WorldWideScience

Sample records for dielectric microwave resonators

  1. Investigations on perturbations of microwave dielectric resonator thermometer

    International Nuclear Information System (INIS)

    Yu, Lili; Zhang, Guangming; Fernicola, V; Lu, Jinchuan

    2017-01-01

    Investigations of antenna probe length, antenna-dielectric distance, cavity filling and humidity on microwave resonator thermometer with respect to Q , spurious mode depression, coupling strength, accuracy, shock resistance or sensitivity were carried out in order to improve the dielectric resonator thermometer performance. Significant improvement of Q and depression of spurious mode coupling were obtained when the antenna length was reduced. It also turns out that the Q and spurious mode coupling strength vary with the distance between dielectric and antenna pin, as well under appropriate antenna length. Filling the cavity with nitrogen increases coupling strength but decrease frequency-temperature sensitivity compared to a vacuum-pumped cavity. Besides, preliminary results on the microwave resonator sensitivity to air humidity were obtained. (technical note)

  2. Precise microwave characterization of MgO substrates for HTS circuits with superconducting post dielectric resonator

    International Nuclear Information System (INIS)

    Mazierska, Janina; Ledenyov, Dimitri; Jacob, Mohan V; Krupka, Jerzy

    2005-01-01

    Accurate data of complex permittivity of dielectric substrates are needed for efficient design of HTS microwave planar circuits. We have tested MgO substrates from three different manufacturing batches using a dielectric resonator with superconducting parts recently developed for precise microwave characterization of laminar dielectrics at cryogenic temperatures. The measurement fixture has been fabricated using a SrLaAlO 3 post dielectric resonator with DyBa 2 Cu 3 O 7 end plates and silver-plated copper sidewalls to achieve the resolution of loss tangent measurements of 2 x 10 -6 . The tested MgO substrates exhibited the average relative permittivity of 9.63 and tanδ from 3.7 x 10 -7 to 2 x 10 -5 at frequency of 10.5 GHz in the temperature range from 14 to 80 K

  3. Precise microwave characterization of MgO substrates for HTS circuits with superconducting post dielectric resonator

    Energy Technology Data Exchange (ETDEWEB)

    Mazierska, Janina [Institute of Information Sciences and Technology, Massey University, Palmerston North, P. Bag 11222 (New Zealand); Ledenyov, Dimitri [Electrical and Computer Engineering, James Cook University, Townsville, Q4811 (Australia); Jacob, Mohan V [Electrical and Computer Engineering, James Cook University, Townsville, Q4811 (Australia); Krupka, Jerzy [Instytut Mikroelektroniki i Optoelektroniki Politechniki Warszawskiej, Koszykowa 75, 00-662 Warsaw (Poland)

    2005-01-01

    Accurate data of complex permittivity of dielectric substrates are needed for efficient design of HTS microwave planar circuits. We have tested MgO substrates from three different manufacturing batches using a dielectric resonator with superconducting parts recently developed for precise microwave characterization of laminar dielectrics at cryogenic temperatures. The measurement fixture has been fabricated using a SrLaAlO{sub 3} post dielectric resonator with DyBa{sub 2}Cu{sub 3}O{sub 7} end plates and silver-plated copper sidewalls to achieve the resolution of loss tangent measurements of 2 x 10{sup -6}. The tested MgO substrates exhibited the average relative permittivity of 9.63 and tan{delta} from 3.7 x 10{sup -7} to 2 x 10{sup -5} at frequency of 10.5 GHz in the temperature range from 14 to 80 K.

  4. Trends of microwave dielectric materials for antenna application

    International Nuclear Information System (INIS)

    Sulong, T. A. T.; Osman, R. A. M.; Idris, M. S.

    2016-01-01

    Rapid development of a modern microwave communication system requires a high quality microwave dielectric ceramic material to be used as mobile and satellite communication. High permittivity of dielectric ceramics leads to fabrication of compact device for electronic components. Dielectric ceramics which used for microwave applications required three important parameters such as high or appropriate permittivity (ε_r), high quality factor (Q _f ≥ 5000 GH z) and good temperature coefficient of resonant frequency (τ_f). This paper review of various dielectric ceramic materials used as microwave dielectric materials and related parameters for antenna applications.

  5. Trends of microwave dielectric materials for antenna application

    Energy Technology Data Exchange (ETDEWEB)

    Sulong, T. A. T., E-mail: tuanamirahtuansulong@gmail.com; Osman, R. A. M., E-mail: rozana@unimap.edu.my [School of Microelectronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis (Malaysia); Idris, M. S., E-mail: sobri@unimap.edu.my [Sustainable Engineering Research Cluster, School of Material Engineering, Universiti Malaysia Perlis, Blok B, Taman Pertiwi Indah, Seriab, 01000 Kangar, Perlis (Malaysia)

    2016-07-19

    Rapid development of a modern microwave communication system requires a high quality microwave dielectric ceramic material to be used as mobile and satellite communication. High permittivity of dielectric ceramics leads to fabrication of compact device for electronic components. Dielectric ceramics which used for microwave applications required three important parameters such as high or appropriate permittivity (ε{sub r}), high quality factor (Q {sub f} ≥ 5000 GH z) and good temperature coefficient of resonant frequency (τ{sub f}). This paper review of various dielectric ceramic materials used as microwave dielectric materials and related parameters for antenna applications.

  6. Microwave oscillator with 'whispering gallery' resonator

    International Nuclear Information System (INIS)

    Kirichenko, A.Ya.; Prokopenko, Yu.V.; Filippov, Yu.F.; Lonin, Yu.F.; Papkovich, V.G.; Ponomarev, A.G.; Prokopenko, Yu.V.; Uvarov, V.T.

    2010-01-01

    It was presented researches of a generation of microwave radiation into system with azimuthally periodical relativistic electron beam current that excites a high-Q quasi-optical dielectric resonator. The Eigen parameters of cylindrical Teflon resonator were determined by numerical computation. Registration of the microwave radiation realizes by a crystal set of 8-mm wavelength range. Research projects of microwave oscillators with high-Q resonators, in which 'whispering gallery' oscillations are excited by an electron flow, are presented. Multiresonator oscillators ideology is based on principles of microwave generation in klystrons with both subcritical and supercritical electron beams currents.

  7. High-Q microwave resonators with a photonic crystal structure

    International Nuclear Information System (INIS)

    Schuster, M.

    2001-08-01

    The localisation of electromagnetic energy at a defect in a photonic crystal is similar to a well known effect employed to construct high-Q microwave resonators: In a whispering gallery (WHG-) mode resonator the high Q-factor is achieved by localisation of the electromagnetic field energy by total reflection inside a disk made of dielectric material. The topic of this work is to demonstrate, that WHG-like modes can exist in an air defect in a photonic crystal that extends over several lattice periods; and that a high-Q microwave resonator can be made, utilizing these resonant modes. In numerical simulations, the transmission properties of a photonic crystal structure with hexagonal lattice symmetry have been investigated with a transfer-matrix-method. The eigenmodes of a defect structure in a photonic crystal have been calculated with a quasi-3d finite element integration technique. Experimental results confirm the simulated transmission properties and show the existence of modes inside the band gap, when a defect is introduced in the crystal. Resonator measurements show that a microwave resonator can be operated with those defect modes. It was found out that the main losses of the resonator were caused by bad microwave properties of the used dielectric material and by metal losses on the top and bottom resonator walls. Furthermore, it turned out that the detection of the photonic crystal defect mode was difficult because of a lack of simulation possibilities and high housing mode density in the resonator. (orig.)

  8. Contribution to the microwave characterisation of superconductive materials by means of sapphire resonators

    International Nuclear Information System (INIS)

    Hanus, Xavier

    1993-01-01

    The objective of this research thesis is to find a compact resonant structure which would allow the residual surface impedance of superconductive samples to be simply, quickly and economically characterised. The author first explains why he decided to use a sapphire single-crystal as inner dielectric, given some performance reached by resonant structures equipped with such inner dielectrics, and given constraints adopted from the start. He explains the origin of microwave losses which appear in this type of resonant structure, i.e. respectively the surface impedance as far as metallic losses are concerned, and the sapphire dielectric loss angle for as far as dielectric losses are concerned. The experimental installation and the principle of microwave measurements are described. The performance of different possible solutions of resonant structures from starting criteria is presented. The solution of the cavity-sapphire with a TE 011 resonant mode is derived [fr

  9. Achieving a multi-band metamaterial perfect absorber via a hexagonal ring dielectric resonator

    Science.gov (United States)

    Li, Li-Yang; Wang, Jun; Du, Hong-Liang; Wang, Jia-Fu; Qu, Shao-Bo

    2015-06-01

    A multi-band absorber composed of high-permittivity hexagonal ring dielectric resonators and a metallic ground plate is designed in the microwave band. Near-unity absorptions around 9.785 GHz, 11.525 GHz, and 12.37 GHz are observed for this metamaterial absorber. The dielectric hexagonal ring resonator is made of microwave ceramics with high permittivity and low loss. The mechanism for the near-unity absorption is investigated via the dielectric resonator theory. It is found that the absorption results from electric and magnetic resonances where enhanced electromagnetic fields are excited inside the dielectric resonator. In addition, the resonance modes of the hexagonal resonator are similar to those of standard rectangle resonators and can be used for analyzing hexagonal absorbers. Our work provides a new research method as well as a solid foundation for designing and analyzing dielectric metamaterial absorbers with complex shapes. Project supported by the National Natural Science Foundation of China (Grant Nos. 61331005, 11204378, 11274389, 11304393, and 61302023), the Aviation Science Foundation of China (Grant Nos. 20132796018 and 20123196015), the Natural Science Foundation for Post-Doctoral Scientists of China (Grant Nos. 2013M532131 and 2013M532221), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2013JM6005), and the Special Funds for Authors of Annual Excellent Doctoral Degree Dissertations of China (Grant No. 201242).

  10. Production of atmospheric pressure microwave plasma with dielectric half-mirror resonator and its application to polymer surface treatment

    Science.gov (United States)

    Sasai, Kensuke; Keyamura, Kazuki; Suzuki, Haruka; Toyoda, Hirotaka

    2018-06-01

    For the surface treatment of a polymer tube, a ring-shaped atmospheric pressure microwave plasma (APMP) using a coaxial waveguide is studied. In this APMP, a dielectric plate is used not only as a partial mirror for cavity resonation but also for the precise alignment of the discharge gap for ring-shaped plasma production. The optimum position of the dielectric plate is investigated by electromagnetic wave simulation. On the basis of simulation results, a ring-shaped plasma with good uniformity along the ring is produced. The coaxial APMP is applied to the surface treatment of ethylene tetrafluoroethylene. A very fast surface modification within 3 s is observed.

  11. Equivalent Circuit Modeling of the Dielectric Loaded Microwave Biosensor

    Directory of Open Access Journals (Sweden)

    M. T. Jilani

    2014-12-01

    Full Text Available This article describes the modeling of biological tissues at microwave frequency using equivalent lumped elements. A microwave biosensor based on microstrip ring resonator (MRR, that has been utilized previously for meat quality evaluation is used for this purpose. For the first time, the ring-resonator loaded with the lossy and high permittivity dielectric material, such as; biological tissue, in a partial overlay configuration is analyzed. The equivalent circuit modeling of the structure is then performed to identify the effect of overlay thickness on the resonance frequency. Finally, the relationship of an overlay thickness with the corresponding RC values of the meat equivalent circuit is established. Simulated, calculated and measured results are then compared for validation. Results are well agreed while the observed discrepancy is in acceptable limit.

  12. Microwave dielectric absorption spectroscopy aiming at novel dosimetry using DNAs

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, Yoshinobu; Hirayama, Makoto; Matuo, Youichirou [Research Institute of Nuclear Engineering, University of Fukui, Fukui (Japan); Sunagawa, Takeyoshi [Fukui University of Technology, Fukui (Japan)

    2017-03-15

    We are developing L-band and S-band microwave dielectric absorption systems aiming novel dosimetry using DNAs, such as plasmid DNA and genomic DNA, and microwave technology. Each system is composed of a cavity resonator, analog signal generator, circulator, power meter, and oscilloscope. Since the cavity resonator is sensitive to temperature change, we have made great efforts to prevent the fluctuation of temperature. We have developed software for controlling and measurement. By using this system, we can measure the resonance frequency, f, and ΔQ (Q is a dimensionless parameter that describes how under-damped an oscillator or resonator is, and characterizes a resonator’s bandwidth relative to its center frequency) within about 3 minutes with high accuracy. This system will be expected to be applicable to DNAs evaluations and to novel dosimetric system.

  13. Evaluation of DNA damage using microwave dielectric absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, Makoto; Matuo, Youichrou; Izumi, Yoshinobu [Research Institute of Nuclear Engineering, University of Fukui, Fukui (Japan); Sunagawa, Takeyoshi [Fukui University of Technology, Fukui (Japan)

    2016-12-15

    Evaluation of deoxyribonucleic acid (DNA)-strand break is important to elucidate the biological effect of ionizing radiations. The conventional methods for DNA-strand break evaluation have been achieved by Agarose gel electrophoresis and others using an electrical property of DNAs. Such kinds of DNA-strand break evaluation systems can estimate DNA-strand break, according to a molecular weight of DNAs. However, the conventional method needs pre-treatment of the sample and a relatively long period for analysis. They do not have enough sensitivity to detect the strand break products in the low-dose region. The sample is water, methanol and plasmid DNA solution. The plasmid DNA pUC118 was multiplied by using Escherichia coli JM109 competent cells. The resonance frequency and Q-value were measured by means of microwave dielectric absorption spectroscopy. When a sample is located at a center of the electric field, resonance curve of the frequency that existed as a standing wave is disturbed. As a result, the perturbation effect to perform a resonance with different frequency is adopted. The resonance frequency shifted to higher frequency with an increase in a concentration of methanol as the model of the biological material, and the Q-value decreased. The absorption peak in microwave power spectrum of the double-strand break plasmid DNA shifted from the non-damaged plasmid DNA. Moreover, the sharpness of absorption peak changed resulting in change in Q-value. We confirmed that a resonance frequency shifted to higher frequency with an increase in concentration of the plasmid DNA. We developed a new technique for an evaluation of DNA damage. In this paper, we report the evaluation method of DNA damage using microwave dielectric absorption spectroscopy.

  14. Evaluation of DNA damage using microwave dielectric absorption spectroscopy

    International Nuclear Information System (INIS)

    Hirayama, Makoto; Matuo, Youichrou; Izumi, Yoshinobu; Sunagawa, Takeyoshi

    2016-01-01

    Evaluation of deoxyribonucleic acid (DNA)-strand break is important to elucidate the biological effect of ionizing radiations. The conventional methods for DNA-strand break evaluation have been achieved by Agarose gel electrophoresis and others using an electrical property of DNAs. Such kinds of DNA-strand break evaluation systems can estimate DNA-strand break, according to a molecular weight of DNAs. However, the conventional method needs pre-treatment of the sample and a relatively long period for analysis. They do not have enough sensitivity to detect the strand break products in the low-dose region. The sample is water, methanol and plasmid DNA solution. The plasmid DNA pUC118 was multiplied by using Escherichia coli JM109 competent cells. The resonance frequency and Q-value were measured by means of microwave dielectric absorption spectroscopy. When a sample is located at a center of the electric field, resonance curve of the frequency that existed as a standing wave is disturbed. As a result, the perturbation effect to perform a resonance with different frequency is adopted. The resonance frequency shifted to higher frequency with an increase in a concentration of methanol as the model of the biological material, and the Q-value decreased. The absorption peak in microwave power spectrum of the double-strand break plasmid DNA shifted from the non-damaged plasmid DNA. Moreover, the sharpness of absorption peak changed resulting in change in Q-value. We confirmed that a resonance frequency shifted to higher frequency with an increase in concentration of the plasmid DNA. We developed a new technique for an evaluation of DNA damage. In this paper, we report the evaluation method of DNA damage using microwave dielectric absorption spectroscopy

  15. Enhancing the Performance of the Microwave Absorbing Materials by Using Dielectric Resonator Arrays

    Directory of Open Access Journals (Sweden)

    Omar H. Al-Zoubi

    2017-01-01

    Full Text Available We present a technique for enhancing the performance of microwave absorbing materials in terms of weight, thickness, and bandwidth. The introduced technique is based on fabricating the microwave absorbing (MA material in a structure comprised of an array of circular cylinder dielectric resonators (CDR backed by a perfect electric conductor (PEC ground plane. Numerical electromagnetic methods are employed to study the properties of the proposed MA array structures, where 3D full wave simulation using finite-element method is implemented. The obtained results show that the performance of the MA-CDR arrays significantly outperforms that of a flat layer composed of the same material and having equivalent thickness. A flat layer of MA material with thickness of 5 mm backed by perfect electric conductor (PEC shows as low as -50 dB reflection loss (RL peak and ~3 GHz 10-dB bandwidth, whereas an MA-CDR array, composed of the same MA material, of height of 4 mm can achieve as low as ~−50 dB RL peak and ~12 GHz 10-dB RL bandwidth.

  16. Investigation of dielectric properties of different cake formulations during microwave and infrared-microwave combination baking.

    Science.gov (United States)

    Sakiyan, Ozge; Sumnu, Gulum; Sahin, Serpil; Meda, Venkatesh

    2007-05-01

    Dielectric properties can be used to understand the behavior of food materials during microwave processing. Dielectric properties influence the level of interaction between food and high frequency electromagnetic energy. Dielectric properties are, therefore, important in the design of foods intended for microwave preparation. In this study, it was aimed to determine the variation of dielectric properties of different cake formulations during baking in microwave and infrared-microwave combination oven. In addition, the effects of formulation and temperature on dielectric properties of cake batter were examined. Dielectric constant and loss factor of cake samples were shown to be dependent on formulation, baking time, and temperature. The increase in baking time and temperature decreased dielectric constant and loss factor of all formulations. Fat content was shown to increase dielectric constant and loss factor of cakes.

  17. Dielectric Behavior of Low Microwave Loss Unit Cell for All Dielectric Metamaterial

    Directory of Open Access Journals (Sweden)

    Tianhuan Luo

    2015-01-01

    Full Text Available With a deep study of the metamaterial, its unit cells have been widely extended from metals to dielectrics. The dielectric based unit cells attract much attention because of the advantage of easy preparation, tunability, and higher frequency response, and so forth. Using the conventional solid state method, we prepared a kind of incipient ferroelectrics (calcium titanate, CaTiO3 with higher microwave permittivity and lower loss, which can be successfully used to construct metamaterials. The temperature and frequency dependence of dielectric constant are also measured under different sintering temperatures. The dielectric spectra showed a slight permittivity decrease with the increase of temperature and exhibited a loss of 0.0005, combined with a higher microwave dielectric constant of ~167 and quality factor Q of 2049. Therefore, CaTiO3 is a kind of versatile and potential metamaterial unit cell. The permittivity of CaTiO3 at higher microwave frequency was also examined in the rectangular waveguide and we got the permittivity of 165, creating a new method to test permittivity at higher microwave frequency.

  18. Tunability of resonance frequencies in a superconducting microwave resonator by using SrTiO sub 3 ferroelectric films

    CERN Document Server

    Sok, J; Lee, E H

    1998-01-01

    An applied dc voltage varies the dielectric constant of ferroelectric SrTiO sub 3 films. A tuning mechanism for superconducting microwave resonators was realized by using the variation in the dielectric constant of SrTiO sub 3 films. In order to estimate the values of the capacitance, C, and the loss tangent, tan delta, of SrTiO sub 3 ferroelectric capacitors, we used high-temperature superconducting microwave resonators which were composed of two ports, two poles, and dc bias circuits at the zero-field points. SrTiO sub 3 ferroelectric capacitors successfully controlled the resonant frequency of the resonator. Resonant frequencies of 3.98 GHz and 4.20 GHz were measured at bias voltages of 0 V and 50 V which correspond to capacitance values of 0.94 pF and 0.7pF, respectively. The values of the loss tangent, tan delta sub e sub f sub f , obtained in this measurements, were about 0.01.

  19. Near-Field Resonance Microwave Tomography and Holography

    Science.gov (United States)

    Gaikovich, K. P.; Smirnov, A. I.; Yanin, D. V.

    2018-02-01

    We develop the methods of electromagnetic computer near-field microwave tomography of distributed subsurface inhomogeneities of complex dielectric permittivity and of holography (shape retrieval) of internally homogeneous subsurface objects. The methods are based on the solution of the near-field inverse scattering problem from measurements of the resonance-parameter variations of microwave probes above the medium surface. The capabilities of the proposed diagnostic technique are demonstrated in the numerical simulation for sensors with a cylindrical capacitor as a probe element, the edge capacitance of which is sensitive to subsurface inhomogeneities.

  20. Dielectric Properties and Oxidation Roasting of Molybdenite Concentrate by Using Microwave Energy at 2.45 GHz Frequency

    Science.gov (United States)

    Yonglin, Jiang; Bingguo, Liu; Peng, Liu; Jinhui, Peng; Libo, Zhang

    2017-12-01

    Conversion of electromagnetic energy into heat depends largely on the dielectric properties of the material being treated. Therefore, determining the dielectric properties of molybdenite concentrate and its microwave power penetration depth in relation to a temperature increment at the commercial frequency of 2.45 GHz is necessary to design industrial microwave processing units. In this study, the dielectric constants increased as the temperature increased in the entire experimental range. The loss factor presented an opposite trend, except for 298 K to 373 K (25 °C to 100 °C) in which a cavity perturbation resonator was used. The plots of nonlinear surface fitting indicate that the increase in dielectric loss causes a considerable decrease in penetration depth, but the dielectric constants exert a small positive effect. The thermogravimetric analysis (TGA-DSC) of the molybdenite concentrate was carried out to track its thermal decomposition process, aim to a dielectric analysis during the microwave heating. MoO3 was prepared from molybdenite concentrate through oxidation roasting in a microwave heating system and a resistance furnace, respectively. The phase transitions and morphology evolutions during oxidation roasting were characterized through X-ray diffraction and scanning electron microscopy. Results show that microwave thermal technique can produce high-purity molybdenum trioxide.

  1. Design of microwave dielectric resonator antenna using MZTO-CSTO composite

    Czech Academy of Sciences Publication Activity Database

    Rajput, S.S.; Keshri, S.; Gupta, V.R.; Gupta, N.; Bovtun, Viktor; Petzelt, Jan

    2012-01-01

    Roč. 38, č. 3 (2012), s. 2355-2362 ISSN 0272-8842 Institutional research plan: CEZ:AV0Z10100520 Keywords : composites * permittivity * dielectric resonator antenna * radiation pattern Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.789, year: 2012

  2. Lattices of dielectric resonators

    CERN Document Server

    Trubin, Alexander

    2016-01-01

    This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the  expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas  and lattices of d...

  3. Light-controlled microwave whispering-gallery-mode quasi-optical resonators at 50W LED array illumination

    Directory of Open Access Journals (Sweden)

    V. B. Yurchenko

    2015-08-01

    Full Text Available We present experimental observations of light-controlled resonance effects in microwave whispering-gallery-mode quasi-optical dielectric-semiconductor disk resonators in the frequency band of 5 GHz to 20 GHz arising due to illumination from a light emitting diode (LED of 50W power range. We obtain huge enhancement of photo-sensitivity (growing with the resonator Q-factor that makes light-microwave interaction observable with an ordinary light (no laser at conventional brightness (like an office lighting in quasi-optical microwave structures at rather long (centimeter-scale wavelength. We also demonstrate non-conventional photo-response of Fano resonances when the light suppresses one group of resonances and enhances another group. The effects could be used for the optical control and quasi-optical switching of microwave propagation through either one or another frequency channel.

  4. Dielectric properties, optimum formulation and microwave baking conditions of chickpea cakes.

    Science.gov (United States)

    Alifakı, Yaşar Özlem; Şakıyan, Özge

    2017-03-01

    The aim of this study was to correlate dielectric properties with quality parameters, and to optimize cake formulation and baking conditions by response surface methodology. Weight loss, color, specific volume, hardness and porosity were evaluated. The samples with different DATEM (0.4, 0.8 and 1.2%) and chickpea flour concentrations (30, 40 and 50%) were baked in microwave oven at different power (300, 350, 400 W) and baking times (2.50, 3.0, 3.50 min). It was found that microwave power showed significant effect on color, while baking time showed effect on weight loss, porosity, hardness, specific volume and dielectric properties. Emulsifier level affected porosity, specific volume and dielectric constant. Chickpea flour level affected porosity, color, hardness and dielectric properties of cakes. The optimum microwave power, baking time, DATEM level and chickpea flour level were found as 400 W, 2.84 min, 1.2% and 30%, respectively. The comparison between conventionally baked and the microwave baked cakes at optimum points showed that color difference, weight loss, specific volume and porosity values of microwave baked cakes were less than those of conventionally baked cakes, on the other hand, hardness values were higher. Moreover, a negative correlation between dielectric constant and porosity, and weight loss values were detected for microwave baked samples. A negative correlation between dielectric loss factor and porosity was observed. These correlations indicated that quality characteristics of a microwave baked cake sample can be assessed from dielectric properties. These correlations provides understanding on the behavior of food material during microwave processing.

  5. Dielectric characterization of materials at microwave frequency range

    Directory of Open Access Journals (Sweden)

    J. de los Santos

    2003-01-01

    Full Text Available In this study a coaxial line was used to connect a microwave-frequency Network Analyzer and a base moving sample holder for dielectric characterization of ferroelectric materials in the microwave range. The main innovation of the technique is the introduction of a special sample holder that eliminates the air gap effect by pressing sample using a fine pressure system control. The device was preliminary tested with alumina (Al2O3 ceramics and validated up to 2 GHz. Dielectric measurements of lanthanum and manganese modified lead titanate (PLTM ceramics were carried out in order to evaluate the technique for a high permittivity material in the microwave range. Results showed that such method is very useful for materials with high dielectric permittivities, which is generally a limiting factor of other techniques in the frequency range from 50 MHz to 2 GHz.

  6. Complex permittivity measurements of ferroelectric employing composite dielectric resonator technique

    Czech Academy of Sciences Publication Activity Database

    Krupka, J.; Zychowicz, T.; Bovtun, Viktor; Veljko, Sergiy

    2006-01-01

    Roč. 53, č. 10 (2006), s. 1883-1888 ISSN 0885-3010 R&D Projects: GA AV ČR(CZ) IAA1010213; GA ČR(CZ) GA202/04/0993; GA ČR(CZ) GA202/06/0403 Institutional research plan: CEZ:AV0Z10100520 Keywords : dielectric resonator * ferroelectrics * microwave measurements Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.729, year: 2006

  7. Anisotropic Dielectric Properties of Carbon Fiber Reinforced Polymer Composites during Microwave Curing

    Science.gov (United States)

    Zhang, Linglin; Li, Yingguang; Zhou, Jing

    2018-01-01

    Microwave cuing technology is a promising alternative to conventional autoclave curing technology in high efficient and energy saving processing of polymer composites. Dielectric properties of composites are key parameters related to the energy conversion efficiency during the microwave curing process. However, existing methods of dielectric measurement cannot be applied to the microwave curing process. This paper presented an offline test method to solve this problem. Firstly, a kinetics model of the polymer composites under microwave curing was established based on differential scanning calorimetry to describe the whole curing process. Then several specially designed samples of different feature cure degrees were prepared and used to reflect the dielectric properties of the composite during microwave curing. It was demonstrated to be a feasible plan for both test accuracy and efficiency through extensive experimental research. Based on this method, the anisotropic complex permittivity of a carbon fiber/epoxy composite during microwave curing was accurately determined. Statistical results indicated that both the dielectric constant and dielectric loss of the composite increased at the initial curing stage, peaked at the maximum reaction rate point and decreased finally during the microwave curing process. Corresponding mechanism has also been systematically investigated in this work.

  8. Microwave dielectric properties of nanostructured nickel ferrite

    Indian Academy of Sciences (India)

    Wintec

    Abstract. Nickel ferrite is one of the important ferrites used in microwave devices. In the present work, we have synthesized nanoparticles of nickel ferrite using chemical precipitation technique. The crystal structure and grain size of the particles are studied using XRD. The microwave dielectric properties of nanostructured.

  9. Microwave chemistry: Effect of ions on dielectric heating in microwave ovens

    Directory of Open Access Journals (Sweden)

    Jamil Anwar

    2015-01-01

    Full Text Available To understand the interactions of microwaves with dielectric materials and their conversion to thermal energy in aqueous systems, the effect of ionic concentration has been studied. Aqueous solutions of inorganic ions were exposed to microwaves (2.45 GHz in a modified oven under identical conditions. Difference in solution temperatures with reference to pure (deionized water was monitored in each case. A significant decrease in the temperature was observed with an increase in the quantity of ions. Experiments were repeated with several inorganic ions varying in size and charge. The information can be helpful in understanding the role of ions during dielectric heating.

  10. Synthesis, multi-nonlinear dielectric resonance and electromagnetic absorption properties of hcp-cobalt particles

    International Nuclear Information System (INIS)

    Wen, Shulai; Liu, Ying; Zhao, Xiuchen; Cheng, Jingwei; Li, Hong

    2014-01-01

    Hcp-cobalt particles were successfully prepared by a liquid phase reduction method, and the microstructure, static magnetic properties, electromagnetic and microwave absorption properties of the cobalt particles with irregular shape were investigated in detail. The measured results indicate that the saturation magnetization was less than that of hcp-Co single crystals, and the coercivity was larger than that of bulk cobalt crystal. The permittivity presents multi-nonlinear dielectric resonance, which may result from the irregular shape containing parts of cutting angle of dodecahedron of cobalt particles. The real part of permeability decreases with the frequency, and the imaginary part has a wide resonant peak. The paraffin-based composite containing 70 wt% cobalt particles possessed strong absorption characteristics with a minimum RL of −38.97 dB at 10.81 GHz and an absorption band with RL under −10 dB from 8.72 to 13.26 GHz when the thickness is 1.8 mm, which exhibits excellent microwave absorption in middle and high frequency. The architectural design of material morphologies is important for improving microwave absorption properties toward future application. - Highlights: • Hcp-cobalt particles were prepared by a liquid phase reduction method. • The saturation magnetization was less than that of hcp-Co single crystals. • The permittivity presents multi-nonlinear dielectric resonance. • The real part of permeability decreases with frequency, and the imaginary part presents a wide resonant peak. • The paraffin-based composite possessed a minimum RL of −38.97 dB at 10.81 GHz

  11. Synthesis, structural and microwave dielectric properties of Al2W3-xMoxO12 (x = 0-3) ceramics

    International Nuclear Information System (INIS)

    Surjith, A.; James, Nijesh K.; Ratheesh, R.

    2011-01-01

    Highlights: → Solid state synthesis of phase pure Al 2 W 3-x Mo x O 12 (x = 0-3) compositions. → Sintering studies of Al 2 W 3-x Mo x O 12 (x = 0-3) ceramics. → Structural and microstructural evaluation using powder X-ray diffraction and SEM studies. → Microwave dielectric property evaluation of Al 2 W 3-x Mo x O 12 (x = 0-3) ceramics through Hakki and Coleman post resonator and cavity perturbation techniques. → Structure-property correlation through Laser Raman studies. - Abstract: Low dielectric ceramics in the Al 2 W 3-x Mo x O 12 (x = 0-3) system have been prepared through solid state ceramic route. The phase purity of the ceramic compositions has been studied using powder X-ray diffraction (XRD) studies. The microstructure of the sintered ceramics was evaluated by Scanning Electron Microscopy (SEM). The crystal structure of the ceramic compositions as a result of Mo substitution has been studied using Laser Raman spectroscopy. The microwave dielectric properties of the ceramics were studied by Hakki and Coleman post resonator and cavity perturbation techniques. Al 2 Mo x W 3-x O 12 (x = 0-3) ceramics exhibited low dielectric constant and relatively high unloaded quality factor. The temperature coefficient of resonant frequency of the compositions is found to be in the range -41 to -72 ppm/deg. C.

  12. The Physics of Superconducting Microwave Resonators

    Science.gov (United States)

    Gao, Jiansong

    Over the past decade, low temperature detectors have brought astronomers revolutionary new observational capabilities and led to many great discoveries. Although a single low temperature detector has very impressive sensitivity, a large detector array would be much more powerful and are highly demanded for the study of more difficult and fundamental problems in astronomy. However, current detector technologies, such as transition edge sensors and superconducting tunnel junction detectors, are difficult to integrate into a large array. The microwave kinetic inductance detector (MKID) is a promising new detector technology invented at Caltech and JPL which provides both high sensitivity and an easy solution to the detector integration. It senses the change in the surface impedance of a superconductor as incoming photons break Cooper pairs, by using high-Q superconducting microwave resonators capacitively coupled to a common feedline. This architecture allows thousands of detectors to be easily integrated through passive frequency domain multiplexing. In this thesis, we explore the rich and interesting physics behind these superconducting microwave resonators. The first part of the thesis discusses the surface impedance of a superconductor, the kinetic inductance of a superconducting coplanar waveguide, and the circuit response of a resonator. These topics are related with the responsivity of MKIDs. The second part presents the study of the excess frequency noise that is universally observed in these resonators. The properties of the excess noise, including power, temperature, material, and geometry dependence, have been quantified. The noise source has been identified to be the two-level systems in the dielectric material on the surface of the resonator. A semi-empirical noise model has been developed to explain the power and geometry dependence of the noise, which is useful to predict the noise for a specified resonator geometry. The detailed physical noise

  13. Handbook on dielectric and thermal properties of microwaveable materials

    CERN Document Server

    Komarov, Vyacheslav V

    2012-01-01

    The application of microwave energy for thermal processing of different materials and substances is a rapidly growing trend in modern science and engineering. In fact, optimal design work involving microwaves is impossible without solid knowledge of the properties of these materials. Here s a practical reference that collects essential data on the dielectric and thermal properties of microwaveable materials, saving you countless hours on projects in a wide range of areas, including microwave design and heating, applied electrodynamics, food science, and medical technology. This unique book provides hard-to-find information on complex dielectric permittivity of media at industrial, scientific, and medical frequencies (430 MHz, 915MHz, 2.45GHz, 5.8 GHz, and 24.125GHz). Written by a leading expert in the field, this authoritative book does an exceptional job at presenting critical data on various materials and explaining what their key characteristics are concerning microwaves.

  14. Characterization and microwave dielectric properties of Mg{sub 2}YVO{sub 6} ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chia-Hui; Wang, Yi-Sheng; Huang, Cheng-Liang, E-mail: huangcl@mail.ncku.edu.tw

    2015-08-25

    Highlights: • Study the microwave dielectric properties and microstructure of Mg{sub 2}YVO{sub 6}. • Mg{sub 2}YVO{sub 6} possesses excellent dielectric properties. • Both extrinsic and intrinsic factors have effects on Q × f of specimens. - Abstract: Tetragonal-structured Mg{sub 2}YVO{sub 6} ceramics were prepared by conventional solid-state method, and their physical and microwave dielectric properties were investigated for the first time. The forming of Mg{sub 2}YVO{sub 6} main phase was confirmed by XRD diffraction pattern. XPS and Raman spectrum were recorded to clarify the chemical states of elements and vibration and rotation modes of the specimen, respectively. In addition, the relationships between sintering temperature, packing fraction, and microwave dielectric properties in Mg{sub 2}YVO{sub 6} ceramics were also studied. The new microwave dielectric material Mg{sub 2}YVO{sub 6} ceramics sintered at 1290 °C for 4 h has a dielectric constant (ε{sub r}) of ∼10.88, a Q × f of ∼68,300 GHz (f = 10.389 GHz), and a τ{sub f} ∼ −53.9 ppm/°C, demonstrating a candidate for microwave application.

  15. New calibration algorithms for dielectric-based microwave moisture sensors

    Science.gov (United States)

    New calibration algorithms for determining moisture content in granular and particulate materials from measurement of the dielectric properties at a single microwave frequency are proposed. The algorithms are based on identifying empirically correlations between the dielectric properties and the par...

  16. An Aligned-Gap and Centered-Gap Rectangular Multiple Split Ring Resonator for Dielectric Sensing Applications

    Directory of Open Access Journals (Sweden)

    Izyani Mat Rusni

    2014-07-01

    Full Text Available This paper presents the design and development of a planar Aligned-Gap and Centered-Gap Rectangular Multiple Split Ring Resonator (SRR for microwave sensors that operates at a resonance frequency around 5 GHz. The sensor consists of a microstrip transmission line loaded with two elements of rectangular SRR on both sides. The proposed metamaterial sensors were designed and fabricated on Rogers RT5880 substrate having dielectric constant of 2.2 and thickness of 0.787 mm. The final dimension of the proposed sensor was measured at 35 × 14 mm2. Measured results show good agreement with simulated ones as well as exhibiting high Q-factor for use in sensing application. A remarkably shift of resonance frequency is observed upon introduction of several sample with different dielectric value.

  17. A Microwave Method for Dielectric Characterization Measurement of Small Liquids Using a Metamaterial-Based Sensor.

    Science.gov (United States)

    Liu, Weina; Sun, Haoran; Xu, Lei

    2018-05-05

    We present a microwave method for the dielectric characterization of small liquids based on a metamaterial-based sensor The proposed sensor consists of a micro-strip line and a double split-ring resonator (SRR). A large electric field is observed on the two splits of the double SRRs at the resonance frequency (1.9 GHz). The dielectric property data of the samples under test (SUTs) were obtained with two measurements. One is with the sensor loaded with the reference liquid (REF) and the other is with the sensor loaded with the SUTs. Additionally, the principle of extracting permittivity from measured changes of resonance characteristics changes of the sensor loaded with REF and SUTs is given. Some measurements were carried out at 1.9 GHz, and the calculated results of methanol⁻water mixtures with different molar fractions agree well with the time-domain reflectometry method. Moreover, the proposed sensor is compact and highly sensitive for use of sub-wavelength resonance. In comparison with literature data, relative errors are less than 3% for the real parts and 2% for the imaginary parts of complex permittivity.

  18. Microwave Resonators and Filters

    Science.gov (United States)

    2015-12-22

    1 Microwave Resonators and Filters Daniel E. Oates MIT Lincoln Laboratory 244 Wood St. Lexington, MA 02478 USA Email: oates@ll.mit.edu...explained in other chapters, the surface resistance of superconductors at microwave frequencies can be as much as three orders of magnitude lower than the...resonators and filters in the first edition of this handbook (Z.-Y. Shen 2003) discussed the then state of the art of microwave frequency applications

  19. Rigorous numerical study of strong microwave photon-magnon coupling in all-dielectric magnetic multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Maksymov, Ivan S., E-mail: ivan.maksymov@uwa.edu.au [School of Physics M013, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia); ARC Centre of Excellence for Nanoscale BioPhotonics, School of Applied Sciences, RMIT University, Melbourne, VIC 3001 (Australia); Hutomo, Jessica; Nam, Donghee; Kostylev, Mikhail [School of Physics M013, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)

    2015-05-21

    We demonstrate theoretically a ∼350-fold local enhancement of the intensity of the in-plane microwave magnetic field in multilayered structures made from a magneto-insulating yttrium iron garnet (YIG) layer sandwiched between two non-magnetic layers with a high dielectric constant matching that of YIG. The enhancement is predicted for the excitation regime when the microwave magnetic field is induced inside the multilayer by the transducer of a stripline Broadband Ferromagnetic Resonance (BFMR) setup. By means of a rigorous numerical solution of the Landau-Lifshitz-Gilbert equation consistently with the Maxwell's equations, we investigate the magnetisation dynamics in the multilayer. We reveal a strong photon-magnon coupling, which manifests itself as anti-crossing of the ferromagnetic resonance magnon mode supported by the YIG layer and the electromagnetic resonance mode supported by the whole multilayered structure. The frequency of the magnon mode depends on the external static magnetic field, which in our case is applied tangentially to the multilayer in the direction perpendicular to the microwave magnetic field induced by the stripline of the BFMR setup. The frequency of the electromagnetic mode is independent of the static magnetic field. Consequently, the predicted photon-magnon coupling is sensitive to the applied magnetic field and thus can be used in magnetically tuneable metamaterials based on simultaneously negative permittivity and permeability achievable thanks to the YIG layer. We also suggest that the predicted photon-magnon coupling may find applications in microwave quantum information systems.

  20. Development of anatomically and dielectrically accurate breast phantoms for microwave imaging applications

    Science.gov (United States)

    O'Halloran, M.; Lohfeld, S.; Ruvio, G.; Browne, J.; Krewer, F.; Ribeiro, C. O.; Inacio Pita, V. C.; Conceicao, R. C.; Jones, E.; Glavin, M.

    2014-05-01

    Breast cancer is one of the most common cancers in women. In the United States alone, it accounts for 31% of new cancer cases, and is second only to lung cancer as the leading cause of deaths in American women. More than 184,000 new cases of breast cancer are diagnosed each year resulting in approximately 41,000 deaths. Early detection and intervention is one of the most significant factors in improving the survival rates and quality of life experienced by breast cancer sufferers, since this is the time when treatment is most effective. One of the most promising breast imaging modalities is microwave imaging. The physical basis of active microwave imaging is the dielectric contrast between normal and malignant breast tissue that exists at microwave frequencies. The dielectric contrast is mainly due to the increased water content present in the cancerous tissue. Microwave imaging is non-ionizing, does not require breast compression, is less invasive than X-ray mammography, and is potentially low cost. While several prototype microwave breast imaging systems are currently in various stages of development, the design and fabrication of anatomically and dielectrically representative breast phantoms to evaluate these systems is often problematic. While some existing phantoms are composed of dielectrically representative materials, they rarely accurately represent the shape and size of a typical breast. Conversely, several phantoms have been developed to accurately model the shape of the human breast, but have inappropriate dielectric properties. This study will brie y review existing phantoms before describing the development of a more accurate and practical breast phantom for the evaluation of microwave breast imaging systems.

  1. Application of dielectric constant measurement in microwave sludge disintegration and wastewater purification processes.

    Science.gov (United States)

    Kovács, Petra Veszelovszki; Lemmer, Balázs; Keszthelyi-Szabó, Gábor; Hodúr, Cecilia; Beszédes, Sándor

    2018-05-01

    It has been numerously verified that microwave radiation could be advantageous as a pre-treatment for enhanced disintegration of sludge. Very few data related to the dielectric parameters of wastewater of different origins are available; therefore, the objective of our work was to measure the dielectric constant of municipal and meat industrial wastewater during a continuous flow operating microwave process. Determination of the dielectric constant and its change during wastewater and sludge processing make it possible to decide on the applicability of dielectric measurements for detecting the organic matter removal efficiency of wastewater purification process or disintegration degree of sludge. With the measurement of dielectric constant as a function of temperature, total solids (TS) content and microwave specific process parameters regression models were developed. Our results verified that in the case of municipal wastewater sludge, the TS content has a significant effect on the dielectric constant and disintegration degree (DD), as does the temperature. The dielectric constant has a decreasing tendency with increasing temperature for wastewater sludge of low TS content, but an adverse effect was found for samples with high TS and organic matter contents. DD of meat processing wastewater sludge was influenced significantly by the volumetric flow rate and power level, as process parameters of continuously flow microwave pre-treatments. It can be concluded that the disintegration process of food industry sludge can be detected by dielectric constant measurements. From technical purposes the applicability of dielectric measurements was tested in the purification process of municipal wastewater, as well. Determination of dielectric behaviour was a sensitive method to detect the purification degree of municipal wastewater.

  2. Polarization insensitive metamaterial absorber based on E-shaped all-dielectric structure

    Directory of Open Access Journals (Sweden)

    Liyang Li

    2015-03-01

    Full Text Available In this paper, we designed a metamaterial absorber performed in microwave frequency band. This absorber is composed of E-shaped dielectrics which are arranged along different directions. The E-shaped all-dielectric structure is made of microwave ceramics with high permittivity and low loss. Within about 1 GHz frequency band, more than 86% absorption efficiency was observed for this metamaterial absorber. This absorber is polarization insensitive and is stable for incident angles. It is figured out that the polarization insensitive absorption is caused by the nearly located varied resonant modes which are excited by the E-shaped all-dielectric resonators with the same size but in the different direction. The E-shaped dielectric absorber contains intensive resonant points. Our research work paves a way for designing all-dielectric absorber.

  3. Improvement in the microwave dielectric properties of ...

    Indian Academy of Sciences (India)

    Administrator

    ... linearly with x. Relative permittivity (εr) increased from 47⋅2 to 54⋅5, unloaded ... and are used in the manufacture of DRs for mobile phone handsets and base ... Microwave dielectric properties were measured using a. R3767CH Agilent ...

  4. The application of microwave techniques to temperature measurement in biotelemetry

    International Nuclear Information System (INIS)

    Glajchen, M.

    1984-01-01

    The use of a microwave dielectric resonator for temperature measurement in Biotelemetry offers the advantage that a passive temperature telemeter can be used. The telemeter is powered by a source remote from the host creature, thus permitting greater miniaturisation of the implant than is possible with conventional techniques. This is essential, especially for application to small animals where the telemeter size and weight become critical. The design of the telemeter which is based upon a novel microwave technique, and the associated practical considerations are discussed. Included in this work is a criticism of initially promising ideas which after an in-depth investigation had to be disregarded. Although the transponder could not be built in its final form due to the unavailability of certain key materials, the transponder operation was tested and found to be successful. A specification of the transponder and transmitter requirements for a working system are included. A theoretical and experimental appraisal of dielectric resonators as miniature microwave filters, also forms a large part of this work. Dielectric resonators offer a significant volume reduction compared to air-filled metallic cavities, and simple coupling to microstrip combined with ease of tuning permits incorporation into Microwave Integrated Circuits. A computer program which can form the basis for a dielectric resonator filter design is provided, and some unusual results of tests on dielectric resonators are presented. It is believed that this will help to popularise and increase understanding of the dielectric resonator - which is an exciting, yet still emerging technology

  5. Dielectric properties of Zea mays kernels - studies for microwave power processing applications

    Energy Technology Data Exchange (ETDEWEB)

    Surducan, Emanoil; Neamtu, Camelia; Surducan, Vasile, E-mail: emanoil.surducan@itim-cj.r [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania)

    2009-08-01

    Microwaves absorption in biological samples can be predicted by their specific dielectrical properties. In this paper, the dielectric properties ({epsilon}' and {epsilon}'') of corn (Zea mays) kernels in the 500 MHz - 20 GHz frequencies range are presented. A short analysis of the microwaves absorption process is also presented, in correlation with the specific thermal properties of the samples, measured by simultaneous TGA-DSC method.

  6. Experimental and numerical investigation of a ceramic dielectric resonator (DRA): CaCu3Ti4O12 (CCTO)

    International Nuclear Information System (INIS)

    Almeida, A.F.L.; Silva, R.R.; Rocha, H.H.B.; Fechine, P.B.A.; Cavalcanti, F.S.A.; Valente, M.A.; Freire, F.N.A.; Sohn, R.S.T.M.

    2008-01-01

    In this study, the CaCu 3 Ti 4 O 12 (CCTO) ceramic phase was synthesized by microwave heating in a much shorter time compared to the conventional heating methods. The results indicate that microwave processing is a promising method for preparing CCTO ceramics. CCTO was prepared using a domestic microwave oven operated at 2.45 GHz with 800 W. After a few minutes of microwave irradiation the formation of CCTO was confirmed by X-ray powder diffraction. The CCTO ceramic was studied in the medium-frequency (MF) range (100 Hz-1 MHz) and in the microwave range of frequencies. The experimental and theoretical characteristics of the dielectric resonator antenna are investigated

  7. Optical and microwave dielectric properties of pulsed laser deposited Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Andrews; Goud, J. Pundareekam; Raju, K. C. James [School of Physics, University of Hyderabad, Hyderabad, Telangana 500046 (India); Emani, Sivanagi Reddy [Advanced Center of Research in High Energy Materials (ACRHEM), School of Physics, University of Hyderabad, Telangana 500046 (India)

    2016-05-23

    Optical properties of pulsed laser deposited (PLD) sodium bismuth titanate thin films (NBT), are investigated at wavelengths of 190-2500 nm. Microwave dielectric properties were investigated using the Split Post Dielectric Resonator (SPDR) technique. At 10 GHz, the NBT films have a dielectric constant of 205 and loss tangent of 0.0373 at room temperature. The optical spectra analysis reveals that NBT thin films have an optical band gap E{sub g}=3.55 eV and it has a dielectric constant of 3.37 at 1000 nm with dielectric loss of 0.299. Hence, NBT is a promising candidate for photonic device applications.

  8. Magnetically coupled Fano resonance of dielectric pentamer oligomer

    International Nuclear Information System (INIS)

    Zhang, Fuli; Li, Chang; He, Xuan; Chen, Lei; Fan, Yuancheng; Zhao, Qian; Zhang, Weihong; Zhou, Ji

    2017-01-01

    We present magnetically induced Fano resonance inside a dielectric metamaterial pentamer composed of ceramic bricks. Unlike previous reports where different sizes of dielectric resonators were essential to produce Fano resonance, under external magnetic field excitation, central and outer dielectric bricks with identical sizes exhibit in-phase and out-of-phase magnetic Mie oscillations. An asymmetric line shape of Fano resonance along with enhanced group delay is observed due to the interference between the magnetic resonance of the central brick and the symmetric magnetic resonance of outer bricks. Besides, Fano resonance blueshifts with the increasing resonance of the smaller central brick. The thermal-dependent permittivity of ceramics allows Fano resonance to be reversibly tuned by 300 MHz when temperature varies by 60 °C. (paper)

  9. Dielectric Characteristics and Microwave Absorption of Graphene Composite Materials

    Directory of Open Access Journals (Sweden)

    Kevin Rubrice

    2016-10-01

    Full Text Available Nowadays, many types of materials are elaborated for microwave absorption applications. Carbon-based nanoparticles belong to these types of materials. Among these, graphene presents some distinctive features for electromagnetic radiation absorption and thus microwave isolation applications. In this paper, the dielectric characteristics and microwave absorption properties of epoxy resin loaded with graphene particles are presented from 2 GHz to 18 GHz. The influence of various parameters such as particle size (3 µm, 6–8 µm, and 15 µm and weight ratio (from 5% to 25% are presented, studied, and discussed. The sample loaded with the smallest graphene size (3 µm and the highest weight ratio (25% exhibits high loss tangent (tanδ = 0.36 and a middle dielectric constant ε′ = 12–14 in the 8–10 GHz frequency range. As expected, this sample also provides the highest absorption level: from 5 dB/cm at 4 GHz to 16 dB/cm at 18 GHz.

  10. An equivalent method of mixed dielectric constant in passive microwave/millimeter radiometric measurement

    Science.gov (United States)

    Su, Jinlong; Tian, Yan; Hu, Fei; Gui, Liangqi; Cheng, Yayun; Peng, Xiaohui

    2017-10-01

    Dielectric constant is an important role to describe the properties of matter. This paper proposes This paper proposes the concept of mixed dielectric constant(MDC) in passive microwave radiometric measurement. In addition, a MDC inversion method is come up, Ratio of Angle-Polarization Difference(RAPD) is utilized in this method. The MDC of several materials are investigated using RAPD. Brightness temperatures(TBs) which calculated by MDC and original dielectric constant are compared. Random errors are added to the simulation to test the robustness of the algorithm. Keywords: Passive detection, microwave/millimeter, radiometric measurement, ratio of angle-polarization difference (RAPD), mixed dielectric constant (MDC), brightness temperatures, remote sensing, target recognition.

  11. Preparation, crystal structure, and dielectric characterization of Li2W2O7 ceramic at RF and microwave frequency range

    Directory of Open Access Journals (Sweden)

    Jinwu Chen

    2017-02-01

    Full Text Available Single phase Li2W2O7 with anorthic structure was prepared by the conventional solid-state reaction method at 550∘C and the anorthic structure was stable up to 660∘C. The dielectric properties at radio frequency (RF and microwave frequency range were characterized. The sample sintered at 640∘C exhibited the optimum microwave dielectric properties with a relative permittivity of 12.2, a quality factor value of 17,700GHz (at 9.8GHz, and a temperature coefficient of the resonant frequency of −232ppm/∘C as well as a high relative density ∼94.1%. Chemical compatibility measurement indicated Li2W2O7 did not react with aluminum electrodes when sintered at 640∘C for 4h.

  12. Novel Polymeric Dielectric Materials for the Additive Manufacturing of Microwave Devices

    Science.gov (United States)

    O'Keefe, Shamus E.

    The past decade has seen a rapid increase in the deployment of additive manufacturing (AM) due to the perceived benefits of lower cost, higher quality, and a smaller environmental footprint. And while the hardware behind most of AM processes is mature, the study and development of material feedstock(s) are in their infancy, particularly so for niche areas. In this dissertation, we look at novel polymeric materials to support AM for microwave devices. Chapter 1 provides an overview of the benefits of AM, followed by the specific motivation for this work, and finally a scope defining the core objectives. Chapter 2 delves into a higher-level background of dielectric theory and includes a brief overview of the two common dielectric spectroscopy techniques used in this work. The remaining chapters, summarized below, describe experiments in which novel polymeric materials were developed and their microwave dielectric properties measured. Chapter 3 describes the successful synthesis of polytetrafluroethylene (PTFE)/polyacrylate (PA) core-shell nanoparticles and their measured microwave dielectric properties. PTFE/PA core-shell nanoparticles with spherical morphology were successfully made by aerosol deposition followed by a brief annealing. The annealing temperature is closely controlled to exceed the glass transition (Tg) of the PA shell yet not exceed the Tg of the PTFE core. Furthermore, the annealing promotes coalescence amongst the PA shells of neighboring nanoparticles and results in the formation of a contiguous PA matrix that has excellent dispersion of PTFE cores. The measured dielectric properties agree well with theoretical predictions and suggest the potential of this material as a feedstock for AM microwave devices. Chapter 4 delves into the exploration of various polyimide systems with the aim of replacing the PA in the previously studied PTFE/PA core-shell nanoparticles. Fundamental relationships between polymer attributes (flexibility/rigidity and

  13. Optimal width of quasicrystalline slabs of dielectric cylinders to microwave radiation transmission contrast

    Energy Technology Data Exchange (ETDEWEB)

    Andueza, Ángel; Sevilla, Joaquín [Dpto. Ing. Eléctrica y Electrónica Universidad Pública de Navarra, 31006 Pamplona (Spain); Smart Cities Institute, Universidad Pública de Navarra, 31006 Pamplona (Spain); Wang, Kang [Laboratoire de Physique des Solides, UMR CNRS/Université Paris-Sud, Université Paris-Saclay, 91405 Orsay (France); Pérez-Conde, Jesús [Dpto. de Física Universidad Pública de Navarra, 31006 Pamplona (Spain)

    2016-08-28

    Light confinement induced by resonant states in aperiodic photonic structures is interesting for many applications. A particular case of these resonances can be found in 2D quasicrystalline arrangements of dielectric cylinders. These systems present a rather isotropic band gap as well as isolated in-gap photonic states (as a result of spatially localized resonances). These states are built by high symmetry polygonal clusters that can be regarded as photonic molecules. In this paper, we study the transmission properties of a slab of glass cylinders arranged in approximants of the decagonal quasicrystalline structure. In particular, we investigate the influence of the slab width in the transmission contrast between the states and the gap. The study is both experimental and numerical in the microwave regime. We find that the best transmission contrast is found for a width of around three times the radiation wavelength. The transmission in the band gap region is mediated by the resonances of the photonic molecules. If the samples are thin enough, they become transparent except around a resonance of the photonic molecule which reflects the incoming light.

  14. Properties and applications of HTS-shielded dielectric resonators: A state-of-the-art report

    International Nuclear Information System (INIS)

    Klein, N.; Scholen, A.; Tellmann, N.; Zuccaro, C.; Urban, K.W.

    1996-01-01

    High temperature superconductor (HTS) shielded dielectric resonators (DRs) have demonstrated to provide quality factors Q between 5 x 10 5 and several 10 6 at frequencies up to 20 GHz and levels of dissipated rf power in the range of Watts. As dielectric materials, high purity single crystals of sapphire, LaAlO 3 , and rutile exhibit sufficiently low microwave losses. There are two main areas of application which are considered to benefit from HTS-shielded DRs, namely low-phase-noise oscillators for radar systems and digital communication, and high-power filters for satellite communication. Projections for phase noise are -145 dBc/Hz at 1 kHz offset from the carrier frequency, a value of -110 dBc/Hz at 1 kHz was measured recently for an oscillator with a carrier frequency of 5.6 GHz. Modeling of filters based on resonators with Qs in the 10 6 range indicates their ability to reduce the rf power dissipation apparent in the output multiplexers of communication satellite payloads. Presently, schemes for resonator coupling and tuning while maintaining high Qs are under development

  15. Sintering behaviour and microwave dielectric properties of a new ...

    Indian Academy of Sciences (India)

    Additionally, optimized microwave dielectric properties can be achieved for the speci- mens using ... compounds and/or their solid solutions have been investi- gated and applied in ... electron microscope (SEM, S-4800, Hitachi, Japan). The.

  16. Low-temperature microwave and THz dielectric response in novel microwave ceramics

    Czech Academy of Sciences Publication Activity Database

    Kamba, Stanislav; Noujni, Dmitri; Pashkin, Alexej; Petzelt, Jan; Pullar, R. C.; Axelsson, A.-K.; McN Alford, N.

    2006-01-01

    Roč. 26, - (2006), s. 1845-1851 ISSN 0955-2219 R&D Projects: GA ČR(CZ) GA202/04/0993; GA AV ČR(CZ) IAA1010213; GA MŠk(CZ) OC 525.20 Institutional research plan: CEZ:AV0Z10100520 Keywords : dielectric properties * spectroscopy * perovskites * microwave ceramics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.576, year: 2006

  17. Dielectric characterization of Bentonite clay at various moisture contents and with mixtures of biomass in the microwave spectrum

    Science.gov (United States)

    This study assesses the potential for using bentonite as a microwave absorber for microwave-assisted biomass pyrolysis based on the dielectric properties. Dielectric properties of bentonite at different moisture contents were measured using a coaxial line dielectric probe and vector network analyzer...

  18. Raman spectra of Nd/Sn cosubstituted Ba6-3xSm8+2xTi18O54 microwave dielectric ceramics

    Science.gov (United States)

    Wu, S. Y.; Li, Y.; Chen, X. M.

    2004-11-01

    The Raman spectra and dielectric properties of Nd /Sn cosubstituted Ba6-3xSm8+2xTi18O54 (x =2/3) microwave dielectric ceramics were discussed as the functions of composition and sintering time. The peaks in 753cm-1 were caused by the second order scatter. The peaks in 425 and 403cm-1 became sharper with prolonging sintering time, and this reflected the increased lattice defects. The shoulder peak near 292cm-1 was caused by the octahedral tilt when A site is Nd3+. The Raman shifts in 590, 520, 280, and 232cm-1 indicated no obvious change in position, but all peaks became sharper with prolonging sintering time. This indicated the increased ordering degree of A-site cations. With prolonging sintering time, the Qf factor (Q is the inverse of dielectric loss, tan δ, and f is the resonant frequency) increased, and the temperature coefficient of resonant frequency significantly decreased or became more negative, while the dielectric constant indicated no significant variation.

  19. Spectroscopy and Biosensing with Optically Resonant Dielectric Nanostructures

    OpenAIRE

    Krasnok, Alex; Caldarola, Martin; Bonod, Nicolas; Alú, Andrea

    2017-01-01

    Resonant dielectric nanoparticles (RDNs) made of materials with large positive dielectric permittivity, such as Si, GaP, GaAs, have become a powerful platform for modern light science, enabling various fascinating applications in nanophotonics and quantum optics. In addition to light localization at the nanoscale, dielectric nanostructures provide electric and magnetic resonant responses throughout the visible and infrared spectrum, low dissipative losses and optical heating, low doping effec...

  20. Superconducting Microwave Resonator Arrays for Submillimeter/Far-Infrared Imaging

    Science.gov (United States)

    Noroozian, Omid

    detected using a cryogenic amplifier and subsequent homodyne mixing at room temperature. In an array of MKIDs, all the resonators are coupled to a shared feedline and are tuned to slightly different frequencies. They can be read out simultaneously using a comb of frequencies generated and measured using digital techniques. This thesis documents an effort to demonstrate the basic operation of ˜ 256 pixel arrays of lumped-element MKIDs made from superconducting TiN x on silicon. The resonators are designed and simulated for optimum operation. Various properties of the resonators and arrays are measured and compared to theoretical expectations. A particularly exciting observation is the extremely high quality factors (˜ 3 x 107) of our TiNx resonators which is essential for ultra-high sensitivity. The arrays are tightly packed both in space and in frequency which is desirable for larger full-size arrays. However, this can cause a serious problem in terms of microwave crosstalk between neighboring pixels. We show that by properly designing the resonator geometry, crosstalk can be eliminated; this is supported by our measurement results. We also tackle the problem of excess frequency noise in MKIDs. Intrinsic noise in the form of an excess resonance frequency jitter exists in planar superconducting resonators that are made on dielectric substrates. We conclusively show that this noise is due to fluctuations of the resonator capacitance. In turn, the capacitance fluctuations are thought to be driven by two-level system (TLS) fluctuators in a thin layer on the surface of the device. With a modified resonator design we demonstrate with measurements that this noise can be substantially reduced. An optimized version of this resonator was designed for the multiwavelength submillimeter kinetic inductance camera (MUSIC) instrument for the Caltech Submillimeter Observatory.

  1. Microwave dielectric properties of (Ca0.8Sr0.2)(SnxTi1−x)O3 ceramics

    International Nuclear Information System (INIS)

    Hsu, Cheng-Hsing; Chang, Chia-Hao

    2013-01-01

    Highlights: ► New microwave dielectric properties of (Ca 0.8 Sr 0.2 )(Sn x Ti 1−x )O 3 ceramics were investigated. ► A single-phase solid solution containing orthorhombic Pbnm with different Sn contents was formed. ► A significant improvement of Q × f value and τ f were achieved by (Ca 0.8 Sr 0.2 )(Sn x Ti 1−x )O 3 system. ► Second phases were formed and affected the dielectric properties of (Ca 0.8 Sr 0.2 )(Sn x Ti 1−x )O 3 system. ► Low cost and suitable τ f value of (Ca 0.8 Sr 0.2 )(Sn x Ti 1−x )O 3 demonstrate a good potential for use in microwave device. -- Abstract: In this paper, we study the behavior of the B-site behavior with the incorporation of Sn 4+ ion in (Ca 0.8 Sr 0.2 )TiO 3 ceramics. An excess of Sn 4+ resulted in the formation of a secondary phase of CaSnO 3 and SrSnO 3 affecting the microwave dielectric properties of the (Ca 0.8 Sr 0.2 )(Sn x Ti 1−x )O 3 ceramics. The dielectric properties of the (Ca 0.8 Sr 0.2 )(Sn x Ti 1−x )O 3 ceramics were improved because of the solid solution of Sn 4+ substitution in the B-site. The temperature coefficient of resonant frequency (τ f ) of the (Ca 0.8 Sr 0.2 )(Sn x Ti 1−x )O 3 ceramics also improved with increasing Sn content

  2. An improved model for the dielectric constant of sea water at microwave frequencies

    Science.gov (United States)

    Klein, L. A.; Swift, C. T.

    1977-01-01

    The advent of precision microwave radiometry has placed a stringent requirement on the accuracy with which the dielectric constant of sea water must be known. To this end, measurements of the dielectric constant have been conducted at S-band and L-band with a quoted uncertainty of tenths of a percent. These and earlier results are critically examined, and expressions are developed which will yield computations of brightness temperature having an error of no more than 0.3 K for an undisturbed sea at frequencies lower than X-band. At the higher microwave and millimeter wave frequencies, the accuracy is in question because of uncertainties in the relaxation time and the dielectric constant at infinite frequency.

  3. Nickel-doped (Zr0.8, Sn0.2)TiO4 for microwave and millimeter-wave applications

    International Nuclear Information System (INIS)

    Ioachim, A.; Banciu, M.G.; Toacsan, M.I.; Nedelcu, L.; Ghetu, D.; Alexandru, H.V.; Stoica, G.; Annino, G.; Cassettari, M.; Martinelli, M.

    2005-01-01

    (Zr 0.8 , Sn 0.2 )TiO 4 ternary compounds (ZST) have been prepared by conventional solid-state reaction from raw materials. The effects of such sintering parameters as sintering temperature, sintering time, and NiO addition on structural and dielectric properties were investigated. The material exhibits a dielectric constant ε r ∼36.0 and high values of the product Qf of the intrinsic quality factor Q and the frequency f from 32,170 to 50,000 at microwave frequencies. The dielectric loss tan δ values of ZST ceramics are decreased by low-level doping of NiO, while the temperature coefficient of the resonance frequency τ f takes values in the range -2 to +4 ppm/ deg. C. Investigations on whispering gallery modes revealed low dielectric loss in millimetre-wave domain. An intrinsic quality factor of 480 was measured at 115.6 GHz. Dielectric resonators and substrates of ZST material were manufactured. The dielectric properties make the ZST material very attractive to microwave and millimeter-wave applications, such as dielectric resonators, filters, planar antennas, hybrid microwave integrated circuits, etc

  4. Dielectrically-Loaded Cylindrical Resonator-Based Wireless Passive High-Temperature Sensor

    Directory of Open Access Journals (Sweden)

    Jijun Xiong

    2016-12-01

    Full Text Available The temperature sensor presented in this paper is based on a microwave dielectric resonator, which uses alumina ceramic as a substrate to survive in harsh environments. The resonant frequency of the resonator is determined by the relative permittivity of the alumina ceramic, which monotonically changes with temperature. A rectangular aperture etched on the surface of the resonator works as both an incentive and a coupling device. A broadband slot antenna fed by a coplanar waveguide is utilized as an interrogation antenna to wirelessly detect the sensor signal using a radio-frequency backscattering technique. Theoretical analysis, software simulation, and experiments verified the feasibility of this temperature-sensing system. The sensor was tested in a metal-enclosed environment, which severely interferes with the extraction of the sensor signal. Therefore, frequency-domain compensation was introduced to filter the background noise and improve the signal-to-noise ratio of the sensor signal. The extracted peak frequency was found to monotonically shift from 2.441 to 2.291 GHz when the temperature was varied from 27 to 800 °C, leading to an average absolute sensitivity of 0.19 MHz/°C.

  5. Microwave performance of photoresist-alumina microcomposites for batch fabrication of thick polymer-based dielectric structures

    International Nuclear Information System (INIS)

    Rashidian, Atabak; Klymyshyn, David M; Aligodarz, Mohammadreza Tayfeh; Boerner, Martin; Mohr, Jürgen

    2012-01-01

    The goal of this paper is to investigate the electrical properties of photoresist-alumina microcomposites with different portions of ceramic content. Substrates of photoresist-alumina microcomposites are fabricated and a comprehensive analysis is performed to characterize their dielectric constant and dielectric loss tangent at microwave frequencies up to 40 GHz. To evaluate the performance of these materials for microwave applications, the properties of various lithographically fabricated antenna elements are examined and analysed based on the measured electrical properties. The experimental results show that the electrical properties of the photoresist composite are nonlinearly affected by ceramic content and also a minimum percentage of ceramic portion is required to improve the electrical properties of the photoresist composite. For instance, comparison of 0 wt% with 23 wt% SU8-alumina shows that no reduction is achieved for the dielectric loss tangent. Comparison of 38 wt% with 48 wt% SU8-alumina microcomposite shows that the dielectric loss tangent is improved from 0.03 to 0.01 and the dielectric constant is increased from 3.8 to 5.0 at 25 GHz. These improvements can result in superior performance for the photoresist-based microwave components. (paper)

  6. Microwave performance of photoresist-alumina microcomposites for batch fabrication of thick polymer-based dielectric structures

    Science.gov (United States)

    Rashidian, Atabak; Klymyshyn, David M.; Tayfeh Aligodarz, Mohammadreza; Boerner, Martin; Mohr, Jürgen

    2012-10-01

    The goal of this paper is to investigate the electrical properties of photoresist-alumina microcomposites with different portions of ceramic content. Substrates of photoresist-alumina microcomposites are fabricated and a comprehensive analysis is performed to characterize their dielectric constant and dielectric loss tangent at microwave frequencies up to 40 GHz. To evaluate the performance of these materials for microwave applications, the properties of various lithographically fabricated antenna elements are examined and analysed based on the measured electrical properties. The experimental results show that the electrical properties of the photoresist composite are nonlinearly affected by ceramic content and also a minimum percentage of ceramic portion is required to improve the electrical properties of the photoresist composite. For instance, comparison of 0 wt% with 23 wt% SU8-alumina shows that no reduction is achieved for the dielectric loss tangent. Comparison of 38 wt% with 48 wt% SU8-alumina microcomposite shows that the dielectric loss tangent is improved from 0.03 to 0.01 and the dielectric constant is increased from 3.8 to 5.0 at 25 GHz. These improvements can result in superior performance for the photoresist-based microwave components.

  7. Preparation of a Carbon Doped Tissue-Mimicking Material with High Dielectric Properties for Microwave Imaging Application

    Directory of Open Access Journals (Sweden)

    Siang-Wen Lan

    2016-07-01

    Full Text Available In this paper, the oil-in-gelatin based tissue-mimicking materials (TMMs doped with carbon based materials including carbon nanotube, graphene ink or lignin were prepared. The volume percent for gelatin based mixtures and oil based mixtures were both around 50%, and the doping amounts were 2 wt %, 4 wt %, and 6 wt %. The effect of doping material and amount on the microwave dielectric properties including dielectric constant and conductivity were investigated over an ultra-wide frequency range from 2 GHz to 20 GHz. The coaxial open-ended reflection technology was used to evaluate the microwave dielectric properties. Six measured values in different locations of each sample were averaged and the standard deviations of all the measured dielectric properties, including dielectric constant and conductivity, were less than one, indicating a good uniformity of the prepared samples. Without doping, the dielectric constant was equal to 23 ± 2 approximately. Results showed with doping of carbon based materials that the dielectric constant and conductivity both increased about 5% to 20%, and the increment was dependent on the doping amount. By proper selection of doping amount of the carbon based materials, the prepared material could map the required dielectric properties of special tissues. The proposed materials were suitable for the phantom used in the microwave medical imaging system.

  8. Microwave integrated circuit for Josephson voltage standards

    Science.gov (United States)

    Holdeman, L. B.; Toots, J.; Chang, C. C. (Inventor)

    1980-01-01

    A microwave integrated circuit comprised of one or more Josephson junctions and short sections of microstrip or stripline transmission line is fabricated from thin layers of superconducting metal on a dielectric substrate. The short sections of transmission are combined to form the elements of the circuit and particularly, two microwave resonators. The Josephson junctions are located between the resonators and the impedance of the Josephson junctions forms part of the circuitry that couples the two resonators. The microwave integrated circuit has an application in Josephson voltage standards. In this application, the device is asymmetrically driven at a selected frequency (approximately equal to the resonance frequency of the resonators), and a d.c. bias is applied to the junction. By observing the current voltage characteristic of the junction, a precise voltage, proportional to the frequency of the microwave drive signal, is obtained.

  9. [Application of microwave irradiation technology to the field of pharmaceutics].

    Science.gov (United States)

    Zhang, Xue-Bing; Shi, Nian-Qiu; Yang, Zhi-Qiang; Wang, Xing-Lin

    2014-03-01

    Microwaves can be directly transformed into heat inside materials because of their ability of penetrating into any substance. The degree that materials are heated depends on their dielectric properties. Materials with high dielectric loss are more easily to reach a resonant state by microwaves field, then microwaves can be absorbed efficiently. Microwave irradiation technique with the unique heating mechanisms could induce drug-polymer interaction and change the properties of dissolution. Many benefits such as improving product quality, increasing energy efficiency and reducing times can be obtained by microwaves. This paper summarized characteristics of the microwave irradiation technique, new preparation techniques and formulation process in pharmaceutical industry by microwave irradiation technology. The microwave technology provides a new clue for heating and drying in the field of pharmaceutics.

  10. Microwave Dielectric Properties of XM46 and a Surrogate Liquid Propellant

    National Research Council Canada - National Science Library

    Bossoli, Robert

    1998-01-01

    .... The dielectric constant (permittivity) of LP was determined in support of possible studies of the feasibility of using microwave energy to preheat LP for more consistent electric ignition in regenerative liquid propellant guns (RLPG...

  11. Self Oscillating Mixer with Dielectric Resonator for Low Noise Block Application

    Directory of Open Access Journals (Sweden)

    Endon Bharata

    2011-08-01

    Full Text Available In this paper, the development of a self oscillating mixer (SOM as part of a low noise block (LNB for a satellite television receiver is investigated numerically and experimentally. In contrast to other mixers, the developed SOM requires no separate local oscillator as it generates own local oscillator signal. The SOM is developed using a monolithic microwave integrated circuit (MMIC comprised of two bipolar transistors coupled as a Darlington pair and a dielectric resonator to establish a local oscillator signal. The SOM is designed to oscillate at 3.62GHz driven from 50W signal generator. The prototype of SOM is fabricated on a dielectric substrate of glass-reinforced hydrocarbon/ceramic lamination (RO4350B board which has a thickness of 0.762mm and relative permittivity of 3.66. The prototype is then characterized experimentally and exhibits a conversion gain of 8dB with the input and output voltage standing wave ratio (VSWR less than 2 across the 2520MHz to 2670MHz operating frequency band.

  12. Dielectric Properties of Sol-Gel Derived Barium Strontium Titanate and Microwave Sintering of Ceramics

    Science.gov (United States)

    Selmi, Fathi A.

    This thesis consists of two areas of research: (1) sol-gel processing of Ba_{rm 1-x}Sr_{rm x} TiO_3 ceramics and their dielectric properties measurement; and (2) microwave versus conventional sintering of ceramics such as Al_2 O_3, Ba_{ rm 1-x}Sr_{rm x}TiO_3, Sb-doped SnO _2 and YBa_2Cu _3O_7. Sol-gel powders of BaTiO_3, SrTiO_3, and their solid solutions were synthesized by the hydrolysis of titanium isopropoxide and Ba and Sr methoxyethoxides. The loss tangent and dielectric constant of both sol-gel and conventionally prepared and sintered Ba_{rm 1-x}Sr _{rm x}TiO _3 ceramics were investigated at high frequencies. The sol-gel prepared ceramics showed higher dielectric constant and lower loss compared to those prepared conventionally. Ba _{rm 1-x}Sr _{rm x}TiO_3 ceramics were tunable with applied bias, indicating the potential use of this material for phase shifter applications. Porous Ba_{0.65}Sr _{0.35}TiO_3 was also investigated to lower the dielectric constant. Microwave sintering of alpha -Al_2O_3 and SrTiO_3 was investigated using an ordinary kitchen microwave oven (2.45 GHz; 600 Watts). The use of microwaves with good insulation of alpha -Al_2O_3 and SrTiO_3 samples resulted in their rapid sintering with good final densities of 96 and 98% of the theoretical density, respectively. A comparison of grain size for conventionally and microwave sintered SrTiO_3 samples did not show a noticeable difference. However, the grain size of microwave sintered alpha-Al_2O _3 was found to be larger than that of conventionally sintered sample. These results show that rapid sintering of ceramics can be achieved by using microwave radiation. The sintering behavior of coprecipitated Sb-doped SnO_2 was investigated using microwave power absorption. With microwave power, samples were sintered at 1450^circC for 20 minutes and showed a density as high as 99.9% of theoretical. However, samples fired in a conventional electric furnace at the same temperature for 4 hours showed only

  13. Effects of LiF on microwave dielectric properties of 0.25Ca0.8Sr0 ...

    Indian Academy of Sciences (India)

    Administrator

    telecommunications. Generally, it is not easy to find materials which satisfy these three characteristics for microwave dielectric applications, because the materials with high dielectric constant have a high dielectric loss and large τf value. After the dielectric characteristics of the perovskite structure A1–xA′xBO3 are reported ...

  14. Extraction of Water from Polar Lunar Permafrost with Microwaves - Dielectric Property Measurements

    Science.gov (United States)

    Ethridge, Edwin C.; Kaukler, William

    2009-01-01

    Remote sensing indicates the presence of hydrogen rich regions associated with the lunar poles. The logical hypothesis is that there is cryogenically trapped water ice located in craters at the lunar poles. Some of the craters have been in permanent darkness for a billion years. The presence of water at the poles as well as other scientific advantages of a polar base, have influenced NASA plans for the lunar outpost. The lunar outpost has water and oxygen requirements on the order of 1 ton per year scaling up to as much as 10 tons per year. Microwave heating of the frozen permafrost has unique advantages for water extraction. Proof of principle experiments have successfully demonstrated that microwaves will couple to the cryogenic soil in a vacuum and the sublimed water vapor can be successfully captured on a cold trap. The dielectric properties of lunar soil will determine the hardware requirements for extraction processes. Microwave frequency dielectric property measurements of lunar soil simulant have been measured.

  15. Design of a dielectric resonator receive array at 7 Tesla using detunable ceramic resonators

    Science.gov (United States)

    Ruytenberg, Thomas; Webb, Andrew G.

    2017-11-01

    Ceramic-based dielectric resonators can be used for high frequency magnetic resonance imaging and microscopy. When used as elements in a transmit array, the intrinsically low inter-element coupling allows flexibility in designing different geometric arrangements for different regions-of-interest. However, without being able to detune such resonators, they cannot be used as elements in a receive-only array. Here, we propose and implement a method, based on mode-disruption, for detuning ceramic-based dielectric resonators to enable them to be used as receive-only elements.

  16. HTS microstrip disk resonator with an upper dielectric layer for 4GHz

    International Nuclear Information System (INIS)

    Yamanaka, Kazunori; Kai, Manabu; Akasegawa, Akihiko; Nakanishi, Teru

    2006-01-01

    We propose HTS microstrip disk resonator with an upper dielectric layer as a candidate resonator structure of HTS compact power filter for 4GHz band. The electromagnetic simulations on the upper dielectric layer examined the current distributions of the HTS resonators that had TM 11 mode resonance of about 4 GHz. By the simulations, it is evaluated that of the maximum current density near the end portion of the disk-shape pattern of the resonator with the thick upper-layered structure decreases by roughly 30-50 percent, as compared with that of the resonator without it. Then, we designed and fabricated the resonator samples with and without the upper dielectrics. The RF power measurement results indicated that the upper dielectric layer leads to an increase in handling power

  17. Dielectric properties of almond shells in the development of radio frequency and microwave pasteurization

    Science.gov (United States)

    To develop pasteurization treatments based on radio frequency (RF) or microwave energy, dielectric properties of almond shells were determined using an open-ended coaxial-probe with an impedance analyzer over a frequency range of 10 to 1800 MHz. Both the dielectric constant and loss factor of almond...

  18. Effect of Microwave Heating on the Dielectric Properties and Components of Iron-Fortified Milk

    Directory of Open Access Journals (Sweden)

    Xiao-shu Tang

    2017-01-01

    Full Text Available With the iron-fortified milk as research object, this paper makes a research on the influence of iron on the dielectric properties and wave absorption properties and effect of nutritional components, such as casein and whey protein in milk, and thermostability in the process of microwave heating, and rapid heat transfer method in ferrous gluconate–milk and ferrous chloride–milk, respectively. The results show that the iron of ionic form has greater influence to convert microwave to heat energy and the effect of microwave absorption properties was greater for ferrous chloride than for ferrous gluconate at high concentration. The effect of different forms of iron on the composition of milk was different, and the composition of milk systems was more stable by microwave heating, but the rapid heat transfer method is superior in the aim of increasing the nutritional value of milk. The ferrous gluconate–milk system has a better thermal stability than ferrous chloride–milk system. From the aspect of dielectric induction, the paper discovers the response rules of iron and evaluates the microwave thermal safety of the traditional and the iron-fortified products by microwave heating.

  19. Ferromagnetic resonance in a single crystal of iron borate and magnetic field tuning of hybrid oscillations in a composite structure with a dielectric: Experiment and theory

    International Nuclear Information System (INIS)

    Popov, M. A.; Zavislyak, I. V.; Chumak, H. L.; Strugatsky, M. B.; Yagupov, S. V.; Srinivasan, G.

    2015-01-01

    The high-frequency properties of a composite resonator comprised single crystal iron borate (FeBO 3 ), a canted antiferromagnet with a weak ferromagnetic moment, and a polycrystalline dielectric were investigated at 9–10 GHz. Ferromagnetic resonance in this frequency range was observed in FeBO 3 for bias magnetic fields of ∼250 Oe. In the composite resonator, the magnetic mode in iron borate and dielectric mode are found to hybridize strongly. It is shown that the hybrid mode can be tuned with a static magnetic field. Our studies indicate that coupling between the magnetic mode and the dielectric resonance can be altered from maximum hybridization to a minimum by adjusting the position of resonator inside the waveguide. Magnetic field tuning of the resonance frequency by a maximum of 145 MHz and a change in the transmitted microwave power by as much as 16 dB have been observed for a bias field of 250 Oe. A model is discussed for the magnetic field tuning of the composite resonator and theoretical estimates are in reasonable agreement with the data. The composite resonator with a weak ferromagnet and a dielectric is of interest for application in frequency agile devices with electronically tunable electrodynamic characteristics for the mm and sub-mm wave bands

  20. Microwave reflection measurements of the dielectric properties of concrete : final report.

    Science.gov (United States)

    1983-01-01

    The use of microwave reflection measurements to continuously and nondestructively monitor the hydration of concrete is described. The method relies upon the influence of the free-water content on the dielectric properties of the concrete. Use of the ...

  1. Microwave dielectric study of polar liquids at 298 K

    Science.gov (United States)

    Maharolkar, Aruna P.; Murugkar, A.; Khirade, P. W.

    2018-05-01

    Present paper deals with study of microwave dielectric properties like dielectric constant, viscosity, density and refractive index for the binary mixtures of Dimethylsulphoxide (DMSO) and Methanol over the entire concentration range were measured at 298K. The experimental data further used to determine the excess properties viz. excess static dielectric constant, excess molar volume, excess viscosity& derived properties viz. molar refraction&Bruggman factor. The values of excess properties further fitted with Redlich-Kister (R-K Fit) equation to calculate the binary coefficients and standard deviation. The resulting excess parameters are used to indicate the presence of intermolecular interactions and strength of intermolecular interactions between the molecules in the binary mixtures. Excess parameters indicate structure breaking factor in the mixture predominates in the system.

  2. Microwave measurement and modeling of the dielectric properties of vegetation

    Science.gov (United States)

    Shrestha, Bijay Lal

    Some of the important applications of microwaves in the industrial, scientific and medical sectors include processing and treatment of various materials, and determining their physical properties. The dielectric properties of the materials of interest are paramount irrespective of the applications, hence, a wide range of materials covering food products, building materials, ores and fuels, and biological materials have been investigated for their dielectric properties. However, very few studies have been conducted towards the measurement of dielectric properties of green vegetations, including commercially important plant crops such as alfalfa. Because of its high nutritional value, there is a huge demand for this plant and its processed products in national and international markets, and an investigation into the possibility of applying microwaves to improve both the net yield and quality of the crop can be beneficial. Therefore, a dielectric measurement system based upon the probe reflection technique has been set up to measure dielectric properties of green plants over a frequency range from 300 MHz to 18 GHz, moisture contents from 12%, wet basis to 79%, wet basis, and temperatures from -15°C to 30°C. Dielectric properties of chopped alfalfa were measured with this system over frequency range of 300 MHz to 18 GHz, moisture content from 11.5%, wet basis, to 73%, wet basis, and density over the range from 139 kg m-3 to 716 kg m-3 at 23°C. The system accuracy was found to be +/-6% and +/-10% in measuring the dielectric constant and loss factor respectively. Empirical, semi empirical and theoretical models that require only moisture content and operating frequency were determined to represent the dielectric properties of both leaves and stems of alfalfa at 22°C. The empirical models fitted the measured dielectric data extremely well. The root mean square error (RMSE) and the coefficient of determination (r2) for dielectric constant and loss factor of leaves

  3. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries

    Energy Technology Data Exchange (ETDEWEB)

    Lazebnik, Mariya [Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI (United States); Popovic, Dijana [Department of Electrical and Computer Engineering, University of Calgary, Calgary, AB (Canada); McCartney, Leah [Department of Electrical and Computer Engineering, University of Calgary, Calgary, AB (Canada); Watkins, Cynthia B [Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI (United States); Lindstrom, Mary J [Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI (United States); Harter, Josephine [Department of Pathology, University of Wisconsin, Madison, WI (United States); Sewall, Sarah [Department of Pathology, University of Wisconsin, Madison, WI (United States); Ogilvie, Travis [Department of Pathology, University of Calgary, Calgary, AB (Canada); Magliocco, Anthony [Department of Pathology, University of Calgary, Calgary, AB (Canada); Breslin, Tara M [Department of Surgery, University of Wisconsin, Madison, WI (United States); Temple, Walley [Department of Surgery and Oncology, University of Calgary, Calgary, AB (Canada); Mew, Daphne [Department of Surgery and Oncology, University of Calgary, Calgary, AB (Canada); Booske, John H [Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI (United States); Okoniewski, Michal [Department of Electrical and Computer Engineering, University of Calgary, Calgary, AB (Canada); Hagness, Susan C [Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI (United States)

    2007-10-21

    The development of microwave breast cancer detection and treatment techniques has been driven by reports of substantial contrast in the dielectric properties of malignant and normal breast tissues. However, definitive knowledge of the dielectric properties of normal and diseased breast tissues at microwave frequencies has been limited by gaps and discrepancies across previously published studies. To address these issues, we conducted a large-scale study to experimentally determine the ultrawideband microwave dielectric properties of a variety of normal, malignant and benign breast tissues, measured from 0.5 to 20 GHz using a precision open-ended coaxial probe. Previously, we reported the dielectric properties of normal breast tissue samples obtained from reduction surgeries. Here, we report the dielectric properties of normal (adipose, glandular and fibroconnective), malignant (invasive and non-invasive ductal and lobular carcinomas) and benign (fibroadenomas and cysts) breast tissue samples obtained from cancer surgeries. We fit a one-pole Cole-Cole model to the complex permittivity data set of each characterized sample. Our analyses show that the contrast in the microwave-frequency dielectric properties between malignant and normal adipose-dominated tissues in the breast is considerable, as large as 10:1, while the contrast in the microwave-frequency dielectric properties between malignant and normal glandular/fibroconnective tissues in the breast is no more than about 10%.

  4. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries

    Science.gov (United States)

    Lazebnik, Mariya; Popovic, Dijana; McCartney, Leah; Watkins, Cynthia B.; Lindstrom, Mary J.; Harter, Josephine; Sewall, Sarah; Ogilvie, Travis; Magliocco, Anthony; Breslin, Tara M.; Temple, Walley; Mew, Daphne; Booske, John H.; Okoniewski, Michal; Hagness, Susan C.

    2007-10-01

    The development of microwave breast cancer detection and treatment techniques has been driven by reports of substantial contrast in the dielectric properties of malignant and normal breast tissues. However, definitive knowledge of the dielectric properties of normal and diseased breast tissues at microwave frequencies has been limited by gaps and discrepancies across previously published studies. To address these issues, we conducted a large-scale study to experimentally determine the ultrawideband microwave dielectric properties of a variety of normal, malignant and benign breast tissues, measured from 0.5 to 20 GHz using a precision open-ended coaxial probe. Previously, we reported the dielectric properties of normal breast tissue samples obtained from reduction surgeries. Here, we report the dielectric properties of normal (adipose, glandular and fibroconnective), malignant (invasive and non-invasive ductal and lobular carcinomas) and benign (fibroadenomas and cysts) breast tissue samples obtained from cancer surgeries. We fit a one-pole Cole-Cole model to the complex permittivity data set of each characterized sample. Our analyses show that the contrast in the microwave-frequency dielectric properties between malignant and normal adipose-dominated tissues in the breast is considerable, as large as 10:1, while the contrast in the microwave-frequency dielectric properties between malignant and normal glandular/fibroconnective tissues in the breast is no more than about 10%.

  5. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries

    International Nuclear Information System (INIS)

    Lazebnik, Mariya; Popovic, Dijana; McCartney, Leah; Watkins, Cynthia B; Lindstrom, Mary J; Harter, Josephine; Sewall, Sarah; Ogilvie, Travis; Magliocco, Anthony; Breslin, Tara M; Temple, Walley; Mew, Daphne; Booske, John H; Okoniewski, Michal; Hagness, Susan C

    2007-01-01

    The development of microwave breast cancer detection and treatment techniques has been driven by reports of substantial contrast in the dielectric properties of malignant and normal breast tissues. However, definitive knowledge of the dielectric properties of normal and diseased breast tissues at microwave frequencies has been limited by gaps and discrepancies across previously published studies. To address these issues, we conducted a large-scale study to experimentally determine the ultrawideband microwave dielectric properties of a variety of normal, malignant and benign breast tissues, measured from 0.5 to 20 GHz using a precision open-ended coaxial probe. Previously, we reported the dielectric properties of normal breast tissue samples obtained from reduction surgeries. Here, we report the dielectric properties of normal (adipose, glandular and fibroconnective), malignant (invasive and non-invasive ductal and lobular carcinomas) and benign (fibroadenomas and cysts) breast tissue samples obtained from cancer surgeries. We fit a one-pole Cole-Cole model to the complex permittivity data set of each characterized sample. Our analyses show that the contrast in the microwave-frequency dielectric properties between malignant and normal adipose-dominated tissues in the breast is considerable, as large as 10:1, while the contrast in the microwave-frequency dielectric properties between malignant and normal glandular/fibroconnective tissues in the breast is no more than about 10%

  6. Radiation Characteristics Enhancement of Dielectric Resonator Antenna Using Solid/Discrete Dielectric Lenses

    Directory of Open Access Journals (Sweden)

    H. A. E. Malhat

    2015-02-01

    Full Text Available The radiation characteristics of the dielectric resonator antennas (DRA is enhanced using different types of solid and discrete dielectric lenses. One of these approaches is by loading the DRA with planar superstrate, spherical lens, or by discrete lens (transmitarray. The dimensions and dielectric constant of each lens are optimized to maximize the gain of the DRA. A comparison between the radiations characteristics of the DRA loaded with different lenses are introduced. The design of the dielectric transmitarray depends on optimizing the heights of the dielectric material of the unit cell. The optimized transmitarray achieves 7 dBi extra gain over the single DRA with preserving the circular polarization. The proposed antenna is suitable for various applications that need high gain and focused antenna beam.

  7. Microwave dielectric properties of (1 − x)Mg0.95Zn0.05TiO3–(x)Ca0.6La0.8/3TiO3 ceramic composites

    International Nuclear Information System (INIS)

    Rajput, Shailendra Singh; Keshri, Sunita; Gupta, Vibha Rani

    2013-01-01

    Highlights: ► This report presents the microwave dielectric properties of (1 − x)MZT–(x)CLT samples. ► The 0.79MZT-0.21CLT composite sample shows a nearly zero τ f ∼ −0.8 ppm/°C. ► A dielectric resonator antenna has been fabricated using 0.79MZT-0.21CLT sample. ► The probe fed DRA provides higher gain as compared to the microstrip line fed DRA. -- Abstract: In this paper the structural and microwave dielectric properties of the (1 − x)(Mg 0.95 Zn 0.05 )TiO 3 –(x)(Ca 0.6 La 0.8/3 )TiO 3 ceramic composites have been investigated with the variation of x as well as sintering temperature. The grown samples have been characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray (EDX) spectroscopy analysis. The Rietveld analysis of the XRD data has been carried out for structure refinement of the phases. The relative permittivity (∊ r ), quality factor (Q) and temperature coefficient of resonant frequency τ f of the grown samples have been thoroughly studied. Out of all samples of this series, the sample with x = 0.21 shows excellent dielectric properties with ∊ r ∼26.26, Q × f ∼ 60,738 GHz (at 6.44 GHz) and a nearly zero τ f ∼ −0.8 ppm/°C. Two types of dielectric resonator antennas with different feeding mechanisms have been fabricated using this sample to study their performance. The experimental results have been compared with the simulated results obtained using Ansoft High Frequency Structure Simulator software

  8. Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics

    Czech Academy of Sciences Publication Activity Database

    Lee, Ch.-H.; Orloff, N.D.; Birol, T.; Zhu, Y.; Goian, Veronica; Rocas, E.; Haislmaier, R.; Vlahos, E.; Mundy, J.A.; Kourkoutis, L.F.; Nie, Y.; Biegalski, M.D.; Zhang, J.; Bernhagen, M.; Benedek, N.A.; Kim, Y.; Brock, J.D.; Uecker, R.; Xi, X.X.; Gopalan, V.; Nuzhnyy, Dmitry; Kamba, Stanislav; Muller, D.A.; Takeuchi, I.; Booth, J.C.; Fennie, C.J.; Schlom, D. G.

    2013-01-01

    Roč. 502, Oct (2013), s. 532-536 ISSN 0028-0836 R&D Projects: GA ČR GAP204/12/1163; GA MŠk LD12026; GA MŠk(CZ) LH13048 Keywords : microwave dielectrics * ferroelectrics * strain Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 42.351, year: 2013

  9. Light Scattering by a Dielectric Sphere: Perspectives on the Mie Resonances

    Directory of Open Access Journals (Sweden)

    Dimitrios Tzarouchis

    2018-01-01

    Full Text Available Light scattering by a small spherical particle, a central topic for electromagnetic scattering theory, is here considered. In this short review, some of the basic features of its resonant scattering behavior are covered. First, a general physical picture is described by a full electrodynamic perspective, the Lorenz–Mie theory. The resonant spectrum of a dielectric sphere reveals the existence of two distinctive types of polarization enhancement: the plasmonic and the dielectric resonances. The corresponding electrostatic (Rayleigh picture is analyzed and the polarizability of a homogeneous spherical inclusion is extracted. This description facilitates the identification of the first type of resonance, i.e., the localized surface plasmon (plasmonic resonance, as a function of the permittivity. Moreover, the electrostatic picture is linked with the plasmon hybridization model through the case of a step-inhomogeneous structure, i.e., a core–shell sphere. The connections between the electrostatic and electrodynamic models are reviewed in the small size limit and details on size-induced aspects, such as the dynamic depolarization and the radiation reaction on a small sphere are exposed through the newly introduced Mie–Padé approximative perspective. The applicability of this approximation is further expanded including the second type of resonances, i.e., the dielectric resonances. For this type of resonances, the Mie–Padé approximation reveals the main character of the two different cases of resonances of either magnetic or electric origin. A unified picture is therefore described encompassing both plasmonic and dielectric resonances, and the resonant conditions of all three different types are extracted as functions of the permittivity and the size of the sphere. Lastly, the directional scattering behavior of the first two dielectric resonances is exposed in a simple manner, namely the Kerker conditions for maximum forward and

  10. Influence of SrTiO3 modification on dielectric properties of Mg(Zr0.05Ti0.95)O3 ceramics at microwave frequency

    International Nuclear Information System (INIS)

    Tseng, Ching-Fang; Lu, Shu-Cheng

    2013-01-01

    Highlights: ► The microwave dielectric properties of (1−x)Mg(Zr 0.05 Ti 0.95 )O 3 –xSrTiO 3 system have been discussed. ► The dielectric constant and τ f increased; nevertheless, the Q × f decreased with an increase in x. ► Second phases were formed and affected the microwave dielectric properties of (1−x)MZT–xST system. ► ε r of 20.8, Q × f of 257,000, and τ f of 0.2 ppm/°C were obtained for the 0.06Mg(Zr 0.05 Ti 0.95 )O 3 –0.04SrTiO 3 ceramics. ► Due to high-quality factor and near-zero τ f , MZT–ST demonstrate a good potential for use in microwave devices. -- Abstract: The microwave dielectric properties and microstructures were investigated in the (1−x)Mg(Zr 0.05 Ti 0.95 )O 3 –xSrTiO 3 (hereafter referred to as (1−x)MZT–xST) system. The compounds were prepared via the conventional solid-state reaction. Compositions in the (1−x)Mg(Zr 0.05 Ti 0.95 )O 3 –xSrTiO 3 system were designed to compensate the negative temperature coefficient of the resonant frequency of Mg(Zr 0.05 Ti 0.95 )O 3 . The values displayed nonmonotonic mixture-like behavior, because the TiO 2 phase was formed in the MZT composite ceramics with increasing x. A close zero τ f of 0.2 ppm/°C could be achieved at 0.96MZT–0.04ST with ε r = 20.8 and Q × f = 257,000 GHz

  11. Contact-free sheet resistance determination of large area graphene layers by an open dielectric loaded microwave cavity

    International Nuclear Information System (INIS)

    Shaforost, O.; Wang, K.; Adabi, M.; Guo, Z.; Hanham, S.; Klein, N.; Goniszewski, S.; Gallop, J.; Hao, L.

    2015-01-01

    A method for contact-free determination of the sheet resistance of large-area and arbitrary shaped wafers or sheets coated with graphene and other (semi) conducting ultrathin layers is described, which is based on an open dielectric loaded microwave cavity. The sample under test is exposed to the evanescent resonant field outside the cavity. A comparison with a closed cavity configuration revealed that radiation losses have no significant influence of the experimental results. Moreover, the microwave sheet resistance results show good agreement with the dc conductivity determined by four-probe van der Pauw measurements on a set of CVD samples transferred on quartz. As an example of a practical application, correlations between the sheet resistance and deposition conditions for CVD graphene transferred on quartz wafers are described. Our method has a high potential as measurement standard for contact-free sheet resistance measurement and mapping of large area graphene samples

  12. Analysis of a shielded TE011 mode composite dielectric resonator ...

    Indian Academy of Sciences (India)

    Abstract. Analysis of a TE011 mode composite sapphire–rutile dielectric resonator has been car- ried out to study the temperature variation of resonance frequency, close to the Cs atomic clock hyperfine frequency of 9.192 GHz. The complementary behavior of dielectric permittivity with tem- perature of the composite has ...

  13. High-efficiency water-loaded microwave antenna in ultra-high-frequency band

    Science.gov (United States)

    Gong, Zilun; Bartone, Chris; Yang, Fuyi; Yao, Jie

    2018-03-01

    High-index dielectrics are widely used in microwave antennas to control the radiation characteristics. Liquid water, with a high dielectric index at microwave frequency, is an interesting material to achieving tunable functionalities. Here, we demonstrate a water-loaded microwave antenna system that has high loss-tolerance and wideband tunability enabled by fluidity. Our simulation and experimental results show that the resonance frequency can be effectively tuned by the size of loading water. Furthermore, the antenna systems with water loading can achieve high radiation efficiency (>90%) in the ultra-high-frequency (0.3-3 GHz) band. This work brings about opportunities in realistic tunable microwave antenna designs enabled by liquid.

  14. Microwave-assisted sintering of non-stoichiometric strontium bismuth niobate ceramic: Structural and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rajveer [Department of Physics and Astrophysics, University of Delhi, New Delhi 110007 (India); Department of Physics, Atmaram Sanatan Dharma College, University of Delhi, Dhaula Kuan, New Delhi 110021 (India); Luthra, Vandna [Department of Physics, Gargi College, University of Delhi, Siri Fort Road, New Delhi 110049 (India); Tandon, R.P., E-mail: ram_tandon@hotmail.com [Department of Physics and Astrophysics, University of Delhi, New Delhi 110007 (India)

    2016-11-01

    In recent years the microwave sintering has been utilized for the synthesis of materials in enhancement of the properties. In this paper strontium bismuth niobate (Sr{sub 0.8}Bi{sub 2.2}Nb{sub 2}O{sub 9}:SBN) bulk ceramic has been synthesized by microwave reactive sintering and conventional heating techniques. A relative density of 99.6% has been achieved for microwave sintered SBN, which is higher than that of (98.81%) conventionally sintered SBN. The phase formation of SBN synthesized by both processes has been confirmed by X-ray diffraction (XRD). The surface morphology of SBN was observed by scanning electron microscopy (SEM). The microstructure was found to be more uniform in case of SBN sintered by microwave sintering. The dielectric properties of SBN were studied as a function of frequency in the temperature range of 30–500 °C. Both the samples synthesized by two different processes were found to follow Curie–Weiss law above the transition temperature. The Curie temperature was found to be higher for microwave sintered SBN. The dielectric constant and the transition temperature were observed to be higher for SBN ceramic synthesized by microwave sintering technique. The ac and dc activation energy values were also found to be higher for microwave sintered SBN as compared to conventional sintering technique.

  15. Vibrational resonances in biological systems at microwave frequencies.

    Science.gov (United States)

    Adair, Robert K

    2002-03-01

    Many biological systems can be expected to exhibit resonance behavior involving the mechanical vibration of system elements. The natural frequencies of such resonances will, generally, be in the microwave frequency range. Some of these systems will be coupled to the electromagnetic field by the charge distributions they carry, thus admitting the possibility that microwave exposures may generate physiological effects in man and other species. However, such microwave excitable resonances are expected to be strongly damped by interaction with their aqueous biological environment. Although those dissipation mechanisms have been studied, the limitations on energy transfers that follow from the limited coupling of these resonances to the electromagnetic field have not generally been considered. We show that this coupling must generally be very small and thus the absorbed energy is so strongly limited that such resonances cannot affect biology significantly even if the systems are much less strongly damped than expected from basic dissipation models.

  16. Resonant freak microwaves

    International Nuclear Information System (INIS)

    Aguiar, F.M. de

    2011-01-01

    The Helmholtz equation describing transverse magnetic modes in a closed flat microwave resonator with 60 randomly distributed discs is numerically solved. At lower frequencies, the calculated wave intensity spatially distributed obeys the universal Porter-Thomas form if localized modes are excluded. A superposition of resonant modes is shown to lead to rare events of extreme intensities (freak waves) at localized 'hot spots'. The temporally distributed intensity of such a superposition at the center of a hot spot also follows the Porter-Thomas form. Branched modes are found at higher frequencies. The results bear resemblance to recent experiments reported in an open cavity.

  17. Distinguishing between deep trapping transients of electrons and holes in TiO2 nanotube arrays using planar microwave resonator sensor.

    Science.gov (United States)

    Zarifi, Mohammad H; Wiltshire, Benjamin Daniel; Mahdi, Najia; Shankar, Karthik; Daneshmand, Mojgan

    2018-05-16

    A large signal DC bias and a small signal microwave bias were simultaneously applied to TiO2 nanotube membranes mounted on a planar microwave resonator. The DC bias modulated the electron concentration in the TiO2 nanotubes, and was varied between 0 and 120 V in this study. Transients immediately following the application and removal of DC bias were measured by monitoring the S-parameters of the resonator as a function of time. The DC bias stimulated Poole-Frenkel type trap-mediated electrical injection of excess carriers into TiO2 nanotubes which resulted in a near constant resonant frequency but a pronounced decrease in the microwave amplitude due to free electron absorption. When ultraviolet illumination and DC bias were both present and then step-wise removed, the resonant frequency shifted due to trapping -mediated change in the dielectric constant of the nanotube membranes. Characteristic lifetimes of 60-80 s, 300-800 s and ~3000 s were present regardless of whether light or bias was applied and are also observed in the presence of a hole scavenger, which we attribute to oxygen adsorption and deep electron traps while another characteristic lifetime > 9000 s was only present when illumination was applied, and is attributed to the presence of hole traps.

  18. Tunable Magnetic Resonance in Microwave Spintronics Devices

    Science.gov (United States)

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  19. Resonant and Ground Experimental Study on the Microwave Plasma Thruster

    Science.gov (United States)

    Yang, Juan; He, Hongqing; Mao, Genwang; Qu, Kun; Tang, Jinlan; Han, Xianwei

    2002-01-01

    chemistry. Therefore, the application of EP for the attitude control and station keeping of satellite, the propulsion of deep space exploration craft allows to reduce substantially the mass of on-board propellant and the launching cost. The EP research is now receiving high interest everywhere. microwave generating subsystem, the propellant supplying subsystem and the resonator (the thruster). Its principle is that the magnetron of the microwave generating subsystem transfers electric energy into microwave energy at given frequency which is introduced into a resonant cavity. Microwave will resonate within the cavity when it is adjusted. When the propellant gas (N2, Ar, He, NH3 or H2) is put into the cavity and coupled with microwave energy at the maximal electric intensity place, it will be broken down to form free-floating plasma, which flows from nozzle with high speed to produce thrust. Its characteristic is high efficiency, simple power supply and without electrode ablation, its specific impulse is greater than arcjet. 2450MHz, have been developed. The microwave generating subsystem and resonator of lower power MPT, 70-200W, are coaxial. The resonator with TEM resonating mode is section of coaxial wave-guide, of which one end is shorted, another is semi-opened. The maximal electric intensity field is in the lumped capacity formed between the end surface of inner conductor, retracting in the cavity, and the semi-opened surface of outer conductor. It provides favorable condition for gas breakdown. The microwave generating system and resonator of middle power MPT, 500-1,000W, are wave-guide cavity. The resonator with TM011 resonating mode is cylinder wave-guide cavity, of which two end surface are shorted. The distribution of electromagnetic field is axial symmetry, its maximal electric intensity field locates on the axis and closes to the exit of nozzle, where the propellant gas is breakdown to form free floating plasma. The plasma is free from the wall of

  20. Electromagnetically induced transparency with wide band in all-dielectric microstructure based on Mie resonances

    International Nuclear Information System (INIS)

    Zhu, Lei; Dong, Liang

    2014-01-01

    We numerically demonstrate that a broadband electromagnetically induced transparency–like (EIT-like) effect can be achieved in an all-dielectric microstructure consisting of a dielectric bar and six dielectric bricks. With proper excitations, the dielectric bar and bricks serve as bright and dark elements via the Mie electric and magnetic resonances, respectively. In particular, the mutual couplings between the Mie electric and magnetic resonances induce a broad transparency window. The nature of resonances of the broadband EIT-like effect in an all-dielectric microstructure is investigated by numerical simulation and a coupled oscillator model. Results reveal that significant enhancement of coupling interactions between dielectric resonators leads to a broadband EIT-like effect. Such a dielectric EIT-like structure is promising for future applications in nonlinear optics, slow light devices, and filters. (paper)

  1. A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries.

    Science.gov (United States)

    Lazebnik, Mariya; McCartney, Leah; Popovic, Dijana; Watkins, Cynthia B; Lindstrom, Mary J; Harter, Josephine; Sewall, Sarah; Magliocco, Anthony; Booske, John H; Okoniewski, Michal; Hagness, Susan C

    2007-05-21

    The efficacy of emerging microwave breast cancer detection and treatment techniques will depend, in part, on the dielectric properties of normal breast tissue. However, knowledge of these properties at microwave frequencies has been limited due to gaps and discrepancies in previously reported small-scale studies. To address these issues, we experimentally characterized the wideband microwave-frequency dielectric properties of a large number of normal breast tissue samples obtained from breast reduction surgeries at the University of Wisconsin and University of Calgary hospitals. The dielectric spectroscopy measurements were conducted from 0.5 to 20 GHz using a precision open-ended coaxial probe. The tissue composition within the probe's sensing region was quantified in terms of percentages of adipose, fibroconnective and glandular tissues. We fit a one-pole Cole-Cole model to the complex permittivity data set obtained for each sample and determined median Cole-Cole parameters for three groups of normal breast tissues, categorized by adipose tissue content (0-30%, 31-84% and 85-100%). Our analysis of the dielectric properties data for 354 tissue samples reveals that there is a large variation in the dielectric properties of normal breast tissue due to substantial tissue heterogeneity. We observed no statistically significant difference between the within-patient and between-patient variability in the dielectric properties.

  2. A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries

    International Nuclear Information System (INIS)

    Lazebnik, Mariya; McCartney, Leah; Popovic, Dijana; Watkins, Cynthia B; Lindstrom, Mary J; Harter, Josephine; Sewall, Sarah; Magliocco, Anthony; Booske, John H; Okoniewski, Michal; Hagness, Susan C

    2007-01-01

    The efficacy of emerging microwave breast cancer detection and treatment techniques will depend, in part, on the dielectric properties of normal breast tissue. However, knowledge of these properties at microwave frequencies has been limited due to gaps and discrepancies in previously reported small-scale studies. To address these issues, we experimentally characterized the wideband microwave-frequency dielectric properties of a large number of normal breast tissue samples obtained from breast reduction surgeries at University of Wisconsin and University of Calgary hospitals. The dielectric spectroscopy measurements were conducted from 0.5 to 20 GHz using a precision open-ended coaxial probe. The tissue composition within the probe's sensing region was quantified in terms of percentages of adipose, fibroconnective and glandular tissues. We fit a one-pole Cole-Cole model to the complex permittivity data set obtained for each sample and determined median Cole-Cole parameters for three groups of normal breast tissues, categorized by adipose tissue content (0-30%, 31-84% and 85-100%). Our analysis of the dielectric properties data for 354 tissue samples reveals that there is a large variation in the dielectric properties of normal breast tissue due to substantial tissue heterogeneity. We observed no statistically significant difference between the within-patient and between-patient variability in the dielectric properties

  3. Dielectric and Radiative Properties of Sea Foam at Microwave Frequencies: Conceptual Understanding of Foam Emissivity

    OpenAIRE

    Peter W. Gaiser; Magdalena D. Anguelova

    2012-01-01

    Foam fraction can be retrieved from space-based microwave radiometric data at frequencies from 1 to 37 GHz. The retrievals require modeling of ocean surface emissivity fully covered with sea foam. To model foam emissivity well, knowledge of foam properties, both mechanical and dielectric, is necessary because these control the radiative processes in foam. We present a physical description of foam dielectric properties obtained from the foam dielectric constant including foam skin depth; foam ...

  4. A microwave resonance dew-point hygrometer

    Science.gov (United States)

    Underwood, R. J.; Cuccaro, R.; Bell, S.; Gavioso, R. M.; Madonna Ripa, D.; Stevens, M.; de Podesta, M.

    2012-08-01

    We report the first measurements of a quasi-spherical microwave resonator used as a dew-point hygrometer. In conventional dew-point hygrometers, the condensation of water from humid gas flowing over a mirror is detected optically, and the mirror surface is then temperature-controlled to yield a stable condensed layer. In our experiments we flowed moist air from a humidity generator through a quasi-spherical resonator and detected the onset of condensation by measuring the frequency ratio of selected microwave modes. We verified the basic operation of the device over the dew-point range 9.5-13.5 °C by comparison with calibrated chilled-mirror hygrometers. These tests indicate that the microwave method may allow a quantitative estimation of the volume and thickness of the water layer which is condensed on the inner surface of the resonator. The experiments reported here are preliminary due to the limited time available for the work, but show the potential of the method for detecting not only water but a variety of other liquid or solid condensates. The robust all-metal construction should make the device appropriate for use in industrial applications over a wide range of temperatures and pressures.

  5. A microwave resonance dew-point hygrometer

    International Nuclear Information System (INIS)

    Underwood, R J; Bell, S; Stevens, M; De Podesta, M; Cuccaro, R; Gavioso, R M; Ripa, D Madonna

    2012-01-01

    We report the first measurements of a quasi-spherical microwave resonator used as a dew-point hygrometer. In conventional dew-point hygrometers, the condensation of water from humid gas flowing over a mirror is detected optically, and the mirror surface is then temperature-controlled to yield a stable condensed layer. In our experiments we flowed moist air from a humidity generator through a quasi-spherical resonator and detected the onset of condensation by measuring the frequency ratio of selected microwave modes. We verified the basic operation of the device over the dew-point range 9.5–13.5 °C by comparison with calibrated chilled-mirror hygrometers. These tests indicate that the microwave method may allow a quantitative estimation of the volume and thickness of the water layer which is condensed on the inner surface of the resonator. The experiments reported here are preliminary due to the limited time available for the work, but show the potential of the method for detecting not only water but a variety of other liquid or solid condensates. The robust all-metal construction should make the device appropriate for use in industrial applications over a wide range of temperatures and pressures. (paper)

  6. Hyperparametric effects in a whispering-gallery mode rutile dielectric resonator at liquid helium temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Nand, Nitin R.; Goryachev, Maxim; Floch, Jean-Michel le; Creedon, Daniel L.; Tobar, Michael E. [ARC Centre for Engineered Quantum Systems, School of Physics, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia (Australia)

    2014-10-07

    We report the first observation of low power drive level sensitivity, hyperparametric amplification, and single-mode hyperparametric oscillations in a dielectric rutile whispering-gallery mode resonator at 4.2 K. The latter gives rise to a comb of sidebands at 19.756 GHz. Whereas, most frequency combs in the literature have been observed in optical systems using an ensemble of equally spaced modes in microresonators or fibers, the present work represents generation of a frequency comb using only a single-mode. The experimental observations are explained by an additional 1/2 degree-of-freedom originating from an intrinsic material nonlinearity at optical frequencies, which affects the microwave properties due to the extremely low loss of rutile. Using a model based on lumped circuits, we demonstrate that the resonance between the photonic and material 1/2 degree-of-freedom, is responsible for the hyperparametric energy transfer in the system.

  7. Conformation transitions of blood proteins under influence of physical factors on microwave dielectric method

    International Nuclear Information System (INIS)

    Gorobchenko, O.A.; Nikolov, O.T.; Gatash, S.V.

    2006-01-01

    In this article, the influence of γ-irradiation and temperature on albumin and fibrinogen conformation and dielectric properties of protein solutions have been studied by the microwave dielectric method. Both the values of the real part ε' (dielectric permittivity) and the imaginary part ε'' (dielectric losses) of the complex dielectric permittivity of the aqueous solution of bovine serum albumin and human fibrinogen as functions of temperature and γ-irradiation dose have been obtained. The time of dielectric relaxation of water molecules in the protein solutions was calculated. The hydration of the albumin and fibrinogen molecules was determined. The temperature dependencies of hydration are non-monotonous and have a number of characteristic features at the temperatures 30-34 and 44-47 deg. C for serum albumin, and 24 and 32 deg. C for fibrinogen

  8. Microwave measurements of water vapor partial pressure at high temperatures

    International Nuclear Information System (INIS)

    Latorre, V.R.

    1991-01-01

    One of the desired parameters in the Yucca Mountain Project is the capillary pressure of the rock comprising the repository. This parameter is related to the partial pressure of water vapor in the air when in equilibrium with the rock mass. Although there are a number of devices that will measure the relative humidity (directly related to the water vapor partial pressure), they generally will fail at temperatures on the order of 150C. Since thee author has observed borehole temperatures considerably in excess of this value in G-Tunnel at the Nevada Test Site (NTS), a different scheme is required to obtain the desired partial pressure data at higher temperatures. This chapter presents a microwave technique that has been developed to measure water vapor partial pressure in boreholes at temperatures up to 250C. The heart of the system is a microwave coaxial resonator whose resonant frequency is inversely proportional to the square root of the real part of the complex dielectric constant of the medium (air) filling the resonator. The real part of the dielectric constant of air is approximately equal to the square of the refractive index which, in turn, is proportional to the partial pressure of the water vapor in the air. Thus, a microwave resonant cavity can be used to measure changes in the relative humidity or partial pressure of water vapor in the air. Since this type of device is constructed of metal, it is able to withstand very high temperatures. The actual limitation is the temperature limit of the dielectric material in the cable connecting the resonator to its driving and monitoring equipment-an automatic network analyzer in our case. In the following sections, the theory of operation, design, construction, calibration and installation of the microwave diagnostics system is presented. The results and conclusions are also presented, along with suggestions for future work

  9. Longitudinally mounted light emitting plasma in a dielectric resonator

    Energy Technology Data Exchange (ETDEWEB)

    Gilliard, Richard; DeVincentis, Marc; Hafidi, Abdeslam; O' Hare, Daniel; Hollingsworth, Gregg [LUXIM Corporation, 1171 Borregas Avenue, Sunnyvale, CA 94089 (United States)

    2011-06-08

    Methods for coupling power from a dielectric resonator to a light-emitting plasma have been previously described (Gilliard et al IEEE Trans. Plasma Sci. at press). Inevitably, regardless of the efficiency of power transfer, much of the emitted light is absorbed in the resonator itself which physically surrounds much if not all of the radiating material. An investigation into a method is presented here for efficiently coupling power to a longitudinally mounted plasma vessel which is mounted on the surface of the dielectric material of the resonator, thereby eliminating significant absorption of light within the resonator structure. The topology of the resonator and its physical properties as well as those of the metal halide plasma are presented. Results of basic models of the field configuration and plasma are shown as well as a configuration suitable as a practical light source.

  10. Microwave dielectric properties of low-fired Li_2TiO_3–MgO ceramics for LTCC applications

    International Nuclear Information System (INIS)

    Ma, Jian-Li; Fu, Zhi-Fen; Liu, Peng; Wang, Bing; Li, Yang

    2016-01-01

    Graphical abstract: This figure gives the Q × f and τ_f of Li_2TiO_3–MgO ceramics sintered at various temperatures with different LiF contents. Addition of LiF enhanced the sinterability and optimized the microwave dielectric properties of Li_2TiO_3–MgO ceramics. The excellent microwave dielectric properties (ε_r = 15.8, Q × f = 64,500 GHz, and τ_f = −0.2 ppm/°C) of Li_2TiO_3–MgO ceramics sintered at 850 °C illustrated that LiF is a simple effective sintering aids for Li_2TiO_3–MgO ceramics. Such sample was compatible with Ag electrodes, suitable for the low-temperature co-fired ceramics (LTCC) applications. - Highlights: • Temperature stability of Li_2TiO_3 ceramics were improved by doping MgO. • The low-fired Li_2TiO_3–MgO ceramics are fabricated. • LiF liquid phase reduced sintering temperature of Li_2TiO_3–MgO ceramics to 850 °C. • The low-fired Li_2TiO_3–MgO ceramics possess well microwave dielectric properties. • The sample was compatible with Ag electrodes and suitable for LTCC applications. - Abstract: We fabricated the low-fired Li_2TiO_3–MgO ceramics doped with LiF by a conventional solid-state route, and investigated systematically their sintering characteristics, microstructures and microwave dielectric properties. The results showed that temperature stability of Li_2TiO_3 ceramics were improved by doping MgO. Well microwave dielectric properties for Li_2TiO_3–13 wt%MgO (LTM) ceramics with ε_r = 16.4, Q × f = 87,500 GHz, and τ_f = −1.2 ppm/°C were obtained at 1325 °C. Furthermore, addition of LiF enhanced the sinterability and optimized the microwave dielectric properties of LTM ceramics. A typically sample of LTM-4 wt%LiF ceramics with optimum dielectric properties (ε_r = 15.8, Q × f = 64,500 GHz, and τ_f = −0.2 ppm/°C) were achieved at 850 °C for 4 h. Such sample was compatible with Ag electrodes, suitable for the low-temperature co-fired ceramics (LTCC) applications.

  11. Meta-atom microfluidic sensor for measurement of dielectric properties of liquids

    Science.gov (United States)

    Awang, Robiatun A.; Tovar-Lopez, Francisco J.; Baum, Thomas; Sriram, Sharath; Rowe, Wayne S. T.

    2017-03-01

    High sensitivity microwave frequency microfluidic sensing is gaining popularity in chemical and biosensing applications for evaluating the dielectric properties of liquid samples. Here, we show that a tiny microfluidic channel positioned in the gaps of a dual-gap meta-atom split-ring resonator can exploit the electric field sensitivity to predict the dielectric properties of liquid samples. Employing an empirical relation between resonant characteristics of the fabricated sensor and the complex permittivity of water-ethanol or water-methanol mixtures produces good congruence to standardized values from the literature. This microfluidic sensor offers a potential lab-on-chip solution for liquid dielectric characterization without external electrical connections.

  12. Detuned-resonator induced transparency in dielectric-loaded plasmonic waveguides

    DEFF Research Database (Denmark)

    Han, Zhanghua; García Ortíz, César Eduardo; Radko, Ilya P.

    2013-01-01

    We report on the experimental demonstration of detuned-resonator induced transparency in the near-infrared (∼800  nm) using two detuned racetrack resonators side-coupled to a bus waveguide. Both resonators and the bus waveguide are in the form of dielectric-loaded surface plasmon polariton...

  13. Manipulation of plasmonic resonances in graphene coated dielectric cylinders

    KAUST Repository

    Ge, Lixin

    2016-11-16

    Graphene sheets can support surface plasmon as the Dirac electrons oscillate collectively with electromagnetic waves. Compared with the surface plasmon in conventional metal (e.g., Ag and Au), graphene plasmonic owns many remarkable merits especially in Terahertz and far infrared frequencies, such as deep sub-wavelength, low loss, and high tunability. For graphene coated dielectric nano-scatters, localized surface plasmon (LSP)exist and can be excited under specific conditions. The LSPs are associated with the Mie resonance modes, leading to extraordinary large scattering and absorption cross section. In this work, we study systematically the optical scattering properties for graphene coated dielectric cylinders. It is found that the LSP can be manipulated by geometrical parameters and external electric gating. Generally, the resonance frequencies for different resonance modes are not the same. However, under proper design, we show that different resonance modes (e.g., dipole mode, quadruple mode etc.) can be excited at the same frequency. Thus, the scattering and absorption by graphene coated dielectric cylinders can indeed overcome the single channel limit. Our finding may open up new avenues in applications for the graphene-based THz optoelectronic devices.

  14. Phase evolution and microwave dielectric properties of A5M5O17-type ceramics

    Directory of Open Access Journals (Sweden)

    Ali Murad

    2017-07-01

    Full Text Available A number of A5M5O17 (A = Na, Ca, Sr, La, Nd, Sm, Gd, Dy, Yb; B = Ti, Nb, Ta type compounds were prepared by a solid-state sintering route and characterized in terms of structure, microstructure and microwave dielectric properties. The compatibility of rare earths with mixed niobate/tantalate and titanate phases was investigated. The larger ionic radii mismatch resulted in the formation of pyrochlore and/or mixed phases while in other cases, pure A5M5O17 phase was formed. The samples exhibited relative permittivity in the range of 35 to 82, quality factor (Q × fo = 897 GHz to 11946 GHz and temperature coefficient of resonance frequency (τf = -120 ppm/°C to 318 ppm/°C.

  15. Microwave plasmatrons for giant integrated circuit processing

    Energy Technology Data Exchange (ETDEWEB)

    Petrin, A.B.

    2000-02-01

    A method for calculating the interaction of a powerful microwave with a plane layer of magnetoactive low-pressure plasma under conditions of electron cyclotron resonance is presented. In this paper, the plasma layer is situated between a plane dielectric layer and a plane metal screen. The calculation model contains the microwave energy balance, particle balance, and electron energy balance. The equation that expressed microwave properties of nonuniform magnetoactive plasma is found. The numerical calculations of the microwave-plasma interaction for a one-dimensional model of the problem are considered. Applications of the results for microwave plasmatrons designed for processing giant integrated circuits are suggested.

  16. Monotron and azimuthally corrugated: application to the high power microwaves generation

    International Nuclear Information System (INIS)

    Castro, Pedro Jose de

    2003-01-01

    The present document reports the activity of construction and initial operation of 6.7 GHz operation for high power microwave generation, the study on cylindrical resonators with azimuthally corrugated cross section, the determination of electrical conductivity of metallic materials and development of dielectric resonators for telecommunication applications

  17. Whispering-gallery-mode resonance sensor for dielectric sensing of drug tablets

    International Nuclear Information System (INIS)

    Neshat, Mohammad; Chen, Huanyu; Safavi-Naeini, Safieddin; Gigoyan, Suren; Saeedkia, Daryoosh

    2010-01-01

    We propose, for the first time, the application of whispering gallery mode (WGM) perturbation technique in dielectric analysis of disk shape pharmaceutical tablets. Based on WGM resonance, a low-cost high sensitivity sensor in milllimeter-wave frequency range is presented. A comprehensive sensitivity analysis was performed to show that a change in the order of 10 −4 in the sample permittivity can be detected by the proposed sensor. The results of various experiments carried out on drug tablets are reported to demonstrate the potential multifunctional capabilities of the sensor in moisture sensing, counterfeit drug detection and contamination screening. Analytically, two sample placement configurations, i.e. a tablet placed on top of a dielectric disk resonator and inside a dielectric ring resonator, have been studied to predict the resonance frequency and Q-factor of the combined sample-resonator structure. The accuracy of the analytical model was tested against full-wave simulations and experimental data

  18. Superconducting microwave electronics at Lewis Research Center

    Science.gov (United States)

    Warner, Joseph D.; Bhasin, Kul B.; Leonard, Regis F.

    Over the last three years, NASA Lewis Research Center has investigated the application of newly discovered high temperature superconductors to microwave electronics. Using thin films of YBa2Cu3O7-delta and Tl2Ca2Ba2Cu3Ox deposited on a variety of substrates, including strontium titanate, lanthanum gallate, lanthanum aluminate and magnesium oxide, a number of microwave circuits have been fabricated and evaluated. These include a cavity resonator at 60 GHz, microstrip resonators at 35 GHz, a superconducting antenna array at 35 GHz, a dielectric resonator at 9 GHz, and a microstrip filter at 5 GHz. Performance of some of these circuits as well as suggestions for other applications are reported.

  19. Superconducting Microwave Electronics at Lewis Research Center

    Science.gov (United States)

    Warner, Joseph D.; Bhasin, Kul B.; Leonard, Regis F.

    1991-01-01

    Over the last three years, NASA Lewis Research Center has investigated the application of newly discovered high temperature superconductors to microwave electronics. Using thin films of YBa2Cu3O7-delta and Tl2Ca2Ba2Cu3Ox deposited on a variety of substrates, including strontium titanate, lanthanum gallate, lanthanum aluminate and magnesium oxide, a number of microwave circuits have been fabricated and evaluated. These include a cavity resonator at 60 GHz, microstrip resonators at 35 GHz, a superconducting antenna array at 35 GHz, a dielectric resonator at 9 GHz, and a microstrip filter at 5 GHz. Performance of some of these circuits as well as suggestions for other applications are reported.

  20. Dielectric relaxation studies in 5CB nematic liquid crystal at 9 GHz ...

    Indian Academy of Sciences (India)

    Resonance width, shift in resonance frequency, relaxation time and activation energy of 5CB nematic liquid crystal are measured using microwave cavity technique under the influence of an external magnetic field at 9 GHz and at different temperatures. The dielectric response in liquid crystal at different temperatures and ...

  1. Dielectric resonance in ErFeO3 in the region of spin reorientation

    International Nuclear Information System (INIS)

    Dan'shin, N.K.; Kovtun, N.M.; Sdvizhkov, M.A.

    1984-01-01

    In the region of spin reorientation in ErFeO 3 in the millimetre wave range a dielectric resonance has been found - excitation of electromaqnetic field natural oscillations in spherical samples. The fregurncies of dielectric resonance in samples from ErFeO 3 possess strong independence of temperature and magnetic field in the vicinity of the spin reorientation for account of a strong growth in the magnetic susceptibility. The frequencies change most considerably in the region of low-temperature spin reorientation related to antiferromagnetic rare earth ordering. Strong anisotropy of magnetic susceptibility cases various temperature and field dependences of the dielectric resonance frequencies at different orientations of the exciting electromagnetic field relative to the crystal axes. It is shown that the method of dielectric resonance permits to determine with high accuracy the temperatures of spontaneous - and crystal fields of induced phase transformations. The crystal dielectric permittivity and magnetic permeability dispersion are determined

  2. Excellent microwave response derived from the construction of dielectric-loss 1D nanostructure

    Science.gov (United States)

    Dai, Sisi; Quan, Bin; Liang, Xiaohui; Lv, Jing; Yang, Zhihong; Ji, Guangbin; Du, Youwei

    2018-05-01

    Increasing efforts have recently been devoted to the artificial design and function of nanostructures for their application prospects in catalysis, drug delivery, energy storage, and microwave absorption. With the advantages of natural abundance, low cost, and environment friendliness, a one-dimensional (1D) MnO2 nanowire (MW) is the representative dielectric-loss absorber for its special morphology and crystalline structure. However, its low reflection loss (RL) value due to its thin thickness limits its wide development and application in the microwave absorption field. In this work, artificially designed MnO2@AIR@C (MCs), namely, 1D hollow carbon nanotubes filled with nano-MnO2, were designed and synthesized. It is found that the RL value of the MC is almost lower than -10 dB. Furthermore, the RL value was able to achieve -18.9 dB with an effective bandwidth (-10 dB) of 5.84 GHz at 2.25 mm. Simultaneously, the dielectric and interfacial polarization became stronger while the impedance matching was much better than in the single MWs. Hence, the rational design and fabrication of micro-architecture are essential and MC has great potential to be an outstanding microwave absorber.

  3. High temperature measurements of the microwave dielectric properties of ceramics

    International Nuclear Information System (INIS)

    Baeraky, T.A.

    1999-06-01

    Equipment has been developed for the measurement of dielectric properties at high temperature from 25 to 1700 deg. C in the microwave frequency range 614.97 to 3620.66 MHz using the cavity perturbation technique, to measure the permittivity of a range of ceramic materials. The complex permittivities of the standard materials, water and methanol, were measured at low temperature and compared with the other published data. A statistical analysis was made for the permittivity measurements of water and methanol using sample holders of different diameter. Also the measurements of these materials were used to compare the simple perturbation equation with its modifications and alternation correction methods for sample shape and the holes at the two endplates of the cavity. The dielectric properties of solid materials were investigated from the permittivity measurements on powder materials, shown in table 4.7, using the dielectric mixture equations. Two kinds of ceramics, oxide and nitrides, were selected for the high temperature dielectric measurements in microwave frequency ranges. Pure zirconia, yttria-stabilised zirconia, and Magnesia-stabilised zirconia are the oxide ceramics while aluminium nitride and silicon nitride are the nitride ceramics. A phase transformation from monoclinic to tetragonal was observed in pure zirconia in terms of the complex permittivity measurements, and the conduction mechanism in three regions of temperature was suggested to be ionic in the first region and a mixture of ionic and electronic in the second. The phase transition disappeared with yttria-stabilised zirconia but it was observed with magnesia-stabilised zirconia. Yttria doped zirconia was fully stabilised while magnesia stabilised was partially stabilised zirconia. The dielectric property measurements of aluminium nitride indicated that there is a transition from AIN to AlON, which suggested that the external layer of the AIN which was exposed to the air, contains alumina. It was

  4. Tailoring order–disorder temperature and microwave dielectric properties of Ba[(Co0.6Zn0.41/3Nb2/3]O3 ceramics

    Directory of Open Access Journals (Sweden)

    Tu Lai Sun

    2016-03-01

    Full Text Available The order–disorder temperature (To–d of Ba[(Co0.6Zn0.41/3Nb2/3]O3 ceramics was determined via X-ray diffraction, Raman spectroscopy and differential thermal analysis, respectively. To–d was determined to be between 1425 and 1450 °C by a quenching method. The endothermic peak in the DTA curve shows the order–disorder transition. B2O3 was applied to tune the densification temperature (Ts and tailor the microwave dielectric properties. The ordering degree and unloaded quality factor (Qf are improved when Ts is reduced to 1400 °C at B2O3 content of 0.25 mol%. Ts is further decreased and the ordering degree and Qf are decreased when B2O3 content is increased to 0.5 mol%. The dielectric constant (εr and temperature coefficient of resonant frequency (τf decrease slightly with increasing B2O3 content. The optimum microwave dielectric properties (i.e., εr = 34.0, Qf = 50,400 GHz, τf = 5.5 × 10−6/°C are obtained for the Ba[(Co0.6Zn0.41/3Nb2/3]O3-0.25 mol% B2O3 ceramics sintered at a lower temperature.

  5. Characterization of low-temperature microwave loss of thin aluminum oxide formed by plasma oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Chunqing, E-mail: cdeng@uwaterloo.ca; Otto, M.; Lupascu, A., E-mail: alupascu@uwaterloo.ca [Institute for Quantum Computing, Department of Physics and Astronomy, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2014-01-27

    We report on the characterization of microwave loss of thin aluminum oxide films at low temperatures using superconducting lumped resonators. The oxide films are fabricated using plasma oxidation of aluminum and have a thickness of 5 nm. We measure the dielectric loss versus microwave power for resonators with frequencies in the GHz range at temperatures from 54 to 303 mK. The power and temperature dependence of the loss are consistent with the tunneling two-level system theory. These results are relevant to understanding decoherence in superconducting quantum devices. The obtained oxide films are thin and robust, making them suitable for capacitors in compact microwave resonators.

  6. Optimisation of the electromagnetic matching of manganese dioxide/multi-wall carbon nanotube composites as dielectric microwave-absorbing materials

    International Nuclear Information System (INIS)

    Ting, Tzu-Hao; Chiang, Chih-Chia; Lin, Po-Chuan; Lin, Chia-Huei

    2013-01-01

    An optimised composite sample was prepared using two dielectric materials manganese dioxide (MnO 2 ) and multi-wall carbon nanotubes (MWNTs) in an epoxy-resin matrix. Structural characterisations of both the synthesised manganese dioxide (MnO 2 ) and the multi-wall carbon nanotubes (MWNTs) were performed by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The microwave absorption properties of dielectric composites with different weight fractions of MnO 2 were investigated by measuring the complex permittivity, the complex permeability and the reflection loss in the 2–18 and 18–40 GHz microwave frequency ranges using the free space method. The complex permittivity varied with the MnO 2 content, and the results show that a high concentration of fillers increased the dielectric constant. Therefore, the appropriate combination of components and experimental conditions can produce materials with specific characteristic for use as wide-band microwave absorbers. - Highlights: ► This paper analyses optimised microwave absorption for MnO 2 /MWNT composites. ► Structural characterisations were performed by using XRD and SEM. ► Increasing MnO 2 content enhances the complex permittivity in MnO 2 /MWNT matrix. ► The reflection loss varies with changes content of MnO 2 for required frequency bands

  7. Normal modes and quality factors of spherical dielectric resonators: I ...

    Indian Academy of Sciences (India)

    Eigenmodes; spherical resonators; spherical dielectric resonators; quality factors. PACS No. 42.50. .... Alternatively, introducing the angular momentum operator L defined as, L = (1/j)( r × ∇) ...... referee of the article for some helpful comments.

  8. Testing quantised inertia on emdrives with dielectrics

    Science.gov (United States)

    McCulloch, M. E.

    2017-05-01

    Truncated-cone-shaped cavities with microwaves resonating within them (emdrives) move slightly towards their narrow ends, in contradiction to standard physics. This effect has been predicted by a model called quantised inertia (MiHsC) which assumes that the inertia of the microwaves is caused by Unruh radiation, more of which is allowed at the wide end. Therefore, photons going towards the wide end gain inertia, and to conserve momentum the cavity must move towards its narrow end, as observed. A previous analysis with quantised inertia predicted a controversial photon acceleration, which is shown here to be unnecessary. The previous analysis also mispredicted the thrust in those emdrives with dielectrics. It is shown here that having a dielectric at one end of the cavity is equivalent to widening the cavity at that end, and when dielectrics are considered, then quantised inertia predicts these results as well as the others, except for Shawyer's first test where the thrust is predicted to be the right size but in the wrong direction. As a further test, quantised inertia predicts that an emdrive's thrust can be enhanced by using a dielectric at the wide end.

  9. All-dielectric metamaterial frequency selective surface based on spatial arrangement ceramic resonators

    Science.gov (United States)

    Li, Liyang; Wang, Jun; Feng, Mingde; Ma, Hua; Wang, Jiafu; Du, Hongliang; Qu, Shaobo

    In this paper, we demonstrate a method of designing all-dielectric metamaterial frequency selective surface (FSS) with ceramic resonators in spatial arrangement. Compared with the traditional way, spatial arrangement provides a flexible way to handle the permutation and combination of different ceramic resonators. With this method, the resonance response can be adjusted easily to achieve pass/stop band effects. As an example, a stop band spatial arrangement all-dielectric metamaterial FSS is designed. Its working band is in 11.65-12.23GHz. By adjusting permittivity and geometrical parameters of ceramic resonators, we can easily modulate the resonances, band pass or band stop characteristic, as well as the working band.

  10. Magnetic hysteresis effects in superconducting coplanar microwave resonators

    Energy Technology Data Exchange (ETDEWEB)

    Bothner, D.; Gaber, T.; Kemmler, M.; Gruenzweig, M.; Ferdinand, B.; Koelle, D.; Kleiner, R. [Universitaet Tuebingen (Germany); Wuensch, S.; Siegel, M. [Karlsruher Institut fuer Technologie (Germany); Mikheenko, P.; Johansen, T.H. [University of Oslo (Norway)

    2013-07-01

    We present experimental data regarding the impact of external magnetic fields on quality factor and resonance frequency of superconducting microwave resonators in a coplanar waveguide geometry. In particular we focus on the influence of magnetic history and show with the assistance of numerical calculations that the found hysteretic behaviour can be well understood with a highly inhomogeneous microwave current density in combination with established field penetration models for type-II superconducting thin films. Furthermore we have used magneto-optical imaging techniques to check the field distribution which we have assumed in our calculations. Finally, we demonstrate that and how the observed hysteretic behaviour can be used to optimize and tune the resonator performance for possible hybrid quantum sytems in magnetic fields.

  11. Microwave photonics systems based on whispering-gallery-mode resonators.

    Science.gov (United States)

    Coillet, Aurélien; Henriet, Rémi; Phan Huy, Kien; Jacquot, Maxime; Furfaro, Luca; Balakireva, Irina; Larger, Laurent; Chembo, Yanne K

    2013-08-05

    Microwave photonics systems rely fundamentally on the interaction between microwave and optical signals. These systems are extremely promising for various areas of technology and applied science, such as aerospace and communication engineering, sensing, metrology, nonlinear photonics, and quantum optics. In this article, we present the principal techniques used in our lab to build microwave photonics systems based on ultra-high Q whispering gallery mode resonators. First detailed in this article is the protocol for resonator polishing, which is based on a grind-and-polish technique close to the ones used to polish optical components such as lenses or telescope mirrors. Then, a white light interferometric profilometer measures surface roughness, which is a key parameter to characterize the quality of the polishing. In order to launch light in the resonator, a tapered silica fiber with diameter in the micrometer range is used. To reach such small diameters, we adopt the "flame-brushing" technique, using simultaneously computer-controlled motors to pull the fiber apart, and a blowtorch to heat the fiber area to be tapered. The resonator and the tapered fiber are later approached to one another to visualize the resonance signal of the whispering gallery modes using a wavelength-scanning laser. By increasing the optical power in the resonator, nonlinear phenomena are triggered until the formation of a Kerr optical frequency comb is observed with a spectrum made of equidistant spectral lines. These Kerr comb spectra have exceptional characteristics that are suitable for several applications in science and technology. We consider the application related to ultra-stable microwave frequency synthesis and demonstrate the generation of a Kerr comb with GHz intermodal frequency.

  12. Dielectric and microwave absorption properties of TiO_2/Al_2O_3 coatings and improved microwave absorption by FSS incorporation

    International Nuclear Information System (INIS)

    Yang, Zhaoning; Luo, Fa; Hu, Yang; Duan, Shichang; Zhu, Dongmei; Zhou, Wancheng

    2016-01-01

    In this paper, TiO_2/Al_2O_3 ceramic coatings were prepared by atmospheric plasma spraying (APS) technique. The phase composition and morphological characterizations of the synthesized TiO_2/Al_2O_3 powders and coatings were performed by X-ray diffraction and scanning electron microscopy (SEM), respectively. The dielectric properties of these coatings were discussed in the frequency range from 8.2 to 12.4 GHz (X-band). By calculating the microwave-absorption as a single-layer absorber, their microwave absorption properties were investigated at different content and thickness in details. Furthermore, by combination of the Frequency selective surface (FSS) and ceramic coatings, a double absorption band of the reflection loss spectra had been observed. The microwave absorbing properties of coatings both in absorbing intensity and absorbing bandwidth were improved. The reflection loss values of TiO_2/Al_2O_3 coatings exceeding −10 dB (larger than 90% absorption) can be obtained in the whole frequency range of X-band with 17 wt% TiO_2 content when the coating thickness is 2.3 mm. - Highlights: • Dielectric properties of TiO_2/Al_2O_3 ceramics fabricated by APS technique are reported for the first time. • Microwave absorption properties of TiO_2/Al_2O_3 composites are improved by FSS. • Reflection loss values exceeding −10 dB can be obtained in the whole X-band when coating thickness is 2.3 mm.

  13. Rapid synthesis of tantalum oxide dielectric films by microwave microwave-assisted atmospheric chemical vapor deposition

    International Nuclear Information System (INIS)

    Ndiege, Nicholas; Subramanian, Vaidyanathan; Shannon, Mark A.; Masel, Richard I.

    2008-01-01

    Microwave-assisted chemical vapor deposition has been used to generate high quality, high-k dielectric films on silicon at high deposition rates with film thicknesses varying from 50 nm to 110 μm using inexpensive equipment. Characterization of the post deposition products was performed by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Auger electron spectroscopy and Raman spectroscopy. Film growth was determined to occur via rapid formation and accumulation of tantalum oxide clusters from tantalum (v) ethoxide (Ta(OC 2 H 5 ) 5 ) vapor on the deposition surface

  14. Effects of TiO2 addition on microwave dielectric properties of Li2MgSiO4 ceramics

    Science.gov (United States)

    Rose, Aleena; Masin, B.; Sreemoolanadhan, H.; Ashok, K.; Vijayakumar, T.

    2018-03-01

    Silicates have been widely studied for substrate applications in microwave integrated circuits owing to their low dielectric constant and low tangent loss values. Li2MgSiO4 (LMS) ceramics are synthesized through solid-state reaction route using TiO2 as an additive to the pure ceramics. Variations in dielectric properties of LMS upon TiO2 addition in different weight percentages (0.5, 1.5, 2) are studied by keeping the sintering parameters constant. Crystalline structure, phase composition, and microstructure of LMS and LMS-TiO2 ceramics were studied using x-ray diffraction spectrometer and High Resolution Scanning electron microscope. Density was measured through Archimedes method and the microwave dielectric properties were examined by Cavity perturbation technique. LMS achieved relative permittivity (ε r) of 5.73 and dielectric loss (tan δ) of 5.897 × 10‑4 at 8 GHz. In LMS-TiO2 ceramics, 0.5 wt% TiO2 added LMS showed comparatively better dielectric properties than other weight percentages where ε r = 5.67, tan δ = 7.737 × 10‑4 at 8 GHz.

  15. High-performance flexible microwave passives on plastic

    Science.gov (United States)

    Ma, Zhenqiang; Seo, Jung-Hun; Cho, Sang June; Zhou, Weidong

    2014-06-01

    We report the demonstration of bendable inductors, capacitors and switches fabricated on a polyethylene terephthalate (PET) substrate that can operate at high microwave frequencies. By employing bendable dielectric and single crystalline semiconductor materials, spiral inductors and metal-insulator-metal (MIM) capacitors with high quality factors and high resonance frequencies and single-pole, single-throw (SPST) switches were archived. The effects of mechanical bending on the performance of inductors, capacitors and switches were also measured and analyzed. We further investigated the highest possible resonance frequencies and quality factors of inductors and capacitors and, high frequency responses and insertion loss. These demonstrations will lead to flexible radio-frequency and microwave systems in the future.

  16. Resonances and dipole moments in dielectric, magnetic, and magnetodielectric cylinders

    DEFF Research Database (Denmark)

    Dirksen, A.; Arslanagic, Samel; Breinbjerg, Olav

    2011-01-01

    An eigenfunction solution to the problem of plane wave scattering by dielectric, magnetic, and magnetodielectric cylinders is used for a systematic investigation of their resonances. An overview of the resonances with electric and magnetic dipole moments, needed in, e.g., the synthesis...

  17. Contribution to the microwave characterisation of superconductive materials by means of sapphire resonators; Contribution a la caracterisation hyperfrequence de materiaux supraconducteurs par des resonateurs-saphirs

    Energy Technology Data Exchange (ETDEWEB)

    Hanus, Xavier

    1993-12-06

    The objective of this research thesis is to find a compact resonant structure which would allow the residual surface impedance of superconductive samples to be simply, quickly and economically characterised. The author first explains why he decided to use a sapphire single-crystal as inner dielectric, given some performance reached by resonant structures equipped with such inner dielectrics, and given constraints adopted from the start. He explains the origin of microwave losses which appear in this type of resonant structure, i.e. respectively the surface impedance as far as metallic losses are concerned, and the sapphire dielectric loss angle for as far as dielectric losses are concerned. The experimental installation and the principle of microwave measurements are described. The performance of different possible solutions of resonant structures from starting criteria is presented. The solution of the cavity-sapphire with a TE{sub 011} resonant mode is derived [French] Le but de cette etude est de trouver une structure resonnante compacte permettant de caracteriser simplement, rapidement et economiquement l'impedance de surface residuelle d'echantillons supraconducteurs. Les contraintes de mise en oeuvre et les performances atteintes par des resonateurs avec saphirs synthetiques justifient le choix d'un tel dielectrique a faible angle de perte. L'evaluation des performances experimentales appuyee par des modelesanalytiques permet de rejeter differentes solutions. Ainsi les resonateurs fermes avec saphirs minces sont rejetes en raison des mauvais contacts metalliques. Les resonateurs ouverts avec saphirs minces et epais sont egalement rejetes, meme pour les modes de resonance en principe confines, en raison des pertes par rayonnement. La seule solution est donc d'utiliser une cavite-saphir TE{sub 011} qui offre une configuration de champs naturellement confines. Des mesures sur une premiere cavite en niobium massif ont permis de selectionner un saphir obtenu par

  18. Enhanced microwave absorption in ZnO/carbonyl iron nano-composites by coating dielectric material

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Chang [School of Physics and Material Science, Anhui University, Hefei 230036 (China); Key Laboratory of Opto-electronic Information Acquisition and Manipulation Ministry of Education, Anhui University, Hefei 230039 (China); Fang Qingqing, E-mail: physfangqq@126.com [School of Physics and Material Science, Anhui University, Hefei 230036 (China) and Key Laboratory of Opto-electronic Information Acquisition and Manipulation Ministry of Education, Anhui University, Hefei 230039 (China); Yan Fangliang; Wang Weina; Wu Keyue; Liu Yanmei; Lv Qingrong; Zhang Hanming; Zhang Qiping; Li Jinguang; Ding Qiongqiong [School of Physics and Material Science, Anhui University, Hefei 230036 (China); Key Laboratory of Opto-electronic Information Acquisition and Manipulation Ministry of Education, Anhui University, Hefei 230039 (China)

    2012-05-15

    The microwave absorption properties of zinc oxide/carbonyl iron composite nanoparticles fabricated by high energy ball milling were studied at 0-20 GHz. Experiments showed that ZnO as a kind of dielectric material coating carbonyl iron particles made the bandwidth of reflection loss (RL)<-5 dB expanding to the low frequency, and enhanced absorption effect obviously. For a 3 mm thickness absorber of ZnO/carbonyl iron after 30 h milling, the values of RL<-5 dB and RL<-8 dB were obtained in the frequency range from 7.0 GHz to 17.8 GHz and from 9.8 dB to 14.9 dB, respectively, and its strongest RL peak was -29.34 dB at 13.59 GHz. The magnetic loss of carbonyl iron particles and the dielectric loss of ZnO particles were the main mechanisms of microwave absorption for the composites. - Highlights: Black-Right-Pointing-Pointer We fabricated zinc oxide/carbonyl iron composites by high energy ball milling. Black-Right-Pointing-Pointer ZnO dielectric property increased absorption effect and absorption bandwidth. Black-Right-Pointing-Pointer Absorbing frequence of composites is expanding to low frequency direction. Black-Right-Pointing-Pointer The craft of high energy ball milling is easy to realize commerce production.

  19. Enhanced microwave absorption in ZnO/carbonyl iron nano-composites by coating dielectric material

    International Nuclear Information System (INIS)

    Zhou Chang; Fang Qingqing; Yan Fangliang; Wang Weina; Wu Keyue; Liu Yanmei; Lv Qingrong; Zhang Hanming; Zhang Qiping; Li Jinguang; Ding Qiongqiong

    2012-01-01

    The microwave absorption properties of zinc oxide/carbonyl iron composite nanoparticles fabricated by high energy ball milling were studied at 0–20 GHz. Experiments showed that ZnO as a kind of dielectric material coating carbonyl iron particles made the bandwidth of reflection loss (RL)<−5 dB expanding to the low frequency, and enhanced absorption effect obviously. For a 3 mm thickness absorber of ZnO/carbonyl iron after 30 h milling, the values of RL<−5 dB and RL<−8 dB were obtained in the frequency range from 7.0 GHz to 17.8 GHz and from 9.8 dB to 14.9 dB, respectively, and its strongest RL peak was −29.34 dB at 13.59 GHz. The magnetic loss of carbonyl iron particles and the dielectric loss of ZnO particles were the main mechanisms of microwave absorption for the composites. - Highlights: ► We fabricated zinc oxide/carbonyl iron composites by high energy ball milling. ► ZnO dielectric property increased absorption effect and absorption bandwidth. ► Absorbing frequence of composites is expanding to low frequency direction. ► The craft of high energy ball milling is easy to realize commerce production.

  20. Study on guided-mode resonance characteristic of multilayer dielectric grating with broadband and wide using-angle

    International Nuclear Information System (INIS)

    Jian-Peng, Wang; Yun-Xia, Jin; Jian-Yong, Ma; Jian-Da, Shao; Zheng-Xiu, Fan

    2010-01-01

    Guided-mode resonance in a diffraction band of multilayer dielectric gratings may lead to a catastrophic result in laser system, especially in the ultrashort pulse laser system, so the inhibition of guided-mode resonance is very important. In this paper the characteristics of guided-mode resonance in multilayer dielectric grating are studied with the aim of better understanding the physical process of guided-mode resonance and designing a broadband multilayer dielectric grating with no guided-mode resonance. By employing waveguide theory, all guided-wave modes appearing in multilayer dielectric grating are found, and the incident conditions, separately, corresponding to each guided-wave mode are also obtained. The electric field enhancement in multilayer dielectric grating is shown obviously. Furthermore, from the detailed analyses on the guided-mode resonance conditions, it is found that the reduction of the grating period would effectively avoid the appearing of guided-mode resonance. And the expressions for calculating maximum periods, which ensure that no guided-mode resonance occurs in the requiring broad angle or wavelength range, are first reported. The above results calculated by waveguide theory and Fourier mode method are compared with each other, and they are coincident completely. Moreover, the method that relies on waveguide theory is more helpful for understanding the guided-mode resonance excited process and analyzing how each parameter affects the characteristic of guided-mode resonance. Therefore, the effects of multilayer dielectric grating parameters, such as period, fill factor, thickness of grating layer, et al., on the guided-mode resonance characteristic are discussed in detail based on waveguide theory, and some meaningful results are obtained. (classical areas of phenomenology)

  1. The numerical simulation of plasma flow in cylindrical resonant cavity of microwave plasma thruster

    International Nuclear Information System (INIS)

    Tang, J.-L.; He, H.-Q; Mao, G.-W.

    2004-01-01

    Microwave Plasma Thruster (MPT) is an electro-thermal propulsive device. MPT consists of microwave generator, gas storing and supplying system, resonant cavity and accelerative nozzle. It generates free-floating plasma brought by the microwave discharge breakdown gas in the resonant cavity, and the plasma exhausted from nozzle produces thrust. MPT has prospective application in spacecraft because of its advantages of high thrust, moderate specific impulse and high efficiency. In this paper, the numerical simulation of the coupling flow field of microwave plasma in resonant cavity under different frequencies will be discussed. The results of numerical simulation are as follows: 1) When the resonant model TM 011 was used, the higher the microwave frequency was, the smaller the size of MPT. The distribution of the electromagnetic field in small cavity, however, remain unchanged. 2) When the resonant model was used, the distribution of the temperature, the pressure and the electronic density in the resonant cavity remained unchanged under different resonant frequencies. 3) When the resonant frequency was increased with a fixed pressure distribution in a small cavity, compare to the MPT with lower frequency, the gas flow rate, the microwave power and the nozzle throat diameter of MPT all decreased. 4) The electromagnetic field in the cylindrical resonant cavity for all MPT with different frequencies was disturbed by the plasma formation. The strong disturbance happened in the region close to the plasma. (author)

  2. Features of the effect of the parameters of resonance systems with different configurations on the current-voltage characteristics of resonant-tunneling nanostructures in a subterahertz frequency range

    International Nuclear Information System (INIS)

    Aleksanyan, A.A.; Volchkov, N.A.; Dravin, V.A.; Kazakov, I.P.; Karuzskij, A.L.; Murzin, V.N.; Perestoronin, A.V.; Tskhovrebov, A.M.; Shmelev, S.S.

    2014-01-01

    Features of the effect of a subterahertz microwave field on the current characteristics of a resonant-tunneling diode in resonance systems with different configurations have been studied. Changes in the current characteristics of the resonant-tunneling diode under variation of the electrophysical parameters of dielectric and microstrip resonators, in particular high-Q-factor superconducting microstrip resonators, have been experimentally studied and analyzed [ru

  3. Research on sintering behavior and microwave dielectric property of (Mg0.95Ca0.05)TiO3 ceramics for cross coupling filter

    Science.gov (United States)

    Luo, Chunya; Ma, Zhichao; Hu, Laisheng; Hu, Mingzhe; Huang, Xiaomin

    2015-12-01

    The microwave dielectric properties of 0.95%MgTiO3-0.05%CaTiO3 (abbreviated as 95MCT hereafter) ceramics have been studied for application in dielectric cross coupling filters. ZnO and Nb2O5 were selected as liquid sintering aids to lower the sintering temperature and enhance the Qf value of 95MCT and simultaneously we varied the mole ratio of ZnO : Nb2O5 to tune the microwave dielectric properties of 95MCT. When the ZnO : Nb2O5 mole ratio was 1.5 and the co-doping content was 0.25 wt.%, the optimal sintering temperature of 95MCT ceramic could be lowered from 1400∘C to 1320∘C and the Qf value could be improved by about 7.7%. The optimal microwave dielectric properties obtained under this condition were Qf = 72730 GHz (6.8 GHz), ɛr = 20.29 and τf = -6.84ppm/∘C, which demonstrated great potential usage in ceramic industry. High values of Qf ceramic were used to design the dielectric cross coupling filter. The dielectric filter measured at 2.35 GHz exhibited a 6.7% bandwidth (insert loss > -3 dB) of center frequency.

  4. An introduction to microwave imaging for breast cancer detection

    CERN Document Server

    Conceição, Raquel Cruz; O'Halloran, Martin

    2016-01-01

    This book collates past and current research on one of the most promising emerging modalities for breast cancer detection. Readers will discover how, as a standalone technology or in conjunction with another modality, microwave imaging has the potential to provide reliable, safe and comfortable breast exams at low cost. Current breast imaging modalities include X- ray, Ultrasound, Magnetic Resonance Imaging, and Positron Emission Tomography. Each of these methods suffers from limitations, including poor sensitivity or specificity, high cost, patient discomfort, and exposure to potentially harmful ionising radiation. Microwave breast imaging is based on a contrast in the dielectric properties of breast tissue that exists at microwave frequencies. The book begins by considering the anatomy and dielectric properties of the breast, contrasting historical and recent studies. Next, radar-based breast imaging algorithms are discussed, encompassing both early-stage artefact removal, and data independent and adaptive ...

  5. Complex dielectric modulus and relaxation response at low microwave frequency region of dielectric ceramic Ba6-3xNd8+2xTi18O54

    Directory of Open Access Journals (Sweden)

    Chian Heng Lee

    2014-10-01

    Full Text Available The desirable characteristics of Ba6-3xNd8+2xTi18O54 include high dielectric constant, low loss tangent, and high quality factor developed a new field for electronic applications. The microwave dielectric properties of Ba6-3xNd8+2xTi18O54, with x = 0.15 ceramics at different sintering temperatures (600–1300°C were investigated. The phenomenon of polarization produced by the applied electric field was studied. The dielectric properties with respect to frequency from 1 MHz to 1.5 GHz were measured using Impedance Analyzer, and the results were compared and analyzed. The highest dielectric permittivity and lowest loss factor were defined among the samples. The complex dielectric modulus was evaluated from the measured parameters of dielectric measurement in the same frequency range, and used to differentiate the contribution of grain and grain boundary.

  6. Synthesis of low loss, thermally stable CexY1-xTiTaO6 microwave ceramics

    International Nuclear Information System (INIS)

    Padma Kumar, H.; John, Annamma; Vijayakumar, C.; Thomas, J.K.; Varma, Manoj Raama; Solomon, Sam

    2009-01-01

    Ce x Y 1-x TiTaO 6 ceramics were prepared through the solid-state ceramic route. The materials were sintered in the range 1520-1580 deg. C. The structure of the system was analyzed by X-ray diffraction and Raman spectroscopic methods. The cell parameters of solid solutions were calculated using the least square method. The microstructure was analyzed using scanning electron microscopy. The dielectric constant (ε r ), temperature coefficient of resonant frequency (τ f ) and the unloaded quality factor (Q u ) are measured in the microwave frequency region using cavity resonator method. The dielectric constant increases with higher concentrations of Ce in the solid solutions. Nearly zero temperature coefficient of resonant frequency (τ f ) was obtained for Ce 0.24 Y 0.76 TiTaO 6 . The samples are of high quality factor and are useful electronic materials for microwave applications

  7. Quasiparticle dynamics in aluminium superconducting microwave resonators

    NARCIS (Netherlands)

    De Visser, P.J.

    2014-01-01

    This thesis describes the intrinsic limits of superconducting microresonator detectors. In a superconductor at low temperature, most of the electrons are paired into so called Cooper pairs, which cause the well-known electrical conduction without resistance. Superconducting microwave resonators have

  8. Design and analysis of planar spiral resonator bandstop filter for microwave frequency

    Science.gov (United States)

    Motakabber, S. M. A.; Shaifudin Suharsono, Muhammad

    2017-11-01

    In microwave frequency, a spiral resonator can act as either frequency reject or acceptor circuits. A planar logarithmic spiral resonator bandstop filter has been developed based on this property. This project focuses on the rejection property of the spiral resonator. The performance analysis of the exhibited filter circuit has been performed by using scattering parameters (S-parameters) technique in the ultra-wideband microwave frequency. The proposed filter is built, simulated and S-parameters analysis have been accomplished by using electromagnetic simulation software CST microwave studio. The commercial microwave substrate Taconic TLX-8 has been used to build this filter. Experimental results showed that the -10 dB rejection bandwidth of the filter is 2.32 GHz and central frequency is 5.72 GHz which is suitable for ultra-wideband applications. The proposed design has been full of good compliance with the simulated and experimental results here.

  9. 360° tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator

    DEFF Research Database (Denmark)

    Pu, Minhao; Xue, Weiqi; Liu, Liu

    2010-01-01

    We demonstrate tunable microwave phase shifters based on electrically tunable silicon-on-insulator dual-microring resonators. A quasi-linear phase shift of 360° with ~2dB radio frequency power variation at a microwave frequency of 40GHz is obtained......We demonstrate tunable microwave phase shifters based on electrically tunable silicon-on-insulator dual-microring resonators. A quasi-linear phase shift of 360° with ~2dB radio frequency power variation at a microwave frequency of 40GHz is obtained...

  10. Electron cloud density measurements in accelerator beam-pipe using resonant microwave excitation

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, John P., E-mail: jps13@cornell.edu [CLASSE, Cornell University, Ithaca, NY 14853 (United States); Carlson, Benjamin T. [Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Duggins, Danielle O. [Gordon College, Wenham, MA 01984 (United States); Hammond, Kenneth C. [Columbia University, New York, NY 10027 (United States); De Santis, Stefano [LBNL, Berkeley, CA 94720 (United States); Tencate, Alister J. [Idaho State University, Pocatello, ID 83209 (United States)

    2014-08-01

    An accelerator beam can generate low energy electrons in the beam-pipe, generally called electron cloud, that can produce instabilities in a positively charged beam. One method of measuring the electron cloud density is by coupling microwaves into and out of the beam-pipe and observing the response of the microwaves to the presence of the electron cloud. In the original technique, microwaves are transmitted through a section of beam-pipe and a change in EC density produces a change in the phase of the transmitted signal. This paper describes a variation on this technique in which the beam-pipe is resonantly excited with microwaves and the electron cloud density calculated from the change that it produces in the resonant frequency of the beam-pipe. The resonant technique has the advantage that measurements can be localized to sections of beam-pipe that are a meter or less in length with a greatly improved signal to noise ratio.

  11. High Dielectric Low Loss Transparent Glass Material Based Dielectric Resonator Antenna with Wide Bandwidth Operation

    Science.gov (United States)

    Mehmood, Arshad; Zheng, Yuliang; Braun, Hubertus; Hovhannisyan, Martun; Letz, Martin; Jakoby, Rolf

    2015-01-01

    This paper presents the application of new high permittivity and low loss glass material for antennas. This glass material is transparent. A very simple rectangular dielectric resonator antenna is designed first with a simple microstrip feeding line. In order to widen the bandwidth, the feed of the design is modified by forming a T-shaped feeding. This new design enhanced the bandwidth range to cover the WLAN 5 GHz band completely. The dielectric resonator antenna cut into precise dimensions is placed on the modified microstrip feed line. The design is simple and easy to manufacture and also very compact in size of only 36 × 28 mm. A -10 dB impedance bandwidth of 18% has been achieved, which covers the frequency range from 5.15 GHz to 5.95 GHz. Simulations of the measured return loss and radiation patterns are presented and discussed.

  12. Microwave dielectric properties of La{sub (1-2x/3)}Ba{sub x}(Mg{sub 0.5}Sn{sub 0.5})O{sub 3} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yih-Chien; Chen, Kuei-Chien; Hsu, Wei-Yu [Department of Electrical Engineering, Lunghwa University of Science and Technology, Gueishan Shiang, Taoyuan County (China)

    2010-11-15

    This study examined the potential applications of microwave dielectric properties of La{sub (1-2x/3)}Ba{sub x}(Mg{sub 0.5}Sn{sub 0.5})O{sub 3} ceramics in rectenna. The La{sub (1-2x/3)}Ba{sub x}(Mg{sub 0.5}Sn{sub 0.5})O{sub 3} ceramics were prepared by the conventional solid-state method with various sintering temperatures. An apparent density of 6.62 g/cm{sup 3}, a dielectric constant of 20.3, a quality factor of 51,700 GHz, and a temperature coefficient of resonant frequency of -78.2 ppm/K were obtained for La{sub 2.98/3}Ba{sub 0.01}(Mg{sub 0.5}Sn{sub 0.5})O{sub 3} ceramics that were sintered at 1550 C for 4 h. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Entangling a nanomechanical resonator and a superconducting microwave cavity

    International Nuclear Information System (INIS)

    Vitali, D.; Tombesi, P.; Woolley, M. J.; Doherty, A. C.; Milburn, G. J.

    2007-01-01

    We propose a scheme able to entangle at the steady state a nanomechanical resonator with a microwave cavity mode of a driven superconducting coplanar waveguide. The nanomechanical resonator is capacitively coupled with the central conductor of the waveguide and stationary entanglement is achievable up to temperatures of tens of milliKelvin

  14. Dielectric properties of almond kernels associated with radio frequency and microwave pasteurization

    Science.gov (United States)

    Li, Rui; Zhang, Shuang; Kou, Xiaoxi; Ling, Bo; Wang, Shaojin

    2017-02-01

    To develop advanced pasteurization treatments based on radio frequency (RF) or microwave (MW) energy, dielectric properties of almond kernels were measured by using an open-ended coaxial-line probe and impedance analyzer at frequencies between 10 and 3000 MHz, moisture contents between 4.2% to 19.6% w.b. and temperatures between 20 and 90 °C. The results showed that both dielectric constant and loss factor of the almond kernels decreased sharply with increasing frequency over the RF range (10-300 MHz), but gradually over the measured MW range (300-3000 MHz). Both dielectric constant and loss factor of almond kernels increased with increasing temperature and moisture content, and largely enhanced at higher temperature and moisture levels. Quadratic polynomial equations were developed to best fit the relationship between dielectric constant or loss factor at 27, 40, 915 or 2450 MHz and sample temperature/moisture content with R2 greater than 0.967. Penetration depth of electromagnetic wave into samples decreased with increasing frequency (27-2450 MHz), moisture content (4.2-19.6% w.b.) and temperature (20-90 °C). The temperature profiles of RF heated almond kernels under three moisture levels were made using experiment and computer simulation based on measured dielectric properties. Based on the result of this study, RF treatment has potential to be practically used for pasteurization of almond kernels with acceptable heating uniformity.

  15. Robust design of microlenses arrays employing dielectric resonators metasurfaces

    NARCIS (Netherlands)

    Silvestri, F.; Gerini, G.; Bäumer, S.M.B.

    2017-01-01

    In the last years, much interest has grown around the concept of optical surfaces employing high contrast dielectric resonators. However, a systematic approach for the design of this optical surfaces under particular requirements has never been proposed. In this contribution, we describe this

  16. Mode selection in two-dimensional Bragg resonators based on planar dielectric waveguides

    International Nuclear Information System (INIS)

    Baryshev, V R; Ginzburg, N S; Zaslavskii, V Yu; Malkin, A M; Sergeev, A S; Thumm, M

    2009-01-01

    Two-dimensional Bragg resonators based on planar dielectric waveguides are analysed. It is shown that the doubly periodic corrugation deposited on the dielectric surface in the form of two gratings with translational vectors directed perpendicular to each other ensures effective selection of modes along two coordinates at large Fresnel parameters. This result is obtained both by the method of coupled waves (geometrical optics approximation) and by the direct numerical simulations. Two-dimensional Bragg resonators make it possible to fabricate two-dimensional distributed feedback lasers and to provide generation of spatially coherent radiation in large-volume active media. (waveguides)

  17. Resonances and anti-resonances in the material parameters of 2-D dielectric ENG, MNG, and DNG materials

    DEFF Research Database (Denmark)

    Wu, Yunqiu; Arslanagic, Samel

    The resonant/anti-resonant behavior of parameters extracted by the S-parameter method for two-dimensional epsilon-, mu- and double-negative (ENG, MNG, DNG) materials is investigated. The unit cells consist of infinite dielectric cylinders supporting electric dipole, magnetic dipole, or both....... It is shown that the extraction procedure yields one resonant material parameter, and one anti-resonant material parameter in MNG and ENG configurations. However, both parameters display an over-all resonant response in DNG configurations where electric and magnetic dipole modes are excited simultaneously....

  18. Quantum dynamics of crystals of molecular magnets inside microwave resonators

    Energy Technology Data Exchange (ETDEWEB)

    Amigo, R.; Tejada, J.; Chudnovsky, E.M.; Hernandez, J.M.; Garcia-Santiago, A. E-mail: antonio@ubxlab.comtoni@ubxlab.com

    2004-05-01

    It is shown that crystals of molecular nanomagnets exhibit enhanced magnetic relaxation when placed inside a resonant cavity. Strong dependence of the magnetization curve on the geometry of the cavity has been observed, providing evidence of the coherent microwave radiation by the crystals. These observations open the possibility of building a nanomagnetic microwave laser pumped by the magnetic field.

  19. Quantum dynamics of crystals of molecular magnets inside microwave resonators

    International Nuclear Information System (INIS)

    Amigo, R.; Tejada, J.; Chudnovsky, E.M.; Hernandez, J.M.; Garcia-Santiago, A.

    2004-01-01

    It is shown that crystals of molecular nanomagnets exhibit enhanced magnetic relaxation when placed inside a resonant cavity. Strong dependence of the magnetization curve on the geometry of the cavity has been observed, providing evidence of the coherent microwave radiation by the crystals. These observations open the possibility of building a nanomagnetic microwave laser pumped by the magnetic field

  20. Dielectric properties of materials at microwave frequencies

    Directory of Open Access Journals (Sweden)

    Ivo Křivánek

    2008-01-01

    Full Text Available The paper introduces the review of the present state of art in the measurement of the interaction of electromagnetic waves with different kinds of materials. It is analysis of the possibilities of the mea­surement of the interaction of high frequencies waves (microwaves with materials and proposal of the experimental method for the studies mentioned above.The electromagnetic field consists of two components: electric and magnetic field. The influence of these components on materials is different. The influence of the magnetic field is negligible and it has no impact on practical use. The influence of the electric field is strong as the interaction between them results in the creation of electric currents in the material (Křivánek and Buchar, 1993.Experiments focused on the evaluation of the complex dielectric permitivity of different materials have been performed. The permitivity of solid material is also measurable by phasemethod, when the specimen is a part of transmission sub-circuit. Microwave instrument for complex permittivity measurement works in X frequency band (8.2–12.5 GHz, the frequency 10.1 GHz was used for all the measurement in the laboratory of physics, Mendel University in Brno. The extensive number of experimental data have been obtained for different materials. The length of the square side of the ae­rial open end was 50 mm and internal dimensions of waveguides were 23 mm × 10 mm. The samples have form of the plate shape with dimensions 150 mm × 150 mm × 4 mm.

  1. Structure and microwave dielectric characteristics of (Sr1−xCax)Nd2Al2O7 ceramics

    International Nuclear Information System (INIS)

    Yi, Lei; Liu, Xiao Qiang; Li, Lei; Chen, Xiang Ming

    2014-01-01

    (Sr 1−x Ca x )Nd 2 Al 2 O 7 (x = 0, 0.1, 0.3, 0.5) ceramics were synthesized by a standard solid state reaction method. Their microwave dielectric properties were investigated together with the structural evolution. X-ray diffraction analysis indicated that Ruddlesden–Popper solid solutions with n = 2 were obtained for all the compositions investigated here. Ca-substitution significantly improved the densification behavior which was associated with the variation of ε r . More importantly, with increasing the content of Ca, τ f value was generally improved towards near-zero, and the significantly improved Qf value was obtained at x = 0.5. The stacking fault and distorted lattice fringe in the ceramics were confirmed by TEM observation, and these defects were deeply concerned with the microwave dielectric loss. The best combination of microwave dielectric characteristics was achieved for the composition of x = 0.5: ε r  = 21.1, Qf = 68,200 GHz and τ f  = −0.5 ppm/°C. - Highlights: • The formation of solid solutions with partial Ca substitution for Sr improved the sintering behavior of SrNd 2 Al 2 O 7 ceramics. • Stacking fault and distorted lattice fringe were confirmed by transmission electron microscopy. • The variation of Qf value was associated with the stacking fault and distorted lattice fringe

  2. Directional Emission from Dielectric Leaky-Wave Nanoantennas

    Science.gov (United States)

    Peter, Manuel; Hildebrandt, Andre; Schlickriede, Christian; Gharib, Kimia; Zentgraf, Thomas; Förstner, Jens; Linden, Stefan

    2017-07-01

    An important source of innovation in nanophotonics is the idea to scale down known radio wave technologies to the optical regime. One thoroughly investigated example of this approach are metallic nanoantennas which employ plasmonic resonances to couple localized emitters to selected far-field modes. While metals can be treated as perfect conductors in the microwave regime, their response becomes Drude-like at optical frequencies. Thus, plasmonic nanoantennas are inherently lossy. Moreover, their resonant nature requires precise control of the antenna geometry. A promising way to circumvent these problems is the use of broadband nanoantennas made from low-loss dielectric materials. Here, we report on highly directional emission from active dielectric leaky-wave nanoantennas made of Hafnium dioxide. Colloidal semiconductor quantum dots deposited in the nanoantenna feed gap serve as a local light source. The emission patterns of active nanoantennas with different sizes are measured by Fourier imaging. We find for all antenna sizes a highly directional emission, underlining the broadband operation of our design.

  3. Modeling dielectric half-wave plates for cosmic microwave background polarimetry using a Mueller matrix formalism.

    Science.gov (United States)

    Bryan, Sean A; Montroy, Thomas E; Ruhl, John E

    2010-11-10

    We derive an analytic formula using the Mueller matrix formalism that parameterizes the nonidealities of a half-wave plate (HWP) made from dielectric antireflection-coated birefringent slabs. This model accounts for frequency-dependent effects at normal incidence, including effects driven by the reflections at dielectric boundaries. The model also may be used to guide the characterization of an instrument that uses a HWP. We discuss the coupling of a HWP to different source spectra, and the potential impact of that effect on foreground removal for the SPIDER cosmic microwave background experiment. We also describe a way to use this model in a mapmaking algorithm that fully corrects for HWP nonidealities.

  4. A method for building low loss multi-layer wiring for superconducting microwave devices

    Science.gov (United States)

    Dunsworth, A.; Barends, R.; Chen, Yu; Chen, Zijun; Chiaro, B.; Fowler, A.; Foxen, B.; Jeffrey, E.; Kelly, J.; Klimov, P. V.; Lucero, E.; Mutus, J. Y.; Neeley, M.; Neill, C.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Neven, H.; Martinis, John M.; Megrant, A.

    2018-02-01

    Complex integrated circuits require multiple wiring layers. In complementary metal-oxide-semiconductor processing, these layers are robustly separated by amorphous dielectrics. These dielectrics would dominate energy loss in superconducting integrated circuits. Here, we describe a procedure that capitalizes on the structural benefits of inter-layer dielectrics during fabrication and mitigates the added loss. We use a deposited inter-layer dielectric throughout fabrication and then etch it away post-fabrication. This technique is compatible with foundry level processing and can be generalized to make many different forms of low-loss wiring. We use this technique to create freestanding aluminum vacuum gap crossovers (airbridges). We characterize the added capacitive loss of these airbridges by connecting ground planes over microwave frequency λ/4 coplanar waveguide resonators and measuring resonator loss. We measure a low power resonator loss of ˜3.9 × 10-8 per bridge, which is 100 times lower than that of dielectric supported bridges. We further characterize these airbridges as crossovers, control line jumpers, and as part of a coupling network in gmon and fluxmon qubits. We measure qubit characteristic lifetimes (T1s) in excess of 30 μs in gmon devices.

  5. Temperature compensation effects of TiO2 on Ca[(Li1/3Nb2/3)0.8Sn0.2]O3-δ microwave dielectric ceramic

    Science.gov (United States)

    Hu, Mingzhe; Wei, Huanghe; Xiao, Lihua; Zhang, Kesheng; Hao, Yongde

    2017-10-01

    The crystal structure and dielectric properties of TiO2-modified Ca[(Li1/3Nb2/3)0.8Sn0.2]O3-δ microwave ceramics are investigated in the present paper. The crystal structure is probed by XRD patterns and their Rietveld refinement, results show that a single perovskite phase is formed in TiO2-modified Ca[(Li1/3Nb2/3)0.8Sn0.2]O3-δ ceramics with the crystal structure belonging to the orthorhombic Pbnm 62 space group. Raman spectra results indicate that the B-site order-disorder structure transition is a key point to the dielectric loss of TiO2-modified Ca[(Li1/3Nb2/3)0.8Sn0.2]O3-δ ceramics at microwave frequencies. After properly modified by TiO2, the large negative temperature coefficient of Ca[(Li1/3Nb2/3)0.8Sn0.2]O3-δ ceramic can be compensated and the optimal microwave dielectric properties can reach 𝜀r = 25.66, Qf = 18,894 GHz and TCF = -6.3 ppm/∘C when sintered at 1170∘C for 2.5 h, which manifests itself for potential use in microwave dielectric devices for modern wireless communication.

  6. Experimental and computational studies of electromagnetic cloaking at microwaves

    Science.gov (United States)

    Wang, Xiaohui

    An invisibility cloak is a device that can hide the target by enclosing it from the incident radiation. This intriguing device has attracted a lot of attention since it was first implemented at a microwave frequency in 2006. However, the problems of existing cloak designs prevent them from being widely applied in practice. In this dissertation, we try to remove or alleviate the three constraints for practical applications imposed by loosy cloaking media, high implementation complexity, and small size of hidden objects compared to the incident wavelength. To facilitate cloaking design and experimental characterization, several devices and relevant techniques for measuring the complex permittivity of dielectric materials at microwave frequencies are developed. In particular, a unique parallel plate waveguide chamber has been set up to automatically map the electromagnetic (EM) field distribution for wave propagation through the resonator arrays and cloaking structures. The total scattering cross section of the cloaking structures was derived based on the measured scattering field by using this apparatus. To overcome the adverse effects of lossy cloaking media, microwave cloaks composed of identical dielectric resonators made of low loss ceramic materials are designed and implemented. The effective permeability dispersion was provided by tailoring dielectric resonator filling fractions. The cloak performances had been verified by full-wave simulation of true multi-resonator structures and experimental measurements of the fabricated prototypes. With the aim to reduce the implementation complexity caused by metamaterials employment for cloaking, we proposed to design 2-D cylindrical cloaks and 3-D spherical cloaks by using multi-layer ordinary dielectric material (epsilon r>1) coating. Genetic algorithm was employed to optimize the dielectric profiles of the cloaking shells to provide the minimum scattering cross sections of the cloaked targets. The designed cloaks can

  7. Tuning Infrared Plasmon Resonance of Black Phosphorene Nanoribbon with a Dielectric Interface.

    Science.gov (United States)

    Debu, Desalegn T; Bauman, Stephen J; French, David; Churchill, Hugh O H; Herzog, Joseph B

    2018-02-19

    We report on the tunable edge-plasmon-enhanced absorption of phosphorene nanoribbons supported on a dielectric substrate. Monolayer anisotropic black phosphorous (phosphorene) nanoribbons are explored for light trapping and absorption enhancement on different dielectric substrates. We show that these phosphorene ribbons support infrared surface plasmons with high spatial confinement. The peak position and bandwidth of the calculated phosphorene absorption spectra are tunable with low loss over a wide wavelength range via the surrounding dielectric environment of the periodic nanoribbons. Simulation results show strong edge plasmon modes and enhanced absorption as well as a red-shift of the peak resonance wavelength. The periodic Fabry-Perot grating model was used to analytically evaluate the absorption resonance arising from the edge of the ribbons for comparison with the simulation. The results show promise for the promotion of phosphorene plasmons for both fundamental studies and potential applications in the infrared spectral range.

  8. Resonance dielectric dispersion of TEA-CoCl2Br2 nanocrystals incorporated into the PMMA matrix

    Science.gov (United States)

    Kapustianyk, V.; Shchur, Ya; Kityk, I.; Rudyk, V.; Lach, G.; Laskowski, L.; Tkaczyk, S.; Swiatek, J.; Davydov, V.

    2008-09-01

    The dielectric properties of TEA-CoCl2Br2 nanocrystals incorporated into the polymethylmethacrylate matrix within the frequency range of 3 × 105-2.6 × 109 Hz in the temperature region of 90-300 K were investigated. The considerable difference in the dielectric spectra of the nanocomposite compared to those of the bulk crystal and the pure polymer matrix was observed. The dielectric dispersion of the composite material reveals a resonance type (resonance frequency was found to be near 1.3 GHz) and may be qualitatively explained as the result of piezoelectric resonance on the nanocrystals. The model interpretation of this phenomenon based on the forced-dumped oscillator is presented.

  9. Dielectric micro-resonator-based opto-mechanical systems for sensing applications

    Science.gov (United States)

    Ali, Amir Roushdy

    In recent years, whispering gallery mode (WGM), or morphology dependent optical resonances (MDR) of dielectric micro-resonators have attracted interest with proposed applications in a wide range of areas due to the high optical quality factors, Q, they can exhibit (reaching ~ 10. 9 for silica spheres). Micro-resonator WGMs have been used in applications that include those in spectroscopy, micro-cavity laser technology, optical communications (switching, filtering and multiplexing), sensors technologies and even chemical and biological sensing. The WGM of these dielectric micro-resonators are highly sensitive to morphological changes (such as the size, shape, or refractive index) of the resonance cavity and hence, can be tuned by causing a minute change in the physical condition of the surrounding. In this dissertation, we have been creating opto-mechanical systems, which at their most basic, are extraordinarily sensitive sensors. One of the ultimate goals of this dissertation is to develop sensors capable of detecting the extremely small electric field changes. To improve the performance of the sensors, we couple a polymer cantilever beam to a dielectric micro-resonator. The eventual use of such ultra sensitive electric filed sensors could include neural-machine interfaces for advanced prosthetics devices. The work presented here includes a basic analysis and experimental investigations of the electric field sensitivity and range of micro-resonators of several different materials and geometries followed by the electric field sensor design, testing, and characterization. Also, the effects of angular velocity on the WGM shifts of spherical micro-resonators are also investigated. The elastic deformation that is induced on a spinning resonator due to the centrifugal force may lead to a sufficient shift in the optical resonances and therefore interfering with its desirable operational sensor design. Furthermore, this principle could be used for the development of

  10. Non-resonant microwave absorption studies of superconducting ...

    Indian Academy of Sciences (India)

    Abstract. Non-resonant microwave absorption (NRMA) studies of superconducting MgB2 and a sample containing 10% by weight of MgO in MgB2 are reported. The NRMA results indicate near absence of intergranular weak links in the pure MgB2 sample. A linear temperature dependence of the lower critical field Hc1 is ...

  11. A near-field scanning microwave microscope based on a superconducting resonator for low power measurements.

    Science.gov (United States)

    de Graaf, S E; Danilov, A V; Adamyan, A; Kubatkin, S E

    2013-02-01

    We report on the design and performance of a cryogenic (300 mK) near-field scanning microwave microscope. It uses a microwave resonator as the near-field sensor, operating at a frequency of 6 GHz and microwave probing amplitudes down to 100 μV, approaching low enough photon population (N ∼ 1000) of the resonator such that coherent quantum manipulation becomes feasible. The resonator is made out of a miniaturized distributed fractal superconducting circuit that is integrated with the probing tip, micromachined to be compact enough such that it can be mounted directly on a quartz tuning-fork, and used for parallel operation as an atomic force microscope (AFM). The resonator is magnetically coupled to a transmission line for readout, and to achieve enhanced sensitivity we employ a Pound-Drever-Hall measurement scheme to lock to the resonance frequency. We achieve a well localized near-field around the tip such that the microwave resolution is comparable to the AFM resolution, and a capacitive sensitivity down to 6.4 × 10(-20) F/Hz, limited by mechanical noise. We believe that the results presented here are a significant step towards probing quantum systems at the nanoscale using near-field scanning microwave microscopy.

  12. Photoinduced spin polarization and microwave technology

    International Nuclear Information System (INIS)

    Antipov, Sergey; Poluektov, Oleg; Schoessow, Paul; Kanareykin, Alexei; Jing, Chunguang

    2013-01-01

    We report here on studies of optically pumped active microwave media based on various fullerene derivatives, with an emphasis on the use of these materials in microwave electronics. We have investigated a class of optically excited paramagnetic materials that demonstrate activity in the X-band as candidate materials. We found that a particular fullerene derivative, Phenyl-C 61 -butyric acid methyl ester (PCBM), produced the largest electron paramagnetic resonance (EPR) emission signal compared to other organic compounds that have been suggested for use as microwave active materials. We also studied the effects of concentration, temperature, solvent etc. on the activity of the material. In these experiments, EPR studies using a commercial spectrometer were followed up by measurements of an RF signal reflected from a resonator loaded with the PCBM-based material. The activity was directly demonstrated through the change in the quality factor and RF coupling between the resonator and waveguide feed. At the inception of these experiments the primary interest was the development of a microwave PASER. The PASER (particle acceleration by stimulated emission of radiation [1]) is a novel acceleration concept that is based on the direct energy transfer from an active medium to a charged particle beam. While the previous work on the PASER has emphasized operations at infrared or visible wavelengths, operating in the microwave regime has significant advantages in terms of the less stringent quality requirements placed on the electron beam provided an appropriate microwave active medium can be found. This paper is focused on our investigation of the possibility of a PASER operating in the microwave frequency regime [2] using active paramagnetic materials. While a high level of gain for PCBM was demonstrated compared to other candidate materials, dielectric losses and quenching effects were found to negatively impact its performance for PASER applications. We present results on

  13. Microwave studies on the dielectric properties of Sm3+ and Sm3+/CdTe doped sol-gel silica glasses

    International Nuclear Information System (INIS)

    Mathew, Siby; Rejikumar, P.R.; Yohannan, Jaimon; Mathew, K.T.; Unnikrishnan, N.V.

    2008-01-01

    Complex permittivity and conductivity studies of Samarium and Samarium/semiconductor cadmium telluride sol-gel silica glass samples were done. We use cavity perturbation technique at S band frequencies using TE 10p Mode. Structural evolution of the matrix on annealing is discussed based on FTIR analysis/XRD power diffraction. In cavity perturbation technique dielectric parameters like complex permittivity and conductivity are determined by measuring changes in resonant frequency due to small perturbation inside the cavity produced by the introduction of the samples. The addition of the semiconductor along with the samarium was found to lower the permittivity, loss factor and conductivity. Variations of permittivity values with annealing temperature find applications in IC Technology, optic fibre communication, etc. The Sm 3+ /CdTe doped glasses can also be used in the fabrication of new and improved materials for microwave electronic circuits and in electromagnetic shielding devices

  14. Magnetic nanoparticles for tunable microwave metamaterials

    KAUST Repository

    Noginova, Natalia; Williams, Quincy Leon; Dallas, Panagiotis; Giannelis, Emmanuel P.

    2012-01-01

    Commonly, metamaterials are electrically engineered systems with optimized spatial arrangement of subwavelength sized metal and dielectric components. We explore alternative methods based on use of magnetic inclusions, such as magnetic nanoparticles, which can allow permeability of a composite to be tuned from negative to positive at the range of magnetic resonance. To better understand effects of particle size and magnetization dynamics, we performed electron magnetic resonance study on several varieties of magnetic nanoparticles and determined potential of nanoparticle use as building blocks for tunable microwave metamaterials. © (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  15. Magnetic nanoparticles for tunable microwave metamaterials

    KAUST Repository

    Noginova, Natalia

    2012-09-24

    Commonly, metamaterials are electrically engineered systems with optimized spatial arrangement of subwavelength sized metal and dielectric components. We explore alternative methods based on use of magnetic inclusions, such as magnetic nanoparticles, which can allow permeability of a composite to be tuned from negative to positive at the range of magnetic resonance. To better understand effects of particle size and magnetization dynamics, we performed electron magnetic resonance study on several varieties of magnetic nanoparticles and determined potential of nanoparticle use as building blocks for tunable microwave metamaterials. © (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  16. Dielectric studies of fluids with reentrant resonators

    International Nuclear Information System (INIS)

    Goodwin, A.R.H.; Moldover, M.R.

    1993-01-01

    The authors have used a reentrant radio-frequency (rf) cavity as a resonator operating near 375 MHz to measure changes in the dielectric constant of fluids within it. The utility of these measurements was demonstrated by determining the dipole moment of 1,1,1,2,3,3-hexafluoropropane, a candidate replacement refrigerant (denoted R236ea) and by detecting the phase boundaries in the mixture [(1-x)C 2 H 6 + xCO 2 ], for the mole fraction x = 0.492. The densities of the coexisting phases of the mixture were determined using the Clausius-Mossotti relation which has errors on the order of 0.5% in this application. To test the accuracy of the present techniques, the rf resonator was calibrated with helium and then used to redetermine the molar polarizability A e of argon. The results were in excellent agreement with published values. The design of the reentrant resonator makes it suitable for use with corrosive fluids at temperature up to 400 degrees C

  17. Multi-layered dielectric cladding plasmonic microdisk resonator filter and coupler

    International Nuclear Information System (INIS)

    Han Cheng, Bo; Lan, Yung-Chiang

    2013-01-01

    This work develops the plasmonic microdisk filter/coupler, whose effectiveness is evaluated by finite-difference time-domain simulation and theoretical analyses. Multi-layer dielectric cladding is used to prevent the scattering of surface plasmons (SPs) from a silver microdisk. This method allows devices that efficiently perform filter/coupler functions to be developed. The resonant conditions and the effective refractive index of bounded SP modes on the microdisk are determined herein. The waveguide-to-microdisk distance barely influences the resonant wavelength but it is inversely related to the bandwidth. These findings are consistent with predictions made using the typical ring resonator model.

  18. Anomalous non-resonant microwave absorption in SmFeAs(O,F) polycrystalline sample

    Energy Technology Data Exchange (ETDEWEB)

    Onyancha, R.B., E-mail: 08muma@gmail.com [Department of Physics, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1710 (South Africa); Shimoyama, J. [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo (Japan); Singh, S.J. [Leibniz-Institute for Solid State and Materials Research, IFW-Dresden, D-01171 Dresden (Germany); Hayashi, K.; Ogino, H. [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo (Japan); Srinivasu, V.V. [Department of Physics, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1710 (South Africa)

    2017-02-15

    Highlights: • The non-resonant microwave absorption (NRMA) line shape in evolved with microwave power. • Observed a cross over from ‘normal’ absorption to ‘anomalous’ absorption as a function of microwave power. • The anomalous absorption has been explained in the context of non-hysteretic Josephson junction. - Abstract: Here we present the non-resonant microwave absorption (NRMA) studies on SmFeAsO{sub 0.88}F{sub 0.12} polycrystalline sample measured at 6.06 K with the magnetic field swept from −250 G to +250 G at a frequency of 9.45 GHz. It was observed that the (NRMA) line shape evolves as a function of microwave power. Again, the signal intensity increases from 22.83 µW to 0.710 mW where it reaches a maximum and quite remarkably it changed from ‘normal’ absorption to ‘anomalous’ absorption at 2.247 mW, then the intensity decreases with further increase of microwave power. The crossover from ‘normal’ to ‘anomalous’ NRMA absorption and its dependence on microwave power is a new phenomenon in iron pnictides superconductors and we have attributed this anomaly to come from non-hysteretic Josephson junction.

  19. Monotron and azimuthally corrugated: application to the high power microwaves generation; Monotron e cavidades azimutalmente corrugadas: aplicacao a geracao de microondas de alta potencia

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Pedro Jose de

    2003-07-01

    The present document reports the activity of construction and initial operation of 6.7 GHz operation for high power microwave generation, the study on cylindrical resonators with azimuthally corrugated cross section, the determination of electrical conductivity of metallic materials and development of dielectric resonators for telecommunication applications.

  20. Effect of microwave-assisted sintering on dielectric properties of CaCu{sub 3}Ti{sub 4}O{sub 12} ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Suman, E-mail: sumanranigju@gmail.com; Ahlawat, Neetu; Punia, R.; Kundu, R. S. [Department of Applied Physics, Guru Jambheshwar University of Science & Technology, Hissar 125001, Haryana (India); Ahlawat, N. [Matu Ram Institute of Engineering and Management, Rohtak (India)

    2016-05-23

    In this present work, CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) was synthesized by conventional solid-state reaction technique. The synthesis process was carried out in two phases; by conventional process (calcination and sintering at 1080°C for 10 hours) and phase II involves the micro assisted pre sintering of conventionally calcined CCTO for very short soaking time of 30 min at 1080°C in a microwave furnace followed by sintering at 1080°C for 10 hours in conventional furnace. X-ray diffraction (XRD) patterns confirmed the formation of single phase ceramic. Dielectric properties were studied over the frequency range from 50Hz -5MHz at temperatures (273K-343K). It was observed that pre- microwave sintering enhance the dielectric constant values from 10900 to 11893 and respectively reduces the dielectric loss values from 0.49 to 0.34 at room temperature(1 KHz). CCTO ceramics which are found desirable for many technological applications. The effect is more pronounced at low frequencies of applied electric field.

  1. Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter.

    Science.gov (United States)

    Zhuang, Leimeng; Khan, Muhammad Rezaul; Beeker, Willem; Leinse, Arne; Heideman, René; Roeloffzen, Chris

    2012-11-19

    We propose and demonstrate a novel wideband microwave photonic fractional Hilbert transformer implemented using a ring resonator-based optical all-pass filter. The full programmability of the ring resonator allows variable and arbitrary fractional order of the Hilbert transformer. The performance analysis in both frequency and time domain validates that the proposed implementation provides a good approximation to an ideal fractional Hilbert transformer. This is also experimentally verified by an electrical S21 response characterization performed on a waveguide realization of a ring resonator. The waveguide-based structure allows the proposed Hilbert transformer to be integrated together with other building blocks on a photonic integrated circuit to create various system-level functionalities for on-chip microwave photonic signal processors. As an example, a circuit consisting of a splitter and a ring resonator has been realized which can perform on-chip phase control of microwave signals generated by means of optical heterodyning, and simultaneous generation of in-phase and quadrature microwave signals for a wide frequency range. For these functionalities, this simple and on-chip solution is considered to be practical, particularly when operating together with a dual-frequency laser. To our best knowledge, this is the first-time on-chip demonstration where ring resonators are employed to perform phase control functionalities for optical generation of microwave signals by means of optical heterodyning.

  2. All-dielectric resonant cavity-enabled metals with broadband optical transparency

    Science.gov (United States)

    Liu, Zhengqi; Zhang, Houjiao; Liu, Xiaoshan; Pan, Pingping; Liu, Yi; Tang, Li; Liu, Guiqiang

    2017-06-01

    Metal films with broadband optical transparency are desirable in many optoelectronic devices, such as displays, smart windows, light-emitting diodes and infrared detectors. As bare metal is opaque to light, this issue of transparency attracts great scientific interest. In this work, we proposed and demonstrated a feasible and universal approach for achieving broadband optical transparent (BOT) metals by utilizing all-dielectric resonant cavities. Resonant dielectrics provide optical cavity modes and couple strongly with the surface plasmons of the metal film, and therefore produce a broadband near-unity optical transparent window. The relative enhancement factor (EF) of light transmission exceeds 3400% in comparison with that of pure metal film. Moreover, the transparent metal motif can be realized by other common metals including gold (Au), silver (Ag) and copper (Cu). These optical features together with the fully retained electric and mechanical properties of a natural metal suggest that it will have wide applications in optoelectronic devices.

  3. Entangling optical and microwave cavity modes by means of a nanomechanical resonator

    Energy Technology Data Exchange (ETDEWEB)

    Barzanjeh, Sh. [Department of Physics, Faculty of Science, University of Isfahan, Hezar Jerib, 81746-73441 Isfahan (Iran, Islamic Republic of); School of Science and Technology, Physics Division, Universita di Camerino, I-62032 Camerino, Macerata (Italy); Vitali, D.; Tombesi, P. [School of Science and Technology, Physics Division, Universita di Camerino, I-62032 Camerino, Macerata (Italy); Milburn, G. J. [Centre for Engineered Quantum Systems, School of Physical Sciences, University of Queensland, Saint Lucia, Queensland 4072 (Australia)

    2011-10-15

    We propose a scheme that is able to generate stationary continuous-variable entanglement between an optical and a microwave cavity mode by means of their common interaction with a nanomechanical resonator. We show that when both cavities are intensely driven, one can generate bipartite entanglement between any pair of the tripartite system, and that, due to entanglement sharing, optical-microwave entanglement is efficiently generated at the expense of microwave-mechanical and optomechanical entanglement.

  4. Entangling optical and microwave cavity modes by means of a nanomechanical resonator

    International Nuclear Information System (INIS)

    Barzanjeh, Sh.; Vitali, D.; Tombesi, P.; Milburn, G. J.

    2011-01-01

    We propose a scheme that is able to generate stationary continuous-variable entanglement between an optical and a microwave cavity mode by means of their common interaction with a nanomechanical resonator. We show that when both cavities are intensely driven, one can generate bipartite entanglement between any pair of the tripartite system, and that, due to entanglement sharing, optical-microwave entanglement is efficiently generated at the expense of microwave-mechanical and optomechanical entanglement.

  5. Microwave imaging of dielectric cylinder using level set method and conjugate gradient algorithm

    International Nuclear Information System (INIS)

    Grayaa, K.; Bouzidi, A.; Aguili, T.

    2011-01-01

    In this paper, we propose a computational method for microwave imaging cylinder and dielectric object, based on combining level set technique and the conjugate gradient algorithm. By measuring the scattered field, we tried to retrieve the shape, localisation and the permittivity of the object. The forward problem is solved by the moment method, while the inverse problem is reformulate in an optimization one and is solved by the proposed scheme. It found that the proposed method is able to give good reconstruction quality in terms of the reconstructed shape and permittivity.

  6. A Dual-Mode Microwave Applicator for Liver Tumor Thermotherapy

    Science.gov (United States)

    Reimann, Carolin; Schüßler, Martin; Jakoby, Rolf; Bazrafshan, Babak; Hübner, Frank; Vogl, Thomas

    2018-03-01

    The concept of a novel dual-mode microwave applicator for diagnosis and thermal ablation treatment of tumorous tissue is presented in this paper. This approach is realized by integrating a planar resonator array to, firstly, detect abnormalities by a relative dielectric analysis, and secondly, perform a highly localized thermal ablation. A further essential advantage is addressed by designing the applicator to be MRI compatible to provide a multimodal imaging procedure. Investigations for an appropriate frequency range lead to the use of much higher operating frequencies between 5 GHz and 10 GHz, providing a significantly lower power consumption for microwave ablation of only 20 W compared to commercial available applicators.

  7. Review on Microwave-Matter Interaction Fundamentals and Efficient Microwave-Associated Heating Strategies

    Science.gov (United States)

    Sun, Jing; Wang, Wenlong; Yue, Qinyan

    2016-01-01

    Microwave heating is rapidly emerging as an effective and efficient tool in various technological and scientific fields. A comprehensive understanding of the fundamentals of microwave–matter interactions is the precondition for better utilization of microwave technology. However, microwave heating is usually only known as dielectric heating, and the contribution of the magnetic field component of microwaves is often ignored, which, in fact, contributes greatly to microwave heating of some aqueous electrolyte solutions, magnetic dielectric materials and certain conductive powder materials, etc. This paper focuses on this point and presents a careful review of microwave heating mechanisms in a comprehensive manner. Moreover, in addition to the acknowledged conventional microwave heating mechanisms, the special interaction mechanisms between microwave and metal-based materials are attracting increasing interest for a variety of metallurgical, plasma and discharge applications, and therefore are reviewed particularly regarding the aspects of the reflection, heating and discharge effects. Finally, several distinct strategies to improve microwave energy utilization efficiencies are proposed and discussed with the aim of tackling the energy-efficiency-related issues arising from the application of microwave heating. This work can present a strategic guideline for the developed understanding and utilization of the microwave heating technology. PMID:28773355

  8. Ka Band Phase Locked Loop Oscillator Dielectric Resonator Oscillator for Satellite EHF Band Receiver

    Directory of Open Access Journals (Sweden)

    S. Coco

    2008-01-01

    Full Text Available This paper describes the design and fabrication of a Ka Band PLL DRO having a fundamental oscillation frequency of 19.250 GHz, used as local oscillator in the low-noise block of a down converter (LNB for an EHF band receiver. Apposite circuital models have been created to describe the behaviour of the dielectric resonator and of the active component used in the oscillator core. The DRO characterization and measurements have shown very good agreement with simulation results. A good phase noise performance is obtained by using a very high Q dielectric resonator.

  9. Analytical scanning evanescent microwave microscope and control stage

    Science.gov (United States)

    Xiang, Xiao-Dong; Gao, Chen; Duewer, Fred; Yang, Hai Tao; Lu, Yalin

    2009-06-23

    A scanning evanescent microwave microscope (SEMM) that uses near-field evanescent electromagnetic waves to probe sample properties is disclosed. The SEMM is capable of high resolution imaging and quantitative measurements of the electrical properties of the sample. The SEMM has the ability to map dielectric constant, loss tangent, conductivity, electrical impedance, and other electrical parameters of materials. Such properties are then used to provide distance control over a wide range, from to microns to nanometers, over dielectric and conductive samples for a scanned evanescent microwave probe, which enable quantitative non-contact and submicron spatial resolution topographic and electrical impedance profiling of dielectric, nonlinear dielectric and conductive materials. The invention also allows quantitative estimation of microwave impedance using signals obtained by the scanned evanescent microwave probe and quasistatic approximation modeling. The SEMM can be used to measure electrical properties of both dielectric and electrically conducting materials.

  10. Upper Hybrid Resonance of Microwaves with a Large Magnetized Plasma Sheet

    International Nuclear Information System (INIS)

    Huo Wenqing; Guo Shijie; Ding Liang; Xu Yuemin

    2013-01-01

    A large magnetized plasma sheet with size of 60 cm × 60 cm × 2 cm was generated by a linear hollow cathode discharge under the confinement of a uniform magnetic field generated by a Helmholtz Coil. The microwave transmission characteristic of the plasma sheet was measured for different incident frequencies, in cases with the electric field polarization of the incident microwave either perpendicular or parallel to the magnetic field. In this measurement, parameters of the plasma sheet were changed by varying the discharge current and magnetic field intensity. In the experiment, upper hybrid resonance phenomena were observed when the electric field polarization of the incident wave was perpendicular to the magnetic field. These resonance phenomena cannot be found in the case of parallel polarization incidence. This result is consistent with theoretical consideration. According to the resonance condition, the electron density values at the resonance points are calculated under various experimental conditions. This kind of resonance phenomena can be used to develop a specific method to diagnose the electron density of this magnetized plasma sheet apparatus. Moreover, it is pointed out that the operating parameters of the large plasma sheet in practical applications should be selected to keep away from the upper hybrid resonance point to prevent signals from polarization distortion

  11. Influence of lead oxide addition on LnTiTaO6 (Ln = Ce, Pr and Nd) microwave ceramics

    International Nuclear Information System (INIS)

    Padma Kumar, H.; Thomas, J.K.; John, Annamma; Solomon, Sam

    2011-01-01

    The effect of PbO addition on the structural, processing and microwave dielectric properties of LnTiTaO 6 (Ln = Ce, Pr and Nd) ceramics are reported. Conventional solid state ceramic route was used for the preparation of samples. Phase pure LnTiTaO 6 (Ln = Ce, Pr and Nd) ceramics are prepared at a calcination temperature of 1300 deg C. The samples are sintered at optimized temperatures. Addition of PbO reduces the sintering temperature. The crystal structure of the materials was analysed using X-ray diffraction techniques and the surface morphology of the sintered samples was analysed using scanning electron microscopy. The dielectric constant at microwave frequency range decreases for higher PbO addition for all the samples but the quality factor improves on small PbO addition. The thermal stability of resonant frequency was also improved with PbO addition on all the systems. A number of samples with improved microwave dielectric properties were obtained on all the systems suitable for practical applications. (author)

  12. Multipolar modes in dielectric disk resonator for wireless power transfer

    Science.gov (United States)

    Song, Mingzhao; Belov, Pavel; Kapitanova, Polina

    2017-09-01

    We demonstrate a magnetic resonant WPT system based on dielectric disk resonators and investigated the WPT efficiency as a function of separation. It has been demonstrated that the power transfer can be achieved at different multipolar modes. The numerical study shows that the highest WPT efficiency of 99% can be obtained for the MQ mode in an ideal case. However, the efficiency of MQ mode decays much faster than the MD mode which suggests that a trade-off has to be made in the practical WPT system design.

  13. Automation of Data Analysis Programs Used in the Cryogenic Characterization of Superconducting Microwave Resonators

    Science.gov (United States)

    Creason, A. S.; Miranda, F. A.

    1996-01-01

    Knowledge of the microwave properties at cryogenic temperatures of components fabricated using High-Temperature-Superconductors (HTS) is useful in the design of HTS-based microwave circuits. Therefore, fast and reliable characterization techniques have been developed to study the aforementioned properties. In this paper, we discuss computer analysis techniques employed in the cryogenic characterization of HTS-based resonators. The revised data analysis process requires minimal user input. and organizes the data in a form that is easily accessible by the user for further examination. These programs retrieve data generated during the cryogenic characterization at microwave frequencies of HTS based resonators and use it to calculate parameters such as the loaded and unloaded quality factors (Q and Q(sub o), respectively), the resonant frequency (f(sub o)), and the coupling coefficient (k), which are important quantities in the evaluation of HTS resonators. While the data are also stored for further use, the programs allow the user to obtain a graphical representation of any of the measured parameters as a function of temperature soon after the completion of the cryogenic measurement cycle. Although these programs were developed to study planar HTS-based resonators operating in the reflection mode, they could also be used in the cryogenic characterization of two ports (i.e., reflection/transmission) resonators.

  14. A laboratory test setup for in situ measurements of the dielectric properties of catalyst powder samples under reaction conditions by microwave cavity perturbation: set up and initial tests.

    Science.gov (United States)

    Dietrich, Markus; Rauch, Dieter; Porch, Adrian; Moos, Ralf

    2014-09-10

    The catalytic behavior of zeolite catalysts for the ammonia-based selective catalytic reduction (SCR) of nitrogen oxides (NOX) depends strongly on the type of zeolite material. An essential precondition for SCR is a previous ammonia gas adsorption that occurs on acidic sites of the zeolite. In order to understand and develop SCR active materials, it is crucial to know the amount of sorbed ammonia under reaction conditions. To support classical temperature-programmed desorption (TPD) experiments, a correlation of the dielectric properties with the catalytic properties and the ammonia sorption under reaction conditions appears promising. In this work, a laboratory test setup, which enables direct measurements of the dielectric properties of catalytic powder samples under a defined gas atmosphere and temperature by microwave cavity perturbation, has been developed. Based on previous investigations and computational simulations, a resonator cavity and a heating system were designed, installed and characterized. The resonator cavity is designed to operate in its TM010 mode at 1.2 GHz. The first measurement of the ammonia loading of an H-ZSM-5 zeolite confirmed the operating performance of the test setup at constant temperatures of up to 300 °C. It showed how both real and imaginary parts of the relative complex permittivity are strongly correlated with the mass of stored ammonia.

  15. A setup for measuring characteristics of microwave electric vacuum devices with open resonance structures

    DEFF Research Database (Denmark)

    Rybalko, Oleksandr; Ruban, A. I.; Vorob’ev, G. S.

    2015-01-01

    -tuning range, an additional periodic metal–dielectric structure is introduced into the open resonator. The experimental results of investigations of the energy, volt–ampere, and frequency characteristics of the modified diffraction-radiation generator prototype are compared to the characteristics...... of the generator without a metal–dielectric structure....

  16. An electromagnetic induced transparency-like scheme for wireless power transfer using dielectric resonators

    Science.gov (United States)

    Elnaggar, Sameh Y.

    2017-02-01

    Similar to the hybridization of three atoms, three coupled resonators interact to form bonding, anti-bonding, and non-bonding modes. The non-bonding mode enables an electromagnetic induced transparency like transfer of energy. Here, the non-bonding mode, resulting from the strong electric coupling of two dielectric resonators and an enclosure, is exploited to show that it is feasible to transfer power over a distance comparable to the operating wavelength. In this scheme, the enclosure acts as a mediator. The strong coupling permits the excitation of the non-bonding mode with high purity. This approach is different from resonant inductive coupling, which works in the sub-wavelength regime. Optimal loads and the corresponding maximum efficiency are determined using two independent methods: Coupled Mode Theory and Circuit modelling. It is shown that, unlike resonant inductive coupling, the figure of merit depends on the enclosure quality and not on the load, which emphasizes the role of the enclosure as a mediator. Briefly after the input excitation is turned on, the energy in the receiver builds up via all coupled and spurious modes. As time elapses, all modes except the non-bonding cease to sustain. Due to the strong coupling between the dielectrics and the enclosure, such systems have unique properties such as high and uniform efficiency over large distances and minimal fringing fields. These properties suggest that electromagnetic induced transparency like schemes that rely on the use of dielectric resonators can be used to power autonomous systems inside an enclosure or find applications when exposure to the fields needs to be minimal. Finite Element computations are used to verify the theoretical predictions by determining the transfer efficiency, field profile, and coupling coefficients for two different systems. It is shown that the three resonators must be present for efficient power transfer; if one or more are removed, the transfer efficiency reduces

  17. Finite-size resonance dielectric cylinder in a rectangular waveguide

    International Nuclear Information System (INIS)

    Chuprina, V.N.; Khizhnyak, N.A.

    1988-01-01

    The problem on resonance spread of an electromagnetic wave by a dielectric circular cylinder of finite size in a rectangular waveguide is solved by a numerical-analytical method. The cylinder axes are parallel. The cylinder can be used as a resonance tuning element in accelerating SHF-sections. Problems on cutting off linear algebraic equation systems, to which relations of macroscopic electrodynamics in the integral differential form written for the concrete problem considered here are reduced by analytical transformations, are investigated in the stage of numerical analysis. Theoretical dependences of the insertion of the voltage standing wave coefficient on the generator wave length calculated for different values of problem parameters are constracted

  18. Novel dielectric photonic-band-gap resonant cavity loaded in a gyrotron

    International Nuclear Information System (INIS)

    Chen Xiaoan; Liu Gaofeng; Tang Changjian

    2010-01-01

    A novel resonant cavity composed of a periodic, multilayer, dielectric photonic crystal is proposed. Using the transfer matrix method and the Bloch theorem for periodic systems, an analysis on the band-gap property of such a structure is made, and the basic electromagnetic property of the photonic-band-gap resonant cavity (PBGC) is preliminarily exhibited. The theoretical studies and the cold cavity simulation results obtained from a high-frequency structure simulator are presented. On the basis of the present research, such a PBGC is quite similar to the two-dimensional PBGC made of triangular lattices of metal rods with a defect at its centre, in which a frequency selectivity is similarly demonstrated. Because of its unique electromagnetic property, the cavity has many promising applications in active and passive devices operating in the millimetre, sub-millimetre, and even THz wave range. As a specific application, the feasibility of substituting the traditional cylindrical resonant cavity loaded in a gyrotron for a dielectric PBGC to achieve a transverse high-order operation is discussed under the consideration of the electromagnetic features of the cavity. The study shows the great potential value of such a cavity for gyrotron devices.

  19. Aspects of microwave-heating uniformity

    International Nuclear Information System (INIS)

    Ginsberg, T.; Makowitz, H.

    1983-01-01

    Interest has been shown in the field of nuclear reactor safety in the use of microwave heating to simulate the nuclear heat source. The objective of the investigation reported here was to evaluate the usefulness of microwave dielectric heating as a simulator of the nuclear heat source in experiments which simulate the process of boiling of molten mixtures of nuclear fuel and steel. This paper summarizes the results of studies of several aspects of energy deposition in dielectric liquid samples which are exposed to microwave radiation

  20. Effect of doping on the dielectric properties of cerium oxide in the microwave and far-infrared frequency range

    Czech Academy of Sciences Publication Activity Database

    Santha, N. I.; Sebastian, M. T.; Mohanan, P.; McN.Alford, N.; Sarma, K.; Pullar, R. C.; Kamba, Stanislav; Pashkin, Alexej; Samoukhina, Polina; Petzelt, Jan

    2004-01-01

    Roč. 87, č. 7 (2004), s. 1233-1237 ISSN 0002-7820 R&D Projects: GA ČR GA202/01/0612; GA AV ČR KSK1010104 Institutional research plan: CEZ:AV0Z1010914 Keywords : microwave cearmics * dielectric dispersion Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.710, year: 2004

  1. Analysis of superconducting microstrip resonator at various microwave power levels

    International Nuclear Information System (INIS)

    Srivastava, G.P.; Jacob, M.V.; Jayakumar, M.; Bhatnagar, P.K.; Kataria, N.D.

    1997-01-01

    The real and imaginary parts of the surface impedance of YBCO superconductors have been studied at different microwave power levels. Using the relations for the critical current density and the grain boundary resistance, a relation for calculating the power dependence of the surface resistance has been obtained. Also, a relation to find the resonant frequency of a superconducting microstrip resonator at various input power levels has been derived. Measurements have been carried out on various microstrip resonators to study the variation of surface resistance and resonant frequency at different rf power levels. The experimental results are in good agreement with theoretical results. copyright 1997 American Institute of Physics

  2. Heat and mass transfer in a contaminated porous concrete slab with variable dielectric properties

    International Nuclear Information System (INIS)

    Li, W.; Ebadian, M.A.

    1994-01-01

    The effect of temperature dependent dielectric properties on concrete decontamination and decommissioning using microwave technology is investigated theoretically in this paper. The concrete is treated as a porous material, which has residual water and air within the pores. A one-dimensional model of unsteady heat and mass transport in the porous concrete with temperature dependent dielectric properties is developed. Based on this model, temperature and pressure with different microwave frequencies are predicted, the effects of the temperature dependent dielectric properties on microwave power dissipation, the temperature and pressure distributions for different microwave frequencies, and the different microwave power intensities are analyzed in detail. Four available industrial microwave frequencies of 0.896, 2.45, 10.6 and 18.0 GHz are used in the analysis. As a result of the dielectric properties varying with temperature, the power dissipation also varies with the heating times. Comparing the results for both temperature dependent and constant dielectric properties reveals that the variation of dielectric permittivity with temperature must be considered in a theoretical model of the concrete decontamination and decommissioning process for a low microwave frequency (f <2.45 GHz). (Author)

  3. A feasibility study on the application of microwaves for online biofilm monitoring in the pipelines

    International Nuclear Information System (INIS)

    Saber, Nasser; Ju, Yang; Hsu, Hung-Yao; Lee, Sang-Heon

    2013-01-01

    This study investigates the potential of microwave technique for online monitoring and evaluation of biofilms in the pipelines. A microwave vector network analyser and an in-house built transmitting and receiving coaxial-line transducer were employed to transmit microwave signals in the pipe. The brass pipe specimen was tested by adhering different volumes of polymeric tape layers onto its internal surface simulating the biofilm build-up. By taking the pipe as a circular waveguide of microwave, the frequency domain measurements were conducted in the 45–47 GHz range with TM 01 dominant wave mode. The permittivity of the biofilm-contained area has been expressed as a function of the resonance frequency after establishing the resonance condition in the waveguide. It was realized that the resonance frequencies experience systematic shifts with the growth of biofilm layer length and thickness. The effects of dielectric material properties and the volume of the added biofilm layer on the resonance frequency records were then explained using the cavity perturbation theory which confirmed the experimental findings. Measurement results indicated a high degree of sensitivity to the small amounts of introduced biofilm which proves the potential of the microwave technique for online biofilm monitoring in both closed-end and open-end terminal conditions. -- Highlights: • An online biofilm monitoring method in pipelines using microwaves is reported. • Time and frequency domain measurements conducted in the pipe as a waveguide. • Resonance frequencies show systematic shifts with the growth of biofilm layer. • Relationship of the biofilm volume and the resonance frequency changes is expressed. • Perturbation theory is used to explain the results

  4. Microwave and pulsed power engineering

    International Nuclear Information System (INIS)

    Hofer, W.W.

    1984-01-01

    The Microwave and Pulsed Power Engineering Thrust Area is responsible for developing the short-term and long-term engineering resources required to support the growing microwave and pulsed power engineering requirements of several LLNL Programs. The responsibility of this Thrust Area is to initiate applicable research and development projects and to provide capabilities and facilities to permit engineers involved in these and other programs to make significant contributions. In this section, the principal projects are described: dielectric failure prediction using partial discharge analysis, coating dielectrics to increase surface flashover potential, and the microwave generator experiment

  5. Analysis of Circularly Polarized Hemispheroidal Dielectric Resonator Antenna Phased Arrays Using the Method of Auxiliary Sources

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2007-01-01

    The method of auxiliary sources is employed to model and analyze probe-fed hemispheroidal dielectric resonator antennas and arrays. Circularly polarized antenna elements of different designs are analyzed, and impedance bandwidths of up to 14.7% are achieved. Selected element designs are subsequen......The method of auxiliary sources is employed to model and analyze probe-fed hemispheroidal dielectric resonator antennas and arrays. Circularly polarized antenna elements of different designs are analyzed, and impedance bandwidths of up to 14.7% are achieved. Selected element designs...

  6. Loss mechanisms in superconducting thin film microwave resonators

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, Jan, E-mail: jan.goetz@wmi.badw.de; Haeberlein, Max; Wulschner, Friedrich; Zollitsch, Christoph W.; Meier, Sebastian; Fischer, Michael; Fedorov, Kirill G.; Menzel, Edwin P. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Deppe, Frank; Eder, Peter; Xie, Edwar; Gross, Rudolf, E-mail: rudolf.gross@wmi.badw.de [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstraße 4, 80799 München (Germany); Marx, Achim [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany)

    2016-01-07

    We present a systematic analysis of the internal losses of superconducting coplanar waveguide microwave resonators based on niobium thin films on silicon substrates. In particular, we investigate losses introduced by Nb/Al interfaces in the center conductor, which is important for experiments where Al based Josephson junctions are integrated into Nb based circuits. We find that these interfaces can be a strong source for two-level state (TLS) losses, when the interfaces are not positioned at current nodes of the resonator. In addition to TLS losses, for resonators including Al, quasiparticle losses become relevant above 200 mK. Finally, we investigate how losses generated by eddy currents in conductive material on the backside of the substrate can be minimized by using thick enough substrates or metals with high conductivity on the substrate backside.

  7. A Quarter Ellipse Microstrip Resonator for Filters in Microwave Frequencies

    Directory of Open Access Journals (Sweden)

    Samuel Á. Jaramillo-Flórez

    2013-11-01

    Full Text Available This work describes the results of computational simulations and construction of quadrant elliptical resonators excited by coplanar slot line waveguide for designing microwave filters in RF communications systems. By means of the equation of optics, are explained the fundamentals of these geometry of resonators proposed. Are described the construction of quadrant elliptical resonators, one of microstrip and other two of cavity, of size different, and an array of four quadrant elliptical resonators in cascade. The results of the measures and the computational calculus of scattering S11 and S21 of elliptical resonators is made for to identify the resonant frequencies of the resonators studied, proving that these have performance in frequency as complete ellipses by the image effect due to their two mirror in both semiaxis, occupying less area, and the possible applications are discussed.

  8. Vacuum Gap Microstrip Microwave Resonators for 2.5-D Integration in Quantum Computing

    International Nuclear Information System (INIS)

    Lewis, Rupert M.; Henry, Michael David; Schroeder, Katlin

    2017-01-01

    We demonstrate vacuum gap λ/2 microwave resonators as a route toward higher integration in superconducting qubit circuits. The resonators are fabricated from pieces on two silicon chips bonded together with an In-Sb bond. Measurements of the devices yield resonant frequencies in good agreement with simulations. Furthermore, we discuss creating low loss circuits in this geometry.

  9. Proceedings of microwave processing of materials 3

    International Nuclear Information System (INIS)

    Beatty, R.L.

    1992-01-01

    This book contains proceedings of the third MRS Symposium on Microwave Processing of Materials. Topics covered include: Microwave Processing Overviews, Numerical Modeling Techniques, Microwave Processing System Design, Microwave/Plasma Processing, Microwave/Materials Interactions, Microwave Processing of Ceramics, Microwave Processing of Polymers, Microwave Processing of Hazardous Wastes, Microwave NDE Techniques and Dielectric Properties and Measurements

  10. Millimeter wave and terahertz dielectric properties of biological materials

    Science.gov (United States)

    Khan, Usman Ansar

    Broadband dielectric properties of materials can be employed to identify, detect, and characterize materials through their unique spectral signatures. In this study, millimeter wave, submillimeter wave, and terahertz dielectric properties of biological substances inclusive of liquids, solids, and powders were obtained using Dispersive Fourier Transform Spectroscopy (DFTS). Two broadband polarizing interferometers were constructed to test materials from 60 GHz to 1.2 THz. This is an extremely difficult portion of the frequency spectrum to obtain a material's dielectric properties since neither optical nor microwave-based techniques provide accurate data. The dielectric characteristics of liquids such as cyclohexane, chlorobenzene, benzene, ethanol, methanol, 1,4 dioxane, and 10% formalin were obtained using the liquid interferometer. Subsequently the solid interferometer was utilized to determine the dielectric properties of human breast tissues, which are fixed and preserved in 10% formalin. This joint collaboration with the Tufts New England Medical Center demonstrated a significant difference between the dielectric response of tumorous and non-tumorous breast tissues across the spectrum. Powders such as anthrax, flour, talc, corn starch, dry milk, and baking soda have been involved in a number of security threats and false alarms around the globe in the last decade. To be able to differentiate hoax attacks and serious security threats, the dielectric properties of common household powders were also examined using the solid interferometer to identify the powders' unique resonance peaks. A new sample preparation kit was designed to test the powder specimens. It was anticipated that millimeter wave and terahertz dielectric characterization will enable one to clearly distinguish one powder from the other; however most of the powders had relatively close dielectric responses and only Talc had a resonance signature recorded at 1.135 THz. Furthermore, due to

  11. Relationship between microwave and lattice vibration properties in Ba(Zn.sub.1/3./sub.Nb.sub.2/3./sub.)O.sub.3./sub.-based microwave dielectric ceramics

    Czech Academy of Sciences Publication Activity Database

    Kamba, Stanislav; Hughes, H.; Noujni, Dmitri; Surendran, Santhi; Pullar, R. C.; Samoukhina, Polina; Petzelt, Jan; Freer, R.; McNAlford, N.; Iddles, D. M.

    2004-01-01

    Roč. 37, - (2004), s. 1980-1986 ISSN 0022-3727 R&D Projects: GA ČR GA202/04/0993; GA AV ČR IAA1010213; GA MŠk OC 525.20 Institutional research plan: CEZ:AV0Z1010914 Keywords : microwave ceramic * dielectric dispersion * THz spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.642, year: 2004

  12. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces.

    Science.gov (United States)

    Sidabras, Jason W; Varanasi, Shiv K; Mett, Richard R; Swarts, Steven G; Swartz, Harold M; Hyde, James S

    2014-10-01

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg(2+) doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  13. A microwave resonator for limiting depth sensitivity for electron paramagnetic resonance spectroscopy of surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sidabras, Jason W.; Varanasi, Shiv K.; Hyde, James S. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53211 (United States); Mett, Richard R. [Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53211 (United States); Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, Wisconsin 53202 (United States); Swarts, Steven G. [Department of Radiation Oncology, University of Florida, Gainesville, Florida, 32610 (United States); Swartz, Harold M. [Department of Radiology, Geisel Medical School at Dartmouth, Hanover, New Hampshire 03755 (United States)

    2014-10-15

    A microwave Surface Resonator Array (SRA) structure is described for use in Electron Paramagnetic Resonance (EPR) spectroscopy. The SRA has a series of anti-parallel transmission line modes that provides a region of sensitivity equal to the cross-sectional area times its depth sensitivity, which is approximately half the distance between the transmission line centers. It is shown that the quarter-wave twin-lead transmission line can be a useful element for design of microwave resonators at frequencies as high as 10 GHz. The SRA geometry is presented as a novel resonator for use in surface spectroscopy where the region of interest is either surrounded by lossy material, or the spectroscopist wishes to minimize signal from surrounding materials. One such application is in vivo spectroscopy of human finger-nails at X-band (9.5 GHz) to measure ionizing radiation dosages. In order to reduce losses associated with tissues beneath the nail that yield no EPR signal, the SRA structure is designed to limit depth sensitivity to the thickness of the fingernail. Another application, due to the resonator geometry and limited depth penetration, is surface spectroscopy in coating or material science. To test this application, a spectrum of 1.44 μM of Mg{sup 2+} doped polystyrene 1.1 mm thick on an aluminum surface is obtained. Modeling, design, and simulations were performed using Wolfram Mathematica (Champaign, IL; v. 9.0) and Ansys High Frequency Structure Simulator (HFSS; Canonsburg, PA; v. 15.0). A micro-strip coupling circuit is designed to suppress unwanted modes and provide a balanced impedance transformation to a 50 Ω coaxial input. Agreement between simulated and experimental results is shown.

  14. Dielectric and magnetic losses of microwave electromagnetic radiation in granular structures with ferromagnetic nanoparticles

    CERN Document Server

    Lutsev, L V; Tchmutin, I A; Ryvkina, N G; Kalinin, Y E; Sitnikoff, A V

    2003-01-01

    We have studied dielectric and magnetic losses in granular structures constituted by ferromagnetic nanoparticles (Co, Fe, B) in an insulating amorphous a-SiO sub 2 matrix at microwave frequencies, in relation to metal concentration, substrate temperatures and gas content, in the plasma atmosphere in sputtering and annealing. The magnetic losses are due to fast spin relaxation of nanoparticles, which becomes more pronounced with decreasing metal content and occur via simultaneous changes in the granule spin direction and spin polarization of electrons on exchange-split localized states in the matrix (spin-polarized relaxation mechanism). The difference between the experimental values of the imaginary parts of magnetic permeability for granular structures prepared in Ar and Ar + O sub 2 atmospheres is determined by different electron structures of argon and oxygen impurities in the matrix. To account for large dielectric losses in granular structures, we have developed a model of cluster electron states (CESs)....

  15. Dielectric properties of agricultural materials and their applications

    CERN Document Server

    Nelson, Stuart

    2015-01-01

    Dielectric Properties of Agricultural Materials and Their Applications provides an understanding of the fundamental principles governing dielectric properties of materials, describes methods for measuring such properties, and discusses many applications explored for solving industry problems. The information in this reference stimulates new research for solving problems associated with production, handling, and processing of agricultural and food products. Anyone seeking a better understanding of dielectric properties of materials and application of radio-frequency and microwave electromagnetic energy for solution of problems in agriculture and related fields will find this an essential resource. Presents applications of dielectric properties for sensing moisture in grain and seed and the use of such properties in radio-frequency and microwave dielectric heating of agricultural materials Offers information for finding correlations between dielectric properties and quality attributes such as sweetness in melon...

  16. Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Xue, Weiqi

    2010-01-01

    We propose and demonstrate tunable microwave phase shifters based on electrically tunable silicon-on-insulator microring resonators. The phase-shifting range and the RF-power variation are analyzed. A maximum phase-shifting range of 0~600° is achieved by utilizing a dual-microring resonator...

  17. Throughput Measurement of a Dual-Band MIMO Rectangular Dielectric Resonator Antenna for LTE Applications.

    Science.gov (United States)

    Nasir, Jamal; Jamaluddin, Mohd Haizal; Ahmad Khan, Aftab; Kamarudin, Muhammad Ramlee; Yen, Bruce Leow Chee; Owais, Owais

    2017-01-13

    An L-shaped dual-band multiple-input multiple-output (MIMO) rectangular dielectric resonator antenna (RDRA) for long term evolution (LTE) applications is proposed. The presented antenna can transmit and receive information independently using fundamental TE 111 and higher order TE 121 modes of the DRA. TE 111 degenerate mode covers LTE band 2 (1.85-1.99 GHz), 3 (1.71-1.88 GHz), and 9 (1.7499-1.7849 GHz) at f r = 1.8 GHz whereas TE 121 covers LTE band 7 (2.5-2.69 GHz) at f r = 2.6 GHz, respectively. An efficient design method has been used to reduce mutual coupling between ports by changing the effective permittivity values of DRA by introducing a cylindrical air-gap at an optimal position in the dielectric resonator. This air-gap along with matching strips at the corners of the dielectric resonator keeps the isolation at a value more than 17 dB at both the bands. The diversity performance has also been evaluated by calculating the envelope correlation coefficient, diversity gain, and mean effective gain of the proposed design. MIMO performance has been evaluated by measuring the throughput of the proposed MIMO antenna. Experimental results successfully validate the presented design methodology in this work.

  18. Circularly polarized microwaves for magnetic resonance study in the GHz range: Application to nitrogen-vacancy in diamonds

    International Nuclear Information System (INIS)

    Mrózek, M.; Rudnicki, D. S.; Gawlik, W.; Mlynarczyk, J.

    2015-01-01

    The ability to create time-dependent magnetic fields of controlled polarization is essential for many experiments with magnetic resonance. We describe a microstrip circuit that allows us to generate strong magnetic field at microwave frequencies with arbitrary adjusted polarization. The circuit performance is demonstrated by applying it to an optically detected magnetic resonance and Rabi nutation experiments in nitrogen-vacancy color centers in diamond. Thanks to high efficiency of the proposed microstrip circuit and degree of circular polarization of 85%; it is possible to address the specific spin states of a diamond sample using a low power microwave generator. The circuit may be applied to a wide range of magnetic resonance experiments with a well-controlled polarization of microwaves

  19. Symposium KK, Resonant Optics in Dielectric and Metallic Structures: Fundamentals and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Larouche, Stephane [Duke Univ., Durham, NC (United States); Caldwell, Joshua [Naval Research Lab. (NRL), Washington, DC (United States)

    2016-09-06

    Symposium KK focused on the design, fabrication, characterization of novel nanoscale optical resonators and alternative materials for sub-diffraction scale resonant particles. Contributions discussed all aspects of this field, and the organizers had more than 130 contributing participants to this session alone, spanning North America, Europe, Asia and Australia. Participants discussed cutting edge research results focused on the structure, physical and optical properties, and ultrafast dynamic response of nanoscale resonators such as plasmonic and dielectric nanoparticles. A strong focus on state-of-the-art characterization and fabrication approaches, as well as presentations on novel materials for sub-diffraction resonators took place. As expected, the sessions provided strong interdisciplinary interactions and lively debate among presenters and participants.

  20. A Laboratory Test Setup for in Situ Measurements of the Dielectric Properties of Catalyst Powder Samples under Reaction Conditions by Microwave Cavity Perturbation: Set up and Initial Tests

    Directory of Open Access Journals (Sweden)

    Markus Dietrich

    2014-09-01

    Full Text Available The catalytic behavior of zeolite catalysts for the ammonia-based selective catalytic reduction (SCR of nitrogen oxides (NOX depends strongly on the type of zeolite material. An essential precondition for SCR is a previous ammonia gas adsorption that occurs on acidic sites of the zeolite. In order to understand and develop SCR active materials, it is crucial to know the amount of sorbed ammonia under reaction conditions. To support classical temperature-programmed desorption (TPD experiments, a correlation of the dielectric properties with the catalytic properties and the ammonia sorption under reaction conditions appears promising. In this work, a laboratory test setup, which enables direct measurements of the dielectric properties of catalytic powder samples under a defined gas atmosphere and temperature by microwave cavity perturbation, has been developed. Based on previous investigations and computational simulations, a resonator cavity and a heating system were designed, installed and characterized. The resonator cavity is designed to operate in its TM010 mode at 1.2 GHz. The first measurement of the ammonia loading of an H-ZSM-5 zeolite confirmed the operating performance of the test setup at constant temperatures of up to 300 °C. It showed how both real and imaginary parts of the relative complex permittivity are strongly correlated with the mass of stored ammonia.

  1. Single and multiple electromagnetic scattering by dielectric obstacles from a resonance perspective

    International Nuclear Information System (INIS)

    Riley, D.J.

    1987-03-01

    A new application of the singularity expansion method (SEM) is explored. This application combines the classical theory of wave propagation through a multiple-scattering environment and the SEM. Because the SEM is generally considered to be a theory for describing surface currents on conducting scatters, extensions are made which permit, under certain conditions, a singularity expansion representation for the electromagnetic field scattered by a dielectric scatterer. Application of this expansion is then made to the multiple-scattering case using both single and multiple interactions. A resonance scattering tensor form is used for the SEM description which leds to an associated tensor form for the solution to the multiple-scattering problem with each SEM pole effect appearing explicitly. The coherent field is determined for both spatial and SEM parameter random variations. A numerical example for the case of an ensemble of dielectric spheres which possess frequency-dependent loss is also made. Accurate resonance expansions for the single-scattering problem are derived, and resonance trajectories based on the Debye relaxation model for the refractive index are introduced. Application of these resonance expansions is then made to the multiple-scattering results for a slab containing a distribution of spheres with varying radii. Conditions are discussed which describe when the hybrid theory is appropriate. 53 refs., 21 figs., 9 tabs

  2. Effect of CuO addition on the sintering temperature and microwave dielectric properties of CaSiO3–Al2O3 ceramics

    Directory of Open Access Journals (Sweden)

    Denghao Li

    2014-06-01

    Full Text Available CuO-doped CaSiO3–1 wt% Al2O3 ceramics were synthesized via a traditional solid-state reaction method, and their sintering behavior, microstructure and microwave dielectric properties were investigated. The results showed that appropriate CuO addition could accelerate the sintering process and assist the densification of CaSiO3–1 wt% Al2O3 ceramics, which could effectively lower the densification temperature from 1250 °C to 1050 °C. However, the addition of CuO undermined the microwave dielectric properties. The optimal amount of CuO addition was found to be 0.8 wt%, and the derived CaSiO3–Al2O3 ceramic sintered at 1100 °C presented good microwave dielectric properties of εr=7.27, Q×f=16,850 GHz and τf=−39.53 ppm/°C, which is much better than those of pure CaSiO3 ceramic sintered at 1340 oC (Q×f=13,109 GHz. The chemical compatibility of the above ceramic with 30 Pd/70 Ag during the cofiring process has also been investigated, and the result showed that there was no chemical reaction between palladium–silver alloys and ceramics.

  3. Analysis of specular resonance in dielectric bispheres using rigorous and geometrical-optics theories.

    Science.gov (United States)

    Miyazaki, Hideki T; Miyazaki, Hiroshi; Miyano, Kenjiro

    2003-09-01

    We have recently identified the resonant scattering from dielectric bispheres in the specular direction, which has long been known as the specular resonance, to be a type of rainbow (a caustic) and a general phenomenon for bispheres. We discuss the details of the specular resonance on the basis of systematic calculations. In addition to the rigorous theory, which precisely describes the scattering even in the resonance regime, the ray-tracing method, which gives the scattering in the geometrical-optics limit, is used. Specular resonance is explicitly defined as strong scattering in the direction of the specular reflection from the symmetrical axis of the bisphere whose intensity exceeds that of the scattering from noninteracting bispheres. Then the range of parameters for computing a particular specular resonance is specified. This resonance becomes prominent in a wide range of refractive indices (from 1.2 to 2.2) in a wide range of size parameters (from five to infinity) and for an arbitrarily polarized light incident within an angle of 40 degrees to the symmetrical axis. This particular scattering can stay evident even when the spheres are not in contact or the sizes of the spheres are different. Thus specular resonance is a common and robust phenomenon in dielectric bispheres. Furthermore, we demonstrate that various characteristic features in the scattering from bispheres can be explained successfully by using intuitive and simple representations. Most of the significant scatterings other than the specular resonance are also understandable as caustics in geometrical-optics theory. The specular resonance becomes striking at the smallest size parameter among these caustics because its optical trajectory is composed of only the refractions at the surfaces and has an exceptionally large intensity. However, some characteristics are not accounted for by geometrical optics. In particular, the oscillatory behaviors of their scattering intensity are well described by

  4. Deterministic Many-Resonator W Entanglement of Nearly Arbitrary Microwave States via Attractive Bose-Hubbard Simulation

    Directory of Open Access Journals (Sweden)

    A. A. Gangat

    2013-08-01

    Full Text Available Multipartite entanglement of large numbers of physically distinct linear resonators is of both fundamental and applied interest, but there have been no feasible proposals to date for achieving it. At the same time, the Bose-Hubbard model with attractive interactions (ABH is theoretically known to have a phase transition from the superfluid phase to a highly entangled nonlocal superposition, but observation of this phase transition has remained out of experimental reach. In this theoretical work, we jointly address these two problems by (1 proposing an experimentally accessible quantum simulation of the ABH phase transition in an array of tunably coupled superconducting circuit microwave resonators and (2 incorporating the simulation into a highly scalable protocol that takes as input any microwave-resonator state with negligible occupation of number states |0⟩ and |1⟩ and nonlocally superposes it across the whole array of resonators. The large-scale multipartite entanglement produced by the protocol is of the W type, which is well known for its robustness. The protocol utilizes the ABH phase transition to generate the multipartite entanglement of all of the resonators in parallel, and is therefore deterministic and permits an increase in resonator number without any increase in protocol complexity; the number of resonators is limited instead by system characteristics such as resonator-frequency disorder and inter-resonator coupling strength. Only one local and two global controls are required for the protocol. We numerically demonstrate the protocol with realistic system parameters and estimate that current experimental capabilities can realize the protocol with high fidelity for greater than 40 resonators. Because superconducting-circuit microwave resonators are capable of interfacing with other devices and platforms such as mechanical resonators and (potentially optical fields, this proposal provides a route toward large-scale W

  5. A split-cavity design for the incorporation of a DC bias in a 3D microwave cavity

    NARCIS (Netherlands)

    Cohen, M.A.; Yuan, M.; de Jong, B.W.A.; Beukers, Ewout; Bosman, S.J.; Steele, G.A.

    2017-01-01

    We report on a technique for applying a DC bias in a 3D microwave cavity. We achieve this by isolating the two halves of the cavity with a dielectric and directly using them as DC electrodes. As a proof of concept, we embed a variable capacitance diode in the cavity and tune the resonant

  6. Measurements of the anomalous RF surface resistance of niobium using a dielectric resonator

    International Nuclear Information System (INIS)

    Moffat, D.; Bolore, M.; Bonin, B.; Jacques, E.; Safa, H.

    1996-01-01

    The surface resistance of high and low residual resistance ratio (RRR) niobium plates at 4.2 K and 1.8 K has been measured as a function of many processing and testing parameters. A dielectric resonator was used instead of a resonant cavity. This resonator offered the ability to make many, sensitive measurements with an efficient use of time and helium. It was found that the surface resistance, R s , of RRR = 190 niobium increased noticeably from the theoretical value if the cooling rate was slower than ∼ 10 K/min. (author)

  7. Coupled superconducting qudit-resonator system: Energy spectrum, state population, and state transition under microwave drive

    Science.gov (United States)

    Liu, W. Y.; Xu, H. K.; Su, F. F.; Li, Z. Y.; Tian, Ye; Han, Siyuan; Zhao, S. P.

    2018-03-01

    Superconducting quantum multilevel systems coupled to resonators have recently been considered in some applications such as microwave lasing and high-fidelity quantum logical gates. In this work, using an rf-SQUID type phase qudit coupled to a microwave coplanar waveguide resonator, we study both theoretically and experimentally the energy spectrum of the system when the qudit level spacings are varied around the resonator frequency by changing the magnetic flux applied to the qudit loop. We show that the experimental result can be well described by a theoretical model that extends from the usual two-level Jaynes-Cummings system to the present four-level system. It is also shown that due to the small anharmonicity of the phase device a simplified model capturing the leading state interactions fits the experimental spectra very well. Furthermore we use the Lindblad master equation containing various relaxation and dephasing processes to calculate the level populations in the simpler qutrit-resonator system, which allows a clear understanding of the dynamics of the system under the microwave drive. Our results help to better understand and perform the experiments of coupled multilevel and resonator systems and can be applied in the case of transmon or Xmon qudits having similar anharmonicity to the present phase device.

  8. Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths

    DEFF Research Database (Denmark)

    Garcia, Cesar; Coello, Victor; Han, Zhanghua

    2012-01-01

    Dielectric-loaded plasmonic waveguide-racetrack resonators (WRTRs) were designed and fabricated for operating at near-infrared wavelengths (750–850 nm) and characterized using leakage-radiation microscopy. The transmission spectra of the WRTRs are found experimentally and compared to the calculat...

  9. Microwave Spectrometry for the Assessment of the Structural Integrity and Restenosis Degree of Coronary Stents

    Science.gov (United States)

    Arauz-Garofalo, Gianluca; Lopez-Dominguez, Victor; Garcia-Santiago, Antoni; Tejada, Javier; O'Callaghan, Joan; Rodriguez-Leor, Oriol; Bayes-Genis, Antoni; Gmag Team; Hugtp Team; Upc Team

    2013-03-01

    Cardiovascular disease is the main cause of death worldwide. Coronary stents are one of the most important improvements to reduce deaths from cardiovascular disorders. Stents are prosthetic tube-shaped devices which are used to rehabilitate obstructed arteries. Despite their obvious advantages, reocclusion occurs in some cases arising from restenosis or structural distortions, so stented patients require chronic monitoring (involving invasive or ionizing procedures). We study microwave scattering spectra (between 2.0 - 18.0 GHz) of metallic stents in open air, showing that they behave like dipole antennas in terms of microwave scattering. They exhibit characteristic resonant frequencies in their microwave absorbance spectra that are univocally related to their length and diameter. This fact allows one to detect stent fractures or collapses. We also investigate the ``dielectric shift'' in the frequency of the resonances mentioned above due to the presence of different fluids along the stent lumen. This shift could give us information about the restenosis degree of implanted stents.

  10. Magnetic, dielectric and microwave absorption properties of rare earth doped Ni–Co and Ni–Co–Zn spinel ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Stergiou, Charalampos, E-mail: stergiou@cperi.certh.gr

    2017-03-15

    In this article we analyze the electromagnetic properties of rare earth substituted Ni–Co and Ni–Co–Zn cubic ferrites in the microwave band, along with their performance as microwave absorbing materials. Ceramic samples with compositions Ni{sub 0.5}Co{sub 0.5}Fe{sub 2−x}R{sub x}O{sub 4} and Ni{sub 0.25}Co{sub 0.5}Zn{sub 0.25}Fe{sub 2−x}R{sub x}O{sub 4} (R=Y and La, x=0, 0.02), fabricated with the solid state reaction method, were characterized with regard to the complex permeability μ*(f) and permittivity ε*(f) up to 20 GHz. The rare earth substitutions basically affect the microwave μ*(f) spectra and the dynamic magnetization mechanisms of domain wall motion and magnetization rotation. Key parameters for this effect are the reduced magnetocrystalline anisotropy and the created crystal inhomogeneities. Moreover, permittivity is increased with the Y and La content, due to the enhancement of the dielectric orientation polarization. Regarding the electromagnetic wave attenuation, the prepared ferrites exhibit narrowband return losses (RL) by virtue of the cancellation of multiple reflections, when their thickness equals an odd multiple of quarter-wavelength. Interestingly, the zero-reflection conditions are satisfied in the vicinity of the ferromagnetic resonance. As the rare earth doping shifts this mechanism to lower frequencies, loss peaks with RL>46 dB occur at 4.1 GHz and 5 GHz for Y and La-doped Ni–Co–Zn spinels, whereas peaks with RL>40 dB appear at 18 GHz and 19 GHz for Y and La-doped Ni–Co spinels, respectively. The presented experimental findings underline the potential of cubic ferrites with high Co concentration in the suppression of electromagnetic reflections well above the 1 GHz region. - Highlights: • Due to cation distribution, magnetic anisotropy drops in Y and La doped samples. • Microwave permeability spectra shift to lower frequencies with rare earth doping. • Permittivity is increased due to crystal modifications

  11. Confluence or independence of microwave plasma bullets in atmospheric argon plasma jet plumes

    Science.gov (United States)

    Li, Ping; Chen, Zhaoquan; Mu, Haibao; Xu, Guimin; Yao, Congwei; Sun, Anbang; Zhou, Yuming; Zhang, Guanjun

    2018-03-01

    Plasma bullet is the formation and propagation of a guided ionization wave (streamer), normally generated in atmospheric pressure plasma jet (APPJ). In most cases, only an ionization front produces in a dielectric tube. The present study shows that two or three ionization fronts can be generated in a single quartz tube by using a microwave coaxial resonator. The argon APPJ plumes with a maximum length of 170 mm can be driven by continuous microwaves or microwave pulses. When the input power is higher than 90 W, two or three ionization fronts propagate independently at first; thereafter, they confluence to form a central plasma jet plume. On the other hand, the plasma bullets move independently as the lower input power is applied. For pulsed microwave discharges, the discharge images captured by a fast camera show the ionization process in detail. Another interesting finding is that the strongest lightening plasma jet plumes always appear at the shrinking phase. Both the discharge images and electromagnetic simulations suggest that the confluence or independent propagation of plasma bullets is resonantly excited by the local enhanced electric fields, in terms of wave modes of traveling surface plasmon polaritons.

  12. Combined Brillouin light scattering and microwave absorption study of magnon-photon coupling in a split-ring resonator/YIG film system

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, S., E-mail: stefan.klingler@wmi.badw.de; Maier-Flaig, H.; Weiler, M. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Straße 8, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Gross, R.; Huebl, H.; Goennenwein, S. T. B. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Straße 8, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), 80799 Munich (Germany); Hu, C.-M. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T2N2 (Canada)

    2016-08-15

    Microfocused Brillouin light scattering (BLS) and microwave absorption (MA) are used to study magnon-photon coupling in a system consisting of a split-ring microwave resonator and an yttrium iron garnet (YIG) film. The split-ring resonator is defined by optical lithography and loaded with a 1 μm-thick YIG film grown by liquid phase epitaxy. BLS and MA spectra of the hybrid system are simultaneously recorded as a function of the applied magnetic field magnitude and microwave excitation frequency. Strong coupling of the magnon and microwave resonator modes is found with a coupling strength of g{sub eff} /2π = 63 MHz. The combined BLS and MA data allow us to study the continuous transition of the hybridized modes from a purely magnonic to a purely photonic mode by varying the applied magnetic field and microwave frequency. Furthermore, the BLS data represent an up-conversion of the microwave frequency coupling to optical frequencies.

  13. Design methodology for all-optical bistable switches based on a plasmonic resonator sandwiched between dielectric waveguides

    International Nuclear Information System (INIS)

    Xiang, Yinxiao; Cai, Wei; Wang, Lei; Ying, Cuifeng; Zhang, Xinzheng; Xu, Jingjun

    2014-01-01

    We present a bistable device consisting of a Bragg grating resonator with a Kerr medium sandwiched between two dielectric slab waveguides. The resonator is situated in a nanometer-scaled metal–insulator–metal plasmonic waveguide. Due to the dimensional confinement from the dielectric waveguide to the nanoscaled plasmonic waveguide, electric fields are enhanced greatly, which will further reduce the threshold value. Moreover, a semi-analytic method, based on the impedance theory and the transfer matrix method, is developed to study the transmission and reflection spectra as well as the bistability loop of such a switch. Our method is fast and accurate, as confirmed by the finite-difference time-domain simulation. (invited paper)

  14. Effect of Dielectric Properties of a Solvent-Water Mixture Used in Microwave-Assisted Extraction of Antioxidants from Potato Peels

    Directory of Open Access Journals (Sweden)

    Ashutosh Singh

    2014-02-01

    Full Text Available The dielectric properties of a methanol-water mixture were measured at different temperatures from 20 to 80 °C at two frequencies 915 MHz and 2450 MHz. These frequencies are most commonly used on industrial and domestic scales respectively. In this study, the dielectric properties of a methanol-water mixture were found to be dependent on temperature, solvent concentration, and presence of plant matrix. Linear and quadratic equations were developed to establish the dependency between factors. At 2450 MHz, the dielectric constant of methanol-water mixtures was significantly affected by concentration of methanol rather than by temperature, whereas the dielectric loss factor was significantly affected by temperature rather than by methanol concentration. Introduction of potato peel led to an increase in the effect of temperature on the dielectric properties of the methanol fractions. At 915 MHz, both the dielectric properties were significantly affected by the increase in temperature and solvent concentration, while the presence of potato peel had no significant effect on the dielectric properties. Statistical analysis of the dissipation factor at 915 and 2450 MHz revealed that both temperature and solvent concentration had a significant effect on it, whereas introduction of potato peels at 915 MHz reduced the effect of temperature as compared to 2450 MHz. The total phenolic yield of the microwave-assisted extraction process was significantly affected by the solvent concentration, the dissipation factor of the methanol-water mixture and the extraction time.

  15. Phase, microstructure and microwave dielectric properties of A-site deficient (La, Nd2/3TiO3 perovskite ceramics

    Directory of Open Access Journals (Sweden)

    Saleem Muhammad

    2015-03-01

    Full Text Available (La, Nd2/3TiO3 ceramics were prepared through a conventional solid state mixed oxide route. For phase and microstructure analysis, XRD and SEM were used, respectively. Microwave dielectric properties were measured using a network analyzer. XRD patterns revealed the formation of the parent (La, Nd2/3TiO3 phase along with (La, Nd4Ti9O24 as a secondary phase. The microstructure consisted of rectangular and needle shaped grains, which decreased in size from 4 μm to 2 μm with an increase in sintering temperature from 1300 °C to 1350 °C. Decrease in grain size caused an increase in density of the samples from 4.81 g/cm3 to 5.17 g/cm3. Microwave dielectric properties of the samples calcined and sintered in air atmosphere were εr = 40.35, Q × f = 3499 GHz and τf = 0 ppm/°C, whereas for a sample calcined in nitrogen and sintered in air they were εr = 40.18, Q × f = 4077 GHz and τf = +4.9 ppm/°C, respectively.

  16. MgTiO3 filled PTFE composites for microwave substrate applications

    International Nuclear Information System (INIS)

    Yuan, Y.; Zhang, S.R.; Zhou, X.H.; Li, E.Z.

    2013-01-01

    MgTiO 3 filled PTFE composite substrates were fabricated for microwave circuit applications. The filler content in the PTFE matrix was varied from 30 to 70 wt%. Low loss MgTiO 3 ceramic powder was prepared by the solid state ceramic route. The phase formation of MgTiO 3 was studied by powder X-ray diffraction analysis. Morphology of the composites and dispersion of filler in the PTFE matrix was studied using scanning electron microscopy. Microwave dielectric properties of the composites with respect to filler loading were measured by stripline resonator method using Vector Network Analyzer. Different theoretical modeling approaches were used to predict the dielectric constant of PTFE ceramic composites with respect to filler loading. The linear coefficient of thermal expansion of the composites was investigated. Moisture absorption of the composites was found out conforming to IPC-TM-650 2.6.2. - Highlights: • We prepare MT/PTFE composite by cold pressing and hot treating. • Increasing MT will increase ε r , tan δ and moisture absorption. • Increasing MT will decrease thermal expansion coefficient. • MT/PTFE composite has an ε r of 4.3 and a tan δ of 0.00097 at 50 wt% filler loading. • MT/PTFE composite are promising candidates for microwave circuit applications

  17. A new design of dielectric elastomer membrane resonator with tunable resonant frequencies and mode shapes

    Science.gov (United States)

    Li, Yunlong; Oh, Inkyu; Chen, Jiehao; Hu, Yuhang

    2018-06-01

    Conventional membrane resonators are bulky, and once the geometries and materials are fixed in the fabricated device, the resonators’ characteristics are fixed. In this work, we introduce the active membrane, dielectric elastomer (DE), into the resonator design. Attaching a stiffer passive membrane onto the active DE membrane forms a two-layer system, which generates an out-of-plane deformation when the DE is actuated through a DC voltage applied across the thickness of the DE membrane. When an AC voltage is applied, the two-layer system can generate an out-of-plane oscillation which enables its use as membrane resonators. Both experiments and simulations are carried out to study the dynamic characteristics of the system. The resonant frequencies and mode shapes of the resonator can be tuned through the passive layer properties such as the modulus, thickness, density, and size. The effective stiffness of the DE film changes as the magnitude of the voltage applied on the film changes, which provides an active way to tune the dynamic characteristics of the two-layer resonator even after the device is set. The system is also light weight, low cost, and easy to fabricate, and has great potential in many engineering applications.

  18. Storage and on-demand release of microwaves using superconducting resonators with tunable coupling

    International Nuclear Information System (INIS)

    Pierre, Mathieu; Svensson, Ida-Maria; Raman Sathyamoorthy, Sankar; Johansson, Göran; Delsing, Per

    2014-01-01

    We present a system which allows to tune the coupling between a superconducting resonator and a transmission line. This storage resonator is addressed through a second, coupling resonator, which is frequency-tunable and controlled by a magnetic flux applied to a superconducting quantum interference device. We experimentally demonstrate that the lifetime of the storage resonator can be tuned by more than three orders of magnitude. A field can be stored for 18 μs when the coupling resonator is tuned off resonance and it can be released in 14 ns when the coupling resonator is tuned on resonance. The device allows capture, storage, and on-demand release of microwaves at a tunable rate.

  19. Electron cloud density analysis using microwave cavity resonance

    International Nuclear Information System (INIS)

    Shin, Y-M; Thangaraj, J C; Tan, C-Y; Zwaska, R

    2013-01-01

    We report on a method to detect an electron cloud in proton accelerators through the measurement of the phase shift of microwaves undergoing controlled reflections with an accelerator vacuum vessel. Previous phase shift measurement suffered from interference signals due to uncontrolled reflections from beamline components, leading to an unlocalized region of measurement and indeterminate normalization. The method in this paper introduces controlled reflectors about the area of interest to localize the measurement and allow normalization. This paper describes analyses of the method via theoretical calculations, electromagnetic modeling, and experimental measurements with a bench-top prototype. Dielectric thickness, location and spatial profile were varied and the effect on phase shift is described. The effect of end cap aperture length on phase shift measurement is also reported. A factor of ten enhancement in phase shift is observed at certain frequencies.

  20. Resonant frequencies and Q factors of dielectric parallelepipeds by measurement and by FDTD

    Energy Technology Data Exchange (ETDEWEB)

    Trueman, C.W. [Concordia Univ., Montreal, Quebec (Canada); Mishra, S.R.; Larose, C.L. [David Florida Lab., Ottawa (Canada)] [and others

    1994-12-31

    This paper describes the measurement and computation of the resonant frequencies and the associated Q factors of dielectric parallelepipeds made of high-permittivity, low-loss ceramic materials. Each resonance peak is measured separately with a fine frequency step. A curve-fitting method is used to accurately estimate the resonant frequency and 3 dB bandwidth from the somewhat noisy measured data. The finite-difference time-domain method is used to compute the initial portion of the backscattered field due to a Gaussian pulse plane wave. The time response is then extended to zero value by Prony`s method. The measured and computed data is compared for a parallelepiped resonator of permittivity 37.84.

  1. Effect of deformation and dielectric filling on electromagnetic ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    great significance in the development of microwave communication networks and ... media. Rectangular dielectric waveguide structures are analysed by Bierwirth ..... Schweig E, Bridges W B 1984 Computer analysis of dielectric waveguide: A ...

  2. Raman scattering enhancement in photon-plasmon resonance mediated metal-dielectric microcavity

    International Nuclear Information System (INIS)

    Guddala, Sriram; Narayana Rao, D.; Dwivedi, Vindesh K.; Vijaya Prakash, G.

    2013-01-01

    Here, we report the photon-plasmon interaction scheme and enhanced field strengths resulted into the amplification of phonon in a novel microcavity. A metal-dielectric microcavity, with unified cavity photonic mode and localized surface plasmon resonances, is visualized by impregnating the gold nanoparticles into the deep see-through nano-sized pores of porous silicon microcavity. The intense optical field strengths resulting from the photon-plasmon interactions are probed by both resonant and non-resonant Raman scattering experiments. Due to photon-plasmon-phonon interaction mechanism, several orders of enhancement in the intensity of scattered Raman Stokes photon (at 500 cm −1 ) are observed. Our metal nanoparticle-microcavity hybrid system shows the potential to improve the sensing figure of merit as well as the applications of plasmonics for optoelectronics, photovoltaics, and related technologies

  3. Quantitative nanometer-scale mapping of dielectric tunability

    Energy Technology Data Exchange (ETDEWEB)

    Tselev, Alexander [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Klein, Andreas [Technische Univ. Darmstadt (Germany); Gassmann, Juergen [Technische Univ. Darmstadt (Germany); Jesse, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Li, Qian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kalinin, Sergei V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wisinger, Nina Balke [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-21

    Two scanning probe microscopy techniques—near-field scanning microwave microscopy (SMM) and piezoresponse force microscopy (PFM)—are used to characterize and image tunability in a thin (Ba,Sr)TiO3 film with nanometer scale spatial resolution. While sMIM allows direct probing of tunability by measurement of the change in the dielectric constant, in PFM, tunability can be extracted via electrostrictive response. The near-field microwave imaging and PFM provide similar information about dielectric tunability with PFM capable to deliver quantitative information on tunability with a higher spatial resolution close to 15 nm. This is the first time that information about the dielectric tunability is available on such length scales.

  4. Dielectric measurements on PWB materials at microwave frequencies

    Indian Academy of Sciences (India)

    Unknown

    the angular frequency and c0 the velocity of light, c the thickness of the ... Dielectric parameters, absorption index and refractive index for pure PSF and pure PMMA at 8⋅92 GHz frequency and at 35°C temperature. Dielectric. Dielectric. Loss. Relaxation. Conductivity Absorption. Refractive. Thickness, constant loss tangent.

  5. In-line moisture monitoring in fluidized bed granulation using a novel multi-resonance microwave sensor.

    Science.gov (United States)

    Peters, Johanna; Bartscher, Kathrin; Döscher, Claas; Taute, Wolfgang; Höft, Michael; Knöchel, Reinhard; Breitkreutz, Jörg

    2017-08-01

    Microwave resonance technology (MRT) is known as a process analytical technology (PAT) tool for moisture measurements in fluid-bed granulation. It offers a great potential for wet granulation processes even where the suitability of near-infrared (NIR) spectroscopy is limited, e.g. colored granules, large variations in bulk density. However, previous sensor systems operating around a single resonance frequency showed limitations above approx. 7.5% granule moisture. This paper describes the application of a novel sensor working with four resonance frequencies. In-line data of all four resonance frequencies were collected and further processed. Based on calculation of density-independent microwave moisture values multiple linear regression (MLR) models using Karl-Fischer titration (KF) as well as loss on drying (LOD) as reference methods were build. Rapid, reliable in-process moisture control (RMSEP≤0.5%) even at higher moisture contents was achieved. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Low-temperature-compatible tunneling-current-assisted scanning microwave microscope utilizing a rigid coaxial resonator.

    Science.gov (United States)

    Takahashi, Hideyuki; Imai, Yoshinori; Maeda, Atsutaka

    2016-06-01

    We present a design for a tunneling-current-assisted scanning near-field microwave microscope. For stable operation at cryogenic temperatures, making a small and rigid microwave probe is important. Our coaxial resonator probe has a length of approximately 30 mm and can fit inside the 2-in. bore of a superconducting magnet. The probe design includes an insulating joint, which separates DC and microwave signals without degrading the quality factor. By applying the SMM to the imaging of an electrically inhomogeneous superconductor, we obtain the spatial distribution of the microwave response with a spatial resolution of approximately 200 nm. Furthermore, we present an analysis of our SMM probe based on a simple lumped-element circuit model along with the near-field microwave measurements of silicon wafers having different conductivities.

  7. Measurement of the Dielectric Constant of Seawater at L-Band: Techniques and Measurements

    Science.gov (United States)

    Lang, R.; Utku, C.; Tarkocin, Y.; LeVine, D.

    2009-01-01

    Satellite instruments, that will monitor salinity from space in the near future, require an accurate relationship between salinity/temperature and seawater dielectric constant. This paper will review measurements that were made of the dielectric constant of seawater during the past several years. The objective of the measurements is to determine the dependence of the dielectric constant of seawater on salinity and on temperature, more accurately than in the past. by taking advantage of modem instrumentation. The measurements of seawater permittivity have been performed as a function of salinity and temperature using a transmission resonant cavity technique. The measurements have been made in the salinity range of 10 to 38 psu and in the temperature range of IOU C to 35 C. These results will be useful in algorithm development for sensor systems such as SMOS and Aquarius. The measurement system consists of a brass microwave cavity that is resonant at 1.413 GHz. The seawater is introduced into the cavity through a capillary glass tube having an inner diameter of 0.1 mm. The diameter of the tube has been made very small so that the amount of seawater introduced in the cavity is small - thus maintaining the sensitivity of the measurements and allowing the use of perturbation theory predicting the seawater permittivity. The change in resonant frequency and the change in cavity Q can be used to determine the real and imaginary pare of the dielectric constant of seawater introduced into the slender tube. The microwave measurements are made by an HPS722D network analyzer. The cavity has been immersed in a uateriethylene-glycol bath which is connected to a Lauda circulator. The circulator keeps the brass cavity at a temperature constant to within 0.01 degrees. The system is automated using a Visual Basic program to control the analyzer and to collect the data. The results of the dielectric constant measurements of seawater will be presented. The measurement results will be

  8. Evaluation of microwave thermotherapy with histopathology, magnetic resonance imaging and temperature mapping

    NARCIS (Netherlands)

    Huidobro, Christian; Bolmsjö, Magnus; Larson, Thayne; de la Rosette, Jean; Wagrell, Lennart; Schelin, Sonny; Gorecki, Tomasz; Mattiasson, Anders

    2004-01-01

    Purpose: Interstitial temperature mapping was used to determine the heat field within the prostate by the Coretherm. (ProstaLund, Lund, Sweden) transurethral microwave thermotherapy device. Gadolinium. enhanced magnetic resonance imaging (MRI) and histopathology were used to determine the extent and

  9. Quantum-coherence-assisted tunable on- and off-resonance tunneling through a quantum-dot-molecule dielectric film

    International Nuclear Information System (INIS)

    Shen Jianqi; Zeng Ruixi

    2017-01-01

    Quantum-dot-molecular phase coherence (and the relevant quantum-interference-switchable optical response) can be utilized to control electromagnetic wave propagation via a gate voltage, since quantum-dot molecules can exhibit an effect of quantum coherence (phase coherence) when quantum-dot-molecular discrete multilevel transitions are driven by an electromagnetic wave. Interdot tunneling of carriers (electrons and holes) controlled by the gate voltage can lead to destructive quantum interference in a quantum-dot molecule that is coupled to an incident electromagnetic wave, and gives rise to a quantum coherence effect (e.g., electromagnetically induced transparency, EIT) in a quantum-dot-molecule dielectric film. The tunable on- and off-resonance tunneling effect of an incident electromagnetic wave (probe field) through such a quantum-coherent quantum-dot-molecule dielectric film is investigated. It is found that a high gate voltage can lead to the EIT phenomenon of the quantum-dot-molecular systems. Under the condition of on-resonance light tunneling through the present quantum-dot-molecule dielectric film, the probe field should propagate without loss if the probe frequency detuning is zero. Such an effect caused by both EIT and resonant tunneling, which is sensitive to the gate voltage, can be utilized for designing devices such as photonic switching, transistors, and logic gates. (author)

  10. Microwave electromagnetic properties of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coating

    International Nuclear Information System (INIS)

    Qing Yuchang; Zhou Wancheng; Luo Fa; Zhu Dongmei

    2010-01-01

    The electromagnetic characteristics of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coatings were studied. The reflection loss of the coatings exceeds -10 dB at 8-18 GHz and -9 dB at 2-18 GHz when the coating thickness is 1 and 3 mm, respectively. The dielectric and magnetic absorbers filled coatings possess excellent microwave absorption, which could be attributed to the proper incorporate of the multi-polarization mechanisms as well as strong natural resonance. It is feasible to develop the thin and wideband microwave absorbing coatings using carbonyl iron particles and Si/C/N nano-powder.

  11. Microwave electromagnetic properties of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coating

    Science.gov (United States)

    Qing, Yuchang; Zhou, Wancheng; Luo, Fa; Zhu, Dongmei

    2010-02-01

    The electromagnetic characteristics of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coatings were studied. The reflection loss of the coatings exceeds -10 dB at 8-18 GHz and -9 dB at 2-18 GHz when the coating thickness is 1 and 3 mm, respectively. The dielectric and magnetic absorbers filled coatings possess excellent microwave absorption, which could be attributed to the proper incorporate of the multi-polarization mechanisms as well as strong natural resonance. It is feasible to develop the thin and wideband microwave absorbing coatings using carbonyl iron particles and Si/C/N nano-powder.

  12. Characterization of a dielectric phantom for high-field magnetic resonance imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Qi, E-mail: Qi.Duan@nih.gov; Duyn, Jeff H.; Gudino, Natalia; Zwart, Jacco A. de; Gelderen, Peter van [Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892 (United States); Sodickson, Daniel K.; Brown, Ryan [The Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York 10016 (United States)

    2014-10-15

    Purpose: In this work, a generic recipe for an inexpensive and nontoxic phantom was developed within a range of biologically relevant dielectric properties from 150 MHz to 4.5 GHz. Methods: The recipe includes deionized water as the solvent, NaCl to primarily control conductivity, sucrose to primarily control permittivity, agar–agar to gel the solution and reduce heat diffusivity, and benzoic acid to preserve the gel. Two hundred and seventeen samples were prepared to cover the feasible range of NaCl and sucrose concentrations. Their dielectric properties were measured using a commercial dielectric probe and were fitted to a 3D polynomial to generate a recipe describing the properties as a function of NaCl concentration, sucrose concentration, and frequency. Results: Results indicated that the intuitive linear and independent relationships between NaCl and conductivity and between sucrose and permittivity are not valid. A generic polynomial recipe was developed to characterize the complex relationship between the solutes and the resulting dielectric values and has been made publicly available as a web application. In representative mixtures developed to mimic brain and muscle tissue, less than 2% difference was observed between the predicted and measured conductivity and permittivity values. Conclusions: It is expected that the recipe will be useful for generating dielectric phantoms for general magnetic resonance imaging (MRI) coil development at high magnetic field strength, including coil safety evaluation as well as pulse sequence evaluation (including B{sub 1}{sup +} mapping, B{sub 1}{sup +} shimming, and selective excitation pulse design), and other non-MRI applications which require biologically equivalent dielectric properties.

  13. Change in Dielectric Properties in the Microwave Frequency Region of Polypyrrole–Coated Textiles during Aging

    Directory of Open Access Journals (Sweden)

    Eva Hakansson

    2016-07-01

    Full Text Available Complex permittivity of conducting polypyrrole (PPy-coated Nylon-Lycra textiles is measured using a free space transmission measurement technique over the frequency range of 1–18 GHz. The aging of microwave dielectric properties and reflection, transmission and absorption for a period of 18 months is demonstrated. PPy-coated fabrics are shown to be lossy over the full frequency range. The levels of absorption are shown to be higher than reflection in the tested samples. This is attributed to the relatively high resistivity of the PPy-coated fabrics. Both the dopant concentration and polymerisation time affect the total shielding effectiveness and microwave aging behaviour. Distinguishing either of these two factors as being exclusively the dominant mechanism of shielding effectiveness is shown to be difficult. It is observed that the PPy-coated Nylon-Lycra samples with a p-toluene sulfonic acid (pTSA concentration of 0.015 M and polymerisation times of 60 min and 180 min have 37% and 26% decrease in total transmission loss, respectively, upon aging for 72 weeks at room temperature (20 °C, 65% Relative humidity (RH. The concentration of the dopant also influences the microwave aging behaviour of the PPy-coated fabrics. The samples with a higher dopant concentration of 0.027 mol/L pTSA are shown to have a transmission loss of 32.6% and 16.5% for short and long polymerisation times, respectively, when aged for 72 weeks. The microwave properties exhibit better stability with high dopant concentration and/or longer polymerization times. High pTSA dopant concentrations and/or longer polymerisation times result in high microwave insertion loss and are more effective in reducing the transmission and also increasing the longevity of the electrical properties.

  14. Theoretical Study of Local Surface Plasmon Resonances on a Dielectric-Ag Core-Shell Nanosphere Using the Discrete-Dipole Approximation Method

    International Nuclear Information System (INIS)

    Ma Ye-Wan; Wu Zhao-Wang; Zhang Li-Hua; Liu Wan-Fang; Zhang Jie

    2015-01-01

    The local surface plasmon resonances (LSPRs) of dielectric-Ag core-shell nanospheres are studied by the discretedipole approximation method. The result shows that LSPRs are sensitive to the surrounding medium refractive index, which shows a clear red-shift with the increasing surrounding medium refractive index. A dielectric-Ag core-shell nanosphere exhibits a strong coupling between the core and shell plasmon resonance modes. LSPRs depend on the shell thickness and the composition of dielectric-core and metal-shell. LSPRs can be tuned over a longer wavelength range by changing the ratio of core to shell value. The lower energy mode ω_− shows a red-shift with the increasing dielectric-core value and the inner core radius, while blue-shifted with the increasing outer shell thickness. The underlying mechanisms are analyzed with the plasmon hybridization theory and the phase retardation effect. (paper)

  15. Structure and microwave dielectric characteristics of (Sr{sub 1−x}Ca{sub x})Nd{sub 2}Al{sub 2}O{sub 7} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Lei; Liu, Xiao Qiang; Li, Lei; Chen, Xiang Ming, E-mail: xmchen59@zju.edu.cn

    2014-09-15

    (Sr{sub 1−x}Ca{sub x})Nd{sub 2}Al{sub 2}O{sub 7} (x = 0, 0.1, 0.3, 0.5) ceramics were synthesized by a standard solid state reaction method. Their microwave dielectric properties were investigated together with the structural evolution. X-ray diffraction analysis indicated that Ruddlesden–Popper solid solutions with n = 2 were obtained for all the compositions investigated here. Ca-substitution significantly improved the densification behavior which was associated with the variation of ε{sub r}. More importantly, with increasing the content of Ca, τ{sub f} value was generally improved towards near-zero, and the significantly improved Qf value was obtained at x = 0.5. The stacking fault and distorted lattice fringe in the ceramics were confirmed by TEM observation, and these defects were deeply concerned with the microwave dielectric loss. The best combination of microwave dielectric characteristics was achieved for the composition of x = 0.5: ε{sub r} = 21.1, Qf = 68,200 GHz and τ{sub f} = −0.5 ppm/°C. - Highlights: • The formation of solid solutions with partial Ca substitution for Sr improved the sintering behavior of SrNd{sub 2}Al{sub 2}O{sub 7} ceramics. • Stacking fault and distorted lattice fringe were confirmed by transmission electron microscopy. • The variation of Qf value was associated with the stacking fault and distorted lattice fringe.

  16. Large dielectric constant ({epsilon}/{epsilon}{sub 0}>6000) Ba{sub 0.4}Sr{sub 0.6}TiO{sub 3} thin films for high-performance microwave phase shifters

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, C. M. [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Rivkin, T. V. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Parilla, P. A. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Perkins, J. D. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Ginley, D. S. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Kozyrev, A. B. [Electrotechnical University of St. Petersburg, St. Petersburg, Russia 197376 (Russian Federation); Oshadchy, V. N. [Electrotechnical University of St. Petersburg, St. Petersburg, Russia 197376 (Russian Federation); Pavlov, A. S. [Electrotechnical University of St. Petersburg, St. Petersburg, Russia 197376 (Russian Federation)

    2000-04-03

    We deposited epitaxial Ba{sub 0.4}Sr{sub 0.6}TiO{sub 3} (BST) films via laser ablation on MgO and LaAlO{sub 3} (LAO) substrates for tunable microwave devices. Postdeposition anneals ({approx}1100 degree sign C in O{sub 2}) improved the morphology and overall dielectric properties of films on both substrates, but shifted the temperature of maximum dielectric constant (T{sub max}) up for BST/LAO and down for BST/MgO. These substrate-dependent T{sub max} shifts had opposite effects on the room-temperature dielectric properties. Overall, BST films on MgO had the larger maximum dielectric constant ({epsilon}/{epsilon}{sub 0}{>=}6000) and tunability ({delta}{epsilon}/{epsilon}{>=}65%), but these maxima occurred at 227 K. 30 GHz phase shifters made from similar films had figures of merit (ratio of maximum phase shift to insertion loss) of {approx}45 degree sign /dB and phase shifts of {approx}400 degree sign under 500 V ({approx}13 V/{mu}m) bias, illustrating their utility for many frequency-agile microwave devices. (c) 2000 American Institute of Physics.

  17. A hollow coaxial cable Fabry-Pérot resonator for liquid dielectric constant measurement

    Science.gov (United States)

    Zhu, Chen; Zhuang, Yiyang; Chen, Yizheng; Huang, Jie

    2018-04-01

    We report, for the first time, a low-cost and robust homemade hollow coaxial cable Fabry-Pérot resonator (HCC-FPR) for measuring liquid dielectric constant. In the HCC design, the traditional dielectric insulating layer is replaced by air. A metal disk is welded onto the end of the HCC serving as a highly reflective reflector, and an open cavity is engineered on the HCC. After the open cavity is filled with the liquid analyte (e.g., water), the air-liquid interface acts as a highly reflective reflector due to large impedance mismatch. As a result, an HCC-FPR is formed by the two highly reflective reflectors, i.e., the air-liquid interface and the metal disk. We measured the room temperature dielectric constant for ethanol/water mixtures with different concentrations using this homemade HCC-FPR. Monitoring the evaporation of ethanol in ethanol/water mixtures was also conducted to demonstrate the ability of the sensor for continuously monitoring the change in dielectric constant. The results revealed that the HCC-FPR could be a promising evaporation rate detection platform with high performance. Due to its great advantages, such as high robustness, simple configuration, and ease of fabrication, the novel HCC-FPR based liquid dielectric constant sensor is believed to be of high interest in various fields.

  18. Accurate Measurements of the Dielectric Constant of Seawater at L Band

    Science.gov (United States)

    Lang, Roger; Zhou, Yiwen; Utku, Cuneyt; Le Vine, David

    2016-01-01

    This paper describes measurements of the dielectric constant of seawater at a frequency of 1.413 GHz, the center of the protected band (i.e., passive use only) used in the measurement of sea surface salinity from space. The objective of the measurements is to accurately determine the complex dielectric constant of seawater as a function of salinity and temperature. A resonant cylindrical microwave cavity in transmission mode has been employed to make the measurements. The measurements are made using standard seawater at salinities of 30, 33, 35, and 38 practical salinity units over a range of temperatures from 0 degree C to 35 degree C in 5 degree C intervals. Repeated measurements have been made at each temperature and salinity. Mean values and standard deviations are then computed. The total error budget indicates that the real and imaginary parts of the dielectric constant have a combined standard uncertainty of about 0.3 over the range of salinities and temperatures considered. The measurements are compared with the dielectric constants obtained from the model functions of Klein and Swift and those of Meissner and Wentz. The biggest differences occur at low and high temperatures.

  19. Heterogeneous Breast Phantom Development for Microwave Imaging Using Regression Models

    Directory of Open Access Journals (Sweden)

    Camerin Hahn

    2012-01-01

    Full Text Available As new algorithms for microwave imaging emerge, it is important to have standard accurate benchmarking tests. Currently, most researchers use homogeneous phantoms for testing new algorithms. These simple structures lack the heterogeneity of the dielectric properties of human tissue and are inadequate for testing these algorithms for medical imaging. To adequately test breast microwave imaging algorithms, the phantom has to resemble different breast tissues physically and in terms of dielectric properties. We propose a systematic approach in designing phantoms that not only have dielectric properties close to breast tissues but also can be easily shaped to realistic physical models. The approach is based on regression model to match phantom's dielectric properties with the breast tissue dielectric properties found in Lazebnik et al. (2007. However, the methodology proposed here can be used to create phantoms for any tissue type as long as ex vivo, in vitro, or in vivo tissue dielectric properties are measured and available. Therefore, using this method, accurate benchmarking phantoms for testing emerging microwave imaging algorithms can be developed.

  20. Resonant wave energy harvester based on dielectric elastomer generator

    Science.gov (United States)

    Moretti, Giacomo; Pietro Rosati Papini, Gastone; Righi, Michele; Forehand, David; Ingram, David; Vertechy, Rocco; Fontana, Marco

    2018-03-01

    Dielectric elastomer generators (DEGs) are a class of capacitive solid-state devices that employ highly stretchable dielectrics and conductors to convert mechanical energy into high-voltage direct-current electricity. Their promising performance in terms of convertible energy and power density has been mostly proven in quasi-static experimental tests with prescribed deformation. However, the assessment of their ability in harvesting energy from a dynamic oscillating source of mechanical energy is crucial to demonstrate their effectiveness in practical applications. This paper reports a first demonstration of a DEG system that is able to convert the oscillating energy carried by water waves into electricity. A DEG prototype is built using a commercial polyacrylate film (VHB 4905 by 3M) and an experimental campaign is conducted in a wave-flume facility, i.e. an artificial basin that makes it possible to generate programmed small-scale waves at different frequencies and amplitudes. In resonant conditions, the designed system demonstrates the delivery of a maximum of 0.87 W of electrical power output and 0.64 J energy generated per cycle, with corresponding densities per unit mass of dielectric elastomer of 197 W kg-1 and 145 J kg-1. Additionally, a notable maximum fraction of 18% of the input wave energy is converted into electricity. The presented results provide a promising demonstration of the operation and effectiveness of ocean wave energy converters based on elastic capacitive generators.

  1. A wafer-level multi-chip module process with thick photosensitive benzocyclobutene as the dielectric for microwave application

    International Nuclear Information System (INIS)

    Tang, Jiajie; Sun, Xiaowei; Luo, Le

    2011-01-01

    A wafer-level microwave multi-chip module (MMCM) packaging process is presented. Thick photosensitive-benzocyclobutene (photo-BCB) polymer (about 25 µm/layer) is used as the dielectric for its simplified process and the capability of obtaining desirable electrical, chemical and mechanical properties at high frequencies. The MMCM packaging structure contains a monolithic microwave integrated circuit (MMIC) chip embedded in a lossy-silicon wafer, a microwave band-pass filter (BPF) and two layers of BCB/Au interconnection. Key processes of fabrication are described in detail. The non-uniformity of BCB film and the sidewall angle of the via-holes for inter-layer connection are tested. Via-chains prepared by metal/BCB multilayer structures are tested through the Kelvin test structure to investigate the resistances of inter-layer connection. The average value is measured to be 73.5 mΩ. The electrical characteristic of this structure is obtained by a microwave transmission performance test from 15 to 30 GHz. The measurement results show good consistency between the bare MMIC die and the packaged die in the test frequency band. The gain of the MMIC chip after packaging is better than 18 dB within the designed operating frequency range (from 23 to 25 GHz). When the packaged MMIC chip is connected to a BPF, the maximum gain is still measured to reach 11.95 dB at 23.8 GHz

  2. Near-field microwave detection of corrosion precursor pitting under thin dielectric coatings in metallic substrate

    International Nuclear Information System (INIS)

    Hughes, D.; Zoughi, R.; Austin, R.; Wood, N.; Engelbart, R.

    2003-01-01

    Detection of corrosion precursor pitting on metallic surfaces under various coatings and on bare metal is of keen interest in evaluation of aircraft fuselage. Near-field microwave nondestructive testing methods, utilizing open-ended rectangular waveguides and coaxial probes, have been used extensively for detection of surface flaws in metals, both on bare metal and under a dielectric coating. This paper presents the preliminary results of using microwave techniques to detect corrosion precursor pitting under paint and primer, applique and on bare metal. Machined pits of 500 μm diameter were detected using open-ended rectangular waveguides at V-Band under paint and primer and applique, and on bare metal. Using coaxial probes, machined pits with diameters down to 150 μm on bare metal were also detected. Relative pit size and density were shown on a corrosion-pitted sample using open-ended rectangular waveguides at frequencies of 35 GHz to 70 GHz. The use of Boeing's MAUS TM scanning systems provided improved results by alleviating standoff variation and scanning artifact. Typical results of this investigation are also presented

  3. Triband Omnidirectional Circularly Polarized Dielectric Resonator Antenna with Top-Loaded Alford Loop

    Directory of Open Access Journals (Sweden)

    Chunxia Cheng

    2014-01-01

    Full Text Available A triband omnidirectional circularly polarized dielectric resonator antenna with a top-loaded modified Alford loop for GSM, WLAN, and WiMAX applications is proposed. Fed by an axial probe, the DRA (dielectric resonator antenna radiates like a vertically polarized electric monopole. The top-loaded modified Alford loop provides an equivalent horizontally polarized magnetic dipole mode at triband. Omnidirectional CP (circular polarized fields can be obtained when the two orthogonally polarized fields are equal in amplitude with phase quadrature. The antenna has been successfully simulated, fabricated, and measured. The experimental and numerical results exhibit that the antenna can obtain usable CP bandwidths of 1.925–1.955 GHz, 2.36–2.48 GHz, and 3.502–3.53 GHz with return loss larger than 10 dB and axial ratio less than 3 dB. In addition, over the three bands, the antenna obtains very good omnidirectional CP radiation patterns in the azimuth plane. Moreover, an average CP gain in the azimuth plane of 1.2, 1.6, and −1.5 dBic for the lower, middle, and upper bands has been obtained.

  4. Linear theory of microwave absortion in fusion plasmas. A study of the electron cyclotron resonance and its particularization to a helical axis device for magnetic confinement

    International Nuclear Information System (INIS)

    Castejon M, F.

    1989-01-01

    The study of the Linear Theory microwave propagation and absorption in the the frequency range of electron cyclotron resonance, in a magnetized plasma, is developed. This study is particularized to the flexible heliac TJ-II, whose main characteristics are dsetailed in a memory chapter, as an interesting case example for its peculiar magnetic configuration. As a preliminary phase, a cold plasma model is useds to analyze the resonance accessibility and the approximated density limits which will be obtainable in each electron cyclotron resonance harmonic. This analysis was used to find the suitable positions for the microwave injection in TJ-II. An analytical weakly relativistic model for the dielectric tensor is developed, valid for oblique propagation, that takes account of the effect of superthermal electrons. Second order Larmor radius effects are included, so that the Quasi-Electrostatic branch of X mode can be studied. A numerical study is then presented on the absorption properties of TJ-II. Since the TJ-II geometry is complex and its magnetic field distribution is very different from that of a tokamak, ray tracing calculations are necessary to consider refraction effects. The ray tracing codse RAYS, developed in the Oak Ridge National Laboratory (U.S.A.), was take and adapted to the helical magnetic configuration of the TJ-II. The absorption model described above was then included in RAYS. For completeness, an introduction to the Quasi Linear Theory, natural prolongation of this work, is included at the end of the memory, ands the effects of taking into account the quasi linear evolution of the distribution function are described. (Author)

  5. Theoretical investigation of resonance frequencies in long wavelength electromagnetic wave scattering process from plasma prolate and oblate spheroids placed in a dielectric layer

    Science.gov (United States)

    Ahmadizadeh, Y.; Jazi, B.; Abdoli-Arani, A.

    2014-01-01

    Response of a prolate spheroid plasma and/or an oblate spheroid plasma in presence of long wavelength electromagnetic wave has been studied. The resonance frequencies of these objects are obtained and it is found that they reduce to the resonance frequency of spherical cold plasma. Moreover, the resonant frequencies of prolate spheroid plasma and oblate spheroid plasma covered by a dielectric are investigated as well. Furthermore, their dependency on dielectric permittivity and geometry dimensions is simulated.

  6. Experimental and Theoretical Researches of a Resonator Concept of a Dielectric Wakefield Accelerator

    International Nuclear Information System (INIS)

    Onishchenko, I.N.; Kiselev, V.A.; Linnik, A.F.; Onishchenko, N.I.; Sotnikov, G.V.; Uskov, V.V.

    2006-01-01

    Wakefield excitation in a cylindrical dielectric waveguide or resonator by a regular sequence of electron bunches foe application to high-gradient particle acceleration has been investigated theoretically and experimentally using an electron linac 'ALMAZ-2' (4.5 MeV, 6.10 3 bunches of duration 60 ps and charge 0.32 nC each)

  7. Temperature dependence of the dielectric properties of rubber wood

    Science.gov (United States)

    Mohammed Firoz Kabir; Wan M. Daud; Kaida B. Khalid; Haji A.A. Sidek

    2001-01-01

    The effect of temperature on the dielectric properties of rubber wood was investigated in three anisotropic directions—longitudinal, radial, and tangential, and at different measurement frequencies. Low frequency measurements were conducted with a dielectric spectrometer, and high frequencies used microwave applied with open-ended coaxial probe sensors. Dielectric...

  8. A Series-Fed Linear Substrate-Integrated Dielectric Resonator Antenna Array for Millimeter-Wave Applications

    Directory of Open Access Journals (Sweden)

    Ke Gong

    2018-01-01

    Full Text Available A series-fed linear substrate-integrated dielectric resonator antenna array (SIDRAA is presented for millimeter-wave applications, in which the substrate-integrated dielectric resonator antenna (SIDRA elements and the feeding structure can be codesigned and fabricated using the same planar process. A prototype 4 × 1 SIDRAA is designed at Ka-band and fabricated with a two-layer printed circuit board (PCB technology. Four SIDRAs are implemented in the Rogers RT6010 substrate using the perforation technique and fed by a compact substrate-integrated waveguide (SIW through four longitudinal coupling slots within the Rogers RT5880 substrate. The return loss, radiation patterns, and antenna gain were experimentally studied, and good agreement between the measured and simulated results is observed. The SIDRAA example provides a bandwidth of about 10% around 34.5 GHz for 10 dB return loss and stable broadside radiation patterns with the peak gain of 10.5–11.5 dBi across the band.

  9. Complex dielectric permittivity and dielectric relaxation of heavy water along its curve of existence

    Energy Technology Data Exchange (ETDEWEB)

    Nabokov, O.A.; Lyubimov, Yu.A.

    1985-10-01

    The authors previously studied the complex dielectric permittivity of ordinary water at 70-200/sup 0/C. Similar measurements were performed in this work for D/sub 2/O by incomplete filling of a microwave resonator at a frequency of about 9.3 GHz. Distilled 99.8% D/sub 2/O was used. For D/sub 2/O, the value of tau/sub D/T/eta (where eta is the viscosity) increases with increasing temperature, so that at 140/sup 0/C its change goes beyond the limits of error of the measurement of tau/sub D/ and eta. The gradual increase in tau/sub D/T/eta and tau/sub D/D with temperature indicates weakening of the interaction between orientation and translation movements of the liquid D/sub 2/O molecules with increasing temperature. 11 references, 1 figure.

  10. All-dielectric KTiOPO4 metasurfaces based on multipolar resonances in the terahertz region

    DEFF Research Database (Denmark)

    Tian, Jingyi; Yang, Yuanqing; Qiu, Min

    2017-01-01

    We employ ferroelectrics to study the multipolar scattering in all-dielectric metasurfaces based on KTiOPO4 (KTP) micro-disks for efficient manipulation of electromagnetic waves in the THz spectral region (0.6-1.5 THz). By adjusting the aspect ratio of the disks near the multipolar resonances, we...

  11. Microwave dielectric properties and microstructure of Ba{sub 6−3x}Nd{sub 8+2x}Ti{sub 18−y}(Cr{sub 1/2}Nb{sub 1/2}){sub y}O{sub 54} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xia [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Jianshe Road, Chengdu 610054 (China); Tang, Bin, E-mail: tangbin@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Jianshe Road, Chengdu 610054 (China); Liu, Jiaqin [Sichuan Special Equipment Inspection Institute, Dongfeng Road, Chengdu 610061 (China); Chen, Hetuo; Zhang, Shuren [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Jianshe Road, Chengdu 610054 (China)

    2015-10-15

    The microwave dielectric properties and the morphology of Ba{sub 6−3x}Nd{sub 8+2x}Ti{sub 18−y}(Cr{sub 1/2}Nb{sub 1/2}){sub y}O{sub 54} (x = 0.75, 0 ≤ y ≤ 3.0) ceramics prepared under different sintering conditions were investigated in this work. The effects of substitutions on the microstructure and microwave dielectric properties were discussed. The X-ray diffraction (XRD) patterns of the sintered samples revealed a single-phase formation BaNd{sub 2}Ti{sub 4}O{sub 12} with a tungsten bronze type structure in the system. The results of energy dispersive spectrometer (EDS) and lattice parameters calculated on XRD data could confirm the substitution at B-site. A small amount of substitutions improved quality factor value (Q × f) and the temperature coefficient of resonant frequency (τ{sub f}) but led to a decrease of the permittivity. The temperature coefficient of resonant frequency (τ{sub f}) was found to decrease with increasing substitutions because of the declination of tolerance factor (t). And the τ{sub f} could be adjusted from +62.4 ppm/°C to −7.3 ppm/°C with increment of substitutions. Finally, excellent dielectric properties were obtained as y was 0.5 sintered at 1400 °C for 2 h in air: ε{sub r} = 88.6, Q × f = 11486 GHz, τ{sub f} = +37.1 ppm/°C. - Graphical abstract: It was evident that the tendency of the τ{sub f} was consistent with the variation of tolerance factor (t). The τ{sub f} was much affected by the titling of Ti–O octahedral that bigger ionic radius of (Cr{sub 1/2}Nb{sub 1/2}){sup 4+} substituted for Ti{sup 4+} would significantly reduce the temperature coefficient of resonant frequency. - Highlights: • (Cr{sub 1/2}Nb{sub 1/2}){sup 4+} substitution for Ti{sup 4+} would low down the τ{sub f} of the samples. • The Cr{sup 3+} substitution for Ti{sup 4+} would promote the quality factor. • (Cr{sub 1/2}Nb{sub 1/2}){sup 4+} substitution for Ti{sup 4+} makes the permittivity maintain a high value. • The high Q × f

  12. High dielectric permittivity in the microwave region of SrBi2Nb2O9 (SBN) added La2O3, PbO and Bi2O3, obtained by mechanical alloying

    Science.gov (United States)

    Rocha, M. J. S.; Silva, P. M. O.; Theophilo, K. R. B.; Sancho, E. O.; Paula, P. V. L.; Silva, M. A. S.; Honorato, S. B.; Sombra, A. S. B.

    2012-08-01

    This paper presents the microwave dielectric properties and a structural study of SrBi2Nb2O9 (SBN) added La2O3, PbO or Bi2O3 obtained by a solid state procedure. High-energy mechanical milling was used to reduce the particle size, which allows for a better shaping of the green body and an increased reactivity. The mechanical milling activation process produced a reduced sintering temperature in the material, decreasing the loss of the volatile elements and controlling the growth of the grain that is produced when a high temperature is required to obtain dense ceramics. The incorporation of La3+, or Pb2+, or Bi3+ of different amounts (0, 3, 5, 10 and 15 wt%) was used to improve the densification without changing the crystal structure, since with a low doping content these ions can occupy the A site of the perovskite blocks; they can also occupy the Bi3+ sites in Bi2O3 layers. A single orthorhombic phase was formed after calcination at 800 °C for 2 h. X-ray diffraction, Fourier transformation, infrared and Raman spectroscopy have been carried out in order to investigate the effects of doping on SBN. The dielectric permittivity (ɛ‧r) and loss in the microwave region (2-4 GHz) of SBN ceramics with additions of Bi2O3, La2O3 and PbO were studied. Higher values of permittivity (ɛr‧ = 154.6) have been obtained for the SBN added La (15 wt%) a lower loss (tg δ = 0.01531) was also achieved in the SBN added La (15 wt%) sample with PVA and TEOS, respectively. The samples that showed the highest dielectric permittivities were all lanthanum doped, all with values of permittivity above 90. A comparative study associated with different types of binders was completed (with glycerin, PVA and TEOS). This procedure allowed us to obtain phases at lower temperatures than usually appear in the literature. The microwave dielectric properties (permittivity and loss) in the region 2-4 GHz, were studied for all samples. The structural and microwave dielectric properties of SBN show a

  13. Quantitative evaluation of spatial scale of carrier trapping at grain boundary by GHz-microwave dielectric loss spectroscopy

    Science.gov (United States)

    Choi, W.; Tsutsui, Y.; Miyakai, T.; Sakurai, T.; Seki, S.

    2017-11-01

    Charge carrier mobility is an important primary parameter for the electronic conductive materials, and the intrinsic limit of the mobility has been hardly access by conventional direct-current evaluation methods. In the present study, intra-grain hole mobility of pentacene thin films was estimated quantitatively using microwave-based dielectric loss spectroscopy (time-resolved microwave conductivity measurement) in alternating current mode of charge carrier local motion. Metal-insulator-semiconductor devices were prepared with different insulating polymers or substrate temperature upon vacuum deposition of the pentacene layer, which afforded totally four different grain-size conditions of pentacene layers. Under the condition where the local motion was determined by interfacial traps at the pentacene grain boundaries (grain-grain interfaces), the observed hole mobilities were plotted against the grain sizes, giving an excellent correlation fit successfully by a parabolic function representative of the boarder length. Consequently, the intra-grain mobility and trap-release time of holes were estimated as 15 cm2 V-1 s-1 and 9.4 ps.

  14. Optimization of the imaging response of scanning microwave microscopy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sardi, G. M.; Lucibello, A.; Proietti, E.; Marcelli, R., E-mail: romolo.marcelli@imm.cnr.it [National Research Council, Institute for Microelectronics and Microsystems, Via del Fosso del Cavaliere 100, 00133 Rome (Italy); Kasper, M.; Gramse, G. [Biophysics Institute, Johannes Kepler University, Gruberstrasse 40, 4020 Linz (Austria); Kienberger, F. [Keysight Technologies Austria GmbH, Gruberstrasse 40, 4020 Linz (Austria)

    2015-07-20

    In this work, we present the analytical modeling and preliminary experimental results for the choice of the optimal frequencies when performing amplitude and phase measurements with a scanning microwave microscope. In particular, the analysis is related to the reflection mode operation of the instrument, i.e., the acquisition of the complex reflection coefficient data, usually referred as S{sub 11}. The studied configuration is composed of an atomic force microscope with a microwave matched nanometric cantilever probe tip, connected by a λ/2 coaxial cable resonator to a vector network analyzer. The set-up is provided by Keysight Technologies. As a peculiar result, the optimal frequencies, where the maximum sensitivity is achieved, are different for the amplitude and for the phase signals. The analysis is focused on measurements of dielectric samples, like semiconductor devices, textile pieces, and biological specimens.

  15. Higher order mode of a microstripline fed cylindrical dielectric resonator antenna

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. V. Praveen, E-mail: praveen.kumar@pilani.bits-pilani.ac.in [Department of Electrical and Electronics Engineering, BITS Pilani, Pilani, Rajasthan-333 031 (India)

    2016-03-09

    A microstrip transmission line can be used to excite the broadside radiating mode of a cylindrical dielectric resonator antenna (CDRA). The same is found to excite considerably well a higher order mode (HOM) as well. However unlike the broadside mode, the higher order mode gives distorted radiation pattern which makes this mode less useful for practical applications. The cause of distortion in the HOM radiation and the dependence of HOM coupling on the microstrip feed line are explored using HFSS simulations.

  16. New Dielectric Measurement Data to Determine the Permittivity of Seawater at 1.4313 Hz

    Science.gov (United States)

    Lang, R.; Zhou, Y.; Utku, C.; Levine, D.

    2012-01-01

    This paper describes the new measurements - made in 2010-2011 - of the dielectric constant of seawater at 1.413 GHz using a resonant cavity technique. The purpose of these measurements is to develop an accurate relationship concerning the dependence of the dielectric constant of seawater on temperature and salinity for use by the Aquarius inversion algorithm. Aquarius is a NASA/CONAE satellite mission launched in June of 2011 with the primary mission of measuring global sea surface salinity with a 1.413 GHz radiometer to an accuracy of 0.2 psu. A brass microwave cavity resonant at 1.413 GHz has been used to measure the dielectric constant of seawater. The seawater is introduced into the cavity through a capillary glass tube having an inner diameter of 0.1 mm. The change of resonant frequency and the cavity Q value are used to determine the real and imaginary parts of the dielectric constant of seawater. Measurements are automated with Visual Basic software developed at the George Washington University. In this paper, new results from measurements made since September 2010 will be presented for salinities of 30, 35 and 38 psu with a temperature range of 0 C to 35 C in intervals of 5 C. These measurements are more accurate than earlier measurements made in 2008. The new results will be compared to the Klein-Swift (KS) and Meissner-Wentz (MW) model functions. The importance of an accurate model function will be illustrated by using these model functions to invert the Aquarius brightness temperature to retrieve the salinity values. The salinity values will be compared to co-located in situ data collected by Argo buoys.

  17. Acceleration of electrons at wakefield excitation by a sequence of relativistic electron bunches in dielectric resonator

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Mirnyj, V.I.; Onishchenko, I.N.; Uskov, V.V.

    2009-01-01

    Method is proposed to divide a regular sequence of electron bunches into parts of bunches driving wakefield and witness bunches, which should be accelerated. It allows to avoid the necessity of additional electron accelerator for witness bunches producing and the necessity of precision short time techniques of injection phase adjusting. The idea concludes to the frequency detuning between bunches repetition frequency and the frequency of the fundamental mode of excited wakefield. Experiments were carried out on the linear resonant accelerator 'Almaz-2', which injected in the dielectric resonator a sequence of 6000 short bunches of relativistic electrons with energy 4.5 MeV, charge 0.16 nC and duration 60 psec each, the repetition interval 360 ps. Frequency detuning was entered by change of frequency of the master generator of the klystron within the limits of one percent so that the phase taper on the length of bunches sequence achieved 2π. Energy spectra of electrons of bunches sequence, which have been propagated through the dielectric resonator are measured and analyzed

  18. Prospects for cooling nanomechanical motion by coupling to a superconducting microwave resonator

    International Nuclear Information System (INIS)

    Teufel, J D; Regal, C A; Lehnert, K W

    2008-01-01

    Recent theoretical work has shown that radiation pressure effects can in principle cool a mechanical degree of freedom to its ground state. In this paper, we apply this theory to our realization of an optomechanical system in which the motion of mechanical oscillator modulates the resonance frequency of a superconducting microwave circuit. We present experimental data demonstrating the large mechanical quality factors possible with metallic, nanomechanical beams at 20 mK. Further measurements also show damping and cooling effects on the mechanical oscillator due to the microwave radiation field. These data motivate the prospects for employing this dynamical backaction technique to cool a mechanical mode entirely to its quantum ground state.

  19. Parameter Search Algorithms for Microwave Radar-Based Breast Imaging: Focal Quality Metrics as Fitness Functions.

    Science.gov (United States)

    O'Loughlin, Declan; Oliveira, Bárbara L; Elahi, Muhammad Adnan; Glavin, Martin; Jones, Edward; Popović, Milica; O'Halloran, Martin

    2017-12-06

    Inaccurate estimation of average dielectric properties can have a tangible impact on microwave radar-based breast images. Despite this, recent patient imaging studies have used a fixed estimate although this is known to vary from patient to patient. Parameter search algorithms are a promising technique for estimating the average dielectric properties from the reconstructed microwave images themselves without additional hardware. In this work, qualities of accurately reconstructed images are identified from point spread functions. As the qualities of accurately reconstructed microwave images are similar to the qualities of focused microscopic and photographic images, this work proposes the use of focal quality metrics for average dielectric property estimation. The robustness of the parameter search is evaluated using experimental dielectrically heterogeneous phantoms on the three-dimensional volumetric image. Based on a very broad initial estimate of the average dielectric properties, this paper shows how these metrics can be used as suitable fitness functions in parameter search algorithms to reconstruct clear and focused microwave radar images.

  20. Microwave assisted synthesis and characterization of barium titanate nanoparticles for multi layered ceramic capacitor applications.

    Science.gov (United States)

    Thirumalai, Sundararajan; Shanmugavel, Balasivanandha Prabu

    2011-01-01

    Barium titanate is a common ferroelectric electro-ceramic material having high dielectric constant, with photorefractive effect and piezoelectric properties. In this research work, nano-scale barium titanate powders were synthesized by microwave assisted mechano-chemical route. Suitable precursors were ball milled for 20 hours. TGA studies were performed to study the thermal stability of the powders. The powders were characterized by XRD, SEM and EDX Analysis. Microwave and Conventional heating were performed at 1000 degrees C. The overall heating schedule was reduced by 8 hours in microwave heating thereby reducing the energy and time requirement. The nano-scale, impurity-free and defect-free microstructure was clearly evident from the SEM micrograph and EDX patterns. LCR meter was used to measure the dielectric constant and dielectric loss values at various frequencies. Microwave heated powders showed superior dielectric constant value with low dielectric loss which is highly essential for the fabrication of Multi Layered Ceramic Capacitors.

  1. Semiconductor-to-metallic flipping in a ZnFe2O4–graphene based smart nano-system: Temperature/microwave magneto-dielectric spectroscopy

    International Nuclear Information System (INIS)

    Ameer, Shahid; Gul, Iftikhar Hussain; Mahmood, Nasir; Mujahid, Muhammad

    2015-01-01

    Zn-(FeO 2 ) 2 –graphene smart nano-composites were synthesized using a novel modified solvothermal synthesis with different percentages of graphene. The structure of the nanocomposite was confirmed through X-ray diffraction, micro-Raman scattering spectroscopy, Ultraviolet–Visible spectroscopy, and Fourier transform infrared spectroscopy. The structural growth and morphological aspects were analyzed using scanning/transmission electron microscopy, revealing marvelous micro-structural features of the assembled nano-system resembling a maple leaf. To determine the composition, energy dispersive spectroscopy and X-ray photoelectron spectroscopy were used. Microwave magneto-dielectric spectroscopy revealed the improved dielectric properties of the nano-composite compared to those of the parent functional nanocrystals. Temperature gradient dielectric spectroscopy was used over the spectral range from 100 Hz to 5 MHz to reveal the phenomenological effect that the nanosystem flips from its usual semiconductor nature to a metallic nature with sensing temperature. Electrical conductivity and dielectric analysis indicated that the dielectric loss and the dielectric permittivity increased at room temperature. This extraordinary switching capability of the functionalized graphene nanosystem opens up a new dimension for engineering advanced and efficient smart composite materials. - Graphical abstract: Display Omitted - Highlights: • Zn-(FeO 2 ) 2 –graphene smart nano-composites were synthesized using a novel modified solvothermal synthesis. • The synthesized nano-system exhibits marvelous leaf like microstructure. • These nano-composites show improved magneto dielectric response. • This engineered smart nano-system shows phenomenological flipping from semiconductor like nature to metallic behavior

  2. Microwave absorbing property and complex permittivity and permeability of graphene–CdS nanocomposite

    International Nuclear Information System (INIS)

    Zhang, Dong-Dong; Zhao, Dong-Lin; Zhang, Ji-Ming; Bai, Li-Zhong

    2014-01-01

    Graphical abstract: Graphene–CdS (G–CdS) nanocomposite with a good structural interface and enhanced microwave absorption has been successfully and directly synthesized from graphene oxide via a facile hydrothermal approach. The permittivity of G–CdS nanocomposite presents triple dielectric relaxations by constructing a good structural G–CdS interface. The triple dielectric relaxations are critical to improve the microwave absorption of the G–CdS nanocomposite. Highlights: • Graphene–CdS (G–CdS) nanocomposite was directly synthesized from graphene oxide. • The G–CdS nanocomposite exhibits enhanced microwave absorption. • The permittivity of G–CdS nanocomposite presents triple dielectric relaxations. -- Abstract: The graphene–CdS (G–CdS) nanocomposite with enhanced microwave absorption was directly synthesized from graphene oxide (GO) via a facile hydrothermal approach, during which the formation of CdS nanoparticles and the reduction of GO occured simultaneously. The morphology, structure, microwave absorbing property, complex permittivity and permeability of G–CdS nanocomposite were systematically investigated by transmission electron microscope, X-ray diffraction and the coaxial line method. The complex permittivity of G–CdS nanocomposite presents triple dielectric relaxations with constructing a good structural graphene–CdS interface. The triple dielectric relaxations were critical to improve the microwave absorption of G–CdS nanocomposite. The G–CdS nanocomposite achieved a reflection loss below –10 dB in the frequency range of 5.2–18 GHz when adjusting the thicknesses from 2 to 5 mm, which was mainly ascribed to the proper electromagnetic matching of the CdS nanoparticles and graphene sheets, and the triple dielectric relaxations. The G–CdS nanocomposite is promising as a lightweight and wide-frequency microwave absorber

  3. Dielectric loss of strontium titanate thin films

    Science.gov (United States)

    Dalberth, Mark Joseph

    1999-12-01

    Interest in strontium titanate (STO) thin films for microwave device applications continues to grow, fueled by the telecommunications industry's interest in phase shifters and tunable filters. The optimization of these devices depends upon increasing the phase or frequency tuning and decreasing the losses in the films. Currently, the dielectric response of thin film STO is poorly understood through lack of data and a theory to describe it. We have studied the growth of STO using pulsed laser deposition and single crystal substrates like lanthanum aluminate and neodymium gallate. We have researched ways to use ring resonators to accurately measure the dielectric response as a function of temperature, electric field, and frequency from low radio frequencies to a few gigahertz. Our films grown on lanthanum aluminate show marked frequency dispersion in the real part of the dielectric constant and hints of thermally activated loss behavior. We also found that films grown with conditions that optimized the dielectric constant showed increased losses. In an attempt to simplify the system, we developed a technique called epitaxial lift off, which has allowed us to study films removed from their growth substrates. These free standing films have low losses and show obvious thermally activated behavior. The "amount of tuning," as measured by a figure of merit, KE, is greater in these films than in the films still attached to their growth substrates. We have developed a theory that describes the real and imaginary parts of the dielectric constant. The theory models the real part using a mean field description of the ionic motion in the crystal and includes the loss by incorporating the motion of charged defects in the films.

  4. Structural properties of CaTi{sub 1-x}(Nb{sub 2/3}Li{sub 2/3}){sub x}O{sub 3-d}elta (CNLTO) and CaTi{sub 1-x}(Nb{sub 1/2}Ln{sub 1/2}){sub x}O{sub 3} (Ln=Fe (CNFTO), Bi (CNBTO)), modified dielectric ceramics for microwave applications

    Energy Technology Data Exchange (ETDEWEB)

    Costa, R.C.S. [Laboratorio de Telecomunicacoes e Ciencia e Engenharia dos Materiais (LOCEM), Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, CEP 60455-760, Fortaleza, Ceara (Brazil); Departamento de Engenharia de Teleinformatica, CP 6007, Universidade Federal do Ceara, CEP 60455-760, Fortaleza, Ceara (Brazil); Bruno Costa, A.D.S. [Departamento de Engenharia de Teleinformatica, CP 6007, Universidade Federal do Ceara, CEP 60455-760, Fortaleza, Ceara (Brazil); Freire, F.N.A.; Santos, M.R.P.; Almeida, J.S.; Sohn, R.S.T.M. [Laboratorio de Telecomunicacoes e Ciencia e Engenharia dos Materiais (LOCEM), Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, CEP 60455-760, Fortaleza, Ceara (Brazil); Sasaki, J.M. [Laboratorio de Raios-X, Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, CEP 60455-760, Fortaleza, Ceara (Brazil); Sombra, A.S.B., E-mail: sombra@fisica.ufc.b [Laboratorio de Telecomunicacoes e Ciencia e Engenharia dos Materiais (LOCEM), Departamento de Fisica, Universidade Federal do Ceara, Caixa Postal 6030, CEP 60455-760, Fortaleza, Ceara (Brazil)

    2009-05-01

    This paper presents an investigation of the structural characteristics of Nb{sub 1/2}Bi{sub 1/2} (CNBTO), Nb{sub 1/2}Fe{sub 1/2} (CNFTO) and Nb{sub 2/3}Li{sub 1/3} (CNLTO) substitution into the B-site of calcium titanate ceramics. The modified CaTiO{sub 3} (CTO) ceramics were prepared by the conventional solid-state method. The compounds were investigated, by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDXS). The X-ray analysis shows that all samples have an orthorhombic structure. The refinement analysis of all samples were also performed and discussed in this paper. For all studied samples, a Raman mode at 805 cm{sup -1} was detected and its intensity increases as the substitution increases. The dielectric permittivity and loss at microwave frequencies (MW) were investigated. The CNLTO phase, present the highest dielectric constant (k=35.8) at 3.9 GHz with loss (tg alpha=7x10{sup -3}). The lowest value of k=25.7 (f=4.8 GHz) and tg alpha=3x10{sup -3}, was obtained for the CNFTO phase. These measurements confirm the possible use of such material for microwave devices like dielectric resonator antennas.

  5. Studies on dielectric properties of ferrocenylhydrazone coordinated polymers irradiated by γ-rays

    International Nuclear Information System (INIS)

    Lin Yun; Chen Jie; Lin Zhanru

    2007-01-01

    The three ferrocenylhydrazone coordinated metal polymers were synthesized (PZM). The effect of the 60 Co γ irradiation on microwave dielectric properties and their temperature-dielectric properties were studies. It has been found that the dielectric parameters (ε', tgδ) of coordinated polymers increase along with the absorbed doses and coordinated metals in order Cu, Co, Ni, However, the dependent curves of dielectric parameters on arise-down temperature are universal. On the other hand, the small changes in chemical structure before and after irradiation were confirmed by IR differential spectrometry and SEM. It is possible to make such coordinated polymers as a multifunctional polymeric material with optical, electric and magnetic properties, which may be potentially used in microwave communication. (authors)

  6. DIELECTRIC WAKE FIELD RESONATOR ACCELERATOR MODULE

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L.

    2013-11-06

    Results are presented from experiments, and numerical analysis of wake fields set up by electron bunches passing through a cylindrical or rectangular dielectric-lined structure. These bunches excite many TM-modes, with Ez components of the wake fields sharply localized on the axis of the structure periodically behind the bunches. The experiment with the cylindrical structure, carried out at ATF Brookhaven National Laboratory, used up to three 50 MeV bunches spaced by one wake field period (21 cm) to study the superposition of wake fields by measuring the energy loss of each bunch after it passed through the 53-cm long dielectric element. The millimeter-wave spectrum of radiation excited by the passage of bunches is also studied. Numerical analysis was aimed not only to simulate the behavior of our device, but in general to predict dielectric wake field accelerator performance. It is shown that one needs to match the radius of the cylindrical dielectric channel with the bunch longitudinal rms-length to achieve optimal performance.

  7. Dielectric characterization of low-loss calcium strontium titanate fibers produced by laser floating zone technique for wireless communication

    International Nuclear Information System (INIS)

    Amaral, F.; Valente, M.A.; Costa, L.C.; Costa, F.M.

    2014-01-01

    Wireless communication technology assisted to a huge development during the last two decades, responding to the growing demand for small size and low weight devices such as cell phones and global positioning systems. The need for miniaturization and higher autonomy resulted in the development of new dielectric oxide ceramics with very specific properties, to be applied as dielectric resonators in filters, oscillators, and antennas. Some crucial properties as a high quality factor, high dielectric constant, and near zero temperature coefficient of resonant frequency must be considered during the selection of the appropriate materials. The present work deals with the preparation of calcium titanate (CaTiO 3 ), strontium titanate (SrTiO 3 ), and calcium strontium titanate (Ca x Sr 1-x TiO 3 ) fibers produced by laser floating zone (LFZ) technique. Our results show that fibers grown at lower pulling rates exhibit higher ε', for all the studied frequency range, including the microwave region. Moreover, the quality factor is always high envisaging the possibility to include these materials in future wireless device applications. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Dielectric characterization of low-loss calcium strontium titanate fibers produced by laser floating zone technique for wireless communication

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, F. [Department of Physics and I3N, University of Aveiro, 3810-193, Aveiro (Portugal); Polytechnic Institute of Coimbra, 3000-271, Coimbra (Portugal); Valente, M.A.; Costa, L.C.; Costa, F.M. [Department of Physics and I3N, University of Aveiro, 3810-193, Aveiro (Portugal)

    2014-09-15

    Wireless communication technology assisted to a huge development during the last two decades, responding to the growing demand for small size and low weight devices such as cell phones and global positioning systems. The need for miniaturization and higher autonomy resulted in the development of new dielectric oxide ceramics with very specific properties, to be applied as dielectric resonators in filters, oscillators, and antennas. Some crucial properties as a high quality factor, high dielectric constant, and near zero temperature coefficient of resonant frequency must be considered during the selection of the appropriate materials. The present work deals with the preparation of calcium titanate (CaTiO{sub 3}), strontium titanate (SrTiO{sub 3}), and calcium strontium titanate (Ca{sub x}Sr{sub 1-x}TiO{sub 3}) fibers produced by laser floating zone (LFZ) technique. Our results show that fibers grown at lower pulling rates exhibit higher ε', for all the studied frequency range, including the microwave region. Moreover, the quality factor is always high envisaging the possibility to include these materials in future wireless device applications. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Microwave moisture meter for in-shell almonds.

    Science.gov (United States)

    Determining almond kernel moisture content while still in the shell is important for both almond growers and processors. A dielectric method was developed for almond kernel moisture determination from dielectric measurements on in-shell almonds at a single microwave frequency. A sample holder was fi...

  10. Dielectric function and its predicted effect on localized plasmon resonances of equiatomic Au–Cu

    International Nuclear Information System (INIS)

    De Silva, K S B; Gentle, A; Arnold, M; Cortie, M B; Keast, V J

    2015-01-01

    Equiatomic (Au,Cu) solid solution orders below 658 K to form a tetragonal AuCu (I) phase with significant changes in physical properties and the crystal structure. The effect of ordering on the dielectric function of the material is controversial however, with inconsistent results reported in the literature. Since the nature of any localized surface plasmon resonance (LSPR) in the nanostructures is very sensitive to the dielectric function, this uncertainty hinders the use of AuCu in plasmonic devices or structures. Therefore, we re-examine the question using a combination of measurements and computations. We find that no significant change in the dielectric function occurs when this material becomes ordered, at least over the range of photon energies relevant to LSPRs. The likely properties of LSPRs in plasmonic devices made of AuCu are analyzed. Use of the alloy offers some advantages over pure Cu, however pure Au would still be the superior option in most situations. (paper)

  11. Microwave frequency sensor for detection of biological cells in microfluidic channels.

    Science.gov (United States)

    Nikolic-Jaric, M; Romanuik, S F; Ferrier, G A; Bridges, G E; Butler, M; Sunley, K; Thomson, D J; Freeman, M R

    2009-08-12

    We present details of an apparatus for capacitive detection of biomaterials in microfluidic channels operating at microwave frequencies where dielectric effects due to interfacial polarization are minimal. A circuit model is presented, which can be used to adapt this detection system for use in other microfluidic applications and to identify ones where it would not be suitable. The detection system is based on a microwave coupled transmission line resonator integrated into an interferometer. At 1.5 GHz the system is capable of detecting changes in capacitance of 650 zF with a 50 Hz bandwidth. This system is well suited to the detection of biomaterials in a variety of suspending fluids, including phosphate-buffered saline. Applications involving both model particles (polystyrene microspheres) and living cells-baker's yeast (Saccharomyces cerevisiae) and Chinese hamster ovary cells-are presented.

  12. High temperature dielectric properties of spent adsorbent with zinc sulfate by cavity perturbation technique

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Guo [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming, Yunnan 650093 (China); National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093 (China); Liu, Chenhui [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming, Yunnan 650093 (China); National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093 (China); Faculty of Chemistry and Environment, Yunnan Minzu University, Kunming, Yunnan 650093 (China); Zhang, Libo, E-mail: libozhang77@163.com [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093 (China); Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming, Yunnan 650093 (China); National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming, Yunnan 650093 (China); and others

    2017-05-15

    Highlights: • Cavity perturbation technique is employed to measure the dielectric properties. • Microwave absorption capability of ZnO is poor from 20 °C to 850 °C. • Dielectric properties of spent absorbent and zinc sulfate are influenced by temperature especially in high temperature stage. • Penetration depths and heating curve indicate spent adsorbent and ZnO·2ZnSO{sub 4}, ZnSO{sub 4} are excellent microwave absorber. • The pore structures of spent adsorbent are improved significantly by microwave-regeneration directly. - Abstract: Dielectric properties of spent adsorbent with zinc sulfate are investigated by cavity perturbation technique at 2450 MHz from 20 °C to approximately 1000 °C. Two weight loss stages are observed for spent adsorbent by thermogravimetric-differential scanning calorimeter (TG-DSC) analysis, and zinc sulfate is decomposed to ZnO·2ZnSO{sub 4} and ZnO at about 750 °C and 860 °C. Microwave absorption capability of ZnSO{sub 4} increases with increasing temperature and declines after ZnO generation on account of the poor dielectric properties. Dielectric properties of spent adsorbent are dependent on apparent density and noticed an interestingly linearly relationship at room temperature. The three parameters increase gently from 20 °C to 400 °C, but a sharp increase both in real part and imaginary part are found subsequently due to the volatiles release and regeneration of carbon. And material conductivity is improved, which contributes to the π-electron conduction appearance. Relationship between penetration depth and temperature further elaborate spent adsorbent is an excellent microwave absorber and the microwave absorption capability order of zinc compounds is ZnO·2ZnSO{sub 4}, ZnSO{sub 4} and ZnO. Heating characteristics suggest that heating rate is related with dielectric properties of materials. The pore structures of spent adsorbent are improved significantly and the surface is smoother after microwave-regeneration.

  13. Microwave dielectric characterization of binary mixture of formamide ...

    Indian Academy of Sciences (India)

    are fitted to the three different relaxation models [24–27] by the non-linear least squares fit method. It is observed that the Davidson–Cole model is adequate to describe major dispersion of the various solute and solvent mixtures over this fre- quency range. Static dielectric constant and dielectric relaxation time could be.

  14. A low cost, printed microwave based level sensor with integrated oscillator readout circuitry

    KAUST Repository

    Karimi, Muhammad Akram

    2017-10-24

    This paper presents an extremely low cost, tube conformable, printed T-resonator based microwave level sensor, whose resonance frequency shifts by changing the level of fluids inside the tube. Printed T-resonator forms the frequency selective element of the tunable oscillator. Unlike typical band-pass resonators, T-resonator has a band-notch characteristics because of which it has been integrated with an unstable amplifying unit having negative resistance in the desired frequency range. Magnitude and phase of input reflection coefficient of the transistor has been optimized over the desired frequency range. Phase flattening technique has been introduced to maximize the frequency shift of the oscillator. With the help of this technique, we were able to enhance the percentage tuning of the oscillator manifolds which resulted into a level sensor with higher sensitivity. The interface level of fluids (oil and water in our case) causes a relative change in oscillation frequency by more than 50% compared to maximum frequency shift of 8% reported earlier with dielectric tunable oscillators.

  15. Tapping mode microwave impedance microscopy

    KAUST Repository

    Lai, K.

    2009-01-01

    We report tapping mode microwave impedance imaging based on atomic force microscope platforms. The shielded cantilever probe is critical to localize the tip-sample interaction near the tip apex. The modulated tip-sample impedance can be accurately simulated by the finite-element analysis and the result agrees quantitatively to the experimental data on a series of thin-film dielectric samples. The tapping mode microwave imaging is also superior to the contact mode in that the thermal drift in a long time scale is totally eliminated and an absolute measurement on the dielectric properties is possible. We demonstrated tapping images on working nanodevices, and the data are consistent with the transport results. © 2009 American Institute of Physics.

  16. Dielectric optical antenna thermal emitters and metamaterials

    Science.gov (United States)

    Schuller, Jonathan Aaron

    Optical antennas are critical components in nanophotonics research due to their unparalleled ability to concentrate electromagnetic energy into nanoscale volumes. Researchers typically construct such antennas from wavelength-size metallic structures. However, recent research has begun to exploit the scattering resonances of high-permittivity particles to realize all-dielectric optical antennas, emitters, and metamaterials. In this thesis, we experimentally and theoretically characterize the resonant modes of subwavelength rod-shaped dielectric particles and demonstrate their use in negative index metamaterials and novel infrared light emitters. At mid-infrared frequencies, Silicon Carbide (SiC) is an ideal system for studying the behavior of dielectric optical antennas. At frequencies below the TO phonon resonance, SiC behaves like a dielectric with very large refractive index. Using infrared spectroscopy and analytical Mie calculations we show that individual rod-shaped SiC particles exhibit a multitude of resonant modes. Detailed investigations of these SiC optical antennas reveal a wealth of new physics and applications. We discuss the distinct electromagnetic field profile for each mode, and demonstrate that two of the dielectric-type Mie resonances can be combined in a particle array to form a negative index metamaterial. We further show that these particles can serve as "broadcasting" antennas. Using a custom-built thermal emission microscope we collect emissivity spectra from single SiC particles at elevated temperatures, highlighting their use as subwavelength resonant light emitters. Finally, we derive and verify a variety of general analytical results applicable to all cylindrical dielectric antennas.

  17. On the existence of and mechanism for microwave-specific reaction rate enhancement.

    Science.gov (United States)

    Dudley, Gregory B; Richert, Ranko; Stiegman, A E

    2015-04-01

    The use of microwave radiation to drive chemical reactions has become ubiquitous in almost all fields of chemistry. In all of these areas it is principally due to rapid and convenient heating resulting in significantly higher rates of reaction, with other advantages including enhanced product selectivity and control of materials properties. Although microwave heating continues to grow as an enabling technology, fundamental research into the nature of microwave heating has not grown at the same rate. In the case of chemical reactions run in homogeneous solution, particularly synthetic organic reactions, there is considerable controversy over the origins of rate enhancement, with a fundamental question being whether there exist microwave-specific effects, distinct from what can be attained under conventional convective heating, that can accelerate a reaction rate. In this Perspective, we discuss unique aspects of microwave heating of molecules in solution and discuss the origin and nature of microwave-specific effects arising from the process of "selective heating" of reactants in solution. Integral to this discussion is work from the field of dielectric relaxation spectroscopy, which provides a model for selective heating by Debye relaxation processes. The Perspective also includes a critical discussion of hypotheses of non-thermal effects (alternatively classified here as resonant processes) and an outline of specific reaction parameters for chemical systems in which microwave-specific Debye relaxation processes can result in observable reaction rate enhancement.

  18. Design of a Label-Free, Distributed Bragg Grating Resonator Based Dielectric Waveguide Biosensor

    Directory of Open Access Journals (Sweden)

    Florian Kehl

    2015-01-01

    Full Text Available In this work, we present a resonant, dielectric waveguide device based on distributed Bragg gratings for label-free biosensing applications. The refractive index sensitive optical transducer aims at improving the performance of planar waveguide grating sensor systems with limited Q-factor and dynamic range by combing the advantages of resonant cavities, such as a multitude of resonance peaks with high finesse, with the manageable complexity of waveguide grating couplers. The general sensor concept is introduced and supported by theoretical considerations as well as numerical simulations based on Coupled Mode Theory. In contrast to a single Bragg grating reflector, the presented Fabry-Pérot type distributed Bragg resonator exhibits an extended measurement range as well as relaxed fabrication tolerances. The resulting, relatively simple sensor structure can be fabricated with standard lithographic means and is independent of expensive light-sources and/or detectors, making an affordable but sensitive device, potentially suitable for point-of-care applications.

  19. Dielectric Meta-Holograms Enabled with Dual Magnetic Resonances in Visible Light.

    Science.gov (United States)

    Li, Zile; Kim, Inki; Zhang, Lei; Mehmood, Muhammad Q; Anwar, Muhammad S; Saleem, Murtaza; Lee, Dasol; Nam, Ki Tae; Zhang, Shuang; Luk'yanchuk, Boris; Wang, Yu; Zheng, Guoxing; Rho, Junsuk; Qiu, Cheng-Wei

    2017-09-26

    Efficient transmission-type meta-holograms have been demonstrated using high-index dielectric nanostructures based on Huygens' principle. It is crucial that the geometry size of building blocks be judiciously optimized individually for spectral overlap of electric and magnetic dipoles. In contrast, reflection-type meta-holograms using the metal/insulator/metal scheme and geometric phase can be readily achieved with high efficiency and small thickness. Here, we demonstrate a general platform for design of dual magnetic resonance based meta-holograms based on the geometric phase using silicon nanostructures that are quarter wavelength thick for visible light. Significantly, the projected holographic image can be unambiguously observed without a receiving screen even under the illumination of natural light. Within the well-developed semiconductor industry, our ultrathin magnetic resonance-based meta-holograms may have promising applications in anticounterfeiting and information security.

  20. Numerical investigation of the electric field distribution and the power deposition in the resonant cavity of a microwave electrothermal thruster

    Directory of Open Access Journals (Sweden)

    Mehmet Serhan Yildiz

    2017-04-01

    Full Text Available Microwave electrothermal thruster (MET, an in-space propulsion concept, uses an electromagnetic resonant cavity as a heating chamber. In a MET system, electromagnetic energy is converted to thermal energy via a free floating plasma inside a resonant cavity. To optimize the power deposition inside the cavity, the factors that affect the electric field distribution and the resonance conditions must be accounted for. For MET thrusters, the length of the cavity, the dielectric plate that separates the plasma zone from the antenna, the antenna length and the formation of a free floating plasma have direct effects on the electromagnetic wave transmission and thus the power deposition. MET systems can be tuned by adjusting the lengths of the cavity or the antenna. This study presents the results of a 2-D axis symmetric model for the investigation of the effects of cavity length, antenna length, separation plate thickness, as well as the presence of free floating plasma on the power absorption. Specifically, electric field distribution inside the resonant cavity is calculated for a prototype MET system developed at the Bogazici University Space Technologies Laboratory. Simulations are conducted for a cavity fed with a constant power input of 1 kW at 2.45 GHz using COMSOL Multiphysics commercial software. Calculations are performed for maximum plasma electron densities ranging from 1019 to 1021 #/m3. It is determined that the optimum antenna length changes with changing plasma density. The calculations show that over 95% of the delivered power can be deposited to the plasma when the system is tuned by adjusting the cavity length.

  1. Dielectric Optical Antenna Emitters and Metamaterials

    Science.gov (United States)

    Schuller, Jon

    2009-03-01

    Optical antennas are critical components in nanophotonics research due to their unparalleled ability to concentrate electromagnetic energy into nanoscale volumes. Researchers typically construct such antennas from wavelength-size metallic structures. However, recent research has begun to exploit the scattering resonances of high-permittivity particles to realize all-dielectric optical antennas, emitters, and metamaterials. In this talk, we experimentally and theoretically characterize the resonant modes of subwavelength rod-shaped dielectric particles and demonstrate their use in negative index metamaterials and novel infrared light emitters. At mid-infrared frequencies, Silicon Carbide (SiC) is an ideal system for studying the behavior of dielectric optical antennas. At frequencies below the TO phonon resonance, SiC behaves like a dielectric with very large refractive index. Using infrared spectroscopy and analytical Mie calculations we show that individual rod-shaped SiC particles exhibit a multitude of resonant modes. Detailed investigations of these SiC optical antennas reveal a wealth of new physics and applications. We discuss the distinct electromagnetic field profile for each mode, and demonstrate that two of the dielectric-type Mie resonances can be combined in a particle array to form a negative index metamaterial [1]. We further show that these particles can serve as ``broadcasting'' antennas. Using a custom-built thermal emission microscope we collect emissivity spectra from single SiC particles at elevated temperatures, highlighting their use as subwavelength resonant light emitters. Finally, we derive and verify a variety of general analytical results applicable to all cylindrical dielectric antennas and discuss extensions of the demonstrated concepts to different materials systems and frequency regimes. [1] J.A. Schuller, et al., Phys. Rev. Lett. 99, 107401 (2007)

  2. Microwave processing of radioactive materials-I

    International Nuclear Information System (INIS)

    White, T.L.; Berry, J.B.

    1989-01-01

    This paper is the first of two papers that reviews the major past and present applications of microwave energy for processing radioactive materials, with particular emphasis on processing radioactive wastes. Microwave heating occurs through the internal friction produced inside a dielectric material when its molecules vibrate in response to an oscillating microwave field. For this presentation, we shall focus on the two FCC-approved microwave frequencies for industrial, scientific, and medical use, 915 and 2450 MHz. Also, because of space limitations, we shall postpone addressing plasma processing of hazardous wastes using microwave energy until a later date. 13 refs., 4 figs

  3. High-resolution nondestructive testing of multilayer dielectric materials using wideband microwave synthetic aperture radar imaging

    Science.gov (United States)

    Kim, Tae Hee; James, Robin; Narayanan, Ram M.

    2017-04-01

    Fiber Reinforced Polymer or Plastic (FRP) composites have been rapidly increasing in the aerospace, automotive and marine industry, and civil engineering, because these composites show superior characteristics such as outstanding strength and stiffness, low weight, as well as anti-corrosion and easy production. Generally, the advancement of materials calls for correspondingly advanced methods and technologies for inspection and failure detection during production or maintenance, especially in the area of nondestructive testing (NDT). Among numerous inspection techniques, microwave sensing methods can be effectively used for NDT of FRP composites. FRP composite materials can be produced using various structures and materials, and various defects or flaws occur due to environmental conditions encountered during operation. However, reliable, low-cost, and easy-to-operate NDT methods have not been developed and tested. FRP composites are usually produced as multilayered structures consisting of fiber plate, matrix and core. Therefore, typical defects appearing in FRP composites are disbondings, delaminations, object inclusions, and certain kinds of barely visible impact damages. In this paper, we propose a microwave NDT method, based on synthetic aperture radar (SAR) imaging algorithms, for stand-off imaging of internal delaminations. When a microwave signal is incident on a multilayer dielectric material, the reflected signal provides a good response to interfaces and transverse cracks. An electromagnetic wave model is introduced to delineate interface widths or defect depths from the reflected waves. For the purpose of numerical analysis and simulation, multilayered composite samples with various artificial defects are assumed, and their SAR images are obtained and analyzed using a variety of high-resolution wideband waveforms.

  4. Visualization of the microwave beam generated by a plasma relativistic microwave amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, I. S.; Ivanov, I. E.; Strelkov, P. S., E-mail: strelkov@fpl.gpi.ru [Russian Academy of Science, Prokhorov General Physics Institute (Russian Federation); Tarakanov, V. P., E-mail: karat@msk.su [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Ulyanov, D. K. [Russian Academy of Science, Prokhorov General Physics Institute (Russian Federation)

    2017-03-15

    A method based on the detection of emission of a dielectric screen with metal microinclusions in open air is applied to visualize the transverse structure of a high-power microwave beam. In contrast to other visualization techniques, the results obtained in this work provide qualitative information not only on the electric field strength, but also on the structure of electric field lines in the microwave beam cross section. The interpretation of the results obtained with this method is confirmed by numerical simulations of the structure of electric field lines in the microwave beam cross section by means of the CARAT code.

  5. Dielectric properties of polycrystalline Cu-Zn ferrites at microwave frequencies

    International Nuclear Information System (INIS)

    Lamani, Ashok R.; Jayanna, H.S.; Parameswara, P.; Somashekar, R.; Ramachander,; Rao, Ramchandra; Prasanna, G.D.

    2011-01-01

    Highlights: → Cu 1-x Zn x Fe 2 O 4 at different concentration are suitable for high frequency applications. → Dielectric properties are related with W-H plot. → The anisotropy due to the crystallite size effect is significant in change of dielectric constant. - Abstract: The real dielectric constant ε' and complex dielectric constant ε'' of Cu 1-x Zn x Fe 2 O 4 have been measured at room temperature in the high frequency range 1 MHz to 1.8 GHz. At low frequencies the dielectric loss is found to be constant up to 1.4 GHz and there is a sudden rise at 1.5 GHz. A qualitative explanation is given for the composition, frequency dependence of the dielectric constant and dielectric loss of Cu 1-x Zn x Fe 2 O 4 . These are correlated with the W-H plot which gives the information about change in the average crystal size and strain of the samples. The micro-morphological features of the samples were obtained by Scanning Electron Microscopy (SEM). The micrograph shows that the increase of the Zn content in Cu ferrite increases the grain size.

  6. High efficiency on-chip Dielectric Resonator Antennna using micromachining technology

    KAUST Repository

    Sallam, Mai O.

    2015-10-26

    In this paper, a novel cylindrical Dielectric Resonator Antenna (DRA) operating at 60 GHz is introduced. The antenna is fabricated using a high-resistivity silicon wafer. The DR is defined in the wafer using micromachining technology. The feeding network is located at the other side of the wafer. The proposed antenna is simulated using HFSS and the results are verified by measurements. The antenna radiation is mainly along the broadside direction. The measured gain, radiation efficiency, and bandwidth are 7 dBi, 74.65%, and 2.23 GHz respectively. The antenna is characterized by high polarization purity where the maximum cross-polarization is -15 dB. © 2015 IEEE.

  7. High efficiency on-chip Dielectric Resonator Antennna using micromachining technology

    KAUST Repository

    Sallam, Mai O.; Serry, Mohamed; Shamim, Atif; De Raedt, Walter; Sedky, Sherif; Vandenbosch, Guy A. E.; Soliman, Ezzeldin A.

    2015-01-01

    In this paper, a novel cylindrical Dielectric Resonator Antenna (DRA) operating at 60 GHz is introduced. The antenna is fabricated using a high-resistivity silicon wafer. The DR is defined in the wafer using micromachining technology. The feeding network is located at the other side of the wafer. The proposed antenna is simulated using HFSS and the results are verified by measurements. The antenna radiation is mainly along the broadside direction. The measured gain, radiation efficiency, and bandwidth are 7 dBi, 74.65%, and 2.23 GHz respectively. The antenna is characterized by high polarization purity where the maximum cross-polarization is -15 dB. © 2015 IEEE.

  8. High-output microwave detector using voltage-induced ferromagnetic resonance

    International Nuclear Information System (INIS)

    Shiota, Yoichi; Suzuki, Yoshishige; Miwa, Shinji; Tamaru, Shingo; Nozaki, Takayuki; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji

    2014-01-01

    We investigated the voltage-induced ferromagnetic resonance (FMR) with various DC bias voltage and input RF power in magnetic tunnel junctions. We found that the DC bias monotonically increases the homodyne detection voltage due to the nonlinear FMR originating in an asymmetric magnetization-potential in the free layer. In addition, the linear increase of an output voltage to the input RF power in the voltage-induced FMR is more robust than that in spin-torque FMR. These characteristics enable us to obtain an output voltage more than ten times than that of microwave detectors using spin-transfer torque

  9. Tunable High Q Superconducting Microwave Resonator for Hybrid System with ^87Rb atoms

    Science.gov (United States)

    Kim, Zaeill; Voigt, K. D.; Lee, Jongmin; Hoffman, J. E.; Grover, J. A.; Ravets, S.; Zaretskey, V.; Palmer, B. S.; Hafezi, M.; Taylor, J. M.; Anderson, J. R.; Dragt, A. J.; Lobb, C. J.; Orozco, L. A.; Rolston, S. L.; Wellstood, F. C.

    2012-02-01

    We have developed a frequency tuning system for a ``lumped-element'' thin-film superconducting Al microwave resonator [1] on sapphire intended for coupling to hyperfine ground states of cold trapped ^87Rb atoms, which are separated by about fRb=6.83 GHz. At T=12 mK and on resonance at 6.81 GHz, the loaded quality factor was 120,000. By moving a carefully machined Al pin towards the inductor of the resonator using a piezo stage, we were able to tune the resonance frequency over a range of 35 MHz and within a few kHz of fRb. While measuring the power dependent response of the resonator at each tuned frequency, we observed anomalous decreases in the quality factor at several frequencies. These drops were more pronounced at lower power. We discuss our results, which suggest these resonances are attributable to discrete two-level systems.[4pt] [1] Z. Kim et al., AIP ADVANCES 1, 042107 (2011).

  10. Quality measurements of resonance cavities in behalf of investigation of microwave properties of superconducting materials

    International Nuclear Information System (INIS)

    Dekkers, G.; Ridder, M. de.

    1988-01-01

    A method for investigating conducting properties at microwave frequencies of superconducting materials by means of quality measurements of a resonance cavity is described. The method is based on the direct relationship of the quality factor of a resonance circuit, in this case a resonance cavity, with the losses in the circuit. In a resonance cavity these losses are caused by the material properties of the resonance cavity. Therefore quality measurements yield, essentially, a possibility for investigation of conducting properties of materials. The underlying theory of the subject, the design of a special resonance cavity, the measuring methods and the accuracy in the relation of the measured quality factor and the specific conductivity of the material is presented. refs.; figs.; tabs

  11. Anisotropy of Wood in the Microwave Region

    Science.gov (United States)

    Ziherl, Sasa; Bajc, Jurij; Urankar, Bernarda; Cepic, Mojca

    2010-01-01

    Wood is transparent for microwaves and due to its anisotropic structure has anisotropic dielectric properties. A laboratory experiment that allows for the qualitative demonstration and quantitative measurements of linear dichroism and birefringence in the microwave region is presented. As the proposed experiments are based on the anisotropy (of…

  12. Resonant photon tunneling via surface plasmon polaritons through one-dimensional metal-dielectric metamaterials

    OpenAIRE

    Tomita, Satoshi; Yokoyama, Takashi; Yanagi, Hisao; Wood, Ben; Pendry, John B.; Fujii, Minoru; Hayashi, Shinji

    2008-01-01

    We report resonant photon tunneling (RPT) through onedimensional metamaterials consisting of alternating layers of metal and dielectric. RPT via a surface plasmon polariton state permits evanescent light waves with large wavenumbers to be conveyed through the metamaterial. This is the mechanism for sub-wavelength imaging recently demonstrated with a super-lens. Furthermore, we find that the RPT peak is shifted from the reflectance dip with increasing the number of Al layers, indicating that t...

  13. Microwave surface impedance of MgB2 thin film

    International Nuclear Information System (INIS)

    Jin, B B; Klein, N; Kang, W N; Kim, Hyeong-Jin; Choi, Eun-Mi; Lee, Sung-I K; Dahm, T; Maki, K

    2003-01-01

    The microwave surface impedance Z s = R s + jωμ 0 λ was measured with dielectric resonator techniques for two c-axis-oriented MgB 2 thin films. The temperature dependence of the penetration depth λ measured with a sapphire resonator at 17.93 GHz can be well fitted from 5 K close to T c by the standard BCS integral expression assuming the reduced energy gap Δ(0)/kT c to be as low as 1.13 and 1.03 for the two samples. From these fits the penetration depth at zero temperatures was determined to be 102 nm and 107 nm, respectively. The results clearly indicate the s-wave nature of the order parameter. The temperature dependence of surface resistance R s , measured with a rutile dielectric resonator, shows an exponential behaviour below about T c /2 with a reduced energy gap being consistent with the one determined from the λ data. The R s value at 4.2 K was found to be as low as 19 μΩ at 7.2 GHz, which is comparable with that of a high-quality high-temperature thin film of YBa 2 Cu 3 O 7 . A higher-order mode at 17.9 GHz was employed to determine the frequency f dependence of R s ∝ f n(T) . Our results revealed a decrease of n with increasing temperature ranging from n = 2 below 8 K to n 1 from 13 to 34 K

  14. Microwave Metamaterial-Based Sensor for Dielectric Characterization of Liquids.

    Science.gov (United States)

    Soffiatti, André; Max, Yuri; G Silva, Sandro; M de Mendonça, Laércio

    2018-05-11

    This article proposed to build a system founded on metamaterial sensor antennas, which can be used to evaluate impurities in aqueous substances according to the quality of transmission between the sensor antennas. In order to do this, a dedicated setup with tests in several frequencies was deployed so as to monitor the behavior of transmission variation between sensors. These sensors are microstrip antennas with a ground plane of resonant cleaved metallic rings; the substrate functions as a metamaterial for the irradiating element. In this study, an analysis was made of transmission between the sensors, looking for variation in angles of incidence of signal and of distance between the antennas. The sensor was tested at various operating frequencies, as such 1.8 GHz, 2.4 GHz, 3.4 GHz and 4.1 GHz, resulting in different values of sensitivity. The prototypes were constructed and tested so as to analyze the dielectric effects of the impurities on NaCl and C₂H₄O₂ substances. The research aims to use these control systems of impurities in industrial premises.

  15. Design of Microwave Multibandpass Filters with Quasilumped Resonators

    Directory of Open Access Journals (Sweden)

    Dejan Miljanović

    2015-01-01

    Full Text Available Design of RF and microwave filters has always been the challenging engineering field. Modern filter design techniques involve the use of the three-dimensional electromagnetic (3D EM solvers for predicting filter behavior, yielding the most accurate filter characteristics. However, the 3D EM simulations are time consuming. In this paper, we propose electric-circuit models, instead of 3D EM models, suitable for design of RF and microwave filters with quasilumped coupled resonators. Using the diakoptic approach, the 3D filter structure is decomposed into domains that are modeled by electric networks. The coupling between these domains is modeled by capacitors and coupled inductors. Furthermore, we relate the circuit-element values to the physical dimensions of the 3D filter structure. We propose the filter design procedure that is based on the circuit models and fast circuit-level simulations, yielding the element values from which the physical dimensions can be obtained. The obtained dimensions should be slightly refined for achieving the desired filter characteristics. The mathematical problems encountered in the procedure are solved by numerical and symbolic computations. The procedure is exemplified by designing a triple-bandpass filter and validated by measurements on the fabricated filter. The simulation and experimental results are in good agreement.

  16. Boron nitride hollow nanospheres: Synthesis, formation mechanism and dielectric property

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, B.; Tang, X.H. [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Huang, X.X., E-mail: swliza@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xia, L. [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Zhang, X.D. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, C.J. [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); Wen, G.W., E-mail: g.wen@hit.edu.cn [School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-04-15

    Highlights: • BN hollow nanospheres are fabricated in large scale via a new CVD method. • Morphology and structure are elucidated by complementary analytical techniques. • Formation mechanism is proposed based on experimental observations. • Dielectric properties are investigated in the X-band microwave frequencies. • BN hollow nanospheres show lower dielectric loss than regular BN powders. - Abstract: Boron nitride (BN) hollow nanospheres have been successfully fabricated by pyrolyzing vapors decomposed from ammonia borane (NH{sub 3}BH{sub 3}) at 1300 °C. The final products have been extensively characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The BN hollow nanospheres were ranging from 100 to 300 nm in diameter and around 30–100 nm in thickness. The internal structure of the products was found dependent on the reaction temperatures. A possible formation mechanism of the BN hollow nanospheres was proposed on the basis of the experimental observations. Dielectric measurements in the X-band microwave frequencies (8–12 GHz) showed that the dielectric loss of the paraffin filled by the BN hollow nanospheres was lower than that filled by regular BN powders, which indicated that the BN hollow nanospheres could be potentially used as low-density fillers for microwave radomes.

  17. Novel microwave photonic fractional hilbert transformer using a ring resonator-based optical all-pass filter

    NARCIS (Netherlands)

    Zhuang, L.; Khan, M.R.H.; Beeker, Willem; Beeker, W.P.; Leinse, Arne; Heideman, Rene; Roeloffzen, C.G.H.

    2012-01-01

    We propose and demonstrate a novel wideband microwave photonic fractional Hilbert transformer implemented using a ring resonatorbased optical all-pass filter. The full programmability of the ring resonator allows variable and arbitrary fractional order of the Hilbert transformer. The performance

  18. All-dielectric band stop filter at terahertz frequencies

    Science.gov (United States)

    Yin, Shan; Chen, Lin

    2018-01-01

    We design all-dielectric band stop filters with silicon subwavelength rod and block arrays at terahertz frequencies. Supporting magnetic dipole resonances originated from the Mia resonance, the all-dielectric filters can modulate the working band by simply varying the structural geometry, while eliminating the ohmic loss induced by the traditional metallic metamaterials and uninvolved with the complicated mechanism. The nature of the resonance in the silicon arrays is clarified, which is attributed to the destructive interference between the directly transmitted waves and the waves emitted from the magnetic dipole resonances, and the resonance frequency is determined by the dielectric structure. By particularly designing the geometrical parameters, the profile of the transmission spectrum can be tailored, and the step-like band edge can be obtained. The all-dielectric filters can realize 93% modulation of the transmission within 0.04 THz, and maintain the bandwidth of 0.05 THz. This work provides a method to develop THz functional devices, such as filters, switches and sensors.

  19. Microwave dielectric tangent losses in KDP and DKDP crystals

    Indian Academy of Sciences (India)

    By adding cubic and quartic phonon anharmonic interactions in the pseudospin lattice coupled mode (PLCM) model for KDP-type crystals and using double-time temperature dependent Green's function method, expressions for soft mode frequency, dielectric constant and dielectric tangent loss are obtained. Using model ...

  20. Observation of Conducting Structures in Detonation Nanodiamond Powder by Electron Paramagnetic Resonance

    Science.gov (United States)

    Binh, Nguyen Thi Thanh; Dolmatov, V. Yu.; Lapchuk, N. M.

    2018-01-01

    We have used electron paramagnetic resonance (EPR) to study high-purity detonation nanodiamond (DND) powders at room temperature. In recording the EPR signal with g factor 2.00247 and line width 0.890 mT, with automatic frequency control locking the frequency of the microwave generator (klystron) to the frequency of the experimental cavity, we observed a change in the shape of the EPR signal from the DND powder due to formation of an anisotropic electrically conducting structure in the powder. The electrical conductivity of the DND sample is apparent in the Dysonian EPR lineshape (strongly asymmetric signal with g factor 2.00146 and line width 0.281 mT) together with an abrupt shift of the baseline at the time of resonant absorption, and in the decrease in the cavity Q due to nonresonant microwave absorption. The observed effect can be explained by transition of the DND powder from a dielectric state to a state with metallic conductivity, due to spin ordering in a preferred direction.

  1. Micromachined On-Chip Dielectric Resonator Antenna Operating at 60 GHz

    KAUST Repository

    Sallam, Mai

    2015-06-01

    This paper presents a novel cylindrical Dielectric Resonator Antenna (DRA) suitable for millimeter-wave on-chip systems. The antenna was fabricated from a single high resistivity silicon wafer via micromachining technology. The new antenna was characterized using HFSS and experimentally with good agreement been found between the simulations and experiment. The proposed DRA has good radiation characteristics, where its gain and radiation efficiency are 7 dBi and 79.35%, respectively. These properties are reasonably constant over the working frequency bandwidth of the antenna. The return loss bandwidth was 2.23 GHz, which corresponds to 3.78% around 60 GHz. The antenna was primarily a broadside radiator with -15 dB cross polarization level.

  2. Tunable complex-valued multi-tap microwave photonic filter based on single silicon-oninsulator microring resonator

    DEFF Research Database (Denmark)

    Lloret, Juan; Sancho, Juan; Pu, Minhao

    2011-01-01

    A complex-valued multi-tap tunable microwave photonic filter based on single silicon-on-insulator microring resonator is presented. The degree of tunability of the approach involving two, three and four taps is theoretical and experimentally characterized, respectively. The constraints of exploit...

  3. Study of surface plasmon resonance of core-shell nanogeometry under the influence of perovskite dielectric environment: Electrostatic approximation

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Nilesh Kumar; Sharma, R. P. [Centre for Energy Studies, Indian Institute of Technology, Delhi-110016 (India)

    2016-05-23

    We have systematically study the nano-plasmonic coupling to the perovskite (CH{sub 3}NH{sub 3}PbI{sub 3}) dielectric media in terms of surface plasmon resonance. The surface plasmon resonances are exhibited by the metal nanoparticles which is the electromagnetic excitation conduction electron when it is irradiated by incident light photon. Tunable behaviour of SPRs can be utilized to enhance the absorption of photon inside the surrounding environment in the wavelength range 300 to 800 nm. We have been selected two different types of nanogeometry such as coated and non-coated metal nanoparticles (radii ranges from 10 to 15 nm) to understand the plasmonic interaction to the dielectric media. Finally, we have observed that the coated nanogeometry is more preferable as compared to non-coated system to analyse the tunability of SPR peaks.

  4. Optimization of silver-dielectric-silver nanoshell for sensing applications

    International Nuclear Information System (INIS)

    Shirzaditabar, Farzad; Saliminasab, Maryam

    2013-01-01

    In this paper, resonance light scattering (RLS) properties of a silver-dielectric-silver nanoshell, based on quasi-static approach and plasmon hybridization theory, are investigated. Scattering spectrum of silver-dielectric-silver nanoshell has two intense and clearly separated RLS peaks and provides a potential for biosensing based on surface plasmon resonance and surface-enhanced Raman scattering. The two RLS peaks in silver-dielectric-silver nanoshell are optimized by tuning the geometrical dimensions. In addition, the optimal geometry is discussed to obtain the high sensitivity of silver-dielectric-silver nanoshell. As the silver core radius increases, the sensitivity of silver-dielectric-silver nanoshell decreases whereas increasing the middle dielectric thickness increases the sensitivity of silver-dielectric-silver nanoshell

  5. Improved method for measuring the electric fields in microwave cavity resonators

    International Nuclear Information System (INIS)

    Amato, J.C.; Herrmann, H.

    1985-01-01

    The electric field distribution in microwave cavities is commonly measured by frequency perturbation techniques. For many cavity modes which are important in accelerator applications, the standard bead-pulling technique cannot provide adequate discrimination between fields parallel and perpendicular to the particle trajectory, leading to inaccurate and ambiguous results. A method is described which substantially increases the directivity of the measurements. The method has been successfully used to determine the accelerator-related cavity parameters at frequencies up to three times the fundamental resonant frequency

  6. Study on the Microwave Permittivity of Single-Walled Carbon Nanotube

    Science.gov (United States)

    Liu, Xiaolai; Zhao, Donglin

    2009-01-01

    In this article, we studied the microwave permittivity of the complex of the single-walled carbon nanotube and paraffin in 2-18GHz. In the range, the dielectric loss of single-walled carbon nanotube is higher, and the real part and the imaginary part of the dielectric constant decrease with the increase of frequency, and the dielectric constant…

  7. Measurements of the anomalous RF surface resistance of niobium using a dielectric resonator

    International Nuclear Information System (INIS)

    Moffat, D.; Bolore, M.; Bonin, B.; Jacques, E.; Safa, H.

    1996-01-01

    The surface resistance of high and low RRR niobium plates at 4.2 K and 1.8 K has been measured as a function of many processing and testing parameters. A dielectric resonator was used instead of a resonant cavity. This resonator offered the ability to make many, sensitive measurements with an efficient use of time and helium. It was found that the surface resistance, R s , of RRR=190 niobium increased noticeably from the theoretical value if the cooling rate was slower than∼10 K/min. Fast-cooled plates subsequently warmed to 130 K, and the recooled, showed a larger increase in R s than plates warmed to either 100 K or 160 K. Both chemically polished, and electropolished RRR=190 plates showed the effects of the 'Q-virus'. A heat treatment of 200 deg C made the RRR=190 plates less susceptible to the 'Q-virus'. RRR=30 niobium plates did not show any increase in R s , regardless of treatment. (author)

  8. Coupled modes, frequencies and fields of a dielectric resonator and a cavity using coupled mode theory

    Science.gov (United States)

    Elnaggar, Sameh Y.; Tervo, Richard; Mattar, Saba M.

    2014-01-01

    Probes consisting of a dielectric resonator (DR) inserted in a cavity are important integral components of electron paramagnetic resonance (EPR) spectrometers because of their high signal-to-noise ratio. This article studies the behavior of this system, based on the coupling between its dielectric and cavity modes. Coupled-mode theory (CMT) is used to determine the frequencies and electromagnetic fields of this coupled system. General expressions for the frequencies and field distributions are derived for both the resulting symmetric and anti-symmetric modes. These expressions are applicable to a wide range of frequencies (from MHz to THz). The coupling of cavities and DRs of various sizes and their resonant frequencies are studied in detail. Since the DR is situated within the cavity then the coupling between them is strong. In some cases the coupling coefficient, κ, is found to be as high as 0.4 even though the frequency difference between the uncoupled modes is large. This is directly attributed to the strong overlap between the fields of the uncoupled DR and cavity modes. In most cases, this improves the signal to noise ratio of the spectrometer. When the DR and the cavity have the same frequency, the coupled electromagnetic fields are found to contain equal contributions from the fields of the two uncoupled modes. This situation is ideal for the excitation of the probe through an iris on the cavity wall. To verify and validate the results, finite element simulations are carried out. This is achieved by simulating the coupling between a cylindrical cavity's TE011 and the dielectric insert's TE01δ modes. Coupling between the modes of higher order is also investigated and discussed. Based on CMT, closed form expressions for the fields of the coupled system are proposed. These expressions are crucial in the analysis of the probe's performance.

  9. Semiconductor-to-metallic flipping in a ZnFe{sub 2}O{sub 4}–graphene based smart nano-system: Temperature/microwave magneto-dielectric spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ameer, Shahid, E-mail: shahidameer@scme.nust.edu.pk [School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), H-12, Islamabad (Pakistan); Gul, Iftikhar Hussain [School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), H-12, Islamabad (Pakistan); Mahmood, Nasir [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Mujahid, Muhammad [School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), H-12, Islamabad (Pakistan)

    2015-01-15

    Zn-(FeO{sub 2}){sub 2}–graphene smart nano-composites were synthesized using a novel modified solvothermal synthesis with different percentages of graphene. The structure of the nanocomposite was confirmed through X-ray diffraction, micro-Raman scattering spectroscopy, Ultraviolet–Visible spectroscopy, and Fourier transform infrared spectroscopy. The structural growth and morphological aspects were analyzed using scanning/transmission electron microscopy, revealing marvelous micro-structural features of the assembled nano-system resembling a maple leaf. To determine the composition, energy dispersive spectroscopy and X-ray photoelectron spectroscopy were used. Microwave magneto-dielectric spectroscopy revealed the improved dielectric properties of the nano-composite compared to those of the parent functional nanocrystals. Temperature gradient dielectric spectroscopy was used over the spectral range from 100 Hz to 5 MHz to reveal the phenomenological effect that the nanosystem flips from its usual semiconductor nature to a metallic nature with sensing temperature. Electrical conductivity and dielectric analysis indicated that the dielectric loss and the dielectric permittivity increased at room temperature. This extraordinary switching capability of the functionalized graphene nanosystem opens up a new dimension for engineering advanced and efficient smart composite materials. - Graphical abstract: Display Omitted - Highlights: • Zn-(FeO{sub 2}){sub 2}–graphene smart nano-composites were synthesized using a novel modified solvothermal synthesis. • The synthesized nano-system exhibits marvelous leaf like microstructure. • These nano-composites show improved magneto dielectric response. • This engineered smart nano-system shows phenomenological flipping from semiconductor like nature to metallic behavior.

  10. Optimized Shielding and Fabrication Techniques for TiN and Al Microwave Resonators

    Science.gov (United States)

    Kreikebaum, John Mark; Kim, Eunseong; Livingston, William; Dove, Allison; Calusine, Gregory; Hover, David; Rosenberg, Danna; Oliver, William; Siddiqi, Irfan

    We present a systematic study of the effects of shielding and packaging on the internal quality factor (Qi) of Al and TiN microwave resonators designed for use in qubit readout. Surprisingly, Qi =1.3x106 TiN samples investigated at 100 mK exhibited no significant changes in linewidth when operated without magnetic shielding and in an open cryo-package. In contrast, Al resonators showed systematic improvement in Qi with each successive shield. Measurements were performed in an adiabatic demagnetization refrigerator, where typical ambient fields of 0.2 mT are present at the sample stage. We discuss the effect of 100 mK and 500 mK Cu radiation shields and cryoperm magnetic shielding on resonator Q as a function of temperature and input power in samples prepared with a variety of surface treatments, fabrication recipes, and embedding circuits. This research was supported by the ARO and IARPA.

  11. Realization of a complementary medium using dielectric photonic crystals.

    Science.gov (United States)

    Xu, Tao; Fang, Anan; Jia, Ziyuan; Ji, Liyu; Hang, Zhi Hong

    2017-12-01

    By exploiting the scaling invariance of photonic band diagrams, a complementary photonic crystal slab structure is realized by stacking two uniformly scaled double-zero-index dielectric photonic crystal slabs together. The space cancellation effect in complementary photonic crystals is demonstrated in both numerical simulations and microwave experiments. The refractive index dispersion of double-zero-index dielectric photonic crystal is experimentally measured. Using pure dielectrics, our photonic crystal structure will be an ideal platform to explore various intriguing properties related to a complementary medium.

  12. Frequency, moisture content, and temperature dependent dielectric properties of potato starch related to drying with radio-frequency/microwave energy.

    Science.gov (United States)

    Zhu, Zhuozhuo; Guo, Wenchuan

    2017-08-24

    To develop advanced drying methods using radio-frequency (RF) or microwave (MW) energy, dielectric properties of potato starch were determined using an open-ended coaxial-line probe and network analyzer at frequencies between 20 and 4,500 MHz, moisture contents between 15.1% and 43.1% wet basis (w.b.), and temperatures between 25 and 75 °C. The results showed that both dielectric constant (ε') and loss factor (ε″) were dependent on frequency, moisture content, and temperature. ε' decreased with increasing frequency at a given moisture content or temperature. At low moisture contents (≤25.4% w.b.) or low temperatures (≤45 °C), ε″ increased with increasing frequency. However, ε″ changed from decrease to increase with increasing frequency at high moisture contents or temperatures. At low temperatures (25-35 °C), both ε' and ε″ increased with increasing moisture content. At low moisture contents (15.1-19.5% w.b.), they increased with increasing temperature. The change trends of ε' and ε″ were different and dependent on temperature and moisture content at their high levels. The penetration depth (d p ) decreased with increasing frequency. RF treatments may provide potential large-scale industrial drying application for potato starch. This research offers useful information on dielectric properties of potato starch related to drying with electromagnetic energy.

  13. Dynamic dielectric properties of a wood liquefaction system using polyethylene glycol and glycerol

    Science.gov (United States)

    Mengchao Zhou; Thomas L. Eberhardt; Bo Cai; Chung-Yun Hse; Hui Pan

    2017-01-01

    Microwave-assisted liquefaction has shown potential for rapid thermal processing of lignocellulosic biomass. The efficiency of microwave heating depends largely on the dielectric properties of the materials being heated. The objective of this study was to investigate the dynamic interactions between microwave energy and the reaction system during the liquefaction of a...

  14. Microwave microscopy applied to EMC problem: Visualisation of electromagnetic field in the vicinity of electronic circuit and effect of nanomaterial coating

    Directory of Open Access Journals (Sweden)

    J. Rossignol

    2017-05-01

    Full Text Available This proposal is devoted to a collaborative approach dealing with microwave microscopy experiments. The application is dedicated to an electromagnetic field cartography above circuits and the influence of nanometric material layer deposition on the circuits. The first application is associated to a microstrip ring resonator. The results match with the simulated fields. The second application is focused on the effects of a dielectric layer deposited on the circuit and its impact in terms of electromagnetic propagation.

  15. Compensation of temperature frequency pushing in microwave resonator-meters on the basis VCO

    Directory of Open Access Journals (Sweden)

    Drobakhin O. O.

    2008-02-01

    Full Text Available It is shown that the influence of temperature oscillations on the error of measurements of parameters in the case of the application of microwave resonator meters on the basis of a voltage-controlled oscillator (VCO can be minimized by software using a special algorithm of VCO frequency setting correction. An algorithm of VCO frequency setting correction for triangle control voltage is proposed.

  16. Integrating an embedded system in a microwave moisture meter

    Science.gov (United States)

    The conversion of a PC- or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter measures the attenuation and phase shift of low power microwaves traversing the sample, from which the dielectric properties are calculated. T...

  17. Crystal structure refinement and microwave dielectric properties of new low dielectric loss AZrNb2O8 (A: Mn, Zn, Mg and Co) ceramics

    International Nuclear Information System (INIS)

    Ramarao, S.D.; Murthy, V.R.K.

    2013-01-01

    Graphical abstract: -- The effects of substituting different cations (Mn, Zn, Mg and Co) at the A-site of AZrNb 2 O 8 compounds on structural parameters such as packing fraction and B-site octahedral distortion were studied using X-ray powder diffraction in conjunction with Rietveld refinement. Variations in the dielectric constant (ε r ) were explained by the ionic polarizability of the compositions. The quality factor (Q × f) and temperature coefficient of resonant frequency (τ f ) were correlated with the packing fraction and B-site octahedral distortions (δ) in these compositions, respectively

  18. Resonant photon tunneling via surface plasmon polaritons through one-dimensional metal-dielectric metamaterials.

    Science.gov (United States)

    Tomita, Satoshi; Yokoyama, Takashi; Yanagi, Hisao; Wood, Ben; Pendry, John B; Fujii, Minoru; Hayashi, Shinji

    2008-06-23

    We report resonant photon tunneling (RPT) through one-dimensional metamaterials consisting of alternating layers of metal and dielectric. RPT via a surface plasmon polariton state permits evanescent light waves with large wavenumbers to be conveyed through the metamaterial. This is the mechanism for sub-wavelength imaging recently demonstrated with a super-lens. Furthermore, we find that the RPT peak is shifted from the reflectance dip with increasing the number of Al layers, indicating that the shift is caused by the losses in the RPT.

  19. New three-phase polymer-ceramic composite materials for miniaturized microwave antennas

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2016-09-01

    Full Text Available Unique polymer-ceramic composites for microwave antenna applications were prepared via melt extrusion using high-density polyethylene (HDPE as the matrix and low-density polyethylene (LDPE coated BaO–Nd2O3–TiO2 (BNT ceramic-powders as the filler. By incorporating LDPE into the composites via a coating route, high ceramic-powder volume content (up to 50 vol% could be achieved. The composites exhibited good microwave dielectric and thermomechanical behaviors. As BNT ceramic content increased from 10 vol% to 50 vol%, the permittivity of the composites increased from 3.45 (9 GHz to 11.87 (7 GHz, while the dielectric loss remained lower than 0.0016. Microstrip antennas for applications in global positioning systems (GPS were designed and fabricated from the composites containing 50 vol% BNT ceramics. The results indicate that the composites that have suitable permittivity and low dielectric loss are promising candidates for applications in miniaturized microwave devices, such as antennas.

  20. New three-phase polymer-ceramic composite materials for miniaturized microwave antennas

    Science.gov (United States)

    Zhang, Li; Zhang, Jie; Yue, Zhenxing; Li, Longtu

    2016-09-01

    Unique polymer-ceramic composites for microwave antenna applications were prepared via melt extrusion using high-density polyethylene (HDPE) as the matrix and low-density polyethylene (LDPE) coated BaO-Nd2O3-TiO2 (BNT) ceramic-powders as the filler. By incorporating LDPE into the composites via a coating route, high ceramic-powder volume content (up to 50 vol%) could be achieved. The composites exhibited good microwave dielectric and thermomechanical behaviors. As BNT ceramic content increased from 10 vol% to 50 vol%, the permittivity of the composites increased from 3.45 (9 GHz) to 11.87 (7 GHz), while the dielectric loss remained lower than 0.0016. Microstrip antennas for applications in global positioning systems (GPS) were designed and fabricated from the composites containing 50 vol% BNT ceramics. The results indicate that the composites that have suitable permittivity and low dielectric loss are promising candidates for applications in miniaturized microwave devices, such as antennas.

  1. Characterizing the attenuation of coaxial and rectangular microwave-frequency waveguides at cryogenic temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kurpiers, Philipp; Walter, Theodore; Magnard, Paul; Salathe, Yves; Wallraff, Andreas [ETH Zuerich, Department of Physics, Zuerich (Switzerland)

    2017-12-15

    Low-loss waveguides are required for quantum communication at distances beyond the chip-scale for any low-temperature solid-state implementation of quantum information processors. We measure and analyze the attenuation constant of commercially available microwave-frequency waveguides down to millikelvin temperatures and single photon levels. More specifically, we characterize the frequency-dependent loss of a range of coaxial and rectangular microwave waveguides down to 0.005 dB/m using a resonant-cavity technique. We study the loss tangent and relative permittivity of commonly used dielectric waveguide materials by measurements of the internal quality factors and their comparison with established loss models. The results of our characterization are relevant for accurately predicting the signal levels at the input of cryogenic devices, for reducing the loss in any detection chain, and for estimating the heat load induced by signal dissipation in cryogenic systems. (orig.)

  2. Understanding the microwave annealing of silicon

    Directory of Open Access Journals (Sweden)

    Chaochao Fu

    2017-03-01

    Full Text Available Though microwave annealing appears to be very appealing due to its unique features, lacking an in-depth understanding and accurate model hinder its application in semiconductor processing. In this paper, the physics-based model and accurate calculation for the microwave annealing of silicon are presented. Both thermal effects, including ohmic conduction loss and dielectric polarization loss, and non-thermal effects are thoroughly analyzed. We designed unique experiments to verify the mechanism and extract relevant parameters. We also explicitly illustrate the dynamic interaction processes of the microwave annealing of silicon. This work provides an in-depth understanding that can expedite the application of microwave annealing in semiconductor processing and open the door to implementing microwave annealing for future research and applications.

  3. Axion-photon conversion caused by dielectric interfaces: quantum field calculation

    Energy Technology Data Exchange (ETDEWEB)

    Ioannisian, Ara N. [Yerevan Physics Institute, Alikhanian Br. 2, 375036 Yerevan (Armenia); Kazarian, Narine [Institute for Theoretical Physics and Modeling, 375036 Yerevan (Armenia); Millar, Alexander J.; Raffelt, Georg G., E-mail: ara.ioannisyan@cern.ch, E-mail: narinkaz@gmail.com, E-mail: millar@mpp.mpg.de, E-mail: raffelt@mpp.mpg.de [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany)

    2017-09-01

    Axion-photon conversion at dielectric interfaces, immersed in a near-homogeneous magnetic field, is the basis for the dielectric haloscope method to search for axion dark matter. In analogy to transition radiation, this process is possible because the photon wave function is modified by the dielectric layers ('Garibian wave function') and is no longer an eigenstate of momentum. A conventional first-order perturbative calculation of the transition probability between a quantized axion state and these distorted photon states provides the microwave production rate. It agrees with previous results based on solving the classical Maxwell equations for the combined system of axions and electromagnetic fields. We argue that in general the average photon production rate is given by our result, independently of the detailed quantum state of the axion field. Moreover, our result provides a new perspective on axion-photon conversion in dielectric haloscopes because the rate is based on an overlap integral between unperturbed axion and photon wave functions, in analogy to the usual treatment of microwave-cavity haloscopes.

  4. Detection of napropamide by microwave resonator sensor using carbon nanotube – polypyrrole- chitosan layer

    Directory of Open Access Journals (Sweden)

    Ahmad Mohammadi

    2017-10-01

    Full Text Available This paper presents the design and fabrication of proximity coupled feed disk resonator coated with Multi Walled Carbon Nanotubes (MWCNTs and Polypyrrole-Chitosan (PPy-CHI layers as a napropamide sensor. Computer Simulation Technology (CST microwave studio was used to obtain the best design of disk resonator and feed line position in 5 GHz resonant frequency. Also, MWCNTs - PPy-CHI layers were coated on the disk resonator using electric field deposition and chemical interaction between sensing layer and napropamide was investigated by Fourier Transform Infrared Spectroscopy (FT-IR. The evaluation of the system was performed using different concentrations of commercial napropamide and pure napropamide at room temperature (25 0C. Experimental results prove that proximity coupled feed disk resonator coated with MWCNTs-PPy-CHI layers is a simple, fast (Measurement- time=5 seconds, accurate (as low as 0.1 ppm, low cost and it has the potential of fabrication as a portable instrumentation system for detecting pesticides in water and soil.

  5. Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Kento; Monnai, Yasuaki; Saijo, Soya; Fujita, Ryushiro; Ishi-Hayase, Junko; Itoh, Kohei M., E-mail: kitoh@appi.keio.ac.jp; Abe, Eisuke, E-mail: e-abe@keio.jp [School of Fundamental Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Watanabe, Hideyuki [Correlated Electronics Group, Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565 (Japan)

    2016-05-15

    We report on a microwave planar ring antenna specifically designed for optically detected magnetic resonance (ODMR) of nitrogen-vacancy (NV) centers in diamond. It has the resonance frequency at around 2.87 GHz with the bandwidth of 400 MHz, ensuring that ODMR can be observed under external magnetic fields up to 100 G without the need of adjustment of the resonance frequency. It is also spatially uniform within the 1-mm-diameter center hole, enabling the magnetic-field imaging in the wide spatial range. These features facilitate the experiments on quantum sensing and imaging using NV centers at room temperature.

  6. Characterisation of a microwave re-entrant cavity resonator for phase-equilibrium measurements and new dew-point data for a (0.25 argon + 0.75 carbon dioxide) mixture

    International Nuclear Information System (INIS)

    Tsankova, Gergana; Richter, Markus; Madigan, Adele; Stanwix, Paul L.; May, Eric F.; Span, Roland

    2016-01-01

    Highlights: • A microwave reentrant cavity resonator was refurbished and extensively characterised. • Vacuum resonance frequencies and Q-factors were modelled and experimentally validated. • Whispering gallery-type modes first-time reported for present cavity geometry. • Dew points of a (0.2491 argon + 0.7509 carbon dioxide) mixture were measured. • Measurements were carried out from T = (252–280) K at pressures up to 6.9 MPa. - Abstract: An apparatus based on a microwave re-entrant cavity resonator, originally built for accurate measurements of the dielectric permittivity of natural gas mixtures, was refurbished and extensively characterised. This was done to enable the future investigation of phase equilibria and (p, ρ, T, x) behaviour of fluid mixtures utilizing the present experimental technique. Vacuum resonance frequencies and Q-factors of the resonator’s modes were modelled using both analytic and finite element methods, and found to compare well with experimental values. The finite element models helped to identify two whispering gallery-type modes not previously reported for such cavity geometries. The models also predict distributions of the electric and magnetic fields in the re-entrant cavity resonator useful for identifying regions in the cavity more sensitive to the presence of a liquid. Following the resonator’s characterisation, its ability to measure dew points was tested using a gravimetrically prepared (0.2501 argon + 0.7499 carbon dioxide) mixture over the temperature range from (252 to 280) K at pressures from (2.8 to 6.9) MPa. The combined expanded uncertainty with a level of confidence of approximately 95% (k = 2) in dew-point temperature and pressure ranged between (0.025 and 0.044) K and from (0.009 to 0.015) MPa, respectively. We compared the experimental dew-point pressures with the recently developed multi-parameter equation of state optimised for combustion gases (EOS-CG), showing relative deviations in the range of (0

  7. Metallic dielectric photonic crystals and methods of fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Jeffrey Brian; Kim, Sang-Gook

    2016-12-20

    A metallic-dielectric photonic crystal is formed with a periodic structure defining a plurality of resonant cavities to selectively absorb incident radiation. A metal layer is deposited on the inner surfaces of the resonant cavities and a dielectric material fills inside the resonant cavities. This photonic crystal can be used to selectively absorb broadband solar radiation and then reemit absorbed radiation in a wavelength band that matches the absorption band of a photovoltaic cell. The photonic crystal can be fabricated by patterning a sacrificial layer with a plurality of holes, into which is deposited a supporting material. Removing the rest of the sacrificial layer creates a supporting structure, on which a layer of metal is deposited to define resonant cavities. A dielectric material then fills the cavities to form the photonic crystal.

  8. Metallic dielectric photonic crystals and methods of fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Jeffrey Brian; Kim, Sang-Gook

    2017-12-05

    A metallic-dielectric photonic crystal is formed with a periodic structure defining a plurality of resonant cavities to selectively absorb incident radiation. A metal layer is deposited on the inner surfaces of the resonant cavities and a dielectric material fills inside the resonant cavities. This photonic crystal can be used to selectively absorb broadband solar radiation and then reemit absorbed radiation in a wavelength band that matches the absorption band of a photovoltaic cell. The photonic crystal can be fabricated by patterning a sacrificial layer with a plurality of holes, into which is deposited a supporting material. Removing the rest of the sacrificial layer creates a supporting structure, on which a layer of metal is deposited to define resonant cavities. A dielectric material then fills the cavities to form the photonic crystal.

  9. Controlling output pulse and prepulse in a resonant microwave pulse compressor

    International Nuclear Information System (INIS)

    Shlapakovski, A.; Artemenko, S.; Chumerin, P.; Yushkov, Yu.

    2013-01-01

    A resonant microwave pulse compressor with a waveguide H-plane-tee-based energy extraction unit was studied in terms of its capability to produce output pulses that comprise a low-power long-duration (prepulse) and a high-power short-duration part. The application of such combined pulses with widely variable prepulse and high-power pulse power and energy ratios is of interest in the research area of electronic hardware vulnerability. The characteristics of output radiation pulses are controlled by the variation of the H-plane tee transition attenuation at the stage of microwave energy storage in the compressor cavity. Results of theoretical estimations of the parameters tuning range and experimental investigations of the prototype S-band compressor (1.5 MW, 12 ns output pulse; ∼13.2 dB gain) are presented. The achievable maximum in the prepulse power is found to be about half the power of the primary microwave source. It has been shown that the energy of the prepulse becomes comparable with that of the short-duration (nanosecond) pulse, while the power of the latter decreases insignificantly. The possible range of variation of the prepulse power and energy can be as wide as 40 dB. In the experiments, the prepulse level control within the range of ∼10 dB was demonstrated.

  10. Integrating an Embedded System within a Microwave Moisture Meter

    Science.gov (United States)

    In this paper, the conversion of a PC or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter uses low-power microwaves to measure the attenuation and phase shift of the sample, from which the dielectric properties are cal...

  11. Electron cyclotron resonance microwave ion sources for thin film processing

    International Nuclear Information System (INIS)

    Berry, L.A.; Gorbatkin, S.M.

    1990-01-01

    Plasmas created by microwave absorption at the electron cyclotron resonance (ECR) are increasingly used for a variety of plasma processes, including both etching and deposition. ECR sources efficiently couple energy to electrons and use magnetic confinement to maximize the probability of an electron creating an ion or free radical in pressure regimes where the mean free path for ionization is comparable to the ECR source dimensions. The general operating principles of ECR sources are discussed with special emphasis on their use for thin film etching. Data on source performance during Cl base etching of Si using an ECR system are presented. 32 refs., 5 figs

  12. Microwave dynamics of high aspect ratio superconducting nanowires studied using self-resonance

    Science.gov (United States)

    Santavicca, Daniel F.; Adams, Jesse K.; Grant, Lierd E.; McCaughan, Adam N.; Berggren, Karl K.

    2016-06-01

    We study the microwave impedance of extremely high aspect ratio (length/width ≈ 5000) superconducting niobium nitride nanowires. The nanowires are fabricated in a compact meander geometry that is in series with the center conductor of a 50 Ω coplanar waveguide transmission line. The transmission coefficient of the sample is measured up to 20 GHz. At high frequency, a peak in the transmission coefficient is seen. Numerical simulations show that this is a half-wave resonance along the length of the nanowire, where the nanowire acts as a high impedance, slow wave transmission line. This resonance sets the upper frequency limit for these nanowires as inductive elements. Fitting simulations to the measured resonance enables a precise determination of the nanowire's complex sheet impedance at the resonance frequency. The real part is a measure of dissipation, while the imaginary part is dominated by kinetic inductance. We characterize the dependence of the sheet resistance and sheet inductance on both temperature and current and compare the results to recent theoretical predictions for disordered superconductors. These results can aid in the understanding of high frequency devices based on superconducting nanowires. They may also lead to the development of novel superconducting devices such as ultra-compact resonators and slow-wave structures.

  13. Distance control for a near-field scanning microwave microscope in liquid using a quartz tuning fork

    International Nuclear Information System (INIS)

    Kim, Song Hul; Yoo, Hyun Jun; Yoo, Hyung Geun; Lee, Kie Jin

    2004-01-01

    We demonstrate a scanning near-field microwave microscope (NSMM) in the liquid environment using a tuning fork shear-force feedback method to control the distance between tip and sample. The probe tip for the NSMM is only immersed in water and attached to one prong of a quartz tuning fork and directly coupled to a high-quality dielectric resonator at an operating frequency f = 4.5-5.5 GHz. This distance control method is independent of the local microwave characteristics. The amplitude of the tuning fork was used as a set point of the distance control parameter in the liquid. To demonstrate the ability of the distance regulation system, we present the NSMM images of a copper film in air and liquid without and with readjusting the distance set point and a DNA film image in buffer solution.

  14. Microwave impedance imaging on semiconductor memory devices

    Science.gov (United States)

    Kundhikanjana, Worasom; Lai, Keji; Yang, Yongliang; Kelly, Michael; Shen, Zhi-Xun

    2011-03-01

    Microwave impedance microscopy (MIM) maps out the real and imaginary components of the tip-sample impedance, from which the local conductivity and dielectric constant distribution can be derived. The stray field contribution is minimized in our shielded cantilever design, enabling quantitative analysis of nano-materials and device structures. We demonstrate here that the MIM can spatially resolve the conductivity variation in a dynamic random access memory (DRAM) sample. With DC or low-frequency AC bias applied to the tip, contrast between n-doped and p-doped regions in the dC/dV images is observed, and p-n junctions are highlighted in the dR/dV images. The results can be directly compared with data taken by scanning capacitance microscope (SCM), which uses unshielded cantilevers and resonant electronics, and the MIM reveals more information of the local dopant concentration than SCM.

  15. Low-Temperature Sintering Li3Mg1.8Ca0.2NbO6 Microwave Dielectric Ceramics with LMZBS Glass

    Science.gov (United States)

    Wang, Gang; Zhang, Huaiwu; Liu, Cheng; Su, Hua; Jia, Lijun; Li, Jie; Huang, Xin; Gan, Gongwen

    2018-05-01

    Li3Mg1.8Ca0.2NbO6 ceramics doped with Li2O-MgO-ZnO-B2O3-SiO2 glass (LMZBS) were prepared via a solid-state route. The LMZBS glass effectively reduced the sintering temperature of Li3Mg1.8Ca0.2NbO6 ceramics to 950°C. The effects of the LMZBS glass on the sintering behavior, microstructures and microwave dielectric properties of Li3Mg1.8Ca0.2NbO6 ceramics are discussed in detail. Among all the LMZBS doped Li3Mg1.8Ca0.2NbO6 ceramics, the sample with 1 wt.% of LMZBS glass sintered at 950°C for 4 h exhibited good dielectric properties: ɛ r = 16.7, Q × f = 31,000 GHz (9.92 GHz), τ f = - 1.3 ppm/°C. The Li3Mg1.8Ca0.2NbO6 ceramics possessed excellent chemical compatibility with Ag electrodes, and could be applied in low temperature co-fired ceramics (LTCC) applications.

  16. Carpet cloak with graded dielectric metasurface (Presentation Recording)

    Science.gov (United States)

    Hsu, LiYi; Lepetit, Thomas; Kante, Boubacar

    2015-09-01

    We demonstrate a method to hide a Gaussian-shaped bump on a ground plane from an incoming plane wave. In essence, we use a graded metasurface to shape the wavefronts like those of a flat ground plane[1,2].The metasurface provides additional phase to the electromagnetic field to control the reflection angle. To mimic a flat ground plane, the reflection angle is chosen to be equal to the incident angle. The desired phase distribution is calculated based on generalized Snell's laws[3]. We design our metasurface in the microwave range using sub-wavelength dielectric resonators. We verify the design by full-wave time-domain simulations and show that the result matches our theory well. This approach can be applied to hide any object on a ground plane not only at microwave frequencies but also at higher frequencies up to the infrared. 1. Jensen Li and J. B. Pendry, Hiding under the Carpet: A New Strategy for Cloaking. Phys. Rev. Lett. 101, 203901 (2008) 2. Andrea Alu, Mantle cloak: Invisibility induced by a surface. Phys. Rev. B 80, 245115 (2009) 3. Yu N, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 334(6054):333-337 (2011)

  17. Increased Accuracy in the Measurement of the Dielectric Constant of Seawater at 1.413 GHz

    Science.gov (United States)

    Zhou, Y.; Lang R.; Drego, C.; Utku, C.; LeVine, D.

    2012-01-01

    This paper describes the latest results for the measurements of the dielectric constant at 1.413 GHz by using a resonant cavity technique. The purpose of these measurements is to develop an accurate relationship for the dependence of the dielectric constant of sea water on temperature and salinity which is needed by the Aquarius inversion algorithm to retrieve salinity. Aquarius is the major instrument on the Aquarius/SAC-D observatory, a NASA/CONAE satellite mission launched in June of20ll with the primary mission of measuring global sea surface salinity to an accuracy of 0.2 psu. Aquarius measures salinity with a 1.413 GHz radiometer and uses a scatterometer to compensate for the effects of surface roughness. The core part of the seawater dielectric constant measurement system is a brass microwave cavity that is resonant at 1.413 GHz. The seawater is introduced into the cavity through a capillary glass tube having an inner diameter of 0.1 mm. The change of resonance frequency and the cavity Q value are used to determine the real and imaginary parts of the dielectric constant of seawater introduced into the thin tube. Measurements are automated with the help of software developed at the George Washington University. In this talk, new results from measurements made since September 2010 will be presented for salinities 30, 35 and 38 psu with a temperature range of O C to 350 C in intervals of 5 C. These measurements are more accurate than earlier measurements made in 2008 because of a new method for measuring the calibration constant using methanol. In addition, the variance of repeated seawater measurements has been reduced by letting the system stabilize overnight between temperature changes. The new results are compared to the Kline Swift and Meissner Wentz model functions. The importance of an accurate model function will be illustrated by using these model functions to invert the Aquarius brightness temperature to get the salinity values. The salinity values

  18. Dielectric response and electric conductivity of ceramics obtained from BiFeO{sub 3} synthesized by microwave hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Chybczyńska, K.; Markiewicz, E., E-mail: ewamar@ifmpan.poznan.pl; Błaszyk, M.; Hilczer, B.; Andrzejewski, B.

    2016-06-25

    BiFeO{sub 3} powder which formed ball-like structures resembling flowers was obtained by microwave hydrothermal synthesis. The flowers were of a dozen or so μm in diameter and the thickness of the crystallites forming petals could be controlled. The material was characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Dielectric response of ceramics obtained from the powder contained three extrinsic contributions, which could be correlated with the differences in temperature variation of the ac conductivity. The dielectric relaxation between 150 K and 300 K was related to reorientations of Fe{sup 3+}–Fe{sup 2+} dipoles and characterized by an activation energy of 0.4 eV, which was independent of the petal thickness. The dielectric and electric response in the range 300 K ÷ 450 K usually ascribed to the grain boundary and interfacial polarization effect was diffused and could not be characterized. Above 450 K the activation energy of dc conductivity was 1.73 eV and 1.52 eV for ceramics consisting of crystallites of mean thickness of 160 nm and 260 nm, respectively. The energies, which are considerably higher than those reported earlier for BFO nanoceramics, were discussed considering the interactions between oxygen vacancies and size scaled ferroelectric domain walls, which in BiFeO{sub 3} are associated with electrostatic potential steps. - Highlights: • BiFeO{sub 3} with controllable thickness of crystallites was synthesized hydrothermally. • The powder and ceramics obtained were characterized by XRD, SEM and XPS methods. • Dielectric response of the ceramics is correlated with the ac conductivity. • Size-scaled ferroelectric domains and oxygen vacancies interact above 450 K.

  19. Surface magnetic anisotropy in glass-coated amorphous microwires as determined from ferromagnetic resonance measurements

    International Nuclear Information System (INIS)

    Garcia-Miquel, H.; Garcia, J.M.; Garcia-Beneytez, J.M.; Vazquez, M.

    2001-01-01

    The ferromagnetic resonance frequency of different Co base glass-coated amorphous magnetic microwires about 3.5 μm in diameter with negative, vanishing and positive magnetostriction has been investigated from power absorption measurements in the microwave frequency range. The experimental technique employed here involves the replacement of the dielectric of a coaxial transmission line by the sample to be measured. From the evolution of the resonance frequency with DC applied magnetic field, the surface magnetic anisotropy field of the microwires has been quantitatively obtained and, as expected, found to depend on the sign and strength of the magnetostriction. Similar values for the surface anisotropy are obtained in comparison with bulk anisotropy as determined from quasi-static hysteresis loops measurements

  20. Microwave dielectric properties of CaCu{sub 3}Ti{sub 4}O{sub 12}-Al{sub 2}O{sub 3} composite

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Mohd Fariz Ab; Abu, Mohamad Johari; Zaman, Rosyaini Afindi; Ahmad, Zainal Arifin [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Karim, Saniah Ab; Mohamed, Julie Juliewatty, E-mail: juliewatty.m@umk.edu.my [Advance Materials Research Cluster, Faculty of Earth Sciences, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan (Malaysia); Ain, Mohd Fadzil [School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2016-07-19

    (1-x)CaCu{sub 3}Ti{sub 4}O{sub 12} + (x)Al{sub 2}O{sub 3} composite (0 ≤ x ≤0.25) was prepared via conventional solid-state reaction method. The fabrication of sample was started with synthesizing stoichiometric CCTO from CaCO{sub 3}, CuO and TiO{sub 2} powders, then wet-mixed in deionized water for 24 h. The process was continued with calcined CCTO powder at 900 °C for 12 h before sintered at 1040 °C for 10 h. Next, the calcined CCTO powder with different amount of Al{sub 2}O{sub 3} were mixed for 24 h, then palletized and sintered at 1040 °C for 10. X-ray diffraction analysis on the sintered samples showed that CCTO powder was in a single phase, meanwhile the trace of secondary peaks which belong to CaAl{sub 2}O{sub 4} and Corundum (Al{sub 2}O{sub 3}) could be observed in the other samples Scanning electron microscopy analysis showed that the grain size of the sample is firstly increased with addition of Al{sub 2}O{sub 3} (x = 0.01), then become smaller with the x > 0.01. Microwave dielectric properties showed that the addition of Al{sub 2}O{sub 3} (x = 0.01) was remarkably reduced the dielectric loss while slightly increased the dielectric permittivity. However, further addition of Al{sub 2}O{sub 3} was reduced both dielectric loss and permittivity at least for an order of magnitude.

  1. Ring resonator-based on-chip modulation transformer for high-performance phase-modulated microwave photonic links.

    Science.gov (United States)

    Zhuang, Leimeng; Taddei, Caterina; Hoekman, Marcel; Leinse, Arne; Heideman, René; van Dijk, Paulus; Roeloffzen, Chris

    2013-11-04

    In this paper, we propose and experimentally demonstrate a novel wideband on-chip photonic modulation transformer for phase-modulated microwave photonic links. The proposed device is able to transform phase-modulated optical signals into intensity-modulated versions (or vice versa) with nearly zero conversion of laser phase noise to intensity noise. It is constructed using waveguide-based ring resonators, which features simple architecture, stable operation, and easy reconfigurability. Beyond the stand-alone functionality, the proposed device can also be integrated with other functional building blocks of photonic integrated circuits (PICs) to create on-chip complex microwave photonic signal processors. As an application example, a PIC consisting of two such modulation transformers and a notch filter has been designed and realized in TriPleX(TM) waveguide technology. The realized device uses a 2 × 2 splitting circuit and 3 ring resonators with a free spectral range of 25 GHz, which are all equipped with continuous tuning elements. The device can perform phase-to-intensity modulation transform and carrier suppression simultaneously, which enables high-performance phase-modulated microwave photonics links (PM-MPLs). Associated with the bias-free and low-complexity advantages of the phase modulators, a single-fiber-span PM-MPL with a RF bandwidth of 12 GHz (3 dB-suppression band 6 to 18 GHz) has been demonstrated comprising the proposed PIC, where the achieved spurious-free dynamic range performance is comparable to that of Class-AB MPLs using low-biased Mach-Zehnder modulators.

  2. Microwave heating processing as alternative of pretreatment in second-generation biorefinery: An overview

    International Nuclear Information System (INIS)

    Aguilar-Reynosa, Alejandra; Romaní, Aloia; Rodríguez-Jasso, Rosa Ma.; Aguilar, Cristóbal N.; Garrote, Gil; Ruiz, Héctor A.

    2017-01-01

    Highlights: • Microwave heating pretreatment for lignocellulosic material. • Fundament of lignocellulosic material fractionation using microwave irradiation. • Energy consumption in microwave pretreatments and microwave reactors description. • Microwave heating as pretreatment in a biorefinery concept. - Abstract: The development of a feasible biorefinery is in need of alternative technologies to improve lignocellulosic biomass conversion by the suitable use of energy. Microwave heating processing (MHP) is emerging as promising unconventional pretreatment of lignocellulosic materials (LCMs). MHP applied as pretreatment induces LCMs breakdown through the molecular collision caused by the dielectric polarization. Polar particles movement generates a quick heating consequently the temperatures and times of process are lower. In this way, MHP has positioned as green technology in comparison with other types of heating. Microwave technology represents an excellent option to obtain susceptible substrates to enzymatic saccharification and subsequently in the production of bioethanol and high-added compounds. However, it is still necessary to study the dielectric properties of materials, and conduct economic studies to achieve development in pilot and industrial scale. This work aims to provide an overview of recent progress and alternative configurations for combining the application of microwave technology on the pretreatment of LCMs in terms of biorefinery.

  3. STIR: Microwave Response of Carbon Nanotubes in Polymer Nanocomposite Welds

    Science.gov (United States)

    2016-01-28

    STIR: RDRL-ROE-M: Microwave Response of Carbon Nanotubes in Polymer Nanocomposite Welds Thrust 1 of the STIR project examines the heat response of...polymer composites loaded with carbon nanotubes (CNTs) to microwave irradiation. This involves (1) a study of how CNT loading affects dielectric...properties of polymer composites and (2) a study of how CNT loading affects the heating response to microwave radiation. Our hypothesis is that the

  4. Cosmic Microwave Background Polarization Detector with High Efficiency, Broad Bandwidth, and Highly Symmetric Coupling to Transition Edge Sensor Bolometers

    Science.gov (United States)

    Wollack, E.; Cao, N.; Chuss, D.; Denis, K.; Hsieh, W.-T.; Moseley, S. Harvey; Schneider, G.; Stevenson, T.; Travers, D.; U-yen, K.

    2008-01-01

    Four probe antennas transfer signals from waveguide to microstrip lines. The probes not only provide broadband impedance matching, but also thermally isolate waveguide and detector. In addition, we developed a new photonic waveguide choke joint design, with four-fold symmetry, to suppress power leakage at the interface. We have developed facilities to test superconducting circuit elements using a cryogenic microwave probe station, and more complete systems in waveguide. We used the ring resonator shown below to measure a dielectric loss tangent 99% coupling efficiency over 30% fractional bandwidth.

  5. Effects of classical resonances on the chaotic microwave ionization of highly excited hydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, R V

    1987-05-01

    Experimental measurements of the microwave ionization of highly excited hydrogen atoms with principal quantum numbers ranging from n = 32 to 90 are well described by a classical treatment of the nonlinear electron dynamics. In particular, the measurements of the threshold field for the onset of significant ionization exhibits a curious dependence on the microwave frequency with distinct peaks at rational values of the scaled frequency, n/sup 3/..cap omega.. = 1, 2/3, 1/2, 2/5, 1/3, 1/4, 1/5, which is in excellent agreement with the predictions for the onset of classical chaos in a one-dimensional model of the experiment. In the classical theory this frequency dependence of the threshold fields is due to the stabilizing effect of nonlinear resonances (''islands'') in the classical phase space which is greatly enhanced when the microwave perturbation is turned on slowly (adiabatically) as in the experiments. Quantum calculations for this one-dimensional model also exhibit this stabilizing effect due to the preferential excitation of localized quasi-energy states.

  6. A low-cost, Nist-traceable, high performance dielectric resonator Master Oscillator

    International Nuclear Information System (INIS)

    Doolittle, L.R.; Hovater, C.; Merminga, L.; Musson, J.; Wiseman, W.

    1999-01-01

    The current CEBAF Master Oscillator (MO) uses a quartz-based 10 MHz reference to synthesize 70 MHz and 499 MHz, which are then distributed to each of the klystron galleries on site. Due to the specialized nature of CEBAF's MO requirements, it has been determined that an in-house design and fabrication would provide a cost-effective alternative to purchasing or modifying vendor equipment. A Global Positioning System (GPS) disciplined, Direct Digital Synthesis (DDS) based MO is proposed which incorporates low-cost consumer RF components, designed for cellular communications. A 499 MHz Dielectric Resonant Oscillator (DRO) Voltage Controlled Oscillator (VCO) is phase-locked to a GPS-disciplined 10 MHz reference, and micro-tuned via a DDS, in an effort to achieve the lowest phase noise possible

  7. ORNL TNS program: microwave start-up of tokamak plasmas near electron cyclotron and upper hybrid resonances

    International Nuclear Information System (INIS)

    Peng, Y.K.M.; Borowski, S.K.

    1977-12-01

    The scenario of toroidal plasma start-up with microwave initiation and heating near the electron cyclotron frequency is suggested and examined here. We assume microwave irradiation from the high field side and an anomalously large absorption of the extraordinary waves near the upper hybrid resonance. The dominant electron energy losses are assumed to be due to magnetic field curvature and parallel drifts, ionization of neutrals, cooling by ions, and radiation by low Z impurities. It is shown by particle and energy balance considerations that electron temperatures around 250 eV and densities of 10 12 to 10 13 cm -3 can be maintained, at least in a narrow region near the upper hybrid resonance, with modest microwave powers in the Impurity Study Experiment (ISX) (120 kW at 28 GHz) and The Next Step (TNS) (0.57 MW at 120 GHz). The loop voltages required for start-up from these initial plasmas are also estimated. It is shown that the loop voltage can be reduced by a factor of five to ten from that for unassisted start-up without an increase in the resistive loss in volt-seconds. If this reduction in loop voltage is verified in the ISX experiments, substantial savings in the cost of power supplies for the ohmic heating (OH) and equilibrium field (EF) coils can be realized in future large tokamaks

  8. Microwave bio-sensor based on symmetrical split ring resonator with spurline filters for therapeutic goods detection.

    Directory of Open Access Journals (Sweden)

    Rammah A Alahnomi

    Full Text Available A novel symmetrical split ring resonator (SSRR based microwave sensor with spurline filters for detecting and characterizing the properties of solid materials has been developed. Due to the weak perturbation in the interaction of material under test (MUT and planar microwave sensor, spurline filters were embedded to the SSRR microwave sensor which effectively enhanced Q-factor with suppressing the undesired harmonic frequency. The spurline filter structures force the presented sensor to resonate at a fundamental frequency of 2.2 GHz with the capabilities of suppressing rejected harmonic frequency and miniaturization in circuit size. A wide bandwidth rejection is achieved by using double spurlines filters with high Q-factor achievement (up to 652.94 compared to single spurline filter. The new SSRR sensor with spurline filters displayed desired properties such as high sensitivity, accuracy, and performance with a 1.3% typical percentage error in the measurement results. Furthermore, the sensor has been successfully applied for detecting and characterizing solid materials (such as Roger 5880, Roger 4350, and FR4 and evidently demonstrated that it can suppress the harmonic frequency effectively. This novel design with harmonic suppression is useful for various applications such as food industry (meat, fruit, vegetables, biological medicine (derived from proteins and other substances produced by the body, and Therapeutic goods (antiseptics, vitamins, anti-psychotics, and other medicines.

  9. Microwave evaluation of electromigration susceptibility in advanced interconnects

    Science.gov (United States)

    Sunday, Christopher E.; Veksler, Dmitry; Cheung, Kin C.; Obeng, Yaw S.

    2017-11-01

    Traditional metrology has been unable to adequately address the needs of the emerging integrated circuits (ICs) at the nano scale; thus, new metrology and techniques are needed. For example, the reliability challenges in fabrication need to be well understood and controlled to facilitate mass production of through-substrate-via (TSV) enabled three-dimensional integrated circuits (3D-ICs). This requires new approaches to the metrology. In this paper, we use the microwave propagation characteristics to study the reliability issues that precede the physical damage caused by electromigration in the Cu-filled TSVs. The pre-failure microwave insertion losses and group delay are dependent on both the device temperature and the amount of current forced through the devices-under-test. The microwave insertion losses increase with the increase in the test temperature, while the group delay increases with the increase in the forced direct current magnitude. The microwave insertion losses are attributed to the defect mobility at the Cu-TiN interface, and the group delay changes are due to resistive heating in the interconnects, which perturbs the dielectric properties of the cladding dielectrics of the copper fill in the TSVs.

  10. Detection of plant adaptation responses to saline environment in rhizosphere using microwave sensing

    International Nuclear Information System (INIS)

    Shimomachi, T.; Kobashikawa, C.; Tanigawa, H.; Omoda, E.

    2008-01-01

    The physiological adaptation responses in plants to environmental stress, such as water stress and salt stress induce changes in physicochemical conditions of the plant, since formation of osmotic-regulatory substances can be formed during the environmental adaptation responses. Strong electrolytes, amino acids, proteins and saccharides are well-known as osmoregulatory substances. Since these substances are ionic conductors and their molecules are electrically dipolar, it can be considered that these substances cause changes in the dielectric properties of the plant, which can be detected by microwave sensing. The dielectric properties (0.3 to 3GHz), water content and water potential of plant leaves which reflect the physiological condition of the plant under salt stress were measured and analyzed. Experimental results showed the potential of the microwave sensing as a method for monitoring adaptation responses in plants under saline environment and that suggested the saline environment in rhizosphere can be detected noninvasively and quantitatively by the microwave sensing which detects the changes in complex dielectric properties of the plant

  11. Dielectric properties of lanthanum gallate (LaGaO3) crystal

    Science.gov (United States)

    Dube, D. C.; Scheel, H. J.; Reaney, I.; Daglish, M.; Setter, N.

    1994-04-01

    Dielectric properties of single crystals of LaGaO3 have been measured at low frequencies as well as in the microwave region over a wide temperature range. Measurements performed on two crystal orientations, viz. (001) and (110), show dielectric anomalies at a transition near 145 °C. Dielectric anisotropy below, but not above, 145 °C confirm the previously reported orthorhombic symmetry at room temperature and rhombohedral symmetry above 145 °C. Domain wall motion which arises as a result of a phase transition has been observed around 145 °C.

  12. Investigations of a voltage-biased microwave cavity for quantum measurements of nanomechanical resonators

    Science.gov (United States)

    Rouxinol, Francisco; Hao, Hugo; Lahaye, Matt

    2015-03-01

    Quantum electromechanical systems incorporating superconducting qubits have received extensive interest in recent years due to their promising prospects for studying fundamental topics of quantum mechanics such as quantum measurement, entanglement and decoherence in new macroscopic limits, also for their potential as elements in technological applications in quantum information network and weak force detector, to name a few. In this presentation we will discuss ours efforts toward to devise an electromechanical circuit to strongly couple a nanomechanical resonator to a superconductor qubit, where a high voltage dc-bias is required, to study quantum behavior of a mechanical resonator. Preliminary results of our latest generation of devices integrating a superconductor qubit into a high-Q voltage biased microwave cavities are presented. Developments in the circuit design to couple a mechanical resonator to a qubit in the high-Q voltage bias CPW cavity is discussed as well prospects of achieving single-phonon measurement resolution. National Science Foundation under Grant No. DMR-1056423 and Grant No. DMR-1312421.

  13. Swept frequency measurements of microwave antennas in feline and canine brain

    International Nuclear Information System (INIS)

    Salcman, M.; Neuberth, G.; Nudelman, R.W.; Ferraro, F.T.; Hartman, M.

    1986-01-01

    Interstitial microwave hyperthermia may prove to be an important therapy for malignant brain tumors. For safety and efficiency, the size and number of intracranial microwave antennas needs to be limited. Low power swept frequency measurements of VSWR were carried out in the brains of anesthetized cats and dogs utilizing stereotactically placed monopole antennas. The coupling efficiency of antennas at any frequency was degraded (VSWR>2:1) if a length of antenna less than 2h was inserted or if a plastic catheter was utilized. Such measurements indicate that (h) can be shortened 25% from the resonant length without seriously degrading antenna performance. The total length can be halved if a catheter with a high dielectric is used. High power tests (2-10w) of short antennas at 915 MHz in a ceramic catheter (e = 10) at 45-50 0 C produce thermal fields approximately 2 cm in diameter in normal brain. It should be possible to efficiently and safely heat human brain tumors of average size utilizing these antennas and catheters at 915 MHz

  14. Intense microwave pulses II. SPIE Volume 2154

    International Nuclear Information System (INIS)

    Brandt, H.E.

    1994-01-01

    The primary purpose of this conference was to present and critically evaluate new and ongoing research on the generation and transmission of intense microwave pulses. Significant progress was reported on high-power, high-current relativistic klystron amplifier research and design. Other work presented at the conference, include research on a high-power relativistic magnetron driven by a high-current linear induction accelerator, derivation of a Pierce-type dispersion relation describing the interaction of an intense relativistic electron beam with a corrugated cylindrical slow-wave structure, experiments on an X-band backward-wave cyclotron maser oscillator, and observation of frequency chirping in a free electron laser amplifier. Other presentations included work on multiwave Cerenkov generator experiments, analysis of resonance characteristics of slow-wave structures in high-power Cerenkov devices, linear analysis and numerical simulation of Doppler-shifted cyclotron harmonics in a cyclotron autoresonance klystron, high-power virtual cathode oscillator theory and experiments, design of a sixth-harmonic gyrofrequency multiplier as a millimeter-wave source, and experiments on dielectric-loaded and multiwave slotted gyro-TWT amplifiers. A review was presented on innovative concepts which employ high-power microwaves in propulsion of space vehicles. Separate abstracts were prepared for 34 papers of this conference

  15. Microwave Characterization of Ba-Substituted PZT and ZnO Thin Films.

    Science.gov (United States)

    Tierno, Davide; Dekkers, Matthijn; Wittendorp, Paul; Sun, Xiao; Bayer, Samuel C; King, Seth T; Van Elshocht, Sven; Heyns, Marc; Radu, Iuliana P; Adelmann, Christoph

    2018-05-01

    The microwave dielectric properties of (Ba 0.1 Pb 0.9 )(Zr 0.52 Ti 0.48 )O 3 (BPZT) and ZnO thin films with thicknesses below were investigated. No significant dielectric relaxation was observed for both BPZT and ZnO up to 30 GHz. The intrinsic dielectric constant of BPZT was as high as 980 at 30 GHz. The absence of strong dielectric dispersion and loss peaks in the studied frequency range can be linked to the small grain diameters in these ultrathin films.

  16. A Novel Symmetrical Split Ring Resonator Based on Microstrip for Microwave Sensors

    Directory of Open Access Journals (Sweden)

    Alahnomi Rammah A.

    2016-02-01

    Full Text Available In this paper, novel symmetrical split ring resonator (SSRR is proposed as a suitable component for performance enhancement of microwave sensors. SSRR has been employed for enhancing the insertion loss of the microwave sensors. Using the same device area, we can achieve a high Q-factor of 141.54 from the periphery enhancement using Quasi-linear coupling SSRR, whereas loose coupling SSRR can achieve a Q-factor of 33.98 only. Using Quasi-linear coupling SSRR, the Q-factor is enhanced 4.16 times the loose coupling SSRR using the same device area. After the optimization was made, the SSRR sensor with loose coupling scheme has achieved a very high Qfactor value around 407.34 while quasi-linear scheme has achieved high Q-factor value of 278.78 at the same operating frequency with smaller insertion loss. Spurious passbands at 1st, 2nd, 3rd, and 4th harmonics have been completely suppressed well above -20 dB rejection level without visible changes in the passband filter characteristics. The most significant of using SSRR is to be used for various industrial applications such as food industry, quality control, bio-sensing medicine and pharmacy. The simulation result that Quasi-linear coupling SSRR is a viable candidate for the performance enhancement of microwave sensors has been verified.

  17. Parameter prediction for microwave garnets

    International Nuclear Information System (INIS)

    Ramer, R.

    1996-01-01

    Full text: Linearity of the microwave parameters (resonance linewidth ΔH and effective linewidth ΔH eff ) is demonstrated and their use in the Computer-aided design (CAD)/Computer-aided manufacturing (CAM) of new microwave garnets is proposed. Such an approach would combine a numerical database of microwave data and several computational programs. The model is an applied formulation of the analysis of a wide range of microwave garnets

  18. Structure and Dielectric Properties of (Sr0.2Ca0.488Nd0.208) TiO3-Li3NbO4 Ceramic Composites

    Science.gov (United States)

    Xia, C. C.; Chen, G. H.

    2017-12-01

    The new ceramic composites of (1-x) Li3NbO4-x (Sr0.2Ca0.488Nd0.208)TiO3 were prepared by the conventional solid state reaction method. The sintering behavior, phase composition, microstructure and microwave dielectric properties of the ceramics were investigated specially. The SEM and XRD results show that (1-x) Li3NbO4-x (Sr0.2Ca0.488Nd0.208) TiO3 (0.35≤x≤0.5) composites were composed of two phase, i.e. perovskite and Li3NbO4. With the increase of x, the ɛr increases from 27.1 to 38.7, Q×f decreases from 55000 GHz to 16770 GHz, and the τ f increases from -49 ppm/°C to 226.7 ppm/°C. The optimized dielectric properties with ɛr∼31.4, Q×f~16770GHz and τf~-8.1ppm/°C could be obtained as x=0.4 sintered at 1100°C for 4h. The as-prepared ceramic is expected to be used in resonators, filters, and other microwave devices.

  19. Characterizations of biodegradable epoxy-coated cellulose nanofibrils (CNF) thin film for flexible microwave applications

    Science.gov (United States)

    Hongyi Mi; Chien-Hao Liu; Tzu-Husan Chang; Jung-Hun Seo; Huilong Zhang; Sang June Cho; Nader Behdad; Zhenqiang Ma; Chunhua Yao; Zhiyong Cai; Shaoqin Gong

    2016-01-01

    Wood pulp cellulose nanofibrils (CNF) thin film is a novel recyclable and biodegradable material. We investigated the microwave dielectric properties of the epoxy coated-CNF thin film for potential broad applications in flexible high speed electronics. The characterizations of dielectric properties were carried out in a frequency range of 1–10 GHz. The dielectric...

  20. Unexpected nonlinear effects and critical coupling in NbN superconducting microwave resonators

    International Nuclear Information System (INIS)

    Abdo, B.; Buks, E.

    2004-01-01

    Full Text:In this work, we have designed and fabricated several NbN superconducting stripline microwave resonators sputtered on sapphire substrates. The low temperature response exhibits strong and unexpected nonlinear effects, including sharp jumps as the frequency or poser are varied, frequency hysteresis loops changing direction as the input power is varied, and others. Contrary to some other superconducting resonators, a simple model of a one-dimensional Duffing resonator cannot account for the experimental results. Whereas the physical origin of the unusual nonlinear response of our samples remains an open question, our intensive experimental study of these effects under varying conditions provides some important insight. We consider a hypothesis according to which Josephson junctions forming weak links between the grains of the NbN are responsible for the observed behavior. We show that most of the experimental results are qualitatively consistent with such hypothesis. While revealing the underlying physics remains an outstanding challenge for future research, the utilization of the unusual nonlinear response for some novel applications is already demonstrated in the present work. In particular an operate the resonator as an inter modulation amplifier and find that the gain can be as high as 15 dB. To the best of our knowledge, inter modulation gain greater than unity has not been reported before in the scientific literature. In another application we demonstrate for the first time that the coupling between the resonator and its feed line can be made amplitude dependent. This novel mechanism allows us to tune the resonator into critical coupling conditions

  1. Microwave-to-optical frequency conversion using a cesium atom coupled to a superconducting resonator

    Science.gov (United States)

    Gard, Bryan T.; Jacobs, Kurt; McDermott, R.; Saffman, M.

    2017-07-01

    A candidate for converting quantum information from microwave to optical frequencies is the use of a single atom that interacts with a superconducting microwave resonator on one hand and an optical cavity on the other. The large electric dipole moments and microwave transition frequencies possessed by Rydberg states allow them to couple strongly to superconducting devices. Lasers can then be used to connect a Rydberg transition to an optical transition to realize the conversion. Since the fundamental source of noise in this process is spontaneous emission from the atomic levels, the resulting control problem involves choosing the pulse shapes of the driving lasers so as to maximize the transfer rate while minimizing this loss. Here we consider the concrete example of a cesium atom, along with two specific choices for the levels to be used in the conversion cycle. Under the assumption that spontaneous emission is the only significant source of errors, we use numerical optimization to determine the likely rates for reliable quantum communication that could be achieved with this device. These rates are on the order of a few megaqubits per second.

  2. Dielectric nanoresonators for light manipulation

    Science.gov (United States)

    Yang, Zhong-Jian; Jiang, Ruibin; Zhuo, Xiaolu; Xie, Ya-Ming; Wang, Jianfang; Lin, Hai-Qing

    2017-07-01

    Nanostructures made of dielectric materials with high or moderate refractive indexes can support strong electric and magnetic resonances in the optical region. They can therefore function as nanoresonators. In addition to plasmonic metal nanostructures that have been widely investigated, dielectric nanoresonators provide a new type of building blocks for realizing powerful and versatile nanoscale light manipulation. In contrast to plasmonic metal nanostructures, nanoresonators made of appropriate dielectric materials are low-cost, earth-abundant and have very small or even negligible light energy losses. As a result, they will find potential applications in a number of photonic devices, especially those that require low energy losses. In this review, we describe the recent progress on the experimental and theoretical studies of dielectric nanoresonators. We start from the basic theory of the electromagnetic responses of dielectric nanoresonators and their fabrication methods. The optical properties of individual dielectric nanoresonators are then elaborated, followed by the coupling behaviors between dielectric nanoresonators, between dielectric nanoresonators and substrates, and between dielectric nanoresonators and plasmonic metal nanostructures. The applications of dielectric nanoresonators are further described. Finally, the challenges and opportunities in this field are discussed.

  3. Dielectric Behaviour of Binary Mixture of 2-Chloroaniline with 2-Methoxyethanol and 2-Ethoxyethanol

    Directory of Open Access Journals (Sweden)

    Bhupesh G. Nemmaniwar

    2013-05-01

    Full Text Available Densities, viscosities, refractive indices, dielectric constant (ε' and dielectric loss (ε'' of 2-chloroaniline (2CA + 2-methoxyethanol (2ME and 2-chloroaniline (2CA + 2-ethoxyethanol (2EE for different mole fractions of 2-chloroaniline in binary mixture have been measured at single microwave frequency 10.985 GHz at 300C by Surber method using microwave X-band. The values of dielectric parameters (ε' and ε''   have been used to evaluate the molar polarization (P12 loss tangent (tanδ, viscosity (η, activation energy (Ea, excess permittivity (Δε', excess dielectric loss (Δε'', excess viscosities (Δη, excess polarization (ΔP12 and excess activation energy (ΔEa  have also been estimated. These parameters have been used to explain the formation of complexes in the system. It is found that dielectric constant (ε', dielectric loss (ε'', loss tangent (tanδ, molar polarization (P12 varies non-linearly but activation energy (Ea , viscosity (η ,density (ρ, and refractive index (n varies linearly with increasing mole fraction in binary mixture of 2-chloroaniline (2-CA + 2-methoxyethanol (2-ME and 2-chloroaniline (2-CA + 2-ethoxyethanol (2-EE. Hence, solute-solvent molecular associations have been reported. 

  4. Dielectric-filled radiofrequency linacs

    Energy Technology Data Exchange (ETDEWEB)

    Faehl, R J; Keinigs, R K; Pogue, E W [Los Alamos National Lab., NM (United States)

    1997-12-31

    High current, high brightness electron beam accelerators promise to open up dramatic new applications. Linear induction accelerators are currently viewed as the appropriate technology for these applications. A concept by Humphries and Hwang may permit radiofrequency accelerators to fulfill the same functions with greater simplicity and enhanced flexibility. This concept involves the replacement of vacuum rf cavities with dielectric filled ones. Simple analysis indicates that the resonant frequencies are reduced by a factor of ({epsilon}{sub 0}/{epsilon}){sup 1/2} while the stored energy is increased by {epsilon}/{epsilon}{sub 0}. For a high dielectric constant like water, this factor can approach 80. A series of numerical calculations of simple pill-box cavities was performed. Eigenfunctions and resonant frequencies for a full system configuration, including dielectric material, vacuum beamline, and a ceramic window separating the two have been computed. These calculations are compared with the results of a small experimental cavity which have been constructed and operated. Low power tests show excellent agreement. (author). 4 figs., 8 refs.

  5. Ultrathin microwave absorber based on metamaterial

    International Nuclear Information System (INIS)

    Kim, Y J; Yoo, Y J; Hwang, J S; Lee, Y P

    2016-01-01

    We suggest that ultrathin broadband metamaterial is a perfect absorber in the microwave regime by utilizing the properties of a resistive sheet and metamaterial. Meta-atoms are composed of four-leaf clover-shape metallic patterns and a metal plane separated by three intermediate resistive sheet layers between four dielectric layers. We interpret the absorption mechanism of the broadband by using the distribution of surface currents at specific frequencies. The simulated absorption was over 99% in 1.8–4.2 GHz. The corresponding experimental absorption was also over 99% in 2.62–4.2 GHz; however, the absorption was slightly lower than 99% in 1.8–2.62 GHz because of the sheet resistance and the changed values for the dielectric constant. Furthermore, it is independent of incident angle. The results of this research indicate the possibility of applications, due to the suppression of noxious exposure, in cell phones, computers and microwave equipments. (paper)

  6. Radio frequency and capacitive sensors for dielectric characterization of low-conductivity media

    Science.gov (United States)

    Sheldon, Robert T.

    Low-conductivity media are found in a vast number of applications, for example as electrical insulation or as the matrix polymer in high strength-to-weight ratio structural composites. In some applications, these materials are subjected to extreme environmental, thermal, and mechanical conditions that can affect the material's desired performance. In a more general sense, a medium may be comprised of one or more layers with unknown material properties that may affect the desired performance of the entire structure. It is often, therefore, of great import to be able to characterize the material properties of these media for the purpose of estimating their future performance in a certain application. Low-conductivity media, or dielectrics, are poor electrical conductors and permit electromagnetic waves and static electric fields to pass through with minimal attenuation. The amount of electrical energy that may be stored (and lost) in these fields depends directly upon the material property, permittivity, which is generally complex, frequency-dependent and has a measurable effect on sensors designed to characterize dielectric media. In this work, two different types of dielectric sensors: radio frequency resonant antennas and lower-frequency (work, the capability of characterizing multilayer dielectric structures is studied using a patch antenna, a type of antenna that is primarily designed for data communications in the microwave bands but has application in the field of nondestructive evaluation as well. Each configuration of a patch antenna has a single lowest resonant (dominant mode) frequency that is dependent upon the antenna's substrate material and geometry as well as the permittivity and geometry of exterior materials. Here, an extant forward model is validated using well-characterized microwave samples and a new method of resonant frequency and quality factor determination from measured data is presented. Excellent agreement between calculated and measured

  7. Tunable microwave metamaterials based on ordinary water

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei V.; Jacobsen, Rasmus Elkjær; Arslanagic, Samel

    2017-01-01

    All-dielectric metamaterials are the growing trend in optics and electromagnetics. They require materials with high permittivity, for example silicon in photonics. Aiming the microwaves range we present here water as a unique substance for employing in metamaterials design. Dependence of water...

  8. Applicability of point-dipoles approximation to all-dielectric metamaterials

    DEFF Research Database (Denmark)

    Kuznetsova, S. M.; Andryieuski, Andrei; Lavrinenko, Andrei

    2015-01-01

    All-dielectric metamaterials consisting of high-dielectric inclusions in a low-dielectric matrix are considered as a low-loss alternative to resonant metal-based metamaterials. In this paper we investigate the applicability of the point electric and magnetic dipoles approximation to dielectric meta......-atoms on the example of a dielectric ring metamaterial. Despite the large electrical size of high-dielectric meta-atoms, the dipole approximation allows for accurate prediction of the metamaterials properties for the rings with diameters up to approximate to 0.8 of the lattice constant. The results provide important...... guidelines for design and optimization of all-dielectric metamaterials....

  9. Electrothermal System for Microwave Heating. Elements of Computer Aided Design of the Applicator

    Directory of Open Access Journals (Sweden)

    COMAN Ovidiu Gabriel

    2012-10-01

    Full Text Available Within this study was elaborated a program made with Matlab software to design an applicator of parallelepiped shape for dielectric materialsprocessing in microwave field. The program calculates and posts transmission modes, the value of the power density and of the electric field in the dielectric.

  10. The applications of microwave energy to improve grindability and extraction of gold ores

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.H

    2000-10-01

    In this study, the applications of microwave energy in gold ore processing were investigated. An investigation of microwave heating characteristics indicated that the heating rate of an ore was not only related to the applied microwave field, but also to the mineralogy of the ore. Heating rate and the difference between the bulk temperature of an ore and the local temperature of high dielectric loss minerals increased with applied microwave power level, the content of high dielectric loss minerals, the particle size of the ore and the disseminated high dielectric loss minerals. The relationship between heating rate and surrounding environment is also discussed in this study. Investigations indicated that the microwave exposure could reduce the grindability of ores. For the Lihir gold ore, a decrease of 11% in the comparative grindability was obtained when it was exposed to 1500W microwave energy for 8 minutes. The decrease in grinding resistance resulted predominantly from the fractures induced by thermal stresses and differential thermal expansion of mineral phases during microwave heating. Experimental results showed that marcasite and pyrite could be decomposed into elemental sulphur and pyrrhotite-like Fe-S phases in an inert atmosphere, or oxidised into a porous hematite (Fe{sub 2}O{sub 3}) in an air atmosphere when they were exposed to microwaves. Microwave power had a significant impact on the decomposition of pyrite and marcasite. Marcasite was more readily decomposed than pyrite at the same exposure conditions. Scanning electron microscope (SEM), optical microscope, and X-ray diffraction results indicated that the alterations during microwave treatment were complex. Some intermediate products (e.g. Fe{sub (1-x)}S) were formed before the sulphides were completely oxidised into hematite (Fe{sub 2}O{sub 3}). Oxidation developed from the surfaces into the cores of the microwaved particles. Metallic particles were also formed during microwave exposure. Lihir

  11. The applications of microwave energy to improve grindability and extraction of gold ores

    International Nuclear Information System (INIS)

    Huang, J.H.

    2000-10-01

    In this study, the applications of microwave energy in gold ore processing were investigated. An investigation of microwave heating characteristics indicated that the heating rate of an ore was not only related to the applied microwave field, but also to the mineralogy of the ore. Heating rate and the difference between the bulk temperature of an ore and the local temperature of high dielectric loss minerals increased with applied microwave power level, the content of high dielectric loss minerals, the particle size of the ore and the disseminated high dielectric loss minerals. The relationship between heating rate and surrounding environment is also discussed in this study. Investigations indicated that the microwave exposure could reduce the grindability of ores. For the Lihir gold ore, a decrease of 11% in the comparative grindability was obtained when it was exposed to 1500W microwave energy for 8 minutes. The decrease in grinding resistance resulted predominantly from the fractures induced by thermal stresses and differential thermal expansion of mineral phases during microwave heating. Experimental results showed that marcasite and pyrite could be decomposed into elemental sulphur and pyrrhotite-like Fe-S phases in an inert atmosphere, or oxidised into a porous hematite (Fe 2 O 3 ) in an air atmosphere when they were exposed to microwaves. Microwave power had a significant impact on the decomposition of pyrite and marcasite. Marcasite was more readily decomposed than pyrite at the same exposure conditions. Scanning electron microscope (SEM), optical microscope, and X-ray diffraction results indicated that the alterations during microwave treatment were complex. Some intermediate products (e.g. Fe (1-x) S) were formed before the sulphides were completely oxidised into hematite (Fe 2 O 3 ). Oxidation developed from the surfaces into the cores of the microwaved particles. Metallic particles were also formed during microwave exposure. Lihir gold ore, in which

  12. Fabrication of Antenna-Coupled KID Array for Cosmic Microwave Background Detection

    Science.gov (United States)

    Tang, Q. Y.; Barry, P. S.; Basu Thakur, R.; Kofman, A.; Nadolski, A.; Vieira, J.; Shirokoff, E.

    2018-05-01

    Kinetic inductance detectors (KIDs) have become an attractive alternative to traditional bolometers in the sub-mm and mm observing community due to their innate frequency multiplexing capabilities and simple lithographic processes. These advantages make KIDs a viable option for the O(500,000) detectors needed for the upcoming Cosmic Microwave Background-Stage 4 experiment. We have fabricated an antenna-coupled MKID array in the 150 GHz band optimized for CMB detection. Our design uses a twin-slot antenna coupled to an inverted microstrip made from a superconducting Nb/Al bilayer as the strip, a Nb ground plane and a SiN_x dielectric layer in between, which is then coupled to an Al KID grown on high-resistivity Si. We present the fabrication process and measurements of SiN_x microstrip resonators.

  13. RF cavity using liquid dielectric for tuning and cooling

    Science.gov (United States)

    Popovic, Milorad [Warrenville, IL; Johnson, Rolland P [Newport News, VA

    2012-04-17

    A system for accelerating particles includes an RF cavity that contains a ferrite core and a liquid dielectric. Characteristics of the ferrite core and the liquid dielectric, among other factors, determine the resonant frequency of the RF cavity. The liquid dielectric is circulated to cool the ferrite core during the operation of the system.

  14. A Miniaturized Antenna with Negative Index Metamaterial Based on Modified SRR and CLS Unit Cell for UWB Microwave Imaging Applications

    Directory of Open Access Journals (Sweden)

    Md. Moinul Islam

    2015-01-01

    Full Text Available A miniaturized antenna employing a negative index metamaterial with modified split-ring resonator (SRR and capacitance-loaded strip (CLS unit cells is presented for Ultra wideband (UWB microwave imaging applications. Four left-handed (LH metamaterial (MTM unit cells are located along one axis of the antenna as the radiating element. Each left-handed metamaterial unit cell combines a modified split-ring resonator (SRR with a capacitance-loaded strip (CLS to obtain a design architecture that simultaneously exhibits both negative permittivity and negative permeability, which ensures a stable negative refractive index to improve the antenna performance for microwave imaging. The antenna structure, with dimension of 16 × 21 × 1.6 mm3, is printed on a low dielectric FR4 material with a slotted ground plane and a microstrip feed. The measured reflection coefficient demonstrates that this antenna attains 114.5% bandwidth covering the frequency band of 3.4–12.5 GHz for a voltage standing wave ratio of less than 2 with a maximum gain of 5.16 dBi at 10.15 GHz. There is a stable harmony between the simulated and measured results that indicate improved nearly omni-directional radiation characteristics within the operational frequency band. The stable surface current distribution, negative refractive index characteristic, considerable gain and radiation properties make this proposed negative index metamaterial antenna optimal for UWB microwave imaging applications.

  15. Tunable complex-valued multi-tap microwave photonic filter based on single silicon-on-insulator microring resonator.

    Science.gov (United States)

    Lloret, Juan; Sancho, Juan; Pu, Minhao; Gasulla, Ivana; Yvind, Kresten; Sales, Salvador; Capmany, José

    2011-06-20

    A complex-valued multi-tap tunable microwave photonic filter based on single silicon-on-insulator microring resonator is presented. The degree of tunability of the approach involving two, three and four taps is theoretical and experimentally characterized, respectively. The constraints of exploiting the optical phase transfer function of a microring resonator aiming at implementing complex-valued multi-tap filtering schemes are also reported. The trade-off between the degree of tunability without changing the free spectral range and the number of taps is studied in-depth. Different window based scenarios are evaluated for improving the filter performance in terms of the side-lobe level.

  16. Electromagnetic Resonance in Biological Form: A Role for Fields in Morphogenesis

    International Nuclear Information System (INIS)

    Pietak, Alexis M

    2011-01-01

    In morphogenesis, the mechanisms through which homogeneous, symmetric collectives of self-same cells are able to consistently and precisely establish long-range pattern remain an open question of scientific research. This work explores the hypothesis of developing biological structures as dielectric microwave resonators, using plant leaves as a working example. A finite element analysis (FEA) model was designed to determine if suitable resonant modes were physically possible for geometric and electrical parameters similar to those of developing leaf tissue. Using the FEA model, resonant EM modes with patterns of relevance to developing leaf vein modalities were detected. Here I show how the single physical mechanism of EM resonance can self-consistently account for different kinds of key symmetry-breaking operations characteristic of a variety of leaf vascular patterns. On account of the existence of shared geometric signatures in a leaf's vascular pattern and the electric field component of EM resonant modes supported by a leaf-like structure, further theoretical and experimental investigations are warranted. Significantly, this hypothesis is not limited to leaf vascular patterning, but may be applicable to a variety of morphogenetic phenomena in a number of living systems.

  17. Dielectric metasurfaces solve differential and integro-differential equations.

    Science.gov (United States)

    Abdollahramezani, Sajjad; Chizari, Ata; Dorche, Ali Eshaghian; Jamali, Mohammad Vahid; Salehi, Jawad A

    2017-04-01

    Leveraging subwavelength resonant nanostructures, plasmonic metasurfaces have recently attracted much attention as a breakthrough concept for engineering optical waves both spatially and spectrally. However, inherent ohmic losses concomitant with low coupling efficiencies pose fundamental impediments over their practical applications. Not only can all-dielectric metasurfaces tackle such substantial drawbacks, but also their CMOS-compatible configurations support both Mie resonances that are invariant to the incident angle. Here, we report on a transmittive metasurface comprising arrayed silicon nanodisks embedded in a homogeneous dielectric medium to manipulate phase and amplitude of incident light locally and almost independently. By taking advantage of the interplay between the electric/magnetic resonances and employing general concepts of spatial Fourier transformation, a highly efficient metadevice is proposed to perform mathematical operations including solution of ordinary differential and integro-differential equations with constant coefficients. Our findings further substantiate dielectric metasurfaces as promising candidates for miniaturized, two-dimensional, and planar optical analog computing systems that are much thinner than their conventional lens-based counterparts.

  18. EDITORIAL: Microwave Moisture Measurements

    Science.gov (United States)

    Kaatze, Udo; Kupfer, Klaus; Hübner, Christof

    2007-04-01

    Microwave moisture measurements refer to a methodology by which the water content of materials is non-invasively determined using electromagnetic fields of radio and microwave frequencies. Being the omnipresent liquid on our planet, water occurs as a component in most materials and often exercises a significant influence on their properties. Precise measurements of the water content are thus extremely useful in pure sciences, particularly in biochemistry and biophysics. They are likewise important in many agricultural, technical and industrial fields. Applications are broad and diverse, and include the quality assessment of foodstuffs, the determination of water content in paper, cardboard and textile production, the monitoring of moisture in sands, gravels, soils and constructions, as well as the measurement of water admixtures to coal and crude oil in reservoirs and in pipelines. Microwave moisture measurements and evaluations require insights in various disciplines, such as materials science, dielectrics, the physical chemistry of water, electrodynamics and microwave techniques. The cooperation of experts from the different fields of science is thus necessary for the efficient development of this complex discipline. In order to advance cooperation the Workshop on Electromagnetic Wave Interaction with Water and Moist Substances was held in 1993 in Atlanta. It initiated a series of international conferences, of which the last one was held in 2005 in Weimar. The meeting brought together 130 scientists and engineers from all over the world. This special issue presents a collection of some selected papers that were given at the event. The papers cover most topics of the conference, featuring dielectric properties of aqueous materials, electromagnetic wave interactions, measurement methods and sensors, and various applications. The special issue is dedicated to Dr Andrzej W Kraszewski, who died in July 2006 after a distinguished career of 48 years in the research of

  19. Spatio-temporal dynamics of a pulsed microwave argon plasma: ignition and afterglow

    International Nuclear Information System (INIS)

    Carbone, Emile; Sadeghi, Nader; Vos, Erik; Hübner, Simon; Van Veldhuizen, Eddie; Van Dijk, Jan; Nijdam, Sander; Kroesen, Gerrit

    2015-01-01

    In this paper, a detailed investigation of the spatio-temporal dynamics of a pulsed microwave plasma is presented. The plasma is ignited inside a dielectric tube in a repetitively pulsed regime at pressures ranging from 1 up to 100 mbar with pulse repetition frequencies from 200 Hz up to 500 kHz. Various diagnostic techniques are employed to obtain the main plasma parameters both spatially and with high temporal resolution. Thomson scattering is used to obtain the electron density and mean electron energy at fixed positions in the dielectric tube. The temporal evolution of the two resonant and two metastable argon 4s states are measured by laser diode absorption spectroscopy. Nanosecond time-resolved imaging of the discharge allows us to follow the spatio-temporal evolution of the discharge with high temporal and spatial resolution. Finally, the temporal evolution of argon 4p and higher states is measured by optical emission spectroscopy. The combination of these various diagnostics techniques gives deeper insight on the plasma dynamics during pulsed microwave plasma operation from low to high pressure regimes. The effects of the pulse repetition frequency on the plasma ignition dynamics are discussed and the plasma-off time is found to be the relevant parameter for the observed ignition modes. Depending on the delay between two plasma pulses, the dynamics of the ionization front are found to be changing dramatically. This is also reflected in the dynamics of the electron density and temperature and argon line emission from the plasma. On the other hand, the (quasi) steady state properties of the plasma are found to depend only weakly on the pulse repetition frequency and the afterglow kinetics present an uniform spatio-temporal behavior. However, compared to continuous operation, the time-averaged metastable and resonant state 4s densities are found to be significantly larger around a few kHz pulsing frequency. (paper)

  20. Electromagnetic and thermal history during microwave heating

    International Nuclear Information System (INIS)

    Santos, T.; Valente, M.A.; Monteiro, J.; Sousa, J.; Costa, L.C.

    2011-01-01

    In microwave heating, the energy is directly introduced into the material resulting in a rapid and volumetric heating process with reduced thermal gradients, when the electromagnetic field is homogeneous. From those reasons, the microwave technology has been widely used in the industry to process dielectric materials. The capacity to heat with microwave radiation is related with the dielectric properties of the materials and the electromagnetic field distribution. The knowledge of the permittivity dependence with the temperature is essential to understand the thermal distribution and to minimize the non-homogeneity of the electromagnetic field. To analyse the history of the heating process, the evolution of the electromagnetic field, the temperature and the skin depth, were simulated dynamically in a ceramic sample. The evaluation of the thermal runaway has also been made. This is the most critical phenomenon observed in the sintering of ceramic materials because it causes deformations, or even melting on certain points in the material, originating the destruction of it. In our study we show that during the heating process the hot spot's have some dynamic, and at high temperatures most of the microwave energy is absorbed at the surface of the material. We also show the existence of a time-delay of the thermal response with the electromagnetic changes. - Highlights: → Electromagnetic field, the temperature and the skin depth were simulated dynamically. → The evaluation of the thermal runaway has been made. → A time-delay of the thermal response with the electromagnetic changes exists.

  1. A miniaturized Microwave Bandpass Filter Based on Modified (Mg0.95Ca0.05TiO3 Substrate

    Directory of Open Access Journals (Sweden)

    Hu Mingzhe

    2016-01-01

    Full Text Available A microwave miniaturized bandpass filter using (Mg0.95Ca0.05TiO3 (abbreviated as 95MCT hereafter ceramic substrate is investigated in the present paper. The paper studies the sintering and microwave dielectric properties of Al2O3, La2O3 and SiO2 co-doped 95MCT. The XRD pattern shows that a secondary phase MgTi2O5 is easily segregated in 95MCT ceramic, however, through co-doping it can be effectively suppressed, and the microwave dielectric properties, especially, the Qf value can be significantly improved. Through optimizing the co-doping ratio of Al2O3, La2O3 and SiO2, the sintering temperature of 95MCT ceramic can be lowered by 80°C, and the microwave dielectric properties can reach Qf=61856GHz and εr=19.84, which indicates the modified 95MCT ceramic have a great potential application in microwave communication devices. Based on this, we also designed a miniaturized microwave bandpass filter (BPF on modified 95MCT substrate. Through a full wave electromagnetic structure simulation, the results show that the center frequency of the BPF is 2.45GHz and the relative bandwidth is 4.09% with the insertion loss of less than 0.2dB in the whole bandpass.

  2. Novel magnetic–dielectric composite ceramic obtained from Y{sub 3}Fe{sub 5}O{sub 12} and CaTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, D.V.M. [Grupo de Química de Materiais Avançados (GQMAT), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará – UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, CE (Brazil); Silva, M.A.S. [Laboratório de Telecomunicações e Ciência e Engenharia de Materiais (LOCEM), Departamento de Física, Universidade Federal do Ceará (Brazil); Ribeiro, T.S.; Vasconcelos, I.F. [Laboratório de Magnetismo e Materiais Magnéticos, Departamento de Engenharia Metalúrgica e de Materiais, UFC (Brazil); Sombra, A.S.B.; Góes, J.C. [Laboratório de Telecomunicações e Ciência e Engenharia de Materiais (LOCEM), Departamento de Física, Universidade Federal do Ceará (Brazil); Fechine, P.B.A., E-mail: fechine@ufc.br [Grupo de Química de Materiais Avançados (GQMAT), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará – UFC, Campus do Pici, CP 12100, CEP 60451-970 Fortaleza, CE (Brazil)

    2015-09-25

    Highlights: • The density of composites was improved with addition of CTO. • Dielectric permittivity of the composites presented values above the expected. • The composites presented magnetic permeability higher than YIG after 500 MHz. - Abstract: This work investigates the microstructure and magnetic–dielectric properties of the CaTiO{sub 3} (CTO) and Y{sub 3}Fe{sub 5}O{sub 12} (YIG) composite ceramic. CTO is a paramagnetic ceramic, presents a positive value of Resonant Frequency Temperature Coefficients (τ{sub f}) and has high dielectric permittivity (ε{sub r}) while YIG is ferromagnetic, has low ε{sub r} and negative τ{sub f} values. Therefore, it is expected that the composite from these individual phase shows new properties, or a mix of them derived from each component. X-ray powder diffraction (XRPD), Scanning Electron Microscope (SEM), Raman and {sup 57}Fe Mössbauer spectroscopy were performed to confirm the phases of the composites. The dielectric and magnetic properties in Radio-Microwave frequencies were studied by impedance spectroscopy using different geometries. It was observed a densification improvement resulting from the insertion of the CTO in composites and a chemical reaction between YIG and CTO phases. This new composite has potential applications in bulk and thick/thin films devices.

  3. Plasmonic and Dielectric Metasurfaces: Design, Fabrication and Applications

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2016-09-01

    Full Text Available Two-dimensional metasurfaces are widely focused on for their ability for flexible light manipulation (phase, amplitude, polarization over sub-wavelength propagation distances. Most of the metasurfaces can be divided into two categories by the material type of unit structure, i.e., plasmonic metasurfaces and dielectric metasurfaces. For plasmonic metasurfaces, they are made on the basis of metallic meta-atoms whose optical responses are driven by the plasmon resonances supported by metallic particles. For dielectric metasurfaces, the unit structure is constructed with high refractive index dielectric resonators, such as silicon, germanium or tellurium, which can support electric and magnetic dipole responses based on Mie resonances. The responses of plasmonic and dielectric metasurfaces are all relevant to the characteristics of unit structure, such as dimensions and materials. One can manipulate the electromagnetic field of light wave scattered by the metasurfaces through designing the dimension parameters of each unit structure in the metasurfaces. In this review article, we give a brief overview of our recent progress in plasmonic and dielectric metasurface-assisted nanophotonic devices and their design, fabrication and applications, including the metasurface-based broadband and the selective generation of orbital angular momentum (OAM carrying vector beams, N-fold OAM multicasting using a V-shaped antenna array, a metasurface on conventional optical fiber facet for linearly-polarized mode (LP11 generation, graphene split-ring metasurface-assisted terahertz coherent perfect absorption, OAM beam generation using a nanophotonic dielectric metasurface array, as well as Bessel beam generation and OAM multicasting using a dielectric metasurface array. It is believed that metasurface-based nanophotonic devices are one of the devices with the most potential applied in various fields, such as beam steering, spatial light modulator, nanoscale

  4. Experimental Investigation of an X-Band Tunable Dielectric Accelerating Structure

    CERN Document Server

    Kanareykin, Alex; Karmanenko, Sergei F; Nenasheva, Elisaveta; Power, John G; Schoessow, Paul; Semenov, Alexei

    2005-01-01

    Experimental study of a new scheme to tune the resonant frequency for dielectric based accelerating structure (driven either by the wakefield of a beam or an external rf source) is underway. The structure consists of a single layer of conventional dielectric surrounded by a very thin layer of ferroelectric material situated on the outside. Carefully designed electrodes are attached to a thin layer of ferroelectric material. A DC bias can be applied to the electrodes to change the permittivity of the ferroelectric layer and therefore, the dielectric overall resonant frequency can be tuned. In this paper, we present the test results for an 11.424 GHz rectangular DLA prototype structure that the ferroelectric material's dielectric constant of 500 and show that a frequency tuning range of 2% can be achieved. If successful, this scheme would compensate for structure errors caused by ceramic waveguide machining tolerances and dielectric constant heterogeneity.

  5. RF and microwave diagnostics of plasma

    International Nuclear Information System (INIS)

    Basu, J.

    1976-01-01

    A brief review of RF and microwave investigations carried out at laboratory plasma is presented. Both the immersive and non-immersive RF probes of various types are discussed, the major emphasis being laid on the work carried out in extending the scope of the immersive impedance probe and non-immersive coil probe. The standard microwave methods for plasma diagnosis are mentioned. The role of relatively new diagnostic tool, viz., a dielectric-rod waveguide, is described, and the technique of measuring the admittance of such a waveguide (or an antenna) enveloped in plasma is discussed. (K.B.)

  6. Microwave dielectric characterization of binary mixture of formamide ...

    Indian Academy of Sciences (India)

    The mixtures exhibit a principle dispersion of the Davidson–Cole relaxation type at microwave frequencies. Bilinear calibration method is used to obtain complex permittivity *() from complex reflection coefficient ρ*() over the frequency range of 10 MHz to 10 GHz. The excess permittivity (E), excessinverse relaxation ...

  7. Signature of ferro–paraelectric transition in biferroic LuCrO3 from electron paramagnetic resonance and non-resonant microwave absorption

    International Nuclear Information System (INIS)

    Alvarez, G.; Montiel, H.; Durán, A.; Conde-Gallardo, A.; Zamorano, R.

    2014-01-01

    An electron paramagnetic resonance (EPR) study in the polycrystalline biferroic LuCrO 3 is carried out at X-band (8.8–9.8 GHz) in the 295–510 K temperature range. For all the temperatures, the EPR spectra show a single broad line attributable to Cr 3+ (S = 3/2) ions. The onset of a ferro–paraelectric transition has been determined from the temperature dependence of the parameters deduced from EPR spectra: the peak-to-peak linewidth (ΔH pp ), the g-factor and the integral intensity (I EPR ). Magnetically modulated microwave absorption spectroscopy (MAMMAS) and low-field microwave absorption (LFMA) are used to give further information on this material, where these techniques give also evidence of the ferro–paraelectric transition; indicating a behavior in agreement with a diffuse phase transition. - Highlights: • LuCrO 3 powders are obtained via auto-ignition synthesis. • EPR is employed to study the onset of the ferro–paraelectric transition. • MAMMAS and LFMA techniques are used to give further information on this material

  8. Impedance Mismatch study between the Microwave Generator and the PUPR Plasma Machine

    International Nuclear Information System (INIS)

    Gaudier, Jorge R.; Castellanos, Ligeia; Encarnacion, Kabir; Zavala, Natyaliz; Rivera, Ramon; Farahat, Nader; Leal, Edberto

    2006-01-01

    Impedance mismatch inside the connection from the microwave power generator to the plasma machine is studied. A magnetron power generator transmits microwaves of 2.45 GHz and variable power from 50W to 5000W, through a flexible rectangular waveguide to heat plasma inside a Mirror Cusp devise located at the Polytechnic University of Puerto Rico. Before the production of plasma, the residual gas of the devise must be extracted by a vacuum system (5Torr or better), then Argon gas is injected to the machine. The microwaves heat the Argon ions to initiate ionization and plasma is produced. A dielectric wall is used inside the rectangular waveguide to isolate the plasma machine and maintain vacuum. Even though the dielectric will not block the wave propagation, some absorption of microwaves will occur. This absorption will cause reflection, reducing the efficiency of the power transfer. Typically a thin layer of Teflon is used, but measurements using this dielectric show a significant reflection of power back to the generator. Due to the high-power nature of the generator (5KW), this mismatch is not desirable. An electromagnetic field solver based on the Finite Difference Time Domain Method(FDTD) is used to model the rectangular waveguide connection. The characteristic impedance of the simulation is compared with the analytical formula expression and a good agreement is obtain. Furthermore the Teflon-loaded guide is modeled using the above program and the input impedance is computed. The reflection coefficient is calculated based on the transmission line theory with the characteristic and input impedances. Based on the simulation results it is possible to optimize the thickness, shape and dielectric constant of the material, in order to seal the connection with a better match

  9. Passive multi-frequency brain imaging and hyperthermia irradiation apparatus: the use of dielectric matching materials in phantom experiments

    International Nuclear Information System (INIS)

    Gouzouasis, Ioannis; Karathanasis, Konstantinos; Karanasiou, Irene; Uzunoglu, Nikolaos

    2009-01-01

    In this paper a hybrid system able to provide focused microwave radiometry and deep brain hyperthermia is experimentally tested. The system's main module is an ellipsoidal conductive wall cavity which acts as a beam former, focusing the electromagnetic energy on the medium of interest. The system's microwave radiometry component has extensively been studied theoretically and experimentally in the past few years with promising results. In this work, further investigation concerning the improvement of the hybrid system's focusing properties is conducted. Specifically, microwave radiometry and hyperthermia experiments are performed using water phantoms surrounded by dielectric layers used as matching material to enhance detection/penetration depth and spatial resolution. The results showed that the dielectric material reduces the reflected electromagnetic energy on the air–phantom interface, resulting in improved temperature resolution and higher detection or penetration of the energy when microwave radiometry and hyperthermia are applied respectively

  10. Topology optimization of microwave waveguide filters

    DEFF Research Database (Denmark)

    Aage, Niels; Johansen, Villads Egede

    2017-01-01

    We present a density based topology optimization approach for the design of metallic microwave insert filters. A two-phase optimization procedure is proposed in which we, starting from a uniform design, first optimize to obtain a set of spectral varying resonators followed by a band gap optimizat......We present a density based topology optimization approach for the design of metallic microwave insert filters. A two-phase optimization procedure is proposed in which we, starting from a uniform design, first optimize to obtain a set of spectral varying resonators followed by a band gap...... little resemblance to standard filter layouts and hence the proposed design method offers a new design tool in microwave engineering....

  11. Structure refinement, far infrared spectroscopy, and dielectric characterization of (1-x)La(Mg1/2Ti1/2)O3-xLa2/3TiO3 solid solutions

    Science.gov (United States)

    Salak, Andrei N.; Khalyavin, Dmitry D.; Ferreira, Victor M.; Ribeiro, José L.; Vieira, Luís G.

    2006-05-01

    Dielectric properties of (1-x)La(Mg1/2Ti1/2)O3-xLa2/3TiO3 [(1-x)LMT-xLT] ceramics (0infrared (FIR) frequency ranges. The crystal structure sequence in (1-x)LMT-xLT reported by different authors has been analyzed and revised. FIR spectroscopy was used to characterize the lattice contribution to the dielectric response at microwave frequencies. The complex dielectric function was evaluated from the reflectivity data and extrapolated down to a gigahertz range. Compositional variations of the fundamental microwave dielectric parameters estimated by different methods are compared and discussed. The dependence of the quality factor on the composition in LMT-LT is interpreted in terms of the reduction of spatial phonon correlations originated from the increasing amount of La vacancies. This approach could account for the compositional behavior of the dielectric loss commonly observed in a number of microwave mixed systems.

  12. Planar Microstrip Ring Resonators for Microwave-Based Gas Sensing: Design Aspects and Initial Transducers for Humidity and Ammonia Sensing.

    Science.gov (United States)

    Bogner, Andreas; Steiner, Carsten; Walter, Stefanie; Kita, Jaroslaw; Hagen, Gunter; Moos, Ralf

    2017-10-24

    A planar microstrip ring resonator structure on alumina was developed using the commercial FEM software COMSOL. Design parameters were evaluated, eventually leading to an optimized design of a miniaturized microwave gas sensor. The sensor was covered with a zeolite film. The device was successfully operated at around 8.5 GHz at room temperature as a humidity sensor. In the next step, an additional planar heater will be included on the reverse side of the resonator structure to allow for testing of gas-sensitive materials under sensor conditions.

  13. A Microwave Ring-Resonator Sensor for Non-Invasive Assessment of Meat Aging

    Directory of Open Access Journals (Sweden)

    Muhammad Taha Jilnai

    2016-01-01

    Full Text Available The assessment of moisture loss from meat during the aging period is a critical issue for the meat industry. In this article, a non-invasive microwave ring-resonator sensor is presented to evaluate the moisture content, or more precisely water holding capacity (WHC of broiler meat over a four-week period. The developed sensor has shown significant changes in its resonance frequency and return loss due to reduction in WHC in the studied duration. The obtained results are also confirmed by physical measurements. Further, these results are evaluated using the Fricke model, which provides a good fit for electric circuit components in biological tissue. Significant changes were observed in membrane integrity, where the corresponding capacitance decreases 30% in the early aging (0D-7D period. Similarly, the losses associated with intracellular and extracellular fluids exhibit changed up to 42% and 53%, respectively. Ultimately, empirical polynomial models are developed to predict the electrical component values for a better understanding of aging effects. The measured and calculated values are found to be in good agreement.

  14. A Microwave Ring-Resonator Sensor for Non-Invasive Assessment of Meat Aging

    Science.gov (United States)

    Jilani, Muhammad Taha; Wen, Wong Peng; Cheong, Lee Yen; ur Rehman, Muhammad Zaka

    2016-01-01

    The assessment of moisture loss from meat during the aging period is a critical issue for the meat industry. In this article, a non-invasive microwave ring-resonator sensor is presented to evaluate the moisture content, or more precisely water holding capacity (WHC) of broiler meat over a four-week period. The developed sensor has shown significant changes in its resonance frequency and return loss due to reduction in WHC in the studied duration. The obtained results are also confirmed by physical measurements. Further, these results are evaluated using the Fricke model, which provides a good fit for electric circuit components in biological tissue. Significant changes were observed in membrane integrity, where the corresponding capacitance decreases 30% in the early aging (0D-7D) period. Similarly, the losses associated with intracellular and extracellular fluids exhibit changed up to 42% and 53%, respectively. Ultimately, empirical polynomial models are developed to predict the electrical component values for a better understanding of aging effects. The measured and calculated values are found to be in good agreement. PMID:26805828

  15. Microwave engineering concepts and fundamentals

    CERN Document Server

    Khan, Ahmad Shahid

    2014-01-01

    Detailing the active and passive aspects of microwaves, Microwave Engineering: Concepts and Fundamentals covers everything from wave propagation to reflection and refraction, guided waves, and transmission lines, providing a comprehensive understanding of the underlying principles at the core of microwave engineering. This encyclopedic text not only encompasses nearly all facets of microwave engineering, but also gives all topics—including microwave generation, measurement, and processing—equal emphasis. Packed with illustrations to aid in comprehension, the book: •Describes the mathematical theory of waveguides and ferrite devices, devoting an entire chapter to the Smith chart and its applications •Discusses different types of microwave components, antennas, tubes, transistors, diodes, and parametric devices •Examines various attributes of cavity resonators, semiconductor and RF/microwave devices, and microwave integrated circuits •Addresses scattering parameters and their properties, as well a...

  16. Reduced transposed flicker noise in microwave oscillators using gaas-based feedforward amplifiers.

    Science.gov (United States)

    Everard, Jeremy K A; Broomfield, Carl D

    2007-06-01

    Transposed flicker noise reduction and removal is demonstrated in 7.6 GHz microwave oscillators for offsets greater than 10 kHz. This is achieved by using a GaAs-based feedforward power amplifier as the oscillation-sustaining stage and incorporating a limiter and resonator elsewhere in the loop. 20 dB noise suppression is demonstrated at 12.5 kHz offset when the error correcting amplifier is switched on. Three oscillator pairs have been built. A transmission line feedback oscillator with a Qo of 180 and two sapphire-based, dielectric resonator oscillators (DROs) with a Qo of 44,500. The difference between the two DROs is a change in the limiter threshold power level of 10 dB. The phase noise rolls-off at (1/f)(2) for offsets greater than 10 kHz for the transmission line oscillator and is set by the thermal noise to within 0-1 dB of the theoretical minimum. The noise performance of the DROs is within 6-12 dB of the theory. Possible reasons for this discrepancy are presented.

  17. Coherent Rabi Dynamics of a Superradiant Spin Ensemble in a Microwave Cavity

    Science.gov (United States)

    Rose, B. C.; Tyryshkin, A. M.; Riemann, H.; Abrosimov, N. V.; Becker, P.; Pohl, H.-J.; Thewalt, M. L. W.; Itoh, K. M.; Lyon, S. A.

    2017-07-01

    We achieve the strong-coupling regime between an ensemble of phosphorus donor spins in a highly enriched 28Si crystal and a 3D dielectric resonator. Spins are polarized beyond Boltzmann equilibrium using spin-selective optical excitation of the no-phonon bound exciton transition resulting in N =3.6 ×1 013 unpaired spins in the ensemble. We observe a normal mode splitting of the spin-ensemble-cavity polariton resonances of 2 g √{N }=580 kHz (where each spin is coupled with strength g ) in a cavity with a quality factor of 75 000 (γ ≪κ ≈60 kHz , where γ and κ are the spin dephasing and cavity loss rates, respectively). The spin ensemble has a long dephasing time (T2*=9 μ s ) providing a wide window for viewing the dynamics of the coupled spin-ensemble-cavity system. The free-induction decay shows up to a dozen collapses and revivals revealing a coherent exchange of excitations between the superradiant state of the spin ensemble and the cavity at the rate g √{N }. The ensemble is found to evolve as a single large pseudospin according to the Tavis-Cummings model due to minimal inhomogeneous broadening and uniform spin-cavity coupling. We demonstrate independent control of the total spin and the initial Z projection of the psuedospin using optical excitation and microwave manipulation, respectively. We vary the microwave excitation power to rotate the pseudospin on the Bloch sphere and observe a long delay in the onset of the superradiant emission as the pseudospin approaches full inversion. This delay is accompanied by an abrupt π -phase shift in the peusdospin microwave emission. The scaling of this delay with the initial angle and the sudden phase shift are explained by the Tavis-Cummings model.

  18. Enhanced conductive loss in nickel–cobalt sulfide nanostructures for highly efficient microwave absorption and shielding

    Science.gov (United States)

    Li, Wanrong; Zhou, Min; Lu, Fei; Liu, Hongfei; Zhou, Yuxue; Zhu, Jun; Zeng, Xianghua

    2018-06-01

    Microwave-absorbing materials with light weight and high efficiency are desirable in addressing electromagnetic interference (EMI) problems. Herein, a nickel–cobalt sulfide (NCS) nanostructure was employed as a robust microwave absorber, which displayed an optimized reflection loss of  ‑49.1 dB in the gigahertz range with a loading of only 20 wt% in an NCS/paraffin wax composite. High electrical conductivity was found to contribute prominent conductive loss in NCS, leading to intense dielectric loss within a relatively low mass loading. Furthermore, owing to its high electrical conductivity and remarkable dielectric loss to microwaves, the prepared NCS exhibited excellent performance in EMI shielding. The EMI shielding efficiency of the 50 wt% NCS/paraffin composite exceeded 55 dB at the X-band, demonstrating NCS is a versatile candidate for solving EMI problems.

  19. The Impact of Microwave Penetration Depth on the Process of Heating the Moulding Sand with Sodium Silicate

    Directory of Open Access Journals (Sweden)

    Nowak D.

    2017-12-01

    Full Text Available This paper presents the impact of microwave penetration depth on the process of heating the moulding sand with sodium silicate. For each material it is affected by: the wavelength in vacuum and the real and imaginary components of the relative complex electrical permittivity εr for a selected measurement frequency. Since the components are not constant values and they change depending on the electrical parameters of materials and the frequency of the electromagnetic wave, it is indispensable to carry out laboratory measurements to determine them. Moreover, the electrical parameters of materials are also affected by: temperature, packing degree, humidity and conductivity. The measurements of the dielectric properties of moulding sand with sodium silicate was carried out using the perturbation method on a stand of waveguide resonance cavity. The real and imaginary components of the relative complex electrical permittivity was determined for moulding sand at various contents of sodium silicate and at various packing degrees of the samples. On the basis of the results the microwave penetration depth of moulding sand with sodium silicate was established. Relative literature contains no such data that would be essential to predicting an effective process of microwave heating of moulding sand with sodium silicate. Both the packing degree and the amount of sodium silicate in moulding sand turned out to affect the penetration depth, which directly translates into microwave power density distribution in the process of microwave heating of moulding sand with sodium silicate.

  20. LOW-TEMPERATURE SINTERED (ZnMg2SiO4 MICROWAVE CERAMICS WITH TiO2 ADDITION AND CALCIUM BOROSILICATE GLASS

    Directory of Open Access Journals (Sweden)

    BO LI

    2011-03-01

    Full Text Available The low-temperature sintered (ZnMg2SiO–TiO2 microwave ceramic using CaO–B2O3–SiO2 (CBS as a sintering aid has been developed. Microwave properties of (Zn1-xMgx2SiO4 base materials via sol-gel method were highly dependent on the Mg-substituted content. Further, effects of CBS and TiO2 additives on the crystal phases, microstructures and microwave characteristics of (ZnMg2SiO4 (ZMS ceramics were investigated. The results indicated that CBS glass could lower the firing temperature of ZMS dielectrics effectively from 1170 to 950°C due to the liquid-phase effect, and significantly improve the sintering behavior and microwave properties of ZMS ceramics. Moreover, ZMS–TiO2 ceramics showed the biphasic structure and the abnormal grain growth was suppressed by the pinning effect of second phase TiO2. Proper amount of TiO2 could tune the large negative temperature coefficient of resonant frequency (tf of ZMS system to a near zero value. (Zn0.8Mg0.22SiO4 codoped with 10 wt.% TiO2 and 3 wt.% CBS sintered at 950°C exhibits the dense microstructure and excellent microwave properties: εr = 9.5, Q·f = 16 600 GHz and tf = −9.6 ppm/°C.

  1. Experimental Demonstration of Anomalous Field Enhancement in All-Dielectric Transition Magnetic Metamaterials.

    Science.gov (United States)

    Sun, Jingbo; Liu, Xiaoming; Zhou, Ji; Kudyshev, Zhaxylyk; Litchinitser, Natalia M

    2015-11-04

    Anomalous field enhancement accompanied by resonant absorption phenomenon was originally discussed in the context of plasma physics and in applications related to radio-communications between the ground and spacecraft returning to Earth. Indeed, there is a critical period of time when all communications are lost due to the reflection/absorption of electromagnetic waves by the sheath of plasma created by a high speed vehicle re-entering the atmosphere. While detailed experimental studies of these phenomena in space are challenging, the emergence of electromagnetic metamaterials enables researchers exceptional flexibility to study them in the laboratory environment. Here, we experimentally demonstrated the strong localized field enhancement of magnetic field for an electromagnetic wave propagating in Mie-resonance-based inhomogeneous metamaterials with magnetic permeability gradually changing from positive to negative values. Although these experiments were performed in the microwave frequency range, the proposed all-dielectric approach to transition metamaterials can be extended to terahertz, infrared, and visible frequencies. We anticipate that these results, besides most basic science aspects, hold the potential for numerous applications, including low-intensity nonlinear transformation optics, topological photonics, and the broader area of surface and interface science.

  2. Epitaxial Al2O3 capacitors for low microwave loss superconducting quantum circuits

    Directory of Open Access Journals (Sweden)

    K.-H. Cho

    2013-10-01

    Full Text Available We have characterized the microwave loss of high-Q parallel plate capacitors fabricated from thin-film Al/Al2O3/Re heterostructures on (0001 Al2O3 substrates. The superconductor-insulator-superconductor trilayers were grown in situ in a hybrid deposition system: the epitaxial Re base and polycrystalline Al counterelectrode layers were grown by sputtering, while the epitaxial Al2O3 layer was grown by pulsed laser deposition. Structural analysis indicates a highly crystalline epitaxial Al2O3 layer and sharp interfaces. The measured intrinsic (low-power, low-temperature quality factor of the resonators is as high as 3 × 104. These results indicate that low-loss grown Al2O3 is an attractive candidate dielectric for high-fidelity superconducting qubit circuits.

  3. Microwave pre-heating of natural rubber using a rectangular wave guide (MODE: TE10

    Directory of Open Access Journals (Sweden)

    Doo-ngam, N.

    2007-11-01

    Full Text Available This paper presents an application of microwave radiation for pre-heating of natural rubbercompounding with various sulphur contents. The natural rubber-compounding was pre-heated by microwave radiation using a rectangular wave guide system (MODE: TE10 operating at frequency of 2.45 GHz in which the power can vary from 0 to 1500 W. In the present work, the influence of power input, sample thickness, and sulphur content were examined after applying microwave radiation to the rubber samples. Results are discussed regarding the thermal properties, 3-D network, dielectric properties and chemical structures. From the result, firstly, it was found that microwave radiation can be applied to pre-heating natural rubber-compounding before the vulcanization process. Secondly, microwave radiation was very useful for pre-heating natural rubber-compounding that has a thickness greater than 5mm. Thirdly, crosslinking in natural rubber-compounding may occurs after pre-heating by microwave radiation though Fourier Transform Infrared Spectroscopy(FTIR. Finally, there a little effect of sulphur content on temperature profiles after applying microwave radiation to the natural rubber-compounding. Moreover, natural rubber-compounding without carbon black showed a lower heat absorption compared with natural rubbercompounding filled carbon black. This is due to the difference in dielectric loss factor. This preliminary result will be useful information in terms of microwave radiation for pre-heating natural rubber-compounding and rubber processing in industry.

  4. Determination of permittivity of pulses and cereals using metamaterial split ring resonator

    Science.gov (United States)

    Chakyar, Sreedevi P.; Sikha Simon, K.; Murali, Aathira; Shanto T., A.; Andrews, Jolly; Joseph V., P.

    2017-06-01

    Relative permittivity of wide variety of pulses and cereals are precisely determined with the help of metamaterial Split Ring Resonator (SRR) operating at microwave frequencies using a simple extraction procedure. The unknown permittivity of food samples in powder form are evaluated from a calibration curve drawn between the dielectric constant of some standard samples and LC resonant frequency of SRR test probe with the sample placed over it. The experimental setup consists of SRR test probe arranged between transmitting and receiving probes connected to a vector network analyzer. Unknown relative permittivity of the sample is obtained by placing it on the SRR surface and is evaluated from the calibration curve which is found to be in good agreement with the expected standard values. The possible applications of this sensitive and easy technique are analyzed in the field of food preservation, quality checking, adulteration etc.

  5. A compact 5.5 GHz band-rejected UWB antenna using complementary split ring resonators.

    Science.gov (United States)

    Islam, M M; Faruque, M R I; Islam, M T

    2014-01-01

    A band-removal property employing microwave frequencies using complementary split ring resonators (CSRRs) is applied to design a compact UWB antenna wishing for the rejection of some frequency band, which is meanwhile exercised by the existing wireless applications. The reported antenna comprises optimization of a circular radiating patch, in which slotted complementary SRRs are implanted. It is printed on low dielectric FR4 substrate material fed by a partial ground plane and a microstrip line. Validated results exhibit that the reported antenna shows a wide bandwidth covering from 3.45 to more than 12 GHz, with a compact dimension of 22 × 26 mm(2), and VSWR WLAN band.

  6. Application of a plane-stratified emission model to predict the effects of vegetation in passive microwave radiometry

    Directory of Open Access Journals (Sweden)

    K. Lee

    2002-01-01

    Full Text Available This paper reports the application to vegetation canopies of a coherent model for the propagation of electromagnetic radiation through a stratified medium. The resulting multi-layer vegetation model is plausibly realistic in that it recognises the dielectric permittivity of the vegetation matter, the mixing of the dielectric permittivities for vegetation and air within the canopy and, in simplified terms, the overall vertical distribution of dielectric permittivity and temperature through the canopy. Any sharp changes in the dielectric profile of the canopy resulted in interference effects manifested as oscillations in the microwave brightness temperature as a function of canopy height or look angle. However, when Gaussian broadening of the top and bottom of the canopy (reflecting the natural variability between plants was included within the model, these oscillations were eliminated. The model parameters required to specify the dielectric profile within the canopy, particularly the parameters that quantify the dielectric mixing between vegetation and air in the canopy, are not usually available in typical field experiments. Thus, the feasibility of specifying these parameters using an advanced single-criterion, multiple-parameter optimisation technique was investigated by automatically minimizing the difference between the modelled and measured brightness temperatures. The results imply that the mixing parameters can be so determined but only if other parameters that specify vegetation dry matter and water content are measured independently. The new model was then applied to investigate the sensitivity of microwave emission to specific vegetation parameters. Keywords: passive microwave, soil moisture, vegetation, SMOS, retrieval

  7. An omnidirectional retroreflector based on the transmutation of dielectric singularities.

    Science.gov (United States)

    Ma, Yun Gui; Ong, C K; Tyc, Tomás; Leonhardt, Ulf

    2009-08-01

    Transformation optics is a concept used in some metamaterials to guide light on a predetermined path. In this approach, the materials implement coordinate transformations on electromagnetic waves to create the illusion that the waves are propagating through a virtual space. Transforming space by appropriately designed materials makes devices possible that have been deemed impossible. In particular, transformation optics has led to the demonstration of invisibility cloaking for microwaves, surface plasmons and infrared light. Here, on the basis of transformation optics, we implement a microwave device that would normally require a dielectric singularity, an infinity in the refractive index. To fabricate such a device, we transmute a dielectric singularity in virtual space into a mere topological defect in a real metamaterial. In particular, we demonstrate an omnidirectional retroreflector, a device for faithfully reflecting images and for creating high visibility from all directions. Our method is robust, potentially broadband and could also be applied to visible light using similar techniques.

  8. Signature of ferro–paraelectric transition in biferroic LuCrO{sub 3} from electron paramagnetic resonance and non-resonant microwave absorption

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, G., E-mail: memodin@yahoo.com [Escuela Superior de Física y Matemáticas del Instituto Politécnico Nacional, U.P.A.L.M, Edificio 9, Av. Instituto Politécnico Nacional S/N, San Pedro Zacatenco, México DF 07738 (Mexico); Montiel, H. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico de la Universidad Nacional Autónoma de México, Cd. Universitaria, A.P. 70-186, México DF 04510 (Mexico); Durán, A. [Centro de Nanociencias y Nanotecnología de la Universidad Nacional Autónoma de México, Km. 107, Carretera Tijuana-Ensenada, Apartado Postal 14, C.P. 22800 Ensenada, B.C. México (Mexico); Conde-Gallardo, A. [Departamento de Física, CINVESTAV-IPN, A.P. 14-740, México DF 07360 (Mexico); Zamorano, R. [Escuela Superior de Física y Matemáticas del Instituto Politécnico Nacional, U.P.A.L.M, Edificio 9, Av. Instituto Politécnico Nacional S/N, San Pedro Zacatenco, México DF 07738 (Mexico)

    2014-12-15

    An electron paramagnetic resonance (EPR) study in the polycrystalline biferroic LuCrO{sub 3} is carried out at X-band (8.8–9.8 GHz) in the 295–510 K temperature range. For all the temperatures, the EPR spectra show a single broad line attributable to Cr{sup 3+} (S = 3/2) ions. The onset of a ferro–paraelectric transition has been determined from the temperature dependence of the parameters deduced from EPR spectra: the peak-to-peak linewidth (ΔH{sub pp}), the g-factor and the integral intensity (I{sub EPR}). Magnetically modulated microwave absorption spectroscopy (MAMMAS) and low-field microwave absorption (LFMA) are used to give further information on this material, where these techniques give also evidence of the ferro–paraelectric transition; indicating a behavior in agreement with a diffuse phase transition. - Highlights: • LuCrO{sub 3} powders are obtained via auto-ignition synthesis. • EPR is employed to study the onset of the ferro–paraelectric transition. • MAMMAS and LFMA techniques are used to give further information on this material.

  9. Microwave ionization and excitation of Ba Rydberg atoms

    International Nuclear Information System (INIS)

    Eichmann, U.; Dexter, J.L.; Xu, E.Y.; Gallagher, T.F.

    1989-01-01

    We have investigated ionization and excitation of the Ba 6sn s 1 S 0 and 6snd 1,3 D 2 series in strong microwave fields. The observed microwave ionization threshold fields, scaling as 0.28 n -5 , and the state mixing fields cannot be completely explained in terms of a single cycle Landau-Zener model. However, by taking into account multiphoton resonant transitions driven by many cycles of the microwave field we have been able to interpret the data. In particular multi-photon transitions have been found to be responsible for apparent resonance structures and for the unexpectedly low mixing fields. Not surprisingly, doubly excited valence states introduce irregularities into both the microwave ionization and the state mixing field values. (orig.)

  10. Collective strong coupling with homogeneous Rabi frequencies using a 3D lumped element microwave resonator

    International Nuclear Information System (INIS)

    Angerer, Andreas; Astner, Thomas; Wirtitsch, Daniel; Majer, Johannes; Sumiya, Hitoshi; Onoda, Shinobu; Isoya, Junichi; Putz, Stefan

    2016-01-01

    We design and implement 3D-lumped element microwave cavities that spatially focus magnetic fields to a small mode volume. They allow coherent and uniform coupling to electron spins hosted by nitrogen vacancy centers in diamond. We achieve large homogeneous single spin coupling rates, with an enhancement of more than one order of magnitude compared to standard 3D cavities with a fundamental resonance at 3 GHz. Finite element simulations confirm that the magnetic field distribution is homogeneous throughout the entire sample volume, with a root mean square deviation of 1.54%. With a sample containing 10"1"7 nitrogen vacancy electron spins, we achieve a collective coupling strength of Ω = 12 MHz, a cooperativity factor C = 27, and clearly enter the strong coupling regime. This allows to interface a macroscopic spin ensemble with microwave circuits, and the homogeneous Rabi frequency paves the way to manipulate the full ensemble population in a coherent way.

  11. Magnetodielectric effect of Mn–Zn ferrite at resonant frequency

    International Nuclear Information System (INIS)

    Pengfei, Pan; Ning, Zhang

    2016-01-01

    The dielectric properties and the magnetodielectric effect in Mn–Zn ferrite at resonant frequency have been studied in this paper. Dimensional-resonance-induced abnormal dielectric spectrum was observed at f≈1 MHz. The relatively large magnetodielectric ratio of 4500% in a magnetic field of 3.5 kOe was achieved from the Mn–Zn ferrite sample with the initial permeability of 15 K at resonant frequency at room temperature. Theoretical analysis suggests that the large MD effect at resonant frequency is attributed to the enhanced magnetostriction effect. - Highlights: • Dimensional resonance was measured in dielectric spectrum at f≈1 MHz. • The MD ratio of 4500% was induced by H = 3.5 kOe at resonant frequency. • The magnetostriction effect leads to the large MD effect at resonant frequency.

  12. Analysis of microwave heating of materials with temperature-dependent properties

    International Nuclear Information System (INIS)

    Ayappa, K.G.; Davis, H.T.; Davis, E.A.; Gordon, J.

    1991-01-01

    In this paper transient temperature profiles in multilayer slabs are predicted, by simultaneously solving Maxwell's equations with the heat conduction equation, using Galerkin-finite elements. It is assumed that the medium is homogeneous and has temperature-dependent dielectric and thermal properties. The method is illustrated with applications involving the heating of food and polymers with microwaves. The temperature dependence of dielectric properties affects the heating appreciably, as is shown by comparison with a constant property model

  13. Dielectric and acoustical high frequency characterisation of PZT thin films

    International Nuclear Information System (INIS)

    Conde, Janine; Muralt, Paul

    2010-01-01

    Pb(Zr, Ti)O 3 (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {100} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.

  14. Dielectric and acoustical high frequency characterisation of PZT thin films

    Science.gov (United States)

    Conde, Janine; Muralt, Paul

    2010-02-01

    Pb(Zr, Ti)O3 (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {100} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.

  15. Brain Stroke Detection by Microwaves Using Prior Information from Clinical Databases

    Directory of Open Access Journals (Sweden)

    Natalia Irishina

    2013-01-01

    Full Text Available Microwave tomographic imaging is an inexpensive, noninvasive modality of media dielectric properties reconstruction which can be utilized as a screening method in clinical applications such as breast cancer and brain stroke detection. For breast cancer detection, the iterative algorithm of structural inversion with level sets provides well-defined boundaries and incorporates an intrinsic regularization, which permits to discover small lesions. However, in case of brain lesion, the inverse problem is much more difficult due to the skull, which causes low microwave penetration and highly noisy data. In addition, cerebral liquid has dielectric properties similar to those of blood, which makes the inversion more complicated. Nevertheless, the contrast in the conductivity and permittivity values in this situation is significant due to blood high dielectric values compared to those of surrounding grey and white matter tissues. We show that using brain MRI images as prior information about brain's configuration, along with known brain dielectric properties, and the intrinsic regularization by structural inversion, allows successful and rapid stroke detection even in difficult cases. The method has been applied to 2D slices created from a database of 3D real MRI phantom images to effectively detect lesions larger than 2.5 × 10−2 m diameter.

  16. Nanoscale microwave microscopy using shielded cantilever probes

    KAUST Repository

    Lai, Keji; Kundhikanjana, Worasom; Kelly, Michael A.; Shen, Zhi-Xun

    2011-01-01

    Quantitative dielectric and conductivity mapping in the nanoscale is highly desirable for many research disciplines, but difficult to achieve through conventional transport or established microscopy techniques. Taking advantage of the micro-fabrication technology, we have developed cantilever-based near-field microwave probes with shielded structures. Sensitive microwave electronics and finite-element analysis modeling are also utilized for quantitative electrical imaging. The system is fully compatible with atomic force microscope platforms for convenient operation and easy integration of other modes and functions. The microscope is ideal for interdisciplinary research, with demonstrated examples in nano electronics, physics, material science, and biology.

  17. Nanoscale microwave microscopy using shielded cantilever probes

    KAUST Repository

    Lai, Keji

    2011-04-21

    Quantitative dielectric and conductivity mapping in the nanoscale is highly desirable for many research disciplines, but difficult to achieve through conventional transport or established microscopy techniques. Taking advantage of the micro-fabrication technology, we have developed cantilever-based near-field microwave probes with shielded structures. Sensitive microwave electronics and finite-element analysis modeling are also utilized for quantitative electrical imaging. The system is fully compatible with atomic force microscope platforms for convenient operation and easy integration of other modes and functions. The microscope is ideal for interdisciplinary research, with demonstrated examples in nano electronics, physics, material science, and biology.

  18. Resonant quantum transitions in trapped antihydrogen atoms.

    Science.gov (United States)

    Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Capra, A; Cesar, C L; Charlton, M; Deller, A; Donnan, P H; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Isaac, C A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J T K; Menary, S; Napoli, S C; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Shields, C R; Silveira, D M; Stracka, S; So, C; Thompson, R I; van der Werf, D P; Wurtele, J S

    2012-03-07

    The hydrogen atom is one of the most important and influential model systems in modern physics. Attempts to understand its spectrum are inextricably linked to the early history and development of quantum mechanics. The hydrogen atom's stature lies in its simplicity and in the accuracy with which its spectrum can be measured and compared to theory. Today its spectrum remains a valuable tool for determining the values of fundamental constants and for challenging the limits of modern physics, including the validity of quantum electrodynamics and--by comparison with measurements on its antimatter counterpart, antihydrogen--the validity of CPT (charge conjugation, parity and time reversal) symmetry. Here we report spectroscopy of a pure antimatter atom, demonstrating resonant quantum transitions in antihydrogen. We have manipulated the internal spin state of antihydrogen atoms so as to induce magnetic resonance transitions between hyperfine levels of the positronic ground state. We used resonant microwave radiation to flip the spin of the positron in antihydrogen atoms that were magnetically trapped in the ALPHA apparatus. The spin flip causes trapped anti-atoms to be ejected from the trap. We look for evidence of resonant interaction by comparing the survival rate of trapped atoms irradiated with microwaves on-resonance to that of atoms subjected to microwaves that are off-resonance. In one variant of the experiment, we detect 23 atoms that survive in 110 trapping attempts with microwaves off-resonance (0.21 per attempt), and only two atoms that survive in 103 attempts with microwaves on-resonance (0.02 per attempt). We also describe the direct detection of the annihilation of antihydrogen atoms ejected by the microwaves.

  19. Quantum and wave dynamical chaos in superconducting microwave billiards.

    Science.gov (United States)

    Dietz, B; Richter, A

    2015-09-01

    Experiments with superconducting microwave cavities have been performed in our laboratory for more than two decades. The purpose of the present article is to recapitulate some of the highlights achieved. We briefly review (i) results obtained with flat, cylindrical microwave resonators, so-called microwave billiards, concerning the universal fluctuation properties of the eigenvalues of classically chaotic systems with no, a threefold and a broken symmetry; (ii) summarize our findings concerning the wave-dynamical chaos in three-dimensional microwave cavities; (iii) present a new approach for the understanding of the phenomenon of dynamical tunneling which was developed on the basis of experiments that were performed recently with unprecedented precision, and finally, (iv) give an insight into an ongoing project, where we investigate universal properties of (artificial) graphene with superconducting microwave photonic crystals that are enclosed in a microwave resonator, i.e., so-called Dirac billiards.

  20. Dielectric properties of glasses prepared by quenching melts of superconducting Bi-Ca-Sr-Cu-O cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Varma, K. B. R.; Subbanna, G. N.; Ramakrishnan, T. V.; Rao, C. N. R.

    1989-07-03

    Glasses obtained from quenching melts of superconducting bismuth cuprates of the formula Bi/sub 2/(Ca,Sr)/sub /ital n/+1/Cu/sub /ital n//O/sub 2/ital n/+4/ with /ital n/=1 and 3 exhibit novel dielectric properties. They possess relatively high dielectric constants as well as high electrical conductivity. The novel dielectric properties of these cuprate glasses are likely to be of electronic origin. They exhibit a weak microwave absorption due to the presence of microcrystallites.

  1. Utilization of microwave energy for decontamination of oil polluted soils.

    Science.gov (United States)

    Iordache, Daniela; Niculae, Dumitru; Francisc, Ioan Hathazi

    2010-01-01

    Soil oil (petroleum) product pollution represents a great environmental threat as it may contaminate the neighboring soils and surface and underground water. Liquid fuel contamination may occur anywhere during oil (petroleum) product transportation, storing, handling and utilization. The polluted soil recovery represents a complex process due to the wide range of physical, chemical and biological properties of soils which should be analyzed in connection with the study of the contaminated soil behavior under the microwave field action. The soil, like any other non-metallic material, can be heated through microwave energy absorption due to the dielectric losses, expressed by its dielectric complex constant. Oil polluted soil behaves differently in a microwave field depending on the nature, structure and amount of the polluting fuel. Decontamination is performed through volatilization and retrieval of organic contaminant volatile components. After decontamination only a soil fixed residue remains, which cannot penetrate the underground anymore. In carrying out the soil recovery process by means of this technology we should also consider the soil characteristics such as: the soil type, temperature, moisture.The first part of the paper presents the theoretical aspects relating to the behavior of the polluted soil samples in the microwave field, as well as their relating experimental data. The experimental data resulting from the analysis of soils with a different level of pollution point out that the degree of pollutant recovery is high, contributing to changing the initial classification of soils from the point of view of pollution. The paper graphically presents the levels of microwave generated and absorbed power in soil samples, soil temperature during experimentations, specific processing parameters in a microwave field. It also presents the constructive solution of the microwave equipment designed for the contaminated soil in situ treatment.

  2. THERMAL AND DIELECTRIC PROPERTIES OF PINE WOOD IN THE TRANSVERSE DIRECTION

    Directory of Open Access Journals (Sweden)

    Hamiyet Şahin Kol

    2009-11-01

    Full Text Available In this paper, the thermal conductivity and dielectric parameters for pine [Pinus sylvestris (L.] woods were determined in transverse directions for moisture conditions from oven-dry to 22 percent at a room temperature of 22 to 24 °C. Results indicate that the behaviors of thermal conductivity and dielectric parameters with moisture content and structural directions were similar. In general, the properties increased within the range studied with increasing moisture content. The radial values were similar to tangential values for both thermal conductivity and dielectric properties. The data presented here should be useful in most design problems where pine wood is subjected to microwave electric fields and heat changes.

  3. Study of microwave components for an electron cyclotron resonance ...

    Indian Academy of Sciences (India)

    The working .... high voltage isolation, and low microwave radiation leakage to environment. ... material as air to see the real effects under actual environment. ..... chamber was in safe operation towards the permissible limit of microwave ...

  4. Optical Properties of Metal-Dielectric Structures Based on Photon-Crystal Opal Matrices

    Science.gov (United States)

    Vanin, A. I.; Lukin, A. E.; Romanov, S. G.; Solovyev, V. G.; Khanin, S. D.; Yanikov, M. V.

    2018-04-01

    Optical properties of novel metal-dielectric nanocomposite materials based on opal matrices have been investigated. The position of optical resonances of nanocomposites, obtained by embedding of silver into the opal matrix by the electrothermodiffusion method, is explained by the Bragg diffraction, and an asymmetric form of resonance curves is attributed to the Fano resonance. An anomalous transmission and absorption of light by hybrid plasmon-photonic layered heterostructures, which is apparently associated with excitation of surface plasmon-polaritons, propagating along "metal-dielectric" interfaces, was revealed.

  5. Thin film metrology and microwave loss characterization of indium and aluminum/indium superconducting planar resonators

    Science.gov (United States)

    McRae, C. R. H.; Béjanin, J. H.; Earnest, C. T.; McConkey, T. G.; Rinehart, J. R.; Deimert, C.; Thomas, J. P.; Wasilewski, Z. R.; Mariantoni, M.

    2018-05-01

    Scalable architectures characterized by quantum bits (qubits) with low error rates are essential to the development of a practical quantum computer. In the superconducting quantum computing implementation, understanding and minimizing material losses are crucial to the improvement of qubit performance. A new material that has recently received particular attention is indium, a low-temperature superconductor that can be used to bond pairs of chips containing standard aluminum-based qubit circuitry. In this work, we characterize microwave loss in indium and aluminum/indium thin films on silicon substrates by measuring superconducting coplanar waveguide resonators and estimating the main loss parameters at powers down to the sub-photon regime and at temperatures between 10 and 450 mK. We compare films deposited by thermal evaporation, sputtering, and molecular beam epitaxy. We study the effects of heating in a vacuum and ambient atmospheric pressure as well as the effects of pre-deposition wafer cleaning using hydrofluoric acid. The microwave measurements are supported by thin film metrology including secondary-ion mass spectrometry. For thermally evaporated and sputtered films, we find that two-level state are the dominant loss mechanism at low photon number and temperature, with a loss tangent due to native indium oxide of ˜ 5 × 10 - 5 . The molecular beam epitaxial films show evidence of the formation of a substantial indium-silicon eutectic layer, which leads to a drastic degradation in resonator performance.

  6. Hybrid simulation of electron cyclotron resonance heating

    Energy Technology Data Exchange (ETDEWEB)

    Ropponen, T. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)], E-mail: tommi.ropponen@phys.jyu.fi; Tarvainen, O. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Suominen, P. [CERN Geneve 23, CH-1211 (Switzerland); Koponen, T.K. [Department of Physics, University of Jyvaeskylae, Nanoscience Center, P.O. Box 35, FI-40014 (Finland); Kalvas, T.; Koivisto, H. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland)

    2008-03-11

    Electron Cyclotron Resonance (ECR) heating is a fundamentally important aspect in understanding the physics of Electron Cyclotron Resonance Ion Sources (ECRIS). Absorption of the radio frequency (RF) microwave power by electron heating in the resonance zone depends on many parameters including frequency and electric field strength of the microwave, magnetic field structure and electron and ion density profiles. ECR absorption has been studied in the past by e.g. modelling electric field behaviour in the resonance zone and its near proximity. This paper introduces a new ECR heating code that implements damping of the microwave power in the vicinity of the resonance zone, utilizes electron density profiles and uses right hand circularly polarized (RHCP) electromagnetic waves to simulate electron heating in ECRIS plasma.

  7. Wakefield accelerator with hybrid plasma-dielectric structure of rectangular cross-section

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Mirnyj, V.I.; Onishchenko, I.N.; Uskov, V.V.

    2010-01-01

    Increase of wakefield intensity at its excitation by a long train of relativistic electron bunches in the rectangular dielectric structure when it is filled with plasma of resonant density was experimentally observed. The first portion of the bunches, produced by electron linac 'Almaz-2', ionizes gas at atmospheric pressure so that plasma frequency becomes equal to bunch repetition frequency and to the frequency of principal Eigen mode of the dielectric structure. Excitation enhancement at such resonant conditions is being studied taking into account the improvement of bunch train propagation in the transit channel caused by charge compensation with plasma and the electrodynamics change of the dielectric structure at filling with plasma.

  8. Microwave effective surface impedance of structures including a high-Tc superconducting film

    International Nuclear Information System (INIS)

    Hartemann, P.

    1992-01-01

    The microwave effective surface impedances of different stacks made of high-temperature superconducting films, dielectric materials and bulk normal metals were computed. The calculations were based on the two-fluid model of superconductors and the conventional transmission line theory. These effective impedances are compared to the calculated intrinsic surface impedances of the stacked superconducting films. The considered superconducting material has been the oxide YBa 2 Cu 3 O 7 epitaxially grown on crystalline substrates (MgO, LaAlO 3 , SrTiO 3 ), the film thickness ranging from a few nm to 1μm. Discrepancies between the effective surface resistances or reactances and the corresponding intrinsic values were determined at 10 GHz for non resonant or resonant structures. At resonance the surface resistance discrepancy exhibits a sharp peak which reaches 10 4 or more in relative value according to the geometry and the used materials. Obviously the effective surface reactance shows also huge variations about the resonance and may be negative. Moreover geometries allowing to obtain an effective resistance smaller than the film intrinsic value have been found. The effects of the resonance phenomenon on the electromagnetic wave reflectivity and reflection phase shift are investigated. Therefore the reported theoretical results demonstrate that the effective surface impedance of YBCO films with a thickness smaller than 500 nm can be very different from the intrinsic film impedance according to the structures. (Author). 3 refs., 10 figs., 2 tabs

  9. Highlights from panel discussion on key issues for future developments in microwave processing

    International Nuclear Information System (INIS)

    Gac, F.D.; Iskander, M.F.

    1992-01-01

    This paper reports on highlights from a panel discussion on Key Issues for Future Development in Microwave Processing. Although the panelists represented a mix of individuals from government, academia, and industry, only one aspect of industry was represented, namely microwave system manufacturers. For further panel discussions, it is recommended that the materials manufacturing (i.e., microwave user) sector also be represented. Three important points emerged from the panel discussion. The first deals with the credibility and usability of information, be it dielectric property measurements, experimental procedures, or microwave processing results. Second, a considerable communication and education gap continues to exist between the materials community and microwave engineers. Finally, a more realistic approach should be taken in identifying where microwave processing makes sense

  10. Modulated microwave microscopy and probes used therewith

    Science.gov (United States)

    Lai, Keji; Kelly, Michael; Shen, Zhi-Xun

    2012-09-11

    A microwave microscope including a probe tip electrode vertically positionable over a sample and projecting downwardly from the end of a cantilever. A transmission line connecting the tip electrode to the electronic control system extends along the cantilever and is separated from a ground plane at the bottom of the cantilever by a dielectric layer. The probe tip may be vertically tapped near or at the sample surface at a low frequency and the microwave signal reflected from the tip/sample interaction is demodulated at the low frequency. Alternatively, a low-frequency electrical signal is also a non-linear electrical element associated with the probe tip to non-linearly interact with the applied microwave signal and the reflected non-linear microwave signal is detected at the low frequency. The non-linear element may be semiconductor junction formed near the apex of the probe tip or be an FET formed at the base of a semiconducting tip.

  11. Studies involving direct heating of uranium and plutonium oxides by microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, G K; Malav, R K; Karande, A P; Bhargava, V K; Kamath, H S [Bhabha Atomic Research Centre, Tarapur (India). Advanced Fuel Fabrication Facility

    1997-08-01

    Nuclear fuel fabrication and recovery of nuclear materials from scraps generated during fabrication involve heating steps like dewaxing, sintering, roasting of scraps, calcination, etc. The dielectric properties of uranium and plutonium oxides place them in the category of materials which are susceptible to absorption of microwaves. The studies were carried out to explore the microwave heating technique for these steps required in nuclear fuel fabrication and scrap recovery laboratories. (author). 1 ref.

  12. ITO thin films prepared by a microwave heating

    International Nuclear Information System (INIS)

    Okuya, Masayuki; Ito, Nobuyuki; Shiozaki, Katsuyuki

    2007-01-01

    ITO thin films were prepared by irradiating 2.45 GHz of microwave with an output power of 700 W using a commercial kitchen microwave oven. A substrate temperature went up and down rapidly between 100 and 650 deg. C in a minute by a dielectric loss of SnO 2 layer pre-deposited on a glass substrate. We found that the electrical and optical properties of films were affected by the atmosphere in a microwave irradiation, while the sintering was completed within a few minutes. Although the electrical resistivity was not reduced below 5.0 x 10 -4 Ω.cm in this study, the results lead to the possibility of a practical rapid synthesis of ITO transparent conducting oxide films

  13. Superconductor Microwave Kinetic Inductance Detectors: System Model of the Readout Electronics

    Directory of Open Access Journals (Sweden)

    F. Alimenti

    2009-06-01

    Full Text Available This paper deals with the readout electronics needed by superconductor Microwave Kinetic Inductance Detectors (MKIDs. MKIDs are typically implemented in the form of cryogenic-cooled high quality factor microwave resonator. The natural frequency of these resonators changes as a millimeter or sub-millimeter wave radiation impinges on the resonator itself. A quantitative system model of the readout electronics (very similar to that of a vector network analyzer has been implemented under ADS environment and tested by several simulation experiments. The developed model is a tool to further optimize the readout electronic and to design the frequency allocation of parallel-connected MKIDs resonators. The applications of MKIDs will be in microwave and millimeter-wave radiometric imaging as well as in radio-astronomy focal plane arrays.

  14. Dielectric and acoustical high frequency characterisation of PZT thin films

    Energy Technology Data Exchange (ETDEWEB)

    Conde, Janine; Muralt, Paul, E-mail: janine.conde@epfl.ch [Department of Materials Science, EPFL (Switzerland)

    2010-02-15

    Pb(Zr, Ti)O{sub 3} (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {l_brace}100{r_brace} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.

  15. Microstrip resonators for electron paramagnetic resonance experiments

    Science.gov (United States)

    Torrezan, A. C.; Mayer Alegre, T. P.; Medeiros-Ribeiro, G.

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5×1010 spins/GHz1/2 despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  16. Microstrip resonators for electron paramagnetic resonance experiments.

    Science.gov (United States)

    Torrezan, A C; Mayer Alegre, T P; Medeiros-Ribeiro, G

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5 x 10(10) spins/GHz(1/2) despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  17. Measurement of the permittivity and loss of high-loss materials using a Near-Field Scanning Microwave Microscope

    International Nuclear Information System (INIS)

    Gregory, A.P.; Blackburn, J.F.; Lees, K.; Clarke, R.N.; Hodgetts, T.E.; Hanham, S.M.; Klein, N.

    2016-01-01

    In this paper improvements to a Near-Field Scanning Microwave Microscope (NSMM) are presented that allow the loss of high loss dielectric materials to be measured accurately at microwave frequencies. This is demonstrated by measuring polar liquids (loss tangent tanδ≈1) for which traceable data is available. The instrument described uses a wire probe that is electromagnetically coupled to a resonant cavity. An optical beam deflection system is incorporated within the instrument to allow contact mode between samples and the probe tip to be obtained. Liquids are contained in a measurement cell with a window of ultrathin glass. The calibration process for the microscope, which is based on image-charge electrostatic models, has been adapted to use the Laplacian ‘complex frequency’. Measurements of the loss tangent of polar liquids that are consistent with reference data were obtained following calibration against single-crystal specimens that have very low loss. - Highlights: • Design of a microwave microscope with resolution on the micron scale. • Improved theory for obtaining permittivity and loss tangent of high loss materials. • Polar reference liquids are used as test samples. • Traceable measurements with accuracy approximately ±10% in ε′ and ±20% in tan δ.

  18. Cavity quantum electrodynamics using a near-resonance two-level system: Emergence of the Glauber state

    Energy Technology Data Exchange (ETDEWEB)

    Sarabi, B.; Ramanayaka, A. N. [Laboratory for Physical Sciences, College Park, Maryland 20740 (United States); Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Burin, A. L. [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States); Wellstood, F. C. [Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Joint Quantum Institute, University of Maryland, College Park, Maryland 20742 (United States); Osborn, K. D. [Laboratory for Physical Sciences, College Park, Maryland 20740 (United States); Joint Quantum Institute, University of Maryland, College Park, Maryland 20742 (United States)

    2015-04-27

    Random tunneling two-level systems (TLSs) in dielectrics have been of interest recently because they adversely affect the performance of superconducting qubits. The coupling of TLSs to qubits has allowed individual TLS characterization, which has previously been limited to TLSs within (thin) Josephson tunneling barriers made from aluminum oxide. Here, we report on the measurement of an individual TLS within the capacitor of a lumped-element LC microwave resonator, which forms a cavity quantum electrodynamics (CQED) system and allows for individual TLS characterization in a different structure and material than demonstrated with qubits. Due to the reduced volume of the dielectric (80 μm{sup 3}), even with a moderate dielectric thickness (250 nm), we achieve the strong coupling regime as evidenced by the vacuum Rabi splitting observed in the cavity spectrum. A TLS with a coherence time of 3.2 μs was observed in a film of silicon nitride as analyzed with a Jaynes-Cummings spectral model, which is larger than seen from superconducting qubits. As the drive power is increased, we observe an unusual but explicable set of continuous and discrete crossovers from the vacuum Rabi split transitions to the Glauber (coherent) state.

  19. Dual band metamaterial perfect absorber based on Mie resonances

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhou, Ji, E-mail: zhouji@tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Bi, Ke [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Zhao, Qian [State Key Lab of Tribology, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084 (China)

    2016-08-08

    We numerically and experimentally demonstrated a polarization insensitive dual-band metamaterial perfect absorber working in wide incident angles based on the two magnetic Mie resonances of a single dielectric “atom” with simple structure. Two absorption bands with simulated absorptivity of 99% and 96%, experimental absorptivity of 97% and 94% at 8.45 and 11.97 GHz were achieved due to the simultaneous magnetic and electric resonances in dielectric “atom” and copper plate. Mie resonances of dielectric “atom” provide a simple way to design metamaterial perfect absorbers with high symmetry.

  20. Open microwave cavities

    Czech Academy of Sciences Publication Activity Database

    Šeba, Petr; Rotter, I.; Mueller, M.; Persson, C.; Pichugin, Konstantin N.

    2001-01-01

    Roč. 9, - (2001), s. 484-487 ISSN 1386-9477 Institutional research plan: CEZ:A02/98:Z1-010-914 Keywords : microwave cavity * resonances Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.009, year: 2001

  1. Processing of complex shapes with single-mode resonant frequency microwave applicators

    International Nuclear Information System (INIS)

    Fellows, L.A.; Delgado, R.; Hawley, M.C.

    1994-01-01

    Microwave processing is an alternative to conventional composite processing techniques. Single-mode microwave applicators efficiently couple microwave energy into the composite. The application of the microwave energy is greatly affected by the geometry of the composite. In the single mode microwave applicator, two types of modes are available. These modes are best suited to processing flat planar samples or cylindrical samples with geometries that align with the electric fields. Mode-switching is alternating between different electromagnetic modes with the intelligent selection of the modes to alleviate undesirable temperature profiles. This method has improved the microwave heating profiles of materials with complex shapes that do not align with either type of electric field. Parts with two different complex geometries were fabricated from a vinyl toluene/vinyl ester resin with a continuous glass fiber reinforcement by autoclaving and by microwave techniques. The flexural properties of the microwave processed samples were compared to the flexural properties of autoclaved samples. The trends of the mechanical properties for the complex shapes were consistent with the results of experiments with flat panels. This demonstrated that mode-switching techniques are as applicable for the complex shapes as they are for the simpler flat panel geometry

  2. Race for novel high-index all-dielectric and hybrid metal-dielectric nanophotonic materials: Pit-stop optical tests

    Science.gov (United States)

    Kudryashov, S. I.; Saraeva, I. N.; Ivanova, A. K.; Kudryavtseva, A. D.; Tchiernega, N. V.; Ionin, A. A.; Kuchmizhak, A. A.; Zayarny, D. A.

    2017-09-01

    Magnetic dipolar Mie-resonance of nanodiamonds supports their highly-efficient stimulated low-frequency Raman scattering via nanosecond laser excitation of their fundamental breathing mode, with strong additional plasmonic enhancement of the Raman conversion efficiency upon ablative capping of the resonant nanodiamond core by a silver nanoshell with a broad overlapping electrical dipolar Mie-resonance. Also, crystalline selenium nanoparticles, exhibiting the high refractive index in the visible/near-IR ranges, were demonstrated as promising all-dielectric sensing building nanoblocks in nanophotonics.

  3. A Microwave Tunable Bandpass Filter for Liquid Crystal Applications

    Science.gov (United States)

    Cao, Weiping; Jiang, Di; Liu, Yupeng; Yang, Yuanwang; Gan, Baichuan

    2017-07-01

    In this paper, a novel microwave continuously tunable band-pass filter, based on nematic liquid crystals (LCs), is proposed. It uses liquid crystal (LC) as the electro-optic material to mainly realize frequency shift at microwave band by changing the dielectric anisotropy, when applying the bias voltage. According to simulation results, it achieves 840 MHz offset. Comparing to the existing tunable filter, it has many advantages, such as continuously tunable, miniaturization, low processing costs, low tuning voltage, etc. Thus, it has shown great potentials in frequency domain and practical applications in modern communication.

  4. Magnetic resonance and antiresonance in microwave transmission through nanocomposites with Fe{sub 3}Ni{sub 2} and FeNi{sub 3} particles

    Energy Technology Data Exchange (ETDEWEB)

    Rinkevich, A.B. [M.N. Miheev Institute of Metal Physics Ural Branch of RAS, 18 S.Kovalevskaya St, Ekaterinburg 620990 (Russian Federation); Samoylovich, M.I. [OAO TsNITI “TEKHNOMASH”, 4 Ivana Franko St, Moscow 121108 (Russian Federation); Nemytova, O.V., E-mail: mif-83@mail.ru [M.N. Miheev Institute of Metal Physics Ural Branch of RAS, 18 S.Kovalevskaya St, Ekaterinburg 620990 (Russian Federation); Kuznetsov, E.A. [Nizhny Tagil branch of the Ekaterinburg state social-pedagogical university, 57 Krasnogvardeyskaya St, Nizhny Tagil 622031 (Russian Federation)

    2017-06-15

    Investigation of magnetic properties and microwave resonance phenomena in nanocomposites based on opal matrices containing the particles of intermetallide of Fe{sub 3}Ni{sub 2} and FeNi{sub 3} is carried out. The interactions which lead to the resonance changes of transmission and reflection coefficients are determined. Electromagnetic properties are measured in the millimeter frequency range. Special attention is paid to comparison between static and dynamic magnetic properties of nanocomposites. Frequency dependences of magnitude of lines of resonance features are obtained. Spectra of resonance and antiresonance are studied. The conditions when the magnetic antiresonance is observed are clarified. The X-ray phase analysis of the nanocomposites is performed and their structure is studied.

  5. Magneto-Plasmonics and Resonant Interaction of Light with Dynamic Magnetisation in Metallic and All-Magneto-Dielectric Nanostructures.

    Science.gov (United States)

    Maksymov, Ivan S

    2015-04-09

    A significant interest in combining plasmonics and magnetism at the nanoscale gains momentum in both photonics and magnetism sectors that are concerned with the resonant enhancement of light-magnetic-matter interaction in nanostructures. These efforts result in a considerable amount of literature, which is difficult to collect and digest in limited time. Furthermore, there is insufficient exchange of results between the two research sectors. Consequently, the goal of this review paper is to bridge this gap by presenting an overview of recent progress in the field of magneto-plasmonics from two different points of view: magneto-plasmonics, and magnonics and magnetisation dynamics. It is expected that this presentation style will make this review paper of particular interest to both general physical audience and specialists conducting research on photonics, plasmonics, Brillouin light scattering spectroscopy of magnetic nanostructures and magneto-optical Kerr effect magnetometry, as well as ultrafast all-optical and THz-wave excitation of spin waves. Moreover, readers interested in a new, rapidly emerging field of all-dielectric nanophotonics will find a section about all-magneto-dielectric nanostructures.

  6. Magneto-Plasmonics and Resonant Interaction of Light with Dynamic Magnetisation in Metallic and All-Magneto-Dielectric Nanostructures

    Directory of Open Access Journals (Sweden)

    Ivan S. Maksymov

    2015-04-01

    Full Text Available A significant interest in combining plasmonics and magnetism at the nanoscale gains momentum in both photonics and magnetism sectors that are concerned with the resonant enhancement of light-magnetic-matter interaction in nanostructures. These efforts result in a considerable amount of literature, which is difficult to collect and digest in limited time. Furthermore, there is insufficient exchange of results between the two research sectors. Consequently, the goal of this review paper is to bridge this gap by presenting an overview of recent progress in the field of magneto-plasmonics from two different points of view: magneto-plasmonics, and magnonics and magnetisation dynamics. It is expected that this presentation style will make this review paper of particular interest to both general physical audience and specialists conducting research on photonics, plasmonics, Brillouin light scattering spectroscopy of magnetic nanostructures and magneto-optical Kerr effect magnetometry, as well as ultrafast all-optical and THz-wave excitation of spin waves. Moreover, readers interested in a new, rapidly emerging field of all-dielectric nanophotonics will find a section about all-magneto-dielectric nanostructures.

  7. Study of the dielectric properties of barium titanate-polymer composites

    International Nuclear Information System (INIS)

    Pant, H.C.; Patra, M.K.; Verma, Aditya; Vadera, S.R.; Kumar, N.

    2006-01-01

    A comparative study of complex dielectric properties has been carried out at the X-band of microwave frequencies of composites of barium titanate (BaTiO 3 ) with two different polymer matrices: insulating polyaniline (PANI) powder (emeraldine base) and maleic resin. From these studies, it is observed that the composites of BaTiO 3 with maleic resin show normal composite behavior and the dielectric constant follows the asymmetric Bruggeman model. In contrast, the composites of BaTiO 3 with PANI show an unusual behavior wherein even at a low concentration of PANI (5 wt.%) there is a drastic reduction in the dielectric constant of BaTiO 3 . This behavior of the dielectric constant is explained on the basis of coating of BaTiO 3 particles by PANI which in turn is attributed to the highly surface adsorbing character. The materials have also been characterized using Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy and optical microscopy studies

  8. Novel dielectric properties of glasses prepared by quenching melts of Bi-Ca-Sr-Cu-O cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Varma, K.B.R.; Subbanna, G.N.; Ramakrishnan, T.V. (Materials Research Centre, Indian Inst. of Science, Bangalore (India) Dept. of Physics, Indian Inst. of Science, Bangalore (India)); Rao, C.N.R. (Solid State and Structural Chemistry Unit, Indian Inst. of Science, Bangalore (India))

    1989-12-01

    Glasses, prepared from the melts of Bi{sub 2}(Ca,Sr){sub n+1}Cu{sub n}O{sub 2n+4} (n=1, 2 and 3) have been characterized by various techniques. These glasses exhibit relatively high dielectric constants, high electrical conductivity, a ferroelectric-like dielectric hysteresis loop and pyroelectric effect at 300K. They also show weak microwave absorption at 77K. (orig.).

  9. Microwave Absorbent Packaging Material from Composites Chitosan-Polyvinyl Alcohol Polymer

    Directory of Open Access Journals (Sweden)

    Bambang - Riyanto

    2014-11-01

    Full Text Available Microwave absorbent packaging materials currently tend to biomaterial. Chitosan is a dielectric biomaterial with polycationic properties. The aim of this study was to analyze characteristics of microwave absorbing packaging material made from composite chitosan-polyvinyl alcohol (PVA polymer. The ability of the packaging material to absorb microwave was determined by reflection loss measurement. Formed packaging prototype resembles as a thin transparent yellowish plastic with thickness (0.11-0.22 mm and the tensile strength (106.33±2.82-143.00±2.59 kPa. SEM analysis showed homogenous structure characterized by interaction between chitosan and PVA. Optimum absorption value was obtained from chitosan concentration of 1%, with average value of reflection loss was (-31.9289±4.0094 dB.Keywords: chitosan, material packaging, microwave, reflection loss

  10. Microwave Absorbent Packaging Material from Composites Chitosan-Polyvinyl Alcohol Polymer

    Directory of Open Access Journals (Sweden)

    Bambang - Riyanto

    2015-07-01

    Full Text Available Microwave absorbent packaging materials currently tend to biomaterial. Chitosan is a dielectric biomaterial with polycationic properties. The aim of this study was to analyze characteristics of microwave absorbing packaging material made from composite chitosan-polyvinyl alcohol (PVA polymer. The ability of the packaging material to absorb microwave was determined by reflection loss measurement. Formed packaging prototype resembles as a thin transparent yellowish plastic with thickness (0.11-0.22 mm and the tensile strength (106.33±2.82-143.00±2.59 kPa. SEM analysis showed homogenous structure characterized by interaction between chitosan and PVA. Optimum absorption value was obtained from chitosan concentration of 1%, with average value of reflection loss was (-31.9289±4.0094 dB.Keywords: chitosan, material packaging, microwave, reflection loss

  11. Challenges in the Design of Microwave Imaging Systems for Breast Cancer Detection

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy

    2011-01-01

    community. This paper presents the survey of the ongoing research in the field of microwave imaging of biological tissues, with major focus on the breast tumor detection application. The existing microwave imaging systems are categorized on the basis of the employed measurement concepts. The advantages......Among the various breast imaging modalities for breast cancer detection, microwave imaging is attractive due to the high contrast in dielectric properties between the cancerous and normal tissue. Due to this reason, this modality has received a significant interest and attention from the microwave...... and disadvantages of the implemented imaging techniques are discussed. The fundamental tradeoffs between the various system requirements are indicated. Some strategies to overcome these limitations are outlined....

  12. A tunable Fabry-Perot filter (λ/18) based on all-dielectric metamaterials

    Science.gov (United States)

    Ao, Tianhong; Xu, Xiangdong; Gu, Yu; Jiang, Yadong; Li, Xinrong; Lian, Yuxiang; Wang, Fu

    2018-05-01

    A tunable Fabry-Perot filter composed of two separated all-dielectric metamaterials is proposed and numerically investigated. Different from metallic metamaterials reflectors, the all-dielectric metamaterials are constructed by high-permittivity TiO2 cylinder arrays and exhibit high reflection in a broadband of 2.49-3.08 THz. The high reflection is attributed to the first and second Mie resonances, by which the all-dielectric metamaterials can serve as reflectors in the Fabry-Perot filter. Both the results from phase analysis method and CST simulations reveal that the resonant frequency of the as-proposed filter appears at 2.78 THz, responding to a cavity with λ/18 wavelength thickness. Particularly, the resonant frequency can be adjusted by changing the cavity thickness. This work provides a feasible approach to design low-loss terahertz filters with a thin air cavity.

  13. Synthesis of nanosized silver colloids by microwave dielectric heating

    Indian Academy of Sciences (India)

    Silver nanosized crystallites have been synthesized in aqueous and polyols viz., ethylene glycol and glycerol, using a microwave technique. Dispersions of colloidal silver have been prepared by the reduction of silver nitrate both in the presence and absence of stabilizer poly(vinylpyrolidone) (PVP). It was observed that ...

  14. Investigation of the use of microwave image line integrated circuits for use in radiometers and other microwave devices in X-band and above

    Science.gov (United States)

    Knox, R. M.; Toulios, P. P.; Onoda, G. Y.

    1972-01-01

    Program results are described in which the use of a/high permittivity rectangular dielectric image waveguide has been investigated for use in microwave and millimeter wavelength circuits. Launchers from rectangular metal waveguide to image waveguide are described. Theoretical and experimental evaluations of the radiation from curved image waveguides are given. Measurements of attenuation due to conductor and dielectric losses, adhesives, and gaps between the dielectric waveguide and the image plane are included. Various passive components are described and evaluations given. Investigations of various techniques for fabrication of image waveguide circuits using ceramic waveguides are also presented. Program results support the evaluation of the image line approach as an advantageous method for realizing low loss integrated electronic circuits for X-band and above.

  15. Performance test of a vertically-directed electric-field cavity resonator made for the rapid gelation apparatus with microwave heating

    International Nuclear Information System (INIS)

    Yamagishi, Shigeru; Ogawa, Toru; Hasegawa, Atsushi.

    1996-06-01

    A cavity resonator with vertically-directed electric field was produced and attached to 'the rapid gelation apparatus with microwave heating' previously reported. Using the rapid gelation apparatus, drops of a simulated solution and of U-containing solutions for internal gelation were heated. The results indicated that the heating required for gelation of the U-containing solutions was possible. However, the electric field strength in the cavity resonator at that time was comparable to that causing the discharge due to the gaseous ammonia released from the heated drops. As a result, gel microspheres were not obtained in a stable state. The discussion suggests that the stable gelation would be realized by improving the cavity resonator shape and/or by modifying the power supply accompanied with using a power stabilizer. (author)

  16. Microwave radiometric aircraft observations of the Fabry-Perot interference fringes of an ice-water system

    Science.gov (United States)

    Harrington, R. F.; Swift, C. T.; Fedors, J. C.

    1980-01-01

    Airborne stepped-frequency microwave radiometer (SFMR) observations of the Fabry-Perot interference fringes of ice-water systems are discussed. The microwave emissivity at normal incidence of a smooth layered dielectric medium over a semi-infinite dielectric medium is examined for the case of ice over water as a function of ice thickness and attenuation coefficient, and the presence of quarter-wavelength oscillations in emissivity as the ice thickness and frequency are varied is pointed out. Experimental observations of pronounced quarter-wavelength oscillations in radiometric brightness temperature due to the Fabry-Perot interference fringes over smooth sea ice and lake ice varying in roughness as the radiometer frequencies were scanned are then presented.

  17. MICROWAVE INTERACTIONS WITH INHOMOGENEOUS PARTIALLY IONIZED PLASMA

    Energy Technology Data Exchange (ETDEWEB)

    Kritz, A. H.

    1962-11-15

    Microwave interactions with inhomogeneous plasmas are often studied by employing a simplified electromagnetic approach, i.e., by representing the effects of the plasma by an effective dielectric coefficient. The problems and approximations associated with this procedure are discussed. The equation describing the microwave field in an inhomogeneous partially ionized plasma is derived, and the method that is applied to obtain the reflected, transmitted, and absorbed intensities in inhomogeneous plasmas is presented. The interactions of microwaves with plasmas having Gaussian electron density profiles are considered. The variation of collision frequency with position is usually neglected. In general, the assumption of constant collision frequency is not justified; e.g., for a highly ionized plasma, the electron density profile determines, in part, the profile of the electron-ion collision frequency. The effect of the variation of the collision frequency profile on the interaction of microwaves with inhomogeneous plasmas is studied in order to obtain an estimate of the degree of error that may result when constant collision frequency is assumed instead of a more realistic collision frequency profile. It is shown that the degree of error is of particular importance when microwave analysis is used as a plasma diagnostic. (auth)

  18. Fracturing of hard rocks by microwave treatment and potential applications in mechanised tunnelling

    OpenAIRE

    YANLONG ZHENG

    2018-01-01

    Extremely hard and abrasive rocks have posed great challenges to mechanical excavators such as tunnel boring machines and roadheaders by increasing the cutter wear and decreasing the penetration rates. Microwave treatment prior to mechanical rock breakage has been recognised as a promising technology. This PhD project measures/derives the dielectric properties of commonly encountered rocks and minerals and investigates the effect of microwave treatment on the physical and mechanical propertie...

  19. Real-time process monitoring in a semi-continuous fluid-bed dryer - microwave resonance technology versus near-infrared spectroscopy.

    Science.gov (United States)

    Peters, Johanna; Teske, Andreas; Taute, Wolfgang; Döscher, Claas; Höft, Michael; Knöchel, Reinhard; Breitkreutz, Jörg

    2018-02-15

    The trend towards continuous manufacturing in the pharmaceutical industry is associated with an increasing demand for advanced control strategies. It is a mandatory requirement to obtain reliable real-time information on critical quality attributes (CQA) during every process step as the decision on diversion of material needs to be performed fast and automatically. Where possible, production equipment should provide redundant systems for in-process control (IPC) measurements to ensure continuous process monitoring even if one of the systems is not available. In this paper, two methods for real-time monitoring of granule moisture in a semi-continuous fluid-bed drying unit are compared. While near-infrared (NIR) spectroscopy has already proven to be a suitable process analytical technology (PAT) tool for moisture measurements in fluid-bed applications, microwave resonance technology (MRT) showed difficulties to monitor moistures above 8% until recently. The results indicate, that the newly developed MRT sensor operating at four resonances is capable to compete with NIR spectroscopy. While NIR spectra were preprocessed by mean centering and first derivative before application of partial least squares (PLS) regression to build predictive models (RMSEP = 0.20%), microwave moisture values of two resonances sufficed to build a statistically close multiple linear regression (MLR) model (RMSEP = 0.07%) for moisture prediction. Thereby, it could be verified that moisture monitoring by MRT sensor systems could be a valuable alternative to NIR spectroscopy or could be used as a redundant system providing great ease of application. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Investigation on computation of elliptical microwave plasma cavity

    Science.gov (United States)

    Liao, Xiaoli; Liu, Hua; Zhang, Kai

    2008-12-01

    In recent years, the advance of the elliptical resonant cavity and focus cavity is known by many people. There are homogeneous and multipatternal virtues in the focus dimensional microwave field of the elliptical resonant cavity. It is very suitable for applying the low power microwave biological effect equipment. However, when designing the elliptical resonant cavity may meet the problems of complex and huge computation need to be solved. This paper proposed the simple way of approximate processing the Mathieu function. It can greatly simplify the difficulty and decrease the scale of computation. This method can satisfy the requirements of research and development within project permitted precision.

  1. Artificial magnetism and left-handed media from dielectric rings and rods

    International Nuclear Information System (INIS)

    Jelinek, L; Marques, R

    2010-01-01

    It is shown that artificial magnetism with relatively large frequency bandwidth can be obtained from periodic arrangements of dielectric rings. Combined with dielectric rods, dielectric rings can provide 3D isotropic left-handed metamaterials which are an advantageous alternative to metallic split ring resonators (SRRs) and/or metallic wires when undetectability by low frequency external magnetic fields is desired. Furthermore it is shown that, unlike conventional SRRs, dielectric rings can also be combined with natural plasma-like media to obtain a left-handed metamaterial.

  2. Artificial magnetism and left-handed media from dielectric rings and rods

    Energy Technology Data Exchange (ETDEWEB)

    Jelinek, L [Department of Electromagnetic Field, Czech Technical University in Prague, 166 27-Prague (Czech Republic); Marques, R, E-mail: l_jelinek@us.e [Departamento de Electronica y Electromagnetismo, Universidad de Sevilla, 41012-Sevilla (Spain)

    2010-01-20

    It is shown that artificial magnetism with relatively large frequency bandwidth can be obtained from periodic arrangements of dielectric rings. Combined with dielectric rods, dielectric rings can provide 3D isotropic left-handed metamaterials which are an advantageous alternative to metallic split ring resonators (SRRs) and/or metallic wires when undetectability by low frequency external magnetic fields is desired. Furthermore it is shown that, unlike conventional SRRs, dielectric rings can also be combined with natural plasma-like media to obtain a left-handed metamaterial.

  3. Cantilever-Based Microwave Biosensors: Analysis, Designs and Optimizations

    DEFF Research Database (Denmark)

    Jiang, Chenhui; Johansen, Tom Keinicke; Jónasson, Sævar Þór

    2011-01-01

    This paper presents a novel microwave readout scheme for measuring deflection of cantilevers in nanometer range. The cantilever deflection can be sensed by the variation of transmission levels or resonant frequencies of microwave signals. The sensitivity of the cantilever biosensor based on LC...

  4. Preparation of Potassium Dichromate Crystals from the Chromite Concentrate by Microwave Assisted Leaching

    Directory of Open Access Journals (Sweden)

    Hua Liu

    2017-10-01

    Full Text Available In the present investigation, the oxidizing roasting process of chromite with sodium carbonate to prepare potassium dichromate crystals was studied in the microwave field with air, by heating the chromite and sodium carbonate. The chromite and sodium carbonate heated separately at 1000 °C in the microwave oven (frequency: 2.45 GHz; power 1.5 kW in order to study the microwave absorption properties. The dielectric constant and dielectric loss factor of the chromite and sodium carbonate examined. Then, chromite with sodium carbonate taken in (1:2 ratio and heated at 750 °C. Thus obtained samples were characterized using various techniques includes Powder-XRD (XRD, Scanning Electron Microscopy (SEM, and X-ray fluorescence (XRF. The XRD pattern reveals the existence of Fe3O4, Fe2O3, NaAlO2, and Na2CrO4. The iron and aluminum were leached out as Fe2O3 and Al(OH3 respectively. The resulting sample treated with the KCl to prepare potassium dichromate crystals. Finally, potassium dichromate crystals formed.

  5. Far-infrared spectroscopy in ordered and disordered BaMg1/3Nb2/3O3 microwave ceramics

    Science.gov (United States)

    Dias, Anderson; Moreira, Roberto Luiz

    2003-09-01

    Ba(Mg1/3Nb2/3)O3 ceramics with suitable microwave dielectric properties for application in wireless communications and information access technologies were studied by far-infrared spectroscopy. Samples with different B-site ordering degrees, obtained by hydrothermal synthesis followed by sintering at various temperatures, were employed in this investigation. The sixteen infrared modes predicted by factor-group analysis were observed and adjusted according to a four-parameter semiquantum model. The dispersion parameters were determined in order to calculate the real part of the dielectric permittivity and the quality factors associated with the dielectric losses in the microwave region. The materials exhibited increasing ɛ0 and Q values up to 1100 °C, increasing more substantially when the temperature attained 1300 °C. The B-site ordering played an important role on this behavior along with the microstructural evolution above 1100 °C (grain growth), which also increased the phonon lifetime and contributed to the Q improvement. Kramers-Kronig analyses were carried out in all experimental data and the contributions of the main optical polar modes to the dielectric and microwave properties were carefully analyzed in order to identify and attribute the Ba-BO3 external mode, the inner modes related to the O-Mg-O and O-Nb-O bending vibrations, and the stretching modes of each MgO6 and NbO6 octahedron.

  6. Microwave Interferometry Based On Open-ended Coaxial Technique for High Sensitivity Liquid Sensing

    Directory of Open Access Journals (Sweden)

    H. Bakli

    2017-10-01

    Full Text Available This paper describes a modified open-ended coaxial technique for microwave dielectric characterization in liquid media. A calibration model is developed to relate the measured transmission coefficient to the local properties of the sample under test. As a demonstration, the permittivity of different sodium chloride solutions is experimentally determined. Accuracies of 0.17% and 0.19% are obtained respectively for the real and imaginary parts of dielectric permittivity at 5.9 GHz.

  7. Nonlinear effects in microwave photoconductivity of two-dimensional electron systems

    International Nuclear Information System (INIS)

    Ryzhii, V; Suris, R

    2003-01-01

    We present a model for microwave photoconductivity of two-dimensional electron systems in a magnetic field which describes the effects of strong microwave and steady-state electric fields. Using this model, we derive an analytical formula for the photoconductivity associated with photon- and multi-photon-assisted impurity scattering as a function of the frequency and power of microwave radiation. According to the developed model, the microwave conductivity is an oscillatory function of the frequency of microwave radiation and the cyclotron frequency which becomes zero at the cyclotron resonance and its harmonics. It exhibits maxima and minima (with absolute negative conductivity) at microwave frequencies somewhat different from the resonant frequencies. The calculated power dependence of the amplitude of the microwave photoconductivity oscillations exhibits pronounced sublinear behaviour similar to a logarithmic function. The height of the microwave photoconductivity maxima and the depth of its minima are nonmonotonic functions of the electric field. The possibility of a strong widening of the maxima and minima due to a strong sensitivity of their parameters on the electric field and the presence of strong long-range electric-field fluctuations is pointed to. The obtained dependences are consistent with the results of the experimental observations

  8. Investigation and application of microwave electron cyclotron resonance plasma physical vapour deposition

    International Nuclear Information System (INIS)

    Ren Zhaoxing; Sheng Yanya; Shi Yicai; Wen Haihu; Cao Xiaowen

    1991-06-01

    The evaporating deposition of Ti film and Cu film by using microwave electron cyclotron resonance (ECR) technique was investigated. It deposition rate was about 50 nm/min and the temperature of the substrate was 50∼150 deg C. The thin amorphous films with strong adherent force were obtained. The sputtering deposition with ECR plasma was studied by employing higher plasma density and ionicity and negative substrate potential to make YBaCuO superconducting film. Its film was compact and amorphous with a thickness of 1.0 μm and the deposition rate was about 10 nm/min. The results show that this technique can initiate a high density and high ionicity plasma at lower gas pressure (10 -2 ∼10 -3 Pa). This plasma is the most suitable plasma source in thin film deposition process and surface treatment technique

  9. Balanced microwave filters

    CERN Document Server

    Hong, Jiasheng; Medina, Francisco; Martiacuten, Ferran

    2018-01-01

    This book presents and discusses strategies for the design and implementation of common-mode suppressed balanced microwave filters, including, narrowband, wideband, and ultra-wideband filters This book examines differential-mode, or balanced, microwave filters by discussing several implementations of practical realizations of these passive components. Topics covered include selective mode suppression, designs based on distributed and semi-lumped approaches, multilayer technologies, defect ground structures, coupled resonators, metamaterials, interference techniques, and substrate integrated waveguides, among others. Divided into five parts, Balanced Microwave Filters begins with an introduction that presents the fundamentals of balanced lines, circuits, and networks. Part 2 covers balanced transmission lines with common-mode noise suppression, including several types of common-mode filters and the application of such filters to enhance common-mode suppression in balanced bandpass filters. Next, Part 3 exa...

  10. Non-destructive radio-frequency and microwave measurement of moisture content in agricultural commodities

    International Nuclear Information System (INIS)

    Nelson, S.O.

    1994-01-01

    The importance of moisture content in agricultural commodities, the usefulness of the dielectric properties of such products for sensing moisture content by radiofrequency and microwave measurements, and factors affecting these properties are briefly discussed. Recent developments in the understanding of principles for online moisture sensing and the sensing of individual kernel, seed, nut and fruit moisture contents by radiofrequency and microwave techniques are reviewed. A brief discussion is included on aspects of practical application

  11. High-frequency dielectric properties of nanocomposite and ceramic titanates

    Czech Academy of Sciences Publication Activity Database

    Rinkevich, A.B.; Kuznetsov, E. A.; Perov, D.V.; Bovtun, Viktor; Kempa, Martin; Nuzhnyy, Dmitry; Savinov, Maxim; Samoilovich, M.I.; Klescheva, S.M.; Ryabkov, Y.I.; Tsvetkova, E.V.

    2015-01-01

    Roč. 14, č. 3 (2015), s. 585-592 ISSN 1536-125X R&D Projects: GA ČR GAP204/12/0232 Institutional support: RVO:68378271 Keywords : electromagnetic waveguide * opal matrix * transmission and reflection coefficients * microwave conductivity * dielectric spectra Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.702, year: 2015

  12. 3D Simulations for a Micron-Scale, Dielectric-Based Acceleration Experiment

    International Nuclear Information System (INIS)

    Yoder, R. B.; Travish, G.; Xu Jin; Rosenzweig, J. B.

    2009-01-01

    An experimental program to demonstrate a dielectric, slab-symmetric accelerator structure has been underway for the past two years. These resonant devices are driven by a side-coupled 800-nm laser and can be configured to maintain the field profile necessary for synchronous acceleration and focusing of relativistic or nonrelativistic particles. We present 3D simulations of various versions of the structure geometry, including a metal-walled structure relevant to ongoing cold tests on resonant properties, and an all-dielectric structure to be constructed for a proof-of-principle acceleration experiment.

  13. Slots in dielectric image line as mode launchers and circuit elements

    Science.gov (United States)

    Solbach, K.

    1981-01-01

    A planar resonator model is used to investigate slots in the ground plane of dielectric image lines. An equivalent circuit representation of the slot discontinuity is obtained, and the launching efficiency of the slot as a mode launcher is analyzed. Slots are also shown to be useful in the realization of dielectric image line array antennas. It is found that the slot discontinuity can be shown as a T-junction of the dielectric image line and a metal waveguide. The launching efficiency is found to increase with the dielectric constant of the dielectric image line, exhibiting a maximum value for guides whose height is slightly less than half a wavelength in the dielectric medium. The measured launching efficiencies of low permittivity dielectric image lines are found to be in good agreement with calculated values

  14. Low cost and conformal microwave water-cut sensor for optimizing oil production process

    KAUST Repository

    Karimi, Muhammad Akram

    2015-08-01

    Efficient oil production and refining processes require the precise measurement of water content in oil (i.e., water-cut) which is extracted out of a production well as a byproduct. Traditional water-cut (WC) laboratory measurements are precise, but are incapable of providing real-time information, while recently reported in-line WC sensors (both in research and industry) are usually incapable of sensing the full WC range (0 – 100 %), are bulky, expensive and non-scalable for the variety of pipe sizes used in the oil industry. This work presents a novel implementation of a planar microwave T-resonator for fully non-intrusive in situ WC sensing over the full range of operation, i.e., 0 – 100 %. As opposed to non-planar resonators, the choice of a planar resonator has enabled its direct implementation on the pipe surface using low cost fabrication methods. WC sensors make use of series resonance introduced by a λ/4 open shunt stub placed in the middle of a microstrip line. The detection mechanism is based on the measurement of the T-resonator’s resonance frequency, which varies with the relative percentage of oil and water (due to the difference in their dielectric properties). In order to implement the planar T-resonator based sensor on the curved surface of the pipe, a novel approach of utilizing two ground planes is proposed in this work. The innovative use of dual ground planes makes this sensor scalable to a wide range of pipe sizes present in the oil industry. The design and optimization of this sensor was performed in an electromagnetic Finite Element Method (FEM) solver, i.e., High Frequency Structural Simulator (HFSS) and the dielectric properties of oil, water and their emulsions of different WCs used in the simulation model were measured using a SPEAG-dielectric assessment kit (DAK-12). The simulation results were validated through characterization of fabricated prototypes. Initial rapid prototyping was completed using copper tape, after which a

  15. Frequency and Temperature Dependent Dielectric Properties of Free-standing Strontium Titanate Thin Films.

    Science.gov (United States)

    Dalberth, Mark J.; Stauber, Renaud E.; Anderson, Britt; Price, John C.; Rogers, Charles T.

    1998-03-01

    We will report on the frequency and temperature dependence of the complex dielectric function of free-standing strontium titanate (STO) films. STO is an incipient ferroelectric with electric-field tunable dielectric properties of utility in microwave electronics. The films are grown epitaxially via pulsed laser deposition on a variety of substrates, including lanthanum aluminate (LAO), neodymium gallate (NGO), and STO. An initial film of yttrium barium cuprate (YBCO) is grown on the substrate, followed by deposition of the STO layer. Following deposition, the sacrificial YBCO layer is chemically etched away in dilute nitric acid, leaving the substrate and a released, free-standing STO film. Coplanar capacitor structures fabricated on the released films allow us to measure the dielectric response. We observe a peak dielectric function in excess of 5000 at 35K, change in dielectric constant of over a factor of 8 for 10Volt/micron electric fields, and temperature dependence above 50K that is very similar to bulk material. The dielectric loss shows two peaks, each with a thermally activated behavior, apparently arising from two types of polar defects. We will discuss the correlation between dielectric properties, growth conditions, and strain in the free-standing STO films.

  16. Comparison between off-resonance and electron Bernstein waves heating regime in a microwave discharge ion source

    Energy Technology Data Exchange (ETDEWEB)

    Castro, G.; Di Giugno, R.; Miracoli, R. [INFN- Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Universita degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S. Sofia 64, 95123 Catania (Italy); Mascali, D. [INFN- Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Romano, F. P. [INFN- Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); CNR-IBAM Via Biblioteca 4, 95124 Catania (Italy); Celona, L.; Gammino, S.; Lanaia, D.; Ciavola, G. [INFN- Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Serafino, T. [CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Di Bartolo, F. [Universita di Messina, Ctr. da Papardo-Sperone, 98100 Messina (Italy); Gambino, N. [INFN- Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Universita degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S. Sofia 64, 95123 Catania (Italy); IET-Institute of Energy Technology, LEC-Laboratory for Energy Conversion, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich (Switzerland)

    2012-02-15

    A microwave discharge ion source (MDIS) operating at the Laboratori Nazionali del Sud of INFN, Catania has been used to compare the traditional electron cyclotron resonance (ECR) heating with an innovative mechanisms of plasma ignition based on the electrostatic Bernstein waves (EBW). EBW are obtained via the inner plasma electromagnetic-to-electrostatic wave conversion and they are absorbed by the plasma at cyclotron resonance harmonics. The heating of plasma by means of EBW at particular frequencies enabled us to reach densities much larger than the cutoff ones. Evidences of EBW generation and absorption together with X-ray emissions due to high energy electrons will be shown. A characterization of the discharge heating process in MDISs as a generalization of the ECR heating mechanism by means of ray tracing will be shown in order to highlight the fundamental physical differences between ECR and EBW heating.

  17. Design and Fabrication of High Gain Multi-element Multi-segment Quarter-sector Cylindrical Dielectric Resonator Antenna

    Science.gov (United States)

    Ranjan, Pinku; Gangwar, Ravi Kumar

    2017-12-01

    A novel design and analysis of quarter cylindrical dielectric resonator antenna (q-CDRA) with multi-element and multi-segment (MEMS) approach has been presented. The MEMS q-CDRA has been designed by splitting four identical quarters from a solid cylinder and then multi-segmentation approach has been utilized to design q-CDRA. The proposed antenna has been designed for enhancement in bandwidth as well as for high gain. For bandwidth enhancement, multi-segmentation method has been explained for the selection of dielectric constant of materials. The performance of the proposed MEMS q-CDRA has been demonstrated with design guideline of MEMS approach. To validate the antenna performance, three segments q-CDRA has been fabricated and analyzed practically. The simulated results have been in good agreement with measured one. The MEMS q-CDRA has wide impedance bandwidth (|S11|≤-10 dB) of 133.8 % with monopole-like radiation pattern. The proposed MEMS q-CDRA has been operating at TM01δ mode with the measured gain of 6.65 dBi and minimum gain of 4.5 dBi in entire operating frequency band (5.1-13.7 GHz). The proposed MEMS q-CDRA may find appropriate applications in WiMAX and WLAN band.

  18. Study of dielectric properties of adulterated milk concentration and freshness

    Science.gov (United States)

    Jitendra Murthy, V.; Sai Kiranmai, N.; Kumar, Sanjeev

    2017-08-01

    The knowledge of dielectric properties may hold a potential to develop a new technique for quality evaluation of milk. The dielectric properties of water diluted cow’s milk with milk concentration from 70 percent to 100 percent stored during 36hour storage at 22°C and 144 hour at 5°C were measured at room temperature for frequencies ranging from 10 to 4500 MHz and at low, high & at microwave frequencies using X band bench and open-ended coaxial-line probe technology, along with electrical conductivity. The raw milk had the lowest dielectric constant (ɛ‧) when the frequency was higher than about 20M.Hz, and had the highest loss (ɛ″) or decepation factor tan (δ) at each frequency. The penetration depth (dp) increased with decreasing frequency, water content and storage time, which was large enough to detect dielectric properties changes in milk samples and provide large scale RF pasteurization processes. The loss factor can be an indicator in predicting milk concentration and freshness.

  19. Study of the dielectric properties of barium titanate-polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Pant, H.C. [R and D Laboratory, Defence Laboratory, Camouflage Division, Defence Laboratory Ratanada Palace, Jodhpur 342011, Rajasthan (India); Patra, M.K. [R and D Laboratory, Defence Laboratory, Camouflage Division, Defence Laboratory Ratanada Palace, Jodhpur 342011, Rajasthan (India); Verma, Aditya [R and D Laboratory, Defence Laboratory, Camouflage Division, Defence Laboratory Ratanada Palace, Jodhpur 342011, Rajasthan (India); Vadera, S.R. [R and D Laboratory, Defence Laboratory, Camouflage Division, Defence Laboratory Ratanada Palace, Jodhpur 342011, Rajasthan (India); Kumar, N. [R and D Laboratory, Defence Laboratory, Camouflage Division, Defence Laboratory Ratanada Palace, Jodhpur 342011, Rajasthan (India)]. E-mail: nkjainjd@yahoo.com

    2006-07-15

    A comparative study of complex dielectric properties has been carried out at the X-band of microwave frequencies of composites of barium titanate (BaTiO{sub 3}) with two different polymer matrices: insulating polyaniline (PANI) powder (emeraldine base) and maleic resin. From these studies, it is observed that the composites of BaTiO{sub 3} with maleic resin show normal composite behavior and the dielectric constant follows the asymmetric Bruggeman model. In contrast, the composites of BaTiO{sub 3} with PANI show an unusual behavior wherein even at a low concentration of PANI (5 wt.%) there is a drastic reduction in the dielectric constant of BaTiO{sub 3}. This behavior of the dielectric constant is explained on the basis of coating of BaTiO{sub 3} particles by PANI which in turn is attributed to the highly surface adsorbing character. The materials have also been characterized using Fourier transform infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy and optical microscopy studies.

  20. Design of a New ENG Metamaterial for S-Band Microwave Applications

    Directory of Open Access Journals (Sweden)

    ISLAM Sikder Sunbeam

    2014-10-01

    Full Text Available In this paper we propose a new metamaterial unit cell structure on FR-4 substrate material that shows resonance in the microwave S-Band frequency range and also shows negative permittivity at that frequency. The material shows better performances with two resonances and Double Negative characteristics if Rogers RT 6010 substrate material is used. In this design two separate split ring resonators is used. We have used the CST Microwave Studio simulation software to get the reflection and transmission parameters for this unit cell.