyzed using dielectric permittivity (ε′), dissipation factor (tan δ) and dielectric modulus (M ⁎ ) of the samples. The dielectric constant of pure MG30 has been estimated to be ∼1.86.

  11. Collective dynamic dipole moment and orientation fluctuations, cooperative hydrogen bond relaxations, and their connections to dielectric relaxation in ionic acetamide deep eutectics: Microscopic insight from simulations

    Energy Technology Data Exchange (ETDEWEB)

    Das, Suman [Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India); Biswas, Ranjit, E-mail: ranjit@bose.res.in, E-mail: biswaroop.mukherjee@gmail.com [Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India); Thematic Unit for Excellence – Computational Materials Science, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India); Mukherjee, Biswaroop, E-mail: ranjit@bose.res.in, E-mail: biswaroop.mukherjee@gmail.com [Thematic Unit for Excellence – Computational Materials Science, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India)

    2016-08-28

    The paper reports a detailed simulation study on collective reorientational relaxation, cooperative hydrogen bond (H-bond) fluctuations, and their connections to dielectric relaxation (DR) in deep eutectic solvents made of acetamide and three uni-univalent electrolytes, lithium nitrate (LiNO{sub 3}), lithium bromide (LiBr), and lithium perchlorate (LiClO{sub 4}). Because cooperative H-bond fluctuations and ion migration complicate the straightforward interpretation of measured DR timescales in terms of molecular dipolar rotations for these conducting media which support extensive intra- and inter-species H-bonding, one needs to separate out the individual components from the overall relaxation for examining the microscopic origin of various timescales. The present study does so and finds that reorientation of ion-complexed acetamide molecules generates relaxation timescales that are in sub-nanosecond to nanosecond range. This explains in molecular terms the nanosecond timescales reported by recent giga-Hertz DR measurements. Interestingly, the simulated survival timescale for the acetamide-Li{sup +} complex has been found to be a few tens of nanosecond, suggesting such a cation-complexed species may be responsible for a similar timescale reported by mega-Hertz DR measurements of acetamide/potassium thiocyanate deep eutectics near room temperature. The issue of collective versus single particle relaxation is discussed, and jump waiting time distributions are determined. Dependence on anion-identity in each of the cases has been examined. In short, the present study demonstrates that assumption of nano-sized domain formation is not required for explaining the DR detected nanosecond and longer timescales in these media.

  12. Polarons induced electronic transport, dielectric relaxation and magnetodielectric coupling in spin frustrated Ba{sub 2}FeWO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Pezhumkattil Palakkal, Jasnamol [Academy of Scientific and Innovative Research (AcSIR), CSIR—National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Campus, Trivandrum 695 019 (India); Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019 (India); Lekshmi, P. Neenu; Thomas, Senoy [Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019 (India); Valant, Matjaz [Materials Research Laboratory, University of Nova Gorica, Nova Gorica 5000 (Slovenia); Suresh, K.G. [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400 076 (India); Varma, Manoj Raama, E-mail: manoj@niist.res.in [Academy of Scientific and Innovative Research (AcSIR), CSIR—National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Campus, Trivandrum 695 019 (India); Materials Science and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum 695 019 (India)

    2016-04-15

    Highlights: • Ordered double perovskite Ba{sub 2}FeWO{sub 6} synthesized in reducing atmosphere possess a tetragonal I4/m crystal structure with mixed valent Fe/W cations. • Ba{sub 2}FeWO{sub 6} has an antiferromagnetic structure with T{sub N} at 19 K. • Insulating Ba{sub 2}FeWO{sub 6} shows different conducting mechanisms at different temperature regions and dielectric relaxation. • The polarons invoked by the mixed valence state of cations and their disordered arrangements are solely responsible for the various physical phenomena observed in Ba{sub 2}FeWO{sub 6}. - Abstract: Mixed valent double perovskite Ba{sub 2}FeWO{sub 6}, with tetragonal crystal structure, synthesized in a highly controlled reducing atmosphere, shows antiferromagnetic transition at T{sub N} = 19 K. A cluster glass-like transition is observed around 30 K arising from the competing interactions between inhomogeneous magnetic states. The structural distortion leads to the formation of polarons that are not contributing to DC conduction below charge ordering temperature, T{sub CO} = 279 K. Above T{sub CO}, small polarons will start to hop by exploiting thermal energy and participate in the conduction mechanism. The polarons are also responsible for the dielectric relaxor behavior, in which the dielectric relaxation time follows non-linearity in temperature as proposed by Fulcher. The material also exhibits a small room temperature magnetoresistance of 1.7% at 90 kOe. An intrinsic magnetodielectric coupling of ∼4% near room temperature and at lower temperatures, as well as an extrinsic magnetodielectric coupling change from +4% to −6% at around 210 K are reported.

  13. Creep and stress relaxation behavior of two soft denture liners.

    Science.gov (United States)

    Salloum, Alaa'a M

    2014-03-01

    Numerous investigators stated the indications of soft denture lining materials; but no one determined the indications of these materials according to their chemical structure. The purpose of this investigation was to evaluate the viscoelastic properties of acrylic and silicon lining materials. This study investigated and compared viscoelastic properties of two resilient denture lining materials. Tested materials were laboratory processed; one of them was silicone-based liner product (Molloplast-B), and the other was plasticized acrylic resin (Vertex™ Soft). Twenty cylindrical specimens (10-20 mm in length, 11.55 mm in diameter) were fabricated in an aluminum mold from each material for creep and stress relaxation testing (the study of viscoelastic properties). Tests were performed by using the universal testing machine DY-34. Collected data were analyzed with t test statistics for statistically significant differences at the 95 % confidence level. There was a clear difference in creep and stress relaxation behavior between acrylic and silicone liners. Statistical study of Young's moduli illustrated that Vertex™ Soft was softer than Molloplast-B. On the other hand, the results explained that the recovery of silicone material was better than of acrylic one. The creep test revealed that the plasticized acrylic resin lining material exhibited considerable creep, whereas silicone-based liner exhibited elastic behavior. Besides, the stress relaxation test showed that relaxation of the plasticized acrylic resin material was bigger than of the silicone-based liner.

  14. Critical behavior of the dielectric constant in asymmetric fluids.

    Science.gov (United States)

    Bertrand, C E; Sengers, J V; Anisimov, M A

    2011-12-08

    By applying a thermodynamic theory that incorporates the concept of complete scaling, we derive the asymptotic temperature dependence of the critical behavior of the dielectric constant above the critical temperature along the critical isochore and below the critical temperature along the coexistence curve. The amplitudes of the singular terms in the temperature expansions are related to the changes of the critical temperature and the critical chemical potential upon the introduction of an electric field. The results of the thermodynamic theory are then compared with the critical behavior implied by the classical Clausius-Mossotti approximation. The Clausius-Mossotti approximation fails to account for any singular temperature dependence of the dielectric constant above the critical temperature. Below the critical temperature it produces an apparent asymmetric critical behavior with singular terms similar to those implied by the thermodynamic theory, but with significantly different coefficients. We conclude that the Clausius-Mossotti approximation only can account for the observed asymptotic critical behavior of the dielectric constant when the dependence of the critical temperature on the electric field is negligibly small. © 2011 American Chemical Society

  15. Charge transport and dielectric relaxation processes in anilin-based oligomers

    Czech Academy of Sciences Publication Activity Database

    Mrlík, M.; Moučka, R.; Ilčíková, M.; Bober, Patrycja; Kazantseva, N.; Špitálský, Z.; Trchová, Miroslava; Stejskal, Jaroslav

    2014-01-01

    Roč. 192, June (2014), s. 37-42 ISSN 0379-6779 Institutional support: RVO:61389013 Keywords : aniline-based oligomers * conductivity * dielectric properties Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.252, year: 2014

  16. Dielectric relaxation and optical properties of 4-amino-3-mercapto-6 ...

    Indian Academy of Sciences (India)

    2016-12-03

    Dec 3, 2016 ... by means of molecular engineering [1,2]. Organic electronics is accepted as a future technology for the ... The experimental approaches based on dielectrics .... applied on the synthesis of organic compounds [21,22]. Figure 4 ...

  17. Dynamic Behaviors of Solvent Molecules Restricted in Poly (Acryl Amide Gels Analyzed by Dielectric and Diffusion NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Hironobu Saito

    2018-06-01

    Full Text Available Dynamics of solvent molecules restricted in poly (acryl amide gels immersed in solvent mixtures of acetone–, 1,4-dioxane–, and dimethyl sulfoxide–water were analyzed by the time domain reflectometry method of dielectric spectroscopy and the pulse field gradient method of nuclear magnetic resonance. Restrictions of dynamic behaviors of solvent molecules were evaluated from relaxation parameters such as the relaxation time, its distribution parameter, and the relaxation strength obtained by dielectric measurements, and similar behaviors with polymer concentration dependences for the solutions were obtained except for the high polymer concentration in collapsed gels. Scaling analyses for the relaxation time and diffusion coefficient respectively normalized by those for bulk solvent suggested that the scaling exponent determined from the scaling variable defined as a ratio of the size of solvent molecule to mesh size of polymer networks were three and unity, respectively, except for collapsed gels. The difference in these components reflects characteristic molecular interactions in the rotational and translational diffusions, and offered a physical picture of the restriction of solvent dynamics. A universal treatment of slow dynamics due to the restriction from polymer chains suggests a new methodology of characterization of water structures.

  18. Dielectric relaxation and AC conductivity studies of Se90Cd10−xInx glassy alloys

    Directory of Open Access Journals (Sweden)

    Nitesh Shukla

    2016-06-01

    Full Text Available Chalcogenide glassy alloys of Se90Cd10−xInx (x = 2, 4, 6, 8 are synthesized by melt quench technique. The prepared glassy alloys have been characterized by techniques such as differential scanning calorimetry (DSC, scanning electron microscopy (SEM and energy dispersive X-ray (EDAX. Dielectric properties of Se90Cd10−xInx (x = 2, 4, 6, 8 chalcogenide glassy system have been studied using impedance spectroscopic technique in the frequency range 42 Hz to 5 MHz at room temperature. It is found that the dielectric constants ɛ′, dielectric loss factor ɛ″ and loss angle Tan δ depend on frequency. ɛ′, ɛ″ and loss angle Tan δ are found to be decreasing with the In content in Se90Cd10−xInx glassy system. AC conductivity of the prepared sample has also been studied. It is found that AC conductivity increases with frequency where as it has decreasing trend with increasing In content in Se–Cd matrix. The semicircles observed in the Cole–Cole plots indicate a single relaxation process.

  19. Creep and inverse stress relaxation behaviors of carbon nanotube yarns.

    Science.gov (United States)

    Misak, H E; Sabelkin, V; Miller, L; Asmatulu, R; Mall, S

    2013-12-01

    Creep, creep recovery and inverse stress relaxation behaviors of carbon nanotube yarns that consisted of 1-, 30-, and 100-yarn(s) were characterized. Primary and secondary creep stages were observed over the duration of 336 h. The primary creep stage lasted for about 4 h at an applied load equal to 75% of the ultimate tensile strength. The total strain in the primary stage was significantly larger in the carbon nanotube multi-yarn than in the carbon nanotube 1-yarn. In the secondary stage, 1-yarn also had a smaller steady state strain rate than the multi-yarn, and it was independent of number of yarns in multi-yarn. Strain response under cyclic creep loading condition was comparable to its counterpart in non-cyclic (i.e., standard) creep test except that strain response during the first cycle was slightly different from the subsequent cycles. Inverse creep (i.e., strain recovery) was observed in the 100-yarn during the cyclic creep tests after the first unloading cycle. Furthermore, inverse stress relaxation of the multi-yarns was characterized. Inverse stress relaxation was larger and for longer duration with the larger number of yarns.

  20. AC conductivity and dielectric behavior of bulk Furfurylidenemalononitrile

    Science.gov (United States)

    El-Nahass, M. M.; Ali, H. A. M.

    2012-06-01

    AC conductivity and dielectric behavior for bulk Furfurylidenemalononitrile have been studied over a temperature range (293-333 K) and frequency range (50-5×106 Hz). The frequency dependence of ac conductivity, σac, has been investigated by the universal power law, σac(ω)=Aωs. The variation of the frequency exponent (s) with temperature was analyzed in terms of different conduction mechanisms, and it was found that the correlated barrier hopping (CBH) model is the predominant conduction mechanism. The temperature dependence of σac(ω) showed a linear increase with the increase in temperature at different frequencies. The ac activation energy was determined at different frequencies. Dielectric data were analyzed using complex permittivity and complex electric modulus for bulk Furfurylidenemalononitrile at various temperatures.

  1. Enhanced AC conductivity and dielectric relaxation properties of polypyrrole nanoparticles irradiated with Ni{sup 12+} swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Hazarika, J.; Kumar, A., E-mail: ask@tezu.ernet.in

    2014-08-15

    In this paper, we report the 160 MeV Ni{sup 12+} swift heavy ions (SHIs) irradiation effects on AC conductivity and dielectric relaxation properties of polypyrrole (PPy) nanoparticles in the frequency range of 42 Hz–5 MHz. Four ion fluences of 5 × 10{sup 10}, 1 × 10{sup 11}, 5 × 10{sup 11} and 1 × 10{sup 12} ions/cm{sup 2} have been used for the irradiation purpose. Transport properties in the pristine and irradiated PPy nanoparticles have been investigated with permittivity and modulus formalisms to study the polarization effects and conductivity relaxation. With increasing ion fluence, the relaxation peak in imaginary modulus (M{sup ″}) plots shifts toward high frequency suggesting long range motion of the charge carriers. The AC conductivity studies suggest correlated barrier hopping as the dominant transport mechanism. The hopping distance (R{sub ω}) of the charge carriers decreases with increasing the ion fluence. Binding energy (W{sub m}) calculations depict that polarons are the dominant charge carriers.

  2. ac Conductivity analysis and dielectric relaxation behaviour of NaNO3-Al2O3 composites

    International Nuclear Information System (INIS)

    Anantha, P.S.; Hariharan, K.

    2005-01-01

    The electrical conductivity of NaNO 3 -xAl 2 O 3 composites has been studied over the wide range of temperature and frequency by means of impedance spectroscopy. The real part of the frequency dependent conductivity exhibits a simple power law feature and the dimensionless frequency exponent n has been determined. The conductivity spectra show scaling behaviour when the conductivity spectra are scaled by σ dc T, where T is temperature in Kelvin. The real part of dielectric permittivity shows saturation at higher frequencies and a strong dispersion at lower frequencies. The imaginary part of permittivity varies inversely with frequency, due to the presence of dc conductivity. The frequency dependent plots of M' and Z' show that the conductivity relaxation is non-Debye in nature. The Kohlrausch-Williams-Watts stretched exponential function was used to describe the modulus spectra and the stretching exponent β is found to be temperature independent. The conductivity relaxation time has been estimated from the modulus spectra. The activation energy responsible for relaxation has been evaluated and it was found to be almost same as that of dc conductivity

  3. Low frequency ac conduction and dielectric relaxation in poly(N ...

    Indian Academy of Sciences (India)

    The ac conductivity and dielectric constant of poly(N-methyl pyrrole) thin films have been investigated in the temperature range 77–350 K and in the frequency range 102–106 Hz. The well defined loss peaks have been observed in the temperature region where measured ac conductivity approaches dc conductivity.

  4. Anomalous behavior of the structural relaxation dispersion function of a carborane-containing siloxane

    Energy Technology Data Exchange (ETDEWEB)

    Pawlus, Sebastian; Paluch, Marian; Ziolo, Jerzy [Institute of Physics, University of Silesia, Uniwersytecka 4, Katowice 40-007 (Poland); Kolel-Veetil, Manoj K [Chemistry Division, Code 6127, Naval Research Laboratory, Washington, DC 20375-5342 (United States)

    2010-10-20

    Broadband dielectric spectroscopic investigations of a vinyl-terminated carboranylenesiloxane, VCS, were performed at ambient and elevated pressures. At a constant structural relaxation time, results show that the structural relaxation dispersion function of VCS narrows with both increasing pressure and temperature. This narrowing is substantial in the case of pressurization and, consequently, the breakdown of the temperature-pressure superposition rule is observed. The interpretation of this breakdown is presented.

  5. Effect of lanthanum substitution on dielectric relaxation, impedance response, conducting and magnetic properties of strontium hexaferrite

    Energy Technology Data Exchange (ETDEWEB)

    Want, Basharat, E-mail: bawant@kashmiruniversity.ac.in; Bhat, Bilal Hamid; Ahmad, Bhat Zahoor

    2015-04-05

    Highlights: • The substitution of La affects the dielectric and magnetic properties of strontium hexaferrite. • The electric behaviour of the compound follows the Koop’s phenomenological theory. • The impedance study shows the role of grain boundaries to the electric properties of the compound. • The substitution of La to strontium hexaferrite reduces the resistive nature of grain boundaries. - Abstract: Lanthanum strontium hexaferrite Sr{sub 1−x}La{sub x}Fe{sub 12}O{sub 19} (x = 0, 0.08, 0.13 , 0.18) has been successfully synthesized by using citrate-precursor method and characterized by different techniques. The X-ray diffraction results revealed that the sample is crystalline in nature and is of single phase with the space group P63/mmc. The dielectric, conducting and impedance related studies have been carried out as a function of frequency and concentration of lanthanum in the frequency ranges of 20 Hz–3 MHz. Impedance studies were performed in the frequency domain to distinguish between bulk and grain boundary contributions of the material to the overall dielectric response. The electric response of the material was also modeled by an equivalent circuit and different circuit parameters were calculated. Magnetic characterization of the material was also performed and the effect of lanthanum concentration was studied. The hysteresis loop obtained from the magnetometer showed that with the increase of lanthanum concentration, the saturation magnetisation decreases while as coercivity increases.

  6. Relaxation distribution function of intracellular dielectric zones as an indicator of tumorous transition of living cells.

    Science.gov (United States)

    Thornton, B S; Hung, W T; Irving, J

    1991-01-01

    The response decay data of living cells subject to electric polarization is associated with their relaxation distribution function (RDF) and can be determined using the inverse Laplace transform method. A new polynomial, involving a series of associated Laguerre polynomials, has been used as the approximating function for evaluating the RDF, with the advantage of avoiding the usual arbitrary trial values of a particular parameter in the numerical computations. Some numerical examples are given, followed by an application to cervical tissue. It is found that the average relaxation time and the peak amplitude of the RDF exhibit higher values for tumorous cells than normal cells and might be used as parameters to differentiate them and their associated tissues.

  7. Electric and dielectric behavior of copper-chromium layered double hydroxide intercalated with dodecyl sulfate anions using impedance spectroscopy

    Science.gov (United States)

    Elhatimi, Wafaa; Bouragba, Fatima Zahra; Lahkale, Redouane; Sadik, Rachid; Lebbar, Nacira; Siniti, Mostapha; Sabbar, Elmouloudi

    2018-05-01

    The Cu2Cr-DS-LDH hybrid was successfully prepared by the anion exchange method at room temperature. The structure, the chemical composition and the physico-chemical properties of the sample were determined using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and inductively coupled plasma (ICP). In this work, the electrical and dielectric properties investigated are determined using impedance spectroscopy (IS) in a frequency range of 1 Hz to 1 MHz. Indeed, the Nyquist diagram modelized by an electrical equivalent circuit showed three contributions attributed respectively to the polarization of grains, grains boundaries and interface electrode-sample. This modelization allowed us to determine the intrinsic electrical parameters of the hybrid (resistance, pseudo-capacitance and relaxation time). The presence of the non-Debye relaxation phenomena was confirmed by the frequency analysis of impedance. Moreover, the evolution of the alternating current conductivity (σac) studied obeys the double power law of Jonscher. The ionic conduction of this material was generated through a jump movement by translation of the charge carriers. As for the dielectric behavior of the material, the evolution of dielectric constant as a function of frequency shows relatively high values in a frequency range between 10 Hz and 1 KHz. The low values of the loss tangent obtained in this frequency zone can valorize this LDH hybrid.

  8. Dielectric relaxation dependent memory elements in pentacene/[6,6]-phenyl-C61-butyric acid methyl ester bi-layer field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoungnam

    2015-03-02

    We fabricate a pentacene/[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) bi-layer field effect transistor (FET) featuring large hysteresis that can be used as memory elements. Intentional introduction of excess electron traps in a PCBM layer by exposure to air caused large hysteresis in the FET. The memory window, characterized by the threshold voltage difference, increased upon exposure to air and this is attributed to an increase in the number of electron trapping centers and (or) an increase in the dielectric relaxation time in the underlying PCBM layer. Decrease in the electron conduction in the PCBM close to the SiO{sub 2} gate dielectric upon exposure to air is consistent with the increase in the dielectric relaxation time, ensuring that the presence of large hysteresis in the FET originates from electron trapping at the PCBM not at the pentacene. - Highlights: • Charge trapping-induced memory effect was clarified using transistors. • The memory window can be enhanced by controlling charge trapping mechanism. • Memory transistors can be optimized by controlling dielectric relaxation time.

  9. Switching Characteristics and High-Temperature Dielectric Relaxation Behaviours of Pb(Zn1/3Nb2/3)0.91Ti0.09O₃ Single Crystal.

    Science.gov (United States)

    Zhu, Zhi; Tang, Xingui; Jiang, Yanping; Liu, Qiuxiang; Zhang, Tianfu; Li, Wenhua

    2017-03-28

    This work evaluated the resistance switching characteristics in the (100)-oriented Pb(Zn 1/3 Nb 2/3 ) 0.91 Ti 0.09 O₃ (PZNT) single crystal. The current hysteresis can be closely related to the ferroelectric polarization and we provided a possible explanation using a model about oxygen vacancies to analyze the mechanism of switching. The obvious frequency dispersion of the relative permittivity signified the relaxer-type behavior of the sample. The value of the relaxation parameter γ = 1.48 was estimated from the linear fit of the modified Curie-Weiss law, indicating the relaxer nature. High-temperature dielectric relaxation behaviors were revealed in the temperature region of 400-650 °C. In addition, under the measuring frequency of 10 kHz, ε r was tunable by changing the electric field and the largest tunability of ε r reached 14.78%. At room temperature, the high pyroelectric coefficient and detectivity figure of merit were reported.

  10. “Remain calm. Be kind”: Effects of relaxing video games on aggressive and prosocial behavior

    NARCIS (Netherlands)

    Whitaker, J.L.; Bushman, B.J.

    2012-01-01

    Research shows that violent video games increase aggressive behavior and decrease prosocial behavior, but could relaxing video games have the opposite effects? In two experiments, participants were randomly assigned to play a relaxing, neutral, or prosocial video game for 20 min. In Experiment 1,

  11. Dielectric properties, impedance analysis and modulus behavior of CaTiO{sub 3} ceramic prepared by solid state reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Y.J., E-mail: yjeng_86@hotmail.com [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Hassan, J., E-mail: jumiah@science.upm.edu.my [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Hashim, M., E-mail: mansor@science.upm.edu.my [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2013-09-15

    Highlights: •A single phase orthorhombic CaTiO{sub 3} structure with sub-micron grains is produced. •The frequency exponent ‘s’ is temperature dependent and explained by CBH model. •The dielectric constant and loss tangent are frequency and temperature dependent. •The modulus plot reveals the presence of thermally activated dielectric relaxation. •Cole-cole plot reveals two primary relaxation processes exist in the sample. -- Abstract: Calcium titanate (CaTiO{sub 3}) with the general formula for perovskites, ABO{sub 3}, is of technological importance, particularly with regard to dielectric properties. In this work, CaTiO{sub 3} ceramic material was prepared by the conventional solid state reaction method. The dielectric properties, impedance characteristics and modulus behavior of the CaTiO{sub 3} ceramic material sintered at 1240 °C were investigated in the frequency range of 10{sup −2}–10{sup 6} Hz and temperature range of 100–250 °C. The XRD analysis of the sintered CaTiO{sub 3} shows that it is an orthorhombic structure with lattice parameters a = 5.4398 Å, b = 7.6417 Å, and c = 5.3830 Å. The FESEM micrograph shows a significant difference in grain size distribution ranging from 0.26 to 2.32 μm. The AC conductivity, σ{sub AC}, is found to increase with increasing temperature within the frequency range of 10{sup −2}–10{sup 6} Hz confirming the hopping of electrons to be the conduction mechanism. Due to the decreasing values of the frequency exponent s with increasing temperature, the results of the σ{sub AC} are discussed using the correlated barrier height (CBH) model. For dielectric studies, the dielectric constant, ε′ is found to decrease with increasing frequency. In the whole temperature range of 100–250 °C, high and low frequency plateau are observed. Each converges at high frequency (>10{sup 5} Hz) for all the temperatures. The frequency dependence of loss tangent, tan δ, decreases with rise in temperature, with the

  12. Low-frequency dielectric relaxation near the Curie temperature in triglycine sulfate crystals containing radiation-induced defects and α-alanine impurity

    International Nuclear Information System (INIS)

    Bradulina, L.G.; Lotonov, A.M.; Gavrilova, N.D.

    2001-01-01

    The comparison of dielectric characteristics of the triglycine sulfate (TGS) polydomain crystal in the area of the Curie point with the parameters of the TGS monodomain crystals with the α-alanine admixture (ATGS) and gamma-irradiated TGS is carried out. No differences in the relaxation spectra of the TGS mono- and polydomain crystals is determined. The opinion is rejected, that only domain boundaries and processes, connected with the domain structure rebuilding by transition from the para- into the ferro phase, determined the character of the TGS crystal relaxation spectrum [ru

  13. Dielectric relaxation and spectroscopic investigation of poly hydroxybutyrate PHB blended with polyvinyl acetate PVAc and poly(vinylacetate-co-vinyl alcohol) PACA

    International Nuclear Information System (INIS)

    Abou-Aiad, T.H.M.; Abd-El-Nour, K.N.; Hakim, I.K.; El-Sabee, M.S.

    2005-01-01

    Using frequency response analyzer covering a frequency range from 102 - 106 Hz in a wide range of temperature, the dielectric behaviour of the investigated systems was studied. In order to investigate the relaxation mechanisms of such systems, the dielectric loss data on the frequency domain were analysed using Havriliak-Nagami and/or Frohlich functions in addition to the conductivity term. These mechanisms are discussed in terms of the orientation of the main chain and its related motions. The relaxation times related to both mechanisms noticed for PHB/PVAc blend with composition 50% are found to be higher than those for other compositions. This could be attributed to the interaction that expected through hydrogen bond formation. This result is supported by the data given by FTIR spectroscopy as the carbonyl region at 1750 cm-1 showed a more broad band spectrum when compared with those for the other compositions

  14. Electrical Properties and Dipole Relaxation Behavior of Zinc-Substituted Cobalt Ferrite

    Science.gov (United States)

    Supriya, Sweety; Kumar, Sunil; Kar, Manoranjan

    2017-12-01

    Co1- x Zn x Fe2O4 ceramics with x = 0.00, 0.05, 0.10, 0.15 and 0.20 were synthesized by a modified citric acid sol-gel method. The crystalline phase of the samples was characterized by the powder x-ray diffraction technique (XRD) and the Rietveld analysis of the XRD patterns. The morphology and particle size were studied using field emission scanning electron microscopy. Fourier transform infrared spectroscopy studies were consistent with the XRD results. The impedance measurements were carried out from 100 Hz to 10 MHz at different temperatures from 40°C to 300°C. The frequency dispersion of dielectric was analyzed with a modified Debye equation. The activation energy derived from the dielectric constant and the impedance follows the Arrhenius law and are comparable with each other. The dielectric relaxation and impedance relaxation are correlated in terms of activation energy, show a good temperature stability of the dielectrics and are useful for their applications in microelectronic devices such as filters, capacitors, resonators, etc.

  15. Dielectric Behavior of Low Microwave Loss Unit Cell for All Dielectric Metamaterial

    Directory of Open Access Journals (Sweden)

    Tianhuan Luo

    2015-01-01

    Full Text Available With a deep study of the metamaterial, its unit cells have been widely extended from metals to dielectrics. The dielectric based unit cells attract much attention because of the advantage of easy preparation, tunability, and higher frequency response, and so forth. Using the conventional solid state method, we prepared a kind of incipient ferroelectrics (calcium titanate, CaTiO3 with higher microwave permittivity and lower loss, which can be successfully used to construct metamaterials. The temperature and frequency dependence of dielectric constant are also measured under different sintering temperatures. The dielectric spectra showed a slight permittivity decrease with the increase of temperature and exhibited a loss of 0.0005, combined with a higher microwave dielectric constant of ~167 and quality factor Q of 2049. Therefore, CaTiO3 is a kind of versatile and potential metamaterial unit cell. The permittivity of CaTiO3 at higher microwave frequency was also examined in the rectangular waveguide and we got the permittivity of 165, creating a new method to test permittivity at higher microwave frequency.

  16. Electromechanical behavior of fiber-reinforced dielectric elastomer membrane

    Directory of Open Access Journals (Sweden)

    Chi Li

    2015-04-01

    Full Text Available Based on its large deformation, light weight, and high energy density, dielectric elastomer (DE has been used as driven muscle in many areas. We design the fiber-reinforced DE membrane by adding fibers in the membrane. The deformation and driven force direction of the membrane can be tuned by changing the fiber arrangements. The actuation in the perpendicular direction of the DE membrane with long fibers first increases and then decreases by the increasing of the fiber spacing in the perpendicular direction. The horizontal actuation of the membrane decreases by decreasing the spacing of short fibers. In the membrane-inflating structure, the radially arranged fibers will break the axisymmetric behavior of the structure. The top area of the inflated balloon without fiber will buckle up when the voltage reaches a certain level. Finite element simulations based on nonlinear field theory are conducted to investigate the effects of fiber arrangement and verify the experimental results. This work can guide the design of fiber-reinforced DE.

  17. Inducing Assertive Behavior in Chronic Schizophrenics: A Comparison of Socioenvironmental Desensitization, and Relaxation Therapies

    Science.gov (United States)

    Weinman, Bernard; And Others

    1972-01-01

    It is concluded that systematic desensitization or relaxation therapy is not effective in inducing assertive behavior in the male chronic schizophrenic. The treatment of choice for the older chronic male schizophrenic remains socioenvironmental therapy. (Author)

  18. Structure, Raman, dielectric behavior and electrical conduction mechanism of strontium titanate

    Science.gov (United States)

    Trabelsi, H.; Bejar, M.; Dhahri, E.; Graça, M. P. F.; Valente, M. A.; Khirouni, K.

    2018-05-01

    Strontium titanate was prepared by solid-state reaction method. According to the XRD, it was single phase and has a cubic perovskite structure. The Raman spectroscopic investigation was carried out at room-temperature, and the second-order Raman modes were observed. By employing impedance spectroscopy, the dielectric relaxation and electrical properties were investigated over the temperature range of 500-700 K at various frequencies. The activation energies evaluated from dielectric and modulus studies are in good agreement and these values are attributed to the bulk relaxation. The impedance data were well fitted to an (R1//C1)-(R2//CPE1) equivalent electrical circuit. It could be concluded that the grain boundaries are more resistive and capacitive than the grains. The ac conductivity was found to follow the Jonscher's universal dynamic law ωS and the correlated barrier hopping model (CBH) has been proposed to describe the conduction mechanism.

  19. Dielectric properties of PMMA/Soot nanocomposites.

    Science.gov (United States)

    Clayton, Lanetra M; Cinke, Martin; Meyyappan, M; Harmon, Julie P

    2007-07-01

    Dielectric analysis (DEA) of relaxation behavior in poly(methyl methacrylate) (PMMA) soot nanocomposites is described herein. The soot, an inexpensive material, consists of carbon nanotubes, amorphous and graphitic carbon and metal particles. Results are compared to earlier studies on PMMA/multi-walled nanotube (MWNT) composites and PMMA/single-walled nanotube (SWNT) composites. The beta relaxation process appeared to be unaffected by the presence of the soot, as was noted earlier in nanotube composites. The gamma relaxation region in PMMA, normally dielectrically inactive, was "awakened" in the PMMA/soot composite. This occurrence is consistent with previously published data on nanotube composites. The dielectric permittivity, s', increased with soot content. The sample with 1% soot exhibited a permittivity (at 100 Hz and 25 degrees C) of 7.3 as compared to 5.1 for neat PMMA. Soot increased the dielectric strength, deltaE, of the composites. The 1% soot sample exhibited a dielectric strength of 6.38, while the neat PMMA had a value of 2.95 at 40 degrees C. The symmetric broadening term (alpha) was slightly higher for the 1% composite at temperatures near the secondary relaxation and near the primary relaxation, but all samples deviated from symmetrical semi-circular behavior (alpha = 1). The impact of the soot filler is seen more clearly in dielectric properties than in mechanical properties studies conducted earlier.

  20. A dielectric relaxation approach

    Indian Academy of Sciences (India)

    The complex permittivity spectra were studied using the time domain reflectometry [6,7] method. The Hewlett Packard HP 54750 sampling oscilloscope with HP 54754A TDR plug in module has been used. A fast rising step voltage pulse of about 40 ps rise time was propagated through a coaxial line system. Transmission ...

  1. The Effects of Progressive Relaxation and Music on Attention, Relaxation, and Stress Responses: An Investigation of the Cognitive-Behavioral Model of Relaxation

    National Research Council Canada - National Science Library

    Scheufele, Peter

    1999-01-01

    ...) suggested that stress management techniques have specific effects A compromise position suggests that the specific effects of relaxation techniques are superimposed upon a general relaxation response...

  2. Relaxation and excitation electronic processes in dielectrics irradiated by ultrafast IR and VUV pulses; Processus electroniques d'excitation et de relaxation dans les solides dielectriques excites par des impulsions IR et XUV ultracourtes

    Energy Technology Data Exchange (ETDEWEB)

    Gaudin, J

    2005-11-15

    We studied excitation and relaxation of electrons involved during interaction of visible and VUV femtosecond pulses with dielectrics. The generated population of hot electrons, having energy of few eV to few tens of eV above the bottom of the conduction band, is responsible of phenomena ranging to defect creation to optical breakdown. Owing to two techniques: photoemission and transient photoconductivity we improve the understanding of the The first photoemission experiments deal with dielectrics irradiated by 30 fs IR pulses. The photoemission spectra measured show a large population of electrons which energy rise up to 40 eV. We interpret this result in terms of a new absorption process: direct multi-photons inter-branch transitions. The 2. type of photoemission experiments are time resolved 'pump/probe' investigation. We study the relaxation of electrons excited by a VUV pulses. We used the high order harmonics (HOH) as light sources. We found surprisingly long decay time in the range of ps timescale. Last type of experiments is photoconductivity studies of diamond samples. Using HOH as light source we measure the displacement current induced by excited electrons in the conduction band. Those electrons relax mainly by impact ionisation creating secondary electrons. Hence by probing the number of electrons we were able to measure the efficiency of these relaxation processes. We observe a diminution of this efficiency when the energy of exciting photons is above 20 eV. Owing to Monte-Carlo simulation we interpret this result in terms of band structure effect. (author)

  3. Dielectric relaxation in epitaxial films of paraelectric-magnetic SrTiO.sub.3./sub.-SrMnO.sub.3./sub. solid solution

    Czech Academy of Sciences Publication Activity Database

    Savinov, Maxim; Bovtun, Viktor; Tereshina-Chitrova, Evgenia; Stupakov, Alexandr; Dejneka, Alexandr; Tyunina, Marina

    2018-01-01

    Roč. 112, č. 5 (2018), s. 1-4, č. článku 052901. ISSN 0003-6951 R&D Projects: GA ČR GA15-15123S Institutional support: RVO:68378271 Keywords : dielectric relaxation * epitaxial films * paraelectric-magnetic * SrTiO 3 -SrMnO 3 solid solution Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics , supercond.) Impact factor: 3.411, year: 2016

  4. Models for multiple relaxation processes in collagen fiber

    Indian Academy of Sciences (India)

    ... originate from stress strain induced changes in hydrogen bond network whereas the other seems to be more strongly coupled to salt like bridges and electrostatic interactions. Urea alters the activation energy for one relaxation step while pH and solvent dielectric constant alter the relaxation behavior one set of processes.

  5. Dielectric dispersion and thermodynamic behavior of stearic acid binary mixtures with alcohol as co-solvent using time domain reflectometry

    Directory of Open Access Journals (Sweden)

    M. Maria Sylvester

    2017-08-01

    Full Text Available Dielectric permittivity and relaxation dynamics of binary and ternary mixture of stearic acid on various concentration and their thermodynamic effects are studied. The static dielectric constant (ε0, dielectric permittivity (ε′ and dielectric loss (ε′′ are found by bilinear calibration. The relaxation time (τ, dielectric strength (Δε and the excess permittivity (εE are found. The thermodynamic parameters such as enthalpy (ΔH, entropy (ΔS and Gibb’s free energy (ΔG are evolved. The significant changes in dielectric parameters are due to the intramolecular and intermolecular interactions in response to the applied frequency. The permittivity spectra of stearic acid–alcohol in the frequency range of 10MHz to 30GHz have been measured using picoseconds Time Domain Reflectometry (TDR. The dielectric parameters (ε0, ε′, ε′′ are found by bilinear calibration method. Influence of temperature in intermolecular interaction and the relaxation process are also studied. The FT-IR spectral analysis reveals that the conformation of functional groups and formation for hydrogen bonding are present in both binary and ternary mixtures of stearic acid.

  6. Time-Dependent Behaviors of Granite: Loading-Rate Dependence, Creep, and Relaxation

    Science.gov (United States)

    Hashiba, K.; Fukui, K.

    2016-07-01

    To assess the long-term stability of underground structures, it is important to understand the time-dependent behaviors of rocks, such as their loading-rate dependence, creep, and relaxation. However, there have been fewer studies on crystalline rocks than on tuff, mudstone, and rock salt, because the high strength of crystalline rocks makes the detection of their time-dependent behaviors much more difficult. Moreover, studies on the relaxation, temporal change of stress and strain (TCSS) conditions, and relations between various time-dependent behaviors are scarce for not only granites, but also other rocks. In this study, previous reports on the time-dependent behaviors of granites were reviewed and various laboratory tests were conducted using Toki granite. These tests included an alternating-loading-rate test, creep test, relaxation test, and TCSS test. The results showed that the degree of time dependence of Toki granite is similar to other granites, and that the TCSS resembles the stress-relaxation curve and creep-strain curve. A viscoelastic constitutive model, proposed in a previous study, was modified to investigate the relations between the time-dependent behaviors in the pre- and post-peak regions. The modified model reproduced the stress-strain curve, creep, relaxation, and the results of the TCSS test. Based on a comparison of the results of the laboratory tests and numerical simulations, close relations between the time-dependent behaviors were revealed quantitatively.

  7. Stress relaxation behavior and mechanism of AEREX350 and Waspaloy superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuzhou; Dong, Jianxin; Zhang, Maicang; Yao, Zhihao

    2016-12-15

    The relaxation properties of AEREX350 and Waspaloy were studied contrastively at temperatures ranging from 600 °C to 800 °C with the same initial stress 510 MPa. The relationship between the microstructure and relaxation properties was elucidated using scanning and transmission electron microscopy techniques. It was found that the relaxation limit and relaxation stability of the two alloys decreased obviously with the increase of temperature, but the relaxation stability of AEREX350 decreased more slowly compared with Waspaloy. Further investigations show that the relaxation behavior is mainly depended on both precipitate characteristics and its interaction with dislocations. The complex precipitates evolution of AEREX350 alloy leads to a higher relaxation limit at high temperature 800 °C, but more quantity of γ′ in Waspaloy results in a higher relaxation limit at the low temperature of 600 °C. Thus it is suggested that as fastener alloys, Waspaloy is more suitable for low temperature service while AEREX350 is the preferred choice for high temperature service.

  8. A probabilistic mechanism hidden behind the universal power law for dielectric relaxation. 2 - Discussion of the response function

    International Nuclear Information System (INIS)

    Weron, K.

    1991-08-01

    This paper is a continuation of our previous work, where the new probabilistic model based directly on the reaction picture of relaxation was introduced and a general relaxation equation was derived. Here we show the universal character of distributions of damping rates and waiting times used in this model. Moreover, we discuss in detail a physical significance of the response function derived as a solution of the general relaxation equation. (author). 23 refs, 4 figs

  9. The origin of small and large molecule behavior in the vibrational relaxation of highly excited molecules

    International Nuclear Information System (INIS)

    Gordon, R.J.

    1990-01-01

    An explanation is proposed for the qualitatively different types of behavior that have been reported for the vibrational relaxation of highly excited diatomic and polyatomic molecules. It is argued that all of the diatomic molecules that have been studied in bulk relax adiabatically at room temperature. In contrast, large polyatomic molecules have low frequency modes which act at ''doorway'' modes for the rest of the molecules, producing an impulsive relaxation mechanism. The theoretical work of Nesbitt and Hynes showed that impulsive collisions result in an exponential decay of the average vibrational energy of a Morse oscillator, whereas adiabatic collisions produce nonexponential power law behavior. We propose that this result explains a large body of data for the vibrational relaxation of small and large molecules

  10. Effect of Temper Condition on Stress Relaxation Behavior of an Aluminum Copper Lithium Alloy

    Science.gov (United States)

    Mishra, Sumeet; Beura, Vikrant Kumar; Singh, Amit; Yadava, Manasij; Nayan, Niraj

    2018-04-01

    Deformation behavior of an Al-Cu-Li alloy in different temper conditions (solutionized and T8) is investigated using stress relaxation tests. Fundamental parameters such as the apparent and physical activation volume, strain rate sensitivity, effective stress, and exhaustion rate of mobile dislocation density are determined from single and multiple relaxation tests. It was found that dislocation-dislocation interaction controls the kinetics of plastic deformation in the solutionized sample, whereas dislocation-precipitate interaction is the overriding factor in the presence of T1 precipitates. The apparent activation volume was found to be significantly lower in the presence of T1 precipitates compared with solutionized samples. Strain rate sensitivity and effective stress were found to be higher in the presence of T1 precipitates. In addition, multiple relaxation tests showed that irrespective of microstructural features (solutes, semi-coherent precipitates), the mobile dislocation density reduces during the relaxation period. Further evidence regarding reduction in mobile dislocation density is obtained from uniaxial tensile tests carried out after stress relaxation tests, where both solutionized and T8 samples show an increase in strength. Additional discussion on relaxation strain is included to provide a complete overview regarding the time-dependent deformation behavior of the Al-Cu-Li alloy in different temper conditions.

  11. Low frequency dielectric relaxation processes and ionic conductivity of montmorillonite clay nanoparticles colloidal suspension in poly(vinyl pyrrolidone−ethylene glycol blends

    Directory of Open Access Journals (Sweden)

    2008-11-01

    Full Text Available The dielectric dispersion behaviour of montmorillonite (MMT clay nanoparticles colloidal suspension in poly(vinyl pyrrolidone-ethylene glycol (PVP-EG blends were investigated over the frequency range 20 Hz to 1 MHz at 30°C. The 0, 1, 2, 3, 5 and 10 wt% MMT clay concentration of the weight of total solute (MMT+PVP were prepared in PVP-EG blends using EG as solvent. The complex relative dielectric function, alternating current (ac electrical conductivity, electric modulus and impedance spectra of these materials show the relaxation processes corresponding to the micro-Brownian motion of PVP chain, ion conduction and electrode polarization phenomena. The real part of ac conductivity spectra of these materials obeys Jonscher power law σ′(ω =σdc + Aωn in upper frequency end of the measurement, whereas dispersion in lower frequency end confirms the presence of electrode polarization effect. It was observed that the increase of clay concentration in the PVP-EG blends significantly increases the ac conductivity values, and simultaneously reduces the ionic conductivity relaxation time and electric double layer relaxation time, which suggests that PVP segmental dynamics and ionic motion are strongly coupled. The intercalation of EG structures in clay galleries and exfoliation of clay sheets by adsorption of PVP-EG structures on clay surfaces are discussed by considering the hydrogen bonding interactions between the hydroxyl group (–OH of EG molecules, carbonyl group (C=O of PVP monomer units, and the hydroxylated aluminate surfaces of the MMT clay particles. Results suggest that the colloidal suspension of MMT clay nano particles in the PVP-EG blends provide a convenient way to obtain an electrolyte solution with tailored electrical conduction properties.

  12. Relaxation and Conductivity in P3HT/PC71BM Blends As Revealed by Dielectric Spectroscopy

    DEFF Research Database (Denmark)

    Cui, Jing; Martinez-Tong, Daniel E.; Sanz, Alejandro

    2016-01-01

    The conduction mechanism and the molecular dynamics on the paradigmatic bulk heterojunction formed by poly(3-hexylthiophene) (P3HT) and phenyl-C-71-butyric acid methyl ester (PC71BM) blends have been characterized by dielectric spectroscopy. The results show that hexyl lateral chains of the polym...

  13. Study of Maxwell–Wagner (M–W) relaxation behavior and hysteresis observed in bismuth titanate layered structure obtained by solution combustion synthesis using dextrose as fuel

    International Nuclear Information System (INIS)

    Subohi, Oroosa; Shastri, Lokesh; Kumar, G.S.; Malik, M.M.; Kurchania, Rajnish

    2014-01-01

    Graphical abstract: X-ray diffraction studies show that phase formation and crystallinity was reached only after calcinations at 800 °C. Dielectric constant versus temperature curve shows ferroelectric to paraelectric transition temperature (T c ) to be 650 °C. Complex impedance curves show deviation from Debye behavior. The material shows a thin PE Loop with low remnant polarization due to high conductivity in the as prepared sample. - Highlights: • Bi 4 Ti 3 O 12 is synthesized using solution combustion technique with dextrose as fuel. • Dextrose has high reducing capacity (+24) and generates more no. of moles of gases. • Impedance studies show that the sample follows Maxwell–Wagner relaxation behavior. • Shows lower remnant polarization due to higher c-axis ratio. - Abstract: Structural, dielectric and ferroelectric properties of bismuth titanate (Bi 4 Ti 3 O 12 ) obtained by solution combustion technique using dextrose as fuel is studied extensively in this paper. Dextrose is used as fuel as it has high reducing valancy and generates more number of moles of gases during the reaction. X-ray diffraction studies show that phase formation and crystallinity was reached only after calcinations at 800 °C. Dielectric constant versus temperature curve shows ferroelectric to paraelectric transition temperature (T c ) to be 650 °C. The dielectric loss is very less (tan δ < 1) at lower temperatures but increases around T c due to structural changes in the sample. Complex impedance curves show deviation from Debye behavior. The material shows a thin PE Loop with low remnant polarization due to high conductivity in the as prepared sample

  14. Multidimensional dynamic piezoresponse measurements. Unraveling local relaxation behavior in relaxor-ferroelectrics via big data

    International Nuclear Information System (INIS)

    Vasudevan, Rama K.; Zhang, Shujun; Okatan, Mahmut Baris; Jesse, Stephen; Kalinin, Sergei V.; Bassiri-Gharb, Nazanin

    2015-01-01

    Compositional and charge disorder in ferroelectric relaxors lies at the heart of the unusual properties of these systems, such as aging and non-ergodicity, polarization rotations, and a host of temperature and field-driven phase transitions. However, much information about the field-dynamics of the polarization in the prototypical ferroelectric relaxor (1-x)Pb(Mg 1/3 Nb 2/3 )O 3-x PbTiO 3 (PMN-xPT) remains unprobed at the mesoscopic level. We use a piezoresponse force microscopy-based dynamic multimodal relaxation spectroscopy technique, enabling the study of ferroelectric switching and polarization relaxation at mesoscopic length scales, and carry out measurements on a PMN-0.28PT sample with minimal polishing. Results indicate that beyond a threshold DC bias the average relaxation increases as the system attempts to relax to the previous state. Phenomenological fitting reveals the presence of mesoscale heterogeneity in relaxation amplitudes and clearly suggests the presence of two distinct amplitudes. Independent component analysis reveals the presence of a disorder component of the relaxation, which is found to be strongly anti-correlated with the maximum piezoresponse at that location, suggesting smaller disorder effects where the polarization reversal is large and vice versa. The disorder in the relaxation amplitudes is postulated to arise from rhombohedral and field-induced tetragonal phase in the crystal, with each phase associated with its own relaxation amplitude. As a result, these studies highlight the crucial importance of the mixture of ferroelectric phases in the compositions in proximity of the morphotropic phase boundary in governing the local response and further highlight the ability of PFM voltage and time spectroscopies, in conjunction with big-data multivariate analyses, to locally map disorder and correlate it with parameters governing the dynamic behavior

  15. Behavioral Relaxation Training for Parkinson's Disease Related Dyskinesia and Comorbid Social Anxiety

    Science.gov (United States)

    Lundervold, Duane A.; Pahwa, Rajesh; Lyons, Kelly E.

    2013-01-01

    Effects of brief Behavioral Relaxation Training (BRT) on anxiety and dyskinesia of a 57-year-old female, with an 11-year history of Parkinson's disease (PD) and 18-months post-deep brain stimulation of the subthalamic nucleus, were evaluated. Multiple process and outcome measures were used including the Clinical Anxiety Scale (CAS), Subjective…

  16. Effect of extender oils on the stress relaxation behavior of thermoplastic vulcanizates

    Directory of Open Access Journals (Sweden)

    2008-11-01

    Full Text Available The long term mechanical behavior of oil extended thermoplastic vulcanizates (TPV based on polypropylene (PP and acrylonitrile-butadiene rubber (NBR has been characterized by means of stress relaxation experiments. The morphology of TPV and the phase specific oil distribution which depend on the content and type of oil as well as on the mixing regime have been characterized by means of Atomic Force Microscopy (AFM, Dynamic Mechanical Thermal Analysis (DMTA and Differential Scanning Calorimetrie (DSC. The discussion of the stress relaxation behavior was carried out using the two-component model, which allows splitting the initial stress into two components: a thermal activated stress component and an athermal one. A master curve was created by shifting the relaxation curves vertically and horizontally towards the reference curve. The vertical shift factor bT is a function of the temperature dependence of the athermal stress components. It was found that the oil distribution strongly affects the athermal stress component which is related to the contribution of the structural changes, e.g. crystallinity of the PP phase and the average molecular weight between the crosslinks of the NBR phase. From the temperature dependence of the horizontal shift factor aT the main viscoelastic relaxation process was determined as the α-relaxation process of the crystalline PP phase. It is not dependent on the polarity and content of the oil as well as the mixing regime.

  17. Relaxation behavior of a microbubble under ultrasonic field

    International Nuclear Information System (INIS)

    Kang, Sarng Woo; Kwak, Ho Young

    2000-01-01

    Nonlinear oscillation of a microbubble under ultrasound was investigated theoretically. The bubble radius-time curves calculated by the Rayleigh-Plesset equation with a polytropic index and by the Keller-Miksis equation with the analytical solution for the Navier-Stokes equations of the gases were compared with the observed results by the light scattering method. This study has revealed that the bubble behavior such as the expansion ratio and the bouncing motion after the first collapse under ultrasound depends crucially on the retarded time of the bubble motion to the applied ultrasound

  18. Investigation on dielectric relaxation of PMMA-grafted natural rubber incorporated with LiCF{sub 3}SO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Yap, K.S.; Teo, L.P.; Sim, L.N.; Majid, S.R. [Centre for Ionics University of Malaya, Physics Department, University of Malaya, 50603 Kuala Lumpur (Malaysia); Arof, A.K., E-mail: akarof@um.edu.my [Centre for Ionics University of Malaya, Physics Department, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2012-07-01

    Natural rubber (NR) grafted with 30 wt% poly (methyl methacrylate) (PMMA) and designated as MG30 has been added with varying amounts of LiCF{sub 3}SO{sub 3}. X-ray diffraction (XRD) shows the samples to be amorphous. Fourier transform infrared (FTIR) spectroscopy indicates complexation between the cation of the salt and the oxygen atom of the C=O and -COO- groups of MG30. From electrochemical impedance spectroscopy (EIS), MG30 with 30 wt% LiCF{sub 3}SO{sub 3} salt exhibits the highest ambient conductivity of 1.69 Multiplication-Sign 10{sup -6} S cm{sup -1} and lowest activation energy of 0.24 eV. The dielectric behavior has been analyzed using dielectric permittivity ({epsilon} Prime), dissipation factor (tan {delta}) and dielectric modulus (M{sup Low-Asterisk }) of the samples. The dielectric constant of pure MG30 has been estimated to be {approx}1.86.

  19. Communication: High pressure specific heat spectroscopy reveals simple relaxation behavior of glass forming molecular liquid

    DEFF Research Database (Denmark)

    Roed, Lisa Anita; Niss, Kristine; Jakobsen, Bo

    2015-01-01

    The frequency dependent specific heat has been measured under pressure for the molecular glass forming liquid 5-polyphenyl-4-ether in the viscous regime close to the glass transition. The temperature and pressure dependences of the characteristic time scale associated with the specific heat...... is compared to the equivalent time scale from dielectric spectroscopy performed under identical conditions. It is shown that the ratio between the two time scales is independent of both temperature and pressure. This observation is non-trivial and demonstrates the existence of specially simple molecular...... liquids in which different physical relaxation processes are both as function of temperature and pressure/density governed by the same underlying “inner clock.” Furthermore, the results are discussed in terms of the recent conjecture that van der Waals liquids, like the measuredliquid, comply...

  20. Analysis of pulse and relaxation behavior in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Bernardi, Dawn M. [Ford Motor Company, Research and Innovation Center, Dearborn, MI 48124 (United States); Go, Joo-Young [SB LiMotive, R and D team, 428-5, Gongse-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-577 (Korea)

    2011-01-01

    A mathematical model of a lithium-ion cell is used to analyze pulse and relaxation behavior in cells designed for hybrid-electric-vehicle propulsion. Predictions of cell voltage show good agreement with experimental results. Model results indicate the ohmic voltage loss in the positive electrode is the dominant contributor to cell overvoltage in the first instances of a pulse. The concentration overvoltage associated with the reduced lithium in the solid phase of the positive is of secondary importance through pulse duration, but dominates after current interruption. Effects of anisotropy in the particle diffusion coefficient are also studied. Heaviside mollification functions are utilized to describe the thermodynamic open-circuit voltage of lithiated graphite, and the ''pleated-layer model'' is extended to realize the phase behavior of primary-particle aggregates during cell operation. The negative electrode contributes little to the cell overvoltage, and two-phase behavior results in a reaction front within the electrode. No voltage relaxation is associated with the negative electrode, and after full relaxation, a stable composition gradient of lithium exists throughout the solid phase. Internal galvanic coupling removes the composition gradients in the positive electrode during relaxation. (author)

  1. Utilizing the dynamic stark shift as a probe for dielectric relaxation in photosynthetic reaction centers during charge separation.

    Science.gov (United States)

    Guo, Zhi; Lin, Su; Woodbury, Neal W

    2013-09-26

    In photosynthetic reaction centers, the electric field generated by light-induced charge separation produces electrochromic shifts in the transitions of reaction center pigments. The extent of this Stark shift indirectly reflects the effective field strength at a particular cofactor in the complex. The dynamics of the effective field strength near the two monomeric bacteriochlorophylls (BA and BB) in purple photosynthetic bacterial reaction centers has been explored near physiological temperature by monitoring the time-dependent Stark shift during charge separation (dynamic Stark shift). This dynamic Stark shift was determined through analysis of femtosecond time-resolved absorbance change spectra recorded in wild type reaction centers and in four mutants at position M210. In both wild type and the mutants, the kinetics of the dynamic Stark shift differ from those of electron transfer, though not in the same way. In wild type, the initial electron transfer and the increase in the effective field strength near the active-side monomer bacteriochlorophyll (BA) occur in synchrony, but the two signals diverge on the time scale of electron transfer to the quinone. In contrast, when tyrosine is replaced by aspartic acid at M210, the kinetics of the BA Stark shift and the initial electron transfer differ, but transfer to the quinone coincides with the decay of the Stark shift. This is interpreted in terms of differences in the dynamics of the local dielectric environment between the mutants and the wild type. In wild type, comparison of the Stark shifts associated with BA and BB on the two quasi-symmetric halves of the reaction center structure confirm that the effective dielectric constants near these cofactors are quite different when the reaction center is in the state P(+)QA(-), as previously determined by Steffen et al. at 1.5 K (Steffen, M. A.; et al. Science 1994, 264, 810-816). However, it is not possible to determine from static, low-temperature measurments if the

  2. Nonstoichiometric control of tunnel-filling order, thermal expansion, and dielectric relaxation in tetragonal tungsten Bronzes Ba0.5-xTaO3-x.

    Science.gov (United States)

    Pan, Fengjuan; Li, Xiaohui; Lu, Fengqi; Wang, Xiaoming; Cao, Jiang; Kuang, Xiaojun; Véron, Emmanuel; Porcher, Florence; Suchomel, Matthew R; Wang, Jing; Allix, Mathieu

    2015-09-21

    Ordering of interpolated Ba(2+) chains and alternate Ta-O rows (TaO)(3+) in the pentagonal tunnels of tetragonal tungsten bronzes (TTB) is controlled by the nonstoichiometry in the highly nonstoichiometric Ba0.5-xTaO3-x system. In Ba0.22TaO2.72, the filling of Ba(2+) and (TaO)(3+) groups is partially ordered along the ab-plane of the simple TTB structure, resulting in a √2-type TTB superstructure (Pbmm), while in Ba0.175TaO2.675, the pentagonal tunnel filling is completely ordered along the b-axis of the simple TTB structure, leading to a triple TTB superstructure (P21212). Both superstructures show completely empty square tunnels favoring Ba(2+) conduction and feature unusual accommodation of Ta(5+) cations in the small triangular tunnels. In contrast with stoichiometric Ba6GaTa9O30, which shows linear thermal expansion of the cell parameters and monotonic decrease of permittivity with temperature within 100-800 K, these TTB superstructures and slightly nonstoichiometric simple TTB Ba0.4TaO2.9 display abnormally broad and frequency-dependent extrinsic dielectric relaxations in 10(3)-10(5) Hz above room temperature, a linear deviation of the c-axis thermal expansion around 600 K, and high dielectric permittivity ∼60-95 at 1 MHz at room temperature.

  3. Physical behaviors of impure atoms during relaxation of impure NiAl-based alloy grain boundary

    International Nuclear Information System (INIS)

    Zheng Liping; Jiang Bingyao; Liu Xianghuai; Li Douxing

    2003-01-01

    The Monte Carlo simulation with the energetics described by the embedded atom method has been employed to mainly study physical behaviors of boron atoms during relaxation of the Ni 3 Al-x at.% B grain boundary. During relaxation of impure Ni 3 Al grain boundaries, authors suggest that for different types of impure atoms (Mg, B, Cr and Zr atoms etc.), as the segregating species, they have the different behaviors, but as the inducing species, they have the same behaviors, i.e. they all induce Ni atoms to substitute Al atoms. Calculations show that at the equilibrium, when x(the B bulk concentration) increases from 0.1 to 0.9, the peak concentration of B increases, correspondently, the peak concentration of Ni maximizes but the valley concentration of Al minimizes, at x=0.5. The calculations also show the approximate saturation of Ni at the grain boundary at x=0.5

  4. Rutile-type Co doped SnO{sub 2} diluted magnetic semiconductor nanoparticles: Structural, dielectric and ferromagnetic behavior

    Energy Technology Data Exchange (ETDEWEB)

    Mehraj, Sumaira, E-mail: sumairamehraj07@gmail.com [Department of Applied Physics, Aligarh Muslim University, Aligarh-202002 (India); Shahnawaze Ansari, M. [Center of Nanotechnology, King Abdulaziz University, Jeddah-21589 (Saudi Arabia); Alimuddin [Department of Applied Physics, Aligarh Muslim University, Aligarh-202002 (India)

    2013-12-01

    Nanoparticles of basic composition Sn{sub 1−x}Co{sub x}O{sub 2} (x=0.00, 0.01, 0.03, 0.05 and 0.1) were synthesized through the citrate-gel method and were characterized for structural properties using X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FT-IR). XRD analysis of the powder samples sintered at 500 °C for 12 h showed single phase rutile type tetragonal structure and the crystallite size decreased as the cobalt content was increased. FT-IR spectrum displayed various bands that came due to fundamental overtones and combination of O–H, Sn–O and Sn–O–Sn entities. The effect of Co doping on the electrical and magnetic properties was studied using dielectric spectroscopy and vibrating sample magnetometer (VSM) at room temperature. The dielectric parameters (ε, tan δ and σ{sub ac}) show their maximum value for 10% Co doping. The dielectric loss shows anomalous behavior with frequency where it exhibits the Debye relaxation. The variation of dielectric properties and ac conductivity with frequency reveals that the dispersion is due to the Maxwell–Wagner type of interfacial polarization in general and hopping of charge between Sn{sup 2+} and Sn{sup 4+} as well as between Co{sup 2+} and Co{sup 3+} ions. The complex impedance analysis was used to separate the grain and grain boundary contributions in the system which shows that the conduction process in grown nanoparticles takes place predominantly through grain boundary volume. Hysteresis loops were observed clearly in M–H curves from 0.01 to 0.1% Co doped SnO{sub 2} samples. The saturation magnetization of the doped samples increased slightly with increase of Co concentration. However pure SnO{sub 2} displayed paramagnetism which vanished at higher values of magnetic field.

  5. Non-polymeric asymmetric binary glass-formers. II. Secondary relaxation studied by dielectric, 2H NMR, and 31P NMR spectroscopy

    Science.gov (United States)

    Pötzschner, B.; Mohamed, F.; Bächer, C.; Wagner, E.; Lichtinger, A.; Bock, D.; Kreger, K.; Schmidt, H.-W.; Rössler, E. A.

    2017-04-01

    We investigate the secondary (β-) relaxations of an asymmetric binary glass former consisting of a spirobichroman derivative (SBC; Tg = 356 K) as the high-Tg component and the low-Tg component tripropyl phosphate (TPP; Tg = 134 K). The main relaxations are studied in Paper I [B. Pötzschner et al., J. Chem. Phys. 146, 164503 (2017)]. A high Tg contrast of ΔTg = 222 K is put into effect in a non-polymeric system. Component-selective studies are carried out by combining results from dielectric spectroscopy (DS) for mass concentrations cTPP ≥ 60% and those from different methods of 2H and 31P NMR spectroscopy. In the case of NMR, the full concentration range (10% ≤ cTPP ≤ 100%) is covered. The neat components exhibit a β-relaxation (β1 (SBC) and β2 (TPP)). The latter is rediscovered by DS in the mixtures for all concentrations with unchanged time constants. NMR spectroscopy identifies the β-relaxations as being alike to those in neat glasses. A spatially highly restricted motion with angular displacement below ±10° encompassing all molecules is involved. In the low temperature range, where TPP shows the typical 31P NMR echo spectra of the β2-process, very similar spectral features are observed for the (deuterated) SBC component by 2H NMR, in addition to its "own" β1-process observed at high temperatures. Apparently, the small TPP molecules enslave the large SBC molecules to perform a common hindered reorientation. The temperature dependence of the spin-lattice relaxation time of both components is the same and reveals an angular displacement of the SBC molecules somewhat smaller than that of TPP, though the time constants τβ2 are the same. Furthermore, T1(T) of TPP in the temperature region of the β2-process is absolutely the same as in the mixture TPP/polystyrene investigated previously. It appears that the manifestations of the β-process introduced by one component are essentially independent of the second component. Finally, at cTPP ≤ 20% one

  6. Conductivity, dielectric behavior and FTIR studies of high molecular weight poly(vinylchloride)-lithium triflate polymer electrolytes

    International Nuclear Information System (INIS)

    Ramesh, S.; Chai, M.F.

    2007-01-01

    Thin films of high molecular weight polyvinyl chloride (PVC) with lithium triflate (LiCF 3 SO 3 ) salt were prepared by solution casting method. The ionic conductivity and dielectric measurements were carried out on these films over a wide frequency regime at various temperatures. The conductivity-temperature plots were found to obey classical Arrhenius relationship. The dielectric behavior was analysed using dielectric permittivity and dielectric modulus of the samples. FTIR studies show some simple overlapping and shift in peaks between high molecular weight polyvinyl chloride (PVC) with lithium triflate (LiCF 3 SO 3 ) salt in the polymer electrolyte complexes

  7. Conductivity, dielectric behavior and FTIR studies of high molecular weight poly(vinylchloride)-lithium triflate polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, S. [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Setapak, 53300 Kuala Lumpur (Malaysia)]. E-mail: ramesh@mail.utar.edu.my; Chai, M.F. [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Setapak, 53300 Kuala Lumpur (Malaysia)

    2007-05-15

    Thin films of high molecular weight polyvinyl chloride (PVC) with lithium triflate (LiCF{sub 3}SO{sub 3}) salt were prepared by solution casting method. The ionic conductivity and dielectric measurements were carried out on these films over a wide frequency regime at various temperatures. The conductivity-temperature plots were found to obey classical Arrhenius relationship. The dielectric behavior was analysed using dielectric permittivity and dielectric modulus of the samples. FTIR studies show some simple overlapping and shift in peaks between high molecular weight polyvinyl chloride (PVC) with lithium triflate (LiCF{sub 3}SO{sub 3}) salt in the polymer electrolyte complexes.

  8. Experimental characterization of the hysteretic and rate-dependent electromechanical behavior of dielectric electro-active polymer actuators

    International Nuclear Information System (INIS)

    York, A; Seelecke, S; Dunn, J

    2010-01-01

    Dielectric electro-active polymers (DEAPs) can achieve substantial deformation (>300% strain) while sustaining, compared to their ionic counterparts, large forces. This makes them attractive for various actuation and sensing applications such as in light weight and energy efficient valve and pumping systems. Many applications operate DEAP actuators at higher frequencies where rate-dependent effects influence their performance. This motivates the seeking of dynamic characterization of these actuators beyond the quasi-static regime. This paper provides a systematic experimental investigation of the quasi-static and dynamic electromechanical properties of a DEAP actuator. In order to completely characterize the fully coupled behavior, force versus displacement measurements at various constant voltages and force versus voltage measurements at various fixed displacements are conducted. The experiments are conducted with a particular focus on the hysteretic and rate-dependent material behavior. These experiments provide insight into the electrical dynamics and viscoelastic relaxation inherent in DEAP actuators. This study is intended to provide information, including high frequency performance analysis, useful to anyone designing dynamic actuator systems using DEAPs

  9. Cation distribution controlled dielectric, electrical and magnetic behavior of In{sup 3+} substituted cobalt ferrites synthesized via solid-state reaction technique

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, Rabia, E-mail: rabiabest@gmail.com [Department of Physics, National Institute of Technology, Hamirpur, H.P 177 005 (India); Sharma, K.K., E-mail: kk.gautam@yahoo.co.in [Department of Physics, National Institute of Technology, Hamirpur, H.P 177 005 (India); Kaur, Pawanpreet [Department of Physics, National Institute of Technology, Hamirpur, H.P 177 005 (India); Kumar, Ravi [Centre for Material Science and Engineering, National Institute of Technology, Hamirpur, H.P 177 005 (India)

    2014-12-15

    We report the structural, cation distribution, dielectric, electrical and magnetic properties of CoFe{sub 2−x}In{sub x}O{sub 4} (0.0 ≤ x ≤ 0.6) ferrites. Rietveld fitted X-ray diffraction (XRD) patterns confirm the formation of single phase cubic spinel structure with Fd3m space group for all the samples. The comprehensive analysis of XRD based cation distribution has been performed to see the effect of In{sup 3+} ions substitution on various structural parameters such as site ionic radii, edge and bond lengths, interionic distances etc. The dielectric constant and tangent loss have been studied as a function of temperature and frequency. The dielectric data presented in electric modulus form reveals the presence of non-Debye relaxation behavior in considered ferrites. Both the AC and DC conductivities as a function of temperature are found to decrease with increasing In{sup 3+} content. The power law behavior of AC-conductivity indicates a strong correlation among electrons in these systems. The isothermal magnetization versus applied field curves with high field slope and significant coercivity suggest that studied materials are highly anisotropic with canted spin structures and exhibit ferrimagnetic behavior at 300 K. Magnetization gets enhanced up to 40% of In{sup 3+} substitution. The observed low dielectric losses and high resistivity can find their application in power transformers at high frequencies. - Highlights: • Rietveld refinement of CoIn{sub x}Fe{sub 2−x}O{sub 4} samples shows single phase cubic spinel structure. • Cation distribution matches well with experimental integrated intensity ratios. • Strength of magnetic interactions is found to increase with increasing In{sup 3+} substitution. • The present systems are highly correlated. • These material are promising candidate for power transformers at high frequencies.

  10. Dielectric relaxation study of Pb sub 1 sub - sub x La sub x MoO sub 4 sub + subdelta (x = 0-0.3) oxide-ion conductors

    CERN Document Server

    Zhang, G G; Wang, X P; Yi, Z G

    2003-01-01

    DC conductivity and dielectric relaxation measurements are exploited to study the influence of La substitution on the dielectric properties and oxygen-ion transportation in PbMoO sub 4 samples. The DC conductivity of La-doped samples is about 10 sup - sup 3 S cm sup - sup 1 around 1073 K. A dielectric loss peak with activation energy of 0.6-0.8 eV is observed in the temperature spectrum as well as in the frequency spectrum for all La-doped PbMoO sub 4 samples. With increasing La doping content, this peak becomes higher and shifts to higher temperature or lower frequency, and the activation energy becomes larger. It is suggested that this dielectric loss peak is associated with the short-distance diffusion of oxygen ions (or oxygen vacancies) between the 16f and 8e sites of the scheelite structure type with I4 sub 1 /a symmetry.

  11. Vogel-Fulcher dependence of relaxation rates in a nematic monomer and elastomer

    Science.gov (United States)

    Shenoy, D.; Filippov, S.; Aliev, F.; Keller, P.; Thomsen, D.; Ratna, B.

    2000-12-01

    Dielectric relaxation spectroscopy is used to study the relaxation processes in a nematic monomer and the corresponding cross-linked polymer nematic liquid crystal (elastomer). In the frequency window 10 mHz to 2 GHz the monomer liquid crystal shows a single relaxation whereas the polymer exhibits three relaxation processes, two of which are quantitatively analyzed. The temperature dependence of relaxation times in both the monomer and polymer follows a Vogel-Fulcher behavior. The relaxation processes are identified with specific molecular motions and activation energies are calculated in a linear approximation for comparison with literature data.

  12. Cognitive–Behavioral Therapy and Hypnotic Relaxation to Treat Sleep Problems in an Adolescent With Diabetes

    Science.gov (United States)

    Perfect, Michelle M.; Elkins, Gary R.

    2014-01-01

    Inadequate sleep among adolescents frequently contributes to obesity and reduced academic performance, along with symptoms of anxiety, depression, fatigue, and attention deficits. The etiological bases of sleep quality has been associated with both stress and sleep habits. These problems tend to be especially important for adolescents with diabetes as the effects of poor sleep complicate health outcomes. This case example concerns a 14-year-old adolescent girl with a history of type I diabetes and stress-related sleep difficulties. Treatment included cognitive–behavioral methods and hypnotic relaxation therapy. Results of this case example and other controlled research suggest that hypnotic relaxation therapy is well accepted, results in good compliance, and serves as a useful adjunctive to cognitive–behavioral intervention for sleep problems. PMID:20865769

  13. Predictors of tanning salon use: behavioral alternatives for enhancing appearance, relaxing and socializing.

    Science.gov (United States)

    Danoff-Burg, Sharon; Mosher, Catherine E

    2006-05-01

    This study investigated cognitive predictors of tanning salon use, based on Jaccard's Theory of Alternative Behavior. A total of 164 undergraduates completed questionnaires that assessed tanning salon use, attitudes toward tanning salon use and attitudes toward behavioral alternatives for enhancing appearance, relaxing and socializing. Results indicated that attitudes toward alternatives for enhancing appearance were not significantly related to tanning salon use. However, favorable attitudes toward engaging in a hobby to relax and going to the gym to socialize were inversely related to frequency of tanning salon use. Findings suggest that interventions for reducing skin cancer risk should focus not only on decreasing favorable attitudes toward tanning, but also on increasing favorable attitudes toward healthier alternatives to tanning salon use.

  14. Structural, dielectric and AC conductivity study of Sb2O3 thin film ...

    Indian Academy of Sciences (India)

    52

    However, to date, no reports have appeared on impedance spectroscopy, modulus behavior, electrical conductivity, dielectric relaxation and dielectric properties of crystalline Sb2O3 thin films. This paper deals for the first time with the frequency and temperature dependence of AC conductivity and complex electric modulus ...

  15. Evidence for Reduced Hydrogen-Bond Cooperativity in Ionic Solvation Shells from Isotope-Dependent Dielectric Relaxation

    Science.gov (United States)

    Cota, Roberto; Ottosson, Niklas; Bakker, Huib J.; Woutersen, Sander

    2018-05-01

    We find that the reduction in dielectric response (depolarization) of water caused by solvated ions is different for H2O and D2O . This isotope dependence allows us to reliably determine the kinetic contribution to the depolarization, which is found to be significantly smaller than predicted by existing theory. The discrepancy can be explained from a reduced hydrogen-bond cooperativity in the solvation shell: we obtain quantitative agreement between theory and experiment by reducing the Kirkwood correlation factor of the solvating water from 2.7 (the bulk value) to ˜1.6 for NaCl and ˜1 (corresponding to completely uncorrelated motion of water molecules) for CsCl.

  16. Statistical modelling of discharge behavior of atmospheric pressure dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Tay, W. H.; Kausik, S. S.; Wong, C. S., E-mail: cswong@um.edu.my; Yap, S. L.; Muniandy, S. V. [Plasma Technology Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-11-15

    In this work, stochastic behavior of atmospheric pressure dielectric barrier discharge (DBD) has been investigated. The experiment is performed in a DBD reactor consisting of a pair of stainless steel parallel plate electrodes powered by a 50 Hz ac high voltage source. Current pulse amplitude distributions for different space gaps and the time separation between consecutive current pulses are studied. A probability distribution function is proposed to predict the experimental distribution function for the current pulse amplitudes and the occurrence of the transition regime of the pulse distribution. Breakdown voltage at different positions on the dielectric surface is suggested to be stochastic in nature. The simulated results based on the proposed distribution function agreed well with the experimental results and able to predict the regime of transition voltage. This model would be useful for the understanding of stochastic behaviors of DBD and the design of DBD device for effective operation and applications.

  17. Studies about strength recovery and generalized relaxation behavior of rock (4)

    International Nuclear Information System (INIS)

    Sanada, Masanori; Kishi, Hirokazu; Hayashi, Katsuhiko; Takebe, Atsuji; Okubo, Seisuke

    2011-11-01

    Surrounding rock failure occurs due to the increasing stress with tunnel excavation and extent of the failure depends on rock strength and rock stress. The NATM (New Austrian Tunneling Method) assumes that supporting effects by shotcrete and rock bolt prevent rock failure maximizing the potential capability of rock mass. Recently, it was found that failed rock just behind tunnel support recovers its strength. This phenomenon should take into account in evaluation of tunnel stability and long-term mechanical behavior of rock mass after closure of a repository for high-level radioactive waste (HLW). Visco-elastic behavior of rock is frequently studied by creep testing, but creep occasionally occurs together with relaxation in-situ due to the effect of various supports and rock heterogeneity. Therefore generalized stress relaxation in which both load and displacement are controlled is proper to study such behavior under the complicated conditions. It is also important to understand rock behavior in tensile stress field which may be developed in the surrounding rock of deposition hole or tunnel by swelling of bentonite or volume expansion of overpack with corrosion after the repository closure. Cores sampled at 'Horonobe Underground Research Laboratory' has been tested to reveal the above-mentioned behavior. Quantitative evaluation and modeling of the rock behavior, however, have not been established mainly because of large scatter of data. As a factor of the large scatter of data, it was expected that the evaporation of moisture from the surface of the test piece influences the test outcome because it tested in the nature. In this study, strength recovery, generalized stress relaxation and two tensile strength tests were carried out using shale sampled in the Wakkanai-formation. As the results, recovery of failed rocks in strength and hydraulic conductivity were observed under a certain condition. We believe this result is very important for the stability evaluation

  18. Modeling of the mechanical behavior of austenitic stainless steels under pure fatigue and fatigue relaxation loadings

    International Nuclear Information System (INIS)

    Hajjaji-Rachdi, Fatima

    2015-01-01

    Austenitic stainless steels are potential candidates for structural components of sodium-cooled fast neutron reactors. Many of these components will be subjected to cyclic loadings including long hold times (1 month) under creep or relaxation at high temperature. These hold times are unattainable experimentally. The aim of the present study is to propose mechanical models which take into account the involved mechanisms and their interactions during such complex loadings. First, an experimental study of the pure fatigue and fatigue-relaxation behavior of 316L(N) at 500 C has been carried out with very long hold times (10 h and 50 h) compared with the ones studied in literature. Tensile tests at 600 C with different applied strain rates have been undertaken in order to study the dynamic strain ageing phenomenon. Before focusing on more complex loadings, the mean field homogenization approach has been used to predict the mechanical behavior of different FCC metals and alloys under low cycle fatigue at room temperature. Both Hill-Hutchinson and Kroener models have been used. Next, a physically-based model based on dislocation densities has been developed and its parameters measured. The model allows predictions in a qualitative agreement with experimental data for tensile loadings. Finally, this model has been enriched to take into account visco-plasticity, dislocation climb and interaction between dislocations and solute atoms, which are influent during creep-fatigue or fatigue relaxation at high temperature. The proposed model uses three adjustable parameters only and allows rather accurate prediction of the behavior of 316L(N) steel under tensile loading and relaxation. (author) [fr

  19. Control of Evaporation Behavior of an Inkjet-Printed Dielectric Layer Using a Mixed-Solvent System

    Science.gov (United States)

    Yang, Hak Soon; Kang, Byung Ju; Oh, Je Hoon

    2016-01-01

    In this study, the evaporation behavior and the resulting morphology of inkjet-printed dielectric layers were controlled using a mixed-solvent system to fabricate uniform poly-4-vinylphenol (PVP) dielectric layers without any pinholes. The mixed-solvent system consisted of two different organic solvents: 1-hexanol and ethanol. The effects of inkjet-printing variables such as overlap condition, substrate temperature, and different printing sequences (continuous and interlacing printing methods) on the inkjet-printed dielectric layer were also investigated. Increasing volume fraction of ethanol (VFE) is likely to reduce the evaporation rate gradient and the drying time of the inkjet-printed dielectric layer; this diminishes the coffee stain effect and thereby improves the uniformity of the inkjet-printed dielectric layer. However, the coffee stain effect becomes more severe with an increase in the substrate temperature due to the enhanced outward convective flow. The overlap condition has little effect on the evaporation behavior of the printed dielectric layer. In addition, the interlacing printing method results in either a stronger coffee stain effect or wavy structures of the dielectric layers depending on the VFE of the PVP solution. All-inkjet-printed capacitors without electrical short circuiting can be successfully fabricated using the optimized PVP solution (VFE = 0.6); this indicates that the mixed-solvent system is expected to play an important role in the fabrication of high-quality inkjet-printed dielectric layers in various printed electronics applications.

  20. Colossal Dielectric Behavior of Ga+Nb Co-Doped Rutile TiO2.

    Science.gov (United States)

    Dong, Wen; Hu, Wanbiao; Berlie, Adam; Lau, Kenny; Chen, Hua; Withers, Ray L; Liu, Yun

    2015-11-18

    Stimulated by the excellent colossal permittivity (CP) behavior achieved in In+Nb co-doped rutile TiO2, in this work we investigate the CP behavior of Ga and Nb co-doped rutile TiO2, i.e., (Ga(0.5)Nb(0.5))(x)Ti(1-x)O2, where Ga(3+) is from the same group as In(3+) but with a much smaller ionic radius. Colossal permittivity of up to 10(4)-10(5) with an acceptably low dielectric loss (tan δ = 0.05-0.1) over broad frequency/temperature ranges is obtained at x = 0.5% after systematic synthesis optimizations. Systematic structural, defect, and dielectric characterizations suggest that multiple polarization mechanisms exist in this system: defect dipoles at low temperature (∼10-40 K), polaronlike electron hopping/transport at higher temperatures, and a surface barrier layer capacitor effect. Together these mechanisms contribute to the overall dielectric properties, especially apparent observed CP. We believe that this work provides comprehensive guidance for the design of new CP materials.

  1. A model for the scattering of high-frequency electromagnetic fields from dielectrics exhibiting thermally-activated electrical losses

    Science.gov (United States)

    Hann, Raiford E.

    1991-01-01

    An equivalent circuit model (ECM) approach is used to predict the scattering behavior of temperature-activated, electrically lossy dielectric layers. The total electrical response of the dielectric (relaxation + conductive) is given by the ECM and used in combination with transmission line theory to compute reflectance spectra for a Dallenbach layer configuration. The effects of thermally-activated relaxation processes on the scattering properties is discussed. Also, the effect of relaxation and conduction activation energy on the electrical properties of the dielectric is described.

  2. Dielectric materials for electrical engineering

    CERN Document Server

    Martinez-Vega, Juan

    2013-01-01

    Part 1 is particularly concerned with physical properties, electrical ageing and modeling with topics such as the physics of charged dielectric materials, conduction mechanisms, dielectric relaxation, space charge, electric ageing and life end models and dielectric experimental characterization. Part 2 concerns some applications specific to dielectric materials: insulating oils for transformers, electrorheological fluids, electrolytic capacitors, ionic membranes, photovoltaic conversion, dielectric thermal control coatings for geostationary satellites, plastics recycling and piezoelectric poly

  3. High Temperature Uniaxial Compression and Stress-Relaxation Behavior of India-Specific RAFM Steel

    Science.gov (United States)

    Shah, Naimish S.; Sunil, Saurav; Sarkar, Apu

    2018-05-01

    India-specific reduced activity ferritic martensitic steel (INRAFM), a modified 9Cr-1Mo grade, has been developed by India as its own structural material for fabrication of the Indian Test Blanket Module (TBM) to be installed in the International Thermonuclear Energy Reactor (ITER). The extensive study on mechanical and physical properties of this material has been currently going on for appraisal of this material before being put to use in the ITER. High temperature compression, stress-relaxation, and strain-rate change behavior of the INRAFM steel have been investigated. The optical microscopic and scanning electron microscopic characterizations were carried out to observe the microstructural changes that occur during uniaxial compressive deformation test. Comparable true plastic stress values at 300 °C and 500 °C and a high drop in true plastic stress at 600 °C were observed during the compression test. Stress-relaxation behaviors were investigated at 500 °C, 550 °C, and 600 °C at a strain rate of 10-3 s-1. The creep properties of the steel at different temperatures were predicted from the stress-relaxation test. The Norton's stress exponent (n) was found to decrease with the increasing temperature. Using Bird-Mukherjee-Dorn relationship, the temperature-compensated normalized strain rate vs stress was plotted. The stress exponent (n) value of 10.05 was obtained from the normalized plot. The increasing nature of the strain rate sensitivity (m) with the test temperature was found from strain-rate change test. The low plastic stability with m 0.06 was observed at 600 °C. The activation volume (V *) values were obtained in the range of 100 to 300 b3. By comparing the experimental values with the literature, the rate-controlling mechanisms at the thermally activated region of high temperature were found to be the nonconservative movement of jogged screw dislocations and thermal breaking of attractive junctions.

  4. Nonlinear behavior in the time domain in argon atmospheric dielectric-barrier discharges

    International Nuclear Information System (INIS)

    Shi Hong; Wang Yanhui; Wang Dezhen

    2008-01-01

    A vast majority of nonlinear behavior in atmospheric pressure discharges has so far been studied in the space domain, and their time-domain characters are often believed to exact the periodicity of the externally applied voltage. In this paper, based on one-dimensional fluid mode, we study complex nonlinear behavior in the time domain in argon atmospheric dielectric-barrier discharges at very broad frequency range from kilohertz to megahertz. Under certain conditions, the discharge not only can be driven to chaos from time-periodic state through period-doubling bifurcation, but also can return stable periodic motion from chaotic state through an inverse period-doubling bifurcation sequence. Upon changing the parameter the discharge undergoes alternatively chaotic and periodic behavior. Some periodic windows embedded in chaos, as well as the secondary bifurcation occurring in the periodic windows can also be observed. The corresponding discharge characteristics are investigated.

  5. Effectiveness of autogenic relaxation training on children and adolescents with behavioral and emotional problems.

    Science.gov (United States)

    Goldbeck, Lutz; Schmid, Katharina

    2003-09-01

    To investigate the effectiveness of autogenic relaxation training in a mildly disturbed outpatient population of children and adolescents with mostly internalizing symptoms, and/or some aggressive, impulsive, or attention deficit symptoms. Fifty children and adolescents from southern Germany (mean age 10.2 years; range 6-15 years; mostly intact middle class family background) participated in a group intervention program. Fifteen patients were randomly assigned to a waiting-list control group. Behavior symptoms (Child Behavior Checklist), psychosomatic complaints (Giessen Complaint List), and level of stress were assessed before and after the intervention or after the waiting phase. Individual goal attainment was evaluated at the end of the intervention and in a 3-month follow-up. The parent report on CBCL reflected reduced symptoms compared with control. The child report indicated reduced stress and psychosomatic complaints both in the intervention and control group, and no significant group x time interaction effects occurred on these scales. Effect sizes of 0.49 in the CBCL and 0.36 in the complaint list indicated clinically relevant effects of the intervention compared with the control group. At the end of the intervention, 56% of the children and 55% of the parents reported partial goal attainment, 38% of the children and 30% of the parents reported complete goal attainment; 71% of the parents confirmed partial goal attainment 3 months postintervention. Autogenic relaxation training is an effective broadband method for children and adolescents.

  6. Dielectrics in electric fields

    CERN Document Server

    Raju, Gorur G

    2003-01-01

    Discover nontraditional applications of dielectric studies in this exceptionally crafted field reference or text for seniors and graduate students in power engineering tracks. This text contains more than 800 display equations and discusses polarization phenomena in dielectrics, the complex dielectric constant in an alternating electric field, dielectric relaxation and interfacial polarization, the measurement of absorption and desorption currents in time domains, and high field conduction phenomena. Dielectrics in Electric Fields is an interdisciplinary reference and text for professionals and students in electrical and electronics, chemical, biochemical, and environmental engineering; physical, surface, and colloid chemistry; materials science; and chemical physics.

  7. Contrasting dynamics of fragile and non-fragile polyalcohols through the glass, and dynamical, transitions: A comparison of neutron scattering and dielectric relaxation data for sorbitol and glycerol.

    Science.gov (United States)

    Migliardo, F; Angell, C A; Magazù, S

    2017-01-01

    Glycerol and sorbitol are glass-forming hydrogen-bonded systems characterized by intriguing properties which make these systems very interesting also from the applications point of view. The goal of this work is to relate the hydrogen-bonded features, relaxation dynamics, glass transition properties and fragility of these systems, in particular to seek insight into their very different liquid fragilities. The comparison between glycerol and sorbitol is carried out by collecting the elastic incoherent neutron scattering (EINS) intensity as a function of temperature and of the instrumental energy resolution. Intensity data vs temperature and resolution are analyzed in terms of thermal restraint and Resolution Elastic Neutron Scattering (RENS) approaches. The number of OH groups, which are related to the connecting sites, is a significant parameter both in the glass transition and in the dynamical transition. On the other hand, the disordered nature of sorbitol is confirmed by the existence of different relaxation processes. From the applications point of view, glycerol and sorbitol have remarkable bioprotectant properties which make these systems useful in different technological and industrial fields. Furthermore, polyols are rich in glassforming liquid phenomenology and highly deserving of study in their own right. The comparison of EINS and calorimetric data on glycerol and sorbitol helps provide a connection between structural relaxation, dynamical transition, glass transition, and fragility. The evaluation of the inflection point in the elastic intensity behavior as a function of temperature and instrumental energy resolution provides a confirmation of the validity of the RENS approach. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo. Copyright © 2016. Published by Elsevier B.V.

  8. Complex dielectric modulus and relaxation response at low microwave frequency region of dielectric ceramic Ba6-3xNd8+2xTi18O54

    Directory of Open Access Journals (Sweden)

    Chian Heng Lee

    2014-10-01

    Full Text Available The desirable characteristics of Ba6-3xNd8+2xTi18O54 include high dielectric constant, low loss tangent, and high quality factor developed a new field for electronic applications. The microwave dielectric properties of Ba6-3xNd8+2xTi18O54, with x = 0.15 ceramics at different sintering temperatures (600–1300°C were investigated. The phenomenon of polarization produced by the applied electric field was studied. The dielectric properties with respect to frequency from 1 MHz to 1.5 GHz were measured using Impedance Analyzer, and the results were compared and analyzed. The highest dielectric permittivity and lowest loss factor were defined among the samples. The complex dielectric modulus was evaluated from the measured parameters of dielectric measurement in the same frequency range, and used to differentiate the contribution of grain and grain boundary.

  9. Investigation of dielectric behavior of the PVC/BaTiO3 composite in low-frequencies

    Science.gov (United States)

    Berrag, A.; Belkhiat, S.; Madani, L.

    2018-04-01

    Polyvinyl chloride (PVC) is widely used as insulator in electrical engineering especially as cable insulation sheaths. In order to improve the dielectric properties, polymers are mixed with ceramics. In this paper, PVC composites with different weight percentages 2 wt.%, 5 wt.%, 8 wt.% and 10 wt.% were prepared and investigated. Loss index (𝜀″) and dielectric constant (𝜀‧) have been measured using an impedance analyzer RLC. Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) equipped with energy dispersive X-ray (EDX) have been used as characterization techniques. The incorporation of BaTiO3 does not modify the crystallinity and the morphology of the PVC but reduces the space charges, therefore the dielectric losses. The frequency response analysis has been followed in the frequency ranges (20-140 Hz and 115-1 MHz). Relaxation frequencies have been evaluated in each frequency range. Experimental measurements have been validated using Cole-Cole’s model. Experimental results show well that BaTiO3 as a filler improves the dielectric properties of PVC.

  10. Casimir free energy of dielectric films: classical limit, low-temperature behavior and control.

    Science.gov (United States)

    Klimchitskaya, G L; Mostepanenko, V M

    2017-07-12

    The Casimir free energy of dielectric films, both free-standing in vacuum and deposited on metallic or dielectric plates, is investigated. It is shown that the values of the free energy depend considerably on whether the calculation approach used neglects or takes into account the dc conductivity of film material. We demonstrate that there are material-dependent and universal classical limits in the former and latter cases, respectively. The analytic behavior of the Casimir free energy and entropy for a free-standing dielectric film at low temperature is found. According to our results, the Casimir entropy goes to zero when the temperature vanishes if the calculation approach with neglected dc conductivity of a film is employed. If the dc conductivity is taken into account, the Casimir entropy takes the positive value at zero temperature, depending on the parameters of a film, i.e. the Nernst heat theorem is violated. By considering the Casimir free energy of SiO 2 and Al 2 O 3 films deposited on a Au plate in the framework of two calculation approaches, we argue that physically correct values are obtained by disregarding the role of dc conductivity. A comparison with the well known results for the configuration of two parallel plates is made. Finally, we compute the Casimir free energy of SiO 2 , Al 2 O 3 and Ge films deposited on high-resistivity Si plates of different thicknesses and demonstrate that it can be positive, negative and equal to zero. The effect of illumination of a Si plate with laser light is considered. Possible applications of the obtained results to thin films used in microelectronics are discussed.

  11. Casimir free energy of dielectric films: classical limit, low-temperature behavior and control

    Science.gov (United States)

    Klimchitskaya, G. L.; Mostepanenko, V. M.

    2017-07-01

    The Casimir free energy of dielectric films, both free-standing in vacuum and deposited on metallic or dielectric plates, is investigated. It is shown that the values of the free energy depend considerably on whether the calculation approach used neglects or takes into account the dc conductivity of film material. We demonstrate that there are material-dependent and universal classical limits in the former and latter cases, respectively. The analytic behavior of the Casimir free energy and entropy for a free-standing dielectric film at low temperature is found. According to our results, the Casimir entropy goes to zero when the temperature vanishes if the calculation approach with neglected dc conductivity of a film is employed. If the dc conductivity is taken into account, the Casimir entropy takes the positive value at zero temperature, depending on the parameters of a film, i.e. the Nernst heat theorem is violated. By considering the Casimir free energy of SiO2 and Al2O3 films deposited on a Au plate in the framework of two calculation approaches, we argue that physically correct values are obtained by disregarding the role of dc conductivity. A comparison with the well known results for the configuration of two parallel plates is made. Finally, we compute the Casimir free energy of SiO2, Al2O3 and Ge films deposited on high-resistivity Si plates of different thicknesses and demonstrate that it can be positive, negative and equal to zero. The effect of illumination of a Si plate with laser light is considered. Possible applications of the obtained results to thin films used in microelectronics are discussed.

  12. A compare study on dielectric behaviors of Au/(Zn-doped PVA)/n-4H ...

    Indian Academy of Sciences (India)

    55

    thickness effect of Zn-doped PVA on the dielectric constant (ε′), dielectric .... In order to formation MPS structures, the prepared PVA (Zn-nanoparticle doped) ..... MacCallumand J R and Vincent C A 1989 Polymer Electrolyte Reviews (London:.

  13. Electric Conductivity and Dielectric-Breakdown Behavior for Polyurethane Magnetic Elastomers.

    Science.gov (United States)

    Sasaki, Shuhei; Tsujiei, Yuri; Kawai, Mika; Mitsumata, Tetsu

    2017-02-23

    The electric-voltage dependence of the electric conductivity for cross-linked and un-cross-linked magnetic elastomers was measured at various magnetic fields, and the effect of cross-linking on the electric conductivity and the dielectric-breakdown behavior was investigated. The electric conductivity for un-cross-linked elastomers at low voltages was independent of magnetic fields and the volume fraction of magnetic particles, indicating the electric conduction in the polyurethane matrix. At high voltages, the electric conductivity increased with the magnetic field, showing the electric conduction via chains of magnetic particles. On the other hand, the electric conductivity at low voltages for cross-linked elastomers with volume fractions below 0.06 was independent of the magnetic field, suggesting the electric conduction in the polyurethane matrix. At volume fractions above 0.14, the electric conductivity increased with the magnetic field, suggesting the electric conduction via chains of magnetic particles. At high voltages, the electric conductivity for cross-linked elastomers with a volume fraction of 0.02 was independent of the magnetic field, indicating the electric conduction through the polyurethane matrix. At volume fractions above 0.06, the electric conductivity suddenly increased at a critical voltage, exhibiting the dielectric breakdown at the bound layer of magnetic particles and/or the discontinuous part between chains.

  14. Low frequency alternating current conduction and dielectric relaxation in polypyrrole irradiated with 100 MeV swift heavy ions of silver (Ag{sup 8+})

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Amarjeet, E-mail: amarkaur@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Dhillon, Anju [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Avasthi, D.K. [Inter University Accelerator Center (IUAC), Aruna Asaf Ali Road, New Delhi 110067 (India)

    2013-07-15

    Polypyrrole (PPY) films were prepared by electrochemical polymerization technique. The fully undoped samples were irradiated with different radiation fluences ranging from 10{sup 10} to 10{sup 12} ions cm{sup −2} of 100 MeV silver (Ag{sup 8+}) ions. The temperature dependence of ac conductivity [σ{sub m}(ω)], dielectric constant (ε′) and dielectric loss (ε′′) of both irradiated as well as unirradiated samples have been investigated in 77–300 K. There exists typical Debye type dispersion. Giant increase in dielectric constant has been observed for irradiated samples which is attributed to polaronic defects produced during irradiation. - Graphical abstract: Display Omitted - Highlights: • Polypyrrole samples were prepared by electrochemical technique. • The fully undoped samples were irradiated with 100 MeV silver (Ag{sup 8+}) ions. • Giant increase in dielectric constant in irradiated samples is observed. • Dielectric behaviour is attributed to polaronic defects produced during irradiation.

  15. Low frequency alternating current conduction and dielectric relaxation in polypyrrole irradiated with 100 MeV swift heavy ions of silver (Ag8+)

    International Nuclear Information System (INIS)

    Kaur, Amarjeet; Dhillon, Anju; Avasthi, D.K.

    2013-01-01

    Polypyrrole (PPY) films were prepared by electrochemical polymerization technique. The fully undoped samples were irradiated with different radiation fluences ranging from 10 10 to 10 12 ions cm −2 of 100 MeV silver (Ag 8+ ) ions. The temperature dependence of ac conductivity [σ m (ω)], dielectric constant (ε′) and dielectric loss (ε′′) of both irradiated as well as unirradiated samples have been investigated in 77–300 K. There exists typical Debye type dispersion. Giant increase in dielectric constant has been observed for irradiated samples which is attributed to polaronic defects produced during irradiation. - Graphical abstract: Display Omitted - Highlights: • Polypyrrole samples were prepared by electrochemical technique. • The fully undoped samples were irradiated with 100 MeV silver (Ag 8+ ) ions. • Giant increase in dielectric constant in irradiated samples is observed. • Dielectric behaviour is attributed to polaronic defects produced during irradiation

  16. Relaxation characteristics of hastelloy X

    International Nuclear Information System (INIS)

    Suzuki, Kazuhiko

    1980-02-01

    Relaxation diagrams of Hastelloy X (relaxation curves, relaxation design diagrams, etc.) were generated from the creep constitutive equation of Hastelloy X, using inelastic stress analysis code TEPICC-J. These data are in good agreement with experimental relaxation data of ORNL-5479. Three typical inelastic stress analyses were performed for various relaxation behaviors of the high-temperature structures. An attempt was also made to predict these relaxation behaviors by the relaxation curves. (author)

  17. Dielectric properties of calicum and barium-doped strontium titanate

    Science.gov (United States)

    Tung, Li-Chun

    Dielectric properties of high quality polycrystalline Ca- and Ba-doped SrTiO3 perovskites are studied by means of dielectric constant, dielectric loss and ferroelectric hysteresis measurements. Low frequency dispersion of the dielectric constant is found to be very small and a simple relaxor model may not be able to explain its dielectric behavior. Relaxation modes are found in these samples, and they are all interpreted as thermally activated Bipolar re-orientation across energy barriers. In Sr1- xCaxTiO3 (x = 0--0.3), two modes are found associated with different relaxation processes, and the concentration dependence implies a competition between these processes. In Sr1-xBa xTiO3 (x = 0--0.25), relaxation modes are found to be related to the structural transitions, and the relaxation modes persist at low doping levels (x Barret formula is discussed and two of the well-accepted models, anharmonic oscillator model and transverse Ising model, are found to be equivalent. Both of the Ca and Ba systems can be understood qualitatively within the concept of transverse Ising model.

  18. Applied relaxation vs cognitive behavior therapy in the treatment of panic disorder.

    Science.gov (United States)

    Ost, L G; Westling, B E

    1995-02-01

    The present study investigated the efficacy of a coping-technique, applied relaxation (AR) and cognitive behavior therapy (CBT), in the treatment of panic disorder. Thirty-eight outpatients fulfilling the DSM-III-R criteria for panic disorder with no (n = 30) or mild (n = 8) avoidance were assessed with independent assessor ratings, self-report scales and self-observation of panic attacks before and after treatment, and at a 1-yr follow-up. The patients were treated individually for 12 weekly sessions. The results showed that both treatments yielded very large improvements, which were maintained, or furthered at follow-up. There was no difference between AR and CBT on any measure. The proportion of panic-free patients were 65 and 74% at post-treatment, and 82 and 89% at follow-up, for AR and CBT, respectively. There were no relapses at follow-up, on the contrary 55% of the patients who still had panic attacks at post-treatment were panic-free at follow-up. Besides affecting panic attacks the treatments also yielded marked and lasting changes on generalized anxiety, depression and cognitive misinterpretations. The conclusion that can be drawn is that both AR and CBT are effective treatments for panic disorder without avoidance.

  19. Stress-relaxation behavior of lignocellulosic high-density polyethlene composites

    Science.gov (United States)

    Babak Mirzaei; Mehdi Tajvidi; Robert H. Falk; Colin Felton

    2011-01-01

    In this study, stress-relaxation performance of HDPE-based injection-molded composites containing four types of natural fibers (i.e., wood flour, rice hulls, newsprint, and kenaf fiber) at 25 and 50 wt% contents, and the effect of prescribed strain levels were investigated. The results indicated that incorporating more filler causes lower relaxation values and rates,...

  20. Dielectric behavior and phase transition in [111]-oriented PIN–PMN–PT single crystals under dc bias

    Directory of Open Access Journals (Sweden)

    Yuhui Wan

    2014-01-01

    Full Text Available Temperature and electric field dependences of the dielectric behavior and phase transition for [111]-oriented 0.23PIN–0.52PMN–0.25PT (PIN-PMN–0.25PT and 0.24PIN–0.43PMN–0.33PT (PIN–PMN–0.33PT single crystals were investigated over a temperature range from -100°C to 250°C using field-heating (FH dielectric measurements. The transition phenomenon from ferroelectric microdomain to macrodomain was found in rhombohedra (R phase region in the single crystals under dc bias. This transition temperature Tf of micro-to-macrodomain is sensitive to dc bias and move quickly to lower temperature with increasing dc bias. The phase transition temperatures in the two single crystals shift toward high temperature and the dielectric permittivities at the phase transition temperature decrease with increasing dc bias. Especially, the phase transition peaks are gradually broad in PIN–PMN–0.33PT single crystal with the increasing dc bias. Effects of dc bias on the dielectric behavior and phase transition in PIN–PMN–PT single crystals are discussed.

  1. Conduction mechanism and the dielectric relaxation process of a-Se75Te25-xGax (x=0, 5, 10 and 15 at wt%) chalcogenide glasses

    International Nuclear Information System (INIS)

    Yahia, I.S.; Hegab, N.A.; Shakra, A.M.; Al-Ribaty, A.M.

    2012-01-01

    Se 75 Te 25-x Ga x (x=0, 5, 10 and 15 at wt%) chalcogenide compositions were prepared by the well known melt quenching technique. Thin films with different thicknesses in the range (185-630 nm) of the obtained compositions were deposited by thermal evaporation technique. X-ray diffraction patterns indicate that the amorphous nature of the obtained films. The ac conductivity and the dielectric properties of the studied films have been investigated in the frequency range (10 2 -10 5 Hz) and in the temperature range (293-333 K). The ac conductivity was found to obey the power low ω s where s≤1 independent of film thickness. The temperature dependence of both ac conductivity and the exponent s can be well interpreted by the correlated barrier hopping (CBH) model. The experimental results of the dielectric constant ε 1 and dielectric loss ε 2 are frequency and temperature dependent. The maximum barrier height W m calculated from the results of the dielectric loss according to the Guintini equation, and agrees with that proposed by the theory of hopping of charge carriers over a potential barrier as suggested by Elliott for chalcogenide glasses. The density of localized state was estimated for the studied film compositions. The variation of the studied properties with Ga content was also investigated. The correlation between the ac conduction and the dielectric properties were verified.

  2. Effect of SiO2/B2O3 Ratio on the Crystallization Behavior and Dielectric Properties of Barium Strontium Titanate Glass-Ceramics Prepared by Sol-Gel Process

    Science.gov (United States)

    Chen, Yongzhou; Zhang, Yong; Song, Xiaozhen; Shen, Ziqin; Zhang, Tianyuan

    2018-05-01

    Ferroelectric glass-ceramics, with a basic composition 90 wt.% (Ba0.65Sr0.35)TiO3-10 wt.% (B2O3-nSiO2) (n = 0.5, 1, 3, 5) were synthesized by the sol-gel method and their phase development and dielectric properties were investigated by differential thermal analysis, x-ray diffraction, field emission scanning electron microscopy, dielectric temperature curves and impedance spectroscopy. From the differential thermal analysis, glass transition and crystallization behavior can be observed. From the x-ray diffraction study, two crystalline phases (Ba,Sr)TiO3 and Ba2TiSi2O8 were formed over the entire composition range of the glass-ceramics. In addition, the main crystal phase has undergone a transformation from (Ba,Sr)TiO3 to Ba2TiSi2O8 with the increase of n. A typical structure in which the crystal phase was surrounded by a glassy matrix has been observed in the scanning electron microscope images. As a result of temperature dependent dielectric property measurements, the dielectric constant increased obviously with the increase of n from 0.5 to 1. Further increasing n led to a reduction of the dielectric constant, which is in coincidence with the variation of the intensity of (Ba,Sr)TiO3 phase with n. According to the impedance spectroscopy analysis and the activation energy calculation, the relaxation peak in both Z″ and M″ data should be attributed to the crystal-glass interface, and the change of conduction mechanism with the increase of SiO2/B2O3 ratio may be attributed to the corresponding transition of the main crystal phase.

  3. Extrinsic and intrinsic contributions for dielectric behavior of La{sub 2}NiMnO{sub 6} ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Zhenzhu, E-mail: czz03@163.com [Chemical Engineering College of Inner Mongolia University of Technology, Hohhot 010051 (China); Liu, Xiaoting; He, Weiyan [Chemical Engineering College of Inner Mongolia University of Technology, Hohhot 010051 (China); Ruan, Xuezheng [Key Laboratory of Inorganic Function Material and Device, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Gao, Yanfang; Liu, Jinrong [Chemical Engineering College of Inner Mongolia University of Technology, Hohhot 010051 (China)

    2015-11-15

    The influences of electrode material, DC bias and temperature on the electrical and dielectric properties of LNMO ceramic have been investigated using impedance spectroscopy and dielectric measurements. Evidences from dielectric and impedance analysis showed that the giant dielectric constant and its notable tunability originated from extrinsic contribution from interface polarization. Low temperature and high frequency dielectric characterization revealed the low intrinsic dielectric constant.

  4. Structure and phase formation behavior and dielectric and magnetic properties of lead iron tantalate-lead zirconate titanate multiferroic ceramics

    International Nuclear Information System (INIS)

    Wongmaneerung, R.; Tipakontitikul, R.; Jantaratana, P.; Bootchanont, A.; Jutimoosik, J.; Yimnirun, R.; Ananta, S.

    2016-01-01

    Highlights: • The multiferroic ceramics consisted of PFT and PZT. • Crystal structure changed from cubic to mixedcubic and tetragonal with increasing PZT content. • Dielectric showed the samples underwent a typical relaxor ferroelectric behavior. • Magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops. - Abstract: Multiferroic (1 − x)Pb(Fe_0_._5Ta_0_._5)O_3–xPb(Zr_0_._5_3Ti_0_._4_7)O_3 (or PFT–PZT) ceramics were synthesized by solid-state reaction method. The crystal structure and phase formation of the ceramics were examined by X-ray diffraction (XRD). The local structure surrounding Fe and Ti absorbing atoms was investigated by synchrotron X-ray Absorption Near-Edge Structure (XANES) measurement. Dielectric properties were studied as a function of frequency and temperature using a LCR meter. A vibrating sample magnetometer (VSM) was used to determine the magnetic hysteresis loops. XRD study indicated that the crystal structure of the sample changed from pure cubic to mixed cubic and tetragonal with increasing PZT content. XANES measurements showed that the local structure surrounding Fe and Ti ions was similar. Dielectric study showed that the samples underwent a typical relaxor ferroelectric behavior while the magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops.

  5. Structure and phase formation behavior and dielectric and magnetic properties of lead iron tantalate-lead zirconate titanate multiferroic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wongmaneerung, R., E-mail: re_nok@yahoo.com [Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Tipakontitikul, R. [Department of Physics, Ubonratchathani University, Ubonratchathani 31490 (Thailand); Jantaratana, P. [Department of Physics, Kasetsart University, Bangkok 10900 (Thailand); Bootchanont, A.; Jutimoosik, J.; Yimnirun, R. [School of Physics, Institute of Science, and NANOTEC-SUT Center of Excellence on Advanced Functional Nanomaterials, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Ananta, S. [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2016-03-15

    Highlights: • The multiferroic ceramics consisted of PFT and PZT. • Crystal structure changed from cubic to mixedcubic and tetragonal with increasing PZT content. • Dielectric showed the samples underwent a typical relaxor ferroelectric behavior. • Magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops. - Abstract: Multiferroic (1 − x)Pb(Fe{sub 0.5}Ta{sub 0.5})O{sub 3}–xPb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3} (or PFT–PZT) ceramics were synthesized by solid-state reaction method. The crystal structure and phase formation of the ceramics were examined by X-ray diffraction (XRD). The local structure surrounding Fe and Ti absorbing atoms was investigated by synchrotron X-ray Absorption Near-Edge Structure (XANES) measurement. Dielectric properties were studied as a function of frequency and temperature using a LCR meter. A vibrating sample magnetometer (VSM) was used to determine the magnetic hysteresis loops. XRD study indicated that the crystal structure of the sample changed from pure cubic to mixed cubic and tetragonal with increasing PZT content. XANES measurements showed that the local structure surrounding Fe and Ti ions was similar. Dielectric study showed that the samples underwent a typical relaxor ferroelectric behavior while the magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops.

  6. Unusual behavior of nuclear relaxation in CeCu2Si2 'possible evidence for triplet superconductivity'

    International Nuclear Information System (INIS)

    Kitaoka, Y.; Asayama, K.; Ueda, K.; Kohara, T.

    1984-01-01

    Nuclear relaxation of 63 Cu in the superconducting state of the Kondo-lattice system CeCu 2 Si 2 has been studied with the use of the 63 Cu nuclear quadrupole resonance technique under zero field and down to 65mK. The nuclear spin-lattice relaxation rate (1/T 1 ) decreases drastically just below Tsub(c)=0.67 K down to 0.5Tsub(c) without the apparent enhanced behavior and then is found to be almost temperature independent below 0.3Tsub(c). These results suggest that the superconductivity in CeCu 2 Si 2 is not in the usual BCS regime. The analysis based upon the existing triplet pairing model with an anisotropic energy gap describes well the behavior from Tsub(c) down to 0.5Tsub(c), while the temperature independence below 0.3Tsub(c) remains unexplained. (author)

  7. Nonlinear behaviors in a pulsed dielectric barrier discharge at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jiao; Wang Yanhui, E-mail: wangyh@dlut.edu.cn; Wang Dezhen

    2011-08-01

    In this paper, the temporal nonlinear behaviors of pulsed dielectric barrier discharge in atmospheric helium are studied numerically by a one-dimensional fluid model. The results show that the common single-period pulsed discharge with two current pulses per single voltage pulse can take place over a broad parameter range. The rising and falling times of the voltage pulse can affect the discharge characteristics greatly. When the discharge is ignited by a pulse voltage with long rising and falling times, a single-period pulsed discharge with multiple current peaks can be observed. Under appropriate rising and falling times of the voltage pulse, a stable period-two discharge can occur over wide frequency and voltage ranges. Also this period-two discharge can exhibit different current and voltage characteristics with changing the duty cycle. With other parameters fixed, the pulsed DBD could be driven to chaos through period-doubling route by increasing either the falling time or the frequency of voltage pulse.

  8. An experimental investigation of the dielectric properties of electrorheological fluids

    International Nuclear Information System (INIS)

    Sun, Y; Thomas, M; Masounave, J

    2009-01-01

    A home-made electrorheological (ER) fluid, known as ETSERF, has been created with suspension-based powders dispersed in silicone oil. Because of the special structure of their particles, ETSERF suspensions present a complex behavior. In the absence of an electric field, the ETSERF fluid manifests a near-Newtonian behavior, but when an electric field is applied, it exhibits a pseudoplastic behavior with yield stress. The ER effect under DC electric fields has been experimentally investigated using both hydrous and anhydrous ER fluids. The ER properties are strongly dependent on the dielectric properties of ETSERF suspensions, and hydrous ER fluids have a high dielectric constant and a high relaxation frequency which show a strong electrorheological effect. The relationship between the electrorheological effect and the permittivity of ER fluids has also been extensively studied. Experimental results show that the interfacial polarization plays an important role in the electrorheological phenomenon. The ageing of ETSERF fluids was also studied and it was found that the dielectric properties (mainly the dielectric loss tangent) and ER properties are strongly related to the duration of ageing. A fresh ETSERF suspension exhibits high relaxation frequency and high dielectric constant. These results are mainly explained by the effect of interfacial polarizations

  9. Dielectric analysis of depth dependent curing behavior of dental resin composites.

    Science.gov (United States)

    Steinhaus, Johannes; Moeginger, Bernhard; Grossgarten, Mandy; Rosentritt, Martin; Hausnerova, Berenika

    2014-06-01

    The aim of this study is to investigate depth dependent changes of polymerization process and kinetics of visible light-curing (VLC) dental composites in real-time. The measured quantity - "ion viscosity" determined by dielectric analysis (DEA) - provides the depth dependent reaction rate which is correlated to the light intensity available in the corresponding depths derived from light transmission measurements. The ion viscosity curves of two composites (VOCO Arabesk Top and Grandio) were determined during irradiation of 40s with a light-curing unit (LCU) in specimen depths of 0.5/0.75/1.0/1.25/1.5/1.75 and 2.0mm using a dielectric cure analyzer (NETZSCH DEA 231 with Mini IDEX sensors). The thickness dependent light transmission was measured by irradiation composite specimens of various thicknesses on top of a radiometer setup. The shape of the ion viscosity curves depends strongly on the specimen thickness above the sensor. All curves exhibit a range of linear time dependency of the ion viscosity after a certain initiation time. The determined initiation times, the slopes of the linear part of the curves, and the ion viscosities at the end of the irradiation differ significantly with depth within the specimen. The slopes of the ion viscosity curves as well as the light intensity values decrease with depth and fit to the Lambert-Beer law. The corresponding attenuation coefficients are determined for Arabesk Top OA2 to 1.39mm(-1) and 1.48mm(-1), respectively, and for Grandio OA2 with 1.17 and 1.39mm(-1), respectively. For thicknesses exceeding 1.5mm a change in polymerization behavior is observed as the ion viscosity increases subsequent to the linear range indicating some kind of reaction acceleration. The two VLC composites and different specimen thicknesses discriminate significantly in their ion viscosity evolution allowing for a precise characterization of the curing process even with respect to the polymerization mechanism. Copyright © 2014. Published by

  10. Origin of giant dielectric permittivity and weak ferromagnetic behavior in (1−xLaFeO3−xBaTiO3 (0.0 ≤ x ≤ 0.25 solid solutions

    Directory of Open Access Journals (Sweden)

    T. Sreenivasu

    2016-12-01

    Full Text Available The solid solutions of (1−x LaFeO3–xBaTiO3 (0.0≤x≤0.25 have been synthesized successfully by the conventional solid-state reaction method. Room temperature (RT X-ray diffraction studies reveal the stabilization of orthorhombic phase with Pbnm space group. Complete solubility in the perovskite series was demonstrated up to x=0.25. The dielectric permittivity shows colossal dielectric constant (CDC at RT. The doping of BaTiO3 in LaFeO3 exhibit pronounced CDC up to a composition x=0.15, further it starts to decrease. The frequency-dependent dielectric loss exhibits polaronic conduction, which can attribute to presence of multiple valence of iron. The relaxation frequency and polaronic conduction mechanism was shifted towards RT as function of x. Moreover, large magnetic moment with weak ferromagnetic behavior is observed in doped LaFeO3 solid solution, which might be the destruction of spin cycloid structure due to insertion of Ti in Fe–O–Fe network of LaFeO3.

  11. Relaxation Behavior by Time-Salt and Time-Temperature Superpositions of Polyelectrolyte Complexes from Coacervate to Precipitate

    Directory of Open Access Journals (Sweden)

    Samim Ali

    2018-01-01

    Full Text Available Complexation between anionic and cationic polyelectrolytes results in solid-like precipitates or liquid-like coacervate depending on the added salt in the aqueous medium. However, the boundary between these polymer-rich phases is quite broad and the associated changes in the polymer relaxation in the complexes across the transition regime are poorly understood. In this work, the relaxation dynamics of complexes across this transition is probed over a wide timescale by measuring viscoelastic spectra and zero-shear viscosities at varying temperatures and salt concentrations for two different salt types. We find that the complexes exhibit time-temperature superposition (TTS at all salt concentrations, while the range of overlapped-frequencies for time-temperature-salt superposition (TTSS strongly depends on the salt concentration (Cs and gradually shifts to higher frequencies as Cs is decreased. The sticky-Rouse model describes the relaxation behavior at all Cs. However, collective relaxation of polyelectrolyte complexes gradually approaches a rubbery regime and eventually exhibits a gel-like response as Cs is decreased and limits the validity of TTSS.

  12. Dopant driven tunability of dielectric relaxation in MxCo(1-x)Fe2O4 (M: Zn2+, Mn2+, Ni2+) nano-ferrites

    Science.gov (United States)

    Datt, Gopal; Abhyankar, A. C.

    2017-07-01

    Nano-ferrites with tunable dielectric and magnetic properties are highly desirable in modern electronics industries. This work reports the effect of ferromagnetic (Ni), anti-ferromagnetic (Mn), and non-magnetic (Zn) substitution on cobalt-ferrites' dielectric and magnetic properties. The Rietveld analysis of XRD data and the Raman spectroscopic study reveals that all the samples are crystallized in the Fd-3m space group. The T2g Raman mode was observed to split into branches, which is due to the presence of different cations (with different vibrational frequencies) at crystallographic A and B-sites. The magnetization study shows that the MnCoFe2O4 sample has the highest saturation magnetization of 87 emu/g, which is attributed to the presence of Mn2+ cations at the B-site with a magnetic moment of 5 μB. The dielectric permittivity of these nanoparticles (NPs) obeys the modified Debye model, which is further supported by Cole-Cole plots. The dielectric constant of MnCoFe2O4 ferrite is found to be one order higher than that of the other two ferrites. The increased bond length of the Mn2+-O2- bond along with the enhanced d-d electron transition between Mn 2 +/Co 2 +⇋Fe 3 + cations at the B-site are found to be the main contributing factors for the enhanced dielectric constant of MnCoFe2O4 ferrite. We find evidence of variable-range hopping of localized polarons in these ferrite NPs. The activation energy, hopping range, and density of states N (" separators="|EF ), of these polarons were calculated using Motts' 1/4th law. The estimated activation energies of these polarons at 300 K were found to be 288 meV, 426 meV, and 410 meV, respectively, for the MnCoFe2O4, NiCoFe2O4, and ZnCoFe2O4 ferrite NPs, while the hopping range of these polarons were found to be 27.14 Å, 11.66 Å, and 8.17 Å, respectively. Observation of a low dielectric loss of ˜0.04, in the frequency range of 0.1-1 MHz, in these NPs makes them potential candidates for energy harvesting devices in

  13. Dielectric and impedance spectral characteristics of bulk ZnIn2Se4

    Science.gov (United States)

    El-Nahass, M. M.; Attia, A. A.; Salem, G. F.; Ali, H. A. M.; Ismail, M. I.

    2014-02-01

    The frequency and temperature dependence of ac conductivity, dielectric constant and dielectric loss of ZnIn2Se4 in a pellet form were investigated in the frequency range of 102-106 Hz and temperature range of 293-356 K. The behavior of ac conductivity was interpreted by the correlated barrier hopping (CBH) model. Temperature dependence of ac conductivity indicates that ac conduction is a thermally activated process. The density of localized states N(EF) and ac activation energy were estimated for various frequencies. Dielectric constant and dielectric loss showed a decrease with increasing frequency and an increase with increasing in temperature. The frequency dependence of real and imaginary parts of the complex impedance was investigated. The relaxation time decreases with the increase in temperature. The impedance spectrum exhibits the appearance of the single semicircular arc. The radius of semicircular arcs decreases with increasing temperature which suggests a mechanism of temperature-dependent on relaxation.

  14. Dielectric behavior of irradiated and nonirradiadiated deoxyribonucleic acid (DNA)-crotonic acid interaction in 5% dextrose solution

    International Nuclear Information System (INIS)

    Erginun, M.

    1980-01-01

    Deoxyribonucleic acid (DNA), ex. thymus, dissolved in 5% dextrose, was exposed to gamma radiation at doses between 0-5000 Rads. Crotonic acid dissolved in 5% dextrose was added to this irradiated DNA at t=0 and t=24 hrs after irradiation, in concentrations between 0-1.000 mg/ml. The dielectric behavior of the DNA-irradiation-crotonic acid interaction was investigated at T=20 0 C by pH, permittivity (dielectric constant) and conductivity measurements. The pH, permittivity and conductivity measurements exhibit that the effective and critical conditions for the DNA-irradiation-crotonic acid interaction are; low doses of irradiation (350 Rad.), low concentrations of crotonic acid (0.05-0.100 mg/ml) and the addition of crotonic acid 24 hours after the irradiation. These results support and are in good agreement with those results observed with mammalian cells and laboratory animals when the chemical carcinogens are given in conjunction with radiation

  15. Oscillatory shear and high-pressure dielectric study of 5-methyl-3-heptanol

    DEFF Research Database (Denmark)

    Hecksher, Tina; Jakobsen, Bo; Dyre, J. C.

    2014-01-01

    The monohydroxy alcohol 5-methyl-3-heptanol is studied using rheology at ambient pressure and using dielectric spectroscopy at elevated pressures up to 1.03 GPa. Both experimental techniques reveal that the relaxational behavior of this liquid is intermediate between those that show a large Debye...

  16. Colossal dielectric constant and Maxwell-Wagner relaxation in $Pb(Fe_{1/2}Nb_{1/2})O_{3-x}PbTiO_3$ single crystals

    OpenAIRE

    Liu, K.; Zhang, X. Y.

    2008-01-01

    Recently, materials exhibiting colossal dielectric constant ($CDC$) have attracted significant attention because of their high dielectric constant and potential applications in electronic devices, such as high dielectric capacitors, capacitor sensors, random access memories and so on.

  17. Enhancement in dielectric behavior of (Ni, Zn)Fe{sub 2}O{sub 4} ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Sheikh, Javed R.; Gaikwad, Vishwajit M.; Moon, Vaibhav C.; Acharya, Smita A., E-mail: saha275@yahoo.com [Advanced Materials Laboratory, Department of Physics, Rashtrasant Tukadoji Maharaj Nagpur University Campus, Nagpur-440033 (India)

    2016-05-06

    In present work, NiFe{sub 2}O{sub 4}(NFO), ZnFe{sub 2}O{sub 4} (ZFO) and Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} (NZFO) are synthesized by microwave assisted co-precipitation route. Their structural properties are confirmed by X-ray diffraction and data is fitted through Reitveld refinement using Full-Prof software suite. After refinement, the systematic crystal structures of NFO, ZFO and NZFO compounds are generated using output .cif file by VESTA (Visualization for Electronic and Structural Analysis) program. Structural parameters obtained after refinement and unit cell construction, are systematically tabulated. Room temperature frequency dependence dielectric properties are studied. We found enhanced values of dielectric constant for NZFO than individual NFO and ZFO phases. For NZFO sample, greater electron exchange between Fe{sup 2+} and Fe{sup 3+} which enhances polarization and dielectric constant.

  18. Rietveld refinement and dielectric relaxation of a new rare earth based double perovskite oxide: BaPrCoNbO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Bharti, Chandrahas, E-mail: bharti.chandrahas@gmail.com [Sensor and Actuator Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja SC Mullick Road, Kolkata 700032 (India); Das, Mrinmoy K.; Sen, A. [Sensor and Actuator Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja SC Mullick Road, Kolkata 700032 (India); Chanda, Sadhan; Sinha, T.P. [Department of Physics, Bose Institute, 93/1, Acharya Prafulla Chandra Road, Kolkata-700009 (India)

    2014-02-15

    A new rare earth based double perovskite oxide barium praseodymium cobalt niobate, BaPrCoNbO{sub 6} (BPCN) is synthesized by solid-state reaction technique. Rietveld analysis of X-ray diffraction (XRD) data shows that the compound crystallizes in a perovskite like tetragonal structure which belongs to the I4/mmm space group with lattice parameters a=b=5.6828(9) Å, c=8.063(2) Å. Structural analysis reveals 1:1 ordered arrangement for the Co{sup 2+} and Nb{sup 5+} cations over the six-coordinate B-sites of BPCN. The superlattice line (1 0 1) at 2θ=19.10° arising from the alternate ordering of Co{sup 2+} and Nb{sup 5+} sites is observed in the XRD pattern which confirms the presence of cation ordering in BPCN. Fourier transform infrared spectrum shows two phonon modes of the sample due to the antisymmetric NbO{sub 6} stretching vibration. The relaxation dynamics of the conductive process in BPCN is investigated in the temperature range 303 to 503 K and in the frequency range 100 Hz to 1 MHz using impedance spectroscopy. The relaxation mechanism of the sample in the framework of electric modulus formalism is modeled by Davidson–Cole model (DCM). The values of α (distribution of relaxation time) for the DCM varies from 0.1 to 0.3 which suggests the asymmetric distribution of relaxation time for BPCN. The activation energy of the sample, calculated from both conductivity and modulus spectra, are found to be almost the same ∼0.4 eV, which indicates that the conduction mechanism for BPCN is polaron hopping. The scaling behaviour of the imaginary part of electric modulus suggests that the relaxation follows the same mechanism at various temperatures. - Graphical abstract: Rietveld refinement plot for BPCN. Inset shows the schematic presentation of the BPCN tetragonal unit cell. The Co{sup 2+} atoms are located at the centers of the CoO{sub 6} (blue) octahedra. The Nb{sup 5+} atoms are located at the centers of the NbO{sub 6} (green) octahedra. Display Omitted

  19. Enhanced magnetic and dielectric behavior in Co doped BiFeO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarti, Kaushik; Sarkar, Babusona; Ashok, Vishal Dev [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032 (India); Chaudhuri, Sheli Sinha [Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata-700032 (India); De, S.K., E-mail: msskd@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032 (India)

    2015-05-01

    Magnetic and dielectric properties of Co doped BiFeO{sub 3} (BFO) nanoparticles (13 nm) have been investigated. The dopant Co{sup 2+} converts spherical morphology to cubic nanostructures. The significant changes in temperature dependence of magnetization may be due to magnetic disorder phase induced by divalent Co. The substitution of Fe by Co disrupts cycloidal spin structure of BFO and improves the ferromagnetic property. Enhancement of the saturation magnetization and coercivity by about 10 times in doped BFO are due to changes in morphology. High dielectric constant of about 670 and low loss at room temperature show Co doped BFO as promising material for multifunctional devices.

  20. Teacher-led relaxation response curriculum in an urban high school: impact on student behavioral health and classroom environment.

    Science.gov (United States)

    Wilson, H Kent; Scult, Matthew; Wilcher, Marilyn; Chudnofsky, Rana; Malloy, Laura; Drewel, Emily; Riklin, Eric; Saul, Southey; Fricchione, Gregory L; Benson, Herbert; Denninger, John W

    2015-01-01

    Recent data suggest that severe stress during the adolescent period is becoming a problem of epidemic proportions. Elicitation of the relaxation response (RR) has been shown to be effective in treating anxiety, reducing stress, and increasing positive health behaviors. The research team's objective was to assess the impact of an RR-based curriculum, led by teachers, on the psychological status and health management behaviors of high-school students and to determine whether a train-the-trainer model would be feasible in a high-school setting. The research team designed a pilot study. The setting was a Horace Mann charter school within Boston's public school system. Participants were teachers and students at the charter school. The team taught teachers a curriculum that included (1) relaxation strategies, such as breathing and imagery; (2) psychoeducation regarding mind-body pathways; and (3) positive psychology. Teachers implemented this curriculum with students. The research team assessed changes in student outcomes (eg, stress, anxiety, and stress management behaviors) using preintervention/postintervention surveys, including the Perceived Stress Scale (PSS), the State-Trait Anxiety Inventory-Form Y (STAI-Y), the stress management subscale of the Health-promoting Lifestyle Profile II (HPLP-II), the Rosenberg Self-Esteem Scale (RSES), the Locus of Control (LOC) questionnaire, and the Life Orientation Test-Revised (LOTR). Classroom observations using the Classroom Assessment Scoring System (CLASS)-Secondary were also completed to assess changes in classroom environment. Using a Bonferroni correction (P management behaviors at that point. Using a Bonferroni correction (P management behaviors (P classroom productivity (eg, increased time spent on activities and instruction from pre- to postintervention). This study showed that teachers can lead an RR curriculum with fidelity and suggests that such a curriculum has positive benefits on student emotional and behavioral

  1. Conduction mechanism, impedance spectroscopic investigation and dielectric behavior of La0.5Ca0.5-xAgxMnO3 manganites with compositions below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 0.2).

    Science.gov (United States)

    Rahmouni, H; Smari, M; Cherif, B; Dhahri, E; Khirouni, K

    2015-06-14

    This study presents the electrical properties, complex impedance analysis and dielectrical behavior of La0.5Ca0.5-xAgxMnO3 manganites with compositions below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 0.2). Transport measurements indicate that all the samples have a semiconductor-like behavior. The metal-semiconductor transition is not observed across the whole temperature range explored [80 K-700 K]. At a specific temperature, a saturation region was marked in the σ (T) curves. We obtained a maximum σdc value at ambient temperature with the introduction of 20% Ag content. Two hopping models were applied to study the conduction mechanism. We found that activation energy (Ea) related to ac-conductivity is lower than the Ea implicated in dc-conductivity. Complex impedance analysis confirms the contribution of grain boundary to conductivity and permits the attribution of grain boundary capacitance evolution to the temperature dependence of the barrier layer width. From the temperature dependence of the average normalized change (ANC), we deduce the temperature at which the available density of trapped charge states vanishes. Such a temperature is close to the temperature at which the saturation region appears in σ(T) curves. Moreover, complex impedance analysis (CIA) indicates the presence of electrical relaxation in materials. It is noteworthy that relaxation species such as defects may be responsible for electrical conduction. The dielectric behavior of La0.5Ca0.5-xAgxMnO3 manganites has a Debye-like relaxation with a sharp decrease in the real part of permittivity at a frequency where the imaginary part of permittivity (ε'') and tg δ plots versus frequency demonstrate a relaxation peak. The Debye-like relaxation is explained by Maxwell-Wagner (MW) polarization. Experimental results are found to be in good agreement with the Smit and Wijn theory.

  2. Water types and their relaxation behavior in partially rehydrated CaFe-mixed binary oxide obtained from CaFe-layered double hydroxide in the 155-298 K temperature range.

    Science.gov (United States)

    Bugris, Valéria; Haspel, Henrik; Kukovecz, Ákos; Kónya, Zoltán; Sipiczki, Mónika; Sipos, Pál; Pálinkó, István

    2013-10-29

    Heat-treated CaFe-layered double hydroxide samples were equilibrated under conditions of various relative humidities (11%, 43% and 75%). Measurements by FT-IR and dielectric relaxation spectroscopies revealed that partial to full reconstruction of the layered structure took place. Water types taking part in the reconstruction process were identified via dielectric relaxation measurements either at 298 K or on the flash-cooled (to 155 K) samples. The dynamics of water molecules at the various positions was also studied by this method, allowing the flash-cooled samples to warm up to 298 K.

  3. Transition between metamaterial and photonic-crystal behavior in arrays of dielectric rods

    Czech Academy of Sciences Publication Activity Database

    Dominec, Filip; Kadlec, Christelle; Němec, Hynek; Kužel, Petr; Kadlec, Filip

    2014-01-01

    Roč. 22, č. 25 (2014), s. 30492-30503 ISSN 1094-4087 R&D Projects: GA ČR(CZ) GA14-25639S Institutional support: RVO:68378271 Keywords : metamaterials * photonic crystals * negative refractive index * dielectrics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.488, year: 2014

  4. Dielectric response and percolation behavior of Ni–P(VDF–TrFE nanocomposites

    Directory of Open Access Journals (Sweden)

    Lin Zhang

    2017-06-01

    Full Text Available Conductor–dielectric 0–3 nanocomposites using spherical nickel nanoparticles as filler and poly(vinylidene fluoride–trifluoroethylene 70/30mol.% as matrix are prepared using a newly developed process that combines a solution cast and a hot-pressing method with a unique configuration and creates a uniform microstructure in the composites. The uniform microstructure results in a high percolation threshold φc (>55 vol.%. The dielectric properties of the nanocomposites at different frequencies over a temperature range from −70∘C to 135∘C are studied. The results indicate that the composites exhibit a lower electrical conductivity than the polymer matrix. It is found that the nanocomposites can exhibit an ultra-high dielectric constant, more than 1500 with a loss of about 1.0 at 1kHz, when the Ni content (53 vol.% is close to percolation threshold. For the nanocomposites with 50 vol.% Ni particles, a dielectric constant more than 600 with a loss less than 0.2 is achieved. It is concluded that the loss including high loss is dominated by polarization process rather than the electrical conductivity. It is also found that the appearance of Ni particles has a strong influence on the crystallization process in the polymer matrix so that the polymer is converted from a typical ferroelectric to a relaxor ferroelectric. It is also demonstrated that the widely used relationship between the dielectric constant and the composition of the composites may not be valid.

  5. On the Temperature Behavior of Pulse Propagation and Relaxation in Worms, Nerves and Gels.

    Directory of Open Access Journals (Sweden)

    Christian Fillafer

    Full Text Available The effect of temperature on pulse propagation in biological systems has been an important field of research. Environmental temperature not only affects a host of physiological processes e.g. in poikilotherms but also provides an experimental means to investigate the thermodynamic phenomenology of nerves and muscle. In the present work, the temperature dependence of blood vessel pulsation velocity and frequency was studied in the annelid Lumbriculus variegatus. The pulse velocity was found to vary linearily between 0°C and 30°C. In contrast, the pulse frequency increased non-linearly in the same temperature range. A heat block ultimately resulted in complete cessation of vessel pulsations at 37.2±2.7°C (lowest: 33°C, highest: 43°C. However, quick cooling of the animal led to restoration of regularly propagating pulses. This experimentally observed phenomenology of pulse propagation and frequency is interpreted without any assumptions about molecules in the excitable membrane (e.g. ion channels or their temperature-dependent behaviour. By following Einstein's approach to thermodynamics and diffusion, a relation between relaxation time τ and compressibility κ of the excitable medium is derived that can be tested experimentally (for κT ∼ κS. Without fitting parameters this theory predicts the temperature dependence of the limiting (i.e. highest pulse frequency in good agreement with experimental data. The thermodynamic approach presented herein is neither limited to temperature nor to worms nor to living systems. It describes the coupling between pulse propagation and relaxation equally well in nerves and gels. The inherent consistency and universality of the concept underline its potential to explain the dependence of pulse propagation and relaxation on any thermodynamic observable.

  6. Dielectric spectroscopy technique applied to study the behaviour of irradiated polymer

    International Nuclear Information System (INIS)

    Saoud, R.; Soualmia, A.; Guerbi, C.A.; Benrekaa, N.

    2006-01-01

    Relaxation spectroscopy provides an excellent method for the study of motional processes in materials and has been widely applied to macromolecules and polymers. The technique is potentially of most interest when applied to irradiated systems. Application to the study of the structure beam-irradiated Teflon is thus an outstanding opportunity for the dielectric relaxation technique, particularly as this material exhibits clamping problems when subjected to dynamic mechanical relaxation studies. A very wide frequency range is necessary to resolve dipolar effects. In this paper, we discuss some significant results about the behavior and the modification of the structure of Teflon submitted to weak energy radiations

  7. Effect of processing routes on microstructure, electrical and dielectric behavior of Mg-doped CaCu3Ti4O12 electro-ceramic

    Science.gov (United States)

    Singh, Laxman; Rai, U. S.; Mandal, K. D.; Rai, Alok Kumar

    2013-09-01

    In the present communication, data on magnesium-doped calcium copper titanate CaCu2.90Mg0.10Ti4O12 (CCMTO) electro-ceramic, synthesized by the semi-wet route (SWR), ball-milled route (BMR) and solid-state route (SSR), is characterized by TG-DTA, XRD, SEM, EDX and TEM techniques. XRD confirmed the formation of single phase in CCMTO ceramic. The CuO phase present at grain boundaries in SWR ceramic was shown by the SEM micrograph, which was verified by EDX. The TEM image of SWR ceramic shows nanocrystalline particles in the range 80±20 nm. The value of the dielectric constant of SWR ( ɛ r ˜20091) ceramic is higher than those of BMR and SSR ( ɛ r ˜1247) ceramics at 1 kHz at 450 K. A dielectric relaxation has been observed in the frequency range 100 Hz-100 kHz. The high-temperature dielectric dispersion shows one large low-frequency response and two Debye-type relaxations. The impedance and modulus studies show the highest grain-boundary resistance for BMR ceramic.

  8. Relaxation behavior and dose dependence of radiation induced radicals in irradiated mango

    International Nuclear Information System (INIS)

    Kameya, Hiromi; Kakita, Daisuke; Kaimori, Yoshihiko; Ukai, Mitsuko; Kikuchi, Masahiro; Kobayashi, Yasuhiko; Shimoyama, Yuhei

    2010-01-01

    Mangoes are imported to Japan after treated with hot water. Recently, irradiated mangoes imported to U. S. are widely used. This paper reports on the ESR method for analyzing the radiation induced radicals of irradiated mangoes. Upon the γ ray irradiation, a strong single peak in the flesh and skin of mangoes was observed at g=2.004. This singlet peak may be attributed to organic free radicals. The ESR spectra of the flesh and skin of mangoes showed the radiation induced radicals due to cellulose by irradiation over 12 kGy. The relaxation times (T 1 and T 2 ) of the singlet signal were calculated. T 2 showed dose response according to increasing the irradiation dose levels, while T 1 was almost constant. The value of (T 1 T 2 ) 1/2 showed the dependence of irradiation dose level. (author)

  9. Effect of saline absorption on the flexural stress relaxation behavior of epoxy/cotton composite materials for orthopedics applications

    Science.gov (United States)

    Kontaxis, L. C.; Pavlou, C.; Portan, D. V.; Papanicolaou, G. C.

    2018-02-01

    In the present study, a composite material consisting of a polymeric epoxy resin matrix, reinforced with forty layers of non-woven cotton fiber fabric was manufactured. The method used to manufacture the composite was the Resin Vacuum Infusion technique. This is a technique widely used for high-performance, defect-free, composite materials. Composites and neat polymers are subjected to stresses during their function, while at the same time being influenced by environmental conditions, such as temperature and humidity. The main goal of this study was the investigation of the degradation of composite's viscoelastic behavior, after saline absorption. At this point, it should be mentioned, that this material could be used in biomedical applications. Therefore, a sealed container full of saline was used for the immer s ion of the specimens manufactured, and was placed in a bath at 37°C (body temperature). The specimens remained there for five different immersion periods (24, 72, 144, 216, 336 hours). The viscoelastic behavior of the composite material was determined through stress relaxation under flexure conditions, and the effect of immersion time and amount of saline absorption was studied. It was observed that after 24 hours of immersion a 42% decrease in stress was observed, which in the sequence remained almost constant. The stress relaxation experimental results were predicted by using the Residua l Property Model (RPM), a model developed by Papanicolaou et al. The same model has been successfully applied in the past, to many different materials previously subjected to various types of damage, in order to predict their residual behavior. For its application, the RPM predictive model needs only two experimental points. It was found that in all cases, predictions were in good agreement with experimental findings. Furthermore, the comparison between experimental values and theoretical predictions formed the basis of useful observations and conclusions.

  10. Dielectric study on hierarchical water structures restricted in cement and wood materials

    International Nuclear Information System (INIS)

    Abe, Fumiya; Nishi, Akihiro; Saito, Hironobu; Asano, Megumi; Watanabe, Seiei; Kita, Rio; Shinyashiki, Naoki; Yagihara, Shin; Fukuzaki, Minoru; Sudo, Seiichi; Suzuki, Youki

    2017-01-01

    Dielectric relaxation processes for mortar observed by broadband dielectric spectroscopy were analyzed in the drying and hydration processes for an aging sample in the frequency region from 1 MHz up to 2 MHz. At least two processes for structured water in the kHz frequency region and another mHz relaxation process affected by ionic behaviors were observed. Comparison of the relaxation parameters obtained for the drying and hydration processes suggests an existence of hierarchical water structures in the exchange of water molecules, which are originally exchanged from free water observed at around 20 GHz. The water molecules reflected in the lower frequency process of the two kHz relaxation processes are more restricted and take more homogeneous structures than the higher kHz relaxation process. These structured water usually hidden in large ionic behaviors for wood samples was observed by electrodes covered by a thin Teflon film, and hierarchical water structures were also suggested for wood samples. Dielectric spectroscopy technique is an effective tool to analyze the new concept of hierarchical water structures in complex materials. (paper)

  11. Self-standing elastomeric composites based on lithium ferrites and their dielectric behavior

    Energy Technology Data Exchange (ETDEWEB)

    Soreto Teixeira, S.; Graça, M. P. F.; Costa, L. C. [I3N and Physics Department, University of Aveiro, 3810-193 Aveiro (Portugal); Dionisio, M. [REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Ilcíkova, M.; Mosnacek, J.; Spitalsky, Z. [Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava (Slovakia); Krupa, I. [Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava (Slovakia); Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha (Qatar)

    2014-12-14

    Lithium ferrite (LiFe{sub 5}O{sub 8}) is an attractive material for technological applications due to its physical properties, which are significantly dependent on the preparation method and raw materials. In this work, LiFe{sub 5}O{sub 8} crystallites were obtained by controlled heat-treatment process at 1100 °C, of a homogeneous mixture of Li{sub 2}O-Fe{sub 2}O{sub 3} powders, prepared by wet ball-milling and using lithium and iron nitrates as raw materials. The main goal was the preparation of a flexible and self-standing tick composite film by embedding lithium ferrite particles in a polymeric matrix, taking advantage of the good mechanical properties of the polymer and of the electrical and dielectric properties of the ferrite. The selected polymer matrix was styrene-b-isoprene-b-styrene copolymer. To prepare the composites, the lithium ferrite particles were chemically modified in order to functionalize their surface. To analyse the influence of the particles surface modification, different composites were made, with modified and unmodified particles. The structure of the obtained composites was studied by FTIR, XRD, TGA, and DSC techniques. The dielectric properties were analysed, in the frequency range between 10 Hz and 1 MHz and in function of temperature in the range between −73 °C and 127 °C. These properties were related with the structure and concentration of the particles in the matrix network. The composites with the modified particles present higher dielectric constant, maintaining values of loss tangent sufficiently low (<10{sup −2}) that can be considered interesting for technological applications.

  12. Nuclear relaxation behavior of the superconducting cuprates: Bi2Sr2CaCu2O8

    Science.gov (United States)

    Walstedt, R. E.; Bell, R. F.; Mitzi, D. B.

    1991-10-01

    Nuclear-magnetic-resonance data are presented and analyzed for the high-Tc compound Bi2Sr2CaCu2O8 for two oxygen doping levels. Both sample conditions lead to spin-gap behavior for the NMR shift, with a precursive downturn in the data at T>Tc. In addition, the relaxation times T1 obey the relation (T1T)-1~Ks(T) at low temperatures (T<~100 K), where Ks(T) is the spin paramagnetic shift. This relation, which is also obeyed by other superconductors, is argued to be related to the spin-gap effects and thus incompatible with a Fermi-liquid approach to the understanding of these systems.

  13. Using quasi-guided modes for modeling the transfer behavior of bent dielectric slab waveguides

    Directory of Open Access Journals (Sweden)

    M. Stallein

    2010-09-01

    Full Text Available The connection of two straight dielectric multimode slab waveguides by a circular bent waveguide is analyzed by means of quasi-guided modes. These modes correspond to the well known leaky modes, but own real eigenvalues, thus the mathematical description is simpler. Furthermore they are derived as approximate solutions of the exact theory. This work will first give a brief introduction to the basic theory, followed by a discussion of the properties of quasi-guided modes. After a validation by comparison with a numerical simulation using the Finite Integration Technique, results for the bending loss of multimode waveguides are presented.

  14. Dielectric behavior of La1-xCaxMnO3 (0.4 ≤ x ≤ 0.5

    Directory of Open Access Journals (Sweden)

    Fondado, A.

    2006-06-01

    Full Text Available In this work the dielectric behavior of semiconducting La-manganites in an intermediate Ca-doping regime is studied. Ceramic samples were prepared by conventional solid-state reaction, using elemental oxides as starting reactants. A chemical, structural and microstructural characterization of the prepared manganites was performed by iodometric titrations, X-ray diffraction and scanning electron microscopy, respectively. The magnetic susceptibility and electrical resistivity as a function of temperature were also measured. The complex dielectric permittivity of the samples was determined as a function of frequency and temperature. Very high values of dielectric constant in a wide frequency and temperature range were observed for all the synthesized samples. Moreover, an increase of the dielectric constant at temperatures close to chargeorder or metal-insulator transition is reported.En este trabajo se estudia el comportamiento dieléctrico de manganitas de La dopadas con Ca en un rango de composición cercano a 0.5. Se prepararon muestras cerámicas por el método de reacción en estado sólido, utilizando los óxidos elementales como reactivos. Los materiales obtenidos fueron caracterizados química, estructural y microestructuralmente mediante titulaciones iodométricas, difracción de rayos X y microscopía electrónica de barrido, respectivamente. Se hicieron medidas de susceptibilidad magnética y resistividad eléctrica en función de la temperatura. Además se determinó la permitividad dieléctrica compleja de las muestras sintetizadas en función de la frecuencia y la temperatura. Se observaron valores muy elevados de la constante dieléctrica en un amplio rango de frecuencias y temperaturas para todos los materiales obtenidos. También se encontró un aumento de la constante dieléctrica a temperaturas cercanas a las de las transiciones de orden de carga o metal-aislante sufridas por estos materiales.

  15. Effects of hydrolysis on solid-state relaxation and stickiness behavior of sodium caseinate-lactose powders.

    Science.gov (United States)

    Mounsey, J S; Hogan, S A; Murray, B A; O'Callaghan, D J

    2012-05-01

    Hydrolyzed or nonhydrolyzed sodium caseinate-lactose dispersions were spray dried, at a protein: lactose ratio of 0.5, to examine the effects of protein hydrolysis on relaxation behavior and stickiness of model powders. Sodium caseinate (NC) used included a nonhydrolyzed control (DH 0) and 2 hydrolyzed variants (DH 8.3 and DH 15), where DH = degree of hydrolysis (%). Prior to spray drying, apparent viscosities of liquid feeds (at 70°C) at a shear rate of 20/s were 37.6, 3.14, and 3.19 mPa·s, respectively, for DH 0, DH 8, and DH 15 dispersions. Powders containing hydrolyzed casein were more susceptible to sticking than those containing intact NC. The former had also lower bulk densities and powder particle sizes. Scanning electron microscopy showed that hydrolyzed powders had thinner particle walls and were more friable than powders containing intact NC. Secondary structure of caseinates, determined by Fourier transform infrared spectroscopy, was affected by the relative humidity of storage and the presence of lactose as co-solvent rather than its physical state. Glass transition temperatures and lactose crystallization temperatures, determined by differential scanning calorimetry were not affected by caseinate hydrolysis, although the effects of protein hydrolysis on glass-rubber transitions (T(gr)) could be determined by thermo-mechanical analysis. Powders containing hydrolyzed NC had lower T(gr) values (~30°C) following storage at a higher subcrystallization relative humidity (33%) compared with powder with nonhydrolyzed NC (T(gr) value of ~40°C), an effect that reflects more extensive plasticization of powder matrices by moisture. Results support that sodium caseinate-lactose interactions were weak but that relaxation behavior, as determined by the susceptibility of powder to sticking, was affected by hydrolysis of sodium caseinate. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Thermal and Dielectric Behavior Studies of Poly(Arylene Ether Sulfones with Sulfonated and Phosphonated Pendants

    Directory of Open Access Journals (Sweden)

    Shimoga D. Ganesh

    2016-01-01

    Full Text Available The present paper discusses the aspects of the synthesizing valeric acid based poly(ether sulfones with active carboxylic acid pendants (VALPSU from solution polymerization technique via nucleophilic displacement polycondensation reaction among 4,4′-dichlorodiphenyl sulfone (DCDPS and 4,4′-bis(4-hydroxyphenyl valeric acid (BHPA. The conditions necessary to synthesize and purify the polymer were investigated in some detail. The synthesized poly(ether sulfones comprise sulfone and ether linkages in addition to reactive carboxylic acid functionality; these active carboxylic acid functional groups were exploited to hold the phenyl sulphonic acid and phenyl phosphonic acid pendants. The phenyl sulphonic acid pendants in VALPSU were easily constructed by altering active carboxylic acid moieties by sulfanilic acid using N,N′-dicyclohexylcarbodiimide (DCC mediated mild synthetic route, whereas the latter one was built in two steps. Initially, polyphosphoric acid condensation with VALPSU by 4-bromoaniline and next straightforward palladium catalyzed synthetic route, in both of which acidic pendants are clenched by polymer backbone via amide linkage. Without impairing the primary polymeric backbone modified polymers were prepared by varying the stoichiometric ratios of respective combinations. All the polymers were physicochemically characterized and pressed into tablets; electrical contacts were established to study the dielectric properties. Finally, the influence of the acidic pendants on the dielectric properties was examined.

  17. Study by EPR and Dielectric Constant of Proton-Glass behavior in the system Rb1-X(NH4)XH2PO4:As

    International Nuclear Information System (INIS)

    Almanza, O.; Diaz J, M.; Diaz S

    1996-01-01

    From dielectric constant and EPR measurements of the system Rb1-X(NH4)XH2PO4:As we obtained the phase-diagram Tc Vs x. EPR measurements suggest a proton-glass behavior for 0.3= =0.8. In the doping-range 0.4=< x<=1 the system shows a splitting in the low field line

  18. Experimental study on behaviors of dielectric elastomer based on acrylonitrile butadiene rubber

    Science.gov (United States)

    An, Kuangjun; Chuc, Nguyen Huu; Kwon, Hyeok Yong; Phuc, Vuong Hong; Koo, Jachoon; Lee, Youngkwan; Nam, Jaedo; Choi, Hyouk Ryeol

    2010-04-01

    Previously, the dielectric elastomer based on Acrylonitrile Butadiene Rubber (NBR), called synthetic elastomer has been reported by our group. It has the advantages that its characteristics can be modified according to the requirements of performances, and thus, it is applicable to a wide variety of applications. In this paper, we address the effects of additives and vulcanization conditions on the overall performance of synthetic elastomer. In the present work, factors to have effects on the performances are extracted, e.g additives such as dioctyl phthalate (DOP), barium titanium dioxide (BaTiO3) and vulcanization conditions such as dicumyl peroxide (DCP), cross-linking times. Also, it is described how the performances can be optimized by using DOE (Design of Experiments) technique and experimental results are analyzed by ANOVA (Analysis of variance).

  19. Effect of gradient dielectric coefficient in a functionally graded material (FGM) substrate on the propagation behavior of love waves in an FGM-piezoelectric layered structure.

    Science.gov (United States)

    Cao, Xiaoshan; Shi, Junping; Jin, Feng

    2012-06-01

    The propagation behavior of Love waves in a layered structure that includes a functionally graded material (FGM) substrate carrying a piezoelectric thin film is investigated. Analytical solutions are obtained for both constant and gradient dielectric coefficients in the FGM substrate. Numerical results show that the gradient dielectric coefficient decreases phase velocity in any mode, and the electromechanical coupling factor significantly increases in the first- and secondorder modes. In some modes, the difference in Love waves' phase velocity between these two types of structure might be more than 1%, resulting in significant differences in frequency of the surface acoustic wave devices.

  20. Dielectric properties of polyethylene

    International Nuclear Information System (INIS)

    Darwish, S.; Riad, A.S.; El-Shabasy, M.

    2005-01-01

    The temperature dependence of dielectric properties in polyethylene was measured in the frequency range from 10 to 105 Hz. The frequency dependence of the complex impedance in the complex plane could be fitted by semicircles. The system could be represented by an equivalent circuit of a bulk resistance in series with parallel surface resistance-capacitance combination. The relaxation time, has been evaluated from experimental results. Results reveal that the temperature dependence, is a thermally activated process

  1. Co-firing behavior of ZnTiO3-TiO2 dielectrics/hexagonal ferrite composites for multi-layer LC filters

    International Nuclear Information System (INIS)

    Wang Mao; Zhou Ji; Yue Zhenxing; Li Longtu; Gui Zhilun

    2003-01-01

    The low-temperature co-firing compatibility between ferrite and dielectric materials is the key issue in the production process of multi-layer chip LC filters. This paper presents the co-firing behavior and interfacial diffusion of ZnTiO 3 -TiO 2 dielectric/Co 2 Z hexagonal ferrite multi-layer composites. It has been testified that proper constitutional modification is feasible to diminish co-firing mismatch and enhance co-firing compatibility. Interfacial reactions occur at the interface, which can strengthen combinations between ferrite layers and dielectric layers. Titanium and barium tend to concentrate at the interface; iron and zinc have a wide diffusion range

  2. Critical behavior of the spontaneous polarization and the dielectric susceptibility close to the cubic-tetragonal transition in BaTiO3

    Directory of Open Access Journals (Sweden)

    H. Yurtseven

    2015-09-01

    Full Text Available Using Landau mean field model, the spontaneous polarization and the dielectric susceptibility are analyzed as functions of temperature and pressure close to the cubic–tetragonal (ferroelectric–paraelectric transition in BaTiO3. From the analysis of the dielectric susceptibility and the spontaneous polarization, the critical exponents are deduced in the classical and quantum limits for BaTiO3. From the critical behavior of the dielectric susceptibility, the spontaneous polarization can be described for the ferroelectric–paraelectric (cubic to tetragonal transition between 4 and 8 GPa at constant temperatures of 0 to 200 K in BaTiO3 within the Landau mean field model given here.

  3. Effect of annealing temperature on structural, morphology and dielectric properties of La0.75Ba0.25FeO3 perovskite

    Science.gov (United States)

    Abdallah, F. B.; Benali, A.; Triki, M.; Dhahri, E.; Graça, M. P. F.; Valente, M. A.

    2018-05-01

    The effect of annealing temperature on the structure, morphology and dielectric properties of La0.75Ba0.25FeO3 compound prepared by the sol-gel method was investigated. The increase of the annealing temperature from 900 to 1100 °C, promotes an increase of the average grain size value. Two dielectric relaxations are detected using the dielectric modulus formalism, attributed to grain and grain boundary relaxations. This behavior was confirmed by both Nyquist and Argand's plots of dielectric impedance and Modulus results at different measuring temperatures. The ac conductivity could be described by Jonscher's power law revealing the presence of both overlapping large polaron tunneling and non-overlapping small polaron tunneling mechanisms.

  4. Relaxing moral reasoning to win: How organizational identification relates to unethical pro-organizational behavior.

    Science.gov (United States)

    Chen, Mo; Chen, Chao C; Sheldon, Oliver J

    2016-08-01

    Drawing on social identity theory and social-cognitive theory, we hypothesize that organizational identification predicts unethical pro-organizational behavior (UPB) through the mediation of moral disengagement. We further propose that competitive interorganizational relations enhance the hypothesized relationships. Three studies conducted in China and the United States using both survey and vignette methodologies provided convergent support for our model. Study 1 revealed that higher organizational identifiers engaged in more UPB, and that this effect was mediated by moral disengagement. Study 2 found that organizational identification once again predicted UPB through the mediation of moral disengagement, and that the mediation relationship was stronger when employees perceived a higher level of industry competition. Finally, Study 3 replicated the above findings using a vignette experiment to provide stronger evidence of causality. Theoretical and practical implications are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  5. Relaxation behavior of radicals produced in irradiated black pepper under various moisture conditions by ESR

    International Nuclear Information System (INIS)

    Kameya, Hiromi; Kawauchi, Risa; Shimoyama, Yuhei; Kaeda, Yoko; Ogawa, Satoko; Nakamura, Hideo; Ukai, Mitsuko

    2008-01-01

    Black pepper is easy to be contaminated by microorganism and often processed to γ-irradiation. ESR has been used for the detection of radicals induced in irradiated spices. Using ESR, we revealed the effects of moisture condition during storage of irradiated black pepper on the saturation behavior of ESR signal. The ESR spectrum of black pepper consists of a broad sextet centered at g=2.0, a singlet as same g-value and a singlet at g=4.0. The irradiation causes two new signals, one is the strong and sharp singlet signal at g=2.0 and the other is the side signal. We found that the signal intensity originated by the radicals of black pepper with and without radiation decayed in the high humidity condition during storage. The ESR signal intensity of irradiated black pepper decayed during storage and showed almost the same intensity level as that of non-irradiated black pepper during storage. (author)

  6. Terahertz-frequency dielectric response of liquids

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Møller, Uffe; Cooke, David

    The dielectric response of liquids spans many decades in frequency. The dielectric response of a polar liquid is typically determined by relaxational dynamics of the dipolar moments of the liquid. In contrast, the dielectric response of a nonpolar liquid is determined by much weaker collision......-induced dipole moments. In the polar liquid water the fastest relaxational dynamics is found at terahertz frequencies, just below the first intermolecular vibrational and librational modes. In this presentation we will discuss optical terahertz spectroscopic techniques for measurement of the full dielectric...... function of liquids at terahertz frequencies. We will review the current understanding of the high-frequency dielectric spectrum of water, and discuss the relation between the dielectric spectrum and the thermodynamic properties of certain aqueous solutions....

  7. Aging of the Johari-Goldstein relaxation in the glass-forming liquids sorbitol and xylitol

    Science.gov (United States)

    Yardimci, Hasan; Leheny, Robert L.

    2006-06-01

    Employing frequency-dependent dielectric susceptibility we characterize the aging in two supercooled liquids, sorbitol and xylitol, below their calorimetric glass transition temperatures. In addition to the alpha relaxation that tracks the structural dynamics, the susceptibility of both liquids possesses a secondary Johari-Goldstein relaxation at higher frequencies. Following a quench through the glass transition, the susceptibility slowly approaches the equilibrium behavior. For both liquids, the magnitude of the Johari-Goldstein relaxation displays a dependence on the time since the quench, or aging time, that is quantitatively very similar to the age dependence of the alpha peak frequency. The Johari-Goldstein relaxation time remains constant during aging for sorbitol while it decreases slightly with age for xylitol. Hence, one cannot sensibly assign a fictive temperature to the Johari-Goldstein relaxation. This behavior contrasts with that of liquids lacking distinct Johari-Goldstein peaks for which the excess wing of the alpha peak tracks the main part of the peak during aging, enabling the assignment of a single fictive temperature to the entire spectrum. The aging behavior of the Johari-Goldstein relaxation time further calls into question the possibility that the relaxation time possesses stronger temperature dependence in equilibrium than is observed in the out-of-equilibrium state below the glass transition.

  8. Microwave dielectric characterization of binary mixture of formamide ...

    Indian Academy of Sciences (India)

    are fitted to the three different relaxation models [24–27] by the non-linear least squares fit method. It is observed that the Davidson–Cole model is adequate to describe major dispersion of the various solute and solvent mixtures over this fre- quency range. Static dielectric constant and dielectric relaxation time could be.

  9. Numerical study on the discharge characteristics and nonlinear behaviors of atmospheric pressure coaxial electrode dielectric barrier discharges

    International Nuclear Information System (INIS)

    Zhang Ding-Zong; Wang Yan-Hui; Wang De-Zhen

    2017-01-01

    The discharge characteristics and temporal nonlinear behaviors of the atmospheric pressure coaxial electrode dielectric barrier discharges are studied by using a one-dimensional fluid model. It is shown that the discharge is always asymmetrical between the positive pulses and negative pulses. The gas gap severely affects this asymmetry. But it is hard to acquire a symmetrical discharge by changing the gas gap. This asymmetry is proportional to the asymmetric extent of electrode structure, namely the ratio of the outer electrode radius to the inner electrode radius. When this ratio is close to unity, a symmetrical discharge can be obtained. With the increase of frequency, the discharge can exhibit a series of nonlinear behaviors such as period-doubling bifurcation, secondary bifurcation and chaotic phenomena. In the period-doubling bifurcation sequence the period- n discharge becomes more and more unstable with the increase of n . The period-doubling bifurcation can also be obtained by altering the discharge gas gap. The mechanisms of two bifurcations are further studied. It is found that the residual quasineutral plasma from the previous discharges and corresponding electric field distribution can weaken the subsequent discharge, and leads to the occurrence of bifurcation. (paper)

  10. Functional behavior of the anomalous magnetic relaxation observed in melt-textured YBa_2Cu_3O_7_-_δ samples showing the paramagnetic Meissner effect

    International Nuclear Information System (INIS)

    Dias, F.T.; Vieira, V.N.; Garcia, E.L.; Wolff-Fabris, F.; Kampert, E.; Gouvêa, C.P.; Schaf, J.; Obradors, X.; Puig, T.; Roa, J.J.

    2016-01-01

    Highlights: • Paramagnetic Meissner effect observed up to 5T in FCC and FCW measurements. • Time effects evidenced by irreversibilities between FCC and FCW measurements. • Strong time effects causing an anomalous paramagnetic relaxation. • Paramagnetic relaxation governed by different flux dynamics in different intervals. • An interpretative analysis to identify the flux dynamics in the relaxation process. - Abstract: We have studied the functional behavior of the field-cooled (FC) magnetic relaxation observed in melt-textured YBa_2Cu_3O_7_-_δ (Y123) samples with 30 wt% of Y_2Ba_1Cu_1O_5 (Y211) phase, in order to investigate anomalous paramagnetic moments observed during the experiments. FC magnetic relaxation experiments were performed under controlled conditions, such as cooling rate and temperature. Magnetic fields up to 5T were applied parallel to the ab plane and along the c-axis. Our results are associated with the paramagnetic Meissner effect (PME), characterized by positive moments during FC experiments, and related to the magnetic flux compression into the samples. After different attempts our experimental data could be adequately fitted by an exponential decay function with different relaxation times. We discuss our results suggesting the existence of different and preferential flux dynamics governing the anomalous FC paramagnetic relaxation in different time intervals. This work is one of the first attempts to interpret this controversial effect in a simple analysis of the pinning mechanisms and flux dynamics acting during the time evolution of the magnetic moment. However, the results may be useful to develop models to explain this interesting and still misunderstood feature of the paramagnetic Meissner effect.

  11. Is cognitive behavioral therapy more effective than relaxation therapy in the treatment of anxiety disorders? A meta-analysis.

    NARCIS (Netherlands)

    Montero Marin, J.; Garcia-Campayo, J.; López-Montoyo, A.; Zabaleta-del-Olmo, E.; Cuijpers, P.

    2017-01-01

    Background It is not clear whether relaxation therapies are more or less effective than cognitive and behavioural therapies in the treatment of anxiety. The aims of the present study were to examine the effects of relaxation techniques compared to cognitive and behavioural therapies in reducing

  12. Dielectric measurements on PWB materials at microwave frequencies

    Indian Academy of Sciences (India)

    Unknown

    the angular frequency and c0 the velocity of light, c the thickness of the ... Dielectric parameters, absorption index and refractive index for pure PSF and pure PMMA at 8⋅92 GHz frequency and at 35°C temperature. Dielectric. Dielectric. Loss. Relaxation. Conductivity Absorption. Refractive. Thickness, constant loss tangent.

  13. A randomized clinical trial comparing an acceptance-based behavior therapy to applied relaxation for generalized anxiety disorder.

    Science.gov (United States)

    Hayes-Skelton, Sarah A; Roemer, Lizabeth; Orsillo, Susan M

    2013-10-01

    To examine whether an empirically and theoretically derived treatment combining mindfulness- and acceptance-based strategies with behavioral approaches would improve outcomes in generalized anxiety disorder (GAD) over an empirically supported treatment. This trial randomized 81 individuals (65.4% female, 80.2% identified as White, average age 32.92) diagnosed with GAD to receive 16 sessions of either an acceptance-based behavior therapy (ABBT) or applied relaxation (AR). Assessments at pretreatment, posttreatment, and 6-month follow-up included the following primary outcome measures: GAD clinician severity rating, Structured Interview Guide for the Hamilton Anxiety Rating Scale, Penn State Worry Questionnaire, Depression Anxiety Stress Scale, and the State-Trait Anxiety Inventory. Secondary outcomes included the Beck Depression Inventory-II, Quality of Life Inventory, and number of comorbid diagnoses. Mixed effect regression models showed significant, large effects for time for all primary outcome measures (ds = 1.27 to 1.61) but nonsignificant, small effects for condition and Condition × Time (ds = 0.002 to 0.20), indicating that clients in the 2 treatments improved comparably over treatment. For secondary outcomes, time was significant (ds = 0.74 to 1.38), but condition and Condition × Time effects were not (ds = 0.004 to 0.31). No significant differences emerged over follow-up (ds = 0.03 to 0.39), indicating maintenance of gains. Between 63.3 and 80.0% of clients in ABBT and 60.6 and 78.8% of clients in AR experienced clinically significant change across 5 calculations of change at posttreatment and follow-up. ABBT is a viable alternative for treating GAD. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  14. Controlled comparison of family cognitive behavioral therapy and psychoeducation/relaxation training for child obsessive-compulsive disorder.

    Science.gov (United States)

    Piacentini, John; Bergman, R Lindsey; Chang, Susanna; Langley, Audra; Peris, Tara; Wood, Jeffrey J; McCracken, James

    2011-11-01

    To examine the efficacy of exposure-based cognitive-behavioral therapy (CBT) plus a structured family intervention (FCBT) versus psychoeducation plus relaxation training (PRT) for reducing symptom severity, functional impairment, and family accommodation in youths with obsessive-compulsive disorder (OCD). A total of 71 youngsters 8 to 17 years of age (mean 12.2 years; range, 8-17 years, 37% male, 78% Caucasian) with primary OCD were randomized (70:30) to 12 sessions over 14 weeks of FCBT or PRT. Blind raters assessed outcomes with responders followed for 6 months to assess treatment durability. FCBT led to significantly higher response rates than PRT in ITT (57.1% vs 27.3%) and completer analyses (68.3% vs. 35.3%). Using HLM, FCBT was associated with significantly greater change in OCD severity and child-reported functional impairment than PRT and marginally greater change in parent-reported accommodation of symptoms. These findings were confirmed in some, but not all, secondary analyses. Clinical remission rates were 42.5% for FCBT versus 17.6% for PRT. Reduction in family accommodation temporally preceded improvement in OCD for both groups and child functional status for FCBT only. Treatment gains were maintained at 6 months. FCBT is effective for reducing OCD severity and impairment. Importantly, treatment also reduced parent-reported involvement in symptoms with reduced accommodation preceding reduced symptom severity and functional impairment. CLINICAL TRIALS REGISTRY INFORMATION: Behavior Therapy for Children and Adolescents with Obsessive-Compulsive Disorder (OCD); http://www.clinicaltrials.gov; NCT00000386. Copyright © 2011 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Improved dielectric properties and grain boundary response in neodymium-doped Y_2_/_3Cu_3Ti_4O_1_2 ceramics

    International Nuclear Information System (INIS)

    Liang, Pengfei; Yang, Zupei; Chao, Xiaolian

    2016-01-01

    Rare earth element neodymium was adopted to refine grain and in turn increase the volume of grain boundary of Y_2_/_3Cu_3Ti_4O_1_2 ceramics, which could strongly increase the resistance of grain boundary. Proper amount of Nd substitution in Y_2_/_3_−_xNd_xCu_3Ti_4O_1_2 ceramics could significantly depress the low-frequency dielectric loss. When the doping level is 0.06 and 0.09, the samples exhibited a relatively low dielectric loss (below 0.050 between 0.3 and 50 kHz) and high dielectric constant above 11000 over a wide frequency range from 40 Hz to 100 kHz. Based on the ε′-T plots, dielectric relaxation intensity was substantially weakened by Nd doping so that the temperature stability of dielectric constant was improved obviously. The correlations between low-frequency dielectric loss and the resistance of grain boundary were revealed. After Nd doping, the activation energies for the conduction behavior in grain boundaries were significantly enhanced, and the activation energies for the dielectric relaxation process in grain boundaries were slightly influenced. - Highlights: • Significant decrease in dielectric loss of Y_2_/_3_−_xNd_xCu_3Ti_4O_1_2 ceramics was realized. • The enhanced grain boundary density is responsible for the lowered dielectric loss. • Nd doping could improve the temperature stability of dielectric constant. • Oxygen vacancies contribute to conduction and relaxation process of grain boundaries.

  16. Influence of Zn doping on structural, optical and dielectric properties of LaFeO3

    Science.gov (United States)

    Manzoor, Samiya; Husain, Shahid

    2018-05-01

    The effect of Zn doping on structural, optical and dielectric properties of nano-crystalline LaFe1‑xZnxO3 (0.0 ≤ x ≤ 0.3) samples have been investigated. These samples are synthesized using conventional solid state reaction route. X-ray diffraction patterns with Rietveld analysis confirm the single phase nature of samples. Further, the sample formation has been confirmed by FTIR spectroscopy. All the samples are formed in orthorhombic crystal symmetry with Pbnm space group. The average crystallite sizes, calculated from the Scherer’s formula, lie in the range below 50 nm. Rietveld refinement technique is used to determine lattice parameters, bond lengths and unit cell volume. Williamson-Hall analysis has been performed to calculate the crystallite size and lattice strain. Crystallite sizes are found to be of nanometer range while the strain is of the order of 10‑3. Zn doping leads to the expansion of volume due to the tensile strain. Optical bandgap has been determined from Kubelka-Munk function using Tauc’s relation. Zinc doping in LaFeO3 leads to decrease in optical bandgap. Dielectric constant as a function of frequency is measured in the frequency range of 75 kHz–5 MHz. The dielectric behavior has been investigated by analyzing ‘universal dielectric response’ (UDR) model. The dielectric constant (ε‧) shows colossal value with Zn doping in the whole frequency range. However, the imaginary part (ε″) shows relaxational behavior which may be attributed to the strong correlation that exists between conduction mechanism and dielectric behavior in ferrites. Cole-Cole analysis has been done that confirms the dielectric material does not follow the ideal Debye theory but shows distribution of relaxation times. The a.c conductivity increases with frequency and with Zn doping due to the increased polaron hopping.

  17. Using a novel rigid-fluoride polymer to control the interfacial thickness of graphene and tailor the dielectric behavior of poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) nanocomposites.

    Science.gov (United States)

    Han, Xianghui; Chen, Sheng; Lv, Xuguang; Luo, Hang; Zhang, Dou; Bowen, Chris R

    2018-01-24

    Polymer nanocomposites based on conductive fillers for high performance dielectrics have attracted increasing attention in recent years. However, a number of physical issues are unclear, such as the effect of interfacial thickness on the dielectric properties of the polymer nanocomposites, which limits the enhancement of permittivity. In this research, two core-shell structured reduced graphene oxide (rGO)@rigid-fluoro-polymer conducting fillers with different shell thicknesses are prepared using a surface-initiated reversible-addition-fragmentation chain transfer polymerization method, which are denoted as rGO@PTFMS-1 with a thin shell and rGO@PTFMS-2 with a thick shell. A rigid liquid crystalline fluoride-polymer poly{5-bis[(4-trifluoro-methoxyphenyl)oxycarbonyl]styrene} (PTFMS) is chosen for the first time to tailor the shell thicknesses of rGO via tailoring the degree of polymerization. The effect of interfacial thickness on the dielectric behavior of the P(VDF-TrFE-CTFE) nanocomposites with rGO and modified rGO is studied in detail. The results demonstrate that the percolation threshold of the nanocomposites increased from 0.68 vol% to 1.69 vol% with an increase in shell thickness. Compared to the rGO@PTFMS-1/P(VDF-TrFE-CTFE) composites, the rGO@PTFMS-2/P(VDF-TrFE-CTFE) composites exhibited a higher breakdown strength and a lower dielectric constant, which can be interpreted by interfacial polarization and the micro-capacitor model, resulting from the insulating nature of the rigid-polymer shell and the change of rGO's morphology. The findings provide an innovative approach to tailor dielectric composites, and promote a deeper understanding of the influence of interfacial region thickness on the dielectric performance.

  18. Design of Thermochromic Polynorbornene Bearing Spiropyran Chromophore Moieties: Synthesis, Thermal Behavior and Dielectric Barrier Discharge Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Saleh A. Ahmed

    2017-11-01

    Full Text Available A new class of thermochromic polynorbornene with pendent spiropyran moieties has been synthesized. Functionalization of norbornene monomers with spirobenzopyran moieties has been achieved using Steglich esterification. These new monomeric materials were polymerized via Ring Opening Metathesis Polymerization (ROMP. In spite of their poor solubility, polynorbornenes with spirobenzopyran exhibited thermochromic behavior due to the conversion of their closed spiropyran moieties to the open merocyanine form. Moreover, these polymers displayed bathochromic shifts in their optical response, which was attributed to the J-aggregation of the attached merocyanine moieties that were associated with their high concentration in the polymeric chain. The surface of the obtained polymers was exposed to atmospheric pressure air Dielectric Barrier Discharge (DBD plasma system, which resulted in the reduction of the surface porosity and converted some surface area into completely non-porous regions. Moreover, the plasma system created some areas with highly ordered J-aggregates of the merocyanine form in thread-like structures. This modification of the polymers’ morphology may alter their applications and allow for these materials to be potential candidates for new applications, such as non-porous membranes for reverse osmosis, nanofiltration, or molecular separation in the gas phase.

  19. Effects of cognitive behavioral therapy with relaxation vs. imagery rescripting on test anxiety: A randomized controlled trial.

    Science.gov (United States)

    Reiss, Neele; Warnecke, Irene; Tolgou, Theano; Krampen, Dorothea; Luka-Krausgrill, Ursula; Rohrmann, Sonja

    2017-01-15

    Test anxiety is a common condition in students, which may lead to impaired academic performance as well as to distress. The primary objective of this study was to evaluate the effectiveness of two cognitive-behavioral interventions designed to reduce test anxiety. Test anxiety in the participants was diagnosed as social or specific phobia according to DSM-IV. Subsequently subjects were randomized to three groups: a moderated self-help group, which served as a control group, and two treatment groups, where either relaxation techniques or imagery rescripting were applied. Students suffering from test anxiety were recruited at two German universities (n=180). The randomized controlled design comprised three groups which received test anxiety treatment in weekly three-hour sessions over a period of five weeks. Treatment outcome was assessed with a test anxiety questionnaire, which was administered before and after treatment, as well as in a six-month follow-up. A repeated-measures ANOVA for participants with complete data (n=59) revealed a significant reduction of test anxiety from baseline to six-month follow-up in all three treatment groups (panxiety. The sample may therefore represent only more severe forms of text anxiety . Moreover, the sample size in this study was small, the numbers of participants per group differed, and treatment results were based on self-report. Due to the length of the treatment, an implementation of the group treatments used in this study might not be feasible in all settings. Group treatments constitute an effective method of treating test anxiety, e.g. in university settings. Imagery rescripting may particularly contribute to treatment efficacy. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Dielectric behavior of samarium-doped BaZr0.2Ti0.8O3 ceramics

    International Nuclear Information System (INIS)

    Li, Yuanliang; Wang, Ranran; Ma, Xuegang; Li, Zhongqiu; Sang, Rongli; Qu, Yuanfang

    2014-01-01

    Graphical abstract: - Highlights: • We investigate dielectric properties and phase transition of Sm 3+ -doped BaZr 0.2 Ti 0.8 O 3 ceramics. • The additive amount of Sm 2 O 3 can greatly affect the dielectric properties. • The materials undergo a diffuse type ferroelectric phase transition. • There is an alternation of substitution preference of Sm 3+ ion for the host cations in perovskite lattice. - Abstract: The dielectric properties and phase transition of Sm 3+ -doped BaZr 0.2 Ti 0.8 O 3 (BZT20) ceramics were investigated. Room temperature X-ray diffraction study suggested that the compositions had single-phase cubic symmetry. Microstructure studies showed that the grain size decreased and that the Sm 2 O 3 amount markedly affected the dielectric properties of BZT20. A dielectric constant of 5700 at 0.2 mol% Sm 2 O 3 and a dissipation factor of only 0.0011 at 2 mol% Sm 2 O 3 were observed, indicating that BZT20 had significant potential applications. Moreover, the dielectric constant, dissipation factor, phase-transition temperature, and maximum dielectric constant increased with increased Sm 2 O 3 amount at ≤0.2 mol% Sm 2 O 3 but decreased with increased Sm 2 O 3 amount at >0.2 mol% Sm 2 O 3

  1. Experimental Characterization of Dielectric Properties in Fluid Saturated Artificial Shales

    OpenAIRE

    Beloborodov, Roman; Pervukhina, Marina; Han, Tongcheng; Josh, Matthew

    2017-01-01

    High dielectric contrast between water and hydrocarbons provides a useful method for distinguishing between producible layers of reservoir rocks and surrounding media. Dielectric response at high frequencies is related to the moisture content of rocks. Correlations between the dielectric permittivity and specific surface area can be used for the estimation of elastic and geomechanical properties of rocks. Knowledge of dielectric loss-factor and relaxation frequency in shales is critical for t...

  2. Dielectric response, functionality and energy storage in epoxy nanocomposites: Barium titanate vs exfoliated graphite nanoplatelets

    International Nuclear Information System (INIS)

    Patsidis, A.C.; Kalaitzidou, K.; Psarras, G.C.

    2012-01-01

    Barium titanate/epoxy and exfoliated graphite nanoplatelets/epoxy nanocomposites were prepared and studied varying the filler content. Morphological characteristics were examined via scanning electron microscopy, while structural changes occurring in barium titanate as a function of temperature were investigated by means of X-ray diffraction. Broadband dielectric spectroscopy was employed for determining the dielectric response of the prepared systems. Based on the conducted analysis it was found that three relaxation processes are present in the spectra of the examined materials. From the slower to the faster one, these are interfacial polarization, glass to rubber transition of the polymer matrix, and rearrangement of polar side groups of the polymer chain. Systems' functionality and energy storing efficiency were assessed in terms of dielectric reinforcing function. Finally, the energy density of all systems was evaluated. Composite systems with embedded graphite nanoplatelets exhibit higher energy storing efficiency, while thermally induced structural changes in ferroelectric particles provide functional behavior to barium titanate composites. -- Graphical abstract: Systems' functionality, electrical relaxations and energy storing efficiency were assessed in terms of dielectric permittivity, electric modulus and dielectric reinforcing function (G). Further, the energy density (U) of all systems was evaluated. Composite systems with embedded graphite nanoplatelets exhibit higher energy storing efficiency, while thermally induced structural changes in ferroelectric particles provide functional behavior to barium titanate composites. Highlights: ► Relaxation phenomena were found to be present in all studied systems. ► Two processes emanate from the polymer matrix (α-mode and β-mode). ► Systems' electrical heterogeneity gives rise to interfacial polarization. ► BaTiO 3 /epoxy composites exhibit functional behavior due to structural changes. ► x

  3. Electroactive Phase Induced Bi4Ti3O12-Poly(Vinylidene Difluoride) Composites with Improved Dielectric Properties

    Science.gov (United States)

    Bhardwaj, Sumit; Paul, Joginder; Chand, Subhash; Raina, K. K.; Kumar, Ravi

    2015-10-01

    Lead-free ceramic-polymer composite films containing Bi4Ti3O12 (BIT) nanocrystals as the active phase and poly(vinylidene difluoride) as the passive matrix were synthesized by spin coating. The films' structural, morphological, and dielectric properties were systemically investigated by varying the weight fraction of BIT. Formation of electroactive β and γ phases were strongly affected by the presence of BIT nanocrystals. Analysis was performed by Fourier-transform infrared and Raman spectroscopy. Morphological studies confirmed the homogeneous dispersion of BIT particles within the polymer matrix. The composite films had dielectric constants as high as 52.8 and low dielectric loss of 0.1 at 100 Hz when the BIT content was 10 wt.%. We suggest that the enhanced electroactive phase content of the polymer matrix and interfacial polarization may contribute to the improved dielectric performance of these composite films. Dielectric modulus analysis was performed to enable understanding of the dielectric relaxation process. Non-Debye-type relaxation behavior was observed for the composite films at high temperature.

  4. Effect of donor and acceptor dopants on crystallization, microstructural and dielectric behaviors of barium strontium titanate glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Avadhesh Kumar, E-mail: yadav.av11@gmail.com [Department of Physics, Dr. Bheem Rao Ambedkar Government Degree College, Anaugi, Kannauj (India); Gautam, C.R. [Department of Physics, University of Lucknow, Lucknow 226007 (India); Singh, Prabhakar [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2016-07-05

    Bulk transparent barium strontium titanate borosilicate glasses in glass system (65-x)[(Ba{sub 0.6}Sr{sub 0.4}).TiO{sub 3}]-30[2SiO{sub 2}.B{sub 2}O{sub 3}]-5[K{sub 2}O]-x[A{sub 2}O{sub 3}], A = La, Fe (x = 2, 5 and 10) were prepared by rapid melt-quench technique and subsequently, converted into glass ceramics by regulated heat treatment process. The phase identification was carried out by X-ray powder diffraction and their surface morphology was studied by scanning electron microscopy. The dielectric properties were studied by impedance spectroscopic technique. Investigated glass samples were crystallized into major and secondary phases of Ba{sub 1.91}Sr{sub 0.09}TiO{sub 4} and Ba{sub 2}TiSi{sub 2}O{sub 8}, respectively. A very high dielectric constant having value upto 68000 was found in glass ceramic sample BST5K10F. This high value of dielectric constant was attributed to interfacial polarization, which arose due to conductivity difference among semiconducting crystalline phases, conducting grains and insulating grain boundaries. Donor dopant La{sub 2}O{sub 3} and acceptor dopant Fe{sub 2}O{sub 3} play an important role for enhancing crystallization, dielectric constant and retardation of dielectric loss in the samples. Moreover, higher value of dielectric constant and lower value of dielectric loss was found in Fe{sub 2}O{sub 3} doped samples in comparison to La{sub 2}O{sub 3} doped samples. - Highlights: • Bulk transparent barium strontium titanate glasses are successfully prepared. • A very high dielectric constant upto 68000 was found in glass ceramics. • La{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} play role for enhancing value of dielectric constant. • Higher dielectric constant with low dielectric loss was found in Fe{sub 2}O{sub 3} doped sample. • Such glass ceramics may be used in making capacitors for high energy storage.

  5. Dielectric inspection of erythrocyte morphology

    International Nuclear Information System (INIS)

    Hayashi, Yoshihito; Oshige, Ikuya; Katsumoto, Yoichi; Omori, Shinji; Yasuda, Akio; Asami, Koji

    2008-01-01

    We performed a systematic study of the sensitivity of dielectric spectroscopy to erythrocyte morphology. Namely, rabbit erythrocytes of four different shapes were prepared by precisely controlling the pH of the suspending medium, and their complex permittivities over the frequency range from 0.1 to 110 MHz were measured and analyzed. Their quantitative analysis shows that the characteristic frequency and the broadening parameter of the dielectric relaxation of interfacial polarization are highly specific to the erythrocyte shape, while they are insensitive to the cell volume fraction. Therefore, these two dielectric parameters can be used to differentiate erythrocytes of different shapes, if dielectric spectroscopy is applied to flow-cytometric inspection of single blood cells. In addition, we revealed the applicability and limitations of the analytical theory of interfacial polarization to explain the experimental permittivities of non-spherical erythrocytes

  6. Dielectric inspection of erythrocyte morphology

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Yoshihito; Oshige, Ikuya; Katsumoto, Yoichi; Omori, Shinji; Yasuda, Akio [Life Science Laboratory, Materials Laboratories, Sony Corporation, Sony Bioinformatics Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510 (Japan); Asami, Koji [Laboratory of Molecular Aggregation Analysis, Division of Multidisciplinary Chemistry, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan)], E-mail: Yoshihito.Hayashi@jp.sony.com

    2008-05-21

    We performed a systematic study of the sensitivity of dielectric spectroscopy to erythrocyte morphology. Namely, rabbit erythrocytes of four different shapes were prepared by precisely controlling the pH of the suspending medium, and their complex permittivities over the frequency range from 0.1 to 110 MHz were measured and analyzed. Their quantitative analysis shows that the characteristic frequency and the broadening parameter of the dielectric relaxation of interfacial polarization are highly specific to the erythrocyte shape, while they are insensitive to the cell volume fraction. Therefore, these two dielectric parameters can be used to differentiate erythrocytes of different shapes, if dielectric spectroscopy is applied to flow-cytometric inspection of single blood cells. In addition, we revealed the applicability and limitations of the analytical theory of interfacial polarization to explain the experimental permittivities of non-spherical erythrocytes.

  7. Behavior of pentacene initial nucleation on various dielectrics and its effect on carrier transport in organic field-effect transistor.

    Science.gov (United States)

    Qi, Qiong; Yu, Aifang; Wang, Liangmin; Jiang, Chao

    2010-11-01

    The influence of dielectric surface energy on the initial nucleation and the growth of pentacene films as well as the electrical properties of the pentacene-based field-effect transistors are investigated. We have examined a range of organic and inorganic dielectrics with different surface energies, such as polycarbonate/SiO2, polystyrene/SiO2, and PMMA/SiO2 bi-layered dielectrics and also the bare SiO2 dielectric. Atomic force microscopy measurements of sub-monolayer and thick pentacene films indicated that the growth of pentacene film was in Stranski-Kranstanow growth mode on all the dielectrics. However, the initial nucleation density and the size of the first-layered pentacene islands deposited on different dielectrics are drastically influenced by the dielectric surface energy. With the increasing of the surface energy, the nucleation density increased and thus the average size of pentacene islands for the first mono-layer deposition decreased. The performance of fabricated pentacene-based thin film transistors was found to be highly related to nucleation density and the island size of deposited Pentacene film, and it had no relationship to the final particle size of the thick pentacene film. The field effect mobility of the thin film transistor could be achieved as high as 1.38 cm2Ns with on/off ratio over 3 x 10(7) on the PS/SiO2 where the lowest surface energy existed among all the dielectrics. For comparison, the values of mobility and on/off ratio were 0.42 cm2Ns and 1 x 10(6) for thin film transistor deposited directly on bare SiO2 having the highest surface energy.

  8. Dielectric nanoresonators for light manipulation

    Science.gov (United States)

    Yang, Zhong-Jian; Jiang, Ruibin; Zhuo, Xiaolu; Xie, Ya-Ming; Wang, Jianfang; Lin, Hai-Qing

    2017-07-01

    Nanostructures made of dielectric materials with high or moderate refractive indexes can support strong electric and magnetic resonances in the optical region. They can therefore function as nanoresonators. In addition to plasmonic metal nanostructures that have been widely investigated, dielectric nanoresonators provide a new type of building blocks for realizing powerful and versatile nanoscale light manipulation. In contrast to plasmonic metal nanostructures, nanoresonators made of appropriate dielectric materials are low-cost, earth-abundant and have very small or even negligible light energy losses. As a result, they will find potential applications in a number of photonic devices, especially those that require low energy losses. In this review, we describe the recent progress on the experimental and theoretical studies of dielectric nanoresonators. We start from the basic theory of the electromagnetic responses of dielectric nanoresonators and their fabrication methods. The optical properties of individual dielectric nanoresonators are then elaborated, followed by the coupling behaviors between dielectric nanoresonators, between dielectric nanoresonators and substrates, and between dielectric nanoresonators and plasmonic metal nanostructures. The applications of dielectric nanoresonators are further described. Finally, the challenges and opportunities in this field are discussed.

  9. The electrical properties and relaxation behavior of AgNb{sub 1/2}Ta{sub 1/2}O{sub 3} ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, K.Ganga, E-mail: kotagirigangaprasad@gmail.com; Niranjan, Manish K.; Asthana, Saket

    2017-02-01

    Polycrystalline AgNb{sub 1/2}Ta{sub 1/2}O{sub 3} powder was prepared by solid state reaction method. Preliminary x-ray diffractogram analysis of some aspects of crystal structure showed that a single phase compound formed exhibiting a monoclinic system. Impedance spectroscopy showed the presence of both bulk and grain boundary effects in the material. The relaxation behavior was studied by fitting electric modulus with Bergman function confirms us the existence of non-Debye type of relaxation the material. The ac conductivity spectrum obeyed Funke's double power law and fitting in results, the hopping parameters n{sub 1},n{sub 2} were indicating the existence of small and large range polaron hopping in the material. The band gap of the material 3.02 eV measured by using UV visible spectroscopy.

  10. Positron annihilation response and broadband dielectric spectroscopy: salol.

    Science.gov (United States)

    Bartoš, J; Iskrová, M; Köhler, M; Wehn, R; Sauša, O; Lunkenheimer, P; Krištiak, J; Loidl, A

    2011-09-01

    A phenomenological analysis of the ortho-positronium (o-Ps) annihilation from positron annihilation lifetime spectroscopy (PALS) and the dynamics from broadband dielectric spectroscopy (BDS) are reported on a small molecular glass former of intermediate H-bonding and fragility: salol. The dielectric spectra extend over a very broad frequency range of about 2 × 10(-2)-3.5 × 10(11) Hz, providing information on the α-relaxation, the secondary relaxation giving rise to the excess wing, and the shallow high-frequency minimum in the micro- to milli-meter wave range. A number of empirical correlations between the o-Ps lifetime, τ(3)(T), and the various spectral and relaxation features have been observed. Thus, the phenomenological evaluation of the τ(3)(T) dependence of the PALS response of the amorphous sample reveals three characteristic PALS temperatures: T(g)(PALS), T(b1)(L) = 1.15T(g)(PALS) and T(b2)(L) = 1.25T(g)(PALS), which are discussed in relation to similar findings for some typical small molecular vdW- and H-bonded glass formers. A slighter change of the slope at T(b1)(L) appears to be related to the transition from excess wing to the primary α-process-dominated behavior, with the secondary process dominating in the deeply supercooled liquid state below T(b1)(L). The high-temperature plateau effect in the τ (3)(T) plot occurs at T(b2)(L) and agrees with the characteristic Stickel temperature, T(B)(ST), marking a qualitative change of the primary α process, but it does not follow the relation T(b2)(L) application of the two-order parameter (TOP) model to the structural relaxation as represented by the primary α relaxation times from BDS leads to the characteristic TOP temperature, T(m)(c), close to T(b1) from PALS. Within this model the phenomenological interpretation is offered based on changes in the probability of occurrence of solid-like and liquid-like domains to explain the dynamic as well as PALS responses. In summary, all the empirical

  11. A systematic study of the isothermal crystallization of the mono-alcohol n-butanol monitored by dielectric spectroscopy

    DEFF Research Database (Denmark)

    Jensen, Mikkel Hartmann; Hecksher, Tina; Niss, Kristine

    2015-01-01

    Isothermal crystallization of the mono-hydroxyl alcohol n-butanol was studied with dielectric spectroscopy in real time. The crystallization was carried out using two different sample cells at 15 temperatures between 120 K and 134 K. Crystallization is characterized by a decrease of the dielectric...... intensity. In addition, a shift in relaxation times to shorter times was observed during the crystallization process for all studied temperatures. The two different sample environments induced quite different crystallization behaviors, consistent and reproducible over all studied temperatures...... that a microscopic interpretation of crystallization measurements requires multiple probes, sample cells, and protocols....

  12. Relaxation Dynamics of Nanoparticle-Tethered Polymer Chains

    KAUST Repository

    Kim, Sung A; Mangal, Rahul; Archer, Lynden A.

    2015-01-01

    © 2015 American Chemical Society. Relaxation dynamics of nanoparticle-tethered cis-1,4-polyisoprene (PI) are investigated using dielectric spectroscopy and rheometry. A model system composed of polymer chains densely grafted to spherical SiO2

  13. Ac-conductivity and dielectric response of new zinc-phosphate glass/metal composites

    Energy Technology Data Exchange (ETDEWEB)

    Maaroufi, A., E-mail: maaroufi@fsr.ac.ma [University of Mohammed V, Laboratory of Composite Materials, Polymers and Environment, Department of Chemistry, Faculty of Sciences, P.B. 1014, Rabat-Agdal (Morocco); Oabi, O. [University of Mohammed V, Laboratory of Composite Materials, Polymers and Environment, Department of Chemistry, Faculty of Sciences, P.B. 1014, Rabat-Agdal (Morocco); Lucas, B. [XLIM UMR 7252 – Université de Limoges/CNRS, 123 avenue Albert Thomas, 87060 Limoges Cedex (France)

    2016-07-01

    The ac-conductivity and dielectric response of new composites based on zinc-phosphate glass with composition 45 mol%ZnO–55 mol%P{sub 2}O{sub 5}, filled with metallic powder of nickel (ZP/Ni) were investigated by impedance spectroscopy in the frequency range from 100 Hz to 1 MHz at room temperature. A high percolating jump of seven times has been observed in the conductivity behavior from low volume fraction of filler to the higher fractions, indicating an insulator – semiconductor phase transition. The measured conductivity at higher filler volume fraction is about 10{sup −1} S/cm and is frequency independent, while, the obtained conductivity for low filler volume fraction is around 10{sup −8} S/cm and is frequency dependent. Moreover, the elaborated composites are characterized by high dielectric constants in the range of 10{sup 5} for conductive composites at low frequencies (100 Hz). In addition, the distribution of the relaxation processes was also evaluated. The Debye, Cole-Cole, Davidson–Cole and Havriliak–Negami models in electric modulus formalism were used to model the observed relaxation phenomena in ZP/Ni composites. The observed relaxation phenomena are fairly simulated by Davidson–Cole model, and an account of the interpretation of results is given. - Highlights: • Composites of ZnO-P{sub 2}O{sub 5}/metal were investigated by impedance spectroscopy. • Original ac-conductivity behavior was discovered in ZnO-P{sub 2}O{sub 5}/metal composites. • High dielectric constant is measured in ZnO-P{sub 2}O{sub 5}/metal composites. • Dielectric constant as filler function is well interpreted with percolation theory. • Observed relaxation processes are well described using electric modulus formalism.

  14. Role of Dielectric Constant on Ion Transport: Reformulated Arrhenius Equation

    Directory of Open Access Journals (Sweden)

    Shujahadeen B. Aziz

    2016-01-01

    Full Text Available Solid and nanocomposite polymer electrolytes based on chitosan have been prepared by solution cast technique. The XRD results reveal the occurrence of complexation between chitosan (CS and the LiTf salt. The deconvolution of the diffractogram of nanocomposite solid polymer electrolytes demonstrates the increase of amorphous domain with increasing alumina content up to 4 wt.%. Further incorporation of alumina nanoparticles (6 to 10 wt.% Al2O3 results in crystallinity increase (large crystallite size. The morphological (SEM and EDX analysis well supported the XRD results. Similar trends of DC conductivity and dielectric constant with Al2O3 concentration were explained. The TEM images were used to explain the phenomena of space charge and blocking effects. The reformulated Arrhenius equation (σ(ε′,T=σoexp(-Ea/KBε′T was proposed from the smooth exponential behavior of DC conductivity versus dielectric constant at different temperatures. The more linear behavior of DC conductivity versus 1000/(ɛ′×T reveals the crucial role of dielectric constant in Arrhenius equation. The drawbacks of Arrhenius equation can be understood from the less linear behavior of DC conductivity versus 1000/T. The relaxation processes have been interpreted in terms of Argand plots.

  15. Thermal analysis and temperature dependent dielectric responses of Co doped anatase TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Alamgir; Khan, Wasi; Ahammed, Nashiruddin; Naqvi, A. H.; Ahmad, Shabbir

    2015-01-01

    Nanoparticles (NPs) of pure and 5 mol % cobalt doped TiO 2 synthesized through acid modified sol-gel method were characterized to understand their thermal, structural, morphological, and temperature dependent dielectric properties. Thermogravimetric analysis (TGA) has been used for thermal studies and indicates the weight loss in two steps due to the removal of residual organics. X-ray diffraction study was employed to confirm the formation of single anatase phase with tetragonal symmetry for both pure and 5 mol % Co doped TiO 2 NPs. The average crystallite size of both samples was calculated from the Scherrer’s formula and was found in the range from 9-11 nm. TEM micrographs of these NPs reflect their shape and distribution. The dielectric constant (ε′), dielectric loss (tanδ) and ac conductivity (σ ac ) were also studied as a function of temperature at different frequencies. Electrical responses of the synthesized NPs have been analyzed carefully in the framework of relevant models. It is also noticed that the dielectric constant (ε′) of the samples found to decrease with increasing frequency but increases with increasing temperature up to a particular value and then sharply decreases. Temperature variation of dielectric constant exhibits step like escalation and shows relaxation behavior. Study of dielectric properties shows dominant dependence on the grain size as well as Co ion incorporation in TiO 2

  16. Impact of oxygen precursor flow on the forward bias behavior of MOCVD-Al2O3 dielectrics grown on GaN

    Science.gov (United States)

    Chan, Silvia H.; Bisi, Davide; Liu, Xiang; Yeluri, Ramya; Tahhan, Maher; Keller, Stacia; DenBaars, Steven P.; Meneghini, Matteo; Mishra, Umesh K.

    2017-11-01

    This paper investigates the effects of the oxygen precursor flow supplied during metalorganic chemical vapor deposition (MOCVD) of Al2O3 films on the forward bias behavior of Al2O3/GaN metal-oxide-semiconductor capacitors. The low oxygen flow (100 sccm) delivered during the in situ growth of Al2O3 on GaN resulted in films that exhibited a stable capacitance under forward stress, a lower density of stress-generated negative fixed charges, and a higher dielectric breakdown strength compared to Al2O3 films grown under high oxygen flow (480 sccm). The low oxygen grown Al2O3 dielectrics exhibited lower gate current transients in stress/recovery measurements, providing evidence of a reduced density of trap states near the GaN conduction band and an enhanced robustness under accumulated gate stress. This work reveals oxygen flow variance in MOCVD to be a strategy for controlling the dielectric properties and performance.

  17. Relaxation System

    Science.gov (United States)

    1987-01-01

    Environ Corporation's relaxation system is built around a body lounge, a kind of super easy chair that incorporates sensory devices. Computer controlled enclosure provides filtered ionized air to create a feeling of invigoration, enhanced by mood changing aromas. Occupant is also surrounded by multidimensional audio and the lighting is programmed to change colors, patterns, and intensity periodically. These and other sensory stimulators are designed to provide an environment in which the learning process is stimulated, because research has proven that while an individual is in a deep state of relaxation, the mind is more receptive to new information.

  18. Effect of temperature on cyclic deformation behavior and residual stress relaxation of deep rolled under-aged aluminium alloy AA6110

    International Nuclear Information System (INIS)

    Juijerm, P.; Altenberger, I.

    2007-01-01

    Mechanical surface treatment (deep rolling) was performed at room temperature on the under-aged aluminium wrought alloy AA6110 (Al-Mg-Si-Cu). Afterwards, specimens were cyclically deformed at room and elevated temperatures up to 250 deg. C. The cyclic deformation behavior and s/n-curves of deep rolled under-aged AA6110 were investigated by stress-controlled fatigue tests and compared to the as-polished condition as a reference. The stability of residual stresses as well as diffraction peak broadening under high-loading and/or elevated-temperature conditions was investigated by X-ray diffraction methods before and after fatigue tests. Depth profiles of near-surface residual stresses as well as full width at half maximum (FWHM) values before and after fatigue tests at elevated temperatures are presented. Thermal residual stress relaxation of deep rolled under-aged AA6110 was investigated and analyzed by applying a Zener-Wert-Avrami function. Thermomechanical residual stress relaxation was analyzed through thermal residual stress relaxation and depth profiles of residual stresses before and after fatigue tests. Finally, an effective border line for the deep rolling treatment due to instability of near-surface work hardening was found and established in a stress amplitude-temperature diagram

  19. Effect of ZrO2 on the sintering behavior, strength and high-frequency dielectric properties of electrical ceramic porcelain insulator

    Science.gov (United States)

    Singh Mehta, Niraj; Sahu, Praveen Kumar; Ershad, Md; Saxena, Vipul; Pyare, Ram; Ranjan Majhi, Manas

    2018-01-01

    In the present study, the effect of ZrO2 on the sintering, strength and dielectric behavior of electrical ceramic porcelain insulator with substituting alumina content by zirconia (in weight percentage from 0% to 30%) is investigated. The different composition of samples containing different zirconia (ZrO2) contents of 0, 10, 20, and 30 wt% are prepared using the uniaxial pressure technique applying 160 MPa pressure. Further, the prepared samples are also analyzed for sintering temperatures (1350 °C), and effects are observed on mechanical and electric properties of porcelain insulator. Different characterizations such as Dilatometer, x-ray diffraction, scanning electron microscopy and differential thermal analysis/thermo gravimetric analysis were used to evaluate the thermal, phase detection, micro structural and weight loss changes by increasing concentration of ZrO2 on base porcelain composition. At 1350 °C, for the composition having 20 wt% ZrO2 with 10 wt% alumina, the maximum density was observed 2.81 g cm-3 with a porosity of 2.23%. The highest tensile strength of 41 ± 3 MPa is observed for the same sample composition. The minimum value of thermal expansion coefficient is found to be in the range of 10-6 for the sample with 30 wt% ZrO2 content sintered at 1350 °C compared to other prepared samples. Similarly, the highest dielectric value (5.1-4.4) having dielectric loss (0.08-0.12) is achieved for the sample with 30 wt% ZrO2 content sintered at 1350 °C in the frequency range of 4-20 GHz at room temperature. According to the mechanical properties, the composition having 20 wt% ZrO2 on base ceramic porcelain composition has enormous potential to serve as a high strength refractory material. For dielectric properties, the composition having 30 wt% ZrO2 is more suitable for the electrical application.

  20. Binding and relaxation behavior of Coumarin-153 in lecithin-taurocholate mixed micelles: A time resolved fluorescence spectroscopic study

    Science.gov (United States)

    Chakrabarty, Debdeep; Chakraborty, Anjan; Seth, Debabrata; Hazra, Partha; Sarkar, Nilmoni

    2005-09-01

    The microenvironment of the bile salt-lecithin mixed aggregates has been investigated using steady state and picosecond time resolved fluorescence spectroscopy. The steady state spectra show that the polarity of the bile salt is higher compared to lecithin vesicles or the mixed aggregates. We have observed slow solvent relaxation in bile salt micelles and lecithin vesicles. The solvation time is gradually slowed down due to gradual addition of the bile salt in lecithin vesicles. Addition of bile salt leads to the tighter head group packing in lecithin. Thus, mobility of the water molecules becomes slower and consequently the solvation time is also retarded. We have observed bimodal slow rotational relaxation time in all these systems.

  1. Effects of Relaxing Music on Mental Fatigue Induced by a Continuous Performance Task: Behavioral and ERPs Evidence.

    Science.gov (United States)

    Guo, Wei; Ren, Jie; Wang, Biye; Zhu, Qin

    2015-01-01

    The purpose of this study was to investigate whether listening to relaxing music would help reduce mental fatigue and to maintain performance after a continuous performance task. The experiment involved two fatigue evaluation phases carried out before and after a fatigue inducing phase. A 1-hour AX-continuous performance test was used to induce mental fatigue in the fatigue-inducing phase, and participants' subjective evaluation on the mental fatigue, as well as their neurobehavioral performance in a Go/NoGo task, were measured before and after the fatigue-inducing phase. A total of 36 undergraduate students (18-22 years) participated in the study and were randomly assigned to the music group and control group. The music group performed the fatigue-inducing task while listening to relaxing music, and the control group performed the same task without any music. Our results revealed that after the fatigue-inducing phase, (a) the music group demonstrated significantly less mental fatigue than control group, (b) reaction time significantly increased for the control group but not for the music group, (c) larger Go-P3 and NoGo-P3 amplitudes were observed in the music group, although larger NoGo-N2 amplitudes were detected for both groups. These results combined to suggest that listening to relaxing music alleviated the mental fatigue associated with performing an enduring cognitive-motor task.

  2. Two-Dimensional Simulation of Spatial-Temporal Behaviors About Period Doubling Bifurcation in an Atmospheric-Pressure Dielectric Barrier Discharge

    International Nuclear Information System (INIS)

    Zhang Jiao; Wang Yanhui; Wang Dezhen; Zhuang Juan

    2014-01-01

    As a spatially extended dissipated system, atmospheric-pressure dielectric barrier discharges (DBDs) could in principle possess complex nonlinear behaviors. In order to improve the stability and uniformity of atmospheric-pressure dielectric barrier discharges, studies on temporal behaviors and radial structure of discharges with strong nonlinear behaviors under different controlling parameters are much desirable. In this paper, a two-dimensional fluid model is developed to simulate the radial discharge structure of period-doubling bifurcation, chaos, and inverse period-doubling bifurcation in an atmospheric-pressure DBD. The results show that the period-2n (n = 1, 2…) and chaotic discharges exhibit nonuniform discharge structure. In period-2n or chaos, not only the shape of current pulses doesn't remains exactly the same from one cycle to another, but also the radial structures, such as discharge spatial evolution process and the strongest breakdown region, are different in each neighboring discharge event. Current-voltage characteristics of the discharge system are studied for further understanding of the radial structure. (low temperature plasma)

  3. Structural characterization, vibrational spectroscopy accomplished with DFT calculation, thermal and dielectric behaviors in a new organic-inorganic tertrapropylammonium aquapentachlorostannate dihydrate compound

    Energy Technology Data Exchange (ETDEWEB)

    Hajlaoui, Sondes, E-mail: hajlaouisondes@yahoo.fr [Unité de recherche de la matière condensée, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000, Sfax (Tunisia); Chaabane, Iskandar [Unité de recherche de la matière condensée, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000, Sfax (Tunisia); Lhoste, Jérôme; Bulou, Alain [LUNAM Université, Université du Maine, CNRS UMR 6283, Institut des Molécules et Matériaux du Mans (IMMM), Avenue Olivier Messiaen, 72085, Le Mans, Cedex 9 (France); Guidara, Kamel [Unité de recherche de la matière condensée, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000, Sfax (Tunisia)

    2016-09-15

    In this work a novel compound tertrapropylammonium aquapentachlorostannate dihydrate was synthesized and characterized by; single crystal X-ray diffraction, vibrational spectroscopy, differential scanning calorimetric and dielectric measurement. The crystal structure refinement at room temperature reveled that this later belongs to the monoclinic compound with P121/c1 space group with the following unit cell parameters a = 8.2699(3) Å, b = 12.4665(4) Å, c = 22.3341(7) Å and β = 92.94(0)°. The crystal arrangement can be described by stacked organic-inorganic layers in the c direction with two independent water molecules placed between each two layers. The detailed interpretations of the vibrational properties of the studied compound were performed using density functional theory (DFT) with the B3LYP/LanL2DZ basis set, and has enabled us to make the detailed assignments by comparative study of the experimental and calculated Raman and IR spectra. The differential scanning calorimetry (DSC) measurement disclosed two anomalies in the temperature range 356–376 (T{sub 1}) K and at 393 K (T{sub 2}) characterized by the dehydration of the sample and probably a reconstruction of a new structure after T{sub 2} transition. The temperature dependences of dielectric permittivity show a relaxation process around T{sub 2} anomaly indicating the occurrence of the disorder at high temperature. The dependence of the exponent m(T) on temperature, extracted from the straight lines of log(ε″) with log (ω), suggests that the correlated barrier hopping is the appropriate model for the conduction mechanism. - Highlights: • The single-crystal X-ray diffraction has been performed. • The assignments of the vibration modes based on DFT were reported and discussed. • Differential scanning calorimetric reveals the presence of two endothermic peaks. • The electric permittivity was studied using the impedance measurements. • The CBH is the appropriate model for the conduction

  4. Super Dielectric Materials.

    Science.gov (United States)

    Fromille, Samuel; Phillips, Jonathan

    2014-12-22

    Evidence is provided here that a class of materials with dielectric constants greater than 10⁵ at low frequency (dielectric materials (SDM), can be generated readily from common, inexpensive materials. Specifically it is demonstrated that high surface area alumina powders, loaded to the incipient wetness point with a solution of boric acid dissolved in water, have dielectric constants, near 0 Hz, greater than 4 × 10⁸ in all cases, a remarkable increase over the best dielectric constants previously measured for energy storage capabilities, ca. 1 × 10⁴. It is postulated that any porous, electrically insulating material (e.g., high surface area powders of silica, titania, etc. ), filled with a liquid containing a high concentration of ionic species will potentially be an SDM. Capacitors created with the first generated SDM dielectrics (alumina with boric acid solution), herein called New Paradigm Super (NPS) capacitors display typical electrostatic capacitive behavior, such as increasing capacitance with decreasing thickness, and can be cycled, but are limited to a maximum effective operating voltage of about 0.8 V. A simple theory is presented: Water containing relatively high concentrations of dissolved ions saturates all, or virtually all, the pores (average diameter 500 Å) of the alumina. In an applied field the positive ionic species migrate to the cathode end, and the negative ions to the anode end of each drop. This creates giant dipoles with high charge, hence leading to high dielectric constant behavior. At about 0.8 V, water begins to break down, creating enough ionic species to "short" the individual water droplets. Potentially NPS capacitor stacks can surpass "supercapacitors" in volumetric energy density.

  5. Super Dielectric Materials

    Directory of Open Access Journals (Sweden)

    Samuel Fromille

    2014-12-01

    Full Text Available Evidence is provided here that a class of materials with dielectric constants greater than 105 at low frequency (<10−2 Hz, herein called super dielectric materials (SDM, can be generated readily from common, inexpensive materials. Specifically it is demonstrated that high surface area alumina powders, loaded to the incipient wetness point with a solution of boric acid dissolved in water, have dielectric constants, near 0 Hz, greater than 4 × 108 in all cases, a remarkable increase over the best dielectric constants previously measured for energy storage capabilities, ca. 1 × 104. It is postulated that any porous, electrically insulating material (e.g., high surface area powders of silica, titania, etc., filled with a liquid containing a high concentration of ionic species will potentially be an SDM. Capacitors created with the first generated SDM dielectrics (alumina with boric acid solution, herein called New Paradigm Super (NPS capacitors display typical electrostatic capacitive behavior, such as increasing capacitance with decreasing thickness, and can be cycled, but are limited to a maximum effective operating voltage of about 0.8 V. A simple theory is presented: Water containing relatively high concentrations of dissolved ions saturates all, or virtually all, the pores (average diameter 500 Å of the alumina. In an applied field the positive ionic species migrate to the cathode end, and the negative ions to the anode end of each drop. This creates giant dipoles with high charge, hence leading to high dielectric constant behavior. At about 0.8 V, water begins to break down, creating enough ionic species to “short” the individual water droplets. Potentially NPS capacitor stacks can surpass “supercapacitors” in volumetric energy density.

  6. Origin of colossal dielectric permittivity of rutile Ti₀.₉In₀.₀₅Nb₀.₀₅O₂: single crystal and polycrystalline.

    Science.gov (United States)

    Song, Yongli; Wang, Xianjie; Sui, Yu; Liu, Ziyi; Zhang, Yu; Zhan, Hongsheng; Song, Bingqian; Liu, Zhiguo; Lv, Zhe; Tao, Lei; Tang, Jinke

    2016-02-12

    In this paper, we investigated the dielectric properties of (In + Nb) co-doped rutile TiO2 single crystal and polycrystalline ceramics. Both of them showed colossal, up to 10(4), dielectric permittivity at room temperature. The single crystal sample showed one dielectric relaxation process with a large dielectric loss. The voltage-dependence of dielectric permittivity and the impedance spectrum suggest that the high dielectric permittivity of single crystal originated from the surface barrier layer capacitor (SBLC). The impedance spectroscopy at different temperature confirmed that the (In + Nb) co-doped rutile TiO2 polycrystalline ceramic had semiconductor grains and insulating grain boundaries, and that the activation energies were calculated to be 0.052 eV and 0.35 eV for grain and grain boundary, respectively. The dielectric behavior and impedance spectrum of the polycrystalline ceramic sample indicated that the internal barrier layer capacitor (IBLC) mode made a major contribution to the high ceramic dielectric permittivity, instead of the electron-pinned defect-dipoles.

  7. Relaxation Dynamics of Nanoparticle-Tethered Polymer Chains

    KAUST Repository

    Kim, Sung A

    2015-09-08

    © 2015 American Chemical Society. Relaxation dynamics of nanoparticle-tethered cis-1,4-polyisoprene (PI) are investigated using dielectric spectroscopy and rheometry. A model system composed of polymer chains densely grafted to spherical SiO2 nanoparticles to form self-suspended suspensions facilitates detailed studies of slow global chain and fast segmental mode dynamics under surface and geometrical confinement-from experiments performed in bulk materials. We report that unentangled polymer molecules tethered to nanoparticles relax far more slowly than their tethered entangled counterparts. Specifically, at fixed grafting density we find, counterintuitively, that increasing the tethered polymer molecular weight up to values close to the entanglement molecular weight speeds up chain relaxation dynamics. Decreasing the polymer grafting density for a fixed molecular weight has the opposite effect: it dramatically slows down chain relaxation, increases interchain coupling, and leads to a transition in rheological response from simple fluid behavior to viscoelastic fluid behavior for tethered PI chains that are unentangled by conventional measures. Increasing the measurement temperature produces an even stronger elastic response and speeds up molecular relaxation at a rate that decreases with grafting density and molecular weight. These observations are discussed in terms of chain confinement driven by crowding between particles and by the existence of an entropic attractive force produced by the space-filling constraint on individual chains in a self-suspended material. Our results indicate that the entropic force between densely grafted polymer molecules couples motions of individual chains in an analogous manner to reversible cross-links in associating polymers.

  8. Nuclear spin dominated relaxation of atomic tunneling systems in glasses

    Energy Technology Data Exchange (ETDEWEB)

    Luck, Annina

    2016-11-16

    The measurements performed in this thesis have revealed a non phononic relaxation channel for atomic tunneling systems in glasses at very low temperatures due to the presence of nuclear electric quadrupoles. Dielectric measurements on the multicomponent glasses N-KZFS11 and HY-1, containing {sup 181}Ta and {sup 165}Ho, respectively, that both carry very large nuclear electric quadrupole moments, show a relaxation rate in the kilohertz range, that is constant for temperatures exceeding the nuclear quadrupole splitting of the relevant isotopes. The results are compared to measurements performed on the glasses Herasil and N-BK7 that both contain no large nuclear quadrupole moments. Using three different setups to measure the complex dielectric function, the measurements cover almost eight orders of magnitude in frequency from 60 Hz to 1 GHz and temperatures down to 7.5 mK. This has allowed us a detailed study of the novel effects observed within this thesis and has led to a simplified model explaining the effects of nuclear electric quadrupoles on the behavior of glasses at low temperatures. Numeric calculations based on this model are compared to the measured data.

  9. Mechanical, relaxation behavior and thermal degradation of UV irradiated poly(vinyl acetate)/poly( methyl methacrylate) blends

    International Nuclear Information System (INIS)

    Mansour, S.A.; Hafez, M.; Hussien, K.A.

    2005-01-01

    The effect of different doses of UV- irradiation on the mechanical and relaxation properties of poly(vinyl acetate)/poly(methyl methacrylate) blends were studied. Films of PVAc/PMMA blend with different contents were prepared using the casting technique. Also, PMMA could be blended with PVAc to improve its impact strength. Moreover UV-irradiation causes degradation of PVAc and formation of ketonic and aldehyde carbonyl groups according to a suggested scheme. Irradiation of PvAc/ PMMA blends causes a higher degree of degradation as compared to the PVAc alone although the PMMA is more susceptible than PVAc to the influence of radiation. Recognizable differences are observed for all parameters between the unirradiated and irradiated samples. Existence of a relaxation mechanism within the first 200s is reported. The shear modulus for all samples is also obtained and discussed. These data are used to calculate the strain energy density using the equation proposed by Blatzetal(1974 trans. Soc.Rheol. 18 145-61), based on the n-measure of Sethe

  10. Interfacial nucleation behavior of inkjet-printed 6,13 bis(tri-isopropylsilylethynyl) pentacene on dielectric surfaces

    International Nuclear Information System (INIS)

    Wang, Xianghua; Lv, Shenchen; Chen, Mengjie; Qiu, Longzhen; Zhang, Guobing; Lu, Hongbo; Yuan, Miao; Qin, Mengzhi

    2015-01-01

    The performance of organic thin film transistors (OTFTs) is heavily dependent on the interface property between the organic semiconductor and the dielectric substrate. Device fabrication with bottom-gate architecture by depositing the semiconductors with a solution method is highly recommended for cost-effectiveness. Surface modification of the dielectric layer is employed as an effective approach to control film growth. Here, we perform surface modification via a self-assembled monolayer of silanes, a spin-coated polymer layer or UV-ozone cleaning, to prepare surfaces with different surface polarities and morphologies. The semiconductor is inkjet-printed on the surface-treated substrates as single-line films with overlapping drop assignment. Surface morphologies of the dielectric before film deposition and film morphologies of the inkjet-printed semiconductor are characterized with polarized microscopy and AFM. Electrical properties of the films are studied through organic thin-film transistors with bottom-gate/bottom-contact structure. With reduced surface polarity and nanoscale aggregation of silane molecules on the substrates, semiconductor nucleates from the interior interface between the ink solution and the substrate, which contributes to film growth with higher crystal coverage and better film quality at the interface. Surface treatment with hydrophobic silanes is a promising approach to fabrication of high performance OTFTs with nonpolar conjugated molecules via solution methods

  11. Interfacial nucleation behavior of inkjet-printed 6,13 bis(tri-isopropylsilylethynyl) pentacene on dielectric surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianghua, E-mail: xhwang@hfut.edu.cn; Lv, Shenchen; Chen, Mengjie; Qiu, Longzhen, E-mail: lzhqiu@hfut.edu.cn; Zhang, Guobing; Lu, Hongbo [Key Lab of Special Display Technology, Ministry of Education, National Engineering Lab of Special Display Technology, National Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009 (China); Yuan, Miao; Qin, Mengzhi [Key Lab of Special Display Technology, Ministry of Education, National Engineering Lab of Special Display Technology, National Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009 (China); School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009 (China)

    2015-01-14

    The performance of organic thin film transistors (OTFTs) is heavily dependent on the interface property between the organic semiconductor and the dielectric substrate. Device fabrication with bottom-gate architecture by depositing the semiconductors with a solution method is highly recommended for cost-effectiveness. Surface modification of the dielectric layer is employed as an effective approach to control film growth. Here, we perform surface modification via a self-assembled monolayer of silanes, a spin-coated polymer layer or UV-ozone cleaning, to prepare surfaces with different surface polarities and morphologies. The semiconductor is inkjet-printed on the surface-treated substrates as single-line films with overlapping drop assignment. Surface morphologies of the dielectric before film deposition and film morphologies of the inkjet-printed semiconductor are characterized with polarized microscopy and AFM. Electrical properties of the films are studied through organic thin-film transistors with bottom-gate/bottom-contact structure. With reduced surface polarity and nanoscale aggregation of silane molecules on the substrates, semiconductor nucleates from the interior interface between the ink solution and the substrate, which contributes to film growth with higher crystal coverage and better film quality at the interface. Surface treatment with hydrophobic silanes is a promising approach to fabrication of high performance OTFTs with nonpolar conjugated molecules via solution methods.

  12. The Efficacy of Rational-Emotive-Behavioral versus Relaxation Group Therapies in Treatment of Aggression of Offspring of Veterans with Post Traumatic Stress Disorder

    Directory of Open Access Journals (Sweden)

    M Barekatain

    2006-01-01

    Full Text Available Background: Post traumatic stress disorder (PTSD in war veterans has been linked with symptoms in their children, including symptoms resembling those of the traumatized parents, especially aggression. This study aims to examine the effectiveness of cognitive-behavioral group therapy in reducing aggressive behaviors of male adolescents whose fathers have war related PTSD. Method: 36 male children (aged 11 19 years whose fathers had PTSD, were randomly assigned into three groups for Rational-Emotive- Behavioral Therapy (REBT, Relaxation Therapy, and Wait-List control group. Each method had a course of ten therapeutic group sessions of 60 minutes once a week. Rates of aggression were assessed by Aggression Questionnaire (AGQ at baseline, end of intervention, and two months later. Results: The difference between AGQ scores of three groups was statistically significant. The behaviors of the three groups were not homogenous across the time (group × time interaction and showed a statistically significant difference. Conclusion: This study revealed that the intervention groups were superior to control group in reduction of aggressive behaviors in male adolescents of war veterans with PTSD. Further studies with greater sample size, prolonged duration of follow up, and multiple assessment procedures may be needed for better conclusions. Key words: Aggression, offspring, PTSD, Group Therapy

  13. Relaxation dynamics following transition of solvated electrons

    International Nuclear Information System (INIS)

    Barnett, R.B.; Landman, U.; Nitzan, A.

    1989-01-01

    Relaxation dynamics following an electronic transition of an excess solvated electron in clusters and in bulk water is studied using an adiabatic simulation method. In this method the solvent evolves classically and the electron is constrained to a specified state. The coupling between the solvent and the excess electron is evaluated via the quantum expectation value of the electron--water molecule interaction potential. The relaxation following excitation (or deexcitation) is characterized by two time scales: (i) a very fast (/similar to/20--30 fs) one associated with molecular rotations in the first solvation shell about the electron, and (ii) a slower stage (/similar to/200 fs), which is of the order of the longitudinal dielectric relaxation time. The fast relaxation stage exhibits an isotope effect. The spectroscopical consequences of the relaxation dynamics are discussed

  14. Dielectric studies of molecular motions in glassy and liquid nicotine

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, K [Institute of Physics, Silesian University, ulica Uniwersytecka 4, 40-007 Katowice (Poland); Paluch, M [Institute of Physics, Silesian University, ulica Uniwersytecka 4, 40-007 Katowice (Poland); Ziolo, J [Institute of Physics, Silesian University, ulica Uniwersytecka 4, 40-007 Katowice (Poland); Ngai, K L [Naval Research Laboratory, Washington DC 20375-5320 (United States)

    2006-06-21

    The dielectric permittivity and loss spectra of glassy and liquid states of nicotine have been measured over the frequency range 10{sup -2}-10{sup 9} Hz. The relaxation spectra are similar to common small molecular glass-forming substances, showing the structural {alpha}-relaxation and its precursor, the Johari-Goldstein {beta}-relaxation. The {alpha}-relaxation is well described by the Fourier transform of the Kohlrausch-Williams-Watts stretched exponential function with an approximately constant stretch exponent that is equal to 0.70 as the glass transition temperature is approached. The dielectric {alpha}-relaxation time measured over 11 orders of magnitude cannot be described by a single Vogel-Fulcher-Tamman-Hesse equation. The most probable Johari-Goldstein {beta}-relaxation time determined from the dielectric spectra is in good agreement with the primitive relaxation time of the coupling model calculated from parameters of the structural {alpha}-relaxation. The shape of the dielectric spectra of nicotine is compared with that of other glass-formers having about the same stretch exponent, and they are shown to be nearly isomorphic. The results indicate that the molecular dynamics of nicotine conform to the general pattern found in other glass-formers, and the presence of the universal Johari-Goldstein secondary relaxation, which plays a role in the crystallization of amorphous pharmaceuticals.

  15. Frequency and temperature dependence of dielectric properties of chicken meat

    Science.gov (United States)

    Dielectric properties of chicken breast meat were measured with an open-ended coaxial-line probe between 200 MHz and 20 GHz at temperatures ranging from -20 degree C to +25 degree C. At a given temperature, the frequency dependence of the dielectric constant reveals two relaxations while those of th...

  16. Relaxation effects in oxygen-conducting oxides on base of lanthanum gallate (La, Sr)(Ga, Me)O3, Me = Mg, Fe

    International Nuclear Information System (INIS)

    Glavatskikh, T.Yu.; Venskovskij, N.U.; Kaleva, G.M.; Mosunov, A.V.; Politova, E.D.; Stefanovich, S.Yu.

    2003-01-01

    The dielectric and electric conducting properties of the heterosubstituted perovskite-like solid solutions (La, Sr)(Ga, Me)O 3 , Me Mg, Fe are studied. The increase in the ceramics electric conductivity, conditioned by increase in the ion constituent at strengthening the nonstoichiometry by oxygen and electron constituent by the additional introduction of iron is observed by replacing the part of the lanthanum and gallium cations by strontium, magnesium and iron in the solid solutions on the basis of the lanthanum gallate. The ceramics relaxation behavior is identified; the applicability of the model of the vacational electron transfer for the dipole relaxation is established [ru

  17. Effect of Au{sup 8+} irradiation on Ni/n-GaP Schottky diode: Its influence on interface state density and relaxation time

    Energy Technology Data Exchange (ETDEWEB)

    Shiwakoti, N.; Bobby, A. [Department of Applied Physics, Indian Institute of Technology (ISM) Dhanbad, Jharkhand 826004 (India); Asokan, K. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Antony, Bobby, E-mail: bka.ism@gmail.com [Department of Applied Physics, Indian Institute of Technology (ISM) Dhanbad, Jharkhand 826004 (India)

    2017-01-01

    The in-situ capacitance-frequency and conductance-frequency measurements of 100 MeV Au{sup 8+} swift heavy ion irradiated Ni/n-GaP Schottky structure at a constant bias voltage have been carried out in the frequency range 1 kHz–1 MHz at room temperature. The interface states density and the relaxation time of the charge carriers have been calculated from Nicollian and Brews method. Various dielectric parameters such as dielectric constant, dielectric loss, loss tangent, series resistance, ac conductivity, real and imaginary parts of electric modulus have been extracted and analyzed under complex permittivity and complex electric modulus formalisms. The capacitance and conductance characteristics are found to exhibit complex behaviors at lower frequency region (1–20 kHz) for all the samples. The observed peaks and dips at low frequency region are attributed to the relaxation mechanisms of charge carriers and the interface or dipolar polarization at the interface. The dielectric properties are found to be effectively changed by the ion fluence which is attributed to the variation in interface states density and their relaxation time.

  18. Temperature-Dependent Dielectric Properties of Al/Epoxy Nanocomposites

    Science.gov (United States)

    Wang, Zijun; Zhou, Wenying; Sui, Xuezhen; Dong, Lina; Cai, Huiwu; Zuo, Jing; Chen, Qingguo

    2016-06-01

    Broadband dielectric spectroscopy was carried out to study the transition in electrical properties of Al/epoxy nanocomposites over the frequency range of 1-107 Hz and the temperature range of -20°C to 200°C. The dielectric permittivity, dissipation factor, and electrical conductivity of the nanocomposites increased with temperature and showed an abrupt increase around the glass transition temperature ( T g). The results clearly reveal an interesting transition of the electrical properties with increasing temperature: insulator below 70°C, conductor at about 70°C. The behavior of the transition in electrical properties of the nanocomposites was explored at different temperatures. The presence of relaxation peaks in the loss tangent and electric modulus spectra of the nanocomposites confirms that the chain segmental dynamics of the polymer is accompanied by the absorption of energy given to the system. It is suggested that the temperature-dependent transition of the electric properties in the nanocomposite is closely associated with the α-relaxation. The large increase in the dissipation factor and electric conductivity depends on the direct current conduction of thermally activated charge carriers resulting from the epoxy matrix above T g.

  19. Micro-Raman scattering and dielectric investigations of phase transitions behavior in the PbHf0.7Sn0.3O3 single crystal

    Science.gov (United States)

    Jankowska-Sumara, Irena; Ko, Jae-Hyeon; Podgórna, Maria; Oh, Soo Han; Majchrowski, Andrzej

    2017-09-01

    Raman light scattering was used to detect the sequence of transitions in a PbHf1-xSnxO3 (PHS) single crystal with x = 0.30 in a temperature range of 77-873 K. Changes of Raman spectra were observed in the vicinity of structural phase transitions: between the antiferroelectric (AFE1)-antiferroelectric (AFE2)—intermediate—paraelectric phases. Light scattering and dielectric investigations were used to find out the nature and sequence of the phase transition, as well as the large dielectric permittivity values measured at the phase transition, by searching for the soft-phonon-mode behavior. The experimentally recorded spectra were analyzed in terms of the damped-harmonic oscillator model for the phonon bands. It is demonstrated that the structural phase transformations in PHS can be considered as the result of softening of many modes, not only the ferroelectric one. It was also proved that locally broken symmetry effects are present at temperatures far above the Curie temperature and are connected with the softening of two optic modes of different nature.

  20. Thermal analysis and temperature dependent dielectric responses of Co doped anatase TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Alamgir [Department of Physics, Aligarh Muslim University, Aligarh-202002 (India); Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z.H. College of Engineering and Technology, Aligarh Muslim University, Aligarh-202002 (India); Khan, Wasi; Ahammed, Nashiruddin; Naqvi, A. H. [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z.H. College of Engineering and Technology, Aligarh Muslim University, Aligarh-202002 (India); Ahmad, Shabbir [Department of Physics, Aligarh Muslim University, Aligarh-202002 (India)

    2015-05-15

    Nanoparticles (NPs) of pure and 5 mol % cobalt doped TiO{sub 2} synthesized through acid modified sol-gel method were characterized to understand their thermal, structural, morphological, and temperature dependent dielectric properties. Thermogravimetric analysis (TGA) has been used for thermal studies and indicates the weight loss in two steps due to the removal of residual organics. X-ray diffraction study was employed to confirm the formation of single anatase phase with tetragonal symmetry for both pure and 5 mol % Co doped TiO{sub 2} NPs. The average crystallite size of both samples was calculated from the Scherrer’s formula and was found in the range from 9-11 nm. TEM micrographs of these NPs reflect their shape and distribution. The dielectric constant (ε′), dielectric loss (tanδ) and ac conductivity (σ{sub ac}) were also studied as a function of temperature at different frequencies. Electrical responses of the synthesized NPs have been analyzed carefully in the framework of relevant models. It is also noticed that the dielectric constant (ε′) of the samples found to decrease with increasing frequency but increases with increasing temperature up to a particular value and then sharply decreases. Temperature variation of dielectric constant exhibits step like escalation and shows relaxation behavior. Study of dielectric properties shows dominant dependence on the grain size as well as Co ion incorporation in TiO{sub 2}.

  1. Overall conductivity and NCL-type relaxation behavior in nanocrystalline sodium peroxide Na{sub 2}O{sub 2}—Consequences for Na-oxygen batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dunst, Andreas; Sternad, Michael; Wilkening, Martin, E-mail: wilkening@tugraz.at

    2016-09-15

    Highlights: • Na{sub 2}O{sub 2} turned out to be a poor electrical conductor. • Total conductivity of nanocrystalline Na{sub 2}O{sub 2} measured slightly above room temperature is in the order of 10{sup −15} S cm{sup −1}. • Activation energies of micro- and nanocrystalline Na{sub 2}O{sub 2} are in the order of 1 eV. • At low temperatures nearly constant loss behavior showed up pointing to locally restricted electrical relaxation processes. - Abstract: Metal air batteries are considered as promising candidates for room-temperature batteries with high-energy densities. On discharge, atmospheric oxygen is reduced at the positive electrode which, in the ideal case, forms the discharge products in a reversible cell reaction. In Na-O{sub 2} batteries upon discharge either sodium peroxide (Na{sub 2}O{sub 2}) or sodium superoxide (NaO{sub 2}) is reported to be formed. So far, the charge carrier transport remains relatively unexplored but is expected to crucially determine the efficiency of such energy storage systems. Na{sub 2}O{sub 2} is predicted to be an electrical insulator wherein the transport presumably is determined by very slow hopping processes. Understanding the basic fundamental properties of the overall charge carrier transport, including also nanostructured forms of Na{sub 2}O{sub 2}, is key to developing high-energy metal oxygen batteries. The present study answers the question how overall, i.e., total, conductivity changes when going from microcrystalline to nanocrystalline, defect-rich Na{sub 2}O{sub 2}. Nanocrystalline Na{sub 2}O{sub 2} was prepared via a top-down approach, viz by high-energy ball milling. Milling does not only shrink the average crystallite diameter but also introduces a large amount of defects which are anticipated to influence total conductivity. It turned out that even after vigorous mechanical treatment the conductivity of the sample is only increased by ca. one order of magnitude. The activation energy remains almost

  2. Anomalous NMR Relaxation in Cartilage Matrix Components and Native Cartilage: Fractional-Order Models

    Science.gov (United States)

    Magin, Richard L.; Li, Weiguo; Velasco, M. Pilar; Trujillo, Juan; Reiter, David A.; Morgenstern, Ashley; Spencer, Richard G.

    2011-01-01

    We present a fractional-order extension of the Bloch equations to describe anomalous NMR relaxation phenomena (T1 and T2). The model has solutions in the form of Mittag-Leffler and stretched exponential functions that generalize conventional exponential relaxation. Such functions have been shown by others to be useful for describing dielectric and viscoelastic relaxation in complex, heterogeneous materials. Here, we apply these fractional-order T1 and T2 relaxation models to experiments performed at 9.4 and 11.7 Tesla on type I collagen gels, chondroitin sulfate mixtures, and to bovine nasal cartilage (BNC), a largely isotropic and homogeneous form of cartilage. The results show that the fractional-order analysis captures important features of NMR relaxation that are typically described by multi-exponential decay models. We find that the T2 relaxation of BNC can be described in a unique way by a single fractional-order parameter (α), in contrast to the lack of uniqueness of multi-exponential fits in the realistic setting of a finite signal-to-noise ratio. No anomalous behavior of T1 was observed in BNC. In the single-component gels, for T2 measurements, increasing the concentration of the largest components of cartilage matrix, collagen and chondroitin sulfate, results in a decrease in α, reflecting a more restricted aqueous environment. The quality of the curve fits obtained using Mittag-Leffler and stretched exponential functions are in some cases superior to those obtained using mono- and bi-exponential models. In both gels and BNC, α appears to account for microstructural complexity in the setting of an altered distribution of relaxation times. This work suggests the utility of fractional-order models to describe T2 NMR relaxation processes in biological tissues. PMID:21498095

  3. Dielectric spectroscopy of watermelons for quality sensing

    Science.gov (United States)

    Nelson, Stuart O.; Guo, Wen-chuan; Trabelsi, Samir; Kays, Stanley J.

    2007-07-01

    Dielectric properties of four small-sized watermelon cultivars, grown and harvested to provide a range of maturities, were measured with an open-ended coaxial-line probe and an impedance analyser over the frequency range from 10 MHz to 1.8 GHz. Probe measurements were made on the external surface of the melons and also on tissue samples from the edible internal tissue. Moisture content and soluble solids content (SSC) were measured for internal tissue samples, and SSC (sweetness) was used as the quality factor for correlation with the dielectric properties. Individual dielectric constant and loss factor correlations with SSC were low, but a high correlation was obtained between the SSC and permittivity from a complex-plane plot of dielectric constant and loss factor, each divided by SSC. However, SSC prediction from the dielectric properties by this relationship was not as high as expected (coefficient of determination about 0.4). Permittivity data (dielectric constant and loss factor) for the melons are presented graphically to show their relationships with frequency for the four melon cultivars and for external surface and internal tissue measurements. A dielectric relaxation for the external surface measurements, which may be attributable to a combination of bound water, Maxwell-Wagner, molecular cluster or ion-related effects, is also illustrated. Coefficients of determination for complex-plane plots, moisture content and SSC relationship, and penetration depth are also shown graphically. Further studies are needed for determining the practicality of sensing melon quality from their dielectric properties.

  4. Evaluation of the internal structure of articular cartilage in terms of 1H-NMR relaxation behavior

    International Nuclear Information System (INIS)

    Matsuo, Takeshi

    2000-01-01

    The structural characteristics of articular cartilage were analyzed using 1 H-longitudinal (T 1 ) and transverse (T 2 ) relaxation times as measured by fast-inversion-recovery and multi-spin-echo magnetic resonance imaging (MRI). Pairs of cartilage-bone plugs from weight bearing and non-weight bearing regions were dissected from 15 medial femoral condyles and were subjected to NMR measurements with and without static loads (0.15-1.0 MPa). The T 1 of the cartilage with no load showed a maximum value just beneath the articular surface and this value decreased gradually towards the deeper zones. The T 2 of the same cartilage showed a maximum value at, or just beneath, the articular surface, decreased rapidly towards the intermediate zone yet increased again in the deepest zone. The increase of T 2 in the deepest zone was more greatly pronounced in the weight bearing region than in the non-weight bearing region. These layer-dependent differences in the T 1 and T 2 could account for the laminar appearance of the articular cartilage in the MR images. Under static loads, the decrease of T 1 in the transitional zone (from just beneath the articular surface to the intermediate zone) was significant. Because T 1 has a positive correlation with the water content, this decrease in T 1 may signify that the largest water loss occurs in the transitional zone. These findings suggest that the transitional zone might attenuate mechanical stress in the joint, and the expressed water from the cartilage could substantially contribute to the lubrication of the joint. (author)

  5. Dielectric behavior of CaCu3Ti4O12: Poly Vinyl Chloride ceramic polymer composites at different temperature and frequencies

    Directory of Open Access Journals (Sweden)

    Ajay Pratap Singh

    2016-12-01

    Full Text Available In this study, the efforts have been made to obtain relatively high dielectric constant polymer-ceramic composite by incorporating the giant dielectric constant material, calcium copper titanate (CCTO in a PVC polymer matrix. We have prepared composites of CaCu3Ti4O12 (CCTO ceramic and Poly Vinyl Chloride (PVC polymer in various ratios (by volume in addition to pure CCTO. For this, CCTO was prepared by the conventional oxide route (solid-state reaction method. The structural, the microstructural and the dielectric properties of the composites were studied using X-ray diffraction, Scanning Electron Microscope, and impedance analyzer respectively. The study of dielectric constant and dielectric loss of the pure CCTO and the composites reveal that there is good range of dielectric constants and dielectric losses for the studied composites. The pure sample of CCTO exhibits giant dielectric constant at low frequency within the studied temperature range. As frequency increases, dielectric constant drastically decreases and approaching a constant value at 1 MHz. Above the intermediate temperature, the dielectric constant and dielectric loss for pure CCTO is more frequency dependent than its composites.

  6. Broadband dielectric spectroscopy of oxidized porous silicon

    International Nuclear Information System (INIS)

    Axelrod, Ekaterina; Urbach, Benayahu; Sa'ar, Amir; Feldman, Yuri

    2006-01-01

    Dielectric measurements accompanied by infrared absorption and photoluminescence (PL) spectroscopy were used to investigate the electrical and optical properties of oxidized porous silicon (PS). As opposed to non-oxidized PS, only high temperature relaxation processes could be resolved for oxidized PS. Two relaxation processes have been observed. The first process is related to dc-conductivity that dominates at high temperatures and low frequencies. After subtraction of dc-conductivity we could analyse a second high-temperature relaxation process that is related to interface polarization induced by charge carriers trapped at the host matrix-pore interfaces. We found that, while the main effect of the oxidation on the PL appears to be a size reduction in the silicon nanocrystals that gives rise to a blue shift of the PL spectrum, its main contribution to the dielectric properties turns out to be blocking of transport channels in the host tissue and activation of hopping conductivity between silicon nanocrystals

  7. Broadband dielectric spectroscopy of oxidized porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Axelrod, Ekaterina [Department of Applied Physics, Hebrew University of Jerusalem, Jerusalem, 91904 (Israel); Urbach, Benayahu [Racah Institute of Physics and the Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904 (Israel); Sa' ar, Amir [Racah Institute of Physics and the Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904 (Israel); Feldman, Yuri [Department of Applied Physics, Hebrew University of Jerusalem, Jerusalem, 91904 (Israel)

    2006-04-07

    Dielectric measurements accompanied by infrared absorption and photoluminescence (PL) spectroscopy were used to investigate the electrical and optical properties of oxidized porous silicon (PS). As opposed to non-oxidized PS, only high temperature relaxation processes could be resolved for oxidized PS. Two relaxation processes have been observed. The first process is related to dc-conductivity that dominates at high temperatures and low frequencies. After subtraction of dc-conductivity we could analyse a second high-temperature relaxation process that is related to interface polarization induced by charge carriers trapped at the host matrix-pore interfaces. We found that, while the main effect of the oxidation on the PL appears to be a size reduction in the silicon nanocrystals that gives rise to a blue shift of the PL spectrum, its main contribution to the dielectric properties turns out to be blocking of transport channels in the host tissue and activation of hopping conductivity between silicon nanocrystals.

  8. Exploring the Room-Temperature Ferromagnetism and Temperature-Dependent Dielectric Properties of Sr/Ni-Doped LaFeO3 Nanoparticles Synthesized by Reverse Micelle Method

    Science.gov (United States)

    Naseem, Swaleha; Khan, Shakeel; Husain, Shahid; Khan, Wasi

    2018-03-01

    This paper reports the thermal, microstructural, dielectric and magnetic properties of La0.75Sr0.25Fe0.65Ni0.35O3 nanoparticles (NPs) synthesized via reverse micelle technique. The thermogravimetric analysis of as-prepared NPs confirmed a good thermal stability of the sample. Powder x-ray diffraction data analyzed with a Rietveld refinement technique revealed single-phase and orthorhombic distorted perovskite crystal structure of the NPs having Pbnm space group. The transmission electron microscopy images show the crystalline nature and formation of nanostructures with a fairly uniform distribution of particles throughout the sample. Temperature-dependent dielectric properties of the NPs in accordance with the Kramers-Kronig transformation (KKT) model, universal dielectric response model and jump relaxation model have been discussed. Electrode or interface polarization is likely the cause of the observed dielectric behavior. Due to grain boundaries and Schottky barriers of the metallic electrodes of semiconductors, the depletion region is observed, which gives rise to Maxwell-Wagner relaxation and hence high dielectric constants. Magnetic studies revealed the ferromagnetic nature of the prepared NPs upon Sr and Ni doping in LaFeO3 perovskite at room temperature. Therefore, these NPs could be a potential candidate as electrode material in solid oxide fuel cells.

  9. Transport and dielectric properties of double perovskite Pr2CoFeO6

    Science.gov (United States)

    Pal, Arkadeb; Singh, A.; Gangwar, V. K.; Chatterjee, Sandip

    2018-04-01

    The transport and dielectric measurements have been investigated for the polycrystalline double perovskite Pr2CoFeO6. In the temperature dependent resistivity measurement, we have observed semiconducting nature of the sample with activation energy 0.246 eV. In dielectric measurement as a function of temperature, a giant value of dielectric constant is observed at room temperature, the frequency dependence suggests a relaxor type dielectric relaxation.

  10. Impedance spectroscopic and dielectric analysis of Ba0.7Sr0.3TiO3 thin films

    International Nuclear Information System (INIS)

    Rouahi, A.; Kahouli, A.; Sylvestre, A.; Defaÿ, E.; Yangui, B.

    2012-01-01

    Highlights: ► The material exhibits the contribution of both grain and grain boundaries in the electric response of Ba 0.7 Sr 0.3 TiO 3 . ► The plot of normalized complex dielectric modulus and impedance as a function of frequency exhibits both short and long-range conduction in the film. ► The frequency dependence of ac conductivity exhibits a polaron hopping mechanism with activation energy of 0.38 eV. ► The complex dielectric modulus analysis confirmed the presence of a non-Debye type of conductivity relaxation deduced from the KWW function. - Abstract: Polycrystalline Ba 0.7 Sr 0.3 TiO 3 thin film with Pt/BST/Pt/TiO 2 /SiO 2 structure was prepared by ion beam sputtering. The film was post annealed at 700 °C. The dielectric and electric modulus properties were studied by impedance spectroscopy over a wide frequency range [0.1–10 5 Hz] at different temperatures [175–350 °C]. The Nyquist plots (Z″ vs . Z′) show the contribution of both grain and grain boundaries at higher temperature on the electric response of BST thin films. Moreover, the resistance of grains decreases with the rise in temperature and the material exhibits a negative temperature coefficient of resistance. The electric modulus plot indicates the non-Debye type of dielectric relaxation. The values of the activation energy computed from both plots of Z″ and M″ are 0.86 eV and 0.81 eV respectively, which reveals that the species responsible for conduction are the same. The scaling behavior of M ″ /M ″ max shows the temperature independent nature of relaxation time. The plot of normalized complex dielectric modulus and impedance as a function of frequency exhibits both short and long-range conduction in the film.

  11. Study of crystallization kinetics and structural relaxation behavior in phase separated Ag{sub 33}Ge{sub 17}Se{sub 50} glassy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen, E-mail: prafiziks@gmail.com [Semiconductors Laboratory, Department of Physics, GND University, Amritsar 143005 (India); Nanotechnology Research Centre, DAV Institute of Engineering and Technology, Kabir Nagar, Jalandhar 144008 (India); Yannopoulos, S.N. [Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes (FORTH/ICE-HT), P.O. Box 1414, GR-26 504, Rio-Patras (Greece); Sathiaraj, T.S. [Department of Physics, University of Botswana, Gaborone (Botswana); Thangaraj, R., E-mail: rthangaraj@rediffmail.com [Semiconductors Laboratory, Department of Physics, GND University, Amritsar 143005 (India)

    2012-07-16

    We report on the crystallization processes and structure (crystal phases) of Ag{sub 33}Ge{sub 17}Se{sub 50} glassy alloy using differential scanning calorimetry and x-ray diffraction techniques, respectively. The devitrification that gives rise to the first exothermic peak results in the crystallization of Ag{sub 2}Se and Ag{sub 8}GeSe{sub 6} phases, while the growth of GeSe{sub 2} accompanied by the transformation of Ag{sub 8}GeSe{sub 6} to Ag{sub 2}Se phase occurs during the second crystallization process. Different theoretical models are used to elucidate various kinetic parameters for the crystallization transformation process in this phase separated system. With annealing below the glass transition temperature, an inverse behavior between the variation of the optical gap and the band tailing parameter is observed for the thermally evaporated films. These results are explained as the mixing of different clusters/species in the amorphous state and/or changes caused by structural relaxation of the glassy network for the thermally evaporated films. - Highlights: Black-Right-Pointing-Pointer Phase separation in Ag{sub 33}Ge{sub 17}Se{sub 50} glassy alloy bordering two glass forming regions. Black-Right-Pointing-Pointer Transformation of Ag{sub 8}GeSe{sub 6} {yields} Ag{sub 2}Se along with crystallization GeSe{sub 2} phase. Black-Right-Pointing-Pointer Elucidation of various kinetic parameters for the crystalline transformation. Black-Right-Pointing-Pointer Structural relaxation in thermally evaporated films by optical spectroscopy.

  12. Nuclear Spin Lattice Relaxation and Conductivity Studies of the Non-Arrhenius Conductivity Behavior in Lithium Fast Ion Conducting Sulfide Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Benjamin Michael [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    As time progresses, the world is using up more of the planet's natural resources. Without technological advances, the day will eventually arrive when these natural resources will no longer be sufficient to supply all of the energy needs. As a result, society is seeing a push for the development of alternative fuel sources such as wind power, solar power, fuel cells, and etc. These pursuits are even occurring in the state of Iowa with increasing social pressure to incorporate larger percentages of ethanol in gasoline. Consumers are increasingly demanding that energy sources be more powerful, more durable, and, ultimately, more cost efficient. Fast Ionic Conducting (FIC) glasses are a material that offers great potential for the development of new batteries and/or fuel cells to help inspire the energy density of battery power supplies. This dissertation probes the mechanisms by which ions conduct in these glasses. A variety of different experimental techniques give a better understanding of the interesting materials science taking place within these systems. This dissertation discusses Nuclear Magnetic Resonance (NMR) techniques performed on FIC glasses over the past few years. These NMR results have been complimented with other measurement techniques, primarily impedance spectroscopy, to develop models that describe the mechanisms by which ionic conduction takes place and the dependence of the ion dynamics on the local structure of the glass. The aim of these measurements was to probe the cause of a non-Arrhenius behavior of the conductivity which has been seen at high temperatures in the silver thio-borosilicate glasses. One aspect that will be addressed is if this behavior is unique to silver containing fast ion conducting glasses. more specifically, this study will determine if a non-Arrhenius correlation time, τ, can be observed in the Nuclear Spin Lattice Relaxation (NSLR) measurements. If so, then can this behavior be modeled with a new single

  13. Dielectric Properties of Cd1-xZnxSe Thin Film Semiconductors

    International Nuclear Information System (INIS)

    Wahab, L.A.; Farrag, A.A.; Zayed, H.A.

    2012-01-01

    Cd 1-x Zn x Se (x=0, 0.5 and 1) thin films of thickness 300 nm have been deposited on highly cleaned glass substrates (Soda-lime glass) by thermal evaporation technique under pressure 10-5 Torr. The crystal structure, lattice parameters and grain size were determined from X-ray diffraction patterns of these films. The dielectric response and ac conductivity of the films are investigated in the frequency range from 80 Hz to 5 MHz and temperature range from 300 K to 420 K. AC conductivity increases linearly with the frequency according to the power relation σ a c (ψ)=A (ψ) s . The dielectric constant and loss show low values at high frequencies. The relaxation time t, resistance R and capacitance C were calculated from Nyquist diagram. The behavior can be modeled by an equivalent parallel RC circuit.

  14. Structural, electrical conductivity and dielectric behavior of Na2SO4–LDT composite solid electrolyte

    Directory of Open Access Journals (Sweden)

    Mohd Z. Iqbal

    2016-01-01

    Full Text Available A series of composite materials of general molecular formula (1 − x Na2SO4 − (x LDT was prepared by solid state reaction method. The phase structure and functionalization of these materials were defined by X-ray diffraction (XRD and Fourier-transform infrared spectroscopy (FT-IR respectively. Differential thermal analysis (DTA revealed that the hump of phase transition at 250 °C has decreased while its thermal stability was enhanced. Scanning electron microscopy signifies the presence of improved rigid surfaces and interphases that are accountable for the high ionic conduction due to dispersion of LDT particles in the composite systems. Arrhenius plots of the conductance show the maximum conductivity, σ = 4.56 × 10−4 S cm−1 at 500 °C for the x = 0.4 composition with the lowest activation energy 0.34 eV in the temperature range of 573–773 K. The value of dielectric constant was decreased with increasing frequency and follows the usual trend.

  15. Numerical investigation on the dynamics and evolution mechanisms of multiple-current-pulse behavior in homogeneous helium dielectric-barrier discharges at atmospheric pressure

    Directory of Open Access Journals (Sweden)

    Yuhui Zhang

    2018-03-01

    Full Text Available A systematic investigation on the dynamics and evolution mechanisms of multiple-current-pulse (MCP behavior in homogeneous dielectric barrier discharge (HDBD is carried out via fluid modelling. Inspecting the simulation results, two typical discharge regimes, namely the MCP-Townsend regime and MCP-glow regime, are found prevailing in MCP discharges, each with distinctive electrical and dynamic properties. Moreover, the evolution of MCP behavior with external parameters altering are illustrated and explicitly discussed. It is revealed that the discharge undergoes some different stages as external parameters vary, and the discharge in each stage follows a series of distinctive pattern in morphological characteristics and evolution trends. Among those stages, the pulse number per half cycle is perceived to observe non-monotonic variations with applied voltage amplitude (Vam and gap width (dg increasing, and a merging effect among pulses, mainly induced by the enhanced contribution of sinusoidal component to the total current, is considered responsible for such phenomenon. The variation of incipient discharge peak phase (Φpm is dominated by the value of Vam as well as the proportion of total applied voltage that drops across the gas gap. Moreover, an abnormal, dramatic elevation in Jpm with dg increasing is observed, which could be evinced by the strengthened glow discharge structure and therefore enhanced space charge effect.

  16. Dielectric behaviors of Pb1-3x/2LaxTiO3 derived from mechanical activation

    International Nuclear Information System (INIS)

    Soon, H.P.; Xue, J.M.; Wang, J.

    2004-01-01

    To investigate the origin of ultrahigh relative permittivity that has been observed for lanthanum-doped lead titanate, Pb 1-3x/2 La x TiO 3 (PLT-A) with x ranging from 0.10 to 0.25 were synthesized by mechanical activation of constituent oxides. Their sintered density, grain size and relative permittivity demonstrated a steady increase with increasing of La doping. Upon thermal annealing in oxygen, the relative permittivity of Pb 0.70 La 0.2 TiO 3 (PLT-A20) at T c showed an initial rise and a peak at 4h of annealing, and then a steady fall with further increase in annealing time. In contrast, when annealed in nitrogen for 4 h, a significant rise in relative permittivity was observed, although the increase rate falls with prolonged annealing. The observed dependence of relative permittivity and dielectric loss for PLT-A20 on the initial annealing in both oxygen and nitrogen demonstrated the domination of space charge polarization as a result of PbO loss through evaporation from the surface region. While the high activation energy for Pb 2+ and O 2- diffusion through the surface scale slows down the rate of PbO loss through evaporation, excess loss of PbO adversely affect space charge polarization, leading to a fall in relative permittivity of PLT-A20, upon prolonged annealing in oxygen. In addition to PbO loss, prolonged annealing in nitrogen generated oxygen vacancies, which played an important role in affecting the relative permittivity

  17. Broadband dielectric spectroscopy and calorimetric investigations of D-lyxose.

    Science.gov (United States)

    Singh, Lokendra P; Alegría, A; Colmenero, J

    2011-10-18

    Using broadband dielectric spectroscopy, we have studied different types of relaxation processes, namely, primary (α), secondary (β), and another sub-T(g) process called γ-process, in the supercooled state of D-lyxose, over a wide frequency (10(-2)-10(9) Hz) and temperature range (120-340 K). In addition, the same sample was analyzed by differential scanning calorimeter. The temperature dependence of the relaxation times as well as the dielectric strength of different processes has been critically examined. It has been observed that the slower secondary relaxation (designated as β-) process shifts to lower frequencies with increasing applied pressure, but not the faster one. This pressure dependence indicates that the observed slower secondary relaxation (β-) is Johari-Goldstein relaxation process and faster one (γ-process) is probably the rotation of hydroxymethyl (-CH(2)OH) side group attached to the sugar ring, that is, of intramolecular origin. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Study of the structure, dielectric and ferroelectric behavior of BaBi4+δTi4O15 ceramics

    Science.gov (United States)

    Khokhar, Anita; Goyal, Parveen K.; Thakur, O. P.; Sreenivas, K.

    2016-05-01

    The structure and ferroelectric properties of excess bismuth doped barium bismuth titanate BaBi4+δTi4O15 (δ = 2 - 10 wt.%)) ceramics prepared by solid-state reaction method have been investigated. X-ray diffraction (XRD) confirms the formation of a single phase material with a change in the orthorhombic distortion with varying excess of bismuth content. There is no change in the phase transition temperature (Tm) while the relaxor behaviour has been modified significantly with excess of bismuth doping. Saturated hysteresis loops with high remnant polarization (Pr ~ 12.5 µC/cm2), low coercive fields (Ec ~ 26 kV/cm) are measured and a high piezoelectric coefficient (d33 ~ 29 pC/N) is achieved in poled BaBi4Ti4O15 ceramics prepared with up to 8 wt.% of excess bismuth oxide. The improvement in the ferroelectric properties with increase in the excess bismuth content in BaBi4Ti4O15 ceramics has been explained in terms of changing oxygen vacancy concentration and structural relaxation. Tunable ferroelectric materials can be obtained by manipulating the doping amount of excess bismuth.

  19. Functional behavior of the anomalous magnetic relaxation observed in melt-textured YBa{sub 2}Cu{sub 3}O{sub 7-δ} samples showing the paramagnetic Meissner effect

    Energy Technology Data Exchange (ETDEWEB)

    Dias, F.T., E-mail: fabio.dias@ufpel.edu.br [Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, 96010-900, Pelotas, Rio Grande do Sul (Brazil); Vieira, V.N.; Garcia, E.L. [Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, 96010-900, Pelotas, Rio Grande do Sul (Brazil); Wolff-Fabris, F.; Kampert, E. [Dresden High Magnetic Field Laboratory, Helmholtz-Zentrum Dresden-Rossendorf, 01314, Dresden (Germany); Gouvêa, C.P. [National Institute of Metrology, Quality and Technology (Inmetro), Material Metrology Division, 25250-020, Duque de Caxias, Rio de Janeiro (Brazil); Schaf, J. [Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Rio Grande do Sul (Brazil); Obradors, X.; Puig, T. [Institut de Ciència de Materials de Barcelona, CSIC, Universitat Autònoma de Barcelona, 08193, Bellaterra (Spain); Roa, J.J. [Departamento de Ciencia de Materiales e Ingeniería Metalúrgica, Universitat Politècnica de Catalunya, 08028, Barcelona (Spain)

    2016-10-15

    Highlights: • Paramagnetic Meissner effect observed up to 5T in FCC and FCW measurements. • Time effects evidenced by irreversibilities between FCC and FCW measurements. • Strong time effects causing an anomalous paramagnetic relaxation. • Paramagnetic relaxation governed by different flux dynamics in different intervals. • An interpretative analysis to identify the flux dynamics in the relaxation process. - Abstract: We have studied the functional behavior of the field-cooled (FC) magnetic relaxation observed in melt-textured YBa{sub 2}Cu{sub 3}O{sub 7-δ} (Y123) samples with 30 wt% of Y{sub 2}Ba{sub 1}Cu{sub 1}O{sub 5} (Y211) phase, in order to investigate anomalous paramagnetic moments observed during the experiments. FC magnetic relaxation experiments were performed under controlled conditions, such as cooling rate and temperature. Magnetic fields up to 5T were applied parallel to the ab plane and along the c-axis. Our results are associated with the paramagnetic Meissner effect (PME), characterized by positive moments during FC experiments, and related to the magnetic flux compression into the samples. After different attempts our experimental data could be adequately fitted by an exponential decay function with different relaxation times. We discuss our results suggesting the existence of different and preferential flux dynamics governing the anomalous FC paramagnetic relaxation in different time intervals. This work is one of the first attempts to interpret this controversial effect in a simple analysis of the pinning mechanisms and flux dynamics acting during the time evolution of the magnetic moment. However, the results may be useful to develop models to explain this interesting and still misunderstood feature of the paramagnetic Meissner effect.

  20. Structural relaxation in annealed hyperquenched basaltic glasses

    DEFF Research Database (Denmark)

    Guo, Xiaoju; Mauro, John C.; Potuzak, M.

    2012-01-01

    The enthalpy relaxation behavior of hyperquenched (HQ) and annealed hyperquenched (AHQ) basaltic glass is investigated through calorimetric measurements. The results reveal a common onset temperature of the glass transition for all the HQ and AHQ glasses under study, indicating that the primary...... relaxation is activated at the same temperature regardless of the initial departure from equilibrium. The analysis of secondary relaxation at different annealing temperatures provides insights into the enthalpy recovery of HQ glasses....

  1. Effect of an azo dye (DR1) on the dielectric parameters of a nematic liquid crystal system

    International Nuclear Information System (INIS)

    Ozder, S.; Okutan, M.; Koeysal, O.; Goektas, H.; San, S.E.

    2007-01-01

    The dielectric parameters and relaxation properties of azo dye (DR1) doped E7 and pure E7 liquid crystal (LC) have been investigated in a wide frequency range of 10 k-10 MHz through the dielectric spectroscopy method at room temperature. Dielectric anisotropy (Δε) property of the LC changes from the positive type to negative type and dielectric anisotropy values decrease with doping of DR1. The relaxation frequency f r of E7 and E7/DR1 LC was calculated by means of Cole-Cole plots. Influence of bias voltage on the dielectric parameters has also been investigated

  2. Dielectric properties of BaBi4Ti4O15 ceramics produced by cost-effective chemical method

    International Nuclear Information System (INIS)

    Chakrabarti, A.; Bera, J.; Sinha, T.P.

    2009-01-01

    BaBi 4 Ti 4 O 15 , an Aurivillius compound, was synthesized by a cost-effective soft chemical route. The precursor was prepared by precipitating Bi- and Ba-oxalates inside a TiO 2 powder suspension. A phase pure orthorhombic BaBi 4 Ti 4 O 15 was synthesized by heating the precursor powder at 1000 deg. C. The phase formation behavior was investigated using TG-DSC and XRD. Densification behavior of the powder and microstructure development in sintered pellet was examined. Temperature dependent dielectric study of the ceramic has been investigated in the temperature range 300-780 K and frequency range of 1 kHz-1 MHz. The broad dielectric constant peaks at temperature T m was frequency dependent. The dielectric relaxation rate follows the Vogel-Fulcher relation with activation energy=0.2639 eV, relaxation frequency=4.95x10 21 Hz, and freezing temperature=620 K. All these parameters indicate that BaBi 4 Ti 4 O 15 is a relaxor ferroelectric.

  3. Soft mode behavior in cubic and tetragonal BaTiO.sub.3./sub. crystals and ceramics: review on the results of dielectric spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Petzelt, Jan

    2008-01-01

    Roč. 375, č. 1 (2008), s. 156-164 ISSN 0015-0193 Institutional research plan: CEZ:AV0Z10100520 Keywords : barium titanate * dielectric dispersion * soft mode * central mode * dielectric anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.562, year: 2008

  4. In vitro and in vivo aphrodisiac properties of the seed extract from Allium tuberosum on corpus cavernosum smooth muscle relaxation and sexual behavior parameters in male Wistar rats.

    Science.gov (United States)

    Tang, Xingli; Olatunji, Opeyemi J; Zhou, Yifeng; Hou, Xilin

    2017-12-01

    Allium tuberosum is a well-known spice as well as a herb in traditional Chinese medicine, used for increasing libido and treating erectile dysfunction. However, not many studies have been done to evaluate the sexual enhancing properties of A. tuberosum. The aim of this study was to evaluate the aphrodisiac and vasorelaxant properties of A. tuberosum on corpus cavernosum smooth muscle (CCSM) as well as checking the effect on enhancing male rat sexual behavior, libido, potency as well as its spermatogenic properties. The seeds were powdered and sequentially extracted with hexane, ethyl acetate and butanol. Male Wistar rats were administered with graded doses of the n-BuOH extracts (ATB) of A. tuberosum (50, 100, 200 and 400 mg/kg) and Viagra was used as the positive control drug. The extract/drug was administered by gastric probe once daily for 45 days and the sexual behavior was analyzed by exposing the male rats to female rats in the estrus period. ATB relaxed corpus cavernosum smooth muscle (68.9%) at a concentration of 200 μg/ml. The results obtained from the animal studies indicated that ATB significantly increased mount frequency (MF), intromission frequency (IF), ejaculation frequency (EF), ejaculation latency (EL) and markedly reduced post ejaculatory interval (PEI), mount latency (ML), and intromission latency (IL). Furthermore, a remarkable increase in the test for potency was observed as witnessed by marked increase in erections, quick flips, long flips and total reflex. In addition, ATB significantly improved the sperm viability and count as well as increased the concentrations of testosterone, follicle stimulating hormone (FSH), and phosphatases in the treated animals. Thus our results suggest that A. tuberosum could stimulate sexual arousal and enhance sexual execution in male rats, thus providing valuable experimental evidence that A. tuberosum possesses sexual enhancing properties.

  5. Component dynamics in polymer blends a combined QENS and dielectric spectroscopy investigation

    CERN Document Server

    Hofmann, S; Arbe, A; Colmenero, J; Faragó, B

    2002-01-01

    The individual dynamics of the two constituents of a binary polymer blend was studied by means of quasielastic neutron scattering and dielectric spectroscopy (DS). The combination of neutron spin-echo and backscattering techniques allowed us to cover the complete crossover from entropy-driven chain dynamics on mesoscopic scales to the alpha relaxation on local length scales. The observed blending effects on the respective relaxation times suggest a purely dynamic origin of the dynamic heterogeneity in polymer blends at temperatures well above the glass-transition temperature without the need to assume local phase separation. In contrast, the results from DS experiments towards much lower temperatures indicate systematic deviations of the segmental dynamics in the blend from its mean-field-like behavior at high temperatures. This additionally increases the dynamic heterogeneity in the segmental dynamics of the two components in the mixture. In the case of the chain dynamics, no similar effect could be observed...

  6. Stochastic and Chaotic Relaxation Oscillations

    NARCIS (Netherlands)

    Grasman, J.; Roerdink, J.B.T.M.

    1988-01-01

    For relaxation oscillators stochastic and chaotic dynamics are investigated. The effect of random perturbations upon the period is computed. For an extended system with additional state variables chaotic behavior can be expected. As an example, the Van der Pol oscillator is changed into a

  7. Effects of thermal and electrical histories on structure and dielectric behaviors of (Li0.5Nd0.52+-modified (Bi0.5Na0.5TiO3-BaTiO3 ceramics

    Directory of Open Access Journals (Sweden)

    Jiwen Xu

    2017-06-01

    Full Text Available The effect of thermal and electrical histories on structure and dielectric behaviors is studied using 0.95(Bi0.5Na0.50.97(Li0.5Nd0.50.03TiO3-0.05BaTiO3 (abbreviated as BNTLN0.03-BT5 ceramic as a selected system. Subtle structure change caused by annealing treatment, and pronounced phase transition and domain switching by electrical poling, are observed to occur, respectively. The dielectric constant and its strong frequency dispersion in unpoled samples decrease evidently by electrical poling due to electric field-induced ordered domain. The high temperature Maxwell-Wagner relaxor behavior vanishes by annealing treatment due to the loss of electrical inhomogeneity with interface charging effects. Piezoelectric properties are improved evidently by annealing treatment at 900 °C, implying a new appropriate method to improve piezoelectric properties.

  8. Effect of multi-walled carbon nanotubes aspect ratio and temperature on the dielectric behavior of alternating alkene-carbon monoxide polyketone nanocomposites

    Science.gov (United States)

    Abu-Surrah, Adnan S.; Abdul Jawad, Saadi; Al-Ramahi, Esraa; Hallak, Awni B.; Khattari, Z.

    2015-04-01

    New alternating poly(propylene-alt-carbon monoxide/ethylene-alt-carbon monoxide) (PECO)/multiwalled carbon nanotubes (MWCNTs) composites have been prepared. Dielectric permittivity, electric modulus and ac conductivity of the isolated materials were investigated as a function of fiber aspect ratio, frequency and temperature. For aspect ratio of 30 and 200, a transition from insulator to semiconductor was observed at frequency 1×104. However, for high aspect ratio sample (660), no transition was observed and the conductivity is frequency independent in the measured frequency range of 10-106 Hz. The conductivity increases from about 1×10-4 for the sample that contain fibers of aspect ratio 30 and reaches 5×10-2 (Ω m)-1 for aspect ratio was 660. This behavior can be modeled by a circuit that consists of a contact resistance in series with a parallel combination of resistance (R) and capacitance (C). The calculated activation energy for sample filled with fibers having aspect ratio 30 is about 0.26 eV and decreases to about 0.16 eV when the aspect ratio is 660.

  9. Low temperature magneto-dielectric measurements on BiFeO3 lightly substituted by cobalt

    International Nuclear Information System (INIS)

    Ray, J.; Biswal, A. K.; Vishwakarma, P. N.

    2015-01-01

    Dielectric and magnetodielectric measurements are done on BiFe 1−x Co x O 3 : x = 0, 0.01, and 0.02 in the temperature range 70–300 K and up to magnetic field 1.3 T. The dielectric data are well described by Haverliak–Negami expression plus an additional term for the Maxwell Wagner (MW) type relaxations, whose contribution is dominant near room temperature. The parameters obtained from the fitting of data using the above mentioned expression, suggest slowing down of relaxation and approach towards ideal Debye type relaxations, as the temperature is lowered. The dielectric relaxations obey polaronic variable range hopping model with distinct activation energies (E a ) in the extrinsic (6.67T 3/4  meV) and intrinsic (2.88T 3/4  meV) regions for the parent sample (x = 0), and thus a distinct transition from extrinsic to intrinsic behavior is seen at 215 K while lowering the temperature. This distinct transition is missing for Co substituted samples probably due to the extrinsic region values of E a (3.42T 3/4  meV and 2.42T 3/4  meV for x = 0.01 and 0.02, respectively) comparable to that of the intrinsic region (see x = 0). The magnetodielectric measurement shows positive magnetodielectricity (MD) in the intrinsic region (T < 215 K for x = 0) and negative MD in the extrinsic region (T > 215 K for x = 0). The extrinsic region is found to be dominated by MW and magnetoresistance effects, whereas MD in intrinsic regions is due to the spin reorientation transitions. The Co substitution is found to increase the extrinsic and non-Debye contributions to dielectricity, which becomes so large that no spin reorientation transitions are seen in x = 0.02 sample. The pyroelectric active region in x = 0 is found to be dominated by the diffusive behavior having contribution of the form ω −0.5

  10. High dielectric permittivity and improved mechanical and thermal properties of poly(vinylidene fluoride) composites with low carbon nanotube content: effect of composite processing on phase behavior and dielectric properties.

    Science.gov (United States)

    Kumar, G Sudheer; Vishnupriya, D; Chary, K Suresh; Patro, T Umasankar

    2016-09-23

    The composite processing technique and nanofiller concentration and its functionalization significantly alter the properties of polymer nanocomposites. To realize this, multi-walled carbon nanotubes (CNT) were dispersed in a poly(vinylidene fluoride) (PVDF) matrix at carefully selected CNT concentrations by two illustrious methods, such as solution-cast and melt-mixing. Notwithstanding the processing method, CNTs induced predominantly the γ-phase in PVDF, instead of the commonly obtained β-phase upon nanofiller incorporation, and imparted significant improvements in dielectric properties. Acid-treatment of CNT improved its dispersion and interfacial adhesion significantly with PVDF, and induced a higher γ-phase content and better dielectric properties in PVDF as compared to pristine CNT. Further, the γ-phase content was found to be higher in solution-cast composites than that in melt-mixed counterparts, most likely due to solvent-induced crystallization in a controlled environment and slow solvent evaporation in the former case. However, interestingly, the melt-mixed composites showed a significantly higher dielectric constant at the onset of the CNT networked-structure as compared to the solution-cast composites. This suggests the possible role of CNT breakage during melt-mixing, which might lead to higher space-charge polarization at the polymer-CNT interface, and in turn an increased number of pseudo-microcapacitors in these composites than the solution-cast counterparts. Notably, PVDF with 0.13 vol% (volume fraction, f c  = 0.0013) of acid-treated CNTs, prepared by melt-mixing, displayed the relative permittivity of ∼217 and capacitance of ∼5430 pF, loss tangent of ∼0.4 at 1 kHz and an unprecedented figure of merit of ∼10(5). We suggest a simple hypothesis for the γ-phase formation and evolution of the high dielectric constant in these composites. Further, the high-dielectric composite film showed marked improvements in mechanical and thermal

  11. Dielectric Properties of Flocculated Water-in-Oil Emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Skodvin, T.

    1995-12-31

    When an offshore oil field is near completion, water occupies a large fraction of the available pore volume. Thus, in collecting the oil and gas reserves, one has to deal with a high co-production of either formation- or injected water. This doctoral thesis focuses on the effect of water-in-oil emulsions on the dielectric properties, in particular the effect of flocculation. Various dielectric models are applied to obtain methods for qualitative and quantitative characterization of the flocculated state. Permittivity and measurement of dielectric properties are discussed as a basis for the interpretation of the dielectric properties of the emulsions. Various flocculation models are presented. It is concluded that the dielectric properties of water-in-oil emulsions are strongly influenced by continuously ongoing processes in the system. Because of flocculation and sedimentation the traditional dielectric mixture models cannot satisfactorily predict the dielectric behaviour. The experimentally obtained permittivities for the emulsions can be reproduced by including flocculation in the models and treating the floc aggregates as spheroids or subsystems with dielectric properties given by the degree of flocculation. The models discussed have difficulties reproducing the complete frequency behaviour found experimentally. This is probably because the dielectric relaxation may be influenced by processes not included in the models, such as the effects of dipolar or multipolar interactions between the droplets. For further research it is recommended that rheological and dielectric measurements be combined. 227 refs., 61 figs., 16 tabs.

  12. Experimental Characterization of Dielectric Properties in Fluid Saturated Artificial Shales

    Directory of Open Access Journals (Sweden)

    Roman Beloborodov

    2017-01-01

    Full Text Available High dielectric contrast between water and hydrocarbons provides a useful method for distinguishing between producible layers of reservoir rocks and surrounding media. Dielectric response at high frequencies is related to the moisture content of rocks. Correlations between the dielectric permittivity and specific surface area can be used for the estimation of elastic and geomechanical properties of rocks. Knowledge of dielectric loss-factor and relaxation frequency in shales is critical for the design of techniques for effective hydrocarbon extraction and production from unconventional reservoirs. Although applicability of dielectric measurements is intriguing, the data interpretation is very challenging due to many factors influencing the dielectric response. For instance, dielectric permittivity is determined by mineralogical composition of solid fraction, volumetric content and composition of saturating fluid, rock microstructure and geometrical features of its solid components and pore space, temperature, and pressure. In this experimental study, we investigate the frequency dependent dielectric properties of artificial shale rocks prepared from silt-clay mixtures via mechanical compaction. Samples are prepared with various clay contents and pore fluids of different salinity and cation compositions. Measurements of dielectric properties are conducted in two orientations to investigate the dielectric anisotropy as the samples acquire strongly oriented microstructures during the compaction process.

  13. Dielectric Properties of Flocculated Water-in-Oil Emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Skodvin, T

    1996-12-31

    When an offshore oil field is near completion, water occupies a large fraction of the available pore volume. Thus, in collecting the oil and gas reserves, one has to deal with a high co-production of either formation- or injected water. This doctoral thesis focuses on the effect of water-in-oil emulsions on the dielectric properties, in particular the effect of flocculation. Various dielectric models are applied to obtain methods for qualitative and quantitative characterization of the flocculated state. Permittivity and measurement of dielectric properties are discussed as a basis for the interpretation of the dielectric properties of the emulsions. Various flocculation models are presented. It is concluded that the dielectric properties of water-in-oil emulsions are strongly influenced by continuously ongoing processes in the system. Because of flocculation and sedimentation the traditional dielectric mixture models cannot satisfactorily predict the dielectric behaviour. The experimentally obtained permittivities for the emulsions can be reproduced by including flocculation in the models and treating the floc aggregates as spheroids or subsystems with dielectric properties given by the degree of flocculation. The models discussed have difficulties reproducing the complete frequency behaviour found experimentally. This is probably because the dielectric relaxation may be influenced by processes not included in the models, such as the effects of dipolar or multipolar interactions between the droplets. For further research it is recommended that rheological and dielectric measurements be combined. 227 refs., 61 figs., 16 tabs.

  14. Ultralow frequency bridge for dielectric measurements: applications to electrects

    International Nuclear Information System (INIS)

    Slaets, J.

    1976-01-01

    The problem of U.L.F. (Ultra Low Frequency) dielectric relaxation is investigated. An experimental model is proposed for a bridge covering the range of 10 -3 Hz-10Hz, pased on phase shift measurements originally proposed by Van Turhout and collaborators. The main experimental problems are also analyzed with such U.L.F. measurements and describe its construction and performance. The theoretical correlation between U.L.F. dielectric relaxation and electret thermal stimulated currents is also investigated. A correction for the integral expression given by Turnhout and collaborators, is calculated in particular that takes into account the value of the activation energy in the relation between the two techniques.The correction is important for values of the activation energy below 0,5eV, which occur frequently in dielectric relaxation processes. (Author) [pt

  15. Structural, ac conductivity and dielectric properties of 3-formyl chromone

    Science.gov (United States)

    Ali, H. A. M.

    2017-07-01

    The structure for the powder of 3-formyl chromone was examined by X-ray diffraction technique in the 2θ° range ( 4° - 60° . The configuration of Al/3-formyl chromone/Al samples was designed. The electrical and dielectric properties were studied as a function of frequency (42- 5 × 106 Hz) and temperature (298-408K). The ac conductivity data of bulk of 3-formyl chromone varies as a power law with the frequency at different temperatures. The predominant mechanism for ac conduction was deduced. The ac conductivity shows a thermally activated process at different frequencies. The dielectric constant and dielectric loss were determined using the capacitance and dissipation factor measurements at different temperatures. The dielectric loss shows a peak of relaxation time that shifted to higher frequency with an increase in the temperature. The activation energy of the relaxation process was estimated.

  16. UV response on dielectric properties of nano nematic liquid crystal

    Directory of Open Access Journals (Sweden)

    Kamal Kumar Pandey

    2018-03-01

    Full Text Available In this work, we investigate the effect of UV light irradiation on the dielectric parameters of nematic liquid crystal (5CB and ZnO nanoparticles dispersed liquid crystal. With addition of nanoparticles in nematic LC are promising new materials for a variety of application in energy harvesting, displays and photonics including the liquid crystal laser. To realize many applications, however we optimize the properties of liquid crystal and understand how the UV light irradiation interact the nanoparticles and LC molecules in dispersed/doped LC. The dielectric permittivity and loss factor have discussed the pure nematic LC and dispersed/doped system after, during and before UV light exposure. The dielectric relaxation spectroscopy was carried out in the frequency range 100 Hz–10 MHz in the nematic mesophase range. Keywords: Dielectric permittivity, Relaxation frequency, Nematic liquid crystal, UV light irradiation

  17. Influence of interface point defect on the dielectric properties of Y doped CaCu3Ti4O12 ceramics

    Directory of Open Access Journals (Sweden)

    Jianming Deng

    2016-03-01

    Full Text Available CaCu3Ti4−xYxO12 (0≤x≤0.12 ceramics were fabricated with conventional solid-state reaction method. Phase structure and microstructure of prepared ceramics were characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM, respectively. The impedance and modulus tests both suggested the existence of two different relaxation behavior, which were attributed to bulk and grain boundary response. In addition, the conductivity and dielectric permittivity showed a step-like behavior under 405K. Meanwhile, frequency independence of dc conduction became dominant when above 405K. In CCTO ceramic, rare earth element Y3+ ions as an acceptor were used to substitute Ti sites, decreasing the concentration of oxygen vacancy around grain-electrode and grain boundary. The reason to the reduction of dielectric behavior in low frequencies range was associated with the Y doping in CCTO ceramic.

  18. PREFACE: Dielectrics 2009: Measurement Analysis and Applications

    Science.gov (United States)

    Vaughan, Alun; Williams, Graham

    2009-07-01

    The conference Dielectrics 2009: Measurements, Analysis and Applications represents a significant milestone in the evolution of dielectrics research in the UK. It is reasonable to state that the academic study of dielectrics has led to many fundamental advances and that dielectric materials underpin the modern world in devices ranging from field effect transistors, which operate at extremely high fields, albeit low voltages, to the high voltage plants that provide the energy that powers our economy. The origins of the Dielectrics Group of the Institute of Physics (IOP), which organized this conference, can be traced directly back to the early 1960s, when Professor Mansel Davies was conducting research into the dielectric relaxation behaviour of polar liquids and solids at The Edward Davies Chemical Laboratories of the University College of Wales, Aberystwyth. He was already well-known internationally for his studies of molecular structure and bonding of small molecules, using infra-red-spectroscopy, and of the physical properties of hydrogen-bonded liquids and solids, using thermodynamic methods. Dielectric spectroscopy was a fairly new area for him and he realized that opportunities for scientists in the UK to gather together and discuss their research in this developing area of physical chemistry/chemical physics were very limited. He conceived the idea of forming a Dielectrics Discussion Group (DDG), which would act as a meeting point and provide a platform for dielectrics research in the UK and beyond and, as a result, a two-day Meeting was convened in the spring of 1968 at Gregynog Hall of the University of Wales, near Newtown, Montgomeryshire. It was organized by Mansel Davies, Alun Price and Graham Williams, all physical chemists from the UCW, Aberystwyth. Fifty scientists attended, being a mix of physical chemists, theoretical chemists, physicists, electrical engineers, polymer and materials scientists, all from the UK, except Dr Brendan Scaife of Trinity

  19. Theoretical study of the elasticity, mechanical behavior, electronic structure, interatomic bonding, and dielectric function of an intergranular glassy film model in prismatic β-Si3N4

    International Nuclear Information System (INIS)

    Ching, W. Y.; Rulis, Paul; Aryal, Sitaram; Ouyang, Lizhi; Misra, Anil

    2010-01-01

    Microstructures such as intergranular glassy films (IGFs) are ubiquitous in many structural ceramics. They control many of the important physical properties of polycrystalline ceramics and can be influenced during processing to modify the performance of devices that contain them. In recent years, there has been intense research, both experimentally and computationally, on the structure and properties of IGFs. Unlike grain boundaries or dislocations with well-defined crystalline planes, the atomic scale structure of IGFs, their fundamental electronic interactions, and their bonding characteristics are far more complicated and not well known. In this paper, we present the results of theoretical simulations using ab initio methods on an IGF model in β-Si 3 N 4 with prismatic crystalline planes. The 907-atom model has a dimension of 14.533 A x 15.225 A x 47.420 A . The IGF layer is perpendicular to the z axis, 16.4 A wide, and contains 72 Si, 32 N, and 124 O atoms. Based on this model, the mechanical and elastic properties, the electronic structure, the interatomic bonding, the localization of defective states, the distribution of electrostatic potential, and the optical dielectric function are evaluated and compared with crystalline β-Si 3 N 4 . We have also performed a theoretical tensile experiment on this model by incrementally extending the structure in the direction perpendicular to the IGF plane until the model fully separated. It is shown that fracture occurs at a strain of 9.42% with a maximum stress of 13.9 GPa. The fractured segments show plastic behavior and the formation of surfacial films on the β-Si 3 N 4 . These results are very different from those of a previously studied basal plane model [J. Chen et al., Phys. Rev. Lett. 95, 256103 (2005)] and add insights to the structure and behavior of IGFs in polycrystalline ceramics. The implications of these results and the need for further investigations are discussed.

  20. Insight into the electrical properties and chain conformation of spherical polyelectrolyte brushes by dielectric spectroscopy

    Science.gov (United States)

    Guo, Xiaoxia; Zhao, Kongshuang

    2017-02-01

    We report here a dielectric study on three kinds of anionic spherical polyelectrolyte brush (SPBs, consisting of a polystyrene (PS) core and three different poly (acrylic acid) chains grafted onto the core) suspensions over a frequency ranging from 40 Hz to 110 MHz. The relaxation behavior of the SPB suspensions shows significant changes in the brush-layer properties when the mass fraction of SPBs and the pH of the suspensions change. Two definite relaxations related to the interfacial polarization are observed around 100 kHz and 10 MHz. A single-layer spherical-shell model is applied to describe the SPB suspensions wherein the suspended SPB is modeled as a spherical-shell composite particle in which an insulated PS sphere is surrounded by a conducting ion-permeable shell (the polyelectrolyte chain layer). We developed the curve-fitting procedure to analyze the dielectric spectrum in order to obtain the dielectric properties of the components of the SPBs, especially the properties of the polyelectrolyte brush. Based on this method and model, the permittivity and conductivity of the brush layer, ζ potential, etc are calculated. The ordered orientation of the water molecules in the layer leads to an additional electrical dipole moment; increasing pH causes the brush layer to swell. In addition, the repulsive force between the SPB particles are evaluated using the brush-layer thickness, which is obtained by fitting dielectric spectra, combined with relative theoretical formulas. Increasing PH values or SPB concentration would improve the stability of the SPBs dispersion.

  1. Curing behavior and reaction kinetics of binder resins for 3D-printing investigated by dielectric analysis (DEA)

    Science.gov (United States)

    Möginger, B.; Kehret, L.; Hausnerova, B.; Steinhaus, J.

    2016-05-01

    3D-Printing is an efficient method in the field of additive manufacturing. In order to optimize the properties of manufactured parts it is essential to adapt the curing behavior of the resin systems with respect to the requirements. Thus, effects of resin composition, e.g. due to different additives such as thickener and curing agents, on the curing behavior have to be known. As the resin transfers from a liquid to a solid glass the time dependent ion viscosity was measured using DEA with flat IDEX sensors. This allows for a sensitive measurement of resin changes as the ion viscosity changes two to four decades. The investigated resin systems are based on the monomers styrene and HEMA. To account for the effects of copolymerization in the calculation of the reaction kinetics it was assumed that the reaction can be considered as a homo-polymerization having a reaction order n≠1. Then the measured ion viscosity curves are fitted with the solution of the reactions kinetics - the time dependent degree of conversion (DC-function) - for times exceeding the initiation phase representing the primary curing. The measured ion viscosity curves can nicely be fitted with the DC-function and the determined fit parameters distinguish distinctly between the investigated resin compositions.

  2. Magnetic and dielectric studies of Fe substituted sillenite phase bismuth cobaltite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ray, J.; Biswal, A.K.; Kuila, S.; Vishwakarma, P.N., E-mail: prakashn@nitrkl.ac.in

    2015-06-05

    Highlights: • The samples prepared under ambient conditions, crystalizes in sillenite phase. • Ferrimagnetic ordering in BCO occurs at 30 K, with no bifurcation in ZFC and FC. • BCFO shows large bifurcation in ZFC and FC data as the sample is cooled down. • Dielectric loss improves by one order when 50% of cobalt is replaced with Fe. • Well distinguished extrinsic and intrinsic contributions in BCO and BCFO are seen. - Abstract: (Bi{sub 13}Co{sub 12})CoO{sub 40} (BCO) and (Bi{sub 13}Co{sub 5.5}Fe{sub 6.5})CoO{sub 40} (BCFO) nanoparticles are prepared by sol–gel auto combustion method. The X-ray diffraction study (XRD) reveals cubic crystal structure with space group I23. Surface scanning via atomic force microscopy shows the particle size decreases from 100 nm to 75 nm on partially substituting Fe at Co site. At room temperature, BCO is paramagnetic and shows signature of magnetic ordering at 30 K, which seems to be competing paramagnetic and antiferromagnetic behavior. No sign of magnetic disorder is seen, though indication of magnetic frustration is seen. Interestingly, the Fe substituted BCFO shows large magnetic disorder (even at room temperature) with strengthening ferromagnetic ordering as the temperature is lowered. The low temperature dielectric and magnetodielectric measurement shows dominance of extrinsic contributions, through-out the temperature range for BCO. For BCFO, the behavior may be divided under two regions viz., intrinsic (<260 K) and extrinsic (>260 K). Relaxation in both the regions is described by Arrhenius behavior with activation energies 0.25 eV and 0.04 eV in the extrinsic and intrinsic regions respectively. Most interestingly, the dielectric loss decreases by one order for Fe substituted sample. The Haverliak–Negami equation is found to better describe the observed relaxation data.

  3. Magnetic and dielectric studies of Fe substituted sillenite phase bismuth cobaltite nanoparticles

    International Nuclear Information System (INIS)

    Ray, J.; Biswal, A.K.; Kuila, S.; Vishwakarma, P.N.

    2015-01-01

    Highlights: • The samples prepared under ambient conditions, crystalizes in sillenite phase. • Ferrimagnetic ordering in BCO occurs at 30 K, with no bifurcation in ZFC and FC. • BCFO shows large bifurcation in ZFC and FC data as the sample is cooled down. • Dielectric loss improves by one order when 50% of cobalt is replaced with Fe. • Well distinguished extrinsic and intrinsic contributions in BCO and BCFO are seen. - Abstract: (Bi 13 Co 12 )CoO 40 (BCO) and (Bi 13 Co 5.5 Fe 6.5 )CoO 40 (BCFO) nanoparticles are prepared by sol–gel auto combustion method. The X-ray diffraction study (XRD) reveals cubic crystal structure with space group I23. Surface scanning via atomic force microscopy shows the particle size decreases from 100 nm to 75 nm on partially substituting Fe at Co site. At room temperature, BCO is paramagnetic and shows signature of magnetic ordering at 30 K, which seems to be competing paramagnetic and antiferromagnetic behavior. No sign of magnetic disorder is seen, though indication of magnetic frustration is seen. Interestingly, the Fe substituted BCFO shows large magnetic disorder (even at room temperature) with strengthening ferromagnetic ordering as the temperature is lowered. The low temperature dielectric and magnetodielectric measurement shows dominance of extrinsic contributions, through-out the temperature range for BCO. For BCFO, the behavior may be divided under two regions viz., intrinsic (<260 K) and extrinsic (>260 K). Relaxation in both the regions is described by Arrhenius behavior with activation energies 0.25 eV and 0.04 eV in the extrinsic and intrinsic regions respectively. Most interestingly, the dielectric loss decreases by one order for Fe substituted sample. The Haverliak–Negami equation is found to better describe the observed relaxation data

  4. Super dielectric capacitor using scaffold dielectric

    OpenAIRE

    Phillips, Jonathan

    2018-01-01

    Patent A capacitor having first and second electrodes and a scaffold dielectric. The scaffold dielectric comprises an insulating material with a plurality of longitudinal channels extending across the dielectric and filled with a liquid comprising cations and anions. The plurality of longitudinal channels are substantially parallel and the liquid within the longitudinal channels generally has an ionic strength of at least 0.1. Capacitance results from the migrations of...

  5. The Exploration and Analysis of the Magnetic Relaxation Behavior in Three Isostructural Cyano-Bridged 3d–4f Linear Heterotrinuclear Compounds

    Directory of Open Access Journals (Sweden)

    Xia Xiong

    2018-03-01

    Full Text Available Three isostructural cyano-bridged 3d–4f linear heterotrinuclear compounds, (H2.5O4{Ln[TM(CN5(CNH0.5]2(HMPA4} (Ln = YIII, TM = [FeIII]LS (1; Ln = DyIII, TM = [FeIII]LS (2; Ln = DyIII, TM = CoIII (3, have been synthesized and characterized by single-crystal X-ray diffraction. Due to the steric effect of the HMPA ligands, the central lanthanide ions in these compounds possess a low coordination number, six-coordinate, exhibiting a coordination geometry of an axially elongated octahedron with a perfect D4h symmetry. Four HMPA ligands situate in the equatorial plane around the central lanthanide ions, and two [TM(CN5(CNH0.5]2.5− entities occupy the apical positions to form a cyano-bridged 3d–4f linear heterotrinuclear structure. The static magnetic analysis of the three compounds indicated a paramagnetic behavior of compounds 1 and 3, and possible small magnetic interactions between the intramolecular DyIII and [FeIII]LS ions in compound 2. Under zero dc field, the ac magnetic measurements on 2 and 3 revealed the in-phase component (χ′ of the ac susceptibility without frequency dependence and silent out-of-phase component (χ″, which was attributed to the QTM effect induced by the coordination geometry of an axially elongated octahedron for the DyIII ion. Even under a 1 kOe applied dc field, the χ″ components of 2 were revealed frequency dependence without peaks above 2 K. And under a 2 kOe and 3 kOe dc field, the χ″ components of 3 exhibited weak frequency dependence below 4 K with the absence of well-shaped peaks, which confirmed the poor single-ion magnetic relaxation behavior of the six-coordinate DyIII ion excluding any influence from the neighboring [FeIII]LS ions as that in the analogue 2.

  6. Research on sintering behavior and microwave dielectric property of (Mg0.95Ca0.05)TiO3 ceramics for cross coupling filter

    Science.gov (United States)

    Luo, Chunya; Ma, Zhichao; Hu, Laisheng; Hu, Mingzhe; Huang, Xiaomin

    2015-12-01

    The microwave dielectric properties of 0.95%MgTiO3-0.05%CaTiO3 (abbreviated as 95MCT hereafter) ceramics have been studied for application in dielectric cross coupling filters. ZnO and Nb2O5 were selected as liquid sintering aids to lower the sintering temperature and enhance the Qf value of 95MCT and simultaneously we varied the mole ratio of ZnO : Nb2O5 to tune the microwave dielectric properties of 95MCT. When the ZnO : Nb2O5 mole ratio was 1.5 and the co-doping content was 0.25 wt.%, the optimal sintering temperature of 95MCT ceramic could be lowered from 1400∘C to 1320∘C and the Qf value could be improved by about 7.7%. The optimal microwave dielectric properties obtained under this condition were Qf = 72730 GHz (6.8 GHz), ɛr = 20.29 and τf = -6.84ppm/∘C, which demonstrated great potential usage in ceramic industry. High values of Qf ceramic were used to design the dielectric cross coupling filter. The dielectric filter measured at 2.35 GHz exhibited a 6.7% bandwidth (insert loss > -3 dB) of center frequency.

  7. Breathing and Relaxation

    Science.gov (United States)

    ... Find a Doctor Relaxation is the absence of tension in muscle groups and a minimum or absence ... Drill Meditation Progressive Muscle Relaxation Minimizing Shortness of Breath Visualization This information has been approved by Shelby ...

  8. A model for the generic alpha relaxation in viscous liquids

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    2005-01-01

    Dielectric measurements on molecular liquids just above the glass transition indicate that alpha relaxation is characterized by a generic high-frequency loss varying as one over square root of frequency, whereas deviations from this come from one or more low-lying beta processes [Olsen et al., Phys...

  9. Beta relaxation of nonpolymeric liquids close to the glass transition

    DEFF Research Database (Denmark)

    Olsen, Niels Boye; Christensen, Tage Emil; Dyre, Jeppe

    2000-01-01

    Dielectric beta relaxation in a pyridine-toluene solution is studied close to the glass transition. Loss peak frequency and maximum loss both exhibit thermal hysteresis. An annealing-state-independent parameter involving loss and loss peak frequency is identified. This parameter has a simple...

  10. Analysis of electron interactions in dielectric gases

    International Nuclear Information System (INIS)

    Olivet, Aurelio; Duque, Daniel; Vega, Lourdes F.

    2007-01-01

    We present and discuss results concerning electron interactions processes of dielectric gases and their relationship with the macroscopic behavior of these gases, in particular, with their dielectric strength. Such analysis is based on calculating energies of reactions for molecular ionization, dissociative ionization, parent negative ion formation, and dissociative electron attachment processes. We hypothesize that the estimation of the required energy for a reduced number of processes that take place in electrically stressed gases could be related to the gas' capability to manage the electron flow during an electrical discharge. All calculations were done with semiempirical quantum chemistry methods, including an initial optimization of molecular geometry and heat of formation of the dielectric gases and all of species that appear during electron interaction reactions. The performance of semiempirical methods Austin model 1 and Parametric model 3 (PM3) was compared for several compounds, PM3 being superior in most cases. Calculations performed for a sample of nine dielectric gases show that electron attachment and detachment processes occur in different energy bands that do not overlap for any value of the dielectric strength. We have also analyzed the relationship between dielectric strength and two physical properties: electron affinity and ionization energy. Calculations performed for 43 dielectric gases show no clear correlation between them, although certain guidelines for the qualitative estimation of dielectric strength can still be assessed

  11. On relaxation mechanism of tangensial losses in soils

    International Nuclear Information System (INIS)

    Babayev, M.P.; Gerayzade, A.P.; Mamedov, N.A.

    2009-01-01

    By experimentally at high-frequency bridge method on dependence of a tangent of a corner of dielectric losses of soil fom humidity and frequency of an electromagnetic field are investigated. In air-dry samples of soils the size of the most probable time of a relaxation and its maximum is established. It is shown that in the field of gravitational humidity, in the soil sample, at a maximum of a tangent of a corner of dielectric losses through conductivity will be veiled, i.e. obviously is not shown. As a result of the received data it is established that in the field of the adsorbed soil moisture the spectrum of time of relaxation is characterized by the wide strip reflecting heterogeneity of its dielectric properties. All this is offered to be used at designing of delkometric hydrometers and measurement of soil humidity

  12. Defects in codoped NiO with gigantic dielectric response

    Science.gov (United States)

    Wu, Ping; Ligatchev, Valeri; Yu, Zhi Gen; Zheng, Jianwei; Sullivan, Michael B.; Zeng, Yingzhi

    2009-06-01

    We combine first-principles, statistical, and phenomenological methods to investigate the electronic and dielectric properties of NiO and clarify the nature of the gigantic dielectric response in codoped NiO. Unlike previous models which are dependent on grain-boundary effects, our model based on small polaron hopping in homogeneous material predicts the dielectric permittivity (104-5) for heavily Li- and MD -codoped NiO (MD=Ti,Al,Si) . Furthermore, we reproduce the experimental trends in dielectric properties as a function of the dopants nature and their concentrations, as well as the reported activation energies for the relaxation in Li- and Ti-codoped NiO (0.308 eV or 0.153 eV depending on the Fermi-level position). In this study, we demonstrate that small polaron hopping on dopant levels is the dominant mechanism for the gigantic dielectric response in these codoped NiO.

  13. Evolution of phase transformation behavior and dielectric temperature stability of BaTiO3–Bi(Zn0.5Zr0.5)O3 ceramics system

    International Nuclear Information System (INIS)

    Wang, Yiliang; Chen, Xiuli; Zhou, Huanfu; Fang, Liang; Liu, Laijun; Zhang, Hui

    2013-01-01

    Highlights: ► (1 − x)BaTiO 3 –xBi(Zn 0.5 Zr 0.5 )O 3 ceramics were synthesized. ► A systematic structural change was observed near x = 0.07 and x = 0.4. ► A change from a normal ferroelectric behavior to diffusive and dispersive relaxor-like characteristic was also observed. ► (1 − x)BT–xBZZ ceramics show good dielectric temperature stability over a wide temperature range. - Abstract: (1 − x)BaTiO 3 –xBi(Zn 0.5 Zr 0.5 )O 3 [(1 − x)BT–xBZZ, 0.01 ⩽ x ⩽ 0.6] ceramics were synthesized by solid-state reaction technique. Based on the X-ray diffraction data analysis, a systematic structure change from the ferroelectric tetragonal phase to pseudocubic phase and the pseudocubic phase to orthorhombic phase was observed near x = 0.07 and x = 0.4 at room temperature, respectively. Dielectric measurements show a dielectric anomaly, over the temperature range from 50 to 200 °C for the compositions with 0.03 ⩽ x ⩽ 0.09. A change from a normal ferroelectric behavior to diffusive and dispersive relaxor-like characteristic was also observed. Moreover, (1 − x)BT–xBZZ ceramics show good dielectric temperature stability over a wide temperature range, which indicates that these ceramics can be applied in the temperature stability devices.

  14. Inertial polarization of dielectrics

    OpenAIRE

    Zavodovsky, A. G.

    2011-01-01

    It was proved that accelerated motion of a linear dielectric causes its polarization. Accelerated translational motion of a dielectric's plate leads to the positive charge of the surface facing the direction of motion. Metal plates of a capacitor were used to register polarized charges on a dielectric's surface. Potential difference between the capacitor plates is proportional to acceleration, when acceleration is constant potential difference grows with the increase of a dielectric's area, o...

  15. Mechanism of nuclear cross-relaxation in magnetically ordered media

    Energy Technology Data Exchange (ETDEWEB)

    Buishvili, L L; Volzhan, E B; Giorgadze, N P [AN Gruzinskoj SSR, Tbilisi. Inst. Fiziki

    1975-09-01

    A mechanism of two-step nuclear relaxation in magnetic ordered dielectrics is proposed. The case is considered where the energy conservation in the cross relaxation (CR) process is ensured by the lattice itself without spin-spin interactions. Expressions have been obtained describing the temperature dependence of the CR rate. For a nonuniform broadened NMR line it has been shown that the spin-lattice relaxation time for a spin packet taken out from the equilibrium may be determined by the CR time owing to the mechanism suggested. When the quantization axes for electron and nuclear spins coincide, the spin-lattice relaxation is due to the three-magnon mechanism. The cross-relaxation stage has been shown to play a significant role in the range of low temperatures (T<10 deg K) and to become negligible with a temperature increase.

  16. Optimal Super Dielectric Material

    Science.gov (United States)

    2015-09-01

    plate capacitor will reduce the net field to an unprecedented extent. This family of materials can form materials with dielectric values orders of... Capacitor -Increase Area (A)............8 b. Multi-layer Ceramic Capacitor -Decrease Thickness (d) .......10 c. Super Dielectric Material-Increase...circuit modeling, from [44], and B) SDM capacitor charge and discharge ...................................................22 Figure 15. Dielectric

  17. Nonlinear dielectric spectroscopy of propylene carbonate derivatives

    Science.gov (United States)

    Casalini, R.; Roland, C. M.

    2018-04-01

    Nonlinear dielectric measurements were carried out on two strongly polar liquids, 4-vinyl-1,3-dioxolan-2-one (VPC) and 4-ethyl-1,3-dioxolan-2-one (EPC), having chemical structures differing from propylene carbonate (PC) only by the presence of a pendant group. Despite their polarity, the compounds are all non-associated, "simple" liquids. From the linear component of the dielectric response, the α relaxation peak breadth was found to be invariant at a fixed value of the relaxation time, τα. From spectra from the nonlinear component, the number of dynamically correlated molecules was determined; it was also constant at fixed τα. Thus, two manifestations of dynamic heterogeneity depend only on the time constant for structural reorientation. More broadly, the cooperativity of molecular motions for non-associated glass-forming materials is connected to (i.e., reciprocally governs) the time scale. The equation of state for the two liquids was also obtained from density measurements made over a broad range of pressures and temperatures. Using these data, it was determined that the relaxation times of both liquids conform to density scaling. The effect of density, relative to thermal effects, on the α relaxation increases going from PC < VPC < EPC.

  18. Dielectric response and electric modulus of Y{sub 2}CrCoO{sub 6} perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Pecovska-Gjorgjevich, M., E-mail: mpecovska@gmail.com; Popeski-Dimovski, R. [Department of Physics, Faculty of Natural Sciences and Mathematics, “Ss. Cyril and Methodius” University, Arhimedova 3, 1000 Skopje, R. Macedonia (Macedonia, The Former Yugoslav Republic of); Dimitrovska-Lazova, S. [Department of Chemistry, Faculty of Natural Sciences and Mathematics, “Ss. Cyril and Methodius” University, Arhimedova 5, 1000 Skopje, R. Macedonia (Macedonia, The Former Yugoslav Republic of); Aleksovska, S. [Department of Chemistry, Faculty of Natural Sciences and Mathematics, “Ss. Cyril and Methodius” University, Arhimedova 5, 1000 Skopje, R. Macedonia (Macedonia, The Former Yugoslav Republic of); Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Bul. “Krste Misirkov” 2, P.O. Box 428, 1000 Skopje, Republic of Macedonia (Macedonia, The Former Yugoslav Republic of)

    2016-03-25

    Y{sub 2}CrCoO{sub 6} perovskite prepared by solution combustion method and sintered at 1073 K has been characterized by dielectric spectroscopy and electric modulus formalism. Temperature and frequency dependent measurements of permitivitty reveal that observed relaxation might be related to the hopping conductivity, i.e. universal dielectric response. The presence of electrode polarization is dominant at low frequencies. The electric modulus dependencies enable us to distinguish and separate the relaxation processes connected to the conduction processes in the material. The presences of both grain and grain boundary effects are established, each dominant in different frequency and temperature range. The conductivity through grain boundaries obeys metalic behavior, while conductivity through grains shows semiconductor behavior. The electrical behavior of this material depends on the differences in (Cr-O) and (Co-O) bond lenghts, Co{sup 3+} being in the low-spin state, resulting in shorter Co-O and thus stronger π bonding e.g. more efficient overlapping of the Co{sup 3+} d-orbitals with oxygen p{sub π} orbitals.

  19. Multiscale approach to mechanical behavior of polymeric nanocomposites: an application of T1.rho.(13C) relaxation experiments at variable spin-locking fields

    Czech Academy of Sciences Publication Activity Database

    Kotek, Jiří; Brus, Jiří

    2014-01-01

    Roč. 59, č. 9 (2014), s. 662-666 ISSN 0032-2725 R&D Projects: GA ČR(CZ) GA13-29009S Institutional support: RVO:61389013 Keywords : polyamide 6 * nanocomposite * T1ρ(13C) relaxation Subject RIV: JI - Composite Materials Impact factor: 0.633, year: 2014

  20. Three Treatments for Reducing the Worry and Emotionality Components of Test Anxiety with Undergraduate and Graduate College Students: Cognitive-Behavioral Hypnosis, Relaxation Therapy, and Supportive Counseling.

    Science.gov (United States)

    Sapp, Marty

    1996-01-01

    Examines the effects of 3 different types of therapy in reducing the worry and emotional components associated with test anxiety among undergraduate (n=45) and graduate (n=45) students. Relaxation therapy was more effective with graduate students, while undergraduates responded more to supportive counseling. (JPS)

  1. Relaxation dynamics and thermophysical properties of vegetable oils using time-domain reflectometry.

    Science.gov (United States)

    Sonkamble, Anil A; Sonsale, Rahul P; Kanshette, Mahesh S; Kabara, Komal B; Wananje, Kunal H; Kumbharkhane, Ashok C; Sarode, Arvind V

    2017-04-01

    Dielectric relaxation studies of vegetable oils are important for insights into their hydrogen bonding and intermolecular dynamics. The dielectric relaxation and thermo physical properties of triglycerides present in some vegetable oils have been measured over the frequency range of 10 MHz to 7 GHz in the temperature region 25 to 10 °C using a time-domain reflectometry approach. The frequency and temperature dependence of dielectric constants and dielectric loss factors were determined for coconut, peanut, soya bean, sunflower, palm, and olive oils. The dielectric permittivity spectra for each of the studied vegetable oils are explained using the Debye model with their complex dielectric permittivity analyzed using the Havriliak-Negami equation. The dielectric parameters static permittivity (ε 0 ), high-frequency limiting static permittivity (ε ∞ ), average relaxation time (τ 0 ), and thermodynamic parameters such as free energy (∆F τ ), enthalpy (∆H τ ), and entropy of activation (∆S τ ) were also measured. Calculation and analysis of these thermodynamic parameters agrees with the determined dielectric parameters, giving insights into the temperature dependence of the molecular dynamics of these systems.

  2. Dielectric properties of Ti{sup 4+} substituted BaFe{sub 12}O{sub 19} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ghoneim, A.I., E-mail: mona_ghoneim@yahoo.com [Physics Department, Faculty of Science, Tanta University, 31527 Tanta (Egypt); Amer, M.A.; Meaz, T.M. [Physics Department, Faculty of Science, Tanta University, 31527 Tanta (Egypt); Attalah, S.S. [Reactor and Neutron Physics Department, Nuclear Research Center, Atomic Energy Authority, Cairo (Egypt)

    2017-02-15

    Series of nanocrystalline BaTi{sub x}Fe{sub 12-(4/3)x}O{sub 19} hexagonal ferrites, 0≤x≤1, was prepared using the chemical co-precipitation method. As-prepared samples were heated at 1200 °C for 20 h and slowly cooled to room temperature (RT). XRD studies proved that the samples have single phase M-type hexagonal nanostructure, where their grain size lies in the range of 42.4 – 61.3 nm. Their dielectric properties were studied against temperature (T) and frequency (F). DC conductivity showed increase against T, whereas AC conductivity showed increase with increasing both T and F. This proved the semiconducting behavior of the samples. Activation energies were found to lie in the range of 0.054–0.169 eV for temperature range of RT ~373 K and of 0.114–0.274 eV for higher temperatures up to 473 K. Variation of the dielectric constant and AC conductivity against F revealed dispersion in all these hexagonal nanostructures, which was assigned to Maxwell–Wagner type of interfacial polarization. Variation of the dielectric loss tangent against F showed a relaxation spectrum for all samples, whereas the dielectric constant and loss tangent showed an increasing trend against T. The relative magnetic permeability μ{sub r} showed an increasing trend with temperature.

  3. Dielectric polarization in random media

    International Nuclear Information System (INIS)

    Ramshaw, J.D.

    1984-01-01

    The theory of dielectric polarization in random media is systematically formulated in terms of response kernels. The primary response kernel K(12) governs the mean dielectric response at the point r 1 to the external electric field at the point r 2 in an infinite system. The inverse of K(12) is denoted by L(12);. it is simpler and more fundamental than K(12) itself. Rigorous expressions are obtained for the effective dielectric constant epsilon( in terms of L(12) and K(12). The latter expression involves the Onsger-Kirkwood function (epsilon(-epsilon 0 (2epsilon(+epsilon 0 )/epsilon 0 epsilon( (where epsilon 0 is an arbitrary reference value), and appears to be new to the random medium context. A wide variety of series representations for epsilon( are generated by means of general perturbation expansions for K(12) and L(12). A discussion is given of certain pitfalls in the theory, most of which are related to the fact that the response kernels are long ranged. It is shown how the dielectric behavior of nonpolar molecular fluids may be treated as a special case of the general theory. The present results for epsilon( apply equally well to other effective phenomenological coefficients of the same generic type, such as thermal and electrical conductivity, magnetic susceptibility, and diffusion coefficients

  4. Lattices of dielectric resonators

    CERN Document Server

    Trubin, Alexander

    2016-01-01

    This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the  expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas  and lattices of d...

  5. Dielectric spectroscopy of polymer nanocomposites based on tetrazol and KNO3

    International Nuclear Information System (INIS)

    Castro, R A; Lushin, E N

    2014-01-01

    For tetrazole polymers by dielectric spectroscopy the existence of three relaxation processes in the temperature range T=273-423 K is revealed, the values of relaxation and structural parameters are determined: activation energy E A and glass transition temperature T g

  6. Temperature dependent transport and dielectric properties of cadmium titanate nanofiber mats

    Directory of Open Access Journals (Sweden)

    Z. Imran

    2013-03-01

    Full Text Available We investigate electrical and dielectric properties of cadmium titanate (CdTiO3 nanofiber mats prepared by electrospinning. The nanofibers were polycrystalline having diameter ∼50 nm-200 nm, average length ∼100 μm and crystallite size ∼25 nm. Alternating current impedance measurements were carried out from 318 K – 498 K. The frequency of ac signal was varied from 2 – 105 Hz. The complex impedance plots revealed two depressed semicircular arcs indicating the bulk and interface contribution to overall electrical behavior of nanofiber mats. The bulk resistance was found to increase with decrease in temperature exhibiting typical semiconductor like behavior. The modulus analysis shows the non-Debye type conductivity relaxation in nanofiber mats. The ac conductivity spectrum obeyed the Jonscher power law. Analysis of frequency dependent ac conductivity revealed presence of the correlated barrier hopping (CBH in nanofiber mats over the entire temperature range.

  7. Propagation properties of dielectric-lined hollow cylindrical metallic waveguides for THz waves

    International Nuclear Information System (INIS)

    Huang Binke; Zhao Chongfeng

    2013-01-01

    For the rigorous analysis of the propagation properties of dielectric-lined hollow cylindrical metallic waveguides operating in the THz range of frequencies, the characteristic equation for propagation constants is derived from the electromagnetic field equations and the boundary conditions of the dielectric-lined waveguides. The propagation constant of the dominant hybrid HE 11 mode can be obtained by solving the characteristic equation with the improved Muller method. The classical relaxation-effect model for the conductivity is adopted to describe the frequency dispersive behavior of normal metals for the metallic waveguide wall. For a 1.8 mm bore diameter silver waveguide with the inner surface coated with a 17 μm-thick layer of polystyrene(PS) film, the transmission losses of HE 11 mode can be reduced to the level below 1 dB/m at 1.5-3.0 THz, and the dispersion is relatively small for HE 11 mode. In addition, with the PS film thickness increasing, the transmission losses of HE 11 mode increase first and then decrease for a 2.2 mm bore diameter silver waveguide at 2.5 THz, and the minimum loss can be achieved by adopting the optimum dielectric layer thickness. (authors)

  8. Isomorph theory prediction for the dielectric loss variation along an isochrone

    DEFF Research Database (Denmark)

    Xiao, Wence; Tofteskov, Jon; Dyre, J. C.

    2015-01-01

    This paper derives a prediction for the variation of the amplitude of the dielectric loss from isomorph theory, and presents an experimental test of the prediction performed by measuring the dielectric relaxation behavior of the van der Waals liquid 5-phenyl-4-ether (5PPE). The liquid is studied...... isomorph-invariant terms, one of which is used in analyzing our data. It is the frequency-dependent term χe(f)ργ − 1, with electric susceptibility χe, density ρ, and density-scaling factor γ. Due to the unique design of our experimental setup, we obtain dielectric loss data where the amplitude...... is reproducible ± 0.1 %. We moreover find that the empty capacitance of the capacitor cell is stable within ± 0.3 % in our measuring range and can be assumed to be constant. Using this we predict for two isomorph states there is C2″(f) = C1″(f)(ρ1/ρ2)γ−1 to scale the imaginary capacitance, where C1...

  9. Dielectric modelling of cell division for budding and fission yeast

    International Nuclear Information System (INIS)

    Asami, Koji; Sekine, Katsuhisa

    2007-01-01

    The frequency dependence of complex permittivity or the dielectric spectrum of a system including a cell in cell division has been simulated by a numerical technique based on the three-dimensional finite difference method. Two different types of cell division characteristic of budding and fission yeast were examined. The yeast cells are both regarded as a body of rotation, and thus have anisotropic polarization, i.e. the effective permittivity of the cell depends on the orientation of the cell to the direction of an applied electric field. In the perpendicular orientation, where the rotational axis of the cell is perpendicular to the electric field direction, the dielectric spectra for both yeast cells included one dielectric relaxation and its intensity depended on the cell volume. In the parallel orientation, on the other hand, two dielectric relaxations appeared with bud growth for budding yeast and with septum formation for fission yeast. The low-frequency relaxation was shifted to a lower frequency region by narrowing the neck between the bud and the mother cell for budding yeast and by increasing the degree of septum formation for fission yeast. After cell separation, the low-frequency relaxation disappeared. The simulations well interpreted the oscillation of the relative permittivity of culture broth found for synchronous cell growth of budding yeast

  10. Mechanical relaxation in glasses

    International Nuclear Information System (INIS)

    Hiki, Y.

    2004-01-01

    The basic properties of glasses and the characteristics of mechanical relaxation in glasses were briefly reviewed, and then our studies concerned were presented. Experimental methods adopted were viscosity, internal friction, ultrasonic attenuation, and Brillouin scattering measurements. The specimens used were several kinds of inorganic, organic, and metallic glasses. The measurements were mainly carried out from the room temperature up to the glass transition temperature, and the relaxation time was determined as a function of temperature. The 'double relaxation' composed of two Arrhenius-type relaxations was observed in many materials. In both relaxations, the 'compensation effect' showing a correlation of the pre-exponential factor and the activation energy was observed. These results were explained by considering the 'complex relaxation' due to cooperative motions of atoms or group of atoms. Values of activation energy near the glass transition determined by the various experimental methods were compared with each other

  11. The color dielectric model of QCD

    International Nuclear Information System (INIS)

    Pirner, H.-J.; Massachusetts Inst. of Tech., Cambridge, MA; Massachusetts Inst. of Tech., Cambridge, MA

    1992-01-01

    This paper demonstrates the emergence of valence gluons and their bound states, the glueballs from perturbative quantum chromodynamics (QCD). We discuss the phenomenological constraints and theoretical method needed to generate effective glueballs actions. We show how color dielectric confinement works naively and in the lattice model of color dielectrics. This lattice model is derived for SU(2) color by a blockspinning Monte Carlo renormalization group procedure. We interpret the resulting long-distance as a strongly interacting lattice string theory where the valence link gluon fields randomize in the color dielectric background which mimics the integrated out high-frequency gluon modes in the vacuum. The fluctuations of the color dielectric fields are related to color neutral glueballs modes. We give the extension of this color dielectric SU(2) theory for general SU(N) with quarks and address the problems associated with combining confinement and chiral symmetry breaking. Finally we prove the efficiency of the effective theory in applications to the heavy quark system, the the baryon, to the nucleon-nucleon interaction, to baryon models and the gluon plasma transition. In all those cases the behavior of the higher energy gluons can be monitored via the color dielectric fields. An increase in the energy density from ''deconfining'' the higher frequency modes inside the flux tube or in thermally excited matter shows up as an increase in the value of the color dielectric field and its associated energy density. (Author)

  12. Interpreting the nonlinear dielectric response of glass-formers in terms of the coupling model

    International Nuclear Information System (INIS)

    Ngai, K. L.

    2015-01-01

    Nonlinear dielectric measurements at high electric fields of glass-forming glycerol and propylene carbonate initially were carried out to elucidate the dynamic heterogeneous nature of the structural α-relaxation. Recently, the measurements were extended to sufficiently high frequencies to investigate the nonlinear dielectric response of faster processes including the so-called excess wing (EW), appearing as a second power law at high frequencies in the loss spectra of many glass formers without a resolved secondary relaxation. While a strong increase of dielectric constant and loss is found in the nonlinear dielectric response of the α-relaxation, there is a lack of significant change in the EW. A surprise to the experimentalists finding it, this difference in the nonlinear dielectric properties between the EW and the α-relaxation is explained in the framework of the coupling model by identifying the EW investigated with the nearly constant loss (NCL) of caged molecules, originating from the anharmonicity of the intermolecular potential. The NCL is terminated at longer times (lower frequencies) by the onset of the primitive relaxation, which is followed sequentially by relaxation processes involving increasing number of molecules until the terminal Kohlrausch α-relaxation is reached. These intermediate faster relaxations, combined to form the so-called Johari-Goldstein (JG) β-relaxation, are spatially and dynamically heterogeneous, and hence exhibit nonlinear dielectric effects, as found in glycerol and propylene carbonate, where the JG β-relaxation is not resolved and in D-sorbitol where it is resolved. Like the linear susceptibility, χ 1 (f), the frequency dispersion of the third-order dielectric susceptibility, χ 3 (f), was found to depend primarily on the α-relaxation time, and independent of temperature T and pressure P. I show this property of the frequency dispersions of χ 1 (f) and χ 3 (f) is the characteristic of the many-body relaxation

  13. Computation of Dielectric Response in Molecular Solids for High Capacitance Organic Dielectrics.

    Science.gov (United States)

    Heitzer, Henry M; Marks, Tobin J; Ratner, Mark A

    2016-09-20

    The dielectric response of a material is central to numerous processes spanning the fields of chemistry, materials science, biology, and physics. Despite this broad importance across these disciplines, describing the dielectric environment of a molecular system at the level of first-principles theory and computation remains a great challenge and is of importance to understand the behavior of existing systems as well as to guide the design and synthetic realization of new ones. Furthermore, with recent advances in molecular electronics, nanotechnology, and molecular biology, it has become necessary to predict the dielectric properties of molecular systems that are often difficult or impossible to measure experimentally. In these scenarios, it is would be highly desirable to be able to determine dielectric response through efficient, accurate, and chemically informative calculations. A good example of where theoretical modeling of dielectric response would be valuable is in the development of high-capacitance organic gate dielectrics for unconventional electronics such as those that could be fabricated by high-throughput printing techniques. Gate dielectrics are fundamental components of all transistor-based logic circuitry, and the combination high dielectric constant and nanoscopic thickness (i.e., high capacitance) is essential to achieving high switching speeds and low power consumption. Molecule-based dielectrics offer the promise of cheap, flexible, and mass producible electronics when used in conjunction with unconventional organic or inorganic semiconducting materials to fabricate organic field effect transistors (OFETs). The molecular dielectrics developed to date typically have limited dielectric response, which results in low capacitances, translating into poor performance of the resulting OFETs. Furthermore, the development of better performing dielectric materials has been hindered by the current highly empirical and labor-intensive pace of synthetic

  14. Temporal variation of dielectric properties of preserved blood

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Yoshihito [Life Science Laboratory, Materials Laboratories, Sony Corporation, Sony Bioinformatics Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510 (Japan); Oshige, Ikuya [Life Science Laboratory, Materials Laboratories, Sony Corporation, Sony Bioinformatics Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510 (Japan); Katsumoto, Yoichi [Life Science Laboratory, Materials Laboratories, Sony Corporation, Sony Bioinformatics Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510 (Japan); Omori, Shinji [Life Science Laboratory, Materials Laboratories, Sony Corporation, Sony Bioinformatics Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510 (Japan); Yasuda, Akio [Life Science Laboratory, Materials Laboratories, Sony Corporation, Sony Bioinformatics Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510 (Japan); Asami, Koji [Laboratory of Molecular Aggregation Analysis, Division of Multidisciplinary Chemistry, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2008-01-07

    Rabbit blood was preserved at 277 K in Alsever's solution for 37 days, and its dielectric permittivity was monitored in a frequency range from 0.05 to 110 MHz throughout the period. The relaxation time and Cole-Cole parameter of the interfacial polarization process for erythrocytes remained nearly constant during the first 20 days and then started to increase and decrease, respectively. On the other hand, the relaxation strength and the cell volume fraction continued to decrease for 37 days, but the decrease rates of both changed discontinuously on about the 20th day. Microscope observation showed that approximately 90% of the erythrocytes were spinous echinocytes at the beginning of preservation and started to be transformed into microspherocytes around the 20th day. Therefore, dielectric spectroscopy is a sensitive tool to monitor the deterioration of preserved blood accompanied by morphological transition of erythrocytes through the temporal variation of their dielectric properties.

  15. Temporal variation of dielectric properties of preserved blood

    International Nuclear Information System (INIS)

    Hayashi, Yoshihito; Oshige, Ikuya; Katsumoto, Yoichi; Omori, Shinji; Yasuda, Akio; Asami, Koji

    2008-01-01

    Rabbit blood was preserved at 277 K in Alsever's solution for 37 days, and its dielectric permittivity was monitored in a frequency range from 0.05 to 110 MHz throughout the period. The relaxation time and Cole-Cole parameter of the interfacial polarization process for erythrocytes remained nearly constant during the first 20 days and then started to increase and decrease, respectively. On the other hand, the relaxation strength and the cell volume fraction continued to decrease for 37 days, but the decrease rates of both changed discontinuously on about the 20th day. Microscope observation showed that approximately 90% of the erythrocytes were spinous echinocytes at the beginning of preservation and started to be transformed into microspherocytes around the 20th day. Therefore, dielectric spectroscopy is a sensitive tool to monitor the deterioration of preserved blood accompanied by morphological transition of erythrocytes through the temporal variation of their dielectric properties

  16. Dielectric relaxations of confined water in porous silica ceramics

    Indian Academy of Sciences (India)

    2017-12-06

    Dec 6, 2017 ... Bull. Mater. Sci., Vol. 40, No. 7, December 2017, pp. 1489–1495 ... to prove the effect of the lateral surface state of the sample on water–inner surfaces of the .... of fractal description allows relating the fractal dimension of.

  17. Dielectric relaxation of amides and tetrahydrofuran polar mixture in ...

    Indian Academy of Sciences (India)

    2016-12-06

    Dec 6, 2016 ... in C6H6 from conductivity measurement under 9.90 GHz electric field. S SAHOO1 and S K SIT2∗. 1Department of Electronics & Instrumentation Engineering, National Institute of Technology,. Silchar 788 010, India ... versatile industrial solvent for PVC and in varnishes. ... The thermodynamic energy para-.

  18. Isochronous relaxation curves for type 304 stainless steel after monotonic and cyclic strain

    International Nuclear Information System (INIS)

    Swindeman, R.W.

    1978-01-01

    Relaxation tests to 100 hr were performed on type 304 stainless steel in the temperature range 480 to 650 0 C and were used to develop isochronous relaxation curves. Behavior after monotonic and cyclic strain was compared. Relaxation differed only slightly as a consequence of the type of previous strain, provided that plastic flow preceded the relaxation period. We observed that the short-time relaxation behavior did not manifest strong heat-to-heat variation in creep strength

  19. Behavior of cesium and thallium cations inside a calixarene cavity as probed by nuclear spin relaxation. Evidence of cation-pi interactions in water.

    Science.gov (United States)

    Cuc, Diana; Bouguet-Bonnet, Sabine; Morel-Desrosiers, Nicole; Morel, Jean-Pierre; Mutzenhardt, Pierre; Canet, Daniel

    2009-08-06

    We have studied the complexes formed between the p-sulfonatocalix[4]arene and cesium or thallium metal cation, first by carbon-13 longitudinal relaxation of the calixarene molecule at two values of the magnetic field B(0). From the longitudinal relaxation times of an aromatic carbon directly bonded to a proton, thus subjected essentially to the dipolar interaction with that proton, we could obtain the correlation time describing the reorientation of the CH bond. The rest of this study has demonstrated that it is also the correlation time describing the tumbling of the whole calixarene assembly. From three non-proton-bearing carbons of the aromatic cycles (thus subjected to the chemical shift anisotropy and dipolar mechanisms), we have been able to determine the variation of the chemical shift anisotropy when going from the free to the complex form of the calixarene. These variations not only provide the location of the cation inside the calixarene cavity but also constitute a direct experimental proof of the cation-pi interactions. These results are complemented by cesium and thallium relaxation measurements performed again at two values of the magnetic field B(0). An estimation of the mean distance between the cation and the calixarene protons could be obtained. These measurements have also revealed an important chemical shift anisotropy of thallium upon complexation.

  20. Relaxation and hypnosis in pediatric dental patients.

    Science.gov (United States)

    Peretz, B

    1996-01-01

    Relaxation and hypnosis are methods which, may solve the problem of extreme dental anxiety, when all other methods, behavioral or pharmacological may not be used. A simple definition of hypnosis is suggestion and repetition. Suggestion is the process whereby an individual accepts a proposition put to him by another, without having the slightest logical reason for doing so. Relaxation is one method of inducing hypnosis. A case of using hypnosis on an 11-year-old boy is described.

  1. Nonmaxwell relaxation in disordered media: Physical mechanisms and fractional relaxation equations

    International Nuclear Information System (INIS)

    Arkhincheev, V.E.

    2004-12-01

    The problem of charge relaxation in disordered systems has been solved. It is shown, that due to the inhomogeneity of the medium the charge relaxation has a non-Maxwell character. The two physical mechanisms of a such behavior have been founded. The first one is connected with the 'fractality' of conducting ways. The second mechanism of nonexponential non-Maxwell behavior is connected with the frequency dispersion of effective conductivity of heterogeneous medium, initially consisting of conducting phases without dispersion. The new generalized relaxation equations in the form of fractional temporal integro-differential equations are deduced. (author)

  2. Magneto-dependent stress relaxation of magnetorheological gels

    KAUST Repository

    Xu, Yangguang; Liu, Taixiang; Liao, G J; Lubineau, Gilles

    2017-01-01

    The stress relaxation behaviors of magnetorheological (MR) gels under stepwise shear loading are systematically investigated. The particle-enhanced effect, the magneto-induced effect, and the temperature-enhanced effect on the stress relaxation of MR gels are discussed. For further analysis of the magneto-induced stress relaxation mechanism in MR gels, a phenomenological model is established to describe the stress relaxation behavior of the matrix and the magnetic particle chains. All characteristic parameters introduced in the model, i.e. relaxation time, instantaneous modulus, and stable modulus, have well-defined physical meanings and are fitted based on the experimental results. The influence of each parameter on the macroscopic response is discussed and it is found that the relaxation stress induced by the magneto-mechanical coupling effect plays an important role in the stress relaxation process of MR gels.

  3. Magneto-dependent stress relaxation of magnetorheological gels

    KAUST Repository

    Xu, Yangguang

    2017-09-01

    The stress relaxation behaviors of magnetorheological (MR) gels under stepwise shear loading are systematically investigated. The particle-enhanced effect, the magneto-induced effect, and the temperature-enhanced effect on the stress relaxation of MR gels are discussed. For further analysis of the magneto-induced stress relaxation mechanism in MR gels, a phenomenological model is established to describe the stress relaxation behavior of the matrix and the magnetic particle chains. All characteristic parameters introduced in the model, i.e. relaxation time, instantaneous modulus, and stable modulus, have well-defined physical meanings and are fitted based on the experimental results. The influence of each parameter on the macroscopic response is discussed and it is found that the relaxation stress induced by the magneto-mechanical coupling effect plays an important role in the stress relaxation process of MR gels.

  4. Dielectric properties of biological tissues in which cells are connected by communicating junctions

    International Nuclear Information System (INIS)

    Asami, Koji

    2007-01-01

    The frequency dependence of the complex permittivity of biological tissues has been simulated using a simple model that is a cubic array of spherical cells in a parallel plate capacitor. The cells are connected by two types of communicating junctions: one is a membrane-lined channel for plasmodesmata in plant tissues, and the other is a conducting patch of adjoining plasma membranes for gap junctions in animal tissues. Both junctions provided similar effects on the dielectric properties of the tissue model. The model without junction showed a dielectric relaxation (called β-dispersion) that was expected from an interfacial polarization theory for a concentrated suspension of spherical cells. The dielectric relaxation was the same as that of the model in which neighbouring cells were connected by junctions perpendicular to the applied electric field. When neighbouring cells were connected by junctions parallel to the applied electric field or in all directions, a dielectric relaxation appeared at a lower frequency side in addition to the β-dispersion, corresponding to the so called α-dispersion. When junctions were randomly introduced at varied probabilities P j , the low-frequency (LF) relaxation curve became broader, especially at P j of 0.2-0.5, and its intensity was proportional to P j up to 0.7. The intensity and the characteristic frequency of the LF relaxation both decreased with decreasing junction conductance. The simulations indicate that communicating junctions are important for understanding the LF dielectric relaxation in tissues

  5. Dielectric properties of biological tissues in which cells are connected by communicating junctions

    Science.gov (United States)

    Asami, Koji

    2007-06-01

    The frequency dependence of the complex permittivity of biological tissues has been simulated using a simple model that is a cubic array of spherical cells in a parallel plate capacitor. The cells are connected by two types of communicating junctions: one is a membrane-lined channel for plasmodesmata in plant tissues, and the other is a conducting patch of adjoining plasma membranes for gap junctions in animal tissues. Both junctions provided similar effects on the dielectric properties of the tissue model. The model without junction showed a dielectric relaxation (called β-dispersion) that was expected from an interfacial polarization theory for a concentrated suspension of spherical cells. The dielectric relaxation was the same as that of the model in which neighbouring cells were connected by junctions perpendicular to the applied electric field. When neighbouring cells were connected by junctions parallel to the applied electric field or in all directions, a dielectric relaxation appeared at a lower frequency side in addition to the β-dispersion, corresponding to the so called α-dispersion. When junctions were randomly introduced at varied probabilities Pj, the low-frequency (LF) relaxation curve became broader, especially at Pj of 0.2-0.5, and its intensity was proportional to Pj up to 0.7. The intensity and the characteristic frequency of the LF relaxation both decreased with decreasing junction conductance. The simulations indicate that communicating junctions are important for understanding the LF dielectric relaxation in tissues.

  6. Relaxation time in confined disordered systems

    International Nuclear Information System (INIS)

    Chamati, H.; Korutcheva, E.

    2006-05-01

    The dynamic critical behavior of a quenched hypercubic sample of linear size L is considered within the 'random T c ' field theoretical model with purely relaxation dynamic (Model A). The dynamic finite size scaling behavior is established and analyzed when the system is quenched from a homogeneous phase towards its critical temperature. The obtained results are compared to those reported in the literature. (author)

  7. Characterization of dielectric materials

    Energy Technology Data Exchange (ETDEWEB)

    King, Danny J.; Babinec, Susan; Hagans, Patrick L.; Maxey, Lonnie C.; Payzant, Edward A.; Daniel, Claus; Sabau, Adrian S.; Dinwiddie, Ralph B.; Armstrong, Beth L.; Howe, Jane Y.; Wood, III, David L.; Nembhard, Nicole S.

    2017-06-27

    A system and a method for characterizing a dielectric material are provided. The system and method generally include applying an excitation signal to electrodes on opposing sides of the dielectric material to evaluate a property of the dielectric material. The method can further include measuring the capacitive impedance across the dielectric material, and determining a variation in the capacitive impedance with respect to either or both of a time domain and a frequency domain. The measured property can include pore size and surface imperfections. The method can still further include modifying a processing parameter as the dielectric material is formed in response to the detected variations in the capacitive impedance, which can correspond to a non-uniformity in the dielectric material.

  8. Nonadiabatic dynamics of electron transfer in solution: Explicit and implicit solvent treatments that include multiple relaxation time scales

    International Nuclear Information System (INIS)

    Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon

    2014-01-01

    The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents for a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible

  9. Dielectric properties of (K0.5Na0.5)NbO3-(Bi0.5Li0.5)ZrO3 lead-free ceramics as high-temperature ceramic capacitors

    Science.gov (United States)

    Yan, Tianxiang; Han, Feifei; Ren, Shaokai; Ma, Xing; Fang, Liang; Liu, Laijun; Kuang, Xiaojun; Elouadi, Brahim

    2018-04-01

    (1 - x)K0.5Na0.5NbO3- x(Bi0.5Li0.5)ZrO3 (labeled as (1 - x)KNN- xBLZ) lead-free ceramics were fabricated by a solid-state reaction method. A research was conducted on the effects of BLZ content on structure, dielectric properties and relaxation behavior of KNN ceramics. By combining the X-ray diffraction patterns with the temperature dependence of dielectric properties, an orthorhombic-tetragonal phase coexistence was identified for x = 0.03, a tetragonal phase was determined for x = 0.05, and a single rhombohedral structure occurred at x = 0.08. The 0.92KNN-0.08BLZ ceramic exhibits a high and stable permittivity ( 1317, ± 15% variation) from 55 to 445 °C and low dielectric loss (≤ 6%) from 120 to 400 °C, which is hugely attractive for high-temperature capacitors. Activation energies of both high-temperature dielectric relaxation and dc conductivity first increase and then decline with the increase of BLZ, which might be attributed to the lattice distortion and concentration of oxygen vacancies.

  10. TEACHING NEUROMUSCULAR RELAXATION.

    Science.gov (United States)

    NORRIS, JEANNE E.; STEINHAUS, ARTHUR H.

    THIS STUDY ATTEMPTED TO FIND OUT WHETHER (1) THE METHODS FOR ATTAINING NEUROMUSCULAR RELAXATION THAT HAVE PROVED FRUITFUL IN THE ONE-TO-ONE RELATIONSHIP OF THE CLINIC CAN BE SUCCESSFULLY ADAPTED TO THE TEACHER-CLASS RELATIONSHIP OF THE CLASSROOM AND GYMNASIUM, AND (2) NEUROMUSCULAR RELAXATION CAN BE TAUGHT SUCCESSFULLY BY AN APPROPRIATELY TRAINED…

  11. Relaxation of Anisotropic Glasses

    DEFF Research Database (Denmark)

    Deubener, Joachim; Martin, Birgit; Wondraczek, Lothar

    2004-01-01

    . When the load was removed at room temperature a permanent optical anisotropy (birefringence) was observed only perpendicular to cylinder axis and the pressure direction indicating complete elimination of thermal stresses. Relaxation of structural anisotropy was studied from reheating experiments using...... the energy release, thermo-mechanical and optical relaxation behaviour are drawn....

  12. Relaxation techniques for stress

    Science.gov (United States)

    ... raise your heart rate. This is called the stress response. Relaxation techniques can help your body relax and lower your blood pressure ... also many other types of breathing techniques you can learn. In many cases, you do not need much ... including those that cause stress. Meditation has been practiced for thousands of years, ...

  13. Numerical differentiation methods for the logarithmic derivative technique used in dielectric spectroscopy

    Directory of Open Access Journals (Sweden)

    Henrik Haspel

    2010-06-01

    Full Text Available In dielectric relaxation spectroscopy the conduction contribution often hampers the evaluation of dielectric spectra, especially in the low-frequency regime. In order to overcome this the logarithmic derivative technique could be used, where the calculation of the logarithmic derivative of the real part of the complex permittivity function is needed. Since broadband dielectric measurement provides discrete permittivity function, numerical differentiation has to be used. Applicability of the Savitzky-Golay convolution method in the derivative analysis is examined, and a detailed investigation of the influential parameters (frequency, spectrum resolution, peak shape is presented on synthetic dielectric data.

  14. Dynamics in miscible blends of polyisoprene and poly(p-tert-butyl styrene): thermo–rheological behavior of components

    OpenAIRE

    Chen, Quan; Matsumiya, Yumi; Watanabe, Hiroshi

    2011-01-01

    For miscible blends of moderately entangled cis-polyisoprene (PI) and poly(p-tert-butyl styrene) (PtBS), viscoelastic and dielectric properties were examined over a wide range of temperature (T) to discuss the thermo–rheological behavior of respective components. Because PI has the type-A dipole, whereas PtBS does not, the slow dielectric response of the blends was exclusively attributed to the global motion of the PI chains therein. In most of the blends examined, the viscoelastic relaxation...

  15. Inductive dielectric analyzer

    International Nuclear Information System (INIS)

    Agranovich, Daniel; Popov, Ivan; Ben Ishai, Paul; Feldman, Yuri; Polygalov, Eugene

    2017-01-01

    One of the approaches to bypass the problem of electrode polarization in dielectric measurements is the free electrode method. The advantage of this technique is that, the probing electric field in the material is not supplied by contact electrodes, but rather by electromagnetic induction. We have designed an inductive dielectric analyzer based on a sensor comprising two concentric toroidal coils. In this work, we present an analytic derivation of the relationship between the impedance measured by the sensor and the complex dielectric permittivity of the sample. The obtained relationship was successfully employed to measure the dielectric permittivity and conductivity of various alcohols and aqueous salt solutions. (paper)

  16. A comparative study on thermal, mechanical and dielectric characteristics of low density polyethylene crosslinked by radiation and chemical methods

    International Nuclear Information System (INIS)

    Kim, B.H.; Ling, D.Y.; Kim, J.S.

    1976-01-01

    A comparative study on thermal, static mechanical and dielectric characteristics were made over a temperature range of ca. 20 0 C to 320 0 C and a frequency range of KHZ band on low density polyethylene specimens crosslinked, respectively, by radiation and chemical method. The thermal property of both specimens shows that softening point appears to unchange by crosslinking however, melting and liquidizing temperatures attain rapid increase at the imitation of crosslinking. Mechanical properties show little difference to both specimens crosslinked by different method, further the behaviors were discussed in connection with the relaxation of molecular segments in amorphous phase. Dose dependent dielectric characteristics observed at ambient temperature under several fixed frequencies exhibit extremities at ca. 20 Mrad and the behaviors also were interpreted qualitatively by taking into consideration of dipole concentration change in amorphous phase together with the role of specimen geometry to the depth of oxidative layer. Observing frequency dependent dielectric characteristics, it was also proved that ionic conduction loss is appreciably greater in the specimen prepared by chemical method than that by radiation. (author)

  17. Method of making dielectric capacitors with increased dielectric breakdown strength

    Science.gov (United States)

    Ma, Beihai; Balachandran, Uthamalingam; Liu, Shanshan

    2017-05-09

    The invention is directed to a process for making a dielectric ceramic film capacitor and the ceramic dielectric laminated capacitor formed therefrom, the dielectric ceramic film capacitors having increased dielectric breakdown strength. The invention increases breakdown strength by embedding a conductive oxide layer between electrode layers within the dielectric layer of the capacitors. The conductive oxide layer redistributes and dissipates charge, thus mitigating charge concentration and micro fractures formed within the dielectric by electric fields.

  18. Analyses of ionic conductivity and dielectric behavior of solid polymer electrolyte based 2-hydroxyethyl cellulose doped ammonium nitrate plasticized with ethylene carbonate

    Science.gov (United States)

    Hafiza, M. N.; Isa, M. I. N.

    2017-09-01

    A solid polymer electrolyte (SPE) based 2-hydroxyethyl cellulose (2-HEC) doped ammonium nitrate (NH4NO3) plasticized with ethylene carbonate (EC) has been investigated using electrical impedance spectroscopy (EIS). The highest ionic conductivity of (1.17±0.01) × 10-3 Scm-1 was obtained for 2-HEC-NH4NO3 plasticized with 16 wt.% EC. Dielectric and modulus study showed non-Debye type of 2-HEC-NH4NO3-EC SPE.

  19. Broadband dielectric response of Ba(Zr,Ti)O.sub.3./sub. ceramics: From incipient via relaxor and diffuse up to classical ferroelectric behavior

    Czech Academy of Sciences Publication Activity Database

    Nuzhnyy, Dmitry; Petzelt, Jan; Savinov, Maxim; Ostapchuk, Tetyana; Bovtun, Viktor; Kempa, Martin; Hlinka, Jiří; Buscaglia, V.; Buscaglia, M. T.; Nanni, P.

    2012-01-01

    Roč. 86, č. 1 (2012), "014106-1"-"014106-9" ISSN 1098-0121 R&D Projects: GA ČR GAP204/12/0232 Institutional research plan: CEZ:AV0Z10100520 Keywords : dielectric spectroscopy * soft mode * central mode * diffuse ferroelectric transition * relaxor ferroelectric transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.767, year: 2012

  20. Motivation and Treatment Credibility Predicts Dropout, Treatment Adherence, and Clinical Outcomes in an Internet-Based Cognitive Behavioral Relaxation Program: A Randomized Controlled Trial.

    Science.gov (United States)

    Alfonsson, Sven; Olsson, Erik; Hursti, Timo

    2016-03-08

    In previous research, variables such as age, education, treatment credibility, and therapeutic alliance have shown to affect patients' treatment adherence and outcome in Internet-based psychotherapy. A more detailed understanding of how such variables are associated with different measures of adherence and clinical outcomes may help in designing more effective online therapy. The aims of this study were to investigate demographical, psychological, and treatment-specific variables that could predict dropout, treatment adherence, and treatment outcomes in a study of online relaxation for mild to moderate stress symptoms. Participant dropout and attrition as well as data from self-report instruments completed before, during, and after the online relaxation program were analyzed. Multiple linear and logistical regression analyses were conducted to predict early dropout, overall attrition, online treatment progress, number of registered relaxation exercises, posttreatment symptom levels, and reliable improvement. Dropout was significantly predicted by treatment credibility, whereas overall attrition was associated with reporting a focus on immediate consequences and experiencing a low level of intrinsic motivation for the treatment. Treatment progress was predicted by education level and treatment credibility, whereas number of registered relaxation exercises was associated with experiencing intrinsic motivation for the treatment. Posttreatment stress symptoms were positively predicted by feeling external pressure to participate in the treatment and negatively predicted by treatment credibility. Reporting reliable symptom improvement after treatment was predicted by treatment credibility and therapeutic bond. This study confirmed that treatment credibility and a good working alliance are factors associated with successful Internet-based psychotherapy. Further, the study showed that measuring adherence in different ways provides somewhat different results, which

  1. Structure and dynamics of hyaluronic acid semidilute solutions: a dielectric spectroscopy study.

    Science.gov (United States)

    Vuletić, T; Dolanski Babić, S; Ivek, T; Grgicin, D; Tomić, S; Podgornik, R

    2010-07-01

    Dielectric spectroscopy is used to investigate fundamental length scales describing the structure of hyaluronic acid sodium salt (Na-HA) semidilute aqueous solutions. In salt-free regime, the length scale of the relaxation mode detected in MHz range scales with HA concentration as c(HA)(-0.5) and corresponds to the de Gennes-Pfeuty-Dobrynin correlation length of polyelectrolytes in semidilute solution. The same scaling was observed for the case of long, genomic DNA. Conversely, the length scale of the mode detected in kilohertz range also varies with HA concentration as c(HA)(-0.5) which differs from the case of DNA (c(DNA)(-0.25)). The observed behavior suggests that the relaxation in the kilohertz range reveals the de Gennes-Dobrynin renormalized Debye screening length, and not the average size of the chain, as the pertinent length scale. Similarly, with increasing added salt the electrostatic contribution to the HA persistence length is observed to scale as the Debye length, contrary to scaling pertinent to the Odijk-Skolnick-Fixman electrostatic persistence length observed in the case of DNA. We argue that the observed features of the kilohertz range relaxation are due to much weaker electrostatic interactions that lead to the absence of Manning condensation as well as a rather high flexibility of HA as compared to DNA.

  2. Analysis of a shielded TE011 mode composite dielectric resonator ...

    Indian Academy of Sciences (India)

    Abstract. Analysis of a TE011 mode composite sapphire–rutile dielectric resonator has been car- ried out to study the temperature variation of resonance frequency, close to the Cs atomic clock hyperfine frequency of 9.192 GHz. The complementary behavior of dielectric permittivity with tem- perature of the composite has ...

  3. Suppression of electromechanical instability in fiber-reinforced dielectric elastomers

    Directory of Open Access Journals (Sweden)

    Rui Xiao

    2016-03-01

    Full Text Available The electromechanical instability of dielectric elastomers has been a major challenge for the application of this class of active materials. In this work, we demonstrate that dielectric elastomers filled with soft fiber can suppress the electromechanical instability and achieve large deformation. Specifically, we developed a constitutive model to describe the dielectric and mechanical behaviors of fiber-reinforced elastomers. The model was applied to study the influence of stiffness, nonlinearity properties and the distribution of fiber on the instability of dielectric membrane under an electric field. The results show that there exists an optimal fiber distribution condition to achieve the maximum deformation before failure.

  4. The relaxation time approximation

    International Nuclear Information System (INIS)

    Gairola, R.P.; Indu, B.D.

    1991-01-01

    A plausible approximation has been made to estimate the relaxation time from a knowledge of the transition probability of phonons from one state (r vector, q vector) to other state (r' vector, q' vector), as a result of collision. The relaxation time, thus obtained, shows a strong dependence on temperature and weak dependence on the wave vector. In view of this dependence, relaxation time has been expressed in terms of a temperature Taylor's series in the first Brillouin zone. Consequently, a simple model for estimating the thermal conductivity is suggested. the calculations become much easier than the Callaway model. (author). 14 refs

  5. Contemporary dielectric materials

    CERN Document Server

    Saravanan, R

    2016-01-01

    This book deals with experimental results of the physical characterization of several important, dielectric materials of great current interest. The experimental tools used for the analysis of these materials include X-ray diffraction, dielectric measurements, magnetic measurements using a vibrating sample magnetometer, optical measurements using a UV-Visible spectrometer etc.

  6. Dielectric Modulated FET (DMFET)

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Working Principle: Change in Dielectric constant due to immobilization of biomolecules in the nanogap cavity leads to change in effective gate capacitance and thus gate bias for FET. Working Principle: Change in Dielectric constant due to immobilization of biomolecules in the ...

  7. Thermal dielectric function

    International Nuclear Information System (INIS)

    Moneta, M.

    1999-01-01

    Thermal dielectric functions ε(k,ω) for homogeneous electron gas were determined and discussed. The ground state of the gas is described by the Fermi-Dirac momentum distribution. The low and high temperature limits of ε(k,ω) were related to the Lindhard dielectric function and to ε(k, omega) derived for Boltzmann and for classical momentum distributions, respectively. (author)

  8. Light in complex dielectrics

    NARCIS (Netherlands)

    Schuurmans, F.J.P.

    1999-01-01

    In this thesis the properties of light in complex dielectrics are described, with the two general topics of "modification of spontaneous emission" and "Anderson localization of light". The first part focuses on the spontaneous emission rate of an excited atom in a dielectric host with variable

  9. Dielectric, ferroelectric and piezoelectric properties of Nb{sup 5+} doped BCZT ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Parjansri, Piewpan [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, 50200 Chiang Mai (Thailand); Intatha, Uraiwan [School of Science, Mae Fah Luang University, 57100 Chiang Rai (Thailand); Eitssayeam, Sukum, E-mail: sukum99@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, 50200 Chiang Mai (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, 50200 Chiang Mai (Thailand)

    2015-05-15

    Highlights: • Average grain size of BCZT ceramic decreased with the increasing Nb{sup 5+} doping. • Dielectric constant value is enhanced with Nb{sup 5+} doping. • Dielectric loss of BCZT − x Nb{sup 5+} ceramics was less than 0.03 at room temperature (1 kHz). • Piezoelectric coefficient decreased with the increasing Nb{sup 5+} doping. • The relaxation behavior is enhanced with the doping of Nb{sup 5+}. - Abstract: This work investigated the electrical properties of Nb{sup 5+} (0.0–1.0 mol%) doped with Ba{sub 0.90}Ca{sub 0.10}Zr{sub 0.10}Ti{sub 0.90}O{sub 3} while adding 1 mol% of Ba{sub 0.90}Ca{sub 0.10}Zr{sub 0.10}Ti{sub 0.90}O{sub 3} seeds. The mixed powder was ball milled for 24 h, calcined and sintered at 1200 °C for 2 h and 1450 °C for 4 h, respectively. The XRD patterns of the ceramic samples were investigated by X-ray diffraction. The electrical properties of ceramics were measured and the results indicated that all samples show a pure perovskite phase with no secondary phase. Density and average grain size values were in the range of 5.60–5.71 g/cm{sup 3} and 12.62–1.86 μm, respectively. The highest dielectric constant, ϵ{sub r} at room temperature (1 kHz) was 4636 found at 1.0 mol% Nb. The dielectric loss, tan δ was less than 0.03 for all samples at room temperature (1 kHz). Other electrical properties, P{sub r}, d{sub 33} and k{sub p} values were decreased with Nb doped relates to the decreasing grain size in BCZT ceramics. Moreover, the degrees of phase transition diffuseness and relaxation behavior were observed in the higher Nb doping.

  10. Synthesis and controlling the optical and dielectric properties of CMC/PVA blend via γ-rays irradiation

    Energy Technology Data Exchange (ETDEWEB)

    El Sayed, A.M., E-mail: ams06@fayoum.edu.eg

    2014-02-15

    Highlights: • PVA/CMC blend films were prepared by solution casting method. • The films were irradiated with γ-rays at the dose range of 0–70 kGy. • UV-vis spectroscopy was performed to study the changes in the optical properties. • The influence of γ-rays irradiation on the dielectric relaxation was studied. -- Abstract: Carboxymethyl cellulose (CMC)/Polyvinyl alcohol (PVA) blend films were prepared by solution casting method. Then, these films were irradiated with γ-rays from a Co-60 source at doses over the range 0–70 kGy to investigate the modifications induced in the optical and dielectric properties. The dielectric constant (ε′) was measured in the temperature range 303–408 K and in the frequency range 10 kHz–1 MHz. The indirect optical band gap was found to increase within the dose range 0–10 kGy, and to decrease at the higher doses. The refractive index values, however, showed a reversed behavior. The highest transmittance percentage was obtained at 10 kGy dose. According to the frequency and temperature dependence of ε′, α- relaxation peaks were observed in all samples and assigned to the micro-Brownian motion of the blend chains. The values of ε′ showed a decrease in the dose range 0–10 kGy and an increase in the dose range 10–70 kGy. The ac conductivity σ{sub ac} (T) showed an Arrhenius type behavior separated into two distinct regions. The results of the present system are compared with those of similar materials.

  11. Synthesis and controlling the optical and dielectric properties of CMC/PVA blend via γ-rays irradiation

    International Nuclear Information System (INIS)

    El Sayed, A.M.

    2014-01-01

    Highlights: • PVA/CMC blend films were prepared by solution casting method. • The films were irradiated with γ-rays at the dose range of 0–70 kGy. • UV-vis spectroscopy was performed to study the changes in the optical properties. • The influence of γ-rays irradiation on the dielectric relaxation was studied. -- Abstract: Carboxymethyl cellulose (CMC)/Polyvinyl alcohol (PVA) blend films were prepared by solution casting method. Then, these films were irradiated with γ-rays from a Co-60 source at doses over the range 0–70 kGy to investigate the modifications induced in the optical and dielectric properties. The dielectric constant (ε′) was measured in the temperature range 303–408 K and in the frequency range 10 kHz–1 MHz. The indirect optical band gap was found to increase within the dose range 0–10 kGy, and to decrease at the higher doses. The refractive index values, however, showed a reversed behavior. The highest transmittance percentage was obtained at 10 kGy dose. According to the frequency and temperature dependence of ε′, α- relaxation peaks were observed in all samples and assigned to the micro-Brownian motion of the blend chains. The values of ε′ showed a decrease in the dose range 0–10 kGy and an increase in the dose range 10–70 kGy. The ac conductivity σ ac (T) showed an Arrhenius type behavior separated into two distinct regions. The results of the present system are compared with those of similar materials

  12. Dielectric properties of water in Triton X-100 (nonionic detergent)-water mixtures

    International Nuclear Information System (INIS)

    Asami, Koji

    2007-01-01

    Dielectric measurements were carried out for mixtures of Triton X-100 (TX, a nonionic detergent with a poly(ethylene oxide) chain) and water with or without electrolytes over a frequency range of 1 MHz to 10 GHz to study the structure and dynamics of water molecules in the mixtures. Dielectric relaxation was found above 100 MHz, being assigned to the dielectric relaxation of water. The intensity of the dielectric relaxation was proportional to the water content above 0 deg. C. Below the freezing temperature of bulk water, the relaxation intensity decreased at TX concentrations (C TX ) below 50 wt% at -10 deg. Cand below 60 wt% at -20 deg. Cbecause frozen water shifts the dielectric relaxation to a frequency region far below 1 MHz. This indicated that there is no bulk water at C TX above 50 wt% and that at least two water molecules per ethylene oxide (EO) unit are tightly associated with the ethylene oxide chain. The low-frequency conductivity of the mixtures of TX and electrolyte solutions was well represented by Bruggeman's mixture equation at C TX below 40 wt%, if two water molecules per EO unit form an insulating shell surrounding TX micelles

  13. Characterization of nonlinear effects in a two-dimensional dielectric elastomer actuator

    International Nuclear Information System (INIS)

    Jhong, Y; Mikolas, D; Fu, C; Yeh, T; Fang, W; Shaw, D; Chen, J

    2010-01-01

    Dielectric elastomer actuators (DEAs) possess great potential for the realization of lightweight and inexpensive multiple-degrees-of-freedom (multi-DOF) biomimetic robotics. In this study, a two-dimensional DEA was built and tested in order to characterize the issues associated with the use in multi-DOF actuation. The actuator is a single circular DEA film with four, electrically isolated quadrant electrode areas. The actuator was driven in a quasi-circular manner by applying sine and cosine signals to orthogonal pairs of electrodes, and the resultant motion was recorded using image processing techniques. The effects of nonlinear voltage–strain behavior, creep and stress relaxation on the motion were all pronounced and clearly differentiated. A simple six-parameter empirical model was used and showed excellent agreement with the measured data

  14. Microscopic properties of nanopore water from its time-dependent dielectric response

    International Nuclear Information System (INIS)

    Koefinger, Juergen; Dellago, Christoph

    2010-01-01

    We present a simple kinetic model for the orientational dynamics of a chain of hydrogen-bonded molecules due to the diffusion of orientational defects. We derive an event-driven algorithm which allows us to do kinetic simulations for chains from nanoscopic to macroscopic lengths, spanning huge orders of magnitude in time. Our simulations and analytical calculations show that nanopore water exhibits Debye behavior arising from the diffusive dynamics of orientational defects. For the limits of short and long chains we derive analytical expressions for the relaxation times which allow to extract the diffusion constant, the effective interaction, and the excitation energy of these defects from dielectric spectroscopy experiments. We also discuss the possibility to use such experiments to detect if the two possible kinds of orientational defects differ in excitation energy and diffusion constant.

  15. A comparison of LIDT behavior of metal-dielectric mirrors in ns and ps pulse regime at 1030 nm with regard to the coating technology

    Science.gov (United States)

    Škoda, Václav; Vanda, Jan; Uxa, Štěpán

    2017-11-01

    Several sets of mirror samples with multilayer system Ta2O5/SiO2 on silver metal layer were manufactured using either PVD or IAD coating technology. Both BK7 and fused silica substrates were used for preparation of samples. Laserinduced- damage-threshold (LIDT) of metal-dielectric mirrors was tested using a laser apparatus working at 1030 nm wavelength, in ns and ps pulse length domains in S-on-1 test mode. The measured damage threshold values at 45 deg angle of incidence and P-polarization were compared for different pulse length, substrate materials and coating technology.

  16. Conformation transitions of blood proteins under influence of physical factors on microwave dielectric method

    International Nuclear Information System (INIS)

    Gorobchenko, O.A.; Nikolov, O.T.; Gatash, S.V.

    2006-01-01

    In this article, the influence of γ-irradiation and temperature on albumin and fibrinogen conformation and dielectric properties of protein solutions have been studied by the microwave dielectric method. Both the values of the real part ε' (dielectric permittivity) and the imaginary part ε'' (dielectric losses) of the complex dielectric permittivity of the aqueous solution of bovine serum albumin and human fibrinogen as functions of temperature and γ-irradiation dose have been obtained. The time of dielectric relaxation of water molecules in the protein solutions was calculated. The hydration of the albumin and fibrinogen molecules was determined. The temperature dependencies of hydration are non-monotonous and have a number of characteristic features at the temperatures 30-34 and 44-47 deg. C for serum albumin, and 24 and 32 deg. C for fibrinogen

  17. Distribution of relaxation times in (KBr)/sub 0.5/(KCN)/sub 0.5/

    International Nuclear Information System (INIS)

    Birge, N.O.; Jeong, Y.H.; Nagel, S.R.; Bhattacharya, S.; Susman, S.

    1984-01-01

    Measurements of the dielectric response of (KBr)/sub 0.5/(KCN)/sub 0.5/ covering nine decades of frequency are reported. We have shown how the relaxation times proliferate as the temperature is lowered. The anomalously wide distribution of relaxation times can be generated from a Gaussian distribution of energy barriers. As temperature is decreased not only does the spread of relaxation times increase, but more importantly the width of the distribution of activation energies itself increases

  18. On the Evaluation of Gate Dielectrics for 4H-SiC Based Power MOSFETs

    Directory of Open Access Journals (Sweden)

    Muhammad Nawaz

    2015-01-01

    Full Text Available This work deals with the assessment of gate dielectric for 4H-SiC MOSFETs using technology based two-dimensional numerical computer simulations. Results are studied for variety of gate dielectric candidates with varying thicknesses using well-known Fowler-Nordheim tunneling model. Compared to conventional SiO2 as a gate dielectric for 4H-SiC MOSFETs, high-k gate dielectric such as HfO2 reduces significantly the amount of electric field in the gate dielectric with equal gate dielectric thickness and hence the overall gate current density. High-k gate dielectric further reduces the shift in the threshold voltage with varying dielectric thicknesses, thus leading to better process margin and stable device operating behavior. For fixed dielectric thickness, a total shift in the threshold voltage of about 2.5 V has been observed with increasing dielectric constant from SiO2 (k=3.9 to HfO2 (k=25. This further results in higher transconductance of the device with the increase of the dielectric constant from SiO2 to HfO2. Furthermore, 4H-SiC MOSFETs are found to be more sensitive to the shift in the threshold voltage with conventional SiO2 as gate dielectric than high-k dielectric with the presence of interface state charge density that is typically observed at the interface of dielectric and 4H-SiC MOS surface.

  19. Dielectric and conductivity properties of composite polyaniline/polyurethane network

    Science.gov (United States)

    Liang, C.; Gest, J.; Leroy, G.; Carru, J.-C.

    2013-09-01

    In this work, we present the dielectric characterization of polyaniline/polyurethane composite. The samples consisting of 0.5%, 1%, and 5% of polyaniline were deposited on glass fiber, and the measurements were performed in a frequency range of 20 Hz to 20 GHz. The results showed a dielectric relaxation strongly dependent on the concentration of polyaniline. This phenomenon is explained by a theoretical model. In this model, we assume that the alternative conductivity of the polymer network systems is due to conducting clusters whose lengths followed a Gaussian distribution. Depending on their size and the frequency of the excitation signal, the clusters showed a resistive or capacitive effect.

  20. Dielectric dispersion in pure and doped lithium rubidium sulphate

    Science.gov (United States)

    Kassem, M. E.; El-Muraikhi, M.; Al-Houty, L.; Mohamed, A. A.

    The frequency (102 - 105 Hz) dependence of the dielectric properties of lithium rubidium sulphate (LRS) are reported in the vicinity of the transition temperature Tc = 477 K. The a.c. conductivity σ(ω) shows a strong temperature dependence and weak frequency response. The dielectric constant in this region shows a strong frequency dispersion. A Cole-Cole diagram was used to determine the distribution parameter and the molecular relaxation time. The effect of doping with Dy+3, Sm+3 and V+3, was also studied. It was found that doping gives rise to localized states which produce a disorder in the structure of LiRbSO4.

  1. High-pressure cell for simultaneous dielectric and neutron spectroscopy

    DEFF Research Database (Denmark)

    Sanz, Alejandro; Hansen, Henriette Wase; Jakobsen, Bo

    2018-01-01

    In this article, we report on the design, manufacture, and testing of a high-pressure cell for simultaneous dielectric and neutron spectroscopy. This cell is a unique tool for studying dynamics on different time scales, from kilo- to picoseconds, covering universal features such as the α relaxation......, a cylindrical capacitor is positioned within the bore of the high-pressure container. The capacitor consists of two concentric electrodes separated by insulating spacers. The performance of this setup has been successfully verified by collecting simultaneous dielectric and neutron spectroscopy data...

  2. Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe{sub 2}O{sub 4} (M=Zn, Cu, Ni, and Co) ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ranjith Kumar, E., E-mail: ranjueaswar@gmail.com [Department of Physics, Dr. NGP Institute of Technology, Coimbatore 641048, Tamil Nadu (India); Siva Prasada Reddy, P.; Sarala Devi, G. [Inorganic and Physical Chemistry Division, Indian Institute Chemical Technology, Hyderabad 500607 (India); Sathiyaraj, S. [Department of Chemistry, Dr. NGP Institute of Technology, Coimbatore 641048, Tamil Nadu (India)

    2016-01-15

    Spinel ferrite (MnZnFe{sub 2}O{sub 4}, MnCuFe{sub 2}O{sub 4}, MnNiFe{sub 2}O{sub 4} and MnCoFe{sub 2}O{sub 4}) nanoparticles have been prepared by evaporation method. The annealing temperature plays an important role on changing particle size of the spinel ferrite nanoparticles was found out by X-ray diffraction and transmission electron microscopy. The role of manganese substitution in the spinel ferrite nanoparticles were also analyzed for different annealing temperature. The substitution of Mn also creates a vital change in dielectric properties have been measured in the frequency range of 100 kHz to 5 MHz. These spinel ferrites are decomposed to α-Fe{sub 2}O{sub 3} after annealing above 550 °C in air. Through the characterization of the prepared powder, the effect of annealing temperature, chemical composition and preparation technique on the microstructure, particle size and dielectric properties of the Mn substituted spinel ferrite nanoparticles are discussed. Furthermore, Conductance response of Mn substituted MFe{sub 2}O{sub 4} ferrite nanoparticles were measured by exposing the materials to reducing gas like liquefied petroleum gas (LPG). - Highlights: • The egg white support to achieve sample with shorter reaction time. • Manganese plays a significant role in sensor response. • Nature of the ferrites was affected with increasing annealing temperature.

  3. Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe2O4 (M=Zn, Cu, Ni, and Co) ferrite nanoparticles

    Science.gov (United States)

    Ranjith Kumar, E.; Siva Prasada Reddy, P.; Sarala Devi, G.; Sathiyaraj, S.

    2016-01-01

    Spinel ferrite (MnZnFe2O4, MnCuFe2O4, MnNiFe2O4 and MnCoFe2O4) nanoparticles have been prepared by evaporation method. The annealing temperature plays an important role on changing particle size of the spinel ferrite nanoparticles was found out by X-ray diffraction and transmission electron microscopy. The role of manganese substitution in the spinel ferrite nanoparticles were also analyzed for different annealing temperature. The substitution of Mn also creates a vital change in dielectric properties have been measured in the frequency range of 100 kHz to 5 MHz. These spinel ferrites are decomposed to α-Fe2O3 after annealing above 550 °C in air. Through the characterization of the prepared powder, the effect of annealing temperature, chemical composition and preparation technique on the microstructure, particle size and dielectric properties of the Mn substituted spinel ferrite nanoparticles are discussed. Furthermore, Conductance response of Mn substituted MFe2O4 ferrite nanoparticles were measured by exposing the materials to reducing gas like liquefied petroleum gas (LPG).

  4. Nonlinear electroelastic deformations of dielectric elastomer composites: II - Non-Gaussian elastic dielectrics

    Science.gov (United States)

    Lefèvre, Victor; Lopez-Pamies, Oscar

    2017-02-01

    This paper presents an analytical framework to construct approximate homogenization solutions for the macroscopic elastic dielectric response - under finite deformations and finite electric fields - of dielectric elastomer composites with two-phase isotropic particulate microstructures. The central idea consists in employing the homogenization solution derived in Part I of this work for ideal elastic dielectric composites within the context of a nonlinear comparison medium method - this is derived as an extension of the comparison medium method of Lopez-Pamies et al. (2013) in nonlinear elastostatics to the coupled realm of nonlinear electroelastostatics - to generate in turn a corresponding solution for composite materials with non-ideal elastic dielectric constituents. Complementary to this analytical framework, a hybrid finite-element formulation to construct homogenization solutions numerically (in three dimensions) is also presented. The proposed analytical framework is utilized to work out a general approximate homogenization solution for non-Gaussian dielectric elastomers filled with nonlinear elastic dielectric particles that may exhibit polarization saturation. The solution applies to arbitrary (non-percolative) isotropic distributions of filler particles. By construction, it is exact in the limit of small deformations and moderate electric fields. For finite deformations and finite electric fields, its accuracy is demonstrated by means of direct comparisons with finite-element solutions. Aimed at gaining physical insight into the extreme enhancement in electrostriction properties displayed by emerging dielectric elastomer composites, various cases wherein the filler particles are of poly- and mono-disperse sizes and exhibit different types of elastic dielectric behavior are discussed in detail. Contrary to an initial conjecture in the literature, it is found (inter alia) that the isotropic addition of a small volume fraction of stiff (semi

  5. Improved Dielectric Films For Capacitors

    Science.gov (United States)

    Yen, Shiao-Ping S.; Lewis, Carol R.; Cygan, Peter J.; Jow, T. Richard

    1994-01-01

    Dielectric films made from blends of some commercially available high-dielectric-constant cyanoresins with each other and with cellulose triacetate (CTA) have both high dielectric constants and high breakdown strengths. Dielectric constants as high as 16.2. Films used to produce high-energy-density capacitors.

  6. Electronic relaxation of deep bulk trap and interface state in ZnO ceramics

    International Nuclear Information System (INIS)

    Yang Yan; Li Sheng-Tao; Ding Can; Cheng Peng-Fei

    2011-01-01

    This paper investigates the electronic relaxation of deep bulk trap and interface state in ZnO ceramics based on dielectric spectra measured in a wide range of temperature, frequency and bias, in addition to the steady state response. It discusses the nature of net current flowing over the barrier affected by interface state, and then obtains temperature-dependent barrier height by approximate calculation from steady I—V (current—voltage) characteristics. Additional conductance and capacitance arising from deep bulk trap relaxation are calculated based on the displacement of the cross point between deep bulk trap and Fermi level under small AC signal. From the resonances due to deep bulk trap relaxation on dielectric spectra, the activation energies are obtained as 0.22 eV and 0.35 eV, which are consistent with the electronic levels of the main defect interstitial Zn and vacancy oxygen in the depletion layer. Under moderate bias, another resonance due to interface relaxation is shown on the dielectric spectra. The DC-like conductance is also observed in high temperature region on dielectric spectra, and the activation energy is much smaller than the barrier height in steady state condition, which is attributed to the displacement current coming from the shallow bulk trap relaxation or other factors. (fluids, plasmas and electric discharges)

  7. Improved polymer nanocomposite dielectric breakdown performance through barium titanate to epoxy interface control

    Energy Technology Data Exchange (ETDEWEB)

    Siddabattuni, Sasidhar [Missouri University of Science and Technology (formerly the University of Missouri-Rolla), Chemistry Department, 400W. 11th Street, Rolla, MO 65409 (United States); Schuman, Thomas P., E-mail: tschuman@mst.edu [Missouri University of Science and Technology (formerly the University of Missouri-Rolla), Chemistry Department, 400W. 11th Street, Rolla, MO 65409 (United States); Dogan, Fatih [Missouri University of Science and Technology, Materials Science and Engineering Department, 1400N. Bishop Avenue, Rolla, MO 65409 (United States)

    2011-11-15

    Highlights: > A covalent filler-matrix interface improves the dielectric properties of a polymer-particle nanocomposite dielectric. > A covalent interface reduced the polymer free volume around the nanoparticles as assessed through T{sub g} measurements. > Composite T{sub g} was raised and breakdown strength improved for nanocomposites with a covalent polymer-particle interface. > A larger Maxwell-Wagner (MW) relaxation correlated with reduced breakdown strengths and energy storage densities. > The MW relaxation could be considered a dielectric defect regarding breakdown strength and energy storage density. - Abstract: A composite approach to dielectric design has the potential to provide improved permittivity as well as high breakdown strength and thus afford greater electrical energy storage density. Interfacial coupling is an effective approach to improve the polymer-particle composite dielectric film resistance to charge flow and dielectric breakdown. A bi-functional interfacial coupling agent added to the inorganic oxide particles' surface assists dispersion into the thermosetting epoxy polymer matrix and upon composite cure reacts covalently with the polymer matrix. The composite then retains the glass transition temperature of pure polymer, provides a reduced Maxwell-Wagner relaxation of the polymer-particle composite, and attains a reduced sensitivity to dielectric breakdown compared to particle epoxy composites that lack interfacial coupling between the composite filler and polymer matrix. Besides an improved permittivity, the breakdown strength and thus energy density of a covalent interface nanoparticle barium titanate in epoxy composite dielectric film, at a 5 vol.% particle concentration, was significantly improved compared to a pure polymer dielectric film. The interfacially bonded, dielectric composite film had a permittivity {approx}6.3 and at a 30 {mu}m thickness achieved a calculated energy density of 4.6 J/cm{sup 3}.

  8. Improved polymer nanocomposite dielectric breakdown performance through barium titanate to epoxy interface control

    International Nuclear Information System (INIS)

    Siddabattuni, Sasidhar; Schuman, Thomas P.; Dogan, Fatih

    2011-01-01

    Highlights: → A covalent filler-matrix interface improves the dielectric properties of a polymer-particle nanocomposite dielectric. → A covalent interface reduced the polymer free volume around the nanoparticles as assessed through T g measurements. → Composite T g was raised and breakdown strength improved for nanocomposites with a covalent polymer-particle interface. → A larger Maxwell-Wagner (MW) relaxation correlated with reduced breakdown strengths and energy storage densities. → The MW relaxation could be considered a dielectric defect regarding breakdown strength and energy storage density. - Abstract: A composite approach to dielectric design has the potential to provide improved permittivity as well as high breakdown strength and thus afford greater electrical energy storage density. Interfacial coupling is an effective approach to improve the polymer-particle composite dielectric film resistance to charge flow and dielectric breakdown. A bi-functional interfacial coupling agent added to the inorganic oxide particles' surface assists dispersion into the thermosetting epoxy polymer matrix and upon composite cure reacts covalently with the polymer matrix. The composite then retains the glass transition temperature of pure polymer, provides a reduced Maxwell-Wagner relaxation of the polymer-particle composite, and attains a reduced sensitivity to dielectric breakdown compared to particle epoxy composites that lack interfacial coupling between the composite filler and polymer matrix. Besides an improved permittivity, the breakdown strength and thus energy density of a covalent interface nanoparticle barium titanate in epoxy composite dielectric film, at a 5 vol.% particle concentration, was significantly improved compared to a pure polymer dielectric film. The interfacially bonded, dielectric composite film had a permittivity ∼6.3 and at a 30 μm thickness achieved a calculated energy density of 4.6 J/cm 3 .

  9. Polysaccharides and paramagnetic ions as a model for the relaxation behavior of hypointense cysts of the head and neck in MR imaging

    International Nuclear Information System (INIS)

    Gibby, W.A.; Hackney, D.B.; Bilaniuk, L.T.; Zimmerman, R.A.; Bogdan, A.R.

    1988-01-01

    Marked hypointensity on the second echo of long repetition time (TR) pulse sequences at 1.5 T has been noted in colloid cysts of the third ventricle and mucous retention cysts of the sinuses. Both are lesions containing a large quantity of material that stains positive for polysaccharide. In an attempt to explain these findings, polysaccharide materials (potato starch) were prepared at 1%, 3%, and 7% (liquid) and 10% (gel) concentrations in distilled deionized water, .01 and .1m mM FeCl3. Imaging at 1.5 T and measurements of T1 and T2 at 1.9 T were performed. Relaxation rates of 10% dextran solutions with average molecular weights of 17,000, 40,000, 70,000, 150,000 and 450,0000 were measured at 1.9 T. The addition of 1% - 10% starch to water shortened T1 and increased the brightness of images obtained at short TR/TE. The addition of FeCl3 increased T1 shortening and image brightness with T1 weighting. T2 was minimally affected by the soluble polysaccharide, but somewhat more decreased in the gelatinous material

  10. Cast dielectric composite linear accelerator

    Science.gov (United States)

    Sanders, David M [Livermore, CA; Sampayan, Stephen [Manteca, CA; Slenes, Kirk [Albuquerque, NM; Stoller, H M [Albuquerque, NM

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  11. Mozart versus new age music: relaxation states, stress, and ABC relaxation theory.

    Science.gov (United States)

    Smith, Jonathan C; Joyce, Carol A

    2004-01-01

    Smith's (2001) Attentional Behavioral Cognitive (ABC) relaxation theory proposes that all approaches to relaxation (including music) have the potential for evoking one or more of 15 factor-analytically derived relaxation states, or "R-States" (Sleepiness, Disengagement, Rested / Refreshed, Energized, Physical Relaxation, At Ease/Peace, Joy, Mental Quiet, Childlike Innocence, Thankfulness and Love, Mystery, Awe and Wonder, Prayerfulness, Timeless/Boundless/Infinite, and Aware). The present study investigated R-States and stress symptom-patterns associated with listening to Mozart versus New Age music. Students (N = 63) were divided into three relaxation groups based on previously determined preferences. Fourteen listened to a 28-minute tape recording of Mozart's Eine Kleine Nachtmusik and 14 listened to a 28-minute tape of Steven Halpern's New Age Serenity Suite. Others (n = 35) did not want music and instead chose a set of popular recreational magazines. Participants engaged in their relaxation activity at home for three consecutive days for 28 minutes a session. Before and after each session, each person completed the Smith Relaxation States Inventory (Smith, 2001), a comprehensive questionnaire tapping 15 R-States as well as the stress states of somatic stress, worry, and negative emotion. Results revealed no differences at Session 1. At Session 2, those who listened to Mozart reported higher levels of At Ease/Peace and lower levels of Negative Emotion. Pronounced differences emerged at Session 3. Mozart listeners uniquely reported substantially higher levels of Mental Quiet, Awe and Wonder, and Mystery. Mozart listeners reported higher levels, and New Age listeners slightly elevated levels, of At Ease/Peace and Rested/Refreshed. Both Mozart and New Age listeners reported higher levels of Thankfulness and Love. In summary, those who listened to Mozart's Eine Kleine Nachtmusik reported more psychological relaxation and less stress than either those who listened to

  12. Optics of dielectric microstructures

    DEFF Research Database (Denmark)

    Søndergaard, Thomas

    2002-01-01

    From the work carried out within the ph.d. project two topics have been selected for this thesis, namely emission of radiation by sources in dielectric microstructures, and planar photonic crystal waveguides. The work done within the first topic, emission of radiation by sources in dielectric...... microstructures, will be presented in the part I of this thesis consisting of the chapters 2-5. An introductions is given in chapter 2. In part I three methods are presented for calculating spontaneous and classical emission from sources in dielectric microstructures. The first method presented in chapter 3...... is based on the Fermi Golden Rule, and spontaneous emission from emitters in a passive dielectric microstructure is calculated by summing over the emission into each electromagnetic mode of the radiation field. This method is applied to investigate spontaneous emission in a two-dimensional photonic crystal...

  13. Hydrogen bond network relaxation in aqueous polyelectrolyte solutions: the effect of temperature

    International Nuclear Information System (INIS)

    Sarti, S; Bordi, F; Truzzolillo, D

    2012-01-01

    Dielectric spectroscopy data over the range 100 MHz-40 GHz allow for a reliable analysis of two of the major relaxation phenomena for polyelectrolytes (PE) in water. Within this range, the dielectric relaxation of pure water is dominated by a near-Debye process at ν = 18.5 GHz corresponding to a relaxation time of τ = 8.4 ps at 25 °C. This mode is commonly attributed to the cooperative relaxation specific to liquids forming a hydrogen bond network (HBN) and arising from long range H-bond-mediated dipole-dipole interactions. The presence of charged polymers in water partially modifies the dielectric characteristics of the orientational water molecule relaxation due to a change of the dielectric constant of water surrounding the charges on the polyion chain. We report experimental results on the effect of the presence of a standard flexible polyelectrolyte (sodium polyacrylate) on the HBN relaxation in water for different temperatures, showing that the HBN relaxation time does not change by increasing the polyelectrolyte density in water, even if relatively high concentrations are reached (0.02 monomol l -1 ≤ C ≤ 0.4 monomol l -1 ). We also find that the effect of PE addition on the HBN relaxation is not even a broadening of its distribution, rather a decrease of the spectral weight that goes beyond the pure volume fraction effect. This extra decrease is larger at low T and less evident at high T, supporting the idea that the correlation length of the water is less affected by the presence of charged flexible chains at high temperatures. (paper)

  14. Dielectric spectroscopy of the SmQ* phase

    Science.gov (United States)

    Perkowski, P.; Bubnov, A.; Piecek, W.; Ogrodnik, K.; Hamplová, V.; Kašpar, M.

    2011-11-01

    Liquid crystal possessing two biphenyl moieties in the molecular core and lateral chlorine substitution far from the chiral chain has been studied by dielectric spectroscopy. On cooling from the isotropic phase, the material possesses the frustrated smectic Q* (SmQ*) and SmCA* phases. It has been confirmed by dielectric spectroscopy that the SmQ* phase can be related to the SmCA* anti-ferroelectric phase. However, only one relaxation process has been observed in the SmQ* phase, while in the SmCA*, two relaxations are clearly detectable. It seems that the mode found in the SmQ* can be connected with high-frequency anti-phase mode observed in the SmCA* phase. Its relaxation frequency is similar to PH relaxation frequency, but is weaker. The same relaxation has been observed even a few degrees above the SmQ*-Iso phase transition. Another explanation for the mode detected in SmQ* and isotropic phases can be molecular motions around short molecular axis.

  15. Dielectric properties of residual water in amorphous lyophilized mixtures of sugar and drug

    Energy Technology Data Exchange (ETDEWEB)

    Moznine, R El [School of Pharmacy, De Montfort University, Leiceste (United Kingdom); Smith, G [School of Pharmacy, De Montfort University, Leicester (United Kingdom); Polygalov, E [School of Pharmacy, De Montfort University, Leicester (United Kingdom); Suherman, P M [School of Pharmacy, De Montfort University, Leicester (United Kingdom); Broadhead, J [AstraZeneca Charnwood R and D, Bakewell Rd, Loughborough (United Kingdom)

    2003-02-21

    Dielectric relaxation spectroscopy was used to investigate the properties of residual water in lyophilized formulations of a proprietary tri-phosphate drug containing a sugar (trehalose, lactose or sucrose) or dextran. The dielectric properties of each formulation were determined in the frequency range (0.1 Hz-0.1 MHz) and temperature range (30 deg. C-T{sub g}). The temperature dependence of the relaxation times for all samples showed Arrhenuis behaviour, from which the activation energy was derived. Proton hopping through the hydrogen-bonded network (clusters) of water molecules was suggested as the principle mode of charge transport. Significant differences in dielectric relaxation kinetics and activation energy were observed for the different formulations, which were found to correlate with the amount of monophosphate degradation product.

  16. Dielectric Properties of Binary Solvent Mixtures of Dimethyl Sulfoxide with Water

    Science.gov (United States)

    Yang, Li-Jun; Yang, Xiao-Qing; Huang, Ka-Ma; Jia, Guo-Zhu; Shang, Hui

    2009-01-01

    In this paper, the dielectric properties of water-dimethylsulfoxide (DMSO) mixtures with different mole ratios have been investigated in the range of 1 GHz to 40 GHz at 298 K by using a molecular dynamics (MD) simulation. Only one dielectric loss peak was observed in the frequency range and the relaxation in these mixtures can be described by a single relaxation time of the Davidson-Cole. It was observed that within experimental error the dielectric relaxation can be described by the Debye-like model (β ≈ 1, S.M. Puranik, et al. J. Chem. Soc. Faraday Trans. 1992, 88, 433 – 435). In general, the results are very consistent with the experimental measurements. PMID:19399247

  17. Dielectric Properties of Binary Solvent Mixtures of Dimethyl Sulfoxide with Water

    Directory of Open Access Journals (Sweden)

    Li-Jun Yang

    2009-03-01

    Full Text Available In this paper, the dielectric properties of water-dimethylsulfoxide (DMSO mixtures with different mole ratios have been investigated in the range of 1 GHz to 40 GHz at 298 K by using a molecular dynamics (MD simulation. Only one dielectric loss peak was observed in the frequency range and the relaxation in these mixtures can be described by a single relaxation time of the Davidson-Cole. It was observed that within experimental error the dielectric relaxation can be described by the Debye-like model (β ≈ 1, S.M. Puranik, et al. J. Chem. Soc. Faraday Trans.1992, 88, 433 - 435. In general, the results are very consistent with the experimental measurements.

  18. Dielectric and electro-optical parameters of two ferroelectric liquid crystals: a comparative study

    International Nuclear Information System (INIS)

    Kumar Misra, Abhishek; Kumar Srivastava, Abhishek; Shukla, J P; Manohar, Rajiv

    2008-01-01

    Dielectric relaxation and an electro-optical study of two ferroelectric liquid crystals having different spontaneous polarizations (Felix 16/100 and Felix 17/000) showing SmC* and SmA phases have been performed in the temperature range 30-80 compfn C. The experimental data have been used to determine different relaxation parameters, viz. distribution parameter, relaxation frequency, dielectric strength and rotational viscosity. The Goldstone mode of dielectric permittivity has been well observed for both the samples under investigation. The activation energy of both the samples has also been determined by the best theoretical fitting of the Arrhenius plot. We have also evaluated the optical response time and anchoring energy coefficients from electro-optical measurement techniques for these samples.

  19. Accelerating convergence of molecular dynamics-based structural relaxation

    DEFF Research Database (Denmark)

    Christensen, Asbjørn

    2005-01-01

    We describe strategies to accelerate the terminal stage of molecular dynamics (MD)based relaxation algorithms, where a large fraction of the computational resources are used. First, we analyze the qualitative and quantitative behavior of the QuickMin family of MD relaxation algorithms and explore...

  20. Dielectric properties of proteins from simulations: tools and techniques

    Science.gov (United States)

    Simonson, Thomas; Perahia, David

    1995-09-01

    Tools and techniques to analyze the dielectric properties of proteins are described. Microscopic dielectric properties are determined by a susceptibility tensor of order 3 n, where n is the number of protein atoms. For perturbing charges not too close to the protein, the dielectric relaxation free energy is directly related to the dipole-dipole correlation matrix of the unperturbed protein, or equivalently to the covariance matrix of its atomic displacements. These are straightforward to obtain from existing molecular dynamics packages such as CHARMM or X- PLOR. Macroscopic dielectric properties can be derived from the dipolar fluctuations of the protein, by idealizing the protein as one or more spherical media. The dipolar fluctuations are again directly related to the covariance matrix of the atomic displacements. An interesting consequence is that the quasiharmonic approximation, which by definition exactly reproduces this covariance matrix, gives the protein dielectric constant exactly. Finally a technique is reviewed to obtain normal or quasinormal modes of vibration of symmetric protein assemblies. Using elementary group theory, and eliminating the high-frequency modes of vibration of each monomer, the limiting step in terms of memory and computation is finding the normal modes of a single monomer, with the other monomers held fixed. This technique was used to study the dielectric properties of the Tobacco Mosaic Virus protein disk.

  1. Actuation response of polyacrylate dielectric elastomers

    DEFF Research Database (Denmark)

    Kofod, G.; Kornbluh, R.; Pelrine, R.

    2001-01-01

    Polyacrylate dielectric elastomers have yielded extremely large strain and elastic energy density suggesting that they are useful for many actuator applications. A thorough understanding of the physics underlying the mechanism of the observed response to an electric field can help develop improved......, though there are discrepancies. Further analysis suggests that these arise mostly from imperfect manufacture of the actuators, though there is a small contribution from an explicitly electrostrictive behavior of the acrylic adhesive. Measurements of the dielectric constant of stretched polymer reveal...... that the dielectric constant drops, when the polymer is strained, indicating the existence of a small electrostrictive effect. Finally, measurements of the electric breakdown field were made. These also show a dependence upon the strain. In the unstrained state the breakdown field is 20 WV/m, which grows to 218MV...

  2. Molecular dissipation phenomena of nanoscopic friction in the heterogeneous relaxation regime of a glass former.

    Science.gov (United States)

    Sills, Scott; Gray, Tomoko; Overney, René M

    2005-10-01

    Nanoscale sliding friction involving a polystyrene melt near its glass transition temperature Tg (373 K) exhibited dissipation phenomena that provide insight into the underlying molecular relaxation processes. A dissipative length scale that shows significant parallelism with the size of cooperatively rearranging regions (CRRs) could be experimentally deduced from friction-velocity isotherms, combined with dielectric loss analysis. Upon cooling to approximately 10 K above Tg, the dissipation length Xd grew from a segmental scale of approximately 3 A to 2.1 nm, following a power-law relationship with the reduced temperature Xd approximately TR-phi. The resulting phi=1.89+/-0.08 is consistent with growth predictions for the length scale of CRRs in the heterogeneous regime of fragile glass formers. Deviations from the power-law behavior closer to Tg suggest that long-range processes, e.g., the normal mode or ultraslow Fischer modes, may couple with the alpha relaxation, leading to energy dissipation in domains of tens of nanometers.

  3. Investigation of dielectric properties of different cake formulations during microwave and infrared-microwave combination baking.

    Science.gov (United States)

    Sakiyan, Ozge; Sumnu, Gulum; Sahin, Serpil; Meda, Venkatesh

    2007-05-01

    Dielectric properties can be used to understand the behavior of food materials during microwave processing. Dielectric properties influence the level of interaction between food and high frequency electromagnetic energy. Dielectric properties are, therefore, important in the design of foods intended for microwave preparation. In this study, it was aimed to determine the variation of dielectric properties of different cake formulations during baking in microwave and infrared-microwave combination oven. In addition, the effects of formulation and temperature on dielectric properties of cake batter were examined. Dielectric constant and loss factor of cake samples were shown to be dependent on formulation, baking time, and temperature. The increase in baking time and temperature decreased dielectric constant and loss factor of all formulations. Fat content was shown to increase dielectric constant and loss factor of cakes.

  4. Evaluation of high temperature capacitor dielectrics

    Science.gov (United States)

    Hammoud, Ahmad N.; Myers, Ira T.

    1992-01-01

    Experiments were carried out to evaluate four candidate materials for high temperature capacitor dielectric applications. The materials investigated were polybenzimidazole polymer and three aramid papers: Voltex 450, Nomex 410, and Nomex M 418, an aramid paper containing 50 percent mica. The samples were heat treated for six hours at 60 C and the direct current and 60 Hz alternating current breakdown voltages of both dry and impregnated samples were obtained in a temperature range of 20 to 250 C. The samples were also characterized in terms of their dielectric constant, dielectric loss, and conductivity over this temperature range with an electrical stress of 60 Hz, 50 V/mil present. Additional measurements are underway to determine the volume resistivity, thermal shrinkage, and weight loss of the materials. Preliminary data indicate that the heat treatment of the films slightly improves the dielectric properties with no influence on their breakdown behavior. Impregnation of the samples leads to significant increases in both alternating and direct current breakdown strength. The results are discussed and conclusions made concerning their suitability as high temperature capacitor dielectrics.

  5. Anomalous relaxation and self-organization in nonequilibrium processes

    International Nuclear Information System (INIS)

    Fatkullin, Ibrahim; Kladko, Konstantin; Mitkov, Igor; Bishop, A. R.

    2001-01-01

    We study thermal relaxation in ordered arrays of coupled nonlinear elements with external driving. We find that our model exhibits dynamic self-organization manifested in a universal stretched-exponential form of relaxation. We identify two types of self-organization, cooperative and anticooperative, which lead to fast and slow relaxation, respectively. We give a qualitative explanation for the behavior of the stretched exponent in different parameter ranges. We emphasize that this is a system exhibiting stretched-exponential relaxation without explicit disorder or frustration

  6. Low Temperature Broad Band Dielectric Spectroscopy of Multiferroic Bi6Fe2Ti3O18 Ceramics

    Directory of Open Access Journals (Sweden)

    Lisińska-Czekaj A.

    2016-09-01

    Full Text Available In the present research the tool of broadband dielectric spectroscopy was utilized to characterize dielectric behavior of Bi6Fe2Ti3O18 (BFTO Aurivillius-type multiferroic ceramics. Dielectric response of BFTO ceramics was studied in the frequency domain (Δν=0.1Hz – 10MHz within the temperature range ΔT=-100°C – 200°C. The Kramers-Kronig data validation test was employed to validate the impedance data measurements and it was found that the measured impedance data exhibited good quality justifying further analysis. The residuals were found to be less than 1%, whereas the “chi-square” parameter was within the range χ2~10−7−10−5. Experimental data were analyzed using the circle fit of simple impedance arc plotted in the complex Z”-Z’ plane (Nyquist plot. The total ac conductivity of the grain boundaries was thus revealed and the activation energy of ac conductivity for the grain boundaries was calculated. It was found that activation energy of ac conductivity of grain boundaries changes from EA=0.20eV to EA=0.55eV while temperature rises from T=-100°C up to T=200°C. On the base of maxima of the impedance semicircles (ωmτm=1 the relaxation phenomena were characterized in terms of the temperature dependence of relaxation times and relevant activation energy was calculated (EA=0.55eV.

  7. High-frequency dielectric study of proustite crystals Ag3AsS3

    Science.gov (United States)

    Bordovsky, V. A.; Gunia, N. Yu; Castro, R. A.

    2014-12-01

    The dielectric properties of the crystals proustite in the frequency of 106-109 Hz and a temperature range of 173 to 473 K were studied. The dispersion of the dielectric parameters indicates the existence of non-Debye relaxation mechanism correlates with structural changes in the phase transition region. The charge transfer is temperature activated with an activation energy of 2.40 ± 0.01 eV.

  8. Relaxed Binaural LCMV Beamforming

    NARCIS (Netherlands)

    Koutrouvelis, A.; Hendriks, R.C.; Heusdens, R.; Jensen, Jesper Rindom

    2017-01-01

    In this paper, we propose a new binaural beamforming technique, which can be seen as a relaxation of the linearly constrained minimum variance (LCMV) framework. The proposed method can achieve simultaneous noise reduction and exact binaural cue preservation of the target source, similar to the

  9. Relaxation dynamics of multilayer triangular Husimi cacti

    Science.gov (United States)

    Galiceanu, Mircea; Jurjiu, Aurel

    2016-09-01

    We focus on the relaxation dynamics of multilayer polymer structures having, as underlying topology, the Husimi cactus. The relaxation dynamics of the multilayer structures is investigated in the framework of generalized Gaussian structures model using both Rouse and Zimm approaches. In the Rouse type-approach, we determine analytically the complete eigenvalues spectrum and based on it we calculate the mechanical relaxation moduli (storage and loss modulus) and the average monomer displacement. First, we monitor these physical quantities for structures with a fixed generation number and we increase the number of layers, such that the linear topology will smoothly come into play. Second, we keep constant the size of the structures, varying simultaneously two parameters: the generation number of the main layer, G, and the number of layers, c. This fact allows us to study in detail the crossover from a pure Husimi cactus behavior to a predominately linear chain behavior. The most interesting situation is found when the two limiting topologies cancel each other. For this case, we encounter in the intermediate frequency/time domain regions of constant slope for different values of the parameter set (G, c) and we show that the number of layers follows an exponential-law of G. In the Zimm-type approach, which includes the hydrodynamic interactions, the quantities that describe the mechanical relaxation dynamics do not show scaling behavior as in the Rouse model, except the limiting case, namely, a very high number of layers and low generation number.

  10. Dielectric and gravimetric studies of water binding to lysozyme

    International Nuclear Information System (INIS)

    Bone, S.

    1996-01-01

    Time domain dielectric spectroscopy and hydration isotherm measurements as a function of temperature have been applied to hydrated lysozyme powder. Two dielectric dispersions were identified, the first centred at approximately 8 MHz and a second above 1 GHz. The higher dispersion is considered to be the result of rotational relaxation of water molecules bound to the enzyme. In this case the results indicate the existence of a population of 32 water molecules per lysozyme molecule which are irrotationally bound to the lysozyme structure. A larger population of water molecules is relatively free to respond to the electric field and exhibits a dipole moment close to that of vapour phase water molecules. Multi-temperature hydration isotherm measurements are used to calculate enthalpies and entropies associated with the binding of water to lysozyme. Discontinuities both in dielectric and in thermodynamic characteristics in the range 10-14% hydration are interpreted as a re-ordering of the water structure on the enzyme surface

  11. Studies on structural, dielectric, and transport properties of Ni{sub 0.65}Zn{sub 0.35}Fe{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Dhiren K.; Misra, Pankaj; Sahoo, Satyaprakash; Katiyar, Ram S., E-mail: rkatiyar@hpcf.upr.edu [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan 00936, Puerto Rico (United States); Puli, Venkata S. [Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118 (United States); Pradhan, Dillip K. [Department of Physics, National Institute of Technology, Rourkela 769008 (India)

    2014-06-28

    We report the crystal structure, dielectric, transport, and magnetic properties of Ni{sub 0.65}Zn{sub 0.35}Fe{sub 2}O{sub 4}. Rietveld refinement results of X-ray diffraction patterns confirm the phase formation of the material with cubic crystal structure (Fd3{sup ¯}m). The frequency dependent ac conductivity behavior obeys the Jonscher's power law and is explained using the jump relaxation model. The observed behavior of temperature dependent bulk conductivity is attributed to the variable-range hopping of localized polarons. The correlation of polaron conduction and high permittivity behavior of NZFO is established on the basis of long range and short range conduction mechanisms. The complex impedance spectra clearly show the contribution of both grain and grain boundary effect on the electrical properties.

  12. Statistical mechanics of violent relaxation

    International Nuclear Information System (INIS)

    Shu, F.H.

    1978-01-01

    We reexamine the foundations of Lynden-Bell's statistical mechanical discussion of violent relaxation in collisionless stellar systems. We argue that Lynden-Bell's formulation in terms of a continuum description introduces unnecessary complications, and we consider a more conventional formulation in terms of particles. We then find the exclusion principle discovered by Lynden-Bell to be quantitatively important only at phase densities where two-body encounters are no longer negligible. Since the edynamical basis for the exclusion principle vanishes in such cases anyway, Lynden-Bell statistics always reduces in practice to Maxwell-Boltzmann statistics when applied to stellar systems. Lynden-Bell also found the equilibrium distribution function generally to be a sum of Maxwellians with velocity dispersions dependent on the phase density at star formation. We show that this difficulty vanishes in the particulate description for an encounterless stellar system as long as stars of different masses are initially well mixed in phase space. Our methods also demonstrate the equivalence between Gibbs's formalism which uses the microcanonical ensemble and Boltzmann's formalism which uses a coarse-grained continuum description. In addition, we clarify the concept of irreversible behavior on a macroscopic scale for an encounterless stellar system. Finally, we comment on the use of unusual macroscopic constraints to simulate the effects of incomplete relaxation

  13. Dielectric characterization of high-performance spaceflight materials

    Science.gov (United States)

    Kleppe, Nathan; Nurge, Mark A.; Bowler, Nicola

    2015-03-01

    As commercial space travel increases, the need for reliable structural health monitoring to predict possible weaknesses or failures of structural materials also increases. Monitoring of these materials can be done through the use of dielectric spectroscopy by comparing permittivity or conductivity measurements performed on a sample in use to that of a pristine sample from 100 μHz to 3 GHz. Fluctuations in these measured values or of the relaxation frequencies, if present, can indicate chemical or physical changes occurring within the material and the possible need for maintenance/replacement. In this work, we establish indicative trends that occur due to changes in dielectric spectra during accelerated aging of various high-performance polymeric materials: ethylene vinyl alcohol (EVOH), Poly (ether ether ketone) (PEEK), polyphenylene sulfide (PPS), and ultra-high molecular weight polyethylene (UHMWPE). Uses for these materials range from electrical insulation and protective coatings to windows and air- or space-craft parts that may be subject to environmental damage over long-term operation. Samples were prepared by thermal exposure and, separately, by ultraviolet/water-spray cyclic aging. The aged samples showed statistically-significant trends of either increasing or decreasing real or imaginary permittivity values, relaxation frequencies, conduction or the appearance of new relaxation modes. These results suggest that dielectric testing offers the possibility of nondestructive evaluation of the extent of age-related degradation in these materials.

  14. Slow logarithmic relaxation in models with hierarchically constrained dynamics

    OpenAIRE

    Brey, J. J.; Prados, A.

    2000-01-01

    A general kind of models with hierarchically constrained dynamics is shown to exhibit logarithmic anomalous relaxation, similarly to a variety of complex strongly interacting materials. The logarithmic behavior describes most of the decay of the response function.

  15. Influence of rare-earth addition on microstructure and dielectric behavior of Ba0.6Sr0.4TiO3 ceramics

    International Nuclear Information System (INIS)

    Zhang Jingji; Zhai Jiwei; Chou Xiujian; Yao Xi

    2008-01-01

    Ba 0.6 Sr 0.4 TiO 3 (BST) ceramics with 0.5 mol% various trivalent rare-earth additions prepared by a solid-state route are investigated. A strong correlation is observed between the microstructure, dielectric properties and rare-earth element dopant. The results display that comparing with the lattice constants of undoped and doped rare-earth BST, the structure transforms from cubic to tetragonal structure. In addition, the dopant improves the tetragonal distortion with the ionic radius of rare earth decreasing, and then deteriorates it with further decreasing. Large ions rare-earth additions effectively suppress the grain growth of BST. It is found that the temperature-permittivity characteristics for the BSTR (R, namely, rare earth) system could be controlled using various rare-earth elements. Especially, such as Sm, Eu, Gd dopants are effective to satisfy the tunable microwave devices application due to the decrease of permittivity and the improvement of dissipation factors of BST ceramic with the accompanying high-tunability

  16. Impedance spectroscopic and dielectric analysis of Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rouahi, A. [Grenoble Electrical Engineering Laboratory (G2E Lab), CNRS, University of Grenoble (UJF), 25 Rue des Martyrs, BP 166, 38042 Grenoble Cedex 9 (France); Laboratory of Materials, Organization and Properties (LMOP), Campus Universities, El Manar, 2092 Tunis (Tunisia); Kahouli, A., E-mail: kahouli.kader@yahoo.fr [Grenoble Electrical Engineering Laboratory (G2E Lab), CNRS, University of Grenoble (UJF), 25 Rue des Martyrs, BP 166, 38042 Grenoble Cedex 9 (France); Laboratory of Materials, Organization and Properties (LMOP), Campus Universities, El Manar, 2092 Tunis (Tunisia); Sylvestre, A., E-mail: alain.sylvestre@grenoble.cnrs.fr [Grenoble Electrical Engineering Laboratory (G2E Lab), CNRS, University of Grenoble (UJF), 25 Rue des Martyrs, BP 166, 38042 Grenoble Cedex 9 (France); Defaye, E. [CEA-LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Yangui, B. [Laboratory of Materials, Organization and Properties (LMOP), Campus Universities, El Manar, 2092 Tunis (Tunisia)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer The material exhibits the contribution of both grain and grain boundaries in the electric response of Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3}. Black-Right-Pointing-Pointer The plot of normalized complex dielectric modulus and impedance as a function of frequency exhibits both short and long-range conduction in the film. Black-Right-Pointing-Pointer The frequency dependence of ac conductivity exhibits a polaron hopping mechanism with activation energy of 0.38 eV. Black-Right-Pointing-Pointer The complex dielectric modulus analysis confirmed the presence of a non-Debye type of conductivity relaxation deduced from the KWW function. - Abstract: Polycrystalline Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin film with Pt/BST/Pt/TiO{sub 2}/SiO{sub 2} structure was prepared by ion beam sputtering. The film was post annealed at 700 Degree-Sign C. The dielectric and electric modulus properties were studied by impedance spectroscopy over a wide frequency range [0.1-10{sup 5} Hz] at different temperatures [175-350 Degree-Sign C]. The Nyquist plots (Z Double-Prime vs . Z Prime ) show the contribution of both grain and grain boundaries at higher temperature on the electric response of BST thin films. Moreover, the resistance of grains decreases with the rise in temperature and the material exhibits a negative temperature coefficient of resistance. The electric modulus plot indicates the non-Debye type of dielectric relaxation. The values of the activation energy computed from both plots of Z Double-Prime and M Double-Prime are 0.86 eV and 0.81 eV respectively, which reveals that the species responsible for conduction are the same. The scaling behavior of M{sup Double-Prime }/M{sup Double-Prime }{sub max} shows the temperature independent nature of relaxation time. The plot of normalized complex dielectric modulus and impedance as a function of frequency exhibits both short and long-range conduction in the film.

  17. Ionic conductivity and dielectric permittivity of polymer electrolyte plasticized with polyethylene glycol

    Science.gov (United States)

    Das, S.; Ghosh, A.

    2016-05-01

    We have studied ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with polyethylene glycol (PEG). The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. The maximum dielectric constant is observed for 30 wt. % of PEG content. To get further insights into the ion dynamics, the complex dielectric permittivity has been studied with Havriliak-Negami function. The variation of relaxation time with inverse temperature obtained from HN formalism follows VTF nature.

  18. Dielectric impedance and optical performance of quantum dots doped OLEDs

    Science.gov (United States)

    Jobin, Marc; Pellodi, Cédric; Emmenegger, Nicolas

    2016-04-01

    We investigate the effect of the incorporation of CdSe quantum dots (QD) in the standard ITO/TPD/Alq3/Al organic light emitting diodes (OLED's). The OLED's structures have been prepared in a double glove box coupled to a vacuum chamber containing both low and high temperature evaporators. For the standard (undoped) OLED's, the hole transport layer (HTL) consisting of 50nm of TPD is deposited by spin coating (8000rpm during 60 sec) and the 40nm of Alq3 were deposited at 2A/sec (organic crucible Radak-I). 150nm of Al were finally evaporated at 5A/s. For the CdSe-doped OLED's, the procedure was the same expect that the QD's were mixed with TPD in toluene before spin coating. During the thermal processing if the film, the QD's are expected to segregate to the surface, and then will be located at the TPD/Alq3 interface. The various layers were imaged by Atomic Force Microscopy (AFM) at each phase of the structure deposition, and we could indeed visualize the segregated QD's above the TPD film. AFM was systematically used to monitor the homogeneity and the thickness of the various films. The impedance of the non-encapsulated films structures were measured in air in the 40-40MHz frequency range, with bias at 0V (non-emitting), 2V (low emission) and 8V (strong emission). The corresponding dielectric spectra were analyzed with the standard Havriliak-Negami (HV) formula, where the conductive term has been subtracted from the data in case of light emission. We have measured a relaxation ranging from 100kHZ for the unbiased structure to 1MHz for 8V (strong emission). Apart from this expected relaxation, we found a second relaxation mechanism around 10 MHz. The origin of this second peak will be discussed. To monitor the optical emission of the OLED's, we have built a specific bench which allows for the quantitative measurement of the emission spectra and the dynamics behavior of the OLED's (raising and falling time). We found that the incorporation of the QD's unfortunately

  19. A novel approach to modelling non-exponential spin glass relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Pickup, R.M. [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)]. E-mail: r.cywinski@leeds.ac.uk; Cywinski, R. [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Pappas, C. [Hahn-Meitner Institut, Glienicker Strasse 100, 14109 Berlin (Germany)

    2007-07-15

    A probabilistic cluster model, originally proposed by Weron to explain the universal power law of dielectric relaxation, is shown to account for the non-exponential relaxation in spin glasses above T {sub g}. Neutron spin echo spectra measured for the cluster glass compound Co{sub 55}Ga{sub 45} are well described by the Weron relaxation function, {phi}(t)={phi} {sub o}(1+k(t/{tau}) {sup {beta}}){sup -1/k}, with the interaction parameter k scaling linearly with the non-Curie-Weiss susceptibility.

  20. Hair Dye and Hair Relaxers

    Science.gov (United States)

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  1. Investigations on electrical conductivity and dielectric properties of Na doped ZnO synthesized from sol gel method

    Energy Technology Data Exchange (ETDEWEB)

    Tabib, Asma; Sdiri, Nasr [Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95 Hammam-Lif, 2050 (Tunisia); Elhouichet, Habib, E-mail: habib.elhouichet@fst.rnu.tn [Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95 Hammam-Lif, 2050 (Tunisia); Département de Physique, Faculté des Sciences de Tunis, University Tunis El Manar, Tunis 2092 (Tunisia); Férid, Mokhtar [Laboratoire de Physico-Chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95 Hammam-Lif, 2050 (Tunisia)

    2015-02-15

    Highlights: • ZnO nanoparticles doped with Na were prepared from sol-gel method. • Electric conductivity and dielectric properties were investigated. • The ZnO conductivity is estimated to be of p-type for critical Na doping of 1.5% at. - Abstract: Na doped ZnO nanoparticles (NPs) were elaborated by sol gel technique. The X-ray diffraction patterns show that the peaks are indexed to the hexagonal structure without any trace of an extra phase. Electric and dielectric properties were investigated using complex impedance spectroscopy. The impedance spectra were analyzed in terms of equivalent circuits involving resistors, capacitors and constant phase elements (CPE). The contribution of grain boundary resistance to the total resistance of the system is remarkable. The AC conductivity increases with temperature following the Arrhenius law, with single apparent activation energy for conduction process. The frequency dependence of the electric conductivity follows a simple power law behavior, in according to relation σ{sub AC}(ω) = σ(0) + A ω{sup s}, where s is smaller than 1. The analysis of dc conductivity indicates that the conduction is ionic in nature. The study of its variation, at fixed temperature, with Na content shows sharp decrease which is explained by the formation of Na{sub Zn} acceptor. It was found that the dc conductivity reaches its minimum value for critical Na concentration of 1.5% at which the conductivity is estimated to be of p-type. Impedance and modulus study reveals the temperature dependent non-Debye type relaxation phenomenon. Dielectric studies revealed a promising dielectric properties (relatively high ε′ at low frequencies and low loss at high frequencies). In the low-frequency region, the values of M′ tends to zero suggesting negligible or absent electrode polarization phenomenon. The frequency dependent maxima in the imaginary modulus are found to obey to Arrhenius law.

  2. Correlation between stress-induced leakage current and dielectric degradation in ultra-porous SiOCH low-k materials

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C., E-mail: Chen.Wu@imec.be; De Wolf, I. [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Materials Engineering, KU Leuven, 3000 Leuven (Belgium); Li, Y.; Leśniewska, A.; Varela Pedreira, O.; Marneffe, J.-F. de; Ciofi, I.; Verdonck, P.; Baklanov, M. R.; Bömmels, J.; Tőkei, Zs.; Croes, K. [imec, Kapeldreef 75, 3001 Leuven (Belgium)

    2015-10-28

    Stress-Induced Leakage Current (SILC) behavior during the dielectric degradation of ultra-porous SiOCH low-k materials was investigated. Under high voltage stress, SILC increases to a critical value before final hard breakdown. This SILC increase rate is mainly driven by the injected charges and is negligibly influenced by temperature and voltage. SILC is found to be transient and shows a t{sup −1} relaxation behavior, where t is the storage time at low voltages. This t{sup −1} transient behavior, described by the tunneling front model, is caused by both electron charging of neutral defects in the dielectric close to the cathode interface and discharging of donor defects close to the anode interface. These defects have a uniform density distribution within the probed depth range, which is confirmed by the observed flat band voltage shift results collected during the low voltage storage. By applying an additional discharging step after the low voltage storage, the trap energies and spatial distributions are derived. In a highly degraded low-k dielectric, the majority of defects have a trap depth between 3.4 eV and 3.6 eV and a density level of 1 × 10{sup 18 }eV{sup −1 }cm{sup −3}. The relation between the defect density N and the total amount of the injected charges Q is measured to be sub-linear, N ∼ Q{sup 0.45±0.07}. The physical nature of these stress-induced defects is suggested to be caused by the degradation of the Si-O based skeleton in the low-k dielectric.

  3. Calorimetric and relaxation properties of xylitol-water mixtures

    Science.gov (United States)

    Elamin, Khalid; Sjöström, Johan; Jansson, Helén; Swenson, Jan

    2012-03-01

    We present the first broadband dielectric spectroscopy (BDS) and differential scanning calorimetry study of supercooled xylitol-water mixtures in the whole concentration range and in wide frequency (10-2-106 Hz) and temperature (120-365 K) ranges. The calorimetric glass transition, Tg, decreases from 247 K for pure xylitol to about 181 K at a water concentration of approximately 37 wt. %. At water concentrations in the range 29-35 wt. % a plentiful calorimetric behaviour is observed. In addition to the glass transition, almost simultaneous crystallization and melting events occurring around 230-240 K. At higher water concentrations ice is formed during cooling and the glass transition temperature increases to a steady value of about 200 K for all higher water concentrations. This Tg corresponds to an unfrozen xylitol-water solution containing 20 wt. % water. In addition to the true glass transition we also observed a glass transition-like feature at 220 K for all the ice containing samples. However, this feature is more likely due to ice dissolution [A. Inaba and O. Andersson, Thermochim. Acta, 461, 44 (2007)]. In the case of the BDS measurements the presence of water clearly has an effect on both the cooperative α-relaxation and the secondary β-relaxation. The α-relaxation shows a non-Arrhenius temperature dependence and becomes faster with increasing concentration of water. The fragility of the solutions, determined by the temperature dependence of the α-relaxation close to the dynamic glass transition, decreases with increasing water content up to about 26 wt. % water, where ice starts to form. This decrease in fragility with increasing water content is most likely caused by the increasing density of hydrogen bonds, forming a network-like structure in the deeply supercooled regime. The intensity of the secondary β-relaxation of xylitol decreases noticeably already at a water content of 2 wt. %, and at a water content above 5 wt. % it has been replaced by a

  4. Dielectric optical antenna thermal emitters and metamaterials

    Science.gov (United States)

    Schuller, Jonathan Aaron

    Optical antennas are critical components in nanophotonics research due to their unparalleled ability to concentrate electromagnetic energy into nanoscale volumes. Researchers typically construct such antennas from wavelength-size metallic structures. However, recent research has begun to exploit the scattering resonances of high-permittivity particles to realize all-dielectric optical antennas, emitters, and metamaterials. In this thesis, we experimentally and theoretically characterize the resonant modes of subwavelength rod-shaped dielectric particles and demonstrate their use in negative index metamaterials and novel infrared light emitters. At mid-infrared frequencies, Silicon Carbide (SiC) is an ideal system for studying the behavior of dielectric optical antennas. At frequencies below the TO phonon resonance, SiC behaves like a dielectric with very large refractive index. Using infrared spectroscopy and analytical Mie calculations we show that individual rod-shaped SiC particles exhibit a multitude of resonant modes. Detailed investigations of these SiC optical antennas reveal a wealth of new physics and applications. We discuss the distinct electromagnetic field profile for each mode, and demonstrate that two of the dielectric-type Mie resonances can be combined in a particle array to form a negative index metamaterial. We further show that these particles can serve as "broadcasting" antennas. Using a custom-built thermal emission microscope we collect emissivity spectra from single SiC particles at elevated temperatures, highlighting their use as subwavelength resonant light emitters. Finally, we derive and verify a variety of general analytical results applicable to all cylindrical dielectric antennas.

  5. Dielectric Optical Antenna Emitters and Metamaterials

    Science.gov (United States)

    Schuller, Jon

    2009-03-01

    Optical antennas are critical components in nanophotonics research due to their unparalleled ability to concentrate electromagnetic energy into nanoscale volumes. Researchers typically construct such antennas from wavelength-size metallic structures. However, recent research has begun to exploit the scattering resonances of high-permittivity particles to realize all-dielectric optical antennas, emitters, and metamaterials. In this talk, we experimentally and theoretically characterize the resonant modes of subwavelength rod-shaped dielectric particles and demonstrate their use in negative index metamaterials and novel infrared light emitters. At mid-infrared frequencies, Silicon Carbide (SiC) is an ideal system for studying the behavior of dielectric optical antennas. At frequencies below the TO phonon resonance, SiC behaves like a dielectric with very large refractive index. Using infrared spectroscopy and analytical Mie calculations we show that individual rod-shaped SiC particles exhibit a multitude of resonant modes. Detailed investigations of these SiC optical antennas reveal a wealth of new physics and applications. We discuss the distinct electromagnetic field profile for each mode, and demonstrate that two of the dielectric-type Mie resonances can be combined in a particle array to form a negative index metamaterial [1]. We further show that these particles can serve as ``broadcasting'' antennas. Using a custom-built thermal emission microscope we collect emissivity spectra from single SiC particles at elevated temperatures, highlighting their use as subwavelength resonant light emitters. Finally, we derive and verify a variety of general analytical results applicable to all cylindrical dielectric antennas and discuss extensions of the demonstrated concepts to different materials systems and frequency regimes. [1] J.A. Schuller, et al., Phys. Rev. Lett. 99, 107401 (2007)

  6. Experiments in paramagnetic relaxation

    International Nuclear Information System (INIS)

    Lijphart, E.E.

    1976-01-01

    This thesis presents two attempts to improve the resolving power of the relaxation measurement technique. The first attempt reconsiders the old technique of steady state saturation. When used in conjunction with the pulse technique, it offers the possibility of obtaining additional information about the system in which all-time derivatives are zero; in addition, non-linear effects may be distinguished from each other. The second attempt involved a systematic study of only one system: Cu in the Tutton salts (K and Rb). The systematic approach, the high accuracy of the measurement and the sheer amount of experimental data for varying temperature, magnetic field and concentration made it possible in this case to separate the prevailing relaxation mechanisms reliably

  7. Thermally switchable dielectrics

    Science.gov (United States)

    Dirk, Shawn M.; Johnson, Ross S.

    2013-04-30

    Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

  8. On dielectric breakdown statistics

    International Nuclear Information System (INIS)

    Tuncer, Enis; James, D Randy; Sauers, Isidor; Ellis, Alvin R; Pace, Marshall O

    2006-01-01

    In this paper, we investigate the dielectric breakdown data of some insulating materials and focus on the applicability of the two- and three-parameter Weibull distributions. A new distribution function is also proposed. In order to assess the model distribution's trustworthiness, we employ the Monte Carlo technique and, randomly selecting data-subsets from the whole dielectric breakdown data, determine whether the selected probability functions accurately describe the breakdown data. The utility and strength of the proposed expression are illustrated distinctly by the numerical procedure. The proposed expression is shown to be a valuable alternative to the Weibull ones

  9. Vibrational spectroscopic and dielectric properties investigations of phase transitions in KMgPO4 compound

    Science.gov (United States)

    Miladi, L.; Oueslati, A.; Guidara, K.

    2017-11-01

    The potassium orthophosphate KMgPO4 with a β-tridymite structure was synthesized via solid-state reaction. X-ray diffraction study confirms the formation of a single phase material which crystallizes at room temperature in monoclinic system. This compound has been investigated by vibrational spectroscopy in the temperature range573-723 K. Thermal analysis shows that this composition undergoes two phase transitions at T1=633Kand T2=693 K.The evolution of Raman line ν and half -width Δν versus temperature introduces huge changes which are associated with the phase transitions originating from the reorientation of the PO4 tetrahedron. Besides, an analysis of the dielectric constants ε‧ and ε″versus temperature at several frequencies shows a distribution of relaxation times. This relaxation is probably due to the change in dynamical state of the K+ cation. The ac conductivity behavior can be understood in terms of the motions of K+ cations along the tunnels which are formed by six-membered rings of MgO4 and PO4 tetrahedron linked by common vertices. The activation energies values obtained from the thermal evolution of the conductivity are: Ea1=0.52 eV (T693 K).

  10. Relaxation from particle production

    Energy Technology Data Exchange (ETDEWEB)

    Hook, Anson; Marques-Tavares, Gustavo [Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305 (United States)

    2016-12-20

    We consider using particle production as a friction force by which to implement a “Relaxion” solution to the electroweak hierarchy problem. Using this approach, we are able to avoid superplanckian field excursions and avoid any conflict with the strong CP problem. The relaxation mechanism can work before, during or after inflation allowing for inflationary dynamics to play an important role or to be completely decoupled.

  11. Magnetic relaxation in anisotropic magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1971-01-01

    The line shape and the kinematic and thermodynamic slowing down of the critical and paramagnetic relaxation in axially anisotropic materials are discussed. Kinematic slowing down occurs only in the longitudinal relaxation function. The thermodynamic slowing down occurs in either the transverse...... or longitudinal relaxation function depending on the sign of the axial anisotropy....

  12. Earthquake sequence simulations of a fault in a viscoelastic material with a spectral boundary integral equation method: The effect of interseismic stress relaxation on a behavior of a rate-weakening patch

    Science.gov (United States)

    Miyake, Y.; Noda, H.

    2017-12-01

    Earthquake sequences involve many processes in a wide range of time scales, from quasistatic loading to dynamic rupture. At a depth of brittle-plastic transitional and deeper, rock behaves as a viscous fluid in a long timescale, but as an elastic material in a short timescale. Viscoelastic stress relaxation may be important in the interseismic periods at the depth, near the deeper limit of the seismogenic layer or the region of slow slip events (SSEs) [Namiki et al., 2014 and references therein]. In the present study, we implemented the viscoelastic effect (Maxwell material) in fully-dynamic earthquake sequence simulations using a spectral boundary integral equation method (SBIEM) [e.g., Lapusta et al., 2000]. SBIEM is efficient in calculation of convolutional terms for dynamic stress transfer, and the problem size is limited by the amount of memory available. Linear viscoelasticity could be implemented by convolution of slip rate history and Green's function, but this method requires additional memory and thus not suitable for the implementation to the present code. Instead, we integrated the evolution of "effective slip" distribution, which gives static stress distribution when convolved with static elastic Green's function. This method works only for simple viscoelastic property distributions, but such models are suitable for numerical experiments aiming basic understanding of the system behavior because of the virtue of SBIEM, the ability of fine on-fault spatial resolution and efficient computation utilizing the fast Fourier transformation. In the present study, we examined the effect of viscoelasticity on earthquake sequences of a fault with a rate-weakening patch. A series of simulations with various relaxation time tc revealed that as decreasing tc, recurrence intervals of earthquakes increases and seismicity ultimately disappears. As long as studied, this transition to aseismic behavior is NOT associated with SSEs. In a case where the rate-weakening patch

  13. Momentum constraint relaxation

    International Nuclear Information System (INIS)

    Marronetti, Pedro

    2006-01-01

    Full relativistic simulations in three dimensions invariably develop runaway modes that grow exponentially and are accompanied by violations of the Hamiltonian and momentum constraints. Recently, we introduced a numerical method (Hamiltonian relaxation) that greatly reduces the Hamiltonian constraint violation and helps improve the quality of the numerical model. We present here a method that controls the violation of the momentum constraint. The method is based on the addition of a longitudinal component to the traceless extrinsic curvature A ij -tilde, generated by a vector potential w i , as outlined by York. The components of w i are relaxed to solve approximately the momentum constraint equations, slowly pushing the evolution towards the space of solutions of the constraint equations. We test this method with simulations of binary neutron stars in circular orbits and show that it effectively controls the growth of the aforementioned violations. We also show that a full numerical enforcement of the constraints, as opposed to the gentle correction of the momentum relaxation scheme, results in the development of instabilities that stop the runs shortly

  14. Study of the structure, dielectric and ferroelectric behavior of BaBi{sub 4+δ}Ti{sub 4}O{sub 15} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Khokhar, Anita, E-mail: mails4anita@gmail.com, E-mail: goyalphy@gmail.com; Goyal, Parveen K., E-mail: mails4anita@gmail.com, E-mail: goyalphy@gmail.com; Sreenivas, K. [Department of Physics & Astrophysics, University of Delhi, Delhi-110 007 (India); Thakur, O. P. [Electroceramics Group, Solid State Physics Laboratory, Lucknow Road, Delhi 110 054 (India)

    2016-05-23

    The structure and ferroelectric properties of excess bismuth doped barium bismuth titanate BaBi{sub 4+δ}Ti{sub 4}O{sub 15} (δ = 2 - 10 wt.%)) ceramics prepared by solid-state reaction method have been investigated. X-ray diffraction (XRD) confirms the formation of a single phase material with a change in the orthorhombic distortion with varying excess of bismuth content. There is no change in the phase transition temperature (T{sub m}) while the relaxor behaviour has been modified significantly with excess of bismuth doping. Saturated hysteresis loops with high remnant polarization (P{sub r} ~ 12.5  µC/cm{sup 2}), low coercive fields (E{sub c} ~ 26 kV/cm) are measured and a high piezoelectric coefficient (d{sub 33} ~ 29 pC/N) is achieved in poled BaBi{sub 4}Ti{sub 4}O{sub 15} ceramics prepared with up to 8 wt.% of excess bismuth oxide. The improvement in the ferroelectric properties with increase in the excess bismuth content in BaBi{sub 4}Ti{sub 4}O{sub 15} ceramics has been explained in terms of changing oxygen vacancy concentration and structural relaxation. Tunable ferroelectric materials can be obtained by manipulating the doping amount of excess bismuth.

  15. Study of the structure, dielectric and ferroelectric behavior of BaBi_4_+_δTi_4O_1_5 ceramics

    International Nuclear Information System (INIS)

    Khokhar, Anita; Goyal, Parveen K.; Sreenivas, K.; Thakur, O. P.

    2016-01-01

    The structure and ferroelectric properties of excess bismuth doped barium bismuth titanate BaBi_4_+_δTi_4O_1_5 (δ = 2 - 10 wt.%)) ceramics prepared by solid-state reaction method have been investigated. X-ray diffraction (XRD) confirms the formation of a single phase material with a change in the orthorhombic distortion with varying excess of bismuth content. There is no change in the phase transition temperature (T_m) while the relaxor behaviour has been modified significantly with excess of bismuth doping. Saturated hysteresis loops with high remnant polarization (P_r ~ 12.5  µC/cm"2), low coercive fields (E_c ~ 26 kV/cm) are measured and a high piezoelectric coefficient (d_3_3 ~ 29 pC/N) is achieved in poled BaBi_4Ti_4O_1_5 ceramics prepared with up to 8 wt.% of excess bismuth oxide. The improvement in the ferroelectric properties with increase in the excess bismuth content in BaBi_4Ti_4O_1_5 ceramics has been explained in terms of changing oxygen vacancy concentration and structural relaxation. Tunable ferroelectric materials can be obtained by manipulating the doping amount of excess bismuth.

  16. Communication: Relaxation-limited electronic currents in extended reservoir simulations

    Science.gov (United States)

    Gruss, Daniel; Smolyanitsky, Alex; Zwolak, Michael

    2017-10-01

    Open-system approaches are gaining traction in the simulation of charge transport in nanoscale and molecular electronic devices. In particular, "extended reservoir" simulations, where explicit reservoir degrees of freedom are present, allow for the computation of both real-time and steady-state properties but require relaxation of the extended reservoirs. The strength of this relaxation, γ, influences the conductance, giving rise to a "turnover" behavior analogous to Kramers turnover in chemical reaction rates. We derive explicit, general expressions for the weak and strong relaxation limits. For weak relaxation, the conductance increases linearly with γ and every electronic state of the total explicit system contributes to the electronic current according to its "reduced" weight in the two extended reservoir regions. Essentially, this represents two conductors in series—one at each interface with the implicit reservoirs that provide the relaxation. For strong relaxation, a "dual" expression-one with the same functional form-results, except now proportional to 1/γ and dependent on the system of interest's electronic states, reflecting that the strong relaxation is localizing electrons in the extended reservoirs. Higher order behavior (e.g., γ2 or 1/γ2) can occur when there is a gap in the frequency spectrum. Moreover, inhomogeneity in the frequency spacing can give rise to a pseudo-plateau regime. These findings yield a physically motivated approach to diagnosing numerical simulations and understanding the influence of relaxation, and we examine their occurrence in both simple models and a realistic, fluctuating graphene nanoribbon.

  17. Attractive electromagnetic Casimir stress on a spherical dielectric shell

    International Nuclear Information System (INIS)

    Graham, N.; Quandt, M.; Weigel, H.

    2013-01-01

    Based on calculations involving an idealized boundary condition, it has long been assumed that the stress on a spherical conducting shell is repulsive. We use the more realistic case of a Drude dielectric to show that the stress is attractive, matching the generic behavior of Casimir forces in electromagnetism. We trace the discrepancy between these two cases to interactions between the electromagnetic quantum fluctuations and the dielectric material

  18. Study on properties of stress relaxation for NiTiNb shape memory alloy

    International Nuclear Information System (INIS)

    Zhou Xuchang; Mo Huaqiang; Zeng Guangting; Shen Baoluo; Huo Yongzhong

    2002-01-01

    Stress relaxation tests at high temperature are performed for NiTiNb shape memory alloy to obtain the properties of stress relaxation. The relaxation curve fitted with the expression, which is deduced based on the relation between the relaxation and the creep. With the aid of experimental data, relaxation characteristic coefficient and remaining stress ratio are obtained, which characterize the relaxation behavior. The results of the study show that stress relaxation would be more evident with the higher temperature and/or greater initial stress. NiTiNb alloy has good relaxation resistance in the temperature range 300-400 degree C and the initial stress range 260-360 MPa. NiTiNb has better properties to resist relaxation than NiTiFe, therefore it is more applicable to work at high temperature

  19. Study of influence of fuel on dielectric and ferroelectric properties of bismuth titanate ceramics synthesized using solution based combustion technique

    International Nuclear Information System (INIS)

    Subohi, Oroosa; Malik, M M; Kurchania, Rajnish; Kumar, G S

    2015-01-01

    The effect of fuel characteristics on the processing and properties of bismuth titanate (BIT) ceramics obtained by solution combustion route using different fuels are reported in this paper. Dextrose, urea and glycine were used as fuel in this study. The obtained bismuth titanate ceramics were characterized by using XRD, SEM at different stages of sample preparation. It was observed that BIT obtained by using dextrose as fuel shows higher dielectric constant and higher remnant polarization due to smaller grain size and lesser c-axis growth as compared to the samples with urea and glycine as fuel. The electrical behavior of the samples with respect to temperature and frequency was also investigated to understand relaxation phenomenon. (paper)

  20. Dielectric loss of strontium titanate thin films

    Science.gov (United States)

    Dalberth, Mark Joseph

    1999-12-01

    Interest in strontium titanate (STO) thin films for microwave device applications continues to grow, fueled by the telecommunications industry's interest in phase shifters and tunable filters. The optimization of these devices depends upon increasing the phase or frequency tuning and decreasing the losses in the films. Currently, the dielectric response of thin film STO is poorly understood through lack of data and a theory to describe it. We have studied the growth of STO using pulsed laser deposition and single crystal substrates like lanthanum aluminate and neodymium gallate. We have researched ways to use ring resonators to accurately measure the dielectric response as a function of temperature, electric field, and frequency from low radio frequencies to a few gigahertz. Our films grown on lanthanum aluminate show marked frequency dispersion in the real part of the dielectric constant and hints of thermally activated loss behavior. We also found that films grown with conditions that optimized the dielectric constant showed increased losses. In an attempt to simplify the system, we developed a technique called epitaxial lift off, which has allowed us to study films removed from their growth substrates. These free standing films have low losses and show obvious thermally activated behavior. The "amount of tuning," as measured by a figure of merit, KE, is greater in these films than in the films still attached to their growth substrates. We have developed a theory that describes the real and imaginary parts of the dielectric constant. The theory models the real part using a mean field description of the ionic motion in the crystal and includes the loss by incorporating the motion of charged defects in the films.

  1. Transformation Algorithm of Dielectric Response in Time-Frequency Domain

    Directory of Open Access Journals (Sweden)

    Ji Liu

    2014-01-01

    Full Text Available A transformation algorithm of dielectric response from time domain to frequency domain is presented. In order to shorten measuring time of low or ultralow frequency dielectric response characteristics, the transformation algorithm is used in this paper to transform the time domain relaxation current to frequency domain current for calculating the low frequency dielectric dissipation factor. In addition, it is shown from comparing the calculation results with actual test data that there is a coincidence for both results over a wide range of low frequencies. Meanwhile, the time domain test data of depolarization currents in dry and moist pressboards are converted into frequency domain results on the basis of the transformation. The frequency domain curves of complex capacitance and dielectric dissipation factor at the low frequency range are obtained. Test results of polarization and depolarization current (PDC in pressboards are also given at the different voltage and polarization time. It is demonstrated from the experimental results that polarization and depolarization current are affected significantly by moisture contents of the test pressboards, and the transformation algorithm is effective in ultralow frequency of 10−3 Hz. Data analysis and interpretation of the test results conclude that analysis of time-frequency domain dielectric response can be used for assessing insulation system in power transformer.

  2. Influence of Al3+ substitution on the electrical resistivity and dielectric behavior of Ni0.25Cu0.20Zn0.55AlxFe2-xO4 ferrites synthesized by solid state reaction technique

    Science.gov (United States)

    Rahman, K. R.; Chowdhury, F.-U.-Z.; Khan, M. N. I.

    2017-12-01

    In this paper, the effect of Al3+ substitution on the electrical and dielectric properties of Ni0.25Cu0.20Zn0.55AlxFe2-xO4 ferrites with x = 0.0, 0.05. 0.10, 0.15 and 0.20, synthesized by solid state reaction has been reported. Using two probe method, the DC resistivity has been investigated in the temperature range from 30 °C to 300 °C. Activation energy was calculated from the Arrhenius plot. The electrical conduction is explained on the basis of the hopping mechanism. The frequency dependent dielectric properties of these spinel ferrites have been studied at room temperature by measuring AC resistivity, conductivity (σac), dielectric constant and dielectric loss tangent (tan δ) in the frequency range between 1 kHz and 120 MHz. The study of dielectric properties showed that the dielectric constant and dielectric loss increased with increasing non-magnetic Al ions. The dependence of dielectric constant with frequency has been explained by Maxwell-Wagner interfacial polarization. Cole-Cole plots show semicircular arc(s) for the samples, and equivalent RC circuits have been proposed to clarify the phenomena involved therein. The analysis of complex impedance spectroscopy has been used to distinguish between the grain and grain boundary contribution to the total resistance.

  3. Effects of crystallization on structural and dielectric properties of thin amorphous films of (1 - x)BaTiO3-xSrTiO3 (x=0-0.5, 1.0)

    Science.gov (United States)

    Kawano, H.; Morii, K.; Nakayama, Y.

    1993-05-01

    The possibilities for fabricating solid solutions of (Ba1-x,Srx)TiO3 (x≤0.5,1.0) by crystallization of amorphous films and for improving their dielectric properties by adjusting the Sr content were investigated. Thin amorphous films were prepared from powder targets consisting of mixtures of BaTiO3 and SrTiO3 by sputtering with a neutralized Ar-ion beam. The amorphous films crystallized into (Ba1-x, Srx)TiO3 solid solutions with a cubic perovskite-type structure after annealing in air at 923 K for more than 1 h. The Debye-type dielectric relaxation was observed for the amorphous films, whereas the crystallized films showed paraelectric behavior. The relative dielectric constants were of the order of 20 for the amorphous samples, but increased greatly after crystallization to about 60-200, depending on the composition; a larger increase in the dielectric constant was observed in the higher Sr content films, in the range x≤0.5, which could be correlated with an increase in the grain size of the crystallites. The crystallization processes responsible for the difference in the grain size are discussed based on the microstructural observations.

  4. Ionic Structure at Dielectric Interfaces

    Science.gov (United States)

    Jing, Yufei

    The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as biosensors, lithium-ion batteries double-layer supercapacitors for energy storage and seawater desalination. Electrostatics plays a critical role in the development of such functional materials. Many of the functions of these materials, result from charge and composition heterogeneities. There are great challenges in solving electrostatics problems in heterogeneous media with arbitrary shapes because electrostatic interactions remains unknown but depend on the particular density of charge distributions. Charged molecules in heterogeneous media affect the media's dielectric response and hence the interaction between the charges is unknown since it depends on the media and on the geometrical properties of the interfaces. To determine the properties of heterogeneous systems including crucial effects neglected in classical mean field models such as the hard core of the ions, the dielectric mismatch and interfaces with arbitrary shapes. The effect of hard core interactions accounts properly for short range interactions and the effect of local dielectric heterogeneities in the presence of ions and/or charged molecules for long-range interactions are both analyzed via an energy variational principle that enables to update charges and the medium's response in the same simulation time step. In particular, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric

  5. Stress relaxation analysis of single chondrocytes using porohyperelastic model based on AFM experiments

    Directory of Open Access Journals (Sweden)

    Trung Dung Nguyen

    2014-01-01

    Full Text Available Based on atomic force microscopytechnique, we found that the chondrocytes exhibits stress relaxation behavior. We explored the mechanism of this stress relaxation behavior and concluded that the intracellular fluid exuding out from the cells during deformation plays the most important role in the stress relaxation. We applied the inverse finite element analysis technique to determine necessary material parameters for porohyperelastic (PHE model to simulate stress relaxation behavior as this model is proven capable of capturing the non-linear behavior and the fluid-solid interaction during the stress relaxation of the single chondrocytes. It is observed that PHE model can precisely capture the stress relaxation behavior of single chondrocytes and would be a suitable model for cell biomechanics.

  6. Quantum optics of dispersive dielectric media

    International Nuclear Information System (INIS)

    Lenac, Z.

    2003-01-01

    We quantize the electromagnetic field in a polar medium starting with the fundamental equations of motion. In our model the medium is described by a Lorenz-type dielectric function ε(r,ω) appropriate, e.g., for ionic crystals, metals, and inert dielectrics. There are no restrictions on the spatial behavior of the dielectric function, i.e., there can be many different polar media with arbitrary shapes. We assume no losses in our system so the dielectric function for the whole space is assumed as real. The quantization procedure is based on an expansion of the total field (transverse and longitudinal) in terms of the coupled (polariton) eigenmodes, and this approach incorporates all previous results derived for similar but restricted systems (e.g., without spatial or frequency dependence of coupled modes). Within the same model, we also quantize the Hamiltonian of a nonretarded electromagnetic field in polar media. Particular attention is paid to the derivation of the orthogonality and closure relations, which are used in a discussion of the fundamental (equal-time) commutation relations between the conjugate field operators

  7. DIELECTRIC WAKE FIELD RESONATOR ACCELERATOR MODULE

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L.

    2013-11-06

    Results are presented from experiments, and numerical analysis of wake fields set up by electron bunches passing through a cylindrical or rectangular dielectric-lined structure. These bunches excite many TM-modes, with Ez components of the wake fields sharply localized on the axis of the structure periodically behind the bunches. The experiment with the cylindrical structure, carried out at ATF Brookhaven National Laboratory, used up to three 50 MeV bunches spaced by one wake field period (21 cm) to study the superposition of wake fields by measuring the energy loss of each bunch after it passed through the 53-cm long dielectric element. The millimeter-wave spectrum of radiation excited by the passage of bunches is also studied. Numerical analysis was aimed not only to simulate the behavior of our device, but in general to predict dielectric wake field accelerator performance. It is shown that one needs to match the radius of the cylindrical dielectric channel with the bunch longitudinal rms-length to achieve optimal performance.

  8. On real statistics of relaxation in gases

    Science.gov (United States)

    Kuzovlev, Yu. E.

    2016-02-01

    By example of a particle interacting with ideal gas, it is shown that the statistics of collisions in statistical mechanics at any value of the gas rarefaction parameter qualitatively differ from that conjugated with Boltzmann's hypothetical molecular chaos and kinetic equation. In reality, the probability of collisions of the particle in itself is random. Because of that, the relaxation of particle velocity acquires a power-law asymptotic behavior. An estimate of its exponent is suggested on the basis of simple kinematic reasons.

  9. F-center mechanism of long-term relaxation in lead zirconate-titanate-based piezoelectric ceramics. 1. After-heating relaxation

    Directory of Open Access Journals (Sweden)

    V. M. Ishchuk

    2015-12-01

    The oxygen vacancies-based model for description of the long-time relaxation processes is suggested. The model takes into account oxygen vacancies on the sample’s surface ends, their conversion into F+- and F0-centers under external effects (due to the liberation of the pyroelectric charge and subsequent relaxation of these centers into the simple oxygen vacancies after the actions termination. The initial sample’s state is electroneutrality one. F-center formation leads to the violation of the original sample’s electroneutrality, and generates DC electric field into the sample. Relaxation of F-centers is accompanied by decreasing of electric field, induced by them, and dielectric constant relaxation as consequent effect.

  10. Electrical properties and dielectric spectroscopy of Ar{sup +} implanted polycarbonate

    Energy Technology Data Exchange (ETDEWEB)

    Chawla, Mahak, E-mail: mahak.chawla@gmail.com; Shekhawat, Nidhi; Aggarwal, Sanjeev; Sharma, Annu [Department of Physics, Kurukshetra University, Kurukshetra - 136119 (India); Nair, K. G. M. [Consultant, UGC-DAE Consortium for Scientific Research, Kalpakkam Node, Kokilamedu-603104, Tamilnadu (India)

    2015-05-15

    The aim of the present paper is to study the effect of argon ion implantation on electrical and dielectric properties of polycarbonate. Specimens were implanted with 130 keV Ar{sup +} ions in the fluence ranging from 1×10{sup 14} to 1×10{sup 16} ions cm{sup −2}. The beam current used was ∼0.40 µA cm{sup −2}. The electrical conduction behaviour of virgin and Ar{sup +} implanted polycarbonate specimens have been studied through current-voltage (I-V characteristic) measurements. It has been observed that after implantation conductivity increases with increasing ion fluence. The dielectric spectroscopy of these specimens has been done in the frequency range of 100 kHz-100 MHz. Relaxation processes were studied by Cole-Cole plot of complex permittivity (real part of complex permittivity, ε′ vs. imaginary part of complex permittivity, ε″). The Cole-Cole plots have also been used to determine static dielectric constant (ε{sub s}), optical dielectric constant (ε{sub ∞}), spreading factor (α), average relaxation time (τ{sub 0}) and molecular relaxation time (τ). The dielectric behaviour has been found to be significantly affected due to Ar{sup +} implantation. The possible correlation between this behaviour and the changes induced by the implantation has been discussed.

  11. Variational formulation of relaxed and multi-region relaxed magnetohydrodynamics

    Science.gov (United States)

    Dewar, R. L.; Yoshida, Z.; Bhattacharjee, A.; Hudson, S. R.

    2015-12-01

    > Ideal magnetohydrodynamics (IMHD) is strongly constrained by an infinite number of microscopic constraints expressing mass, entropy and magnetic flux conservation in each infinitesimal fluid element, the latter preventing magnetic reconnection. By contrast, in the Taylor relaxation model for formation of macroscopically self-organized plasma equilibrium states, all these constraints are relaxed save for the global magnetic fluxes and helicity. A Lagrangian variational principle is presented that leads to a new, fully dynamical, relaxed magnetohydrodynamics (RxMHD), such that all static solutions are Taylor states but also allows state with flow. By postulating that some long-lived macroscopic current sheets can act as barriers to relaxation, separating the plasma into multiple relaxation regions, a further generalization, multi-region relaxed magnetohydrodynamics (MRxMHD) is developed.

  12. Dynamic mechanical and dielectric properties of ethylene vinyl acetate/carbon nanotube composites

    Czech Academy of Sciences Publication Activity Database

    Valentová, H.; Ilčíková, M.; Czaniková, K.; Špitalský, Z.; Šlouf, Miroslav; Nedbal, J.; Omastová, M.

    2014-01-01

    Roč. 53, č. 3 (2014), s. 496-512 ISSN 0022-2348 R&D Projects: GA TA ČR TE01020118 Institutional support: RVO:61389013 Keywords : carbon nanotubes * dielectric relaxation spectroscopy * dynamic mechanical analysis Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.740, year: 2014

  13. Evaluation of Apple Maturity with Two Types of Dielectric Probes

    Directory of Open Access Journals (Sweden)

    Marcin Kafarski

    2018-01-01

    Full Text Available The observed dielectric spectrum of ripe apples in the last period of shelf-life was analyzed using a multipole dielectric relaxation model, which assumes three active relaxation processes: primary α-process (water relaxation and two secondary processes caused by solid-water-ion interactions α’ (bound water relaxations, as well as β’ (Maxwell-Wagner effect. The performance of two designs of the dielectric probe was compared: a classical coaxial open-ended probe (OE probe and an open-ended probe with a prolonged central conductor in a form of an antenna (OE-A-probe. The OE-A probe increases the measurement volume and consequently extends the range of applications to other materials, like granulated agricultural products, soils, or liquid suspensions. However, its measurement frequency range is limited as compared to the OE probe because, above 1.5 GHz, the probe with the antenna generates higher propagation modes and the applied calibrations and calculations are not sufficient. It was shown that data from measurements using the OE-A probe gave slightly stronger correlations with apples’ quality parameters than using the typical OE probe. Additionally, we have compared twelve multipole fitting models with different combinations of poles (eight three-pole and four two-pole models. It was shown that the best fit is obtained using a two-pole model for data collected for the OE-A probe and a three-pole model for the OE probe, using only Cole-Cole poles in both cases.

  14. Spin transport and relaxation in graphene

    International Nuclear Information System (INIS)

    Han Wei; McCreary, K.M.; Pi, K.; Wang, W.H.; Li Yan; Wen, H.; Chen, J.R.; Kawakami, R.K.

    2012-01-01

    We review our recent work on spin injection, transport and relaxation in graphene. The spin injection and transport in single layer graphene (SLG) were investigated using nonlocal magnetoresistance (MR) measurements. Spin injection was performed using either transparent contacts (Co/SLG) or tunneling contacts (Co/MgO/SLG). With tunneling contacts, the nonlocal MR was increased by a factor of ∼1000 and the spin injection/detection efficiency was greatly enhanced from ∼1% (transparent contacts) to ∼30%. Spin relaxation was investigated on graphene spin valves using nonlocal Hanle measurements. For transparent contacts, the spin lifetime was in the range of 50-100 ps. The effects of surface chemical doping showed that for spin lifetimes in the order of 100 ps, charged impurity scattering (Au) was not the dominant mechanism for spin relaxation. While using tunneling contacts to suppress the contact-induced spin relaxation, we observed the spin lifetimes as long as 771 ps at room temperature, 1.2 ns at 4 K in SLG, and 6.2 ns at 20 K in bilayer graphene (BLG). Furthermore, contrasting spin relaxation behaviors were observed in SLG and BLG. We found that Elliot-Yafet spin relaxation dominated in SLG at low temperatures whereas Dyakonov-Perel spin relaxation dominated in BLG at low temperatures. Gate tunable spin transport was studied using the SLG property of gate tunable conductivity and incorporating different types of contacts (transparent and tunneling contacts). Consistent with theoretical predictions, the nonlocal MR was proportional to the SLG conductivity for transparent contacts and varied inversely with the SLG conductivity for tunneling contacts. Finally, bipolar spin transport in SLG was studied and an electron-hole asymmetry was observed for SLG spin valves with transparent contacts, in which nonlocal MR was roughly independent of DC bias current for electrons, but varied significantly with DC bias current for holes. These results are very important for

  15. Dynamics of relaxed inflation

    Science.gov (United States)

    Tangarife, Walter; Tobioka, Kohsaku; Ubaldi, Lorenzo; Volansky, Tomer

    2018-02-01

    The cosmological relaxation of the electroweak scale has been proposed as a mechanism to address the hierarchy problem of the Standard Model. A field, the relaxion, rolls down its potential and, in doing so, scans the squared mass parameter of the Higgs, relaxing it to a parametrically small value. In this work, we promote the relaxion to an inflaton. We couple it to Abelian gauge bosons, thereby introducing the necessary dissipation mechanism which slows down the field in the last stages. We describe a novel reheating mechanism, which relies on the gauge-boson production leading to strong electro-magnetic fields, and proceeds via the vacuum production of electron-positron pairs through the Schwinger effect. We refer to this mechanism as Schwinger reheating. We discuss the cosmological dynamics of the model and the phenomenological constraints from CMB and other experiments. We find that a cutoff close to the Planck scale may be achieved. In its minimal form, the model does not generate sufficient curvature perturbations and additional ingredients, such as a curvaton field, are needed.

  16. Charge Relaxation Dynamics of an Electrolytic Nanocapacitor

    Science.gov (United States)

    2015-01-01

    Understanding ion relaxation dynamics in overlapping electric double layers (EDLs) is critical for the development of efficient nanotechnology-based electrochemical energy storage, electrochemomechanical energy conversion, and bioelectrochemical sensing devices as well as the controlled synthesis of nanostructured materials. Here, a lattice Boltzmann (LB) method is employed to simulate an electrolytic nanocapacitor subjected to a step potential at t = 0 for various degrees of EDL overlap, solvent viscosities, ratios of cation-to-anion diffusivity, and electrode separations. The use of a novel continuously varying and Galilean-invariant molecular-speed-dependent relaxation time (MSDRT) with the LB equation recovers a correct microscopic description of the molecular-collision phenomena and enhances the stability of the LB algorithm. Results for large EDL overlaps indicated oscillatory behavior for the ionic current density, in contrast to monotonic relaxation to equilibrium for low EDL overlaps. Further, at low solvent viscosities and large EDL overlaps, anomalous plasmalike spatial oscillations of the electric field were observed that appeared to be purely an effect of nanoscale confinement. Employing MSDRT in our simulations enabled modeling of the fundamental physics of the transient charge relaxation dynamics in electrochemical systems operating away from equilibrium wherein Nernst–Einstein relation is known to be violated. PMID:25678941

  17. Fetal response to abbreviated relaxation techniques. A randomized controlled study.

    Science.gov (United States)

    Fink, Nadine S; Urech, Corinne; Isabel, Fornaro; Meyer, Andrea; Hoesli, Irène; Bitzer, Johannes; Alder, Judith

    2011-02-01

    stress during pregnancy can have adverse effects on the course of pregnancy and on fetal development. There are few studies investigating the outcome of stress reduction interventions on maternal well-being and obstetric outcome. this study aims (1) to obtain fetal behavioral states (quiet/active sleep, quiet/active wakefulness), (2) to investigate the effects of maternal relaxation on fetal behavior as well as on uterine activity, and (3) to investigate maternal physiological and endocrine parameters as potential underlying mechanisms for maternal-fetal relaxation-transferral. the behavior of 33 fetuses was analyzed during laboratory relaxation/quiet rest (control group, CG) and controlled for baseline fetal behavior. Potential associations between relaxation/quiet rest and fetal behavior (fetal heart rate (FHR), FHR variation, FHR acceleration, and body movements) and uterine activity were studied, using a computerized cardiotocogram (CTG) system. Maternal heart rate, blood pressure, cortisol, and norepinephrine were measured. intervention (progressive muscle relaxation, PMR, and guided imagery, GI) showed changes in fetal behavior. The intervention groups had higher long-term variation during and after relaxation compared to the CG (p=.039). CG fetuses had more FHR acceleration, especially during and after quiet rest (p=.027). Women in the PMR group had significantly more uterine activity than women in the GI group (p=.011) and than CG women. Maternal heart rate, blood pressure, and stress hormones were not associated with fetal behavior. this study indicates that the fetus might participate in maternal relaxation and suggests that GI is superior to PMR. This could especially be true for women who tend to direct their attention to body sensations such as abdominal activity. 2010 Elsevier Ltd. All rights reserved.

  18. Center for dielectric studies

    Science.gov (United States)

    Cross, L. E.; Newnham, R. E.; Biggers, J. V.

    1984-05-01

    This report focuses upon the parts of the Center program which have drawn most extensively upon Navy funds. In the basic study of polarization processes in high K dielectrics, major progress has been made in understanding the mechanisms in relaxor ferroelectric in the perovskite structure families. A new effort is also being mounted to obtain more precise evaluation of the internal stress effects in fine grained barium titanate. Related to reliability, studies of the effects of induced macro-defects are described, and preparation for the evaluation of space charge by internal potential distribution measurements discussed. To develop new processing methods for very thin dielectric layers, a new type of single barrier layer multilayer is discussed, and work on the thermal evaporation of oriented crystalline antimony sulphur iodide describe.

  19. Process and Microstructure to Achieve Ultra-high Dielectric Constant in Ceramic-Polymer Composites

    Science.gov (United States)

    Zhang, Lin; Shan, Xiaobing; Bass, Patrick; Tong, Yang; Rolin, Terry D.; Hill, Curtis W.; Brewer, Jeffrey C.; Tucker, Dennis S.; Cheng, Z.-Y.

    2016-01-01

    Influences of process conditions on microstructure and dielectric properties of ceramic-polymer composites are systematically studied using CaCu3Ti4O12 (CCTO) as filler and P(VDF-TrFE) 55/45 mol.% copolymer as the matrix by combining solution-cast and hot-pressing processes. It is found that the dielectric constant of the composites can be significantly enhanced–up to about 10 times – by using proper processing conditions. The dielectric constant of the composites can reach more than 1,000 over a wide temperature range with a low loss (tan δ ~ 10−1). It is concluded that besides the dense structure of composites, the uniform distribution of the CCTO particles in the matrix plays a key role on the dielectric enhancement. Due to the influence of the CCTO on the microstructure of the polymer matrix, the composites exhibit a weaker temperature dependence of the dielectric constant than the polymer matrix. Based on the results, it is also found that the loss of the composites at low temperatures, including room temperature, is determined by the real dielectric relaxation processes including the relaxation process induced by the mixing. PMID:27767184

  20. Frequency and temperature dependent dielectric properties of TiO2-V2O5 nanocomposites

    Science.gov (United States)

    Ray, Apurba; Roy, Atanu; De, Sayan; Chatterjee, Souvik; Das, Sachindranath

    2018-03-01

    In this manuscript, we have reported the crystal structure, dielectric response, and transport phenomenon of TiO2-V2O5 nanocomposites. The nanocomposites were synthesized using a sol-gel technique having different molar ratios of Ti:V (10:10, 10:15, and 10:20). The phase composition and the morphology have been studied using X-ray diffraction and field emission scanning electron microscope, respectively. The impedance spectroscopy studies of the three samples over a wide range of temperature (50 K-300 K) have been extensively described using the internal barrier layer capacitor model. It is based on the contribution of domain and domain boundary, relaxations of the materials, which are the main crucial factors for the enhancement of the dielectric response. The frequency dependent ac conductivity of the ceramics strongly obeys the well-known Jonscher's power law, and it has been clearly explained using the theory of jump relaxation model. The temperature dependent bulk conductivity is fairly recognized to the variable-range hopping of localized polarons. The co-existence of mixed valence state of Ti ions (Ti3+ and Ti4+) in the sample significantly contributes to the change of dielectric property. The overall study of dielectric response explains that the dielectric constant and the dielectric loss are strongly dependent on temperature and frequency and decrease with an increase of frequency as well as temperature.

  1. Dielectric properties of single wall carbon nanotubes-based gelatin phantoms

    Science.gov (United States)

    Altarawneh, M. M.; Alharazneh, G. A.; Al-Madanat, O. Y.

    In this work, we report the dielectric properties of Single wall Carbon Nanotubes (SWCNTs)-based phantom that is mainly composed of gelatin and water. The fabricated gelatin-based phantom with desired dielectric properties was fabricated and doped with different concentrations of SWCNTs (e.g., 0%, 0.05%, 0.10%, 0.15%, 0.2%, 0.4% and 0.6%). The dielectric constants (real ɛ‧ and imaginary ɛ‧‧) were measured at different positions for each sample as a function of frequency (0.5-20GHz) and concentrations of SWCNTs and their averages were found. The Cole-Cole plot (ɛ‧ versus ɛ‧‧) was obtained for each concentration of SWCNTs and was used to obtain the static dielectric constant ɛs, the dielectric constant at the high limit of frequency ɛ∞ and the average relaxation time τ. The measurements showed that the fabricated samples are in good homogeneity and the SWCNTs are dispersed well in the samples as an acceptable standard deviation is achieved. The study showed a linear increase in the static dielectric constant ɛs and invariance of the average relaxation time τ and the value of ɛ∞ at room temperature for the investigated concentrations of SWCNTs.

  2. Electromechanical response of silicone dielectric elastomers

    Science.gov (United States)

    Cârlescu, V.; Prisăcaru, G.; Olaru, D.

    2016-08-01

    This paper presents an experimental technique to investigate the electromechanical properties of silicone dielectric elastomers actuated with high DC electric fields. A non-contact measurement technique is used to capture and monitor the thickness strain (contraction) of a circular film placed between two metallic disks electrodes. Two active fillers such as silica (10, 15 and 30 wt%) and barium titanate (5 and 15 wt%) were incorporated in order to increase the actuation performance. Thickness strain was measured at HV stimuli up to 4.5 kV and showed a quadratic dependence against applied electric field indicating that the induced strain is triggered by the Maxwell effect and/or electrostriction phenomenon as reported in literature. The actuation process evidences a rapid contraction upon HV activation and a slowly relaxation when the electrodes are short-circuit due to visco-elastic nature of elastomers. A maximum of 1.22 % thickness strain was obtained at low actuating field intensity (1.5 V/pm) comparable with those reported in literature for similar dielectric elastomer materials.

  3. Dielectric Properties of PE/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    E. David

    2013-01-01

    Full Text Available Polyethylene/nanoclay specimens containing from 0 to 5% nanoclays were prepared from a commercially available premixed PE/nanoclay masterbatch containing 50% wt of nanoclay. The masterbatch was diluted to the desired concentration by adding PE along with various amounts of compatibilizer in order to achieve the best possible dispersion of the nanoclay platelets. The dielectric response of the compounded samples was investigated using a combination of time and frequency-domain spectroscopy in order to cover a wide frequency window. Both techniques were in good agreement when the time-domain data was transformed into frequency-domain data. Despite their low concentration, the addition of the dispersed nanoclays led to a significant alteration of the material dielectric response in the form of the appearance of various interfacial relaxation processes and an increase of charge carrier transport within the insulation material. Moreover, an onset of nonlinear charge transport process was observed at moderate fields for specimens containing a relatively low level of nanoclays. The high-field breakdown strength was shown to have been improved by the incorporation of the nanoparticles, particularly when the exfoliation was enhanced by the use of a maleic anhydride grafted polyethylene compatibilizer.

  4. Dielectric Wakefield Researches

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Onishchenko, N.I.; Uskov, V.V.; Marshall, T.C.

    2006-01-01

    Excitation of wakefield in cylindrical dielectric waveguide/resonator by a sequence of relativistic electron bunches was investigated using an electron linac 'Almaz-2' (4.5 MeV, 6·10 3 bunches of duration 60 ps and charge 0.32 nC each). Energy spectrum of electrons, radial topography and longitudinal distribution of wakefield, and total energy of excited wakefield were measured by means of magnetic analyzer, high frequency probe, and a sensitive calorimeter

  5. Irradiation creep, stress relaxation and a mechanical equation of state

    International Nuclear Information System (INIS)

    Foster, J.P.

    1976-01-01

    Irradiation creep and stress relaxation data are available from the United Kingdom for 20 percent CW M316, 20 percent CW FV 548 and FHT PE16 using pure torsion in the absence of swelling at 300 0 C. Irradiation creep models were used to calculate the relaxation and permanent deflection of the stress relaxation tests. Two relationships between irradiation creep and stress relaxation were assessed by comparing the measured and calculated stress relaxation and permanent deflection. The results show that for M316 and FV548, the stress relaxation and deflection may be calculated using irradiation creep models when the stress rate term arising from the irradiation creep model is set equal to zero. In the case of PE16, the inability to calculate the stress relaxation and permanent deflection from the irradiation creep data was attributed to differences in creep behavior arising from lot-to-lot variations in alloying elements and impurity content. A modification of the FV548 and PE16 irradiation creep coefficients was necessary in order to calculate the stress relaxation and deflection. The modifications in FV548 and PE16 irradiation creep properties reduces the large variation in the transient or incubation parameter predicted by irradiation creep tests for M316, FV548 and PE16

  6. Interpreting the nonlinear dielectric response of glass-formers in terms of the coupling model

    Energy Technology Data Exchange (ETDEWEB)

    Ngai, K. L. [CNR-IPCF, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy and Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy)

    2015-03-21

    Nonlinear dielectric measurements at high electric fields of glass-forming glycerol and propylene carbonate initially were carried out to elucidate the dynamic heterogeneous nature of the structural α-relaxation. Recently, the measurements were extended to sufficiently high frequencies to investigate the nonlinear dielectric response of faster processes including the so-called excess wing (EW), appearing as a second power law at high frequencies in the loss spectra of many glass formers without a resolved secondary relaxation. While a strong increase of dielectric constant and loss is found in the nonlinear dielectric response of the α-relaxation, there is a lack of significant change in the EW. A surprise to the experimentalists finding it, this difference in the nonlinear dielectric properties between the EW and the α-relaxation is explained in the framework of the coupling model by identifying the EW investigated with the nearly constant loss (NCL) of caged molecules, originating from the anharmonicity of the intermolecular potential. The NCL is terminated at longer times (lower frequencies) by the onset of the primitive relaxation, which is followed sequentially by relaxation processes involving increasing number of molecules until the terminal Kohlrausch α-relaxation is reached. These intermediate faster relaxations, combined to form the so-called Johari-Goldstein (JG) β-relaxation, are spatially and dynamically heterogeneous, and hence exhibit nonlinear dielectric effects, as found in glycerol and propylene carbonate, where the JG β-relaxation is not resolved and in D-sorbitol where it is resolved. Like the linear susceptibility, χ{sub 1}(f), the frequency dispersion of the third-order dielectric susceptibility, χ{sub 3}(f), was found to depend primarily on the α-relaxation time, and independent of temperature T and pressure P. I show this property of the frequency dispersions of χ{sub 1}(f) and χ{sub 3}(f) is the characteristic of the many

  7. Dielectric lattice gauge theory

    International Nuclear Information System (INIS)

    Mack, G.

    1983-06-01

    Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)epsilong that are attached to the links b = (x+esub(μ),x) of the lattice and take their values in the linear space g which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)osub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportionalosub(i)osub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson loop expectation values show an area law decay, if the Euclidean action has certain qualitative features which imply that PHI = 0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)

  8. Dielectric lattice gauge theory

    International Nuclear Information System (INIS)

    Mack, G.

    1984-01-01

    Dielectric lattice gauge theory models are introduced. They involve variables PHI(b)element ofG that are attached to the links b = (x+esub(μ), x) of the lattice and take their values in the linear space G which consists of real linear combinations of matrices in the gauge group G. The polar decomposition PHI(b)=U(b)sigmasub(μ)(x) specifies an ordinary lattice gauge field U(b) and a kind of dielectric field epsilonsub(ij)proportional sigmasub(i)sigmasub(j)sup(*)deltasub(ij). A gauge invariant positive semidefinite kinetic term for the PHI-field is found, and it is shown how to incorporate Wilson fermions in a way which preserves Osterwalder-Schrader positivity. Theories with G = SU(2) and without matter fields are studied in some detail. It is proved that confinement holds, in the sense that Wilson-loop expectation values show an area law decay, if the euclidean action has certain qualitative features which imply that PHI=0 (i.e. dielectric field identical 0) is the unique maximum of the action. (orig.)

  9. Femtosecond tracking of carrier relaxation in germanium with extreme ultraviolet transient reflectivity

    Science.gov (United States)

    Kaplan, Christopher J.; Kraus, Peter M.; Ross, Andrew D.; Zürch, Michael; Cushing, Scott K.; Jager, Marieke F.; Chang, Hung-Tzu; Gullikson, Eric M.; Neumark, Daniel M.; Leone, Stephen R.

    2018-05-01

    Extreme ultraviolet (XUV) transient reflectivity around the germanium M4 ,5 edge (3 d core-level to valence transition) at 30 eV is advanced to obtain the transient dielectric function of crystalline germanium [100] on femtosecond to picosecond time scales following photoexcitation by broadband visible-to-infrared (VIS/NIR) pulses. By fitting the transient dielectric function, carrier-phonon induced relaxations are extracted for the excited carrier distribution. The measurements reveal a hot electron relaxation rate of 3.2 ±0.2 ps attributed to the X -L intervalley scattering and a hot hole relaxation rate of 600 ±300 fs ascribed to intravalley scattering within the heavy hole (HH) band, both in good agreement with previous work. An overall energy shift of the XUV dielectric function is assigned to a thermally induced band gap shrinkage by formation of acoustic phonons, which is observed to be on a timescale of 4-5 ps, in agreement with previously measured optical phonon lifetimes. The results reveal that the transient reflectivity signal at an angle of 66∘ with respect to the surface normal is dominated by changes to the real part of the dielectric function, due to the near critical angle of incidence of the experiment (66∘-70∘) for the range of XUV energies used. This work provides a methodology for interpreting XUV transient reflectivity near core-level transitions, and it demonstrates the power of the XUV spectral region for measuring ultrafast excitation dynamics in solids.

  10. Dielectric spectroscopy of [P(NID2OD-T2)]n thin films: Effects of UV radiation on charge transport

    International Nuclear Information System (INIS)

    Sepulveda, Pablo I.; Rosado, Alexander O.; Pinto, Nicholas J.

    2014-01-01

    Poly[N,N′-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide) -2,6-diyll-alt-5,5′-(2,2′-bithiophene)]-[P(ND12OD-T2)] n is a n-doped polymer that is stable in air. Low frequency (40 Hz–30 kHz) dielectric spectroscopy shows that the polymer impedance strength is reduced under ultra-violet (UV) radiation as a result of charge increase in the bulk polymer. Photo-excitation and the creation of electron-hole pairs and subsequent hole recombination with electron trapping species adsorbed by the polymer are suggested as possible doping mechanisms. The relaxation times were also faster in the presence of UV indicating multiple pathways for oscillating dipoles to relax. These results imply increased polymer conductance with corresponding enhancement of charge mobility due to reduced scattering in the presence of UV radiation. A thin film field effect transistor was fabricated using this polymer as the active material and characterized in the presence of UV radiation. As expected, the device exhibited n-type behavior with a charge mobility of 3.0 × 10 −3 cm 2 /V-s. Exposure to UV radiation increased the channel current, shifted the threshold voltage to more negative values and doubled the value of the mobility. These results are consistent with dielectric measurements and suggest an easy method of increasing device currents and charge mobility in this polymer via UV irradiation. - Highlights: • Ultra-violet (UV) radiation dopes the polymer. • The doping is n-type. • UV radiation enhances charge mobility without post polymer processing. • Dielectric spectroscopy and field effect transistor results are self-consistent

  11. Ultrasonic and dielectric studies of polymer PDMS composites with ZnO and onion-like carbons nanoinclusions

    OpenAIRE

    Samulionis, Vytautas; Macutkevič, Jan; Banys, Jūras; Shenderova, Olga

    2015-01-01

    The ultrasonic and dielectric temperature investigations were performed in polydi-methylsiloxane (PDMS) with zinc oxide (ZnO) and onion-like carbon (OLC) nanocomposites. In the glass transition region, the ultrasonic velocity dispersion and large ultrasonic attenuation maxima were observed. The positions of ultrasonic attenuation peaks were slightly shifted to higher temperatures after doping PDMS with OLC and ZnO nanoparticles. The ultrasonic relaxation was compared to that of dielectric and...

  12. Slow stress relaxation behavior of cohesive powders

    NARCIS (Netherlands)

    Imole, Olukayode Isaiah; Paulick, Maria; Magnanimo, Vanessa; Morgenmeyer, Martin; Ramaioli, Marco; Chavez Montes, Bruno E.; Kwade, Arno; Luding, Stefan

    2016-01-01

    We present uniaxial (oedometric) compression tests on two cohesive industrially relevant granular materials (cocoa and limestone powder). A comprehensive set of experiments is performed using two devices – the FT4 Powder Rheometer and the custom made lambdameter – in order to investigate the

  13. A Block-Asynchronous Relaxation Method for Graphics Processing Units

    OpenAIRE

    Anzt, H.; Dongarra, J.; Heuveline, Vincent; Tomov, S.

    2011-01-01

    In this paper, we analyze the potential of asynchronous relaxation methods on Graphics Processing Units (GPUs). For this purpose, we developed a set of asynchronous iteration algorithms in CUDA and compared them with a parallel implementation of synchronous relaxation methods on CPU-based systems. For a set of test matrices taken from the University of Florida Matrix Collection we monitor the convergence behavior, the average iteration time and the total time-to-solution time. Analyzing the r...

  14. Molecular motions in sucrose-PVP and sucrose-sorbitol dispersions-II. Implications of annealing on secondary relaxations.

    Science.gov (United States)

    Bhattacharya, Sisir; Bhardwaj, Sunny P; Suryanarayanan, Raj

    2014-10-01

    To determine the effect of annealing on the two secondary relaxations in amorphous sucrose and in sucrose solid dispersions. Sucrose was co-lyophilized with either PVP or sorbitol, annealed for different time periods and analyzed by dielectric spectroscopy. In an earlier investigation, we had documented the effect of PVP and sorbitol on the primary and the two secondary relaxations in amorphous sucrose solid dispersions (1). Here we investigated the effect of annealing on local motions, both in amorphous sucrose and in the dispersions. The average relaxation time of the local motion (irrespective of origin) in sucrose, decreased upon annealing. However, the heterogeneity in relaxation time distribution as well as the dielectric strength decreased only for β1- (the slower relaxation) but not for β2-relaxations. The effect of annealing on β2-relaxation times was neutralized by sorbitol while PVP negated the effect of annealing on both β1- and β2-relaxations. An increase in local mobility of sucrose brought about by annealing could be negated with an additive.

  15. Dielectric properties of lunar surface

    Science.gov (United States)

    Yushkova, O. V.; Kibardina, I. N.

    2017-03-01

    Measurements of the dielectric characteristics of lunar soil samples are analyzed in the context of dielectric theory. It has been shown that the real component of the dielectric permittivity and the loss tangent of rocks greatly depend on the frequency of the interacting electromagnetic field and the soil temperature. It follows from the analysis that one should take into account diurnal variations in the lunar surface temperature when interpreting the radar-sounding results, especially for the gigahertz radio range.

  16. Current leakage relaxation and charge trapping in ultra-porous low-k materials

    International Nuclear Information System (INIS)

    Borja, Juan; Plawsky, Joel L.; Gill, William N.; Lu, T.-M.; Bakhru, Hassaram

    2014-01-01

    Time dependent dielectric failure has become a pivotal aspect of interconnect design as industry pursues integration of sub-22 nm process-technology nodes. Literature has provided key information about the role played by individual species such as electrons, holes, ions, and neutral impurity atoms. However, no mechanism has been shown to describe how such species interact and influence failure. Current leakage relaxation in low-k dielectrics was studied using bipolar field experiments to gain insight into how charge carrier flow becomes impeded by defects within the dielectric matrix. Leakage current decay was correlated to injection and trapping of electrons. We show that current relaxation upon inversion of the applied field can be described by the stretched exponential function. The kinetics of charge trapping events are consistent with a time-dependent reaction rate constant, k=k 0 ⋅(t+1) β−1 , where 0 < β < 1. Such dynamics have previously been observed in studies of charge trapping reactions in amorphous solids by W. H. Hamill and K. Funabashi, Phys. Rev. B 16, 5523–5527 (1977). We explain the relaxation process in charge trapping events by introducing a nonlinear charge trapping model. This model provides a description on the manner in which the transport of mobile defects affects the long-tail current relaxation processes in low-k films

  17. Effects of gamma ray irradiation on the radiation resistance, dielectric and mechanical properties of polyvinylchloride containing plasticizer and stabilizer

    International Nuclear Information System (INIS)

    Kim, B.H.; Lee, J.I.; Kang, D.Y.

    1977-01-01

    To investigate the properties of radiation resistance together with dielectric and mechanical relaxation behaviors of polyvinylchloride exposed to several different doses under the gamma ray of cobalt-60 source, experiments were carried out using the specimens prepared by mixing dibutyl-tin-dilaurate and dibutyl-tin-dimaleate as stabilizers with or without adding dioctylphthalate as a plasticizer. The origin of the absorption band at 1540-1640 cm -1 on infrared spectrum seemed to be RCOO - ion obtained from the ionization of the stabilizer, and this peak could be useful as a measure of radiation resistance on polyvinylchloride. Addition of increasing plasticizer to polyvinylchloride exhibited increasing radiation resistance and the reason for the result might be attributable to aromatic resonance adsorption of radiation energy by the dioctylphthalate. On dose dependent dielectric characteristics, nonplastized specimen showed peak at about 10 Mrad and that the peak disappeared on the plastification of specimens. Such phenomena might be explainable in considering the statistical distribution of scissored chain molecular segments as well as the plastification process of the plasticizer to polyvinylchloride chain molecules. (author)

  18. Influence of lanthanum distribution on dielectric and ferroelectric properties of BaBi4-xLaxTi4O15 ceramics

    International Nuclear Information System (INIS)

    Khokhar, Anita; Goyal, Parveen K.; Thakur, O.P.; Shukla, A.K.; Sreenivas, K.

    2015-01-01

    Structural and electrical properties of Lanthanum substituted barium bismuth titanate BaBi 4-x La x Ti 4 O 15 (0 ≤ x ≤ 0.50) ceramics prepared by conventional solid-state reaction method have been investigated. Raman spectra reveals the distribution of lanthanum into the perovskite layers and (Bi 2 O 2 ) 2+ layers of BaBi 4 Ti 4 O 15 ceramics. Room temperature dielectric constant (ε′) increases and considerable reduction in the low frequency (10 −2 to 10 Hz) dielectric losses and in dc conductivity (σ dc ) are seen with lanthanum substitution. A critical La content of x ∼0.20 in BaBi 4-x La x Ti 4 O 15 exhibits a well-defined relaxor behavior as seen from the temperature and frequency dependence of the dielectric parameters ε′(T) and ε″(T). The dielectric data fit well to the modified Curie–Weiss law and the Lorentz-type relation and show increasing diffuseness in the phase transition with increasing La content. The temperature dependence of the characteristic relaxation time obtained from the Cole–Cole model shows a good fit to the non-linear Vogel–Fulcher relation. Improvements in the remnant polarization and a stable piezoelectric charge coefficient are seen up to a La content of x ∼0.20. The observed increase in dielectric loss and σ dc in addition to the diminished ferroelectric/piezoelectric properties for higher La content are explained in terms of changing oxygen vacancy concentration and structural relaxation due to the preferential incorporation of La into the (Bi 2 O 2 ) 2+ layers as evidenced through the Raman spectroscopy. - Highlights: • La distribution in BaBi 4-x La x Ti 4 O 15 ceramics is analyzed through Raman spectroscopy. • Low and a nearly constant loss over wide frequency range (10 −2 –10 7  Hz) obtained. • Critical La content x = 0.2 identified for high resistivity and ideal relaxor characteristics. • Improved P-E hysteresis loops and large remnant polarization measured. • Changes in the

  19. Dynamics of the slow mode in the family of six-carbon monosaccharides monitored by dielectric spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, K; Kaminska, E; Wlodarczyk, P; Adrjanowicz, K; Wojnarowska, Z; Grzybowska, K; Paluch, M [Institute of Physics, Silesian University, ulica Uniwersytecka 4, 40-007 Katowice (Poland)

    2010-09-15

    Broadband dielectric measurements performed on D-glucose, L-sorbose, D-fructose and D-galactose revealed that, except for the structural relaxation process, one can detect in the liquid phase of these carbohydrates a much slower relaxation mode. Recently we have demonstrated that in D-glucose this relaxation mode might be related to the long range correlation of density fluctuations (LRCDF), also called Fischer clusters (FC). Based on the dielectric data obtained for the four monosaccharides we were able to make a more general conclusion about the characteristic dielectric features of the slow mode in the whole family of carbohydrates. We found out that the timescale separation between structural and considered relaxation reaches up to six decades at the glass transition temperature and the dielectric strength decreases significantly with lowering temperature. Another very interesting feature of the slow process is that it can be described by an almost exponential response function. We have found out that the fragility of the slow process lies within the range m = 44-50. Finally, we have also shown that there is a close link between structural and slow relaxation.

  20. Structure and dielectric properties of (Ba{sub 0.7}Sr{sub 0.3}){sub 1-x}Na{sub x}(Ti{sub 0.9}Sn{sub 0.1}){sub 1-x}Nb{sub x}O{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ghoudi, Hanen; Khirouni, Kamel [Universite de Gabes, Laboratoire de Physique des Materiaux et des Nanomateriaux Appliquee a l' Environnement (La Phy MNE), Faculte des Sciences de Gabes, Gabes (Tunisia); Chkoundali, Souad [Universite de Sfax, Laboratoire des Materiaux Multifonctionnels et Applications (LaMMA), Faculte des Sciences de Sfax (FSS), Sfax (Tunisia); Aydi, Abdelhedi [Universite de Gabes, Laboratoire de Physique des Materiaux et des Nanomateriaux Appliquee a l' Environnement (La Phy MNE), Faculte des Sciences de Gabes, Gabes (Tunisia); Universite de Sfax, Laboratoire des Materiaux Multifonctionnels et Applications (LaMMA), Faculte des Sciences de Sfax (FSS), Sfax (Tunisia)

    2017-11-15

    (Ba{sub 0.7}Sr{sub 0.3}){sub 1-x}Na{sub x}(Ti{sub 0.9}Sn{sub 0.1}){sub 1-x}Nb{sub x}O{sub 3} ceramics with compositions x = 0.6, 0.7, 0.8 and 0.9 were synthesized using the solid-state reaction method. These ceramics were examined by X-ray diffraction and dielectric measurements over a broad temperature and frequency ranges. X-ray diffraction patterns revealed a single-perovskite phase crystallized in a cubic structure, for x < 0.8, and in tetragonal, for x ≥ 0.8, with Pm3m and P4mm spaces groups, respectively. Two types of behaviors, classical ferroelectric or relaxor, were observed depending on the x composition. It is noted that temperatures T{sub C} (the Curie temperature) or T{sub m} (the temperature of maximum permittivity) rise when x increases and the relaxor character grows more significantly when x composition decreases. To analyze the dielectric relaxation degree of relaxor, various models were considered. It was proven that an exponential function could well describe the temperature dependence of the static dielectric constant and relaxation time. (orig.)