WorldWideScience

Sample records for dicarboxylic acids part

  1. Photooxidation of dicarboxylic acids—Part I: Effects of inorganic ions on degradation of azelaic acid

    Science.gov (United States)

    Yang, Liming; Ray, Madhumita B.; Yu, Liya E.

    In this paper, the first of a two-part series, effects of chloride, sulfate, and nitrate ions and pH on photooxidation of azelaic acid were investigated in an aqueous system. Nitrate ions play the major role in accelerating photooxidation of azelaic acid by increasing rad OH concentration, while chloride ions consume rad OH concentration and retard photooxidation rates. In inorganic mixtures, a nitrate-to-chloride molar ratio of >1.5 accelerated photooxidation of azelaic acid indicating the dominant role of nitrate. Substantial inhibition effects of chloride on photooxidation of azelaic acid were demonstrated at a nitrate-to-chloride molar ratio azelaic acid as photolysis of nitrate would significantly consume H +, retarding reaction of HOCl - with H +, and consequently decreasing rad OH-chloride reaction. pH affects photooxidation of C 2-C 9 dicarboxylic acids (DCAs) in two ways: C 2-C 4 dicarboxylates exhibit substantially higher degradation rates than their parent DCAs, while C 5-C 9 dicarboxylates demonstrate degradation rates similar to their parent DCAs.

  2. Cloud condensation nucleus behaviour of selected dicarboxylic acids

    DEFF Research Database (Denmark)

    Poulsen, Mia Frosch Mogensbæk; Nielsen, Ole Faurskov; Bilde, Merete

    . The dicarboxylic acids are also compared to their corresponding keto-acids: 2-ketoglutaric acid, 3-ketoglutaric acid and 4-ketopimelic acid.  The effect of the keto-group on cloud droplet activation is discussed. References:   Anttila, P., Hyötyläinen, T., Heikkilä, A., Jussila, M., Finell, J., Kulmala, M...

  3. Selective synthesis of thiodiglycol dicarboxylic acid esters via p ...

    Indian Academy of Sciences (India)

    The esterification of thiodiglycol and long alkyl-chain carboxylic acids is reported. Reaction of thiodiglycol with carboxylic acid via -TsOH/C-catalysed direct esterification afforded thiodiglycol dicarboxylic acid esters in good yields and chemoselectivity. The use of immobilized -TsOH on activated carbon as catalyst is ...

  4. Deprotonated Dicarboxylic Acid Homodimers: Hydrogen Bonds and Atmospheric Implications

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Gao-Lei; Valiev, Marat; Wang, Xue-Bin

    2016-03-31

    Dicarboxylic acids represent an important class of water-soluble organic compounds found in the atmosphere. In this work we are studying properties of dicarboxylic acid homodimer complexes (HO2(CH2)nCO2-[HO2(CH2)nCO2H], n = 0-12), as potentially important intermediates in aerosol formation processes. Our approach is based on experimental data from negative ion photoelectron spectra of the dimer complexes combined with updated measurements of the corresponding monomer species. These results are analyzed with quantum-mechanical calculations, which provide further information about equilibrium structures, thermochemical parameters associated with the complex formation, and evaporation rates. We find that upon formation of the dimer complexes the electron binding energies increase by 1.3–1.7 eV (30.0–39.2 kcal/mol), indicating increased stability of the dimerized complexes. Calculations indicate that these dimer complexes are characterized by the presence of strong intermolecular hydrogen bonds with high binding energies and are thermodynamically favorable to form with low evaporation rates. Comparison with previously studied HSO4-[HO2(CH2)2CO2H] complex (J. Phys. Chem. Lett. 2013, 4, 779-785) shows that HO2(CH2)2CO2-[HO2(CH2)2CO2H] has very similar thermochemical properties. These results imply that dicarboxylic acids not only can contribute to the heterogeneous complexes formation involving sulfuric acid and dicarboxylic acids, but also can promote the formation of homogenous complexes by involving dicarboxylic acids themselves.

  5. Study on Dicarboxylic Acids in Aerosol Samples with Capillary Electrophoresis

    Directory of Open Access Journals (Sweden)

    Heidi Adler

    2014-01-01

    Full Text Available The research was performed to study the simultaneous detection of a homologous series of α, ω-dicarboxylic acids (C2–C10, oxalic, malonic, succinic, glutaric, adipic, pimelic, suberic, azelaic, and sebacic acids, with capillary electrophoresis using indirect UV detection. Good separation efficiency in 2,6-pyridinedicarboxylic acid as background electrolyte modified with myristyl trimethyl ammonium bromide was obtained. The dicarboxylic acids were ionised and separated within five minutes. For the study, authentic samples were collected onto dry cellulose membrane filters of a cascade impactor (12 stages from outdoor spring aerosols in an urban area. Hot water and ultrasonication extraction methods were used to isolate the acids from membrane filters. Due to the low concentrations of acids in the aerosols, the extracts were concentrated with solid-phase extraction (SPE before determination. The enrichment of the carboxylic acids was between 86 and 134% with sample pretreatment followed by 100-time increase by preparation of the sample to 50 μL. Inaccuracy was optimised for all the sample processing steps. The aerosols contained dicarboxylic acids C2–C10. Then, mostly they contained C2, C5, and C10. Only one sample contained succinic acid. In the study, the concentrations of the acids in aerosols were lower than 10 ng/m3.

  6. Method for the production of dicarboxylic acids

    Science.gov (United States)

    Nghiem, Nhuan Phu; Donnelly, Mark; Millard, Cynthia S.; Stols, Lucy

    1999-01-01

    The present invention is an economical fermentation method for the production of carboxylic acids comprising the steps of a) inoculating a medium having a carbon source with a carboxylic acid-producing organism; b) incubating the carboxylic acid-producing organism in an aerobic atmosphere to promote rapid growth of the organism thereby increasing the biomass of the organism; c) controllably releasing oxygen to maintain the aerobic atmosphere; d) controllably feeding the organism having increased biomass with a solution containing the carbon source to maintain the concentration of the carbon source within the medium of about 0.5 g/L up to about 1 g/L; e) depriving the aerobic atmosphere of oxygen to produce an anaerobic atmosphere to cause the organism to undergo anaerobic metabolism; f) controllably feeding the organism having increased biomass a solution containing the carbon source to maintain the concentration of the carbon source within the medium of .gtoreq.1 g/L; and g) converting the carbon source to carboxylic acids using the anaerobic metabolism of the organism.

  7. Carbonaceous aerosol characterization in the Amazon basin, Brazil: novel dicarboxylic acids and related compounds

    Science.gov (United States)

    Kubátová, Alena; Vermeylen, Reinhilde; Claeys, Magda; Cafmeyer, Jan; Maenhaut, Willy; Roberts, Greg; Artaxo, Paulo

    High-resolution capillary gas chromatography (GC) and GC/mass spectrometry (MS) were employed for the quantitative determination of dichloromethane-extractable organic compounds in total and size-fractionated aerosol samples which were collected in the Amazon basin, Brazil, during the wet season, as part of the LBA-CLAIRE-98 experiment. Special emphasis was placed on the characterization and identification of several novel unknown dicarboxylic acids and related oxidative degradation products. This class of acidic products was enriched in the fine size fraction, suggesting that they were secondary organic aerosol products formed by gas-to-particle conversion. Some of the unknowns contributed more to the class of dicarboxylic acids than the major known compound, nonadioic acid (azelaic acid). The same unknowns were also observed in urban aerosol samples collected on hot summer days in Gent, Belgium. For the characterization and structure elucidation of the unknowns, various types of derivatizations and fractionation by solid-phase extraction were employed in combination with GC/MS. Four unknowns were identified. The most abundant were two derivatives of glutaric acid, 3-isopropyl pentanedioic acid and 3-acetyl pentanedioic acid. The other two identified unknowns were another oxo homologue, 3-acetyl hexanedioic acid, and, interestingly, 3-carboxy heptanedioic acid. To our knowledge, the occurrence of these four compounds in atmospheric aerosols has not yet been reported. The biogenic precursors of the novel identified compounds could not be pinpointed, but most likely include monoterpenes and fatty acids.

  8. Synthesis of Thiadiazoles and 1,2,4-Triazoles Derived from Cyclopropane Dicarboxylic Acid

    Directory of Open Access Journals (Sweden)

    M. Aouad

    2005-09-01

    Full Text Available New heterocyclic derivatives of cyclopropane dicarboxylic acid comprising thiadiazole and 1,2,4-triazole moieties are reported. Reaction of 1,1-cyclopropane dicarboxylic acid (1 with thiosemicarbazide and phosphorous oxychloride resulted in 1,1-bis (2-amino-1,3,4-thiadiazol-5- ylcyclopropane (2. Cyclopropane dicarboxylic acid thiosemicarbazide (6 was converted into 1,1-bis(3-thio-4H-1,2,4-triazol-5-yl cyclo- propane (7 by ring closure in an alkaline medium. The thiadiazole 2 and the triazole 7 were converted into a variety of derivatives.

  9. Production of dicarboxylic acids from novel unsaturated fatty acids by laccase-catalyzed oxidative cleavage.

    Science.gov (United States)

    Takeuchi, Michiki; Kishino, Shigenobu; Park, Si-Bum; Kitamura, Nahoko; Watanabe, Hiroko; Saika, Azusa; Hibi, Makoto; Yokozeki, Kenzo; Ogawa, Jun

    2016-06-27

    The establishment of renewable biofuel and chemical production is desirable because of global warming and the exhaustion of petroleum reserves. Sebacic acid (decanedioic acid), the material of 6,10-nylon, is produced from ricinoleic acid, a carbon-neutral material, but the process is not eco-friendly because of its energy requirements. Laccase-catalyzing oxidative cleavage of fatty acid was applied to the production of dicarboxylic acids using hydroxy and oxo fatty acids involved in the saturation metabolism of unsaturated fatty acids in Lactobacillus plantarum as substrates. Hydroxy or oxo fatty acids with a functional group near the carbon-carbon double bond were cleaved at the carbon-carbon double bond, hydroxy group, or carbonyl group by laccase and transformed into dicarboxylic acids. After 8 h, 0.58 mM of sebacic acid was produced from 1.6 mM of 10-oxo-cis-12,cis-15-octadecadienoic acid (αKetoA) with a conversion rate of 35% (mol/mol). This laccase-catalyzed enzymatic process is a promising method to produce dicarboxylic acids from biomass-derived fatty acids.

  10. Yearly trend of dicarboxylic acids in organic aerosols from south of Sweden and source attribution

    Science.gov (United States)

    Hyder, Murtaza; Genberg, Johan; Sandahl, Margareta; Swietlicki, Erik; Jönsson, Jan Åke

    2012-09-01

    Seven aliphatic dicarboxylic acids (C3-C9) along with phthalic acid, pinic acid and pinonic acid were determined in 35 aerosol (PM10) samples collected over the year at Vavihill sampling station in south of Sweden. Mixture of dichloromethane and methanol (ratio 1:3) was preferred over water for extraction of samples and extraction was assisted by ultrasonic agitation. Analytes were derivatized using N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) containing 1% trimethylsilyl chloride and analyzed using gas chromatography/mass spectrometry. Among studied analytes, azelaic acid was found maximum with an average concentration of 6.0 ± 3.6 ng m-3 and minimum concentration was found for pimelic acid (1.06 ± 0.63 ng m-3). A correlation coefficients analysis was used for defining the possible sources of analytes. Higher dicarboxylic acids (C7-C9) showed a strong correlation with each other (correlation coefficients (r) range, 0.96-0.97). Pinic and pinonic acids showed an increase in concentration during summer. Lower carbon number dicarboxylic acids (C3-C6) and phthalic acid were found strongly correlated, but showed a poor correlation with higher carbon number dicarboxylic acids (C7-C9), suggesting a different source for them. Biomass burning, vehicle exhaust, photo-oxidation of volatile organic compounds (natural and anthropogenic emissions) were possible sources for dicarboxylic acids.

  11. Diffusivity of dicarboxylic acids molecules to secondary organic material governed by particle phase state

    Science.gov (United States)

    Han, Y.; Gong, Z.; Liu, P.; de Sá, S. S.; McKinney, K. A.; Martin, S. T.

    2017-12-01

    Atmospheric secondary organic material (SOM) from oxidation of volatile organic compounds can exist in amorphous solid, semisolid, and liquid states depending on a range of factors such as relative humidity (RH), temperature, and reaction history. The phase state of SOM affects the dynamic exchange and reactivity between particles and gas-phase molecules. Dicarboxylic acids are ubiquitous in ambient atmosphere and the uptake of which may lead to substantial changes in hygroscopicity, absorption property, and light scattering of aerosol particles. This study investigates the diffusivity of dicarboxylic acids to the matrix of SOM particles. SOM was generated from dark ozonolysis of a-pinene in Harvard Environmental Chamber. The produced SOM particles were passed through an ozone scrubber to remove gas-phase chemistry before being led into a flask reactor, where gas-phase dicarboxylic acid was injected continuously and RH was varied from 5% to 85%. The probe dicarboxylic acids molecules including malonic acid and a-ketoglutaric acid have been investigated for the uptake to SOM particles. Organic composition in the outflow of the flask was measured with a high-resolution time-of-flight aerosol mass spectrometer. The mass fractions of tracer ions in total organic mass for both malonic acid and a-ketoglutaric acid increased substantially with the increase of RH values. The tracer ions of malonic acid were also more abundant in a-pinene SOM particles with increased gas-phase concentrations. These results suggest that the diffusion of the studied dicarboxylic acids molecules to a-pinene SOM particles was enhanced at increased RH values, which is possibly due to the phase transition of a-pinene SOM particles from non-liquid to liquid states. Therefore, particle phase state may be an important factor governing the diffusivity of dicarboxylic acids molecules to a-pinene SOM. Further dicarboxylic acids with various functional groups will be investigated to understand the

  12. Molecular distributions of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in biomass burning aerosols: implications for photochemical production and degradation in smoke layers

    Directory of Open Access Journals (Sweden)

    A. Hoffer

    2010-03-01

    Full Text Available Aerosols in the size class <2.5 μm (6 daytime and 9 nighttime samples were collected at a pasture site in Rondônia, Brazil, during the intensive biomass burning period of 16–26 September 2002 as part of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall and Climate (LBA-SMOCC. Homologous series of dicarboxylic acids (C2–C11 and related compounds (ketocarboxylic acids and α-dicarbonyls were identified using gas chromatography (GC and GC/mass spectrometry (GC/MS. Among the species detected, oxalic acid was found to be the most abundant, followed by succinic, malonic and glyoxylic acids. Average concentrations of total dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in the aerosol samples were 2180, 167 and 56 ng m−3, respectively. These are 2–8, 3–11 and 2–16 times higher, respectively, than those reported in urban aerosols, such as in 14 Chinese megacities. Higher ratios of dicarboxylic acids and related compounds to biomass burning tracers (levoglucosan and K+ were found in the daytime than in the nighttime, suggesting the importance of photochemical production. On the other hand, higher ratios of oxalic acid to other dicarboxylic acids and related compounds normalized to biomass burning tracers (levoglucosan and K+ in the daytime provide evidence for the possible degradation of dicarboxylic acids (≥C3 in this smoke-polluted environment. Assuming that these and related compounds are photo-chemically oxidized to oxalic acid in the daytime, and given their linear relationship, they could account for, on average, 77% of the formation of oxalic acid. The remaining portion of oxalic acid may have been directly emitted from biomass burning as suggested by a good correlation with the biomass burning tracers (K+, CO and ECa and organic carbon (OC. However, photochemical production from other precursors could not be excluded.

  13. Beryllium Chelation by Dicarboxylic Acids in Aqueous Solution.

    Science.gov (United States)

    Schmidt, Michael; Bauer, Andreas; Schmidbaur, Hubert

    1997-05-07

    Maleic and phthalic acids are found to react with Be(OH)(2), generated in situ from BeSO(4)(aq) and Ba(OH)(2)(aq), in aqueous solution at pH 3.0 or 4.4, respectively (25 degrees C), to give solutions containing the complexes (H(2)O)(2)Be[(OOCCH)(2)] (1) and (H(2)O)(2)Be[(OOC)(2)C(6)H(4)] (3). The products can be isolated in high yield and identified by microanalytical data. With 2 equiv of the dicarboxylic acids and the pH adjusted to 5.5 and 5.9, respectively, by addition of ammonia, the bis-chelate complexes [(NH(4))(+)](2){[Be[(OOCCH)(2)](2)}(2)(-) (2) and [(NH(4))(+)](2){Be[(OOC)(2)C(6)H(4)](2)}(2)(-) (4) are obtained, which can also be isolated. The compounds show distinct (9)Be, (1)H, and (13)C resonances in their NMR spectra in aqueous solutions. Layering of an aqueous solution of compound 4 with acetone at ambient temperature leads to the precipitation of single crystals suitable for an X-ray structure determination. This salt (5) was found to contain the bis-chelated dianion {Be[(OOC)(2)C(6)H(4)](2)}(2)(-) with the beryllium atom in the spiro center of two seven-membered rings and an overall geometry approaching closely C(2) symmetry. These anions are associated with two crystallographically independent but structurally similar counterions [MeC(O)CH(2)CMe(2)NH(3)](+), which are the product of a condensation reaction of the ammonium cation with the acetone solvent. In the crystal the ammonium hydrogen atoms of the cations form N-H.O hydrogen bonds with the oxo functions of the dianion.

  14. Pyridine 2,4-Dicarboxylic Acid Suppresses Tomato Seedling Growth.

    Science.gov (United States)

    Fragkostefanakis, Sotirios; Kaloudas, Dimitrios; Kalaitzis, Panagiotis

    2018-01-01

    Pyridine 2,4-dicarboxylic acid is a structural analog of 2-oxoglutarate and is known to inhibit 2-oxoglutare-dependent dioxygenases. The effect of this inhibitor in tomato seedlings grown in MS media supplied with various concentrations of PDCA was investigated, resulting in shorter roots and hypocotyls in a dose-dependent manner. The partial inhibition of growth in roots was more drastic compared to hypocotyls and was attributed to a decrease in the elongation of root and hypocotyl cells. Concentrations of 100 and 250 μM of PDCA decreased hydroxyproline content in roots while only the 250 μM treatment reduced the hydroxyproline content in shoots. Seedlings treated with 100 μM PDCA exhibited enhanced growth of hypocotyl and cotyledon cells and higher hydroxyproline content resulting in cotyledons with greater surface area. However, no alterations in hypocotyl length were observed. Prolyl 4 hydroxylases (P4Hs) are involved in the O-glycosylation of AGPs and were also highly expressed during seedling growth. Moreover PDCA induced a decrease in the accumulation of HRGPs and particularly in AGPs-bound epitopes in a dose dependent-manner while more drastic reduction were observed in roots compared to shoots. In addition, bulged root epidermal cells were observed at the high concentration of 250 μM which is characteristic of root tissues with glycosylation defects. These results indicate that PDCA induced pleiotropic effects during seedling growth while further studies are required to better investigate the physiological significance of this 2-oxoglutarate analog. This pharmacological approach might be used as a tool to better understand the physiological significance of HRGPs and probably P4Hs in various growth and developmental programs in plants.

  15. Pyridine 2,4-Dicarboxylic Acid Suppresses Tomato Seedling Growth

    Directory of Open Access Journals (Sweden)

    Sotirios Fragkostefanakis

    2018-01-01

    Full Text Available Pyridine 2,4-dicarboxylic acid is a structural analog of 2-oxoglutarate and is known to inhibit 2-oxoglutare-dependent dioxygenases. The effect of this inhibitor in tomato seedlings grown in MS media supplied with various concentrations of PDCA was investigated, resulting in shorter roots and hypocotyls in a dose-dependent manner. The partial inhibition of growth in roots was more drastic compared to hypocotyls and was attributed to a decrease in the elongation of root and hypocotyl cells. Concentrations of 100 and 250 μM of PDCA decreased hydroxyproline content in roots while only the 250 μM treatment reduced the hydroxyproline content in shoots. Seedlings treated with 100 μM PDCA exhibited enhanced growth of hypocotyl and cotyledon cells and higher hydroxyproline content resulting in cotyledons with greater surface area. However, no alterations in hypocotyl length were observed. Prolyl 4 hydroxylases (P4Hs are involved in the O-glycosylation of AGPs and were also highly expressed during seedling growth. Moreover PDCA induced a decrease in the accumulation of HRGPs and particularly in AGPs-bound epitopes in a dose dependent-manner while more drastic reduction were observed in roots compared to shoots. In addition, bulged root epidermal cells were observed at the high concentration of 250 μM which is characteristic of root tissues with glycosylation defects. These results indicate that PDCA induced pleiotropic effects during seedling growth while further studies are required to better investigate the physiological significance of this 2-oxoglutarate analog. This pharmacological approach might be used as a tool to better understand the physiological significance of HRGPs and probably P4Hs in various growth and developmental programs in plants.

  16. Crystal growth and physical characterization of picolinic acid cocrystallized with dicarboxylic acids

    Science.gov (United States)

    Somphon, Weenawan; Haller, Kenneth J.

    2013-01-01

    Pharmaceutical cocrystals are multicomponent materials containing an active pharmaceutical ingredient with another component in well-defined stoichiometry within the same unit cell. Such cocrystals are important in drug design, particularly for improving physicochemical properties such as solubility, bioavailability, or chemical stability. Picolinic acid is an endogenous metabolite of tryptophan and is widely used for neuroprotective, immunological, and anti-proliferative effects within the body. In this paper we present cocrystallization experiments of a series of dicarboxylic acids, oxalic acid, succinic acid, DL-tartaric acid, pimelic acid, and phthalic acid, with picolinic acid. Characterization by FT-IR and Raman spectroscopy, DSC and TG/DTG analysis, and X-ray powder diffraction show that new compounds are formed, including a 1:1 picolinium tartrate monohydrate, a 2:1 monohydrate adduct of picolinic acid and oxalic acid, and a 2:1 picolinic acid-succinic acid monohydrate cocrystal.

  17. Hydrogen-Deuterium Exchange of Meteoritic Dicarboxylic Acids During Aqueous Extraction

    Science.gov (United States)

    Fuller, M.; Huang, Y.

    2002-01-01

    This study examines the extent of hydrogen-deuterium exchange on dicarboxylic acids during aqueous extraction. Deuterium enrichment was observed to be a function of diacid structure as well as delta-D. Additional information is contained in the original extended abstract.

  18. Enzyme-Catalyzed Oxidation of 5-Hydroxymethylfurfural to Furan-2,5-dicarboxylic Acid

    NARCIS (Netherlands)

    Dijkman, Willem P.; Groothuis, Daphne E.; Fraaije, Marco W.

    Furan-2,5-dicarboxylic acid (FDCA) is a biobased platform chemical for the production of polymers. In the past few years, numerous multistep chemical routes have been reported on the synthesis of FDCA by oxidation of 5-hydroxymethylfurfural (HMF). Recently we identified an FAD-dependent enzyme which

  19. Freeze-drying of proteins in glass solids formed by basic amino acids and dicarboxylic acids.

    Science.gov (United States)

    Izutsu, Ken-ichi; Kadoya, Saori; Yomota, Chikako; Kawanishi, Toru; Yonemochi, Etsuo; Terada, Katsuhide

    2009-01-01

    The purpose of this study was to produce and characterize glass-state amorphous solids containing amino acids and organic acids that protect co-lyophilized proteins. Thermal analysis of frozen solutions containing a basic amino acid (e.g., L-arginine, L-lysine, L-histidine) and a hydroxy di- or tricarboxylic acid (e.g., citric acid, L-tartaric acid, DL-malic acid) showed glass transition of maximally freeze-concentrated solute at temperatures (T'g) significantly higher than those of the individual solute solutions. Mixing of the amino acid with some dicarboxylic acids (e.g., oxalic acid) also suggested an upward shift of the transition temperature. Contrarily, combinations of the amino acid with monocarboxylic acids (e.g., acetic acid) had T'gs between those of the individual solute solutions. Co-lyophilization of the basic amino acids and citric acid or L-tartaric acid resulted in amorphous solids that have glass transition temperatures (Tg) higher than the individual components. Mid- and near-infrared analysis indicated altered environment around the functional groups of the consisting molecules. Some of the glass-state excipient combinations protected an enzyme (lactate dehydrogenase, LDH) from inactivation during freeze-drying. The glass-state excipient combinations formed by hydrogen-bonding and electrostatic interaction network would be potent alternative to stabilize therapeutic proteins in freeze-dried formulations.

  20. Isoquercitrin Esters with Mono- or Dicarboxylic Acids: Enzymatic Preparation and Properties.

    Science.gov (United States)

    Vavříková, Eva; Langschwager, Fanny; Jezova-Kalachova, Lubica; Křenková, Alena; Mikulová, Barbora; Kuzma, Marek; Křen, Vladimír; Valentová, Kateřina

    2016-06-07

    A series of isoquercitrin (quercetin-3-O-β-d-glucopyranoside) esters with mono- or dicarboxylic acids was designed to modulate hydro- and lipophilicity and biological properties. Esterification of isoquercitrin was accomplished by direct chemoenzymatic reaction using Novozym 435 (lipase from Candida antarctica), which accepted C₅- to C12-dicarboxylic acids; the shorter ones, such as oxalic (C₂), malonic (C₃), succinic (C₄) and maleic (C₄) acids were not substrates of the lipase. Lipophilicity of monocarboxylic acid derivatives, measured as log P, increased with the chain length. Esters with glutaric and adipic acids exhibited hydrophilicity, and the dodecanedioic acid hemiester was more lipophilic. All derivatives were less able to reduce Folin-Ciocalteau reagent (FCR) and scavenge DPPH (1,1-diphenyl-2-picrylhydrazyl) than isoquercitrin; ABTS (2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)) radical-scavenging activity was comparable. Dodecanoate and palmitate were the least active in FCR and ABTS scavenging; dodecanoate and hemiglutarate were the strongest DPPH scavengers. In contrast, most derivatives were much better inhibitors of microsomal lipoperoxidation than isoquercitrin; butyrate and hexanoate were the most efficient. Anti-lipoperoxidant activity of monocarboxylic derivatives, except acetates, decreased with increasing aliphatic chain. The opposite trend was noted for dicarboxylic acid hemiesters, isoquercitrin hemidodecanedioate being the most active. Overall, IQ butyrate, hexanoate and hemidodecanedioate are the most promising candidates for further studies.

  1. Effects of primary dicarboxylic acids on microstructure and mechanical properties of sub-microcrystalline Ni-Co alloys

    International Nuclear Information System (INIS)

    Vijayakumar, J.; Mohan, S.; Yadav, S. Sunil

    2011-01-01

    Highlights: → The electrodeposited Ni-Co alloys are mostly used in magnetic sensors and it has good mechanical and corrosion resistance properties. → The effect of dicarboxylic acid leads to preferred (2 0 0) crystalline orientation, this may improve magnetic properties dicarboxylic acid can alter the elemental composition of Ni-Co alloy. → Dicarboxylic acid acts as a good brightner. - Abstract: Nickel-cobalt alloys were deposited from sulfate electrolyte with oxalic, malonic and succinic acids as additives and their microstructure and mechanical properties were studied. The crystal structure, surface morphologies, and chemical composition of coatings were investigated using X-ray diffraction, scanning electron microscope, and energy dispersive spectroscopy. The crystal structure and surface morphology analysis showed that the addition of dicarboxylic acid leads to (2 0 0) crystal face and the surface were more compact and uniform due to the grain refining. Ni 60 -Co 40 alloy was achieved when succinic acid is used as additive.

  2. Release characteristics of polyurethane tablets containing dicarboxylic acids as release modifiers - a case study with diprophylline.

    Science.gov (United States)

    Claeys, Bart; De Bruyn, Sander; Hansen, Laurent; De Beer, Thomas; Remon, Jean Paul; Vervaet, Chris

    2014-12-30

    The influence of several dicarboxylic acids on the release characteristics of polyurethane tablets with a high drug load was investigated. Mixtures of diprophylline (Dyph) and thermoplastic polyurethane (TPUR) (ratio: 50/50, 65/35 and 75/25 wt.%) were hot-melt extruded and injection molded with the addition of 1, 2.5, 5 and 10% wt.% dicarboxylic acid as release modifier. Incorporating malonic, succinic, maleic and glutaric acid in the TPUR matrices enhanced drug release, proportional to the dicarboxylic acid concentration in the formulation. No correlation was found between the water solubility, melting point, logP and pKa of the acids and their drug release modifying capacity. Succinic and maleic acid had the highest drug release modifying capacity which was linked to more intense molecular interactions with Dyph. A structural fit between the primary and secondary alcohol of Dyph and both carboxylic groups of the acids was at the origin of this enhanced interaction. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Kranz leaf anatomy and C4 dicarboxylic acid pathway of photosynthesis in Spinifex squarrosus L

    International Nuclear Information System (INIS)

    Rama Das, V.S.; Raghavendra, A.S.

    1977-01-01

    S. squarrosus, a panicoid grass found on semi-arid sandy sea shores, had the typical 'Kranz' leaf anatomy and the C 4 dicarboxylic acid pathway of photosynthesis. Bundle sheath chloroplasts were equally distributed around the cell walls. Leaves fixed as much as 63 mg CO 2 /dm 2 /hr and possessed a low carbon dioxide compensation point. During short term exposure to 14 CO 2 , leaves fixed most of the radioactivity into the C 4 acids, malate and aspartate. Predominant malate formation, high activities of NADP malate dehydrogenase and NADP malic enzyme suggested that S. squarrosus is a NADP malic enzyme type C 4 plant. C 4 dicarboxylic acid pathway of photosynthesis in Spinifex is advantageous in relation to its habitat of high light intensity and high temperatures in saline sandy regions. (author)

  4. Identification of dicarboxylic acids and aldehydes of PM10 and PM2.5 aerosols in Nanjing, China

    Science.gov (United States)

    Wang, Gehui; Niu, Sulian; Liu, Caie; Wang, Liansheng

    In this study aerosol samples of PM10 and PM2.5 collected from 18 February 2001 to 1 May 2001 in Nanjing, China were analyzed for their water-soluble organic compounds. A series of homologous dicarboxylic acids (C 2-10) and two kinds of aldehydes (methylglyoxal and 2-oxo-malonaldehyde) were detected by GC and GC/MS. Among the identified compounds, the concentration of oxalic acid was the highest at all the five sites, which ranged from 178 to 1423 ng/m 3. The second highest concentration of dicarboxylic acids were malonic and succinic acids, which ranged from 26.9 to 243 ng/m 3. Higher level of azelaic acid was also observed, of which the maximum was 301 ng/m 3. As the highest fraction of dicarboxylic acids, oxalic acid comprised from 28% to 86% of total dicarboxylic acids in PM10 and from 41% to 65% of total dicarboxylic acids in PM2.5. The dicarboxylic acids (C 2, C 3, C 4) together accounted for 38-95% of total dicarboxylic acids in PM10 and 59-87% of dicarboxylic acids in PM2.5. In this study, the total dicarboxylic acids accounted for 2.8-7.9% of total organic carbon (TOC) of water-soluble matters for PM10 and 3.4-11.8% of TOC for PM2.5. All dicarboxylic acids detected in this study together accounted for about 1% of particle mass. The concentration of azelaic acid was higher at one site than others, which may be resulted from higher level of volatile fat used for cooking. The amounts of dicarboxyic acids (C 2,3,4,9) and 2-oxo-malonaldehyde of PM2.5 were higher in winter and lower in spring. Compared with other major metropolitans in the world, the level of oxalic acid concentration of Nanjing is much higher, which may be contributed to higher level of particle loadings, especially for fine particles.

  5. Single-Step Access to Long-Chain α,ω-Dicarboxylic Acids by Isomerizing Hydroxycarbonylation of Unsaturated Fatty Acids

    KAUST Repository

    Goldbach, Verena

    2016-11-09

    Dicarboxylic acids are compounds of high value, but to date long-chain alpha,omega-dicarboxylic acids have been difficult to access in a direct way. Unsaturated fatty acids are ideal starting materials with their molecular structure of long methylene sequences and a carboxylate functionality, in addition to a double bond that offers itself for functionalization. Within this paper, we established a direct access to alpha,omega-dicarboxylic acids by combining isomerization and selective terminal carbonylation of the internal double bond with water as a nucleophile on unsaturated fatty acids. We identified the key elements of this reaction: a homogeneous reaction mixture ensuring sufficient contact between all reactants and a catalyst system allowing for activation of the Pd precursor under aqueous conditions. Experiments under pressure reactor conditions with [(dtbpx)Pd(OTf)(2)] as catalyst precursor revealed the importance of nucleophile and reactant concentrations and the addition of the diprotonated diphosphine ligand (dtbpxH(2))(OTf)(2) to achieve turnover numbers >120. A variety of unsaturated fatty acids, including a triglyceride, were converted to valuable long-chain dicarboxylic acids with high turnover numbers and selectivities for the linear product of >90%. We unraveled the activation pathway of the Pd-II precursor, which proceeds via a reductive elimination step forming a Pd species and oxidative addition of the diprotonated diphosphine ligand, resulting in the formation of the catalytically active Pd hydride species. Theoretical calculations identified the hydrolysis as the rate-determining step. A low nucleophile concentration in the reaction mixture in combination with this high energetic barrier limits the potential of this reaction. In conclusion, water can be utilized as a nucleophile in isomerizing functionalization reactions and gives access to long-chain dicarboxylic acids from a variety of unsaturated substrates. The activity of the catalytic

  6. HTDMA analysis of multicomponent dicarboxylic acid aerosols with comparison to UNIFAC and ZSR

    Science.gov (United States)

    Moore, R. H.; Raymond, T. M.

    2008-02-01

    The deliquescence and hygroscopic growth of laboratory-generated aerosols containing inorganic salts and/or mixtures of 1-10 different multifunctional dicarboxylic acids were observed using an hygroscopic tandem differential mobility analyzer (HTDMA), and the results were compared to predictions from the Zdanovskii-Stokes-Robinson (ZSR) mixing rule and Universal Quasi-Chemical Functional Group Activity Coefficient (UNIFAC) group contribution method. Dicarboxylic acids were chosen because of their atmospheric ubiquity. The results show that mixtures of five or more multifunctional dicarboxylic acids exhibit similar hygroscopic growth, to within experimental uncertainty, despite different chemistries. UNIFAC predictions of water uptake were observed to be in good agreement with the complex organic mixture data, while Modified UNIFAC overpredicted water uptake. Continuous growth curves for these mixtures indicate that particles are likely hydrated even at low RHs. Predictions were inconsistent for fewer-component mixtures, and ZSR was used to model incomplete dissolution of some species to better approximate the HTDMA data. Individual mixture species do not necessarily contribute equally to overall water uptake and are discussed in detail. Finally, it was observed that the deliquescence point and water uptake were significantly depressed for mixtures of organics and an inorganic salt, relative to the pure inorganic salt. Predictions from the ZSR mixing rule based on experimental measurements were in good agreement with the data. These results suggest that the behavior of complex mixtures of dicarboxylic acids exhibit water uptake consistent with the total number of moles present in solution, but irrespective of individual component hygroscopicity. This simplification will aid in incorporating these compounds into parameterizations of aerosol growth.

  7. Crystallographic aspects of hydrated salts of 4,6-diaminopyrimidine with the first five dicarboxylic acids

    Czech Academy of Sciences Publication Activity Database

    Matulková, I.; Andreoni, R.; Císařová, I.; Němec, I.; Fábry, Jan

    2017-01-01

    Roč. 232, č. 6 (2017), s. 471-484 ISSN 2194-4946 R&D Projects: GA ČR GA14-05506S Institutional support: RVO:68378271 Keywords : crystal structure analysis * 4,6-diaminopyrimidine * dicarboxylic acids * hydrogen -bonding * vibrational spectroscopy * X-ray diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.179, year: 2016

  8. Extraction Equilibrium of Dicarboxylic Acids with Tertiary Amine in Single and Binary Diluents

    Czech Academy of Sciences Publication Activity Database

    Procházka, Jaroslav; Heyberger, Aleš; Volaufová, Eva

    2004-01-01

    Roč. 39, č. 5 (2004), s. 1075-1093 ISSN 0149-6395. [CHISA 2000. Prague, 27.08.2000-31.08.2000] R&D Projects: GA ČR GA104/97/1213 Institutional research plan: CEZ:AV0Z4072921 Keywords : liquid extraction * dicarboxylic acids * tertiary amine Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.896, year: 2004

  9. Quantifying hydrogen-deuterium exchange of meteoritic dicarboxylic acids during aqueous extraction

    Science.gov (United States)

    Fuller, M.; Huang, Y.

    2003-03-01

    Hydrogen isotope ratios of organic compounds in carbonaceous chondrites provide critical information about their origins and evolutionary history. However, because many of these compounds are obtained by aqueous extraction, the degree of hydrogen-deuterium (H/D) exchange that occurs during the process needs to be quantitatively evaluated. This study uses compound- specific hydrogen isotopic analysis to quantify the H/D exchange during aqueous extraction. Three common meteoritic dicarboxylic acids (succinic, glutaric, and 2-methyl glutaric acids) were refluxed under conditions simulating the extraction process. Changes in D values of the dicarboxylic acids were measured following the reflux experiments. A pseudo-first order rate law was used to model the H/D exchange rates which were then used to calculate the isotope exchange resulting from aqueous extraction. The degree of H/D exchange varies as a result of differences in molecular structure, the alkalinity of the extraction solution and presence/absence of meteorite powder. However, our model indicates that succinic, glutaric, and 2-methyl glutaric acids with a D of 1800 would experience isotope changes of 38, 10, and 6, respectively during the extraction process. Therefore, the overall change in D values of the dicarboxylic acids during the aqueous extraction process is negligible. We also demonstrate that H/D exchange occurs on the chiral -carbon in 2-methyl glutaric acid. The results suggest that the racemic mixture of 2-methyl glutaric acid in the Tagish Lake meteorite could result from post-synthesis aqueous alteration. The approach employed in this study can also be used to quantify H/D exchange for other important meteoritic compounds such as amino acids.

  10. An easy assembled fluorescent sensor for dicarboxylates and acidic amino acids

    Directory of Open Access Journals (Sweden)

    Albert W. M. Lee

    2011-01-01

    Full Text Available Two mesitylene based neutral receptors 1 and 2 bearing two thiourea binding sites were constructed as fluorescent probes for sensing dicarboxylates. Their binding affinities toward dicarboxylates, aspartate and glutamate have been investigated in acetonitrile solution by fluorescence titration experiments. Both fluorescent sensors exhibited some ability to discriminate the antipodal forms of aspartate and glutamate.

  11. The vapor pressures and activities of dicarboxylic acids reconsidered: the impact of the physical state of the aerosol

    Directory of Open Access Journals (Sweden)

    V. Soonsin

    2010-12-01

    Full Text Available We present vapor pressure data of the C2 to C5 dicarboxylic acids deduced from measured evaporation rates of single levitated particles as both, aqueous droplets and solid crystals. The data of aqueous solution particles over a wide concentration range allow us to directly calculate activities of the dicarboxylic acids and comparison of these activities with parameterizations reported in the literature. The data of the pure liquid state acids, i.e. the dicarboxylic acids in their supercooled melt state, exhibit no even-odd alternation in vapor pressure, while the acids in the solid form do. This observation is consistent with the known solubilities of the acids and our measured vapor pressures of the supercooled melt. Thus, the gas/particle partitioning of the different dicarboxylic acids in the atmosphere depends strongly on the physical state of the aerosol phase, the difference being largest for the even acids. Our results show also that, in general, measurements of vapor pressures of solid dicarboxylic acids may be compromised by the presence of polymorphic forms, crystalline structures with a high defect number, and/or solvent inclusions in the solid material, yielding a higher vapor pressure than the one of the thermodynamically stable crystalline form at the same temperature.

  12. Rational design, synthesis, and pharmacological evaluation of 2-azanorbornane-3-exo,5-endo-dicarboxylic acid

    DEFF Research Database (Denmark)

    Bunch, Lennart; Liljefors, Tommy; Greenwood, Jeremy R

    2003-01-01

    conformationally restricted (S)-glutamic acid (Glu) analogue intended as a mimic of the folded Glu conformation. The synthesis of 1 was completed in its racemic form in eight steps from commercially available starting materials. As a key step, the first facially selective hydroboration of a 5-methylidene[2......The design and synthesis of conformationally restricted analogues of alpha-amino acids is an often used strategy in medicinal chemistry research. Here we present the rational design, synthesis, and pharmacological evaluation of 2-azanorbornane-3-exo,5-endo-dicarboxylic acid (1), a novel...... studies on native 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) (IC(50) > 300 microM, [(3)H]AMPA) or kainic acid (IC(50) > 160 microM, [(3)H]kainic acid) receptors nor in binding studies on the cloned iGluR5,6 subtypes (IC(50) > 300 microM, [(3)H]kainic acid)....

  13. Hygroscopic Behavior of Multicomponent Aerosols Involving NaCl and Dicarboxylic Acids.

    Science.gov (United States)

    Peng, Chao; Jing, Bo; Guo, Yu-Cong; Zhang, Yun-Hong; Ge, Mao-Fa

    2016-02-25

    Atmospheric aerosols are usually complex mixtures of inorganic and organic compounds. The hygroscopicity of mixed particles is closely related to their chemical composition and interactions between components, which is still poorly understood. In this study, the hygroscopic properties of submicron particles composed of NaCl and dicarboxylic acids including oxalic acid (OA), malonic acid (MA), and succinic acid (SA) with various mass ratios are investigated with a hygroscopicity tandem differential mobility analyzer (HTDMA) system. Both the Zdanovskii-Stokes-Robinson (ZSR) method and extended aerosol inorganics model (E-AIM) are applied to predict the water uptake behaviors of sodium chloride/dicarboxylic acid mixtures. For NaCl/OA mixed particles, the measured growth factors were significantly lower than predictions from the model methods, indicating a change in particle composition caused by chloride depletion. The hygroscopic growth of NaCl/MA particles was well described by E-AIM, and that of NaCl/SA particles was dependent upon mixing ratio. Compared with model predictions, it was determined that water uptake of the NaCl/OA mixture could be enhanced and could be closer to the predictions by addition of levoglucosan or malonic acid, which retained water even at low relative humidity (RH), leading to inhibition of HCl evaporation during dehydration. These results demonstrate that the coexisting hygroscopic species have a strong influence on the phase state of particles, thus affecting chemical interactions between inorganic and organic compounds as well as the overall hygroscopicity of mixed particles.

  14. Production of Odd-Carbon Dicarboxylic Acids in Escherichia coli Using an Engineered Biotin–Fatty Acid Biosynthetic Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Haushalter, Robert W. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Bioscience Division; Phelan, Ryan M. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Bioscience Division; Hoh, Kristina M. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Bioscience Division; Su, Cindy [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Bioscience Division; Wang, George [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Bioscience Division; Baidoo, Edward E. K. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Bioscience Division; Keasling, Jay D. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Bioscience Division

    2017-03-14

    Dicarboxylic acids are commodity chemicals used in the production of plastics, polyesters, nylons, fragrances, and medications. Bio-based routes to dicarboxylic acids are gaining attention due to environmental concerns about petroleum-based production of these compounds. Some industrial applications require dicarboxylic acids with specific carbon chain lengths, including odd-carbon species. Biosynthetic pathways involving cytochrome P450-catalyzed oxidation of fatty acids in yeast and bacteria have been reported, but these systems produce almost exclusively even-carbon species. Here in this paper we report a novel pathway to odd-carbon dicarboxylic acids directly from glucose in Escherichia coli by employing an engineered pathway combining enzymes from biotin and fatty acid synthesis. Optimization of the pathway will lead to industrial strains for the production of valuable odd-carbon diacids.

  15. Semivolatile behaviour of dicarboxylic acids and other polar organic species at a rural background site (Nylsvley, RSA)

    CSIR Research Space (South Africa)

    Limbeck, A

    2001-01-01

    Full Text Available ) dicarboxylic acids and a variety of phthalates, aldehydes and monocarboxylic acids were observed. Oxalic acid was the dominating compound with an average amount of 79.2 ng m (-3) on the front filter and 11.3 ng m (-3) on the back-up filter. The presence...

  16. Microbial and 'de novo' transformation of dicarboxylic acids by three airborne fungi

    International Nuclear Information System (INIS)

    Cote, Valerie; Kos, Gregor; Mortazavi, Roya; Ariya, Parisa A.

    2008-01-01

    Micro-organisms and organic compounds of biogenic or anthropogenic origins are important constituents of atmospheric aerosols, which are involved in atmospheric processes and climate change. In order to investigate the role of fungi and their metabolisation activity, we collected airborne fungi using a biosampler in an urban location of Montreal, Quebec, Canada (45 o 28' N, 73 o 45' E). After isolation on Sabouraud dextrose agar, we exposed isolated colonies to dicarboxylic acids (C 2 -C 7 ), a major group of organic aerosols and monitored their growth. Depending on the acid, total fungi numbers varied from 35 (oxalic acid) to 180 CFU/mL (glutaric acid). Transformation kinetics of malonic acid, presumably the most abundant dicarboxylic acid, at concentrations of 0.25 and 1.00 mM for isolated airborne fungi belonging to the genera Aspergillus, Penicillium, Eupenicillium, and Thysanophora with the fastest transformation rate are presented. The initial concentration was halved within 4.5 and 11.4 days. Other collected fungi did not show a significant degradation and the malonic acid concentration remained unchanged (0.25 and 1.00 mM) within 20 days. Degradation of acid with formation of metabolites was followed using high performance liquid chromatography-ultraviolet detection (HPLC/UV) and gas chromatography-mass spectrometry (GC/MS), as well as monitoring of 13 C labelled malonic acid degradation with solid-state nuclear magnetic resonance spectroscopy (NMR). Using GC/MS we identified two processes driving chemical modifications of organic aerosol solutions: (I) formation of metabolites within several days, and (II) rapid release (≤ 2 min) of organic molecules from fungal species upon the insertion of taxa in organic aerosol solutions. Metabolites included aromatic compounds and alcohols (e.g. trimethylbenzene and butanol). Potential atmospheric implications of our results are discussed

  17. Task-specific enhancement of short-term, but not long-term, memory by class I metabotropic glutamate receptor antagonist 1-aminoindan-1,5-dicarboxylic acid in rats

    DEFF Research Database (Denmark)

    Christoffersen, G.R.J.; Christensen, Lone H.; Harrington, Nicholas R.

    1999-01-01

    Metabotropic glutamate receptors; Class I antagonist; 1-aminoindan-1,5-dicarboxylic acid; spatial learning; contextual conditioning; rats......Metabotropic glutamate receptors; Class I antagonist; 1-aminoindan-1,5-dicarboxylic acid; spatial learning; contextual conditioning; rats...

  18. An exploration towards a more sustainable process for dimethyl naphthalene-2,6-dicarboxylate over acidic zeolites

    NARCIS (Netherlands)

    Bouvier, C.P.

    2008-01-01

    This thesis describes the challenge to apply a breakthrough in the synthesis of acidic zeolitic catalysts in the development of a sustainable process for dimethyl naphthalene-2,6-dicarboxylate. BiModal POrous Materials (BIPOMs) are zeolitic materials, which provide highway access to confined

  19. A review of dicarboxylic acids and related compounds in atmospheric aerosols: Molecular distributions, sources and transformation

    Science.gov (United States)

    Kawamura, Kimitaka; Bikkina, Srinivas

    2016-03-01

    This review aims to update our understanding on molecular distributions of water-soluble dicarboxylic acids and related compounds in atmospheric aerosols with a focus on their geographical variability, size distribution, sources and formation pathways. In general, molecular distributions of diacids in aerosols from the continental sites and over the open ocean waters are often characterized by the predominance of oxalic acid (C2) followed by malonic acid (C3) and/or succinic acid (C4), while those sampled over the polar regions often follow the order of C4 ≥ C2 and C3. The most abundant and ubiquitous diacid is oxalic acid, which is principally formed via atmospheric oxidation of its higher homologues of long chain diacids and other pollution-derived organic precursors (e.g., olefins and aromatic hydrocarbons). However, its occurrence in marine aerosols is mainly due to the transport from continental outflows (e.g., East Asian outflow during winter/spring to the North Pacific) and/or governed by photochemical/aqueous phase oxidation of biogenic unsaturated fatty acids (e.g., oleic acid) and isoprene emitted from the productive open ocean waters. The long-range atmospheric transport of pollutants from mid latitudes to the Arctic in dark winter facilitates to accumulate the reactants prior to their intense photochemical oxidation during springtime polar sunrise. Furthermore, the relative abundances of C2 in total diacid mass showed similar temporal trends with downward solar irradiation and ambient temperatures, suggesting the significance of atmospheric photochemical oxidation processing. Compound-specific isotopic analyses of oxalic acid showed the highest δ13C among diacids whereas azelaic acid showed the lowest value, corroborating the significance of atmospheric aging of oxalic acid. On the other hand, other diacids gave intermediate values between these two diacids, suggesting that aging of oxalic acid is associated with 13C enrichment.

  20. Effects of dicarboxylic acid coating on the optical properties of soot.

    Science.gov (United States)

    Xue, Huaxin; Khalizov, Alexei F; Wang, Lin; Zheng, Jun; Zhang, Renyi

    2009-09-28

    Soot is a major component of atmospheric aerosols responsible for absorption of visible solar radiation. Internal mixing of soot with transparent materials can enhance its ability to absorb and scatter light, resulting in a larger role of soot in climate forcing. We have investigated the absorption and scattering of visible light (532 nm) by soot aerosol internally mixed with succinic and glutaric acids using a combination of a cavity ring-down spectrometer and an integrating nephelometer. The measurements were performed for flame-generated soot aerosol with well-characterized morphology and mixing state in the particle size range from 155 to 320 nm. Thin coatings of dicarboxylic acids on soot aggregates (with a mass fraction of 0.1-0.4) enhance significantly light scattering (up to 3.8 fold) and slightly light absorption (less than 1.2 fold). Cycling the coated soot aerosol through high relative humidity (humidified to 90% RH and then dried to 5% RH) promotes further increase in light absorption and scattering for soot internally mixed with glutaric acid, but not for soot mixed with succinic acid. The larger effect of glutaric acid on light absorption and scattering is caused by the irreversible restructuring of soot aggregates induced by the coating material. Our results indicate that the enhancement in the optical properties of soot by transparent coatings is strongly related to the ability of the coating materials to change the morphology of soot aggregates.

  1. Synthesis, Properties and Applications of Biodegradable Polymers Derived from Diols and Dicarboxylic Acids: From Polyesters to Poly(ester amides

    Directory of Open Access Journals (Sweden)

    Angélica Díaz

    2014-04-01

    Full Text Available Poly(alkylene dicarboxylates constitute a family of biodegradable polymers with increasing interest for both commodity and speciality applications. Most of these polymers can be prepared from biobased diols and dicarboxylic acids such as 1,4-butanediol, succinic acid and carbohydrates. This review provides a current status report concerning synthesis, biodegradation and applications of a series of polymers that cover a wide range of properties, namely, materials from elastomeric to rigid characteristics that are suitable for applications such as hydrogels, soft tissue engineering, drug delivery systems and liquid crystals. Finally, the incorporation of aromatic units and α-amino acids is considered since stiffness of molecular chains and intermolecular interactions can be drastically changed. In fact, poly(ester amides derived from naturally occurring amino acids offer great possibilities as biodegradable materials for biomedical applications which are also extensively discussed.

  2. Piezoelectric crystal microbalance measurements of enthalpy of sublimation of C2-C9 dicarboxylic acids

    Science.gov (United States)

    Dirri, F.; Palomba, E.; Longobardo, A.; Zampetti, E.

    2016-02-01

    We present here a novel experimental set-up that is able to measure the enthalpy of sublimation of a given compound by means of piezoelectric crystal microbalances (PCMs). The PCM sensors have already been used for space measurements, such as for the detection of organic and non-organic volatile species and refractory materials in planetary environments. In Earth atmospherics applications, PCMs can be also used to obtain some physical-chemical processes concerning the volatile organic compounds (VOCs) present in atmospheric environments. The experimental set-up has been developed and tested on dicarboxylic acids. In this work, a temperature-controlled effusion cell was used to sublimate VOC, creating a molecular flux that was collimated onto a cold PCM. The VOC recondensed onto the PCM quartz crystal, allowing the determination of the deposition rate. From the measurements of deposition rates, it has been possible to infer the enthalpy of sublimation of adipic acid, i.e. ΔHsub : 141.6 ± 0.8 kJ mol-1, succinic acid, i.e. 113.3 ± 1.3 kJ mol-1, oxalic acid, i.e. 62.5 ± 3.1 kJ mol-1, and azelaic acid, i.e. 124.2 ± 1.2 kJ mol-1. The results obtained show an accuracy of 1 % for succinic, adipic, and azelaic acid and within 5 % for oxalic acid and are in very good agreement with previous works (within 6 % for adipic, succinic, and oxalic acid and within 11 % or larger for azelaic acid).

  3. X-ray studies on crystalline complexes involving amino acids and peptides. XLII. Adipic acid complexes of L- and DL-arginine and supramolecular association in arginine-dicarboxylic acid complexes.

    Science.gov (United States)

    Roy, Siddhartha; Singh, Desh Deepak; Vijayan, M

    2005-02-01

    The adipic acid complexes of DL-arginine and L-arginine are made up of zwitterionic, singularly positively charged arginium ions and doubly negatively charged adipate ions, with a 2:1 stoichiometry. One of the two crystallographically independent arginium ions in the L-arginine complex has a conformation hitherto unobserved in crystal structures containing the amino acid. In the present study the structural data on arginine complexes of saturated dicarboxylic acids with 0-5 C atoms separating the two carboxyl functions are given. In terms of molecular aggregation, formic and acetic acid complexes behave in a similar way to those involving fairly long carboxylic acids such as adipic acid. By and large, the supramolecular assembly in complexes involving dicarboxylic acids with 3 or more C atoms separating the carboxyl groups (glutaric, adipic and pimelic acids), and those involving formic and acetic acids, have common features. The aggregation patterns in complexes involving oxalic, malonic and maleic acids do not share striking features among themselves (except for the mode of hydrogen-bonded dimerization of arginium ions) or with those involving larger dicarboxylic acids. Complexes of succinic acid, the shortest linear dicarboxylic acid, share features with those involving shorter as well as longer dicarboxylic acids. The difference in the behaviour of long and short dicarboxylic acids and the ambiguous behaviour of succinic acid can be broadly related to their lengths.

  4. Biotechnological production of bio-based long-chain dicarboxylic acids with oleogenious yeasts.

    Science.gov (United States)

    Werner, Nicole; Zibek, Susanne

    2017-10-05

    Long-chain α,ω-dicarboxylic acids (DCAs) are versatile chemical intermediates of industrial importance used as building blocks for the production of polymers, lubricants, or adhesives. The majority of industrial long-chain DCAs is produced from petro-chemical resources. An alternative is their biotechnological production from renewable materials like plant oil fatty acids by microbial fermentation using oleogenious yeasts. Oleogenious yeasts are natural long-chain DCA producers, which have to be genetically engineered for high-yield DCA production. Although, some commercialized fermentation processes using engineered yeasts are reported, bio-based long-chain DCAs are still far from being a mass product. Further progress in bioprocess engineering and rational strain design is necessary to advance their further commercialization. The present article reviews the basic strategies, as well as novel approaches in the strain design of oleogenious yeasts, such as the combination of traditional metabolic engineering with system biology strategies for high-yield long-chain DCA production. Therefore a detailed overview of the involved metabolic processes for the biochemical long-chain DCA synthesis is given.

  5. Methanogenic Paraffin Biodegradation: Alkylsuccinate Synthase Gene Quantification and Dicarboxylic Acid Production.

    Science.gov (United States)

    Oberding, Lisa K; Gieg, Lisa M

    2018-01-01

    Paraffinic n -alkanes (>C 17 ) that are solid at ambient temperature comprise a large fraction of many crude oils. The comparatively low water solubility and reactivity of these long-chain alkanes can lead to their persistence in the environment following fuel spills and pose serious problems for crude oil recovery operations by clogging oil production wells. However, the degradation of waxy paraffins under the anoxic conditions characterizing contaminated groundwater environments and deep subsurface energy reservoirs is poorly understood. Here, we assessed the ability of a methanogenic culture enriched from freshwater fuel-contaminated aquifer sediments to biodegrade the model paraffin n -octacosane (C 28 H 58 ). Compared with that in controls, the consumption of n -octacosane was coupled to methane production, demonstrating its biodegradation under these conditions. Smithella was postulated to be an important C 28 H 58 degrader in the culture on the basis of its high relative abundance as determined by 16S rRNA gene sequencing. An identified assA gene (known to encode the α subunit of alkylsuccinate synthase) aligned most closely with those from other Smithella organisms. Quantitative PCR (qPCR) and reverse transcription qPCR assays for assA demonstrated significant increases in the abundance and expression of this gene in C 28 H 58 -degrading cultures compared with that in controls, suggesting n -octacosane activation by fumarate addition. A metabolite analysis revealed the presence of several long-chain α,ω-dicarboxylic acids only in the C 28 H 58 -degrading cultures, a novel observation providing clues as to how methanogenic consortia access waxy hydrocarbons. The results of this study broaden our understanding of how waxy paraffins can be biodegraded in anoxic environments with an application toward bioremediation and improved oil recovery. IMPORTANCE Understanding the methanogenic biodegradation of different classes of hydrocarbons has important

  6. Genome-scale model-driven strain design for dicarboxylic acid production in Yarrowia lipolytica.

    Science.gov (United States)

    Mishra, Pranjul; Lee, Na-Rae; Lakshmanan, Meiyappan; Kim, Minsuk; Kim, Byung-Gee; Lee, Dong-Yup

    2018-03-19

    Recently, there have been several attempts to produce long-chain dicarboxylic acids (DCAs) in various microbial hosts. Of these, Yarrowia lipolytica has great potential due to its oleaginous characteristics and unique ability to utilize hydrophobic substrates. However, Y. lipolytica should be further engineered to make it more competitive: the current approaches are mostly intuitive and cumbersome, thus limiting its industrial application. In this study, we proposed model-guided metabolic engineering strategies for enhanced production of DCAs in Y. lipolytica. At the outset, we reconstructed genome-scale metabolic model (GSMM) of Y. lipolytica (iYLI647) by substantially expanding the previous models. Subsequently, the model was validated using three sets of published culture experiment data. It was finally exploited to identify genetic engineering targets for overexpression, knockout, and cofactor modification by applying several in silico strain design methods, which potentially give rise to high yield production of the industrially relevant long-chain DCAs, e.g., dodecanedioic acid (DDDA). The resultant targets include (1) malate dehydrogenase and malic enzyme genes and (2) glutamate dehydrogenase gene, in silico overexpression of which generated additional NADPH required for fatty acid synthesis, leading to the increased DDDA fluxes by 48% and 22% higher, respectively, compared to wild-type. We further investigated the effect of supplying branched-chain amino acids on the acetyl-CoA turn-over rate which is key metabolite for fatty acid synthesis, suggesting their significance for production of DDDA in Y. lipolytica. In silico model-based strain design strategies allowed us to identify several metabolic engineering targets for overproducing DCAs in lipid accumulating yeast, Y. lipolytica. Thus, the current study can provide a methodological framework that is applicable to other oleaginous yeasts for value-added biochemical production.

  7. A convenient preparation of 9 H -carbazole-3,6-dicarbonitrile and 9 H -carbazole-3,6-dicarboxylic acid

    KAUST Repository

    Weselinski, Lukasz Jan

    2014-01-23

    A catalytic, high yielding and scalable procedure for the synthesis of 9H-carbazole-3,6-dicarbonitrile has been developed. Subsequent hydrolysis of the dinitrile in the presence of a catalytic copper species (i.e., CuI) yields 9H-carbazole-3,6-dicarboxylic acid. Both compounds are versatile and fine-tunable organic building blocks and therefore offer potential in material science, medicinal and supramolecular chemistry. © Georg Thieme Verlag Stuttgart New York.

  8. catena-Poly[[diaquarubidium(I](μ2-3-carboxypyrazine-2-carboxylato(μ2-pyrazine-2,3-dicarboxylic acid

    Directory of Open Access Journals (Sweden)

    Kutalmis Guven

    2009-02-01

    Full Text Available The structural unit of the title compound, [Rb(C6H3N2O4(C6H4N2O4(H2O2]n, consists of one rubidium cation, one hydrogen pyrazine-2,3-dicarboxylate anion, one pyrazine-2,3-dicarboxylic acid molecule and two water molecules. This formulation is repeated twice in the asymmetric unit as the rubidium cation lies on an inversion centre. Each anion or acid molecule is linked to two rubidium cations, while the rubidium cation has close contacts to four symmetry-equivalent organic ligands, with two different coordination modes towards this cation. In addition, each rubidium cation is coordinated by two water O atoms, raising the coordination number to eight. One of the carboxyl groups of the acid holds its H atom, which forms a hydrogen bond to a coordinated water molecule. The other carboxyl group is deprotonated in half of the ligands and protonated in the other half, taking part in a strong O—H...O hydrogen bond disordered over an inversion centre. The stabilization of the crystal structure is further assisted by O—H...O and O—H...N hydrogen-bonding interactions involving the water molecules and carboxylate O atoms.

  9. pH-metric studies on the mixed ligand-chelates of oxovanadium(IV) with 2,2'-bipyridyl and dicarboxylic or hydroxy acids

    International Nuclear Information System (INIS)

    Jain, A.K.; Kumari, V.; Chaturvedi, G.K.

    1978-01-01

    The interaction of vanadyl ion with 2,2'-bipyridyl and some dicarboxylic or hydroxy acids (where dicarboxylic acid = oxalic (OX), malonic (MALN), phthalic (PHA), maleic (MAL) acids; hydroxy acids salicylic (SA), 5-sulfosalicylic (5-SSA), mandelic (MAND) and glycollic (HG) acids was studied potentiometrically. pH-titrations of the reaction mixtures containing vanadyl sulphate, 2,2'-bipyridyl and one of the dicarboxylic or hydroxy acids (OX, MALN, PHA, MAL, SA, 5-SSA, MAND and HG acids) in equimolar ratio exhibited the formation of 1:1:1 mixed ligand chelates. The formation constants of the resulting biligand chelates were calculated, at 35 + -1 0 and 45 + -1 0 and also the thermodynamic functions viz. ΔF, ΔH and ΔS (μ=0.1M KNO 3 ) (auth.)

  10. Research into esterification of mixture of lower dicarboxylic acids by 2-ethylhexan-1-ol in the presence of p-toluensulfonic acid

    OpenAIRE

    Melnyk, Stepan; Melnyk, Yuriy; Nykulyshyn, Irena; Shevchuk, Liliya

    2017-01-01

    Regularities of esterification of the mixture of lower dicarboxylic acids (succinic, glutaric, adipic) by 2-ethylhexan-1-ol in the presence of catalysts – p-toluensulfonic and sulfuric acids under non-stationary conditions were studied. It was found that in the presence of mineral acid, the reaction flows at a lower rate. Application of benzene as a substance that facilitates separation of water, formed in the esterification reaction, makes it possible, due to a lower reaction temperature, to...

  11. Cephalopod vision involves dicarboxylic amino acids: D-aspartate, L-aspartate and L-glutamate.

    Science.gov (United States)

    D'Aniello, Salvatore; Spinelli, Patrizia; Ferrandino, Gabriele; Peterson, Kevin; Tsesarskia, Mara; Fisher, George; D'Aniello, Antimo

    2005-03-01

    In the present study, we report the finding of high concentrations of D-Asp (D-aspartate) in the retina of the cephalopods Sepia officinalis, Loligo vulgaris and Octopus vulgaris. D-Asp increases in concentration in the retina and optic lobes as the animal develops. In neonatal S. officinalis, the concentration of D-Asp in the retina is 1.8+/-0.2 micromol/g of tissue, and in the optic lobes it is 5.5+/-0.4 micromol/g of tissue. In adult animals, D-Asp is found at a concentration of 3.5+/-0.4 micromol/g in retina and 16.2+/-1.5 micromol/g in optic lobes (1.9-fold increased in the retina, and 2.9-fold increased in the optic lobes). In the retina and optic lobes of S. officinalis, the concentration of D-Asp, L-Asp (L-aspartate) and L-Glu (L-glutamate) is significantly influenced by the light/dark environment. In adult animals left in the dark, these three amino acids fall significantly in concentration in both retina (approx. 25% less) and optic lobes (approx. 20% less) compared with the control animals (animals left in a diurnal/nocturnal physiological cycle). The reduction in concentration is in all cases statistically significant (P=0.01-0.05). Experiments conducted in S. officinalis by using D-[2,3-3H]Asp have shown that D-Asp is synthesized in the optic lobes and is then transported actively into the retina. D-aspartate racemase, an enzyme which converts L-Asp into D-Asp, is also present in these tissues, and it is significantly decreased in concentration in animals left for 5 days in the dark compared with control animals. Our hypothesis is that the dicarboxylic amino acids, D-Asp, L-Asp and L-Glu, play important roles in vision.

  12. Influence of organic compound functionality on aerosol hygroscopicity: dicarboxylic acids, alkyl-substituents, sugars and amino acids

    Science.gov (United States)

    Marsh, Aleksandra; Miles, Rachael E. H.; Rovelli, Grazia; Cowling, Alexander G.; Nandy, Lucy; Dutcher, Cari S.; Reid, Jonathan P.

    2017-05-01

    Hygroscopicity data for 36 organic compounds, including amino acids, organic acids, alcohols and sugars, are determined using a comparative kinetics electrodynamic balance (CK-EDB). The CK-EDB applies an electric field to trap-charged aqueous droplets in a chamber with controlled temperature and relative humidity (RH). The dual micro dispenser set-up allows for sequential trapping of probe and sample droplets for accurate determination of droplet water activities from 0.45 to > 0.99. Here, we validate and benchmark the CK-EDB for the homologous series of straight-chain dicarboxylic acids (oxalic-pimelic) with measurements in better agreement with Universal Quasichemical Functional Group Activity Coefficients (UNIFAC) predictions than the original data used to parametrise UNIFAC. Furthermore, a series of increasingly complex organic compounds, with subtle changes to molecular structure and branching, are used to rigorously assess the accuracy of predictions by UNIFAC, which does not explicitly account for molecular structure. We show that the changes in hygroscopicity that result from increased branching and chain length are poorly represented by UNIFAC, with UNIFAC under-predicting hygroscopicity. Similarly, amino acid hygroscopicity is under-predicted by UNIFAC predictions, a consequence of the original data used in the parametrisation of the molecular subgroups. New hygroscopicity data are also reported for a selection of alcohols and sugars and they show variable levels of agreement with predictions.

  13. Binary and ternary complexes of beryllium(II) with malonic, amino, thiodicarboxylic and some simple and substituted dicarboxylic acids in aqueous medium

    International Nuclear Information System (INIS)

    Shelke, D.N.

    1983-01-01

    The interaction of beryllium(II) with malonic, amino and thio acids in presence of some substituted and simple dicarboxylic acids has been studied. Mixed complexes of Be(II)-dicarboxylic acids with aspartic and thiomalic acids have been investigated. The distribution of the concentrations of simple and mixed species present, as a function of pH and other equilibrium constants have been utilized to explain the formation of mixed complexes. The estimation of stability constants by the relationship between complex stability and ligand basicity is discussed. The data point out that the slight differences present along the series of the complexes are not suppressed in the ternary ones. (author)

  14. New dicarboxylic acid bipyridine ligand for ruthenium polypyridyl sensitization of TiO2.

    Science.gov (United States)

    Heuer, William B; Xia, Hai-Long; Ward, William; Zhou, Zhen; Pearson, Wayne H; Siegler, Maxime A; Narducci Sarjeant, Amy A; Abrahamsson, Maria; Meyer, Gerald J

    2012-04-02

    An ambidentate dicarboxylic acid bipyridine ligand, (4,5-diazafluoren-9-ylidene) malonic acid (dfm), was synthesized for coordination to Ru(II) and mesoporous nanocrystalline (anatase) TiO(2) thin films. The dfm ligand provides a conjugated pathway from the pyridyl rings to the carbonyl carbons of the carboxylic acid groups. X-ray crystal structures of [Ru(bpy)(2)(dfm)]Cl(2) and the corresponding diethyl ester compound, [Ru(bpy)(2)(defm)](PF(6))(2), were obtained. The compounds displayed intense metal-to-ligand charge transfer (MLCT) absorption bands in the visible region (ε > 11,000 M(-1) cm(-1) for [Ru(bpy)(2)(dfm)](PF(6))(2) in acetonitrile). Significant room temperature photoluminescence, PL, was absent in CH(3)CN but was observed at 77 K in a 4:1 EtOH:MeOH (v:v) glass. Cyclic voltammetry measurements revealed quasi-reversible Ru(III/II) electrochemistry. Ligand reductions were quasi-reversible for the diethyl ester compound [Ru(bpy)(2)(defm)](2+), but were irreversible for [Ru(bpy)(2)(dfm)](2+). Both compounds were anchored to TiO(2) thin films by overnight reactions in CH(3)CN to yield saturation surface coverages of 3 × 10(-8) mol/cm(2). Attenuated total reflection infrared measurements revealed that the [Ru(bpy)(2)(dfm)](2+) compound was present in the deprotonated carboxylate form when anchored to the TiO(2) surface. The MLCT excited states of both compounds injected electrons into TiO(2) with quantum yields of 0.70 in 0.1 M LiClO(4) CH(3)CN. Micro- to milli-second charge recombination yielded ground state products. In regenerative solar cells with 0.5 M LiI/0.05 M I(2) in CH(3)CN, the Ru(bpy)(2)(dfm)/TiO(2) displayed incident photon-to-current efficiencies of 0.7 at the absorption maximum. Under the same conditions, the diethylester compound was found to rapidly desorb from the TiO(2) surface.

  15. Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide)s.

    Science.gov (United States)

    Díaz, Angélica; Katsarava, Ramaz; Puiggalí, Jordi

    2014-04-25

    Poly(alkylene dicarboxylate)s constitute a family of biodegradable polymers with increasing interest for both commodity and speciality applications. Most of these polymers can be prepared from biobased diols and dicarboxylic acids such as 1,4-butanediol, succinic acid and carbohydrates. This review provides a current status report concerning synthesis, biodegradation and applications of a series of polymers that cover a wide range of properties, namely, materials from elastomeric to rigid characteristics that are suitable for applications such as hydrogels, soft tissue engineering, drug delivery systems and liquid crystals. Finally, the incorporation of aromatic units and α-amino acids is considered since stiffness of molecular chains and intermolecular interactions can be drastically changed. In fact, poly(ester amide)s derived from naturally occurring amino acids offer great possibilities as biodegradable materials for biomedical applications which are also extensively discussed.

  16. Synthesis, Properties and Applications of Biodegradable Polymers Derived from Diols and Dicarboxylic Acids: From Polyesters to Poly(ester amide)s

    Science.gov (United States)

    Díaz, Angélica; Katsarava, Ramaz; Puiggalí, Jordi

    2014-01-01

    Poly(alkylene dicarboxylate)s constitute a family of biodegradable polymers with increasing interest for both commodity and speciality applications. Most of these polymers can be prepared from biobased diols and dicarboxylic acids such as 1,4-butanediol, succinic acid and carbohydrates. This review provides a current status report concerning synthesis, biodegradation and applications of a series of polymers that cover a wide range of properties, namely, materials from elastomeric to rigid characteristics that are suitable for applications such as hydrogels, soft tissue engineering, drug delivery systems and liquid crystals. Finally, the incorporation of aromatic units and α-amino acids is considered since stiffness of molecular chains and intermolecular interactions can be drastically changed. In fact, poly(ester amide)s derived from naturally occurring amino acids offer great possibilities as biodegradable materials for biomedical applications which are also extensively discussed. PMID:24776758

  17. Investigation of the gas-phase hydrogen/deuterium exchange behavior of aromatic dicarboxylic acids in a quadrupole ion trap

    Science.gov (United States)

    Chipuk, Joseph E.; Brodbelt, Jennifer S.

    2007-11-01

    Gas-phase hydrogen/deuterium (H/D) exchange reactions of four deprotonated aromatic dicarboxylic acids (phthalic acid, isophthalic acid, terephthalic acid and 2,6-naphthalic acid) with D2O were performed in a quadrupole ion trap mass spectrometer. Experimental results showed significant differences in the rate and extent of exchange when the relative position of the carboxylic acid groups varied. Spontaneous and near complete exchange of one aromatic hydrogen atom occurred when the carboxylic acid groups were in the meta-position, whereas no additional exchange was observed for either the ortho- or para-isomers or for the structurally similar naphthalic acid. Computational investigations support the participation of several possible exchange mechanisms with the contribution of each relying heavily on the relative orientation of the acid moieties. A relay mechanism that bridges the deprotonation site and the labile hydrogen site appears to be responsible for the H/D exchange of not only the labile hydrogen atom of isophthalic acid, but also for the formation of a stable carbanion and corresponding subsequent exchange of one aromatic hydrogen atom. The impact of hydrogen bonding on the relay mechanism is demonstrated by the reaction of phthalic acid as the extent and rate of reaction are greatly retarded by the favorable interaction of the two carboxylic acid groups. Finally, a flip-flop mechanism is likely responsible for the exchange of both terephthalic acid and 2,6-naphthalic acid where the reactive sites are too remote for exchange via relay.

  18. Morphology and phase transformations of tin oxide nanostructures synthesized by the hydrothermal method in the presence of dicarboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Zima, Tatyana, E-mail: zima@solid.nsc.ru [Institute of Solid State Chemistry and Mechanochemistry SB RAS, 18 Kutateladze, Novosibirsk 630128 (Russian Federation); Novosibirsk State Technical University, 20 K. Marx Prospect, Novosibirsk 630092 (Russian Federation); Bataev, Ivan [Novosibirsk State Technical University, 20 K. Marx Prospect, Novosibirsk 630092 (Russian Federation)

    2016-11-15

    A new approach to the synthesis of non-stoichiometric tin oxide structures with different morphologies and the phase compositions has been evaluated. The nanostructures were synthesized by hydrothermal treatment of the mixtures of dicarboxylic acids ― aminoterephthalic or oxalic ― with nanocrystalline SnO{sub 2} powder, which was obtained via the sol-gel technology. The products were characterized by Raman and IR spectroscopy, SEM, HRTEM, and XRD analysis. It was shown that the controlled addition of a dicarboxylic acid leads not only to a change in the morphology of the nanostructures, but also to SnO{sub 2}–SnO{sub 2}/Sn{sub 3}O{sub 4}–Sn{sub 3}O{sub 4}–SnO phase transformations. A single-phase Sn{sub 3}O{sub 4} in the form of the well-separated hexagonal nanoplates and mixed SnO{sub 2}/Sn{sub 3}O{sub 4} phases in the form of hierarchical flower-like structures were obtained in the presence of organic additives. The effects of concentration, redox activity of the acids and heat treatment on the basic characteristics of the synthesized tin oxide nanostructures and phase transformations in the synthesized materials are discussed. - Graphical abstract: The controlled addition of aminoterephthalic or oxalic acid leads not only to a change in the morphology of the nanostructures, but also to SnO{sub 2}–SnO{sub 2}/Sn{sub 3}O{sub 4}–Sn{sub 3}O{sub 4}–SnO phase transformations. - Highlights: • A new approach to the synthesis of non-stoichiometric tin oxide structures is studied. • Tin oxide structures are synthesized via hydrothermal method with dicarboxylic acids. • Morphology and phase composition are changed with redox activity and dosage of acid. • The redox activity of acid has an effect on ratio of SnO and SnO{sub 2} in crystal structure. • A pure phase Sn{sub 3}O{sub 4} nanoplates and SnO{sub 2}/Sn{sub 3}O{sub 4} hierarchical structures are formed.

  19. Dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in fine aerosols over central Alaska: Implications for sources and atmospheric processes

    Science.gov (United States)

    Deshmukh, Dhananjay K.; Mozammel Haque, Md.; Kawamura, Kimitaka; Kim, Yongwon

    2018-04-01

    The presence of water-soluble dicarboxylic acids in atmospheric aerosols has a significant influence on the regional radiative forcing through direct aerosol effect and cloud formation process. Fine aerosol (PM2.5) samples collected in central Alaska (Fairbanks: 64.51°N and 147.51°W) during summer of 2009 were measured for water-soluble diacids (C2-C12), oxoacids (C2-C9) and α-dicarbonyls (C2-C3) as well as elemental carbon (EC), organic carbon (OC) and water-soluble OC (WSOC) to assess their sources and formation processes. We found the predominance of oxalic acid (C2) followed by malonic (C3) and succinic acid (C4) in Alaskan aerosols. Higher C3/C4 diacid ratios (ave. 1.2) in Alaskan aerosols than those reported for fresh aerosols emitted from fossil fuel combustion (ave. 0.35) and biomass burning (0.51-0.66) suggest that organic aerosols in central Alaska were photochemically processed. The relatively high correlations of major diacids and related compounds with levoglucosan (r = 0.80-0.99) than those with 2-methylglyceric acid (r = 0.59-0.98) suggest that they were significantly produced from biomass burning emission. Strong correlations of C2 with normal-chain saturated diacids (C3-C9: r = 0.80-0.98), glyoxylic acid (ωC2: r = 0.95) and methylglyoxal (MeGly: r = 0.88), together with strong correlations of solar radiation with ratio of C2 to C2-C12 diacids (r = 0.83), ωC2 (r = 0.80) and MeGly (r = 0.82) suggest that oxalic acid in PM2.5 aerosol was produced by the photooxidation of higher homologous diacids, glyoxylic acid and methylglyoxal in the atmosphere of central Alaska. These results reveal that photochemical processing of organic precursors mainly produced from biomass burning control the water-soluble organic chemical composition of fine aerosols in central Alaska.

  20. Amylose-dicarboxylic acid inclusion complexes: Characterization and comparison to monocarboxylic acid complexes

    Science.gov (United States)

    One of the main components in starch, amylose is an essentially linear polymer composed of glucose connected through alpha-1,4-bonds. Amylose is well known to form helical inclusion complexes with various types of ligands such as iodine, medium and long chain fatty acids, alcohols, lactones, and fl...

  1. Organic and inorganic aerosol compositions in Ulaanbaatar, Mongolia, during the cold winter of 2007 to 2008: Dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls

    Science.gov (United States)

    Jung, Jinsang; Tsatsral, Batmunkh; Kim, Young J.; Kawamura, Kimitaka

    2010-11-01

    To investigate the distributions and sources of water-soluble organic acids in the Mongolian atmosphere, aerosol samples (PM2.5, n = 34) were collected at an urban site (47.92°N, 106.90°E, ˜1300 m above sea level) in Ulaanbaatar, the capital of Mongolia, during the cold winter. The samples were analyzed for water-soluble dicarboxylic acids (C2-C12) and related compounds (ketocarboxylic acids and α-dicarbonyls), as well as organic carbon (OC), elemental carbon, water-soluble OC, and inorganic ions. Distributions of dicarboxylic acids and related compounds were characterized by a predominance of terephthalic acid (tPh; 130 ± 51 ng m-3, 19% of total detected organic acids) followed by oxalic (107 ± 28 ng m-3, 15%), succinic (63 ± 20 ng m-3, 9%), glyoxylic (55 ± 18 ng m-3, 8%), and phthalic (54 ± 27 ng m-3, 8%) acids. Predominance of terephthalic acid, which has not been reported previously in atmospheric aerosols, was mainly due to uncontrolled burning of plastic bottles and bags in home stoves for heating and waste incineration during the cold winter. This study demonstrated that most of the air pollutants were directly emitted from local sources such as heat and power plants, home stoves, and automobiles. Development of an inversion layer (level) over the basin of Ulaanbaatar accelerated the accumulation of pollutants, causing severe haze episodes during the winter season.

  2. Potentiometric studies on ternary complexes involving some divalent transition metal ions, gallic acid and biologically abundant aliphatic dicarboxylic acids in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Abdelatty Mohamed Radalla

    2015-06-01

    Full Text Available Formation of binary and ternary complexes of the divalent transition metal ions, Cu2+, Ni2+, Co2+ and Zn2+ with gallic acid and the biologically important aliphatic dicarboxylic acids (adipic, succinic, malic, malonic, maleic, tartaric and oxalic acids were investigated by means of the potentiometric technique at 25 °C and I = 0.10 mol dm−3 NaNO3. The acid-base properties of the ligands were investigated and discussed. The acidity constants of gallic acid and aliphatic dicarboxylic acids were determined and used for determining the stability constants of the binary and ternary complexes formed in the aqueous medium under the above experimental conditions. The formation of the different 1:1 and 1:2 binary complexes and 1:1:1 ternary complexes are inferred from the corresponding potentiometric pH-metric titration curves. The ternary complex formation was found to occur in a stepwise manner. The stability constants of these binary and ternary systems were calculated. The values of Δ log K, percentage of relative stabilization (%R.S. and log X were evaluated and discussed. The concentration distribution of the various complex species formed in solution was evaluated and discussed. The mode of chelation of ternary complexes formed was ascertained by conductivity measurements.

  3. Alternative plasticizer, 4-cyclohexene-1,2-dicarboxylic acid dinonyl ester, for blood containers with protective effects on red blood cells and improved cold resistance.

    Science.gov (United States)

    Morishita, Yuki; Nomura, Yusuke; Fukui, Chie; Fujisawa, Ayano; Watanabe, Kayo; Fujimaki, Hideo; Kumada, Hidefumi; Inoue, Kaoru; Morikawa, Tomomi; Takahashi, Miwa; Kawakami, Tsuyoshi; Sakoda, Hideyuki; Mukai, Tomokazu; Yuba, Toshiyasu; Inamura, Ken-Ichi; Tanoue, Akito; Miyazaki, Ken-Ichi; Chung, Ung-Il; Ogawa, Kumiko; Yoshida, Midori; Haishima, Yuji

    2018-04-01

    Di (2-ethylhexyl) phthalate (DEHP), a typical plasticizer used for polyvinyl chloride (PVC), is eluted from PVC-made blood containers and protects against red blood cell (RBC) hemolysis. However, concerns have arisen regarding the reproductive and developmental risks of DEHP in humans, and the use of alternative plasticizers for medical devices has been recommended worldwide. In this study, we propose that the use of a novel plasticizer, 4-cyclohexene-1,2-dicarboxylic acid dinonyl ester (DL9TH), could help produce more useful and safe blood containers. PVC sheet containing DL9TH and di (2-ethylhexyl) 4-cyclohexene-1,2-dicarboxylate (DOTH) provides comparable or superior protective effects to RBCs relative to PVC sheet containing DEHP or di-isononyl-cyclohexane-1,2-dicarboxylate (DINCH ® , an alternative plasticizer that has been used in PVC sheets for blood containers). The total amount of plasticizer eluted from DOTH/DL9TH-PVC sheets is nearly the same as that eluted from DEHP-PVC sheets. In addition, DOTH/DL9TH-PVC has better cold resistance than DEHP- and DINCH ® -PVC sheets. In vitro and in vivo tests for biological safety based on International Organization for Standardization guidelines (10993 series) suggest that the DOTH/DL9TH-PVC sheet can be used safely. Subchronic toxicity testing of DL9TH in male rats in accordance with the principles of Organisation for Economic Co-operation and Development Test Guideline 408 showed that DL9TH did not induce adverse effects up to the highest dose level tested (717 mg/kg body weight/day). There were no effects on testicular histopathology and sperm counts, and no indications of endocrine effects: testosterone, thyroid-stimulating hormone, follicle-stimulating hormone, and 17β-estradiol were unchanged by the treatment, compared with the control group. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1052-1063, 2018. © 2017 Wiley Periodicals, Inc.

  4. Determination of low-molecular-weight dicarboxylic acids in atmospheric aerosols by injection-port derivatization and gas chromatography-mass spectrometry

    Science.gov (United States)

    Ding, W.; Hsu, C.

    2008-12-01

    Currently, the investigations on aerosol water-soluble organic compounds (WSOCs) formed by burning biomass have become increasingly concerned with the role of these compounds in atmospheric chemistry and their effect on climate, because they have great potential to influence cloud formation, precipitation, and climate on both global and regional scales. Of these compounds, low-molecular weight (LMW) dicarboxylic acids (from C2 to C10) have attracted the most interest because of their properties as specific tracers for the burning of biomass. In this study, a modified injection-port derivatization and gas chromatography - mass spectrometry method was developed and evaluated for rapid determination of LMW dicarboxylic acids in atmospheric aerosol samples. The parameters related to the derivatization process (i.e., type of ion-pair reagent, injection-port temperature and concentration of ion-pair reagent) were optimized. Tetrabutylammonium hydroxide (TBA-OH) dissolved in methanol used as the ion-pair solution gave excellent yield for di-butyl ester low-molecular weight derivatives. Solid-phase extraction method instead of rotary evaporation was used to concentrate analytes from filter extracts. The recovery from filter extracts ranged from 67 to 86% with relative standard deviation (RSD) less than 13%. The concentrations of dicarboxylated C2, C3, C4, C5 and C6-C10 in atmospheric aerosols ranged from 91-240 ng/m3, 11-56 ng/m3, 12-49 ng/m3, 8-35 ng/m3 and n.d. to 17 ng/m3, respectively. Oxalic (C2) acid was the dominant dicarboxylic acids detected in aerosol samples. The total concentrations of the LMW dicarboxylic acids (from C2 to C10) correspond to 2.2 to 2.6% of the total aerosol mass.

  5. Determination of low-molecular-weight dicarboxylic acids in atmospheric aerosols by injection-port derivatization and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Hsu, Ching-Lin; Ding, Wang-Hsien

    2009-12-15

    A rapid and environmental-friendly injection-port derivatization with gas chromatography-mass spectrometry (GC-MS) method was developed to determine selected low-molecular weight (LMW) dicarboxylic acids (from C2 to C10) in atmospheric aerosol samples. The parameters related to the derivatization process (i.e., type of ion-pair reagent, injection-port temperature and concentration of ion-pair reagent) were optimized. Tetrabutylammonium hydroxide (TBA-OH) 20 mM in methanol gave excellent yield for di-butyl ester dicarboxylate derivatives at injection-port temperature at 300 degrees C. Solid-phase extraction (SPE) method instead of rotary evaporation was used to concentrate analytes from filter extracts. The recovery from filter extracts ranged from 78 to 95% with relative standard deviation (RSD) less than 12%. Limits of quantitation (LOQs) ranged from 25 to 250 pg/m(3). The concentrations of di-carboxylated C2-C5 and total C6-C10 in particles of atmospheric aerosols ranged from 91.9 to 240, 11.3 to 56.7, 9.2 to 49.2, 8.7 to 35.3 and n.d. to 37.8 ng/m(3), respectively. Oxalic acid (C2) was the dominant LMW-dicarboxylic acids detected in aerosol samples. The quantitative results were comparable to the results obtained by the off-line derivatization.

  6. Luminescence recognition of different organophosphorus pesticides by the luminescent Eu(III)-pyridine-2,6-dicarboxylic acid probe.

    Science.gov (United States)

    Azab, Hassan A; Duerkop, Axel; Anwar, Z M; Hussein, Belal H M; Rizk, Moustafa A; Amin, Tarek

    2013-01-08

    Luminescence quenching of a novel long lived Eu(III)-pyridine-2,6-dicarboxylic acid probe of 1:2 stoichiometric ratio has been studied in 0.10 volume fraction ethanol-water mixture at pH 7.5 (HEPES buffer) in the presence of the organophosphorus pesticides chlorfenvinphos (P1), malathion (P2), azinphos (P3), and paraxon ethyl (P4). The luminescence intensity of Eu(III)-(PDCA)(2) probe decreases as the concentration of the pesticide increases. It was observed that the quenching due to P3 and P4 proceeds via both diffusional and static quenching processes. Direct methods for the determination of the pesticides under investigation have been developed using the luminescence quenching of Eu(III)-pyridine-2,6-dicarboxylic acid probe in solution. The linear range for determination of the selected pesticides is 1.0-35.0 μM. The detection limits were 0.24-0.55 μM for P3, P4, and P1 and 2.5 μM for P2, respectively. The binding constants (K), and thermodynamic parameters of the OPs with Eu(III)-(PDCA)(2) were evaluated. Positive and negative values of entropy (ΔS) and enthalpy (ΔH) changes for Eu(III)-(PDCA)(2)-P1 ternary complex were calculated. As the waters in this study do not contain the above mentioned OPs over the limit detectable by the method, a recovery study was carried out after the addition of the adequate amounts of the organophosphorus pesticides under investigation. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Lactone modified mono-or dicarboxylic acid based adduct dispersant compositions

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, A.; Lundberg, R.D.

    1990-03-06

    This patent describes a C{sub 5}-C{sub 9} lactone adduct material useful as an oil additive formed by reacting an aliphatic hydrocarbyl saturated or unsaturated, natural or synthetic, straight chain or branched chain monocarboxylic or dicarboxylic acylating agent heaving from about 1 to about 165 total carbon atoms with the reaction product of a C{sub 5}-C{sub 9} lactone with a member selected from the group consisting of a polyamine having from bout 2 to 60 total carbon atoms and from about 2 to about 12 nitrogen atoms, an amino alcohol containing up to about 50 total carbon atoms, from 1 to about 5 nitrogen atoms and from 1 to about 15 hydroxyl groups, and mixtures thereof. The aliphatic acylating agent having at least about twelve carbon atoms in said straight or branched chain to produce lactone adduct material that is hydrocarbon soluble.

  8. Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter

    Science.gov (United States)

    Zhang, Y. Y.; Müller, L.; Winterhalter, R.; Moortgat, G. K.; Hoffmann, T.; Pöschl, U.

    2010-08-01

    Filter samples of fine and coarse air particulate matter (PM) collected over a period of one year in central Europe (Mainz, Germany) were analyzed for water-soluble organic compounds (WSOCs), including the α- and β-pinene oxidation products pinic acid, pinonic acid and 3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA), as well as a variety of dicarboxylic acids and nitrophenols. Seasonal variations and other characteristic features in fine, coarse, and total PM (TSP) are discussed with regard to aerosol sources and sinks in comparison to data from other studies and regions. The ratios of adipic acid and phthalic acid to azelaic acid indicate that the investigated aerosol samples were mainly influenced by biogenic sources. A strong Arrhenius-type correlation was found between the 3-MBTCA concentration and inverse temperature (R2 = 0.79, n = 52, Ea = 126 ± 10 kJ mol-1, temperature range 275-300 K). Model calculations suggest that the temperature dependence observed for 3-MBTCA can be explained by enhanced photochemical production due to an increase of hydroxyl radical (OH) concentration with increasing temperature, whereas the influence of gas-particle partitioning appears to play a minor role. The results indicate that the OH-initiated oxidation of pinonic acid is the rate-limiting step in the formation of 3-MBTCA, and that 3-MBTCA may be a suitable tracer for the chemical aging of biogenic secondary organic aerosol (SOA) by OH radicals. An Arrhenius-type temperature dependence was also observed for the concentration of pinic acid (R2 = 0.60, n = 56, Ea = 84 ± 9 kJ mol-1); it can be tentatively explained by the temperature dependence of biogenic pinene emission as the rate-limiting step of pinic acid formation.

  9. Field Observation of Heterogeneous Formation of Dicarboxylic acids, Keto-carboxylic acids, α-Dicarbonyls and Nitrate in Xi'an, China during Asian dust storm periods

    Science.gov (United States)

    Wang, G.; Wang, J.; Ren, Y.; Li, J.

    2015-12-01

    To understand the formation mechanism of secondary organic aerosols (SOA) on dust surfaces, this study investigated the concentrations and compositions of dicarboxylic acids (C2-C11), keto-carboxylic acids (C3-C7), α-dicarbonyls and inorganic ions in size-segregated aerosols (9-stages) collected in Xi'an, China during the nondust storm and dust storm periods of 2009 and 2011. During the events the ambient particulate dicarboxylic acids were 932-2240 ng m-3, which are comparable and even higher than those in nondust periods. Molecular compositions of the above SOA are similar to those in nondust periods with oxalic acid being the leading species. In the presence of the dust storms, all the above mentioned SOA species in Xi'an were predominantly enriched on the coarse particles (>2.1μm), and oxalic acid well correlated with NO3- (R2=0.72, pfine particles and a strong correlation of oxalic acid with SO42-. Our results further demonstrate that NO3- in the dust periods in Xi'an was mostly derived from secondary oxidation, whereas SO42- during the events was largely derived from surface soil of Gobi deserts. We propose a formation pathway to explain these observations, in which nitric acid and/or nitrogen oxides react with dust to produce Ca(NO3)2 and form a liquid phase on the surface of dust aerosols via water vapor-absorption of Ca(NO3)2, followed by a partitioning of the gas-phase water-soluble organic precursors (e.g.,glyoxal and methylglyoxal) into the aqueous-phase and a subsequent oxidation into oxalic acid. To the best of our knowledge, we found for the first time the enrichment of glyoxal and methylglyoxal on dust surface. Our data suggest an important role of nitrate in the heterogeneous formation process of SOA on the surface of Asian dust.

  10. Luminescence recognition of different organophosphorus pesticides by the luminescent Eu(III)–pyridine-2,6-dicarboxylic acid probe

    International Nuclear Information System (INIS)

    Azab, Hassan A.; Duerkop, Axel; Anwar, Z.M.; Hussein, Belal H.M.; Rizk, Moustafa A.; Amin, Tarek

    2013-01-01

    Highlights: ► Europium (III) luminescence quenching has been used for sensing organophosphorous pesticides. ► Four guest pesticides chlorfenvinphos, malathion, azinphos, and paraxon ethyl were used. ► A sensitive rapid, cheap direct method for the determination of the pesticides has been developed. ► The method was applied to the determination of the OPs in tap, river, mineral, and waste waters. - Abstract: Luminescence quenching of a novel long lived Eu(III)–pyridine-2,6-dicarboxylic acid probe of 1:2 stoichiometric ratio has been studied in 0.10 volume fraction ethanol–water mixture at pH 7.5 (HEPES buffer) in the presence of the organophosphorus pesticides chlorfenvinphos (P1), malathion (P2), azinphos (P3), and paraxon ethyl (P4). The luminescence intensity of Eu(III)–(PDCA) 2 probe decreases as the concentration of the pesticide increases. It was observed that the quenching due to P3 and P4 proceeds via both diffusional and static quenching processes. Direct methods for the determination of the pesticides under investigation have been developed using the luminescence quenching of Eu(III)–pyridine-2,6-dicarboxylic acid probe in solution. The linear range for determination of the selected pesticides is 1.0–35.0 μM. The detection limits were 0.24–0.55 μM for P3, P4, and P1 and 2.5 μM for P2, respectively. The binding constants (K), and thermodynamic parameters of the OPs with Eu(III)–(PDCA) 2 were evaluated. Positive and negative values of entropy (ΔS) and enthalpy (ΔH) changes for Eu(III)–(PDCA) 2 –P1 ternary complex were calculated. As the waters in this study do not contain the above mentioned OPs over the limit detectable by the method, a recovery study was carried out after the addition of the adequate amounts of the organophosphorus pesticides under investigation.

  11. Luminescence recognition of different organophosphorus pesticides by the luminescent Eu(III)-pyridine-2,6-dicarboxylic acid probe

    Energy Technology Data Exchange (ETDEWEB)

    Azab, Hassan A., E-mail: azab2@yahoo.com [Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Duerkop, Axel [Institute of Analytical Chemistry, Chemo and Biosensors, Regensburg University, D-93040 Regensburg (Germany); Anwar, Z.M.; Hussein, Belal H.M.; Rizk, Moustafa A.; Amin, Tarek [Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt)

    2013-01-08

    Highlights: Black-Right-Pointing-Pointer Europium (III) luminescence quenching has been used for sensing organophosphorous pesticides. Black-Right-Pointing-Pointer Four guest pesticides chlorfenvinphos, malathion, azinphos, and paraxon ethyl were used. Black-Right-Pointing-Pointer A sensitive rapid, cheap direct method for the determination of the pesticides has been developed. Black-Right-Pointing-Pointer The method was applied to the determination of the OPs in tap, river, mineral, and waste waters. - Abstract: Luminescence quenching of a novel long lived Eu(III)-pyridine-2,6-dicarboxylic acid probe of 1:2 stoichiometric ratio has been studied in 0.10 volume fraction ethanol-water mixture at pH 7.5 (HEPES buffer) in the presence of the organophosphorus pesticides chlorfenvinphos (P1), malathion (P2), azinphos (P3), and paraxon ethyl (P4). The luminescence intensity of Eu(III)-(PDCA){sub 2} probe decreases as the concentration of the pesticide increases. It was observed that the quenching due to P3 and P4 proceeds via both diffusional and static quenching processes. Direct methods for the determination of the pesticides under investigation have been developed using the luminescence quenching of Eu(III)-pyridine-2,6-dicarboxylic acid probe in solution. The linear range for determination of the selected pesticides is 1.0-35.0 {mu}M. The detection limits were 0.24-0.55 {mu}M for P3, P4, and P1 and 2.5 {mu}M for P2, respectively. The binding constants (K), and thermodynamic parameters of the OPs with Eu(III)-(PDCA){sub 2} were evaluated. Positive and negative values of entropy ({Delta}S) and enthalpy ({Delta}H) changes for Eu(III)-(PDCA){sub 2}-P1 ternary complex were calculated. As the waters in this study do not contain the above mentioned OPs over the limit detectable by the method, a recovery study was carried out after the addition of the adequate amounts of the organophosphorus pesticides under investigation.

  12. Knudsen cell studies of the uptake of gaseous ammonia and amines onto C3-C7 solid dicarboxylic acids.

    Science.gov (United States)

    Fairhurst, Michelle C; Ezell, Michael J; Finlayson-Pitts, Barbara J

    2017-10-04

    While atmospheric particles affect health, visibility and climate, the details governing their formation and growth are poorly understood on a molecular level. A simple model system for understanding the interactions between the gas and particle phases is the reaction of bases with acids, both of which are common constituents of atmospheric particles. In the present study, uptake coefficients for the reactions of gas phase ammonia, methylamine, ethylamine, dimethylamine and trimethylamine with a series of solid dicarboxylic acids (diacids) were measured at 296 ± 1 K using a Knudsen cell interfaced to a quadrupole mass spectrometer. The uptake coefficients (γ) for a given amine follow an odd-even trend in carbon number of the diacid, and are larger for the odd carbon diacids. Values range from γ = 0.4 for ethylamine on malonic acid (C3) to less than ∼10 -6 for ammonia and all amines on adipic (C6) and pimelic (C7) acids. Basicity or structure of the amines/ammonia alone do not explain the effect of the base on uptake. The crystal structures of the diacids also play a key role, which is especially evident for malonic acid (C3). Evaporation of aqueous mixtures of amines/ammonia with odd carbon diacids show the formation of ionic liquids (ILs) or in some cases, metastable ILs that revert back to a stable solid salt upon complete evaporation of water. The trends with amine and diacid structure provide insight into the mechanisms of uptake and molecular interactions that control it, including the formation of ionic liquid layers in some cases. The diversity in the kinetics and mechanisms involved in this relatively simple model system illustrate the challenges in accurately representing such processes in atmospheric models.

  13. Silane Reduction of 5-Hydroxy-6-methyl-pyridine-3,4-dicarboxylic Acid Diethyl Ester: Synthesis of Vitamin B6

    Directory of Open Access Journals (Sweden)

    Andrew G. Gum

    2003-12-01

    Full Text Available Alternative methods for the synthesis of pyridoxine have been investigated. The key intermediate, 5-hydroxy-6-methyl-pyridine-3,4-dicarboxylic acid diethyl ester (5, was reduced with either a silane monomer (MeSiH(OEt2 or a polysiloxane (polymethylhydrosiloxane, PMHS to afford crude pyridoxine. An isolation technique utilizing a commercially available resin was devised, affording the desired product, vitamin B6, in an overall yield of 38-54 % and a purity of 76%.

  14. Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter

    Directory of Open Access Journals (Sweden)

    Y. Y. Zhang

    2010-08-01

    Full Text Available Filter samples of fine and coarse air particulate matter (PM collected over a period of one year in central Europe (Mainz, Germany were analyzed for water-soluble organic compounds (WSOCs, including the α- and β-pinene oxidation products pinic acid, pinonic acid and 3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA, as well as a variety of dicarboxylic acids and nitrophenols. Seasonal variations and other characteristic features in fine, coarse, and total PM (TSP are discussed with regard to aerosol sources and sinks in comparison to data from other studies and regions. The ratios of adipic acid and phthalic acid to azelaic acid indicate that the investigated aerosol samples were mainly influenced by biogenic sources. A strong Arrhenius-type correlation was found between the 3-MBTCA concentration and inverse temperature (R2 = 0.79, n = 52, Ea = 126 ± 10 kJ mol−1, temperature range 275–300 K. Model calculations suggest that the temperature dependence observed for 3-MBTCA can be explained by enhanced photochemical production due to an increase of hydroxyl radical (OH concentration with increasing temperature, whereas the influence of gas-particle partitioning appears to play a minor role. The results indicate that the OH-initiated oxidation of pinonic acid is the rate-limiting step in the formation of 3-MBTCA, and that 3-MBTCA may be a suitable tracer for the chemical aging of biogenic secondary organic aerosol (SOA by OH radicals. An Arrhenius-type temperature dependence was also observed for the concentration of pinic acid (R2 = 0.60, n = 56, Ea = 84 ± 9 kJ mol−1; it can be tentatively explained by the temperature dependence of biogenic pinene emission as the rate-limiting step of pinic acid formation.

  15. Dicarboxylic acids and levoglucosan in aerosols from Indo-Gangetic Plain: Inferences from day night variability during wintertime.

    Science.gov (United States)

    Sorathia, Fena; Rajput, Prashant; Gupta, Tarun

    2018-05-15

    This study assesses daytime and nighttime atmospheric abundance and molecular distribution of dicarboxylic acids (DCA: C 2 -C 10 ) and biomass burning tracers (levoglucosan and biomass burning derived potassium: K + BB ) in PM 10 (particulate matter with aerodynamic diameter≤10μm) from an urban location, Kanpur (in central Indo-Gangetic Plain: IGP) during wintertime (December 2015-February 2016). In this study, PM 10 varied from 130 to 242 and 175-388μgm -3 during daytime and nighttime, respectively. The average ratios of OC/EC (day: 12.3; night: 9.3) and WSOC/OC (day: 0.74; night: 0.48) were relatively high during daytime (OC: organic carbon; EC: elemental carbon; WSOC: water-soluble organic carbon). Strong linear correlations (R 2 ≥0.6; p<0.05) of OC with levoglucosan and K + BB suggest biomass burning emission as predominant source of organic aerosols over the IGP. The measured concentrations of total DCA (ΣC 2 -C 10 ) showed pronounced diurnal variability with a higher concentration during nighttime (2510±1025ngm -3 ) as compared to that in daytime (1499±562ngm -3 ). Concentrations of oxalic acid (C 2 ), succinic acid (C 4 ) and malonic acid (C 3 ) were predominantly high as compared to other congeners of DCA (C 2 -C 10 ) over central IGP. Relatively higher mass fraction (73.4%) of C 2 in total DCA during nighttime than that in daytime (61.5%) indicates role of secondary organic aerosols (SOAs) formation involving aqueous-phase chemistry. Strong linear correlations of C 2 with C 3 and C 4 plausibly suggest that C 2 can have predominant formation pathways via decomposition of higher congeners of DCA. Overall, strong linear correlations of C 2 with levoglucosan and sulphate suggest that biomass burning emission and secondary transformations are predominant sources of DCA over IGP during wintertime. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Stable carbon isotope ratios of low molecular weight dicarboxylic acids, ketoacids and glyoxal in marine aerosols from the western North Pacific: Long-term trends in Chichijima Island

    Science.gov (United States)

    Kawamura, K.; Tachibana, E.

    2012-12-01

    Dicarboxylic acids such as oxalic, malonic and succinic acids are the most abundant water-soluble organic compound class in aerosols. To better understand the source and photochemical processes of water-soluble organic aerosols in the remote marine aerosols, we measured stable carbon isotopic composition (δ13C) of dicarboxylic acids and related compounds using a GC/IR/MS technique. The aerosol samples were collected in 2001-2011 at a remote island, Chichijima (27°04'E; 142°13'N) in the western North Pacific. Here we present decadal variations of the isotopic composition of dicarboxylic acids (C2-C9), ketoacids (C2-C8) and glyoxal in summertime aerosols (June, July and August). The molecular distributions of diacids were characterized by the predominance of oxalic (C2) acid followed by malonic (C3) and succinic (C4) acids. Oxalic acid showed higher δ13C values than other species ranging from -18‰ to -2‰ with no clear decadal trend. In contrast, C3 and C4 diacids showed δ13C values of -24 to -5‰ and -40 to -12‰ with a decadal decline. Glyoxal (-60 to -10‰) and ωC7 acid (-34 to -12‰) also showed lower values toward 2011. However, azelaic acid (C9) (-32 to -24‰) stayed relatively constant throughout the observation period. We will discuss the detailed isotopic compositions of these organic species in terms of the photochemical aging and processing in the western North Pacific and the changes in the sources and source regions.

  17. Functionalization of LDPE and mLLDPE via grafting trans-ethylene-1,2-dicarboxylic acid by reactive extrusion

    Directory of Open Access Journals (Sweden)

    2010-03-01

    Full Text Available An investigation was made of grafting trans-ethylene-1,2-dicarboxylic acid (TEDA onto metallocene-linear low-density polyethylene (mLLDPE and low-density polyethylene (LDPE in the course of reactive extrusion. The initiator was 1,3-bis-(tert-butyl-peroxyisopropylbenzene. The graft efficiency of TEDA has been shown to increase with increasing initiator concentration, irrespective of polyethylene type. The graft values for LDPE were higher than for mLLDPE over the initiator concentration range (0.05 to 0.4 wt%. The rheological properties of mLLDPE were found to undergo more tangible changes during functionalization than those of LDPE. These changes were caused by side reactions, mainly macromolecular crosslinking. It has been established that some carboxyl groups get transformed to anhydride groups in the grafted product. The concentration of end double bonds reduces, but intramolecular unsaturation in both polyethylenes increases. Data are presented on thermal and stress-strain (mechanical properties of virgin and functionalized polymers, as well as rheological and viscoelastic properties of their melts.

  18. Application of novel catalytic-ceramic-filler in a coupled system for long-chain dicarboxylic acids manufacturing wastewater treatment.

    Science.gov (United States)

    Wu, Suqing; Qi, Yuanfeng; Fan, Chunzhen; He, Shengbing; Dai, Bibo; Huang, Jungchen; Zhou, Weili; Gao, Lei

    2016-02-01

    To gain systematic technology for long-chain dicarboxylic acids (LDCA) manufacturing wastewater treatment, catalytic micro-electrolysis (CME) coupling with adsorption-biodegradation sludge (AB) process was studied. Firstly, novel catalytic-ceramic-filler was prepared from scrap iron, clay and copper sulfate solution and packed in the CME reactor. To remove residual n-alkane and LDCA, the CME reactor was utilized for LDCA wastewater pretreatment. The results revealed that about 94% of n-alkane, 98% of LDCA and 84% of chemical oxygen demand (COD) were removed by the aerated CME reactor at the optimum hydraulic retention time (HRT) of 3.0 h. In this process, catalysis from Cu and montmorillonites played an important role in improving the contaminants removal. Secondly, to remove residual COD in the wastewater, AB process was designed for the secondary biological treatment, about 90% of the influent COD could be removed by biosorption, bio-flocculation and biodegradation effects. Finally, the effluent COD (about 150 mg L(-1)) discharged from the coupled CME-AB system met the requirement of the national discharged standard (COD ≤ 300 mg L(-1)). All of these results suggest that the coupled CME-AB system is a promising technology due to its high-efficient performance, and has the potential to be applied for the real LDCA wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Recovering Ga(III) from coordination complexes using pyridine 2,6-dicarboxylic acid chelation ion chromatography.

    Science.gov (United States)

    Staff, K; Brown, M B; Hider, R C; Kong, X L; Friden, P; Jones, S A

    2010-09-01

    Ion exchange chelation chromatography is an effective means to extract metals from coordination complexes and biological samples; however there is a lack of data to verify the nature of metal complexes that can be successfully analysed using such a procedure. The aim of this study was to assess the capability of pyridine 2,6-dicarboxylic acid (PDCA) to extract and quantify Ga(III) from a range of environments using standard liquid chromatography apparatus. The PDCA chelation method generated a single Ga(III) peak with a retention time of 2.55 +/- 0.02 min, a precision of PDCA assay extracted 96.9 +/- 1.2% of the spiked Ga(III) from porcine mucus and 100.7 +/- 2.7% from a citrate complex (stability constant 10.02), but only ca 50% from an EDTA complex (stability constant 22.01). These data suggest that PDCA chelation can be considered a suitable alternative to inductively coupled plasma mass spectrometry for Ga(III) quantification from all but the most strongly bound coordinated complexes i.e. a stability constant of <15. 2010 John Wiley & Sons, Ltd.

  20. Syntheses and Antibiotic Evaluation of 2-{[(2R,4R-4-Carboxy-2-hydroxypyrrolidin-1-yl]carbonyl}benzene-1,5-dicarboxylic Acids and 2-Carbamoylbenzene-1,5-dicarboxylic Acid Analogues

    Directory of Open Access Journals (Sweden)

    Abdulrazaq Tukur

    2016-01-01

    Full Text Available Our search for new antibiotics led to the syntheses and biological evaluation of new classes of dicarboxylic acid analogues. The syntheses involve nucleophilic addition of different substituted benzylamine, aniline, alkylamine, and 4-hydroxyl-L-proline with carbamoylbenzoic acid. The results of the antimicrobial activity as indicated by the zone of inhibition (ZOI showed that Z10 is the most active against Pseudomonas aeruginosa (32 mm and least active against Candida stellatoidea (27 mm and Vancomycin Resistant Enterococci (VRE (27 mm, while Z7 shows the least zone of inhibition (22 mm against Methicillin Resistant Staphylococcus aureus (MRSA. The minimum inhibition concentration (MIC determination reveals that Z10 inhibits the growth of tested microbes at a low concentration of 6.25 μg/mL, while Z9 and Z12 inhibits the growth of most microbes at a concentration of 12.5 μg/mL, recording the least MIC. The Minimum Bactericidal/Fungicidal Concentration (MBC/MFC results revealed that Z10 has the highest bactericidal/fungicidal effect on the test microbes, at a concentration of 12.5 μg/mL, with the exception of Candida stellatoidea and Vancomycin Resistant Enterococci (VRE with MBC/MFC of 25 μg/mL. The result of this investigation reveals the potential of the target compounds (Z1–3,5,7–12 in the search for new antimicrobial agents.

  1. Genome-scale metabolic modeling and in silico analysis of lipid accumulating yeast Candida tropicalis for dicarboxylic acid production.

    Science.gov (United States)

    Mishra, Pranjul; Park, Gyu-Yeon; Lakshmanan, Meiyappan; Lee, Hee-Seok; Lee, Hongweon; Chang, Matthew Wook; Ching, Chi Bun; Ahn, Jungoh; Lee, Dong-Yup

    2016-09-01

    Recently, the bio-production of α,ω-dicarboxylic acids (DCAs) has gained significant attention, which potentially leads to the replacement of the conventional petroleum-based products. In this regard, the lipid accumulating yeast Candida tropicalis, has been recognized as a promising microbial host for DCA biosynthesis: it possess the unique ω-oxidation pathway where the terminal carbon of α-fatty acids is oxidized to form DCAs with varying chain lengths. However, despite such industrial importance, its cellular physiology and lipid accumulation capability remain largely uncharacterized. Thus, it is imperative to better understand the metabolic behavior of this lipogenic yeast, which could be achieved by a systems biological approach. To this end, herein, we reconstructed the genome-scale metabolic model of C. tropicalis, iCT646, accounting for 646 unique genes, 945 metabolic reactions, and 712 metabolites. Initially, the comparative network analysis of iCT646 with other yeasts revealed several distinctive metabolic reactions, mainly within the amino acid and lipid metabolism including the ω-oxidation pathway. Constraints-based flux analysis was, then, employed to predict the in silico growth rates of C. tropicalis which are highly consistent with the cellular phenotype observed in glucose and xylose minimal media chemostat cultures. Subsequently, the lipid accumulation capability of C. tropicalis was explored in comparison with Saccharomyces cerevisiae, indicating that the formation of "citrate pyruvate cycle" is essential to the lipid accumulation in oleaginous yeasts. The in silico flux analysis also highlighted the enhanced ability of pentose phosphate pathway as NADPH source rather than malic enzyme during lipogenesis. Finally, iCT646 was successfully utilized to highlight the key directions of C. tropicalis strain design for the whole cell biotransformation application to produce long-chain DCAs from alkanes. Biotechnol. Bioeng. 2016;113: 1993-2004.

  2. Key Process Conditions for Production of C4 Dicarboxylic Acids in Bioreactor Batch Cultures of an Engineered Saccharomyces cerevisiae Strain▿

    Science.gov (United States)

    Zelle, Rintze M.; de Hulster, Erik; Kloezen, Wendy; Pronk, Jack T.; van Maris, Antonius J. A.

    2010-01-01

    A recent effort to improve malic acid production by Saccharomyces cerevisiae by means of metabolic engineering resulted in a strain that produced up to 59 g liter−1 of malate at a yield of 0.42 mol (mol glucose)−1 in calcium carbonate-buffered shake flask cultures. With shake flasks, process parameters that are important for scaling up this process cannot be controlled independently. In this study, growth and product formation by the engineered strain were studied in bioreactors in order to separately analyze the effects of pH, calcium, and carbon dioxide and oxygen availability. A near-neutral pH, which in shake flasks was achieved by adding CaCO3, was required for efficient C4 dicarboxylic acid production. Increased calcium concentrations, a side effect of CaCO3 dissolution, had a small positive effect on malate formation. Carbon dioxide enrichment of the sparging gas (up to 15% [vol/vol]) improved production of both malate and succinate. At higher concentrations, succinate titers further increased, reaching 0.29 mol (mol glucose)−1, whereas malate formation strongly decreased. Although fully aerobic conditions could be achieved, it was found that moderate oxygen limitation benefitted malate production. In conclusion, malic acid production with the engineered S. cerevisiae strain could be successfully transferred from shake flasks to 1-liter batch bioreactors by simultaneous optimization of four process parameters (pH and concentrations of CO2, calcium, and O2). Under optimized conditions, a malate yield of 0.48 ± 0.01 mol (mol glucose)−1 was obtained in bioreactors, a 19% increase over yields in shake flask experiments. PMID:20008165

  3. Determining the saturation vapour pressures of keto-dicarboxylic acids in aqueous solutions

    Science.gov (United States)

    Crljenica, Ivica; Yli-Juuti, Taina; Zardini, Alessandro A.; Julin, Jan; Bilde, Merete; Riipinen, Ilona

    2013-05-01

    A two-compartment binary mass transport model with group contribution methods parametrizations for the physical properties of the organic acids (UNIFAC Dortmund method for activity coefficients, GCVOL-OL-60 method for the pure liquid acid density, GC-MG method for the pure acid surface tension at room temperature, Fuller et al. method for the diffusion coefficients) was used to interpret the evaporation experiments of 100 nm sized ketodicarboxylic acid aqueous solutions droplets at ambient temperature. The determined values for the saturation vapour pressure of liquid 2-keto-glutaric acid are in the order of 10-5 Pa.

  4. Molecular composition of dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls and fatty acids in atmospheric aerosols from Tanzania, East Africa during wet and dry seasons

    Science.gov (United States)

    Mkoma, S. L.; Kawamura, K.

    2013-02-01

    Atmospheric aerosol samples of PM2.5 and PM10 were collected during the wet and dry seasons in 2011 from a rural site in Tanzania and analysed for water-soluble dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, and fatty acids using a gas chromatography/flame ionization detector (GC/FID) and GC/mass spectrometry. Here we report the molecular composition and sources of diacids and related compounds for wet and dry seasons. Oxalic acid (C2) was found as the most abundant diacid species followed by succinic and/or malonic acids whereas glyoxylic acid and glyoxal were the dominant ketoacid and α-dicarbonyl, respectively in both seasons in PM2.5 and PM10. Mean concentration of C2 in PM2.5 (121 ± 47 ng m-3) was lower in wet season than dry season (258 ± 69 ng m-3). Similarly, PM10 samples showed lower concentration of C2 (169 ± 42 ng m-3) in wet season than dry season (292 ± 165 ng m-3). Relative abundances of C2 in total diacids were 65% and 67% in PM2.5 and 65% and 64% in PM10 in the wet and dry seasons, respectively. Total concentrations of diacids (289-362 ng m-3), ketoacids (37.8-53.7 ng m-3), and α-dicarbonyls (5.7-7.8 ng m-3) in Tanzania are higher than those reported at a rural background site in Nylsvley (South Africa) but comparable or lower than those reported from sites in Asia and Europe. Diacids and ketoacids were found to be present mainly in PM2.5 in both seasons (total α-dicarbonyls in the dry season), suggesting a production of organic acids from pyrogenic sources and photochemical oxidations. Averaged contributions of total diacids to aerosol total carbon were 1.4% in PM2.5 and 2.1% in PM10 during wet season and 3.3% in PM2.5 and 3.9% in PM10 during dry season whereas those to water-soluble organic carbon were 2.2% and 4.7% in PM2.5 during wet season and 3.1% and 5.8% in PM10 during dry season. The higher ratios in dry season suggest an enhanced photochemical oxidation of organic precursors probably via heterogeneous reactions on

  5. Stable Vesicles Composed of Mono- or Dicarboxylic Fatty Acids and Trimethylammonium Amphiphiles

    DEFF Research Database (Denmark)

    Caschera, Filippo; Bernardino de la Serna, Jorge; Löffler, Philipp M. G.

    2011-01-01

    shown to be more stable than those formed by pure fatty acids. Those containing bola-amphiphile even showed encapsulation of a small hydrophilic solute (8-hydroxypyrene-1,3,6-trisulfonic-acid) suggesting a denser packing of the amphiphiles. Compression and kinetics analysis of monolayers composed...... of these amphiphiles mixtures at the air/water interface suggest that the stabilization of the structures can be attributed to two main interactions between headgroups, predominantly the formation of hydrogen bonds between protonated and deprotonated acids and then the additional electrostatic interactions between...

  6. Latitudinal distributions of atmospheric dicarboxylic acids, oxocarboxylic acids, and α-dicarbonyls over the western North Pacific: Sources and formation pathways

    Science.gov (United States)

    Bikkina, Srinivas; Kawamura, Kimitaka; Miyazaki, Yuzo

    2015-05-01

    The present study aims to assess the molecular distributions of water-soluble dicarboxylic acids (diacids: C2-C12), oxocarboxylic acids (C2-C9), and α-dicarbonyls (glyoxal and methylglyoxal) in aerosols collected over the western North Pacific (WNP) during a summer cruise (August to September 2008). The measured water-soluble organics show pronounced latitudinal distributions with higher concentrations in the region of 30°N-45°N (average 63 ng m-3) than 10°N-30°N (18 ng m-3). Mass fraction of oxalic acid (C2) in total aliphatic diacids (ΣC2-C12) showed higher values (72 ± 10%) in lower latitude (10°N-30°N) than that (56 ± 16%) in higher latitude (30°N-45°N), suggesting a photochemical production of C2 due to an increased insolation over the tropical WNP. A similar trend was found in other diagnostic ratios such as oxalic to succinic (C2/C4) and oxalic to glyoxylic acid (C2/ωC2), which further corroborate an enhanced photochemical aging over the WNP. In addition, relative abundances of oxalic acid in total diacids showed a marked increase as a function of ambient temperature, supporting their photochemical production. Constantly low concentration ratios of adipic and phthalic acids relative to azelaic acid suggest a small contribution of anthropogenic sources and an importance of oceanic sources during the study period. Significant production of C2 through oxidation of biogenic volatile organic compounds emitted from the sea surface is also noteworthy, as inferred from the strong linear correlations among water-soluble organic carbon, methanesulphonic acid, and oxalic acid. Sea-to-air emission of unsaturated fatty acids also contributes to formation of diacids over the WNP.

  7. Isoquercitrin Esters with Mono- or Dicarboxylic Acids: Enzymatic Preparation and Properties

    Czech Academy of Sciences Publication Activity Database

    Vavříková, Eva; Langschwager, F.; Ježová-Kalachová, Lubica; Křenková, Alena; Mikulová, Barbora; Kuzma, Marek; Křen, Vladimír; Valentová, Kateřina

    2016-01-01

    Roč. 17, č. 6 (2016), s. 899 E-ISSN 1422-0067 R&D Projects: GA ČR(CZ) GP14-14373P; GA MŠk(CZ) LD15082 Institutional support: RVO:61388971 Keywords : isoquercitrin * quercetin * fatty acid Subject RIV: CE - Biochemistry Impact factor: 3.226, year: 2016

  8. Concentrations of higher dicarboxylic acids C5–C13 in fresh snow samples collected at the High Alpine Research Station Jungfraujoch during CLACE 5 and 6

    Directory of Open Access Journals (Sweden)

    K. Sieg

    2009-03-01

    Full Text Available Samples of freshly fallen snow were collected at the high alpine research station Jungfraujoch (Switzerland in February and March 2006 and 2007, during the Cloud and Aerosol Characterization Experiments (CLACE 5 and 6. In this study a new technique has been developed and demonstrated for the measurement of organic acids in fresh snow. The melted snow samples were subjected to solid phase extraction and resulting solutions analysed for organic acids by HPLC-MS-TOF using negative electrospray ionization. A series of linear dicarboxylic acids from C5 to C13 and phthalic acid, were identified and quantified. In several samples the biogenic acid pinonic acid was also observed. In fresh snow the median concentration of the most abundant acid, adipic acid, was 0.69 μg L−1 in 2006 and 0.70 μg L−1 in 2007. Glutaric acid was the second most abundant dicarboxylic acid found with median values of 0.46 μg L−1 in 2006 and 0.61 μg L−1 in 2007, while the aromatic acid phthalic acid showed a median concentration of 0.34 μg L−1 in 2006 and 0.45 μg L−1 in 2007. The concentrations in the samples from various snowfall events varied significantly, and were found to be dependent on the back trajectory of the air mass arriving at Jungfraujoch. Air masses of marine origin showed the lowest concentrations of acids whereas the highest concentrations were measured when the air mass was strongly influenced by boundary layer air.

  9. Cloning and genetic characterization of dca genes required for beta-oxidation of straight-chain dicarboxylic acids in Acinetobacter sp. strain ADP1.

    Science.gov (United States)

    Parke, D; Garcia, M A; Ornston, L N

    2001-10-01

    A previous study of deletions in the protocatechuate (pca) region of the Acinetobacter sp. strain ADP1 chromosome revealed that genes required for utilization of the six-carbon dicarboxylic acid, adipic acid, are linked to the pca structural genes. To investigate the genes involved in adipate catabolism, a 33.8-kb SacI fragment, which corrects a deletion spanning this region, was cloned. In addition to containing known pca, qui, and pob genes (for protocatechuate, quinate, and 4-hydroxybenzoate dissimilation), clone pZR8000 contained 10 kb of DNA which was the subject of this investigation. A mutant strain of Escherichia coli DH5alpha, strain EDP1, was isolated that was able to utilize protocatechuate and 4-hydroxybenzoate as growth substrates when EDP1 cells contained pZR8000. Sequence analysis of the new region of DNA on pZR8000 revealed open reading frames predicted to be involved in beta-oxidation. Knockouts of three genes implicated in beta-oxidation steps were introduced into the chromosome of Acinetobacter sp. strain ADP1. Each of the mutants was unable to grow with adipate. Because the mutants were affected in their ability to utilize additional saturated, straight-chain dicarboxylic acids, the newly discovered 10 kb of DNA was termed the dca (dicarboxylic acid) region. Mutant strains included one with a deletion in dcaA (encoding an acyl coenzyme A [acyl-CoA] dehydrogenase homolog), one with a deletion in dcaE (encoding an enoyl-CoA hydratase homolog), and one with a deletion in dcaH (encoding a hydroxyacyl-CoA dehydrogenase homolog). Data on the dca region should help us probe the functional significance and interrelationships of clustered genetic elements in this section of the Acinetobacter chromosome.

  10. Rational design and enantioselective synthesis of (1R,4S,5R,6S)-3-azabicyclo[3.3.0]octane-4,6-dicarboxylic acid - a novel inhibitor at human glutamate transporter subtypes 1, 2, and 3

    DEFF Research Database (Denmark)

    Bunch, Lennart; Nielsen, Birgitte; Jensen, Anders A.

    2006-01-01

    The natural product kainic acid is used as template for the rational design of a novel conformationally restricted (S)-glutamic acid (Glu) analogue, (1R,4S,5R,6S)-3-azabicyclo[3.3.0]octane-4,6-dicarboxylic acid (1a). The target structure 1a was synthesized from commercially available (S)-pyroglut...

  11. Biotransformation of 5-hydroxy-methylfurfural into 2,5-furan-dicarboxylic acid by bacterial isolate using thermal acid algal hydrolysate.

    Science.gov (United States)

    Yang, Chu-Fang; Huang, Ci-Ruei

    2016-08-01

    Thermal acid hydrolysis is often used to deal with lignocellulosic biomasses, but 5-hydroxy-methylfurfural (5-HMF) formed during hydrolysis deeply influences downstream fermentation. 2,5-Furan-dicarboxylic acid (FDCA), which is in the list of future important biomass platform molecules can be obtained using 5-HMF biotransformation. Based on the connection between 5-HMF removal in acid hydrolysate and FDCA production, the optimum thermal acid hydrolysis condition for macroalgae Chaetomorpha linum was established. Potential microbes capable of transforming 5-HMF into FDCA were isolated and characterized under various parameters and inoculated into algal hydrolysate to perform 5-HMF biotransformation. The optimum hydrolysis condition was to apply 0.5M HCl to treat 3% algal biomass under 121°C for 15min. Isolated Burkholderia cepacia H-2 could transform 2000mg/L 5-HMF at the initial pH of 7 at 28°C and 1276mg/L FDCA was received. Strain B. cepacia H-2 was suitable for treating the algal hydrolysate without dilution, receiving 989.5mg/L FDCA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Cyclohexane-1,2-dicarboxylic acid diisononyl ester and metabolite effects on rat epididymal stromal vascular fraction differentiation of adipose tissue

    Energy Technology Data Exchange (ETDEWEB)

    Campioli, Enrico [Research Institute of the McGill University Health Centre (Canada); Department of Medicine, McGill University, Montréal, Québec (Canada); Duong, Tam B. [Research Institute of the McGill University Health Centre (Canada); Deschamps, François [Synthèse AptoChem Inc., Montréal, Québec (Canada); Papadopoulos, Vassilios, E-mail: vassilios.papadopoulos@mcgill.ca [Research Institute of the McGill University Health Centre (Canada); Department of Medicine, McGill University, Montréal, Québec (Canada); Department of Biochemistry, McGill University, Montréal, Québec (Canada); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec (Canada)

    2015-07-15

    Plastics are generally mixed with additives like plasticizers to enhance their flexibility, pliability, and elasticity proprieties. Plasticizers are easily released into the environment and are absorbed mainly through ingestion, dermal contact, and inhalation. One of the main classes of plasticizers, phthalates, has been associated with endocrine and reproductive diseases. In 2002, 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) was introduced in the market for use in plastic materials and articles intended to come into contact with food, and it received final approval from the European Food Safety Authority in 2006. At present, there is limited knowledge about the safety and potential metabolic and endocrine-disrupting properties of DINCH and its metabolites. The purpose of this study was to evaluate the biological effects of DINCH and its active metabolites, cyclohexane-1,2-dicarboxylic acid (CHDA) and cyclohexane-1,2-dicarboxylic acid mono isononyl ester (MINCH), on rat primary stromal vascular fraction (SVF) of adipose tissue. DINCH and its metabolite, CHDA, were not able to directly affect SVF differentiation. However, exposure of SVF to 50 μM and 100 μM concentrations of MINCH affected the expression of Cebpa and Fabp4, thus inducing SVF preadipocytes to accumulate lipids and fully differentiate into mature adipocytes. The effect of MINCH was blocked by the specific peroxisome proliferator-activated receptor (PPAR)-α antagonist, GW6471. Taken together, these results suggest that MINCH is a potent PPAR-α agonist and a metabolic disruptor, capable of inducing SVF preadipocyte differentiation, that may interfere with the endocrine system in mammals. - Highlights: • DINCH and CHDA did not affect the adipogenesis of the SVF. • MINCH affected the adipogenesis of the SVF. • MINCH effect was blocked by the specific PPAR-α antagonist GW6471. • MINCH exerted a similar effect as MEHP on SVF adipogenesis. • DINCH/MINCH are potential metabolic

  13. Neurochemical, pharmacological, and developmental studies on cerebellar receptors for dicarboxylic amino acids

    International Nuclear Information System (INIS)

    Sharif, N.A.; Roberts, P.J.

    1984-01-01

    Specific binding of L-[ 3 H]glutamate ([ 3 H]Glu) and L[ 3 H]Asp) to cerebellar membranes represented a time-, temperature-, pH- and protein-dependent interaction which was both saturable and reversible. Binding sites for both radioligands appeared maximally enriched in synaptosomal fractions isolated by gradient centrifugation. Kinetically derived dissociation constant (K/sub off//K/sub on/ . K/sub d/) for [ 3 H]Glu binding to this fraction indicated high-affinity (433 nM). Competition experiments employing analogs of excitatory amino acids, including new antagonists, helped identify binding sites for [ 3 H]Glu and [ 3 H]Asp as receptors with differential pharmacological specificities. Membrane freezing reduced numbers of both receptor types, but binding activity could be recovered partially by incubation at 37 degrees C. Glu receptors exhibited a pronounced deleterious sensitivity to thiol modifying reagents and L-Glu (50-1000 microM) provided protection against these compounds during co-incubation with cerebellar membranes. It is suggested that cold storage may induce partially reversible receptor inactivation by promoting sulfhydryl group/bond modification. Rat cerebellar glutamatergic function (endogenous Glu content, Glu uptake and receptor sites) exhibited an apparent ontogenetic peak between days 8-12 postpartum with a plateauing profile from day 30 to adulthood. The accelerated development (days 8-12) coincides with the first demonstrable Glu release and kainic acid neurotoxicity, as described previously

  14. Designing and Creating a Synthetic Omega Oxidation Pathway inSaccharomyces cerevisiaeEnables Production of Medium-Chain α, ω-Dicarboxylic Acids.

    Science.gov (United States)

    Han, Li; Peng, Yanfeng; Zhang, Yuangyuan; Chen, Wujiu; Lin, Yuping; Wang, Qinhong

    2017-01-01

    Medium-chain (C8-C14) α, ω-dicarboxylic acids (α, ω-DCAs), which have numerous applications as raw materials for producing various commodities and polymers in chemical industry, are mainly produced from chemical or microbial conversion of petroleum-derived alkanes or plant-derived fatty acids at present. Recently, significant attention has been gained to microbial production of medium-chain α, ω-DCAs from simple renewable sugars. Here, we designed and created a synthetic omega oxidation pathway in Saccharomyces cerevisiae to produce C10 and C12 α, ω-DCAs from renewable sugars and fatty acids by introducing a heterogeneous cytochrome P450 CYP94C1 and cytochrome reductase ATR1. Furthermore, the deletion of fatty acyl-CoA synthetase genes FAA1 and FAA4 increased the production of medium-chain α, ω-DCAs from 4.690 ± 0.088 mg/L to 12.177 ± 0.420 mg/L and enabled the production of C14 and C16 α, ω-DCAs at low percentage. But blocking β-oxidation pathway by deleting fatty-acyl coenzyme A oxidase gene POX1 and overexpressing different thioesterase genes had no significant impact on the production and the composition of α, ω-dicarboxylic acids. Overall, our study indicated the potential of microbial production of medium-chain α, ω-DCAs from renewable feedstocks using engineered yeast.

  15. Stereocontrolled synthesis and pharmacological evaluation of azetidine-2,3-dicarboxylic acids at NMDA receptors

    DEFF Research Database (Denmark)

    Sivaprakasam, Mangaleswaran; Hansen, Kasper Bø; David, Olivier

    2009-01-01

    azetidinic amino acids were characterized in a radioligand binding assay ([(3)H]CGP39653) at native NMDA receptors: L-trans-ADC showed the highest affinity (K(i)=10 microM) followed by the D-cis-ADC stereoisomer (21 microM). In contrast, the two analogues L-cis-ADC and D-trans-ADC were low-affinity ligands...... (>100 and 90 microM, respectively). Electrophysiological characterization of the ADC compounds at the four NMDA receptor subtypes NR1/NR2A, NR1/NR2B, NR1/NR2C, and NR1/NR2D expressed in Xenopus oocytes showed that L-trans-ADC displayed the highest agonist potency at NR1/NR2D (EC(50)=50 microM), which...

  16. Chemical characteristics of dicarboxylic acids and related organic compounds in PM2.5 during biomass-burning and non-biomass-burning seasons at a rural site of Northeast China.

    Science.gov (United States)

    Cao, Fang; Zhang, Shi-Chun; Kawamura, Kimitaka; Liu, Xiaoyan; Yang, Chi; Xu, Zufei; Fan, Meiyi; Zhang, Wenqi; Bao, Mengying; Chang, Yunhua; Song, Wenhuai; Liu, Shoudong; Lee, Xuhui; Li, Jun; Zhang, Gan; Zhang, Yan-Lin

    2017-12-01

    Fine particulate matter (PM2.5) samples were collected using a high-volume air sampler and pre-combusted quartz filters during May 2013 to January 2014 at a background rural site (47 ∘ 35 N, 133 ∘ 31 E) in Sanjiang Plain, Northeast China. A homologous series of dicarboxylic acids (C 2 -C 11 ) and related compounds (oxoacids, α-dicarbonyls and fatty acids) were analyzed by using a gas chromatography (GC) and GC-MS method employing a dibutyl ester derivatization technique. Intensively open biomass-burning (BB) episodes during the harvest season in fall were characterized by high mass concentrations of PM2.5, dicarboxylic acids and levoglucosan. During the BB period, mass concentrations of dicarboxylic acids and related compounds were increased by up to >20 times with different factors for different organic compounds (i.e., succinic (C 4 ) acid > oxalic (C 2 ) acid > malonic (C 3 ) acid). High concentrations were also found for their possible precursors such as glyoxylic acid (ωC 2 ), 4-oxobutanoic acid, pyruvic acid, glyoxal, and methylglyoxal as well as fatty acids. Levoglucosan showed strong correlations with carbonaceous aerosols (OC, EC, WSOC) and dicarboxylic acids although such good correlations were not observed during non-biomass-burning seasons. Our results clearly demonstrate biomass burning emissions are very important contributors to dicarboxylic acids and related compounds. The selected ratios (e.g., C 3 /C 4 , maleic acid/fumaric acid, C 2 /ωC 2 , and C 2 /levoglucosan) were used as tracers for secondary formation of organic aerosols and their aging process. Our results indicate that organic aerosols from biomass burning in this study are fresh without substantial aging or secondary production. The present chemical characteristics of organic compounds in biomass-burning emissions are very important for better understanding the impacts of biomass burning on the atmosphere aerosols. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Urinary excretion of C4--C10-dicarboxylic acids and antiketogenic properties of adipic acid in ketogenic-stimulated rats due to diabetes, long-chain and short-chain monocarboxylic acids.

    Science.gov (United States)

    Mortensen, P B

    1981-05-22

    The urinary excretion of C4--C10-dicarboxylic acids (succinic, adipic, suberic and sebacic acids) and the antiketogenicity of adipic acid have been studied in ketogenic-stimulated rats in three biochemically different states: diabetes, fat-feeding (long-chain monocarboxylic acids) and feeding of hexanoic acid (short-chain monocarboxylic acid). In diabetic rats urinary excretions of adipic and suberic acids were elevated before the rise in urinary excretions of 3-hydroxybutyric acid, i.e. before ketosis appeared. In severe diabetic ketosis sebacic acid was below normal values, whereas the excretion of succinic acid was unaltered. Rats, in which ketosis was provoked by hexanoic acid, had preketotic high urinary excretions of adipic and succinic acids. After ketosis the excretions of succinic acid declined again whereas the excretion of adipic acid rose further, together with that of suberic acid. Moreover, when rats which were ketotic due to treatment with long-chain triacylglycerol or hexanoic acid received 500 mg of adipic acid the urinary excretion of succinic acid rose significantly. However, no changes in succinic acid excretion were seen in diabetic ketotic rats treated with the same amount of adipic acid. Exogenously administered adipic acid was strongly antiketogenic towards ketosis caused by long-chain or short-chain monocarboxylic acids, but had no effect on diabetic ketosis.

  18. Molecular composition of dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls and fatty acids in atmospheric aerosols from Tanzania, East Africa during wet and dry seasons

    Directory of Open Access Journals (Sweden)

    S. L. Mkoma

    2013-02-01

    Full Text Available Atmospheric aerosol samples of PM2.5 and PM10 were collected during the wet and dry seasons in 2011 from a rural site in Tanzania and analysed for water-soluble dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, and fatty acids using a gas chromatography/flame ionization detector (GC/FID and GC/mass spectrometry. Here we report the molecular composition and sources of diacids and related compounds for wet and dry seasons. Oxalic acid (C2 was found as the most abundant diacid species followed by succinic and/or malonic acids whereas glyoxylic acid and glyoxal were the dominant ketoacid and α-dicarbonyl, respectively in both seasons in PM2.5 and PM10. Mean concentration of C2 in PM2.5 (121 ± 47 ng m−3 was lower in wet season than dry season (258 ± 69 ng m−3. Similarly, PM10 samples showed lower concentration of C2 (169 ± 42 ng m−3 in wet season than dry season (292 ± 165 ng m−3. Relative abundances of C2 in total diacids were 65% and 67% in PM2.5 and 65% and 64% in PM10 in the wet and dry seasons, respectively. Total concentrations of diacids (289–362 ng m−3, ketoacids (37.8–53.7 ng m−3, and α-dicarbonyls (5.7–7.8 ng m−3 in Tanzania are higher than those reported at a rural background site in Nylsvley (South Africa but comparable or lower than those reported from sites in Asia and Europe. Diacids and ketoacids were found to be present mainly in PM2.5 in both seasons (total α-dicarbonyls in the dry season, suggesting a production of organic acids from pyrogenic sources and photochemical oxidations. Averaged contributions of total diacids to aerosol total carbon were 1.4% in PM2.5 and 2.1% in PM10 during wet season and 3.3% in PM2.5 and 3.9% in PM10 during

  19. Molecular distribution and compound-specific stable carbon isotopic composition of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in PM2.5 from Beijing, China

    Science.gov (United States)

    Zhao, Wanyu; Kawamura, Kimitaka; Yue, Siyao; Wei, Lianfang; Ren, Hong; Yan, Yu; Kang, Mingjie; Li, Linjie; Ren, Lujie; Lai, Senchao; Li, Jie; Sun, Yele; Wang, Zifa; Fu, Pingqing

    2018-02-01

    This study investigates the seasonal variation, molecular distribution and stable carbon isotopic composition of diacids, oxocarboxylic acids and α-dicarbonyls to better understand the sources and formation processes of fine aerosols (PM2.5) in Beijing. The concentrations of total dicarboxylic acids varied from 110 to 2580 ng m-3, whereas oxoacids (9.50-353 ng m-3) and dicarbonyls (1.50-85.9 ng m-3) were less abundant. Oxalic acid was found to be the most abundant individual species, followed by succinic acid or occasionally by terephthalic acid (tPh), a plastic waste burning tracer. Ambient concentrations of phthalic acid (37.9 ± 27.3 ng m-3) and tPh (48.7 ± 51.1 ng m-3) were larger in winter than in other seasons, illustrating that fossil fuel combustion and plastic waste incineration contribute more to wintertime aerosols. The year-round mass concentration ratios of malonic acid to succinic acid (C3 / C4) were relatively low by comparison with those in other urban aerosols and remote marine aerosols. The values were less than or equal to unity in Beijing, implying that the degree of photochemical formation of diacids in Beijing is insignificant. Moreover, strong correlation coefficients of major oxocarboxylic acids and α-dicarbonyls with nss-K+ suggest that biomass burning contributes significantly to these organic acids and related precursors. The mean δ13C value of succinic acid is the highest among all species, with values of -17.1 ± 3.9 ‰ (winter) and -17.1 ± 2.0 ‰ (spring), while malonic acid is more enriched in 13C than others in autumn (-17.6 ± 4.6 ‰) and summer (-18.7 ± 4.0 ‰). The δ13C values of major species in Beijing aerosols are generally lower than those in the western North Pacific atmosphere, the downwind region, which indicates that stable carbon isotopic compositions of diacids depend on their precursor sources in Beijing. Therefore, our study demonstrates that in addition to photochemical oxidation, high abundances of diacids

  20. Molecular distribution and compound-specific stable carbon isotopic composition of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in PM2.5 from Beijing, China

    Directory of Open Access Journals (Sweden)

    W. Zhao

    2018-02-01

    Full Text Available This study investigates the seasonal variation, molecular distribution and stable carbon isotopic composition of diacids, oxocarboxylic acids and α-dicarbonyls to better understand the sources and formation processes of fine aerosols (PM2.5 in Beijing. The concentrations of total dicarboxylic acids varied from 110 to 2580 ng m−3, whereas oxoacids (9.50–353 ng m−3 and dicarbonyls (1.50–85.9 ng m−3 were less abundant. Oxalic acid was found to be the most abundant individual species, followed by succinic acid or occasionally by terephthalic acid (tPh, a plastic waste burning tracer. Ambient concentrations of phthalic acid (37.9 ± 27.3 ng m−3 and tPh (48.7 ± 51.1 ng m−3 were larger in winter than in other seasons, illustrating that fossil fuel combustion and plastic waste incineration contribute more to wintertime aerosols. The year-round mass concentration ratios of malonic acid to succinic acid (C3 ∕ C4 were relatively low by comparison with those in other urban aerosols and remote marine aerosols. The values were less than or equal to unity in Beijing, implying that the degree of photochemical formation of diacids in Beijing is insignificant. Moreover, strong correlation coefficients of major oxocarboxylic acids and α-dicarbonyls with nss-K+ suggest that biomass burning contributes significantly to these organic acids and related precursors. The mean δ13C value of succinic acid is the highest among all species, with values of −17.1 ± 3.9 ‰ (winter and −17.1 ± 2.0 ‰ (spring, while malonic acid is more enriched in 13C than others in autumn (−17.6 ± 4.6 ‰ and summer (−18.7 ± 4.0 ‰. The δ13C values of major species in Beijing aerosols are generally lower than those in the western North Pacific atmosphere, the downwind region, which indicates that stable carbon isotopic compositions of diacids depend on their precursor sources in Beijing. Therefore, our

  1. Size distributions of dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls and fatty acids in atmospheric aerosols from Tanzania, East Africa during wet and dry seasons

    Science.gov (United States)

    Mkoma, S. L.; Kawamura, K.

    2012-09-01

    Atmospheric aerosol samples of PM2.5 and PM10 were collected during the wet and dry seasons in 2011 from a rural site in Tanzania and analysed for water-soluble dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls and fatty acids using a gas chromatography (GC) and GC/mass spectrometry. Here we report the size distribution and sources of diacids and related compounds for wet and dry seasons. Oxalic acid (C2) was found as the most abundant diacid species followed by succinic and/or malonic acids whereas glyoxylic acid and glyoxal were the dominant ketoacids and α-dicarbonyls, respectively in both seasons in PM2.5 and PM10. Mean concentration of C2 in PM2.5 (121.5± 46.6 ng m-3) was lower in wet season than dry season (258.1± 69.5 ng m-3). Similarly, PM10 samples showed lower concentration of C2 (168.6 ± 42.4 ng m-3) in wet season than dry season (292.4± 164.8 ng m-3). Relative abundances of C2 in total diacids were 65.4% and 67.1% in PM2.5 and 64.6% and 63.9% in PM10 in the wet and dry seasons, respectively. Total concentrations of diacids (289-362 m-3), ketoacids (37.8-53.7ng m-3), and α-dicarbonyls (5.7-7.8 ng m-3) in Tanzania are higher to those reported at a rural background site in Nylsvley (South Africa) but comparable or lower to those reported from sites in Asia and Europe. Diacids and ketoacids were found to be present mainly in the fine fraction in both seasons (total α-dicarbonyls in the dry season), suggesting a production of organic aerosols from pyrogenic sources and photochemical oxidations. The averaged contributions of total diacid carbon to aerosol total carbon were 1.4% in PM2.5 and 2.1% in PM10 in wet season and 3.3% in PM2.5 and 3.9% in PM10 in dry season whereas those to water-soluble organic carbon were 2.2% and 4.7% inPM2.5 and 3.1% and 5.8% in PM10 during the wet and dry seasons, respectively. These ratios suggest an enhanced photochemical oxidation of organic precursors and heterogeneous reactions on aerosols under strong solar

  2. Stable carbon isotopic compositions of low-molecular-weight dicarboxylic acids, glyoxylic acid and glyoxal in tropical aerosols: implications for photochemical processes of organic aerosols

    Directory of Open Access Journals (Sweden)

    Stelyus L. Mkoma

    2014-10-01

    Full Text Available Tropical aerosols of PM2.5 and PM10 were collected at a rural site in Morogoro, Tanzania (East Africa, and analysed for stable carbon isotopic composition (δ13C of dicarboxylic acids (C2–C9, glyoxylic acid (ωC2 and glyoxal (Gly using gas chromatography/isotope ratio mass spectrometer. PM2.5 samples showed that δ13C of oxalic (C2 acid are largest (mean, −18.3±1.7‰ followed by malonic (C3, −19.6±1.0‰ and succinic (C4, −21.8±2.2‰ acids, whereas those in PM10 are a little smaller: −19.9±3.1‰ (C2, −20.2±2.7‰ (C3 and −23.3±3.2‰ (C4. The δ13C of C2–C4 diacids showed a decreasing trend with an increase in carbon numbers. The higher δ13C values of oxalic acid can be explained by isotopic enrichment of 13C in the remaining C2 due to the atmospheric decomposition of oxalic acid or its precursors. δ13C of ωC2 and Gly that are precursors of oxalic acid also showed larger values (mean, −22.5‰ and −20.2‰, respectively in PM2.5 than those (−26.7‰ and −23.7‰ in PM10. The δ13C values of ωC2 and Gly are smaller than those of C2 in both PM2.5 and PM10. On the other hand, azelaic acid (C9; mean, −28.5‰ is more depleted in 13C, which is consistent with the previous knowledge; that is, C9 is produced by the oxidation of unsaturated fatty acids emitted from terrestrial higher plants. A significant enrichment of 13C in oxalic acid together with its negative correlations with relative abundance of C2 in total diacids and ratios of water-soluble organic carbon and organic carbon further support that a photochemical degradation of oxalic acid occurs during long-range transport from source regions.

  3. Synthesis and Pharmacological Characterization of C4β-Amide-Substituted 2-Aminobicyclo[3.1.0]hexane-2,6-dicarboxylates. Identification of (1 S,2 S,4 S,5 R,6 S)-2-Amino-4-[(3-methoxybenzoyl)amino]bicyclo[3.1.0]hexane-2,6-dicarboxylic Acid (LY2794193), a Highly Potent and Selective mGlu3Receptor Agonist.

    Science.gov (United States)

    Monn, James A; Henry, Steven S; Massey, Steven M; Clawson, David K; Chen, Qi; Diseroad, Benjamin A; Bhardwaj, Rajni M; Atwell, Shane; Lu, Frances; Wang, Jing; Russell, Marijane; Heinz, Beverly A; Wang, Xu-Shan; Carter, Joan H; Getman, Brian G; Adragni, Kofi; Broad, Lisa M; Sanger, Helene E; Ursu, Daniel; Catlow, John T; Swanson, Steven; Johnson, Bryan G; Shaw, David B; McKinzie, David L; Hao, Junliang

    2018-03-22

    Multiple therapeutic opportunities have been suggested for compounds capable of selective activation of metabotropic glutamate 3 (mGlu 3 ) receptors, but small molecule tools are lacking. As part of our ongoing efforts to identify potent, selective, and systemically bioavailable agonists for mGlu 2 and mGlu 3 receptor subtypes, a series of C4 β -N-linked variants of (1 S,2 S,5 R,6 S)-2-amino-bicyclo[3.1.0]hexane-2,6-dicarboxylic acid 1 (LY354740) were prepared and evaluated for both mGlu 2 and mGlu 3 receptor binding affinity and functional cellular responses. From this investigation we identified (1 S,2 S,4 S,5 R,6 S)-2-amino-4-[(3-methoxybenzoyl)amino]bicyclo[3.1.0]hexane-2,6-dicarboxylic acid 8p (LY2794193), a molecule that demonstrates remarkable mGlu 3 receptor selectivity. Crystallization of 8p with the amino terminal domain of hmGlu 3 revealed critical binding interactions for this ligand with residues adjacent to the glutamate binding site, while pharmacokinetic assessment of 8p combined with its effect in an mGlu 2 receptor-dependent behavioral model provides estimates for doses of this compound that would be expected to selectively engage and activate central mGlu 3 receptors in vivo.

  4. Complexation behavior of trivalent actinides and lanthanides with 1,10-phenanthroline-2,9-dicarboxylic acid based ligands: insight from density functional theory.

    Science.gov (United States)

    Manna, Debashree; Ghanty, Tapan K

    2012-08-21

    We have investigated the complexation behavior of preorganized 1,10-phenanthroline-2,9-dicarboxylic acid (PDA) based ligands with trivalent lanthanides and actinides using density functional theory with various GGA type exchange-correlation functionals and different basis sets. New ligands have been designed from PDA through functionalization with soft donor atoms such as sulfur, resulting in mono-thio-dicarboxylic acids (TCA/TCA1) and di-thio-dicarboxylic acid (THIO). It has been found that selectivity in terms of complexation energy of actinides over lanthanides is the maximum with TCA1 where the metal-ligand binding is through the O atoms. This unusual feature where a softer actinide metal ion is bonded strongly with hard donor oxygen atoms has been explained using the popular chemical concepts, viz., Pearson's Hard-Soft-Acid-Base (HSAB) principle and the frontier orbital theory of chemical reactivity as proposed by Fukui. Detailed analysis within the framework of the HSAB principle indicates that the presence of softer nitrogen atoms in the phenanthroline moiety (which also act as donors to the metal ion) has a profound influence in changing the soft nature of the actinide ion, which in turn binds with the hard oxygen atoms in a stronger way as compared to the valence isoelectronic lanthanide ion. Also, the trends in the variation of calculated values of the metal-ligand bond distances and the corresponding complex formation energies have been rationalized using the Fukui reactivity indices corresponding to the metal ions and the donor sites. All the calculations have also been done in the presence of solvent. The "intra-ligand synergistic effect" demonstrated here for PDA or TCA1 with soft and hard donor centers might be very important in designing new ligands for selective extraction of various metal ions in a competitive environment. However, for TCA and THIO ligands with only soft donor centers, "intra-ligand synergism" may not be very efficient although

  5. Tuning Interchain Interactions in Two-Dimensional Networks of Mn(III) Schiff-Base Complexes and Dicarboxylic Acids by Varying the Linker.

    Science.gov (United States)

    Aono, Yoshitaka; Yoshida, Hiroki; Katoh, Keiichi; Breedlove, Brian K; Kagesawa, Koichi; Yamashita, Masahiro

    2015-07-20

    Two-dimensional (2D) coordination polymers consisting of Mn(III) Schiff-base complexes and dicarboxylic acids, [{Mn(salen)}4(L1)](PF6)2·(CH3OH)2 (C4; H2L1 = adipid acid) and [{Mn(salen)}4(L2)](PF6)2·(CH3OH)4 (C4'; H2L2 = E,E-1,3-butadiene-1,4-dicarboxylic acid) (salen(2-) = N,N'-(ethylene)bis(salicylideneiminato), were synthesized by using a one-pot reaction and characterized by using single-crystal X-ray crystallographic analysis. One-dimensional (1D) chains composed of Mn(salen) dimers, [Mn2], bridged by carboxylato ligands (-[Mn2]-OCO--[Mn2]-), were linked by dicarboxylato ligands with n-butyl (-C4H8-) (C4) and butadienyl aliphatic groups (-C4H4-) (C4'). From static magnetic measurements on both C4 and C4', there were ferromagnetic interactions between the Mn(III) ions through the phenoxo oxygen atoms of the salen(2-), and antiferromagnetic interactions between the Mn(III) ions through carboxylato ligands (-OCO-). As a result, weak ferromagnetism occurred because of the zigzag-shaped chain structure of C4 and C4', and magnetic anisotropy for Mn(salen). In the magnetization curves for C4', weak interchain interactions (Jlinker) occurred through the π-conjugated butadienyl linkers in C4', which C4 did not have. In other words, changing from saturated to unsaturated aliphatic groups in the dicarboxylic acid linkers resulted in weak interactions between 1D-magnetic chain moieties. Therefore, in the case of only C4', antiferromagnetic phase transition appeared at 2.3 K. Both coordination polymers exhibited slow relaxation of the magnetizations, which originated from SCM moieties, because C4 and C4' showed magnetic correlations. It is noteworthy that alternating current (ac) susceptibilities for C4' are frequency-dependent around the Néel temperature. From analysis of the ac susceptibilities for C4, α (dispersion coefficient of the relaxation of magnetization) varied linearly with 1/T. This signifies that C4 behaved as an SCM with a single relaxation process. On

  6. (2,2'-Bipyridine-4,4'-dicarboxylic acid-κ2N,N')chlorido(2,2':6',2''-terpyridyl-κ3N,N',N'')ruthenium(II) perchlorate ethanol monosolvate monohydrate

    DEFF Research Database (Denmark)

    Nielsen, Anne; McKenzie, Christine Joy; Bond, Andrew David

    2012-01-01

    ,4 '-dicarboxylic acid ligands, with interplanar separations of 3.65 (1) and 3.72 (1) angstrom. Three O atoms of the perchlorate ion are each disordered equally over two positions. The hydroxy group of the ethanol molecule is also disordered over two sites with refined occupancies of 0.794 (9) and 0.206 (9)....

  7. 2,3-Pyridine dicarboxylic acid functionalized gold nanoparticles: Insight into experimental conditions for Cr3 + sensing

    Science.gov (United States)

    Shaikh, Ruqaya; Memon, Najma; Solangi, Amber R.; Shaikh, Huma I.; Agheem, Muhammad Hassan; Ali, Syed Abid; Shah, Muhammad Raza; Kandhro, Aftab

    2017-02-01

    Selectivity of gold nanoparticles (AuNPs) depends upon surface functionality; small changes in structure or concentration bring significant changes in the behavior of AuNPs. In this study, citrate-capped AuNPs were functionalized with ortho-dicarboxylate substituted pyridine (2,3-PDCA) and detailed studies on experimental conditions were carried out to check the stability of AuNPs and response for Cr3 +. Stability of PDCA-AuNPs was found sensitive to the pH, ionic strength of buffer and its type. Capping behavior of PDCA on C-AuNPs was examined by FTIR spectroscopy. Surface morphology and size of synthesized AuNPs were confirmed by AFM, XRD, and DLS techniques where particles were found 11 nm in size, monodisperse and spherical in shape. Interaction of stabilized AuNPs was tested with various metal ions; where Cr3 + induced the changes in localized surface plasmon band (LSPR) of PDCA-AuNPs which leads to a color change from wine red to violet blue. The phenomenon is explained as cooperative effect of citrate and pyridine nitrogen on surface of AuNPs in contrary to meta-dicarboxylate substituted pyridine derivatives. Further, under optimized and controlled conditions Cr3 + shows linear response with decrease in absorbance at LSPR intensity of AuNPs (518 nm). Moreover, to demonstrate the applicability of method, Cr3 + was determined in the presence of Cr (VI) which shows 96% recovery.

  8. Luminescence of uranyl ion complexed with 2,6-pyridine dicarboxylic acid as ligand in acetonitrile medium. Observation of co-luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Maji, Siuli; Kumar, Satendra; Sankaran, Kannan [Indira Ghandi Centre for Atomic Research, Tamil Nadu (India). Materials Chemistry Div.

    2017-10-01

    Luminescence from UO{sub 2}{sup 2+} (uranyl ion) complexed with 2,6-pyridine dicarboxylic acid (PDA) has been studied using acetonitrile (MeCN) as solvent between pH 1.0 and 6.0. The enhancement in luminescence intensity because of sensitization by PDA in the non-aqueous environment provided by the MeCN is found to be one order better than in aqueous medium. The luminescence is further enhanced by about four times following the addition of Y{sup 3+}; a process known as co-luminescence. This is the first study on co-luminescence of uranyl ion in its PDA complex. Lifetime studies indicate the presence of two species having different micro-environments. Formations of both intra and inter molecular complexes are believed to be responsible for enhancement due to co-luminescence.

  9. Construction of Eu(III)- and Tb(III)-MOFs with photoluminescence for sensing small molecules based on furan-2,5-dicarboxylic acid

    Science.gov (United States)

    Zhao, Shuai; Hao, Xue-Min; Liu, Jia-Lin; Wu, Lin-Wei; Wang, Hao; Wu, Yi-Bo; Yang, Dan; Guo, Wen-Li

    2017-11-01

    Two isostructural lanthanide MOFs, [Ln3K2(FDA)4(NO3)3(MeCN)2]n (Ln = Eu 1, Tb 2) (H2FDA= furan-2,5-dicarboxylic acid), have been constructed under solvothermal conditions. Structures analyses demonstrate two complexes possess three-dimensional network with monoclinic space group C2/c. The topology analysis shows that the whole framework can be simplified to a 3,8T24 topology constructed from trinuclear {Ln3} as secondary building units (SBUs) without considering K+ ions. Solid state luminescent studies indicate that 1 and 2 show the characteristic red and green emissions of the corresponding Ln3+ ions, respectively. The luminescence lifetimes of 1 and 2 are approximately 1.04 ms and 0.41 ms. In addition, activated 1 exhibits excellent fluorescence sensing for small molecules, especially for nitrobenzene.

  10. Highly Preorganized Ligand 1,10-Phenanthroline-2,9-dicarboxylic Acid for the Selective Recovery of Uranium from Seawater in the Presence of Competing Vanadium Species

    International Nuclear Information System (INIS)

    Lashley, Mark A.; Ivanov, Alexander S.; Bryantsev, Vyacheslav S.; Dai, Sheng; Hancock, Robert D.

    2016-01-01

    Studies of the complexation of new promising ligands with uranyl (UO 2 2+ ) and other seawater cations can aid the development of more efficient, selective, and robust sorbents for the recovery of uranium from seawater. Here, we propose that the ligand design principles based on structural preorganization can be successfully applied to obtain a dramatic enhancement in UO 2 2+ ion binding affinity and selectivity. This concept is exemplified through the investigation of the com-plexes of UO 2 2+ , VO 2+ , and VO 2+ with the highly preorganized ligand PDA (1,10-phenanthroline-2,9-dicarboxylic acid) using a combination of fluores-cence and absorbance techniques, along with den-sity functional theory (DFT) calculations. Moreover, the measured stability constant value, log K1, of 16.5 for the UO 2 2+ /PDA complex is very high compared to uranyl complexes with other dicarboxylic ligands. Moreover, PDA exhibits strong selectivity for uranyl over vanadium ions, since the determined sta-bility constant values of the PDA complexes of the vanadium ions are quite low (V(IV) log K1 = 7.4, V(V) = 7.3). Finally, the structures of the corresponding UO 2 2+ , VO 2+ , and VO 2+ complexes with PDA were identified by systematic DFT calculations, and helped to interpret the stronger binding affinity for uranium over the vanadium ions. Due to its high chemical stability, selectivity, and structural preor-ganization for UO 2 2+ complexation, PDA is a very promising candidate that can be potentially used in the development of novel adsorbent materials for the selective extraction of uranium from sea-water.

  11. Study of supramolecular frameworks having aliphatic dicarboxylic acids, N,N‧-bis(salicyl)ethylenediamine and N,N‧-bis(salicyl)butylenediamine

    Science.gov (United States)

    Goel, Nidhi; Kumar, Naresh

    2014-08-01

    The reaction of bases (L1 and L2) (where L1 = N,N‧-bis(salicyl)ethylenediamine, L2 = N,N‧-bis(salicyl)butylenediamine) with dicarboxylic acids [adipic acid (1,6-Hexanedioic acid, AA), pimelic acid (1,7-Heptanedioic acid, PA) and suberic acid (1,8-Octanedioic acid, SUA] yielded the corresponding six new ionic salts viz., [1/2L1H+ṡ1/2AA-ṡ1/2AA] (1), [2 × 1/2L1H+ṡPA2-ṡCHCl3] (2) [1/2L1H+ṡ1/2SUA-] (3), [1/2L2H+ṡ1/2AA-ṡ2CH3OH] (4), [1/2L2H+ṡ1/2PA-] (5) and [1/2L2H+ṡ1/2SUA-] (6), respectively. Theses salts were characterized by elemental analysis, FT-IR, NMR, X-ray crystallography, and theoretically by means of Gaussian 09. The X-ray crystallographic studies revealed that the proton transfer occurred from acid to base. It also demonstrated that different type of hydrogen bond interactions between cations and anions were responsible for the supramolecular frameworks. The optimized structures of these salts were calculated in terms of the density functional theory. The curve fitting analysis between experimental and simulated data of structural parameters was done, and found statistically close. The orientation of molecules was remained same in both the gas and solid phases. The thermal studies of these salts were investigated by TG-DTG.

  12. Bio-Inspired Nitrile Hydration by Peptidic Ligands Based on L-Cysteine, L-Methionine or L-Penicillamine and Pyridine-2,6-dicarboxylic Acid

    Directory of Open Access Journals (Sweden)

    Cillian Byrne

    2014-12-01

    Full Text Available Nitrile hydratase (NHase, EC 4.2.1.84 is a metalloenzyme which catalyses the conversion of nitriles to amides. The high efficiency and broad substrate range of NHase have led to the successful application of this enzyme as a biocatalyst in the industrial syntheses of acrylamide and nicotinamide and in the bioremediation of nitrile waste. Crystal structures of both cobalt(III- and iron(III-dependent NHases reveal an unusual metal binding motif made up from six sequential amino acids and comprising two amide nitrogens from the peptide backbone and three cysteine-derived sulfur ligands, each at a different oxidation state (thiolate, sulfenate and sulfinate. Based on the active site geometry revealed by these crystal structures, we have designed a series of small-molecule ligands which integrate essential features of the NHase metal binding motif into a readily accessible peptide environment. We report the synthesis of ligands based on a pyridine-2,6-dicarboxylic acid scaffold and L-cysteine, L-S-methylcysteine, L-methionine or L-penicillamine. These ligands have been combined with cobalt(III and iron(III and tested as catalysts for biomimetic nitrile hydration. The highest levels of activity are observed with the L-penicillamine ligand which, in combination with cobalt(III, converts acetonitrile to acetamide at 1.25 turnovers and benzonitrile to benzamide at 1.20 turnovers.

  13. Identification of keto- and hydroxy-dicarboxylic acids in remote marine aerosols from the western North Pacific: GC and GC/TOF-MS measurements

    Science.gov (United States)

    Vani, D.; Kawamura, K.; Tachibana, E.; Boreddy, S. K. R.

    2015-12-01

    Dicarboxylic acids (diacids) are dominant components of organic aerosols in the atmosphere. They contribute significantly to the total aerosol mass and have a serious impacts on global climate changes. However, studies on keto- and hydroxy-diacids in marine aerosols are limited. Compare to diacids, keto- and hydroxy-diacids are more hygroscopic due to the additional polar groups (OH and CO) and, hence, acts as cloud condensation nuclei (CCN). Molecular characterization of these compounds provides insight into organic aerosols sources and transformation pathways. We collected marine aerosols from remote Chichijima Island in the western North Pacific from December 2010 to November 2011 and studied for water-soluble keto- and hydroxy-diacids. Carboxyl groups were derivatized to dibutyl esters with 14% boron trifluoride/n-butanol, whereas hydroxyl groups were derivatized to trimethylsilyl ethers using N,O-Bis (trimethylsilyl) trifluoroacetamide (BSTFA). After two-step derivatization, samples were injected to GC, GC/MS and GC/TOF-MS. In the GC chromatogram, we detected several new peaks after BSTFA derivatization of dibutyl ester fraction. Based on mass spectral interpretation, we found these peaks as homologues series of hydroxy-diacids and keto-diacids. Some of these hydroxy-diacids have been individually reported in literature in the laboratory photo-oxidation experiments and forest environments samples. But, there are no evidences to prove their sources and formation mechanism in the atmosphere. Here, we report for the first time homologous series of hydroxy-diacids (hC3di-hC6di) and keto-diacid (oxaloacetic acid, enol and keto forms) in remote marine atmosphere. Molecular distributions of hydroxy-diacids generally showed the predominance of malic acid followed by tartronic acid. Both hydroxy- and keto-diacids show significant positive correlation with oxalic acid and SO42-, suggesting that they are generated in the atmosphere and play an important role in the

  14. Syntheses and structures of three supramolecular complexes based on 2-(pyridine-2-yl)-1H-imidazole-4,5-dicarboxylic acid

    Science.gov (United States)

    Yu, Xiao-Yang; Zhang, Xiao; Liu, Zhi-Gang; Cui, Xiao-Bing; Xu, Jia-Ning; Luo, Yu-Hui

    2017-11-01

    Three new supramolecular compounds, [Cu(o-HPIDC)(bpy)(H2O)]·2H2O 1, [Cu(o-H2PIDC)(phen)Cl]·[Cu(phen)2Cl]·10H2O·Cl 2 and {[Cd(o-H2PIDC)(H2O)2Cl]·H2O}23 (o-H3PIDC = 2-(pyridine-2-yl)-1H-imidazole-4,5-dicarboxylic acid, bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline), were hydrothermally synthesized and characterized. In compound 1, the adjacent two supramolecular layers are constructed from different types of helical chains with the same pitch. In compound 2, the adjacent 2D water-chloride layers, {[(H2O)10Cl]-}n, are pillared by [Cu(o-H2PIDC)(phen)Cl] units to form the overall 3D supramolecular network with 1D channels through Osbnd H⋯O hydrogen bond interactions. In compound 3, two Cd(II) are linked into a binuclear [Cd2(o-H2PIDC)2(H2O)4Cl2] with a ten-membered ring by two o-H2PIDC- ligands. The three compounds self-assemble into 3D supramolecular structures via hydrogen bond and π-π stacking interactions. The fluorescence properties of compound 3 was also investigated.

  15. First-principles investigation of the adsorption of the 2,5-pyridine di-carboxylic acid onto the Cu(011) surface

    Science.gov (United States)

    Tranca, D. C.; Keil, F. J.

    2011-03-01

    First-principles calculations within the density functional theory (DFT) framework have been performed in order to investigate various conformations of the 2,5-pyridine di-carboxylic acid (PDCA) molecule adsorbed onto the Cu(011) surface. By means of DFT calculations the adsorption geometry, the bond formation and the electronic properties of PDCA molecule conformations on the Cu(011) surface have been studied. The most important structural property is the orientation of the COOH H atom which can point either toward the aromatic ring or toward the vacuum. This H atom position determines the possible reactions in which the adsorbed molecule can get involved and also has a significant impact on the value of the Cu-molecule system work function. Thus, we find that simply by changing the H atom orientation (from up to down) the Cu-molecule system work function can be varied with more than 2.5 eV. This is a significant result as a lot of effort is put nowadays in finding efficient ways for the in situ variation of the systems work function. Scanning tunneling microscopy (STM) images, reflexion absorption infrared vibrational spectra (RAIRS) as well as various thermodynamic properties (adsorption entropies, enthalpies) have also been investigated in order to get a better insight into the system studied and to provide support to possible experimental studies (STM or RAIRS experiments).

  16. A 3D metal-organic framework with a pcu net constructed from lead(II) and thiophene-2, 5-dicarboxylic acid: Synthesis, structure and ferroelectric property

    Science.gov (United States)

    Lin, Jian-Di; Rong, Cheng; Lv, Ri-Xin; Wang, Zu-Jian; Long, Xi-Fa; Guo, Guo-Cong; Pan, Chun-Yang

    2018-01-01

    Self-assembly reaction of Pb(NO3)2 with thiophene-2, 5-dicarboxylic acid (H2TDC) led to an acentric three-dimensional (3D) metal-organic framework under solvothermal conditions, namely, Pb(TDC) (1). The 3D framework of 1 is a pillared-layer structure with the I2O1 type which is composed of a 2D inorganic Pb-O-Pb substructural layer and two independent μ6-TDC2- anions pillars. This 3D framework shows a six-connected pcu topological net according to the topological analysis. Compound 1 crystallizes in an acentric space group and displays potential ferroelectric property which could be due to the swing of the thiophene rings. The remnant polarization (Pr), coercive field (Ec) and saturation spontaneous polarization (Ps) of 1 are ca. 0.034 μC cm-2, 15.7 kV cm-1 and 0.0997 μC cm-2, respectively. Among the H2TDC-based MOFs, the present compound is the first example which shows ferroelectric property. In addition, 1 also exhibits photoluminescent property which can be attributed to ligand-to-metal charge transfer.

  17. Comparison of dicarboxylic acids and related compounds in aerosol samples collected in Xi'an, China during haze and clean periods

    Science.gov (United States)

    Cheng, Chunlei; Wang, Gehui; Zhou, Bianhong; Meng, Jingjing; Li, Jianjun; Cao, Junji; Xiao, Shun

    2013-12-01

    PM10 aerosols from Xi'an, a mega city of China in winter and summer, 2009 were measured for secondary organic aerosols (SOA) (i.e., dicarboxylic acids (DCA), keto-carboxylic acids, and α-dicarbonyls), water-soluble organic (WSOC) and inorganic carbon (WSIC), elemental carbon (EC) and organic carbon (OC). Molecular compositions of SOA on haze and clean days in both seasons were compared to investigate their sources and formation mechanisms. DCA in the samples were 1843 ± 810 ng m-3 in winter and 1259 ± 781 ng m-3 in summer, respectively, which is similar and even higher than those measured in 2003. Oxalic acid (C2, 1162 ± 570 ng m-3 in winter and 1907 ± 707 ng m-3 in summer) is the predominant species of DCA, followed by t-phthalic (tPh) in winter and phthalic (Ph) in summer. Such a molecular composition is different from those in other Asian cities where succinic acid (C4) or malonic acid (C3) is the second highest species, which is mostly due to significant emissions from household combustion of coal and open burning of waste material in Xi'an. Mass ratios of C2/diacids, diacids/WSOC, WSOC/OC and individual diacid-C/WSOC are higher on the haze days than on the clean days in both seasons, suggesting an enhanced SOA production under the haze condition. We also found that the haze samples are acidic while the clean samples are almost neutral. Such a difference in particle acidity is consistent with the enhanced SOA production, because acid-catalysis is an important aqueous-phase formation pathway of SOA. Gly/mGly mass ratio showed higher values on haze days than on clean day in both seasons. We comprehensively investigated the ratio in literature and found a consistent pattern. Based on our observation results and those documented data we proposed for the first time that concentration ratio of Gly/mGly can be taken as an indicator of aerosol ageing.

  18. Copper and manganese complexes based on 1,4-naphthalene dicarboxylic acid ligand and its derivative: Syntheses, crystal structures, and magnetic properties

    Science.gov (United States)

    Xing, Yubo; Liu, Yuqi; Xue, Xiaofei; Wang, Xinying; Li, Wei

    2018-02-01

    Three new metal-organic coordination polymers, {[Mn2(1,4-NDC)2 (C2H5OH) (DMF) (H2O)]·CH3OH}n(1), {[Mn(III)(1,4-NDC)(C2H5O)][Mn(II)(1,4-NDC)(DMF)(H2O)]}n(2) and {[Cu2(C13H9O4)4(H2O)2]}n(3) based on1,4-H2NDC and its derivative were hydrothermally synthesized (1,4-H2NDC = 1,4-naphthalene-dicarboxylic acid, C13H10O4 = 4-methyl formate-1-naphthalenecarboxylic acid), and characterized by techniques of single crystal X-ray diffraction, infrared spectra (IR), elemental analysis, powder X-ray diffraction(PXRD) and variable-temperature magnetic susceptibility measurements. X-ray crystal structure analyses reveal that complexes 1 and 2 show a same 3,5-connected fsc 3D topology network with the Schlȁfli symbol of {4·6·8}{4·66·83}. But, the valence of some Mn atom in complex 2 take place transition from the +II oxidation state to the +III oxidation state, which may be the effect of the different solvent ratio. In complex 3, the Cu⋯Cu distance of 2.620(13) Å is significantly shorter than the sum of the van der Waals radii of Cu (1.40 Å), resulting in a strong ferromagnetic interaction between the Cu(II) centers. Furthermore, the temperature-dependent magnetic susceptibility measurements exhibit overall antiferromagnetic interactions between manganese ions for complexes 1 and 2, and a strong ferromagnetic interaction between the Cu(II) centers for complex 3.

  19. Furan-based benzene mono- and dicarboxylic acid derivatives as multiple inhibitors of the bacterial Mur ligases (MurC-MurF): experimental and computational characterization

    Science.gov (United States)

    Perdih, Andrej; Hrast, Martina; Pureber, Kaja; Barreteau, Hélène; Grdadolnik, Simona Golič; Kocjan, Darko; Gobec, Stanislav; Solmajer, Tom; Wolber, Gerhard

    2015-06-01

    Bacterial resistance to the available antibiotic agents underlines an urgent need for the discovery of novel antibacterial agents. Members of the bacterial Mur ligase family MurC-MurF involved in the intracellular stages of the bacterial peptidoglycan biosynthesis have recently emerged as a collection of attractive targets for novel antibacterial drug design. In this study, we have first extended the knowledge of the class of furan-based benzene-1,3-dicarboxylic acid derivatives by first showing a multiple MurC-MurF ligase inhibition for representatives of the extended series of this class. Steady-state kinetics studies on the MurD enzyme were performed for compound 1, suggesting a competitive inhibition with respect to ATP. To the best of our knowledge, compound 1 represents the first ATP-competitive MurD inhibitor reported to date with concurrent multiple inhibition of all four Mur ligases (MurC-MurF). Subsequent molecular dynamic (MD) simulations coupled with interaction energy calculations were performed for two alternative in silico models of compound 1 in the UMA/ d-Glu- and ATP-binding sites of MurD, identifying binding in the ATP-binding site as energetically more favorable in comparison to the UMA/ d-Glu-binding site, which was in agreement with steady-state kinetic data. In the final stage, based on the obtained MD data novel furan-based benzene monocarboxylic acid derivatives 8- 11, exhibiting multiple Mur ligase (MurC-MurF) inhibition with predominantly superior ligase inhibition over the original series, were discovered and for compound 10 it was shown to possess promising antibacterial activity against S. aureus. These compounds represent novel leads that could by further optimization pave the way to novel antibacterial agents.

  20. Molecular distribution, seasonal variation, chemical transformation and sources of dicarboxylic acids and related compounds in atmospheric aerosols at remote marine Gosan site, Jeju Island

    Science.gov (United States)

    Kundu, S.; Kawamura, K.; Lee, M.

    2009-12-01

    : A homologous series of C2-C12 α, ω-dicarboxylic acids, ω-oxocarboxylic acids (C2-C9), pyruvic acid and α-dicarbonyls (C2-C3) were detected in atmospheric aerosols collected between April 2003 and April 2004 from remote marine Gosan site (33°29‧ N, 126°16‧ E) located in Jeju Island, South Korea. They were determined using a GC-FID and GC/MS. Total diacid concentration ranged from 130 to 1911 ng m-3 (av. 642 ng m-3), whereas total oxoacid concentration ranged from 7 to 155 ng m-3 (av. 43 ng m-3), and pyruvic acid and α-dicarbonyls ranged from 0.5 to 15 ng m-3 (av. 5 ng m-3) and 2-108 ng m-3 (av. 17.3 ng m-3), respectively. Oxalic (C2) acid was the most abundant in all seasons followed by malonic (C3) or succinic (C4) acid, and phthalic (Ph) acid. The concentration of diacids decreased with an increase in carbon number except for azelaic (C9) acid, which was more abundant than suberic (C8) acid. Glyoxylic acid was predominant ω-oxoacid contributing to 92% of total ω-oxoacid. Total diacids, oxoacids and dicarbonyls showed maximum concentrations in spring and occasionally in winter, while minimum concentrations were observed in summer. Air mass trajectory analysis suggests that either spring or winter maxima can be explained by strong continental outflow associated with cold front passages, while summer minima are associated with warm southerly flows, which transport clean marine air from low latitudes to Jeju Island. The comparison between total diacid concentration level of this study and other study results of urban and remote sites of East Asia reveals that Gosan site is more heavily influenced by the continental outflow from China. The seasonal variation of malonic/succinic (C3/C4), malic/succinic (hC4/C4), fumaric/maleic (F/M), oxalic/pyruvic (C2/Py) and oxalic/Glyoxal (C2/Gly) ratios showed maxima in summer due to an enhanced photo-production and degradation of diacids and related compounds. Throughout all seasons C3/C4 ratio at Gosan site, located

  1. Single cell oil production byTrichosporon cutaneumfrom steam-exploded corn stover and its upgradation for production of long-chain α,ω-dicarboxylic acids.

    Science.gov (United States)

    Zhao, Chen; Fang, Hao; Chen, Shaolin

    2017-01-01

    Single cell oil (SCO) production from lignocelluloses by oleaginous microorganisms is still high in production cost, making the subsequent production of biofuels inviable economically in such an era of low oil prices. Therefore, how to upgrade the final products of lignocellulose-based bioprocess to more valuable ones is becoming a more and more important issue. Differently sourced cellulases were compared in the enzymatic hydrolysis of the steam-exploded corn stover (SECS) and the cellulase from the mixed culture of Trichoderma reesei and Aspergillus niger was found to have the highest enzymatic hydrolysis yield 86.67 ± 4.06%. Three-stage enzymatic hydrolysis could greatly improve the efficiency of the enzymatic hydrolysis of SECS, achieving a yield of 74.24 ± 2.69% within 30 h. Different bioprocesses from SECS to SCO were compared and the bioprocess C with the three-stage enzymatic hydrolysis was the most efficient, producing 57.15 g dry cell biomass containing 31.80 g SCO from 327.63 g SECS. An efficient and comprehensive process from corn stover to long-chain α,ω-dicarboxylic acids (DCAs) was established by employing self-metathesis, capable of producing 6.02 g long-chain DCAs from 409.54 g corn stover and 6.02 g alkenes as byproducts. On-site cellulase production by the mixed culture of T. reesei and A. niger is proven the most efficient in providing cellulase to the lignocellulose-based bioprocess. Three-stage enzymatic hydrolysis was found to have very good application value in SCO production by Trichosporon cutaneum from SECS. A whole process from corn stover to long-chain DCAs via a combination of biological and chemical approaches was successfully established and it is an enlightening example of the comprehensive utilization of agricultural wastes.

  2. Modulating the Global Response Regulator, LuxO ofV. choleraeQuorum Sensing System Using a Pyrazine Dicarboxylic Acid Derivative (PDCApy): An Antivirulence Approach.

    Science.gov (United States)

    Hema, M; Vasudevan, Sahana; Balamurugan, P; Adline Princy, S

    2017-01-01

    Vibrio cholerae is a Gram-negative pathogen which causes acute diarrhoeal disease, cholera by the expression of virulence genes through quorum sensing (QS) mechanism. The QS circuit of V. cholerae is controlled by the global quorum regulator, LuxO, which at low cell density (LCD) state produces major virulence factors such as, toxin co-regulated pilus (TCP) and cholera toxin (CT) to mediate infection. On the contrary, at the high cell density (HCD) state the virulent genes are downregulated and the vibrios are detached from the host intestinal epithelial cells, promoted by HapA protease. Hence, targeting the global regulator LuxO would be a promising approach to modulate the QS to curtail V. cholerae pathogenesis. In our earlier studies, LuxO targeted ligand, 2,3 pyrazine dicarboxylic acid (PDCA) and its derivatives having desired pharmacophore properties were chemically synthesized and were shown to have biofilm inhibition as well as synergistic activity with the conventionally used antibiotics. In the present study, the QS modulatory effect of the PDCA derivative with pyrrolidine moiety designated as PDCA py against the V. cholerae virulence gene expression was analyzed at various growth phases. The data significantly showed a several fold reduction in the expression of the genes, tcp and ct whereas the expression of hapR was upregulated at the LCD state. In addition, PDCA py reduced the adhesion and invasion of the vibrios onto the INT407 intestinal cell lines. Collectively, our data suggest that PDCA py could be a potential QS modulator (QSM) for the antivirulence therapeutic approach.

  3. Modulating the Global Response Regulator, LuxO of V. cholerae Quorum Sensing System Using a Pyrazine Dicarboxylic Acid Derivative (PDCApy): An Antivirulence Approach

    Science.gov (United States)

    Hema, M.; Vasudevan, Sahana; Balamurugan, P.; Adline Princy, S.

    2017-01-01

    Vibrio cholerae is a Gram-negative pathogen which causes acute diarrhoeal disease, cholera by the expression of virulence genes through quorum sensing (QS) mechanism. The QS circuit of V. cholerae is controlled by the global quorum regulator, LuxO, which at low cell density (LCD) state produces major virulence factors such as, toxin co-regulated pilus (TCP) and cholera toxin (CT) to mediate infection. On the contrary, at the high cell density (HCD) state the virulent genes are downregulated and the vibrios are detached from the host intestinal epithelial cells, promoted by HapA protease. Hence, targeting the global regulator LuxO would be a promising approach to modulate the QS to curtail V. cholerae pathogenesis. In our earlier studies, LuxO targeted ligand, 2,3 pyrazine dicarboxylic acid (PDCA) and its derivatives having desired pharmacophore properties were chemically synthesized and were shown to have biofilm inhibition as well as synergistic activity with the conventionally used antibiotics. In the present study, the QS modulatory effect of the PDCA derivative with pyrrolidine moiety designated as PDCApy against the V. cholerae virulence gene expression was analyzed at various growth phases. The data significantly showed a several fold reduction in the expression of the genes, tcp and ct whereas the expression of hapR was upregulated at the LCD state. In addition, PDCApy reduced the adhesion and invasion of the vibrios onto the INT407 intestinal cell lines. Collectively, our data suggest that PDCApy could be a potential QS modulator (QSM) for the antivirulence therapeutic approach. PMID:29075619

  4. Modulating the Global Response Regulator, LuxO of V. cholerae Quorum Sensing System Using a Pyrazine Dicarboxylic Acid Derivative (PDCApy: An Antivirulence Approach

    Directory of Open Access Journals (Sweden)

    M. Hema

    2017-10-01

    Full Text Available Vibrio cholerae is a Gram-negative pathogen which causes acute diarrhoeal disease, cholera by the expression of virulence genes through quorum sensing (QS mechanism. The QS circuit of V. cholerae is controlled by the global quorum regulator, LuxO, which at low cell density (LCD state produces major virulence factors such as, toxin co-regulated pilus (TCP and cholera toxin (CT to mediate infection. On the contrary, at the high cell density (HCD state the virulent genes are downregulated and the vibrios are detached from the host intestinal epithelial cells, promoted by HapA protease. Hence, targeting the global regulator LuxO would be a promising approach to modulate the QS to curtail V. cholerae pathogenesis. In our earlier studies, LuxO targeted ligand, 2,3 pyrazine dicarboxylic acid (PDCA and its derivatives having desired pharmacophore properties were chemically synthesized and were shown to have biofilm inhibition as well as synergistic activity with the conventionally used antibiotics. In the present study, the QS modulatory effect of the PDCA derivative with pyrrolidine moiety designated as PDCApy against the V. cholerae virulence gene expression was analyzed at various growth phases. The data significantly showed a several fold reduction in the expression of the genes, tcp and ct whereas the expression of hapR was upregulated at the LCD state. In addition, PDCApy reduced the adhesion and invasion of the vibrios onto the INT407 intestinal cell lines. Collectively, our data suggest that PDCApy could be a potential QS modulator (QSM for the antivirulence therapeutic approach.

  5. Key Process Conditions for Production of C4 Dicarboxylic Acids in Bioreactor Batch Cultures of an Engineered Saccharomyces cerevisiae Strain

    NARCIS (Netherlands)

    Zelle, R.M.; De Hulster, E.; Kloezen, W.; Pronk, J.T.; Van Maris, A.J.A.

    2010-01-01

    A recent effort to improve malic acid production by Saccharomyces cerevisiae by means of metabolic engineering resulted in a strain that produced up to 59 g liter(-1) of malate at a yield of 0.42 mol (mol glucose)(-1) in calcium carbonate-buffered shake flask cultures. With shake flasks, process

  6. New concept bioceramics composed of octacalcium phosphate (OCP) and dicarboxylic acid-intercalated OCP via hydrothermal hot-pressing

    International Nuclear Information System (INIS)

    Ishihara, Shiho; Matsumoto, Takuya; Onoki, Takamasa; Sohmura, Taiji; Nakahira, Atsushi

    2009-01-01

    Octacalcium phosphate (OCP) and adipic acid-intercalated complexed OCP (Adi-OCP) were synthesized. Moreover, we made ceramic bodies out of them through a hydrothermal hot-pressing (HHP) method. Characteristic features of both the powder and ceramics were investigated by the X-ray diffraction method (XRD). Surface morphology of the ceramics was observed by scanning electron microscopy (SEM). Density, compressive strength and pore size distribution of the ceramics were measured. Crystalline structure of the newly developed OCP ceramics had no phase transformation from the starting materials. Moreover, the newly developed OCP ceramics had good mechanical properties only through the HHP treatment with a temperature as low as 110 deg. C. In order to evaluate bioactivity, the ceramics were immersed in simulating body fluid (SBF). It was predicted that OCP and Adi-OCP had better bioactivity than that of conventional HAp ceramics.

  7. Crystal Structures, Thermal Analysis, and Dissolution Behavior of New Solid Forms of the Antiviral Drug Arbidol with Dicarboxylic Acids

    Directory of Open Access Journals (Sweden)

    Alex N. Manin

    2015-12-01

    Full Text Available Salts of the antiviral drug arbidol (umifenovir (Arb with maleate (Mlc and fumarate (Fum anions have been obtained, and their crystal structures have been described. The crystal structure of arbidol maleate has been redetermined by single crystal X-ray diffraction at 180K. A new arbidol cocrystal in zwitterion form with succinic acid (Suc has also been found and characterized. The arbidol zwitterion was not previously seen in any of the drug crystal forms, and the [Arb + Suc] cocrystal seems to be the first found instance. Analysis of the conformational preferences of the arbidol molecule in the crystal structures has shown that it adopts two types of conformations, namely “open” and “closed” ones. Thermal stability of the arbidol salts and cocrystal have been analyzed by means of differential scanning calorimetry, thermogravimetric, and mass-spectrometry analysis. The dissolution study of the arbidol salts and cocrystal performed in aqueous buffer solutions with pH 1.2 and 6.8 has shown that both the salts and the cocrystal dissolve incongruently to form an arbidol hydrochloride monohydrate at pH 1.2 and an arbidol base at pH 6.8, respectively. The cocrystal reaches the highest solubility level in both pH 1.2 and pH 6.8 solutions.

  8. Expansion of the ω-oxidation system AlkBGTL of Pseudomonas putida GPo1 with AlkJ and AlkH results in exclusive mono-esterified dicarboxylic acid production in E. coli.

    Science.gov (United States)

    van Nuland, Youri M; de Vogel, Fons A; Eggink, Gerrit; Weusthuis, Ruud A

    2017-05-01

    The AlkBGTL proteins coded on the alk operon from Pseudomonas putida GPo1 can selectively ω-oxidize ethyl esters of C6 to C10 fatty acids in whole-cell conversions with Escherichia coli. The major product in these conversions is the ω-alcohol. However, AlkB also has the capacity to overoxidize the substrate to the ω-aldehyde and ω-acid. In this study, we show that alcohol dehydrogenase AlkJ and aldehyde dehydrogenase AlkH are able to oxidize ω-alcohols and ω-aldehydes of esterified fatty acids respectively. Resting E. coli expressing AlkBGTHJL enabled exclusive mono-ethyl azelate production from ethyl nonanoate, with an initial specific activity of 61 U g cdw -1 . Within 2 h, this strain produced 3.53 mM mono-ethyl azelate, with a yield of 0.68 mol mol -1 . This strain also produced mono-ethyl dicarboxylic acids from ethyl esters of C6 to C10 fatty acids and mono-methyl azelate from methyl nonanoate. Adding ethyl nonanoate dissolved in carrier solvent bis-(2-ethylhexyl) phthalate enabled an increase in product titres to 15.55 mM in two-liquid phase conversions. These findings indicate that E. coli expressing AlkBGTHJL is an effective producer of mono-esterified dicarboxylic acids from fatty acid esters. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  9. Dicarboxylic acids, metals and isotopic compositions of C and N in atmospheric aerosols from inland China: implications for dust and coal burning emission and secondary aerosol formation

    Directory of Open Access Journals (Sweden)

    G. Wang

    2010-07-01

    Full Text Available Dicarboxylic acids (C2–C10, metals, elemental carbon (EC, organic carbon (OC, and stable isotopic compositions of total carbon (TC and total nitrogen (TN were determined for PM10 samples collected at three urban and one suburban sites of Baoji, an inland city of China, during winter and spring 2008. Oxalic acid (C2 was the dominant diacid, followed by succinic (C4 and malonic (C3 acids. Total diacids in the urban and suburban areas were 1546±203 and 1728±495 ng m−3 during winter and 1236±335 and 1028±193 ng m−3 during spring. EC in the urban and the suburban atmospheres were 17±3.8 and 8.0±2.1 μg m−3 during winter and 20±5.9 and 7.1±2.7 μg m−3 during spring, while OC at the urban and suburban sites were 74±14 and 51±7.9 μg m−3 in winter and 51±20 and 23±6.1 μg m−3 in spring. Secondary organic carbon (SOC accounted for 38±16% of OC in winter and 28±18% of OC in spring, suggesting an enhanced photochemical production of secondary organic aerosols in winter under an inversion layer development. Total metal elements in winter and spring were 34±10 and 61±27 μg m−3 in the urban air and 18±7 and 32±23 μg m−3 in the suburban air. A linear correlation (r2>0.8 in winter and r2>0.6 in spring was found between primary organic carbon (POC and Ca2+/Fe, together with a strong dependence of pH value of sample extracts on water-soluble inorganic carbon, suggesting fugitive dust as an important source of the airborne particles. Polycyclic aromatic hydrocarbons (PAHs, sulfate, and Pb in the samples well correlated each other (r2>0.6 in winter, indicating an importance of emissions from coal burning for house heating. Stable carbon isotope compositions of TC (δ13C became higher with an increase

  10. Copper-based coordination polymers from thiophene and furan dicarboxylates with high isosteric heats of hydrogen adsorption

    NARCIS (Netherlands)

    Yang, Jie; Lutz, Martin; Grzech, Anna; Mulder, Fokko M.; Dingemans, Theo J.

    2014-01-01

    Self-assembled Cu-based coordination polymers derived from thiophene-2,5-dicarboxylic acid (Cu-TDC) and furan-2,5-dicarboxylic acid (Cu-FDC) were synthesized via a solvothermal method and their H2 adsorption behaviour was investigated and contrasted with isophthalic acid (Cu-m-BDC) and terephthalic

  11. Biocatalytic ammonolysis of (5S)-4,5-dihydro-1H-pyrrole-1,5-dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester: preparation of an intermediate to the dipeptidyl peptidase IV inhibitor Saxagliptin.

    Science.gov (United States)

    Gill, Iqbal; Patel, Ramesh

    2006-02-01

    An efficient biocatalytic method has been developed for the conversion of (5S)-4,5-dihydro-1H-pyrrole-1,5-dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester (1) into the corresponding amide (5S)-5-aminocarbonyl-4,5-dihydro-1H-pyrrole-1-carboxylic acid, 1-(1,1-dimethylethyl)ester (2), which is a critical intermediate in the synthesis of the dipeptidyl peptidase IV (DPP4) inhibitor Saxagliptin (3). Candida antartica lipase B mediates ammonolysis of the ester with ammonium carbamate as ammonia donor to yield up to 71% of the amide. The inclusion of Ascarite and calcium chloride as adsorbents for carbon dioxide and ethanol byproducts, respectively, increases the yield to 98%, thereby offering an efficient and practical alternative to chemical routes which yield 57-64%.

  12. The Flögel-three-component reaction with dicarboxylic acids – an approach to bis(β-alkoxy-β-ketoenamides for the synthesis of complex pyridine and pyrimidine derivatives

    Directory of Open Access Journals (Sweden)

    Mrinal K. Bera

    2014-02-01

    Full Text Available An extension of the substrate scope of the Flögel-three-component reaction of lithiated alkoxyallenes, nitriles and carboxylic acids is presented. The use of dicarboxylic acids allowed the preparation of symmetrical bis(β-ketoenamides from simple starting materials in moderate yields. Cyclocondensations of these enamides to 4-hydroxypyridine derivatives or to functionalized pyrimidines efficiently provided symmetrically and unsymmetrically substituted fairly complex (heteroaromatic compounds containing up to six conjugated aryl and hetaryl groups. In addition, subsequent functionalizations of the obtained heterocycles by palladium-catalyzed couplings or by oxidations are reported. We also describe the simple synthesis of a structurally interesting macrocyclic bispyrimidine derivative incorporating a 17-membered ring, whose configuration was elucidated by DFT calculations and by subsequent reactions.

  13. Evaporation of methyl- and dimethyl-substituted malonic, succinic, glutaric and adipic acid particles at ambient temperatures

    DEFF Research Database (Denmark)

    Mønster, Jacob Garbrecht; Rosenørn, Thomas; Svenningsson, Birgitta

    2004-01-01

    Evaporation; organic aerosols; vapor pressure; dicarboxylic acid; maonic acid; succinic acid; glutaric acid; adipic acid......Evaporation; organic aerosols; vapor pressure; dicarboxylic acid; maonic acid; succinic acid; glutaric acid; adipic acid...

  14. Chemical characterization of composites developed from glycerol and dicarboxylic acids rein forced with piassava fiber; Caracterizacao quimica de compositos desenvolvidos a partir do glicerol e acidos dicarboxilicos reforcados com fibra de piacava

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Cleidiene S.; Oliveira, Jamerson C.; Guimaraes, Danilo H.; Jose, Nadia M., E-mail: cleidienesm@gmail.com [Universidade Federal da Bahia, Instituto de Quimica, GECIM - Programa de Pos-Graduacao em Engenharia Quimica, Salvador, BA (Brazil); Carvalho, Ricardo F. [Universidade Federal da Bahia, Escola Politecnica, Mestrado em Engenharia Ambiental Urbana, Salvador, BA (Brazil)

    2011-07-01

    In search of alternative technologies that enable the use of products with lower environmental impact, This study aims to develop a composite polymer-based piassava fiber. The sludge, waste and byproduct of commercial uses currently being used as reinforcement in polymer matrices, due to presence of lignocellulosic materials. The matrix polymer used was synthesized from glycerol with dicarboxylic acids, in order to open future perspectives on the use of glycerin generated from purified biodiesel production plastics. Composites with 2, 5, 10 wt% of piassava fiber cut into 5 mm raw and treated were obtained a mixture of solution. The materials were characterized by TGA, DSC, XRD and SEM. It was observed that the material under study is promising for the industrial market, because it has good compatibility with natural fibers allowing wider application of fiber natural and glycerol, producing semicrystalline composites and with good thermal properties. (author)

  15. The 1:1 cocrystal of rac-7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylic acid and 2-aminobenzothiazole

    Directory of Open Access Journals (Sweden)

    Yun-Yun Wang

    2008-08-01

    Full Text Available In the crystal structure of the title compound, rac-7-oxabicyclo[2.2.1]heptane-2,3-dicarboxylic acid–2-aminobenzothiazole (1/1, C8H10O5·C7H6N2S, molecules of each component are linked into centrosymmetric dimers by intermolecular N—H...O hydrogen bonds. These dimers are connected by O—H...O hydrogen bonds into a chain along the b axis. In addition, π–π interactions between aromatic heterocycles occur [centroid–centroid distance of 3.4709 Å and interplanar spacing of 3.4374 Å between symmetry-related benzothiazole ring systems.

  16. Optimization of a synthetic receptor for dimethyllysine using a biphenyl-2,6-dicarboxylic acid scaffold: insights into selective recognition of hydrophilic guests in water.

    Science.gov (United States)

    Gober, Isaiah N; Waters, Marcey L

    2017-09-26

    In the design of small molecule receptors for polar guests, much inspiration has been taken from proteins that have adapted effective ways to selectively bind polar molecules in aqueous environments. Nonetheless, molecular recognition of hydrophilic guests in water by synthetic receptors remains a challenging task. Here we report a new synthetic receptor, A2I, with improved affinity and selectivity for a biologically important polar guest, dimethyllysine (Kme2). A2I was prepared via redesign of a small molecule receptor (A2B) that preferentially binds trimethyllysine (Kme3) using dynamic combinatorial chemistry (DCC). We designed a new biphenyl-2,6-dicarboxylate monomer, I, with the goal of creating a buried salt bridge with Kme2 inside a synthetic receptor. Indeed, incorporation of I into the receptor A2I resulted in a receptor with 32-fold enhancement in binding affinity, which represents the highest affinity receptor for Kme2 in the context of a peptide to date and is tighter than most Kme2 reader proteins. It also exhibits a ∼2.5-fold increase in preference for Kme2 vs. Kme3 relative to the parent receptor, A2B. This work provides insight into effective strategies for binding hydrophilic, cationic guests in water and is an encouraging result toward a synthetic receptor that selectively binds Kme2 over other methylation states of lysine.

  17. Free and esterified aliphatic carboxylic acids in humin and humic acids from a peat sample as revealed by pyrolysis with tetramethylammonium hydroxide or tetrathylammonium acetate

    Energy Technology Data Exchange (ETDEWEB)

    Grasset, L.; Guignard, C.; Ambles, A. [UMR 6514, Faculte des Sciences, Poitiers (France). Lab. de Synthese et Reactivite Substances Naturelles

    2002-07-01

    The combination of TMAH thermochemolysis and TEAAc treatment makes it possible to discriminate between the different forms of mono- and dicarboxylic acids present in the structure of humin and humic acids, that is, ''free'' uncombined acids, methyl or ethyl esters present as tightly trapped molecules within the matrix, or acids chemically linked to the matrix by ester groups. The results confirm that ester groups are involved in the structure of humin and humic acids. The cross-linking of moieties originating from microbial metabolism or inherited from higher plants is partly ensured by these chemical groups. On the other hand, significant amounts of fatty monocarboxylic acids and linear dicarboxylic acids are present as free acids in the humin of the studied sample. Humin contains also fatty acid methyl esters. Free, uncombined {alpha},{omega}-dicarboxylic acids were only found in humin. (author)

  18. Magnetic and Photo-Physical Properties of Lanthanide Dinuclear Complexes Involving the 4,5-Bis(2-Pyridyl-N-Oxidemethylthio-4′,5′-Dicarboxylic Acid-Tetrathiafulvalene-, Dimethyl Ester Ligand

    Directory of Open Access Journals (Sweden)

    Fabrice Pointillart

    2015-12-01

    Full Text Available The reaction between the 4,5-bis(2-pyridyl-N-oxidemethylthio-4′,5′-dicarboxylic acid-tetrathiafulvalene-, dimethyl ester ligand (L and the metallo-precursors Ln(hfac3·2H2O leads to the formation of two dinuclear complexes of formula [Ln2(hfac6(L]·(CH2Cl2·(C6H140.5 (LnIII = DyIII (1 and YbIII (2. The X-ray structure reveals a quite regular square anti-prism symmetry for the coordination sphere of the lanthanide ion. UV-visible absorption properties have been experimentally measured and rationalized by TD-DFT calculations. The functionalization of the tetrathiafulvalene (TTF core by two methyl ester moieties induces the appearance of an additional absorption band in the lowest-energy region of the spectrum. The latter has been identified as a HOMO (Highest Occupied Molecular Orbital→LUMO (Lowest Unoccupied Molecular Orbital Intra-Ligand Charge Transfer (ILCT transition in which the HOMO and LUMO are centred on the TTF and methyl ester groups, respectively. Irradiation at 22,222 cm−1 of this ILCT band induces an efficient sensitization of the YbIII-centred emission that can be correlated to the magnetic properties.

  19. Hydroxonium hydrate tris(2,4,6-triamino-1,3,5-triazin-1-ium bis[bis(pyridine-2,6-dicarboxylatocuprate(II] pyridine-2,6-dicarboxylic acid hexahydrate

    Directory of Open Access Journals (Sweden)

    Shabnam Hooshmand

    2009-02-01

    Full Text Available The reaction of copper(II nitrate hexahydrate with pyridine-2,6-dicarboxylic acid (pydcH2 and 2,4,6-triamino-1,3,5-triazine (melamine in aqueous solution in a 1:2:2 molar ratio gave the title compound, (H5O2(C3H7N63[Cu(C7H3NO42]2·C7H5NO4·6H2O. The hydroxonium hydrate (H5O2+, also known as the Zundel cation, resides on a twofold rotation axis. The O—H distance is 1.274 (14 Å, the O...O distance is 2.518 (5 Å, and the O—H—O angle is 162 (8°. One of the melamine H+ cations, the uncoordinated pydcH2, and two water molecules also reside on crystallographic twofold axes. The CuII atom has a tetragonally distorted octahedral coordination environment. The structure features extensive hydrogen bonding, with 21 distinct interactions. There is also a centrosymmetric C=O...π interaction with an O...centroid distance of 3.288 (3 Å. The structure is similar to a mixed-valence manganese(II/III structure but shows interesting differences in the metal-atom coordination. One of the water molecules is equally disordered with respect to a twofold axis.

  20. Dicarboxylic phospholipids and irradiated biomembranes

    International Nuclear Information System (INIS)

    Dousset, Nicole.

    1977-01-01

    It was decided to study the effects of ionizing radiations on biomembranes, with special reference to erythrocytes and liver microsomes representing two kinds of membrane very common in nature. Diacid phospholipids were observed at these membranes and the results are reported in part one of this work. It appeared essential to examine as far as possible the metabolism, in vitro and in animals, of these diacids and to find out whether certain harmful effects of radiations on the proteins (membrane permeability changes and enzyme inactivation) could be due to the action of these newly formed compounds. The study of acid compounds formed under irradiation was limited to nonanal-9-oic acid and azelaic acid. Part two deals with the incorporation of acid and diacid compounds into lipids and the effects of diacid phospholipids on the membrane permeability. A chapter is devoted to the changes in certain enzyme activities brought about by diacid phospholipids [fr

  1. Enzymatic hydrolysis of beech wood lignocellulose at high solid contents and its utilization as substrate for the production of biobutanol and dicarboxylic acids.

    Science.gov (United States)

    Tippkötter, Nils; Duwe, Anna-Maria; Wiesen, Sebastian; Sieker, Tim; Ulber, Roland

    2014-09-01

    The development of a cost-effective hydrolysis for crude cellulose is an essential part of biorefinery developments. To establish such high solid hydrolysis, a new solid state reactor with static mixing is used. However, concentrations >10% (w/w) cause a rate and yield reduction of enzymatic hydrolysis. By optimizing the synergetic activity of cellulolytic enzymes at solid concentrations of 9%, 17% and 23% (w/w) of crude Organosolv cellulose, glucose concentrations of 57, 113 and 152 g L(-1) are reached. However, the glucose yield decreases from 0.81 to 0.72 g g(-1) at 17% (w/w). Optimal conditions for hydrolysis scale-up under minimal enzyme addition are identified. As result, at 23% (w/w) crude cellulose the glucose yield increases from 0.29 to 0.49 g g(-1). As proof of its applicability, biobutanol, succinic and itaconic acid are produced with the crude hydrolysate. The potential of the substrate is proven e.g. by a high butanol yield of 0.33 g g(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Co-crystallization of pyridine-2-carboxamide with a series of alkyl dicarboxylic acids with different carbon chain: crystal structure, spectroscopy and Hirshfeld analysis.

    Science.gov (United States)

    Luo, Yang-Hui; Sun, Bai-Wang

    2014-01-01

    Three new co-crystals: pyridine-2-carboxamide-succinic acid (1), pyridine-2-carboxamide-glutaric acid (2) and pyridine-2-carboxamide-adipic acid (3) have been synthesized and characterized by single-crystal X-ray diffraction, TGA/DSC measurements, solid-state vibrational spectroscopy (IR and Raman) in this work. The investigation revealed that the carbon chain length of these alkyl acids changed the connecting motif of co-crystals 1-3 from trimer to 1D chain, and the formation of hydrogen bond interaction of pyridine-2-carboxamide with these alkyl acids lead to red shift of stretching vibration of NH2 and OH groups in IR and Raman spectra. We also studied Hirshfeld surface and UV properties of co-crystals 1-3, and we found that the carbon chain length lead to decrease of close intermolecular interactions, and the formation of hydrogen bond interaction lead to red shift of UV spectra. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Three-dimensional hydrogen-bonded structures in the hydrated proton-transfer salts of isonipecotamide with the dicarboxylic oxalic and adipic acid homologues.

    Science.gov (United States)

    Smith, Graham; Wermuth, Urs D

    2013-10-01

    The structures of the 1:1 hydrated proton-transfer compounds of isonipecotamide (piperidine-4-carboxamide) with oxalic acid, 4-carbamoylpiperidinium hydrogen oxalate dihydrate, C6H13N2O(+)·C2HO4(-)·2H2O, (I), and with adipic acid, bis(4-carbamoylpiperidinium) adipate dihydrate, 2C6H13N2O(+)·C6H8O4(2-)·2H2O, (II), are three-dimensional hydrogen-bonded constructs involving several different types of enlarged water-bridged cyclic associations. In the structure of (I), the oxalate monoanions give head-to-tail carboxylic acid O-H···O(carboxyl) hydrogen-bonding interactions, forming C(5) chain substructures which extend along a. The isonipecotamide cations also give parallel chain substructures through amide N-H···O hydrogen bonds, the chains being linked across b and down c by alternating water bridges involving both carboxyl and amide O-atom acceptors and amide and piperidinium N-H···O(carboxyl) hydrogen bonds, generating cyclic R4(3)(10) and R3(2)(11) motifs. In the structure of (II), the asymmetric unit comprises a piperidinium cation, half an adipate dianion, which lies across a crystallographic inversion centre, and a solvent water molecule. In the crystal structure, the two inversion-related cations are interlinked through the two water molecules, which act as acceptors in dual amide N-H···O(water) hydrogen bonds, to give a cyclic R4(2)(8) association which is conjoined with an R4(4)(12) motif. Further N-H···O(water), water O-H···O(amide) and piperidinium N-H···O(carboxyl) hydrogen bonds give the overall three-dimensional structure. The structures reported here further demonstrate the utility of the isonipecotamide cation as a synthon for the generation of stable hydrogen-bonded structures. The presence of solvent water molecules in these structures is largely responsible for the non-occurrence of the common hydrogen-bonded amide-amide dimer, promoting instead various expanded cyclic hydrogen-bonding motifs.

  4. Two novel penetrating coordination polymers based on flexible S-containing dicarboxylate acid with sensing properties towards Fe3+ and Cr2O72- ions

    Science.gov (United States)

    Chen, Zhiwei; Mi, Xiuna; Wang, Suna; Lu, Jing; Li, Yunwu; Li, Dacheng; Dou, Jianmin

    2018-05-01

    Two new coordination polymers (CPs), namely, {[Zn(L)(bpp)]·DMF}n (1) and {[Zn(L)(bpe)]·DMF}n (2) (L = 2,2'-[benzene-1,3-diylbis(methanediylsulfanediyl)]dibenzoic acid, bpp= 1,3-bis(4-pyridyl)propane, bpe = 1,2-Bis(4-pyridyl)ethylene, DMF = N,N-Dimethylformamide), have been solvothermally synthesized and fully characterized. Complex 1 displays a 2D→2D three-fold"false" interpenetrating structure while complex 2 possesses a novel 3-D 4-connected structure with fascinating self-penetrating moieties. The luminescence studies reveal that these complexes exhibited excellent selectivity for Fe3+ and Cr2O72- ions in DMF. The sensing mechanism was investigated through PXRD, XPS , EDS mapping measurements, and discussed in details.

  5. 3-D silver(I)-lanthanide(III) heterometallic-organic frameworks constructed from 2,2'-bipyridine-3,3'-dicarboxylic acid: synthesis, structure, photoluminescence, and their remarkable thermostability.

    Science.gov (United States)

    Zhou, Yunshan; Li, Xiaomin; Zhang, Lijuan; Guo, Yan; Shi, Zonghai

    2014-04-07

    A new family of silver(I)-lanthanide(III) heterometallic-organic frameworks having the formula [AgLn(bpdc)2] (Ln = Eu (1), Tb (2), Sm (3), Dy (4), Y (5), Yb (6), Er (7), Ho (8); H2bpdc = 2,2'-bipyridine-3,3'-dicarboxylic acid), each of which crystallizes in the monoclinic space group C2/c with Z = 4, has been hydrothermally synthesized. The compounds were characterized by means of IR, elemental analysis, thermogravimetric-differential thermal analysis, and powder X-ray diffraction (XRD), wherein compounds 1, 2, and 4-8 were structurally characterized. The powder XRD and single-crystal structures of the title compounds indicate that all the compounds are isostructural and feature a three-dimensional (3-D) open framework. In the structures of the compounds, bpdc(2-) ligands link Ln(3+) through their carboxylic groups, resulting in the formation of a one-dimensional {Ln(bpdc)2}n infinite chain along the c direction. The adjacent chains are then connected to each other through the coordination interaction between Ag(+) and the pyridyl N atoms of bpdc(2-) ligands from the chains, resulting in a 3-D (2,4,6)-connected open framework with (4(11)·6(4))(4(3)·8(2)·10)(8)2 topology. The compounds show remarkable good thermally stability up to 370 °C because neither aquo ligands nor lattice water molecules exist in the composition of the compounds. The photoluminescent properties of compounds 1 and 2 were studied in detail. The energy level of the triplet states of the ligand H2bpdc 21,505 cm(-1) (465 nm) was determined based on the 77 K emission spectrum of the compound [Gd2(bpdc)3(phen)2(H2O)2]·6H2O 9. The (5)D0 and (5)D4 emission lifetimes (1.58 and 1.76 ms) and the overall quantum yields (21% and 22%) were determined for the compounds 1 and 2, respectively.

  6. Magnesium and nickel(II) furan-2,5-dicarboxylate

    DEFF Research Database (Denmark)

    Schau-Magnussen, Magnus; Gorbanev, Yury; Kegnæs, Søren

    2011-01-01

    The salts hexaaquamagnesium furan-2,5-dicarboxylate, [Mg(H2O)(6)](C6H2O5), (I), and hexaaquanickel furan-2,5-dicarboxylate, [Ni(H2O)(6)](C6H2O5), (II), provide the first crystallographic characterization of the furan-2,5-dicarboxylate dianion. Both structures exhibit extensive three-dimensional h...

  7. The unusual canangafruticosides A-E: five monoterpene glucosides, two monoterpenes and a monoterpene glucoside diester of the aryldihydronaphthalene lignan dicarboxylic acid from leaves of Cananga odorata var. fruticosa.

    Science.gov (United States)

    Nagashima, Jiro; Matsunami, Katsuyoshi; Otsuka, Hideaki; Lhieochaiphant, Duangporn; Lhieochaiphant, Sorasak

    2010-09-01

    From the leaves of Cananga odorata var. fruticosa, five unusual monoterpene glucosides, named canangafruticosides A-E (1-5), along with two unusual non-glucosidic monoterpenes (6, 7) were isolated. An aryldihydronaphthalene-type lignan dicarboxylate (8) was also isolated, with two moles of canangafruticoside A (1) on its ester moiety. This lignan also showed strong blue fluorescence emission under basic conditions. The structures of these compounds were elucidated by means of spectroscopic methods, with their absolute configurations determined by application of the modified Mosher's method to a compound chemically derived from canangafruticoside E. (c) 2010 Elsevier Ltd. All rights reserved.

  8. A Novel Coordination Polymer Constructed by Hetero-Metal Ions and 2,3-Pyridine Dicarboxylic Acid: Synthesis and Structure of [NiNa2(PDC)2(μ-H2O)(H2O)2] n

    Science.gov (United States)

    Dou, Ming-Yu; Lu, Jing

    2017-12-01

    A novel coordination polymer containing hetero-metal ions, [NiNa2(PDC)2(μ-H2O)(H2O)2] n , where PDC is 2,3-pyridine dicarboxylate ion, has been synthesized. In the structure, the PDC ligand chelates and bridges two Ni(II) and two Na(I) centers. Two kinds of metal centers are connected by μ4-PDC and μ2-H2O to form 2D coordination layers. Hydrogen bonds between coordination water molecules and carboxylate oxygen atoms further link these 2D coordination layers to form 3D supramolecular network.

  9. Poly[diaqua(μ2-3-carboxypyrazine-2-carboxylato(μ2-pyrazine-2,3-dicarboxylic acidpotassium(I

    Directory of Open Access Journals (Sweden)

    Mustafa Tombul

    2008-01-01

    Full Text Available The structural unit of the title compound, [K(C6H3N2O4(C6H4N2O4(H2O2]n, consists of one potassium cation, one hydrogen pyrazine-2,3-dicarboxylate anion, one pyrazine-2,3-dicarboxylic acid molecule and two water molecules; this is twice the asymmetric unit, since the potassium cation lies on an inversion centre. Each anion or acid molecule is linked to two potassium cations, while the potassium cation has contacts to four symmetry-equivalent organic ligands, with two different coordination modes towards this cation. In addition, each potassium cation is coordinated by two water O atoms, raising the coordination number to eight. One of the carboxyl groups of the acid retains its H atom, which forms a hydrogen bond to a coordinated water molecule. The other carboxyl group is deprotonated in half of the ligands and protonated in the other half, taking part in a strong O—H...O hydrogen bond disordered over an inversion centre. The stabilization of the crystal structure is further assisted by O—H...O and O—H...N hydrogen bonds in which water acts as the donor.

  10. Dicarboxylic acids, oxoacids, benzoic acid, α-dicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific Rim: size distributions and formation processes

    Science.gov (United States)

    Deshmukh, D. K.; Kawamura, K.; Lazaar, M.; Kunwar, B.; Boreddy, S. K. R.

    2015-09-01

    Size-segregated aerosols (9-stages from 11.3 μm in diameter) were collected at Cape Hedo, Okinawa in spring 2008 and analyzed for water-soluble diacids (C2-C12), ω-oxoacids (ωC2-ωC9), pyruvic acid, benzoic acid and α-dicarbonyls (C2-C3) as well as water-soluble organic carbon (WSOC), organic carbon (OC) and major ions. In all the size-segregated aerosols, oxalic acid (C2) was found as the most abundant species followed by malonic and succinic acids whereas glyoxylic acid (ωC2) was the dominant oxoacid and glyoxal (Gly) was more abundant than methylglyoxal. Diacids (C2-C5), ωC2 and Gly as well as WSOC and OC peaked at 0.65-1.1 μm in fine mode whereas azelaic (C9) and 9-oxononanoic (ωC9) acids peaked at 3.3-4.7 μm in coarse mode. Sulfate and ammonium are enriched in fine mode whereas sodium and chloride are in coarse mode. These results imply that water-soluble species in the marine aerosols could act as cloud condensation nuclei (CCN) to develop the cloud cover over the western North Pacific Rim. The organic species are likely produced by a combination of gas-phase photooxidation, and aerosol-phase or in-cloud processing during long-range transport. The coarse mode peaks of malonic and succinic acids were obtained in the samples with marine air masses, suggesting that they may be associated with the reaction on sea salt particles. Bimodal size distributions of longer-chain diacid (C9) and oxoacid (ωC9) with a major peak in the coarse mode suggest their production by photooxidation of biogenic unsaturated fatty acids via heterogeneous reactions on sea salt particles.

  11. Discovery of diethyl 2,5-diaminothiophene-3,4-dicarboxylate derivatives as potent anticancer and antimicrobial agents and screening of anti-diabetic activity: synthesis and in vitro biological evaluation. Part 1.

    Science.gov (United States)

    Bozorov, Khurshed; Ma, Hai-Rong; Zhao, Jiang-Yu; Zhao, Hai-Qing; Chen, Hua; Bobakulov, Khayrulla; Xin, Xue-Lei; Elmuradov, Burkhon; Shakhidoyatov, Khusnutdin; Aisa, Haji A

    2014-09-12

    Series of diethyl 2,5-diaminothiophene-3,4-dicarboxylate (DDTD) derivatives: azomethines of DDTD (2a-l) have been synthesized and screened for their anticancer, antimicrobial and anti-diabetic activities. The novel synthesized compounds were characterized by (1)H, (13)C NMR, MS and FT-IR analyses. All compounds were evaluated for their antiproliferative activity against three types of cancer cell line such as T47D and MCF-7 (human breast cancer), Hela (human cervical cancer) and Ishikawa (human endometrial cancer) lines. The results showed that most compounds exhibited significant antiproliferative activity against breast cancer cells. The majority of azomethines DDTD influenced strongly against breast cancer cells T47D and MCF-7, among them compounds 2b (2.3 μM), 2c (12.1 μM), 2e (13.2 μM), 2i (14.9 μM), 2j (16.0 μM), 2k (7.1 μM), 2l (8.6 μM) manifest potent anticancer activity against cancer cell T47D than Doxorubicin (DOX, 15.5 μM). Compound 2j has shown potent activity on all three types of cancer cells concurrently and IC50 values were considerably low in comparison with positive control DOX. In addition, all compounds were tested for antimicrobial activity against Staphylococcus aureus ATCC 6538 (Gram positive bacteria), Escherichia coli ATCC 11229 (Gram negative bacteria) and Candida albicans ATCC 10231 (Fungi) strains and 2j which contains in the ring nitrofurfural fragment, showed the highest effect on the three species of microbial pathogens simultaneously. Some compounds induced enzymatic inhibition in a concentration-dependent manner on PTP-1B inhibitor. Copyright © 2014. Published by Elsevier Masson SAS.

  12. Dicarboxylic acids, oxoacids, benzoic acid, α-dicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific Rim: size distributions and formation processes

    Directory of Open Access Journals (Sweden)

    D. K. Deshmukh

    2016-04-01

    Full Text Available Size-segregated aerosols (nine stages from < 0.43 to > 11.3 µm in diameter were collected at Cape Hedo, Okinawa, in spring 2008 and analyzed for water-soluble diacids (C2–C12, ω-oxoacids (ωC2–ωC9, pyruvic acid, benzoic acid, and α-dicarbonyls (C2–C3 as well as water-soluble organic carbon (WSOC, organic carbon (OC, and major ions (Na+, NH4+, K+, Mg2+, Ca2+, Cl−, NO3−, SO42−, and MSA−. In all the size-segregated aerosols, oxalic acid (C2 was found to be the most abundant species, followed by malonic and succinic acids, whereas glyoxylic acid (ωC2 was the dominant oxoacid and glyoxal (Gly was more abundant than methylglyoxal. Diacids (C2–C5, ωC2, and Gly as well as WSOC and OC peaked at fine mode (0.65–1.1 µm whereas azelaic (C9 and 9-oxononanoic (ωC9 acids peaked at coarse mode (3.3–4.7 µm. Sulfate and ammonium were enriched in fine mode, whereas sodium and chloride were in coarse mode. Strong correlations of C2–C5 diacids, ωC2 and Gly with sulfate were observed in fine mode (r =  0.86–0.99, indicating a commonality in their secondary formation. Their significant correlations with liquid water content in fine mode (r =  0.82–0.95 further suggest an importance of the aqueous-phase production in Okinawa aerosols. They may also have been directly emitted from biomass burning in fine mode as supported by strong correlations with potassium (r =  0.85–0.96, which is a tracer of biomass burning. Bimodal size distributions of longer-chain diacid (C9 and oxoacid (ωC9 with a major peak in the coarse mode suggest that they were emitted from the sea surface microlayers and/or produced by heterogeneous oxidation of biogenic unsaturated fatty acids on sea salt particles.

  13. Characterization and complexation of humic acids. Part 1

    International Nuclear Information System (INIS)

    Kim, J.L.; Buckau, G.; Klenze, R.; Rhee, D.S.; Wimmer, H.

    1991-01-01

    This paper summarizes the research contributions to the CEC Mirage II project, particularly the research area on complexation and colloids (COCO). The first part of the paper comprises the characterization of humic and fulvic acids from different origins: a commercial product from the Aldrich Co. used as a reference humic acid and site-specific humic acids from Gorleben (Germany), Boom Clay (Belgium) and Fanay Augeres (France) aquifer systems. The second part includes the complexation of trivalent actinides: Am(III) and Cm(III) with various humic acids. A number of different methods have been applied for the complexation study: spectrophotometry, ultrafiltration, laser-induced photo-acoustic spectroscopy (LPAS) and time-resolved laser fluorescence spectroscopy (TRLFS). The evaluation process of complexation constant is discussed extensively and the well consolidated results are presented, which can be directly used for the geochemical modelling of the radionuclide migration

  14. Crystal structure and luminescence of complexes of Eu(III) and Tb(III) with furan-2,5-dicarboxylate

    NARCIS (Netherlands)

    Akerboom, S.; Fu, W.T.; Lutz, M.; Bouwman, E.

    2012-01-01

    Four new Ln(III) complexes (Ln = Eu, Tb) with furan-2,5-dicarboxylic acid (H2FDA) as a ligand have been synthesized and characterized in the solid state. Luminescence studies indicate that the compounds exhibit line-like luminescence characteristic of the lanthanide centre upon excitation in the

  15. Characterization of mitochondrial dicarboxylate/tricarboxylate transporters from grape berries.

    Science.gov (United States)

    Regalado, Ana; Pierri, Ciro Leonardo; Bitetto, Maria; Laera, Valentina Liliana; Pimentel, Catarina; Francisco, Rita; Passarinho, José; Chaves, Maria M; Agrimi, Gennaro

    2013-03-01

    Grape berries (Vitis vinifera L fruit) exhibit a double-sigmoid pattern of development that results from two successive periods of vacuolar swelling during which the nature of accumulated solutes changes significantly. Throughout the first period, called green or herbaceous stage, berries accumulate high levels of organic acids, mainly malate and tartrate. At the cellular level fruit acidity comprises both metabolism and vacuolar storage. Malic acid compartmentation is critical for optimal functioning of cytosolic enzymes. Therefore, the identification and characterization of the carriers involved in malate transport across sub-cellular compartments is of great importance. The decrease in acid content during grape berry ripening has been mainly associated to mitochondrial malate oxidation. However, no Vitis vinifera mitochondrial carrier involved in malate transport has been reported to date. Here we describe the identification of three V. vinifera mitochondrial dicarboxylate/tricarboxylate carriers (VvDTC1-3) putatively involved in mitochondrial malate, citrate and other di/tricarboxylates transport. The three VvDTCs are very similar, sharing a percentage of identical residues of at least 83 %. Expression analysis of the encoding VvDTC genes in grape berries shows that they are differentially regulated exhibiting a developmental pattern of expression. The simultaneous high expression of both VvDTC2 and VvDTC3 in grape berry mesocarp close to the onset of ripening suggests that these carriers might be involved in the transport of malate into mitochondria.

  16. Use of citric acid for large parts decontamination

    International Nuclear Information System (INIS)

    Holland, M.E.

    1979-01-01

    Laboratory and field studies have been performed to identify and evaluate chemical decontamination agents to replace ammonium carbonate, an environmentally unacceptable compound, in the decontamination facility for large process equipment at the Portsmouth Gaseous Diffusion Plant. Preliminary screening of over 40 possible decontamination agents on the basis of efficiency, availability, toxicity, cost, corrosiveness, and practicality indicated sodium carbonate and citric acid to be the most promising. Extensive laboratory studies were performed with these two reagents. Corrosion rates, decontamination factors, uranium recovery efficiencies, technetium ( 99 Tc)/ion exchange removal effects, and possible environmental impacts were determined or investigated. Favorable results were found in all areas. Detailed monitoring and analysis during two-week trial periods in which sodium carbonate and citric acid were used in the large parts decontamination facility resulted in similar evaluation and conclusions. Because it has cleaning properties not possessed by sodium carbonate, and because it eliminated several operational problems by incorporating two acidic decontamination reagents (citric and nitric acids) instead of one basic reagent (sodium or ammonium carbonate) and one acidic reagent (nitric acid), citric acid was selected for one-year field testing. On the basis of its excellent performance in the field tests, citric acid is recommended as a permanent replacement for ammonium carbonate in the decontamination facility for large process equipment

  17. Comparisons between Hygroscopic Measurements and UNIFAC Model Predictions for Dicarboxylic Organic Aerosol Mixtures

    OpenAIRE

    Jae Young Lee; Lynn M. Hildemann

    2013-01-01

    Hygroscopic behavior was measured at 12°C over aqueous bulk solutions containing dicarboxylic acids, using a Baratron pressure transducer. Our experimental measurements of water activity for malonic acid solutions (0–10 mol/kg water) and glutaric acid solutions (0–5 mol/kg water) agreed to within 0.6% and 0.8% of the predictions using Peng’s modified UNIFAC model, respectively (except for the 10 mol/kg water value, which differed by 2%). However, for solutions containing mixtures of malonic/g...

  18. Separation behavior of U(VI) and Th(IV) on a cation exchange column using 2,6-pyridine dicarboxylic acid as a complexing agent and its application for the rapid separation and determination of U and Th by ion chromatography.

    Science.gov (United States)

    Jeyakumar, Subbiah; Mishra, Vivekchandra Guruprasad; Das, Mrinal Kanti; Raut, Vaibhavi Vishwajeet; Sawant, Ramesh Mahadev; Ramakumar, Karanam Lakshminarayana

    2011-03-01

    The retention behavior of U and Th as their 2,6-pyridine dicarboxylic acid (PDCA) complexes on a cation exchange column was investigated under low pH conditions. Based on the observed retention characteristics, an ion chromatographic method for the rapid separation of uranium and thorium in isocratic elution mode using 0.08 mM PDCA and 0.24 M KNO(3) in 0.22 M HNO(3) as the eluent was developed. Both uranium and thorium were eluted as their PDCA complexes within 2 min, whereas the transition and lanthanide metal cations were eluted as an unresolved broad peak after thorium. Under the optimized conditions both U and Th have no interference either from alkali and alkaline earth elements up to a concentration ratio of 1:500 or from other elements up to 1:100. The detection limits (LOD) of U and Th were calculated as 0.04 and 0.06 ppm, respectively (S/N=3). The precision in the measurement of peak area of 0.5 ppm of both U and Th was better than 5% and a linear calibration in the concentration range of 0.25-25 ppm of U and Th was obtained. The method was successfully applied to determine U and Th in effluent water samples. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A three-dimensional coordination polymer based on 1,2,3-triazole-4,5-dicarboxylic acid (H{sub 3}tda): ([Cd{sub 12}(tda){sub 8}(H{sub 2}O){sub 11}] · (H{sub 2}O)6.25){sub n}

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xin-Hui, E-mail: iamxhzhou@njupt.edu.cn; Chen, Qiang [Nanjing University of Posts and Telecommunications, Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, National Jiangsu Syngerstic Innovation Center for Advanced Materials (SICAM) (China)

    2017-03-15

    The title coordination polymer ([Cd{sub 12}(tda){sub 8}(H{sub 2}O){sub 11}] · (H{sub 2}O){sub 6.25}){sub n} (H{sub 3}tda = 1,2,3-triazole-4,5-dicarboxylic acid), has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Complex crystallizes in orthorhombic sp. gr. Pmn2{sub 1} with Z = 4. The Cd{sub 2} unit doublebridged by one carboxylate oxygen atom and two neighboring nitrogen atoms from the tda{sup 3–} ligands are linked by the tda{sup 3–}ligands to lead to the 2D (4,4) network in the ac plane. The almost coplanar Cd{sub 2}(μ{sub 5}-tda){sub 2} unit comprised of two Cd ions double-bridged by two tda{sup 3–} ligands through the neighboring nitrogen atoms is connected with the other four Cd{sub 2}(μ{sub 5}-tda){sub 2} units form the undulating 2D network in the ac plane. The (4,4) networks and undulating 2D networks are alternatively connected along the b axis by the tda{sup 3–} ligands coordinating to the Cd ions to form the 3D framework.

  20. (2,2′-Bipyridine-4,4′-dicarboxylic acid-κ2N,N′chlorido(2,2′:6′,2′′-terpyridyl-κ3N,N′,N′′ruthenium(II perchlorate ethanol monosolvate monohydrate

    Directory of Open Access Journals (Sweden)

    Anne Nielsen

    2012-01-01

    Full Text Available In the title compound, [RuCl(C15H11N3(C12H8N2O4]ClO4·C2H5OH·H2O, the geometry of the ClN5 coordination set around the RuII atom is close to octahedral, but distorted on account of the limited bite angles of the polypyridyl ligands. The complexes are linked by O—H...O hydrogen bonds between the carboxyl groups and the crystal lattice water molecules into chains along [110]. Face-to-face stacking interactions are formed between terpyridine ligands, with interplanar separations of 3.66 (1 and 3.42 (1 Å, and between bipyridine-4,4′-dicarboxylic acid ligands, with interplanar separations of 3.65 (1 and 3.72 (1 Å. Three O atoms of the perchlorate ion are each disordered equally over two positions. The hydroxy group of the ethanol molecule is also disordered over two sites with refined occupancies of 0.794 (9 and 0.206 (9.

  1. catena-Poly[[dimethyl­tin(IV)]-μ-cis-cyclo­hexane-1,2-dicarboxyl­ato

    Science.gov (United States)

    Wang, Yuerong; Zhang, Rufen; Li, Yongxin

    2009-01-01

    The title complex, [Sn(CH3)2(C8H10O4)]n, was synthesized from cis-cyclo­hexane-1,2-dicarboxylic acid and dimethyl­tin dichloride. The complex has a bridging bis-bidentate carboxyl­ate group resulting in a zig-zag chain structure parallel to [001]. The Sn atom is six-coordinated and displays a distorted octa­hedral geometry. PMID:21582052

  2. Synthesis and characterization of polyamide and polyester, from glycerol and dicarboxylic acids, polymeric blends;Preparacao e caracterizacao de blendas de poliamida e poliesteres a base de glicerol e acidos dicarboxilicos

    Energy Technology Data Exchange (ETDEWEB)

    Brioude, Michel M.; Bresciani, Danusa; Guimaraes, Danilo H.; Jose, Nadia M., E-mail: mbrioude@gmail.co [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil); Prado, Luis A.S.A. [Technische Universitaet Hamburg, Harburg (Germany). Inst. of Polymer and Composites

    2009-07-01

    In this work were prepared and characterized polyamide and polyester blends. The polyester, called PAT, was produced in a becker equipped with high-torque mechanical stirrer, thermometer and condenser Claisen, by adding of glycerol, adipic acid, terephthalic acid and catalyst. The blends films were prepared by physical mixture followed by thermal compression. The polymeric blends and the pure materials were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the blends are semi-crystalline and have good thermal behavior, besides, it evidences that the PAT and polyamide phases are immiscible. (author)

  3. Efficacy of Lactic Acid, Lactic Acid-Acetic Acid Blends, and Peracetic Acid To Reduce Salmonella on Chicken Parts under Simulated Commercial Processing Conditions.

    Science.gov (United States)

    Ramirex-Hernandez, Alejandra; Brashears, Mindy M; Sanchez-Plata, Marcos X

    2018-01-01

    The poultry processing industry has been undergoing a series of changes as it modifies processing practices to comply with new performance standards for chicken parts and comminuted poultry products. The regulatory approach encourages the use of intervention strategies to prevent and control foodborne pathogens in poultry products and thus improve food safety and protect human health. The present studies were conducted to evaluate the efficacy of antimicrobial interventions for reducing Salmonella on inoculated chicken parts under simulated commercial processing conditions. Chicken pieces were inoculated by immersion in a five-strain Salmonella cocktail at 6 log CFU/mL and then treated with organic acids and oxidizing agents on a commercial rinsing conveyor belt. The efficacy of spraying with six different treatments (sterile water, lactic acid, acetic acid, buffered lactic acid, acetic acid in combination with lactic acid, and peracetic acid) at two concentrations was evaluated on skin-on and skin-off chicken thighs at three application temperatures. Skinless chicken breasts were used to evaluate the antimicrobial efficacy of lactic acid and peracetic acid. The color stability of treated and untreated chicken parts was assessed after the acid interventions. The lactic acid and buffered lactic acid treatments produced the greatest reductions in Salmonella counts. Significant differences between the control and water treatments were identified for 5.11% lactic acid and 5.85% buffered lactic acid in both skin-on and skin-off chicken thighs. No significant effect of treatment temperature for skin-on chicken thighs was found. Lactic acid and peracetic acid were effective agents for eluting Salmonella cells attached to chicken breasts.

  4. A new set of Cd(ii)-coordination polymers with mixed ligands of dicarboxylate and pyridyl substituted diaminotriazine: selective sorption towards CO2and cationic dyes.

    Science.gov (United States)

    Chand, Santanu; Elahi, Syed Meheboob; Pal, Arun; Das, Madhab C

    2017-08-01

    On the basis of a mixed ligand system of L(NH 2 ) 2 (6-(pyridin-4-yl)-1,3,5-triazine-2,4-diamine) and dicarboxylic acids, three new Cd(ii) coordination polymers viz. {[Cd 0.5 (tdc) 0.5 (L(NH 2 ) 2 ) 0.5 (H 2 O)]·DMF·H 2 O} n (1), {[Cd 0.5 (bdc) 0.5 (L(NH 2 ) 2 )(H 2 O)]·DMF·H 2 O} n (2), and {[Cd(ipa)(L(NH 2 ) 2 )(DMF)]·H 2 O} n (3) (tdcH 2 = thiophene-2,5-dicarboxylic acid, bdcH 2 = benzene-1,4-dicarboxylic acid, ipaH 2 = benzene-1,3-dicarboxylic acid) were synthesized under diverse reaction conditions and characterized by single crystal X-ray diffraction, PXRD, elemental analysis, IR spectroscopy and TGA. While 1 and 2 revealed 1D chain structures, 3 acquired a 2D square net structural arrangement. Gas adsorption measurements of the desolvated framework 3 showed a moderate uptake of CO 2 under ambient conditions with good selectivity over N 2 and CH 4 . The solid state luminescence properties were studied for all three coordination polymers. Moreover, a dye adsorption study on 3 exhibited selective adsorption towards a cationic dye.

  5. Comparisons between Hygroscopic Measurements and UNIFAC Model Predictions for Dicarboxylic Organic Aerosol Mixtures

    Directory of Open Access Journals (Sweden)

    Jae Young Lee

    2013-01-01

    Full Text Available Hygroscopic behavior was measured at 12°C over aqueous bulk solutions containing dicarboxylic acids, using a Baratron pressure transducer. Our experimental measurements of water activity for malonic acid solutions (0–10 mol/kg water and glutaric acid solutions (0–5 mol/kg water agreed to within 0.6% and 0.8% of the predictions using Peng’s modified UNIFAC model, respectively (except for the 10 mol/kg water value, which differed by 2%. However, for solutions containing mixtures of malonic/glutaric acids, malonic/succinic acids, and glutaric/succinic acids, the disagreements between the measurements and predictions using the ZSR model or Peng’s modified UNIFAC model are higher than those for the single-component cases. Measurements of the overall water vapor pressure for 50 : 50 molar mixtures of malonic/glutaric acids closely followed that for malonic acid alone. For mixtures of malonic/succinic acids and glutaric/succinic acids, the influence of a constant concentration of succinic acid on water uptake became more significant as the concentration of malonic acid or glutaric acid was increased.

  6. Fatty Acid Composition of the Aerial Parts of Some Centaurea ...

    African Journals Online (AJOL)

    choleretic, stomachic, astringent, cytotoxic, antibacterial, antipyretic and tonic properties [4-. 6]. Flavonoids, steroids, volatile constituents, sesquiterpene lactones and fatty acids have been previously isolated from plants belonging to the genus [7-11]. Fatty acid, either saturated or unsaturated, is a carboxylic acid with a long.

  7. Fatty Acid Composition of the Aerial Parts of Some Centaurea ...

    African Journals Online (AJOL)

    Purpose: To evaluate the fatty acid composition of six Centaurea species, viz, Centaurea behen, C. saligna, C. depressa, C. urvillei subsp. urvillei, C. urvillei subsp. hayekiana and C. aggregata subsp. aggregata, from Elaz.., Turkey. Methods: Fatty acid methyl esters (FAMEs) of the oil extracts of four Centaurea species were ...

  8. Chemistry in the Comics: Part 3. The Acidity of Paper.

    Science.gov (United States)

    Carter, Henry A.

    1989-01-01

    This article focuses on the nature of acidity in pulp paper as found in comic books and library collections. Some of the various factors that contribute to the deterioration of paper are considered from a chemical perspective. (CW)

  9. Selective synthesis of thiodiglycol dicarboxylic acid esters via p ...

    Indian Academy of Sciences (India)

    highly valuable from both environmental and economi- cal points of view. This illustrates the potential utility of the methodology for the construction of various long alkyl-chain esters of thiodiglycol. References. 1. (a) Pollack M A and Penville N J 1948 US patent,. 2454568. (b) Boussely J, Chandavoine M, Chignac M et al.

  10. cis-Cyclo­hexane-1,4-dicarboxylic acid

    Science.gov (United States)

    Wang, Yan-Qin; Weng, Jia-Bao

    2009-01-01

    In the title compound, C8H12O4, the two carboxyl groups are on the same side of the cyclohexane ring and the ring adopts a chair conformation. Adjacent mol­ecules related by an inversion centre are linked by pairs of O—H⋯O hydrogen bonds, forming a zigzag chain along [1 ]. PMID:21583153

  11. Water transport by the renal Na(+)-dicarboxylate cotransporter

    DEFF Research Database (Denmark)

    Meinild, A K; Loo, D D; Pajor, A M

    2000-01-01

    This study investigated the ability of the renal Na(+)-dicarboxylate cotransporter, NaDC-1, to transport water. Rabbit NaDC-1 was expressed in Xenopus laevis oocytes, cotransporter activity was measured as the inward current generated by substrate (citrate or succinate), and water transport...... was monitored by the changes in oocyte volume. In the absence of substrates, oocytes expressing NaDC-1 showed an increase in osmotic water permeability, which was directly correlated with the expression level of NaDC-1. When NaDC-1 was transporting substrates, there was a concomitant increase in oocyte volume....... This solute-coupled influx of water took place in the absence of, and even against, osmotic gradients. There was a strict stoichiometric relationship between Na(+), substrate, and water transport of 3 Na(+), 1 dicarboxylate, and 176 water molecules/transport cycle. These results indicate that the renal Na...

  12. Studies of the acidic components of the Colorado Green River formation oil shale-Mass spectrometric identification of the methyl esters of extractable acids.

    Science.gov (United States)

    Haug, P.; Schnoes, H. K.; Burlingame, A. L.

    1971-01-01

    Study of solvent extractable acidic constituents of oil shale from the Colorado Green River Formation. Identification of individual components is based on gas chromatographic and mass spectrometric data obtained for their respective methyl esters. Normal acids, isoprenoidal acids, alpha, omega-dicarboxylic acids, mono-alpha-methyl dicarboxylic acids and methyl ketoacids were identified. In addition, the presence of monocyclic, benzoic, phenylalkanoic and naphthyl-carboxylic acids, as well as cycloaromatic acids, is demonstrated by partial identification.

  13. 2-Phenylimidazolium hemi(benzene-1,3-dicarboxylate monohydrate

    Directory of Open Access Journals (Sweden)

    Wen-Yu Zhang

    2011-08-01

    Full Text Available The asymmetric unit of the title compound, C9H9N2+·0.5C8H4O4−·H2O, contains one 2-phenylimidazolium cation, half a benzene-1,3-dicarboxylate anion and one water molecule. In the crystal, components are connected by N—H...O and O—H...O hydrogen-bonding interactions into a three-dimensional network.

  14. Establishing a Method for Measuring Serum Methylmalonic Acid and Application to Women with a History of Breast Cancer

    National Research Council Canada - National Science Library

    Hauge, Ileana

    2002-01-01

    Serum concentrations of methylmalonic acid (MMA), a dicarboxylic acid and intermediate in the conversion of propionic acid to succinic acid, are elevated if there is deficiency of cobalamin (vitamin B12...

  15. Mining the Sinorhizobium meliloti transportome to develop FRET biosensors for sugars, dicarboxylates and cyclic polyols.

    Directory of Open Access Journals (Sweden)

    Alexandre Bourdès

    Full Text Available Förster resonance energy transfer (FRET biosensors are powerful tools to detect biologically important ligands in real time. Currently FRET bisosensors are available for twenty-two compounds distributed in eight classes of chemicals (two pentoses, two hexoses, two disaccharides, four amino acids, one nucleobase, two nucleotides, six ions and three phytoestrogens. To expand the number of available FRET biosensors we used the induction profile of the Sinorhizobium meliloti transportome to systematically screen for new FRET biosensors.Two new vectors were developed for cloning genes for solute-binding proteins (SBPs between those encoding FRET partner fluorescent proteins. In addition to a vector with the widely used cyan and yellow fluorescent protein FRET partners, we developed a vector using orange (mOrange2 and red fluorescent protein (mKate2 FRET partners. From the sixty-nine SBPs tested, seven gave a detectable FRET signal change on binding substrate, resulting in biosensors for D-quinic acid, myo-inositol, L-rhamnose, L-fucose, β-diglucosides (cellobiose and gentiobiose, D-galactose and C4-dicarboxylates (malate, succinate, oxaloacetate and fumarate. To our knowledge, we describe the first two FRET biosensor constructs based on SBPs from Tripartite ATP-independent periplasmic (TRAP transport systems.FRET based on orange (mOrange2 and red fluorescent protein (mKate2 partners allows the use of longer wavelength light, enabling deeper penetration of samples at lower energy and increased resolution with reduced back-ground auto-fluorescence. The FRET biosensors described in this paper for four new classes of compounds; (i cyclic polyols, (ii L-deoxy sugars, (iii β-linked disaccharides and (iv C4-dicarboxylates could be developed to study metabolism in vivo.

  16. Diethyl 2,3-dihydrothieno[3,4-b]-1,4-dioxine-5,7-dicarboxylate

    Directory of Open Access Journals (Sweden)

    Katsuhiro Saito

    2008-02-01

    Full Text Available The title compound, C12H14O6S, is a dicarboxylic acid diethyl ester of 3,4-ethylenedioxythiophene, which is a component of electrically conductive poly(3,4-ethylenedioxythiophene (PEDOT. The ethylene group is disordered over two sites with occupancy factors 0.64 and 0.36. Both the carbonyl groups are coplanar with the thiophene ring. The molecules form centrosymmetric dimers with an R22(12 coupling by intermolecular C—H...O hydrogen bonds [3.333 (5 Å] at the ethoxycarbonyl groups. The dimer units are arranged to form a ribbon-like molecular sheet.

  17. Aerosol volatility and enthalpy of sublimation of carboxylic acids.

    Science.gov (United States)

    Salo, Kent; Jonsson, Asa M; Andersson, Patrik U; Hallquist, Mattias

    2010-04-08

    The enthalpy of sublimation has been determined for nine carboxylic acids, two cyclic (pinonic and pinic acid) and seven straight-chain dicarboxylic acids (C(4) to C(10)). The enthalpy of sublimation was determined from volatility measurements of nano aerosol particles using a volatility tandem differential mobility analyzer (VTDMA) set-up. Compared to the previous use of a VTDMA, this novel method gives enthalpy of sublimation determined over an extended temperature range (DeltaT approximately 40 K). The determined enthalpy of sublimation for the straight-chain dicarboxylic acids ranged from 96 to 161 kJ mol(-1), and the calculated vapor pressures at 298 K are in the range of 10(-6)-10(-3) Pa. These values indicate that dicarboxylic acids can take part in gas-to-particle partitioning at ambient conditions and may contribute to atmospheric nucleation, even though homogeneous nucleation is unlikely. To obtain consistent results, some experimental complications in producing nanosized crystalline aerosol particles were addressed. It was demonstrated that pinonic acid "used as received" needed a further purification step before being suspended as a nanoparticle aerosol. Furthermore, it was noted from distinct differences in thermal properties that aerosols generated from pimelic acid solutions gave two types of particles. These two types were attributed to crystalline and amorphous configurations, and based on measured thermal properties, the enthalpy of vaporization was 127 kJ mol(-1) and that of sublimation was 161 kJ mol(-1). This paper describes a new method that is complementary to other similar methods and provides an extension of existing experimental data on physical properties of atmospherically relevant compounds.

  18. Bis[diethyl(hydroxyammonium] benzene-1,4-dicarboxylate

    Directory of Open Access Journals (Sweden)

    De-Ming Xie

    2010-08-01

    Full Text Available In the centrosymmetric title compound, 2C4H12NO+·C8H4O42−, two N,N-diethyl(hydroxyammonium cations are linked to a benzene-1,4-dicarboxylate dianion by a combination of O—H...O and N—H...O hydrogen bonds, which can be described in graph-set terminology as R22(7. The crystal structure is further stabilized by C—H...O hydrogen bonds, leading to the fomation of a ribbon-like network.

  19. The Acid-Base balance history (Part I

    Directory of Open Access Journals (Sweden)

    Mario Tarantino

    2007-08-01

    Full Text Available In the History of Medicine, the Acid-Base balance is unusual in that it has undergone constant evolution, not merely and not so much as a result of the progress of knowledge in physiological and physiopathological and clinical fields - which is common to all fields of Medical Science, but rather in relation to its very biochemical foundations, as was demonstrated by P. Stewart’s recent critical review and the reviews of J. Corey and J.A. Kellum, which are still valid today - and this is rather unusual. Although it started centuries ago, the history of the acidbase balance has experienced a slow and difficult evolution, and modern concepts almost exploded a couple of decades into the 20th century. It is therefore with even greater wonder and admiration that we look back on the pioneering intuitions of scholars such as R. Boyle, J.B. van Helmont and A.L. Lavoisier, to mention but a few of the scientists who laid the foundations for current knowledge in this fascinating chapter of physiology and clinical practice that belongs transversally to all medical and clinical disciplines.

  20. 40 CFR Appendix A to Part 434 - Alternate Storm Limitations for Acid or Ferruginous Mine Drainage

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Alternate Storm Limitations for Acid or Ferruginous Mine Drainage A Appendix A to Part 434 Protection of Environment ENVIRONMENTAL... Storm Limitations for Acid or Ferruginous Mine Drainage EC01MY92.113 ...

  1. Photoluminescence properties of lanthanide-organic frameworks (LnOFs) with thiophene-2,5-dicarboxylate and acetate

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jing; Wei, Qing; Xie, Gang; Chen, Sanping [Key Lab. of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest Univ., Xi' an, Shaanxi (China); Zhang, Sheng [Key Lab. of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest Univ., Xi' an, Shaanxi (China); College of Chemistry and Chemical Engineering, Baoji Univ. of Arts and Science, Baoji, Shaanxi (China)

    2017-07-17

    S-heterocyclic dicarboxylic acid, thiophene-2,5-dicarboxylic acid (H{sub 2}TDC), was employed to construct a series of lanthanide-organic frameworks (LnOFs) with coligand acetate, formulated as [Ln(TDC)(OAc)(H{sub 2}O)]{sub n} [Ln = Eu (1), Tb (2), Gd (3), Dy (4), Sm (5)] under hydrothermal conditions. Structure analysis reveals that 1-5 have dinuclear 3D metal organic frameworks (MOFs), in which TDC{sup 2-} and OAc{sup -} display (κ{sup 1}-κ{sup 1})-(κ{sup 1}-κ{sup 1})-μ{sub 4} and (κ{sup 2}-κ{sup 1})-μ{sub 2} coordination fashions, respectively. The dehydrated products of all compounds show high thermal stability above 410 C. As for 1, 2, 4, and 5, the photoluminescence analyses exhibit characteristic luminescence emission bands of the corresponding lanthanide ions in the visible region. In particular, compound 2 displays bright green luminescence in the solid state with {sup 5}D{sub 4} lifetime of 0.510 ms and relative high overall quantum yield of 16 %, based on an ideal energy gap between the lowest triplet state energy level of H{sub 2}TDC ligand and the {sup 5}D{sub 4} state energy level of Tb{sup 3+}. The energy transfer mechanisms in compounds 1 and 2 were also discussed. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Metabolism: Part II. The Tricarboxylic Acid (TCA), Citric Acid, or Krebs Cycle.

    Science.gov (United States)

    Bodner, George M.

    1986-01-01

    Differentiates the tricarboxylic acid (TCA) cycle (or Krebs cycle) from glycolysis, and describes the bridge between the two as being the conversion of pyruvate into acetyl coenzyme A. Discusses the eight steps in the TCA cycle, the results of isotopic labeling experiments, and the net effects of the TCA cycle. (TW)

  3. Measurements of urinary adipic acid and suberic acid using high-performance liquid chromatography.

    Science.gov (United States)

    Yoshioka, K; Shimojo, N; Nakanishi, T; Naka, K; Okuda, K

    1994-05-13

    A sensitive and specific method was developed for measuring medium-chain dicarboxylic acids (adipic and suberic acid) in urine. These acids were extracted from urine with diethyl ether and converted into fluorescent derivatives with 9-anthryldiazomethane, which can be separated by high-performance liquid chromatography. The reproducibility was high and the recovery from urine was above 90%. Urinary concentrations of adipic acid in streptozotocin-induced diabetic rats were significantly higher than those in control rats. In diabetic patients, both adipic acid and suberic acid tended to be high, but not significantly. This method should be useful for measuring dicarboxylic acids in urine.

  4. Crypthophilic acids A, B, and C: resin glycosides from aerial parts of Scrophularia crypthophila.

    Science.gov (United States)

    Caliş, Ihsan; Sezgin, Yükselen; Dönmez, Ali A; Rüedi, Peter; Tasdemir, Deniz

    2007-01-01

    The water-soluble part of the methanolic extract from the aerial parts of Scrophularia crypthophila, through chromatographic methods, yielded three new resin glycosides, crypthophilic acids A - C (1-3). Compounds 1-3 are tetraglycosides of (+)-3S,12S-dihydroxypalmitic acid. The structures of these and 10 known compounds were elucidated by spectroscopic and chemical means. All natural resin glycosides known so far have been obtained from Convolvulaceae plants; this is the first report of such glycosides from another, taxonomically unrelated family (Scrophulariaceae).

  5. Atmospheric oxalic acid and related secondary organic aerosols in Qinghai Lake, a continental background site in Tibet Plateau

    Science.gov (United States)

    Meng, Jingjing; Wang, Gehui; Li, Jianjun; Cheng, Chunlei; Cao, Junji

    2013-11-01

    Summertime PM2.5 aerosols collected from Qinghai Lake (3200 m a.s.l.), a remote continental site in the northeastern part of Tibetan Plateau, were analyzed for dicarboxylic acids (C2-C11), ketocarboxylic acids and α-dicarbonyals. Oxalic acid (C2) is the dominant dicarboxylic acid in the samples, followed by malonic, succinic and azelaic acids. Total dicarboxylic acids (231 ± 119 ng m-3), ketocarboxylic acids (8.4 ± 4.3 ng m-3), and α-dicarbonyls (2.7 ± 2.1 ng m-3) at the Tibetan background site are 2-5 times less than those detected in lowland areas such as 14 Chinese megacities. Compared to those in other urban and marine areas enhancements in relative abundances of C2/total diacids and diacids-C/WSOC of the PM2.5 samples suggest that organic aerosols in the region are more oxidized due to strong solar radiation. Molecular compositions and air mass trajectories demonstrate that the above secondary organic aerosols in the Qinghai Lake atmosphere are largely derived from long-range transport. Ratios of oxalic acid, glyoxal and methylglyoxal to levoglucosan in PM2.5 aerosols emitted from household burning of yak dung, a major energy source for Tibetan in the region, are 30-400 times lower than those in the ambient air, which further indicates that primary emission from biomass burning is a negligible source of atmospheric oxalic acid and α-dicarbonyls at this background site.

  6. DipA, a pore-forming protein in the outer membrane of Lyme disease spirochetes exhibits specificity for the permeation of dicarboxylates.

    Directory of Open Access Journals (Sweden)

    Marcus Thein

    Full Text Available Lyme disease Borreliae are highly dependent on the uptake of nutrients provided by their hosts. Our study describes the identification of a 36 kDa protein that functions as putative dicarboxylate-specific porin in the outer membrane of Lyme disease Borrelia. The protein was purified by hydroxyapatite chromatography from Borrelia burgdorferi B31 and designated as DipA, for dicarboxylate-specific porin A. DipA was partially sequenced, and corresponding genes were identified in the genomes of B. burgdorferi B31, Borrelia garinii PBi and Borrelia afzelii PKo. DipA exhibits high homology to the Oms38 porins of relapsing fever Borreliae. B. burgdorferi DipA was characterized using the black lipid bilayer assay. The protein has a single-channel conductance of 50 pS in 1 M KCl, is slightly selective for anions with a permeability ratio for cations over anions of 0.57 in KCl and is not voltage-dependent. The channel could be partly blocked by different di- and tricarboxylic anions. Particular high stability constants up to about 28,000 l/mol (in 0.1 M KCl were obtained among the 11 tested anions for oxaloacetate, 2-oxoglutarate and citrate. The results imply that DipA forms a porin specific for dicarboxylates which may play an important role for the uptake of specific nutrients in different Borrelia species.

  7. Distribution and Orientation of Carbon Fibers in Polylactic Acid Parts Produced by Fused Deposition Modeling

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; W. Gutmann, Ingomar; Koch, Thomas

    2016-01-01

    The aim of this paper is the understanding of the fiber orientation by investigations in respect to the inner configuration of a polylactic acid matrix reinforced with short carbon fibers after a fused deposition modeling extrusion process. The final parts were analyzed by X-ray, tomography......, and magnetic resonance imaging allowing a resolved orientation of the fibers and distribution within the part. The research contributes to the understanding of the fiber orientation and fiber reinforcement of fused deposition modeling parts in additive manufacturing....

  8. Amino acids analysis by total neutron cross-sections determinations: part V

    Energy Technology Data Exchange (ETDEWEB)

    Voi, Dante L.; Ferreira, Francisco de O., E-mail: dante@ien.gov.br, E-mail: fferreira@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Rocha, Helio F. da, E-mail: helionutro@hotmail.com [Universidade Federal do Rio de Janeiro (IPPMG/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Pediatria

    2013-07-01

    Total neutron cross-sections of twenty essential and non-essential amino acids to human were determined using crystal spectrometer installed on the Argonauta reactor of IEN (Instituto de Engenharia Nuclear (CNEN-RJ) and compared with data generated by parceling and grouping methodologies developed at this institution. For each amino acid was calculated the respective neutron cross-section by molecular structure, conformation and chemistry analysis. The results obtained for eighteen of twenty amino acids confirm the specifications and product formulations indicated by manufactures. These initial results allow to build a neutron cross-sections database as part of quality control of the amino supplied to hospitals for production of nutriments for parenteral or enteral formulations used in critical patients dependent on artificial feed, and for application in future studies of structure and dynamics for more complex molecules, including proteins, enzymes, fatty acids, membranes, organelles and other cell components. (author)

  9. Amino acids analysis by total neutron cross-sections determinations: part V

    International Nuclear Information System (INIS)

    Voi, Dante L.; Ferreira, Francisco de O.; Rocha, Helio F. da

    2013-01-01

    Total neutron cross-sections of twenty essential and non-essential amino acids to human were determined using crystal spectrometer installed on the Argonauta reactor of IEN (Instituto de Engenharia Nuclear (CNEN-RJ) and compared with data generated by parceling and grouping methodologies developed at this institution. For each amino acid was calculated the respective neutron cross-section by molecular structure, conformation and chemistry analysis. The results obtained for eighteen of twenty amino acids confirm the specifications and product formulations indicated by manufactures. These initial results allow to build a neutron cross-sections database as part of quality control of the amino supplied to hospitals for production of nutriments for parenteral or enteral formulations used in critical patients dependent on artificial feed, and for application in future studies of structure and dynamics for more complex molecules, including proteins, enzymes, fatty acids, membranes, organelles and other cell components. (author)

  10. Costs of jasmonic acid induced defense in aboveground and belowground parts of corn (Zea mays L.).

    Science.gov (United States)

    Feng, Yuanjiao; Wang, Jianwu; Luo, Shiming; Fan, Huizhi; Jin, Qiong

    2012-08-01

    Costs of jasmonic acid (JA) induced plant defense have gained increasing attention. In this study, JA was applied continuously to the aboveground (AG) or belowground (BG) parts, or AG plus BG parts of corn (Zea mays L.) to investigate whether JA exposure in one part of the plant would affect defense responses in another part, and whether or not JA induced defense would incur allocation costs. The results indicated that continuous JA application to AG parts systemically affected the quantities of defense chemicals in the roots, and vice versa. Quantities of DIMBOA and total amounts of phenolic compounds in leaves or roots generally increased 2 or 4 wk after the JA treatment to different plant parts. In the first 2 wk after application, the increase of defense chemicals in leaves and roots was accompanied by a significant decrease of root length, root surface area, and root biomass. Four weeks after the JA application, however, no such costs for the increase of defense chemicals in leaves and roots were detected. Instead, shoot biomass and root biomass increased. The results suggest that JA as a defense signal can be transferred from AG parts to BG parts of corn, and vice versa. Costs for induced defense elicited by continuous JA application were found in the early 2 wk, while distinct benefits were observed later, i.e., 4 wk after JA treatment.

  11. Formation of Dihydroxybenzenes in Cigarette Smoke. Part 2. Contribution from Quinic Acid and Myo-Inositol

    Directory of Open Access Journals (Sweden)

    Moldoveanu SC

    2014-12-01

    Full Text Available Formation of dihydroxybenzenes in cigarette smoke is a subject of considerable interest because some dihydroxybenzenes are co-carcinogens, (e.g., catechol and certain alkylcatechols, and others such as hydroquinone can form metabolites that have toxic or carcinogenic properties. This present study describes the contribution of tobacco quinic acid (or (1S,3R,4S,5R-1,3,4,5-tetrahydroxycyclohexanecarboxylic acid and myo-inositol (or (1R,2R,3S,4S,5R,6S-cyclohexane-1,2,3,4,5,6-hexol to the formation of dihydroxybenzenes in cigarette smoke. The study is a continuation of a previous one showing the contribution of chlorogenic acid and rutin as precursors for these compounds (6. The yields of dihydroxybenzenes formed by pyrolysis of quinic acid and myo-inositol are relatively high and both quinic acid and myo-inositol can be present in some tobacco types at levels as high as 1% by weight. The level of these compounds makes them potentially important contributors to the formation of dihydroxybenzenes in cigarette smoke. Similar to the previous study on other dihydroxybenzene precursors from tobacco, this present study was done in three parts: 1 pyrolytic evaluation of the amount of dihydroxybenzenes in smoke generated from isolated quinic acid and myoinositol; 2 analysis of smoke from cigarettes made from a variety of tobaccos (14 single grades and two blended cigarettes, followed by correlations of dihydroxybenzene yields from these cigarettes with the level of quinic acid and myo-inositol in the tobaccos; 3 addition of quinic acid or myo-inositol to several tobaccos followed by the smoking of the spiked cigarettes and measurement of the dihydroxybenzenes yield increase. The study performed on a variety of single-grade tobacco cigarettes and for two blended-tobacco cigarettes (one being the 2R4F Kentucky reference shows that the contribution of quinic acid and of inositol to the formation of catechol and hydroquinone in smoke depends on the blend, as

  12. Microbial Production of Malic Acid from Biofuel-Related Coproducts and Biomass

    Directory of Open Access Journals (Sweden)

    Thomas P. West

    2017-04-01

    Full Text Available The dicarboxylic acid malic acid synthesized as part of the tricarboxylic acid cycle can be produced in excess by certain microorganisms. Although malic acid is produced industrially to a lesser extent than citric acid, malic acid has industrial applications in foods and pharmaceuticals as an acidulant among other uses. Only recently has the production of this organic acid from coproducts of industrial bioprocessing been investigated. It has been shown that malic acid can be synthesized by microbes from coproducts generated during biofuel production. More specifically, malic acid has been shown to be synthesized by species of the fungus Aspergillus on thin stillage, a coproduct from corn-based ethanol production, and on crude glycerol, a coproduct from biodiesel production. In addition, the fungus Ustilago trichophora has also been shown to produce malic acid from crude glycerol. With respect to bacteria, a strain of the thermophilic actinobacterium Thermobifida fusca has been shown to produce malic acid from cellulose and treated lignocellulosic biomass. An alternate method of producing malic acid is to use agricultural biomass converted to syngas or biooil as a substrate for fungal bioconversion. Production of poly(β-l-malic acid by strains of Aureobasidium pullulans from agricultural biomass has been reported where the polymalic acid is subsequently hydrolyzed to malic acid. This review examines applications of malic acid, metabolic pathways that synthesize malic acid and microbial malic acid production from biofuel-related coproducts, lignocellulosic biomass and poly(β-l-malic acid.

  13. Determination of total triterpenoid acids in different part and extract of Ganoderma lucidum

    Directory of Open Access Journals (Sweden)

    FENG Huiqin

    2013-04-01

    Full Text Available Aim To develop a method for determination of total triterpenoid acids in different part and extracts of Ganoderma lucidum. Method The samples of Ganoderma lucidum were extracted with ethanol and successively extracted with CHCl3 and 5% NaHCO3,the NaHCO3 layer was acidified to pH 3 with 2 mol/L HCl,the resulting precipitates were dissolved in CHCl3 and evaporated in vacuo then weighed. The total triterpenoid acids were obtained. Result The total triterpenoid acids of Ganoderma lucidum fruitbody,spore and mycelium were (8.58±0.25 mg/g,(3.48±0.03 mg/g and (1.75 ±0.09 mg/g respectively. The total triterpenoid acids of pileus and stipe were (12.62±0.22 mg/g and (7.66±0.08 mg/g. The range of total triterpenoid acid content among 10 batches of Ganoderma lucidum fruitbody purchased from the market was between 4.34 to 16.39 mg/g. The highest content fro/8/8/88/ m Ganoderma lucidum fruiting body with alcohol - water extracting was (208.70±5.54 mg/g and the lowest content with alkaline solution extracting was (123.07±4.99 mg/g. The composition of total triterpenoid acid from fruitbody,spores and extract of fruitbody analyzed by HPLC were almost the same. This method is reliable for determination of total triterpenoid acid in the fruiting body and its extracts,spore and mycelium from Ganoderma lucidum,which provides an indicator for the quality of Ganoderma lucidum product.

  14. Effect of acid pretreatment on different parts of corn stalk for second generation ethanol production.

    Science.gov (United States)

    Li, Ping; Cai, Di; Luo, Zhangfeng; Qin, Peiyong; Chen, Changjing; Wang, Yong; Zhang, Changwei; Wang, Zheng; Tan, Tianwei

    2016-04-01

    In this study, the effects of different parts of corn stalk, including stem, leaf, flower, cob and husk on second generation ethanol production were evaluated. FTIR, XRD and SEM were performed to investigate the effect of dilute acid pretreatment. The bagasse obtained after pretreatment were further hydrolyzed by cellulase and used as the substrate for ethanol fermentation. As results, hemicelluloses fractions in different parts of corn stalk were dramatically removed and the solid fractions showed vivid compositions and crystallinities. Compared with other parts of corn stalk, the cob had higher sugar content and better enzymatic digestibility. The highest glucose yield of 94.2% and ethanol production of 24.0 g L(-1) were achieved when the cob was used as feedstock, while the glucose yield and the ethanol production were only 86.0% and 17.1 g L(-1) in the case of flower. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Effect of Hydroxyapatite Nanoparticles on the Degradability of Random Poly(butylene terephthalate-co-aliphatic dicarboxylates Having a High Content of Terephthalic Units

    Directory of Open Access Journals (Sweden)

    Nina Heidarzadeh

    2016-07-01

    Full Text Available Copolyesters derived from 1,4-butanediol and constituted also of aliphatic and aromatic dicarboxylate units in a molar ratio of 3:7 were synthesized by a two-step polycondensation procedure. Succinic, adipic, and sebacic acids were specifically selected as the aliphatic component whereas terephthalic acid was chosen as the aromatic moiety. The second synthesis step was a thermal transesterification between the corresponding homopolymers, always attaining a random distribution as verified by NMR spectroscopy. Hybrid polymer composites containing 2.5 wt % of hydroxyapatite (HAp were also prepared by in situ polymerization. Hydroxyl groups on the nanoparticle surface allowed the grafting of polymer chains in such a way that composites were mostly insoluble in the typical solvents of the parent copolyesters. HAp had some influence on crystallization from the melt, thermal stability, and mechanical properties. HAp also improved the biocompatibility of samples due to the presence of Ca2+ cations and the damping effect of phosphate groups. Interestingly, HAp resulted in a significant increase in the hydrophilicity of samples, which considerably affected both enzymatic and hydrolytic degradability. Slight differences were also found in the function of the dicarboxylic component, as the lowest degradation rates was found for the sample constituted of the most hydrophobic sebacic acid units.

  16. Synthesis, structure, and photoluminescence of ZnII and CdII coordination complexes constructed by structurally related 5,6-substituted pyrazine-2,3-dicarboxylate ligands

    Science.gov (United States)

    Li, Yun-Wu; Tao, Ying; Hu, Tong-Liang

    2012-08-01

    Aiming at exploring the effect of substituting groups of three structurally related ligands, 5,6-diethyl-pyrazine-2,3-dicarboxylic acid (H2L1), 5,6-diphenyl-pyrazine-2,3-dicarboxylic acid (H2L2), and dibenzo[f,h]quinoxaline-2,3-dicarboxylic acid (H2L3), seven new coordination polymers constructed from these three substituted dicarboxylate ligands, {[Zn(L1)(H2O)3]·2H2O}∞ (1), {[Cd2(L2ʹ)4(H2O)]·3H2O}∞ (2), [Zn(L2)(CH3OH)]∞ (3), {[Zn(L2)(H2O)2]·H2O}∞ (4), {[Zn(L2ʹ)]·H2O}∞ (5), [Zn2(L3)(DMF)4]∞(6), [Zn(L3)(2,2ʹ-bipy)(H2O)]∞(7), have been prepared and structurally characterized. 1 is a 1D chain structure in which ZnII ion is six-coordinated with octahedron geometry. 2 is also a 1D chain structure in which there are two crystallographically independent CdII ions in the asymmetric unit and exist transformative L2ʹ ligands in the resulting complex. 3 and 4 both possess 2D layer network with the same (4, 82) topology, while the two complexes take different coordination modes during the forming of the compounds. 5 has a 1D chain structure based on the transformative L2ʹ ligand in which ZnII ion is five-coordinated with bipyramidal geometry. 6 and 7 both have 1D chain structure constructed from L3 ligand. Thereinto, ZnII ion in 6 is five-coordinated by three oxygen atoms from two individual L3 ligands and two oxygen atoms from two DMF molecules. While in 7 there are also five coordination sites occupied by two carboxylate oxygen atoms from two L3 ligands. In addition, the compounds are characterized by elemental analysis, IR spectra. The luminescent properties of the compounds are also discussed and exhibit strong fluorescent emissions in the solid state.

  17. Coumaroyl flavone glycosides and cinammic acid derivatives from the aerial parts of Phlomis bruguieri Desf.

    Directory of Open Access Journals (Sweden)

    M.R. Delnavazi

    2017-10-01

    Full Text Available Background and objectives: Phlomis bruguieri Desf. (Lamiaceae is a perennial herbaceous plant distributed in Iran, Turkey and Iraq. Despite medicinal potentials of this species, the current knowledge on its phytochemical constituents is limited. The aim of the present study was to investigate the phytochemical constituents of the essential oil and various extracts of this species. Methods: Essential oils of the plant aerial parts were extracted by hydrodistillation and steam distillation methods and analysed using GC and GC/MS.Column chromatography with silica gel (normal and reversed phases and Sephadex LH-20 were also used for the isolation of compounds from various extracts obtained from P. bruguieri aerial parts. The structures of isolated compounds were established by 1D and 2D NMR techniques. Results: By GC and GC/MS analysis, germacrene D (29.8%, apiole (20.7% and myristicin (16.63% were identified as the main compounds of hydrodistilled oil. Apiole (53.20% and myristicin (34.87% were also detected as the main compounds of the oil extracted by steam distillation method. Phytochemical analysis of the plant extracts resulted in the isolation and structural elucidation of  β-sitosterol (1, p-coumaric acid methyl ester (2, chrysoeriol 7-O-(3''-(E-p-coumaroyl-β-D-glucopyranoside (3, chrysoeriol 7-O-(3'',6''-di-O-(E-p-coumaroyl-β-D glucopyranoside (4, chrysoeriol 7-O-β-D-glucopyranoside (5, chlorogenic acid (6 and verbascoside (7. Conclusion: the results of the present study introduce steam distilled oil of P. bruguieri as a new source of apiole and myristicin. Moreover, identification of coumaroyl flavone glycosides and cinammic acid derivatives from the aerial parts of this species highlighted the species as a good candidate for further biological and pharmacological studies.

  18. Lactic acid/wood-based composite material. Part 2: Physical and mechanical performance.

    Science.gov (United States)

    Noël, Marion; Mougel, Eric; Fredon, Emmanuel; Masson, Daniel; Masson, Eric

    2009-10-01

    The synthesis of an innovative bio-composite material based on wood and lactic acid oligomers has been reported in Part 1. As a continuation of this previous work, this paper examines the bio-composite material's physical and mechanical performance. Properties were assessed in terms of dimensional stability, decay resistance, leaching, bending, shearing, compression and hardness testing. It has been shown that physical performance of the bio-composite was highly improved, in spite of high leaching mass loss. The mechanical structural properties were not strongly affected, except in decrease of shearing resistance due to the middle lamella degradation. An increase in hardness properties was also noticed.

  19. Examining the Amine Functionalization in Dicarboxylates: Photoelectron Spectroscopy and Theoretical Studies of Aspartate and Glutamate

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Shihu; Hou, Gao-Lei; Kong, Xiangyu; Valiev, Marat; Wang, Xue B.

    2014-06-30

    Aspartate (Asp2-) and Glutamate (Glu2-), two doubly charged conjugate bases of the corresponding amino acids were investigated using low temperature negative ion photoelectron spectroscopy (NIPES) and ab-initio calculations. The effect of amine functionalization was studied by a direct comparison to the parent dicarboxylate species (-CO2–(CH2)n–CO2-, DCn2-) -- succinate (DC22-) and propionate (DC32-). Experimentally the addition of amine group for n = 2 case (DC22-, Asp2-) significantly improves the stability of the resultant Asp2- dianionic species, albeit that NIPES shows only a small increase in adiabatic electron detachment energy (ADE) (+0.05eV). In contrast, for n = 3 (DC32-, Glu2-), much larger ADE increase is observed (+0.15eV). Similar results are obtained through ab-initio calculations. The latter indicates that increased stability of Asp2- can be attributed to the lowering of the energy of singlet dianion state due to hydrogen bonding effects. The effect of the amino group on the doublet monoanion state is more complicated, and results in the weakening of the binding of the adjacent carboxylate group due to electronic structure resonance effects. This conclusion is confirmed by the analysis of NIPES results that show enhanced production of near zero kinetic energy electrons observed experimentally for amine-functionalized species.

  20. Antioxidant capacity and fatty acid composition of different parts of Adenocarpus complicatus (Fabaceae from Turkey

    Directory of Open Access Journals (Sweden)

    Adnan Berber

    2014-03-01

    Full Text Available Adenocarpus complicatus is distributed throughout the Anatolian peninsula and is widely used for human and animal nutrition. The purpose of this work was to study the antioxidant properties and fatty acid composition of different parts of this plant (fruits and mixed materials. The species was collected from Golyuzu village of the Seydisehir district near Konya province, Turkey. Fruit and mixed parts obtained from this species were ground and a 15g sample was used to prepare methanolic extracts. Powdered plant samples were extracted with 100mL methanol in a mechanical shaker. The obtained extracts were filtered and concentrated to dryness under reduced pressure and were subsequently stored at -20°C. Antioxidant components, namely total phenolic and flavonoid content, were detected for each extract using spectrophotometric methods. Antioxidant capacity was evaluated by various assays including phosphomolybdenum, DPPH free radical scavenging capacity, metal chelating activity, and ferric and cupric ion reducing power. The fatty acid profiles of plant parts were also determined by using gas chromatography. The total phenolic content of fruit (36.21mgGAE/g was higher than that of mixed materials (13.79mgGAE/g. The methanolic extract of mixed material had higher amounts of flavonoid than fruit extract. The free radical scavenging activity of extracts was expressed as IC50 value (μg/mL (amount required to inhibit DPPH radical formation by 50%. The lower IC50 value reflects better free radical scavenging action. The radical scavenging activity of the samples was compared with BHT, it showed the mixed material to be almost two times more potent than the fruit extract. However, BHT is an excellent free radical scavenger with an IC50 of 34.061μg/mL. The ferric and cupric reducing power potentials of the extracts were expressed as EC50 value (the effective concentration at which the absorbance was 0.5. Fruit extract exhibited strong ferric reducing

  1. Formation of Dihydroxybenzenes in Cigarette Smoke. Part 1. Contribution from Chlorogenic Acid and Rutin

    Directory of Open Access Journals (Sweden)

    Davis MF

    2014-12-01

    Full Text Available Catechol and alkylcatechols are known co-carcinogens present in cigarette smoke. Hydroquinone, although nongenotoxic, can form a metabolite with nephrotoxic properties and is a potential human carcinogen. The formation of dihydroxybenzenes during smoking originates with the pyrolysis of several precursors from tobacco. These include cellulose, chlorogenic acid, rutin, etc. The present study attempts to quantitate the contribution of chlorogenic acid and rutin to the formation of dihydroxybenzenes and of some alkyldihydroxybenzenes. Also it estimates the contribution to the formation of dihydroxybenzenes from other potential precursors including glucose, fructose, sucrose, cellulose, pectin, starch, and lignin. The study was done in three parts: 1. pyrolytic evaluation of the amount of dihydroxybenzenes in smoke generated from isolated potential precursors; 2. analysis of smoke from cigarettes made from a variety of tobaccos (14 single grades and two blended cigarettes, followed by correlations of dihydroxybenzenes yield with the tobacco content of various suspected precursors; 3. addition of chlorogenic acid or rutin to several tobaccos followed by the smoking of the spiked cigarettes and measurement of dihydroxybenzenes yield increase. The study shows that for a variety of singlegrade cigarettes and for two blended cigarettes (one being the 2R4F Kentucky reference, the contribution of chlorogenic acid and of rutin to the formation of catechol and hydroquinone in smoke depends on the blend. For the 2R4F cigarette, the contribution from chlorogenic acid is 8.7% for catechol, and 7.7% for hydroquinone (for ISO smoking protocol. For the same cigarette, the contribution from rutin is 3.7% for catechol and 5.1% for hydroquinone. The results of the study are in agreement with a previously reported finding indicating that chlorogenic acid contributes about 13% to the catechol formation in smoke for the 1R1 Kentucky reference cigarette. The study

  2. N-heterocyclic carboxylic acids

    Indian Academy of Sciences (India)

    Administrator

    2,3-dicarboxylic acid) is solved by single crystal X-ray diffraction technique. Antibacterial activities of the complexes are evaluated by determining their capacity to inhibit the growth of E. coli 10536 (MIC) in a nutrient broth. Proc. Indian Acad. Sci. (Chem. Sci.), Vol. 112, No. 3, June 2000, p. 355. © Indian Academy of Sciences.

  3. Acidic deposition: State of science and technology. Report 5. Evaluation of regional acidic deposition models (Part 1) and selected applications of RADM (Part 2). Final report

    International Nuclear Information System (INIS)

    Dennis, R.L.; Barchet, W.R.; Clark, T.L.; Seilkop, S.K.; Roth, P.M.

    1990-09-01

    The State-of-Science/Technology report describes the scientific community's current knowledge regarding the evaluation of regional acidic deposition models. The report summarizes this knowledge by describing the process, as well as the history, of evaluating acidic deposition models and by providing the results obtained from the recent evaluations of such models. The concepts of model evaluation, in general, are discussed in early sections of the report, but particular emphasis is placed on Eulerian-style evaluations. The two Eulerian models covered are the Regional Acid Deposition Model (RADM), which was developed for the United States, and the Acid Deposition and Oxidant Model (ADOM), developed for Canada. The results of evaluating several versions of RADM and ADOM have provided model evaluators with the most current assessment of how reliably these models can address several key issues posed by the National Acid Precipitation Assessment Program (NAPAP). That is, how well can the models predict the change in regional acidic deposition that would result from changes in precursor emissions; the influence of sources in one region on acidic deposition in other sensitive receptor regions; the levels of acidic deposition at certain sensitive receptor regions; and the acidic deposition due to emissions transported across geographical/political boundaries, including the United States-Canadian border

  4. A novel one-dimensional chain built of vanadyl ions and pyrazine-2,5-dicarboxylate

    NARCIS (Netherlands)

    Lankelma, M.; de Boer, J.; Ferbinteanu, M.; Dantas Ramos, A.L.; Tanasa, R.; Rothenberg, G.; Tanase, S.

    2015-01-01

    We present a new coordination polymer, {[VO(pzdc)(H2O)(2)] H2O}(n), built from vanadyl and pyrazine-2,5-dicarboxylate (pzdc) ions. It consists of a one-dimensional chain of vanadyl ions linked by pzdc ions. The carboxylate groups show monodentate coordination, while the pyrazine ring is present both

  5. The phytotoxicity to tobacco plants of short-chain carboxylic acids at atmospheric concentration levels in urban areas.

    Science.gov (United States)

    Hirabayashi, M; Ozaki, T; Matsuo, M

    2001-03-01

    In this paper, we describe the influence of monocarboxylic acids (formic acid and acetic acid) and dicarboxylic acids (succinic acid and adipic acid), which are usually contained in aerosol particles and fog water, on the growth of tobacco plant. Their influence was examined by spraying the acid solutions on intact plants and by administering them in a culture medium for suspension-cultured cells. Their growth rates suggest that the influence of short-chain monocarboxylic acids was not significant in both the intact plant experiment and the cell culture experiment. In contrast, dicarboxylic acids exhibited significant influence on the growth of intact plants and no influence on culture cells, indicating that their toxicity is exerted mainly on the tissue of leaf surface. Phytotoxicity of dicarboxylic acids is higher than that of monocarboxylic acids.

  6. Production of α-keto acids Part I. Immobilized cells ofTrigonopsis variabilis containing D-amino acid oxidase.

    Science.gov (United States)

    Brodelius, P; Nilsson, K; Mosbach, K

    1981-12-01

    Whole cells ofTrigonopsis variabilis were immobilized by entrapment in Ca(2+)-alginate and used for the production of α-keto acids from the corresponding D-amino acids. The D-amino acid oxidase within the immobilized cells has a broad substrate specificity. Hydrogen peroxide formed in the enzymatic reaction was efficiently hydrolyzed by manganese oxide co-immobilized with the cells. The amino acid oxidase activity was assayed with a new method based on reversed-phase HPLC. Oxygen requirements, bead size, concentration of cells in the beads, flow rate, and other factors were investigated in a " trickle-bed " reactor.

  7. Lead-acid batteries in micro-hybrid applications. Part I. Selected key parameters

    Science.gov (United States)

    Schaeck, S.; Stoermer, A. O.; Kaiser, F.; Koehler, L.; Albers, J.; Kabza, H.

    Micro-hybrid electric vehicles were launched by BMW in March 2007. These are equipped with brake energy regeneration (BER) and the automatic start and stop function (ASSF) of the internal combustion engine. These functions are based on common 14 V series components and lead-acid (LA) batteries. The novelty is given by the intelligent onboard energy management, which upgrades the conventional electric system to the micro-hybrid power system (MHPS). In part I of this publication the key factors for the operation of LA batteries in the MHPS are discussed. Especially for BER one is high dynamic charge acceptance (DCA) for effective boost charging. Vehicle rest time is identified as a particular negative parameter for DCA. It can be refreshed by regular fully charging at elevated charge voltage. Thus, the batteries have to be outstandingly robust against overcharge and water loss. This can be accomplished for valve-regulated lead-acid (VRLA) batteries at least if they are mounted in the trunk. ASSF goes along with frequent high-rate loads for warm cranking. The internal resistance determines the drop of the power net voltage during cranking and is preferably low for reasons of power net stability even after years of operation. Investigations have to be done with aged 90 Ah VRLA-absorbent glass mat (AGM) batteries. Battery operation at partial state-of-charge gives a higher risk of deep discharging (overdischarging). Subsequent re-charging then is likely to lead to the formation of micro-short circuits in the absorbent glass mat separator.

  8. Molecular and polymeric uranyl and thorium hybrid materials featuring methyl substituted pyrazole dicarboxylates and heterocyclic 1,3-diketones

    Science.gov (United States)

    Carter, Korey P.; Kerr, Andrew T.; Taydakov, Ilya V.; Cahill, Christopher L.

    2018-02-01

    A series of seven novel f-element bearing hybrid materials have been prepared from either methyl substituted 3,4 and 4,5-pyrazoledicarboxylic acids, or heterocyclic 1,3- diketonate ligands using hydrothermal conditions. Compounds 1, [UO2(C6H4N2O4)2(H2O)], and 3, [Th(C6H4N2O4)4(H2O)5]·H2O feature 1-Methyl-1H-pyrazole-3,4-dicarboxylate ligands (SVI-COOH 3,4), whereas 2, [UO2(C6H4N2O4)2(H2O)], and 4, [Th(C6H5N2O4)(OH)(H2O)6]2·2(C6H5N2O4)·3H2O feature 1-Methyl-1H-pyrazole-4,5-dicarboxylate moieties (SVI-COOH 4,5). Compounds 5, [UO2(C13H15N4O2)2(H2O)]·2H2O and 6, [UO2(C11H11N4O2)2(H2O)]·4.5H2O feature 1,3-bis(4-N1-methyl-pyrazolyl)propane-1,3-dione and 1,3-bis(4-N1,3-dimethyl-pyrazolyl)propane-1,3-dione respectively, whereas the heterometallic 7, [UO2(C11H11N4O2)2(CuCl2)(H2O)]·2H2O is formed by using 6 as a metalloligand starting material. Single crystal X-ray diffraction indicates that all coordination to either [UO2]2+ or Th(IV) metal centers is through O-donation as anticipated. Room temperature, solid-state luminescence studies indicate characteristic uranyl emissive behavior for 1 and 2, whereas those for 5 and 6 are weak and poorly resolved.

  9. Lactic Acid Bacteria Selection for Biopreservation as a Part of Hurdle Technology Approach Applied on Seafood

    Directory of Open Access Journals (Sweden)

    Norman Wiernasz

    2017-05-01

    Full Text Available As fragile food commodities, microbial, and organoleptic qualities of fishery and seafood can quickly deteriorate. In this context, microbial quality and security improvement during the whole food processing chain (from catch to plate, using hurdle technology, a combination of mild preserving technologies such as biopreservation, modified atmosphere packaging, and superchilling, are of great interest. As natural flora and antimicrobial metabolites producers, lactic acid bacteria (LAB are commonly studied for food biopreservation. Thirty-five LAB known to possess interesting antimicrobial activity were selected for their potential application as bioprotective agents as a part of hurdle technology applied to fishery products. The selection approach was based on seven criteria including antimicrobial activity, alteration potential, tolerance to chitosan coating, and superchilling process, cross inhibition, biogenic amines production (histamine, tyramine, and antibiotics resistance. Antimicrobial activity was assessed against six common spoiling bacteria in fishery products (Shewanella baltica, Photobacterium phosphoreum, Brochothrix thermosphacta, Lactobacillus sakei, Hafnia alvei, Serratia proteamaculans and one pathogenic bacterium (Listeria monocytogenes in co-culture inhibitory assays miniaturized in 96-well microtiter plates. Antimicrobial activity and spoilage evaluation, both performed in cod and salmon juice, highlighted the existence of sensory signatures and inhibition profiles, which seem to be species related. Finally, six LAB with no unusual antibiotics resistance profile nor histamine production ability were selected as bioprotective agents for further in situ inhibitory assays in cod and salmon based products, alone or in combination with other hurdles (chitosan, modified atmosphere packing, and superchilling.

  10. Syntheses, crystal structures and thermal properties of six coordination polymers based on 2-(p-methylphenyl)-imidazole dicarboxylate.

    Science.gov (United States)

    Zhang, Yu; Yuan, Pengfei; Zhu, Yanyan; Li, Gang

    2013-10-01

    Through solvothermal reactions of 2-(p-methylphenyl)-1H-imidazole-4,5-dicarboxylic acid (p-MePhH3IDC) with transition-metal ions, six coordination polymers [Pb2(p-MePhHIDC)(p-MePhH2IDC)2(phen)2]n (phen = 1,10-phenanthroline) (), [Pb(p-MePhH2IDC)2]n (), [Cd3(p-MePhHIDC)2(p-MePhH2IDC)2(H2O)2]n (), {[Cd(p-MePhHIDC)(H2O)]4·H2O}n (), {[Cd2(p-MePhHIDC)2(4,4'-bipy)]·4H2O}n (4,4'-bipy = 4,4'-bipyridine) () and [Mn3(p-MePhHIDC)2(p-MePhH2IDC)2(4,4'-bipy)]n () have been synthesized successfully. X-ray single-crystal analyses show that polymers have rich structural chemistry ranging from one-dimensional (), two-dimensional () to three-dimensional polymers (, , and ). In these polymers, the p-MePhH3IDC ligand shows flexible coordination modes tuned by different synthetical conditions, including the addition of coligands, temperature, pH value and so on. Furthermore, the polymers have been investigated by solid-state ultraviolet spectra and thermogravimetric analyses.

  11. In situ hydrothermal syntheses, structures and photoluminescent properties of four novel metal-organic frameworks constructed by lanthanide (Ln=Ce(III), Pr(III), Eu(III)) and Cu(I) metals with flexible dicarboxylate acids and piperazine-based ligands

    Energy Technology Data Exchange (ETDEWEB)

    Ay, Burak; Karaca, Serkan [Department of Chemistry, Arts and Science Faculty, Çukurova University, 01330 Adana (Turkey); Yildiz, Emel, E-mail: eeyildiz@cu.edu.tr [Department of Chemistry, Arts and Science Faculty, Çukurova University, 01330 Adana (Turkey); Lopez, Valerie [Department of Chemistry, Syracuse University, Syracuse, NY 13244 (United States); Nanao, Max H. [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9 (France); University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9 (France); Zubieta, Jon [Department of Chemistry, Syracuse University, Syracuse, NY 13244 (United States); Université Grenoble Alpes Laboratoire de Physiologie Cellulaire & Végétale, Institut de Recherches en Technologies et Sciences pour le Vivant, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France)

    2016-01-15

    Four novel metal-organic frameworks,[Cu{sub 2}Cl{sub 2}(pyrz)]{sub n} (1) and (H{sub 2}pip){sub n}[Ln{sub 2}(pydc){sub 4}(H{sub 2}O){sub 2}]{sub n} (Ln=Ce (2), Pr (3) and Eu (4), H{sub 2}pzdc=2,3-pyrazinedicarboxylic acid, pyrz=pyrazine, H{sub 2}pydc=2,6-pyridinedicarboxylic acid, H{sub 2}pip=piperazine) have been synthesized under hydrothermal conditions and characterized by the elemental analysis, ICP, Far IR (FIR), FT-IR spectra, TGA, single crystal X-ray diffraction analysis and powder X-ray diffraction (PXRD). Compound 1 is two-dimensional containing Cl-Cu-Cl sites, while the lanthanide complexes contain one-dimensional infinite Ln–O-Ln chains. All the complexes show high thermal stability. The complexes 1–3 exhibit luminescence emission bands at 584, 598 and 614 nm at room temperature when excited at 300 nm. Complex 4 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature. - Graphical abstract: Four novel metal-organic frameworks have been synthesized under hydrothermal conditions. Thermal and luminescent properties of the compounds have been investigated.

  12. Chemical composition and antibacterial properties of essential oil and fatty acids of different parts of Ligularia persica Boiss.

    Science.gov (United States)

    Mohadjerani, Maryam; Hosseinzadeh, Rahman; Hosseini, Maryam

    2016-01-01

    The objective of this research was to investigate the chemical composition and antibacterial activities of the fatty acids and essential oil from various parts of Ligularia persica Boiss (L. persica) growing wild in north of Iran. Essential oils were extracted by using Clevenger-type apparatus. Antibacterial activity was tested on two Gram-positive and two Gram-negative bacteria by using micro dilution method. GC and GC∕MS analysis of the oils resulted in detection of 94%, 96%, 93%, 99% of the total essential oil of flowers, stems, roots and leaves, respectively. The main components of flowers oil were cis-ocimene (15.4%), β-myrcene (4.4%), β-ocimene (3.9%), and γ-terpinene (5.0%). The major constituents of stems oil were β-phellandrene (5.4%), β-cymene (7.0%), valencene (3.9%). The main compounds of root oil were fukinanolid (17.0%), α-phellandrene (11.5%) and Β-selinene (5.0%) and in the case of leaves oil were cis-ocimene (4.8%), β-ocimene (4.9%), and linolenic acid methyl ester (4.7%). An analysis by GC-FID and GC-MS on the fatty-acid composition of the different parts of L. persica showed that major components were linoleic acid (11.3-31.6%), linolenic acid (4.7-21.8%) and palmitic acid (7.2-23.2%). Saturated fatty acids were found in lower amounts than unsaturated ones. The least minimum inhibition concentration (MIC) of the L. persica was 7.16 μg/ml against Pseudomonas aeruginosa. Our study indicated that the essential oil from L. persica stems and flowers showed high inhibitory effect on the Gram negative bacteria. The results also showed that fatty acids from the stems and leaves contained a high amount of poly-unsaturated fatty acids (PUFAs).

  13. Quantitative determination by HPLC of ent-kaurenoic and grandiflorenic acids in aerial parts of Wedelia paludosa D.C.

    Directory of Open Access Journals (Sweden)

    R. Batista

    Full Text Available There are several reports of biological activity for kaurenoic acid (1, which is found in the aerial parts of Wedelia paludosa D.C., a herbaceous plant of the Asteraceae family abundant in Brazil, and that contains grandiflorenic acid (2 also. Both of these diterpenes were shown to cause lysis of trypomastigotes of the protozoa Trypanosoma cruzi, the causative agent of Chagas' disease (American trypanosomiasis. This paper reports the quantitative determination of these diterpene acids in the aerial parts of W. paludosa by an isocratic RP-HPLC method employing 60% acetonitrile in water and UV detection (220 nm. Kaurenoic acid (1 was found to be more abundant (0.85 ± 0.08% while the amount of grandiflorenic acid (2 determined was almost three times lower (0.32 ± 0.02%. No significant seasonal variation was observed for these compounds in W. paludosa growing in Belo Horizonte (MG, Brazil what points out to the aerial parts of this species are a good source of these biologically active diterpenes along all the year.

  14. The first 3-fold interpenetrating framework containing both azobenzene-3,3′-dicarboxylicate and 1,2-bis(4-pyridylethylene

    Directory of Open Access Journals (Sweden)

    Yaping Duan

    2014-12-01

    Full Text Available The reactions of Co II or Ni II acetate with azobenzene-3,3′-dicarboxylic acid (3,3′-H2AZDB and 1,2-bis(4-pyridylethylene (bpe afforded two isomorphic compounds [M 2(3,3′-AZDB2(bpe2]n (M=Co (1 and Ni (2 under hydrothermal conditions. They were characterized by elemental analysis, IR spectra, thermogravimetric analysis and single-crystal X-ray diffraction technique. The structures of compounds 1 and 2 have similar 3-D 3-fold interpenetrating structures in which each 3-D net displayed a 6-connected pcu network consisting of M 2+-AZDB2− layers and bpe pillars. Variable-temperature magnetic-susceptibility measurements revealed the occurrence of weak antiferromagnetic interactions between the Co(II atoms in 1.

  15. Luminescence and Magnetic Properties of Two Three-Dimensional Terbium and Dysprosium MOFs Based on Azobenzene-4,4′-Dicarboxylic Linker

    Directory of Open Access Journals (Sweden)

    Belén Fernández

    2016-02-01

    Full Text Available We report the in situ formation of two novel metal-organic frameworks based on terbium and dysprosium ions using azobenzene-4,4′-dicarboxylic acid (H2abd as ligand, synthesized by soft hydrothermal routes. Both materials show isostructural three-dimensional networks with channels along a axis and display intense photoluminescence properties in the solid state at room temperature. Textural properties of the metal-organic frameworks (MOFs have been fully characterized although no appreciable porosity was obtained. Magnetic properties of these materials were studied, highlighting the dysprosium material displays slightly frequency-dependent out of phase signals when measured under zero external field and under an applied field of 1000 Oe.

  16. Solubility of fumaric acid and its monosodium salt

    NARCIS (Netherlands)

    Roa Engel, C.A.; Horst, J.H. ter; Pieterse, M.; Wielen, L.A.M. van der; Straathof, A.J.J.

    2013-01-01

    Fumaric acid is a dicarboxylic acid applied in food industry and in some polymers. Currently, its fermentative production from renewable resources is receiving much attention, and crystallization is used to recover it. To determine the window of operation for crystallization from multicomponent

  17. Dimethyl 2,6-dihydroxybenzene-1,4-dicarboxylate

    Directory of Open Access Journals (Sweden)

    Deming Zhao

    2010-04-01

    Full Text Available The title compound, C10H10O6, was obtained from an esterification reaction of 2,6-dihydroxyterephthalic acid and methanol. In the molecular structure, all of the C atoms are nearly coplanar. The two hydroxy groups have C2 symmetry. Intramolecular O—H...O hydrogen bonds are observed. In the crystal, weak O—H...O interactions link the molecules.

  18. Amino acids as co-amorphous stabilizers for poorly water-soluble drugs - Part 2

    DEFF Research Database (Denmark)

    Löbmann, K.; Laitinen, R.; Strachan, C.

    2013-01-01

    The formation of co-amorphous drug-drug mixtures has proved to be a powerful approach to stabilize the amorphous form and at the same time increase the dissolution of poorly water-soluble drugs. Molecular interactions in these co-amorphous formulations can play a crucial role in stabilization...... spectroscopy. Molecular interactions of the drugs carbamazepine and indomethacin with the amino acids arginine, phenylalanine, and tryptophan were investigated. The amino acids were chosen from the biological target site of both drugs and prepared as co-amorphous formulations together with the drugs...... that the drugs formed specific molecular interactions (hydrogen bonding and π-π interactions) with the amino acids. In the drug-amino acid mixtures that contained amino acids which were not present at the biological target site, no such interactions were identified. This study shows the potential of amino acids...

  19. Putrescine production via the ornithine decarboxylation pathway improves the acid stress survival of Lactobacillus brevis and is part of a horizontally transferred acid resistance locus.

    Science.gov (United States)

    Romano, Andrea; Ladero, Victor; Alvarez, Miguel A; Lucas, Patrick M

    2014-04-03

    Decarboxylation pathways are widespread among lactic acid bacteria; their physiological role is related to acid resistance through the regulation of the intracellular pH and to the production of metabolic energy via the generation of a proton motive force and its conversion into ATP. These pathways include, among others, biogenic amine (BA) production pathways. BA accumulation in foodstuffs is a health risk; thus, the study of the factors involved in their production is of major concern. The analysis of several lactic acid bacterial strains isolated from different environments, including fermented foods and beverages, revealed that the genes encoding these pathways are clustered on the chromosome, which suggests that these genes are part of a genetic hotspot related to acid stress resistance. Further attention was devoted to the ornithine decarboxylase pathway, which affords putrescine from ornithine. Studies were performed on three lactic acid bacteria belonging to different species. The ODC pathway was always shown to be involved in cytosolic pH alkalinisation and acid shock survival, which were observed to occur with a concomitant increase in putrescine production. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Electron transport chains of lactic acid bacteria - walking on crutches is part of their lifestyle

    Science.gov (United States)

    Brooijmans, Rob; Hugenholtz, Jeroen

    2009-01-01

    A variety of lactic acid bacteria contain rudimentary electron transport chains that can be reconstituted by the addition of heme and menaquinone to the growth medium. These activated electron transport chains lead to higher biomass production and increased robustness, which is beneficial for industrial applications, but a major concern when dealing with pathogenic lactic acid bacteria. PMID:20948651

  1. Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors

    Science.gov (United States)

    Jae-Won Lee; Thomas W. Jeffries

    2011-01-01

    Dicarboxylic organic acids have properties that differ from those of sulfuric acid during hydrolysis of lignocellulose. To investigate the effects of different acid catalysts on the hydrolysis and degradation of biomass compounds over a range of thermochemical pretreatments, maleic, oxalic and sulfuric acids were each used at the same combined severity factor (CSF)...

  2. Metabolic engineering of Rhizopus oryzae: Effects of overexpressing pyc and pepc genes on fumaric acid biosynthesis from glucose

    Science.gov (United States)

    Fumaric acid, a dicarboxylic acid used as a food acidulant and in manufacturing synthetic resins, can be produced from glucose in fermentation by Rhizopus oryzae. However, the fumaric acid yield is limited by the co-production of ethanol and other byproducts. To increase fumaric acid production, ove...

  3. Studies of H3K4me3 demethylation by KDM5B/Jarid1B/PLU1 reveals strong substrate recognition in vitro and identifies 2,4-pyridine-dicarboxylic acid as an in vitro and in cell inhibitor.

    Science.gov (United States)

    Kristensen, Line H; Nielsen, Anders L; Helgstrand, Charlotte; Lees, Michael; Cloos, Paul; Kastrup, Jette S; Helin, Kristian; Olsen, Lars; Gajhede, Michael

    2012-06-01

    Dynamic methylations and demethylations of histone lysine residues are important for gene regulation and are facilitated by histone methyltransferases and histone demethylases (HDMs). KDM5B/Jarid1B/PLU1 is an H3K4me3/me2-specific lysine demethylase belonging to the JmjC domain-containing family of histone demethylases (JHDMs). Several studies have linked KDM5B to breast, prostate and skin cancer, highlighting its potential as a drug target. However, most inhibitor studies have focused on other JHDMs, and inhibitors for KDM5B remain to be explored. Here, we report the expression, purification and characterization of the catalytic core of recombinant KDM5B (ccKDM5B, residues 1-769). We show that ccKDM5B, recombinantly expressed in insect cells, demethylates H3K4me3 and H3K4me2 in vitro. The kinetic characterization showed that ccKDM5B has an apparent Michaelis constant (K(m) (app) ) value of 0.5 μm for its trimethylated substrate H3(1-15)K4me3, a considerably increased apparent substrate affinity than reported for related HDMs. Despite the presence of a PHD domain, the catalytic activity was not affected by additional methylation at the H3K9 position, suggesting that in vitro chromatin cross-talk between H3K4 and H3K9 does not occur for ccKDM5B. Inhibition studies of ccKDM5B showed both in vitro and in cell inhibition of ccKDM5B by 2,4-pyridinedicarboxylic acid (2,4-PDCA) with a potency similar to that reported for the HDM KDM4C. Structure-guided sequence alignment indicated that the binding mode of 2,4-PDCA is conserved between KDM4A/C and KDM5B. © 2012 The Authors Journal compilation © 2012 FEBS.

  4. Histological structures and acidic etching sensitivities of the enamels at the occlusal pit parts in the deciduous and permanent teeth

    International Nuclear Information System (INIS)

    Takahashi, Masashi; Zheng, Jinhua; Mori, Kazuhisa; Mataga, Izumi; Kobayashi, Kan

    2006-01-01

    The purpose of this study is to compare the histological structures and acidic etching sensitivities of the enamels at the occlusal pit parts between the deciduous molars and permanent molars. They were observed by the polarizing and scanning electron microscopies. The enamel rods were less made slender by EDTA etching and the outlines of the apatite crystals, constituting the enamel rods, were clearer at the occlusal pit part of the deciduous molar than that of the permanent molar in reverse of that at the cusp part. It is thought that the enamel at the occlusal pit part of the permanent molar is more easily decayed by the dental caries than that of the deciduous molar because the former is more easily decayed by the acidic etching than the latter in reverse at the cusp part. It is considered that the thin superficialmost layer of the enamel at the occlusal pit part of the permanent molar has originally higher degree of resistance to the dental caries

  5. Histological structures and acidic etching sensitivities of the enamels at the occlusal pit parts in the deciduous and permanent teeth

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Masashi [Department of Dental Hygiene, Nippon Dental University College at Niigata, Niigata 951-8580 (Japan)]. E-mail: masashi@ngt.ndu.ac.jp; Zheng, Jinhua [Department of Oral Anatomy, School of Dentistry at Niigata, Nippon Dental University, Niigata 951-8580 (Japan); Mori, Kazuhisa [Department of Oral Surgery, School of Dentistry at Niigata, Nippon Dental University, Niigata 951-8580 (Japan); Mataga, Izumi [Department of Oral Surgery, School of Dentistry at Niigata, Nippon Dental University, Niigata 951-8580 (Japan); Kobayashi, Kan [Department of Oral Anatomy, School of Dentistry at Niigata, Nippon Dental University, Niigata 951-8580 (Japan)

    2006-05-15

    The purpose of this study is to compare the histological structures and acidic etching sensitivities of the enamels at the occlusal pit parts between the deciduous molars and permanent molars. They were observed by the polarizing and scanning electron microscopies. The enamel rods were less made slender by EDTA etching and the outlines of the apatite crystals, constituting the enamel rods, were clearer at the occlusal pit part of the deciduous molar than that of the permanent molar in reverse of that at the cusp part. It is thought that the enamel at the occlusal pit part of the permanent molar is more easily decayed by the dental caries than that of the deciduous molar because the former is more easily decayed by the acidic etching than the latter in reverse at the cusp part. It is considered that the thin superficialmost layer of the enamel at the occlusal pit part of the permanent molar has originally higher degree of resistance to the dental caries.

  6. Synthesis of Furandicarboxylic Acid Esters From Nonfood Feedstocks Without Concomitant Levulinic Acid Formation

    NARCIS (Netherlands)

    Klis, van der Frits; Haveren, van Jacco; Es, van Daan S.; Bitter, Harry

    2017-01-01

    5-Hydroxymethylfurfural (HMF) is a versatile intermediate in biomass conversion pathways. However, the notoriously unstable nature of HMF imposes challenges to design selective routes to chemicals such as furan-2,5-dicarboxylic acid (FDCA). Here, a new strategy for obtaining furans is presented,

  7. Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids

    Science.gov (United States)

    Liheng Chen; Junyong Zhu; Carlos Baez; Peter Kitin; Thomas Elder

    2016-01-01

    Here we report the production of highly thermal stable and functional cellulose nanocrystals (CNC) and nanofibrils (CNF) by hydrolysis using concentrated organic acids. Due to their low water solubility, these solid organic acids can be easily recovered after hydrolysis reactions through crystallization at a lower or ambient temperature. When dicarboxylic acids were...

  8. Structural modulation and luminescent properties of four Cd{sup II} coordination architectures based on 3-(pyridin-4-yl)-5-(pyrazin-2-yl)-1H-1,2,4-triazole and flexible/rigid dicarboxylate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Liang; Dong, Wen-Wen, E-mail: dongww1@126.com; Ye, Xiao; Zhao, Jun; Li, Dong-Sheng, E-mail: lidongsheng1@126.com

    2016-10-15

    To systematically investigate the influence of the flexible or rigid auxiliary ligands on the structures and properties of transition metal compounds, we synthesized four new d{sup 10} coordination polymers (CPs) from 3-(pyridin-4-yl)-5-(pyrazin-2-yl)-1H-1,2,4-triazole (4-Hpzpt) and flexible/rigid dicarboxylate ligands, [Cd(4-pzpt){sub 2}]{sub n} (1), [Cd{sub 3}(4-pzpt){sub 2}(suc){sub 2}]{sub n} (2), [Cd{sub 2}(4-Hpzpt)(nbc){sub 2}(H{sub 2}O)]{sub n} (3) and ([Cd{sub 2}(4-pzpt){sub 2}(tfbdc)(H{sub 2}O){sub 4}]·H{sub 2}O){sub n} (4) (H{sub 2}suc=1,2-ethanedicarboxylic acid, H{sub 2}nbc=hthalene-1,4-dicarboxylic acid, H{sub 2}tfbdc =2,3,5,6-tetrafluoroterephthalic acid). Single crystal X-ray analysis indicates that compound 1 shows a 4{sup 4}-sql layer, which is extended to a 3D network via nonclassical C–H{sup …}N hydrogen bonds. Compound 2 possesses a 6-connected pcu-4{sup 12}0.6{sup 3} net composed of trinuclear Cd{sup II}-clusters. Compound 3 represents a rare 3D (3,4,4,5)-connected topology with a Schläfli symbol of (4·6·7)(4·5{sup 3}·7{sup 2})(5{sup 3}·6·7·9)(4{sup 2}·5{sup 5}·6·7{sup 2}). Compound 4 exhibits a 2D+2D→2D parallel interpenetrated 6{sup 3}-hcb network. The adjacent 2D networks are interdigitated with each other to form the resulting 3D supramolecular architecture through classical O–H{sup …}N and O–H{sup …}O hydrogen bonds. Structural diversities indicate that the nature of flexible/rigid-dicarboxlates plays crucial roles in modulating structures of these compounds. Moreover, the luminescent properties of them have been briefly investigated. - Graphical abstract: Four new Cd{sup II} coordination architectures constructed from the primary ligand 4-Hpzpt and flexible/rigid dicarboxylate coligands. Structural diversities indicate that the nature of flexible/rigid-dicarboxlates plays crucial roles in modulating structures of these compounds. And more, the thermal stability and luminescence are discussed. - Highlights:

  9. Converting Eucalyptus biomass into ethanol: Financial and sensitivity analysis in a co-current dilute acid process. Part II

    International Nuclear Information System (INIS)

    Gonzalez, R.; Treasure, T.; Phillips, R.; Jameel, H.; Saloni, D.; Wright, J.; Abt, R.

    2011-01-01

    The technical and financial performance of high yield Eucalyptus biomass in a co-current dilute acid pretreatment followed by enzymatic hydrolysis process was simulated using WinGEMS registered and Excel registered . Average ethanol yield per dry Mg of Eucalyptus biomass was approximately 347.6 L of ethanol (with average carbohydrate content in the biomass around 66.1%) at a cost of 0.49 L -1 of ethanol, cash cost of ∝0.46 L -1 and CAPEX of 1.03 L -1 of ethanol. The main cost drivers are: biomass, enzyme, tax, fuel (gasoline), depreciation and labor. Profitability of the process is very sensitive to biomass cost, carbohydrate content (%) in biomass and enzyme cost. Biomass delivered cost was simulated and financially evaluated in Part I; here in Part II the conversion of this raw material into cellulosic ethanol using the dilute acid process is evaluated. (author)

  10. Basic principles of electrolyte chemistry for microfluidic electrokinetics. Part I: Acid-base equilibria and pH buffers.

    Science.gov (United States)

    Persat, Alexandre; Chambers, Robert D; Santiago, Juan G

    2009-09-07

    We review fundamental and applied acid-base equilibrium chemistry useful to microfluidic electrokinetics. We present elements of acid-base equilibrium reactions and derive rules for pH calculation for simple buffers. We also present a general formulation to calculate pH of more complex, arbitrary mixtures of electrolytes, and discuss the effects of ionic strength and temperature on pH calculation. More practically, we offer advice on buffer preparation and on buffer reporting. We also discuss "real world" buffers and likely contamination sources. In particular, we discuss the effects of atmospheric carbon dioxide on buffer systems, namely, the increase in ionic strength and acidification of typical electrokinetic device buffers. In Part II of this two-paper series, we discuss the coupling of acid-base equilibria with electrolyte dynamics and electrochemistry in typical microfluidic electrokinetic systems.

  11. Haloacetic acids in the aquatic environment. Part II: ecological risk assessment

    International Nuclear Information System (INIS)

    Hanson, Mark L.; Solomon, Keith R.

    2004-01-01

    Haloacetic acids (HAAs) are environmental contaminants found in aquatic ecosystems throughout the world as a result of both anthropogenic and natural production. The ecological risk posed by these compounds to organisms in freshwater environments, with a specific focus on aquatic macrophytes, was characterized. The plants evaluated were Lemna gibba, Myriophyllum spicatum and M. sibiricum and the HAAs screened were monochloroacetic acid (MCA), dichloroacetic acid (DCA), trichloroacetic acid (TCA), trifluoroacetic acid (TFA) and chlorodifluoroacetic acid (CDFA). Laboratory toxicity data formed the basis of the risk assessment, but field studies were also utilized. The estimated risk was calculated using hazard quotients (HQ), as well as effect measure distributions (EMD) in a modified probabilistic ecological risk assessment. EMDs were used to estimate HAA thresholds of toxicity for use in HQ assessments. This threshold was found to be a more sensitive measure of low toxicity than the no observed effect concentrations (NOEC) or the effective concentration (EC 10 ). Using both deterministic and probabilistic methods, it was found that HAAs do not pose a significant risk to freshwater macrophytes at current environmental concentrations in Canada, Europe or Africa for both single compound and mixture exposures. Still, HAAs are generally found as mixtures and their potential interactions are not fully understood, rendering this phase of the assessment uncertain and justifying further effects characterization. TCA in some environments poses a slight risk to phytoplankton and future concentrations of TFA and CDFA are likely to increase due to their recalcitrant nature, warranting continued environmental surveillance of HAAs. - Current environmental concentrations of haloacetic acids do not pose a risk to aquatic macrophytes, but could impact plankton

  12. Identification of Flavonoids (Quercetin, Gallic acid and Rutin from Catharanthus roseus Plant Parts using Deep Eutectic Solvent

    Directory of Open Access Journals (Sweden)

    Asma Nisar

    2017-02-01

    Full Text Available Green technology is the most important topic in the pharmaceutical field because it reduces the cost of medicines and minimizes the environmental impact of the field and is better for human health and safety. Green chemistry emphasizes that the solvent should be nontoxic, safe, cheap, green, readily available, recyclable, and biodegradable. Deep eutectic solvents, a new type of green solvent, have some renowned properties—for instance, high thermal stability, low vapor pressure, low cost, biodegradability, and high viscosity. In this study, deep eutectic solvents made up of choline chloride-glycerol (1:2 were used for the extraction and isolation of flavonoid (rutin, gallic acid, and quercetin from Catharanthus roseus plant parts, flower petal, leaves, stem, and root. The amounts of rutin and quercetin in flower petal are 29.46 and 6.51%, respectively, whereas, rutin, gallic acid, and quercetin amounts in leaves are 25.16, 8.57, and 10.47%, respectively. In stem the amounts of rutin, gallic acid, and quercetin are 13.02, 5.89, and 7.47%, respectively. In root, only quercetin has been obtained that is 13.49%. The HPLC is an analytical method, which was found to be an excellent technique for determination of rutin, gallic acid, and quercetin using deep eutectic solvent extraction from plant parts of Catharanthus roseus.

  13. Characterization and acid resistance test of one-part geopolymer from fly ash and water treatment sludge

    Directory of Open Access Journals (Sweden)

    Orbecido Aileen

    2018-01-01

    Full Text Available Development of geopolymers from wastes or by-products introduces a sustainable approach to replace ordinary Portland cement (OPC-based concrete with an eco-material of lower green-house gases emissions. However, safety concerns related to the conventional two-part geopolymer has limited large-scale applications of the product. In this context, a novel one-part geopolymer from coal fly ash and water treatment sludge has been presented. The transformation of raw materials to geopolymer was observed by FTIR, SEM and XRD analyses. Acid resistance test has proved that the new binder had great durability against sulphuric acid attack. After 28 days immersion in 5% H2SO4 solution, weight of all samples was hardly changed. Compressive strength, on the other hand, has not decreased but significantly increased as curing time increased. The properties were also compared to those of control samples cured in water. It was demonstrated that strong acid immersion did not create any noticeable effect on the weight and strength of one-part geopolymer system developed from coal fly ash and water treatment sludge.

  14. Amino acids analysis by neutron cross-section techniques - Part III

    Energy Technology Data Exchange (ETDEWEB)

    Voi, Dante L.; Ferreira, Francisco de O. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)]. E-mail: dante@ien.gov.br; Rocha, Helio F. da [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Puericultura e Pediatria Martagao Gesteira (IPPMG)]. E-mail: hrocha@gbl.com.br

    2007-07-01

    To continue the work initiated some time ago, about neutron cross section determinations of amino acids, which are directly encoded for protein synthesis by the standard genetic code, we are now measuring six more amino acids samples, with more complex structures to complete the project. All these amino acids are used in enteral and parenteral administration in hospital patients for nutritional applications. The present calculations are a little more difficult because of a new proceeding introduced in the method to explain its molecular structures and obtain its molecular formulae. These amino acids present different radical and elements related to the compounds available in the previous works. Each one, present different structure and freedom grade of movement related to the types of radicals linked in the repetitive structure. In that way, neutron cross section values change with the chemical binding intensities. These details obligate us to search new compounds with new molecular structures to obtain neutron cross sections for posterior comparison , meanly compounds including nitrogen, sulfur and oxygen groups linked to hydrogen atoms. At this time, individual amino acid samples of proline, glutamine, lysine, arginine, histidine, and glutamic acid were measured. It was used the neutron crystal spectrometer installed at the J-9 irradiation channel of the 1 kW Argonauta Reactor of the Instituto de Engenharia Nuclear (IEN). Gold and D{sub 2}O high purity samples were used for the experimental system calibration. Neutron cross section values were calculated from chemical composition, conformation and molecular structure analysis of the materials. Literature data were manipulated by parceling and grouping neutron cross-sections. (author)

  15. Amino acids as co-amorphous stabilizers for poorly water soluble drugs--Part 1

    DEFF Research Database (Denmark)

    Löbmann, Korbinian; Grohganz, Holger; Laitinen, Riikka

    2013-01-01

    molecular weight excipients that form specific molecular interactions with the drug resulting in co-amorphous forms. The two poorly water soluble drugs carbamazepine and indomethacin were combined with amino acids from the binding sites of the biological receptors of these drugs. Mixtures of drug...... and the amino acids arginine, phenylalanine, tryptophan and tyrosine were prepared by vibrational ball milling. Solid-state characterization with X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) revealed that the various blends could be prepared as homogeneous, single phase co...

  16. Novel selective thiazoleacetic acids as CRTH2 antagonists developed from in silico derived hits. Part 1

    DEFF Research Database (Denmark)

    Rist, Oystein; Grimstrup, Marie; Receveur, Jean-Marie

    2009-01-01

    Structure-activity relationships of three related series of 4-phenylthiazol-5-ylacetic acids, derived from two hits emanating from a focused library obtained by in silico screening, have been explored as CRTH2 (chemoattractant receptor-homologous molecule expressed on Th2 cells) antagonists...

  17. Novel selective thiazoleacetic acids as CRTH2 antagonists developed from in silico derived hits. Part 2

    DEFF Research Database (Denmark)

    Grimstrup, Marie; Rist, Øystein; Receveur, Jean-Marie

    2010-01-01

    Structure-activity relationships have been established by exploring the eastern and western side of 5-thiazolyleacetic acids as CRTH2 (chemoattractant receptor-homologous molecule expressed on Th2 cells) antagonists. Benzhydryl motifs in the 2-position of the thiazole was found to be most advanta...

  18. Pharmacological Studies of p, N-(3, 4-Methylenedioxy phenyl Benzoic Acid (RRL-1364 - Part-I

    Directory of Open Access Journals (Sweden)

    Dahanukar Sharadini

    1978-01-01

    Full Text Available Detailed pharmacological investigations of p-N-(3, 4-methylene dioxy phenyl benzoic acid revealed marked hypotensive action which was dose dependent and most marked in cats; it was absent in rats. Atropine could block this hypotensive action, thus suggest-ing cholinomimetic mechanism. Further studies indicated that the hypotension produced was central and possibly medullary in origin.

  19. [Biosynthesis of adipic acid].

    Science.gov (United States)

    Han, Li; Chen, Wujiu; Yuan, Fei; Zhang, Yuanyuan; Wang, Qinhong; Ma, Yanhe

    2013-10-01

    Adipic acid is a six-carbon dicarboxylic acid, mainly for the production of polymers such as nylon, chemical fiber and engineering plastics. Its annual demand is close to 3 million tons worldwide. Currently, the industrial production of adipic acid is based on the oxidation of aromatics from non-renewable petroleum resources by chemo-catalytic processes. It is heavily polluted and unsustainable, and the possible alternative method for adipic acid production should be developed. In the past years, with the development of synthetic biology and metabolic engineering, green and clean biotechnological methods for adipic acid production attracted more attention. In this study, the research advances of adipic acid and its precursor production are reviewed, followed by addressing the perspective of the possible new pathways for adipic acid production.

  20. Preparation Of Pyrridine Sulfonamide And Dicarboxylic Acid Containing Resins For Removal Of Dyes

    OpenAIRE

    Tekin, Emir Tuğrul

    2007-01-01

    Textile industry suffers from huge quantities of aqueous dye-vastes. Among various sorbents activated carbon, clays, modified chitosans and some surface modified zeolites have been found useful in removal of residual dyes in fabric treatments. Although activated carbon is an efficient sorbent in extraction of organic pollutants, it has rather low capacity and needs regeneration to be cost-effective in large scale treatments. Many sorbents have been tested for dye removal; however, most of the...

  1. Study of ferrocene dicarboxylic acid on substrates of varying chemical activity

    Czech Academy of Sciences Publication Activity Database

    Berger, Jan; Kośmider, K.; Stetsovych, Oleksandr; Vondráček, Martin; Hapala, Prokop; Spadafora, Evan; Švec, Martin; Jelínek, Pavel

    2016-01-01

    Roč. 120, č. 38 (2016), 21955-21961 ISSN 1932-7447 R&D Projects: GA ČR(CZ) GA14-02079S; GA ČR GB14-37427G; GA MŠk(CZ) LG15050; GA MŠk LM2015088 Institutional support: RVO:68378271 Keywords : ferrocene * nc-AFM * DFT * STM * XPS * NEXAFS Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.536, year: 2016

  2. Metabolic engineering of Saccharomyces cerevisiae for C4-dicarboxylic acid production

    NARCIS (Netherlands)

    Zelle, R.M.

    2011-01-01

    Biotechnological production of chemicals from renewable feedstocks offers a sustainable alternative to petrochemistry. Understanding of the biology of microorganisms and plants is increasing at an unprecedented rate and tools with which these organisms can be engineered for industrial application

  3. Purification of Industrial Phosphoric Acid using Silica Produced from Rice Husk (Part 1)

    International Nuclear Information System (INIS)

    Gad, H.M.H.; Awwad, N.S.; El-Khalafawy, A.; Daifullah, A.A.M.; El-Reefy, S.A.; Aly, H.F.

    2008-01-01

    In this work, silica was extracted from rice husk (RH) by different techniques and used for removal of some heavy metals from industrial phosphoric acid. The data obtained, showed that removal of Cu(II), Cd(II) and Pb(II) is efficient when the silica used is obtained by acidic treatment, while the removal of Fe(III) and Zn(II) is efficient when the silica used was obtained by alkaline treatment of RH. On the other hand, if silica used is obtained from rice husk ash (RHA) it was found more efficient for the removal of Mn. In all cases, the concentration of silica has been characterized by UV-Spectrophotometry. FTIR, SEM and EDX were used for predication of sorption mechanism

  4. Homogeneous nucleation rates of nitric acid dihydrate (NAD at simulated stratospheric conditions – Part II: Modelling

    Directory of Open Access Journals (Sweden)

    O. Möhler

    2006-01-01

    Full Text Available Activation energies ΔGact for the nucleation of nitric acid dihydrate (NAD in supercooled binary HNO3/H2O solution droplets were calculated from volume-based nucleation rate measurements using the AIDA (Aerosol, Interactions, and Dynamics in the Atmosphere aerosol chamber of Forschungszentrum Karlsruhe. The experimental conditions covered temperatures T between 192 and 197 K, NAD saturation ratios SNAD between 7 and 10, and nitric acid molar fractions of the nucleating sub-micron sized droplets between 0.26 and 0.28. Based on classical nucleation theory, a new parameterisation for ΔGact=A×(T ln SNAD−2+B is fitted to the experimental data with A=2.5×106 kcal K2 mol−1 and B=11.2−0.1(T−192 kcal mol−1. A and B were chosen to also achieve good agreement with literature data of ΔGact. The parameter A implies, for the temperature and composition range of our analysis, a mean interface tension σsl=51 cal mol−1 cm−2 between the growing NAD germ and the supercooled solution. A slight temperature dependence of the diffusion activation energy is represented by the parameter B. Investigations with a detailed microphysical process model showed that literature formulations of volume-based (Salcedo et al., 2001 and surface-based (Tabazadeh et al., 2002 nucleation rates significantly overestimate NAD formation rates when applied to the conditions of our experiments.

  5. Root-uptake of 14C derived from acetic acid and 14C transfer to rice edible parts

    International Nuclear Information System (INIS)

    Ogiyama, Shinichi; Suzuki, Hiroyuki; Inubushi, Kazuyuki; Takeda, Hiroshi; Uchida, Shigeo

    2010-01-01

    Three types of culture experiments using paddy rice (Oryza sativa L.) were performed to examine root-uptake of 14 C in the form of acetic acid: double pot experiment (hydroponics), wet culture experiment (submerged sand medium), and chamber experiment (hydroponics and submerged sand medium). The 14 C radioactivity in the plant, mediums, and atmospheric carbon dioxide ( 14 CO 2 ) in the chamber were determined, and the distribution of 14 C in the plant was visualized using autoradiography. In the double pot experiment, the shoot of the plant and the lower root which was soaked in the culture solution had 14 C radioactivity, but the upper root which did not have contact with the solution had none. There were also 14 C radioactivity in the grains and roots in the wet culture experiment. Results of the chamber experiment showed that 14 CO 2 gas was released from the culture solution in both types of cultures. Results indicated that the 14 C-acetic acid absorbed by rice plant through its root would be very small. Most of the 14 C-acetic acid was transformed into gaseous forms either in the culture solution or rhizosphere. A relatively longer time would be needed to assimilate 14 C derived from acetic acid to grain parts after it was once absorbed by the shoot through the root. Availability of 14 C for the plant in sand culture was considered to be decreased compared with that for the plant in the hydroponics experiment. It was suggested that rice plant absorbed and assimilated 14 C through the plant roots not because of uptake of 14 C-acetic acid but because of uptake of 14 C in gaseous forms such as 14 CO 2 .

  6. Root-uptake of {sup 14}C derived from acetic acid and {sup 14}C transfer to rice edible parts

    Energy Technology Data Exchange (ETDEWEB)

    Ogiyama, Shinichi [Office of Biospheric Assessment for Waste Disposal, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555 (Japan)], E-mail: ogiyama@nirs.go.jp; Suzuki, Hiroyuki [Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi 263-5522 (Japan); Inubushi, Kazuyuki [Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-shi 271-8510 (Japan); Takeda, Hiroshi; Uchida, Shigeo [Office of Biospheric Assessment for Waste Disposal, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555 (Japan)

    2010-02-15

    Three types of culture experiments using paddy rice (Oryza sativa L.) were performed to examine root-uptake of {sup 14}C in the form of acetic acid: double pot experiment (hydroponics), wet culture experiment (submerged sand medium), and chamber experiment (hydroponics and submerged sand medium). The {sup 14}C radioactivity in the plant, mediums, and atmospheric carbon dioxide ({sup 14}CO{sub 2}) in the chamber were determined, and the distribution of {sup 14}C in the plant was visualized using autoradiography. In the double pot experiment, the shoot of the plant and the lower root which was soaked in the culture solution had {sup 14}C radioactivity, but the upper root which did not have contact with the solution had none. There were also {sup 14}C radioactivity in the grains and roots in the wet culture experiment. Results of the chamber experiment showed that {sup 14}CO{sub 2} gas was released from the culture solution in both types of cultures. Results indicated that the {sup 14}C-acetic acid absorbed by rice plant through its root would be very small. Most of the {sup 14}C-acetic acid was transformed into gaseous forms either in the culture solution or rhizosphere. A relatively longer time would be needed to assimilate {sup 14}C derived from acetic acid to grain parts after it was once absorbed by the shoot through the root. Availability of {sup 14}C for the plant in sand culture was considered to be decreased compared with that for the plant in the hydroponics experiment. It was suggested that rice plant absorbed and assimilated {sup 14}C through the plant roots not because of uptake of {sup 14}C-acetic acid but because of uptake of {sup 14}C in gaseous forms such as {sup 14}CO{sub 2}.

  7. Characterization of novel di- and tricarboxylic acids in fine tropical aerosols

    Czech Academy of Sciences Publication Activity Database

    Zdráhal, Zbyněk; Vermeylen, R.; Claeys, M.; Maenhaut, W.; Guyon, P.; Artaxo, P.

    2001-01-01

    Roč. 36, č. 4 (2001), s. 403-416 ISSN 1076-5174 Institutional research plan: CEZ:AV0Z4031919 Keywords : dicarboxylic acids * tricarboxylic acids * gas chromatography/mass spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.685, year: 2001

  8. pH-Dependent Uptake of Fumaric Acid in Saccharomyces cerevisiae under Anaerobic Conditions

    NARCIS (Netherlands)

    Jamalzadeh, E.; Verheijen, P.J.; Heijnen, J.J.; Van Gulik, W.M.

    2011-01-01

    Microbial production of C4 dicarboxylic acids from renewable resources has gained renewed interest. The yeast Saccharomyces cerevisiae is known as a robust microorganism and is able to grow at low pH, which makes it a suitable candidate for biological production of organic acids. However, a

  9. Thinning of CIGS solar cells: Part I: Chemical processing in acidic bromine solutions

    International Nuclear Information System (INIS)

    Bouttemy, M.; Tran-Van, P.; Gerard, I.; Hildebrandt, T.; Causier, A.; Pelouard, J.L.; Dagher, G.; Jehl, Z.; Naghavi, N.; Voorwinden, G.; Dimmler, B.; Powalla, M.; Guillemoles, J.F.; Lincot, D.; Etcheberry, A.

    2011-01-01

    CIGSe absorber was etched in HBr/Br 2 /H 2 O to prepare defined thicknesses of CIGSe between 2.7 and 0.5 μm. We established a reproducible method of reducing the absorber thickness via chemical etching. We determine the dissolution kinetics rate of CIGSe using trace analysis by graphite furnace atomic absorption spectrometry of Ga and Cu. The roughness of the etching surface decreases during the first 500 nm of the etching to a steady state value of the root-mean-square roughness near 50 nm. X-ray photoelectron spectroscopy analyses demonstrate an etching process occurring with a constant chemical composition of the treated surface acidic bromine solutions provide a controlled chemical thinning process resulting in an almost flat surface and a very low superficial Se 0 enrichment.

  10. Thinning of CIGS solar cells: Part I: Chemical processing in acidic bromine solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bouttemy, M.; Tran-Van, P. [Institut Lavoisier de Versailles (ILV-UMR 8180 CNRS/UVSQ), 45 av. des Etats Unis, 78035 Versailles (France); Gerard, I., E-mail: gerard@chimie.uvsq.fr [Institut Lavoisier de Versailles (ILV-UMR 8180 CNRS/UVSQ), 45 av. des Etats Unis, 78035 Versailles (France); Hildebrandt, T.; Causier, A. [Institut Lavoisier de Versailles (ILV-UMR 8180 CNRS/UVSQ), 45 av. des Etats Unis, 78035 Versailles (France); Pelouard, J.L.; Dagher, G. [Laboratoire de Photonique et de Nanostructures (LPN-CNRS), route de Nozay 91460 Marcoussis (France); Jehl, Z.; Naghavi, N. [Institut de Recherche et Developpement sur l' Energie Photovoltaique (IRDEP -UMR 7174 CNRS/EDF/Chimie-ParisTech), 6 quai Watier, 78401 Chatou (France); Voorwinden, G.; Dimmler, B. [Wuerth Elektronik Research GmbH, Industriestr. 4, 70565 Stuttgart (Germany); Powalla, M. [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung (ZSW), Industriestr. 6, 70565 Stuttgart (Germany); Guillemoles, J.F. [Institut de Recherche et Developpement sur l' Energie Photovoltaique (IRDEP -UMR 7174 CNRS/EDF/Chimie-ParisTech), 6 quai Watier, 78401 Chatou (France); Lincot, D. [Laboratoire de Photonique et de Nanostructures (LPN-CNRS), route de Nozay 91460 Marcoussis (France); Etcheberry, A. [Institut Lavoisier de Versailles (ILV-UMR 8180 CNRS/UVSQ), 45 av. des Etats Unis, 78035 Versailles (France)

    2011-08-31

    CIGSe absorber was etched in HBr/Br{sub 2}/H{sub 2}O to prepare defined thicknesses of CIGSe between 2.7 and 0.5 {mu}m. We established a reproducible method of reducing the absorber thickness via chemical etching. We determine the dissolution kinetics rate of CIGSe using trace analysis by graphite furnace atomic absorption spectrometry of Ga and Cu. The roughness of the etching surface decreases during the first 500 nm of the etching to a steady state value of the root-mean-square roughness near 50 nm. X-ray photoelectron spectroscopy analyses demonstrate an etching process occurring with a constant chemical composition of the treated surface acidic bromine solutions provide a controlled chemical thinning process resulting in an almost flat surface and a very low superficial Se{sup 0} enrichment.

  11. New insights into Cu/SSZ-13 SCR catalyst acidity. Part I: Nature of acidic sites probed by NH 3 titration

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jinyong; Gao, Feng; Kamasamudram, Krishna; Currier, Neal; Peden, Charles H. F.; Yezerets, Aleksey

    2017-04-01

    In this work we investigated an unusual acidity feature of a Cu/SSZ-13 catalyst used in selective catalytic reduction of NOx with NH3 (NH3-SCR). In particular, this catalyst showed two distinct NH3 desorption peaks in NH3-TPD measurements, in contrast to single, unresolved desorption peaks observed for other Cu-exchanged zeolites conventionally used in the SCR studies, including its isostructural but chemically different analogue Cu/SAPO-34. We further observed that the intensities of the two TPD peaks, which represented the amount of stored NH3, changed in opposite directions in response to progressive mild hydrothermal aging, while the total storage capacity was preserved. We proposed an explanation for this remarkable behavior, by using model reference samples and additional characterization techniques. At least three NH3 storage sites were identified: two distinct populations of Cu sites responsible for low-temperature NH3 storage, and Brønsted acid sites responsible for high-temperature NH3 storage. Contrary to the commonly accepted mechanism that Brønsted acid site loss during hydrothermal aging is driven by dealumination, we concluded that the decline in the number of Brønsted acid sites upon mild hydrothermal aging for Cu/SSZ-13 was not due to dealumination, but rather transformation of Cu sites, i.e., gradual conversion of ZCuOH (Cu2+ singly coordinated with Zeolite) to Z2Cu (Cu2+ doubly coordinated with Zeolite). This transformation was responsible for the increased low-temperature desorption peak in NH3-TPD since each ZCuOH adsorbed ~1 NH3 molecule while each Z2Cu adsorbed ~2 NH3 molecules under the conditions used here. These findings were used in Part II of this series of studies to develop a method for quantifying hydrothermal ageing of industrial Cu/SSZ-13 SCR catalysts. Authors would like to thank Randall Jines for his help with collecting the reactor data, Nancy W. Washton for measuring the NMR data and Tamas Varga for in-situ XRD measurements

  12. Organic Analysis in the Miller Range 090657 CR2 Chondrite: Part 2 Amino Acid Analyses

    Science.gov (United States)

    Burton, A. S.; Cao, T.; Nakamura-Messenger, K.; Berger, E. L.; Messenger, S.; Clemett, S. J.; Aponte, J. C.; Elsila, J. E.

    2016-01-01

    Primitive carbonaceous chondrites contain a wide variety of organic material, ranging from soluble discrete molecules to insoluble, unstructured kerogen-like components, as well as structured nano-globules of macromolecular carbon. The relationship between the soluble organic molecules, macromolecular organic material, and host minerals are poorly understood. Due to the differences in extractability of soluble and insoluble organic materials, the analysis methods for each differ and are often performed independently. The combination of soluble and insoluble analyses, when performed concurrently, can provide a wider understanding of spatial distribution, and elemental, structural and isotopic composition of organic material in primitive meteorites. Using macroscale extraction and analysis techniques in combination with in situ microscale observation, we have been studying both insoluble and soluble organic material in the primitive CR2 chondrite Miller Range (MIL) 090657. In accompanying abstracts (Cao et al. and Messenger et al.) we discuss insoluble organic material in the samples. By performing the consortium studies, we aim to improve our understanding of the relationship between the meteorite minerals and the soluble and insoluble organic phases and to delineate which species formed within the meteorite and those that formed in nebular or presolar environments. In this abstract, we present the results of amino acid analyses of MIL 090657 by ultra performance liquid chromatography with fluorescence detection and quadrupole-time of flight mass spectrometry. Amino acids are of interest because they are essential to life on Earth, and because they are present in sufficient structural, enantiomeric and isotopic diversity to allow insights into early solar system chemical processes. Furthermore, these are among the most isotopically anomalous species, yet at least some fraction are thought to have formed by aqueously-mediated processes during parent body alteration.

  13. High temperature abatement of acid gases from waste incineration. Part II: Comparative life cycle assessment study

    Energy Technology Data Exchange (ETDEWEB)

    Biganzoli, Laura, E-mail: laura.biganzoli@mail.polimi.it [Politecnico di Milano, Department of Civil and Environmental Engineering, Piazza L. da Vinci 32, 20133 Milano (Italy); Racanella, Gaia [Politecnico di Milano, Department of Civil and Environmental Engineering, Piazza L. da Vinci 32, 20133 Milano (Italy); Marras, Roberto [Unicalce S.p.A., R and D Department, Via Tonio da Belledo 30, 23900 Lecco (Italy); Rigamonti, Lucia [Politecnico di Milano, Department of Civil and Environmental Engineering, Piazza L. da Vinci 32, 20133 Milano (Italy)

    2015-01-15

    Highlights: • Two scenarios of acid gases removal in WTE plants were compared in an LCA study. • A detailed inventory based on primary data has been reported for the production of the new dolomitic sorbent. • Results show that the comparison between the two scenarios does not show systematic differences. • The potential impacts are reduced only if there is an increase in the energy efficiency of the WTE plant. - Abstract: The performances of a new dolomitic sorbent, named Depurcal®MG, to be directly injected at high temperature in the combustion chamber of Waste-To-Energy (WTE) plants as a preliminary stage of deacidification, were experimentally tested during full-scale commercial operation. Results of the experimentations were promising, and have been extensively described in Biganzoli et al. (2014). This paper reports the Life Cycle Assessment (LCA) study performed to compare the traditional operation of the plants, based on the sole sodium bicarbonate feeding at low temperature, with the new one, where the dolomitic sorbent is injected at high temperature. In the latter the sodium bicarbonate is still used, but at lower rate because of the decreased load of acid gases entering the flue gas treatment line. The major goal of the LCA was to make sure that a burden shifting was not taking place somewhere in the life cycle stages, as it might be the case when a new material is used in substitution of another one. According to the comparative approach, only the processes which differ between the two operational modes were included in the system boundaries. They are the production of the two reactants and the treatment of the corresponding solid residues arising from the neutralisation of acid gases. The additional CO{sub 2} emission at the stack of the WTE plant due to the activation of the sodium bicarbonate was also included in the calculation. Data used in the modelling of the foreground system are primary, derived from the experimental tests described in

  14. Synthesis and characterization of Cis-5-Norbornene-2, 3-dicarboxylic anhydride-chitosan

    International Nuclear Information System (INIS)

    Ku Marshilla Ku Ishak; Zulkifli Ahmad; Hazizan Mohd Akil

    2009-01-01

    Chitosan was chemically modified with bulky structure, cis-5-norbornene-2, 3-dicarboxylic anhydride and the characteristic of this modified chitosan was studied. The resulting material was analyzed by FTIR, TGA, DSC, XRD and SEM to study the effect of N-acylation to the polysaccharide structure. FTIR results show that the anhydride monomer was successfully bound to amine group of chitosan. Thermal analysis of the modified structure provides the chitosan fibers with thermal stability while XRD and SEM show the lost of crystallinity of modified chitosan. XRD of modified chitosan shows broader peak pattern and a considerable increase in a dimension while SEM of chitosan presented the single particle morphology while norbornene-chitosan shows aggromolarate behaviour due to the hydrophobic nature of norbornene pendant group which induced aggromolaration of the particles in modified structure.(author)

  15. 2D→3D polycatenated and 3D→3D interpenetrated metal–organic frameworks constructed from thiophene-2,5-dicarboxylate and rigid bis(imidazole) ligands

    Energy Technology Data Exchange (ETDEWEB)

    Erer, Hakan [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Yeşilel, Okan Zafer, E-mail: yesilel@ogu.edu.tr [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Arıcı, Mürsel [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Keskin, Seda [Department of Chemical and Biological Engineering, Koç University, İstanbul (Turkey); Büyükgüngör, Orhan [Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun (Turkey)

    2014-02-15

    Hydrothermal reactions of rigid 1,4-bis(imidazol-1-yl)benzene (dib) and 1,4-bis(imidazol-1-yl)-2,5-dimethylbenzene (dimb) with deprotonated thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) in the presence of Zn(II) and Cd(II) salts in H{sub 2}O produced three new metal–organic frameworks, namely, [Zn(µ-tdc)(H{sub 2}O)(µ-dib)]{sub n} (1), [Cd(µ-tdc)(H{sub 2}O)(µ-dib)]{sub n} (2), and ([Cd{sub 2}(µ{sub 3}-tdc){sub 2}(µ-dimb){sub 2}]·(H{sub 2}O)){sub n}(3). These MOFs were characterized by FT-IR spectroscopy, elemental, thermal (TG, DTA, DTG and DSC), and single-crystal X-ray diffraction analyses. Isomorphous complexes 1 and 2 reveal polycatenated 2D+2D→3D framework based on an undulated (4,4)-sql layer. Complex 3 exhibits a new 4-fold interpenetrating 3D framework with the point symbol of 6{sup 6}. Molecular simulations were used to assess the potentials of the complexes for H{sub 2} storage application. Moreover, these coordination polymers exhibit blue fluorescent emission bands in the solid state at room temperature. - Graphical abstract: In this study, hydrothermal reactions of rigid 1,4-bis(imidazol-1-yl)benzene (dib) and 1,4-bis(imidazol-1-yl)-2,5-dimethylbenzene (dimb) with deprotonated thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) in the presence of Zn(II) and Cd(II) salts in H{sub 2}O produced three new metal–organic frameworks. Isomorphous complexes 1 and 2 reveal polycatenated 2D+2D→3D framework based on an undulated (4,4)-sql layer. Complex 3 exhibits a new 4-fold interpenetrating 3D framework with the point symbol of 6{sup 6}. Molecular simulations were used to assess the potentials of the complexes for H{sub 2} storage application. These coordination polymers exhibit blue fluorescent emission bands in the solid state at room temperature. Display Omitted - Highlights: • Complexes 1 and 2 display polycatenated 2D+2D→3D framework. • Complex 3 exhibits a new 4-fold interpenetrating 3D framework. • Complex 1 adsorbs the highest amount of

  16. In situ infrared spectroscopic analysis of the adsorption of aliphatic carboxylic acids to TiO 2, ZrO 2, Al 2O 3, and Ta 2O 5 from aqueous solutions

    Science.gov (United States)

    Dobson, Kevin D.; McQuillan, A. James

    1999-07-01

    The adsorption of a range of aliphatic mono- and di-carboxylic acids to metal oxides has been investigated using in situ attenuated total reflectance infrared spectroscopy. Thin films of TiO 2, ZrO 2, Al 2O 3, and Ta 2O 5 were prepared by evaporation the aqueous colloid oxides on single reflection ZnSe prisms. Formic and acetic acids were found to bind to ZrO 2 and Ta 2O 5, but showed no adsorption to TiO 2 and Al 2O 3. The dicarboxylic acids, oxalic, malonic, succinic, adipic, maleic, and fumaric acids, were found to adsorb to each of the metal oxide substrates. Oxalic and malonic acids were coordinated via ester linkages involving both carboxylate groups. The longer chain dicarboxylic acids coordinated via bridging bidentate interactions through each carboxylate group.

  17. QUALITATIVE COMPOSITION AND ORGANI C ACIDS CONTENT IN THE ABOVEGROUN D PART OF PLANTS FRO M FAMILIES LAMIACEAE, ASTERACEAE, APIACEAE AND CHENOPODIACEAE

    Directory of Open Access Journals (Sweden)

    S. M. Marchyshyn

    2016-05-01

    Full Text Available Background. Organic acids are the compounds of aliphatic or aromatic orders, which are widespread in flora and have a wide range of biological activity. We studied the qualitative composition and quantitative contents of organic acids in the aboveground part of some unofficial medicinal plants from families Lamiaceae, Asteraceae, Apiaceae and Chenopodiaceae is relevant. Objective. The objects of the research are the aboveground part of unofficial medicinal plants from families Lamiaceae, Asteraceae, Apiaceae and Chenopodiaceae. Methods. Identification of organic acids was performed by means of thin-layer and paper chromatography, their content was determined by means of gas chromatography, the quantitative amount of organic acids was defined by titrimetric analysis. Results. In the studied raw plants the quality of organic acids and their total contents were determined (in terms of malic acid. It is established that the maximum content of organic acids is accumulated in the grass Hyssopus officinalis L. (Lamiaceae, and the minimal is in the leaves of Chrysánthemum xhortorum L. variety Apro (Asteraceae. In all studied raw plants the dominance of aliphatic acids (citric, malic, oxalic and malonic was determined by means of gas chromatography. Benzoic is predominant among the aromatic acids. Conclusions. In the studied raw plants the quality of organic acids and their total content were determined. The following results can be used in developing the methods of quality control of the studied raw plants and during the study of new bioactive substances.

  18. Crystal structures of hibiscus acid and hibiscus acid dimethyl ester isolated from Hibiscus sabdariffa (Malvaceae)

    OpenAIRE

    Zheoat, Ahmed M.; Gray, Alexander I.; Igoli, John O.; Kennedy, Alan R.; Ferro, Valerie A.

    2017-01-01

    The biologically active title compounds have been isolated from Hibiscus sabdariffa plants, hibiscus acid as a dimethyl sulfoxide monosolvate [systematic name: (2S,3R)-3-hy?droxy-5-oxo-2,3,4,5-tetra?hydro?furan-2,3-di?carb?oxy?lic acid dimethyl sulfoxide monosolvate], C6H6O7?C2H6OS, (I), and hibiscus acid dimethyl ester [systematic name: dimethyl (2S,3R)-3-hy?droxy-5-oxo-2,3,4,5-tetra?hydro?furan-2,3-di?carboxyl?ate], C8H10O7, (II). Compound (I) forms a layered structure with alternating laye...

  19. Zn(II) coordination polymers with flexible V-shaped dicarboxylate ligand: Syntheses, helical structures and properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lin [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Liu, Chong-Bo, E-mail: cbliu@nchu.edu.cn [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Yang, Gao-Shan [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Xiong, Zhi-Qiang [Center for Analysis and Testing, Nanchang Hangkong University, Nanchang 330063 (China); Liu, Hong [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Wen, Hui-Liang [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China)

    2015-11-15

    Hydrothermal reactions of 2,2′-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid (H{sub 2}L) and zinc ions in the presence of N-donor ancillary ligands afford four novel coordination polymers, namely, [Zn{sub 2}(μ{sub 2}-OH)(μ{sub 4}-O){sub 0.5}(L)]·0.5H{sub 2}O (1), [Zn(L)(2,2′-bipy)(H{sub 2}O)] (2), [Zn{sub 3}(L){sub 3}(phen){sub 2}]·H{sub 2}O (3) and [Zn{sub 2}(L){sub 2}(4,4′-bipy)] (4) (2,2′-bipy=2,2′-bipyridine; 4,4′-bipy=4,4′-bipyridine; phen=1,10-phenanthroline). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra, powder X-ray diffraction (PXRD), and thermogravimetric (TG) analyses. Complex 1 shows a 3-D clover framework consisting of [Zn{sub 4}(µ{sub 4}-O)(µ{sub 2}-OH){sub 2}]{sup 4+} clusters, and exhibits a novel (3,8)-connected topological net with the Schläfli symbol of {3·4·5}{sub 2}{3"4·4"4·5"2·6"6·7"1"0·8"2}, and contains double-stranded and two kinds of meso-helices. 2 displays a helical chain structure, which is further extended via hydrogen bonds into a 3-D supramolecular structure with meso-helix chains. 3 displays a 2-D {4"4·6"2} parallelogram structure, which is further extended via hydrogen bonds into a 3-D supramolecular structure with single-stranded helical chains. 4 shows a 2-D {4"4·6"2} square structure with left- and right-handed helical chains. Moreover, the luminescent properties of 1–4 have been investigated. - Graphical abstract: Four new Zn(II) coordination polymers with helical structures based on flexible V-shaped dicarboxylate ligand have been synthesized and structurally characterized. Photoluminescent properties have been investigated. - Highlights: • Four novel Zn(II) coordination polymers with V-shaped ligand were characterized. • Complexes 1–4 show diverse intriguing helical characters. • Fluorescence properties of complexes 1–4 were investigated.

  20. Synthesis, crystal structures, and properties of two novel cadmium(II)-organic frameworks based on asymmetric dicarboxylate and N-donor ligands

    Science.gov (United States)

    Chen, Xiaoli; Gao, Loujun; Zhang, Xiaoge; Han, Xuhua; Wang, Yao; Sun, Rong

    2014-08-01

    Two novel cadmium(II)-organic frameworks with asymmetric dicarboxylate and N-donor ligands, namely [Cd(cpa)(phen)]n (1) and {[Cd2(cpa)2(bpy)1.5]·0.5H2O}n (2) (H2cpa = 3-(4-benzoic)propionic acid, phen = 1,10-phenanthroline, bpy = 4,4";-bipyridine) have been hydrothermally synthesized and characterized by elemental analyses, FT-IR spectra, single-crystal X-ray diffraction analyses, TGA, powder XRD and fluorescent measurements. 1 displays a double zigzag chain structure containing 8-number and 22-number circles. 2 Shows a 6-connected 3D polymer network based on tetranuclear cadmium cluster units. The most striking feature of 2 is that a pair of identical 3D networks are interlocked with each other to the form a 2-fold interpenetrated 3D α-Po structural topology. The diverse structures of two complexes indicate that the skeleton of N-donor ligands plays a great role in the assembly of such different frameworks. In addition, the thermal stabilities, XRD and photoluminescence properties of 1-2 were also studied.

  1. Oligoesters and polyesters produced by the curing of sunflower oil epoxidized biodiesel with cis-cyclohexane dicarboxylic anhydride: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Reiznautt, Quelen B. [Laboratory of Instrumentation and Molecular Dynamics, Department of Physical Chemistry, Chemistry Institute, Federal University of Rio Grande do Sul, Av. Bento Goncalves 9500, CEP: 91501-970, Porto Alegre (Brazil); Garcia, Irene T.S. [Department of Analytical and Inorganic Chemistry, Chemistry and Geosciences Institute, Federal University of Pelotas, 96010-900, Pelotas (Brazil); Samios, Dimitrios, E-mail: dsamios@iq.ufrgs.br [Laboratory of Instrumentation and Molecular Dynamics, Department of Physical Chemistry, Chemistry Institute, Federal University of Rio Grande do Sul, Av. Bento Goncalves 9500, CEP: 91501-970, Porto Alegre (Brazil)

    2009-08-31

    Oligoesters and polyesters produced from sunflower oil biodiesel were synthesized and characterized. The polymers were obtained through the reaction of fatty acid methyl epoxy esters (EE) with cis-1,2-cyclohexane dicarboxylic anhydride (CH) and triethylamine (TEA) as initiator. Some reactions were conducted by adding small amounts of 1,4-butanediol diglycidyl ether (BDGE). The intermediate products of the synthesis process, including sunflower oil, methyl ester, epoxidised methyl esters, and the oligoesters and polyesters produced, were followed by Fourier Transform Infrared Spectroscopy and {sup 1}H and {sup 13}C nuclear magnetic resonance. The products obtained from the curing of the epoxidised esters with different compositions present similar chemical structures; however, they still depend on the amount of the epoxy resin BDGE that was added in the polymerization reaction. Thermoplastic materials with molecular weights (MW) starting at 3800 g/mol and reaching very high MWs, resulted in cross linked polymers. The thermal behaviour of the different products was investigated using differential scanning calorimetry and thermogravimetric analyses. The presence of BDGE in the structure of the materials increases the bonding capacity, resulting in higher molecular weight materials, which present good thermal stability.

  2. Synthesis and properties of amino acid functionalized water-soluble perylene diimides

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yongshan; Li, Xuemei; Wei, Xiaofeng; Jiang, Tianyi; Wu, Junsen; Ren, Huixue [Shandong Jianzhu University, Jinan (China)

    2015-07-15

    We prepared amino acid functionalized water-soluble perylene diimides: N,N'-bi(L-glutamic acid)-perylene-3,4;9,10-dicarboxylic diimide (1), N,N'-bi(L-phenylalanine acid)-perylene-3,4;9,10-dicarboxylic diimide (2), N,N'-bi(Lglutamic amine)-perylene-3,4;9,10-dicarboxylic diimide (3) and N,N'-bi(L-phenylalanine amine)-perylene-3,4;9,10-dicarboxylic diimide (4). The structures of 3 and 4 were confirmed by {sup 1}H NMR, FT-IR and MS. The maximal absorption bands of compound 1 and 2 in concentrated sulfuric acid were red-shifted for about 48 and 74 nm, respectively, compared with that of Perylene-3,4,9,10-tetracarboxylic acid dianhydride (PTCDA). Nearly no fluorescence was observed for compounds 1 and 2 in water, while compounds 3 and 4 were significantly water-soluble and had very high fluorescent quantum. The mechanism of the optical properties change was discussed, and the π-π stacking caused by H{sup +} led to the changes of fluorescence spectrum and absorption spectrum. The calculated molecular orbital energies and the frontier molecular orbital maps of compounds 1-2 based on density function theory (DFT) calculations were reported. Owing to the high water-soluble, the perylene derivatives 3 and 4 were successfully applied as high-performance fluorochromes for living hela cells imaging.

  3. The Peroxisomal Enzyme L-PBE Is Required to Prevent the Dietary Toxicity of Medium-Chain Fatty Acids

    Directory of Open Access Journals (Sweden)

    Jun Ding

    2013-10-01

    Full Text Available Specific metabolic pathways are activated by different nutrients to adapt the organism to available resources. Although essential, these mechanisms are incompletely defined. Here, we report that medium-chain fatty acids contained in coconut oil, a major source of dietary fat, induce the liver ω-oxidation genes Cyp4a10 and Cyp4a14 to increase the production of dicarboxylic fatty acids. Furthermore, these activate all ω- and β-oxidation pathways through peroxisome proliferator activated receptor (PPAR α and PPARγ, an activation loop normally kept under control by dicarboxylic fatty acid degradation by the peroxisomal enzyme L-PBE. Indeed, L-pbe−/− mice fed coconut oil overaccumulate dicarboxylic fatty acids, which activate all fatty acid oxidation pathways and lead to liver inflammation, fibrosis, and death. Thus, the correct homeostasis of dicarboxylic fatty acids is a means to regulate the efficient utilization of ingested medium-chain fatty acids, and its deregulation exemplifies the intricate relationship between impaired metabolism and inflammation.

  4. Synthesis and luminescent spectroscopy of lanthanide complexes with dimethylpyridine-2,6-dicarboxylate (dmpc)

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Ziyad A., E-mail: tahaz33@just.edu.jo [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Ajlouni, Abdulaziz M.; Hijazi, Ahmed K. [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Al-Rawashdeh, Nathir A. [Department of Applied Chemical Sciences, Faculty of Arts and Sciences, Jordan University of Science and Technology, Irbid 22110 (Jordan); Department of Chemistry, United Arab Emirates University, Al Ain 15551 (United Arab Emirates); Al-Hassan, Khader A.; Al-Haj, Yaser A. [Department of Chemistry, Faculty of Science, Yarmouk University, 1163 Irbid (Jordan); Ebqa' ai, Mohammad A. [Al-Qunfudah Center For Scientific Research, Umm Al-Qura University, College in Al-Qunfudah, Makkah (Saudi Arabia); Altalafha, Ammar Y. [Department of Chemistry, Faculty of Science, Yarmouk University, 1163 Irbid (Jordan)

    2015-05-15

    A series of lanthanide complexes with the general formulae [Ln(dmpc)(NO{sub 3}){sub 2}(H{sub 2}O){sub 2}]NO{sub 3} (Ln=Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Er) and [La(dmpc)(NO{sub 3}){sub 2}(H{sub 2}O){sub 2}]NO{sub 3} were prepared by direct reaction between hydrated lanthanide(III) nitrate and dimethylpyridine-2,6-dicarboxylate (dmpc) in a 1:1 M ratio in ethylacetate–chloroform mixture. The luminescence properties of the dmpc and its Ln(III) complexes were investigated in solid state and in methanol, DMF and DMSO solutions. The Tb–dmpc, Eu–dmpc, Sm–dmpc and Dy–dmpc complexes exhibit characteristic luminescence of Tb(III), Eu(III), Sm(III) and Dy(III) ions indicating energy transfer from the dmpc to the Ln(III) ions. Scavenging activities of the dmpc and its Ln(III) complexes on DPPH{sup •} free radical were investigated in DMSO solution at a different concentrations ranges. - Highlights: • Nine new lanthanide complexes with dmpc ligand are prepared and characterized. • Ln–dmpc {Ln=Eu, Tb, Sm, Dy} complexes exhibit characteristic emissions of Ln ions. • The solvent effect on the luminescence intensity is investigated. • The antioxidant activity of the dmpc is enhanced upon complexation with lanthanide.

  5. Three new 5-fold interpenetrating diamondoid frameworks constructed by rigid diimidazole and dicarboxylate ligands

    Science.gov (United States)

    Huo, Jianqiang; Yan, Shuai; Li, Haiqiang; Yu, Donghui; Arulsamy, Navamoney

    2018-03-01

    A series of three-dimensional coordination polymers, namely, [Cd(BIMB)(SCA)]n (1), [M(BIMB)(trans-CHDC)]n (2, M = Cd2+; 3, M = Co2+), where BIMB = 1,4-di(1H-imidazol-1-yl)benzene, SCA2- = succinate dianion, CHDC2- = cyclohexane-1,4-dicarboxylate dianion) are synthesized hydro/solvatothermal methods. The products are characterized by elemental analysis and single-crystal X-ray diffraction data. Both the dianion and BIMB bridge different pairs of the metal ions, the three complexes are polymeric and their three-dimensional topology feature a diamond-like metal-organic framework (MOF). Owing to the length of the two bridging ligands, moderate size voids are formed in the diamondoid networks. However, the voids are filled by mutual interpenetration of four independent equivalent frameworks in a 5-fold interpenetrating architecture, and there is no sufficient void volume available for any guest molecules. The phase purity and thermal stability of the compounds are verified by powder X-ray diffraction (PXRD) and thermogravimetric (TG) data. The solid-state fluorescence spectra for the 3d10 Cd2+ MOF's 1 and 2 reveal significant enhancement in their emission intensities in comparison to the non-metallated BIMB. The enhanced emission is attributed to perturbation of intra-ligand emission states due to Cd2+ coordination.

  6. Food Waste Fermentation to Fumaric Acid by Rhizopus arrhizus RH7-13.

    Science.gov (United States)

    Liu, Huan; Ma, Jingyuan; Wang, Meng; Wang, Weinan; Deng, Li; Nie, Kaili; Yue, Xuemin; Wang, Fang; Tan, Tianwei

    2016-12-01

    Fumaric acid as a four-carbon unsaturated dicarboxylic acid is widely used in the food and chemical industries. Food waste (FW), rich in carbohydrates and protein, is a promising potential feedstock for renewable bio-based chemicals. In this research, we investigated the capability of Rhizopus arrhizus RH7-13 in producing fumaric acid from FW. The liquid fraction of the FW (L-FW) was proven to be the best seed culture medium in our research. When it was however used to be fermentation medium, the yield of fumaric acid reached 32.68 g/L, at a volumetric production of 0.34 g/L h. The solid fraction of FW mixed with water (S-FW) could also be used as fermentation medium when a certain amount of glucose was added, and the yield of fumaric acid reached 31.26 g/L. The results indicated that both fractions of FW could be well utilized in fermentation process and it could replace a part of common carbon, nitrogen, and nutrient. The process has an application potential since reducing the costs of raw materials.

  7. Topical treatment of all-trans retinoic acid inhibits murine melanoma partly by promoting CD8+T-cell immunity.

    Science.gov (United States)

    Yin, Wei; Song, Yan; Liu, Qing; Wu, Yunyun; He, Rui

    2017-10-01

    All-trans retinoic acid (atRA), the main biologically active metabolite of vitamin A, has been implicated in immunoregulation and anti-cancer. A recent finding that vitamin A could decrease the risk of melanoma in humans indicates the beneficial role of atRA in melanoma. However, it remains unknown whether topical application of atRA could inhibit melanoma growth by influencing tumour immunity. We demonstrate topical application of tretinoin ointment (atRA as the active ingredient) effectively inhibited B16F10 melanoma growth. This is accompanied by markedly enhanced CD8 + T-cell responses, as evidenced by significantly increased proportions of effector CD8 + T cells expressing granzyme B, tumour necrosis factor-α, or interferon-γ, and Ki67 + proliferating CD8 + T cells in atRA-treated tumours compared with vaseline controls. Furthermore, topical atRA treatment promoted the differentiation of effector CD8 + T cells in draining lymph nodes (DLN) of tumour-bearing mice. Interestingly, atRA did not affect tumoral CD4 + T-cell response, and even inhibited the differentiation of interferon-γ-expressing T helper type 1 cells in DLN. Importantly, we demonstrated that the tumour-inhibitory effect of atRA was partly dependent on CD8 + T cells, as CD8 + T-cell depletion restored tumour volumes in atRA-treated mice, which, however, was still significantly smaller than those in vaseline-treated mice. Finally, we demonstrated that atRA up-regulated MHCI expression in B16F10 cells, and DLN cells from tumour-bearing mice had a significantly higher killing rate when culturing with atRA-treated B16F10 cells. Hence, our study demonstrates that topical atRA treatment effectively inhibits melanoma growth partly by promoting the differentiation and the cytotoxic function of effector CD8 + T cells. © 2017 John Wiley & Sons Ltd.

  8. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part I. Regeneration of Amine-Carboxylic Acid Extracts

    Energy Technology Data Exchange (ETDEWEB)

    Poole, Loree Joanne [Univ. of California, Berkeley, CA (United States); King, C. Judson [Univ. of California, Berkeley, CA (United States)

    1990-03-01

    Two novel regenerated solvent extraction processes are examined. The first process has the potential to reduce the energy costs inherent in the recovery of low-volatility carboxylic acids from dilute aqueous solutions. The second process has the potential for reducing the energy costs required for separate recovery of ammonia and acid gases (e.g. CO2 and H2S) from industrial sour waters. The recovery of carboxylic acids from dilute aqueous solution can be achieved by extraction with tertiary amines. An approach for regeneration and product recovery from such extracts is to back-extract the carboxylic acid with a water-soluble, volatile tertiary amine, such as trimethylamine. The resulting trimethylammonium carboxylate solution can be concentrated and thermally decomposed, yielding the product acid and the volatile amine for recycle. Experimental work was performed with lactic acid, succinic acid, and fumaric acid. Equilibrium data show near-stoichiometric recovery of the carboxylic acids from an organic solution of Alamine 336 into aqueous solutions of trimethylamine. For fumaric and succinic acids, partial evaporation of the aqueous back extract decomposes the carboxylate and yields the acid product in crystalline form. The decomposition of aqueous solutions of trimethylammonium lactates was not carried out to completion, due to the high water solubility of lactic acid and the tendency of the acid to self-associate. The separate recovery of ammonia and acid gases from sour waters can be achieved by combining steam-stripping of the acid gases with simultaneous removal of ammonia by extraction with a liquid cation exchanger. The use of di-2,4,4-trimethylpentyl phosphinic acid as the liquid cation exchanger is explored in this work. Batch extraction experiments were carried out to measure the equilibrium distribution ratio of ammonia between an aqueous buffer solution and an organic solution of the phosphinic acid (0.2N) in Norpar 12. The

  9. The ecotoxicogenomic assessment of soil toxicity associated with the production chain of 2,5-furandicarboxylic acid (FDCA), a candidate bio-based green chemical building block

    NARCIS (Netherlands)

    Chen, G.; van Straalen, N.M.; Roelofs, D.

    2016-01-01

    2,5-Furan dicarboxylic acid (FDCA) is one of the top-12 value-added chemicals derived from biomass that may serve as a 'green' substitute for terephthalic acid (TPA) in polyesters. FDCA can be synthesized chemically from 5-(hydroxymethyl)furfural (HMF), which is produced from fructose or glucose. To

  10. Improving the two-step remediation process for CCA-treated wood. Part I, Evaluating oxalic acid extraction

    Science.gov (United States)

    Carol Clausen

    2004-01-01

    In this study, three possible improvements to a remediation process for chromated-copper-arsenate (CCA) treated wood were evaluated. The process involves two steps: oxalic acid extraction of wood fiber followed by bacterial culture with Bacillus licheniformis CC01. The three potential improvements to the oxalic acid extraction step were (1) reusing oxalic acid for...

  11. Fermentation of liquid coproducts and liquid compound diets: Part 2. Effects on pH, acid-binding capacity, organic acids and ethanol during a 6-day period

    NARCIS (Netherlands)

    Scholten, R.H.J.; Rijnen, M.M.J.A.; Schrama, J.W.; Boer, H.; Peet-Schwering, van der C.M.C.; Hartog, den L.A.; Vesseur, P.C.

    2001-01-01

    The effects of a 6-day storage period on changes in pH, acid-binding capacity, level of organic acids and ethanol of three liquid coproducts [liquid wheat starch (LWS), mashed potato steam peel (PSP) and cheese whey (CW)] and two liquid compound diets [liquid grower diet (LGD) and liquid finisher

  12. Radiation-induced catalysis of fatty acids adsorbed onto clay minerals

    International Nuclear Information System (INIS)

    Negron-Mendoza, A.; Ramos-Bernal, S.; Colin-Garcia, M.; Mosqueira, F.G.

    2015-01-01

    We studied the behavior of small fatty (acetic acid) and dicarboxylic acids (succinic and malonic acids) adsorbed onto Na + -montmorillonite (a clay mineral) and exposed to gamma radiation. A decarboxylation reaction was found to predominate when the clay was present. This preferential synthesis promoted the formation of a compound with one less carbon atom than its target compound. In the system without clay, dimerization was the predominate outcome following radiolysis. (author)

  13. Polymerized fatty acid amine derivatives useful as friction and wear-reducing additives

    Energy Technology Data Exchange (ETDEWEB)

    Coupland, K.; Smith, C.R.

    1981-02-10

    A hydrocarbon composition having a major portion of a hydrocarbon preferably a lubricating oil such as mineral oil and at least a friction-reducing amount usually 0.01 to 10 weight percent of an amine or amine derivative of a hydrocarbon-soluble polymerized fatty acid e.g. a dimeramine derived from a dicarboxylic acid containing at least 12 carbon atoms such as 9(10)-carboxy stearic acid has improved antifriction and flue economy properties.

  14. Uranyl Ion Complexes with Long-Chain Aliphatic α,ω-Dicarboxylates and 3d-Block Metal Counterions.

    Science.gov (United States)

    Thuéry, Pierre; Harrowfield, Jack

    2016-03-07

    Twelve new complexes were obtained from reaction of uranyl ions with the aliphatic dicarboxylic acids HOOC-(CH2)n-2-COOH (H2Cn; n = 7-10 and 12) under solvo-hydrothermal conditions, in the presence of 3d-block metal ions (Mn(2+), Fe(3+), Co(2+), Ni(2+), and Cu(2+)) and 2,2'-bipyridine (bipy) or 1,10-phenanthroline (phen). In contrast to previously reported triple-stranded helicates obtained with C9(2-) and C12(2-), all these complexes crystallize as polymeric one-dimensional (1D) or two-dimensional (2D) species. [Fe(bipy)3][(UO2)2(C7)3]·3H2O (1), [Cu(phen)2]2[(UO2)3(C7)4(H2O)2]·2H2O (2), and [Cu(bipy)2]2[(UO2)2(C9)3] (6), in which the 3d cation was reduced in situ, are 1D ladderlike polymers displaying tetra- or hexanuclear rings, of sufficient width to encompass two counterions in 2 and 6. The three complexes [Co(phen)3][(UO2)3(C8)3(O)]·H2O (3), [Ni(phen)3][(UO2)3(C8)3(O)]·H2O (4) and [Co(phen)3][(UO2)3(C9)3(O)]·H2O (5) contain bis(μ3-oxo)-bridged tetranuclear secondary building units, and they crystallize as deeply furrowed 2D assemblies. Depending on the nature of the counterion, C10(2-) gives [Ni(bipy)3][(UO2)2(C10)3]·2H2O (7), a 2D network displaying elongated decanuclear rings containing the counterions, or [Mn(phen)3][(UO2)2(C10)3]·6H2O (8), [Co(phen)3][(UO2)2(C10)3]·7H2O (9), and [Ni(phen)3][(UO2)2(C10)3]·7H2O (10), which consist of 2D assemblies with honeycomb topology; the hexanuclear rings in 8-10 are chairlike and occupied by one counterion and two uranyl groups from neighboring layers. Two complexes of the ligand with the longest chain, C12(2-), are reported. [UO2(C12)(bipy)] (11) is a neutral 1D species in which bipy chelates the uranyl ion and plays an important role in the packing through π-stacking interactions. Two polymeric units, 1D and 2D, coexist in the complex [Ni(bipy)3][(UO2)2(C12)3][UO2(C12)(H2O)2]·H2O (12); the 2D network has the honeycomb topology, but the hexanuclear rings are markedly convoluted, with local features akin to

  15. Sensing Parts per Million Level Ammonia and Parts per Billion Level Acetic Acid in the Gas Phase by Common Black Film with a Fluorescent pH Probe.

    Science.gov (United States)

    Fu, Jingni; Zhang, Luning

    2018-01-16

    Relying on the nanometer-thick water core and large surface area-to-volume ratio (∼2 × 10 8 m -1 ) of common black film (CBF), we are able to use a pH-sensitive dye (carboxy-seminaphthorhodafluor-1, SNARF-1) to detect ammonia and acetic acid gas adsorption into the CBF, with the limit of detection reaching 0.8 ppm for NH 3 gas and 3 ppb for CH 3 COOH gas in the air. Data analysis reveals that fluorescence signal change is linearly proportional to the gas concentration up to 15 ppm and 65 ppb for NH 3 and CH 3 COOH, respectively.

  16. Production of medium-chain, a, omega-bifunctional monomers from fatty acids and n-alkanes

    NARCIS (Netherlands)

    Nuland, Youri M.

    2017-01-01

    In chapter 1, we give an introduction to bifunctional monomers that play an important role in the chemical industry. Briefly, the conventional production processes of α,ω-dicarboxylic acids and α,ω-diols are discussed. Strategies for more sustainable

  17. Design and synthesis of four coordination polymers generated from 2,2'-biquinoline-4,4'-dicarboxylate and aromatic bidentate ligands

    International Nuclear Information System (INIS)

    Ye Junwei; Zhang Ping; Ye Kaiqi; Zhang Hongyu; Jiang Shimei; Ye Ling; Yang Guangdi; Wang Yue

    2006-01-01

    Four coordination polymers [Zn(bqdc)(phen)] n (1), [Zn(bqdc)(bpy)(H 2 O)] n (2), [Mn(bqdc)(bpy)(H 2 O) 2 ] n (3) and [Mn(bqdc)(phen)(H 2 O) 2 ] n (4) (H 2 bqdc=2,2'-biquinoline-4,4'-dicarboxylic acid, phen=1,10-phenanthroline and bpy=2,2'-bipyridyl) have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction. Crystal data for 1: monoclinic system, C2/c, a=14.141(3)A, b=10.021(2)A, c=18.511(4)A, β=103.78(3) o , V=2547.6(9)A 3 , Z=4. Crystal data for 2: monoclinic system, p2 1 /n, a=13.656(3)A, b=10.015(2)A, c=19.127(4)A, β=107.13(7) o , V=2500.1(9)A 3 , Z=4. Crystal data for 3: monoclinic system, C2/c, a=14.5050(8)A, b=15.1932(8)A, c=12.7549(6)A, β=116.8010(11) o , V=2508.9(2)A 3 , Z=4. Crystal data for 4: monoclinic system, C2/c, a=14.1732(17)A, b=16.115(3)A, c=12.809(3)A, β=117.04(3) o , V=2605.7(8)A 3 , Z=4. Single helix-like chains exist in 1. The supramolecular structure of 1 exhibits extended two-dimensional network while 2-4 display extended three-dimensional architectures based on interchain hydrogen bonding and π-π interactions. Compounds 1 and 2 show blue photoluminescence under UV light suggesting that they may be employed to develop luminescent materials. Compounds 3 and 4 show interesting magnetic behaviors

  18. Two-dimensional Zn(II) and one-dimensional Co(II) coordination polymers based on benzene-1,4-dicarboxylate and pyridine ligands.

    Science.gov (United States)

    Zhou, Li-Juan; Han, Chang-Bao; Wang, Yu-Ling

    2016-02-01

    Coordination polymers constructed from metal ions and organic ligands have attracted considerable attention owing to their diverse structural topologies and potential applications. Ligands containing carboxylate groups are among the most extensively studied because of their versatile coordination modes. Reactions of benzene-1,4-dicarboxylic acid (H2BDC) and pyridine (py) with Zn(II) or Co(II) yielded two new coordination polymers, namely, poly[(μ4-benzene-1,4-dicarboxylato-κ(4)O:O':O'':O''')(pyridine-κN)zinc(II)], [Zn(C8H4O2)(C5H5N)]n, (I), and catena-poly[aqua(μ3-benzene-1,4-dicarboxylato-κ(3)O:O':O'')bis(pyridine-κN)cobalt(II)], [Co(C8H4O2)(C5H5N)2(H2O)]n, (II). In compound (I), the Zn(II) cation is five-coordinated by four carboxylate O atoms from four BDC(2-) ligands and one pyridine N atom in a distorted square-pyramidal coordination geometry. Four carboxylate groups bridge two Zn(II) ions to form centrosymmetric paddle-wheel-like Zn2(μ2-COO)4 units, which are linked by the benzene rings of the BDC(2-) ligands to generate a two-dimensional layered structure. The two-dimensional layer is extended into a three-dimensional supramolecular structure with the help of π-π stacking interactions between the aromatic rings. Compound (II) has a one-dimensional double-chain structure based on Co2(μ2-COO)2 units. The Co(II) cations are bridged by BDC(2-) ligands and are octahedrally coordinated by three carboxylate O atoms from three BDC(2-) ligands, one water O atom and two pyridine N atoms. Interchain O-H...O hydrogen-bonding interactions link these chains to form a three-dimensional supramolecular architecture.

  19. Changes in total nitrogen and amino acid composition of New Zealand Undaria pinnatifida with growth, location and plant parts.

    Science.gov (United States)

    Zhou, April Yongdong; Robertson, John; Hamid, Nazimah; Ma, Qianli; Lu, Jun

    2015-11-01

    Undaria pinnatifida is known as unwanted organism in New Zealand. However, Wakame is a traditional food made of U. pinnatifida, which is now cultured extensively in East Asia. Therefore, it is important to examine this introduced alga as a potential source of dietary protein for human consumption in New Zealand. This study determined total nitrogen content and amino acid profile of New Zealand U. pinnatifida harvested from the Marlborough Sounds on a monthly basis from June to November 2011. Total average nitrogen content and crude protein content was 21.02 mg/g dry weight and 13.1% of dry weight, respectively. The three most abundant amino acids that contributed to flavour (glutamic acid, aspartic acid and alanine) were present and the most abundant essential amino acids were arginine, leucine, lysine and valine. The results showed that the amino acid content in blades from the exposed farm was significantly higher (P New Zealand influenced protein content and amino acid composition. Sporophyll, considered as a waste product by many, was found to be a potentially good source of protein. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Interaction between metals and nucleic acids. Part 3. Synthesis and structural studies of copper(II) complexes with Schiff base ligands derived from barbituric acid

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, I.; Gaudemer, A.; Chiaroni, A.; Riche, C.

    1986-02-17

    Schiff bases have been prepared from 5-formylbarbituric acid and 5-formyl-1,3-dimethyl-barbituric acid and various di- or tri-amines. The structure of the corresponding copper(II) complexes have been established by elemental analysis and spectroscopic methods. The molecular structure of one of the complexes, Cu(DiMeBardpt), was determined by X-ray diffraction. Electrochemical study shows that these complexes are reduced at slightly more negative potentials than the corresponding complexes obtained from uracil, which suggests that these new ligands are better electron-donors.

  1. Renal handling of terephthalic acid

    Energy Technology Data Exchange (ETDEWEB)

    Tremaine, L.M.; Quebbemann, A.J.

    1985-01-01

    By use of the Sperber in vivo chicken preparation method, infusion of radiolabeled terephthalic acid ((/sup 14/C)TPA) into the renal portal circulation revealed a first-pass excretion of the unchanged compound into the urine. This model was utilized further to characterize the excretory transport of (/sup 14/C)TPA and provide information on the structural specificity in the secretion of dicarboxylic acids. At an infusion rate of 0.4 nmol/min. 60% of the (/sup 14/C)TPA which reached the kidney was directly excreted. An infusion rate of 3 or 6 mumol/min resulted in complete removal of (/sup 14/C)TPA by the kidney. These results indicate that TPA is both actively secreted and actively reabsorbed when infused at 0.4 nmol/min and that active reabsorption is saturated with the infusion of TPA at higher concentrations. The secretory process was saturated with the infusion of TPA at 40 mumol/mn. The excretory transport of TPA was inhibited by the infusion of probenecid, salicylate, and m-hydroxybenzoic acid, indicating that these organic acids share the same organic anion excretory transport process. m-Hydroxybenzoic acid did not alter the simultaneously measured excretory transport of p-aminohippuric acid (PAH), suggesting that there are different systems involved in the secretion of TPA and PAH. The structural specificity for renal secretion of dicarboxylic acids was revealed by the use of o-phthalic acid and m-phthalic acid as possible inhibitors of TPA secretion.

  2. Secondary formation of oxalic acid and related organic species from biogenic sources in a larch forest at the northern slope of Mt. Fuji

    Science.gov (United States)

    Mochizuki, Tomoki; Kawamura, Kimitaka; Miyazaki, Yuzo; Wada, Ryuichi; Takahashi, Yoshiyuki; Saigusa, Nobuko; Tani, Akira

    2017-10-01

    To better understand the formation of water-soluble organic aerosols in the forest atmosphere, we measured low molecular weight (LMW) dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, unsaturated fatty acids (UFAs), and water-soluble organic carbon (WSOC) in aerosols from a Larix kaempferi forest located at the northern slope of Mt. Fuji, Japan, in summer 2012. Concentrations of dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, and WSOC showed maxima in daytime. Relative abundance of oxalic acid in LMW dicarboxylic acids was on average 52% and its average concentration was 214 ng m-3. We found that diurnal and temporal variations of oxalic acid are different from those of isoprene and α-pinene, whereas biogenic secondary organic aerosols (BSOAs) derived from isoprene and α-pinene showed similar variations with oxalic acid. The mass concentration ratios of oxalic acid/BSOAs were relatively constant, although a large variation in the concentrations of toluene that is an anthropogenic volatile organic compound was observed. These results suggest that formation of oxalic acid is associated with the oxidation of isoprene and α-pinene with O3 and other oxidants in the forest atmosphere. In addition, concentrations of UFAs were observed, for the first time, to decrease dramatically during daytime in the forest. Mass concentration ratios of azelaic acid to UFAs showed a positive correlation with O3, suggesting that UFAs are oxidized to yield azelaic acid, which may be further decomposed to oxalic acid in the forest atmosphere. We found that contributions of oxalic acid to WSOC are significantly high ranging from 3.7 to 9.7% (average 6.0%). This study demonstrates that forest ecosystem is an important source of oxalic acid and other dicarboxylic acids in the atmosphere.

  3. Molybdenum (VI) binded to humic and nitrohumic acid models in aqueous solutions salicylic, 3-nitrosalicylic, 5-nitrosalicylic and 3,5 dinitrosalicylic acids, Part 2

    International Nuclear Information System (INIS)

    Merce, Ana Lucia R.; Lopes, Priscilla P.; Mangricha, Antonio S.

    2006-01-01

    In this work electrochemical and Ultraviolet-Visible studies were performed in solutions of salicylic acid models of humic and nitrohumic acids, a laboratory artifact, and molybdenum in order to determine the affinity of these models towards the metal ion. Molybdenum, which plays a very important role in the soil chemistry, and together with humic substances, impart fertility to soil and water and is a key element in the activity of nitrogenase. The obtained results showed that at least one complexed species is present at the pH range of 6.3 to 8.0, even for the less basic chosen models, the nitrosalicylic acids. Previous study showed that phthalic and nitrophthalic, also humic and nitrohumic acids model compounds, presented complexed species with molybdenum only till pH 6.5. The calculated formation constants showed that the substitution of the nitro group in the orto position was less favoured than in the para substitution, probably due to a steric hindrance in the former, which was clearly seen in the double substituted salicylic nitro derivative. The cyclic voltammetry as well as the Ultraviolet-Visible obtained spectra were able to show that the chemistry of molybdenum in aqueous solutions as the pH is increased is very complex, and the molybdate stops acting as an anion only after pH around 4, when it finally becomes a cation MoO 2 2+ (M). (author)

  4. Acid Etching as Surface Treatment Method for Luting of Glass-Ceramic Restorations, part 1: Acids, Application Protocol and Etching Effectiveness

    Directory of Open Access Journals (Sweden)

    Emilija Barjaktarova-Valjakova

    2018-03-01

    CONCLUSION: Acid etching of the bonding surface of glass - ceramic restorations is considered as the most effective treatment method that provides a reliable bond with composite cement. Selective removing of the glassy matrix of silicate ceramics results in a micromorphological three-dimensional porous surface that allows micromechanical interlocking of the luting composite.

  5. Molybdenum (VI binded to humic and nitrohumic acid models in aqueous solutions. Salicylic, 3-nitrosalicylic, 5-nitrosalicylic and 3,5 dinitrosalicylic acids: part 2

    Directory of Open Access Journals (Sweden)

    Mercê Ana Lucia R.

    2006-01-01

    Full Text Available In this work electrochemical and Ultraviolet-Visible studies were performed in solutions of salicylic acid models of humic and nitrohumic acids, a laboratory artifact, and molybdenum in order to determine the affinity of these models towards the metal ion. Molybdenum, which plays a very important role in the soil chemistry, and together with humic substances, impart fertility to soil and water and is a key element in the activity of nitrogenase. The obtained results showed that at least one complexed species is present at the pH range of 6.3 to 8.0, even for the less basic chosen models, the nitrosalicylic acids. Previous study showed that phthalic and nitrophthalic, also humic and nitrohumic acids model compounds, presented complexed species with molybdenum only till pH 6.5. The calculated formation constants showed that the substitution of the nitro group in the orto position was less favoured than in the para substitution, probably due to a steric hindrance in the former, which was clearly seen in the double substituted salicylic nitro derivative. The cyclic voltammetry as well as the Ultraviolet-Visible obtained spectra were able to show that the chemistry of molybdenum in aqueous solutions as the pH is increased is very complex, and the molybdate stops acting as an anion only after pH around 4, when it finally becomes a cation MoO2(2+ (M.

  6. Para-Conjugated Dicarboxylates with Extended Aromatic Skeletons as the Highly Advanced Organic Anodes for K-Ion Battery.

    Science.gov (United States)

    Li, Chao; Deng, Qijiu; Tan, Haochen; Wang, Chuan; Fan, Cong; Pei, Jingfang; Cao, Bei; Wang, Zhihong; Li, Jingze

    2017-08-23

    A new family of the para-conjugated dicarboxylates embedding in biphenyl skeletons was exploited as the highly advanced organic anodes for K-ion battery. Two members of this family, namely potassium 1,1'-biphenyl-4,4'-dicarboxylate (K 2 BPDC) and potassium 4,4'-E-stilbenedicarboxylate (K 2 SBDC), were selectively studied and their detailed redox behaviors in K-ion battery were also clearly unveiled. Both K 2 BPDC and K 2 SBDC could exhibit very clear and highly reversible two-electron redox mechanism in K-ion battery, as well as higher potassiation potentials (above 0.3 V vs K + /K) when compared to the inorganic anodes of carbon materials recently reported. Meanwhile, the satisfactory specific and rate capacities could be realized for K 2 BPDC and K 2 SBDC. For example, the K 2 BPDC anode could realize the stable rate capacities of 165/143/135/99 mAh g -1 under the high current densities of 100/200/500/1000 mA g -1 , respectively, after its electronic conductivity was improved by mixing a very small amount of graphene. More impressively, the average specific capacities of ∼75 mAh g -1 could be maintained for the K 2 BPDC anode for 3000 cycles under the high current density of 1 A g -1 .

  7. Mathematical Model of Interaction Between Bacteriocin-Producing Lactic Acid Bacteria and Listeria. Part 2: Bifurcations and Applications.

    Science.gov (United States)

    Delboni, Roberta Regina; Yang, Hyun Mo

    2017-10-01

    The big challenge for the food industry is the attending to demands for minimally processed foods, avoiding intense heat treatments and reducing the addition of chemical preservatives, but at the same time ensuring microbiological safety of these products. Lactic acid bacteria are traditionally used in the production of fermented foods. They are responsible for the production of antimicrobial compounds, such as organic acids and bacteriocins, which are protein compounds with bactericidal effect against related species and bacteria such as Listeria monocytogenes and Staphylococcus aureus. Aiming to study quantitatively the biological control as a technique of conservation, we developed a mathematical model to describe the interaction between lactic acid bacteria and Listeria in the food. The steady state and dynamical trajectories analyses of the model permit us to study the suitability of including lactic acid bacteria in order to reduce the growth of Listeria in food.

  8. Computational and electrochemical investigation for corrosion inhibition of nickel in molar sulfuric acid by dihydrazide derivatives. Part II

    Directory of Open Access Journals (Sweden)

    H. Shokry

    2017-05-01

    Full Text Available Correlation of the efficiency of some dihydrazide derivatives, namely malonic acid (MAD, succinic acid (SAD and adipic acid (AAD dihydrazide, against the corrosion of nickel in 1 M sulfuric acid solution is discussed using electrochemical polarization method and quantum chemical calculations based on the ab initio method. The quantum chemical parameters calculated are, the highest occupied molecular orbital (HOMO, the lowest unoccupied molecular orbital (LUMO, the gap energy (ΔE, the dipole moment (μ, the softness (σ and the total energy (TE. The relations between the inhibition efficiency and some quantum parameters are discussed and correlations are proposed. The protection efficiencies of these compounds showed a certain relationship to Mulliken atomic charges and Fukui indices. Dihydrazide inhibitor (AAD exhibited the highest inhibition efficiency.

  9. RESEARCH OF UV-PROTECTIVE ACTIVITY OF FERULIC ACID AS PART OF OINTMENT COMPOSITIONS WITH DIFFERENT PHYSICAL AND CHEMICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    I. L. Abisalova

    2014-01-01

    Full Text Available Cosmetics with the ability to neutralize harmful influence of ultraviolet rays on skin are quite in demand. UV filters in creams composition are divided into two groups: physical and chemical. Antioxidants are used as chemical UV filters. The article presents the results of ferulic acid testing as UV filter in ointment bases with lipophile, hydrophile and lipophilic and hydrophilic properties. The dependence of ferulic acid efficiency from the base type where it was applied was established. The results received are correlated with data about release rate of ferulic acid received in vitro. Ointment bases with such emulsifiers as cetyl alcohol, base emulsifier and Olivem 1000 have the most signified UV protective effect of ferulic acid.

  10. Amino acids as co-amorphous stabilizers for poorly water-soluble drugs--Part 2: molecular interactions.

    Science.gov (United States)

    Löbmann, Korbinian; Laitinen, Riikka; Strachan, Clare; Rades, Thomas; Grohganz, Holger

    2013-11-01

    The formation of co-amorphous drug-drug mixtures has proved to be a powerful approach to stabilize the amorphous form and at the same time increase the dissolution of poorly water-soluble drugs. Molecular interactions in these co-amorphous formulations can play a crucial role in stabilization and dissolution enhancement. In this regard, Fourier-transform infrared spectroscopy (FTIR) is a valuable tool to analyze the molecular near range order of the compounds in the co-amorphous mixtures. In this study, several co-amorphous drugs--low molecular weight excipient blends--have been analyzed with FTIR spectroscopy. Molecular interactions of the drugs carbamazepine and indomethacin with the amino acids arginine, phenylalanine, and tryptophan were investigated. The amino acids were chosen from the biological target site of both drugs and prepared as co-amorphous formulations together with the drugs by vibrational ball milling. A detailed analysis of the FTIR spectra of these formulations revealed specific peak shifts in the vibrational modes of functional groups of drug and amino acid, as long as one amino acid from the biological target site was present in the blends. These peak shifts indicate that the drugs formed specific molecular interactions (hydrogen bonding and π-π interactions) with the amino acids. In the drug-amino acid mixtures that contained amino acids which were not present at the biological target site, no such interactions were identified. This study shows the potential of amino acids as small molecular weight excipients in co-amorphous formulations to stabilize the amorphous form of a poorly water-soluble drug through strong and specific molecular interactions with the drug. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Separation and determination of some carboxylic acids by capillary electrophoresis

    International Nuclear Information System (INIS)

    Sladkov, V.; Fourest, B.

    2006-01-01

    Separation and determination of some organic acids, mono-carboxylic (formic and acetic), dicarboxylic (oxalic and tartaric), tricarboxylic (citric) acids and aromatic acids (phtalic, benzoic, mellitic and trimellitic), by capillary electrophoresis are reviewed. The method development parameters, such as separation and injection mode, are discussed. Special attention is paid to the comparison of different detection types (spectroscopic and electrochemical). The optimisation of the carrier electrolyte composition (choice of carrier electrolyte, effect of pH, ionic strength, electro-osmotic flow modifier) is treated. Different additives (alkali-earth and transition metal ions, cyclodextrins and alcohol), which are often used for improving organic acid separation, are also considered. (authors)

  12. Azelaic acid (15% gel) in the treatment of acne rosacea.

    Science.gov (United States)

    Gupta, Aditya K; Gover, Melissa D

    2007-05-01

    In December of 2002, the FDA approved azelaic acid 15% gel for the topical treatment of inflammatory papules and pustules of mild to moderate rosacea. Azelaic acid is a saturated dicarboxylic acid, which is naturally occurring and has been used in the treatment of rosacea, acne, and melasma. The 15% gel has a high efficacy and is generally well tolerated, with the local irritation (burning, stinging, itching, and scaling) being typically mild and transient. Azelaic acid 15% gel is considered effective and safe as a therapy for inflammatory papulo-pustular rosacea and is suitable for use on all skin types.

  13. Separation and determination of some carboxylic acids by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Sladkov, V.; Fourest, B

    2006-07-01

    Separation and determination of some organic acids, mono-carboxylic (formic and acetic), dicarboxylic (oxalic and tartaric), tricarboxylic (citric) acids and aromatic acids (phtalic, benzoic, mellitic and trimellitic), by capillary electrophoresis are reviewed. The method development parameters, such as separation and injection mode, are discussed. Special attention is paid to the comparison of different detection types (spectroscopic and electrochemical). The optimisation of the carrier electrolyte composition (choice of carrier electrolyte, effect of pH, ionic strength, electro-osmotic flow modifier) is treated. Different additives (alkali-earth and transition metal ions, cyclodextrins and alcohol), which are often used for improving organic acid separation, are also considered. (authors)

  14. Dimethyl 1,4-Dihydro-2,6-dimethyl-1-(4-methylphenyl-4-(4-methoxylphenylpyridine-3,5-dicarboxylate

    Directory of Open Access Journals (Sweden)

    Qingjian Liu

    2009-12-01

    Full Text Available Dimethyl 1,4-dihydro-2,6-dimethyl-1-(4-methylphenyl-4-(4-methoxylphenyl–pyridine-3,5-dicarboxylate has been synthesized via Hantzsch condensation reaction of p-methoxybenzaldehyde, methyl acetoacetate and p-toluidine promoted by microwave irradiation (MWI in the presence of iodine under solvent-free conditions.

  15. Analogues of arginine vasopressin modified in the N-terminal part of the molecule with pipecolic acid isomers

    Czech Academy of Sciences Publication Activity Database

    Sobolewski, D.; Prahl, A.; Slaninová, Jiřina; Lammek, B.

    2009-01-01

    Roč. 611, - (2009), s. 501-502 ISSN 0065-2598. [American Peptide Society Symposium /20./. 26.06.2007-30.06.2007, Montreal] Institutional research plan: CEZ:AV0Z40550506 Keywords : vasopressin * pipecolic acid * biological activity Subject RIV: CC - Organic Chemistry

  16. Comparison of phenolic acids and flavonoids contents in various cultivars and parts of common lavender (Lavandula angustifolia) derived from Poland.

    Science.gov (United States)

    Adaszyńska-Skwirzyńska, M; Dzięcioł, M

    2017-11-01

    The aim of study was to compare the content of phenolic acids and flavonoids in two cultivars of Lavandula angustifolia: 'Blue River' and 'Ellagance Purple', including flowers and leafy stalks. Total phenolics and total flavonoids contents were determined by UV-Vis spectroscopy. The contents of total phenolics in leafy stalks (3.71-4.06 mg g -1 d.m.) were higher than in flowers (1.13-1.14 mg g -1 d.m.). Similarly, higher total contents of flavonoids were determined in leafy stalks (3.41-3.51 mg g -1 d.m.), as compared with flowers (0.86-0.91 mg g -1 d.m.). Phenolic acids and flavonoids were identified and quantified using HPLC and UPLC methods. Three phenolic acids were determined: rosmarinic, ferulic and caffeic acid. Lavender extracts contained also flavonoids from group of apigenin, luteolin and quercetin. Higher amounts of luteolin diglucuronide and luteolin glucuronide were found in leafy stalks in comparison to flowers. Obtained results indicate that leafy stalks of lavender can be also valuable source of antioxidant compounds.

  17. Analogues of arginine vasopressin modified in the N-terminal part of the molecule with isomers of pipecolic acid

    Czech Academy of Sciences Publication Activity Database

    Sobolewski, D.; Prahl, A.; Derdowska, I.; Slaninová, Jiřina; Lammek, B.

    2007-01-01

    Roč. 88, č. 4 (2007), s. 544 ISSN 0006-3525. [American Peptide Society Symposium /20./. 26.06.2007-30.06.2007, Montreal] Institutional research plan: CEZ:AV0Z40550506 Keywords : vasopressin * arginine * pipecolic acid Subject RIV: CE - Biochemistry

  18. Rational assembly of Pb(II)/Cd(II)/Mn(II) coordination polymers based on flexible V-shaped dicarboxylate ligand: Syntheses, helical structures and properties

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gao-Shan [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Liu, Chong-Bo, E-mail: cbliu@nchu.edu.cn [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Liu, Hong [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Robbins, Julianne; Zhang, Z. John [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Yin, Hong-Shan [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Wen, Hui-Liang [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); Wang, Yu-Hua [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2015-05-15

    Six new coordination polymers, namely, [Pb(L)(H{sub 2}O)] (1), [Pb(L)(phen)] (2), [Pb{sub 2}(L){sub 2}(4,4′-bipy){sub 0.5}] (3), [Cd(L)(phen)] (4), [Cd(L)(4,4′-bipy)]·H{sub 2}O (5) and [Mn(L)(4,4′-bipy)]·H{sub 2}O (6) have been synthesized by the hydrothermal reaction of 2,2′-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid (H{sub 2}L) with Pb(II)/Cd(II)/Mn(II) in the presence of ancillary ligands 4,4′-bipyridine (4,4′-bipy) or 1,10-phenanthroline (phen). Complexes 1 and 4–6 exhibit 2-D structures, and complexes 2–3 display 3-D frameworks, of which L{sup 2−} ligands join metal ions to single-stranded helical chains of 1, 3–6 and double-stranded helical chains of 2. Complexes 2 and 3 also contain double-stranded Metal–O helices. Topology analysis reveals that complexes 1 and 4 both represent 4-connected sql net, 2 represents 6-connected pcu net, 3 exhibits a novel (3,12)-connected net, while 5 and 6 display (3,5)-connected gek1 net. The six complexes exhibit two kinds of inorganic–organic connectivities: I{sup 0}O{sup 2} for 1, 4–6, and I{sup 1}O{sup 2} for 2–3. The photoluminescent properties of 4–5 and the magnetic properties of 6 have been investigated. - Graphical abstract: Six new Pb(II)/Cd(II)/Mn(II) coordination polymers with helical structures based on flexible V-shaped dicarboxylate ligand have been synthesized and structurally characterized. Photoluminescent and magnetic properties have been investigated. - Highlights: • Six novel M(II) coordination polymers with 2,2′-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid and N-donor ligands. • Complexes 1–6 show diverse intriguing helical characters. • The luminescent properties of complexes 1–5 were investigated. • Complex 6 shows antiferromagnetic coupling.

  19. Analysis of tellurium-silicon alloys. Part 1. Determination of tellurium by the reduction from perchloric acid solution

    International Nuclear Information System (INIS)

    Teperek, J.

    1977-01-01

    When 100-150 mg of tellurium is dissolved in the solution containing 20 cm 3 72 wt.% of perchloric acid, the reduction of tellurium to elementary form is possible only after adding 60-100 milimoles of HCl. The reduction is performed by adding 1 cm 3 of saturated sodium pyrosulphite solution (Na 2 S 2 O 5 ) and 10 cm 3 of 10 wt.% hydrazine hydrochloride solution (N 2 H 4 .2HCl) to 80-90 cm 3 of cold solution of Te in HClO 4 -HCl mixture. The reduction is completed after 3-5 min. of boiling. When 150-200 mg sample of Te-Si alloy is dissolved in 20 cm 3 of hot 72% per chloric acid, the separation of components is reached. Tellurium can be determinated in filtrate by proposed procedure with high accuracy and precision. (author)

  20. Amphibia and insects as potential bioindicators of high acid and aluminium levels in the northern part of the Black Forest

    International Nuclear Information System (INIS)

    Boehmer, J.; Vollmer, W.; Rahmann, H.

    1992-01-01

    Atmospheric sulphur dioxide and nitrogen oxide loads have caused an acidification of numerous surface waters in the calcium-deficient regions of Europe. The effects of acidification on aquatic organisms was examined in the Northern Black Forest. High acid loads and correlatively high aluminium loads were found to decrease the diversity of aquatic species. Both in wild conditions and in the aquarium embryonic and larval mortality rates were seen to be elevated, leading to a decrease in population of many species. Sublethal impairments such as damage to organs or growth or behavioural disorders were also found. The observed changes in amphibian spawn and populations were used exemplarily as a bioindication of the acid state of the 37 standing waters studied. (orig.) [de

  1. Effects of ractopamine hydrochloride and immunological castration in pigs. Part 2: belly quality characteristics and fatty acid composition

    Directory of Open Access Journals (Sweden)

    Letícia Cristina COSTA E SILVA

    Full Text Available Abstract The effects of immunocastration and ractopamine in the diet on the belly quality were investigated from two crossbred pigs under different conditions of production, diet, management, and slaughter arranged in factorial design using two levels of addition of ractopamine in the diet, 0 and 7.5 ppm, and three genders (gilts, immunocastrated and barrows. The quality of bellies were analyzed for chemical composition, pH, meat and fat color, backfat thickness and fatty acid profile of the fat. The addition of ractopamine showed no significant influence on pH, color and chemical composition in two crossbred pigs. The immunocastrated had thicker belly backfat compared to the bellies of the gilts. The contents of fatty acids polyunsaturated, linoleic, linoleic, arachidonic, total omega 3 and omega 6 were higher for immunocastrated pigs, as well as presenting values greater than 0.4 for the PUFA:SFA ratio, thus, providing bellies with better nutritional quality. The bellies of the gilts and immunocastrated pigs had higher concentrations of iodine value, indicative of higher unsaturated fat content. The results indicated that the addition of ractopamine and immunocastration had little influence on the quality of bellies as well as in their fatty acid profiles, suggesting the continuity of implementation of these techniques.

  2. Vascular effects of the Mediterranean diet-part II: role of omega-3 fatty acids and olive oil polyphenols.

    Science.gov (United States)

    Scoditti, Egeria; Capurso, Cristiano; Capurso, Antonio; Massaro, Marika

    2014-12-01

    The lower occurrence of cardiovascular disease and cancer in populations around the Mediterranean basin as detected in the 1950s was correctly attributed to the peculiar dietary habits of those populations. Essentially, until the mid-20th century, typical Mediterranean diets were rich in fruits, vegetables, legumes, whole-wheat bread, nuts, fish, and, as a common culinary trait, the routine use of extra-virgin olive oil. Nowadays, the regular adoption of such dietary patterns is still thought to result in healthful benefits. Such patterns ensure the assumption of molecules with antioxidant and anti-inflammatory actions, among which ω-3 polyunsaturated fatty acids (PUFAs), ω-9 monounsaturated fatty acids (oleic acid), and phenolic compounds. The aim of this review is to provide an update of the vasculo-protective pathways mediated by ω-3 PUFAs and polyphenols in the context of the modern Mediterranean dietary habits, including the possible cross-talk and synergy between these typical components. This review complements a parallel one focusing on the role of dietary nitrates and alimentary fats. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Triphenylphosphine Mediated Synthesis of Functionalized Benzo-Fused Coumarins from Some OH Acids and Dialkyl Acetylene Dicarboxylate

    Directory of Open Access Journals (Sweden)

    Bita Mohtat

    2013-01-01

    Full Text Available Benzo-fused coumarins are prepared from 4-quinolinol by treatment with PPh3 and dialkyl acetylenedicarboxylate. Angular coumarins are prepared from 3-isoquinolinol and 7-hydroxyl coumarine with PPh3 and dialkyl acetylenedicarboxylate.

  4. CCDC 938820: Experimental Crystal Structure Determination : 9H-carbazole-3,6-dicarboxylic acid N,N-dimethylformamide solvate

    KAUST Repository

    Weselinski, Lukasz

    2014-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  5. Gas-Phase Fragmentation Behavior of Vanadium(V) Complexes Containing one Molecule of a C4-Dicarboxylic Acid

    Czech Academy of Sciences Publication Activity Database

    Kaczorowska, M.; Schwarz, H.; Schröder, Detlef

    -, č. 21 (2007), s. 3335-3341 ISSN 1434-1948 R&D Projects: GA AV ČR KJB4040302; GA AV ČR KJB400550704 Grant - others:FP6(XE) 015847 Institutional research plan: CEZ:AV0Z40550506 Source of funding: R - rámcový projekt EK Keywords : carboxylato complexes * electrospray ionization * maleic anhydride * mass spectrometry * vanadium Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.597, year: 2007

  6. Naphthalene Bis(4,8-diamino-1,5-dicarboxyl)amide Building Block for Semiconducting Polymers.

    Science.gov (United States)

    Eckstein, Brian J; Melkonyan, Ferdinand S; Manley, Eric F; Fabiano, Simone; Mouat, Aidan R; Chen, Lin X; Facchetti, Antonio; Marks, Tobin J

    2017-10-18

    We report a new naphthalene bis(4,8-diamino-1,5-dicarboxyl)amide (NBA) building block for polymeric semiconductors. Computational modeling suggests that regio-connectivity at the 2,6- or 3,7-NBA positions strongly modulates polymer backbone torsion and, therefore, intramolecular π-conjugation and aggregation. Optical, electrochemical, and X-ray diffraction characterization of 3,7- and 2,6-dithienyl-substituted NBA molecules and corresponding isomeric NBA-bithiophene copolymers P1 and P2, respectively, reveals the key role of regio-connectivity. Charge transport measurements demonstrate that while the twisted 3,7-NDA-based P1 is a poor semiconductor, the planar 2,6-functionalized NBA polymers (P2-P4) exhibit ambipolarity, with μ e and μ h of up to 0.39 and 0.32 cm 2 /(V·s), respectively.

  7. Ternary complex formation of Eu(III) and Am(III) with pyridine-2,6-dicarboxylate in aqueous solutions

    International Nuclear Information System (INIS)

    Park, Kyoung K.; Kwon, Tae R.; Park, Yeong J.; Jung, Euo C.; Kim, Won H.

    2007-01-01

    Ternary hydroxo complex formation of Eu(III) with pyridine-2,6-dicarboxylate (PDA) was investigated by potentiometry and fluorescence spectrophotometry. Curves of equilibrium pH versus amount of OH - added showed that the pH for the precipitation of Eu(III) was decreased due to the formation of ternary hydroxo complex, EuOHL(s) (L = PDA), which was confirmed by the enhancement of fluorescence intensity of Eu(III) in precipitate with PDA excitation wavelength. The ternary hydroxo complex species was also confirmed by the analysis of concentrations of the Eu(III), OH - and PDA in the precipitate. Solubility products of EuOHL(s) and Eu(OH) 3 were determined as pK sp 0 =19.2±0.2 and 24.5 ± 0.1, respectively. Similar behavior for the ternary hydroxo complex formation was observed for trace 241 Am(III) added to Eu(III)

  8. Determinação de Ácidos Carboxílicos na Atmosfera Urbana de São Paulo: uma abordagem analítica e ambiental Carboxylic acids measuremsnts in urban air of são paulo city: an analytical and environmental approach

    Directory of Open Access Journals (Sweden)

    Silvia R. Souza

    1997-06-01

    Full Text Available In this work, analytical strategies are evaluated in order to measure accurately the ambient levels of atmospheric organic acids. Environmental considerations about the determination of low molecular weight mono- and di-carboxylic acids from urban areas of São Paulo are described.

  9. Suppression of Grb2 expression improved hepatic steatosis, oxidative stress, and apoptosis induced by palmitic acid in vitro partly through insulin signaling alteration.

    Science.gov (United States)

    Shan, Xiangxiang; Miao, Yufeng; Fan, Rengen; Song, Changzhi; Wu, Guangzhou; Wan, Zhengqiang; Zhu, Jian; Sun, Guan; Zha, Wenzhang; Mu, Xiangming; Zhou, Guangjun; Chen, Yan

    2013-09-01

    In this study, we aimed to study the role of growth factor receptor-bound protein 2 (Grb2) in palmitic acid-induced steatosis and other "fatty liver" symptoms in vitro. HepG2 cells, with or without stably suppressed Grb2 expression, were incubated with palmitic acid for 24 h to induce typical clinical "fatty liver" features, including steatosis, impaired glucose metabolism, oxidative stress, and apoptosis. MTT and Oil Red O assays were applied to test cell viability and fat deposition, respectively. Glucose uptake assay was used to evaluate the glucose utilization of cells. Quantitative polymerase chain reaction and Western blot were used to measure expressional changes of key markers of insulin signaling, lipid/glucose metabolism, oxidative stress, and apoptosis. After 24-h palmitic acid induction, increased fat accumulation, reduced glucose uptake, impaired insulin signaling, enhanced oxidative stress, and increased apoptosis were observed in HepG2 cells. Suppression of Grb2 in HepG2 significantly reduced fat accumulation, improved glucose metabolism, ameliorated oxidative stress, and restored the activity of insulin receptor substrate-1/Akt and MEK/ERK pathways. In addition, Grb2 deficiency attenuated hepatic apoptosis shown by reduced activation of caspase-3 and fluorescent staining. Modulation of Bcl-2 and Bak1 also contributed to reduced apoptosis. In conclusion, suppression of Grb2 expression in HepG2 cells improved hepatic steatosis, glucose metabolism, oxidative stress, and apoptosis induced by palmitic acid incubation partly though modulating the insulin signaling pathway.

  10. Syntheses, structures and magnetic properties of four coordination polymers based on nitrobenzene dicarboxylate and various N-donor coligands

    International Nuclear Information System (INIS)

    Li, Gui-Lian; Yin, Wei-Dong; Liu, Guang-Zhen; Ma, Lu-Fang; Wang, Li-Ya

    2014-01-01

    Four new coordination polymers ([Ni(4-Nbdc)(bpa)(H 2 O)]) n (1), ([Co(4-Nbdc)(bpp) (H 2 O)]) n (2), ([Ni(4-Nbdc)(bpp)(H 2 O)]·H 2 O) n (3), and ([Mn 2 (3-Nbdc) 2 (bib) 3 ]·2H 2 O) n (4) (4-Nbdc=4-nitrobenzene-1,2-dicarboxylate, 3-Nbdc=3-nitrobenzene-1,2-dicarboxylate, bpa=1,2-bi(4-pyridyl)ethane, bpp=1,3-bis(4-pyridyl)propane, and bib=1,4-bis(1-imidazoly)benzene), were synthesized by hydrothermal reactions, and characterized by single-crystal X-ray diffractions, elemental analysis, FT-IR, PXRD, TGA and magnetic analysis. Complexes 1 and 2 display quasi-trapezoidal chain and brick-wall layer, and both of them contain metal–carboxylate binuclear units. Complexes 3 and 4 exhibit three-dimensional frameworks with the (6 6 ) dia topology and (4 4 .6 10 .8)(4 4 .6 2 ) fsc topology, and both of them contain metal–carboxylate chains. The carboxyl groups with syn-anti coordination mode mediate effectively the weak ferromagnetic coupling interaction within Ni(II)–carboxylate binuclear in 1 (J=1.27 cm −1 ) and Ni(II)–carboxylate chain in 3 (J=1.44 cm −1 ), respectively, and the carboxyl groups with anti-anti coordination mode leads to the classic antiferromagnetic coupling interaction within Mn(II)–carboxylate chain in 4 (J=−0.77 cm −1 ). - Highlights: • Four novel coordination polymers were hydrothermally synthesized. • 1 is 1D quasi-trapezoidal chain and 2 is brick-wall layer both with dinuclear units. • 3 and 4 show 3D frameworks both with 1D metal–carboxylate chains. • 1 and 3 exhibit ferromagnetic coupling, while 4 shows antiferromagnetic coupling

  11. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 3: Michael addition reactions and miscellaneous transformations.

    Science.gov (United States)

    Aceña, José Luis; Sorochinsky, Alexander E; Soloshonok, Vadim

    2014-09-01

    The major goal of this review is a critical discussion of the literature data on asymmetric synthesis of α-amino acids via Michael addition reactions involving Ni(II)-complexes of amino acids. The material covered is divided into two conceptually different groups dealing with applications of: (a) Ni(II)-complexes of glycine as C-nucleophiles and (b) Ni(II)-complexes of dehydroalanine as Michael acceptors. The first group is significantly larger and consequently subdivided into four chapters based on the source of stereocontrolling element. Thus, a chiral auxiliary can be used as a part of nucleophilic glycine Ni(II) complex, Michael acceptor or both, leading to the conditions of matching vs. mismatching stereochemical preferences. The particular focus of the review is made on the practical aspects of the methodology under discussion and mechanistic considerations.

  12. Identification and analysis of 21 novel disease-causing amino acid substitutions in the conserved part of ATP7A

    DEFF Research Database (Denmark)

    Moller, L.B.; Bukrinsky, J.T.; Mølgaard, Anne

    2005-01-01

    ATP7A encodes a copper. translocating ATPase that belongs to the large family of P-type ATPases. Eight conserved regions define the core of the P-type ATPase superfamily. We report here the identification of 21 novel missense mutations in the conserved part of ATP7A that encodes the residues p.V842...

  13. Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part II: Binary mixtures with CO2

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2011-01-01

    In Part I of this series of articles, the study of H2S mixtures has been presented with CPA. In this study the phase behavior of CO2 containing mixtures is modeled. Binary mixtures with water, alcohols, glycols and hydrocarbons are investigated. Both phase equilibria (vapor–liquid and liquid–liqu...

  14. Maleic acid and succinic acid in fermented alcoholic beverages are the stimulants of gastric acid secretion.

    Science.gov (United States)

    Teyssen, S; González-Calero, G; Schimiczek, M; Singer, M V

    1999-03-01

    Alcoholic beverages produced by fermentation (e.g., beer and wine) are powerful stimulants of gastric acid output and gastrin release in humans. The aim of this study was to separate and specify the gastric acid stimulatory ingredients in alcoholic beverages produced by fermentation. Yeast-fermented glucose was used as a simple model of fermented alcoholic beverages; it was stepwise separated by different methods of liquid chromatography, and each separated solution was tested in human volunteers for its stimulatory action on gastric acid output and gastrin release. Five substances were detected by high-performance liquid chromatography and were analyzed by mass spectrometry and 1H-13C nuclear magnetic resonance spectroscopy. At the end of the separation process of the five identified substances, only the two dicarboxylic acids, maleic acid and succinic acid, had a significant (P fermented glucose, respectively), but not on gastrin release. When given together, they increased gastric acid output by 100% of fermented glucose and by 95% of maximal acid output. We therefore conclude that maleic acid and succinic acid are the powerful stimulants of gastric acid output in fermented glucose and alcoholic beverages produced by fermentation, and that gastrin is not their mediator of action.

  15. Sequential Mixed Cultures: From Syngas to Malic Acid.

    Science.gov (United States)

    Oswald, Florian; Dörsam, Stefan; Veith, Nicolas; Zwick, Michaela; Neumann, Anke; Ochsenreither, Katrin; Syldatk, Christoph

    2016-01-01

    Synthesis gas (syngas) fermentation using acetogenic bacteria is an approach for production of bulk chemicals like acetate, ethanol, butanol, or 2,3-butandiol avoiding the fuel vs. food debate by using carbon monoxide, carbon dioxide, and hydrogen from gasification of biomass or industrial waste gases. Suffering from energetic limitations, yields of C4-molecules produced by syngas fermentation are quite low compared with ABE fermentation using sugars as a substrate. On the other hand, fungal production of malic acid has high yields of product per gram metabolized substrate but is currently limited to sugar containing substrates. In this study, it was possible to show that Aspergilus oryzae is able to produce malic acid using acetate as sole carbon source which is a main product of acetogenic syngas fermentation. Bioreactor cultivations were conducted in 2.5 L stirred tank reactors. During the syngas fermentation part of the sequential mixed culture, Clostridium ljungdahlii was grown in modified Tanner medium and sparged with 20 mL/min of artificial syngas mimicking a composition of clean syngas from entrained bed gasification of straw (32.5 vol-% CO, 32.5 vol-% H2, 16 vol-% CO2, and 19 vol-% N2) using a microsparger. Syngas consumption was monitored via automated gas chromatographic measurement of the off-gas. For the fungal fermentation part gas sparging was switched to 0.6 L/min of air and a standard sparger. Ammonia content of medium for syngas fermentation was reduced to 0.33 g/L NH4Cl to meet the requirements for fungal production of dicarboxylic acids. Malic acid production performance of A. oryzae in organic acid production medium and syngas medium with acetate as sole carbon source was verified and gave YP∕S values of 0.28 g/g and 0.37 g/g respectively. Growth and acetate formation of C. ljungdahlii during syngas fermentation were not affected by the reduced ammonia content and 66 % of the consumed syngas was converted to acetate. The overall conversion

  16. High temperature abatement of acid gases from waste incineration. Part I: experimental tests in full scale plants.

    Science.gov (United States)

    Biganzoli, Laura; Racanella, Gaia; Rigamonti, Lucia; Marras, Roberto; Grosso, Mario

    2015-02-01

    In recent years, several waste-to-energy plants in Italy have experienced an increase of the concentration of acid gases (HCl, SO2 and HF) in the raw gas. This is likely an indirect effect of the progressive decrease of the amount of treated municipal waste, which is partially replaced by commercial waste. The latter is characterised by a higher variability of its chemical composition because of the different origins, with possible increase of the load of halogen elements such as chlorine (Cl) and fluorine (F), as well as of sulphur (S). A new dolomitic sorbent was then tested in four waste-to-energy plants during standard operation as a pre-cleaning stage, to be directly injected at high temperature in the combustion chamber. For a sorbent injection of about 6 kg per tonne of waste, the decrease of acid gases concentration downstream the boiler was in the range of 7-37% (mean 23%) for HCl, 34-95% (mean 71%) for SO2 and 39-80% (mean 63%) for HF. This pre-abatement of acid gases allowed to decrease the feeding rate of the traditional low temperature sorbent (sodium bicarbonate in all four plants) by about 30%. Furthermore, it was observed by the plant operators that the sorbent helps to keep the boiler surfaces cleaner, with a possible reduction of the fouling phenomena and a consequent increase of the specific energy production. A preliminary quantitative estimate was carried out in one of the four plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Benchmarking of protein descriptor sets in proteochemometric modeling (part 2): modeling performance of 13 amino acid descriptor sets

    Science.gov (United States)

    2013-01-01

    Background While a large body of work exists on comparing and benchmarking descriptors of molecular structures, a similar comparison of protein descriptor sets is lacking. Hence, in the current work a total of 13 amino acid descriptor sets have been benchmarked with respect to their ability of establishing bioactivity models. The descriptor sets included in the study are Z-scales (3 variants), VHSE, T-scales, ST-scales, MS-WHIM, FASGAI, BLOSUM, a novel protein descriptor set (termed ProtFP (4 variants)), and in addition we created and benchmarked three pairs of descriptor combinations. Prediction performance was evaluated in seven structure-activity benchmarks which comprise Angiotensin Converting Enzyme (ACE) dipeptidic inhibitor data, and three proteochemometric data sets, namely (1) GPCR ligands modeled against a GPCR panel, (2) enzyme inhibitors (NNRTIs) with associated bioactivities against a set of HIV enzyme mutants, and (3) enzyme inhibitors (PIs) with associated bioactivities on a large set of HIV enzyme mutants. Results The amino acid descriptor sets compared here show similar performance (set differences ( > 0.3 log units RMSE difference and >0.7 difference in MCC). Combining different descriptor sets generally leads to better modeling performance than utilizing individual sets. The best performers were Z-scales (3) combined with ProtFP (Feature), or Z-Scales (3) combined with an average Z-Scale value for each target, while ProtFP (PCA8), ST-Scales, and ProtFP (Feature) rank last. Conclusions While amino acid descriptor sets capture different aspects of amino acids their ability to be used for bioactivity modeling is still – on average – surprisingly similar. Still, combining sets describing complementary information consistently leads to small but consistent improvement in modeling performance (average MCC 0.01 better, average RMSE 0.01 log units lower). Finally, performance differences exist between the targets compared thereby underlining that

  18. Nitric acid in the stratosphere based on Odin observations from 2001 to 2009 – Part 1: A global climatology

    Directory of Open Access Journals (Sweden)

    J. Urban

    2009-09-01

    Full Text Available The Sub-Millimetre Radiometer (SMR on board the Odin satellite, launched in February 2001, observes thermal emissions of stratospheric nitric acid (HNO3 originating from the Earth limb in a band centred at 544.6 GHz. Height-resolved measurements of the global distribution of nitric acid in the stratosphere were performed approximately on two observation days per week. An HNO3 climatology based on more than 7 years of observations from August 2001 to April 2009 covering the vertical range between typically ~19 and 45 km (~1.5–60 hPa or ~500–1800 K in terms of potential temperature was created. The study highlights the spatial and seasonal variation of nitric acid in the stratosphere, characterised by a pronounced seasonal cycle at middle and high latitudes with maxima during late fall and minima during spring, strong denitrification in the lower stratosphere of the Antarctic polar vortex during winter (the irreversible removal of NOy by the sedimentation of cloud particles containing HNO3, as well as large quantities of HNO3 formed every winter at high-latitudes in the middle and upper stratosphere. A strong inter-annual variability is observed in particular at high latitudes. A comparison with a stratospheric HNO3 climatology, based on over 7 years of UARS/MLS (Upper Atmosphere Research Satellite/Microwave Limb Sounder measurements from the 1990s, shows good consistency and agreement of the main morphological features in the potential temperature range ~465 to ~960 K, if the different characteristics of the data sets such as the better altitude resolution of Odin/SMR as well as the slightly different altitude ranges are considered. Odin/SMR reaches higher up and UARS/MLS lower down in the stratosphere. An overview from 1991 to 2009 of stratospheric nitric acid is provided (with a short gap between 1998 and 2001, if the global measurements of both experiments are taken together.

  19. Surface grafted chitosan gels. Part I. Molecular insight into the formation of chitosan and poly(acrylic acid) multilayers

    DEFF Research Database (Denmark)

    Liu, Chao; Thormann, Esben; Claesson, Per M.

    2014-01-01

    molecular weight chitosan shows a similar behavior, although to a much lower extent. Our data demonstrate that the charged monomeric units of chitosan are mainly compensated by carboxylate ions from PAA. Furthermore, the morphology and mechanical properties of the multilayers were investigated in situ using......Composite polyelectrolyte multilayers of chitosan and low molecular weight poly(acrylic acid) (PAA) have been assembled by sequential adsorption as a first step toward building a surface anchored chitosan gel. Silane chemistry was used to graft the first chitosan layer to prevent film detachment...

  20. Melanin and humic acid-like polymer complex from olive mill waste waters. Part I. Isolation and characterization.

    Science.gov (United States)

    Khemakhem, Maissa; Papadimitriou, Vassiliki; Sotiroudis, Georgios; Zoumpoulakis, Panagiotis; Arbez-Gindre, Cécile; Bouzouita, Nabiha; Sotiroudis, Theodore G

    2016-07-15

    A water soluble humic acid and melanin-like polymer complex (OMWW-ASP) was isolated from olive mill waste waters (OMWW) by ammonium sulfate fractionation to be used as natural additive in food preparations. The dark polymer complex was further characterized by a variety of biochemical, physicochemical and spectroscopic techniques. OMWW-ASP is composed mainly of proteins associated with polyphenols and carbohydrates and the distribution of its relative molecular size was determined between about 5 and 190 kDa. SDS-PAGE shows the presence of a well separated protein band of 21.3 kDa and a low molecular weight peptide. The OMWW-ASP complex exhibits a monotonically increasing UV-Vis absorption spectrum and it contains stable radicals. Antioxidant activity measurements reveal the ability of the OMWW protein fraction to scavenge both the cationic 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS(+)) radical, as well as the stable nitroxide free radical 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPOL). Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. An overview of the western Maryland coal combustion by-products/acid mine drainage initiative, Part 1 of 3

    International Nuclear Information System (INIS)

    Petzrick, P.; Rafalko, L.G.; Lyons, C.

    1996-01-01

    The western Maryland coal combustion by-products (CCB)/acid mine drainage (AMD) initiative (the Initiative) is a public-private partnership exploring the use of CCBs to eliminate AMD from Maryland's abandoned coal mines. This dynamic partnership will sponsor a series of large scale experiments and demonstrations addressing the engineering problems that characterize the beneficial application of CCBs to prevent acid formation on a scale that is consistent with the large quantity of these materials that will be produced by power plants in or near western Maryland. The initial demonstration is the filling and sealing of a small hand dug mine (the Frazee Mine) under approximately ninety feet of overburden on Winding Ridge near Friendsville, Maryland. A second demonstration is being planned for the Kempton mine complex. Subsequent demonstrations will focus on reducing the cost of materials handling and mine injection and solving the engineering problems characteristic of filling abandoned mines in Maryland. The Initiative is the flagship activity in Maryland's overall Ash Utilization Program, the goal of which is to promote beneficial use of all coal combustion by-products

  2. Salinity and solvent effects on the characterization of naphthenic acids from Athabasca oil sands using electrospray ionization

    International Nuclear Information System (INIS)

    Headley, J.; Peru, K.; Barrow, M.; Derrick, P.

    2010-01-01

    This study investigated the salinity and solvent effects on the characterization of naphthenic acids (NA) in oil sands. The mass spectra of NA were obtained using an electrospray ionization method combined with a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. The study showed that while monocarboxylic compounds (C n H 2n+z O 2 ) in the z=-4, -6, and -12 of the 2,3 and 6-ring NA in the carbon number range of 13 to 19 were prevalent in the dichloromethane and acetonitrile co-solvent systems, the addition of salt resulted in a reduction of the observed species, the complete elimination of dicarboxylic acids, and an 80 per cent reduction in O 3 species with similar carbon number range and z values. The dicarboxylic acids were also less toxic than monocarboxylic acids. Results of the study will be used to refine methods of remediating oil sands and process water contaminated soils.

  3. The evolution of lipids part 2. Which was comfortable isoprenoid alcohol or fatty acid as the membrane lipids of the common ancestral cell?

    Science.gov (United States)

    Itoh, Y.; Itoh, T.

    A cell is the most fundamental and essential structural unit of all living organisms on the Earth. Even though we will disclose many genomic DNA sequences, the structures and functions of their products, and interactions of them, it isn't possible to create an organism in vitro without cell membrane or barriers with which separate an inner water part from the outer environments. What kinds of molecule were concentrated in the prebiotic soup to be the cradle of genetic materials? Which was comfortable isoprenoid alcohol or fatty acid as the membrane lipids of the common ancestral cell? The struct u ral units of DNA, RNA, and proteins are simple, well organized and common in all the living organisms on the Earth. On the other hand, a great number of molecular species of the membrane lipids are present and each of them is specific for the individual species. Major lipids of all living organisms are derived from a variety of glycerophospholipids, s ulfolipids , glycolipid, phosphosulfoglycolipids, or triterpen family. Where do these molecules distribute in a phylogenetic tree? Among procaryotes, bacterial membrane glycerolipids basically consist of fatty acids as hydrocarbon chains, however, archaeal that do isoprenoid alcohol chains. How did the number of carbon in a fatty acid chain or an isoprenoid chain select ? Which might have an advantage for an easy way to obtain enough length of the membrane lipids, fatty acid or isoprenoid, in the prebiotic soup ? Precursor of an isoprenoid , a mevalonic acid, that is easily soluble in water and also soluble in polar organic solvent. The characteristics of the molecules should be suitable for their functions. In this presentation, based on the comparison of the molecular species of lipids in widespread living organisms including Archaea, Bacteria, and Eucarya, the evolutional position of each molecule will be discussed.

  4. Progress of succinic acid production from renewable resources: Metabolic and fermentative strategies.

    Science.gov (United States)

    Jiang, Min; Ma, Jiangfeng; Wu, Mingke; Liu, Rongming; Liang, Liya; Xin, Fengxue; Zhang, Wenming; Jia, Honghua; Dong, Weiliang

    2017-12-01

    Succinic acid is a four-carbon dicarboxylic acid, which has attracted much interest due to its abroad usage as a precursor of many industrially important chemicals in the food, chemicals, and pharmaceutical industries. Facing the shortage of crude oil supply and demand of sustainable development, biological production of succinic acid from renewable resources has become a topic of worldwide interest. In recent decades, robust producing strain selection, metabolic engineering of model strains, and process optimization for succinic acid production have been developed. This review provides an overview of succinic acid producers and cultivation technology, highlight some of the successful metabolic engineering approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Fatty acids, coumarins and polyphenolic compounds of Ficus carica L. cv. Dottato: variation of bioactive compounds and biological activity of aerial parts.

    Science.gov (United States)

    Marrelli, Mariangela; Statti, Giancarlo A; Tundis, Rosa; Menichini, Francesco; Conforti, Filomena

    2014-01-01

    Leaves, bark and woody part of Ficus carica L. cultivar Dottato collected in different months were examined to assess their chemical composition, antioxidant activity and phototoxicity on C32 human melanoma cells after UVA irradiation. The phytochemical investigation revealed different composition in the coumarin, fatty acid, polyphenol and flavonoid content. The second harvest of leaves and the first harvest of the bark possessed the highest antiradical activity with IC50 values of 64.00 ± 0.59 and 67.00 ± 1.09 μg/mL, respectively. Harvest III of leaves showed the best inhibition of lipid peroxidation (IC50 = 1.48 ± 0.04 μg/mL). Leaf samples of F. carica showed also the best antiproliferative activity in comparison with bark and woody part of F. carica.

  6. MicroRNA-10a is reduced in breast cancer and regulated in part through retinoic acid

    International Nuclear Information System (INIS)

    Khan, Sonja; Wall, Deirdre; Curran, Catherine; Newell, John; Kerin, Michael J; Dwyer, Roisin M

    2015-01-01

    MicroRNAs (miRNAs) are short non-coding RNA molecules that play a critical role in mRNA cleavage and translational repression, and are known to be altered in many diseases including breast cancer. MicroRNA-10a (miR-10a) has been shown to be deregulated in various cancer types. The aim of this study was to investigate miR-10a expression in breast cancer and to further delineate the role of retinoids and thyroxine in regulation of miR-10a. Following informed patient consent and ethical approval, tissue samples were obtained during surgery. miR-10a was quantified in malignant (n = 103), normal (n = 30) and fibroadenoma (n = 35) tissues by RQ-PCR. Gene expression of Retinoic Acid Receptor beta (RARβ) and Thyroid Hormone receptor alpha (THRα) was also quantified in the same patient samples (n = 168). The in vitro effects of all-trans Retinoic acid (ATRA) and L-Thyroxine (T 4 ) both individually and in combination, on miR-10a expression was investigated in breast cancer cell lines, T47D and SK-BR-3. The level of miR-10a expression was significantly decreased in tissues harvested from breast cancer patients (Mean (SEM) 2.1(0.07)) Log 10 Relative Quantity (RQ)) compared to both normal (3.0(0.16) Log 10 RQ, p < 0.001) and benign tissues (2.6(0.17) Log 10 RQ, p < 0.05). The levels of both RARβ and THRα gene expression were also found to be decreased in breast cancer patients compared to controls (p < 0.001). A significant positive correlation was determined between miR-10a and RARβ (r = 0.31, p < 0.001) and also with THRα (r = 0.32, p < 0.001). In vitro stimulation assays revealed miR-10a expression was increased in both T47D and SK-BR-3 cells following addition of ATRA (2 fold (0.7)). While T 4 alone did not stimulate miR-10a expression, the combination of T 4 and ATRA was found to have a positive synergistic effect. The data presented supports a potential tumour suppressor role for miR-10a in breast cancer, and highlights retinoic acid as a positive regulator of the

  7. IUPAC-NIST Solubility Data Series. 90. Hydroxybenzoic Acid Derivatives in Binary, Ternary, and Multicomponent Systems. Part I. Hydroxybenzoic Acids, Hydroxybenzoates, and Hydroxybenzoic Acid Salts in Water and Aqueous Systems

    Science.gov (United States)

    Goto, Rensuke; Fukuda, Hiroshi; Königsberger, Erich; Königsberger, Lan-Chi

    2011-03-01

    The solubility data for well-defined binary, ternary, and multicomponent systems of solid-liquid type are reviewed. One component, which is 2-, 3-, and 4-hydroxybenzoic acids, 4-hydroxybenzoate alkyl esters (parabens), or hydroxybenzoic acid salts, is in the solid state at room temperature and another component is liquid water, meaning that all of the systems are aqueous solutions. The ternary or multicomponent systems include organic substances of various classes (hydrocarbons of several structural types, halogenated hydrocarbons, alcohols, acids, ethers, esters, amides, and surfactants) or inorganic substances. Systems reported in the primary literature from 1898 through 2000 are compiled. For seven systems, sufficient binary data for hydroxybenzoic acids or parabens in water are available to allow critical evaluation. Almost all data are expressed as mass and mole fractions as well as the originally reported units, while some data are expressed as molar concentration.

  8. Effects of Ligands on a Ternary Hydroxo Complex Formation with Eu(III) in a Aqueous Solution: Comparison of a Pyridine-2,6-dicarboxylate with a Phthalate

    International Nuclear Information System (INIS)

    Park, K. K.; Cho, H. R.; Kim, W. H.; Jung, E. C.

    2008-01-01

    The interaction of a radionuclide with ligands in a groundwater influences its migration through a hydrogeological system due to a change in the characteristics of a dissolution and a sorption. Actinide ions are classified as a hard acid and strongly interact with ligands having an oxygen donor atom of a hard base such as a hydroxide, carbonate and carboxylate. These ligands reveal a large ionic bonding character. A number of experimental results on a binary complex formation of actinides have been reported. However, actinides may easily form a ternary complex by interacting simultaneously with two different ligands, since an ionic bonding does not restrict the spatial orientation of a ligand. In previous studies, a ternary hydroxo complex formation was investigated by using pyridine-2,6-dicarboxylate (PDA) or phthalate as an organic ligand and Eu(III) as an analogue of an actinide(III) ion. Although these organic ligands equally contain two carboxylate groups that interact with an Eu(III) ion, their stabilities reveal big differences. PDA is a tridentate ligand forming two 5-membered chelates, while phthalate is a bidentate ligand forming a 7-membered chelate. The latter reveals a lower stability than the former due to an angle strain. This is one of the reasons for the lower stability of the Eu(III)-phthalate than that of the Eu(III)- PDA. The difference in the stabilities of binary complexes, EuL + (L=organic ligand), influences the stabilities of the ternary hydroxo complexes, Eu(OH)L. The coordination of a phenylic or pyridine ligand can greatly enhance the fluorescence of an Eu(III) ion due to the high absorbance of a ligand by a π → π * transition and the transfer of this energy to an Eu(III) ion. These fluorescence characteristics in a binary complex system could be changed in a ternary complex. In this study, the effect of a ligand on the stability of a ternary hydroxo complex is reported by comparing the stabilities of Eu-PDA with Eu-phthalate systems

  9. Synthesis, structure and characterization of two new metal-organic coordination polymers based on the ligand 5-iodobenzene-1,3-dicarboxylate.

    Science.gov (United States)

    Zhang, Xu; Zhang, Lei; Wang, Meng-Jie; Zhang, Kou-Lin

    2015-09-01

    Two new coordination polymers (CPs) formed from 5-iodobenzene-1,3-dicarboxylic acid (H2iip) in the presence of the flexible 1,4-bis(1H-imidazol-1-yl)butane (bimb) auxiliary ligand, namely poly[[μ2-1,4-bis(1H-imidazol-1-yl)butane-κ(2)N(3):N(3')](μ3-5-iodobenzene-1,3-dicarboxylato-κ(4)O(1),O(1'):O(3):O(3'))cobalt(II)], [Co(C8H3IO4)(C10H14N4)]n or [Co(iip)(bimb)]n, (1), and poly[[[μ2-1,4-bis(1H-imidazol-1-yl)butane-κ(2)N(3):N(3')](μ2-5-iodobenzene-1,3-dicarboxylato-κ(2)O(1):O(3))zinc(II)] trihydrate], {[Zn(C8H3IO4)(C10H14N4)]·3H2O}n or {[Zn(iip)(bimb)]·3H2O}n, (2), were synthesized and characterized by FT-IR spectroscopy, thermogravimetric analysis (TGA), solid-state UV-Vis spectroscopy, single-crystal X-ray diffraction analysis and powder X-ray diffraction analysis (PXRD). The iip(2-) ligand in (1) adopts the (κ(1),κ(1)-μ2)(κ(1), κ(1)-μ1)-μ3 coordination mode, linking adjacent secondary building units into a ladder-like chain. These chains are further connected by the flexible bimb ligand in a trans-trans-trans conformation. As a result, a twofold three-dimensional interpenetrating α-Po network is formed. Complex (2) exhibits a two-dimensional (4,4) topological network architecture in which the iip(2-) ligand shows the (κ(1))(κ(1))-μ2 coordination mode. The solid-state UV-Vis spectra of (1) and (2) were investigated, together with the fluorescence properties of (2) in the solid state.

  10. Citric acid production from partly deproteinized whey under non-sterile culture conditions using immobilized cells of lactose-positive and cold-adapted Yarrowia lipolytica B9.

    Science.gov (United States)

    Arslan, Nazli Pinar; Aydogan, Mehmet Nuri; Taskin, Mesut

    2016-08-10

    The present study was performed to produce citric acid (CA) from partly deproteinized cheese whey (DPCW) under non-sterile culture conditions using immobilized cells of the cold-adapted and lactose-positive yeast Yarrowia lipolytica B9. DPCW was prepared using the temperature treatment of 90°C for 15min. Sodium alginate was used as entrapping agent for cell immobilization. Optimum conditions for the maximum CA production (33.3g/L) in non-sterile DPCW medium were the temperature of 20°C, pH 5.5, additional lactose concentration of 20g/L, sodium alginate concentration of 2%, number of 150 beads/100mL and incubation time of 120h. Similarly, maximum citric acid/isocitric acid (CA/ICA) ratio (6.79) could be reached under these optimal conditions. Additional nitrogen and phosphorus sources decreased CA concentration and CA/ICA ratio. Immobilized cells were reused in three continuous reaction cycles without any loss in the maximum CA concentration. The unique combination of low pH and temperature values as well as cell immobilization procedure could prevent undesired microbial contaminants during CA production. This is the first work on CA production by cold-adapted microorganisms under non-sterile culture conditions. Besides, CA production using a lactose-positive strain of the yeast Y. lipolytica was investigated for the first time in the present study. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Proteogenomic analysis reveals alternative splicing and translation as part of the abscisic acid response in Arabidopsis seedlings.

    Science.gov (United States)

    Zhu, Fu-Yuan; Chen, Mo-Xian; Ye, Neng-Hui; Shi, Lu; Ma, Kai-Long; Yang, Jing-Fang; Cao, Yun-Ying; Zhang, Youjun; Yoshida, Takuya; Fernie, Alisdair R; Fan, Guang-Yi; Wen, Bo; Zhou, Ruo; Liu, Tie-Yuan; Fan, Tao; Gao, Bei; Zhang, Di; Hao, Ge-Fei; Xiao, Shi; Liu, Ying-Gao; Zhang, Jianhua

    2017-08-01

    In eukaryotes, mechanisms such as alternative splicing (AS) and alternative translation initiation (ATI) contribute to organismal protein diversity. Specifically, splicing factors play crucial roles in responses to environment and development cues; however, the underlying mechanisms are not well investigated in plants. Here, we report the parallel employment of short-read RNA sequencing, single molecule long-read sequencing and proteomic identification to unravel AS isoforms and previously unannotated proteins in response to abscisic acid (ABA) treatment. Combining the data from the two sequencing methods, approximately 83.4% of intron-containing genes were alternatively spliced. Two AS types, which are referred to as alternative first exon (AFE) and alternative last exon (ALE), were more abundant than intron retention (IR); however, by contrast to AS events detected under normal conditions, differentially expressed AS isoforms were more likely to be translated. ABA extensively affects the AS pattern, indicated by the increasing number of non-conventional splicing sites. This work also identified thousands of unannotated peptides and proteins by ATI based on mass spectrometry and a virtual peptide library deduced from both strands of coding regions within the Arabidopsis genome. The results enhance our understanding of AS and alternative translation mechanisms under normal conditions, and in response to ABA treatment. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  12. Sepiolite functionalized with N-[3-(trimethoxysilylpropyl]-ethylenediamine triacetic acid trisodium salt. Part I: Preparation and characterization

    Directory of Open Access Journals (Sweden)

    Lazarević Slavica S.

    2015-01-01

    Full Text Available Natural sepiolite from Andrici (Serbia was functionalized by covalent grafting of N-[3-(trimethoxysilylpropyl]ethylenediamine triacetic acid trisodium salt to the Si-OH sepiolite groups. The functionalized material, MSEAS, was characterized by determination of phase composition by X-ray diffraction (XRD analysis, analysis of morphological characteristics by scanning electron microscopy (SEM, using Fourier transform infrared (FTIR spectroscopy, differential thermal analyses (DTA, determination of specific surface areas and pore size distribution using B.E.T. method and point of zero charge (pHpzc determination. The crystal structure of sepiolite does not change significantly upon surface modification. FT-IR and DTA analysis confirmed that the modified sample maintained the basic structure of sepiolite and also the presence of organic groups in functionalized sepiolite sample. The point of zero charge of MSEAS in KNO3 solutions of different concentrations determination by the batch technique from was at pH 7.0 ± 0.1. [Projekat Ministarstva nauke Republike Srbije, br. III 45019, and FP7 NANOTECH FTM No. 245916

  13. Solubilizing properties of new surface-active agents, products of selective oxyethylation of cholic acid. Part I.

    Science.gov (United States)

    Zgoda, Marian Mikołaj; Nachajski, Michal Jakub; Kołodziejczyk, Michal Krzysztof; Woskowicz, Marcin Hubert; Lukosek, Marek

    2007-01-01

    Research was conducted into the properties and identity of the products of oxyethylation of cholic acid, which were obtained with the use of a selective catalyst (K4). The 1HNMR method was employed to assess the content of oxyethylated segments and the analytic level of hydrophilic-lipophilic balance (HLB). Surface activity of the products of oxyethylation in water and 0.1 M HCL was examined and cmc and gamma(25)cmc were determined. These were employed to calculate the thermodynamic potential for micelle formation deltaG(o)m and the surface occupied by the lipophilic structure of the surfactant at the phase boundary. Basic viscosity and hydrodynamic values were determined for the solubilizers and their micellar adducts with diclofenac, ketoprofen, fenofibrate, gemfibrozil and nifedipine. In addition, the amount of solubilized therapeutic agents c/s/ was examined by means of the spectroscopic method and the H/L balance in a solid state. The results obtained in the course of research served as a basis for determining the solubilization mechanism and the stability of the micellar adduct for the purpose of application.

  14. Differences among Branded Hyaluronic Acids in Italy, Part 1: Data from and Animal Studies and Instructions for Use

    Directory of Open Access Journals (Sweden)

    A. Migliore

    2016-01-01

    Full Text Available Background The use of hyaluronic acid (HA for intra-articular (IA injection is widespread around the world for patients affected by osteoarthritis. AIM The aim of this study is to identify scientific evidence from in vitro and in vivo studies supporting the use of IA HAs marketed in Italy We also evaluated the accuracy of indications and contraindications reported in the leaflets of such HAs compared with the available scientific evidence. Materials and Methods An extensive literature search was performed to identify all in vitro and in vivo model studies reporting on the effects of various HAs marketed in Italy for IA use. Data reported in the leaflets of different HA-based products for IA use were extracted and analyzed alongside evidence from in vitro and in vivo model studies. Results Nine in vitro studies and 11 studies on animal models were examined. Comparing results with what is reported in the leaflets of HAs marketed in Italy, it was observed that many branded formulations are introduced in the market without any reporting of basic scientific evidence. Only 12.82% and 17.95% of branded products had been shown to be effective with scientific evidence from in vitro and in vivo studies, respectively. The rationale of use of these products is based on their nature, as if a class effect existed such that all HAs would yield similar effects. Conclusions Data on HAs deriving from in vitro and in vivo studies are scarce and relate to only a small percentage of products marketed in Italy. Many indications and contraindications are arbitrarily reported in Italian HA leaflets without the support of scientific evidence. Larger and brand-specific studies are necessary and should be reported in the leaflets to guide clinicians in making an appropriate choice regarding HA-based IA therapy.

  15. Occurrence of perfluorinated organic acids in the North and Baltic seas. Part 1: distribution in sea water.

    Science.gov (United States)

    Theobald, Norbert; Caliebe, Christina; Gerwinski, Wolfgang; Hühnerfuss, Heinrich; Lepom, Peter

    2011-08-01

    Due to their high water solubilities and mobilities, persistent, polar perfluorinated compounds (PFCs) such as perfluorinated carboxylates and sulfonates are likely to end up in the oceans. In part 1 of this study, their distribution in North and Baltic Sea water is reported, being of special interest because these seas are surrounded by highly industrialized countries with high population densities. A combination of solid-phase extraction and liquid chromatography coupled with tandem mass spectrometry was used after optimisation to determine nine PFCs with chain lengths of C(4) to C(10) in water samples at ultra-trace levels. The observed concentration distribution and gradients were explained by oceanographic mixing processes and currents. The big rivers were identified as major input sources. At the mouth of the river Elbe, concentrations of 9 ng/L were observed for perfluorooctanoate (PFOA), and 8 ng/L for perfluorooctylsulfonate (PFOS); all other PFC concentrations ranged from 0.6 to 1.7 ng/L. At coastal stations, concentrations decreased to 3.8 ng/L (PFOA) and 1.8 ng/L (PFOS), dropping to 0.13 and 0.09 ng/L, respectively, towards the open sea. Along the Dutch coast, high perfluorobutylsulfonate concentrations (3.9 ng/L) were observed as regional characteristics. In the Baltic Sea, fairly even PFC distributions with low gradients were observed. Again, PFOA and PFOS were the major compounds (up to 1.1 and 0.9 ng/L). The results underline the necessity to include PFCs in marine monitoring programs. Water was found to be a good matrix for monitoring environmental levels, sources, and transport pathways of PFCs.

  16. Two multi-dimensional frameworks constructed from zinc coordination polymers with pyridine carboxylic acids

    International Nuclear Information System (INIS)

    Guo Yuanyuan; Ma Pengtao; Wang Jingping; Niu Jingyang

    2011-01-01

    Two novel zinc coordination polymers [Zn 2 (H 2 O)L(MoO 4 )] n (1) and [Zn 4 (PO 4 ) 2 L'(H 2 O)] n (2) (H 2 L=2,2'-bipyridine-6.6'-dicarboxylic acid, H 2 L'=2,2'-bipyridine-4,4'-dicarboxylic acid) have been hydrothermally synthesized and characterized by elemental analyses, IR spectra, UV spectra, single-crystal X-ray diffraction and thermogravimetric analyses. Structural analyses indicate that 1 represents a 2-D sheet structure built by dimeric [Zn 2 L(H 2 O)] 2+ units and MoO 4 2- groups whereas 2 displays an interesting 3-D framework constructed by tetranuclear zinc clusters, L' 2- ligands and PO 4 3- groups. Examination of UV spectra suggests that both 1 and 2 can stably exist in the pH range of 2.45-5.45 and 3.01-8.55 in aqueous solution, respectively. The room-temperature solid-state photoluminescence of 1 and 2 are derived from the intra-ligands π-π* transitions of H 2 L and H 2 L' ligands and the ligand-to-metal-charge-transfer transitions. - Graphical Abstract: Two new transition metal coordination polymers, namely, [Zn 2 (H 2 O)L 1 (MoO 4 )] n (1), [Zn 4 (PO 4 ) 2 L 2 (H 2 O)] n (2) (H 2 L 1 =2,2'-bipyridine-6,6'-dicarboxylic acid, H 2 L 2 =2,2'-bipyridine-4,4'-dicarboxylic acid) have been hydrothermally synthesized. 1 represents a 2-D sheet structure while 2 represents 3-D network. Highlights: →Two new transition metal coordination polymers have been hydrothermally synthesized. → The two compounds have been characterized by elemental analyses, IR, UV spectra, single-crystal X-ray diffraction, thermogravimetric analyses and photoluminescence. → Compound 1 represents a 2-D sheet structure while 2 represents 3-D network.

  17. SMA CARNIVAL TRIAL PART II: a prospective, single-armed trial of L-carnitine and valproic acid in ambulatory children with spinal muscular atrophy.

    Directory of Open Access Journals (Sweden)

    John T Kissel

    Full Text Available BACKGROUND: Multiple lines of evidence have suggested that valproic acid (VPA might benefit patients with spinal muscular atrophy (SMA. The SMA CARNIVAL TRIAL was a two part prospective trial to evaluate oral VPA and L-carnitine in SMA children. Part 1 targeted non-ambulatory children ages 2-8 in a 12 month cross over design. We report here Part 2, a twelve month prospective, open-label trial of VPA and L-carnitine in ambulatory SMA children. METHODS: This study involved 33 genetically proven type 3 SMA subjects ages 3-17 years. Subjects underwent two baseline assessments over 4-6 weeks and then were placed on VPA and L-carnitine for 12 months. Assessments were performed at baseline, 3, 6 and 12 months. Primary outcomes included safety, adverse events and the change at 6 and 12 months in motor function assessed using the Modified Hammersmith Functional Motor Scale Extend (MHFMS-Extend, timed motor tests and fine motor modules. Secondary outcomes included changes in ulnar compound muscle action potential amplitudes (CMAP, handheld dynamometry, pulmonary function, and Pediatric Quality of Life Inventory scores. RESULTS: Twenty-eight subjects completed the study. VPA and carnitine were generally well tolerated. Although adverse events occurred in 85% of subjects, they were usually mild and transient. Weight gain of 20% above body weight occurred in 17% of subjects. There was no significant change in any primary outcome at six or 12 months. Some pulmonary function measures showed improvement at one year as expected with normal growth. CMAP significantly improved suggesting a modest biologic effect not clinically meaningful. CONCLUSIONS: This study, coupled with the CARNIVAL Part 1 study, indicate that VPA is not effective in improving strength or function in SMA children. The outcomes used in this study are feasible and reliable, and can be employed in future trials in SMA. TRIAL REGSITRATION: Clinicaltrials.gov NCT00227266.

  18. Uptake of iron (III)-ethylenediamine-N, N, N', N'-tetraacetic acid complex by phosphatidylcholine lipid film. Part II. Effect of film curvature.

    Science.gov (United States)

    Villeneuve, Masumi; Tanaka, Mihoko; Saito, Natsumi; Sakamoto, Hiroyasu; Hayami, Yoshiteru

    2018-01-01

    Mixed micelles formed in a ternary-solute aqueous solution of NaOH, iron (III)-ethylenediamine-N, N, N', N'-tetraacetic acid complex (Fe-EDTA) and 1,2-diheptanoyl-sn-glycero-3-phosphatidyl choline (DHPC) were studied and compared with the mixed adsorbed film reported in Part I of this series to clarify the effect of the curvature of molecular assemblies on the interactions between their Fe-EDTA and DHPC constituents. The critical micelle concentrations (CMCs), surface tension at the CMC, and solution pH were measured as functions of the mole fractions of NaOH and DHPC. Rigorous thermodynamic equations were derived, in which the overall proton dissociation equilibria of Fe-EDTA and DHPC were taken into consideration, and applied to experimental data to obtain phase diagrams of micelle formation and the micelle-adsorbed film equilibrium. It was found that when the bulk solution was strongly acidic, Fe-EDTA was incorporated in the micelles. However, the adsorbed film was more Fe-EDTA-enriched than the micelle. These findings imply that a flat cell membrane is more permeable to an iron complex than a cell membrane with positive curvature. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Lignan dicarboxylates and terpenoids from the flower buds of Cananga odorata and their inhibitory effects on melanogenesis.

    Science.gov (United States)

    Matsumoto, Takahiro; Nakamura, Seikou; Nakashima, Souichi; Fujimoto, Katsuyoshi; Yoshikawa, Masayuki; Ohta, Tomoe; Ogawa, Keiko; Matsuda, Hisashi

    2014-04-25

    The methanolic extract from the flower buds of Cananga odorata showed an inhibitory effect on melanogenesis in theophylline-stimulated murine B16 melanoma 4A5 cells. From the methanolic extract, two new lignan dicarboxylates, canangalignans I and II, three new terpenoids, canangaterpenes I, II, and III, and eight known compounds were isolated. The structures of these compounds were elucidated on the basis of chemical/physicochemical evidence. Several mono- and sesquiterpene analogues significantly inhibited melanogenesis. In particular, canangaterpene I and (3R,3aR,8aS)-3-isopropyl-8a-methyl-8-oxo-1,2,3,3a,6,7,8,8a-octahydroazulene-5-carbaldehyde exhibited a potent inhibitory effect on melanogenesis [inhibition (%): 34.7±4.2 (p<0.01), 45.5±5.7 (p<0.01) at 1 μM, respectively] without inducing cytotoxicity. Moreover, the biological effect of these compounds was much stronger than that of the reference compound, arbutin. Thus, these isolated terpenoid derivatives may be promising therapeutic agents for the treatment of several skin disorders.

  20. One-step green synthesis of non-hazardous dicarboxyl cellulose flocculant and its flocculation activity evaluation.

    Science.gov (United States)

    Zhu, Hangcheng; Zhang, Yong; Yang, Xiaogang; Liu, Hongyi; Shao, Lan; Zhang, Xiumei; Yao, Juming

    2015-10-15

    The waste management of used flocculants is a thorny issue in the field of wastewater treatment. To natural cellulose based flocculants, utilization of hazardous cellulose solvent and simplification of synthetic procedure are the two urgent problems needing to be further improved. In this work, a series of natural dicarboxyl cellulose flocculants (DCCs) were one-step synthesized via Schiff-base route. The cellulose solvent (NaOH/Urea solution) was utilized during the synthesis process. The full-biodegradable flocculants avoid causing secondary pollution to environment. The chemical structure and solution property of the DCC products were characterized by FT-IR, (1)H NMR, (13)C NMR, TGA, FESEM, charge density and ζ-potential. Kaolin suspension and effluent from paper mill were selected to evaluate the flocculation activity of the DCCs. Their flocculation performance was compared with that of commercial cationic polyacrylamide and poly aluminium chloride flocculants. The positive results showed that the NaOH/Urea solvent effectively promoted the dialdehyde cellulose (DAC) conversion to DCC in the one-step synthesis reaction. The DCCs with the carboxylate content more than 1 mmol/g exhibited steady flocculation performance to kaolin suspension in the broad pH range from 4 to 10. Its flocculation capacity to the effluent from paper mill also showed excellent. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Tie molecules, morphology and confinement effects in semi – crystalline poly(ethylene naphthalene-2,6-dicarboxylate) (PEN)

    International Nuclear Information System (INIS)

    Nikaj, E; David, L; Royaud, I

    2013-01-01

    The glass transition dynamics and confinement effects in poly(ethylene naphthalene-2,6-dicarboxylate) (PEN) were studied by broadband dielectric relaxation spectroscopy (DRS) in relation with semi-crystalline morphology. PEN samples were obtained by cold crystallization at different crystallization temperatures (T c ranging from 165 to 240°C) and crystallization times (t c from 30min to 24h). Differential scanning calorimetry and X-ray diffraction showed that the crystallinity ratio (X c ) increases when T c and t c increase. The glass transition relaxation is shifted to higher temperatures as t c increases but this confinement effect decreased with increasing T c . The origin of this anomalous dynamics can be related to (i) the crystalline lamellar stack morphology revealed by small angle X-ray scattering (SAXS) and (ii) chain scission occurring during annealing at the crystallization temperature. As a result, the density of tie-chain molecules (chain portions bridging crystallites) can be considered as the key factor for the understanding of confinement effects in semicrystalline polymers. Accordingly the confinement effects on the glass transition dynamics can be optimally rationalized as a function of a characteristic length intermediate between the interlamellae thickness l a and that of the theory of Brown and Huang 2l c +l a where l c is the crystallite thickness

  2. One-step green synthesis of non-hazardous dicarboxyl cellulose flocculant and its flocculation activity evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hangcheng; Zhang, Yong; Yang, Xiaogang; Liu, Hongyi [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Shao, Lan [Technique Center, Hangzhou Xinhua Group Co., Ltd, Hangzhou 310011 (China); Zhang, Xiumei [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Yao, Juming, E-mail: yaoj@zstu.edu.cn [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2015-10-15

    The waste management of used flocculants is a thorny issue in the field of wastewater treatment. To natural cellulose based flocculants, utilization of hazardous cellulose solvent and simplification of synthetic procedure are the two urgent problems needing to be further improved. In this work, a series of natural dicarboxyl cellulose flocculants (DCCs) were one-step synthesized via Schiff-base route. The cellulose solvent (NaOH/Urea solution) was utilized during the synthesis process. The full-biodegradable flocculants avoid causing secondary pollution to environment. The chemical structure and solution property of the DCC products were characterized by FT-IR, {sup 1}H NMR, {sup 13}C NMR, TGA, FESEM, charge density and ζ-potential. Kaolin suspension and effluent from paper mill were selected to evaluate the flocculation activity of the DCCs. Their flocculation performance was compared with that of commercial cationic polyacrylamide and poly aluminium chloride flocculants. The positive results showed that the NaOH/Urea solvent effectively promoted the dialdehyde cellulose (DAC) conversion to DCC in the one-step synthesis reaction. The DCCs with the carboxylate content more than 1 mmol/g exhibited steady flocculation performance to kaolin suspension in the broad pH range from 4 to 10. Its flocculation capacity to the effluent from paper mill also showed excellent.

  3. Boosting one-step conversion of cyclohexane to adipic acid by NO2 and VPO composite catalysts.

    Science.gov (United States)

    Jian, Jian; You, Kuiyi; Duan, Xuezhi; Gao, Hongxu; Luo, Qing; Deng, Renjie; Liu, Pingle; Ai, Qiuhong; Luo, He'an

    2016-02-25

    We demonstrate VPO composites as efficient catalysts for highly selective oxidation of cyclohexane to adipic acid with NO2. In particular, the Ni-Al-VPO composite catalyst exhibits the striking conversion of cyclohexane (60.6%) and exceptionally high selectivity towards adipic acid (85.0%). Moreover, N2O is an environmentally harmful gas, and its yield in the present process is only 0.03 t/t adipic acid, which is far below that obtained using the industrial method (0.3 t/t adipic acid). This work provides a new strategy for the one-step synthesis of dicarboxylic acids from cycloalkanes.

  4. Synthesis of N-hydroxysuccinimide from succinic acid and hydroxylammonium chloride using Amberlyst A21 as reusable solid base catalyst

    Science.gov (United States)

    Le, Son Dinh; Nishimura, Shun; Ebitani, Kohki

    2018-01-01

    Solid base catalysts were studied for the first time to synthesize N-hydroxysuccinimide (NHS) through the reaction of succinic acid with hydroxylammonium chloride. The highest yield of 42% (±3%) with 65% (±4%) selectivity toward NHS production was achieved by using Amberlyst A21, which is a weak base anion-exchange resin. The present catalyst could be recycled during five runs without significant decreases in activity. Also, efficacy for the Amberlyst A21 mediated reaction was also explored with other dicarboxylic acids such as phthalic acid, glutaric acid, and maleic acid.

  5. Alkene hydrogenation activity of enoate reductases for an environmentally benign biosynthesis of adipic acid.

    Science.gov (United States)

    Joo, Jeong Chan; Khusnutdinova, Anna N; Flick, Robert; Kim, Taeho; Bornscheuer, Uwe T; Yakunin, Alexander F; Mahadevan, Radhakrishnan

    2017-02-01

    Adipic acid, a precursor for Nylon-6,6 polymer, is one of the most important commodity chemicals, which is currently produced from petroleum. The biosynthesis of adipic acid from glucose still remains challenging due to the absence of biocatalysts required for the hydrogenation of unsaturated six-carbon dicarboxylic acids to adipic acid. Here, we demonstrate the first enzymatic hydrogenation of 2-hexenedioic acid and muconic acid to adipic acid using enoate reductases (ERs). ERs can hydrogenate 2-hexenedioic acid and muconic acid producing adipic acid with a high conversion rate and yield in vivo and in vitro . Purified ERs exhibit a broad substrate spectrum including aromatic and aliphatic 2-enoates and a significant oxygen tolerance. The discovery of the hydrogenation activity of ERs contributes to an understanding of the catalytic mechanism of these poorly characterized enzymes and enables the environmentally benign biosynthesis of adipic acid and other chemicals from renewable resources.

  6. Evaluation of sampling methods for measuring exposure to volatile inorganic acids in workplace air. Part 1: sampling hydrochloric acid (HCl) and nitric acid (HNO₃) from a test gas atmosphere.

    Science.gov (United States)

    Howe, Alan; Musgrove, Darren; Breuer, Dietmar; Gusbeth, Krista; Moritz, Andreas; Demange, Martine; Oury, Véronique; Rousset, Davy; Dorotte, Michel

    2011-08-01

    Historically, workplace exposure to the volatile inorganic acids hydrochloric acid (HCl) and nitric acid (HNO(3)) has been determined mostly by collection on silica gel sorbent tubes and analysis of the corresponding anions by ion chromatography (IC). However, HCl and HNO(3) can be present in workplace air in the form of mist as well as vapor, so it is important to sample the inhalable fraction of airborne particles. As sorbent tubes exhibit a low sampling efficiency for inhalable particles, a more suitable method was required. This is the first of two articles on "Evaluation of Sampling Methods for Measuring Exposure to Volatile Inorganic Acids in Workplace Air" and describes collaborative sampling exercises carried out to evaluate an alternative method for sampling HCl and HNO(3) using sodium carbonate-impregnated filters. The second article describes sampling capacity and breakthrough tests. The method was found to perform well and a quartz fiber filter impregnated with 500 μL of 1 M Na(2)CO(3) (10% (m/v) Na(2)CO(3)) was found to have sufficient sampling capacity for use in workplace air measurement. A pre-filter is required to remove particulate chlorides and nitrates that when present would otherwise result in a positive interference. A GSP sampler fitted with a plastic cone, a closed face cassette, or a plastic IOM sampler were all found to be suitable for mounting the pre-filter and sampling filter(s), but care has to be taken with the IOM sampler to ensure that the sampler is tightly closed to avoid leaks. HCl and HNO(3) can react with co-sampled particulate matter on the pre-filter, e.g., zinc oxide, leading to low results, and stronger acids can react with particulate chlorides and nitrates removed by the pre-filter to liberate HCl and HNO(3), which are subsequently collected on the sampling filter, leading to high results. However, although there is this potential for both positive and negative interferences in the measurement, these are unavoidable

  7. Crystal structures of hibiscus acid and hibiscus acid dimethyl ester isolated from Hibiscus sabdariffa (Malvaceae).

    Science.gov (United States)

    Zheoat, Ahmed M; Gray, Alexander I; Igoli, John O; Kennedy, Alan R; Ferro, Valerie A

    2017-09-01

    The biologically active title compounds have been isolated from Hibiscus sabdariffa plants, hibiscus acid as a dimethyl sulfoxide monosolvate [systematic name: (2 S ,3 R )-3-hy-droxy-5-oxo-2,3,4,5-tetra-hydro-furan-2,3-di-carb-oxy-lic acid dimethyl sulfoxide monosolvate], C 6 H 6 O 7 ·C 2 H 6 OS, (I), and hibiscus acid dimethyl ester [systematic name: dimethyl (2 S ,3 R )-3-hy-droxy-5-oxo-2,3,4,5-tetra-hydro-furan-2,3-di-carboxyl-ate], C 8 H 10 O 7 , (II). Compound (I) forms a layered structure with alternating layers of lactone and solvent mol-ecules, that include a two-dimensional hydrogen-bonding construct. Compound (II) has two crystallographically independent and conformationally similar mol-ecules per asymmetric unit and forms a one-dimensional hydrogen-bonding construct. The known absolute configuration for both compounds has been confirmed.

  8. Toward biotechnological production of adipic acid and precursors from biorenewables.

    Science.gov (United States)

    Polen, Tino; Spelberg, Markus; Bott, Michael

    2013-08-20

    Adipic acid is the most important commercial aliphatic dicarboxylic acid in the chemical industry and is primarily used for the production of nylon-6,6 polyamide. The current adipic acid market volume is about 2.6 million tons/y and the average annual demand growth rate forecast to stay at 3-3.5% worldwide. Hitherto, the industrial production of adipic acid is carried out by petroleum-based chemo-catalytic processes from non-renewable fossil fuels. However, in the past years, efforts were made to find alternative routes for adipic acid production from renewable carbon sources by biotechnological processes. Here we review the approaches and the progress made toward bio-based production of adipic acid. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Leucine-induced activation of translational initiation is partly regulated by the branched-chain α-keto acid dehydrogenase complex in C2C12 cells

    International Nuclear Information System (INIS)

    Nakai, Naoya; Shimomura, Yoshiharu; Tamura, Tomohiro; Tamura, Noriko; Hamada, Koichiro; Kawano, Fuminori; Ohira, Yoshinobu

    2006-01-01

    Branched-chain amino acid leucine has been shown to activate the translational regulators through the mammalian target of rapamycin. However, the leucine's effects are self-limiting because leucine promotes its own disposal by an oxidative pathway. The irreversible and rate-limiting step in the leucine oxidation pathway is catalyzed by the branched-chain α-keto acid dehydrogenase (BCKDH) complex. The complex contains E1 (α2β2), E2, and E3 subunits, and its activity is abolished by phosphorylation of the E1α subunit by BCKDH kinase. The relationship between the activity of BCKDH complex and leucine-mediated activation of the protein translation was investigated using the technique of RNA interference. The activity of BCKDH complex in C2C12 cell was modulated by transfection of small interfering RNA (siRNA) for BCKDH E2 subunit or BCKDH kinase. Transfection of siRNAs decreased the mRNA expression and protein amount of corresponding gene. Suppression of either E2 subunit or kinase produced opposite effects on the cell proliferation and the activation of translational regulators by leucine. Suppression of BCKDH kinase for 48 h resulted in decreasing cell proliferation. In contrast, E2 suppression led to increased amount of total cellular protein. The phosphorylation of p70 S6 kinase by leucine was increased in E2-siRNA transfected C2C12 cells, whereas the leucine's effect was diminished in kinase-siRNA transfected cells. These results suggest that the activation of the translational regulators by leucine was partly regulated by the activity of BCKDH complex

  10. Relationship between adipic acid concentration and the core symptoms of autism spectrum disorders.

    Science.gov (United States)

    Puig-Alcaraz, Carmen; Fuentes-Albero, Milagros; Cauli, Omar

    2016-08-30

    Dicarboxylic acids are an important source of information about metabolism and potential physiopathological alterations in children with autism spectrum disorders (ASDs). We measured the concentration between dicarboxylic adipic and suberic acids in children with an ASD and typically-developing (TD) children and analyzed any relationships between the severity of the core symptoms of ASDs and other clinical features (drugs, supplements, drugs, or diet). The core symptoms of autism were evaluated using the DSM-IV criteria, and adipic acid and suberic acid were measured in urine samples. Overall, no increase in the concentration of adipic acid in children with ASDs compared to TD children, however when considering vitamin B supplementation in ASD there were significantly increased level of urinary adipic acid in children with an ASD not taking vitamin B supplementation compared to supplemented children or to TD children. No significant difference were observed in suberic acid. Interestingly, the increase in adipic acid concentration was significantly and indirectly correlated with the severity of the deficit in socialization and communication skills in children with an ASD. Therefore, therapeutic treatments aimed at decreasing adipic acid concentration might not be beneficial for treating the core symptoms of ASDs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. catena-Poly[[[tetraaquazinc(II]-μ-4,4′-bipyridine-κ2N:N′] benzene-1,4-dicarboxylate

    Directory of Open Access Journals (Sweden)

    Ming-Bo Ruan

    2009-07-01

    Full Text Available In the title compound, {[Zn(C10H8N2(H2O4](C8H4O4}n, the ZnII atoms, lying on a twofold rotation axis, are bridged by 4,4′-bipyridine ligands, resulting in a linear chain along the b axis. In the chain, the ZnII atom adopts a slightly distorted octahedral coordination geometry involving four water molecules at the equatorial positions. The noncoordinated benzene-1,4-dicarboxylate anion, which is also located on a twofold rotation axis, bridges adjacent chains through O—H...O hydrogen bonds, forming a three-dimensional supramolecular network.

  12. Transport of acidic amino acids by human jejunal brush-border membrane vesicles

    International Nuclear Information System (INIS)

    Rajendran, V.M.; Harig, J.M.; Adams, M.B.; Ramaswamy, K.

    1987-01-01

    This study characterizes the transport of radiolabeled acidic amino acids into brush-border membrane vesicles prepared from human jejunum. The uptakes of L-glutamic, L-aspartic, and D-aspartic acids were stimulated by a Na + gradient. Concentrative uptake (resulting in an overshoot phenomenon) of these dicarboxylic amino acids occurred when there was an outward K + gradient. In addition, increasing K + gradients resulted in enhanced uptake of L-glutamic acid. This K + requirement is somewhat specific as Rb + and Cs + could enhance uptake to a limited extent, whereas Li + and choline + showed no enhancement. The presence of a K + gradient did not affect the affinity of the carrier system for L-glutamic acid but it did increase the V/sub max/. The presence of extravesicular anions having differing membrane permeabilities did not altar L-glutamic acid uptake indicating an absence of an effect of membrane potential on the transport process. Finally, the human transport system for L-glutamic acid appears to be specific for acidic amino acids as demonstrated by inhibition studies. The studies demonstrate a transport system in human jejunum specific for acidic amino acids that is energized by an inward Na + gradient and an outward K + gradient

  13. Chiral Brønsted Acids for Asymmetric Organocatalysis

    Science.gov (United States)

    Kampen, Daniela; Reisinger, Corinna M.; List, Benjamin

    Chiral Brønsted acid catalysis is an emerging area of organocatalysis. Since the pioneering studies of the groups of Akiyama and Terada in 2004 on the use of chiral BINOL phosphates as powerful Brønsted acid catalysts in asymmetric Mannich-type reactions, numerous catalytic asymmetric transformations involving imine activation have been realized by means of this catalyst class, including among others Friedel-Crafts, Pictet-Spengler, Strecker, cycloaddition reactions, transfer hydrogenations, and reductive aminations. More recently, chiral BINOL phosphates found application in multicomponent and cascade reactions as for example in an asymmetric version of the Biginelli reaction. With the introduction of chiral BINOL-derived N-triflyl phosphoramides in 2006, asymmetric Brønsted acid catalysis is no longer restricted to reactive substrates. Also certain carbonyl compounds can be activated through these stronger Brønsted acid catalysts. In dealing with sensitive substrate classes, chiral dicarboxylic acids proved of particular value.

  14. Direct biosynthesis of adipic acid from a synthetic pathway in recombinant Escherichia coli.

    Science.gov (United States)

    Yu, Jia-Le; Xia, Xiao-Xia; Zhong, Jian-Jiang; Qian, Zhi-Gang

    2014-12-01

    The C6 dicarboxylic acid, adipic acid, is an important platform chemical in industry. Biobased production of adipic acid is a promising alternative to the current petrochemical route. Here, we report biosynthesis of adipic acid using an artificial pathway inspired by the reversal of beta-oxidation of dicarboxylic acids. The biosynthetic pathway comprises condensation of acetyl-CoA and succinyl-CoA to form the C6 backbone and subsequent reduction, dehydration, hydrogenation, and release of adipic acid from its thioester. The pathway was first tested in vitro with reconstituted pathway enzymes and then functionally introduced into Escherichia coli for the biosynthesis and excretion of adipic acid into the culture medium. The production titer was increased by approximately 20-fold through the combination of recruiting enzymes that were more suitable to catalyze the synthetic reactions and increasing availability of the condensation substrates. This work demonstrates direct biosynthesis of adipic acid via non-natural synthetic pathway, which may enable its renewable production. © 2014 Wiley Periodicals, Inc.

  15. Electron Transfer Mediator Effects in Water Oxidation Catalysis by Solution and Surface-Bound Ruthenium Bpy-Dicarboxylate Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Sheridan, Matthew V.; Sherman, Benjamin D.; Marquard, Seth L.; Fang, Zhen; Ashford, Dennis L.; Wee, Kyung-Ryang; Gold, Alexander S.; Alibabaei, Leila; Rudd, Jennifer A.; Coggins, Michael K.; Meyer, Thomas J.

    2015-11-12

    Electrocatalytic water oxidation by the catalyst, ruthenium 2,2'-bipyridine-6,6'-dicarboxylate (bda) bis-isoquinoline (isoq), [Ru(bda)(isoq)2], 1, was investigated at metal oxide electrodes surface-derivatized with electron transfer (ET) mediators. At indium-doped tin oxide (ITO) in pH 7.2 in H2PO4–/HPO42– buffers in 0.5 M NaClO4 with added acetonitrile (MeCN), the catalytic activity of 1 is enhanced by the surface-bound redox mediators [Ru (4,4'-PO3H2-bpy)(4,4'-R-bpy)2]2+ (RuPbpyR22+, R = Br, H, Me, or OMe, bpy = 2,2'-bipyridine). Rate-limiting ET between the Ru3+ form of the mediator and the RuIV(O) form in the [RuV/IV(O)]+/0 couple of 1 is observed at relatively high concentrations of HPO42– buffer base under conditions where O···O bond formation is facilitated by atom-proton transfer (APT). For the solution [Ru(bpy)3]3+/2+ mediator couple and 1 as the catalyst, catalytic currents vary systematically with the concentration of mediator and the HPO42– buffer base concentration. Electron transfer mediation of water oxidation catalysis was also investigated on nanoparticle TiO2 electrodes co-loaded with catalyst [Ru(bda)(py-4-O(CH2)3-PO3H2)2], 2, (py = pyridine) and RuPbpyR22+ (R = H, Me, or OMe) with an interplay between rate-limiting catalyst oxidation and rate-limiting O···O bond formation by APT. Lastly, the co-loaded assembly RuPbpyR22+ + 2 has been investigated in a dye-sensitized photoelectrosynthesis cell for water splitting.

  16. Investigation of Pyridine Carboxylic Acids in CM2 Carbonaceous Chondrites: Potential Precursor Molecules for Ancient Coenzymes

    Science.gov (United States)

    Smith, Karen E.; Callahan, Michael P.; Gerakines, Perry A.; Dworkin, Jason P.; House, Christopher H.

    2014-01-01

    The distribution and abundances of pyridine carboxylic acids (including nicotinic acid) in eight CM2 carbonaceous chondrites (ALH 85013, DOM 03183, DOM 08003, EET 96016, LAP 02333, LAP 02336, LEW 85311, and WIS 91600) were investigated by liquid chromatography coupled to UV detection and high resolution Orbitrap mass spectrometry. We find that pyridine monocarboxylic acids are prevalent in CM2-type chondrites and their abundance negatively correlates with the degree of pre-terrestrial aqueous alteration that the meteorite parent body experienced. We also report the first detection of pyridine dicarboxylic acids in carbonaceous chondrites. Additionally, we carried out laboratory studies of proton-irradiated pyridine in carbon dioxide-rich ices (a 1:1 mixture) to serve as a model of the interstellar ice chemistry that may have led to the synthesis of pyridine carboxylic acids. Analysis of the irradiated ice residue shows that a comparable suite of pyridine mono- and dicarboxylic acids was produced, although aqueous alteration may still play a role in the synthesis (and ultimate yield) of these compounds in carbonaceous meteorites. Nicotinic acid is a precursor to nicotinamide adenine dinucleotide, a likely ancient molecule used in cellular metabolism in all of life, and its common occurrence in CM2 chondrites may indicate that meteorites may have been a source of molecules for the emergence of more complex coenzymes on the early Earth.

  17. Thermodynamic properties and cloud droplet activation of a series of oxo-acids

    Directory of Open Access Journals (Sweden)

    M. Frosch

    2010-07-01

    Full Text Available We have investigated the thermodynamic properties of four aliphatic oxo-dicarboyxlic acids identified or thought to be present in atmospheric particulate matter: oxosuccinic acid, 2-oxoglutaric acid, 3-oxoglutaric acid, and 4-oxopimelic acid. The compounds were characterized in terms of their cloud condensation nuclei (CCN activity, vapor pressure, density, and tendency to decarboxylate in aqueous solution. We deployed a variety of experimental techniques and instruments: a CCN counter, a Tandem Differential Mobililty Analyzer (TDMA coupled with a laminar flow-tube, and liquid chromatography/mass spectrometry (LC/MS. The presence of the oxo functional group in the α-position causes the vapor pressure of the compounds to diminish by an order of magnitude with respect to the parent dicarboxylic acid, while the CCN activity is similar or increased. Dicarboxylic acids with an oxo-group in the β-position decarboxylate in aqueous solution. We studied the effects of this process on our measurements and findings.

  18. A Strategy Combining Higher Energy C-Trap Dissociation with Neutral Loss- and Product Ion-Based MSn Acquisition for Global Profiling and Structure Annotation of Fatty Acids Conjugates.

    Science.gov (United States)

    Bi, Qi-Rui; Hou, Jin-Jun; Yang, Min; Shen, Yao; Qi, Peng; Feng, Rui-Hong; Dai, Zhuo; Yan, Bing-Peng; Wang, Jian-Wei; Shi, Xiao-Jian; Wu, Wan-Ying; Guo, De-An

    2017-03-01

    Fatty acids conjugates (FACs) are ubiquitous but found in trace amounts in the natural world. They are composed of multiple unknown substructures and side chains. Thus, FACs are difficult to be analyzed by traditional mass spectrometric methods. In this study, an integrated strategy was developed to global profiling and targeted structure annotation of FACs in complex matrix by LTQ Orbitrap. Dicarboxylic acid conjugated bufotoxins (DACBs) in Venenum bufonis (VB) were used as model compounds. The new strategy (abbreviated as HPNA) combined higher-energy C-trap dissociation (HCD) with product ion- (PI), neutral loss- (NL) based MS n (n ≥ 3) acquisition in both positive-ion mode and negative-ion mode. Several advantages are presented. First, various side chains were found under HCD in negative-ion mode, which included both known and unknown side chains. Second, DACBs with multiple side chains were simultaneously detected in one run. Compared with traditional quadrupole-based mass method, it greatly increased analysis throughput. Third, the fragment ions of side chain and steroids substructure could be obtained by PI- and NL-based MS n acquisition, respectively, which greatly increased the accuracy of the structure annotation of DACBs. In all, 78 DACBs have been discovered, of which 68 were new compounds; 25 types of substructure formulas and seven dicarboxylic acid side chains were found, especially five new side chains, including two saturated dicarboxylic acids [(azelaic acid (C 9 ) and sebacic acid (C 10 )] and three unsaturated dicarboxylic acids (u-C 8 , u-C 9 , and u-C 10 ). All these results greatly enriched the structures of DACBs in VB. Graphical Abstract ᅟ.

  19. The Determination of "Apparent" pKa's. Part II: An Experiment Using Very Weak Acids (pKa's > 11.4).

    Science.gov (United States)

    Cawley, John J.

    1995-01-01

    Presents an experiment designed to show students that the Henderson-Hasselbalch equation will fail when they use this particular one-half titration technique for acids with large pKa's. Involves determining the apparent pKa for such acids and using that to calculate the true pKa. (JRH)

  20. Candida antartica lipase-catalyzed hydrolysis of 4-substituted bis(ethoxycarbonylmethyl) 1,4-dihydropyridine-3,5-dicarboxylates as the key step in the synthesis of optically active dihydropyridines

    NARCIS (Netherlands)

    Sobolev, A.; Franssen, M.C.R.; Makarova, N.; Duburs, G.; Groot, de Æ.

    2001-01-01

    Prochiral bis(ethoxycarbonylmethyl) substituted 4-aryl-1,4-dihydropyridine-3,5-dicarboxylates were hydrolyzed enantioselectively by Candida antarctica lipase B (Novozym 435). The enantiomeric excesses varied from 68 to 93°depending on the substituent at position 4. In some cases, the e.e. could be

  1. Morita-Baylis-Hillman Route to Dimethyl 2,3-Dihydrobenzo[b]oxepine-2,4- dicarboxylates and Methyl 2-(2-Carbomethoxybenzo[b]furan-3-yl)propanoates from Salicylaldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sang Hyun; Jang, Seung Soon; Kim, Young Keun; Lee, Kee Jung [Hanyang University, Seoul (Korea, Republic of)

    2012-01-15

    A new synthetic method for dimethyl 2,3-dihydrobenzo[b]oxepine-2,4-dicarboxylates and methyl 2-(2- carbomethoxybenzo[b]furan-3-yl)propanoates by an intramolecular conjugate displacement reaction or an S{sub N}2 reaction of acetates of Morita-Baylis-Hillman adducts of methyl (2-formylphenoxy)acetates has been described.

  2. Investigations on some metabolites of Tecoma stans Juss. callus tissue. Part III. Chromatographical search for iridoids, phenolic acids, terpenoids and sugars

    Directory of Open Access Journals (Sweden)

    Barbara Dohnal

    2015-01-01

    Full Text Available Tissus cultures of Tecoma stans Juss. cultivated on modified Murashige-Skoog medium (RT-k were phytochemically analysed by means of chromatographical methods (PC, TLC. The following products were found as metabolites: phenolic acids - chlorogenics, caffeic, ferulic, vanillic, o-coumaric and sinapic; steroids - β-sitosterol; triterpenes - ursolic and oleanolic acids, α-amyrine; sugars - glucose, fructose, sucrose, xylose. Meso-inositol was isolated in 0.8% yield. In intact plant leaves, some differences concerning the content and/or number of individual compounds were observed, namely: lack of sinapic acid and occurrence of p-coumaric acid, lower content of β-sitosterol, lack of oleanolic acid, occurrence of β-amyrine and of one unidentified triterpenoid, lack of xylose, occurrence of maltose, raffinose, and stachiose. The level of mesoinositol inn leaves was distincly lower than in the callus tissues. Neither in callus tissues nor in leaves iridoid glycosides were found.

  3. Communication: Remarkable electrophilicity of the oxalic acid monomer: An anion photoelectron spectroscopy and theoretical study

    International Nuclear Information System (INIS)

    Buonaugurio, Angela; Graham, Jacob; Buytendyk, Allyson; Bowen, Kit H.; Ryder, Matthew R.; Gutowski, Maciej; Keolopile, Zibo G.; Haranczyk, Maciej

    2014-01-01

    Our experimental and computational results demonstrate an unusual electrophilicity of oxalic acid, the simplest dicarboxylic acid. The monomer is characterized by an adiabatic electron affinity and electron vertical detachment energy of 0.72 and 1.08 eV (±0.05 eV), respectively. The electrophilicity results primarily from the bonding carbon-carbon interaction in the singly occupied molecular orbital of the anion, but it is further enhanced by intramolecular hydrogen bonds. The well-resolved structure in the photoelectron spectrum is reproduced theoretically, based on Franck-Condon factors for the vibronic anion → neutral transitions

  4. Acid-base titrations by stepwise addition of equal volumes of titrant with special reference to automatic titrations-III Presentation of a fully automatic titration apparatus and of results supporting the theories given in the preceding parts.

    Science.gov (United States)

    Pehrsson, L; Ingman, F

    1977-02-01

    This paper forms Part III of a series in which the first two parts describe methods for evaluating titrations performed by stepwise addition of equal volumes of titrant. The great advantage of these methods is that they do not require an accurate calibration of the electrode system. This property makes the methods very suitable for routine work. e.g., in automatic analysis. An apparatus for performing such titrations automatically is presented. Further, results of titrations of monoprotic acids, a diprotic acid, an ampholyte, a mixture of an acid with its conjugate base, and mixtures of two acids with a small difference between the stability constants are given. Most of these titrations cannot be evaluated by the Gran or Hofstee methods but yield results having errors of the order of 0.1% if the methods proposed in Parts I and II of this series are employed. The advantages of the method of stepwise addition of equal volumes of titrant combined with the proposed evaluation methods, in comparison with common methods such as titration to a preset pH, are that all the data are used in the evaluation, permitting a statistical treatment and giving better possibilities for tracing systematic errors.

  5. ON THE FORMATION OF BENZOIC ACID AND HIGHER-ORDER BENZENE CARBOXYLIC ACIDS IN INTERSTELLAR MODEL ICE GRAINS

    International Nuclear Information System (INIS)

    McMurtry, Brandon M.; Saito, Sean E. J.; Turner, Andrew M.; Chakravarty, Harish K.; Kaiser, Ralf I.

    2016-01-01

    With a binary ice mixture of benzene (C 6 H 6 ) and carbon dioxide (CO 2 ) at 10 K under contamination-free ultrahigh vacuum conditions, the formation of benzene carboxylic acids in interstellar ice grains was studied. Fourier transform infrared spectroscopy was used to probe for the formation of new species during the chemical processing of the ice mixture and during the following temperature-programmed desorption. Newly formed benzene carboxylic acid species, i.e., benzoic acid, as well as meta - and para -benzene dicarboxylic acid, were assigned using newly emerging bands in the infrared spectrum; a reaction mechanism, along with rate constants, was proposed utilizing the kinetic fitting of the coupled differential equations.

  6. Enantioselective Recognition of Chiral Carboxylic Acids by a β-Amino Acid and 1,10-Phenanthroline Based Chiral Fluorescent Sensor

    Directory of Open Access Journals (Sweden)

    Yonghong Zhang

    2015-05-01

    Full Text Available A novel chiral 1,10-phenanthroline-based fluorescent sensor was designed and synthesized from optical active β-amino acids. It used 1,10-phenanthroline moiety as a fluorescent signaling site and binding site, with optically active β-amino acids as a chiral barrier site. Notably, the optically active β-amino acids were obtained by a Lewis base catalyzed hydrosilylation of β-enamino esters according to our former work. The chiral sensor has been used to conduct the enantioselective recognition of chiral mono and dicarboxylic acids derivatives. Using this fluorescent sensor, a moderate “turn-off” fluorescence-diminishment response towards enantiomer of tartaric acids, and proline was observed. It found that l-enantiomers quench the chiral fluorescence sensor more efficiently than d-enantiomers due to the absolute configuration of the β-amino acid.

  7. A practical procedure for the synthesis of esonarimod, (R,S)-2-acetylthiomethyl-4-(4-methylphenyl)-4-oxobutanoic acid, an antirheumatic agent (part 1).

    Science.gov (United States)

    Noguchi, Toshiya; Onodera, Akira; Tomisawa, Kazuyuki; Yokomori, Sadakazu

    2002-10-01

    An efficient and practical procedure for the synthesis of esonarimod, (R,S)-2-acetylthiomethyl-4-(4-methylphenyl)-4-oxobutanoic acid (1), a new antirheumatic drug, has been developed. The intermediate, 2-methylene-4-(4-methylphenyl)-4-oxobutanoic acid (2), was prepared by Friedel-Crafts acylation of toluene with itaconic anhydride (3) in the presence of aluminum trichloride and nitrobenzene in 63% yield without silica gel column purification. Compound 1 was prepared by Michael addition of 2 with thioacetic acid (4) in 74% yield. Overall, 1 was obtained in 47% yield from 3. The structures and synthetic mechanisms of by-products (five compounds) of 2 were also clarified.

  8. Use of tritium labeled compounds in peptide chemistry. Part 3. Influence of structure of peptide coupling amino acids on the extent of racemization

    International Nuclear Information System (INIS)

    Kolodziejczyk, A.M.; Arendt, A.

    1979-01-01

    A modified radiochromatographic method has been used to determine the degree of racemization in synthesis reactions of 12 peptides varying in amino acid composition and kind of protection. The degree of racemization in these reactions was not only found to depend on the kind of protection of the acylating amino acid and the reaction conditions as, e.g., the kind of method used in the synthesis, but also, and to a high degree, on the structure of amino acids, both acylating and acylated, concerned with the coupling stage in peptide synthesis. (author)

  9. Chromatographical analysis of phenolic acids in some species of Polygonum L. genus. Part 1 Qualitative analysis by two-dimensional thin layer chromatography (TLC

    Directory of Open Access Journals (Sweden)

    Helena D. Smolarz

    2014-01-01

    Full Text Available The Two-Dimensional Thin Layer Chromatography method has been used for the separation and identification of phenolic acids from six taxons of Pohygonum L. genus. The following acids were found: caffeic, p-coumaric, ferulic, p-hydroxybenzoic, m-hydroxybenzoic, vanillic, syringic, p-hydroxyphenylacetic, o-hydroxyphenylacetic, synapic, melillotic, salicylic, gentisic, elagic, gallic, chlorogenic, protocatechuic and homoprotocatechuic. Gallic, ferulic, vanillic, p-coumaric and p-hydroxybenzoic acids were isolated from herb Polygonum convolvulus L. using column chromatography.

  10. A family of uranyl-aromatic dicarboxylate (pht-, ipa-, tpa-) framework hybrid materials: photoluminescence, surface photovoltage and dye adsorption.

    Science.gov (United States)

    Gao, Xue; Wang, Che; Shi, Zhong-Feng; Song, Jian; Bai, Feng-Ying; Wang, Ji-Xiao; Xing, Yong-Heng

    2015-07-07

    Four uranyl complexes [(UO2)(pht)H2O]·H2O (pht = phthalic acid) (1), (UO2)2(Hipa)4(H2O)2 (Hipa = isophthalic acid) (2), (UO2)(tpa)(DMF)2 (tpa = terephthalic acid) (3) and (UO2)(box)2 (box = benzoic acid) (4) were synthesized by the reaction of UO2(CH3COO)2·2H2O as the metal source and phthalic acid, isophthalic acid, terephthalic acid or benzoic acid as the ligand. They were characterized by elemental analyses, IR, UV-Vis, XRD, single crystal X-ray diffraction analysis and thermal gravimetric analysis. The structural analysis reveals that complex 1 exhibits a one-dimensional chain structure constructed by the building unit [(UO2)2(pht)4(H2O)2] and further extends the chain into a 2D supramolecular architecture by hydrogen bonding interactions. Complex 2 is a discrete [(UO2)2(Hipa)4(H2O)2] structure, and by the hydrogen bonding interaction, forms a 3D supramolecular structure. In complexes 3 and 4, adjacent uranyl polyhedra form a 1D chain through bridging terephthalic acid and benzoic acid, respectively. In order to extend their functional properties, their photoluminescence, surface photovoltage and dye adsorption properties have been studied.

  11. Studies on inorganic ion-exchangers. Part I : application of polyantimonic acid for the polishing of uranium product of reprocessing stream

    International Nuclear Information System (INIS)

    Murthy, T.S.; Ananthakrishnan, M.; Mayan Kutty, P.C.; Mani, V.V.S.; Nadkarni, M.N.

    1977-01-01

    A systematic study has been initiated to investigate the feasibility of applying various inorganic exchangers to specific problems in nuclear fuel reprocessing industry and related spheres of activity. An investigation has been carried out to select a suitable exchanger for the polishing of tail-end uranium product of reprocessing stream free of residual plutonium activity. It includes determination of distribution ratios of uranium and plutonium on the exchangers like zirconium phosphate (ZrP), ammonium phosphomolybdate (AMP), ammonium phosphotungstate (APW), polyantimonic acid (PA), polyphosphoantimonic acid (PPA) and breakthrough capacities of plutonium on some of these exchangers. The inhibition studies of sodium on plutonium uptake on polyantimonic acid and the effective decontamination factors achieved using uranium tanker solution from the plant for recycling work have been described. These results indicated the usefulness of the polyantimonic acid exchanger for this purpose. (author)

  12. Regulation of odd-numbered fatty acid content plays an important part in the metabolism of the hyperaccumulator Noccaea spp. adapted to oxidative stress

    Czech Academy of Sciences Publication Activity Database

    Pavlík, Milan; Zemanová, Veronika; Pavlíková, D.; Kyjaková, Pavlína; Hlavsa, T.

    2017-01-01

    Roč. 208, JAN (2017), s. 94-101 ISSN 0176-1617 Institutional support: RVO:61389030 ; RVO:61388963 Keywords : membrane lipid-composition * amino-acids * gene-expression * salinity stress * leaf senescence * spartina-patens * low-temperature * cadmium stress * plants * tolerance * Environmental stress * Heavy metals * Phylogenetic profiling of fatty acids * Phytoremediation * Senescence * Thlaspi species Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 3.121, year: 2016

  13. Vitamin D and the omega-3 fatty acids control serotonin synthesis and action, part 2: relevance for ADHD, bipolar disorder, schizophrenia, and impulsive behavior.

    Science.gov (United States)

    Patrick, Rhonda P; Ames, Bruce N

    2015-06-01

    Serotonin regulates a wide variety of brain functions and behaviors. Here, we synthesize previous findings that serotonin regulates executive function, sensory gating, and social behavior and that attention deficit hyperactivity disorder, bipolar disorder, schizophrenia, and impulsive behavior all share in common defects in these functions. It has remained unclear why supplementation with omega-3 fatty acids and vitamin D improve cognitive function and behavior in these brain disorders. Here, we propose mechanisms by which serotonin synthesis, release, and function in the brain are modulated by vitamin D and the 2 marine omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Brain serotonin is synthesized from tryptophan by tryptophan hydroxylase 2, which is transcriptionally activated by vitamin D hormone. Inadequate levels of vitamin D (∼70% of the population) and omega-3 fatty acids are common, suggesting that brain serotonin synthesis is not optimal. We propose mechanisms by which EPA increases serotonin release from presynaptic neurons by reducing E2 series prostaglandins and DHA influences serotonin receptor action by increasing cell membrane fluidity in postsynaptic neurons. We propose a model whereby insufficient levels of vitamin D, EPA, or DHA, in combination with genetic factors and at key periods during development, would lead to dysfunctional serotonin activation and function and may be one underlying mechanism that contributes to neuropsychiatric disorders and depression. This model suggests that optimizing vitamin D and marine omega-3 fatty acid intake may help prevent and modulate the severity of brain dysfunction. © FASEB.

  14. Use of the ion exchange method for the determination of stability constants of trivalent metal complexes with humic and fulvic acids--part I: Eu3+ and Am3+ complexes in weakly acidic conditions.

    Science.gov (United States)

    Wenming, Dong; Hongxia, Zhang; Meide, Huang; Zuyi, Tao

    2002-06-01

    The conditional stability constants for tracer concentrations of Eu(III) and Am(III) with a red earth humic acid (REHA), a red earth fulvic acid (REFA) and a fulvic acid from weathered coal (WFA) were determined at pH 5.2-6.4 (such values are similar to those in non-calcareous soils) in the presence of HAc/NaAc or NaNO3 by using the cation exchange method. It was found that 1:1 complexes were predominately formed in weakly acidic conditions. The total exchangeable proton capacities and the degrees of dissociation of these humic substances were determined by using a potentiometric titration method. The key parameters necessary for the experimental determination of the conditional stability constants of metal ions with humic substances in weakly acidic conditions by using the cation exchange method were discussed. The conditional stability constants of 1:1 complexes obtained in this paper were compared with the literature data of Am(III) determined by using the ion exchange method and the solvent extraction method and with the stability constants of 1:1 complexes of UO2(2+) and Th4+ with the same soil humic substances. These results indicate the great stability of bivalent UO2(2+), trivalent Eu3+, Am3+ and tetravalent Th4+ complexes with humic and fulvic acids in weakly acidic conditions.

  15. Use of the ion exchange method for the determination of stability constants of trivalent metal complexes with humic and fulvic acids--Part I: Eu{sup 3+} and Am{sup 3+} complexes in weakly acidic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dong Wenming E-mail: dongwm@lzu.edu.cn; Zhang Hongxia; Huang Meide; Tao Zuyi

    2002-06-01

    The conditional stability constants for tracer concentrations of Eu(III) and Am(III) with a red earth humic acid (REHA), a red earth fulvic acid (REFA) and a fulvic acid from weathered coal (WFA) were determined at pH 5.2-6.4 (such values are similar to those in non-calcareous soils) in the presence of HAc/NaAc or NaNO{sub 3} by using the cation exchange method. It was found that 1 : 1 complexes were predominately formed in weakly acidic conditions. The total exchangeable proton capacities and the degrees of dissociation of these humic substances were determined by using a potentiometric titration method. The key parameters necessary for the experimental determination of the conditional stability constants of metal ions with humic substances in weakly acidic conditions by using the cation exchange method were discussed. The conditional stability constants of 1 : 1 complexes obtained in this paper were compared with the literature data of Am(III) determined by using the ion exchange method and the solvent extraction method and with the stability constants of 1 : 1 complexes of UO{sub 2}{sup 2+} and Th{sup 4+} with the same soil humic substances. These results indicate the great stability of bivalent UO{sub 2}{sup 2+}, trivalent Eu{sup 3+}, Am{sup 3+} and tetravalent Th{sup 4+} complexes with humic and fulvic acids in weakly acidic conditions.

  16. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 2: aldol, Mannich addition reactions, deracemization and (S) to (R) interconversion of α-amino acids.

    Science.gov (United States)

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim

    2013-11-01

    This review provides a comprehensive treatment of literature data dealing with asymmetric synthesis of α-amino-β-hydroxy and α,β-diamino acids via homologation of chiral Ni(II) complexes of glycine Schiff bases using aldol and Mannich-type reactions. These reactions proceed with synthetically useful chemical yields and thermodynamically controlled stereoselectivity and allow direct introduction of two stereogenic centers in a single operation with predictable stereochemical outcome. Furthermore, new application of Ni(II) complexes of α-amino acids Schiff bases for deracemization of racemic α-amino acids and (S) to (R) interconversion providing additional synthetic opportunities for preparation of enantiomerically pure α-amino acids, is also reviewed. Origin of observed diastereo-/enantioselectivity in the aldol, Mannich-type and deracemization reactions, generality and limitations of these methodologies are critically discussed.

  17. Use of ionizing radiation in the regulation of amino acid synthesis of micro organisms. Part of a coordinated programme on radiation microbiology

    International Nuclear Information System (INIS)

    Hall, A.N.

    1976-05-01

    The effects of ionizing radiations on the production of glutamic acid (from glucose) by Corynebacterium glutamicum was investigated. Experiments were carried out with resting cell systems and with growing cultures of C. glutamicum. The growing cultures produced optimum yields of glutamic acid (25-30% of theoretical) in culture medium containing 1,0μg/l of biotin. The yield was virtually zero when 25μg/l of biotin was supplied. Resting cells from a medium containing growth-limiting concentrations of biotin (1μg/l) gave good yield of glutamic acid (approximately 27%), while cells harvested from a biotin-rich medium produced only traces of glutamate. Pre-irradiated cells of C. glutamicum produced less glutamic acid than unirradiated cells, and continuously irradiated (3,03 and 4,76 rad/h resting cells accumulated less glutamic acid than the corresponding unirradiated controls. Considerable increase in the glutamate produced by C. glutamicum during growth in the presence of 25μg/l of biotin was induced by continuously irradiating the cultures from the time of inoculation. The increases in the actual concentration of glutamate and in the precentage yield vary from approximately 2-fold to 4-fold. A dose rate of 4.0 krad/h was the most effective of the ones tested

  18. The Oxidation of Fe(II) in Acidic Sulfate Solutions with Air at Elevated Pressures : Part 2. Influence of H2SO4 and Fe(III)

    NARCIS (Netherlands)

    Wermink, Wouter N.; Versteeg, Geert F.

    2017-01-01

    The oxidation of ferrous ions in acidic sulfate solutions at elevated air pressures was investigated. The effect of the Fe2+ concentration, Fe3+ concentration H2SO4 concentration, and partial oxygen pressure on the reaction rate were determined at three different temperatures, that is, T = 90, 70,

  19. The Oxidation of Fe(II) in Acidic Sulfate Solutions with Air at Elevated Pressures : Part 1. Kinetics above 1 M H2SO4

    NARCIS (Netherlands)

    Wermink, Wouter N.; Versteeg, Geert F.

    2017-01-01

    The oxidation of ferrous ions in acidic sulfate solutions at elevated air pressures was investigated. The effect of the Fe2+ concentration, initial H2SO4 concentration and partial oxygen pressure on the reaction rate were determined at three different temperatures, that is, T = 90, 70, and 50

  20. The Eicosapentaenoic Acid Metabolite 15-Deoxy-δ12,14-Prostaglandin J3 Increases Adiponectin Secretion by Adipocytes Partly via a PPARγ-Dependent Mechanism

    Science.gov (United States)

    Lefils-Lacourtablaise, Jennifer; Socorro, Mairobys; Géloën, Alain; Daira, Patricia; Debard, Cyrille; Loizon, Emmanuelle; Guichardant, Michel; Dominguez, Zury; Vidal, Hubert; Lagarde, Michel; Bernoud-Hubac, Nathalie

    2013-01-01

    The intake of ω-3 polyunsaturated fatty acids (PUFAs), which are abundant in marine fish meat and oil, has been shown to exert many beneficial effects. The mechanisms behind those effects are numerous, including interference with the arachidonic acid cascade that produces pro-inflammatory eicosanoids, formation of novel bioactive lipid mediators, and change in the pattern of secreted adipocytokines. In our study, we show that eicosapentaenoic acid (EPA) increases secreted adiponectin from 3T3-L1 adipocytes and in plasma of mice as early as 4 days after initiation of an EPA-rich diet. Using 3T3-L1 adipocytes, we report for the first time that 15-deoxy-δ12,14-PGJ3 (15d-PGJ3), a product of EPA, also increases the secretion of adiponectin. We demonstrate that the increased adiponectin secretion induced by 15d-PGJ3 is partially peroxisome proliferator-activated receptor-gamma (PPAR-γ)-mediated. Finally, we show that 3T3-L1 adipocytes can synthesize 15d-PGJ3 from EPA. 15d-PGJ3 was also detected in adipose tissue from EPA-fed mice. Thus, these studies provide a novel mechanism(s) for the therapeutic benefits of ω-3 polyunsaturated fatty acids dietary supplementation. PMID:23734181

  1. Equilibrium Solubility of CO2 in Aqueous Potassium Taurate Solutions : Part 1. Crystallization in Carbon Dioxide Loaded Aqueous Salt Solutions of Amino Acids

    NARCIS (Netherlands)

    Kumar, P.S.; Hogendoorn, J.A.; Feron, P.H.M.; Versteeg, G.F.

    2003-01-01

    Crystallization of a reaction product was observed during the absorption of CO2 in aqueous potassium taurate solutions at 298 K. The crystallizing solid was found to be the protonated amine. The critical CO2 loading value at which crystallization occurred was measured for various amino acid salt

  2. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases; Part 1: alkyl halide alkylations.

    Science.gov (United States)

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim A

    2013-10-01

    Alkylations of chiral or achiral Ni(II) complexes of glycine Schiff bases constitute a landmark in the development of practical methodology for asymmetric synthesis of α-amino acids. Straightforward, easy preparation as well as high reactivity of these Ni(II) complexes render them ready available and inexpensive glycine equivalents for preparing a wide variety of α-amino acids, in particular on a relatively large scale. In the case of Ni(II) complexes containing benzylproline moiety as a chiral auxiliary, their alkylation proceeds with high thermodynamically controlled diastereoselectivity. Similar type of Ni(II) complexes derived from alanine can also be used for alkylation providing convenient access to quaternary, α,α-disubstituted α-amino acids. Achiral type of Ni(II) complexes can be prepared from picolinic acid or via recently developed modular approach using simple secondary or primary amines. These Ni(II) complexes can be easily mono/bis-alkylated under homogeneous or phase-transfer catalysis conditions. Origin of diastereo-/enantioselectivity in the alkylations reactions, aspects of practicality, generality and limitations of this methodology is critically discussed.

  3. Impregnation of 12-tungstophosphoric acid on silica - part I: determination of impregnation parameters, characterization and evaluation of catalytic activity; Impregnacao do acido 12-fosfotungstico em silica - parte I: determinacao de parametros de impregnacao, caracterizacao e avaliacao da atividade catalitica

    Energy Technology Data Exchange (ETDEWEB)

    Scroccaro, Karine Isabel; Tanobe, Valcineide Oliveira de Andrade; Cocco, Lilian Cristina; Yamamoto, Carlos Itsuo, E-mail: karineisabel@yahoo.com.br [Universidade Federal do Parana, Curitiba, PR (Brazil). Centro Politecnico. Dept. de Engenharia Quimica; Wypych, Fernando [Universidade Federal do Parana, Curitiba, PR (Brazil). Centro Politecnico. Dept. de Quimica

    2012-07-01

    Catalyst based on Kegging-type heteropolyacids (H{sub 3}PW{sub 12}O{sub 40} - HPA), supported on SiO{sub 2} (H{sub 3}PW), were prepared by the impregnation method under different thermal treatment conditions. The materials were characterized by different instrumental techniques and used as catalysts in the methyl esterification reactions of stearic acid. Using the catalyst with 15% of HPA, conversions higher than 60% were obtained after 2 h of reaction at 65 deg C. Recovery studies using hot-filtration with ethanol at 75 deg C showed satisfactory activity for two additional reaction cycles. (author)

  4. Wet deposition and related atmospheric chemistry in the São Paulo metropolis, Brazil: Part 2—contribution of formic and acetic acids

    Science.gov (United States)

    Fornaro, Adalgiza; Gutz, Ivano G. R.

    Wet-only deposition samples were collected at a site in the urban area of the São Paulo metropolis between February (end of the rainy summer) and October (beginning of spring) 2000, an atypical period due to rainfall 40% below the 30-year average. The majority ions in rainwater were measured by capillary zone electrophoresis with contactless conductivity detection, CZE-CCD, applied for the first time to the organic anions acetate and formate. The volume weight mean (VWM) concentrations of the majority anions NO 3-, SO 42- and Cl - were, respectively, 15.6, 9.5 and 4.7 μmol l -1. The VWM concentration of HCOO -t, (HCOO -+HCOOH) was 17.0 μmol l -1, about twice the 8.9 μmol l -1 of CH 3COO -t. The VWM concentration of free H + was low ( 16.9 μmol l -1), corresponding to pH 4.77. This denotes the relevance of species like ammonia, analyzed as NH4+ ( VWM=27.9 μmol l -1), and calcium carbonate ( VWM=5.3 μmol l -1 Ca2+) as partial neutralizers of the acidity. By hypothetically assuming that H + is the only counterion of the non-sea-salt fraction of the dissociated anions, their contribution to the total potential acidity would decrease in the following order: sulfate (29%), formate (29%), nitrate (26%), acetate (15%) and chloride (1%). The 44% potential participation of the carboxylic acids reveals their importance to the acidity of São Paulo's rainwater during the study period. Direct vehicular emission of lower carboxylic acids and aldehydes (in particular, acetic acid and acetaldehyde) is singularly high in the metropolis due to the extensive use of ethanol and gasohol (containing ˜20% of ethanol) as fuels of the light fleet of 5.5 million cars; in addition, regional atmospheric conditions favor the photochemical formation of the acids, since concentrations of ozone and aldehydes are high and solar irradiation is intense at the 23°34'S latitude. The presence of higher concentrations of HCOOH than CH 3COOH indicates a prevalence of its photochemical production

  5. Sub products form a depuratives process of acid mine water with organic residues used as carbon source. part I; Subproductos en la depuracion de aguas acidas de mineria y empleo de residuos organicos como fuente carbonada, Parte I

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Rodriguez, A. M.; Duran-Barrantes, M. M.; Martel-Villagran, F. J.

    2002-07-01

    Subproducts from the biological depurative process of acid mine water, such as H{sub 2}S in the biogas and HCO{sub 3} in the effluents are applied for the selective precipitation of metallic sulphides of Pb, Zn, Cu, Al an Mn, as a function of pH. To obtain the maximum H{sub 2}S concentration is principal,so several studies have been made to found the best working conditions between microorganisms and the carbon source choice. In this work,the results of the digestion process with an inoculum from the anaerobic digestion of swine manure and cheese whey as carbon source are showed. The optimal conditions obtained are: for a SO{sub 4}''=COD of 1:1,5 in HRT of 12 days, 65% of sulphate reduction, 30% of H2S in biogas. In the precipitation of metals, a reduction of 98,3% of Fe, 96,1% Cu, 79% Zn and 99% Al are obtained. AYESA (Aguas y Estructuras, S. A.) is developing the technical attendance. This study is being demonstrated under the Acid Water Treatment Program, conducted by the Consejeria del Medio Ambiente (Junta de Andalucia). (Author) 15 refs.

  6. Subproducts from a depurative process of acid mine water with organic residues used as carbon source. Part II; Subproductos en la depuracion de aguas acidas de mineria y empleo de residuos orgnicos como fuente carbonada (Parte II)

    Energy Technology Data Exchange (ETDEWEB)

    Duran-Barrantes, M. M.; Jimenez-Rodriguez, A. M.; Martel-Villagran, F. J.

    2004-07-01

    The biological depurative process of acid mine water reducing sulphate concentration from Tinto River produces the alkalinity needed for the selective precipitation of Fe, Cu, Zn and Al. But a suitable carbon source for the working conditions of microorganisms to reduce sulphates is needed. In this work, the results obtained using urban sewage as a carbon source are presented. the optimal conditions obtained are: 65,5% of sulphate reduction in HRT of 10 days for a SO{sub '}'2{sub 4} COD of 1:1 and 580 mg HS/L in the reactor effluent. In the precipitation of metals, a reduction of 77,6% of Fe, 88,6% of Cu, 70,7% of Zn and 71,5% of Al, are obtained depending on the assay applied. Ayesa is developing the technical attendance. This study is being demonstrated under the Acid Water Treatment Program, conducted by the Consejeria del Medio Ambiente (Junta de Andalucia). (Author) 6 refs.

  7. Synthesis of Furandicarboxylic Acid Esters From Nonfood Feedstocks Without Concomitant Levulinic Acid Formation.

    Science.gov (United States)

    van der Klis, Frits; van Haveren, Jacco; van Es, Daan S; Bitter, Johannes H

    2017-04-10

    5-Hydroxymethylfurfural (HMF) is a versatile intermediate in biomass conversion pathways. However, the notoriously unstable nature of HMF imposes challenges to design selective routes to chemicals such as furan-2,5-dicarboxylic acid (FDCA). Here, a new strategy for obtaining furans is presented, bypassing the formation of the unstable HMF. Instead of starting with glucose/fructose and thus forming HMF as an intermediate, the new route starts from uronic acids, which are abundantly present in many agro residues such as sugar beet pulp, potato pulp, and citrus peels. Conversion of uronic acids, via ketoaldonic acids, to the intermediate formylfuroic acid (FFA) esters, and subsequently to FDCA esters, proceeds without formation of levulinic acid or insoluble humins. This new route provides an attractive strategy to valorize agricultural waste streams and a route to furanic building blocks without the co-production of levulinic acid or humins. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  8. Poly(DL-lactic acid) as a direct compression excipient in controlled release tablets - Part I. Compaction behaviour and release characteristics of poly(DL-lactic acid) matrix tablets

    NARCIS (Netherlands)

    Steendam, R; Lerk, CF

    1998-01-01

    High-molecular weight poly(DL-lactic acid) (PDLA, M-v 85000) was applied as a direct compression excipient in controlled release tablets. PDLA powders with good flowing properties were obtained by milling pre-cooled PDLA granules. Apparent yield pressure values ranged from 44 to 71 MPa for

  9. [Effectiveness of iron amino acid chelate versus ferrous sulfate as part of a food complement in preschool children with iron deficiency, Medellín, 2011].

    Science.gov (United States)

    Rojas, Maylen Liseth; Sánchez, Juliana; Villada, Óscar; Montoya, Liliana; Díaz, Alejandro; Vargas, Cristian; Chica, Javier; Herrera, Ana Milena

    2013-01-01

    Iron depleted deposits are the first link in the chain of events leading to iron deficiency which is the most prevalent nutritional shortage and main cause of anemia worldwide. This situation can be prevented through food fortification. To compare the efficacy of amino acid chelate iron with ferrous sulfate as fortifier of a dietary complement in preschoolers with iron deficiency. This study was a blinded clinical trial with randomized groups. We analyzed 56 preschoolers with iron deficiency (ferritin children had respiratory tract infection, without statistical differences. Both compounds increased serum ferritin concentration, with a higher increase in those who were given milk with iron amino acid chelate. There were no differences in the adverse reactions and infections incidences between the groups.

  10. Development of Monopole Interaction Models for Ionic Compounds. Part I: Estimation of Aqueous Henry's Law Constants for Ions and Gas Phase pKa Values for Acidic Compounds.

    Science.gov (United States)

    Hilal, S H; Saravanaraj, A N; Carreira, L A

    2014-02-01

    The SPARC (SPARC Performs Automated Reasoning in Chemistry) physicochemical mechanistic models for neutral compounds have been extended to estimate Henry's Law Constant (HLC) for charged species by incorporating ionic electrostatic interaction models. Combinations of absolute aqueous pKa values, relative pKa values in the gas phase, and aqueous HLC for neutral compounds have been used to develop monopole interaction models that quantify the energy differences upon moving an ionic solute molecule from the gas phase to the liquid phase. Inter-molecular interaction energies were factored into mechanistic contributions of monopoles with polarizability, dipole, H-bonding, and resonance. The monopole ionic models were validated by a wide range of measured gas phase pKa data for 450 acidic compounds. The RMS deviation error and R(2) for the OH, SH, CO2 H, CH3 and NR2 acidic reaction centers (C) were 16.9 kcal/mol and 0.87, respectively. The calculated HLCs of ions were compared to the HLCs of 142 ions calculated by quantum mechanics. Effects of inter-molecular interaction of the monopoles with polarizability, dipole, H-bonding, and resonance on acidity of the solutes in the gas phase are discussed. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Structure of the d-alanylgriseoluteic acid biosynthetic protein EhpF, an atypical member of the ANL superfamily of adenylating enzymes

    International Nuclear Information System (INIS)

    Bera, Asim K.; Atanasova, Vesna; Gamage, Swarna; Robinson, Howard; Parsons, James F.

    2010-01-01

    The structure of EhpF from P. agglomerans has been solved alone and in complex with phenazine-1,6-dicarboxylate. Apo EhpF was solved and refined in two different space groups at 1.95 and 2.3 Å resolution and the EhpF–phenazine-1,6-dicarboxylate complex structure was determined at 2.8 Å resolution. The structure of EhpF, a 41 kDa protein that functions in the biosynthetic pathway leading to the broad-spectrum antimicrobial compound d-alanylgriseoluteic acid (AGA), is reported. A cluster of approximately 16 genes, including ehpF, located on a 200 kbp plasmid native to certain strains of Pantoea agglomerans encodes the proteins that are required for the conversion of chorismic acid to AGA. Phenazine-1,6-dicarboxylate has been identified as an intermediate in AGA biosynthesis and deletion of ehpF results in accumulation of this compound in vivo. The crystallographic data presented here reveal that EhpF is an atypical member of the acyl-CoA synthase or ANL superfamily of adenylating enzymes. These enzymes typically catalyze two-step reactions involving adenylation of a carboxylate substrate followed by transfer of the substrate from AMP to coenzyme A or another phosphopantetheine. EhpF is distinguished by the absence of the C-terminal domain that is characteristic of enzymes from this family and is involved in phosphopantetheine binding and in the second half of the canonical two-step reaction that is typically observed. Based on the structure of EhpF and a bioinformatic analysis, it is proposed that EhpF and EhpG convert phenazine-1,6-dicarboxylate to 6-formylphenazine-1-carboxylate via an adenylyl intermediate

  12. Structure of the d-alanylgriseoluteic acid biosynthetic protein EhpF, an atypical member of the ANL superfamily of adenylating enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Bera, Asim K.; Atanasova, Vesna [Center for Advanced Research in Biotechnology, The University of Maryland Biotechnology Institute, 9600 Gudelsky Drive, Rockville, MD 20850 (United States); Gamage, Swarna [Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland (New Zealand); Robinson, Howard [Biology Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Parsons, James F., E-mail: parsonsj@umbi.umd.edu [Center for Advanced Research in Biotechnology, The University of Maryland Biotechnology Institute, 9600 Gudelsky Drive, Rockville, MD 20850 (United States)

    2010-06-01

    The structure of EhpF from P. agglomerans has been solved alone and in complex with phenazine-1,6-dicarboxylate. Apo EhpF was solved and refined in two different space groups at 1.95 and 2.3 Å resolution and the EhpF–phenazine-1,6-dicarboxylate complex structure was determined at 2.8 Å resolution. The structure of EhpF, a 41 kDa protein that functions in the biosynthetic pathway leading to the broad-spectrum antimicrobial compound d-alanylgriseoluteic acid (AGA), is reported. A cluster of approximately 16 genes, including ehpF, located on a 200 kbp plasmid native to certain strains of Pantoea agglomerans encodes the proteins that are required for the conversion of chorismic acid to AGA. Phenazine-1,6-dicarboxylate has been identified as an intermediate in AGA biosynthesis and deletion of ehpF results in accumulation of this compound in vivo. The crystallographic data presented here reveal that EhpF is an atypical member of the acyl-CoA synthase or ANL superfamily of adenylating enzymes. These enzymes typically catalyze two-step reactions involving adenylation of a carboxylate substrate followed by transfer of the substrate from AMP to coenzyme A or another phosphopantetheine. EhpF is distinguished by the absence of the C-terminal domain that is characteristic of enzymes from this family and is involved in phosphopantetheine binding and in the second half of the canonical two-step reaction that is typically observed. Based on the structure of EhpF and a bioinformatic analysis, it is proposed that EhpF and EhpG convert phenazine-1,6-dicarboxylate to 6-formylphenazine-1-carboxylate via an adenylyl intermediate.

  13. A one-dimensional ladder-like coordination polymer: poly[[hexa-aqua-bis(μ-5-nitro-benzene-1,3-dicarboxyl-ato-κO,O',O'')(μ-oxalato-κO,O':O'',O''')diyttrium(III)] trihydrate].

    Science.gov (United States)

    Fu, Zhong; Lin, Ying; Zhou, Yun-You; Zhang, Hong-Tao

    2007-12-06

    In the crystal structure of the title one-dimensional coordination polymer, [Y(2)(C(8)H(3)NO(6))(2)(C(2)O(4))(H(2)O)(6)]·3H(2)O, each Y(III) ion is bridged to its neighbours by two 5-nitro-benzene-1,3-dicarboxyl-ate (nbdc) dianions and one oxalate dianion (located on an inversion centre) to form a ladder-like polymeric structure. The two carboxylate groups of nbdc assume different modes of coordination, one is chelating whereas the other is monodentate. Three water mol-ecules coordinate to the Y(III) ion to complete an eight-coordinate distorted dodecahedral geometry. The ladder-like polymers are assembled together by hydrogen bonding and π-π stacking [centrio-centriod distance = 3.819 (9) Å] in the crystal structure.

  14. Production of muconic acid in plants.

    Science.gov (United States)

    Eudes, Aymerick; Berthomieu, Roland; Hao, Zhangying; Zhao, Nanxia; Benites, Veronica Teixeira; Baidoo, Edward E K; Loqué, Dominique

    2018-03-01

    Muconic acid (MA) is a dicarboxylic acid used for the production of industrially relevant chemicals such as adipic acid, terephthalic acid, and caprolactam. Because the synthesis of these polymer precursors generates toxic intermediates by utilizing petroleum-derived chemicals and corrosive catalysts, the development of alternative strategies for the bio-based production of MA has garnered significant interest. Plants produce organic carbon skeletons by harvesting carbon dioxide and energy from the sun, and therefore represent advantageous hosts for engineered metabolic pathways towards the manufacturing of chemicals. In this work, we engineered Arabidopsis to demonstrate that plants can serve as green factories for the bio-manufacturing of MA. In particular, dual expression of plastid-targeted bacterial salicylate hydroxylase (NahG) and catechol 1,2-dioxygenase (CatA) resulted in the conversion of the endogenous salicylic acid (SA) pool into MA via catechol. Sequential increase of SA derived from the shikimate pathway was achieved by expressing plastid-targeted versions of bacterial salicylate synthase (Irp9) and feedback-resistant 3-deoxy-D-arabino-heptulosonate synthase (AroG). Introducing this SA over-producing strategy into engineered plants that co-express NahG and CatA resulted in a 50-fold increase in MA titers. Considering that MA was easily recovered from senesced plant biomass after harvest, we envision the phytoproduction of MA as a beneficial option to add value to bioenergy crops. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Amino Acid Transporters and Release of Hydrophobic Amino Acids in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120

    Directory of Open Access Journals (Sweden)

    Rafael Pernil

    2015-04-01

    Full Text Available Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that can use inorganic compounds such as nitrate or ammonium as nitrogen sources. In the absence of combined nitrogen, it can fix N2 in differentiated cells called heterocysts. Anabaena also shows substantial activities of amino acid uptake, and three ABC-type transporters for amino acids have been previously characterized. Seven new loci encoding predicted amino acid transporters were identified in the Anabaena genomic sequence and inactivated. Two of them were involved in amino acid uptake. Locus alr2535-alr2541 encodes the elements of a hydrophobic amino acid ABC-type transporter that is mainly involved in the uptake of glycine. ORF all0342 encodes a putative transporter from the dicarboxylate/amino acid:cation symporter (DAACS family whose inactivation resulted in an increased uptake of a broad range of amino acids. An assay to study amino acid release from Anabaena filaments to the external medium was set up. Net release of the alanine analogue α-aminoisobutyric acid (AIB was observed when transport system N-I (a hydrophobic amino acid ABC-type transporter was engaged in the uptake of a specific substrate. The rate of AIB release was directly proportional to the intracellular AIB concentration, suggesting leakage from the cells by diffusion.

  16. pH-dependent and carrier-mediated transport of salicylic acid across Caco-2 cells.

    Science.gov (United States)

    Takanaga, H; Tamai, I; Tsuji, A

    1994-07-01

    The transport of monocarboxylic acid drugs such as salicylic acid was examined in the human colon adenocarcinoma cell line, Caco-2 cells that possess intestinal epithelia-like properties. [14C]Salicylic acid transport was pH-dependent and appeared to follow the pH-partition hypothesis. However, 10 mM unlabelled salicylic acid significantly reduced the permeability coefficient of [14C]salicylic acid. Kinetic analysis of the concentration dependence of the permeation rate of salicylic acid across Caco-2 cells showed both saturable (Kt = 5.28 +/- 0.72 mM Jmax = 36.6 +/- 3.54 nmol min-1 (mg protein)-1) and nonsaturable (kd = 0.37 +/- 0.08 microL min-1 (mg protein)-1) processes. The permeation rate of [14C]salicylic acid was competitively inhibited by both acetic acid and benzoic acid, which were demonstrated in our previous studies to be transported in the carrier-mediated-transport mechanism which is responsible for monocarboxylic acids. Furthermore, certain monocarboxylic acids significantly inhibited [14C]salicylic acid transport, whereas salicylamide and dicarboxylic acids such as succinic acid did not. From these results, it was concluded that the transcellular transport of [14C]salicylic acid across Caco-2 cells is by the pH-dependent and carrier-mediated transport mechanism specific for monocarboxylic acids.

  17. [Surface-active agents from the group of polyoxyethylated glycerol esters of fatty acids. Part II. Chromatographic analysis and basic viscosity parameters as a estimate criterion of efficiency of catalytic oxyethylation of Lard's fractions (Adeps suillus FP VII)].

    Science.gov (United States)

    Piotrowska, Jowita Barbara; Nachajski, Michał Jakub; Lukosek, Marek; Kosno, Jacek; Zgoda, Marian Mikołaj

    2011-01-01

    The catalytic oxyethylation products of Lard's fractions and Tweens--as a reference products, were analised by chromatographic analysis HPLC and GPC. The above part was determination average molecular weights dispersion (Mw I Mn) and the content of polyethylene glycols (PEG), which are obtained during catalytic oxyethylation, and determination iodine value of the product (L(J2)). Viscosity measurements were carried out by Ubelohde method and enabled determination of basic viscosity and hydrodynamic parameters. The obtained results indicate that, comparing reference products--polysorbates, Tweens, products of triglycerides oxyethylation contain significantly less, in some cases very small amount of polyethylene glycols (PEG), and also maintained a high amount of unsaturated fatty acids (oleic acid), which is proven by the iodine value. Numerical value n(s) /H2O/ confirms important disparity of micells palisad structure, which are created based on oxyethylated triglycerides nTE = 40. That indicates significant solubilization possibilities of their aqueous solutions Cexp < or = Cmc.

  18. The dynamics of acid-soluble phosphorus compounds in the course of winter and spring wheat germination under various thermic conditions. Part I. Fractionation of wheat germs extracts

    Directory of Open Access Journals (Sweden)

    A. Barbaro

    2015-06-01

    Full Text Available Results of investigations are reported on the role of acid-soluble phosphorus compounds in the process of winter wheat vernalization. Fractionation of germ extracts by the precipitation method revealed the dynamics of phosphorylated glycolysis metabolites during germination. The variability curves for spring wheat germinated at 1.5° and 22° and for winter wheat at 1.5° had a similar course, only that for winter wheat germinated at 22° showed differences. It is concluded that glycolysis is essential in the process of vernalization.

  19. The dynamics of acid-soluble phosphorus compounds in the course of winter and spring wheat germination under various thermic conditions. Part I. Fractionation of wheat germs extracts

    OpenAIRE

    A. Barbaro

    2015-01-01

    Results of investigations are reported on the role of acid-soluble phosphorus compounds in the process of winter wheat vernalization. Fractionation of germ extracts by the precipitation method revealed the dynamics of phosphorylated glycolysis metabolites during germination. The variability curves for spring wheat germinated at 1.5° and 22° and for winter wheat at 1.5° had a similar course, only that for winter wheat germinated at 22° showed differences. It is concluded that glycolysis is ess...

  20. cis,cis-Muconic acid: separation and catalysis to bio-adipic acid for nylon-6,6 polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Vardon, Derek R.; Rorrer, Nicholas A.; Salvachúa, Davinia; Settle, Amy E.; Johnson, Christopher W.; Menart, Martin J.; Cleveland, Nicholas S.; Ciesielski, Peter N.; Steirer, K. Xerxes; Dorgan, John R.; Beckham, Gregg T.

    2016-01-01

    cis,cis-Muconic acid is a polyunsaturated dicarboxylic acid that can be produced renewably via the biological conversion of sugars and lignin-derived aromatic compounds. Subsequently, muconic acid can be catalytically converted to adipic acid -- the most commercially significant dicarboxylic acid manufactured from petroleum. Nylon-6,6 is the major industrial application for adipic acid, consuming 85% of market demand; however, high purity adipic acid (99.8%) is required for polymer synthesis. As such, process technologies are needed to effectively separate and catalytically transform biologically derived muconic acid to adipic acid in high purity over stable catalytic materials. To that end, this study: (1) demonstrates bioreactor production of muconate at 34.5 g L-1 in an engineered strain of Pseudomonas putida KT2440, (2) examines the staged recovery of muconic acid from culture media, (3) screens platinum group metals (e.g., Pd, Pt, Rh, Ru) for activity and leaching stability on activated carbon (AC) and silica supports, (4) evaluates the time-on-stream performance of Rh/AC in a trickle bed reactor, and (5) demonstrates the polymerization of bio-adipic acid to nylon-6,6. Separation experiments confirmed AC effectively removed broth color compounds, but subsequent pH/temperature shift crystallization resulted in significant levels of Na, P, K, S and N in the crystallized product. Ethanol dissolution of muconic acid precipitated bulk salts, achieving a purity of 99.8%. Batch catalysis screening reactions determined that Rh and Pd were both highly active compared to Pt and Ru, but Pd leached significantly (1-9%) from both AC and silica supports. Testing of Rh/AC in a continuous trickle bed reactor for 100 h confirmed stable performance after 24 h, although organic adsorption resulted in reduced steady-state activity. Lastly, polymerization of bio-adipic acid with hexamethyldiamine produced nylon-6,6 with comparable properties to its petrochemical counterpart

  1. BioREFINE-2G project – Engineering of industrial yeast strains for production of dicarboxylic acids from side and waste streams

    DEFF Research Database (Denmark)

    Stovicek, Vratislav; Chen, Xiao; Borodina, Irina

    2014-01-01

    compounds can be polymerised to biodegradable polymersthat can find application as plastics, coatings or adhesives. To reach the goals, the identification of relevant metabolic routes, strain engineering and the development of a toolbox for manipulation of industrial S. cerevisiae strains are required. Here...

  2. Crystal structure of nonadentate tricompartmental ligand derived from pyridine-2,6-dicarboxylic acid: Spectroscopic, electrochemical and thermal investigations of its transition metal(II) complexes.

    Science.gov (United States)

    Vadavi, Ramesh S; Shenoy, Rashmi V; Badiger, Dayananda S; Gudasi, Kalagouda B; Devi, L Gomathi; Nethaji, Munirathinam

    2011-07-01

    The coordinating behavior of a new dihydrazone ligand, 2,6-bis[(3-methoxysalicylidene)hydrazinocarbonyl]pyridine towards manganese(II), cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II) has been described. The metal complexes were characterized by magnetic moments, conductivity measurements, spectral (IR, NMR, UV-Vis, FAB-Mass and EPR) and thermal studies. The ligand crystallizes in triclinic system, space group P-1, with α=98.491(10)°, β=110.820(10)° and γ=92.228(10)°. The cell dimensions are a=10.196(7)Å, b=10.814(7)Å, c=10.017(7)Å, Z=2 and V=1117.4(12). IR spectral studies reveal the nonadentate behavior of the ligand. All the complexes are neutral in nature and possess six-coordinate geometry around each metal center. The X-band EPR spectra of copper(II) complex at both room temperature and liquid nitrogen temperature showed unresolved broad signals with g(iso)=2.106. Cyclic voltametric studies of copper(II) complex at different scan rates reveal that all the reaction occurring are irreversible. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Novel compounds of 4-amino-1,2,4-triazole with dicarboxylic acids – crystal structures, vibrational spectra and non-linear optical properties

    Czech Academy of Sciences Publication Activity Database

    Matulková, Irena; Němec, I.; Teubner, K.; Němec, P.; Mička, Z.

    2008-01-01

    Roč. 886, 1-3 (2008), s. 46-60 ISSN 0022-2860 Institutional research plan: CEZ:AV0Z40400503 Keywords : 4-Amino-1,2,4-triazole * 4-Amino-1,2,4-triazol-1-ium chloride * 4-Amino-1,2,4-triazol-1-ium hydrogen oxalate Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.594, year: 2008

  4. Physiological characterization of the high malic acid-producing Aspergillus oryzae strain 2103a-68.

    Science.gov (United States)

    Knuf, Christoph; Nookaew, Intawat; Remmers, Ilse; Khoomrung, Sakda; Brown, Stephen; Berry, Alan; Nielsen, Jens

    2014-04-01

    Malic acid is a C₄ dicarboxylic acid that is currently mainly used in the food and beverages industry as an acidulant. Because of the versatility of the group of C₄ dicarboxylic acids, the chemical industry has a growing interest in this chemical compound. As malic acid will be considered as a bulk chemical, microbial production requires organisms that sustain high rates, yields, and titers. Aspergillus oryzae is mainly known as an industrial enzyme producer, but it was also shown that it has a very competitive natural production capacity for malic acid. Recently, an engineered A. oryzae strain, 2103a-68, was presented which overexpressed pyruvate carboxylase, malate dehydrogenase, and a malic acid transporter. In this work, we report a detailed characterization of this strain including detailed rates and yields under malic acid production conditions. Furthermore, transcript levels of the genes of interest and corresponding enzyme activities were measured. On glucose as carbon source, 2103a-68 was able to secrete malic acid at a maximum specific production rate during stationary phase of 1.87 mmol (g dry weight (DW))⁻¹ h⁻¹ and with a yield of 1.49 mol mol⁻¹. Intracellular fluxes were obtained using ¹³C flux analysis during exponential growth, supporting the success of the metabolic engineering strategy of increasing flux through the reductive cytosolic tricarboxylic acid (rTCA) branch. Additional cultivations using xylose and a glucose/xylose mixture demonstrated that A. oryzae is able to efficiently metabolize pentoses and hexoses to produce malic acid at high titers, rates, and yields.

  5. Bonding effectiveness of self-adhesive and conventional-type adhesive resin cements to CAD/CAM resin blocks. Part 2: Effect of ultrasonic and acid cleaning.

    Science.gov (United States)

    Kawaguchi, Asuka; Matsumoto, Mariko; Higashi, Mami; Miura, Jiro; Minamino, Takuya; Kabetani, Tomoshige; Takeshige, Fumio; Mine, Atsushi; Yatani, Hirofumi

    2016-01-01

    The present study assessed the effect of ultrasonic and acid cleaning on resin cement bonding to CAD/CAM resin blocks. One of two resin cements, PANAVIA V5 (PV5) or PANAVIA SA CEMENT HANDMIX (PSA), were bonded to one of 24 CAD/CAM blocks (KATANA AVENCIA BLOCK). Each cement group was divided into four subgroups: no cleaning (Ctl), ultrasonic cleaning (Uc), acid cleaning (Ac) and Uc+Ac. Micro-tensile bond strengths (µTBSs) were measured immediately and 1, 3, and 6 months after water storage. Block surfaces after each treatment were analyzed by scanning electron microscopy. Analysis of variance revealed a statistically significant effect for the parameters 'surface treatment' (p<0.001, F=40), 'resin cement' (p<0.001, F=696) and 'water aging' (p<0.001, F=71). The PV5 group exhibited higher µTBS values than the PSA group. Although cleaning after sandblasting was effective in removing residual alumina particles, it did not affect the long-term bonding durability with non-contaminated CAD/CAM resin blocks.

  6. The dynamics of acid-soluble phosphorus compounds in the course of winter and spring wheat germination under various thermic conditions. Part II. Labile phosphorus after hydrolysis of the acid-soluble fraction

    Directory of Open Access Journals (Sweden)

    A. Barbaro

    2015-06-01

    Full Text Available The changes in labile phosphorus compounds content during germination of wheat were investigated. These compounds were determined in acid-soluble germ extracts separated into fractions according to the solubility of their barium salts. Low germination temperature was found to raise the labile phosphorus content in the fraction of insoluble barium salts. If we assume that labile P of this fraction consisted mainly of adenosinedi- and triphosphates, it would seem that the rise, in the ATP and ADP level under the influence of low temperature may be essential for initiating flowering in winter varieties.

  7. Effect of mechanical disruption on the effectiveness of three reactors used for dilute acid pretreatment of corn stover Part 1: chemical and physical substrate analysis.

    Science.gov (United States)

    Wang, Wei; Chen, Xiaowen; Donohoe, Bryon S; Ciesielski, Peter N; Katahira, Rui; Kuhn, Erik M; Kafle, Kabindra; Lee, Christopher M; Park, Sunkyu; Kim, Seong H; Tucker, Melvin P; Himmel, Michael E; Johnson, David K

    2014-01-01

    There is considerable interest in the conversion of lignocellulosic biomass to liquid fuels to provide substitutes for fossil fuels. Pretreatments, conducted to reduce biomass recalcitrance, usually remove at least some of the hemicellulose and/or lignin in cell walls. The hypothesis that led to this research was that reactor type could have a profound effect on the properties of pretreated materials and impact subsequent cellulose hydrolysis. Corn stover was dilute-acid pretreated using commercially relevant reactor types (ZipperClave(®) (ZC), Steam Gun (SG) and Horizontal Screw (HS)) under the same nominal conditions. Samples produced in the SG and HS achieved much higher cellulose digestibilities (88% and 95%, respectively), compared to the ZC sample (68%). Characterization, by chemical, physical, spectroscopic and electron microscopy methods, was used to gain an understanding of the effects causing the digestibility differences. Chemical differences were small; however, particle size differences appeared significant. Sum-frequency generation vibrational spectra indicated larger inter-fibrillar spacing or randomization of cellulose microfibrils in the HS sample. Simons' staining indicated increased cellulose accessibility for the SG and HS samples. Electron microscopy showed that the SG and HS samples were more porous and fibrillated because of mechanical grinding and explosive depressurization occurring with these two reactors. These structural changes most likely permitted increased cellulose accessibility to enzymes, enhancing saccharification. Dilute-acid pretreatment of corn stover using three different reactors under the same nominal conditions gave samples with very different digestibilities, although chemical differences in the pretreated substrates were small. The results of the physical and chemical analyses of the samples indicate that the explosive depressurization and mechanical grinding with these reactors increased enzyme accessibility

  8. Effect of mechanical disruption on the effectiveness of three reactors used for dilute acid pretreatment of corn stover Part 1: chemical and physical substrate analysis

    Science.gov (United States)

    2014-01-01

    Background There is considerable interest in the conversion of lignocellulosic biomass to liquid fuels to provide substitutes for fossil fuels. Pretreatments, conducted to reduce biomass recalcitrance, usually remove at least some of the hemicellulose and/or lignin in cell walls. The hypothesis that led to this research was that reactor type could have a profound effect on the properties of pretreated materials and impact subsequent cellulose hydrolysis. Results Corn stover was dilute-acid pretreated using commercially relevant reactor types (ZipperClave® (ZC), Steam Gun (SG) and Horizontal Screw (HS)) under the same nominal conditions. Samples produced in the SG and HS achieved much higher cellulose digestibilities (88% and 95%, respectively), compared to the ZC sample (68%). Characterization, by chemical, physical, spectroscopic and electron microscopy methods, was used to gain an understanding of the effects causing the digestibility differences. Chemical differences were small; however, particle size differences appeared significant. Sum-frequency generation vibrational spectra indicated larger inter-fibrillar spacing or randomization of cellulose microfibrils in the HS sample. Simons’ staining indicated increased cellulose accessibility for the SG and HS samples. Electron microscopy showed that the SG and HS samples were more porous and fibrillated because of mechanical grinding and explosive depressurization occurring with these two reactors. These structural changes most likely permitted increased cellulose accessibility to enzymes, enhancing saccharification. Conclusions Dilute-acid pretreatment of corn stover using three different reactors under the same nominal conditions gave samples with very different digestibilities, although chemical differences in the pretreated substrates were small. The results of the physical and chemical analyses of the samples indicate that the explosive depressurization and mechanical grinding with these reactors increased

  9. Blends of olive oil and seeds oils: characterisation and olive oil quantification using fatty acids composition and chemometric tools. Part II.

    Science.gov (United States)

    Monfreda, M; Gobbi, L; Grippa, A

    2014-02-15

    A method to verify the percentage of olive oil in a blend, in compliance with the Commission Regulation EU No. 29/2012, was developed by GC-FID analysis of methyl esters of fatty acids, followed by chemometric tools (PCA, TFA, SIMCA and PLS). First of all, binary blends of twelve olive oils and one sunflower oil were studied, in order to evaluate the variability associated to the fatty acids profile of olive oils (Monfreda, Gobbi, & Grippa, 2012). In this study, binary blends of twelve olive oils with four types of seeds oils (peanut, corn, rice and grape seed oils) were evaluated. These four groups of blends were analysed and processed separately, each group consisting of 36 samples with 40%, 50% and 60% of olive oil content. Chemometric tools were also applied to the global data set (180 samples, including those analysed in the previous paper). Outstanding results were achieved, showing that the proposed method would be capable to discriminate blends with a difference in concentration of olive oil lower than 5% (a standard error of prediction of 3.97% was obtained with PLS). Therefore blends containing 45% and 55% of olive oil were also analysed with the current method and added to the data sets for chemometric assessment with supervised tools. SIMCA still provided good models; however the best performance was achieved by processing each group of binary blends (consisting of 60 samples) separately, rather than applying SIMCA to the overall data set (300 samples). On the other hand PLS did not show significant improvements. Copyright © 2013. Published by Elsevier Ltd.

  10. Return of the lysergamides. Part I: Analytical and behavioral characterization of 1-propionyl-d-lysergic acid diethylamide (1P-LSD)

    Science.gov (United States)

    Brandt, Simon D.; Kavanagh, Pierce V.; Westphal, Folker; Stratford, Alexander; Elliott, Simon P.; Hoang, Khoa; Wallach, Jason; Halberstadt, Adam L.

    2015-01-01

    1-Propionyl-d-lysergic acid diethylamide hemitartrate (1P-LSD) has become available as a ‘research chemical’ in form of blotters and powdered material. This non-controlled derivative of d-lysergic acid diethylamide (LSD) has previously not been described in the published literature despite being closely related to 1-acetyl-LSD (ALD-52), which was developed in the 1950s. This study describes the characterization of 1P-LSD in comparison with LSD using various chromatographic, mass spectrometric methods and nuclear magnetic resonance spectroscopy. An important feature common to LSD and other serotonergic hallucinogens is that they produce 5-HT2A-receptor activation and induce the head-twitch response (HTR) in rats and mice. In order to assess whether 1P-LSD displays LSD-like properties and activates the 5-HT2A receptor, male C57BL/6J mice were injected with vehicle (saline) or 1P-LSD (0.025–0.8 mg/kg, IP) and HTR assessed for 30 min using magnetometer coil recordings. It was found that 1P-LSD produced a dose-dependent increase in HTR counts, and that it had ~38% (ED50 = 349.6 nmol/kg) of the potency of LSD (ED50 = 132.8 nmol/kg). Furthermore, the HTR was abolished when 1P-LSD administration followed pre-treatment with the selective 5-HT2A receptor antagonist M100907 (0.1 mg/kg, SC), which confirms that the behavioral response is mediated by activation of the 5-HT2A receptor. These results indicate that 1P-LSD produces LSD-like effects in mice, consistent with its classification as a serotonergic hallucinogen. Nevertheless, the extent to which 1P-LSD might show psychoactive effects in humans similar to LSD remains to be investigated. PMID:26456305

  11. Identification of Diethyl 2,5-Dioxahexane Dicarboxylate and Polyethylene Carbonate as Decomposition Products of Ethylene Carbonate Based Electrolytes by Fourier Transform Infrared Spectroscopy

    KAUST Repository

    Shi, Feifei

    2014-07-10

    The formation of passive films on electrodes due to electrolyte decomposition significantly affects the reversibility of Li-ion batteries (LIBs); however, understanding of the electrolyte decomposition process is still lacking. The decomposition products of ethylene carbonate (EC)-based electrolytes on Sn and Ni electrodes are investigated in this study by Fourier transform infrared (FTIR) spectroscopy. The reference compounds, diethyl 2,5-dioxahexane dicarboxylate (DEDOHC) and polyethylene carbonate (poly-EC), were synthesized, and their chemical structures were characterized by FTIR spectroscopy and nuclear magnetic resonance (NMR). Assignment of the vibration frequencies of these compounds was assisted by quantum chemical (Hartree-Fock) calculations. The effect of Li-ion solvation on the FTIR spectra was studied by introducing the synthesized reference compounds into the electrolyte. EC decomposition products formed on Sn and Ni electrodes were identified as DEDOHC and poly-EC by matching the features of surface species formed on the electrodes with reference spectra. The results of this study demonstrate the importance of accounting for the solvation effect in FTIR analysis of the decomposition products forming on LIB electrodes. © 2014 American Chemical Society.

  12. Water-soluble and photo-stable silver(I) dicarboxylate complexes containing 1,10-phenanthroline ligands: Antimicrobial and anticancer chemotherapeutic potential, DNA interactions and antioxidant activity.

    Science.gov (United States)

    Thornton, Laura; Dixit, Vidya; Assad, Letícia O N; Ribeiro, Thales P; Queiroz, Daniela D; Kellett, Andrew; Casey, Alan; Colleran, John; Pereira, Marcos D; Rochford, Garret; McCann, Malachy; O'Shea, Denis; Dempsey, Rita; McClean, Siobhán; Kia, Agnieszka Foltyn-Arfa; Walsh, Maureen; Creaven, Bernadette; Howe, Orla; Devereux, Michael

    2016-06-01

    The complexes [Ag2(OOC-(CH2)n-COO)] (n=1-10) (1-10) were synthesised and reacted with 1,10-phenanthroline (phen) to yield derivatives formulating as [Ag2(phen)x(OOC-(CH2)y-COO)]·zH2O (x=2 or 3; y=1-10; z=1-4) (11-20) which are highly water-soluble and photo-stable in aqueous solution. The phen derivatives 11-20 exhibit chemotherapeutic potential against Candida albicans, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa and against cisplatin-sensitive breast (MCF-7) and resistant ovarian (SKOV-3) cancer cell lines. Cyclic voltammetric analysis and DNA binding and intercalation studies indicate that the mechanism of action of 11-20 is significantly different to that of their silver(I) dicarboxylate precursors and they do not induce DNA damage or ROS generation in mammalian cells. The representative complexes 9 and 19 (containing the undecanedioate ligand) were both found to significantly reduce superoxide and hydrogen peroxide induced oxidative stress in the yeast S. cerevisiae. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Studies on changes in patterns of fatty acids, sterols and tocopherols of oil during seed maturation of oil crops. Part I. Sunflower seeds

    Directory of Open Access Journals (Sweden)

    El-Shami, S. M.

    1994-08-01

    Full Text Available The variation of lipid constituents in maturing sunflower oil seeds has been investigated with the aim of determination of the proper harvesting time as well as the oil quality. Marked variations in fatty acid, sterol and tocopherol constituents of the oil were observed. Capillary gas chromatography and high performance liquid chromatography were used in the analysis which enabled the determination of major as well as minor constituents in the oil. In addition, gas chromatography coupled to mass spectrometry was used to confirm the structure of cycloartenol sterol. Postulations on the key compounds of fatty acids, sterols, and tocopherols were proposed in the frame of the main biosynthetic pathways. The proper harvesting time was found to be 118 days after plantation since the oil content was high and the constituents of the oil were balanced.

    Se ha investigado la variación de los constituyentes lipídicos en aceites de semillas de girasol en distintos estados de maduración, con el objetivo de determinar el tiempo de recolección apropiado así como la calidad del aceite. Se observaron variaciones apreciables en los ácidos grasos, esteroles y tocoferoles del aceite. La cromatografía gaseosa capilar y la cromatografía líquida de alta eficacia se usó en el análisis que permitió la determinación tanto de los componentes mayoritarios como minoritarios en el aceite. Además, se utilizó la cromatografía gaseosa acoplada a la espectrometría de masas para confirmar la estructura del esterol cicloartenol. Se han propuesto en el marco de la ruta biosintética principal postulados sobre los compuestos clave de ácidos grasos, esteroles y tocoferoles. Se encontró como tiempo de recolección apropiado el de 118 días después de la plantación, ya que el contenido de aceite fue elevado y los constituyentes fueron equilibrados.

  14. Return of the lysergamides. Part I: Analytical and behavioural characterization of 1-propionyl-d-lysergic acid diethylamide (1P-LSD).

    Science.gov (United States)

    Brandt, Simon D; Kavanagh, Pierce V; Westphal, Folker; Stratford, Alexander; Elliott, Simon P; Hoang, Khoa; Wallach, Jason; Halberstadt, Adam L

    2016-09-01

    1-Propionyl-d-lysergic acid diethylamide hemitartrate (1P-LSD) has become available as a 'research chemical' in the form of blotters and powdered material. This non-controlled derivative of d-lysergic acid diethylamide (LSD) has previously not been described in the published literature despite being closely related to 1-acetyl-LSD (ALD-52), which was developed in the 1950s. This study describes the characterization of 1P-LSD in comparison with LSD using various chromatographic and mass spectrometric methods, infrared and nuclear magnetic resonance spectroscopy. An important feature common to LSD and other serotonergic hallucinogens is that they produce 5-HT2A -receptor activation and induce the head-twitch response (HTR) in rats and mice. In order to assess whether 1P-LSD displays LSD-like properties and activates the 5-HT2A receptor, male C57BL/6 J mice were injected with vehicle (saline) or 1P-LSD (0.025-0.8 mg/kg, IP) and HTR assessed for 30 min using magnetometer coil recordings. It was found that 1P-LSD produced a dose-dependent increase in HTR counts, and that it had ~38% (ED50  = 349.6 nmol/kg) of the potency of LSD (ED50  = 132.8 nmol/kg). Furthermore, HTR was abolished when 1P-LSD administration followed pretreatment with the selective 5-HT2A receptor antagonist M100907 (0.1 mg/kg, SC), which was consistent with the concept that the behavioural response was mediated by activation of the 5-HT2A receptor. These results indicate that 1P-LSD produces LSD-like effects in mice, consistent with its classification as a serotonergic hallucinogen. Nevertheless, the extent to which 1P-LSD might show psychoactive effects in humans similar to LSD remains to be investigated. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Sepiolite functionalized with N-[3-(trimethoxysilylpropyl]-ethylenediamine triacetic acid trisodium salt. Part II: Sorption of Ni2+ from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Lazarević Slavica S.

    2016-01-01

    Full Text Available sorption of Ni2+ on the sepiolite functionalized by covalent grafting of N-[3-(trimethoxysilylpropyl]ethylenediamine triacetic acid trisodium salt, MSEAS, was studied in batch experiments as a function of the initial metal concentration, the equilibration time, pH value, and temperature. The modification of sepiolite resulted in an enhanced Ni2+ retention with a capacity of 0.261 mmol/g at 298 K. The retention of Ni2+ ions occurred dominantly by specific sorption and exchange of Mg2+ ions from the sepiolite structure. The sorption process followed pseudo-second-order kinetics. The sorption equilibrium results were best described by the non-linear form of the Langmuir Sorption Equation. The values of the thermodynamic parameters (enthalpy, free energy and entropy were calculated from temperature dependent sorption isotherms and these values showed that the sorption of Ni2+ onto modified sepiolite was endothermic. [Projekat Ministarstva nauke Republike Srbije, br. III 45019 i FP7 NANOTECH FTM No. 245916

  16. Evaluation of acid-base disorders in dogs and cats presenting to an emergency room. Part 2: comparison of anion gap, strong ion gap, and semiquantitative analysis.

    Science.gov (United States)

    Hopper, Kate; Epstein, Steven E; Kass, Philip H; Mellema, Matthew S

    2014-01-01

    To compare the diagnostic performance of the anion gap (AG) with 2 physicochemical approaches to identify unmeasured anions. Prospective cohort study. University teaching hospital. Eighty-four dogs and 14 cats presenting to a university teaching hospital emergency room. All dogs and cats in which venous blood samples for acid-base, lactate, and serum biochemical analysis were all collected within 60 minutes of each other, over a 5-month enrollment period. Unmeasured anions were quantified using each of three approaches: the anion gap (AG), strong ion gap (SIG), and a semiquantitative approach (XA). An increased AG metabolic acidosis was evident in 34/98 of cases. The Stewart approach identified an increased SIG acidosis in 49/98 of cases. There was a strong correlation between SIG and AG (r = 0.89; P anions in 68/98 of cases. There was a moderate correlation between AG and XA (r = 0.68; P anions occurred commonly in this sample of small animal emergency room patients and physiochemical approaches identified more animals with unmeasured anions than the traditional AG calculation. Further studies are needed to determine if the results of the physicochemical approach improves clinical management and warrants the associated increases in cost and complexity. © Veterinary Emergency and Critical Care Society 2014.

  17. Metal chelates of 2-hydroxy-4-methylthiobutanoic acid in animal feeding. Part 2: Further characterizations, in vitro and in vivo investigations.

    Science.gov (United States)

    Predieri, Giovanni; Elviri, Lisa; Tegoni, Matteo; Zagnoni, Ingrid; Cinti, Enrico; Biagi, Giacomo; Ferruzza, Simonetta; Leonardi, Giuliano

    2005-02-01

    The alpha-hydroxyacid 2-hydroxy-4-methylthiobutanoic acid (the so-called methionine hydroxy-analogue, MHA), largely used in animal nutrition as a source of methionine, forms stable metal chelates with divalent metals of formula [{CH(3)SCH(2) CH(2)CH(OH)COO}(2)M].nH(2)O. Protonation and iron(III) and copper(II) complex formation constants have been determined by potentiometry at 25 degrees C. Distribution diagrams show that no free Fe(3+) cations are present in solution at pH>2.5. ESI-MS (Electron-Spray Ionization Mass Spectrometry) investigations carried out both on iron and zinc complexes in solution have evidenced various species with different MHA/metal ratios. In vivo trials were carried out with rats. After receiving a zinc-deficient diet for 3 weeks, animals were fed the same diet added with zinc sulfate or zinc/MHA chelate; the zinc content of faeces was higher (+45%; P<0.05) in sulfate fed rats, whereas zinc retention was higher (+61%; P<0.05) in the Zn/MHA diet. Experiments in vitro with human intestinal Caco-2 cells indicated that the MHA/Fe chelate was taken up by the cells without any apparent toxic effect. The iron uptake was higher than that of iron nitrilotriacetate (Fe(3+)NTA), an effective chelate for delivering iron to milk diets. In conclusion, these data indicate that the use of MHA chelates could be a valuable tool to increase bioavailability of trace minerals and reduce the environmental impact of animal manure.

  18. Origin of acid orthoderived and paraderived geologic formations of the central part of the province of Limousin (France). A possible source for uraniferous leucogranite

    International Nuclear Information System (INIS)

    Bourguignon, A.

    1988-01-01

    Important metamorphic formations of the central part of the province of Limousin are studied by chemical investigations for characterization of their primary signature. Four large orthoderived formations are compared: Dronne, Meuzac, and Thaurion arcs and leptynite formations. The typology of the parent magmatism of orthogneiss and leptynite allows to find leack most of plutonic associations known in the Variscan chain (subalkaline, calcoalkaline, aluminous). Interpretation of primary geochemical fractionation in rocks from the Dronne are suggests cogenetism of the whole facies following a fractionated crystallization process. Moreover rocks from the Dronne arc have a peraluminous character with high U and Th content related to subalkaline magmatism which make of them a potential source of uraniferous peraluminous leucogranites. Paraderived formations are represented by 3 mica schist formations and 2 gneiss formations. Each unit is individualized by geochemical study of mica schist. Gneiss formation are chemically distinct. These differences confirm that they belong to distinct lithologic units. Trace elements are used to precise the paleogeotectonic context of original sediment deposition [fr

  19. Determination of free acid in highly concentrated organic and aqueous solutions of plutonium (IV) and uranium (VI) nitrate

    International Nuclear Information System (INIS)

    Wagner, J.F.; Lacour, J.L.

    1989-01-01

    Free acidity is an important parameter in the nuclear reprocessing control. The accuracy on the determination of free acidity is not really required in the nuclear reprocessing control itself but is necessary for certain types of analysis such as spectrophotometry (Pu (VI), Am (III),...), density determinations. A new titripotentiometric method for free acidity determination in concentrated U(VI) and Pu(IV) solutions is presented. This method is based on the complexing properties of dipicolinic acid (pyridine 2.6 dicarboxylic acid) and medium effect with H 2 O/DMSO mixture. This method can be used either in organic or aqueous phases with ratio /H + I/ metal ≥ 5.10 -2 and a relative standard deviation of 1%

  20. Metabolic engineering strategies to bio-adipic acid production.

    Science.gov (United States)

    Kruyer, Nicholas S; Peralta-Yahya, Pamela

    2017-06-01

    Adipic acid is the most industrially important dicarboxylic acid as it is a key monomer in the synthesis of nylon. Today, adipic acid is obtained via a chemical process that relies on petrochemical precursors and releases large quantities of greenhouse gases. In the last two years, significant progress has been made in engineering microbes for the production of adipic acid and its immediate precursors, muconic acid and glucaric acid. Not only have the microbial substrates expanded beyond glucose and glycerol to include lignin monomers and hemicellulose components, but the number of microbial chassis now goes further than Escherichia coli and Saccharomyces cerevisiae to include microbes proficient in aromatic degradation, cellulose secretion and degradation of multiple carbon sources. Here, we review the metabolic engineering and nascent protein engineering strategies undertaken in each of these chassis to convert different feedstocks to adipic, muconic and glucaric acid. We also highlight near term prospects and challenges for each of the metabolic routes discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A prodrug approach to enhance azelaic acid percutaneous availability.

    Science.gov (United States)

    Al-Marabeh, Sara; Khalil, Enam; Khanfar, Mohammad; Al-Bakri, Amal G; Alzweiri, Muhammed

    2017-06-01

    Azelaic acid is a dicarboxylic acid compound used in treatment of acne vulgaris. However, high concentration (ca 20%) is needed to guarantee the drug availability in the skin. The latter increases the incidence of side effects such as local irritation. The prodrug strategy to enhance azelaic acid diffusion through skin was not reported before. Thus, a lipophilic prodrug of azelaic acid (diethyl azelate [DEA]) was synthesized and investigated to improve percutaneous availability of azelaic acid, with a subsequent full physical, chemical, and biological characterization. Expectedly, DEA exhibited a significant increase in diffusion compared to azelaic acid through silicone membrane. In contrast, the diffusion results through human stratum corneum (SC) displayed weaker permeation for DEA with expected retention in the SC. Therefore, a desorption study of DEA from SC was conducted to examine the reservoir behavior in SC. Results showed an evidence of sustained release behavior of DEA from SC. Consequently, enhancement of keratolytic effect is expected due to azelaic acid produced from enzymatic conversion of DEA released from SC.

  2. Anti-atherosclerotic actions of azelaic acid, an end product of linoleic acid peroxidation, in mice.

    Science.gov (United States)

    Litvinov, Dmitry; Selvarajan, Krithika; Garelnabi, Mahdi; Brophy, Larissa; Parthasarathy, Sampath

    2010-04-01

    Atherosclerosis is a chronic inflammatory disease associated with the accumulation of oxidized lipids in arterial lesions. Recently we studied the degradation of peroxidized linoleic acid and suggested that oxidation is an essential process that results in the generation of terminal products, namely mono- and dicarboxylic acids that may lack the pro-atherogenic effects of peroxidized lipids. In continuation of that study, we tested the effects of azelaic acid (AzA), one of the end products of linoleic acid peroxidation, on the development of atherosclerosis using low density lipoprotein receptor knockout (LDLr(-/-)) mice. LDLr(-/-) mice were fed with a high fat and high cholesterol Western diet (WD group). Another group of animals were fed the same diet with AzA supplementation (WD+AzA group). After 4 months of feeding, mice were sacrificed and atherosclerotic lesions were measured. The results showed that the average lesion area in WD+AzA group was 38% (pacids could be an important step in the body's defense against oxidative damage. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  3. Polynuclear manganese complexes with the dicarboxylate ligand m-phenylenedipropionate: a hexanuclear mixed-valence (3Mn(III), 3Mn(IV)) complex.

    Science.gov (United States)

    Cañada-Vilalta, Cristina; Streib, William E; Huffman, John C; O'Brien, Ted A; Davidson, Ernest R; Christou, George

    2004-01-12

    The dicarboxylate group m-phenylenedipropionate (mpdp(2)(-)) has been used for the synthesis of four new Mn compounds of different nuclearities and oxidation states: [Mn(2)O(mpdp)(bpy)(2)(H(2)O)(MeCN)](ClO(4))(2) (3), [Mn(3)O(mpdp)(3)(py)(3)](ClO(4)) (4), [Mn(3)O(mpdp)(3)(py)(3)] (5), and [Mn(6)O(7)(mpdp)(3)(bpy)(3)](ClO(4)) (6). Compound 3 (2Mn(III)) contains a [Mn(2)(micro-O)](4+) core, whereas 5 (Mn(II), 2Mn(III)) and 4 (3Mn(III)) contain the [Mn(3)(micro(3)-O)](6+,7+) core, respectively. In all three compounds, the mpdp(2)(-) ligand is flexible enough to adopt the sites occupied by two monocarboxylates in structurally related compounds, without noticeable distortion of the cores. Variable-temperature magnetic susceptibility studies establish that 3 and 5 have ground-state spin values of S = 0 and S = 1/2, respectively. Compound 6 is a highly unusual 3Mn(III), 3Mn(IV) trapped-valent compound, and it is also a new structural type, with six Mn atoms disposed in a distorted trigonal antiprismatic topology. Its electronic structure has been explored by variable-temperature measurements of its dc magnetic susceptibility, magnetization vs field response, and EPR spectrum. The magnetic data indicate that it possesses an S = 3/2 ground state with an axial zero-field splitting parameter of D = -0.79 cm(-)(1), and this conclusion is supported by the EPR data. The combined results demonstrate the ligating flexibility of the mpdp(2)(-) ligand and its usefulness in the synthesis of a variety of Mn(x) species.

  4. Poly(ethylene glycol) dicarboxylate/poly(ethylene oxide) hydrogel film co-crosslinked by electron beam irradiation as an anti-adhesion barrier

    Energy Technology Data Exchange (ETDEWEB)

    Haryanto,; Singh, Deepti; Han, Sung Soo [Department of Advanced Organic Materials Engineering, Yeungnam University, Gyongbuk 712-749 (Korea, Republic of); Son, Jun Hyuk [Department of Ophthalmology, College of Medicine, Yeungnam University, Gyongbuk 712-749 (Korea, Republic of); Kim, Seong Cheol, E-mail: sckim07@ynu.ac.kr [Department of Advanced Organic Materials Engineering, Yeungnam University, Gyongbuk 712-749 (Korea, Republic of)

    2015-01-01

    The cross-linked poly(ethylene glycol) dicarboxylate (PEGDC)/poly(ethylene oxide) (PEO) and poly(ethylene glycol) dimethacrylate (PEGDMA)/(PEO) hydrogels were developed for possible biomedical applications such as an anti-adhesion barrier. Various contents of PEGDC/PEO film were irradiated using an electron beam with various beam intensities in order to obtain various degrees of crosslinked hydrogels. The optimum dose (300 kGy) and total crosslinker content of 10% were used to prepare crosslinked hydrogel films with three different compositions (10% PEGDC, 10% PEGDMA, 5% PEGDC–5% PEGDMA). Among them, 10% PEGDC hydrogel film exhibited the highest elongation at break (69.33 ± 6.87%) with high mechanical strength. 10% PEGDC hydrogel film showed the lowest hemolysis activity (6.03 ± 0.01%) and the highest tissue adherence (75.67 ± 1.15 cN). The result also indicated that the carboxyl groups in PEGDC affect the tissue adherence of hydrogel films via H-bonding interactions. In animal studies, 10% PEGDC anti-adhesion hydrogel film degraded within 3 weeks and demonstrated better anti-adhesive effect compared to Guardix-SG®. - Highlights: • The crosslinked PEGDC/PEO hydrogel was developed by e-beam irradiation. • 10% PEGDC hydrogel film showed the highest elongation at break and tissue adhesion. • The COOH group enhanced the tissue adherence of hydrogel films on the intestine. • 10% PEGDC hydrogel film demonstrated a good anti-adhesive effect in animal study. • All of the hydrogel films with 10% PEGDC degraded in vivo within three weeks.

  5. Poly(ethylene glycol) dicarboxylate/poly(ethylene oxide) hydrogel film co-crosslinked by electron beam irradiation as an anti-adhesion barrier

    International Nuclear Information System (INIS)

    Haryanto,; Singh, Deepti; Han, Sung Soo; Son, Jun Hyuk; Kim, Seong Cheol

    2015-01-01

    The cross-linked poly(ethylene glycol) dicarboxylate (PEGDC)/poly(ethylene oxide) (PEO) and poly(ethylene glycol) dimethacrylate (PEGDMA)/(PEO) hydrogels were developed for possible biomedical applications such as an anti-adhesion barrier. Various contents of PEGDC/PEO film were irradiated using an electron beam with various beam intensities in order to obtain various degrees of crosslinked hydrogels. The optimum dose (300 kGy) and total crosslinker content of 10% were used to prepare crosslinked hydrogel films with three different compositions (10% PEGDC, 10% PEGDMA, 5% PEGDC–5% PEGDMA). Among them, 10% PEGDC hydrogel film exhibited the highest elongation at break (69.33 ± 6.87%) with high mechanical strength. 10% PEGDC hydrogel film showed the lowest hemolysis activity (6.03 ± 0.01%) and the highest tissue adherence (75.67 ± 1.15 cN). The result also indicated that the carboxyl groups in PEGDC affect the tissue adherence of hydrogel films via H-bonding interactions. In animal studies, 10% PEGDC anti-adhesion hydrogel film degraded within 3 weeks and demonstrated better anti-adhesive effect compared to Guardix-SG®. - Highlights: • The crosslinked PEGDC/PEO hydrogel was developed by e-beam irradiation. • 10% PEGDC hydrogel film showed the highest elongation at break and tissue adhesion. • The COOH group enhanced the tissue adherence of hydrogel films on the intestine. • 10% PEGDC hydrogel film demonstrated a good anti-adhesive effect in animal study. • All of the hydrogel films with 10% PEGDC degraded in vivo within three weeks

  6. Impregnation of 12-tungstophosphoric acid on silica - part II: effect of different solvents on the impregnation and catalytic activity in methyl esterification of stearic acid; Impregnacao do acido 12-tungstofosforico em silica - parte II: efeito de diferentes solventes na impregnacao e atividade catalitica na esterificacao metilica de acido estearico

    Energy Technology Data Exchange (ETDEWEB)

    Scroccaro, Karine Isabel; Yamamoto, Carlos I., E-mail: karineisabel@yahoo.com.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Centro Politecnico. Departamento de Engenharia Quimica; Tanobe, Valcineide O. de A.; Oliveira, Alan Antonio de [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Departamento de Engenharia e Tecnologia Florestal; Wypych, Fernando [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Departamento de Quimica

    2014-04-15

    Materials obtained by the immobilization of 12-tungstophosphoric acid (PTA) on silica using the method of impregnation with excess solution in distinct solvents (aqueous HCl, methanol:H{sub 2}O, and acetonitrile) were evaluated for use as catalysts in the methyl esterification of stearic acid. Optimum conditions were established for the impregnation of 0.5 g (w/w) of PTA on amorphous silica, under stirring at 150 rpm for 24 h, using 20 mL of 0.1 mol L{sup -1} HCl as the solvent. After calcination at 200 deg C, high conversions were obtained under mild reaction conditions, resulting in high turnover numbers. The catalyst was evaluated in ten catalytic cycles of use, where the activity was reduced only slightly, attesting its stability and the possibility to apply it to industrial production of methylesters. (author)

  7. Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect

    Directory of Open Access Journals (Sweden)

    B. Zobrist

    2006-01-01

    Full Text Available Heterogeneous ice freezing points of aqueous solutions containing various immersed solid dicarboxylic acids (oxalic, adipic, succinic, phthalic and fumaric have been measured with a differential scanning calorimeter. The results show that only the dihydrate of oxalic acid (OAD acts as a heterogeneous ice nucleus, with an increase in freezing temperature between 2 and 5 K depending on solution composition. In several field campaigns, oxalic acid enriched particles have been detected in the upper troposphere with single particle aerosol mass spectrometry. Simulations with a microphysical box model indicate that the presence of OAD may reduce the ice particle number density in cirrus clouds by up to ~50% when compared to exclusively homogeneous cirrus formation without OAD. Using the ECHAM4 climate model we estimate the global net radiative effect caused by this heterogeneous freezing to result in a cooling as high as −0.3 Wm−2.

  8. Design of Pore Size and Functionality in Pillar-Layered Zn-Triazolate-Dicarboxylate Frameworks and Their High CO2/CH4 and C2 Hydrocarbons/CH4 Selectivity.

    Science.gov (United States)

    Zhai, Quan-Guo; Bai, Ni; Li, Shu'ni; Bu, Xianhui; Feng, Pingyun

    2015-10-19

    In the design of new materials, those with rare and exceptional compositional and structural features are often highly valued and sought after. On the other hand, materials with common and more accessible modes can often provide richer and unsurpassed compositional and structural variety that makes them a more suitable platform for systematically probing the composition-structure-property correlation. We focus here on one such class of materials, pillar-layered metal-organic frameworks (MOFs), because different pore size and shape as well as functionality can be controlled and adjusted by using pillars with different geometrical and chemical features. Our approach takes advantage of the readily accessible layered Zn-1,2,4-triazolate motif and diverse dicarboxylate ligands with variable length and functional groups, to prepare seven Zn-triazolate-dicarboxylate pillar-layered MOFs. Six different gases (N2, H2, CO2, C2H2, C2H4, and CH4) were used to systematically examine the dependency of gas sorption properties on chemical and geometrical properties of those MOFs as well as their potential applications in gas storage and separation. All of these pillar-layered MOFs show not only remarkable CO2 uptake capacity, but also high CO2 over CH4 and C2 hydrocarbons over CH4 selectivity. An interesting observation is that the BDC ligand (BDC = benzenedicarboxylate) led to a material with the CO2 uptake outperforming all other metal-triazolate-dicarboxylate MOFs, even though most of them are decorated with amino groups, generally believed to be a key factor for high CO2 uptake. Overall, the data show that the exploration of the synergistic effect resulting from combined tuning of functional groups and pore size may be a promising strategy to develop materials with the optimum integration of geometrical and chemical factors for the highest possible gas adsorption capacity and separation performance.

  9. 2,1,3-benzothiadiazole-5,6-dicarboxylic imide - A versatile building block for additive- and annealing-free processing of organic solar cells with effi ciencies exceeding 8%

    KAUST Repository

    Nielsen, Christian Bergenstof

    2014-12-15

    A new photoactive polymer comprising benzo[1,2-b:3,4-b′:5,6-d′]trithiophene and 2,1,3-benzothiadiazole-5,6-dicarboxylic imide is reported. The synthetic design allows for alkyl chains to be introduced on both electron-rich and electron-deficient components, which in turn allows for rapid optimization of the alkyl chain substitution pattern. Consequently, the optimized polymer shows a maximum efficiency of 8.3% in organic photovoltaic devices processed in commercially viable fashion without solvent additives, annealing, or device engineering.

  10. Deliquescence of malonic, succinic, glutaric, and adipic acid particles

    Science.gov (United States)

    Parsons, Matthew T.; Mak, Jackson; Lipetz, Sarah R.; Bertram, Allan K.

    2004-03-01

    In order to understand and predict the role of organic particles in the atmosphere their deliquescence behavior must be understood. Using an optical microscope coupled to a flow cell, we investigated the deliquescence of malonic, succinic, glutaric, and adipic acid particles with sizes ranging from 2 to 40 μm. Deliquescence relative humidities were determined for temperatures ranging from 293 to 243 K. Over this temperature range both succinic acid and adipic acid deliquesced at approximately 100% relative humidity, whereas malonic acid and glutaric acid deliquesced at significantly lower relative humidities. These results are generally in good agreement with previous studies and are within 3% of calculations based on the UNIQUAC (universal quasi-chemical) Functional Group Activity Coefficients (UNIFAC) model and recently published interaction parameters. Our studies also include measurements at temperatures below the eutectic temperatures. At these temperatures, ice did not nucleate; rather the particles underwent deliquescence to form metastable solution droplets. This indicates that solid dicarboxylic acids are not good ice nuclei above 243 K and hence will probably not play a role in ice cloud formation at these temperatures.

  11. Azelaic acid 15% gel: in the treatment of papulopustular rosacea.

    Science.gov (United States)

    Frampton, James E; Wagstaff, Antona J

    2004-01-01

    Azelaic acid is a naturally occurring, straight-chain dicarboxylic acid which is effective in the treatment of rosacea, presumably on account of its anti-inflammatory properties. In randomized, double-blind, multicenter studies involving patients with moderate papulopustular facial rosacea, twice-daily topical application of azelaic acid 15% gel to the face was significantly more effective than twice-daily administration of either its vehicle (two studies) or metronidazole 0.75% gel (one study) in reducing inflammatory lesion counts and erythema severity. However, neither active treatment had a clinically discernable effect on telangiectasia. In all three studies, azelaic acid 15% gel recipients experienced continuous decreases in lesion counts and erythema throughout the 12- to 15-week treatment periods. However, the effects of metronidazole 0.75% gel plateauxed after 8 weeks. In other efficacy assessments in these studies, azelaic acid 15% gel was superior to its vehicle and metronidazole 0.75% gel in both the investigators' global assessment of rosacea and the investigators' end-of-study evaluation of overall improvement, and superior to its vehicle in the patients' end-of-study evaluation of overall improvement. The most frequent treatment-related cutaneous adverse events during administration of azelaic acid 15% gel include burning/stinging/tingling and pruritus (itching); however, these events are predominantly transient in nature and mild-to-moderate in intensity.

  12. Kinetics of Maleic Acid and Aluminum Chloride Catalyzed Dehydration and Degradation of Glucose

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ximing; Hewetson, Barron B.; Mosier, Nathan S.

    2015-04-16

    We report the positive effect of maleic acid, a dicarboxylic acid, on the selectivity of hexose dehydration to 5-hydroxymethyfurfural (HMF) and subsequent hydrolysis to levulinic and formic acids. We also describe the kinetic analysis of a Lewis acid (AlCl3) alone and in combination with HCl or maleic acid to catalyze the isomerization of glucose to fructose, dehydration of fructose to HMF, hydration of HMF to levulinic and formic acids, and degradation of these compounds to humins. The results show that AlCl3 significantly enhances the rate of glucose conversion to HMF and levulinic acid in the presence of both maleic acid and HCl. In addition, the degradation of HMF to humins, rather than levulinic and formic acids, is reduced by 50% in the presence of maleic acid and AlCl3 compared to HCl combined with AlCl3. The results suggest different reaction mechanisms for the dehydration of glucose and rehydration of HMF between maleic acid and HCl.

  13. Electrocatalytic properties of three new POMs-based inorganic–organic frameworks with flexible zwitterionic dicarboxylate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yanli; Li, Ling; Mu, Bao; Li, Changxia; Huang, Rudan, E-mail: huangrd@bit.edu.cn

    2017-05-15

    Three POMs–based inorganic–organic frameworks, namely, [Cu{sub 2}(L){sub 2}(SiW{sub 12}O{sub 40})(H{sub 2}O){sub 2}]·6H{sub 2}O (1), [Co{sub 2}(L){sub 2}(SiW{sub 12}O{sub 40})(H{sub 2}O){sub 8}]·8H{sub 2}O (2) and [Ni{sub 2}(L){sub 2}(SiW{sub 12}O{sub 40})(H{sub 2}O){sub 8}]·6H{sub 2}O (3), (L=1,1′-(1,4-phenylene-bis(methylene))-bis(pyridine-3-carboxylic acid)), have been synthesized and characterized by elemental analyses, IR, XRPD, TG, and single crystal X-ray diffraction. Compound 1 contains 1D double chains decorated by (Cu{sub 2}(L){sub 4}(H{sub 2}O){sub 2}) units and the 1D chains and POMs are stacked to yield 2D frameworks. Compound 2 displays a 2D network constructed from 1D zigzag chains and POMs arranged in ABAB mode. Compound 3 consists of big square girds and the POMs are dispersed in the middle of the two adjacent girds, forming 2D networks. Compounds 1–3 all show structural integrity in aqueous solutions at different pH values and in common organic solvents. Additionally, the fluorescence and electrochemical properties of compounds 1–3 are also investigated. Compounds 1–3 exhibit good electrocatalytic activities for the reduction of NaNO{sub 2} and H{sub 2}O{sub 2}. - Highlights: • Compound 1–3 all contain different 1D chains. The noncovalent interaction of metal–organic moieties from compounds 1–3 and POMs to construct three new host–guest supramolecular compounds. • Compounds 1–3 show good electrocatalytic activities towards the reduction of NaNO{sub 2} and H{sub 2}O{sub 2}. • Compounds 1–3 all show structural integrity in aqueous solutions at different pH values and in common organic solvents. • Compounds 1–3 may be promising luminescent materials due to their luminescent properties.

  14. Complexation of UVI with 1-hydroxyethane-1,1-diphosphonic acid in acidic to basic solutions.

    Science.gov (United States)

    Reed, Wendy A; Rao, Linfeng; Zanonato, PierLuigi; Garnov, Alexander Yu; Powell, Brian A; Nash, Kenneth L

    2007-04-02

    Complexation of UVI with 1-hydroxyethane-1,1-diphosphonic acid (HEDPA) in acidic to basic solutions has been studied with multiple techniques. A number of 1:1 (UO2H3L), 1:2 (UO2HjL2 where j = +4, +3, +2, +1, 0, and -1), and 2:2 [(UO2)2HjL2 where j = +1, 0, and -1] complexes form, but the 1:2 complexes are the major species in a wide pH range. Thermodynamic parameters (formation constants and enthalpy and entropy of complexation) were determined by potentiometry and calorimetry. Data indicate that the complexation of UVI with HEDPA is exothermic, favored by the enthalpy of complexation. This is in contrast to the complexation of UVI with dicarboxylic acids in which the enthalpy term usually is unfavorable. Results from electrospray ionization mass spectrometry and 31P NMR have confirmed the presence of 1:1, 1:2, and 2:2 UVIHEDPA complexes.

  15. Acid Rain

    Science.gov (United States)

    Bricker, Owen P.; Rice, Karen C.; Dietrich, W.E.; Sposito, Garrison

    1997-01-01

    Acid deposition, or acid rain as it is more commonly referred to, has become a widely publicized environmental issue in the U.S. over the past decade. The term usually conjures up images of fish kills, dying forests, "dead" lakes, and damage to monuments and other historic artifacts. The primary cause of acid deposition is emission of S02 and NOx to the atmosphere during the combustion of fossil fuels. Oxidation of these compounds in the atmosphere forms strong acids - H2SO4 and HNO3 - which are returned to the Earth in rain, snow, fog, cloud water, and as dry deposition.Although acid deposition has only recently been recognized as an environmental problem in the U.S., it is not a new phenomenon (Cogbill & Likens 1974). As early as the middle of the 17th century in England, the deleterious effects of industrial emissions on plants, animals, and humans, and the atmospheric transport of pollutants between England and France had become issues of concern (Evelyn 1661, Graunt 1662). It is interesting that well over three hundred years ago in England, recommendations were made to move industry outside of towns and build higher chimneys to spread the pollution into "distant parts." Increasing the height of smokestacks has helped alleviate local problems, but has exacerbated others. In the U.S. the height of the tallest smokestack has more than doubled, and the average height of smokestacks has tripled since the 1950s (Patrick et al 1981). This trend occurred in most industrialized nations during the 20th century and has had the effect of transforming acid rain from a local urban problem into a problem of global scale.

  16. Small Bowel Review - Part I

    Directory of Open Access Journals (Sweden)

    ABR Thomson

    1997-01-01

    Full Text Available Significant advances have been made in the study of the small bowel. Part I of this two-part review of the small bowel examines carbohydrates, including brush border membrane hydrolysis and sugar transport; amino acids, dipeptides, proteins and food allergy, with a focus on glutamine, peptides and macromolecules, and nucleosides, nucleotides and polyamines; salt and water absorption, and diarrhea, including antidiarrheal therapy and oral rehydration treatment; lipids (digestion and absorption, fatty acid binding proteins, intracellular metabolism, lipoproteins and bile acids; and metals (eg, iron and vitamins.

  17. Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chao; Cao, Yujin; Zou, Huibin; Xian, Mo [Chinese Academy of Sciences, Qingdao (China). Key Lab. of Biofuels

    2011-02-15

    Confronted with the gradual and inescapable exhaustion of the earth's fossil energy resources, the bio-based process to produce platform chemicals from renewable carbohydrates is attracting growing interest. Escherichia coli has been chosen as a workhouse for the production of many valuable chemicals due to its clear genetic background, convenient to be genetically modified and good growth properties with low nutrient requirements. Rational strain development of E. coli achieved by metabolic engineering strategies has provided new processes for efficiently biotechnological production of various high-value chemical building blocks. Compared to previous reviews, this review focuses on recent advances in metabolic engineering of the industrial model bacteria E. coli that lead to efficient recombinant biocatalysts for the production of high-value organic acids like succinic acid, lactic acid, 3-hydroxypropanoic acid and glucaric acid as well as alcohols like 1,3-propanediol, xylitol, mannitol, and glycerol with the discussion of the future research in this area. Besides, this review also discusses several platform chemicals, including fumaric acid, aspartic acid, glutamic acid, sorbitol, itaconic acid, and 2,5-furan dicarboxylic acid, which have not been produced by E. coli until now. (orig.)

  18. Low-Temperature Photoelectron Spectroscopy of Aliphatic Dicarboxylate Monoanions, HO2C(CH2)nCO2-(n=1-10): Hydrogen Bond Induced Cyclization and Strain Energies

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Hin-koon; Wang, Xue B.; Lau, Kai Chung; Wang, Lai S.

    2006-06-29

    Photoelectron spectra of singly-charged dicarboxylate anions HO2C(CH2)nCO2 - (n = 1 – 10) are obtained at two different temperatures (300 and 70 K) at 193 nm. The electron binding energies of these species are observed to be much higher than the singly-charged monocarboxylate anions, suggesting the singly-charged dicarboxylate anions are cyclic due to strong intramolecular hydrogen bonding between the terminal –CO2H and –CO2 - groups. The measured electron binding energies are observed to depend on the chain length, reflecting the different –CO2H…-O2C– hydrogen bonding strength as a result of strain in the cyclic conformation. A minimum binding energy is found at n = 5, indicating that its intramolecular hydrogen bond is the weakest. At 70 K, all spectra are blue-shifted relative to the room temperature spectra with the maximum binding energy shift occurring at n = 5. These observations suggest that the cyclic conformation of HO2C(CH2)5CO2 - (a ten-membered ring) is the most strained among the ten anions. The present study shows that the –CO2H…-O2C– hydrogen bonding strength is different among the ten anions and it is very sensitive to the strain in the cyclic conformations.

  19. Curcumin improves alcoholic fatty liver by inhibiting fatty acid biosynthesis.

    Science.gov (United States)

    Guo, Chang; Ma, Jingfan; Zhong, Qionghong; Zhao, Mengyuan; Hu, Tianxing; Chen, Tong; Qiu, Longxin; Wen, Longping

    2017-08-01

    Alcoholic fatty liver is a threat to human health. It has been long known that abstinence from alcohol is the most effective therapy, other effective therapies are not available for the treatment in humans. Curcumin has a great potential for anti-oxidation and anti-inflammation, but the effect on metabolic reconstruction remains little known. Here we performed metabolomic analysis by gas chromatography/mass spectrometry and explored ethanol pathogenic insight as well as curcumin action pattern. We identified seventy-one metabolites in mouse liver. Carbohydrates and lipids were characteristic categories. Pathway analysis results revealed that ethanol-induced pathways including biosynthesis of unsaturated fatty acids, fatty acid biosynthesis and pentose and glucuronate interconversions were suppressed by curcumin. Additionally, ethanol enhanced galactose metabolism and pentose phosphate pathway. Glyoxylate and dicarboxylate metabolism and pyruvate metabolism were inhibited in mice fed ethanol diet plus curcumin. Stearic acid, oleic acid and linoleic acid were disease biomarkers and therapical biomarkers. These results reflect the landscape of hepatic metabolism regulation. Our findings illustrate ethanol pathological pathway and metabolic mechanism of curcumin therapy. Copyright © 2017. Published by Elsevier Inc.

  20. Motorcycle Parts

    Science.gov (United States)

    1993-01-01

    An article in NASA Tech Briefs describing a vacuum bagging process for forming composite parts helped a small Oklahoma Company to improve its manufacturing process. President of Performance Extremes, Larry Ortega, and his partners make motorcycle parts from carbon/epoxy to reduce weight. Using vacuum bags, parts have a better surface and fewer voids inside. When heat used in the vacuum bag process caused deformation upon cooling, a solution found in another tech brief solved the problem. A metal plate inside the vacuum bag made for more even heat transfer. A third article described a simple procedure for repairing loose connector pins, which the company has also utilized.

  1. Cetuximab in combination with irinotecan/5-fluorouracil/folinic acid (FOLFIRI in the initial treatment of metastatic colorectal cancer: a multicentre two-part phase I/II study

    Directory of Open Access Journals (Sweden)

    Cals Laurent

    2009-04-01

    Full Text Available Abstract Background This study was designed to investigate the efficacy and safety of the epidermal growth factor receptor (EGFR inhibitor cetuximab combined with irinotecan, folinic acid (FA and two different doses of infusional 5-fluorouracil (5-FU in the first-line treatment of EGFR-detectable metastatic colorectal cancer. Methods The 5-FU dose was selected on the basis of dose-limiting toxicities (DLTs during part I of the study. Patients received cetuximab (400 mg/m2 initial dose and 250 mg/m2/week thereafter and every 2 weeks irinotecan (180 mg/m2, FA (400 mg/m2 and 5-FU (either low dose [LD], 300 mg/m2 bolus plus 2,000 mg/m2 46-hour infusion, n = 7; or, high-dose [HD], 400 mg/m2 bolus plus 2,400 mg/m2; n = 45. Results Only two DLTs occurred in the HD group, and HD 5-FU was selected for use in part II. Apart from rash, commonly observed grade 3/4 adverse events such as leucopenia, diarrhoea, vomiting and asthenia occurred within the expected range for FOLFIRI. Among 52 patients, the overall response rate was 48%. Median progression-free survival (PFS was 8.6 months (counting all reported progressions and the median overall survival was 22.4 months. Treatment facilitated the resection of initially unresectable metastases in fourteen patients (27%: of these, 10 patients (71% had no residual tumour after surgery, and these resections hindered the estimation of PFS. Conclusion The combination of cetuximab and FOLFIRI was active and well tolerated in this setting. Initially unresectable metastases became resectable in one-quarter of patients, with a high number of complete resections, and these promising results formed the basis for the investigation of FOLFIRI with and without cetuximab in the phase III CRYSTAL trial.

  2. Pimelic acid, the first precursor of the Bacillus subtilis biotin synthesis pathway, exists as the free acid and is assembled by fatty acid synthesis.

    Science.gov (United States)

    Manandhar, Miglena; Cronan, John E

    2017-05-01

    Biotin synthetic pathways are readily separated into two stages, synthesis of the seven carbon α, ω-dicarboxylic acid pimelate moiety and assembly of the fused heterocyclic rings. The biotin pathway genes responsible for pimelate moiety synthesis vary widely among bacteria whereas the ring synthesis genes are highly conserved. Bacillus subtilis seems to have redundant genes, bioI and bioW, for generation of the pimelate intermediate. Largely consistent with previous genetic studies it was found that deletion of bioW caused a biotin auxotrophic phenotype whereas deletion of bioI did not. BioW is a pimeloyl-CoA synthetase that converts pimelic acid to pimeloyl-CoA. The essentiality of BioW for biotin synthesis indicates that the free form of pimelic acid is an intermediate in biotin synthesis although this is not the case in E. coli. Since the origin of pimelic acid in Bacillus subtilis is unknown, 13 C-NMR studies were carried out to decipher the pathway for its generation. The data provided evidence for the role of free pimelate in biotin synthesis and the involvement of fatty acid synthesis in pimelate production. Cerulenin, an inhibitor of the key fatty acid elongation enzyme, FabF, markedly decreased biotin production by B. subtilis resting cells whereas a strain having a cerulenin-resistant FabF mutant produced more biotin. In addition, supplementation with pimelic acid fully restored biotin production in cerulenin-treated cells. These results indicate that pimelic acid originating from fatty acid synthesis pathway is a bona fide precursor of biotin in B. subtilis. © 2017 John Wiley & Sons Ltd.

  3. Attenuation of excitatory amino acid toxicity by metabotropic glutamate receptor agonists and aniracetam in primary cultures of cerebellar granule cells.

    Science.gov (United States)

    Pizzi, M; Fallacara, C; Arrighi, V; Memo, M; Spano, P F

    1993-08-01

    Activation of glutamate ionotropic receptors represents the primary event in the neurotoxicity process triggered by excitatory amino acids. We demonstrate here that the concentration-dependent stimulation of metabotropic glutamate receptor (mGluR) by the selective agonist trans-1-aminocyclopentane-1,3-dicarboxylate or by quisqualate counteracts both glutamate- and kainate-induced neurotoxicity in primary cultures of rat cerebellar granule cells. The mGluR-evoked responses are potentiated by aniracetam, which per se also elicits neuroprotection. Aniracetam concentration-dependently counteracted glutamate-, kainate-, or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-induced cell death and greatly facilitated neuroprotective response achieved by different concentrations of both quisqualate and trans-1-aminocyclopentane-1,3-dicarboxylate. In addition, aniracetam potentiated the mGluR-coupled stimulation of phospholipase C, as revealed by the measurement of 3H-inositol phosphate formation. Thus, mGluRs could be a suitable target for novel pharmacological strategies pointing to the treatment of neurodegenerative diseases.

  4. Development of 70/30 Poly-L-DL-Lactic Acid Filaments for 3D Printers (Part 2): Mechanical and Surface Properties of Bioabsorbable Printed Plates for Biomedical Applications

    Science.gov (United States)

    Fernandes, Daniel J.; Vidal, Rafael; Assayag, Ariel; de Biasi, Ronaldo S.; Elias, Carlos N.

    2017-01-01

    The mechanical, chemical, roughness and wettability properties of 70/30 poly (L,DL-lactide acid) three-dimensional (3D)-printed surgical plates made with extruded polymer filaments developed in the first part of this work were investigated. The plates were printed with horizontal (HRZ) and vertical (VRT) running layer orientations and evaluated by tensile, Fourier transform infrared (FTIR), optical perfilometry and wettability tests before and after degradation in simulated body fluid (SBF) for 21 days. The results show that the ultimate tensile strength (UTS) of HRZ plates before immersion in SBF was higher (34.1 MPa) than that of VRT plates (31.8 MPa). The Young's modulus ( E) of HRZ plates and VRT plates are similar (4 GPa). After immersion in SBF, the UTS of HRZ plates dropped to 20.5 MPa and E decreased to 3.3 GPa. VRT were not tested after SBF immersion due to the large degradation. FTIR analysis showed no evidence of chemical change in the plates after immersion in SBF. The roughness parameter R3z of VRT surfaces (19.54 µm) was higher than that of the HRZ surfaces (12.80 µm). The roughness parameters increased after degradation in SBF ( p = 0.7048). The contact angles of HRZ surfaces before immersion in SBF (66.28°) were higher than after immersion in SBF (18.12°); the same behavior was also observed in VRT plates.

  5. [Production of surfactants by Acinetobacter calcoaceticus K-4 grown on ethanol with organic acids].

    Science.gov (United States)

    Pirog, T P; Shevchuk, T A; Konon, A D; Dolotenko, E Iu

    2012-01-01

    The effect of fumarate (C4-dicarboxylic acid, a gluconeogenesis precursor) and citrate (a lipid synthesis regulator) on the production of surfactants by Acinetobacter calcoaceticus K-4 grown on ethanol has been studied. Simultaneous addition of fumarate and citrate to concentrations of 0.01-0.02% at the end of the log phase of K-4 growth in a medium with 2 vol% ethanol increases the nominal surfactant concentration by 45-55% in comparison with a culture without organic acids. The increased level of surfactant production in the presence of fumarate and citrate is determined by the increase in the activities of enzymes involved in the production of glycolipids (phosphoenolpyruvate synthase and trehalose phosphate synthase) and aminolipids (NADP(+)-dependent glutamate dehydrogenase) by factors of 1.7-7, as well as by the simultaneous operation of two anaplerotic pathways: the glyoxylate cycle and the reaction catalyzed by phosphoenolpyruvate carboxylase.

  6. Isomerizing olefin metathesis as a strategy to access defined distributions of unsaturated compounds from fatty acids.

    Science.gov (United States)

    Ohlmann, Dominik M; Tschauder, Nicole; Stockis, Jean-Pierre; Goossen, Käthe; Dierker, Markus; Goossen, Lukas J

    2012-08-22

    The dimeric palladium(I) complex [Pd(μ-Br)(t)Bu(3)P](2) was found to possess unique activity for the catalytic double-bond migration within unsaturated compounds. This isomerization catalyst is fully compatible with state-of-the-art olefin metathesis catalysts. In the presence of bifunctional catalyst systems consisting of [Pd(μ-Br)(t)Bu(3)P](2) and NHC-indylidene ruthenium complexes, unsaturated compounds are continuously converted into equilibrium mixtures of double-bond isomers, which concurrently undergo catalytic olefin metathesis. Using such highly active catalyst systems, the isomerizing olefin metathesis becomes an efficient way to access defined distributions of unsaturated compounds from olefinic substrates. Computational models were designed to predict the outcome of such reactions. The synthetic utility of isomerizing metatheses is demonstrated by various new applications. Thus, the isomerizing self-metathesis of oleic and other fatty acids and esters provides olefins along with unsaturated mono- and dicarboxylates in distributions with adjustable widths. The cross-metathesis of two olefins with different chain lengths leads to regular distributions with a mean chain length that depends on the chain length of both starting materials and their ratio. The cross-metathesis of oleic acid with ethylene serves to access olefin blends with mean chain lengths below 18 carbons, while its analogous reaction with hex-3-enedioic acid gives unsaturated dicarboxylic acids with adjustable mean chain lengths as major products. Overall, the concept of isomerizing metatheses promises to open up new synthetic opportunities for the incorporation of oleochemicals as renewable feedstocks into the chemical value chain.

  7. Metallization on FDM Parts Using the Chemical Deposition Technique

    OpenAIRE

    Azhar Equbal; Anoop kumar Sood

    2014-01-01

    Metallization of ABS (acrylonitrile-butadiene-styrene) parts has been studied on flat part surfaces. These parts are fabricated on an FDM (fused deposition modeling machine) using the layer-wise deposition principle using ABS as a part material. Electroless copper deposition on ABS parts was performed using two different surface preparation processes, namely ABS parts prepared using chromic acid for etching and ABS parts prepared using a solution mixture of sulphuric acid and hydrogen peroxid...

  8. High abundances of oxalic, azelaic, and glyoxylic acids and methylglyoxal in the open ocean with high biological activity: Implication for secondary OA formation from isoprene

    Science.gov (United States)

    Bikkina, Srinivas; Kawamura, Kimitaka; Miyazaki, Yuzo; Fu, Pingqing

    2014-05-01

    Atmospheric dicarboxylic acids (DCA) are a ubiquitous water-soluble component of secondary organic aerosols (SOA), which can act as cloud condensation nuclei (CCN), affecting the Earth's climate. Despite the high abundances of oxalic acid and related compounds in the marine aerosols, there is no consensus on what controls their distributions over the open ocean. Marine biological productivity could play a role in the production of DCA, but there is no substantial evidence to support this hypothesis. Here we present latitudinal distributions of DCA, oxoacids and α-dicarbonyls in the marine aerosols from the remote Pacific. Their concentrations were found several times higher in more biologically influenced aerosols (MBA) than less biologically influenced aerosols. We propose isoprene and unsaturated fatty acids as sources of DCA as inferred from significantly higher abundances of isoprene-SOA tracers and azelaic acid in MBA. These results have implications toward the reassessment of climate forcing feedbacks of marine-derived SOA.

  9. Fumaric acid production by Torulopsis glabrata: engineering the urea cycle and the purine nucleotide cycle.

    Science.gov (United States)

    Chen, Xiulai; Wu, Jing; Song, Wei; Zhang, Limei; Wang, Hongjiang; Liu, Liming

    2015-01-01

    A multi-vitamin auxotrophic Torulopsis glabrata strain, a pyruvate producer, was further engineered to produce fumaric acid. Using the genome-scale metabolic model iNX804 of T. glabrata, four fumaric acid biosynthetic pathways, involving the four cytosolic enzymes, argininosuccinate lyase (ASL), adenylosuccinate lyase (ADSL), fumarylacetoacetase (FAA), and fumarase (FUM1), were found. Athough single overexpression of each of the four enzymes in the cytosol improved fumaric acid production, the highest fumaric acid titer (5.62 g L(-1) ) was obtained with strain T.G-ASL(H) -ADSL(L) by controlling the strength of ASL at a high level and ADSL at a low level. In order to further improve the production of fumaric acid, the SpMAE1 gene encoding the C4 -dicarboxylic acids transporter was overexpressed in strain T.G-ASL(H) -ADSL(L) -SpMAE1 and the final fumaric acid titer increased to 8.83 g L(-1) . This study provides a novel strategy for fumaric acid biosynthesis by utilizing the urea cycle and the purine nucleotide cycle to enhance the bridge between carbon metabolism and nitrogen metabolism. © 2014 Wiley Periodicals, Inc.

  10. Preferential Incorporation of Azelaic Acid Units into the Crystalline Phase of the Copoly(Alkylene Dicarboxylate Derived from 1,9-Nonanediol and an Equimolar Mixture of Pimelic and Azelaic Acids

    Directory of Open Access Journals (Sweden)

    Angélica Díaz

    2015-09-01

    Full Text Available The crystalline structure of two biodegradable odd-odd polyesters (i.e., poly(nonamethylene pimelate (PES 9,7 and poly(nonamethylene azelate (PES 9,9 was investigated by means of electron and X-ray diffraction of single crystals and oriented fibers, respectively. Truncated rhombic crystals were obtained with an aspect ratio that was strongly depended on the supercooling degree. The crystalline structure of both homopolyesters was defined by an orthorhombic P21ab space group and a large unit cell containing four molecular segments with an all-trans conformation. Nevertheless, the structure in the chain axis projection was equivalent to a simpler cell containing only two segments. Crystalline lamellae were effectively degraded by lipases, starting the enzymatic attack on the lamellar surfaces. The random copolymer constituted by an equimolar amount of pimelate and azelate units (COPES 9,7/9 crystallized according to regular lamellae with a similar molecular arrangement in the chain axis projection. The structure of this copolymer was preferably conditioned by the azelate component as could be deduced from both, diffraction and spectroscopic data. Analysis of small angle X-ray scattering patterns pointed out that less crystalline lamellae with higher amorphous thickness had developed in the copolymer. This feature was interpreted as a consequence of the preferential incorporation of pimelate comonomer units in the folding surface.

  11. Field observation on secondary organic aerosols during Asian dust storm periods: Formation mechanism of oxalic acid and related compounds on dust surface

    Science.gov (United States)

    Wang, Gehui; Cheng, Chunlei; Meng, Jingjing; Huang, Yao; Li, Jianjun; Ren, Yanqin

    2015-07-01

    Chemical evolution of East Asian dust during transpacific transport has been given much attention for inorganic species such as sulfate, nitrate and ammonium. However, the role of organic species during the transport has almost entirely been ignored. To understand the formation mechanism of secondary organic aerosols (SOA) on dust surfaces, this study investigated the concentrations and compositions of dicarboxylic acids, keto-carboxylic acids, α-dicarbonyls and inorganic ions in size-segregated aerosols (9-stages) collected in Xi'an, central China during the two dust storm episodes in the springs of 2009 and 2011 and compared with those in nondust storm periods. During the events the ambient particulate dicarboxylic acids were 932-2240 ng m-3, which are comparable and even higher than those in nondust periods. Molecular compositions of the above SOA are similar to those in nondust periods with oxalic acid being the leading species. In the presence of the dust storms, all the above mentioned SOA species in Xi'an were predominantly enriched on the coarse particles (>2.1 μm), and oxalic acid well correlated with NO3- (R2 = 0.72, p fine mode and a strong correlation of oxalic acid with SO42-. We propose a formation pathway to explain these observations, in which nitric acid and/or nitrogen oxides react with dust to produce Ca(NO3)2 and form a liquid phase on the surface of dust aerosols via water vapor-absorption of Ca(NO3)2, followed by a partitioning of the gas-phase water-soluble organic precursors (e.g.,glyoxal and methylglyoxal) into the aqueous-phase and a subsequent oxidation into oxalic acid. To the best of our knowledge, we found for the first time the enrichment of glyoxal and methylglyoxal on dust surface. Our data suggest an important role of nitrate in the heterogeneous formation process of SOA on the surface of dust.

  12. Interaction of photoactive cis(CO)-trans(I)-Ru-(4,4‧-dicarboxylate-2,2‧-bipyridine)(CO)2I2 with anatase (1 0 1) surface

    Science.gov (United States)

    Haukka, Matti; Hirva, Pipsa

    2002-06-01

    The coordination of cis(CO)-trans(I)-Ru(4,4‧-dicarboxylate-2,2‧-bipyridine)(CO)2I2 on an anatase (1 0 1) surface was investigated using a computational density functional method. The adsorbate is able to interact with the anatase surface by one or two carboxylate substituents of the bipyridine ligand. Three of the studied coordination modes involved a single carboxylate as the binding group, including monodentate (1M), bidentate chelating (1BC) and bidentate bridging (1BB) modes. The possibility of monodentate binding via both carboxylate groups in (2M) was also studied. The results showed that the multidentate binding is clearly preferred over monodentate coordination. The stability of the modes increased in the order 1M, 1BC, 1BB and 2M. The flexibility of the bipyridine ligand was found to be the key factor in the binding via two carboxylate groups.

  13. Body parts

    Science.gov (United States)

    Ayiter, Elif

    2010-01-01

    In this project, the artist wishes to examine corporeality in the virtual realm, through the usage of the (non)-physical body of the avatar. An art installation created in the virtual world of Second Life, which is meant to be accessed with site specific avatars, will provide the creative platform whereby this investigation is undertaken. Thus, "body parts" seeks to challenge the residents of virtual environments into connecting with the virtual manifestations, i.e., avatars of others in an emotionally expressive/intimate manner.

  14. Modification of wheat starch with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures I. Thermophysical and pasting properties.

    Science.gov (United States)

    Subarić, Drago; Ačkar, Durđica; Babić, Jurislav; Sakač, Nikola; Jozinović, Antun

    2014-10-01

    The aim of this research was to investigate the influence of modification with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures on thermophysical and pasting properties of wheat starch. Starch was isolated from two wheat varieties and modified with mixtures of succinic acid and acetic anhydride, and azelaic acid and acetic anhydride in 4, 6 and 8 % (w/w). Thermophysical, pasting properties, swelling power, solubility and amylose content of modified starches were determined. The results showed that modifications with mixtures of afore mentioned dicarboxylic acids with acetic anhydride decreased gelatinisation and pasting temperatures. Gelatinisation enthalpy of Golubica starch increased, while of Srpanjka starch decreased by modifications. Retrogradation after 7 and 14 day-storage at 4 °C decreased after modifications of both starches. Maximum, hot and cold paste viscosity of both starches increased, while stability during shearing at high temperatures decreased. % setback of starches modified with azelaic acid/acetic anhydride mixture decreased. Swelling power and solubility of both starches increased by both modifications.

  15. Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway.

    Science.gov (United States)

    Zhao, Mei; Huang, Dixuan; Zhang, Xiaojuan; Koffas, Mattheos A G; Zhou, Jingwen; Deng, Yu

    2018-04-03

    Adipic acid is an important dicarboxylic acid mainly used for the production of nylon 6-6 fibers and resins. Previous studies focused on the biological production of adipic acid directly from different substrates, resulting in low yields and titers. In this study, a five-step reverse adipate-degradation pathway (RADP) identified in Thermobifida fusca has been reconstructed in Escherichia coli BL21 (DE3). The resulting strain (Mad136) produced 0.3gL -1 adipic acid with a 11.1% theoretical yield in shaken flasks, and we confirmed that the step catalyzed by 5-carboxy-2-pentenoyl-CoA reductase (Tfu_1647) as the rate-limiting step of the RADP. Overexpression of Tfu_1647 by pTrc99A carried by strain Mad146 produced with a 49.5% theoretical yield in shaken flasks. We further eliminated pathways for major metabolites competing for carbon flux by CRISPR/Cas9 and deleted the succinate-CoA ligase gene to promote accumulation of succinyl-CoA, which is the precursor for adipic acid synthesis. The final engineered strain Mad123146, which could achieve 93.1% of the theoretical yield in the shaken flask, was able to produce 68.0gL -1 adipic acid by fed-batch fermentation. To the best of our knowledge, these results constitute the highest adipic acid titer reported in E. coli. Copyright © 2018. Published by Elsevier Inc.

  16. Adsorption of dianionic surfactants based on amino acids at different surfaces studied by QCM-D and SPR.

    Science.gov (United States)

    Bordes, Romain; Tropsch, Jürgen; Holmberg, Krister

    2010-07-06

    The adsorption of three dicarboxylic amino acid-based surfactants, disodium N-lauroylaminomalonate, disodium N-lauroylaspartate, and disodium N-lauroylglutamate, has been studied by surface plasmon resonance (SPR) and the quartz crystal microbalance with dissipation monitoring (QCM-D). These surfactants have high cmc values, which means that the unimer concentration is high at the plateau value of adsorption. This gives rise to a considerable "bulk effect", which must be deducted from the observed value in order to obtain the true value of the adsorbed amount. In this article, we show how this can be done for the QCM-D technique. Adsorption is studied on silica, gold, gold hydrophobized by a self-assembled layer of an alkane thiol, and hydroxyapatite. Adsorption on hydroxyapatite differs very much among the three surfactants, with the aspartate derivative giving the strongest and the glutamate giving the weakest adsorption. This difference is explained as the difference in ability of the dicarboxylic amphiphiles to chelate calcium in the crystal lattice.

  17. Structure of the D-alanylgriseoluteic acid biosynthetic protein EhpF, an atypical member of the ANL superfamily of adenylating enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Bera, A.K.; Robinson, H.; Atanasova, V.; Gamage, S.; Parsons, J. F.

    2010-06-01

    The structure of EhpF, a 41 kDa protein that functions in the biosynthetic pathway leading to the broad-spectrum antimicrobial compound D-alanylgriseoluteic acid (AGA), is reported. A cluster of approximately 16 genes, including ehpF, located on a 200 kbp plasmid native to certain strains of Pantoea agglomerans encodes the proteins that are required for the conversion of chorismic acid to AGA. Phenazine-1,6-dicarboxylate has been identified as an intermediate in AGA biosynthesis and deletion of ehpF results in accumulation of this compound in vivo. The crystallographic data presented here reveal that EhpF is an atypical member of the acyl-CoA synthase or ANL superfamily of adenylating enzymes. These enzymes typically catalyze two-step reactions involving adenylation of a carboxylate substrate followed by transfer of the substrate from AMP to coenzyme A or another phosphopantetheine. EhpF is distinguished by the absence of the C-terminal domain that is characteristic of enzymes from this family and is involved in phosphopantetheine binding and in the second half of the canonical two-step reaction that is typically observed. Based on the structure of EhpF and a bioinformatic analysis, it is proposed that EhpF and EhpG convert phenazine-1,6-dicarboxylate to 6-formylphenazine-1-carboxylate via an adenylyl intermediate.

  18. Implication of azelaic acid in a Greenland Ice Core for oceanic and atmospheric changes in high latitudes

    Science.gov (United States)

    Kawamura, K.; Yokoyama, K.; Fujii, Y.; Watanabe, O.

    A Greenland ice core (450 years) has been studied for low molecular weight dicarboxylic acids (C2-C10) using a capillary gas chromatography and mass spectrometer. Their molecular distribution generally showed a predominance of succinic acid (C4) followed by oxalic (C2), malonic (C3), glutaric (C5), adipic (C6), and azelaic (C9) acids. Azelaic acid, that is a specific photochemical reaction product of biogenic unsaturated fatty acids, gave a characteristic historical trend in the ice core; i.e., the concentrations are relatively low during late 16th to 19th century (Little Ice Age) but become very high in late 19th to 20th century (warmer periods) with a large peak in 1940s AD. Lower concentrations of azelaic acid may have been caused by a depressed emission of unsaturated fatty acids from seawater microlayers due to enhanced sea ice coverage during Little Ice Age. Inversely, increased concentrations of azelaic acid in late 19th to 20th century are likely interpreted by an enhanced sea-to-air emission of the precursor unsaturated fatty acids due to a retreat of sea ice and/or by the enhanced production due to a potentially increased oxidizing capability of the atmosphere.

  19. Folic Acid

    Science.gov (United States)

    Folic acid is a B vitamin. It helps the body make healthy new cells. Everyone needs folic acid. For women who may get pregnant, it is really important. Getting enough folic acid before and during pregnancy can prevent major birth ...

  20. Mechanism of Inactivation of γ-Aminobutyric Acid Aminotransferase by (1 S ,3 S )-3-Amino-4-difluoromethylene-1-cyclopentanoic Acid (CPP-115)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyunbeom [Department; Doud, Emma H. [Department; Department; Wu, Rui [Department; Sanishvili, Ruslan [X-ray; Juncosa, Jose I. [Department; Liu, Dali [Department; Kelleher, Neil L. [Department; Department; Silverman, Richard B. [Department; Department

    2015-02-10

    gamma-Aminobutyric acid aminotransferase (GABA-AT) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that degrades GABA, the principal inhibitory neurotransmitter in mammalian cells. When the concentration of GABA falls below a threshold level, convulsions can occur. Inhibition of GABA-AT raises GABA levels in the brain, which can terminate seizures as well as have potential therapeutic applications in treating other neurological disorders, including drug addiction. Among the analogues that we previously developed, (1S,3S)-3-amino-4-difluoromethylene-1-cyclopentanoic acid (CPP-115) showed 187 times greater potency than that of vigabatrin, a known inactivator of GABA-AT and approved drug (Sabril) for the treatment of infantile spasms and refractory adult epilepsy. Recently, CPP-115 was shown to have no adverse effects in a Phase I clinical trial. Here we report a novel inactivation mechanism for CPP-115, a mechanism-based inactivator that undergoes GABA-AT-catalyzed hydrolysis of the difluoromethylene group to a carboxylic acid with concomitant loss of two fluoride ions and coenzyme conversion to pyridoxamine 5'-phosphate (PMP). The partition ratio for CPP-115 with GABA-AT is about 2000, releasing cyclopentanone-2,4-dicarboxylate (22) and two other precursors of this compound (20 and 21). Time-dependent inactivation occurs by a conformational change induced by the formation of the aldimine of 4-aminocyclopentane-1,3-dicarboxylic acid and PMP (20), which disrupts an electrostatic interaction between Glu270 and Arg445 to form an electrostatic interaction between Arg445 and the newly formed carboxylate produced by hydrolysis of the difluoromethylene group in CPP-115, resulting in a noncovalent, tightly bound complex. This represents a novel mechanism for inactivation of GABA-AT and a new approach for the design of mechanism-based inactivators in general.

  1. (segunda parte

    Directory of Open Access Journals (Sweden)

    José María Oliva-Martínez

    2004-01-01

    Full Text Available Este trabajo es la continuación de otro anterior (Oliva, 2004, ambos dedicados al estudio de la importancia del pensamiento analógico en la construcción histórica de la noción de fuerza gravitatoria y del modelo de Sistema Solar. En aquella ocasión analizamos dicho papel durante el período comprendido desde las antiguas civilizaciones hasta llegar a la revolución copernicana con científicos como Copérnico, Gilbert, Kepler o el propio Galileo. En esta segunda parte, se continúa con algunos de los razonamientos analógicos proporcionados desde la vertiente mecanicista, capitaneada por Descartes y desde la tradición subsiguiente que se desarrolló en línea con la utilización del método de la analogía como criterio argumentativo (Huyghens, Hooke, Bernoulli, etc.. Dedicamos asimismo un capítulo aparte a la figura de Newton, quien continúa con dicha tradición en su intento de explicar la naturaleza de la gravitación. Finalmente se procede, a modo de síntesis, a realizar una clasificación de distintos tipos de razonamientos analógicos aportados en el desarrollo histórico en torno a estos temas, estudiando el papel científico y divulgativo de cada uno

  2. Ionic networks derived from the protonation of dendritic amines with carboxylic acid end‐functionalized PEGs

    DEFF Research Database (Denmark)

    Gonzalez, Lidia; Skov, Anne Ladegaard; Hvilsted, Søren

    2013-01-01

    The synthesis and characterization of novel ionic networks linked by the ammonium salts of poly(propylene imine) (PPI) dendrimers of the first (PPI G1) and second (PPI G2) generation and two short bis carboxymethyl ether terminated poly(ethylene glycol)s (DiCOOH‐PEG) with different molecular...... weights (Mn ∼ 250 and Mn ∼ 600) are reported. Likewise, an ionic network based on PPI G1 and a long αω‐dicarboxylic acid functionalized PEG (Mn ∼ 4800) were evaluated. Simpler ionic structures based on tris(2‐aminoethyl)amine or hexamethylene diamine and the short DiCOOH‐PEGs are also investigated....... The ionic structures formed were confirmed by differential scanning calorimetry, Fourier Transform Infrared spectroscopy in the attenuated‐total‐reflection mode, and 1H‐13C NMR spectroscopy. A comprehensive 1H NMR analysis revealed that only the primary amines of the PPI G1 dendrimer residing...

  3. Role of 3-Hydroxy Fatty Acid-Induced Hepatic Lipotoxicity in Acute Fatty Liver of Pregnancy

    Directory of Open Access Journals (Sweden)

    Sathish Kumar Natarajan

    2018-01-01

    Full Text Available Acute fatty liver of pregnancy (AFLP, a catastrophic illness for both the mother and the unborn offspring, develops in the last trimester of pregnancy with significant maternal and perinatal mortality. AFLP is also recognized as an obstetric and medical emergency. Maternal AFLP is highly associated with a fetal homozygous mutation (1528G>C in the gene that encodes for mitochondrial long-chain hydroxy acyl-CoA dehydrogenase (LCHAD. The mutation in LCHAD results in the accumulation of 3-hydroxy fatty acids, such as 3-hydroxy myristic acid, 3-hydroxy palmitic acid and 3-hydroxy dicarboxylic acid in the placenta, which are then shunted to the maternal circulation leading to the development of acute liver injury observed in patients with AFLP. In this review, we will discuss the mechanistic role of increased 3-hydroxy fatty acid in causing lipotoxicity to the liver and in inducing oxidative stress, mitochondrial dysfunction and hepatocyte lipoapoptosis. Further, we also review the role of 3-hydroxy fatty acids in causing placental damage, pancreatic islet β-cell glucolipotoxicity, brain damage, and retinal epithelial cells lipoapoptosis in patients with LCHAD deficiency.

  4. Role of 3-Hydroxy Fatty Acid-Induced Hepatic Lipotoxicity in Acute Fatty Liver of Pregnancy

    Science.gov (United States)

    Ibdah, Jamal A.

    2018-01-01

    Acute fatty liver of pregnancy (AFLP), a catastrophic illness for both the mother and the unborn offspring, develops in the last trimester of pregnancy with significant maternal and perinatal mortality. AFLP is also recognized as an obstetric and medical emergency. Maternal AFLP is highly associated with a fetal homozygous mutation (1528G>C) in the gene that encodes for mitochondrial long-chain hydroxy acyl-CoA dehydrogenase (LCHAD). The mutation in LCHAD results in the accumulation of 3-hydroxy fatty acids, such as 3-hydroxy myristic acid, 3-hydroxy palmitic acid and 3-hydroxy dicarboxylic acid in the placenta, which are then shunted to the maternal circulation leading to the development of acute liver injury observed in patients with AFLP. In this review, we will discuss the mechanistic role of increased 3-hydroxy fatty acid in causing lipotoxicity to the liver and in inducing oxidative stress, mitochondrial dysfunction and hepatocyte lipoapoptosis. Further, we also review the role of 3-hydroxy fatty acids in causing placental damage, pancreatic islet β-cell glucolipotoxicity, brain damage, and retinal epithelial cells lipoapoptosis in patients with LCHAD deficiency. PMID:29361796

  5. Gas chromatography/trace analysis of derivatized azelaic acid as a stability marker.

    Science.gov (United States)

    Alzweiri, Muhammed; Tarawneh, Ruba; Khanfar, Mohammad A

    2013-10-01

    Azelaic acid, a naturally occurring saturated dicarboxylic acid, is found in many topical formulations for its various medical benefits or as a byproduct of the oxidative decomposition of unsaturated fatty acids. The poor volatility of azelaic acid hinders its applicability in GC analysis. Therefore, azelaic acid was derivatized by methylation and silylation procedures to enhance its volatility for GC analysis. Accordingly, dimethyl azelate (DMA) and di(trimethylsilyl) azelate were synthesized and characterized by GC-MS. Subsequently, a GC with flame ionization detection method was developed and validated to analyze trace amounts of azelaic acid in some marketed skin creams. Unlike DMA, di(trimethylsilyl) azelate was chemically unstable and degraded within few hours. Nonane was used as a stable internal standard. Variability due to derivatization and extraction was controlled by a standard addition procedure. DMA analysis was linear in a wide concentration range (100 ng/mL to 100 mg/mL). Moreover, the method was accurate (96.4-103.4%) and precise with inter- and intraday variability <2.0% and LOQ and LOD of 100 and 10 ng/mL, respectively. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Volatility of organic aerosol: evaporation of ammonium sulfate/succinic acid aqueous solution droplets.

    Science.gov (United States)

    Yli-Juuti, Taina; Zardini, Alessandro A; Eriksson, Axel C; Hansen, Anne Maria K; Pagels, Joakim H; Swietlicki, Erik; Svenningsson, Birgitta; Glasius, Marianne; Worsnop, Douglas R; Riipinen, Ilona; Bilde, Merete

    2013-01-01

    Condensation and evaporation modify the properties and effects of atmospheric aerosol particles. We studied the evaporation of aqueous succinic acid and succinic acid/ammonium sulfate droplets to obtain insights on the effect of ammonium sulfate on the gas/particle partitioning of atmospheric organic acids. Droplet evaporation in a laminar flow tube was measured in a Tandem Differential Mobility Analyzer setup. A wide range of droplet compositions was investigated, and for some of the experiments the composition was tracked using an Aerosol Mass Spectrometer. The measured evaporation was compared to model predictions where the ammonium sulfate was assumed not to directly affect succinic acid evaporation. The model captured the evaporation rates for droplets with large organic content but overestimated the droplet size change when the molar concentration of succinic acid was similar to or lower than that of ammonium sulfate, suggesting that ammonium sulfate enhances the partitioning of dicarboxylic acids to aqueous particles more than currently expected from simple mixture thermodynamics. If extrapolated to the real atmosphere, these results imply enhanced partitioning of secondary organic compounds to particulate phase in environments dominated by inorganic aerosol.

  7. Volatility of Organic Aerosol: Evaporation of Ammonium Sulfate/Succinic Acid Aqueous Solution Droplets

    Science.gov (United States)

    2013-01-01

    Condensation and evaporation modify the properties and effects of atmospheric aerosol particles. We studied the evaporation of aqueous succinic acid and succinic acid/ammonium sulfate droplets to obtain insights on the effect of ammonium sulfate on the gas/particle partitioning of atmospheric organic acids. Droplet evaporation in a laminar flow tube was measured in a Tandem Differential Mobility Analyzer setup. A wide range of droplet compositions was investigated, and for some of the experiments the composition was tracked using an Aerosol Mass Spectrometer. The measured evaporation was compared to model predictions where the ammonium sulfate was assumed not to directly affect succinic acid evaporation. The model captured the evaporation rates for droplets with large organic content but overestimated the droplet size change when the molar concentration of succinic acid was similar to or lower than that of ammonium sulfate, suggesting that ammonium sulfate enhances the partitioning of dicarboxylic acids to aqueous particles more than currently expected from simple mixture thermodynamics. If extrapolated to the real atmosphere, these results imply enhanced partitioning of secondary organic compounds to particulate phase in environments dominated by inorganic aerosol. PMID:24107221

  8. Treatability of cheese whey for single-cell protein production in nonsterile systems: Part I. Optimal condition for lactic acid fermentation using a microaerobic sequencing batch reactor (microaerobic SBR) with immobilized Lactobacillus plantarum TISTR 2265 and microbial communities.

    Science.gov (United States)

    Monkoondee, Sarawut; Kuntiya, Ampin; Chaiyaso, Thanongsak; Leksawasdi, Noppol; Techapun, Charin; Kawee-Ai, Arthitaya; Seesuriyachan, Phisit

    2016-05-18

    Cheese whey contains a high organic content and causes serious problems if it is released into the environment when untreated. This study aimed to investigate the optimum condition of lactic acid production using the microaerobic sequencing batch reactor (microaerobic SBR) in a nonsterile system. The high production of lactic acid was achieved by immobilized Lactobacillus plantarum TISTR 2265 to generate an acidic pH condition below 4.5 and then to support single-cell protein (SCP) production in the second aerobic sequencing batch reactor (aerobic SBR). A hydraulic retention time (HRT) of 4 days and a whey concentration of 80% feeding gave a high lactic acid yield of 12.58 g/L, chemical oxygen demand (COD) removal of 62.38%, and lactose utilization of 61.54%. The microbial communities in the nonsterile system were dominated by members of lactic acid bacteria, and it was shown that the inoculum remained in the system up to 330 days.

  9. A critical review of the formation of mono- and dicarboxylated metabolic intermediates of alkylphenol polyethoxylates during wastewater treatment and their environmental significance

    OpenAIRE

    Chiu, TY; Paterakis, N; Cartmell, E; Scrimshaw, MD; Lester, JN

    2010-01-01

    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2010 Taylor & Francis. Alkylphenoxyacetic acids, the metabolic biodegradation products of alkylphenol ethoxylates, are commonly found in wastewaters and sewage effluents. These persistent hydrophilic derivatives possess intrinsic estrogenic activity, which can mimic natural hormones. Their concentrations increase through the sewage treatment works as a result of biodegradatio...

  10. Effects of lactic acid bacteria in kimoto on sake brewing. Part 2. ; Promotion mechanism of enzymolysis in rice by teichoic acid. Kimotochu no nyusankin no seishu jozo ni oyobosu eikyo. 2. ; Kimotochu no nyusankin ni yuraisuru teikosan no. alpha. kamai yokai sokushin sayo kisaku

    Energy Technology Data Exchange (ETDEWEB)

    Mizoguchi, H.; Tsurumoto, M.; Furukawa, A.; Kawasaki, T. (Kikumasamune Sake Brewing Co. Ltd, Hyogo (Japan))

    1991-07-25

    In order to elucidate promotion mechanism of dissolution of {alpha}-rice (pregelatinized rice) by teichoic acid. adsorption of teichoic acid and {alpha}-amylase onto rice protein oryzenin was investigated by experiments. Teichoic acid was adsorbed well onto oryzenin and reduced adsorption of {alpha}-amylase. Adsorption of {alpha}-amylase onto rice powder was decreased logarithmically in proportion to the teichoic acid added. Both teichoic acid and {alpha}-amylase were adsorbed by histone, abundant in basic amino acids, and by anion-exchange resin. Adsorption of {alpha}-amylase onto them was reduced by coexistence with teichoic acid. As the results of experiments, it was inferred that teichoic acid became dissolvable through autolysis by lactic acid bacteria in kimoto, changed the state of electric charge on oryzenin surfaces through adsorption onto oryzenin by phosphoric group, decreasing adsorption of {alpha}-amylase onto oryzenin and increasing free {alpha}-amylase in the liquid phase, and thus increased the dissolution of {alpha}-rice. 9 refs., 6 figs., 3 tabs.

  11. Aframomum stipulatum (Gagnep) K. Schum and Aframomum giganteum (Oliv. & Hanb) K. Schum as Aroma Tincto Oleo Crops resources: essential oil, fatty acids, sterols, tocopherols, and tocotrienols composition of different fruit parts of Congo varieties.

    Science.gov (United States)

    Ngakegni-Limbili, Adolphe Christian; Zebib, Bachar; Cerny, Muriel; Tsiba, Gouolally; Elouma Ndinga, Arnold Murphy; Mouloungui, Zéphirin; Fourastier, Isabelle; Ouamba, Jean-Maurille

    2013-01-15

    Today, few known plant species provide both an essential oil (EO) and a vegetable oil (VO). Seed and husk of two Aframomum species were investigated and compared in terms of EO, fatty acids, tocopherols, and tocotrienols. EO yield reaches 15.3 g kg(-1) in the seeds and 3.2 g kg(-1) in the husks, while VO yield is 180.0 g kg(-1) in the seeds and 25.0 g kg(-1) in the husks. β-Pinene, 1,8-cineol, α-selinene, terpine-4-ol, linalool, myrtenal and β-caryophyllene are the major compounds of seed and husk EO. Fatty acid analysis of two Aframomum species shows that oleic, linoleic, and palmitic acids were the major compounds of VO. Total sterol contents reached 4.3 g kg(-1) in seed VO and 8.5 g kg(-1) in husk VO. An appreciable amount of tocopherols (0.52 g kg(-1) ) was found in seed VO. The seed and husk oil of A. stipulatum and A. giganteum fruits are rich sources of many bioactive constituents such as fatty acids, sterols, tocopherols and tocotrienols. These tropical wild fruits can be considered as new Aroma Tincto Oleo Crops (ATOC) resources that contain both EOs and VOs. Copyright © 2012 Society of Chemical Industry.

  12. Citric Acid Passivation of Stainless Steel

    Science.gov (United States)

    Yasensky, David; Reali, John; Larson, Chris; Carl, Chad

    2009-01-01

    Passivation is a process for cleaning and providing corrosion protection for stainless steel. Currently, on Kennedy Space Center (KSC), only parts passivated with nitric acid are acceptable for use. KSC disposes of approximately 125gal of concentrated nitric acid per year, and receives many parts from vendors who must also dispose of used nitric acid. Unfortunately, nitric acid presents health and environmental hazards. As a result, several recent industry studies have examined citric acid as an alternative. Implementing a citric acid-based passivation procedure would improve the health and environmental safety aspects of passivation process. However although there is a lack of published studies that conclusively prove citric acid is a technically sound passivation agent. In 2007, NASA's KSC Materials Advisory Working Group requested the evaluation of citric acid in place of nitric acid for passivation of parts at KSC. United Space Alliance Materials & Processes engineers have developed a three-phase test plan to evaluate citric acid as an alternative to nitric acid on three stainless steels commonly used at KSC: UNS S30400, S41000, and S17400. Phases 1 and 2 will produce an optimized citric acid treatment based on results from atmospheric exposure at NASA's Beach Corrosion Facility. Phase 3 will compare the optimized solution(s) with nitric acid treatments. If the results indicate that citric acid passivates as well or better than nitric acid, NASA intends to approve this method for parts used at the Kennedy Space Center.

  13. Efficient production of succinic acid from Palmaria palmata hydrolysate by metabolically engineered Escherichia coli.

    Science.gov (United States)

    Olajuyin, Ayobami Matthew; Yang, Maohua; Liu, Yilan; Mu, Tingzhen; Tian, Jiangnan; Adaramoye, Oluwatosin Adekunle; Xing, Jianmin

    2016-08-01

    Succinic acid, a C4 dicarboxylic acid is used in many fields such as food, agriculture, pharmaceutical and polymer industries. In this study, microbial production of succinic acid from Palmaria palmata was investigated for the first time. In engineered Escherichia coli KLPPP, lactate dehydrogenase, pyruvate formate lyase, phosphotransacetylase-acetate kinase and pyruvate oxidase genes were deleted while phosphoenolpyruvate carboxykinase was overexpressed. The recombinant exhibited higher molar yield of succinic acid on galactose (1.20±0.02mol/mol) than glucose (0.48±0.03mol/mol). The concentration and molar yield of succinic acid were 22.40±0.12g/L and 1.13±0.02mol/mol total sugar respectively after 72h dual phase fermentation from P. palmata hydrolysate which composed of glucose (12.57±0.17g/L) and galactose (18.03±0.10g/L). The results demonstrate that P. palmata red macroalgae biomass represents a novel and an economically alternative feedstock for biochemicals production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. On the formation of niacin (vitamin B3) and pyridine carboxylic acids in interstellar model ices

    Energy Technology Data Exchange (ETDEWEB)

    McMurtry, Brandon M.; Turner, Andrew M.; Saito, Sean E.J.; Kaiser, Ralf I. [W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii, HI 96822 (United States); Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, HI 96822 (United States)

    2016-06-15

    The formation of pyridine carboxylic acids in interstellar ice grains was simulated by electron exposures of binary pyridine (C{sub 5}H{sub 5}N)-carbon dioxide (CO{sub 2}) ice mixtures at 10 K under contamination-free ultrahigh vacuum conditions. Chemical processing of the pristine ice and subsequent warm-up phase was monitored on line and in situ via Fourier transform infrared spectroscopy to probe for the formation of new radiation induced species. In the infrared spectra of the irradiated ice, bands assigned to nicotinic acid (niacin; vitamin B3; m-C{sub 5}H{sub 4}NCOOH) along with 2,3-, 2,5-, 3,4-, and 3,5-pyridine dicarboxylic acid (C{sub 5}H{sub 3}N(COOH){sub 2}) were unambiguously identified along with the hydroxycarbonyl (HOCO) radical. Our study suggests that the reactive pathway responsible for pyridine carboxylic acids formation involves a HOCO intermediate, which forms through the reaction of suprathermal hydrogen ejected from pyridine with carbon dioxide. The newly formed pyridinyl radical may then undergo radical–radical recombination with a hydroxycarbonyl radical to form a pyridine carboxylic acid.

  15. Study of structural, surface and hydrogen storage properties of boric acid mediated metal (sodium)-organic frameworks

    Science.gov (United States)

    Ozer, Demet; Köse, Dursun A.; Sahin, Onur; Oztas, Nursen A.

    2018-04-01

    Three boric acid mediated metal organic frameworks were synthesized by solution method with using succinic acid, fumaric acid and acetylene dicarboxylic acid as a ligand source and sodium as a metal source. The complexes were characterized by FT-IR, powder XRD, elemental analyses and single crystal measurements. The complexes with the formula, C4H18B2Na2O14, C4H16B2Na2O14 and C4H14B2Na2O14 were successfully obtained. BET surface area of complexes were calculated and found as 13.474 m2/g for catena-(tetrakis(μ2-hydroxo)-(μ2-trihydrogen borate)-(μ2-succinato)-di-sodium boric acid solvate), 1.692 m2/g for catena-(tetrakis(μ2-hydroxo)-(μ2-trihydrogen borate)-(μ2-fumarato)-di-sodium boric acid solvate) and 5.600 m2/g for catena-(tetrakis(μ2-hydroxo)-(μ2-trihydrogen borate)-(μ2-acetylenedicarboxylato)-di-sodium boric acid solvate). Hydrogen storage capacities of the complexes were also studied at 77 K 1 bar pressure and found as 0.108%, 0.033%, 0.021% by mass. When different ligands were used, the pore volume, pore width and surface area of the obtained complexes were changed. As a consequence, hydrogen storage capacities also changed.

  16. Olfactory receptor Olfr544 responding to azelaic acid regulates glucagon secretion in α-cells of mouse pancreatic islets.

    Science.gov (United States)

    Kang, NaNa; Bahk, Young Yil; Lee, NaHye; Jae, YoonGyu; Cho, Yoon Hee; Ku, Cheol Ryong; Byun, Youngjoo; Lee, Eun Jig; Kim, Min-Soo; Koo, JaeHyung

    2015-05-08

    Olfactory receptors (ORs) are extensively expressed in olfactory as well as non-olfactory tissues. Although many OR transcripts are expressed in non-olfactory tissues, only a few studies demonstrate the functional role of ORs. Here, we verified that mouse pancreatic α-cells express potential OR-mediated downstream effectors. Moreover, high levels of mRNA for the olfactory receptors Olfr543, Olfr544, Olfr545, and Olfr1349 were expressed in α-cells as assessed using RNA-sequencing, microarray, and quantitative real-time RT-PCR analyses. Treatment with dicarboxylic acids (azelaic acid and sebacic acid) increased intracellular Ca(2+) mobilization in pancreatic α-cells. The azelaic acid-induced Ca(2+) response as well as glucagon secretion was concentration- and time-dependent manner. Olfr544 was expressed in α-cells, and the EC50 value of azelaic acid to Olfr544 was 19.97 μM, whereas Olfr545 did not respond to azelaic acid. Our findings demonstrate that Olfr544 responds to azelaic acid to regulate glucagon secretion through Ca(2+) mobilization in α-cells of the mouse pancreatic islets, suggesting that Olfr544 may be an important therapeutic target for metabolic diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. [Effects of overexpression of carboxylation pathway genes and inactivation of malic enzymes on malic acid production in Escherichia coli].

    Science.gov (United States)

    Lou, Fei; Li, Ning; Zhao, Yujiao; Guo, Shiting; Wang, Zhiwen; Chen, Tao

    2016-11-25

    Malic acid is a dicarboxylic acid that is widely used in food, pharmaceutical and chemical industries. We studied the effects of overexpression of carboxylation pathway genes and inactivation of malic enzymes on the aerobic production of malic acid. Over expression of phosphoenolpyruvate (PEP) carboxylase (ppc) generated strain E21, which increased malic acid production from 0.57 g/L to 3.83 g/L. Then pyc gene from Coryenbacterium glutamicus and pck gene from Actinobacillus succinogenes were overexpressed in E21 separately. The resulting strains E21 (pTrcpyc) and E21 (pTrc-A-pck) produced 6.04 and 5.01 g/L malate with a yield of 0.79 and 0.65 mol/mol glucose, respectively. Deleting two malic enzymes (encoded by maeA and maeB) also led to an increase of 36% in malic acid production with a production of 5.21 g/L. However, the combination of malic enzymes deletion and pyc overexpression could not further increase the yield of malic acid. After optimization of fermentation conditions, strain E21 (pTrcpyc) produced 12.45 g/L malic acid with a yield of 0.84 mol/mol which is 63.2% of the theoretical yield.

  18. DEOXYRIBONUCLEIC ACID HYBRIDS OF ACETIC ACID BACTERIA

    Science.gov (United States)

    De Ley, J.; Friedman, S.

    1964-01-01

    De Ley, J. (State University, Ghent, Belgium), and S. Friedman. Deoxyribonucleic acid hybrids of acetic acid bacteria. J. Bacteriol. 88:937–945. 1964.—Deuterated N15-labeled deoxyribonucleic acid (DNA) from Acetobacter aceti (mesoxydans 4) forms hybrids with ordinary DNA from other species of this genus (A. xylinum, A. pasteurianus, A. estunensis, and possibly A. xylinoides) when the guanine plus cytosine base composition does not vary by more than 1 to 2%. Beyond this limit (A. aceti Ch31 and A. muciparus 5) no hybrids are formed. The hybrids are apparently derived from an asymmetrical part of the compositional distribution. The results lend strength to the concept of a genetic species rather than to a division of a genus into sharply separated species, based on small phenotypic differences. Taxonomic implications are discussed. PMID:14219057

  19. Metallization on FDM Parts Using the Chemical Deposition Technique

    Directory of Open Access Journals (Sweden)

    Azhar Equbal

    2014-08-01

    Full Text Available Metallization of ABS (acrylonitrile-butadiene-styrene parts has been studied on flat part surfaces. These parts are fabricated on an FDM (fused deposition modeling machine using the layer-wise deposition principle using ABS as a part material. Electroless copper deposition on ABS parts was performed using two different surface preparation processes, namely ABS parts prepared using chromic acid for etching and ABS parts prepared using a solution mixture of sulphuric acid and hydrogen peroxide (H2SO4/H2O2 for etching. After surface preparations using these routes, copper (Cu is deposited electrolessly using four different acidic baths. The acidic baths used are 5 wt% CuSO4 (copper sulfate with 15 wt% of individual acids, namely HF (hydrofluoric acid, H2SO4 (sulphuric acid, H3PO4 (phosphoric acid and CH3COOH (acetic acid. Cu deposition under different acidic baths used for both the routes is presented and compared based on their electrical performance, scanning electron microscopy (SEM and energy dispersive X-ray spectrometry (EDS. The result shows that chromic acid etched samples show better electrical performance and Cu deposition in comparison to samples etched via H2SO4/H2O2.

  20. Ascorbic Acid

    Science.gov (United States)

    Ascorbic acid is used to prevent and treat scurvy, a disease caused by a lack of vitamin C in ... Ascorbic acid comes in extended-release (long-acting) capsules and tablets, lozenges, syrup, chewable tablets, and liquid drops to ...

  1. Obeticholic Acid

    Science.gov (United States)

    Obeticholic acid is used alone or in combination with ursodiol (Actigall, Urso) to treat primary biliary cholangitis (PBC; a ... were not treated successfully with ursodiol alone. Obeticholic acid is in a class of medications called farnesoid ...

  2. Aminocaproic Acid

    Science.gov (United States)

    Aminocaproic acid is used to control bleeding that occurs when blood clots are broken down too quickly. This type ... the baby is ready to be born). Aminocaproic acid is also used to control bleeding in the ...

  3. Ethacrynic Acid

    Science.gov (United States)

    Ethacrynic acid, a 'water pill,' is used to treat swelling and fluid retention caused by various medical problems. It ... Ethacrynic acid comes as a tablet to take by mouth. It is usually taken once or twice a day ...

  4. Mefenamic Acid

    Science.gov (United States)

    Mefenamic acid is used to relieve mild to moderate pain, including menstrual pain (pain that happens before or during a menstrual period). Mefenamic acid is in a class of medications called NSAIDs. ...

  5. Transport and metabolism of fumaric acid in Saccharomyces cerevisiae in aerobic glucose-limited chemostat culture.

    Science.gov (United States)

    Shah, Mihir V; van Mastrigt, Oscar; Heijnen, Joseph J; van Gulik, Walter M

    2016-04-01

    Currently, research is being focused on the industrial-scale production of fumaric acid and other relevant organic acids from renewable feedstocks via fermentation, preferably at low pH for better product recovery. However, at low pH a large fraction of the extracellular acid is present in the undissociated form, which is lipophilic and can diffuse into the cell. There have been no studies done on the impact of high extracellular concentrations of fumaric acid under aerobic conditions in S. cerevisiae, which is a relevant issue to study for industrial-scale production. In this work we studied the uptake and metabolism of fumaric acid in S. cerevisiae in glucose-limited chemostat cultures at a cultivation pH of 3.0 (pH medium. The experiments were carried out with the wild-type S. cerevisiae CEN.PK 113-7D and an engineered S. cerevisiae ADIS 244 expressing a heterologous dicarboxylic acid transporter (DCT-02) from Aspergillus niger, to examine whether it would be capable of exporting fumaric acid. We observed that fumaric acid entered the cells most likely via passive diffusion of the undissociated form. Approximately two-thirds of the fumaric acid in the feed was metabolized together with glucose. From metabolic flux analysis, an increased ATP dissipation was observed only at high intracellular concentrations of fumarate, possibly due to the export of fumarate via an ABC transporter. The implications of our results for the industrial-scale production of fumaric acid are discussed. Copyright © 2015 John Wiley & Sons, Ltd.

  6. SUPPRESSION OF MAMMARY CARCINOMAS BY ALPHA-LINOLENIC ACID: PART I. EFFECT OF EXTRACTION METHODS ON QUALITY AND GC-MS ANALYSIS OF OIL FROM FLAXSEED (LINUM USITATISSIMUM L.).

    OpenAIRE

    Vanita S. Bhat; Basavaraj Madhusudhan.

    2018-01-01

    Therapeutic role of alpha-linolenic acid (ALA) in human health and disease is gaining remarkable attention in food products, formulations and supplements. Flaxseed oil is also one among the best sources of ALA. In this paper, effectiveness of ultrasonic extraction of oil from finely ground flaxseed flour is compared to the other two conventional extraction methods. The yields of oils in cold pressed method (30.14%), ultrasonic extraction (48.05%) and Soxhlet extracted (43.01%) were measured. ...

  7. Biosynthesis of porphyrins and related macrocycles, Part 43. Isolation and characterization of intermediates of coenzyme B12 biosynthesis, a cobyrinic acid triamide, the a,c-diamide and their Co-(5'-deoxy-5'-adenosyl) derivatives, from Propionibacterium shermanii.

    Science.gov (United States)

    Kiuchi, F; Leeper, F J; Battersby, A R

    1995-08-01

    Vitamin B12 is synthesized by many different organisms, for example Pseudomonas denitrificans (aerobic) and Propionibacterium shermanii ('microaerophilic', or essentially anaerobic). The biosynthetic pathways in these two organisms show strong similarities but also some differences. There have been conflicting reports on where differences between these two organisms lie in the stages beyond the formation of the corrin macrocycle. Characterization of intermediates in the pathway will help resolve these conflicts. A single cobyrinic acid diamide and a single triamide have been isolated from Pr. shermanii. The diamide was shown to be the a,c-isomer. The triamide is not the a,c,g-isomer but it is indistinguishable from the single triamide isolated by other workers from Ps. denitrificans. The Co-(5'-deoxy-5'-adenosyl) derivative of the a,c-diamide was also isolated and fully characterized and the deoxyadenosyl derivative of the foregoing triamide has been shown to be present in the cells. Our results support a unique pathway in Pr. shermanii proceeding from cobyrinic acid towards coenzyme B12, at least as far as the adenosylated triamide intermediate. No evidence was found for multiple alternative pathways. The order of amidations of the carboxyl side-chains of cobyrinic acid up to the triamide stage is the same in Pr. shermanii and Ps. denitrificans.

  8. 78 FR 20029 - Castor Oil, Polymer With Adipic Acid, Linoleic Acid, Oleic Acid and Ricinoleic Acid; Tolerance...

    Science.gov (United States)

    2013-04-03

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 180 [EPA-HQ-OPP-2013-0057; FRL-9381-2] Castor Oil... from the requirement of a tolerance for residues of castor oil, polymer with adipic acid, linoleic acid... eliminates the need to establish a maximum permissible level for residues of castor oil, polymer with adipic...

  9. Development of a solid-phase extraction method for simultaneous extraction of adipic acid, succinic acid and 1,4-butanediol formed during hydrolysis of poly(butylene adipate) and poly(butylene succinate).

    Science.gov (United States)

    Lindström, Annika; Albertsson, Ann-Christine; Hakkarainen, Minna

    2004-01-02

    A solid-phase extraction (SPE) method was developed for the simultaneous extraction of dicarboxylic acids and diols formed during hydrolysis of poly(butylene succinate), PBS, and poly(butylene adipate), PBA. Four commercial non-polar SPE columns, three silica based: C8, C18, C18 (EC), and one resin based: ENV+, were tested for the extraction of succinic acid, adipic acid and 1,4-butanediol, the expected final hydrolysis products of PBS and PBA. ENV+ resin was chosen as a solid-phase, because it displayed the best extraction efficiency for 1,4-butanediol and succinic acid. Linear range for the extracted analytes was 1-500 ng/microl for adipic acid and 2-500 ng/microl for 1,4-butanediol and succinic acid. Detection and quantification limits for the analytes were between 1-2 and 2-7 ng/microl, respectively, and relative standard deviations were between 3 and 7%. Good repeatability and low detection limits made the developed SPE method and subsequent gas chromatography-mass spectrometry (GC-MS) analysis a sensitive tool for identification and quantification of hydrolysis products at early stages of degradation.

  10. Posttreatment with group II metabotropic glutamate receptor agonist 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate is only weakly effective on seizures in immature rats

    Czech Academy of Sciences Publication Activity Database

    Folbergrová, Jaroslava; Druga, Rastislav; Tsenov, Grygoriy; Haugvicová, Renata; Otáhal, Jakub

    2009-01-01

    Roč. 1273, - (2009), s. 144-154 ISSN 0006-8993 R&D Projects: GA ČR(CZ) GA309/05/2015; GA ČR GA309/08/0292; GA ČR(CZ) GA304/07/1137 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z50200510 Keywords : DL-homocysteic acid-induced seizures * posttreatment with 2R * 4R-APDC * partial protection Subject RIV: FH - Neuro logy Impact factor: 2.463, year: 2009

  11. The roles of organic acids in C4 photosynthesis

    Directory of Open Access Journals (Sweden)

    Martha eLudwig

    2016-05-01

    Full Text Available Organic acids are involved in numerous metabolic pathways in all plants. The finding that some plants, known as C4 plants, have four-carbon dicarboxylic acids as the first product of carbon fixation showed these organic acids play essential roles as photosynthetic intermediates. Oxaloacetate, malate, and aspartate are substrates for the C4 acid cycle that underpins the CO2 concentrating mechanism of C4 photosynthesis. In this cycle, oxaloacetate is the immediate, short-lived, product of the initial CO2 fixation step in C4 leaf mesophyll cells. The malate and aspartate, resulting from the rapid conversion of oxaloacetate, are the organic acids delivered to the sites of carbon reduction in the bundle-sheath cells of the leaf, where they are decarboxylated, with the released CO2 used to make carbohydrates. The three-carbon organic acids resulting from the decarboxylation reactions are returned to the mesophyll cells where they are used to regenerate the CO2 acceptor pool. NADP-malic enzyme-type, NAD-malic enzyme-type and phosphoenolpyruvate carboxykinase-type C4 plants were identified, based on the most abundant decarboxylating enzyme in the leaf tissue. The genes encoding these C4 pathway-associated decarboxylases were co-opted from ancestral C3 plant genes during the evolution of C4 photosynthesis. Malate was recognized as the major organic acid transferred in NADP-malic enzyme-type C4 species, while aspartate fills this role in NAD-malic enzyme-type and phosphoenolpyruvate carboxykinase-type plants. However, accumulating evidence indicates that many C4 plants use a combination of organic acids and decarboxylases during CO2 fixation, and the C4-type categories are not rigid. The ability to transfer multiple organic acid species and utilize different decarboxylases has been suggested to give C4 plants advantages in changing and stressful environments, as well as during development, by facilitating the balance of energy between the two cell types

  12. Survival of Dicor glass-ceramic dental restorations over 14 years: Part I. Survival of Dicor complete coverage restorations and effect of internal surface acid etching, tooth position, gender, and age.

    Science.gov (United States)

    Malament, K A; Socransky, S S

    1999-01-01

    There are no long-term data on Dicor glass-ceramic restoration survival in the human oral cavity and the effect that different technical and clinical variables have on survival. This prospective study examined the relationship of different clinical parameters on the survival of Dicor glass-ceramic restorations in the human oral cavity. A total of 417 subjects (from 17 to 91 years of age) participated. All subjects required single unit fixed prosthodontics in any area of the mouth and/or 3-unit fixed partial dentures or cantilevered anterior restorations. They were offered the option of a gold or conventional metal-ceramic restoration, or a Dicor restoration with potentially improved esthetic results, better wear characteristics, and diminished oral plaque accumulation. Overall survival of the restorations was determined and the effect of various clinical parameters evaluated with Kaplan-Meier survival curves. Log rank tests were used to determine statistically significant differences among parameters. For the 1444 units placed, 188 failures were recorded. Total time at risk for the units was 7319 years providing an estimated risk of 2.45% per year. Probabilities of survival of "typical" acid-etched Dicor and nonacid-etched Dicor restorations were 76% and 50%, respectively, at 14.1 years (P <.001). Probabilities of survival of typical acid-etched and nonacid-etched Dicor complete coverage restorations were virtually identical to those observed in the full data set. There was a 2.2 times greater risk of failure associated with the use of nonacid-etched Dicor complete coverage than acid-etched restorations (P <.01). Complete coverage restoration survival was highest in the incisor region and decreased to the molars in both arches. Second molars showed the highest failure rate. No complete coverage restorations failed on lateral incisors during the entire study. Probability of survival of a typical acid-etched Dicor complete coverage restoration in male subjects was 71

  13. Development of a low pH fermentation strategy for fumaric acid production by Rhizopus oryzae.

    Science.gov (United States)

    Roa Engel, Carol A; van Gulik, Walter M; Marang, Leonie; van der Wielen, Luuk A M; Straathof, Adrie J J

    2011-01-05

    Dicarboxylic acids that are produced from renewable resources are becoming attractive building blocks for the polymers industry. In this respect, fumaric acid is very interesting. Its low aqueous solubility facilitates product recovery. To avoid excessive waste salt production during downstream processing, a low pH for fumaric acid fermentation will be beneficial. Studying the influence of pH, working volume and shaking frequency on cell cultivation helped us to identify the best conditions to obtain appropriate pellet morphologies of a wild type strain of Rhizopus oryzae. Using these pellets, the effects of pH and CO(2) addition were st